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Preface to “Lie and non-Lie Symmetries: Theory and 
Applications for Solving Nonlinear Models” 

Nowadays, the most powerful methods for construction of exact solutions to nonlinear partial 
differential equations (PDEs) are symmetry-based methods. These methods originated from the Lie 
method, which was created by the prominent Norwegian mathematician Sophus Lie in the second half of 
the 19th century. The method was essentially developed using modern mathematical language by L.V. 
Ovsiannikov, G. Bluman, N. Ibragimov, W.F. Ames and some other researchers in the 1960s and 1970s. 
Although the technique of the Lie method is well known, the method still attracts the attention of many 
researches and new results are published on a regular basis. 

However, it is well known that the Lie method is not efficient for solving PDEs with a ‘poor’ Lie 
symmetry (i.e., their maximal algebra of invariance is trivial). Thus, other symmetry-based methods that 
use non-Lie symmetries (conditional symmetry, weak symmetry, nonlocal symmetry, generalized 
conditional symmetry etc.) have been developed over the last decades. The best known among them is the 
method of nonclassical symmetries proposed by G.Bluman and J.Cole in 1969. Notwithstanding this 
approach was suggested almost 50 years ago, it was successfully applied in searching for nonclassical 
symmetries (Q-conditional symmetries) of nonlinear equations only in the 1990s–2000s. Moreover, one 
may say that progress is still modest concerning the successful application of symmetry-based methods 
(except the Lie method) to systems of PDEs and multidimensional PDEs, especially to those arising in 
real-world applications.  

Another hot topic is the application of symmetry-based methods for solving nonlinear boundary-
value problems (BVPs). One may note that symmetry-based methods have not been widely used for 
solving boundary-value problems (initial value problems belong to such problems as particular cases), 
although the first rigorous definitions of Lie invariance for BVPs were formulated in the 1970s. The 
obvious reason for this lack of application is highlighted in the following observation: the relevant 
boundary and initial conditions are usually not invariant under any transformations, i.e. they do not 
admit any symmetry of the governing PDE of the problem in question.. However, it was shown very 
recently that there are new classes of nonlinear BVPs (including multidimensional BVPs), which possess 
non-trivial Lie and/or non-Lie symmetry. As a result, such BVPs can be reduced, simplified and exactly 
solved (additional restrictions are usually needed).  

This book is a collection of the papers published in the journal Symmetry within two Special Issues: 
Lie Theory and Its Applications and Lie and Conditional Symmetries and Their Applications for Solving 
Nonlinear Models, for which I served as the Guest Editor in 2015–2017. The book consists of six chapters. 
Each chapter contains papers that are devoted to similar topics and/or methods.  

The papers forming Chapter 1 are devoted to searching for Lie symmetries and their applications 
for nonlinear differential equations (including ODEs) that arise in the modelling of some real-world 
processes (especially in biology).  

Chapter 2 consists of papers concerned with different aspects of non-classical (Q-conditional) and 
generalized conditional symmetries. In particular, the above-mentioned symmetries are constructed for 
nonlinear reaction-diffusion systems and wave equations with variable coefficients.  

The papers belonging to Chapter 3 are devoted to the search for and application of Lie and Q-
conditional symmetries for nonlinear BVPs (including multidimensional problems). Notably, new 
definitions of conditional invariance of a given BVP with a wide range of boundary conditions are 
proposed and applied to reduce and solve some nonlinear real-world models.  

Chapter 4 consists of papers in which some Lie algebras of infinite or very high dimensionality are 
studied. It transpires that such Lie algebras are related to some physical processes (such as phase 
transitions) and generate Lie symmetries of physically interesting PDEs.  
  



 

x 

 

The papers forming Chapter 5 can be grouped into two subsets. The first three papers are devoted 
to the classical problem: How is symmetry of a given PDE related to its integrability? The last two papers 
discuss another well-known problem: How can conservation laws be identified using symmetry of the 
relevant equation?  

Finally, Chapter 6 contains papers devoted to some theoretical aspects of Lie algebras, which are 
common in Lie symmetry analysis of differential equations. 

Roman M. Cherniha 
Special Issue Editor 
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M.C. Nucci * and G. Sanchini

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia, Italy
giampaolo.sanchini@istruzione.it
* Author to whom correspondence should be addressed; nucci@unipg.it

Academic Editor: Roman M. Cherniha
Received: 6 June 2015; Accepted: 19 August 2015; Published: 8 September 2015

Abstract: Basener and Ross (2005) proposed a mathematical model that describes the dynamics of
growth and sudden decrease in the population of Easter Island. We have applied Lie group analysis
to this system and found that it can be integrated by quadrature if the involved parameters satisfy
certain relationships. We have also discerned hidden linearity. Moreover, we have determined
a Jacobi last multiplier and, consequently, a Lagrangian for the general system and have found
other cases independently and dependently on symmetry considerations in order to construct a
corresponding variational problem, thus enabling us to find conservation laws by means of Noether’s
theorem. A comparison with the qualitative analysis given by Basener and Ross is provided.

Keywords: lie group analysis; Jacobi last multiplier; Lagrangians; Noether’s theorem; Easter Island
population

1. Introduction

Lie group analysis has been applied in a multitude of physics problems for more than a century,
but rarely in biology, maybe because the ordinary differential equations studied in these fields are
generally of first order, in contrast with those in physics, which are usually of second order. Yet, when
Lie group analysis is successfully applied to biology models, then several instances of integrability,
even linearity, are found, which lead to the general solution of the model [1–6].

In [7], a mathematical model that describes the dynamics of growth and sudden decrease in the
population of Easter Island was proposed. The model is a nonlinear system of two first-order ordinary
differential equations, i.e.,

.
w1 = cw1

(
1 − w1

K
)− hw2, (1)

.
w2 = aw2

(
1 − w2

w1

)
, (2)

where w1 is the amount of resources, R in the original notation, w2 that of population, P in the original
notation, c is the growth rate of the resources, K the carrying capacity, h the harvesting constant and
a the growth rate of the population. More details on the construction of this model can be found
in [7], where numerical solutions of system (1)–(2) were given and a qualitative analysis of the general
behavior of solutions both in finite and infinite time was presented.

In this paper, we apply Lie group analysis to an equivalent second-order equation that can be
easily derived from system (1)–(2) and find that it can either be integrated by quadrature or reduced to
a linear equation if the involved parameters satisfy certain relationships. We also determine a Jacobi
last multiplier for system (1)–(2) in order to construct the corresponding Lagrangians (i.e., variational
problems) for both system (1)–(2), and the equivalent second-order equation [8]. We find other
Jacobi last multipliers and, consequently, Lagrangians independently and dependently on symmetry

Symmetry 2015, 7, 1613–1632 3 www.mdpi.com/journal/symmetry
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considerations. Then, we apply Noether’s theorem [9] in order to find conservation laws. Finally, we
compare our results to the qualitative analysis in [7].

2. Jacobi Last Multiplier and Its Properties

In this section, we recall the definition and properties of the Jacobi last multiplier, its connection
to Lie symmetries and to Lagrangians (namely, calculus of variations).

The method of the Jacobi last multiplier [10,11] (an English translation of [11] is available in [12])
provides a means to determine all of the solutions of the partial differential equation:

A f =
n

∑
i=1

ai(x1, · · · , xn)
∂ f
∂xi

= 0 (3)

or its equivalent associated Lagrange’s system:

dx1

a1
=

dx2

a2
= . . . =

dxn

an
. (4)

In fact, if one knows the Jacobi last multiplier and all, but one of the solutions, namely n − 2
solutions, then the last solution can be obtained by a quadrature. The Jacobi last multiplier M is
given by:

∂( f , ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MA f , (5)

where

∂( f , ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= det

⎡⎢⎢⎢⎢⎢⎣
∂f

∂x1
· · · ∂f

∂xn
∂ω1
∂x1

∂ω1
∂xn

...
...

∂ωn−1
∂x1

· · · ∂ωn−1
∂xn

⎤⎥⎥⎥⎥⎥⎦ = 0 (6)

and ω1, . . . , ωn−1 are n − 1 solutions of (3) or, equivalently, first integrals of (4) independent of
each other. This means that M is a function of the variables (x1, . . . , xn) and depends on the chosen
n − 1 solutions, in the sense that it varies as they vary. The essential properties of the Jacobi last
multiplier are:

(a) If one selects a different set of n − 1 independent solutions η1, . . . , ηn−1 of Equation (3), then the
corresponding last multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)

∂(ω1, . . . , ωn−1)
.

(b) Given a non-singular transformation of variables:

τ : (x1, x2, . . . , xn) −→
(

x′1, x′2, . . . , x′n
)
,

then the last multiplier M′ of A′F = 0 is given by:

M′ = M
∂(x1, x2, . . . , xn)

∂
(

x′1, x′2, . . . , x′n
) ,

where M obviously comes from the n − 1 solutions of AF = 0, which correspond to those chosen
for A′F = 0 through the inverse transformation τ−1.

4
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(c) One can prove that each multiplier M is a solution of the following linear partial differential
equation:

n

∑
i=1

∂(Mai)

∂xi
= 0; (7)

and vice versa, every solution M of this equation is a Jacobi last multiplier.
(d) If one knows two Jacobi last multipliers M1 and M2 of Equation (3), then their ratio is a solution

ω of (3) or, equivalently, a first integral of (4). Naturally, the ratio may be quite trivial, namely
a constant; vice versa, the product of a multiplier M1 times any solution ω yields another last
multiplier M2 = M1ω.

Since the existence of a solution/first integral is consequent upon the existence of symmetry, an
alternative formulation in terms of symmetries was provided by Lie [13,14]. A clear treatment of the
formulation in terms of solutions/first integrals and symmetries is given by Bianchi [15]. If we know
n − 1 symmetries of (3)/4), say:

Γi =
n

∑
j=1

ξij(x1, · · · , xn)∂xj , i = 1, n − 1, (8)

a Jacobi last multiplier is given by M = Δ−1, provided that Δ �= 0, where:

Δ = det

⎡⎢⎢⎢⎢⎣
a1 · · · an

ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n

⎤⎥⎥⎥⎥⎦. (9)

There is an obvious corollary to the results of the Jacobi mentioned above. In the case that there
exists a constant multiplier, the determinant is a first integral. This result is potentially very useful
in the search for first integrals of systems of ordinary differential equations. In particular, if each
component of the vector field of the equation of motion is missing, the variable associated with that
component, i.e., ∂ai/∂xi = 0, the last multiplier is a constant, and any other Jacobi last multiplier is a
first integral.

Another property of the Jacobi last multiplier is its (almost forgotten) relationship with the
Lagrangian, L = L

(
t, x,

.
x
)
, for any second-order equation:

..
x = φ

(
t, x,

.
x
)
, (10)

namely [11,16]:

M =
∂2L

∂
.
x2 , (11)

where M = M
(
t, x,

.
x
)

satisfies the following equation:

d
dt

(log M) +
∂φ

∂
.
x
= 0. (12)

Then, Equation (10) becomes the Euler–Lagrange equation:

− d
dt

(
∂L
∂

.
x

)
+

∂L
∂x

= 0. (13)

5
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The proof is given by taking the derivative of (13) by
.
x and showing that this yields (12). If one

knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M d
.
x
)

d
.
x + �1(t, x)

.
x + �2(t, x), (14)

where �1 and �2 are functions of t and x, which have to satisfy a single partial differential equation
related to (10) [17]. As was shown in [17], �1, �2 are related to the gauge function F = F(t, x). In fact,
we may assume:

�1 = ∂F
∂x

�2 = ∂F
∂t + �3(t, x) (15)

where �3 has to satisfy the mentioned partial differential equation and F is obviously arbitrary.
In [18], it was shown that a system of two first-order ordinary differential equations:

.
u1 = φ1(t, u1, u2)

.
u2 = φ2(t, u1, u2) (16)

always admits a linear Lagrangian of the form:

L = U1(t, u1, u2)
.
u1 + U2(t, u1, u2)

.
u2 − V(t, u1, u2). (17)

The key is a function W, such that:

W = −∂U1

∂u2
=

∂U2

∂u1
(18)

and
d
dt

(log W) +
∂φ1

∂u1
+

∂φ2

∂u2
= 0. (19)

It is obvious that Equation (19) is Equation (7) of the Jacobi last multiplier for system (16), as it was
point out in [8]. Therefore, once a Jacobi last multiplier M(t, u1, u2) has been found, then a Lagrangian
of system (16) can be obtained by two integrations, i.e.,

L =

(∫
M du1

)
.
u2 −

(∫
M du2

)
.
u1 + g(t, u1, u2) +

d
dt

G(t, u1, u2), (20)

where g(t, u1, u2) satisfies two linear differential equations of first order that can be always integrated
and G(t, u1, u2) is the arbitrary gauge function that should be taken into consideration in order to
apply correctly Noether’s theorem [9]. If a Noether symmetry:

Γ = ξ(t, u1, u2)∂t + η1(t, u1, u2)∂u1 + η2(t, u1, u2)∂u2 (21)

exists for the Lagrangian L in (20), then a first integral of system (16) is:

− ξL − ∂L
∂

.
u1

(
η1 − ξ

.
u1

)− ∂L
∂

.
u2

(
η2 − ξ

.
u2

)
+ G(t, u1, u2). (22)

We underline that
.
u1 and

.
u2 always disappear from the expression of the first integral (22) thanks

to the linearity of the Lagrangian (20) and formula (20).

6



Symmetry 2015, 7, 1613–1632

3. Lie Symmetries of System (1)–(2)

It is well known to practitioners of Lie group analysis that a first-order system of ordinary
differential equations admits an infinite-dimensional Lie symmetry algebra; e.g., see [19]. Lie’s theory
allows us to integrate system (1)–(2) by quadrature, if we find at least a two-dimensional Lie algebra.
In order to find it, we derive w1 from (2), i.e.,

w1 = − aw2
2

.
w2 − aw2

. (23)

Consequently we obtain a second-order ordinary differential equation (ODE) in u ≡ w2,

..
u =

(2a − h)
.
u2

au
− (a + c − 2h)

.
u − ac

K
u2 + a(c − h)u. (24)

and search for its Lie symmetry algebra. An operator Γ:

Γ = V(t, u)∂t + G(t, u)∂u (25)

is said to generate a Lie point symmetry group of an equation of second-order, e.g.,

..
u = F

(
t, u,

.
u
)
, (26)

if its second prolongation:

Γ
2
= Γ +

(
dG
dt

− .
u

dV
dt

)
∂ .

u +

[
d
dt

(
dG
dt

− .
u

dV
dt

)
− ..

u
dV
dt

]
∂ ..

u

applied to (26), on its solutions, is identically equal to zero, i.e.:

Γ
2
(26)

∣∣∣(26) = 0. (27)

A trivial Lie point symmetry of system (1)–(2) and also of Equation (24) is translation in time, i.e.,

∂t. (28)

Using ad hoc REDUCE interactive programs [20], we find that Equation (24) admits at least another
symmetry in two cases. Of course, any of those symmetries corresponds to a symmetry of system
(1)–(2), as we show below.

Case (A)

If the following relationship among the parameters h, a and c is satisfied (condition 3a − 2c = 0
does not yield a second Lie symmetry of Equation (24)):

h =
a(2a − c)
3a − 2c

, (29)

then Equation (24) admits a two-dimensional Lie symmetry algebra generated by (if a = c, then (29)
implies that h = c; this is a particular example of Case (A), and we discuss it in Remark 3 of Section 4):

Γ1 = ∂t, Γ2 = exp((a − c)t)(∂t − 2(a − c)u∂u). (30)

This Lie symmetry algebra is non-Abelian and transitive, i.e., of Type III in Lie’s classification of
two-dimensional algebras in the real plane [14] (this classification can also be found in Bianchi’s book

7
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[15] and in modern textbooks, e.g., [21]). Therefore, to integrate Equation (24), we have to transform it
into its canonical form, as given by Lie himself, i.e.,

d2ũ
dt̃2

=
1
t̃
F

(
dũ
dt̃

)
, (31)

where t̃, ũ are the new independent and dependent variables, respectively, F is an arbitrary function of
dũ
dt̃

and the two-dimensional canonical Lie algebra of Type III is generated by the following operators:

∂t̃, t̃∂t̃ + ũ∂ũ. (32)

We determine:

t̃ =
exp(−(a − c)t)√

u
, ũ = −exp(−(a − c)t)

(a − c)2 (33)

and consequently, (24) becomes:

d2ũ
dt̃2

=
a

2K(3a − 2c)t̃

(
c
(

3a3 − 2c3 + 7ac2 − 8a2c
)(dũ

dt̃

)2
+ 2K

)
dũ
dt̃

(34)

which can be integrated by two quadratures to yield:

ũ =
∫ √

2A1K2(3a − 2c)
t̃−2aK2 + A1cK(20ac3 − 9a4 − 37a2c2 + 30a3c − 4c4)

dt̃ + A2, (35)

with A1, A2 two arbitrary constants.

Case (B)

If the following relationship among the parameters a and c is satisfied:

a = 2c, (36)

then Equation (24) admits a two-dimensional Lie symmetry algebra generated by:

Γ1 = ∂t, Γ2 = exp(−ct)(∂t + 2cu∂u). (37)

This Lie symmetry algebra is also non-Abelian and transitive. Therefore, we can derive the
corresponding canonical transformation, i.e.,

t̃ =
exp(ct)√

u
, ũ = −exp(ct)

c
, (38)

and consequently, (24) becomes:

d2ũ
dt̃2

=
1

cK

(
K(c − h)− c3

(
dũ
dt̃

)2
)

dũ
dt̃

, (39)

which can be integrated by two quadratures to yield:

ũ = A1

√
K(h − c)

∫ exp
(
t̃
)√

A2h/c
1 exp

(
2ht̃/c

)− c3 A2
1 exp

(
2t̃
) d t̃ + A2, (40)

with A1, A2 two arbitrary constants.

8
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Subcase (B.1)

If in addition to the condition (36), the following relationship among the parameters h and c
is satisfied:

h =
3
2

c (41)

then Equation (24), i.e.,
..
u =

5
4u

.
u2 − 2

c2

K
u2 − c2u, (42)

admits a three-dimensional Lie symmetry algebra generated by:

Γ1 = ∂t, Γ2 = exp(−ct)(∂t + 2cu∂u)Γ3 = exp(ct)(∂t − 2cu∂u). (43)

This algebra is a representation of sl(2,R). It was shown in [22] that if we treat (42) as a first
integral, namely if we solve the equation with respect to 1/K (this choice, instead of K, is just for
convenience), i.e.:

1
K

= − 1
2c2u2

..
u − 1

2u
+

5
8c2u3

.
u2, (44)

then a linearizable third-order equation is obtained, i.e.,

...
u =

.
u
(

c2 +
9

2u
..
u − 15

4u2
.
u2

)
. (45)

In fact, this equation admits a seven-dimensional Lie symmetry algebra generated by the following
operators:

X1 = exp(ct)(∂t − 2uc∂u), X2 = exp(−ct)(∂t + 2uc∂u), X3 = ∂t,

X4 = u∂u, X5 = u3/2 exp(ct)∂u, X6 = u3/2 exp(−ct)∂u, X7 = u3/2∂u. (46)

We remark that we could not solve Equation (42) with respect to c since it is not an essential constant:
in fact, we could have eliminated it from system (1)–(2) by rescaling. Indeed, the third-order equation
that one gets through c, namely:

...
u =

.
u

2u2(K + 2u)

(
18u2 ..

u + 7Ku
..
u − 5K

.
u2 − 15u

.
u2

)
,

admits a two-dimensional Lie symmetry algebra, generated by ∂t, t∂t, and consequently, it is not
linearizable.

Following Lie [14], the linearizing transformation of Equation (45) is given by finding a
two-dimensional Abelian intransitive subalgebra and putting it into the canonical form ∂ũ, t̃∂ũ.
Since a two-dimensional Abelian intransitive subalgebra is that generated by X5 and X6, then the
point transformation:

t̃ = exp(−2ct), ũ = −2u−1/2 exp(−ct) (47)

takes (45) into the following linear equation:

d3ũ
dt̃3

= − 3
2t̃

d2ũ
dt̃2

. (48)

Its general solution simply is:

ũ = A3 + A2 t̃ + A1

√
t̃, (49)

with Ai(i = 1, 2, 3) arbitrary constants, that, replaced into (45), yields the general solution:

u =
4

exp(2ct)(A3 + A2 exp(−2ct) + A1 exp(−ct))2 . (50)

9
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Since the original Equation (42) is of second order, then one of the constants of integrations Ai
should be superfluous. Indeed, if we replace (50) into (44), then the following condition is obtained:

1
K

=
1
2

A2 A3 − 1
8

A2
1 (51)

that yields:

A3 =
8 + A2

1K
4A2K

. (52)

Finally, the general solution of Equation (42) is:

u =
64A2

2K

exp(2ct)
(
8 + A2

1K + 4A2
2K exp(−2ct) + 4A1 A2K exp(−ct)

)2 , (53)

and consequently, by means of (23), the general solution of system (1)–(2), i.e.,

.
w1 = cw1

(
1 − w1

K
)− 3c

2 w2, (54)

.
w2 = 2cw2

(
1 − w2

w1

)
, (55)

is given by:

w1 =
32A2

2K2 exp(−2ct)
(8+A2

1K+4A2
2K exp(−2ct)+4A1 A2K exp(−ct))(8+A2

1K+2A1 A2K exp(−ct))
,

w2 =
64A2

2K exp(−2ct)

(8+A2
1K+4A2

2K exp(−2ct)+4A1 A2K exp(−ct))
2 . (56)

Since limt→+∞ w1 = 0, limt→+∞ w2 = 0, this solution corresponds to asymptotic death for all [7].
We present two particular instances of the general solution (56) in Figures 1 and 2.

Figure 1. The amount of resources R ≡ w1 and that of the population P ≡ w2 for the values of the
parameters K = 20000, c = 0.01, and for the initial conditions P(0) = 1000, R(0) = 20000.

10
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Figure 2. The amount of resources R ≡ w1 and that of the population P ≡ w2 for the values of the
parameters K = 40000, c = 0.01, and for the initial conditions P(0) = 1000, R(0) =20000.

It is interesting to remark that if we double the carrying capacity K leaving the other parameters
and initial conditions unaltered, the amount of resources R ≡ w1 actually grows along with the
population P ≡ w2 at least for a period of time (approximately a century in Figure 2) before
decreasing dramatically.

4. Jacobi Last Multipliers, Lagrangians and First Integrals of System (1)–(2)

A Jacobi last multiplier for system (1)–(2) has to satisfy Equation (7), i.e.,

d
dt

(
log M[w]

)
+

∂a1

∂w1
+

∂a2

∂w2
= 0. (57)

As in [8], we assume that M[w] has the following form:

M[w] = wa1
1 wa2

2 exp(a0t), (58)

where ai, (i = 0, 1, 2) are constants to be determined. Replacing this M[w] into system (1)–(2) yields:

M[w] = w−2
1 w2h/a−2

2 exp((a + c − 2h)t). (59)

Therefore, the following Lagrangian of system (1) and (2) is obtained by means of Equation (20):

L[w] = w−2
1 w2h/a−2

2 exp((a + c − 2h)t)
(

a
a−2h w2

.
w1 − w1

.
w2

+ aw2
2cw2

1+K(a−c−2h)w1+K(2h−a)w2
K(a−2h)

)
. (60)

It is obvious that if a = 2h, then the Lagrangian L[w] does not exist. Indeed, if:

a = 2h, (61)

then the Jacobi Last Multiplier (59) becomes:

M�
[w]

= w−2
1 w−1

2 exp(ct), (62)

11
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and consequently, the Lagrangian of system (1)–(2) is:

L�
[w]

= w−2
1 w−1

2 exp(ct)
(−w2 log(w2)

.
w1 − w1

.
w2 − 2c

K log(w2)w2
1w2

−2hw2
2 + c log(w2)w1w2 + 4hw1w2

)
. (63)

The Jacobi Last Multiplier (59) yields the following Jacobi last multiplier of Equation (24) by
means of the application of Property (b):

M[u] = M[w]
∂(w2, w1)

∂
(
u,

.
u
) =

∣∣∣∣∣∣
1 0

−au 2
.
u−au

(
.
u−au)

2
au2

(
.
u−au)

2

∣∣∣∣∣∣ = u2h/a−4

a
exp[(a + c − 2h)t], (64)

and consequently, the following Lagrangian is derived by means of (14):

L[u] = u
2h
a −4 exp[(a + c − 2h)t]

( .
u2

2a
+

acu3

K(a − 2h)
− a(c − h)u2

2(a − h)

)
. (65)

If the following condition on the parameters is satisfied, i.e.,

h =
a + c

2
, (66)

then the trivial Lie symmetry (28) admitted by system (1)–(2) and Equation (24) is also a Noether
symmetry (Equation (24) does not admit another Lie symmetry). Consequently, Noether’s theorem [9]
yields the following first integral:

Int =
u

c
a −3

(
K

.
u2

+ (2u − K)a2u2
)

2aK
(67)

of Equation (24), i.e.,
..
u =

−a3Ku2 + a2cKu2 − 2a2cu3 + 3aK
.
u2 − cK

.
u2

2aKu
. (68)

Replacing u with w2 and
.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into Int

yields the following first integral of system (1)–(2):

I =
wc/a

2
w2

1

(
2w2

1 − 2Kw1 + Kw2

)
. (69)

Remark 1: It was shown in [7], Proposition 6, that if c > a, then the first integral (69) yields periodic
orbits. In particular, if a = 1, c = 2, it is easy to show that the general solution depends on elliptic
functions.

It is obvious that if either a = 2h or a = h, then the Lagrangian L[u] in (65) does not exist. In fact, if:

a = 2h, (70)

then from M[u] in (64), i.e.,

M�
[u] =

u−3

2h
exp(ct), (71)

the following Lagrangian is obtained by means of (14), i.e.,

L�
[u] =

u−3

K
exp(ct)

(
K
4h

.
u2 − c log(u)u3 + K(h − c)u2

)
. (72)

12
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This Lagrangian does not admit any Noether point symmetry unless c = h, and consequently,
the Lagrangian (72) admits the Lie symmetry exp(−ht)(∂t + 2hu∂u) as Noether symmetry and the
following first integral is derived:

Int0 =
4h2 log(u)u3 + 4h2Ku2 − 8th3u3 − 4hKu

.
u + K

.
u2

4hKu3 , (73)

the gauge function being F = h(K − 2htu)/(Ku).
Replacing u with w2 and

.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into Int0

yields the following first integral of system (1)–(2):

I0 = log(w2)− 2ht + K
w2

w2
1

. (74)

Remark 2: The case a = 2h, c = h is a particular example of Case (B), and consequently, Equation (24), i.e.,

..
u =

3K
.
u2 − 2Kuh

.
u − 4u3h2

2Ku
, (75)

admits the two Lie symmetries (37), i.e.,

∂t, (∂t + 2hu∂u) exp(−ht). (76)

Another Jacobi last multiplier can be obtained from the reciprocal of (9), i.e.,

Δ = det

⎡⎢⎣ 1
.
u 3K

.
u2−2Kuh

.
u−4u3h2

2Ku
1 0 0

exp(−ht) 2hu exp(−ht) h
(
3

.
u − 2hu

)
exp(−ht)

⎤⎥⎦
= − 4h3u3

K exp(−ht).

(77)

Surprisingly, we do not obtain another Jacobi last multiplier. Indeed, 1
Δ = −K exp(ht)

4h3u3 is equal to

M�
[u] =

exp(ht)
2hu3 in (71), apart from an unessential multiplicative constant.

If
a = h, (78)

then from M[u] in (64), i.e.,

M��
[u] =

exp((c − h)t)
hu2 , (79)

the following Lagrangian is obtained by means of (14), i.e.,

L��
[u] =

exp((c − h)t)
(

K
.
u2 − 2chu3 + 2hK(c − h) log(u)u2

)
2hKu2 . (80)

This Lagrangian does not admit any Noether point symmetry unless either of the following
further conditions are also satisfied, i.e.,

h = c (81)

or
h = 2c. (82)

13



Symmetry 2015, 7, 1613–1632

If h = c, then the Lagrangian (80) admits the trivial Lie symmetry (28) as Noether symmetry, and
consequently, the following first integral is derived:

Int1a =
K

.
u2

+ 2c2u3

2cKu2 . (83)

Replacing u with w2 and
.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into

Int1a yields the following first integral of system (1)–(2):

I1a =
−2Kw1w2 + Kw2

2 + 2w2
1w2

w2
1

. (84)

Remark 3: The case a = h = c is a particular example of Case (A), and consequently, Equation (24), i.e.,

..
u =

K
.
u2 − c2u3

Ku
, (85)

admits the two Lie symmetries (30), i.e.,

∂t, t∂t − 2u∂u. (86)

Its general solution can be determined through the canonical variables, as explained in the previous
section, although in implicit form, i.e.,

A1 − 3
(
c2 + 1

)
u

3u
√

u
+

√
K

2A1
log

(
K

A1u

)
+

√
2K
A1

log
(

A1 +
√

A1(A1 − c2u)
)
= t + A2. (87)

Another Jacobi last multiplier (hence, another Lagrangian) for Equation (85) can be obtained from
the reciprocal of (9), i.e.,

Δ = det

⎡⎢⎣ 1
.
u K

.
u2−c2u3

Ku
1 0 0
t −2u −3

.
u

⎤⎥⎦ =
K

.
u2

+ 2c2u3

K
. (88)

Because of Property (d), the ratio of the Jacobi last multiplier in (79), i.e., M��
[u] = 1

cu2 , with that

found in Equation (88), i.e., 1
Δ = K

K
.
u2
+2c2u3

, yields a first integral that surprisingly is just Int1a, apart

from an unessential multiplicative constant.

If h = 2c, then the Lagrangian (80) admits the Lie symmetry exp(−ct)(∂t + 2cu∂u) as Noether
symmetry, and the following first integral is derived:

Int1b =
4c2Ku2 + 4c2u3 − 4cKu

.
u + K

.
u2

4 exp(2ct)cKu2 , (89)

the gauge function being F = c(1 − log(u)) exp(−2ct).
Replacing u with w2 and

.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into

Int1b yields the following first integral of system (1)–(2):

I1b = exp(−2ct)w2
Kw2 + w2

1
w2

1
. (90)

14
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Remark 4: The case a = h = 2c is another instance of Case (B), and consequently, Equation (24), i.e.,

..
u =

K
.
u2

+ Kcu
.
u − 2Kc2u2 − 2c2u3

Ku
, (91)

admits the two Lie symmetries (37), i.e.,

∂t, (∂t + 2cu∂u) exp(−ct), (92)

and its general solution can be determined through the canonical variables, as explained in the previous
section. Thus, the general solution of system (1)–(2) is that both w1 and w2 can go to infinity at the
same finite time, i.e., if:

t =
1
c

log
(

cA2 − c
√

A1K
4

log
(

c4 A4
1K2

))

w1 =
4c(A1K)3/2 exp

(
ct+

2(cA2−exp(ct))
c
√

A1K

)
c4 A4

1K2−exp
(

4 cA2−exp(ct)
c
√

A1K

) , (93)

w2 =
4A1K exp

(
2ct+2 cA2−exp(ct)

c
√

A1K

)
(

c2 A2
1K+exp

(
2 cA2−exp(ct)

c
√

A1K

))2 . (94)

Another Jacobi last multiplier for Equation (91) can be obtained from the reciprocal of Equation
(9), i.e.,

Δ = det

⎡⎢⎣ 1
.
u K

.
u2
+Kcu

.
u−2Kc2u2−2c2u3

Ku
1 0 0

exp(−ct) 2cu exp(−ct) c
(
3

.
u − 2cu

)
exp(−ct)

⎤⎥⎦
= − c

K

(
K
( .
u − 2cu

)2
+ 4c2u3

)
exp(−ct). (95)

Because of Property (d), the ratio of the Jacobi last multiplier in (79), i.e., exp(−ct)
2cu2 , with that found

in (95), i.e., 1
Δ =

K exp(ct)

c
(

K(
.
u−2cu)

2
+4c2u3

) , yields a first integral that is just Int1a, apart from an unessential

multiplicative constant.

Case (A)

If condition (29) is satisfied, then the Lagrangian (65) admits the Lie symmetry Γ2 in (30) as

Noether symmetry, with gauge function F = u
2(c−a)
3a−2c exp[2a(a − c)t/(3a − 2c)]

(
3a2 − 5ac + 2c2)/(2a),

and consequently, Noether’s theorem [9] yields the following first integral:

IntA = u
2(c−a)
3a−2c exp

(
2a(a − c)t

3a − 2c

)(
K
( .

u
u
− 2c

)2

+ 4aK
.
u
u
+ 2c(3a − 2c)u + 4aK(a − 2c)

)
(96)

of Equation (24), i.e.,

..
u =

(4a − 3c)
.
u2

(3a − 2c)u
+

(a − c)(a − 2c)
.
u

3a − 2c
− au

K(3a − 2c)

(
2K(a − c)2 + c(3a − 2c)u

)
. (97)

Replacing u with w2 and
.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into IntA

yields the following first integral of system (1)–(2):

IA = w
2(c−a)
3a−2c

2 exp
(

2a(a − c)t
3a − 2c

)(
K
(

a
w2

w1
− (3a − 2c)

)2
+ 2c(3a − 2c)w2

)
. (98)
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Another Jacobi last multiplier, and consequently Lagrangian, can be obtained by means of the
two Lie symmetries (30) through (9), i.e.,

MA[1,2] = exp((c − a)t)
3a − 2c
a(a − c)

[
k

.
u2

+ 4Ku(a − c)
.
u + 2u2

(
2K(a − c)2 + c(3a − 2c)u

)]−1
. (99)

The corresponding Lagrangian admits one Lie symmetry as Noether symmetry, with gauge
function F = t/K, i.e., Γ2 in (30), and consequently, the following first integral:

IntA[1,2] = 1
2(a−c)aK ((3a − 2p) log(4K(a − c) 2u2 + 2(3a − 2c)cu3

+4K(a − c)u
.
u + K

.
u2
)+2(a − c)at − 2(4a − 3c) log(u)). (100)

We remark that the two first integrals IntA and IntA[1,2] are not functionally independent.

Case (B)

If condition (36) is satisfied, then the Lagrangian (65) admits the Lie symmetry Γ2 in (37) as
Noether symmetry, with gauge function F = c2uh/c exp[2(c − h)t]/

(
(2c − h)u2), and consequently,

Noether’s theorem [9] yields the following first integral (h �= c):

IntB =
uh/c exp[2(c−h)t]

4cK(c−h)u4

(
4c3Ku2 − 4c2hKu2 − 4c3u3 − 4c2Ku

.
u

+4chKu
.
u + cK

.
u2 − hK

.
u2

)
(101)

of Equation (24), i.e.,

..
u =

4c3Ku2 − 4c2hKu2 − 4c3u3 − 6c2Ku
.
u + 4Khcu

.
u + 4cK

.
u2 − Kh

.
u2

2cKu
. (102)

Replacing u with w2 and
.
u with

.
w2 = aw2(1 − w2/w1), namely the RHS of Equation (2), into IntB

yields the following first integral of system (1)–(2):

IB = w
h−c

c
2 exp[2(c − h)t]

(
K(c − h)

w2

w2
1
− c

)
. (103)

Another Jacobi last multiplier, and consequently Lagrangian, can be obtained by means of the
two Lie symmetries (37) through (9), i.e.,

MB[1,2] =
K exp(ct)

K(c − h)
.
u2 − 4cK(c − h)u

.
u + 4c2u2(Kc − Kh − cu)

. (104)

The corresponding Lagrangian admits only the Lie symmetry Γ2 in (37) as Noether symmetry,
with gauge function F = t, and consequently, the following first integral:

IntB[1,2] =
1

2c(c−h) (2c(c − h)t + (h − 4c) log(u)

+ log
(

4Kc2(c − h)2u2 − 4c3u3 − 4cK(c − h)u
.
u + K(c − h)

.
u2

))
. (105)

We remark that the two first integrals IntB and IntB[1,2] are not functionally independent.

Case (B.1.)

16



Symmetry 2015, 7, 1613–1632

If condition (41) is satisfied, then the Lagrangian (65) admits all three Lie symmetries in (43) as
Noether symmetries, with gauge functions F2 = 2c√

u exp(ct) , F3 =
2c exp(ct)√

u , and consequently, Noether’s
theorem [9] yields the following three first integrals:

Int1B1 = 8c2u3−4c2Ku2+K
.
u2

4cKu2√u ,

Int2B1 = 4c2Ku2+8c2u3−4cKu
.
u+K

.
u2

4cKu2√u exp(ct) ,

Int3B1 = exp(ct) 4c2Ku2+8c2u3+4cKu
.
u+K

.
u2

4cKu2√u ,

(106)

of Equation (24), i.e.,
..
u =

5K
.
u2 − 4c2Ku2 − 8c2u3

4Ku
. (107)

Three more Jacobi last multipliers, and consequently, three Lagrangians, can be obtained by
means of the three Lie symmetries (43) through (9), i.e.,

MB1[1,2] = − 2K exp(ct)

c
(

4c2Ku2+8c2u3−4cKu
.
u+K

.
u2

) ,

MB1[1,3] = 2K
c exp(ct)

(
4c2Ku2+8c2u3+4cKu

.
u+K

.
u2

) ,

MB1[2,3] = − K
c
(

4c2Ku2−8c2u3−K
.
u2

) .

(108)

Since the ratio of two Jacobi last multipliers is a first integral, then we can obtain three first
integrals of Equation (107), i.e.,

MB1 [1,2]
MB1 [1,3]

= − exp(2ct) 4c2Ku2+8c2u3+4cKu
.
u+K

.
u2

4c2Ku2+8c2u3−4cKu
.
u+K

.
u2 ,

MB1 [1,2]
MB1 [2,3]

= 2 exp(ct) 4c2Ku2−8c2u3−K
.
u2

4c2Ku2+8c2u3−4cKu
.
u+K

.
u2 ,

MB1 [1,3]
MB1 [2,3]

= −2 exp(−ct) 4c2Ku2−8c2u3−K
.
u2

4c2Ku2+8c2u3+4cKu
.
u+K

.
u2 .

(109)

The Lagrangian corresponding to MB1[1,2] admits only the Lie symmetry Γ2 in (43) as Noether
symmetry, with gauge function F = t, and consequently, Noether’s theorem [9] yields the following
first integral:

IntB1[1,2] =
1
2c

(
5 log(u) + 2ct − 2 log

(
4c2Ku2 + 8c2u3 − 4cKu

.
u + K

.
u2

))
. (110)

The Lagrangian corresponding to MB1[1,3] admits only the Lie symmetry Γ3 in (43) as Noether
symmetry, with gauge function F = t, and consequently, Noether’s theorem [9] yields the following
first integral:

IntB1[1,3] =
1
2c

(
−5 log(u) + 2ct + 2 log

(
4c2Ku2 + 8c2u3 + 4cKu

.
u + K

.
u2

))
. (111)

The Lagrangian corresponding to MB1[2,3] admits only the Lie symmetry Γ1 in (43) as Noether
symmetry, and consequently, Noether’s theorem [9] yields the following first integral:

IntB1[2,3] =
1
4c

(
−5 log(u) + 2 log

(
4c2Ku2 − 8c2u3 − K

.
u2

))
. (112)

Of course, of all these nine first integrals, only two are functionally independent.
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5. Discussion and Final Remarks

In this paper, we have determined different cases that fit the qualitative prediction (in [7], it
was assumed a = 1) given in [7]. Assuming a = 1, then the solution (56) with c = 1/2, h = 3/4
corresponds (since h > c and h < 1) to Proposition 2, namely the case of asymptotic death for all, with
both the population and the resources going to zero at infinity. Furthermore, the ratio of population
over resources goes asymptotically to 2, i.e., c−1

h−1 , as predicted in [7]. Indeed, solution (56) shows that
resources decrease, while the population grows exponentially for an extended period of time followed
by a catastrophic elimination [7], as can also be seen in Figure 1. However, for at least a period of time,
resources may increase along with the population, as shown in Figure 2, if the carrying capacity K is
large enough.

In [7], one first integral was derived under the condition h = (c + 1)/2 (Proposition 6). It
corresponds to our first integral I in (69) under the condition h = (c + a)/2. We have derived many
other first integrals and also the general solution of system (1)–(2) in closed form, as well as the general
solution of Equation (24) in implicit form:

the first integral I0 in (74) if a = 2h, c = h;
the first integral I1a in (84) and also the general solution (87) if a = h = c;
the first integral I1b in (90) and also the general solution (94) if a = h, h = 2c;

the first integral IA in (98) if h = a(2a−c)
3a−2c , that corresponds to Proposition 3 (h = 2, c = 4/3);

the first integral IB in (103) if a = 2c, that corresponds to Proposition 1 (h = 3/4, c = 1/2).

Last, but not least, we were able to find a Lagrangian (60) for system (1)–(2) and any value of the
involved parameters (if a = 2h the Lagrangian is (63)).

Recently, archeological findings have pointed out that Polynesian rats may have greatly
contributed to the tree destruction on Easter Island [23]. Consequently, in [24], rats have been included
in the mathematical model, leading to three nonlinear first-order differential equations. The chaotic
nature of that system has subsequently been determined in [25]. Can symmetries help since they have
always been associated with non-chaotic systems? We recall that in [26], Lie symmetries yielded an
exact transformation that turned a butterfly into a tornado (and vice versa), and the chaotic features of
the Lorenz system [27] were thus tamed. Could the chaotic features of the rats-trees-islanders model
be equally tamed? We hope to address this question in the near future.
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Abstract: It is shown that quantization and superintegrability are not concepts that are inherent to
classical Physics alone. Indeed, one may quantize and also detect superintegrability of biological
models by means of Noether symmetries. We exemplify the method by using a mathematical model
that was proposed by Basener and Ross (2005), and that describes the dynamics of growth and
sudden decrease in the population of Easter Island.
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1. Introduction

In a review to honor the 50th Anniversary Year of the Journal of Theoretical Biology [1], one reads:

“It is frequently claimed that— like Newton’s invention of calculus—biological theory will
require ‘new mathematics’.... There are, however, many areas of mathematics that have
been neglected by theoretical biology that could prove to be of great value. Einstein’s work
on general relativity, for instance, made good use of mathematical ideas, in particular
differential geometry that had previously been developed with completely different
motivation. More likely than not, the formal structures have been set forth in some context,
and await their discovery and subsequent development in representing biological theory.”

Since many mathematical tools used in physics have also been used in biology with different success,
we present a somewhat forgotten and neglected tool, a tool that in one of its outcomes, Noether symmetries,
helped Einstein and Klein in their quarrel with Hilbert about the energy-momentum conservation of
general relativity theory [2]. This tool is Lie continuous symmetries, which yield conservation laws,
calculus of variation setting, and ultimately quantization.

The applications of Lie symmetries to various biological models have already been shown to either
provide more accurate predictions [3] or implement [4–8] the usual techniques related to qualitative
and numerical analysis, which are common tools for any mathematical biologist.

We would like to stir up some controversy with the purpose of making both mathematicians and
biologists ponder over some missed opportunities [9].

In [10], a mathematical model that describes the dynamics of growth and sudden decrease in the
population of Easter Island was proposed. The model is a nonlinear system of two first-order ordinary
differential equations, i.e.,

ẇ1 = cw1

(
1 − w1

K

)
− hw2, (1)

ẇ2 = aw2

(
1 − w2

w1

)
, (2)
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where w1 is the amount of resources, w2 is the population, c is the growth rate of the resources, K the
carrying capacity, h the harvesting constant, and a the growth rate of the population. More details on
the construction of this model can be found in [10] where numerical solutions of the system (1)–(2)
were given and a qualitative analysis of the general behavior of solutions both in finite and infinite
time was presented.

In [11], we have applied Lie group analysis to this system and found that it can be integrated by
quadrature if the involved parameters satisfy certain relationships. We have also discerned hidden
linearity. Moreover, we have determined a Jacobi last multiplier and consequently a Lagrangian for
the general system [12], and have found other cases, independent of and dependent on symmetry
considerations in order to construct a corresponding variational problem, thus enabling us to find
conservation laws by means of Noether’s theorem. A comparison with the qualitative analysis given
in [10] was provided.

In the present paper, we perform the quantization of the system (1)–(2); namely, we derive the
Schrödinger equation by means of the method that preserves the Noether symmetries [13].

Moreover, in the wake of Volterra’s last papers [14,15], the same mathematical model (1)–(2) is
transformed into two second-order Lagrangian equations, and the superintegrability of this system
is proven; namely three conservation laws, including the Hamiltonian, are found by means of
Noether’s theorem.

2. Quantizing with Noether Symmetries

It has been known for sixty-five years that quantization and nonlinear canonical transformations
have no guarantee of consistency [16]. For a more recent perspective see [17] where an up-to-date
account of the various approaches to tackle canonical transformation is also provided.

In [13,18], a procedure which obviates the constraint imposed by the conflict between consistent
quantization and the invariance of the Hamiltonian description under nonlinear canonical transformation
was proposed. It is based on the preservation of Noether symmetries when going from classical to quantum
mechanics. The quantization of classical problems is achieved by constructing a suitable time-dependent
Schrödinger equation.

This method was reformulated in [19] for problems that are linearizable by Lie point symmetries,
and also successfully applied to various classical problems: second-order Riccati equation [20],
dynamics of a charged particle in a uniform magnetic field and a non-isochronous Calogero’s goldfish
system [18], an equation related to a Calogero’s goldfish equation [21], two nonlinear equations
somewhat related to the Riemann problem [22], a Liénard I nonlinear oscillator [19], a family of
Liénard II nonlinear oscillators [23], N planar rotors and an isochronous Calogero’s goldfish system [24],
the motion of a free particle and that of a harmonic oscillator on a double cone [25].

If a system of second-order equations is considered, i.e.,

ẍ(t) = F(t, x, ẋ), x ∈ IRN , (3)

that comes from a variational principle with a Lagrangian of first-order, then the quantization method
that was first proposed in [13] consists of the following steps:

Step I. Find the Lie symmetries of the Lagrange equations

Υ = W(t, x)∂t +
N

∑
k=1

Wk(t, x)∂xk .

Step II. Among them, find the Noether symmetries

Γ = V(t, x)∂t +
N

∑
k=1

Vk(t, x)∂xk .
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This may require searching for the Lagrangian yielding the maximum possible number of
Noether symmetries [26–29].

Step III. Construct the Schrödinger equation, where we assume h̄ = 1 without loss of generality,
admitting these Noether symmetries as Lie symmetries, namely

2iψt +
N

∑
k,j=1

fkj(x)ψxjxk +
N

∑
k=1

hk(x)ψxk + f0(x)ψ = 0 (4)

admitting the Lie symmetries

Ω = V(t, x)∂t +
N

∑
k=1

Vk(t, x)∂xk + G(t, x, ψ)∂ψ,

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equation, namely

ψ∂ψ, α(t, x)∂ψ,

where α = α(t, x) is any solution of the Schrödinger Equation (4).

In [11], we derived w1 from Equation (2), i.e.,

w1 = − au2

u̇ − au
. (5)

and consequently obtained a second-order ordinary differential equation in u ≡ w2,

ü =
(2a − h)u̇2

au
− (a + c − 2h)u̇ − ac

K
u2 + a(c − h)u. (6)

Among other cases, we found that if the following relationships among the parameters a, h and c
are satisfied

a = 2c, h =
3
2

c (7)

then Equation (6), i.e.,

ü =
5u̇2

4u
− 2c2

K
u2 − c2u (8)

admits a three-dimensional Lie symmetry algebra generated by

Γ1 = ∂t, Γ2 = e−ct (∂t + 2cu∂u) Γ3 = ect (∂t − 2cu∂u) . (9)

In [11], we proved that these three operators generate a representation of the complete symmetry
group of Equation (8), determined a straightforward Jacobi last multiplier, i.e., [11]

M =

√
u

2cu3 . (10)

and consequently the following Lagrangian

L =
√

u
(

u̇2

4cu3 +
c
u
− 2c

K

)
, (11)

that admits (9) as Noether symmetries. The three symmetries (9) are a representation of the complete
symmetry group of Equation (8), namely a group that completely specifies a given differential equation
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through its algebraic representation [30]. Indeed, if we impose to the following general second-order
ordinary differential equation

ü = F(t, u, u̇) (12)

to admit the symmetry algebra with generators (9), then we obtain the equation

ü =
5u̇2

4u
− Bu2 − c2u, (13)

namely a family of equations characterized by the parameter B, which can be replaced with −2c2/K
without any loss of generality.

We remark that it is important to have a Lagrangian, otherwise the quantization of Equation (8)
cannot be pursued [31].

The Hamiltonian corresponding to the Lagrangian (11) is

H = c
√

u
(

u2 p2 − 1
u
+

2
K

)
. (14)

In the present paper, we quantize Equation (8), namely we derive the Schrödinger equation by
preserving the Noether symmetries. We follow the three steps given above, i.e.,

Step I. We have found the three Lie symmetries, i.e., (9).
Step II. Those symmetries are also the Noether symmetries of the Lagrangian (11).
Step III. We consider the general equation

2iΨt + f11(u)Ψuu + h1(u)Ψu + f0(u)Ψ = 0 (15)

and impose that it should admit the following three Lie symmetries

Ω1 = Γ1 + G1(t, u, Ψ)∂Ψ, Ω2 = Γ2 + G2(t, u, Ψ)∂Ψ, Ω3 = Γ3 + G3(t, u, Ψ)∂Ψ, (16)

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equation, namely

Ψ∂Ψ, α(t, u)∂Ψ,

where α = α(t, u) is any solution of the Schrödinger Equation (15).

Using ad hoc REDUCE interactive programs [32], we derive the following Schrödinger equation:

2iΨt + u2√uΨuu −
√

u
(

η + 4
c2

u

)
Ψ = 0, (17)

with η any arbitrary constant.
Indeed, Equation (17) admits a Lie symmetry algebra generated by the following operators:

Ω1 = Γ1,

Ω2 = Γ2 + ce−ct
(

3
2
+ 4i

c√
u

)
Ψ∂Ψ (18)

Ω3 = Γ3 + cect
(
−3

2
+ 4i

c√
u

)
Ψ∂Ψ.
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The spectrum of this Schrödinger equation is continuous. This is not a surprise. In fact, in [11] we
have derived that the general solution of Equation (8) is of exponential type, i.e.,

u =
64A2

2K

exp(2ct)
(
8 + A2

1K + 4A2
2K exp(−2ct) + 4A1 A2K exp(−ct)

)2 , (19)

with A1, A2 arbitrary constants.
However, if we replace t with τ = it , then Equation (8) becomes:

d2u
dτ2 =

5
4u

(
du
dτ

)2
+

2c2

K
u2 + c2u. (20)

This equation is one of the isochronous Liénard II equations [33], ∀h = h(u), i.e.,

d2u
dτ2 +

h′′

h′

(
du
dτ

)2
+ ω2 h

h′ +
A

h′h3 = 0, (21)

with the identification c2 = 4ω2, and h(u) = (AK/(2ω2u))1/4. The quantization of Equation (21)
was given in [34]. In [23], the quantization that preserves the Noether symmetries was applied to all
equations (21). Equation (20) gives rise to the following Schrödinger equation

2iψτ +
ψuu

(h′)2 − h′′ψu

(h′)3 +

(
A
h2 − ω2h2

)
ψ = 0. (22)

Its eigenfunctions are:
ψn = h

k+1
2 e−i k+2

2 ωt− ω
2 h2

Lk/2
n

(
ωh2

)
, (23)

with k =
√

1 − 4A, and Lk/2
n the associated Laguerre polynomials, while the energy eigenvalues are:

En = 2ω

(
n +

1
2
+

k
4

)
. (24)

More details can be found in [23].

3. In the Wake of Volterra: A Superintegrable System

In 1939 Volterra wrote [15]:

“I have been able to show that the equations of the struggle for existence depend on a
question of Calculus of Variations (omissis). In order to obtain this result, I have replaced
the notion of population by that of quantity of life [14]. In this manner I have also obtained
some results by which dynamics is brought into relation to problems of the struggle
for existence.”

The quantity of life X and the population N of a species are connected by the relation

N =
dX
dt

. (25)

It is immediately obvious that this idea of raising the order of each equation is totally different
from that by Trubach and Franco [35], who provided a method for finding a linear Lagrangian for
systems of first-order equations. Also, Volterra’s method is different from that of deriving a single
second-order equation from a system of two first-order equations: indeed, Volterra takes a system of
first-order equations and transforms it into a system of second-order equations.

In [12], Volterra’s examples were analyzed and their connection to the Jacobi last multiplier
was shown.
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Let us apply Volterra’s method to the system (1)–(2).
We mimic Volterra by introducing what we call the quantity of natural life u2, such that:

w2 =
du2

dt
. (26)

Then, Equation (1) becomes a linear differential form in w1 and u2, and the substitution
w1 = r1 − hu2 simplifies it. Consequently, a Riccati equation is obtained, and the following linearizing
transformation

r1 =
K
c

du1

dt
, (27)

yields

ü1 =
c

K2 (K(2hu2 + K)u̇1 − hc(hu2 + K)u2u1) , (28)

while Equation (2) becomes:

ü2 =
au̇2

Ku̇1 − hcu2u1
(Ku̇1 − hcu2u1 − cu1u̇2) . (29)

Next, we check whether the system (28)–(29) admits a Lagrangian by applying Douglas’s
method [36], which consists of determining whether (at least) a Lagrangian exists for systems of two
second-order ordinary differential equations that satisfy given conditions. We found that a Lagrangian
(and only one) exists if a = h = c, namely if the system (28)–(29) becomes the following:

ü1 =
c2u2

K2 (2Ku̇1 − c2u1u2)− c
K
(c2u1u2 − Ku̇1), (30)

ü2 = cu̇2 +
c2u1u̇2

2
c2u1u2 − Ku̇1

. (31)

In [11], the case a = h = c was discussed in Remark 3 of Section 4 where the general solution of
w2 in (1)–(2) was determined in implicit form, i.e.,

A1 − 3(c2 + 1)u
3u

√
u

+

√
K

2A1
log

(
K

A1u

)
+

√
2K
A1

log
(

A1 +
√

A1(A1 − c2u)
)
= t + A2.

The unique Lagrangian is

L = 2K log(c2u1u2 − Ku̇1)u̇2 + cu2(cu2 + 2K). (32)

It admits three Noether symmetries generated by the following operators:

Γ1 = ∂t, Γ2 = c2tu1∂u1 + K∂u2 , Γ3 = u1∂u1 . (33)

The corresponding first integrals are:

I1 = −cu2(cu2 + 2K)− 2K2u̇1u̇2

c2u1u2 − Ku̇1
,

I2 = 2K log(c2u1u2 − Ku̇1)− 2c2tu2 − 2cKt − 2c2Ktu1u̇2

c2u1u2 − Ku̇1
, (34)

I3 = u2 +
Ku1u̇2

c2u1u2 − Ku̇1
,

with gauge functions F1 = 0, F2 = 2cKt(cu2 + K), and F3 = u2, respectively.
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The first integral I1 in (34) is the Hamiltonian. Indeed, if one introduces the momenta p1, p2 by
means of the Legendre transformation applied to the Lagrangian (32), i.e.,

p1 ≡ ∂L
∂u̇1

= − 2K2u̇2

c2u1u2 − Ku̇1
,

p2 ≡ ∂L
∂u̇2

= 2K log(c2u1u2 − Ku̇1), (35)

then the corresponding Hamiltonian, i.e. H ≡ p1u̇1 + p2u̇2 − L, is

H = −cu2(cu2 + 2K) +
1
K

(
c2 p1u1u2 − p1 exp

( p2

2K

))
, (36)

that is I1 in (34), if u̇1, u̇2 are replaced with p1, p2, as given in (35).
Introducing the momenta into I2, and I3 in (34) yields:

Int2 = p2 − 2c2tu2 − 2cKt +
c2tp1u1

K
,

Int3 = u2 − p1u1

2K
, (37)

respectively. Then the Hamiltonian system is superintegrable, since we have been able to determine
three first integrals.

4. Discussion and Final Remarks

We have shown that it is possible to quantize and also detect superintegrability of biological models.
The key is to find a Lagrangian and its admitted Noether symmetries. The Easter Island model (1)–(2) was
used as an example. Both classical quantization and superintegrability could be achieved if the involved
parameters satisfy certain relationships, namely a = 2c, h = 3

2 c, and a = h = c, respectively.
Classical quantization was achieved by applying the quantization method that preserves the

Noether symmetries [13]. We have derived the Schrödinger equation corresponding to Equation (8) by
preserving the three Noether symmetries (9). Also, we have shown that if we replace the independent
variable t with τ = it, then Equation (8) is transformed into Equation (20), which is one of the
isochronous Liénard II equations [33]. Its corresponding Schrödinger equation was derived in [23,34].
The eigenfunctions and energy eigenvalues are given in (23) and (24), respectively.

About superintegrability, we have applied Volterra’s idea [14] to system (1)–(2) by introducing
the quantity of natural life u2 as given in (26), and therefore increasing the order of the system (1)–(2).
Consequently, a Riccati equation also appeared and we have applied the known transformation (27)
that yields a second-order equation. Thus, we have obtained a system of two second-order
equations (28) and (29). Then, we have applied Douglas’s method and derived a unique Lagrangian
if the involved parameters satisfy the relationships a = h = c. Finally, we have shown that the
corresponding Hamiltonian (36) yields a superintegrable Hamiltonian system, since we have been able
to determine three first integrals (34) by means of Noether’s theorem.

We would like to conclude with the following statement in [37]:

“Only rarely does one find mention, at post-graduate level, of any problem in connection
with the process of actually solving such equations. The electronic computer may perhaps
be partly to blame for this, since the impression prevails in many quarters that almost
any differential equation problem can be merely put on the machine, so that finding an
analytical solution is largely a waste of time. This, however, is only a small part of the
truth, for at higher levels there are generally so many parameters or boundary conditions
involved that numerical solutions, even if practicable, give no real idea of the properties of
the equation. Moreover, any analyst of sensibility will feel that to fall back on numerical
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techniques savours somewhat of breaking a door with a hammer when one could, with a
little trouble, find the key”.
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Abstract: In this work, we study the (2 + 1)-dimensional Zoomeron equation which is an extension
of the famous (1 + 1)-dimensional Zoomeron equation that has been studied extensively in the
literature. Using classical Lie point symmetries admitted by the equation, for the first time we
develop an optimal system of one-dimensional subalgebras. Based on this optimal system, we obtain
symmetry reductions and new group-invariant solutions. Again for the first time, we construct the
conservation laws of the underlying equation using the multiplier method.
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exact solutions; conservation laws; multiplier method

1. Introduction

Many physical phenomena of the real world are governed by nonlinear partial differential
equations (NLPDEs). It is therefore absolutely necessary to analyse these equations from the point of
view of their integrability and finding exact closed form solutions. Although this is not an easy task,
many researchers have developed various methods to find exact solutions of NLPDEs. These methods
include the sine-cosine method [1], the extended tanh method [2], the inverse scattering transform
method [3], the Hirota’s bilinear method [4], the multiple exp-function method [5], the simplest
equation method [6,7], non-classical method [8], method of generalized conditional symmetries [9],
and the Lie symmetry method [10,11].

This paper aims to study one NLPDE; namely, the (2 + 1)-dimensional Zoomeron equation [12](uxy

u

)
tt
−

(uxy

u

)
xx

+ 2(u2)tx = 0, (1)

which has attracted some attention in recent years. Many authors have found closed-form solutions of
this equation. For example, the (G′/G)−expansion method [12,13], the extended tanh method [14],
the tanh-coth method [15], the sine-cosine method [16,17], and the modified simple equation
method [18] have been used to find closed-form solutions of (1). The (2 + 1)-dimensional Zoomeron
equation with power-law nonlinearity was studied in [19] from a Lie point symmetries point of view
and symmetry reductions, and some solutions were obtained. Additionally, in [19], the authors have
given a brief history of the (1 + 1)-dimensional Zoomeron equation. See also [20–22].

In this paper we first use the classical Lie point symmetries admitted by Equation (1) to find an
optimal system of one-dimensional subalgebras. These are then used to perform symmetry reductions
and determine new group-invariant solutions of (1). It should be noted that such approach was
previously used for examination of a wide range of nonlinear PDEs [23–31]. Furthermore, we derive
the conservation laws of (1) using the multiplier method [32,33].

Symmetry 2017, 9, 27 29 www.mdpi.com/journal/symmetry
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The paper is organized as follows: in Section 2, we compute the Lie point symmetries of (1)
and use them to construct the optimal system of one-dimensional subalgebras. These are then used
to perform symmetry reductions and determine new group-invariant solutions of (1). In Section 3,
we derive conservation laws of (1) by employing the multiplier method. Finally, concluding remarks
are presented in Section 4.

2. Symmetry Reductions and Exact Solutions of (1) Based on Optimal System

In this section, firstly we use the Lie point symmetries admitted by (1) to construct an optimal
system of one-dimensional subalgebras. Thereafter, we obtain symmetry reductions and group-invariant
solutions based on the optimal system of one-dimensional subalgebras [23,24].

2.1. Lie Point Symmetries of (1)

The Lie point symmetries of the Zoomeron Equation (1) are given by [19]

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = t

∂

∂t
+ x

∂

∂x
− y

∂

∂y
, X5 = 2y

∂

∂y
− u

∂

∂u
,

which generate a five-dimensional Lie algebra L5.

2.2. Optimal System of One-Dimensional Subalgebras

In this subsection, we use the Lie point symmetries of (1) to compute an optimal system of
one-dimensional subalgebras. We employ the method given in [23,24], which takes a general element
from the Lie algebra and reduces it to its simplest equivalent form by using the chosen adjoint
transformations

Ad(exp(εXi))Xj =
∞

∑
n=0

εn

n!
(adXi)

n(Xj) = Xj − ε[Xi, Xj] +
ε2

2!
[Xi, [Xi, Xj]]− · · · ,

where ε is a real number, and [Xi, Xj] denotes the commutator defined by

[Xi, Xj] = XiXj − XjXi.

The table of commutators of the Lie point symmetries of Equation (1) and the adjoint representations
of the symmetry group of (1) on its Lie algebra are given in Tables 1 and 2, respectively. Then, Tables 1
and 2 are used to construct the optimal system of one-dimensional subalgebras for Equation (1).

Using Tables 1 and 2, we can construct an optimal system of one-dimensional subalgebras, which
is given by {X3, X4, X5, X1 + X3, X2 + X3, X1 + X5, X2 + X5, X4 + X5, X1 + X2 + X3, X1 + X2 + X5}.

Table 1. Lie brackets for Equation (1).

[, ] X1 X2 X3 X4 X5

X1 0 0 0 X1 0
X2 0 0 0 X2 0
X3 0 0 0 −X3 2X3
X4 −X1 −X2 X3 0 0
X5 0 0 −2X3 0 0
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Table 2. Adjoint representation of subalgebras.

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 X4 − εX1 X5
X2 X1 X2 X3 X4 − εX2 X5
X3 X1 X2 X3 X4 + εX3 X5 − 2εX3
X4 eεX1 eεX2 e−εX3 X4 X5
X5 X1 X2 e2εX3 X4 X5

2.3. Symmetry Reductions

In this subsection, we use the optimal system of one-dimensional subalgebras computed
in the previous subsection, and present symmetry reductions of (1) to two-dimensional partial
differential equations.

For the first operator X3 of the optimal system, we have the three invariants s = t, r = x, f = u,
and using these invariants, (1) reduces to

( f 2)sr = 0.

Likewise for X4, the invariants s = ty, r = xy, f = u transforms (1) to(
frr

f 2 − fss

f 2 +
2 f 2

s
f 3 − 2 f 2

r
f 3

)
(s fs + r fr)r +

2 fr

f 2 (s fs + r fr)rr −
2 fs

f 2 (s fs + r fr)sr

+
1
f
(s fs + r fr)ssr −

1
f
(s fs + r fr)rrr + 2

(
f 2
)

sr
= 0.

The invariants s = t, r = x, f = u
√

y of X5 reduces (1) to(
fr

2 f

)
rr
−

(
fr

2 f

)
ss
+ 2

(
f 2
)

sr
= 0.

Using the invariants s = x, r = y − t, f = u of X1 + X3, (1) reduces to(
fsr

f

)
rr
−

(
fsr

f

)
ss
− 2

(
f 2
)

sr
= 0.

Similarly, the invariants s = t, r = y − x, f = u of X2 + X3 reduces (1) to(
frr

f

)
rr
−

(
frr

f

)
ss
− 2

(
f 2
)

sr
= 0.

The symmetry X1 + X5 has invariants s = x, r = ye−2t, f = uy1/2, and these reduce (1) to

8r2 f 2
r fsr

f 3 +
f 3
s

r f 3 − 2 f 2
s fsr

f 3 − 4r f 2
r fs

f 3 − 4r2 frr fsr

f 2 − 8r2 fr fsrr

f 2 +
2 fr fs

f 2 +
2r frr fs

f 2 − 3 fss fs

2r f 2

+
2 fs fssr

f 2 − 8r fr fsr

f 2 +
fss fsr

f 2 +
2 fsr

f
+

10r fsrr

f
+

4r2 fsrrr

f
+

fsss

2r f
− fsssr

f
− 4

(
f 2
)

sr
= 0.

The invariants s = t, r = ye−2x, f = uy1/2 of X2 + X5 transform (1) to
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16r3 f 2
r frr

f 3 +
8r2 f 3

r
f 3 − 4r frr f 2

s
f 3 − 2 fr f 2

s
f 3 − 8r3 f 2

rr
f 2 − 16r3 fr frrr

f 2 − 52r2 fr frr

f 2

+
4r fs fsrr

f 2 − 12r f 2
r

f 2 +
2r frr fss

f 2 +
2 fs fsr

f 2 +
fr fss

f 2 − 2r fssrr

f
+

44r2 frrr

f
+

44r frr

f

+
8r3 frrrr

f
+

4 fr

f
− fssr

f
− 8 fsr − 8 fr fs = 0.

Using the invariants s = x/t, r = y/t, f = tu of X4 + X5, (1) reduces to

2r2 f 2
r fsr

f 3 − r2 frr fsr

f 2 − 2r2 fr fsrr

f 2 +
r2 fsrrr

f
+

2s2 f 2
s fsr

f 3 − s2 fss fsr

f 2 − 2s2 fs fssr

f 2

+
s2 fsssr

f
− 2rs f 2

sr
f 2 − 4r f fsr − 6r fr fsr

f 2 +
4rs fr fs fsr

f 3 − 2rs fs fsrr

f 2 +
6r fsrr

f

− 2rs fr fssr

f 2 +
2rs fssrr

f
− 12 fs f − 6s fs fsr

f 2 +
6 fsr

f
− 4s fss f +

6s fssr

f

− 4r fr fs − 4s f 2
s +

(
fsr

f

)
ss
= 0.

The operator X1 + X2 + X3 has invariants s = x − t, r = y − t, f = u, and with the use of these
invariants, (1) reduces to (

( fs + fr)r
f

)
rr
−

(
( fs + fr)r

f

)
ss
+ 2

(
f 2
)

sr
= 0.

Finally, X1 + X2 + X5 has invariants s = x − t, r = ye−2t, f = uet, and their use reduces (1) to

8r2 f 2
r fsr

f 3 +
8r fr fs fsr

f 3 − 4r2 frr fsr

f 2 − 8r2 fr fsrr

f 2 − 4r f 2
sr

f 2 − 12r fr fsr

f 2

− 4r fs fsrr

f 2 − 4r fr fssr

f 2 − 4 fs fsr

f 2 +
4r fssrr

f
+

12r fsrr

f
+

4 fsr

f

+
4 fssr

f
+

4r2 fsrrr

f
− 8 fs f − 8r fr fs − 8r f fsr − 4 f 2

s − 4 fss f = 0.

2.4. Group-Invariant Solutions

We now obtain group-invariant solutions based on the optimal system of one-dimensional
subalgebras. However, in this paper we are looking only at some interesting cases.

Case 1. X5 = 2y∂/∂y − u∂/∂u

The associated Lagrange system to the operator X4 yields three invariants

s = t, r = x, u = y−1/2U(r, s),

which give group-invariant solution u = y−1/2U(s, r) and transforms (1) to(
Ur

U

)
ss
−

(
Ur

U

)
rr
− 4

(
U2

)
rs
= 0. (2)

This equation has three Lie point symmetries, viz.,
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Γ1 =
∂

∂s
, Γ2 =

∂

∂r
, Γ3 = 2s

∂

∂s
+ 2r

∂

∂r
− U

∂

∂U
.

The symmetry Γ1 − νΓ2 gives the two invariants z = r + νs and F = U. Using these invariants,
(2) transforms to the nonlinear third-order ordinary differential equation(

F′

F

)′′
+

4ν

1 − ν2

(
F2

)′′
= 0. (3)

Integrating (3) twice with respect to z, we obtain

F′(z) + 4ν

1 − ν2 (F(z))3 − k1zF(z)− k2F(z) = 0, (4)

where k1 and k2 are constants of integration. The solutions of this equation are given by

F(z) = ±
√ √

k1(1 − ν2) exp {(k1z + k2)2/k1}
k3
√

k1(1 − ν2) exp
{

k2
2/k1

}
+ 4ν

√
π erfi

(
(k1z + k2)/

√
k1
) ,

where k3 is a constant of integration and erfi(z) is the imaginary error function [34]. Thus, solutions
of (1) are

u(t, x, y) = ± y−1/2

√ √
k1(1 − ν2) exp {(k1(x + νt) + k2)2/k1}

k3
√

k1(1 − ν2) exp
{

k2
2/k1

}
+ 4ν

√
π erfi

(
(k1(x + νt) + k2)/

√
k1
) .

Case 2. X1 + X5 = ∂/∂t + 2y∂/∂y − u∂/∂u

The associated Lagrange system to this operator yields the three invariants

s = x, r = ye−2t, u = e−tU,

which give group-invariant solution u = e−tU(s, r) and transforms (1) to

U
(
Usr

(
4r2Urr − Uss

)
+ 4rUr (3Usr + 2rUsrr)− 2UsUssr

)
+ 8U4 (rUsr + Us) + 8rUrUsU3

+U2 (Usssr − 4 (Usr + r (3Usrr + rUsrrr))) + 2
(
U2

s − 4r2U2
r
)

Usr = 0.
(5)

The Lie point symmetries of the above equation are

Γ1 =
∂

∂s
, Γ2 = 2r

∂

∂r
− U

∂

∂U
.

The symmetry Γ2 gives the two invariants z = s and U = r−1/2F, and using these
invariants, (2) transforms to the nonlinear third-order ordinary differential equation(

F′

F

)′′
= 0. (6)

Integrating (6) twice with respect to z, we obtain

F′(z) = k1zF(z) + k2F(z), (7)
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where k1 and k2 are constants of integration. The solution of this equation is given by

F(z) = k3 exp
(

k1

2
z2 + k2z

)
,

where k3 is a constant of integration. Thus, a solution of (1) is

u(t, x, y) = k3y−1/2exp
(

k1

2
x2 + k2x

)
,

which is a steady-state solution.

Case 3. X1 + X2 + X3

The associated Lagrange system to this symmetry operator gives three invariants, viz.,

s = x − t, r = y − t, U = u,

which give group-invariant solution u = U(s, r) and reduces (1) to

U2 (Usrrr + 2Ussrr)− 4U4 (Usr + Uss)− 4UsU3 (Ur + Us) + 2Ur (Ur + 2Us)Usr

−U
(
UrrUsr + 2

(
Usr

2 + UsUsrr + Ur (Usrr + Ussr)
))

= 0.
(8)

The Lie point symmetries of the above equation are

Γ1 =
∂

∂s
, Γ2 =

∂

∂r
, Γ3 = s

∂

∂s
+ r

∂

∂r
− U

∂

∂U
.

The symmetry Γ1 − νΓ2 gives the two invariants z = r + νs and F = U. Using these invariants,
(8) transforms to the nonlinear fourth-order ordinary differential equation(

F′′

F

)′′
− 2(ν + 1)

2ν + 1

(
F2

)′′
= 0. (9)

Integrating (9) twice with respect to z, we obtain

F′′ − 2(ν + 1)
2ν + 1

F3 − k1zF − k2F = 0, (10)

where k1 and k2 are constants of integration. This equation can not be integrated in the closed form.
However, by taking k1 = 0, one can obtain its solution in the closed form in the following manner.
Multiplying (10) with k1 = 0 by F′ and integrating, we obtain

F′2 =
ν + 1

2ν + 1
F4 + k2F2 + k3, (11)

where k3 is a constant of integration. The solution of this equation is given by

F(z) =

√
2k3(2ν + 1)

C
sn

⎛⎝√
C

2(2ν + 1)
z + k4, 2

√
−k3(ν + 1)

Ck2 + 4k3 + 4k3ν

⎞⎠ ,

where k4 is a constant of integration, C =
√

4k2
2ν2 + 4k2

2ν + k2
2 − 16k3ν2 − 24k3ν − 8k3 − 2k2ν − k2 �= 0

and sn is the Jacobi elliptic sine function [35]. Thus, a solution of (1) is
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u(t, x, y) =

√
2k3(2ν + 1)

C
sn

⎛⎝√
C

2(2ν + 1)
(y + νx − (ν + 1)t) + k4, 2

√
−k3(ν + 1)

Ck2 + 4k3 + 4k3ν

⎞⎠ .

For k3 = 0 we have the solution given by

u(t, x, y) =
2k2(2ν + 1) exp[

√
k2{±(νx + y − (ν + 1)t)}]

2ν + 1 − k2(ν + 1) exp[2
√

k2{±(νx + y − (ν + 1)t)}]
and when C = 0 we have

u(t, x, y) =

{√
ν + 1

2ν + 1
(νx + y − (ν + 1)t)

}−1

.

Likewise, one may obtain more group-invariant solutions using the other symmetry operators of
the optimal system of one-dimensional subalgebras. For example, the symmetry operator X2 + X3 of
the optimal system gives us the group-invariant solution (2.9) of [19] in terms of the Airy functions.

3. Conservation Laws of (1)

Conservation laws describe physical conserved quantities, such as mass, energy, momentum and
angular momentum, electric charge, and other constants of motion [32]. They are very important
in the study of differential equations. Conservation laws can be used in investigating the existence,
uniqueness, and stability of the solutions of nonlinear partial differential equations. They have also
been used in the development of numerical methods and in obtaining exact solutions for some partial
differential equations.

A local conservation law for the (2 + 1)-dimensional Zoomeron Equation (1) is a continuity
equation

DtT + DxX + DyY = 0 (12)

holding for all solutions of Equation (1), where the conserved density T and the spatial fluxes X and
Y are functions of t, x, y, u. The results in [11] show that all non-trivial conservation laws arise from
multipliers. Specifically, when we move off of the set of solutions of Equation (1), every non-trivial
local conservation law (12) is equivalent to one that can be expressed in the characteristic form

DtT̃ + DxX̃ + DyỸ =
((uxy

u

)
tt
−

(uxy

u

)
xx

+ 2(u2)tx

)
Q (13)

holding off of the set of solutions of Equation (1) where Q(x, y, t, u . . .) is the multiplier, and where
(T̃, X̃, Ỹ) differs from (T, X, Y) by a trivial conserved current. On the set of solutions u(x, y, t) of
Equation (1), the characteristic form (13) reduces to the conservation law (12).

In general, a function Q(x, t, u . . .) is a multiplier if it is non-singular on the set of solutions u(x, y, t)
of Equation (1), and if its product with Equation (1) is a divergence expression with respect to t, x, y.
There is a one-to-one correspondence between non-trivial multipliers and non-trivial conservation
laws in characteristic form.

The determining equation to obtain all multipliers is

δ

δu

( (uxy

u

)
tt
−

(uxy

u

)
xx

+ 2(u2)tx

)
Q = 0, (14)

where δ/δu is the Euler–Lagrange operator given by
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δ

δu
=

∂

∂u
+ ∑

s≥1
(−1)sDi1 · · · Dis

∂

∂ui1i2···is
.

Equation (14) must hold off of the set of solutions of Equation (1). Once the multipliers are
found, the corresponding non-trivial conservation laws are obtained by integrating the characteristic
Equation (13) [11].

We will now find all multipliers Q(x, y, t, u) and obtain corresponding non-trivial (new)
conservation laws. The determining Equation (14) splits with respect to the variables
ut, ux, uy, utt, utx, uty, uxy, uyy, uttt, uttx, utxy, utyy, uxyy, utttx, utxyy. This yields a linear determining
system for Q(x, y, t, u) which can be solved by the same algorithmic method used to solve the
determining equation for infinitesimal symmetries. By applying this method, for Equation (1), we
obtain the following linear determining equations for the multipliers:

Qu (t, x, y, u) = 0, (15)

Qty (t, x, y, u) = 0, (16)

Qyyy (t, x, y, u) = 0, (17)

Qtt (t, x, y, u)− Qyy (t, x, y, u) = 0. (18)

It is straightforward using Maple to set up and solve this determining system (15)–(18), and we
get the four multipliers given by

Q1 =
1
2

(
t2 + y2

)
f1(x), (19)

Q2 = f2(x)y, (20)

Q3 = f3(x)t, (21)

Q4 = f4(x). (22)

For each solution Q, a corresponding conserved density and flux can be derived (up to local
equivalence) by integration of the divergence identity (13) [11,36]. We obtain the following results.

Corresponding to these multipliers, we obtain four conservation laws. Thus, the multiplier (19)
gives the conservation law with the following conserved vector:

T1 = f1(x)
{

1
2
(t2 + y2)

(
ut

2ux

u3 −uxutt

u2

)
+

tuxut

u2 − 2yu2
}

+ f ′1(x)
{

1
2
(t2 + y2)

(
utt

u
− 1

2
ut

2

u2

)
− tut

u

}
,

X1 = f1(x)
{

1
2
(t2 + y2)

(
2ututt

u2 − uttt

u
− ut

3

u3

)
− 1

2
ut

2t
u2 +

ut

u

}
,

Y1 = f1(x)
{

1
2
(t2 + y2)

(
4uut +

utxy

u
− uyutx

u2

)
− yutx

u

}
.

Likewise, the multiplier (20) yields

T2 = f2(x)y
(

4 uuy − uxutt

u2 +
ut

2ux

u3

)
+ f ′2(x)y

(
utt

u
− 1

2
ut

2

u2

)
,

X2 = f2(x)y
(

2ututt

u2 − uttt

u
− ut

3

u3

)
,

Y2 = f2(x)
(yutxy

u
− yuyutx

u2 − utx

u

)
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as conserved vector.
Similarly, the multiplier (21) results in the following conserved vector

T3 = f3(x)
(

4 tuuy − tuxutt

u2 +
tut

2ux

u3 +
uxut

u2

)
+ f ′3(x)

(
tutt

u
− 1

2
tut

2

u2 − ut

u

)
,

X3 = f3(x)
(

2tututt

u2 − tut
3

u3 − 1
2

ut
2

u2 − tuttt

u

)
,

Y3 = f3(x)

(
tuutxy − 2 u4 − tuyutx

)
u2 .

Lastly, the multiplier (22) gives the conserved vector whose components are

T4 = f4(x)
(

4uuy − uxutt

u2 +
ut

2ux

u3

)
+ f ′4(x)

(
utt

u
− 1

2
ut

2

u2

)
,

X4 = f4(x)
(

2ututt

u2 − uttt

u
− ut

3

u3

)
,

Y4 = f4(x)
(utxy

u
− uyutx

u2

)
.

4. Concluding Remarks

In this paper, we studied the (2 + 1)-dimensional Zoomeron Equation (1). For the first time, the
classical Lie point symmetries were used to construct an optimal system of one-dimensional subalgebras.
This system was then used to obtain symmetry reductions and new group-invariant solutions of (1).
Again for the first time, we derived the conservation laws for (1) by employing the multiplier method. We
note that since we had arbitrary functions in the multipliers, we obtained infinitely many conservation
laws for Equation (1).
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Abstract: In this paper, we consider a quite general class of advection reaction diffusion systems.
By using an equivalence generator, derived in a previous paper, the authors apply a projection
theorem to determine some special forms of the constitutive functions that allow the extension by
one of the two-dimensional principal Lie algebra. As an example, a special case is discussed at the
end of the paper.
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1. Introduction

In this paper, we focus our attention on the following family of 2 × 2 nonlinear advection reaction
diffusion systems in (1 + 1) independent variables:⎧⎪⎨⎪⎩

ut = ( f (u)ux)x + g(u, v, ux),

vt = h(u, v),
(1)

with f (u), g(u, v, ux), h(u, v) analytic functions. These systems, apart from their own mathematical
interest, offer the possibility to be analyzed as possible biomathematical models for two interacting
species u and v, where one of them, the species v, does not suffer diffusion. The dependence of the
function g on the gradient ux shows advection effects; in fact, the individuals of the species u could
be influenced by external stimuli as wind velocity or water currents. Of course, the absence of the
advective phenomena brings to the following system:⎧⎪⎨⎪⎩

ut = ( f (u)ux)x + g(u, v),

vt = h(u, v),
(2)

that can describe the evolution of the Aedes aegypti mosquito population in a region where wind effects
are negligible or the evolution of a Proteus mirabilis bacterial colony when the diffusion coefficient
depends only on the species u, that is when the system (2) is a subclass of the following wider class:⎧⎪⎨⎪⎩

ut = ( f (u, v)ux)x + g(u, v),

vt = h(u, v),
(3)

Symmetry 2015, 7, 1929–1944 40 www.mdpi.com/journal/symmetry
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considered in [1–4].
One of the most important problems in modeling the phenomena of life sciences and natural

sciences is to select “good” forms of arbitrary functions (constitutive equations) that fit well with the
experimental data and possess mathematical properties that allow scientists to get some solutions or
much news about them.

A powerful tool of investigation in this field is given from transformation groups, in particular
from equivalence transformations and symmetries.

In the framework of the group analysis, the literature concerning the systems of the type (1)
is scarce. There are no papers devoted to a complete Lie symmetry analysis of PDE systems with
advection (convection) terms of the form (1). In [5], it is possible to find a complete solution of this
problem for a class of diffusion systems with convection terms in both equations. Moreover, the
paper [6] contains some description of Lie symmetries for a class of systems, which includes cases
having a structure similar to system (3). However, it is possible to find some papers devoted to
the complete Lie symmetry analysis of a single advection (convection) reaction diffusion equation
(see, e.g., [7–9]).

Following, e.g., [10], an equivalence transformation for the system (1) is a non-degenerate change
of the independent and dependent variables t, x, u, v into t̂, x̂, û, v̂:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = x
(

x̂, t̂, û, v̂
)
,

t = t
(
x̂, t̂, û, v̂

)
,

u = u
(
x̂, t̂, û, v̂

)
,

v = v
(

x̂, t̂, û, v̂
)
,

(4)

that transforms a system of the class (1) in another one of the same class. That is, an equivalence
transformation brings the system of the form (1) in a system preserving the differential structure, but,
in general, with:

f̂ (û) �= f (u), ĝ(û, v̂, ûx̂) �= g(u, v, ux), ĥ(û, v̂) �= h(u, v). (5)

It maps a solution of a system in a solution of the equivalent system.
It could occur that the transformed equations show still the same structure, but the arbitrary

functions are depending on additional variables. In this case, the equivalence is said weak.
Of course, in the case:

f̂ (û) = f (u), ĝ(û, v̂, ûx̂) = g(u, v, ux), ĥ(û, v̂) = h(u, v), (6)

an equivalence transformation becomes a symmetry (a transformation of variables that leaves invariant
the transformed system).

A symmetry allows one to reduce the number of independent variables of an equation so that,
for instance, a PDE in 1 + 1 independent variables can become an ODE. Once solved this last one,
going back to the original variables, we get a solution that is invariant with respect to the symmetries
used for the reduction. It is worthwhile to note that a symmetry transforms invariant solutions into
invariant solutions that are not essentially different (see Ovsiannikov [11]), but, having a different
form, they could satisfy different suitable initial/boundary conditions.

The aim of this paper is an improvement of the results that we have shown in [12], bearing in
mind some generalization of the special form assumed from the constitutive functions f, g and h already
used in some previous papers about [4,12–14]. In this paper, we use the infinitesimal generator of
equivalence transformations derived in [12] for the class (1) in order to obtain some extensions of the
principal Lie algebra for the following subclass:

ut= ( f (u)ux)x + urux + Γ1(u) + Γ2(v),

vt= h(u, v).
(7)
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Here, we assumed:
g(u, v, ux) = urux + Γ1(u) + Γ2(v) (8)

that is a generalization of that ones used in [12,13].
In the next section, after recalling, for the sake of completeness, some elements about equivalence

transformations (for additional mathematical and methodical details, the interested reader can see [12,
15,16]), we write the equivalence generator derived in [12]. In Section 3, the principal Lie algebra and
its extensions are discussed; moreover, a simple example that could be related to the biomathematical
model of Aedes aegypti is considered. The conclusions are given in the last section.

2. On Equivalence Transformations and Their Calculation for the Class (1)

It is easy to ascertain that, often, in papers on differential equations, it is possible to find several
examples of equivalence transformations and their applications. In general, in the past and now,
the direct search for the most general equivalence transformations through the finite form of the
transformation has been used. Quite often, this search is connected to considerable computational
difficulties and does not always lead to the complete solution of the problem (e.g., [17,18]).

2.1. Elements on Equivalence Transformations

Following [11,15,16,19,20] (see also, e.g., [10,21–23]), we look for the infinitesimal generator of the
equivalence transformations of the system (1) of the form:

Y = ξ1∂x + ξ2∂t + η1∂u + η2∂v + μ1∂ f + μ2∂g + μ3∂h (9)

where the infinitesimal components ξ1, ξ2, η1, η2 are sought depending on x, t, u, v, while the
infinitesimal components μi (i = 1, 2, 3) can also depend on ut, ux, vt, vx, f, g and h. Here, we are
interested in obtaining the infinitesimal coordinates ξ i, ηi and μj (i = 1, 2 and j = 1, 2, 3), by applying
the Lie–Ovsiannikov infinitesimal criterion [11] by requiring the invariance, with respect to a suitable
prolongations Y(1) and Y(2) of generator (9), of the following equations:

ut − ( f ux)x − g = 0, (10)

vt − h = 0, (11)

without requiring the invariance of the so-called auxiliary conditions [15,16,24,25]:

ft = fx = fv = fux = fut = fvx = fvt = gt = gx = gut = gvt = gvx = 0, (12)

ht = hx = hux = hut = hvx = hvt = 0, (13)

that characterize the functional dependence of f, g and h.
In this way, we obtain the weak equivalence transformations [15,16].
The main difference with respect to the classical one is that the infinitesimal operators of

weak equivalence transformations can generate transformations that do not preserve the functional
dependence of the arbitrary elements.

With respect to the application in biomathematical models, equivalence and weak equivalence
transformations were applied not only to study tumor models [26,27], but also the population dynamics
in [1,3,4].

2.2. Calculation of Weak Equivalence Transformations

We need the following prolongations Y(1) and Y(2):

Y(1) = Y + ζ1
1∂ux + ζ1

2∂ut + ζ2
1∂vx + ζ2

2∂vt + ω1
u∂ fu , (14)
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Y(2) = Y(1) + ζ1
xx∂uxx , (15)

with (see [12] for more details),

ζ1
1 = Dxη1 − uxDxξ1 − utDxξ2, (16)

ζ1
2 = Dtη

1 − uxDtξ
1 − utDtξ

2, (17)

ζ2
1 = Dxη2 − vxDxξ1 − vtDxξ2, (18)

ζ2
2 = Dtη

2 − vxDtξ
1 − vtDtξ

2, (19)

ζ1
11 = Dxζ1

1 − uxxDxξ1 − utxDxξ2, (20)

ω1
u = D̃uμ1 − fuD̃uη1, (21)

where Dx and Dt are, respectively, the total derivatives with respect to x and t, while in our case, the
operator D̃u is defined as:

D̃u = ∂u + fu∂ f + gu∂g + hu∂h. (22)

The invariant conditions read:

ζ1
2 − 2ζ1

1ux fu − u2
xω1

u − uxxμ1 − f ζ1
11 − μ2 = 0, (23)

ζ2
2 − μ3 = 0, (24)

both under the constraints (10) and (11).
Following the usual techniques, we derive the following infinitesimal components for the weak

equivalence generators:

ξ1 = α(x), ξ2 = β(t), η1 = δ(t, u), η2 = λ(x, t, v), (25)

μ1 =
(
2α′ − β′) f , μ2 = δt +

(
δu − β′)g +

(
α′′ ux − δuuu2

x

)
f , μ3 =

(
λv − β′)h + λt, (26)

where α(x), β(t), δ(t, u), λ(x, t, v) are arbitrary real functions of their arguments. The corresponding
infinitesimal generator is:

Y = α(x)∂x + β(t)∂t + δ(t, u)∂u + λ(x, t, v)∂v + (2α′ − β′) f ∂ f
+
(
δt + (δu − β′)g +

(
α′′ ux − δuuu2

x
)

f
)
∂g + ((λv − β′)h + λt)∂h.

(27)

3. Symmetries for a Subclass of Advection Reaction Diffusion Systems

In this section, we apply the projection theorem, introduced in [28] and successively generalized
in [15,16,24], in order to carry out a symmetry classification for the following subclass of system (1):

ut= ( f (u)ux)x + urux + Γ1(u) + Γ2(v),

vt= h(u, v),
(28)

with r �= 0, Γ1
′ �= 0 and Γ2

′ �= 0.
For the system (28), we can affirm the following:

Theorem 1. The projection of the infinitesimal weak equivalence generator Y for the system (1) on the space
(x, t, u, v):

X = α(x)∂x + β(t)∂t + δ(t, u)∂u + λ(x, t, v)∂v (29)

is an infinitesimal symmetry generator of a system of the class (28) if and only if the constitutive equations,
specifying the forms of f, g and h, are invariant with respect to Y.
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Applying the previous theorem, in order to obtain the determining system for the subclass (28),
we request the invariance with respect to Y of the following constitutive equations:

f= f (u),

g= urux + Γ1(u) + Γ2(v),

h= h(u, v),

(30)

that is
Y( f − f (u)) = 0,

Y(g − urux − Γ1(u)− Γ2(v)) = 0,
Y(h − h(u, v)) = 0,

(31)

under the constraints (30). Then, taking into account the form (27) of generator Y, we have the following
determining equations:

(2α′ − β′) f − δ fu = 0, (32)

δt+ (δu − β′)(urux + Γ1 + Γ2)−
(
δuuu2

x − α′′ ux
)

f − (δu − α′)uxur−
δ
(
rur−1ux + Γ1

′)− λΓ2
′ = 0,

(33)

(λv − β′)h + λt − δhu − λhv = 0. (34)

We recall here that the principal Lie algebra LP [10,19] is the Lie algebra that leaves invariant the
system (28) for any form of the functions f (u), Γ1(u), Γ2(v) and h(u, v). Then, the principal Lie algebra
is the generator (29) where the functions α, β, δ and λ are solutions of the system (32)–(34) for arbitrary
functions f (u), Γ1(u), Γ2(v) and h(u, v). Consequently, it is a simple matter to ascertain the following:

Corollary 2. The projection (29) of infinitesimal weak equivalence generator Y for the system (1) on the space
(x, t, u, v) is the infinitesimal symmetry generator corresponding to the principal Lie algebra of the class (28) if
and only if ηi = 0, μj = 0, i = 1, 2, j = 1, 2, 3.

Then, the principal Lie algebra LP is spanned by the following generators corresponding
respectively to translations in time and in the space:

X1 = ∂t, X2 = ∂x. (35)

3.1. On the Extensions of the LP

Here, we analyze some particular cases of the extension of the principal algebra for the class
(28). That is, we look for a family of particular functions f (u), Γ1(u), Γ2(v) and h(u, v), such that the
solution of system (32)–(34) is different from δ = λ = 0 and α and β constants, which corresponds to
the generators (35).

From Equation (32), deriving with respect to x, we get:

2α′′ f = 0, (36)

that is
α(x) = a1x + a0, (37)

with a0 and a1 arbitrary constants. Consequently, from Equation (33), deriving with respect to x, we get:

−λxΓ2
′ = 0, (38)

and taking into account that Γ2
′ �= 0, we obtain:

λ = λ(t, v). (39)
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Equation (33) becomes:

δt + (δu − β′)(Γ1 + Γ2)− δΓ1
′ − λΓ2

′ + ux
(
(a1 − β′)ur − δrur−1)+ u2

x(−δuu f ) = 0. (40)

As any function does not depend on ux, from Equation (40), we derive:

δuu f = 0, (41)

(a1 − β′)ur − δrur−1 = 0, (42)

δt + (δu − β′)(Γ1 + Γ2)− δΓ1
′ − λΓ2

′ = 0. (43)

Then, from Equation (41):
δ(t, u) = uA1(t) + A2(t), (44)

with A1(t) and A2(t) arbitrary functions of t. After these partial results, for the sake of clarity,
we rewrite the determining system:

(2a1 − β′) f − (uA1 + A2) fu = 0, (45)

u(a1 − β′ − rA1)− rA2 = 0, (46)(
uA1

′ + A2
′)+ (A1 − β′)(Γ1 + Γ2)− (uA1 + A2)Γ1

′ − λΓ2
′ = 0, (47)

(λv − β′)h + λt − (uA1 + A2)hu − λhv = 0. (48)

From Equation (46), taking into account that any function does not depend on u, we get:

A1 = a1−β′
r , A2 = 0, (49)

then the other equations become:

(2a1 − β′) f − u a1−β′
r fu = 0, (50)

− β′′
r u + a1−(1+r)β′

r (Γ1 + Γ2)− u a1−β′
r Γ1

′ − λΓ2
′ = 0, (51)

(λv − β′)h + λt − u a1−β′
r hu − λhv = 0. (52)

We observe that from Equation (50), if f is arbitrary, it follows β = b0, a1 = 0, from Equation (51)
λ = 0, while the Equation (52) is satisfied. Therefore, for f arbitrary, we do not obtain the extension of
the principal Lie algebra. Then, in order to look for extensions of the principal algebra, we observe
that from Equation (50), the form of function f must have the following structure:

1. f = f0ur.
2. f = f0us and s �= r.

We study these cases separately.

1. f = f0ur

In this case, from Equation (50), we have a1 = 0. Moreover, by differentiating Equation (51) with
respect to u, we have:

β′′ + β′(rΓ1
′ − uΓ1

′′ ) = 0. (53)

We observe that if Γ1 is arbitrary, we have β = b0, while from Equation (51), we have λ = 0, and
Equation (52) is satisfied; however, we do not obtain the extension of the principal Lie algebra.
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Then, in order to have extensions of the principal algebra, the following conditions must be
satisfied:

uΓ1
′′ − rΓ1

′ = γ0, (54)

β′′ = γ0β′. (55)

We distinguish two cases: r �= −1 and r = −1.

(a) If r �= −1, from Equation (54), we get:

Γ1(u) =
c1u1+r

1+r − γ0u
r + c2. (56)

Consequently, from Equation (51), we obtain:

λ(t, v) = − (c2+Γ2)(r+1)β′
rΓ2

′ , (57)

while Equation (52) becomes:
β′

rΓ2
′2 J1 = 0 (58)

with:

J1 ≡ h(1 + r)(c2 + Γ2)Γ2
′′ − (h(1 + 2r)− uhu)Γ2

′2 + (1 + r)(hv − γ0)(c2 + Γ2)Γ2
′.

(59)
We observe that if β′ = 0, then λ = 0, and we do not obtain the extension of the principal
Lie algebra. Consequently, in order to have extensions of the principal algebra, the
functions Γ2 and h must satisfy the equation J1 = 0. In this case, we have two possible
generators depending on γ0.

i. If γ0 �= 0, as from Equation (55), we have:

β(t) = b0 + b1eγ0t, (60)

the additional generator is:

X3 = eγ0t∂t − γ0eγ0t

r u∂u − (c2+Γ2)(r+1)γ0eγ0t

rΓ2
′ ∂v. (61)

ii. If γ0 = 0, as from Equation (55), we have:

β(t) = b0 + b1t, (62)

the additional generator is:

X3 = t∂t − u
r ∂u − (c2+Γ2)(r+1)

rΓ2
′ ∂v. (63)

(b) If r = −1, from Equation (54), we get:

Γ1(u) = c1 ln(u) + γ0u + c2. (64)

Consequently, from Equation (51), we obtain:

λ(t, v) = − c1β′
Γ2

′ , (65)

while Equation (52) becomes:
β′

Γ2
′2 J2 = 0 (66)
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with:
J2 ≡ hc1Γ2

′′ − (h + uhu)Γ2
′2 + c1(hv − γ0)Γ2

′. (67)

We observe that if β′ = 0, then λ = 0, and we do not obtain extension of the principal Lie
algebra. Consequently, in order to have extensions of the principal algebra, the functions
Γ2 and h must satisfy the equation J2 = 0. In this case, we have two possible generators
depending on γ0.

i. If γ0 �= 0, as from Equation (55), we have:

β(t) = b0 + b1eγ0t, (68)

the additional generator is:

X3 = eγ0t∂t + γ0eγ0tu∂u − c1γ0eγ0t

Γ2
′ ∂v. (69)

ii. If γ0 = 0, as from Equation (55), we have:

β(t) = b0 + b1t, (70)

the additional generator is:

X3 = t∂t − u
r ∂u − c1

Γ2
′ ∂v. (71)

2. f = f0us and s �= r

In this case, from Equation (50), we have:

β(t) = a1(2r−s)
r−s t + b0, (72)

and Equation (51) becomes:

a1uΓ1
′ − a1(1 + 2r − s)(Γ1 + Γ2)− (r − s)λΓ2

′ = 0. (73)

Moreover, by differentiating with respect to u, we get:

a1
(
uΓ1

′′ + (s − 2r)Γ1
′) = 0. (74)

We observe that if Γ1 is arbitrary, then we have a1 = 0, while from Equation (51) λ = 0 and
Equation (52) is satisfied, but we do not obtain the extension of the principal Lie algebra. Then, in
order to have extensions of the principal algebra, the following condition must be satisfied:

uΓ1
′′ + (s − 2r)Γ1

′ = 0. (75)

We distinguish the following two cases.

(a) If s �= 2r + 1, from Equation (75), we get:

Γ1(u) = c1 + c2u1+2r−s. (76)

From Equation (51):
λ(t, v) = a1(s−2r−1)(c1+Γ2)

(r−s)Γ2
′ , (77)

while Equation (52) becomes:
a1

(r−s)Γ2
′2 J3 = 0 (78)
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with:

J3 ≡ (1 + 2r − s)(c1 + Γ2)
(
hΓ2

′′ + hvΓ2
′)+ (uhu − h(1 + 4r − 2s))Γ2

′2. (79)

We observe that if the functions Γ2 and h do not satisfy the equation J3 = 0, we do not
obtain the extension of the principal Lie algebra. Then, in order to have extensions of the
principal algebra, the functions Γ2 and h must satisfy the equation J3 = 0. In this case, we
obtain the following additional generator:

X3 = x∂x +
2r−s
r−s t∂t +

1
s−r u∂u +

(s−2r−1)(c1+Γ2)
(r−s)Γ2

′ ∂v. (80)

(b) If s = 2r + 1, from Equation (75), we get:

Γ1(u) = c1 ln(u) + c2, (81)

and from Equation (72):
β(t) = a1

r+1 t + b0. (82)

Consequently, from Equation (51), we obtain:

λ(t, v) = − c1a1
(r+1)Γ2

′ , (83)

while Equation (52) becomes:
a1

(r+1)Γ2
′2 J4 = 0 (84)

with:
J4 ≡ hc1Γ2

′′ − (h + uhu)Γ2
′2 + c1hvΓ2

′. (85)

We observe that if the functions Γ2 and h do not satisfy the equation J4 = 0, we do not
obtain the extension of the principal Lie algebra. Then, in order to have extensions of the
principal algebra, the functions Γ2 and h must satisfy the equation J4 = 0. In this case, we
obtain the following additional generator:

X3 = x∂x +
1

r+1 t∂t +
1

r+1 u∂u − c1
(r+1)Γ2

′ ∂v. (86)

Summarizing, we obtained six subclasses of class (28), which admit a three-dimensional
Lie algebra.

1. f = f0ur with r �= −1, Γ1(u) =
c1u1+r

1+r − γ0u
r + c2 with γ0 �= 0, the functions h and Γ2 linked from

the following relation:

h(1 + r)(c2 + Γ2)Γ2
′′ − (h(1 + 2r)− uhu)Γ2

′2 + (1 + r)(hv − γ0)(c2 + Γ2)Γ2
′ = 0. (87)

2. f = f0ur with r �= −1, Γ1(u) = c1u1+r

1+r + c2 and the functions h and Γ2 linked from the
following relation:

h(1 + r)(c2 + Γ2)Γ2
′′ − (h(1 + 2r)− uhu)Γ2

′2 + (1 + r)(hv)(c2 + Γ2)Γ2
′ = 0. (88)

3. f = f0
u , Γ1(u) = c1 ln(u) + γ0u + c2 with γ0 �= 0 and the functions h and Γ2 linked from the

following relation:
hc1Γ2

′′ − (h + uhu)Γ2
′2 + c1(hv − γ0)Γ2

′ = 0. (89)
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4. f = f0
u , Γ1(u) = c1 ln(u) + c2 and the functions h and Γ2 linked from the following relation:

hc1Γ2
′′ − (h + uhu)Γ2

′2 + c1(hv)Γ2
′ = 0. (90)

5. f = f0us with s �= r, 2r + 1, Γ1(u) = c1 + c2u1+2r−s and the functions h and Γ2 linked from the
following relation:

(1 + 2r − s)(c1 + Γ2)
(
hΓ2

′′ + hvΓ2
′)+ (uhu − h(1 + 4r − 2s))Γ2

′2 = 0. (91)

6. f = f0u2r+1, Γ1(u) = c1 ln(u) + c2 and the functions h and Γ2 linked from the following relation:

hc1Γ2
′′ − (h + uhu)Γ2

′2 + c1hvΓ2
′ = 0. (92)

3.2. A Special Case

In agreement with some news about the biological compatibility of the form of g derived from
some previous papers (see, e.g., [29,30] and references insides), in this subsection, we show an example
of the application of the previous results.

By selecting the case 1a from the obtained cases and assuming r = 1 and c2 = 0 in (56), we
consider f , Γ1, of the following form:

f = f0u, Γ1(u) = γ1u2 − γ0u, (93)

with f0, γ0, γ1, arbitrary constants. Moreover, we assume:

Γ2(v) = γ2v + γ3, (94)

with γ2,γ3, arbitrary constants.
In this case, in order to have an extension on the principal algebra, the function h(u, v) must

satisfy the equation J1 = 0, that is:

(uhu − 3h)γ2
2 + 2(hv − γ0)(γ2v + γ3)γ3 = 0. (95)

Solutions of this equation are functions h(u, v) of the form:

h(u, v) = u3H(σ)− 2 γ0
γ2 (γ2v + γ3), (96)

where H is an arbitrary function of σ = γ2v+γ3
γ2u2 . By assuming H(σ) = σ in agreement with [13,29,30],

we get:
h(u, v) = γ2v+γ3

γ2
(u − 2γ0). (97)

The system (28) becomes:⎧⎪⎨⎪⎩
ut = f0u2

x + f0uuxx + uux + γ1u2 − γ0u + γ2v + γ3,

vt =
γ2v+γ3

γ2
(u − 2γ0).

(98)

While the third generator is obtained by specializing generator (61) and has the form:

X3 = eγ0t∂t − γ0eγ0tu∂u − 2γ0
γ2

(γ2v + γ3)eγ0t∂v. (99)
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By considering the generator kX2 + X3, we get:

u(t, x) = U(z)e−γ0t, v(t, x) = V(z)e−2γ0t−γ3
γ2 , (100)

with z = γ0x
k + e−γ0t, while the functions U(z), V(z) are solutions of the reduced system:

U′′ U f0γ2
0 + U′2 f0γ2

0 + kγ0(U + k)U′ + k2V + γ1k2U2 = 0, (101)

γ0V′ + UV = 0. (102)

This reduced system, as well as other cases of biological specializations, will be studied in
later research.

Of course, the systems studied here cannot be considered, strictu sensu, as mathematical models.
In fact, their constitutive parameters need to be characterized carefully from the biological point view.
However, having in mind some previous models concerned with Aedes aegypti [13,14,29–31], we try to
stress some structural features of the system (98). To this aim, we rewrite system (98) as:⎧⎪⎪⎨⎪⎪⎩

ut = ( f0uux)x + uux + γ1u
(

u − γ0
γ1

)
+ γ2

(
v + γ3

γ2

)
vt = (u − 2γ0)

(
v + γ3

γ2

) (103)

It is easy to ascertain a weak interaction of the equation for the aquatic population on the equation
for the winged population. Moreover, in this last one appears a growth for population u having a
logistic structure. By identifying γ1 as a positive rate of maturation of the aquatic forms in winged
female mosquitoes and γ0 as the positive winged population mortality, it is possible to find a threshold
value utrs =

γ0
γ1

. Finally, the aquatic population evolution equation shows a growth rate u − 2γ0 ruled
by the density of mosquitoes and their mortality.

Remark 1. It is a simple matter to ascertain that the system (103) admits as the special solution:

u = γ0
γ1

, v = − γ3
γ2

. (104)

Moreover, it is possible to get other solutions by assuming v = − γ3
γ2

, while u is obtained as a
solution of equation:

ut = ( f0uux)x + uux + γ1u
(

u − γ0
γ1

)
. (105)

For the interested reader, it could be worthwhile noticing that Equation (105) is a particular
case of equation considered in [8,9]. Moreover, we can get the results obtained in [8,9] (see Table 1,
Case 8 of both papers) by projection. Indeed, the Lie symmetry generator (99) projected in the space(

t, x, u, v = − γ3
γ2

)
becomes the Lie symmetry T1 of [8,9].

4. Conclusions

In this paper, we have considered a class of advection reaction diffusion systems of interest in
biomathematics. After having recalled a weak equivalence generator, obtained in a previous work [12],
we find some particular cases of the nonlinear system (28) admitting three-dimensional Lie algebras
by using a specialization of a projection theorem [24,28]. In this subclass, the constitutive equation
characterizing g is assigned as:

g = urux + Γ1(u) + Γ2(v)

that generalizes [12]:
g = ρurus

x + Γ1ua + Γ2vb, (106)
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where the constants ρ( �= 0), Γ1, Γ2, r, s, a and b are constitutive parameters. We derive the principal
Lie algebra and the functions admitting at least an extension by one. These results are summarized at
the end of Section 3.1. A special case is considered in Section 3.2.
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Abstract: It is generally known that classical point and potential Lie symmetries of differential
equations (the latter calculated as point symmetries of an equivalent system) can be different.
We question whether this is true when the symmetries are extended to nonclassical symmetries.
In this paper, we consider two classes of nonlinear partial differential equations; the first one is a
diffusion–convection equation, the second one a wave, where we will show that the majority of the
nonclassical point symmetries are included in the nonclassical potential symmetries. We highlight a
special case were the opposite is true.

Keywords: nonclassical symmetry; nonclassical potential symmetry; diffusion equation; wave equation

1. Introduction

Symmetry analysis plays a fundamental role in the construction of exact solutions to nonlinear
partial differential equations. Based on the original work of Lie [1] on continuous groups, symmetry
analysis provides a unified explanation for the seemingly diverse and ad hoc integration methods
used to solve ordinary differential equations. At the present time, there is extensive literature on the
subject, and we refer the reader to the books by Arrigo [2], Bluman and Kumei [3], and Olver [4].

A particular class of equation that has benefited from this type of analysis is the nonlinear diffusion
equation

ut = (K(u)ux)x (1)

From a symmetry point of view, this equation was first considered by Ovsjannikov [5] (see also [3]
and [6]), where it was found that (1) admits nontrivial symmetries for a variety of different diffusivities.
In particular, power law diffusion, where

ut = (umux)x (2)

admits the symmetry generator

Γ = T
∂

∂t
+ X

∂

∂x
+ U

∂

∂u
(3)

where T, X, and U are

T = c1 + c2t

X = c3 + c4x (4)

U =
1
m

(2c4 − c2) u

Symmetry 2016, 8, 140 55 www.mdpi.com/journal/symmetry
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(where ci are arbitrary constants) for general powers m (m �= 0), and in the special case m = −4/3,
where (2) admits an additional symmetry with generator

Γ = x2 ∂

∂x
− 3xu

∂

∂u

In 1988, Bluman, Reid, and Kumei [7] considered the equivalent system

vt = K(u) ux, vx = u (5)

and found that this system possesses a rather rich symmetry structure and identified new forms of
K(u) that admitted new nontrivial symmetries. Of particular interest are again power law diffusivities
K(u) = um, where (5) admits the symmetry generator

Γ = T
∂

∂t
+ X

∂

∂x
+ U

∂

∂u
+ V

∂

∂v
(6)

where T, X, U, and V are given by, in the case of m �= −2,

T = c1 + c2t

X = c3 +
c2 + mc4

m + 2
x (7)

U =
2c4 − c2

m + 2
u

V = c5 + c4v

and in the case of m = −2,

T = c1 + 2c2t + 4c3t2

X =
(

c6 − 2c3t − c5v − c3v2
)

x + F(t, v) (8)

U =
(

c2 − c6 + 6c3t + c5v + c3v2
)

u + (c5x + 2c3xv − Fv) u2

V = c4 + 2c5t + (c2 + 4c3t) v

where F satisfies Ft = Fvv. Clearly, the powers m = −4/3 and m = −2 show themselves as special,
and—as this example demonstrates—the symmetries of equations and equivalent systems can be
different. A natural question to ask is whether this holds true for nonclassical symmetries; that the
nonclassical symmetries of a particular equation and a equivalent system (nonclassical potential
symmetries) are different.

The nonclassical method, first introduced by Bluman and Cole [8] (see, for example, [2] or [3]),
seeks invariance of a given partial differential equation (PDE) augmented with the invariant surface
condition. As the determining equations for these nonclassical symmetries are nonlinear, there seemed
to be little hope for this new method; however, with the development of computer algebra systems,
the nineties saw a huge explosion of interest as several authors took interest in the nonclassical method
and continues today to be an active area of interest (e.g., [9–23] and references within).

Of particular interest here is the paper by Bluman and Yan [24]. They consider two algorithms
that extend the nonclassical method to potential systems and potential equations. They consider the
nonlinear diffusion Equation (1), an equivalent potential system (Algorithm 1)

vx = u, vt = K(u)ux (9)

and potential equation (Algorithm 2)
vt = K (vx) vxx (10)
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In the case where K(u) =
1

u2 + u
, they were able to show that (10) admits nonclassical symmetries

that the original Equation (1) does not. So, there is some evidence that the nonclassical symmetries of a
PDE and a potential equation/equivalent system can be different (see also [25] and references within).
Although we will not address this question in general here, we will use Algorithm 1 to consider a large
class of nonlinear diffusion–convection and wave equations to show that—in the majority of cases—the
nonclassical potential system symmetries contain the nonclassical symmetries of the original equation.
We also highlight a special case where the opposite is true.

2. Nonclassical Symmetries

In this section, we consider the nonclassical symmetries of the following nonlinear partial
differential equations

(i) ut = (F(u)ux + G(u))x (11a)

(ii) utt = (F(u)ux + G(u))x (11b)

These equations are of considerable interest because of their applications. For example, (11a),
sometimes known as Richard’s equation, has been used to model the one-dimensional, nonhysteretic
infiltration in uniform nonswelling soil (Broadbridge and White [26]) and to model two phase filtration
under gravity (Rogers, Stallybrass, and Clement [27]). Furthermore, (11b)—sometimes known as the
nonlinear telegraph equation—has been used to model the telegraphy of a two-conductor transmission
line (Katayev [28]) and the motion of a hyperelastic homogeneous rod whose cross-sectional area
varies exponentially along the rod (Jeffery [29]).

In what follows, we omit the cases where (11) are linear or linearizable via a point transformation,
as it is known that all solutions of linear PDEs can be obtained via classical Lie symmetries [30]. Each
equation will be considered separately.

2.1. Nonlinear Diffusion–Convection Equation

We first consider the nonclassical symmetries of (11a). These are calculated by appending to (11a)
the invariant surface condition

Tut + Xux = U (12)

As usual, if T �= 0, we set T = 1 in (12) without loss of generality. This gives rise to the following
determining equations for the infinitesimals X(t, x, u) and U(t, x, u):

FXuu − FuXu = 0 (13a)

F2Uuu − 2F2Xxu + FFuUu + (2FGu + 2FX) Xu + UFFuu − UF2
u = 0 (13b)

FUt − F2Uxx − FGuUx + 2FUXx − U2Fu = 0 (13c)

2F2Uxu + FXt − F2Xxx + 2FFuUx − 2FUXu + F (2X + Gu) Xx

+ (FGuu − FuGu − XFu)U = 0 (13d)

A variation of these determining equations are given in Cherniha and Serov [31], and in the
case of G = 0, appear in Arrigo and Hill [32]. To calculate the nonclassical potential symmetries, we
calculate the nonclassical symmetries for the associated system

vt = F(u) ux + G(u), vx = u (14)

augmented with the two associated invariant surface conditions

Tut + Xux = U, Tvt + Xvx = V (15)
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again noting that we will set T = 1, as we are assuming that T �= 0. Our approach to obtaining the
determining equations is through compatibility. Several authors have shown that this is equivalent to
the nonclassical method (see [33–36]). Solving (14) and (15) for the first order derivatives ut, ux, vt, and
vx gives

ut =
XG + UF − XV + uX2

F
, ux =

V − uX − G
F

, vt = V − uX, vx = u (16)

Requiring compatibility by eliminating partial derivatives by cross-differentiation gives

FVx + (V − uX − G)Vu + uFVv − uFXx + u (uX + G − V) Xu − u2FXv − FU = 0 (17a)

FVt + FXVx + FUVu + FVVv + (FXx − 2(G + uX)Xu − FUu − UFu)V

+XuV2 − F2Ux + F(uX + G)Uu − uF2Uv − uFXt − F(2uX + G)Xx (17b)

+
(
(uX + G)2 − uFU

)
Xu − uF (uX + G) Xv + (uX + G)UFu − FUGu − FXU = 0

In the case of G = 0, these determining equations are equivalent to those that appear in Bluman
and Shtelen [37]. It is interesting to note that at first appearance, (17) seems to be underdetermined—two
equations for the three unknowns X, U and V. However, if we let V = FW + uX + G, where
W = W(t, x, u, v), then (16) becomes

ut = U − XW, ux = W, vt = FW + G, vx = u (18)

and compatibility of (18) again, by cross-differentiation gives rise to the determining equations

Wt + XWx + UWu + (FW + G + uX)Wv + XuW2 + (Xx + uXv − Uu)W − Ux − uUv = 0 (19a)

FWx + W(FW + G)u + uFWv + XW − U = 0 (19b)

To show that the nonclassical symmetries of (11a) are included in the nonclassical symmetries
of (14) is to show that V exists satisfying (17) if X and U satisfy (13). As we have defined V in terms
of W, it suffices to have X, U, and W functions of t, x, and u only. Doing so and requiring that (19) be
compatible via cross-differentiation gives rise to

F (FXuu − FuXu)W3

−
(

F2Uuu − 2F2Xxu + FFuUu + (2FGu + 2FX) Xu + UFFuu − UF2
u

)
W2

−
(

2F2Uxu + FXt − F2Xxx + 2FFuUx − 2FUXu (20)

+F (2X + Gu) Xx + (FGuu − FuGu − XFu)U )W

+FUt − F2Uxx − FGuUx + 2FUXx − U2Fu = 0

By virtue of (13), this is identically satisfied given that a W exists satisfying (19), which in turn
gives that a V exists satisfying (17), thus proving our claim.

2.2. Nonlinear Wave Equation

We now consider the nonclassical symmetries of (11b). Again, we set T = 1. For this particular
class of equations, it is necessary to consider two cases: (i) X2 �= F and (ii) X2 = F. Each will be
considered separately.

Case (i) X2 �= F

In this case, we have the following determining equations for the infinitesimals X(t, x, u)
and U(t, x, u):
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(
X2 − F

)
Xuu + FuXu − 2XX2

u = 0 (21a)

(
X2 − F

)
(2XUXuu + 2FXxu + 2XXtu − (Fu + 2XXu)Uu − 2GuXu − FuuU)

+
(

X2 − F
)2

Uuu − 2
(

2X2Xt + 2FXXx − 2XUFu + 4X2UXu

)
Xu

+2XFu (Xt + XXx)− F2
uU = 0 (21b)

(
X2 − F

) (
2XUUuu + 2XUtu + 2FUxu + U2Xuu + 2UXtu − FXxx + Xtt

)
−

(
X2 − F

)
(2XuUt − 2FuUx + 2XtUu + GuXx − Guu)− 2X

(
X2

t − FX2
x + U2X2

u

)
−2(2FXt + 2FXXx + 2X2UXu − XUFu)Uu + U(FuU − 2GuX)Xu

− (4XUXu + 2GuX − FuU) Xt − (FuXU + 2FGu) Xx + FuGuU = 0 (21c)

(
X2 − F

) (
U2Uuu + 2UUtu + Utt − FUxx − FuUx

)
−(Ut + UUx) (2XXt + 2FXx + 2XUXu − FuU)

+(2FXt + 2FXx + 2FUXu − FuXU)Ux = 0 (21d)

In the case of G = 0, these determining equations appear in Näslund [38]. To calculate the
nonclassical potential symmetries, we calculate the nonclassical symmetries for the associated system

vt = F(u) ux + G(u), vx = ut (22)

augmented with the two associated invariant surface conditions

Tut + Xux = U, Tvt + Xvx = V (23)

with T = 1. This gives rise to two determining equations that have 43 and 44 terms, respectively. As
we did in the previous section, we can simplify these determining equations. Solving (22) and (23) for
ut, ux, vt, and vx gives

ut =
XG + UF − XV

F − X2 , ux =
V − XU + G

F − X2 , vt =
V − uX
F − X2 , vx =

u
F − X2 (24)

Letting V =
(

F − X2)W + XU + G, where W = W(t, x, u, v) gives (24) as

ut = U − XW, ux = W, vt = FW + G, vx = U − XW (25)

Requiring compatibility through cross-differentiation gives rise to the following determining
equations:

Wt + XWx + UWu +
(

XU +
(

F − X2
)

W + G
)

Wv + (Xu − XXv)W2

+ (Xx + UXv − Uu + XUv)W − Ux − UUv = 0 (26a)

XWt + FWx +
(

XU + (F − W2)W
)

Wu + (FU + GX)Wv − Ut − UUu − FUv

+ (Fu − XXu + FXv)W2 + (Xt + UXu + GXv + XUu − FUv + Gu)W = 0 (26b)
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To show that the nonclassical symmetries of (11b) are included in the nonclassical symmetries of
(22) is to show that W exists satisfying (26) if X and U satisfy (21). Eliminating derivatives of W in (26)
through cross-differentiation shows that (26) is compatible, provided that(

X2 − F
)

AW3 − BW2 + CW − D = 0, (27)

where A, B, C, and D are precisely the expressions given in (21a)–(21d), thus showing that (27) is
identically satisfied, again proving our claim.

Case (ii) X2 = F

For this special case, we will show the opposite is true. The nonclassical symmetries of the system
are contained within the nonclassical symmetries of the single equation. For the system (22), we find
determining equations give rise to V = XU + G, and that U satisfies

Ut − XUx + UUu + (G − XU)Uv = 0 (28a)

Uu − XUv +
Xu

2X
U +

Gu

2X
= 0 (28b)

Compatibility of (28) by eliminating Ut gives rise to the third equation

XuUx − GuUv +

(
2XXuu − 3X2

u
4X2

)
U2 +

(
XGuu − 2XuGu

2X2

)
U − G2

u
4X2 = 0 (29)

Further compatibility between (28a) and (29) by eliminating all derivatives of U gives rise to(
2XGuXuu − 2XXuGuu + GuX2

u

)
U2 + 2XuG2

uU + G3
u = 0 (30)

If either Ut �= 0, Ux �= 0, or Uv �= 0, then from (30) Gu = 0 and (22) is linearizable via a
hodograph transformation. Thus, the only case to consider is when U = U(u). In this case, (28) can be
solved, giving

U = −c1, G = c1X + c2 (31)

where c1 and c2 are arbitrary constants, and X(u) is arbitrary.
We now turn our attention to the single Equation (11b). In the special case where F = X2, we are

restricted in the number of differential consequences of our invariant surface condition to be combined
with our original PDE. Differential consequences of (12) (with T = 1 and Xt = Xx = 0) are

utt + Xutx + Xuutux = Ut + Uuut (32a)

utx + Xuxx + Xuu2
x = Ux + Uuux (32b)

In the case where X2 �= F, we can solve the original PDE (11b) along with differential consequence
of the invariant surface condition (12) for utt, utx, and uxx. In this special case where X2 = F, we can
only solve for two second order derivatives of u. If we solve (11b) and (32b) for utt and utx, the second
determining equation in (32) becomes

− Ut − Uuut + (XUu + Gu) ux + Xuutux + XXuu2
x = 0 (33)

and using the invariant surface condition (12), we obtain(
2XUu + UX′ + G′) ux − Ut + XUx − UUu = 0 (34)
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From (34) we see two cases emerge. If 2XUu + UXu + Gu = 0, then Ut − XUx + UUu = 0, and
comparing with (28) shows they are identical if Uv = 0. However, our analysis there showed the only
solution is (31), and so the two results coincide. If 2XUu + UXu + Gu �= 0, then we obtain the single
determining equation

(Ut − XUx + UUu)
(

2XUtu + 2X2Uxu + 2XUUuu + 2XXuuUx + 2XuUUu + XuuU2 + GuuU
)

− (2XUu + XuU + Gu)
(

Utt − X2Uxx + 2UUtu + U2Uuu − (2XuU + Gu)Ux

)
= 0 (35)

We make no effort to solve (35) in general; however, if U = U(u), then (35) can be solved giving

U = −G(u) + c1

X(u) + c2
(36)

where c1 and c2 are arbitrary constants showing that the nonclassical symmetries of the single Equation
(11b) contain the nonclassical symmetries of the equivalent system (22), and are in fact more general.

3. T = 0

In applying the nonclassical method in the previous section, we assumed that T �= 0, letting
us set T = 1 without loss of generality. We now consider the case when T = 0. Without loss of
generality, we can set X = 1. Again, we will consider the nonlinear diffusion–convection and wave
equations separately.

3.1. Nonlinear Diffusion Equation

In the case of the nonlinear heat Equation (11a), the nonclassical method gives rise to the following
single equation for U:

Ut − FUxx − 2FUUxu − FU2Uuu − (3FuU + Gu)Ux − 2FuU2Uu − FuuU3 − GuuU2 = 0 (37)

Applying the nonclassical method to the system (14) gives the single equation

ut − F (Ux + UUu + uUv)− FuU2 − GuU = 0 (38)

At this point, we set the coefficients of the derivatives to zero. This gives

ut = 0, F (Ux + UUu + uUv) + FuU2 + GuU = 0 (39)

showing that the only solutions to (14) are of the form u = f (x). This was also noted in
Bluman and Yan [24] in the case of G = 0. However, we could continue to refine the nonclassical
method and solve (38) for ut and impose compatibility with ux = U. This would give

Ut − FUxx − 2FUUxu − 2uFUxv − FU2Uuu − 2uFUUuv − u2FUvv

−(3FuU + Gu)Ux − 2FuU2Uu + (G − uGu − 3uFuU)Uv − FuuU3 − GuuU2 = 0 (40)

Setting Uv = 0 in (40) recovers (37), showing that a refinement in nonclassical method applied to
the system (14) includes the nonclassical symmetries of the original Equation (11a).
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3.2. Nonlinear Wave Equation

In the case of the nonlinear wave Equation (11b), the determining equations are:

Uuu = 0

Utu = 0 (41)

Utt − F
(

Uxx + 2UUxu + U2Uuu

)
− 2FuU2Uu

− (3FuU + Gu)Ux − FuuU3 − GuuU2 = 0

For the system (22), they are

Vt + VVu + (FU + G)Vv − FUx − FUUu − FVUv − FuU2 − GuU = 0 (42)

Vx + UVu + VVv − Ut − VUu − (FU + G)Uv = 0

Setting Uv = 0 and requiring that (42) be compatible gives

UuuV2 + 2UtuV + Utt − F
(

Uxx + 2UUxu + U2Uuu

)
− 2FuU2Uu (43)

− (3FuU + Gu)Ux − FuuU3 − GuuU2 = 0

which by virtue of (41) shows that this is identically satisfied, proving that nonclassical symmetries
of (11a) are included to those of (22).

4. Conclusions

In this paper, we have considered the symmetries of a nonlinear diffusion–convection and
wave equation and equivalent systems. It is well known that classical Lie symmetries of differential
equations and equivalent systems can be different. We question whether this is true if we extend the
symmetries to include nonclassical symmetries. We have shown that in the majority of cases, the
nonclassical symmetries of equivalent systems (sometimes termed potential symmetries) contain the
nonclassical symmetries of the single equation counterpart. However, we have found a special case
where the opposite is true, for the nonlinear wave equation when X2 = F, where we have found that
the nonclassical symmetries of the single equation contain the nonclassical symmetries of a system
equivalent. A natural question is whether this is true for more general equations

(i) ut = (F(t, x, u)ux + G(t, x, u))x

(ii) utt = (F(t, x, u)ux + G(t, x, u))x

There seems to be some indication that this is true, but further study is needed.
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Abstract: A wide range of reaction–diffusion systems with constant diffusivities that are invariant
under Q-conditional operators is found. Using the symmetries obtained, the reductions of the
corresponding systems to the systems of ODEs are conducted in order to find exact solutions. In
particular, the solutions of some reaction–diffusion systems of the Lotka–Volterra type in an explicit
form and satisfying Dirichlet boundary conditions are obtained. An biological interpretation is
presented in order to show that two different types of interaction between biological species can
be described.

Keywords: Q-conditional symmetry; reaction–diffusion systems; exact solution; Lotka–Volterra
system

1. Introduction

In 1952, Alan Turing published his prominent paper [1]. In this paper he proposed the Turing
hypothesis of pattern formation. He used reaction–diffusion equations of the form

λ1ut = (D1(u)ux)x + F(u, v),
λ2vt = (D2(v)vx)x + G(u, v)

(1)

which are central to the field of pattern formation.
In system (1), F and G are arbitrary smooth functions, u = u(t, x) and v = v(t, x) are unknown

functions of the variables t and x, while the subscripts t and x denote differentiation with respect to
this variable. Nonlinear system (1) generalizes many well-known nonlinear second-order models used
to describe various processes in physics [2], biology [3–5] and ecology [6].

Here we concentrate ourselves on the most important subclass of RD systems with the form of (1),
namely that with constant coefficients of diffusivity

λ1ut = uxx + F(u, v),
λ2vt = vxx + G(u, v)

(2)

System (2) has been intensely studied using different mathematical methods (see, e.g., [3,4,7] and
papers cited therein). All possible Lie symmetries of system (2) have been found, in [8–11]. In particular,
Q-conditional symmetries of (2) were found in [12]. Reference [13] also contains some results related
with system (2).
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System (1) is a natural generalization of the well-known RD equation

ut = [D(u)ux]x + F(u) (3)

There are many papers devoted to the construction of Q-conditional symmetries for this equation [14–
21], starting from the pioneering work in [22]. There is also a non-trivial generalization of these results
for the case of the reaction–diffusion–convection equation ([21] and papers cited therein).

In contrast to (3), there are not many results for searching Q-conditional symmetries of system
(2). Construction of the Q-conditional symmetries (non-classical symmetries) of such systems is a
very difficult task. Only a few papers have been devoted to the search of such symmetries. In [23] the
Q-conditional symmetries of the system

ut =
(

ukux

)
x
+ F(u, v),

vt =
(

vlvx

)
x
+ G(u, v), l2 + k2 �= 0,

have been obtained; in [24] the Q-conditional symmetries of the Lotka–Volterra system

λ1ut = uxx + u(a1 + b1u + c1v),
λ2vt = vxx + v(a2 + b2u + c2v)

(4)

were obtained.
The paper is organized as follows. In Section 2 three theorems are presented which contain

the main result for Q-conditional symmetries of system (2). In Section 3, ansätze for all systems
and solutions for one of the systems are derived. In Section 4, the solutions for a generalization of
the Lotka–Volterra system are obtained and analyzed. Some graphs of the exact solutions are also
presented. Finally, we present some conclusions.

2. Main Result

Let us consider the reaction–diffusion system with constant diffusivities: (2). We want to find
Q-conditional operators of the form

Q = ∂t + ξ(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (5)

under which system (2) is invariant.
The most general form of the Q-conditional operators is

Q = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v.

In the case ξ0(t, x, u, v) �= 0, this operator can be reduced to that with ξ0(t, x, u, v) = 1 [25]. So we
investigate operator (5).

We write down system (2) in the following form:

uxx = λ1ut + C1(u, v), λ1 �= 0,
vxx = λ2vt + C2(u, v), λ2 �= 0

(6)

where C1(u, v) = −F(u, v), C2(u, v) = −G(u, v).
The determining equations for finding coefficients of operator (5) and functions C1(u, v), C2(u, v)

from system (6) have the form
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1)ξuu = ξvv = ξuv = 0,
2)η1

vv = 0,
3)η2

uu = 0,
4)2λ1ξξu + η1

uu − 2ξxu = 0,
5)2λ2ξξv + η2

vv − 2ξxv = 0,
6)(λ1 + λ2)ξξv + 2η1

uv − 2ξxv = 0,
7)(λ1 + λ2)ξξu + 2η2

uv − 2ξxu = 0,
8)(λ1 − λ2)ξη1

v + 2η1
xv − 2ξvC1 − 2λ1ξvη1 = 0,

9)(λ2 − λ1)ξη2
u + 2η2

xu − 2ξuC2 − 2λ2ξuη2 = 0,
10)λ1

(
2ξuη1 − ξt − ξvη2 − 2ξξx

)
+ λ2ξvη2 + 3ξuC1 + ξvC2 − 2η1

xu + ξxx = 0,
11)λ2

(
2ξvη2 − ξt − ξuη1 − 2ξξx

)
+ λ1ξuη1 + 3ξvC2 + ξuC1 − 2η2

xv + ξxx = 0,
12)λ1

(
η1

t + η2η1
v + 2ξxη1)− λ2η2η1

v + η1C1
u + η2C1

v − η1
uC1 + 2ξxC1 − η1

vC2 − η1
xx = 0,

13)λ2
(
η2

t + η1η2
u + 2ξxη2)− λ1η1η2

u + η1C2
u + η2C2

v − η2
uC1 + 2ξxC2 − η2

vC2 − η2
xx = 0.

(7)

System (7) is an over-determined system of partial differential equations and there are no any
general method for solving of such systems [26,27]. Thus, we were not able to find the general solution
of system (7), hence we have solved it with conditions

ξ = ξ(u, v), ηi = ηi(u, v), i = 1, 2 (8)

Solving Equations 1)–3) of system (7), we obtain

ξ = au + bv + c, η1 = p1(u)v + q1(u), η2 = p2(v)u + q2(v) (9)

where a, b, c are arbitrary constants, p1, p2, q1, q2 are arbitrary smooth functions. Substituting (9) into
6) , 7) from (7) and splitting the obtained equations with respect to the powers of u and v, we arrive at
the system

a2(λ1 + λ2) = 0, b2(λ1 + λ2) = 0,
(λ1 + λ2)a(bv + c) + 2p2

v = 0, (λ1 + λ2)b(au + c) + 2p1
u = 0

(10)

Obviously, that solutions of first pair of equations of (10) will be λ2 = −λ1, or a = b = 0.
Let us consider the case λ2 = −λ1 (the case a = b = 0 will be considered later). In this case we

obtain p1 = const = α1, p2 = const = α2. Substituting (9) p1 = α1, p2 = α2 into Equations 4) and 5) of
system (7) and splitting with respect to the powers of u and v, we arrive at

2λ1ab = 0, q1
uu + 2λ1a(au + c) = 0, q2

vv − 2λ1b(bv + c) = 0 (11)

Since λ1 �= 0, we conclude that ab = 0. Consider the case a = 0, b �= 0 (the case b = 0, a �= 0 is
symmetrical). From Equation 8), we obtain α2 = 0. Substituting (9) with the specified coefficients,
namely

ξ = bv + c, η1 = α1v + q1, η2 = q2,

into Equations 10) , 11) of system (7), we arrive at

b
(

C2 − 2λ1q2
)
= 0, b

(
3C2 − 2λ1q2

)
= 0 (12)

Substituting q2 = 0, obtained from (12), into the third equation of system (11), we obtain λ1b(bv + c) =
0, that is λ1b = 0, but that contradicts the above restrictions.

Thus, in the case λ2 = −λ1 we do not obtain any Q-conditional operator of the form (5).
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Consider the case a = b = 0. In this case, from Equations 4) , 5) , 6) and 7) of system (7), we obtain

pi = const = αi, i = 1, 2, q1 = β1u + γ1, q2 = β2v + γ2,

where βi, γi, i = 1, 2 are the arbitrary constants. Thus, expressions (9) take the form

ξ = c, η1 = α1v + β1u + γ1, η2 = α2u + β2v + γ2 (13)

Substituting (13) into Equations 8) and 9) of system (7), we arrive at

cα1(λ2 − λ1) = 0, cα2(λ2 − λ1) = 0 (14)

Solving the system of algebraic Equations (14), we obtain three solutions λ2 = λ1, α1 = α2 = 0 and
c = 0, therefore we obtain three cases. Let us consider all these cases.

Theorem 1. In the cases λ2 = λ1 or η1
v = η2

u = 0 with conditions (8), the system of determining equations for
finding of the Q-conditional operators of the form (5) for system (6) coincide with the system of determining
equations for finding Lie operators.

Proof. Substituting (13), with λ2 = λ1, into system (7) we find that Equations 1)−11) are transformed
into identities, and Equations 12) and 13) take the form

η1C1
u + η2C1

v − η1
uC1 − η1

vC2 = 0, η1C2
u + η2C2

v − η2
uC1 − η2

vC2 = 0 (15)

In [11] the determining equations for finding of Lie symmetries with condition λ2 = λ1 are
written down in explicit form. Substituting conditions (8) into these equations, we see that the result is
completely identical to Equations (15).

Substituting (13), with α1 = α2 = 0 into system (7), we see that Equations 1)−11) also transform
into identities, and equations 12) and 13) take the form

η1C1
u + η2C1

v − η1
uC1 = 0, η1C2

u + η2C2
v − η2

vC2 = 0. (16)

Comparing equations (16) with equations for finding of Lie symmetries of system (6) with
conditions (8) from [9], we see that they are completely identical.

Thus, in the following we assume that λ1 �= λ2, α2
1 + α2

2 �= 0.
Let us consider the case c = 0, which is on the one hand the most interesting and on the other the

most difficult. In this case, (13) takes the form

ξ = 0, η1 = α1v + β1u + γ1, η2 = α2u + β2v + γ2 (17)

Equations 1)−11) satisfy expressions (17) and Equations 12) , 13) take the form

(α1v + β1u + γ1)C1
u + (α2u + β2v + γ2)C1

v − β1C1 − α1C2

= α1(λ2 − λ1)(α2u + β2v + γ2),
(α1v + β1u + γ1)C2

u + (α2u + β2v + γ2)C2
v − α2C1 − β2C2

= α2(λ1 − λ2)(α1v + β1u + γ1)

(18)

Thus, we can formulate the following theorem.

Theorem 2. The nonlinear reaction–diffusion system (6) is Q-conditionally invariant under operator (5) with
coefficients (17) if and only if the nonlinearities C1, C2 are the solutions of linear system (18).
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To find the general solution of system (18), one need to analyze two cases α2 = 0 and α2 �= 0. In
the case α2 = 0, system (18) takes the form

+α1(λ2

(α1v + β1u + γ1)C2
u + (β2v + γ2)C2

v = β2C2 (19)

Since α1 �= 0, renaming C1 → α1C1 , u
and γ1 → α1γ1 , and taking into account that with any coefficients β1, β2 we can remove the parameter
γ1 using linear substitutions of u, v, system (19) reduces to the form

(v + β1u)C1
u + (β2v + γ2)C1

v = β1C1 + C2 + (λ2 − λ1)(β2v + γ2),
(v + β1u)C2

u + (β2v + γ2)C2
v = β2C2 (20)

One notes a particular solution of system (20), of the form

C1
part =

1
2
(λ2 − λ1)(v + β1u), C2

part =
1
2
(λ1 − λ2)(β2v + γ2) (21)

Now to construct the general solution of (20), we need to solve the corresponding homogeneous
system, that is

(v + β1u)C1
u + (β2v + γ2)C1

v = β1C1 + C2,
(v + β1u)C2

u + (β2v + γ2)C2
v = β2C2 (22)

As a result, the following statement was proved.

Theorem 3. Reaction–diffusion system (6) is Q-conditionally invariant under operator (5) with conditions
(8), and η2

u = 0, if and only if the system and corresponding operator have one of the seven following forms
(moreover λ2 �= λ1):

uxx = λ1ut + g(ω)v ln(v) + h(ω)v + 1
2 (λ2 − λ1)(v + β1u),

vxx = λ2vt + β1g(ω)v + 1
2 (λ1 − λ2)β1v,

Q = ∂t + (v + β1u)∂u + β1v∂v,

ω = v−1 exp
(

β1u
v

)
, β1 �= 0

(23)

uxx = λ1ut + h(ω)v
β1
β2 + g(ω)v + 1

2 (λ2 − λ1)(v + β1u),
vxx = λ2vt + (β2 − β1)g(ω)v + 1

2 (λ1 − λ2)β2v,
Q = ∂t + (v + β1u)∂u + β2v∂v,

ω = v−
β1
β2 ((β1 − β2)u + v), β1β2(β1 − β2) �= 0

(24)

uxx = λ1ut + ug(v) + h(v),
vxx = λ2vt + vg(v),

Q = ∂t + v∂u

(25)

uxx = λ1ut + g(ω)v + h(ω) + 1
2 (λ2 − λ1)v,

vxx = λ2vt + g(ω) + 1
2 (λ1 − λ2),

Q = ∂t + v∂u + ∂v,
ω = 2u − v2

(26)

uxx = λ1ut + g(ω)v + h(ω) + 1
2 (λ2 − λ1)v,

vxx = λ2vt + β2g(ω)(v + τ2) +
1
2 β2(λ1 − λ2)(v + τ2),

Q = ∂t + v∂u + β2(v + τ2)∂v,
ω = β2u − v + τ2 ln(v + τ2), β2 �= 0

(27)
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uxx = λ1ut + (v + u)h(v)− g(v),
vxx = λ2vt + g(v),

Q = ∂t + β1(v + u)∂u, β1 �= 0
(28)

uxx = λ1ut + h(ω) exp
(

β1
γ2

v
)
− g(ω) + 1

2 (λ2 − λ1)(v + β1u),

vxx = λ2vt + β1g(ω) + 1
2 γ2(λ1 − λ2),

Q = ∂t + (v + β1u)∂u + γ2∂v,

ω = exp
(
− β1

γ2
v
)(

β2
1u + β1v + γ2

)
, β1γ2 �= 0

(29)

Proof. To prove this theorem, it is necessary and sufficient to construct the general solution of system
(22) for all possible ratios between parameters β1, β2, γ2. To do this we need to investigate the following
seven cases:

1. β1β2 �= 0, β1 = β2;
2. β1β2 �= 0, β1 �= β2;
3. β2 = 0, β1 = 0, γ2 = 0;
4. β2 = 0, β1 = 0, γ2 �= 0;
5. β2 �= 0, β1 = 0.
6. β2 = 0, β1 �= 0, γ2 = 0;
7. β2 = 0, β1 �= 0, γ2 �= 0.
These cases take into account all possibilities that arise when we solve system (22). Let us consider

these cases.
Case 1. Solving the second equation of (22), we get C2 = β1vg(ω) and ω = v−1 exp

(
β1u

v

)
. So the

first equation of (22) reduces to an ODE for finding of the function C1:

C1
v −

C1

v
= g(ω).

Solving it, we get that C1 = g(ω)v ln(v) + vh(ω). Taking into account the expressions for C1, C2, ω,
obtained above, C1

part, C2
part from Formulas (21) and restrictions (obtained above), finally we arrive at

the reaction–diffusion system and the Q-conditional operator listed in (23) of Theorem 3.
Cases 2–7. Considering similarly these cases and using simple renamings, we arrive at systems

and operators (24)–(29) of Theorem 3.

In the case α2 �= 0 we should also assume that α1 �= 0, otherwise we obtain the case α2 = 0 up to
renaming. We seek a solution of system (18) of the form

C1 = r1u + r2v + r3, C2 = s1u + s2v + s3 (30)

Substituting (30) into (18), we obtain the system of algebraic equations

α2r2 − α1s1 + α1α2(λ1 − λ2) = 0,
α1r1 + (β2 − β1)r2 − s2α1 + α1β2(λ1 − λ2) = 0,
γ1r1 + γ2r2 − β1r3 − α1s3 + α1γ2(λ1 − λ2) = 0,
α2r1 + (β2 − β1)s1 − s2α2 + α2β1(λ1 − λ2) = 0,
α2r3 − γ1s1 − γ2s2 + β2s3 + α2γ1(λ1 − λ2) = 0

(31)

Solving system (31), we arrive at two possibilities depending on Δ = α1α2 − β1β2:
I) Δ = 0,

r1 = β1
α2

s1 + β1(λ2 − λ1), r2 = α1
α2

s1 + α1(λ2 − λ1),

r3 = α2γ1+β2γ2
α2

2
s1 − β2

α2
s3 + γ1(λ2 − λ1), s2 = β2

α2
s1.
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II) Δ �= 0,

r1 = (β1−β2)
α2

s1 + s2 + β1(λ2 − λ1), r2 = α1
α2

s1 + α1(λ2 − λ1),

r3 =
(Δ+β2

2)γ1−α1β2γ2
α2Δ s1 +

α1γ2−β2γ1
Δ s2 + γ1(λ2 − λ1), s3 = α1γ2−β2γ1

Δ s1 +
α2γ1−β1γ2

Δ s2.

In Case I) s1 = s3 = 0, we obtain the solution of system (18)

C1
part = (λ2 − λ1)

(
β1

α2
(α2u + β2v) + γ1

)
, C2

part = 0 (32)

In Case II) s1 = s2 = 0 we obtain the solution of system (18)

C1
part = (λ2 − λ1)(α1v + β1u + γ1), C2

part = 0 (33)

Furthermore, we must solve the homogeneous system

(α1v + β1u + γ1)C1
u + (α2u + β2v + γ2)C1

v = β1C1 + α1C2,
(α1v + β1u + γ1)C2

u + (α2u + β2v + γ2)C2
v = α2C1 + β2C2 (34)

Let us consider Case I). Using the condition Δ = 0 for system (34), we get(
β1
α2
(α2u + β2v) + γ1

)
C1

u + (α2u + β2v + γ2)C1
v = β1

α2

(
α2C1 + β2C2),(

β1
α2
(α2u + β2v) + γ1

)
C2

u + (α2u + β2v + γ2)C2
v = α2C1 + β2C2

(35)

Multiplying the second equation of (35) by − β1
α2

, adding to the first and renaming

u → u − γ2
α2

, γ1 → γ1 +
β1γ2

α2
, we arrive at(

β1

α2
(α2u + β2v) + γ1

)(
C1 − β1

α2
C2

)
u
+ (α2u + β2v)

(
C1 − β1

α2
C2

)
v
= 0 (36)

Using the substitution

C1 = S(u, v) +
β1

α2
C2 (37)

we obtain the equation (
β1

α2
(α2u + β2v) + γ1

)
Su + (α2u + β2v)Sv = 0 (38)

Solving Equation (38), we arrive at three subcases:
1) β2 = −β1, γ1 = 0, S = S(ω), ω = α2u − β1v;
2) β2 = −β1, γ1 �= 0, S = S(ω), ω = (α2u − β1v)2 − 2α2γ1v;
3) β2 �= −β1, S = S(ω), ω = α2u − β1v − α2γ1

β1+β2
ln
∣∣∣α2u + β2v + α2γ1

β1+β2

∣∣∣.
Substituting (37) together with the function S from subcase 1) into the second equation of (35),

we obtain
(α2u − β1v)

(
α2Cv

2 + β1Cu
2
)
= α2

2 f (ω) (39)

Solving (39), using (37), (32) and renaming u → β1u, v → α2v we obtain the system

uxx = λ1ut + f (ω)u + β1(g(ω)− λ1)(u − v),
vxx = λ2vt + f (ω)v + β1(g(ω)− λ2)(u − v), ω = u − v,
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Q-conditionally invariant under the operator

Q = ∂t + β1(u − v)(∂u + ∂v).

Similarly, for subcase 2), we arrive at the system

uxx = λ1ut + ( f (ω)− λ1)(β1(u − v) + γ1) + g(ω),
vxx = λ2vt + β1( f (ω)− λ2)(u − v) + g(ω), ω = (u − v)2 − 2 γ1

β1
v, γ1 �= 0

and the operator
Q = ∂t + (β1(u − v) + γ1)∂u + β1(u − v)∂v.

In the subcase 3), we obtain the system

uxx = λ1ut + k( f (ω)− λ1) + β1(g(ω)− λ1)(u + v),
vxx = λ2vt − k( f (ω)− λ2) + β2(g(ω)− λ2)(u + v),

ω = β2u − β1v − k ln|u + v|, k = γ1
β1+β2

,

and the operator
Q = ∂t + (β1(u + v) + k)∂u + (β2(u + v)− k)∂v.

Examination of Case II) is highly nontrivial and will be reported in another paper.

3. Ansätze and Exact Solutions of the Reaction–Diffusion System

Using standard procedures, we obtain ansätze for all operators of Theorem 3. Substituting these
anzätze in the corresponding reaction–diffusion systems, we obtain the reduction systems of equations.
All anzätze and reduction systems are presented in Table 1.

Table 1. Ansätze and reduction systems of Theorem 3.

No. Ansätze Systems of ODEs

(23) u = (t + ψ)eβ1t+ϕ ϕ′′ + (ϕ′)2 − β1

(
g
(

eβ1ψ−ϕ
)
+ λ1+λ2

2

)
= 0

v = eβ1t+ϕ ψ′′ + 2ϕ′ψ′ + g
(

eβ1ψ−ϕ
)
(β1ψ − ϕ)− h

(
eβ1ψ−ϕ

)
− λ1+λ2

2 = 0

(24) u = ψ
(

eβ2t+ϕ
) β1

β2 − eβ2 t+ϕ

β1−β2
ϕ′′ + (ϕ′)2 + g((β1 − β2)ψ)(β1 − β2)− β2

λ1+λ2
2 = 0

v = eβ2t+ϕ ψ′′ + 2β1
β2

ϕ′ψ′ + β1
β2

(
β1
β2

− 1
)

ψ
(
(ϕ′)2 − β2g((β1 − β2)ψ)

)
− h((β1 − β2)ψ) = 0

(25) u = ϕt + ψ ϕ′′ − ϕg(ϕ) = 0
v = ϕ ψ′′ − g(ϕ)ψ − h(ϕ)− λ1 ϕ = 0

(26) u = 1
2 t2 + ϕt + ψ ϕ′′ − g

(
2ψ − ϕ2)− λ1+λ2

2 = 0
v = t + ϕ ψ′′ − g

(
2ψ − ϕ2)ϕ − h

(
2ψ − ϕ2)− λ1+λ2

2 ϕ = 0
(27) u = 1

β2
eβ2t+ϕ − τ2t + ψ ϕ′′ + (ϕ′)2 − β2g(τ2(ϕ + 1) + β2ψ)− λ1+λ2

2 β2 = 0
v = eβ2t+ϕ − τ2 ψ′′ − h(τ2(ϕ + 1) + β2ψ) + τ2g(τ2(ϕ + 1) + β2ψ) + λ1+λ2

2 τ2 = 0
(28) u = ψeβ1t − ϕ ϕ′′ − g(ϕ) = 0

v = ϕ ψ′′ − (h(ϕ) + β1λ1)ψ = 0

(29) u = ψeβ1t − γ2t
β1

− ϕ
β1

− γ2
β2

1
ϕ′′ − g

(
β2

1ψe−
β1 ϕ

γ2

)
β1 − (λ1+λ2)

2 γ2 = 0

v = γ2t + ϕ ψ′′ − e
β1 ϕ

γ2 h
(

β2
1ψe−

β1 ϕ

γ2

)
− β1

λ1+λ2
2 ψ = 0

It is impossible to find the general solution of the systems from Table 1 for arbitrary functions g
and h. However, if we correctly specify these functions we can find the solutions of these systems.

System (27) is the most interesting one from the point of view of applicability. Let us consider
system (27) with τ2 = 0, g(ω) = b1ω + b0 − λ1+λ2

2 , h(ω) = a2ω2 + a1ω + a0. In this case, the reduction
system has the form

ϕ′′ + (ϕ′)2 − β2(b1β2ψ + b0) = 0 (40)
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ψ′′ − a2β2
2ψ2 − a1β2ψ − a0 = 0 (41)

The solution of Equation (41) has the form

ψ = k = const (42)

Substituting (42) into (40), we arrive at

ϕ′′ +
(

ϕ′)2
= A, A = β2(b1β2k + b0) (43)

The solutions of Equation (43) depend on the parameter A. Solving Equation (43) we get three
different solutions (up to transformations x → x + C1, C1 = const )

ϕ =

⎧⎪⎪⎨⎪⎪⎩
ln|Cx|, A = 0;

ln|C cosh
(√

Ax
)
|, A > 0;

ln|C cos
(√−Ax

)
|, A < 0.

Substituting ϕ and (42) into corresponding ansatz from Table 1, and renaming C → β2C , we arrive at
the exact solutions

u = Ceβ2tx + k, v = Cβ2eβ2tx,

u = Ceβ2t cosh
(√

Ax
)
+ k, v = Cβ2eβ2t cosh

(√
Ax

)
u = Ceβ2t cos

(√−Ax
)
+ k, v = Cβ2eβ2t cos

(√−Ax
)

(44)

of the reaction–diffusion system

uxx = λ1ut + (v − uβ2)(−a1 + a2v − a2β2u) +
(
b0 − λ∗

1 − b1v + b1β2u
)
v + a0,

vxx = λ2vt + β2(b0 − λ∗
2 − b1v + b1β2u)v

(45)

where k is the solution of the equation a2β2
2k2 + a1β2k + a0 = 0.

4. Solutions and Their Properties of Some Generalization of the Lotka–Volterra System

Let us consider in detail the case A < 0. Renaming β2 = − B2
C2

, b1 = −C2
2

B2
, b0 = A2C2+B2λ2

B2
, a0 =

−e0, a1 = A1C2
B2

, a2 = − B1C2
2

B2
2

, we obtain the exact solution

u = Ce−
B2
C2

t cos
(√−Ax

)
+ k, v = −B2C

C2
e−

B2
C2

t cos
(√−Ax

)
(46)

where A = − kB2C2+A2C2+B2λ2
C2

, and k is the solution of B1k2 + A1k + e0 = 0, of the reaction–diffusion
system

λ1ut = uxx + u(A1 + B1u + C1v) + e2v2 + e1v + e0,
λ2vt = vxx + v(A2 + B2u + C2v)

(47)

where C1 =
(

2B1
B2

− 1
)

C2, e2 =
(B1−B2)C2

2
B2

2
, e1 = (A1−A2)C2

B2
+ λ∗

1 − λ∗
2.

System (47) is the generalized Lotka–Volterra system. With e2 = e1 = e0 = 0 system (47) becomes
the classical Lotka–Volterra system

λ1ut = uxx + u(A1 + B1u + C1v),
λ2vt = vxx + v(A2 + B2u + C2v)

(48)
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Note that exact solutions of the form (46) for the classical Lotka–Volterra system (48) have been
found in [24].

Figure 1. Exact solution to (51).

System (48) can be obtained from system (47) with e0 = 0, B1 = B2, A1 =
A2C2+(λ∗

2−λ∗
1)B2

C2
. Also,

the coefficients of (46) and (48) must satisfy the equation k
(

k + A2
B2

+
λ∗

2−λ∗
1

C2

)
= 0.

It is well known [3] that three main kinds of interactions between two biological species are
simulated by system (48):

(i) predator u–prey v interaction,
(ii) competition of the species,
(iii) mutualism or symbiosis.
It turns out that solution (46) can describe the predator-prey interaction on the space interval

[−l, l], (here l = π
2
√−A

) provided that

B2 < 0, C2 < 0, C < 0, k > |C| (49)

One can easily check that solution (46) is non-negative, bounded in the domain Ω =

{(t, x) ∈ (0,+∞)× (−l, l)} and satisfies the given Dirichlet boundary conditions, i.e.,

u|x=−l = k, v|x=−l = 0, u|x=l = k, v|x=l = 0 (50)

Choosing the coefficients λ1 = 2, λ2 = 1, A2 = 1, B2 = −1, C2 = − 1
3 , B1 = 0, C = − 1

3 , e0 = 1,
gives that A1 = −2, C1 = 1

3 , k = 1
2 . Thus, from solution (46) we obtain the solution

u =
1
2
− 1

3
e−3t cos

(√
7
2

x

)
, v = e−3t cos

(√
7
2

x

)
(51)

of the system
2ut = uxx + u

(−2 + v
3
)
+ v2

9 + 1,
vt = vxx + v

(
1 − u − v

3
) (52)

which can describe predator u–prey v interaction, as its coefficients satisfy the conditions for this
type of the interaction [3]. System (52) is some generalization of the Lotka–Volterra system (48) with
additional nonlinearity v2

9 + 1 in the first equation.
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Figure 2. Exact solution of (55).

Solution (51) satisfies Dirichlet boundary conditions (50) with l = π√
14

, k = 1
2 .

As an example, we present solution (51) in Figure 1. This solution can describe the predator
u–prey v interaction between the species u and v when population of predator u becomes 1

2 and prey

eventually dies, i.e., (u, v) →
(

1
2 , 0

)
as t → +∞ .

Choosing coefficients λ1 = 3
2 , λ2 = 5

4 , A2 = 1, B2 = −4, C2 = − 1
2 , B1 = 1, C = − 1

4 , e0 = 0, we get
A1 = −1, C1 = 3

4 , k = 1. Renaming t → 1
4 t , from solution (46) we obtain the solution

u = 1 − 1
4

e−2t cos
(√

7x
)

, v = 2e−2t cos
(√

7x
)

(53)

of the system
6ut = uxx + u

(−1 + u + 3
4 v

)
+ 5

64 v2,
5vt = vxx + v

(
1 − 4u − v

2
) (54)

which can also describe the predator u–prey v interaction, as its coefficients satisfy conditions for this
type of interaction [3]. System (52) is some generalization of Lotka–Volterra system (48) with additional
nonlinearity 5v2

64 in the first equation.
Solution (53) satisfies Dirichlet boundary conditions (50) with l = π

2
√

7
and k = 1. This solution

can describe the predator u–prey v interaction between the species u and v when population of predator
u becomes 1 and prey eventually die, i.e., (u, v) → (1, 0) as t → +∞ .

If we consider system (48) with solution (46), then we obtain the solution that can describe
competition of the species. Such a solution is presented in [24].

Also, system (47) can describe mutualism—or symbiosis—of two species. Choosing the
coefficients λ1 = 2, λ2 = 1, A2 = 5, B2 = 2, C2 = − 1

2 , B1 = − 1
10 , k = 0, C = 1, e0 = 0, we obtain

A1 = 9, C1 = 11
20 . So, from solution (46) we obtain the solution

u = e4t cos(x), v = 4e4t cos(x) (55)

of the system
2ut = uxx + u

(
9 − u

10 + 11v
20

)
− 21v2

160 ,

vt = vxx + v
(
5 − v

2 + 2u
) (56)

which is a generalization of Lotka–Volterra system (48) with additional nonlinearity − 21
160 v2 in the first

equation.
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Solution (55) satisfies Dirichlet boundary conditions (50) with l = π
2 , k = 0. As an example, we

present solution (55) in Figure 2. Solution (55) can describe the type of the interaction between the
species u and v when both populations grow unboundedly, i.e., (u, v) → (+∞,+∞) if t → +∞ .

5. Conclusions

In this paper, the nonlinear RD system (2) was examined in order to find the Q-conditional
operators under which this system is invariant and to construct exact solutions. Because the system of
differential (7) is too complicated, we were unable (and believe it is not possible) to find all the solutions
of the determining system (7) and thence to find all possible Q-conditional operators. We have found
the Q–conditional operators with restrictions (8) (in the case η2

u = 0 we have found all possible systems
and operators, in the case η2

u �= 0 we have presented some examples) with respect to which the
reaction–diffusion system of equations with constant diffusion (2) is invariant. All these operators are
given in Theorem 3 of Section 2. In Section 3 the ansätze for all Q-conditional operators of Theorem 3
and the reduction systems are constructed. Section 4 contains the solutions of some generalization of
the Lotka–Volterra system. These solutions are analyzed in order to present of biological interpretation.
Some graphs of obtained solutions are also presented. It is shown that the obtained solutions satisfy
Dirichlet boundary conditions, which are typical for biological interpretation.
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Abstract: Reduction operators, i.e., the operators of nonclassical (or conditional) symmetry of a class
of variable coefficient nonlinear wave equations with power nonlinearities, are investigated within
the framework of a singular reduction operator. A classification of regular reduction operators
is performed with respect to generalized extended equivalence groups. Exact solutions of some
nonlinear wave models, which are invariant under certain reduction operators, are also constructed.
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1. Introduction

The investigation of geometric and algebraic structures, as well as exact solutions of nonlinear wave
equations plays an important role in the study of nonlinear physical phenomena. Generally, when the
equation under consideration is an exact solvable or integrable model (e.g., KdVequation), we can use
many efficient methods, such as inverse scattering transform, Bäcklund and Darboux transform, Painleve
analysis, nonlocal symmetry reductions, and so on (see, for example, References [1–5] and the references
cited therein), to construct its exact solutions. While, if the equation is a non-integrable model, we usually
turn to use the so-called Lie group analysis and its extension [6,7] to investigate it.

In this paper, we study reduction operators, i.e., the operators of nonclassical (or conditional)
symmetry associated with a class of non-integrable variable coefficient nonlinear wave equations with
power nonlinearities of the form:

f (x)utt = (g(x)unux)x + h(x)um, (1)

where f = f (x), g = g(x) and h = h(x) are three arbitrary functions, f g �= 0, n and m are arbitrary
constants, t is the time coordinate and x is the one-space coordinate. The linear case is excluded from
consideration because it was well investigated. We also assume the variable wave speed coefficient un

to be nonlinear, i.e., n �= 0. The case n = 0 is quite singular and will be investigated separately.
Many specific nonlinear wave models derived from mechanics and engineering, such as the

one-dimensional gas flow, longitudinal wave propagation on a moving thread line and electromagnetic
transmission line, and so on, can be reduced to Equation (1) (see [8] pp. 50–52 and [9]). Since the
1970s, Lie symmetries and invariant solutions of various kinds of quasi-linear wave equations in
two independent variables that intersect Class (1) have been investigated [7,10–24] because of the
importance of the wave equation for various applications. Recently, we have presented a complete Lie
symmetry and conservation law classification of Class (1) [25,26]. Classical Lie symmetry reduction

Symmetry 2017, 9, 3 78 www.mdpi.com/journal/symmetry
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and invariant solutions of some variable coefficients wave models, which are singled out from the
classification results, are also investigated [25].

In general, using classical Lie symmetries’ reduction of partial differential equations can provide
part of the exact solutions of these equations [6,27,28]. In order to find more other types of exact
solutions, one should generalize Lie’s original reduction. The first approach to such a generalization
was present by Bluman and Cole in 1969 [29] (see also [7]) in which they introduced a wider class of
infinitesimal generators than Lie symmetries. Later, such infinitesimal generators, were named
nonclassical symmetries [8,30–33] or Q-conditional symmetries [34–41] and were also extended
by many authors to some concepts, such as conditional symmetries [34] (the notion ‘conditional
symmetry’ used in this well-known monograph does not coincide with the notion ‘non-classical’, but is
an essential generalization of non-classical symmetry (see Chapter 5.7 therein)), weak symmetry [33],
differential constraints, etc. [42–44]. Recently, Boyko, Kunzinger and Popovych [45,46] named it as
‘reduction operators’ and present a novel framework, namely singular reduction operators or singular
reduction modules, for finding an optimal way of obtaining the determining equation of conditional
symmetries. As an application, they have investigated the properties of singular reduction operators for
a number of (1 + 1)-dimensional evolution equations and a specific wave equations by using this new
framework [46]. However, for more general nonlinear wave Equation (1), there exist no general results.
In this paper, we employ Popovych’s singular reduction operators theory to investigate the properties
of nonclassical symmetries of Class (1). We propose a complete classification of regular reduction
operators for (1) with respect to generalized extended equivalence groups and construct some non-Lie
exact solutions for the nonlinear wave model, which are invariant under certain reduction operators.
It should be noted that the terminology ‘non-classical symmetry’ and ‘Q-conditional symmetry’ is still
used very widely in the literature in contrast to ‘reduction operators’; however, we prefer to use this
relatively new terminology.

The rest of paper is organized as follows. In Section 2, singular reduction operators and,
in particular, regular reduction operators classification for the class under consideration are
investigated. Section 3 contains the nonclassical symmetry reduction of some nonlinear wave models.
New non-Lie exact solutions of the models are constructed by means of the reduction. Conclusions
and a discussion are given in Section 4.

2. Nonclassical Symmetries

Nonclassical symmetries of Class (1) are performed in the framework of the singular reduction
operator [46]. All necessary objects (singular and regular reduction operator, etc.) can be found
there [46]. Before we proceed with the investigation, we can first simplify the class (1). Using the
transformation:

t̃ = t, x̃ =
∫ dx

g(x)
, ũ = u (2)

from Theorem 1 in [25], we can reduce Equation (1) to f̃ (x̃)ũt̃t̃ = (ũnũx̃)x̃ + h̃(x̃)ũm,
where f̃ (x̃) = g(x) f (x), g̃(x̃) = 1 and h̃(x̃) = g(x)h(x). Thus, without loss of generality, we can
restrict ourselves to investigation of the equation:

f (x)utt = (unux)x + h(x)um. (3)

For convenience, we can further rewrite it as the form:

L[u] := f (x)utt − (unux)x − h(x)um = 0. (4)

All results on symmetries and solutions of Class (3) or (4) can be extended to Class (1) with
transformations (2).

According to the algorithm in [29], we seek a reduction operator of Class (4) in the form:
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Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (τ, ξ) �= (0, 0), (5)

which is a first-order differential operator on the space R
2 ×R

1 with coordinates t, x and u, where the
coefficients τ and ξ do not simultaneously vanish. This operator allows one to construct an ansatz
reducing the original Equation (4) to an ordinary differential equation. The conditional invariance
criterion [32,36,41] for Equation (4) to be invariant with respect to the operator (5) reads as:

pr(2) Q(L[u])
∣∣∣∣
L∩Q(2)

= 0, (6)

where pr(2) Q is the usual second-order prolongation [6,28] of the operator (5), L is the manifold in the
second-order jet space J(2) determined by the wave equation L[u] = 0 and Q(2) ⊂ J(2) is the the first
prolongation of the invariant surface condition:

Q[u] := τut + ξux − η = 0. (7)

The system Q(2) consists of (7) and the equations obtained by t- and x-differentiation of (7).
Below, according to the singular reduction operator theory [46], we first partition the set of

reduction operators of Class (4) into two subsets, i.e., the singular reduction operator and the regular
one. Then, we utilize the two kinds of operators to derive determining equations (overdetermined
system of nonlinear PDEs with respect to the coefficients of the reduction operator (5)) from the
conditional invariance criterion (6) separately. Solving the two systems, we can obtain the final
reduction operators. In particular, we will present an exhausted classification of the regular operators
of class (4) by solving the corresponding determining equations. In general, every Lie symmetry
operator is also a reduction operator. Therefore, in this paper, we will concentrate on the regular
reduction operators, which are inequivalent to Lie symmetry operators, called nontrivial.

2.1. Singular Reduction Operators

Using the procedure given by [46], we can obtain the following proposition.

Proposition 1. A necessary and sufficient condition for a vector field Q = τ(t, x, u)∂t + ξ(t, x, u)∂x +

η(t, x, u)∂u, which is singular for the differential function L = f (x)utt − (unux)x − h(x)um from Equation (4),
is that ξ2 f (x) = τ2un.

Proof. Suppose that τ �= 0, and using the characteristic equation τut + ξux − η = 0, we can obtain:

ut =
η

τ
− ξ

τ
ux,

utt = (
η

τ
)t − (

ξ

τ
)tux + [(

η

τ
)u − (

ξ

τ
)uux](

η

τ
− ξ

τ
ux)− (

ξ

τ
)[(

η

τ
)x + (

η

τ
)uux − (

ξ

τ
)xux

−(
ξ

τ
)uu2

x − (
ξ

τ
)uxx].

Now, we substitute the second equation of the above system into L; we can get a differential function:

L̃ = [ f (x)(
ξ

τ
)2 − un]uxx + f (x)

{
(

η

τ
)t − (

ξ

τ
)tux + [(

η

τ
)u − (

ξ

τ
)uux](

η

τ
− ξ

τ
ux)

−(
ξ

τ
)[(

η

τ
)x + (

η

τ
)uux − (

ξ

τ
)xux − (

ξ

τ
)uu2

x]

}
− nun−1u2

x − humux.

With the aid of Definition 4 of the singular vector field in [46], we derive that a necessary and
sufficient condition for ord L̃ < 2 is that f (x)( ξ

τ )
2 − un = 0.
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Therefore, for any f , h, n and m with f un > 0, there exist exactly two sets of singular vector fields
in the reduced form for the differential function L = f (x)utt − (unux)x − h(x)um from Equation (4),
i.e., S = {∂t +

√
un/ f ∂x + η̂∂u} and S∗ = {∂t −

√
un/ f ∂x + η̂∂u}, where η̂ = η

τ . Any singular vector
field of L is equivalent to one of the above fields. Because the singular sets are mapped to each other
by alternating the sign of x, we can just choose one of them for consideration.

Proposition 2. For any variable coefficient nonlinear wave equations in the form of (4), there exists exactly one
set of singular vector fields in the reduced form, i.e., S = {∂t +

√
un/ f ∂x + η̂∂u} for the differential function

L = f (x)utt − (unux)x − h(x)um from Equation (4).

Thus, for an equation from Class (4) and the operator ∂t +
√

un/ f ∂x + η∂u, considering its
conditional invariance criterion leads to:

Theorem 1. Every singular reduction operator of an equation from Class (4) is equivalent to an operator of
the form:

Q = ∂t +
√

un/ f (x)∂x + η(t, x, u)∂u,

where the real-valued function η(t, x, u) satisfies the system of determining equations:

(−1/2nhum−1 − 2 f ηtu − 2 f ηηuu)
√

un/ f + (3/4 f 2
x / f − 1/2 fxx)(un/ f )3/2

+(−1/4n2η2un−2 − nηηuun−1 + 1/2nη2un−2)(un/ f )−1/2 − nηxun−1

−1/2nηun−1 fx/ f − 2ηxuun = 0,
−ηxxun − nηηxun−1(un/ f )−1/2 + hηuum + 2 f ηηtu + f η2ηuu

−mhηum−1 + f ηtt + (h fx/ f − hx)um√un/ f = 0.

(8)

Remark 1. Equation (8) is highly nonlinear, and it is difficult to solve; hence, we do not discuss it here and will
try to investigate it in a future publication.

2.2. Regular Reduction Operators

The above results for singular reduction operators of the class of nonlinear wave Equation (4)
show that the regular case of the natural partition of the corresponding sets of reduction operators for
the equation under consideration is singled out by the conditions ξ �= ±√

un/ f τ. We factorize it with
respect to the equivalence relation of vector fields, then we can derive the defining conditions of the
regular subset of reduction operator, that is τ = 1, ξ �= ±√

un/ f . Hence, we have:

Proposition 3. For any variable coefficient nonlinear wave equations in the form of (4), there exists exactly
one set of regular vector fields in the reduced form, i.e., S = {∂t + ξ̂∂x + η̂∂u} with ξ̂ �= ±√

un/ f for the
differential function L = f (x)utt − (unux)x − h(x)um from Equation (4).

Taking into accountant the conditional invariance criterion for an equation from Class (4) and
the operator ∂t + ξ(t, x, u)∂x + η(t, x, u)∂u with ξ(t, x, u) �= ±√

un/ f , we can obtain the following
determining equations for the coefficients ξ and η:

ξu = 0, 2 f ξt − nηun−1 + (2ξx + ξ fx/ f )un = 0,
(2nξx − nηu + nξ fx/ f )un−1 + (nη − n2η)un−2 − ηuuun + f ξ2ηuu = 0,
2 f ξtξx − 2 f ξtηu − 2nηxun−1 − f ξtt − 2 f ξηηuu − 2 f ξηtu + (ξxx − 2ηxu)un = 0,
(ξh fx/ f − ξhx + hηu)um + f η2ηuu + 2 f ηηtu − 2 f ξtηx − ηxxun + f ηtt − mhηum−1 = 0.

(9)

From the first two equations of System (9), we have:

ξ = ξ(t, x), η =
2
n

f ξtu1−n +
1
n
(2ξx + ξ

fx

f
)u.
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Substituting the above formulas into the last three equations of System (9), we have the
following assertion.

Theorem 2. Every regular reduction operator of an equation from Class (4) is equivalent to an operator of
the form:

Q = ∂t + ξ(t, x)∂x + η(t, x, u)∂u with η(t, x, u) =
2
n

f ξtu1−n +
1
n
(2ξx + ξ

fx

f
)u, (10)

where the real-valued function ξ(t, x) satisfies the overdetermined system of partial differential equations:

2(1 − n) f ξt = 0, 2(1 − n) f 2ξ2ξt = 0, 8(1 − n) f 3ξξ2
t = 0,

4(1 − n)[( f ξt)2 − f 2ξξt(2ξx + ξ
fx
f ) + f 2ξξtt] = 0,

ξxx − 2(1 + 1
n )(2ξx + ξ

fx
f )x = 0,

2 f ξtξx − 2
n f ξt(2ξx + ξ

fx
f )− 4( f ξt)x − f ξtt − 2

n f ξ(2ξx + ξ
fx
f )t − 4

n (1 − n)( f ξt)x = 0,

(ξh fx
f − ξhx +

1
n h(1 − m)(2ξx + ξ

fx
f ))u

m + 2
n (1 − n − m) f hξtum−n

− 8
n2 (1 − n) f 4(ξt)3u1−3n + 8

n2 (1 − n)[ f 2ξt( f ξt)t − f 3ξ2
t (2ξx + ξ

fx
f )]u

1−2n

+[ 2
n f ( f ξt)tt − 4

n f ξt( f ξt)x +
4

n2 f 2ξt(2ξx + ξ
fx
f )t − 2

n2 (1 − n) f 2ξt(2ξx + ξ
fx
f )

2

+ 4
n2 (1 − n) f ( f ξt)t(2ξx + ξ

fx
f )]u

1−n + [ 2
n2 f (2ξx + ξ

fx
f )(2ξx + ξ

fx
f )t

+ 1
n f (2ξx + ξ

fx
f )tt − 2

n f ξt(2ξx + ξ
fx
f )x − 2

n ( f ξt)xx]u − 1
n (2ξx + ξ

fx
f )xxun+1 = 0.

(11)

Solving the above system with respect to the coefficient functions ξ, f and h under the equivalence
group G∼

1 of the class (4), which consists of the transformations (see Theorem 3 and 4 in [25] for more
details): for n �= −1:

t̃ = ε1t + ε2, x̃ = ε3x+ε4
ε5x+ε6

=: X(x), ũ = ε7X
1

2n+2
x u,

f̃ = ε2
1εn

7 X
− 3n+4

2n+2
x f , h̃ = ε−m+n+1

7 X
− m+3n+3

2n+2
x h, ñ = n, m̃ = m,

where εj (j = 1, . . . , 7) are arbitrary constants, ε1ε7 �= 0, ε3ε6 − ε4ε5 = ±1, and for n = −1:

t̃ = ε1t + ε2, x̃ = ε3x + ε4, ũ = ε5eε6xu,
f̃ = ε2

1ε−2
3 ε−1

5 e−ε6x f , h̃ = ε−2
3 ε−m

5 e−mε6xh, ñ = n, m̃ = m,

where εj (j = 1, . . . , 6) are arbitrary constants, ε1ε3ε5 �= 0; we can get a classification of the regular
reduction operator for the class (4). It is easy to know that some of the regular reduction operator
are equivalent to Lie symmetry operators, which have been given in [25], while some of them are
nontrivial. Below, we give a detailed investigations for these cases.

In fact, the first three equations of System (11) imply that there are two cases that should be
considered: n �= 1 or not. (It should be noted that ξ = 0 should be exclude from the consideration
because it leads to η = 0).

Case 1: n �= 1. In this case, we have ξt = 0, and System (11) can be reduced to:

(3n + 4)ξxx + 2(n + 1)(ξ fx
f )x = 0,

(ξh fx
f − ξhx +

1
n (1 − m)h(2ξx + ξ

fx
f ))u

m − 1
n (2ξx + ξ

fx
f )xxun+1 = 0.

(12)

Thus, there are two cases that should be considered: m �= n + 1 or not.
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Case 1.1: For m �= n + 1, from the second Equation of (12), we obtain:

ξh
fx

f
− ξhx +

1
n
(1 − m)h(2ξx + ξ

fx

f
) = 0,

(
2ξx + ξ

fx

f
)

xx = 0. (13)

Because ξt = 0 and f is a function of x, the first Equation of (12) suggests that (3n + 4)ξx + 2(n +

1)ξ fx
f is independent of the variables x and t. Thus, there exists a constant r, such that (3n + 4)ξx +

2(n + 1)ξ fx
f = nr. The second Equation of (13) suggests that there exist two constants a and b, such

that 2ξx + ξ
fx
f = nax + nb. By solving the last two equations, we obtain:

ξx = 2(n + 1)(ax + b)− r, ξ
fx
f = 2r − (3n + 4)(ax + b),

which together with the first Equation of (13) imply:

ξ = a(n + 1)x2 + [2b(n + 1)− r]x + s,

f (x) = exp
( ∫ 2r − (3n + 4)(ax + b)

a(n + 1)x2 + [2b(n + 1)− r]x + s
dx

)
,

h(x) = exp
( ∫ 2r − (m + 3n + 3)(ax + b)

a(n + 1)x2 + [2b(n + 1)− r]x + s
dx

)
,

(14)

where a, b, r, s are arbitrary constants. Thus, the corresponding regular reduction operator has the
form:

Q = ∂t + [a(n + 1)x2 + (2b(n + 1)− r)x + s]∂x + (ax + b)u∂u,

which is equivalent to the Lie symmetry operator.

Case 1.2: m = n + 1. In this case, System (12) can be rewritten as:

(3n + 4)ξxx + 2(n + 1)(ξ fx
f )x = 0, ξhx + 2hξx +

1
n (2ξx + ξ

fx
f )xx = 0. (15)

Integrating these two equations with respect to functions f (x) and h(x), we can obtain:

f (x) = | ξ|− 3n+4
2n+2 exp

(
r
∫ 1

ξ
dx

)
, h(x) =

ξ2
x − 2ξξxx − p
4(n + 1)ξ2 .

where p, r are arbitrary constants, ξ is an arbitrary smooth function and n �= −1. In addition,
η = 1

n (2ξx + ξ
fx
f )u = ( r

n + ξx
2n+2 )u. Thus, we have a nontrivial regular reduction operator:

Q = ∂t + ξ(x)∂x + [(
r
n
+

ξx

2n + 2
)u]∂u, n �= −1. (16)

It should be noted that the reduction operator for n = −1 is also equivalent to the Lie
symmetry operator.

Case 2: n = 1. In this case, we have η = 2 f ξt + (2ξx + ξ
fx
f )u. Thus, System (11) can be reduced to:

(7ξx + 4ξ
fx
f )x = 0, 2

[
ξx + 2(ξ + 1) fx

f
]
ξt + 4(ξ + 1)ξtx + ξtt = 0,[

2 f (2ξx + ξ
fx
f )(2ξx + ξ

fx
f )t + f (2ξx + ξ

fx
f )tt − 2 f ξt(2ξx + ξ

fx
f )x − 2( f ξt)xx

]
u

−(2ξx + ξ
fx
f )xxu2 + 2 f 2(2ξtξtx + ξttt) +

[
ξh fx

f − ξhx + (1 − m)h(2ξx + ξ
fx
f )

]
um

−2mh f ξtum−1 = 0.

(17)

Comparing different powers of u, we conclude that five cases should be considered, that is
(i) Case 2.1: m = 0; (ii) case 2.2: m = 1; (iii) Case 2.3: m = 2; (iv) Case 2.4: m = 3 and (v) Case 2.5:
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m �= 0, 1, 2, 3. Below, we mainly give a detailed discussion for Cases 2.2 and 2.3, and the other cases
can be considered in a similar way.

Case 2.2: When m = 1, the third Equation of (17) implies:

ξh fx
f − ξhx + f (2ξx + ξ

fx
f )tt + 2 f (2ξx + ξ

fx
f )(2ξx + ξ

fx
f )t

−2 f ξt(2ξx + ξ
fx
f )x − 2( f ξt)xx = 0,

2 f ξtξtx + f ξttt − hξt = 0, (2ξx + ξ
fx
f )xx = 0.

(18)

From the last equation of System (18), we can know that there exist two functions a(t) and b(t),
such that 2ξx + ξ

fx
f = a(t)x + b(t). On the other hand, the first Equation of (17) implies that there

exists a function c(t), such that 7ξx + 4ξ
fx
f = c(t). Solving the last two equations gives:

ξx = 4a(t)x + 4b(t)− c(t), ξ
fx

f
= −7a(t)x − 7b(t) + 2c(t),

from which we can get:

ξ = 2a(t)x2 + 4b(t)x − c(t)x + d(t), f (x) = exp
( ∫ −7a(t)x − 7b(t) + 2c(t)

2a(t)x2 + 4b(t)x − c(t)x + d(t)
d x

)
, (19)

where d(t) is an arbitrary function. Since fx
f is independent of t, we see that:

[ −7a(t)x − 7b(t) + 2c(t)
2a(t)x2 + 4b(t)x − c(t)x + d(t)

]
t
= 0,

which leads to: ⎧⎪⎪⎨⎪⎪⎩
14

[
a(t)b ′(t)− a ′(t)b(t)

]
+ 3

[
a ′(t)c(t)− a(t)c ′(t)

]
= 0,[

b(t)c ′(t)− b ′(t)c(t)
]
+ 7

[
a(t)d ′(t)− a ′(t)d(t)

]
= 0,

2
[
c ′(t)d(t)− c(t)d ′(t)

]
+ 7

[
b(t)d ′(t)− b ′(t)d(t)

]
= 0.

(20)

Now, we multiply both sides of the second Equation of (17) by ξ and substitute (19) into it,
then simplify the equation and compare the coefficient of xi(i = 0, 1, . . . , 5) to obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ′(t) = 0, a2[−4b ′(t) + c ′(t)] = 0,

a[8c(t)c ′(t) + 20ad ′(t) + c ′′(t)− 4b ′′(t)− 32c(t)b ′(t) + 112b(t)b ′(t)− 28b(t)c ′(t)] = 0,

−4c ′′(t)b(t) + 32ac(t)d ′(t)− 80ab ′(t) + 20ac ′(t)− 4b ′′(t)c(t)− 120ab(t)d ′(t)
+c ′′(t)c(t) + 2d ′′(t)a + 2c2(t)c ′(t)− 12b(t)c(t)c ′(t) + 16b(t)2c ′(t)− 8c2(t)b ′(t)
+48b(t)c(t)b ′(t) + 16b ′′(t)b(t)− 64b2(t)b ′(t)− 16ad(t)b ′(t) + 4ad(t)c ′(t) = 0,

[−20ad ′(t) + 48b(t)b ′(t) + 2c(t)c ′(t)− 12b(t)c ′(t)− 8c(t)b ′(t) + 4b ′′(t)− c ′′(t)]d(t)
−80b2(t)d ′(t) + 4d ′′(t)b(t)− d ′′(t)c(t)− 4c(t)c ′(t) + 44b(t)c(t)d ′(t)− 28ad ′(t)
−48b(t)b ′(t)− 6c2(t)d ′(t) + 12b(t)c ′(t) + 16c(t)b ′(t) = 0,

[16b ′(t)− 4c ′(t)]d2(t) + [−20b(t)d ′(t)− 4c ′(t) + 6c(t)d ′(t) + d ′′(t) + 16b ′(t)]d(t)
+8c(t)d ′(t)− 28b(t)d ′(t) = 0.

(21)

Note that ξ is assumed not to be identical with zero; thus, we find that Systems (20) and (21) can
be reduced to:

a ′(t) = 0, b ′(t) = 0, c ′(t) = 0, d ′(t) = 0 (22)
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or:

a = 0, c(t) = 4b(t), d(t) = qb(t), qb ′′(t) + 4qb(t)b ′(t) + 4b ′(t) = 0 (23)

or:

a = 0, 2c(t) = 7b(t), b ′′(t) = −3b(t)b ′(t), b(t)d ′(t) + 2b ′(t)(d(t) + 1) + d ′′(t) = 0 (24)

or:
a = 0, c(t) = 3b(t), d = qb(t), b ′′(t) + 2b(t)b ′(t) = 0, (25)

where q is an arbitrary constant.

Case 2.2a: If System (22) is satisfied, then ξt = 0; the second equation of (18) is an identity.
The expression (19) can be rewritten as:

ξ = 2ax2 + 4bx − cx + d, f (x) = exp
( ∫ −7ax − 7b + 2c

2ax2 + 4bx − cx + d
d x

)
, (26)

where a, b, c and d are arbitrary constants. The first Equation of (18) is reduced to hx/h = fx/ f ,
which leads to h(x) = ε f (x) (ε = ±1) mod G∼

1 . In addition, η = 2 f ξt + (2ξx + ξ
fx
f )u = (ax + b)u.

Thus, we have:
ξ = 2ax2 + 4bx − cx + d, η = (ax + b)u,

f (x) = exp
( ∫ −7ax − 7b + 2c

2ax2 + 4bx − cx + d
d x

)
, h(x) = ε f (x),

(27)

where a, b, c, d are arbitrary constants and ε = ±1. Thus, the corresponding regular reduction operator
has the form:

Q = ∂t + (2ax2 + 4bx − cx + d)∂x + (ax + b)u∂u,

which is equivalent to the Lie symmetry operator.

Case 2.2b: If System (23) is satisfied, then the expression (19) can be rewritten as:

ξ = qb(t), f (x) = exp
( x

q
)
. (28)

Hence, ξx = 0, k = b(t). If b ′(t) = 0, then a(t), b(t), c(t), d(t) satisfy System (22), and the solution
is included in Case 2.2a. We suppose that b ′(t) �= 0. From the second Equation of (18), we see that
h = f ξttt/ξt. Substitute it into the first Equation of (18) to get f ktt + 2 f kkt − 2 fxxξt = 0. Further, it can
be reduced to qb ′′(t) + 2qb(t)b ′(t)− 2b ′(t) = 0. Combine it with the fourth Equation of (23) to get
b(t) = −3/q, which is a contradiction to the hypothesis b ′(t) �= 0.

Case 2.2c: If System (24) is satisfied, then the expression (19) can be rewritten as:

ξ = 1
2 b(t)x + d(t), f (x) = 1 mod G∼

1 . (29)

If b ′(t) = d ′(t) = 0, then a(t), b(t), c(t), d(t) satisfy both Systems (22) and (24), and the solution is
included in Case 2.2a. We suppose that b ′2(t) + d ′2(t) �= 0. Substitute (29) into the first Equation of (18)
to obtain:

hx =
2[b ′′(t) + 2b(t)b ′′(t)]

b(t)x + 2d(t)
. (30)

Substitute (29) into the second Equation of (18) to obtain:

h(x) = b ′(t) + b ′′′(t)x + 2d ′′′(t)
b ′(t)x + 2d ′(t) . (31)
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Substituting it into (30) yields:

b ′′′(t)d ′(t)− b ′(t)d ′′′(t)[
b ′(t)x + 2d ′(t)

]2 =
b ′′(t) + 2b(t)b ′(t)

b(t)x + 2d(t)
.

Compare the coefficient of x2 to obtain b ′2(t)
[
b ′′(t) + 2b(t)b ′(t)

]
= 0. Substitute the third

Equation of (24) into it to obtain b(t)b ′3(t) = 0; hence, b ′(t) = 0. Thus, the fourth Equation of (24)
can be reduced to bd ′(t) + d ′′(t) = 0. Solving this linear ordinary differential equation gives d(t) =
γ1e−bt + γ0, where γ1 and γ0 are two arbitrary constants. Therefore, the expressions (29) and (31) can
be rewritten as:

ξ = 1
2 bx + γ1e−bt + γ0, f (x) = 1, h(x) = b2 mod G∼

1 .

System (18) is verified to be true. In addition, η = 2 f ξt +(2ξx + ξ
fx
f )u = bu− 2γ1be−bt. Therefore,

we have:
ξ = 1

2 bx + γ1e−bt + γ0, η = bu − 2γ1be−bt, f (x) = 1, h(x) = b2, (32)

where b, γ1, γ0 are arbitrary constants. Thus, we have a nontrivial regular reduction operator:

Q = ∂t + (
1
2

bx + γ1e−bt + γ0)∂x + (bu − 2γ1be−bt)∂u. (33)

Case 2.2d: If System (25) is satisfied, then the expression (19) can be rewritten as:

ξ = b(t)(x + q), f (x) =
1

x + q
mod G∼

1 . (34)

Substitute it into the first Equation of (18) to obtain b(t)(x + q)[h + (x + q)hx] =

[b ′′(t) + 2b(t)b ′(t)]. Substitute the fourth Equation of (25) into it to get b(t)(x + q)[h + (x + q)hx] = 0.
It follows that h(x) = r/(x + q), where r is a nonzero constant. Substitute it and (34) into the second
Equation of (18) to obtain 2b ′2(t) + b ′′′(t)− rb ′(t) = 0. From the fourth Equation of (25), we find
b ′′′(t) = 4b2(t)b ′(t)− 2b ′2(t). Substitute it into the preceding equation to get b ′(t)[4b2(t)− r] = 0,
which leads to b ′(t) = 0. Then, a(t), b(t), c(t), d(t) satisfy System (22), and the solution is included in
Case 2.2a.

Case 2.3: When m = 2, System (17) implies:

(7ξx + 4ξ
fx
f )x = 0, 2(ξx + 2ξ

fx
f )ξt + 4ξt

fx
f + 4ξξtx + 4ξtx + ξtt = 0,

2ξtξtx + ξttt = 0, ξhx + 2hξx + (2ξx + ξ
fx
f )xx = 0,

2 f (2ξx + ξ
fx
f )(2ξx + ξ

fx
f )t + f (2ξx + ξ

fx
f )tt − 4h f ξt − 2 f ξt(2ξx + ξ

fx
f )x − 2( f ξt)xx = 0.

(35)

From the first and the fourth equation of System (35), we can get:

f (x) = |ξ|−7/4 exp(α(t)
∫ dx

ξ
), h(x) =

ξ2
x − 2ξξxx + q

8ξ2 ,

where α(t) is an arbitrary function and q is a constant. Substituting these expressions into the rest of
the equations of System (35), we can see that ξ(t, x) and α(t) satisfy the overdetermined system of
partial differential equations:
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2ξtξtx + ξttt = 0, ξtt − 3ξtx − 5ξtξx + 4ξξtx + 4αξt + 4αt = 0,
2ξ2( 1

4 ξx + α)tt + 2ξ2[( 1
4 ξx + α)2]t − ξ2ξtξxx − ξt(ξ2

x − 2ξξxx + q)
−4[(αt − 3

4 ξtx)(α − 7
4 ξx)ξ − 3

4 ξ2ξtxx] = 0.
(36)

In addition, we have:

η = 2 f ξt + (2ξx + ξ
fx

f
)u = 2ξt|ξ|−7/4 exp(α(t)

∫ dx
ξ
) + [

1
4

ξx + α(t)]u.

Thus, we have a nontrivial regular reduction operator:

Q = ∂t + ξ(t, x)∂x + {2ξt|ξ|−7/4 exp(α(t)
∫ dx

ξ
) + [

1
4

ξx + α(t)]u}∂u, (37)

where ξ(t, x) and α(t) satisfy the overdetermined system of partial differential equations (36).
In particular, if ξt = 0, from System (35), we can obtain:

ξ = ξ(x), η = 1
4 (ξx + a)u, f (x) = |ξ|−7/4 exp(

a
4

∫ dx
ξ
), h(x) =

ξ2
x − 2ξξxx + q

8ξ2 . (38)

where a, q are arbitrary constants. Thus, we have a nontrivial regular reduction operator:

Q = ∂t + ξ(x)∂x + (
1
4

ξx + a)u∂u, (39)

which is equivalent to Operator (16) with n = 1. Therefore, this special case can be included in Case 1.2,
and we can impose an additional constraint ξt �= 0 on the regular reduction operator (37).

Remark 2. It should be noted that we can also give detailed analysis for Cases 2.1, 2.4 and 2.5 in a way similar
to Cases 2.2 and 2.3. However, we find that all of the regular reduction operators resulting from these Cases 2.1,
2.4 and 2.5 are trivial, which are equivalent to Lie symmetry operators. Thus, we omit these results in order to
avoid tediousness.

From the above discussion, we can arrive at the following two theorems.

Theorem 3. A complete list of G∼
1 -inequivalent Equation (3) having a nontrivial regular reduction operator is

exhausted by the ones given in Table 1.

Table 1. Results of regular reduction operator classification of Class (3).

N n m f (x) h(x) Regular Reduction Operator Q

1 �= −1 n + 1 | ξ|− 3n+4
2n+2 exp

(
r
∫ 1

ξ dx
) ξ2

x − 2ξξxx − p
4(n + 1)ξ2 ∂t + ξ(x)∂x + ( r

n + ξx
2n+2 )u∂u

2 1 1 1 b2 ∂t + ( 1
2 bx + γ1e−bt + γ0)∂x + (bu − 2γ1be−bt)∂u

3 1 2 |ξ|− 7
4 exp(α(t)

∫ dx
ξ )

ξ2
x−2ξξxx+q

8ξ2 ∂t + ξ(t, x)∂x + {2ξt|ξ|− 7
4 exp(α(t)

∫ dx
ξ )

+[ 1
4 ξx + α(t)]u}∂u

Here r, p, b, γ1, γ0 are arbitrary constants; b �= 0, ξ(x) in Case 2.1 is an arbitrary functions of the variables x,
ξ(t, x); and α(t) in Case 2.3 satisfy the overdetermined system of partial differential Equation (36) and ξt �= 0.

Theorem 4. Any reduction operator of an equations from Class (3) having the form (10) with ξt = 0, ξxxx = 0
is equivalent to a Lie symmetry operator of this equation.
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3. Exact Solutions

In this section, we construct the nonclassical reduction and exact solutions for the classification
models in Table 1 by using the corresponding regular reduction operator. Lie reduction and exact
solutions of the equation from Class (3) have been investigated in some literature works; see,
for example, References [9,15,16,18,21,24,25]. We choose Case 1 in Table 1 as an example to implement
the reduction; Case 3 can be considered in a similar way. While for Case 2, the nonclassical reduction
and exact solution of the corresponding equation utt = (uux)x + b2u have been investigated by
Fushchich et al. in [34,47]; thus, we do not consider it here.

For the first case in Table 1, the corresponding equation is:

[| ξ|− 3n+4
2n+2 exp

(
r
∫ 1

ξ
dx

)
]utt − (unux)x − ξ2

x − 2ξξxx − p
4(n + 1)ξ2 un+1 = 0, (40)

which admits the regular reduction operator:

Q = ∂t + ξ(x)∂x + (
r
n
+

ξx

2n + 2
)u∂u.

An ansatz constructed by this operator has the form:

u(t, x) = ϕ(ω)| ξ| 1
2n+2 exp

( r
n

∫ 1
ξ

dx
)
, where ω = t −

∫ 1
ξ

dx.

Substituting this ansatz into Equation (40) leads to the reduced ODE:

[(4r2 − p)n2 + 4(2n + 1)r2]ϕn+1(ω) + 4n(n + 1)[nϕ′′(ω)− 2(n + 1)rϕ′(ω)]ϕn(ω)

+4n3(n + 1)ϕ′ 2(ω)ϕn−1(ω)− 4n2(n + 1)ϕ′′(ω) = 0.
(41)

Because there are higher nonlinear terms, we were not able to completely solve the above equation.
Thus, we try to solve this equation under different additional constraints imposed on p and r.

We first rewrite Equation (41) as:

4n2(n + 1)[ϕ′(ω)ϕn(ω)]′ − 4n2(n + 1)ϕ′′(ω)− 8n(n + 1)2rϕ′(ω)ϕn(ω)

+[4(n + 1)2r2 − pn2]ϕn+1(ω) = 0.
(42)

If we take p = 4(1 + 1
n )

2r2, then the general solution of (42) can be written in the implicit form:

∫ n(ϕn − 1)
2rϕn+1 + c1

dϕ = ω + c2. (43)

Up to the similarity of solutions of Equation (3), the constant c2 is inessential and can be set to
equal zero by a translation of ω, which is always induced by a translation of t.

If we further set n = 1, the general solution (43) can be rewritten in the following implicit forms,
that is if c1

2r > 0, then we have:

1
4r

ln |2rϕ2 + c1| −
arctan(

√
2r
c1

ϕ)
√

2rc1
+ C = ω, (44)

while if c1
2r < 0, then we have:

1
4r

ln |2rϕ2 + c1| −
arctanh(

√
− 2r

c1
ϕ)

√−2rc1
+ C = ω; (45)
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and if c1 = 0 and r �= 0, then we have:

1
2r

(ln |ϕ|+ ϕ−1) + C = ω, (46)

while if c1 �= 0 and r = 0, then we have:

1
c1
(

1
2

ϕ2 − ϕ) + C = ω, (47)

where C is an arbitrary constant.
Thus, we obtain the following solution:

u(t, x) = ϕ(ω)| ξ| 1
4 exp

(
r
∫ 1

ξ
dx

)
, ω = t −

∫ 1
ξ

dx

for the equation:

[| ξ|− 7
4 exp

(
r
∫ 1

ξ
dx

)
]utt − (uux)x − ξ2

x − 2ξξxx − 8r2

8ξ2 u2 = 0,

where ϕ satisfies Equations (44)–(47), ξ is an arbitrary function and r is a non-zero constant.
If we further set r = 0, the general solution (43) can be rewritten in the implicit form:

1
n + 1

ϕn+1(ω)− ϕ(ω) = c1ω + c2. (48)

Thus, we obtain the following solution:

u(t, x) = ϕ(ω)| ξ| 1
2n+2 , ω = t −

∫ 1
ξ

dx

for the equation:

| ξ|− 3n+4
2n+2 utt − (unux)x − ξ2

x − 2ξξxx

4(n + 1)ξ2 un+1 = 0,

where ϕ satisfies Equation (48) and ξ is an arbitrary function. In particular, when n = 1, Equation (48)
is reduced to Equation (47); thus, we have:

ϕ(ω) = 1 ±
√

1 + 2(c1ω − C).

Thus, we obtain an explicit solution:

u(t, x) = [1 ±
√

1 + 2(c1ω − C)]| ξ| 1
4 , ω = t −

∫ 1
ξ

dx

for the equation:

| ξ|− 7
4 utt − (uux)x − ξ2

x − 2ξξxx

8ξ2 u2 = 0.

If we take different functions for ξ, then we can obtain a series of solutions for the corresponding
equations. In order to avoid tediousness, we do not make a further discussion here.

4. Conclusions and Discussion

In this paper, we have given a detailed investigation of the reduction operators of the variable
coefficient nonlinear wave equations (1) (equivalently to (3)) by using the singular reduction operator
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theory. A classification of regular reduction operators is performed with respect to generalized
extended equivalence groups. The main results on classification for Equation (3) are collected in
Table 1, where we list three inequivalent cases with the corresponding regular reduction operators.
The nonclassical symmetry reduction of a class of nonlinear wave Model (40), which singled out the
classification models, is also performed. These are utilized to construct some non-Lie exact solutions,
which are invariant under certain conditional symmetries for the corresponding model.

The nonclassical symmetry analysis of the class of hyperbolic type nonlinear wave Equation (1)
presented in this paper is preliminary. In fact, it is easy to know that the well-known wave equation
utt = uuxx possesses much wider Q-conditional (nonclassical) symmetry, which includes 12 nontrivial
reduction operators (see Chapter 7 in [34] for details). Therefore, for Equation (1), we may find more
reduction operators besides the ones given in Table 1. One possible way is that we can try to present
a particular solution of (8) leading to a Q-conditional symmetry. However, Equation (8) is highly
nonlinear, and it is difficult to solve; hence, we do not discuss it in this paper. Another way is to
consider the special case τ = 0, which is also excluded from our above discussion. Further studies
along these lines may lead to more reduction operators. Furthermore, other different properties of
Equation (1), including nonclassical potential symmetries, nonclassical potential exact solutions and
physical application, will also be investigated in subsequent publications.
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Abstract: The method of linear determining equations is constructed to study conditional Lie–Bäcklund
symmetry and the differential constraint of a two-component second-order evolution system, which
generalize the determining equations used in the search for classical Lie symmetry. As an application
of the approach, the two-component reaction-diffusion system with power diffusivities is considered.
The conditional Lie–Bäcklund symmetries and differential constraints admitted by the reaction-diffusion
system are identified. Consequently, the reductions of the resulting system are established due to the
compatibility of the corresponding invariant surface conditions and the original system.

Keywords: linear determining equation; conditional Lie–Bäcklund symmetry; differential constraint;
evolution system; reaction-diffusion system

1. Introduction

The method of differential constraint (DC) is pretty old, dating back at least to the time of Lagrange.
Lagrange used DC to find the total integral of a first-order nonlinear equation. Darboux applied DC to
integrate the partial differential equation (PDE) of second-order. Yanenko proposed the key idea of DC
in [1]. The survey of this method was presented by Sidorvo, Shapeev and Yanenko in [2], where the
method of DC was successfully introduced into practice on gas dynamics.

The general formulation of the method of DC requires that the original system of PDEs

F̃(1) = 0, F̃(2) = 0, · · · , F̃(m) = 0 (1)

be enlarged by appending additional equations

h1 = 0, h2 = 0, · · · , hp = 0 (2)

such that the over-determined system (1), (2) is compatible. The differential equations in (2) are called
DCs. The requirements for the compatibility of system (1), (2) are so general that the method of DC
does not allow us to find all the forms of DCs for the system of PDEs in question. A number of different
names for the parent notions of DC (2) leads to many methods for finding exact particular solutions of
PDEs can be unified within the general framework of the method of DC.

The “side condition” is proposed to unify different methods for constructing particular solutions
of PDEs by Olver and Rosenau in [3], where it is stated that appending of a suitable “side condition” is
responsible for different kinds of methods for obtaining explicit solutions, including Lie’s classical
method [4,5], Bluman and Cole’s nonclassical method [6] and Ovsiannikov’s partial invariance
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method [7]. “The invariant surface condition” is used as a unifying theme for finding special solutions
to PDEs by Pucci and Saccomandi in [8], where it is shown that “the invariant surface condition” and
“its general integral” are the key to understanding the link between the so-called direct method [9],
separation method [10,11], nonclassical symmetry [6] and weak symmetry [12,13]. The “additional
generating condition” first raised by Cherniha [14,15] is exactly the linear case of DC, which is very
effective to study reductions of variant forms of diffusion equations and diffusion systems [15–17].
The method of invariant subspace initially presented by Galaktionov and his collaborators [18] can
also be understood within the framework of DC due to certain linear DC. The DCs that are responsible
for Clarkson and Kruskal’s first-order direct reduction [9] and Galaktionov’s higher-order direct
reduction [11] are discussed by Olver in [19]. The equivalence relationship between weak symmetry
and DC is studied by Olver and Rosenau in [13].

The method of conditional Lie–Bäcklund symmetry (CLBS) provides an appropriate symmetry
background for the method of DC. The base of symmetry reduction for CLBS is the fact that the
corresponding invariant surface condition is formally compatible with the governing system, which
is extensively discussed in [20,21], where it is shown that the problem of discussing the DC of the
evolution system is equivalent to studying the CLBS of this system.

CLBS for the scalar evolution equation is introduced by Zhdanov [22], and another term for
CLBS is used by Fokas and Liu [23,24]. A family of physically important exact solutions including
the multi-shock solution and multi-soliton solution is constructed for a large class of non-integrable
evolution equations by using the method of CLBS [23–26]. The CLBS for the evolution system is
studied by Sergyeyev in [27] and independently by Qu et al. in [28].

The procedure for determining whether or not a given DC is compatible with the original
equations is straightforward. However, for a given system of differential equations, one can never
know in full detail the entire range of possible DCs since the associated determining equations are
an over-determined nonlinear system. Nevertheless, as is known, even finding particular DCs can
lead to new explicit solutions of the considered system. In practice, the principal direction of such
research is to content oneself with finding DCs in some classes, and these classes must be chosen using
additional considerations. From the symmetry point of view, CLBSs related to sign-invariants [29–33],
separation of variables [34] and invariant subspaces [35–37] are proved to be very effective to study
the classifications and reductions of second-order nonlinear diffusion equations. These particular
subclasses related to sign-invariants [29–33] and invariant subspaces [35–37] are also extended to
consider CLBSs of nonlinear diffusion systems in [21] and [28,38,39].

The purpose of this paper is to construct a practical way for finding the general form of DCs{
η1 = un + g (t, x, u, u1, u2, · · · , un−1) = 0,

η2 = vn + h (t, x, v, u1, v2, · · · , vn−1) = 0
(3)

compatible with a two-component second-order evolution system{
ut = F(t, x, u, v, u1, v1, u2, v2),

vt = G(t, x, u, v, u1, v1, u2, v2),
(4)

which is equivalent to presenting an effective method to find the general form of CLBS with the
characteristics {

η1 = un + g (t, x, u, u1, u2, · · · , un−1) ,

η2 = vn + h (t, x, v, u1, v2, · · · , vn−1)
(5)

admitted by evolution system (4). It is noted that uk = ∂ku/∂xk and vk = ∂kv/∂xk with k = 1, 2, · · · , n
in (3)–(5) and hereafter.
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The constructive method of the additional generating condition is presented by Cherniha in [14],
where exact solutions of the variant form of the system (4) are derived by appending an additional
condition in the form of a linear system of ordinary differential equations to the original system.
Here, we will present the linear determining equations to identify DC (3) and CLBS (5) in the general
form of second-order evolution system (4), which is exactly the extension of the results for the scalar
evolution equation in [40–42].

The method of linear determining equations is proposed for finding the general form of DC

η = un + g(t, x, u, u1, u2, · · · , un−1) = 0 (6)

to evolution equation

ut = F(t, x, u, u1, u2, · · · , uN) (7)

by Kaptsov in [40]. The linear determining equation

Dtη =
N

∑
i=0

i

∑
k=0

bikDi−k
x (FuN−k )DN−i

x (η) (8)

presented there generalizes the classical determining equations within the framework of Lie’s classical
symmetry. It is clear that it is workable to find the DC with the general form (6) of evolution Equation (7)
by solving linear determining equation (8) about η.

The principal direction of the research on applying the method to second-order nonlinear diffusion
equations [40–42] gains an appreciation of its usefulness. The two-component reaction-diffusion (RD)
system with power law diffusivities{

ut = (ukux)x + P(u, v),
vt = (vlvx)x + Q(u, v)

(9)

will be considered here to demonstrate the applicability of this method for a two-component
second-order evolution system.

The RD system (9) generalizes many well-known nonlinear second-order models and is used
to describe various processes in physics, chemistry and biology. A complete description of Lie
symmetries of the system is presented in [16]. The conditional symmetries for (9) are studied in [43–46].
The second-order CLBS (DC) admitted by the system (9) is discussed in [21]. Once the symmetries
of the considered system (9) have been identified, one can algorithmically implement the reduction
procedure and thereby determine all solutions that are invariant under the resulting symmetries.
In [16,21,43–46], a wide range of exact solutions has been established due to various symmetry
reductions therein.

The structure of this paper is organized as follows. The necessary definitions and notations about
CLBS and DC of evolution system are displayed in Section 2. In Section 3, the linear determining
equations to second-order evolution system (4) are constructed. The DCs (3) and CLBSs (5) of the
system (9) are identified by solving the linear determining equation for the RD system (9) in Section 4.
The exact solutions of the resulting RD system (9) are constructed due to the compatibility of the
DC (3) and the governing system (9) in Section 5. The last section is devoted to the final discussions
and conclusions.

2. Preliminaries

Let us review some theoretical elements of the tools about CLBS method and DC method of
evolution system. Set
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V =
m

∑
i=1

[
hi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)

+ Dxhi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
1

+ Dthi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
t

+ D2
xhi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
) ∂

∂u(i)
2

+ · · ·
]

(10)

to be a certain smooth Lie–Bäcklund vector field (LBVF) and

u(i)
t = F(i)

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
)

, i = 1, 2, · · · , m (11)

to be a nonlinear evolution system, where u(i)
k = ∂ku(i)/∂xk with i = 1, 2, · · · , m and k = 1, 2, · · · .

Definition 1. [4,5] The evolutionary vector field (10) is said to be a Lie–Bäcklund symmetry of the evolution
system (11) if

V
(

u(i)
t − F(i)

)
|S= 0, i = 1, 2, · · · , m,

where S denotes the set of all differential consequences of the system (11).

Definition 2. [27,28] The evolutionary vector field (10) is said to be a CLBS of (11) if

V
(

u(i)
t − F(i)

)
|S∩Hx = 0, i = 1, 2, · · · , m, (12)

where Hx denotes the set of all differential consequences of the invariant surface condition

hi

(
t, x, u(1), u(2), · · · , u(m), u(1)

1 , u(2)
1 , · · · , u(m)

1 , · · ·
)
= 0 (i = 1, 2, · · · , m) (13)

with respect to x.

A direct computation will yield that the conditional invariant criterion (12) can be reduced
to [27,28]

Dthi|S∩Hx = 0, i = 1, 2, · · · , m. (14)

The fact that LBVF (10) is a CLBS of system (11) leads to the compatibility of the invariant surface
condition (13) and the governing system (11).

Definition 3. [47] The differential constraints (13) and the evolution system (11) satisfy the compatibility
condition if

Dthi|Sx∩Hx = 0, i = 1, 2, · · · , m, (15)

where Sx denotes the set of all differential consequences of the system (11) with respect to x.
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The compatibility condition (15) is nothing but the conditional invariance criterion (14).

3. Linear Determining Equations for the DC (3) and CLBS (5) of Two-Component Second-Order
Evolution System (4)

In this section, we discuss the method of linear determining equations to construct the DC (3) and
CLBS (5) for second-order evolution system (4). The compatibility condition (15) can be reformulated
as nonlinear equations. We now prove this result for DC (3) of the system (4), which is a natural
generalization of what was the case for scalar evolution equation (7) in [40,41]. Let Ex be the union of
all differential consequences of the second-order evolution system (4) with respect to x and Mx be the
union of all differential consequences of DC (3) with respect to x.

Theorem 1. The DC (3) with n ≥ 4 is compatible with two-component second-order evolution system (4) if
and only if η1 and η2 satisfy the following equations

Dtη1|Ex =Fu2 D2
xη1 + Fv2 D2

xη2 + (Fu1 + nDxFu2)Dxη1

+
[
Fv1 + nDxFv2 +

(
η1un−1 − η2vn−1

)
Fv2

]
Dxη2

+

[
Fu + nDxFu1 +

n(n − 1)
2

D2
xFu2 − η1un−1 DxFu2

− (
2Dxη1un−1 − η1η1un−1un−1

)
Fu2

]
η1 +

[
Fv + nDxFv1

+
n(n − 1)

2
D2

xFv2 +
(
η1un−1 − η2vn−1

)
(Fv1 + nDxFv2)

− η1un−1 DxFv2 +
(
η1un−2 − η2vn−2

)
Fv2 − η2vn−1(η1un−1

− η2vn−1)Fv2 −
(
2Dxη2vn−1 − η2η2vn−1vn−1

)
Fv2

]
η2

(16)

and

Dtη2|Ex =Gv2 D2
xη2 + Gu2 D2

xη1 + (Gv1 + nDxGv2)Dxη2

+
[
Gu1 + nDxGu2 +

(
η2vn−1 − η1un−1

)
Gu2

]
Dxη1

+

[
Gv + nDxGv1 +

n(n − 1)
2

D2
xGv2 − η2vn−1 DxGv2

− (
2Dxη2vn−1 − η2η2vn−1vn−1

)
Gv2

]
η2 +

[
Gu + nDxGu1

+
n(n − 1)

2
D2

xGu2 +
(
η2vn−1 − η1un−1

)
(Gu1 + nDxGu2)

− η2vn−1 DxGu2 +
(
η2vn−2 − η1un−2

)
Gu2 − η1un−1(η2vn−1

− η1un−1)Gu2 −
(
2Dxη1un−1 − η1η1un−1un−1

)
Gu2

]
η1.

(17)

Proof. Assume that η1 and η2 satisfy (16) and (17). It is easy to see that all terms on the right-hand
side of (16) and (17) vanish on Mx. Hence

Dtη1|Ex∩Mx = 0 (18)

and

Dtη2|Ex∩Mx = 0,
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that is, the DC (3) is compatible with the second-order evolution system (4). We now prove the converse
result. Let α � β indicate that there are no terms containing un, vn, un+1, vn+1, un+2 and vn+2 in the
difference α − β. Then, we can derive that

Dtη1|Ex � Dn
x F + η1un−1 Dn−1

x F + η1un−2 Dn−2
x F. (19)

Since

Dn−2
x F � unFu2 + vnFv2 ,

Dn−1
x F � un [Fu1 + (n − 1)DxFu2 ] + un+1Fu2

+ vn [Fv1 + (n − 1)DxFv2 ] + vn+1Fv2 ,

Dn
x F � un

[
Fu + nDxFu1 +

n(n − 1)
2

D2
xFu2

]
+ un+1(Fu1 + nDxFu2) + un+2Fu2

+ vn

[
Fv + nDxFv1 +

n(n − 1)
2

D2
xFv2

]
+ vn+1(Fv1 + nDxFv2) + vn+2Fv2

(20)

holds naturally for n ≥ 4, (19) can be written as

Dtη1|Ex �un+2Fu2 + un+1
(

Fu1 + nDxFu2 + η1un−1 Fu2

)
+ un

{
Fu + nDxFu1

+
n(n − 1)

2
D2

xFu2 + η1un−1 [Fu1 + (n − 1)DxFu2 ] + η1un−2 Fu2

}
+ vn+2Fv2 + vn+1

(
Fv1 + nDxFv2 + η1un−1 Fv2

)
+ vn

{
Fv + nDxFv1

+
n(n − 1)

2
D2

xFv2 + η1un−1 [Fv1 + (n − 1)DxFv2 ] + η1un−2 Fv2

}
.

It is easy to see that

Dxη1 � un+1 + unη1un−1 ,

D2
xη1 � un+2 + un+1η1un−1 + un

(
η1un−2 + 2Dxη1un−1 − unη1un−1un−1

)
,

Dxη2 � vn+1 + vnη2vn−1 ,

D2
xη2 � vn+2 + vn+1η2vn−1 + vn

(
η2vn−2 + 2Dxη2vn−1 − vnη2vn−1vn−1

)
.

Consequently, a direct calculation will yield

Dtη1|Ex − Fu2 D2
xη1 − Fv2 D2

xη2 − (Fu1 + nDxFu2)Dxη1

− [
Fv1 + nDxFv2 +

(
η1un−1 − η2vn−1

)
Fv2

]
Dxη2

−
[

Fu + nDxFu1 +
n(n − 1)

2
D2

xFu2 − η1un−1 DxFu2

− (
2Dxη1un−1 − η1η1un−1un−1

)
Fu2

]
η1 −

[
Fv + nDxFv1

+
(
η1un−1 − η2vn−1

)
(Fv1 + nDxFv2)− η1un−1 DxFv2

+
(
η1un−2 − η2vn−2

)
Fv2 − η2vn−1

(
η1un−1 − η2vn−1

)
Fv2

− (
2Dxη2vn−1 − η2η2vn−1vn−1

)
Fv2

]
η2

� 0.

(21)
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Equation (18) holds since DC (3) is compatible with the system (4). Let γ denote the left-hand side
of (21); it is easy to see that

γ|Ex∩Mx = 0,

which is equivalent to

γ|Mx = 0 (22)

since γ is independent of ut, vt, utx, vtx, · · · . As shown above, γ depends only on un−1, vn−1,
un−2, vn−2 · · · . On the other hand, η1 depends on un, and η2 depends on vn. Hence, (22) holds only for
γ = 0, which yields nonlinear determining equation (16). In analogy with the discussion above, we can
derive another nonlinear determining equation (17) if DC (3) is compatible with the system (4).

In fact, the problem of solving nonlinear determining equations (16) and (17) is a very difficult,
if not an impossible, problem. A practical way to identify DC (3) of the system (4) is to keep the linear
part of (16) and (17). A general form of the corresponding linear determining equations will finally
lead to the following definition.

Definition 4. The linear determining equations for DCs (3) of the two-component second-order evolution
system (4) are the linear equations

Dtη1|Ex =Fu2 D2
xη1 +

(
b̃11Fu1 + b̃12DxFu2

)
Dxη1

+
(

b̃13Fu + b̃14DxFu1 + b̃15D2
xFu2

)
η1

+ Fv2 D2
xη2 +

(
b̃16Fv1 + b̃17DxFv2

)
Dxη2

+
(

b̃18Fv + b̃19DxFv1 + b̃10D2
xFv2

)
η2

(23)

and

Dtη2|Ex =Gv2 D2
xη2 +

(
b̃21Gv1 + b̃22DxGv2

)
Dxη2

+
(

b̃23Gv + b̃24DxGv1 + b̃25D2
xGv2

)
η2

+ Gu2 D2
xη1 +

(
b̃26Gu1 + b̃27DxGu2

)
Dxη1

+
(

b̃28Gu + b̃29DxGu1 + b̃20D2
xGu2

)
η1.

(24)

Linear determining equations (23) and (24) are the sufficient condition to justify whether DC (3) is
compatible with the second-order evolution system (4). This family of linear determining equations is
also effective to construct CLBS (5) of evolution system (4).

4. DCs (3) and CLBSs (5) of RD system (9)

Substituting F = uku2 + kuk−1u2
1 + P(u, v) and G = vlv2 + lvl−1v2

1 + Q(u, v) into linear
determining equations (23) and (24), we can derive the sufficient condition to identify DCs (3) and
CLBSs (5) of RD system (9)

Dtη1|Ex =ukD2
xη1 + k

(
2b̃11 + b̃12

)
uk−1u1Dxη1 +

[
k
(
b̃13 + 2b̃14 + b̃15

)
uk−1u2

+ k(k − 1)
(
b̃13 + 2b̃14 + b̃15

)
uk−2u2

1 + b̃13Pu

]
η1 + b̃18Pvη2

(25)
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and

Dtη2|Ex =vl D2
xη2 + l

(
2b̃21 + b̃22

)
vl−1v1Dxη2 +

[
l
(
b̃23 + 2b̃24 + b̃25

)
vl−1v2

+ l(l − 1)
(
b̃23 + 2b̃24 + b̃25

)
vl−2v2

1 + b̃23Qv

]
η2 + b̃28Quη1.

(26)

Here, we use the general form of (25) and (26)

Dtη1|Ex =ukD2
xη1 + b11uk−1u1Dxη1

+
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
η1 + b15Pvη2

(27)

and

Dtη2|Ex =vl D2
xη2 + b21vl−1v1Dxη2

+
(

b22vl−1v2 + b23vl−2v2
1 + b24Qv

)
η2 + b25Quη1

(28)

to construct DCs (3) and CLBSs (5) of the RD system (9).
It would be quite enlightening to give the order estimate for DCs (3) and CLBSs (5) admitted by

the considered system (4). However, this is another problem, which we leave to future research. Here,
we restrict our consideration to 2 ≤ n ≤ 5.

Firstly, we consider the case of n = 3. A direct computation will give

Dtη1|Ex =uku5 +
(

5kuk−1u1 + ukgu2

)
u4 +

[
4kuk−1u1gu2 + ukgu1 + Pu

+ 10kuk−1u2 + 10k(k − 1)uk−2u2
1

]
u3 + Pvv3 +

[
u2

1Puu + v2
1Pvv

+ 2u1v1Puv + u2Pu + v2Pv + 3kuk−1u2
2 + 6k(k − 1)uk−2u2u2

1

+ k(k − 1)(k − 2)uk−3u4
1

]
gu2 +

[
u1Pu + v1Pv + 3kuk−1u2u1

+ k(k − 1)uk−2u3
1
]
gu1 +

(
uku2 + kuk−1u2

1 + P
)

gu + u3
1Puuu

+ v3
1Pvvv + 3u2

1v1Puuv + 3u1v2
1Puvv + 3u1u2Puu + 3v1v2Pvv

+ 3(u1v2 + u2v1)Puv + k(k − 1)(k − 2)(k − 3)uk−4u5
1

+ 10k(k − 1)(k − 2)uk−3u2u3
1 + 15k(k − 1)uk−2u2

2u1 + gt

and

ukD2
xη1 + b11uk−1u1Dxη1 +

(
b12uk−1u2 + b13uk−2u2

1 + b14Pu

)
η1 + b15Pvη2

=uku5 +
(

b11uk−1u1 + ukgu2

)
u4 + ukgu2u2 u2

3 +
(
2uku2gu1u2 + 2uku1guu2

+ 2ukgxu2 + b11uk−1u1gu2 + ukgu1 + b14Pu + b12uk−1u2 + b13uk−2u2
1
)
u3

+ b15Pvv3 + uku2
2gu1u1 + uku2

1guu + 2uku1u2guu1 + 2uku1gxu + ukgxx

+ 2uku2gxu1 + b11uk−1u1u2gu1 + b11uk−1u2
1gu + uku2gu + b11uk−1u1gx

+
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
g + b15Pvh.
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Since the left-hand side and right-hand side of (27) are both polynomials about u5, u4, u3, v3,
equating the coefficients of similar terms will give b11 = 5k, b15 = 1 and

gu2u2 = 0,

2uku2gu1u2 + 2uku1guu2 + 2ukgxu2 + (b11 − 4k)uk−1u1gu2 + (b14 − 1)Pu

+ (b12 − 10k)uk−1u2 + [b13 − 10k(k − 1)]uk−2u2
1 = 0,

uku2
2gu1u1 + uku2

1guu + 2uku1u2guu1 + 2uku1gxu + ukgxx + 2uku2gxu1

−
[

u2
1Puu + v2

1Pvv + 2u1v1Puv + u2Pu + v2Pv + 6k(k − 1)uk−2u2u2
1

+ 3kuk−1u2
2 + k(k − 1)(k − 2)uk−3u4

1

]
gu2 −

[
(3k − b11)uk−1u2u1

+ k(k − 1)uk−2u3
1 + u1Pu + v1Pv

]
gu1 −

[
(k − b11)uk−1u2

1 + P
]
gu

+ b11uk−1u1gx − gt +
(

b12uk−1u2 + b13uk−2u2
1 + b14Pu

)
g + b15Pvh

−
[

u3
1Puuu + v3

1Pvvv + 3u2
1v1Puuv + 3u1v2

1Puvv + 3(u1v2 + u2v1)Puv

+ 3u1u2Puu + 3v1v2Pvv + k(k − 1)(k − 2)(k − 3)uk−4u5
1

+ 10k(k − 1)(k − 2)uk−3u2u3
1 + 15k(k − 1)uk−2u2

2u1

]
= 0.

(29)

Similar discussion about (28) will yield b21 = 5l, b25 = 1 and

hv2v2 = 0,

2vlv2hv1v2 + 2vlv1hvv2 + 2vlhxv2 + (b21 − 4l)vl−1v1hv2 + (b24 − 1)Qv

+ (b22 − 10l)vl−1v2 + [b23 − 10l(l − 1)]vl−2v2
1 = 0,

vlv2
2hv1v1 + vlv2

1hvv + 2vlv1v2hvv1 + 2vlv1hxv + vlhxx + 2vlv2hxv1

−
[

v2
1Qvv + u2

1Quu + 2u1v1Quv + u2Qu + v2Qv + 6l(l − 1)vl−2v2v2
1

+ 3lvl−1v2
2 + l(l − 1)(l − 2)vl−3v4

1

]
hv2 −

[
(3l − b21)vl−1v2v1

+ l(l − 1)vl−2v3
1 + u1Qu + v1Qv

]
hv1 −

[
(l − b21)vl−1v2

1 + Q
]
hv

+ b21vl−1v1hx − ht +
(

b22vl−1v2 + b23vl−2v2
1 + b24Qv

)
h + b25Qug

−
[

u3
1Quuu + v3

1Qvvv + 3u2
1v1Quuv + 3u1v2

1Quvv + 3(u1v2 + u2v1)Quv

+ 3u1u2Quu + 3v1v2Qvv + l(l − 1)(l − 2)(l − 3)vl−4v5
1

+ 10l(l − 1)(l − 2)vl−3v2v3
1 + 15l(l − 1)ul−2v2

2v1

]
= 0.

(30)

It is easy to know that g and h can be represented as

g(t, x, u, u1, u2) = g1(t, x, u, u1)u2 + g2(t, x, u, u1)

and

h(t, x, v, v1, v2) = h1(t, x, v, v1)v2 + h2(t, x, v, v1).
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Substituting g into the second one of (29), we will derive that[
2ug1u1 + (b12 − 10k)

]
uk−1u2 + [(2ug1u + kg1)u1 + 2ug1x] uk−1

+ [b13 − 10k(k − 1)] uk−2u2
1 + (b14 − 1)Pu = 0.

The vanishing of the coefficient of u2 will yield

g1(t, x, u, u1) =
10k − b12

2u
u1 + g3(t, x, u).

As a consequence, (29) can be simplified as(
b13 − 5k2 − 1

2
kb12 + b12

)
uk−2u2

1 + (2ug3u + kg3) uk−1u1 + 2ukg3x + (b14 − 1)Pu = 0,

which is a polynomial about u1. Thus, b13 = 5k2 + 1
2 kb12 − b12 and g3(t, x, u) = g4(t, x)u− k

2 can be
derived by equating the coefficients of this polynomial to be zero. Subsequently, (29) finally becomes

2u
k
2 g4x + (b14 − 1)Pu = 0.

Since P(u, v) must depend on v, we will arrive at g4(t, x) = g5(t) and b14 = 1 or P(u, v) = P1(v) from
the above equality.

A similar computational procedure for the first one and second one of (30) will give

h(t, x, , v, v1, v2) = h1(t, x, v, v1)v2 + h2(t, x, v, v1),

h1(t, x, v, v1) =
10l − b22

2v
v1 + h3(t, x, v),

h3(t, x, v) = h4(t, x)v−
l
2 , h4(t, x) = h5(t),

b23 = 5l2 +
1
2

lb22 − b22

and

b24 = 1 or Q(u, v) = Q1(u).

We will consider four different cases, including

(i) b14 = 1, b24 = 1;

(ii) b14 = 1, Q(u, v) = Q1(u);

(iii) P(u, v) = P1(v), b24 = 1;

(iv) P(u, v) = P1(v), Q(u, v) = Q1(u)

to further study. Further research about the last ones of (29) and (30) will finally identify DCs (3) and
CLBSs (5) of RD system (9). The comprehensive computational procedure is omitted here, and the
obtained results are listed in Table 1. The procedure to identify DCs (3) and CLBSs (5) of RD system (4)
for n = 2, n = 4 and n = 5 is almost the same as that for the case of n = 3. We just list the obtained
results in Table 1. It is noted that the results for n = 2 are all presented in [21], so we will not list these
cases in Table 1.
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10 v
v 1

v 3
−

15 2v
v2 2

+
10

5
2v

2
v2 1v

2
−

31
5

8v
3
v4 1

6

⎧ ⎨ ⎩u t
=

( u−
4 3
u x

) x
+

a 1
u
+

b 1
u

7 3
−

3s 20
u−

1 3
+

c 1
u

7 3
v−

4 3
,

v t
=

( v−
4 3
v x

) x
+

a 2
v
+

b 2
v

7 3
−

3s 20
v−

1 3
+

c 2
v

7 3
u−

4 3

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩η
1
=

u 5
−

35 3u
u 1

u 4
+

( −
70 3u

u 2
+

70
0

9u
2
u2 1

+
s) u 3

+
35

0
3u

2
u 1

u2 2
−

( 7s u
u 1

+
91

00
27

u3
u3 1) u 2

+
14

56
0

81
u4

u5 1

+
70

s
9u

2
u3 1

+
4s

2

25
u 1

,

η
2
=

v 5
−

35 3v
v 1

v 4
+

( −
70 3v

v 2
+

70
0

9v
2
v2 1

+
s) v 3

+
35

0
3v

2
v 1

v2 2
−

( 7s v
v 1

+
91

00
27

v3
v3 1) v 2

+
14

56
0

81
v4

v5 1

+
70

s
9v

2
v3 1

+
4s

2

25
v 1

,
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5. Reductions of RD System (9)

The compatibility of the RD system (9) and the invariant surface condition (DC) (3) is the basic
reduction idea of CLBS. Therefore, the evolution system (9) and the admitted DC (3) share a common
manifold of solutions. We first solve the DC (3) to identify the form of u and v and then substitute the
obtained results into (9) to finally determine the solutions. Here, we will construct the reductions of
the resulting systems (9) in Table 1.

Example 1. RD system ⎧⎨⎩ ut =
(

u− 3
2 ux

)
x
− s

r b1u + a1u
5
2 + b1u

5
2 v− 3

2 ,

vt =
(

v− 3
2 vx

)
x
− r

s b2v + a2v
5
2 + b2v

5
2 u− 3

2

admits CLBS {
η1 = u3 − 15

2u u1u2 +
35

4u2 u3
1 + ru

5
2 ,

η2 = v3 − 15
2v v1v2 +

35
4v2 v3

1 + sv
5
2 .

The solutions of this system are listed as⎧⎪⎨⎪⎩
u(x, t) =

[
r
4 x3 + C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 2

3 ,

v(x, t) =
[

s
4 x3 + C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
]− 2

3 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= − 2

3 C(1)
1

2
+ 3s

2r b1C(1)
1 + r

2 C(1)
2 − 3

2 b1C(2)
1 ,

C(1)
2

′
= − 2

3 C(1)
1 C(1)

2 + 3s
2r b1C(1)

2 + 3r
2 C(1)

3 − 3
2 b1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3 − 2

3 C(1)
2

2
+ 3s

2r b1C(1)
3 − 3

2 b1C(2)
3 − 3

2 a1,

C(2)
1

′
= − 2

3 C(2)
1

2
+ 3r

2s b2C(2)
1 + s

2 C(2)
2 − 3

2 b2C(1)
1 ,

C(2)
2

′
= − 2

3 C(2)
1 C(2)

2 + 3r
2s b2C(2)

2 + 3s
2 C(2)

3 − 3
2 b2C(1)

2 ,

C(2)
3

′
= 2C(2)

1 C(2)
3 − 2

3 C(2)
2

2
+ 3r

2s b2C(2)
3 − 3

2 b2C(1)
3 − 3

2 a2.

Example 2. RD system⎧⎨⎩ ut =
(

u− 4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u− 1
3 + c1u

5
3 v− 2

3 ,

vt =
(

v− 4
3 vx

)
x
+ a2v + b2v

5
3 − 3s

4 v− 1
3 + c2v

5
3 u− 2

3

admits CLBS {
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 − 5
v v1v2 +

40
9v2 v3

1 + sv1.

The solutions of this system are given as below.

• For s > 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)]− 3

2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)]− 3

2 ,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
1 − 2

3 c1C(2)
1 − 2

3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
2 − 2

3 c1C(2)
2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
3 − 2

3 c1C(2)
3 ,

C(2)
1

′
= s

2 C(2)
1

(
C(2)

1

2 − C(2)
2

2 − C(2)
3

2
)
− 2

3 a2C(2)
1 − 2

3 c2C(1)
1 − 2

3 b2,

C(2)
2

′
= s

2 C(2)
2

(
C(2)

1

2 − C(2)
2

2 − C(2)
3

2
)
− 2

3 a2C(2)
2 − 2

3 c2C(1)
2 ,

C(2)
3

′
= s

2 C(2)
3

(
C(2)

1

2 − C(2)
2

2 − C(2)
3

2
)
− 2

3 a2C(2)
3 − 2

3 c2C(1)
3 .

• For s = 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 3

2 ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
]− 3

2 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= 2C(1)

1

2
C(1)

3 − 1
2 C(1)

1 C(1)
2

2 − 2
3 a1C(1)

1 − 2
3 c1C(2)

1 ,

C(1)
2

′
= 2C(1)

1 C(1)
2 C(1)

3 − 1
2 C(1)

2

3 − 2
3 a1C(1)

2 − 2
3 c1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3

2 − 1
2 C(1)

2

2
C(1)

3 − 2
3 a1C(1)

3 − 2
3 c1C(2)

3 − 2
3 b1,

C(2)
1

′
= 2C(2)

1

2
C(2)

3 − 1
2 C(2)

1 C(2)
2

2 − 2
3 a2C(2)

1 − 2
3 c2C(1)

1 ,

C(2)
2

′
= 2C(2)

1 C(2)
2 C(2)

3 − 1
2 C(2)

2

3 − 2
3 a2C(2)

2 − 2
3 c2C(1)

2 ,

C(2)
3

′
= 2C(2)

1 C(2)
3

2 − 1
2 C(2)

2

2
C(2)

3 − 2
3 a2C(2)

3 − 2
3 c2C(1)

3 − 2
3 b2.

• For s < 0,⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sinh

(√−sx
)
+ C(1)

3 (t) cosh
(√−sx

)]− 3
2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√−sx
)
+ C(2)

3 (t) cosh
(√−sx

)]− 3
2 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
1 − 2

3 c1C(2)
1 − 2

3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
2 − 2

3 c1C(2)
2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
3 − 2

3 c1C(2)
3 ,

C(2)
1

′
= s

2 C(2)
1

(
C(2)

1

2
+ C(2)

2

2 − C(2)
3

2
)
− 2

3 a2C(2)
1 − 2

3 c2C(1)
1 − 2

3 b2,

C(2)
2

′
= s

2 C(2)
2

(
C(2)

1

2
+ C(2)

2

2 − C(2)
3

2
)
− 2

3 a2C(2)
2 − 2

3 c2C(1)
2 ,

C(2)
3

′
= s

2 C(2)
3

(
C(2)

1

2
+ C(2)

2

2 − C(2)
3

2
)
− 2

3 a2C(2)
3 − 2

3 c2C(1)
3 .
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Example 3. RD system⎧⎨⎩ ut =
(

u− 4
3 ux

)
x
+ a1u + b1u

5
3 − 3s

4 u− 1
3 + c1u

5
3 vl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−lu− 2
3

admits CLBS {
η1 = u3 − 5

u u1u2 +
40

9u2 u3
1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1.

The solutions of this system are given as below.

• For s > 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)]− 3

2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)] 1

l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
1 − 2

3 c1C(2)
1 − 2

3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
2 − 2

3 c1C(2)
2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2 − C(1)
2

2 − C(1)
3

2
)
− 2

3 a1C(1)
3 − 2

3 c1C(2)
3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

2

2
+ C(2)

3

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

• For s = 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
]− 3

2 ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
] 1

l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= 2C(1)

1

2
C(1)

3 − 1
2 C(1)

1 C(1)
2

2 − 2
3 a1C(1)

1 − 2
3 c1C(2)

1 ,

C(1)
2

′
= 2C(1)

1 C(1)
2 C(1)

3 − 1
2 C(1)

2

3 − 2
3 a1C(1)

2 − 2
3 c1C(2)

2 ,

C(1)
3

′
= 2C(1)

1 C(1)
3

2 − 1
2 C(1)

2

2
C(1)

3 − 2
3 a1C(1)

3 − 2
3 c1C(2)

3 − 2
3 b1,

C(2)
1

′
= 2(l+2)

l C(2)
1

2
+ la2C(2)

1 + lc2C(1)
1 ,

C(2)
2

′
= 2(l+2)

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= 1

l C(2)
2

2
+ 2C(2)

1 C(2)
3 + la2C(2)

3 + lc2C(1)
3 + lb2.

• For s < 0,⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sinh

(√−sx
)
+ C(1)

3 (t) cosh
(√−sx

)] 3
2 ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√−sx
)
+ C(2)

3 (t) cosh
(√−sx

)] 1
l ,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

2 C(1)
1

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
1 − 2

3 c1C(2)
1 − 2

3 b1,

C(1)
2

′
= s

2 C(1)
2

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
2 − 2

3 c1C(2)
2 ,

C(1)
3

′
= s

2 C(1)
3

(
C(1)

1

2
+ C(1)

2

2 − C(1)
3

2
)
− 2

3 a1C(1)
3 − 2

3 c1C(2)
3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

3

2 − C(2)
2

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

Example 4. RD system⎧⎨⎩ ut =
(

ukux

)
x
+ a1u + b1u1−k + (k+1)s

k2 u1+k + c1u1−kvl ,

vt =
(

vlvx

)
x
+ a2v + b2v1−l + (l+1)s

l2 v1+l + c2v1−luk

admits CLBS {
η1 = u3 +

3(k−1)
u u1u2 +

(k−1)(k−2)
u2 u3

1 + su1,

η2 = v3 +
3(l−1)

v v1v2 +
(l−1)(l−2)

v2 v3
1 + sv1.

The solutions of this system are given as below.

• For s > 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sin

(√
sx
)
+ C(1)

3 (t) cos
(√

sx
)] 1

k ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sin

(√
sx
)
+ C(2)

3 (t) cos
(√

sx
)] 1

l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= (k+1)s

k C(1)
1

2
+ s

k

(
C(1)

2

2
+ C(1)

3

2
)
+ ka1C(1)

1 + kc1C(2)
1 + kb1,

C(1)
2

′
= (k+2)s

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= (k+2)s

k C(1)
1 C(1)

3 + ka1C(1)
3 + kc1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

2

2
+ C(2)

3

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

• For s = 0, ⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t)x2 + C(1)
2 (t)x + C(1)

3 (t)
] 1

k ,

v(x, t) =
[
C(2)

1 (t)x2 + C(2)
2 (t)x + C(2)

3 (t)
] 1

l ,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= 2(k+2)

k C(1)
1

2
+ ka1C(1)

1 + kc1C(2)
1 ,

C(1)
2

′
= 2(k+2)

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= 1

k C(1)
2

2
+ 2C(1)

1 C(1)
3 + ka1C(1)

3 + kc1C(2)
3 + kb1,

C(2)
1

′
= 2(l+2)

l C(2)
1

2
+ la2C(2)

1 + lc2C(1)
1 ,

C(2)
2

′
= 2(l+2)

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= 1

l C(2)
2

2
+ 2C(2)

1 C(2)
3 + la2C(2)

3 + lc2C(1)
3 + lb2.

• For s < 0,⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t) + C(1)
2 (t) sinh

(√−sx
)
+ C(1)

3 (t) cosh
(√−sx

)] 1
k ,

v(x, t) =
[
C(2)

1 (t) + C(2)
2 (t) sinh

(√−sx
)
+ C(2)

3 (t) cosh
(√−sx

)] 1
l ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(2)

1 (t), C(2)
2 (t) and C(2)

3 (t) satisfy the six-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= (k+1)s

k C(1)
1

2
+ s

k

(
C(1)

3

2 − C(1)
2

2
)
+ ka1C(1)

1 + kc1C(2)
1 + kb1,

C(1)
2

′
= (k+2)s

k C(1)
1 C(1)

2 + ka1C(1)
2 + kc1C(2)

2 ,

C(1)
3

′
= (k+2)s

k C(1)
1 C(1)

3 + ka1C(1)
3 + kc1C(2)

3 ,

C(2)
1

′
= (l+1)s

l C(2)
1

2
+ s

l

(
C(2)

3

2 − C(2)
2

2
)
+ la2C(2)

1 + lc2C(1)
1 + lb2,

C(2)
2

′
= (l+2)s

l C(2)
1 C(2)

2 + la2C(2)
2 + lc2C(1)

2 ,

C(2)
3

′
= (l+2)s

l C(2)
1 C(2)

3 + la2C(2)
3 + lc2C(1)

3 .

Example 5. RD system ⎧⎨⎩ ut =
(

u− 3
2 ux

)
x
+ a1u + b1u

5
2 + c1u

5
2 v− 3

2 ,

vt =
(

v− 3
2 vx

)
x
+ a2v + b2v

5
2 + c2u− 3

2 v
5
2

admits CLBS {
η1 = u4 − 10

u u1u3 − 15
2u u2

2 +
105
2u2 u2

1u2 − 315
8u3 u4

1,
η2 = v4 − 10

v v1v3 − 15
2v v2

2 +
105
2v2 v2

1v2 − 315
8v3 v4

1.

The solutions of this system are given by⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t)x3 + C(1)
2 (t)x2 + C(1)

3 (t)x + C(1)
4 (t)

]− 2
3 ,

v(x, t) =
[
C(2)

1 (t)x3 + C(2)
2 (t)x2 + C(2)

3 (t)x + C(2)
4 (t)

]− 2
3 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(2)
1 (t), C(2)

2 (t), C(2)
3 (t) and C(2)

4 (t) satisfy the eight-dimensional
dynamical system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= − 3

2 a1C(1)
1 − 3

2 c1C(2)
1 ,

C(1)
2

′
= − 2

3 C(1)
2

2
+ 2C(1)

1 C(1)
3 − 3

2 a1C(1)
2 − 3

2 c1C(2)
2 ,

C(1)
3

′
= − 2

3 C(1)
2 C(1)

3 + 6C(1)
1 C(1)

4 − 3
2 a1C(1)

3 − 3
2 c1C(2)

3 ,

C(1)
4

′
= − 2

3 C(1)
3

2
+ 2C(1)

2 C(1)
4 − 3

2 a1C(1)
4 − 3

2 c1C(2)
4 − 3

2 b1,

C(2)
1

′
= − 3

2 a2C(2)
1 − 3

2 c2C(1)
1 ,

C(2)
2

′
= − 2

3 C(2)
2

2
+ 2C(2)

1 C(2)
3 − 3

2 a2C(2)
2 − 3

2 c2C(1)
2 ,

C(2)
3

′
= − 2

3 C(2)
2 C(2)

3 + 6C(2)
1 C(2)

4 − 3
2 a2C(2)

3 − 3
2 c2C(1)

3 ,

C(2)
4

′
= − 2

3 C(2)
3

2
+ 2C(2)

2 C(2)
4 − 3

2 a2C(2)
4 − 3

2 c2C(1)
4 − 3

2 b2.

Example 6. RD system⎧⎪⎨⎪⎩
ut =

(
u− 4

3 ux

)
x
+ a1u + b1u

7
3 − 3s

20 u− 1
3 + c1u

7
3 v− 4

3 ,

vt =
(

v− 4
3 vx

)
x
+ a2v + b2v

7
3 − 3s

20 v− 1
3 + c2v

7
3 u− 4

3

admits CLBS ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = u5 − 35
3u u1u4 +

(
− 70

3u u2 +
700
9u2 u2

1 + s
)

u3 +
350
3u2 u1u2

2

−
(

7s
u u1 +

9100
27u3 u3

1

)
u2 +

14560
81u4 u5

1 +
70s
9u2 u3

1 +
4s2

25 u1,

η2 = v5 − 35
3v v1v4 +

(
− 70

3v v2 +
700
9v2 v2

1 + s
)

v3 +
350
3v2 v1v2

2

−
(

7s
v v1 +

9100
27v3 v3

1

)
v2 +

14560
81v4 v5

1 +
70s
9v2 v3

1 +
4s2

25 v1.

The solutions of this system are given as below.

• For s > 0, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) =
[

C(1)
1 (t) + C(1)

2 (t) sin
(√

5s
5 x

)
+ C(1)

3 (t) cos
(√

5s
5 x

)
+C(1)

4 (t) sin
(

2
√

5s
5 x

)
+ C(1)

5 (t) cos
(

2
√

5s
5 x

)]− 3
4

,

v(x, t) =
[

C(2)
1 (t) + C(2)

2 (t) sin
(√

5s
5 x

)
+ C(2)

3 (t) cos
(√

5s
5 x

)
+C(2)

4 (t) sin
(

2
√

5s
5 x

)
+ C(2)

5 (t) cos
(

2
√

5s
5 x

)]− 3
4

,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

5 C(1)
1

2 − 3s
40 C(1)

2

2 − 3s
40 C(1)

3

2 − 3s
5 C(1)

4

2 − 3s
5 C(1)

5

2 − 4
3 a1C(1)

1 − 4
3 c1C(2)

1 − 4
3 b1,

C(1)
2

′
= 3s

5 C(1)
2 C(1)

5 − 3s
5 C(1)

3 C(1)
4 + s

5 C(1)
1 C(1)

2 − 4
3 a1C(1)

2 − 4
3 c1C(2)

2 ,

C(1)
3

′
= − 3s

5 C(1)
2 C(1)

4 − 3s
5 C(1)

3 C(1)
5 + s

5 C(1)
1 C(1)

3 − 4
3 a1C(1)

3 − 4
3 c1C(2)

3 ,

C(1)
4

′
= 3s

20 C(1)
2 C(1)

3 − 2s
5 C(1)

1 C(1)
4 − 4

3 a1C(1)
4 − 4

3 c1C(2)
4 ,

C(1)
5

′
= − 3s

40 C(1)
2

2
+ 3s

40 C(1)
3

2 − 2s
5 C(1)

1 C(1)
5 − 4

3 a1C(1)
5 − 4

3 c1C(2)
5 ,

C(2)
1

′
= s

5 C(2)
1

2 − 3s
40 C(2)

2

2 − 3s
40 C(2)

3

2 − 3s
5 C(2)

4

2 − 3s
5 C(2)

5

2 − 4
3 a2C(2)

1 − 4
3 c2C(1)

1 − 4
3 b2,

C(2)
2

′
= 3s

5 C(2)
2 C(2)

5 − 3s
5 C(2)

3 C(2)
4 + s

5 C(2)
1 C(2)

2 − 4
3 a2C(2)

2 − 4
3 c2C(1)

2 ,

C(2)
3

′
= − 3s

5 C(2)
2 C(2)

4 − 3s
5 C(2)

3 C(2)
5 + s

5 C(2)
1 C(2)

3 − 4
3 a2C(2)

3 − 4
3 c2C(1)

3 ,

C(2)
4

′
= 3s

20 C(2)
2 C(2)

3 − 2s
5 C(2)

1 C(2)
4 − 4

3 a2C(2)
4 − 4

3 c2C(1)
4 ,

C(2)
5

′
= − 3s

40 C(2)
2

2
+ 3s

40 C(2)
3

2 − 2s
5 C(2)

1 C(2)
5 − 4

3 a2C(2)
5 − 4

3 c2C(1)
5 .

• For s = 0,⎧⎪⎨⎪⎩
u(x, t) =

[
C(1)

1 (t)x4 + C(1)
2 (t)x3 + C(1)

3 (t)x2 + C(1)
4 (t)x + C(1)

5 (t)
]− 3

4 ,

v(x, t) =
[
C(2)

1 (t)x4 + C(2)
2 (t)x3 + C(2)

3 (t)x2 + C(2)
4 (t)x + C(2)

5 (t)
]− 3

4 ,

where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= 2C(1)

1 C(1)
3 − 3

4 C(1)
2

2 − 4
3 a1C(1)

1 − 4
3 c1C(2)

1 ,

C(1)
2

′
= −C(1)

2 C(1)
3 + 6C(1)

1 C(1)
4 − 4

3 a1C(1)
2 − 4

3 c1C(2)
2 ,

C(1)
3

′
= 3

2 C(1)
2 C(1)

4 + 12C(1)
1 C(1)

5 − C(1)
3

2 − 4
3 a1C(1)

3 − 4
3 c1C(2)

3 ,

C(1)
4

′
= 6C(1)

2 C(1)
5 − C(1)

3 C(1)
4 − 4

3 a1C(1)
4 − 4

3 c1C(2)
4 ,

C(1)
5

′
= 2C(1)

3 C(1)
5 − 3

4 C(1)
4

2 − 4
3 a1C(1)

5 − 4
3 c1C(2)

5 − 4
3 b1,

C(2)
1

′
= 2C(2)

1 C(2)
3 − 3

4 C(2)
2

2 − 4
3 a2C(2)

1 − 4
3 c2C(1)

1 ,

C(2)
2

′
= −C(2)

2 C(2)
3 + 6C(2)

1 C(2)
4 − 4

3 a2C(2)
2 − 4

3 c2C(1)
2 ,

C(2)
3

′
= 3

2 C(2)
2 C(2)

4 + 12C(2)
1 C(2)

5 − C(2)
3

2 − 4
3 a2C(2)

3 − 4
3 c2C(1)

3 ,

C(2)
4

′
= 6C(2)

2 C(2)
5 − C(2)

3 C(2)
4 − 4

3 a2C(2)
4 − 4

3 c2C(1)
4 ,

C(2)
5

′
= 2C(2)

3 C(2)
5 − 3

4 C(2)
4

2 − 4
3 a2C(2)

5 − 4
3 c2C(1)

5 − 4
3 b2,

• For s < 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) =
[

C(1)
1 (t) + C(1)

2 (t) sinh
(√−5s

5 x
)
+ C(1)

3 (t) cosh
(√−5s

5 x
)

+C(1)
4 (t) sinh

(
2
√−5s

5 x
)
+ C(1)

5 (t) cosh
(

2
√−5s

5 x
)]− 3

4

,

v(x, t) =
[

C(2)
1 (t) + C(2)

2 (t) sinh
(√−5s

5 x
)
+ C(2)

3 (t) cosh
(√−5s

5 x
)

+C(2)
4 (t) sinh

(
2
√−5s

5 x
)
+ C(2)

5 (t) cosh
(

2
√−5s

5 x
)]− 3

4

,
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where C(1)
1 (t), C(1)

2 (t), C(1)
3 (t), C(1)

4 (t), C(1)
5 (t), C(2)

1 (t), C(2)
2 (t), C(2)

3 (t), C(2)
4 (t) and C(2)

5 (t) satisfy the
ten-dimensional dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1

′
= s

5 C(1)
1

2
+ 3s

40 C(1)
2

2 − 3s
40 C(1)

3

2
+ 3s

5 C(1)
4

2 − 3s
5 C(1)

5

2 − 4
3 a1C(1)

1 − 4
3 c1C(2)

1 − 4
3 b1,

C(1)
2

′
= 3s

5 C(1)
2 C(1)

5 − 3s
5 C(1)

3 C(1)
4 + s

5 C(1)
1 C(1)

2 − 4
3 a1C(1)

2 − 4
3 c1C(2)

2 ,

C(1)
3

′
= 3s

5 C(1)
2 C(1)

4 − 3s
5 C(1)

3 C(1)
5 + s

5 C(1)
1 C(1)

3 − 4
3 a1C(1)

3 − 4
3 c1C(2)

3 ,

C(1)
4

′
= 3s

20 C(1)
2 C(1)

3 − 2s
5 C(1)

1 C(1)
4 − 4

3 a1C(1)
4 − 4

3 c1C(2)
4 ,

C(1)
5

′
= 3s

40 C(1)
2

2
+ 3s

40 C(1)
3

2 − 2s
5 C(1)

1 C(1)
5 − 4

3 a1C(1)
5 − 4

3 c1C(2)
5 ,

C(2)
1

′
= s

5 C(2)
1

2
+ 3s

40 C(2)
2

2 − 3s
40 C(2)

3

2
+ 3s

5 C(2)
4

2 − 3s
5 C(2)

5

2 − 4
3 a2C(2)

1 − 4
3 c2C(1)

1 − 4
3 b2,

C(2)
2

′
= 3s

5 C(2)
2 C(2)

5 − 3s
5 C(2)

3 C(2)
4 + s

5 C(2)
1 C(2)

2 − 4
3 a2C(2)

2 − 4
3 c2C(1)

2 ,

C(2)
3

′
= 3s

5 C(2)
2 C(2)

4 − 3s
5 C(2)

3 C(2)
5 + s

5 C(2)
1 C(2)

3 − 4
3 a2C(2)

3 − 4
3 c2C(1)

3 ,

C(2)
4

′
= 3s

20 C(2)
2 C(2)

3 − 2s
5 C(2)

1 C(2)
4 − 4

3 a2C(2)
4 − 4

3 c2C(1)
4 ,

C(2)
5

′
= 3s

40 C(2)
2

2
+ 3s

40 C(2)
3

2 − 2s
5 C(2)

1 C(2)
5 − 4

3 a2C(2)
5 − 4

3 c2C(1)
5 .

6. Conclusions

The method of linear determining equations to construct DC (3) and CLBS (5) of two-component
second-order evolution system (4) is provided. The linear determining equations (23) and (24)
generalize the classical determining equations within the framework of Lie’s operator. The general
form of CLBS (5) and DC (3) admitted by the system (4) can be identified by solving the resulting linear
determining equations.

As an application of this approach, the general form of DC (3) and CLBS (5) with n = 3, 4, 5 of RD
system (9) is established in this paper. The reductions of the resulting equations are also constructed due
to the compatibility of the admitted DC (3) and the governing system (9). These reductions cannot be
obtained within the framework of Lie’s classical symmetry method and conditional symmetry method.

All examples except Example 4 in Section 5 involve the power diffusivities with the exponent
either −4/3 or −2/3. Exact solutions of the nonlinear diffusion equations ut = (u−4/3ux)x

and ut = (u−2/3ux)x are firstly studied by using local and non-local symmetries by King [48].
The polynomial solutions like the ones in the examples of Section 5 for scalar nonlinear diffusion
equations are also constructed by King [49,50]. Moreover, a range of more complicated exact solutions
for scalar nonlinear diffusion equations are derived by Cherniha [15] due to the method of the
additional generating condition. In addition, the results of Examples 4, 5 and the case of s = 0
for Example 6 in Section 5 have been given by Cherniha and King [16] by using the method of the
additional generating condition. All of the reductions of the obtained RD system (9) constructed in
Section 5, involving either a polynomial, trigonometric or hyperbolic function, are used in [14] for the
first time within the framework of the method of the additional generating condition.

The method of linear determining equations can be extended to consider DCs and CLBSs of other
types of evolution systems, including a multi-component diffusion system and a high-order evolution
system. The discussion about the linear determining equation for evolution system (4) to identify
CLBS and DC with η1 and η2 possessing different orders is another interesting problem. All of these
problems will be involved in our future research.

Acknowledgments: This work was supported by NSFC (Grant No. U1204104 and No. 11501175 ) and the
National Science Foundation for Post-doctoral Scientists of China (Grant No. 2014M561454).

Conflicts of Interest: The author declares no conflict of interest.

111



Symmetry 2016, 8, 157

References

1. Yanenko, N.N. Theory of consistency and methods of integrating systems of nonlinear partial differential
equations. In Proceedings of the 4th All-Union Mathematical Congress; Nauka: Leningrad, USSR, 1964;
pp. 247–259. (In Russian)

2. Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Application to Gas Dynamics;
Nauka: Novosibirsk, Russia, 1984.

3. Olver, P.J.; Rosenau, P. The construction of special solutions to partial differential equations. Phys. Lett. A
1986, 144, 107–112.

4. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989.
5. Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993.
6. Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18,

1025–1042.
7. Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982.
8. Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of

variables. Phys. D 2000, 139, 28–47.
9. Clarkson, P.; Kruskal, M. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30,

2201–2213.
10. Miller, W., Jr. Mechanism for variable separation in partial differential equations and their relationship to

group theory. In Symmetries and Nonlinear Phenomena; Levi, D., Winternitz, P., Eds.; World Scientific: London,
UK, 1989.

11. Galaktionov, V.A. On new exact blow-up solutions for nonlinear heat conduction equations with source and
applications. Differ. Integral Equ. 1990, 3, 863–874.

12. Olver, P.J.; Vorob’ev, E.M. Nonclassical and conditional symmetries. In CRC Handbook of Lie Group Analysis;
Ibragiminov, N.H., Ed.; CRC Press: Boca Raton, FL, USA, 1994; Volume 3.

13. Olver, P.J.; Rosenau, P. Group invariant solutions of differential equations. SIAM J. Appl. Math. 1987, 47,
263–278.

14. Cherniha, R. A constructive method for construction of new exact solutions of nonlinear evolution equations.
Rep. Math. Phys. 1996, 38, 301–312.

15. Cherniha, R. New non-Lie ansatze and exact solutions of nonlinear reaction-diffusion-convection equations.
J. Phys. A Math. Gen. 1998, 31, 8179–8198.

16. Cherniha, R.; King, J.R. Non-linear reaction-diffusion systems with variable diffusivities: Lie symmetries,
ansatze and exact solutions. J. Math. Anal. Appl. 2005, 308, 11–35.

17. Cherniha, R.; Myroniuk, L. New exact solutions of a nonlinear cross-diffusion system. J. Phys. A Math. Theor.
2008, 41, 395204.

18. Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subapaces of Nonlinear Partial Differential
Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007.

19. Olver, P.J. Direct reduction and differential constraints. Proc. Math. Phys. Sci. 1994, 444, 509–523.
20. Kunzinger, M.; Popovych, R.O. Generalized conditional symmetries of evolution equaitons. J. Math.

Anal. Appl. 2011, 379, 444–460.
21. Wang, J.P.; Ji, L.N. Conditional Lie–Bäcklund symmetry, second-order differential constraint and direct

reduction of diffusion systems. J. Math. Anal. Appl. 2015, 427, 1101–1118.
22. Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reduction of evolution equation. J. Phys. A Math. Gen.

1995, 28, 3841–3850.
23. Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett.

1994, 72, 3293–3296.
24. Fokas, A.S.; Liu, Q.M. Generalized conditional symmetries and exact solutions of non-integrable equations.

Theor. Math. Phys. 1994, 99, 571–582.
25. Liu, Q.M.; Fokas, A.S. Exact interaction of solitary waves for certain non-integrable equations. J. Math. Phys.

1996, 37, 324–345.
26. Liu, Q.M. Exact solutions to nonlinear equations with quadratic nonlinearity. J. Phys. A Math. Gen. 2000, 34,

5083–5088.

112



Symmetry 2016, 8, 157

27. Sergyeyev, A. Constructing conditionally integrable evolution systems in (1 + 1)-dimensions:
A generalization of invariant modules approach. J. Phys. A Math. Gen. 2002, 35, 7563–7660.

28. Ji, L.N.; Qu, C.Z.; Shen, S.F. Conditional Lie–Bäcklund symmetry of evolution system and application for
reaction-diffusion system. Stud. Appl. Math. 2014, 133, 118–149.

29. Qu, C.Z. Exact solutions to nonlinear diffusion equations obtained by generalized conditional symmetry.
IMA J. Appl. Math. 1999, 62, 283–302.

30. Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear
diffusion-convection equation with a nonlinear source. Stud. Appl. Math. 1997, 99, 107–136.

31. Qu, C.Z.; Ji, L.N.; Wang, L.Z. Conditional Lie–Bäcklund symmetries and sign-invarints to quasi-linear
diffusion equations. Stud. Appl. Math. 2007, 119, 355–391.

32. Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and solutions to (n + 1)-dimensional nonlinear
diffusion equations. J. Math. Phys. 2007, 484, 103509.

33. Ji, L.N.; Qu, C.Z.; Ye, Y.J. Solutions and symmetry reductions of the n-dimensional nonlinear
convection-diffusion equations. IMA J. Appl. Math. 2010, 75, 17–55.

34. Qu, C.Z.; Zhang, S.L.; Liu, R.C. Separation of vairables and exact solutions to quasilinear diffusion equations
with nonlinear source. Phys. D 2000, 144, 97–123.

35. Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion
equations. IMA J. Appl. Math. 2011, 76, 610–632.

36. Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion
equaitons with convection and source. Stud. Appl. Math. 2013, 131, 266–301.

37. Qu, C.Z.; Ji, L.N. Invariant subspaces and condtioanl Lie–Bäcklund symmetries of inhomogeneous nonlinear
diffusion equations. Sci. China Math. 2013, 56, 2187–2203.

38. Qu, C.Z.; Zhu, C.R. Classification of coupled systems with two-component nonlinear diffusion
equations by the invariant subspace method. J. Phys. A Math. Theor. 2009, 42, 475201,
doi:10.1088/1751-8113/42/47/475201.

39. Zhu, C.R.; Qu, C.Z. Maximal dimension of invariant subspaces admitted by nonlinear vector differential
operators. J. Math. Phys. 2011, 52, 043507, doi: 10.1063/1.3574534.

40. Kaptsov, O.V. Linear determining equations for differential constraints. Sb. Math. 1998, 189, 1839–1854.
41. Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations.

J. Phys. A Math. Gen. 2003, 36, 1401–1414.
42. Ji, L.N. Conditional Lie–Bäcklund symmetries and differential constraints for inhomogeneous nonlinear

diffusion equations due to linear determining equations. J. Math. Anal. Appl. 2016, 440, 286–299.
43. Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion systems

with power diffusivities. J. Phys. A Math. Theor. 2008, 41, 185208, doi:10.1088/1751-8113/41/18/185208.
44. Cherniha, R. Conditional symmetries for systems of PDEs: New definitions and their applications for

reaction-diffusion systems. J. Phys. A Math. Theor. 2010, 43, 405207, doi:10.1088/1751-8113/43/40/405207.
45. Cherniha, R.; Davydovych, V. Conditional symmetries and exact solutions of nonlinear reaction-diffusion

systems with non-constant diffusibities. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3177–3188.
46. Cherniha, R.; Davydovych, V. Nonlinear reaction-diffusion systems with a non-constant diffusivities:

Conditional symmetries in no-go case. Appl. Math. Comput. 2015, 268, 23–34.
47. Andreev, V.K.; Kaptsov, O.V.; Pukhnachev, V.V.; Rodionov, A.A. Applications of Group-Theoretic Methods in

Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998.
48. King, J.R. Exact results for the nonlinear diffusion equations ut = (u−4/3ux)x and ut = (u−2/3ux)x. J. Phys.

A Math. Gen. 1991, 24, 5721–5745.
49. King, J.R. Exact polynomial solutions to some nonlinear diffusion equations. Phys. D 1993, 64, 35–65.
50. King, J.R. Exact multidimensional solutions to some nonlinear diffusion equations. Q. J. Mech. Appl. Math.

1993, 46, 419–436.

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

113



symmetryS S

Article

Invariant Subspaces of the Two-Dimensional
Nonlinear Evolution Equations

Chunrong Zhu 1 and Changzheng Qu 2,*
1 College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China;

zcr2009@mail.ahnu.edu.cn
2 Center for Nonlinear Studies, Ningbo University, Ningbo 315211, Zhejiang, China
* Correspondence: quchangzheng@nbu.edu.cn; Tel.: +86-574-87609976

Academic Editor: Roman M. Cherniha
Received: 1 September 2016; Accepted: 7 November 2016; Published: 15 November 2016
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point symmetry methods are used to construct invariant subspaces of two-dimensional differential
operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant
subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of
two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace
method in one-dimensional space combined with the Lie symmetry reduction method and the change
of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
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1. Introduction

The invariant subspace method is an effective one to perform reductions of nonlinear partial
differential equations (PDEs) to finite-dimensional dynamical systems. In [1], Galaktionov and
Svirshchevskii provide a systematic account of this approach and its various applications for a large
variety of nonlinear PDEs. They also addressed some fundamental and open questions on the invariant
subspaces of nonlinear PDEs. Many interesting results were obtained in this book. In [2–20], the extensions
of the invariant subspace method and various applications to other nonlinear PDEs were also discussed.
It is noticed that a large number of exact solutions, such as N-solitons of integrable equations, similarity
solutions of nonlinear evolution equations and the generalized functional separable solutions to nonlinear
PDEs, can be recovered by the invariant subspace methods [1,21–31]. In the one-dimensional space
case, the invariant subspace method can be implemented by the conditional Lie–Bäcklund symmetry
introduced independently by Zhdanov [32] and Fokas-Liu [33]. A key point for the invariant subspace
approach is the estimate of maximal dimension of the invariant subspaces [1,5,6,15,16]. It was shown
in [1,5] that for k-th order one-dimensional nonlinear operator of the form:

F[u] = F(x, u, ux, · · · , u(k))

where u(k) = ∂ku/∂xk, the dimension of their invariant subspaces is bounded by 2k + 1. Such an
estimate can be extended to the k-th order m-component nonlinear vector operators:

�F[�u] = �F(x,�u,�ux, · · · ,�u(k)). (1)

Symmetry 2016, 8, 128 114 www.mdpi.com/journal/symmetry
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In [15], we proved that the maximal dimension of the invariant subspaces for operator (1) is
bounded by 2mk+ 1. This enables us to determine the maximal dimension preliminarily of the invariant
subspaces of the nonlinear evolution equations. In contrast with the one-dimensional space case, only
very limited results on the invariant subspaces of multi-dimensional PDEs were obtained. These results
were obtained mostly by the ansatz-based method, and there are no systematic approaches to obtain
these results. As mentioned in [1], the general problem of finding invariant subspaces for a wide class
of nonlinear differential operators in the multi-dimensional case is not completely solved. A open
question still remains: what is the maximal dimension of the two-dimensional k-th order scalar
nonlinear operators of the form:

F[u] = F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)),

where u(k) = ∂r+su/∂xr∂ys, r + s = k denotes all k-th order derivatives with respect to x and y?
It is of great interest to develop the invariant subspace method to study the multi-dimensional

nonlinear evolution equations. Indeed, there are a number of examples whose exact solutions can
be derived from the invariant subspace method; please refer to [1,2] for more examples on invariant
subspaces of the 2 + 1-dimensional nonlinear evolution equations. For instance, it is discovered that
the operators:

J[u] = uΔ2u − |∇u|2, (x, y) ∈ R
2

and:

Q[u] = uΔ2
2u − (Δ2u)2 + 2 � u � Δ2u, (x, y) ∈ R

2

with Δ2 = ∂2
x + ∂2

y admit the following invariant subspaces:

W6 = L{1, x, y, x2, y2, xy},

W6 = L{1, cosh x, cos y, cosh(2x), cos(2y), cosh x cos y},

W91 = L{1, x, y, x2 + y2, xy, xr2, yr2, r4}, r2 = x2 + y2,

W92 = L{1, cosh(2x), sinh(2x), cos(2y), sin(2y), cosh x cos y, sinh x cos y, cosh x sin y, sinh x sin y}.

It was proven in [1] that the quadratic operator defined in R
N :

K[u] = α(Δnu)2 + βuΔnu + γ|∇u|2, x ∈ R
N

admits the invariant subspaces:

Wr
2 = L{1, |x|2, },

Wq
N+1 = L{1, x2

1, x2
2, · · · , x2

N},

Wq
n = L{1, xixj, 1 ≤ i, j ≤ N}, n =

N(N + 1)
2

+ 1,

Wlin
N = L{x1, x2, · · · , xN}

and the direct sum of subspaces:

Wlin
N

⊕
Wq

n .

The purpose of this paper is to develop symmetry-related method to study invariant subspaces
of nonlinear evolution equations in the two- or multi-dimensional case. The outline of this paper is
as follows. In Section 2, we first give two direct extensions of the concept of invariant subspace in
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R
2. Then, the algorithm of this approach will be shown by looking for the invariant subspaces of

the operator:

A[u] ≡ α(Δ2u)2 + γuΔ2u + δ|∇u|2 + εu2 in R
2,

where α, γ, δ and ε are constants, and α2 + γ2 + δ2 + ε2 �= 0. In Section 3, the general description of
the changes of variables for the two-dimensional invariant subspace method is given, which can be
regarded as an extension to the invariant subspace method in the one-dimensional case. Since the
two-dimensional nonlinear evolution equations can be reduced to one-dimensional equations by the
Lie symmetry method, this fact combined with the invariant subspace method in the one-dimensional
case will be used to obtain invariant subspaces of the corresponding two-dimensional nonlinear
operators, which will be discussed in Section 4. As an example, we obtain many new invariant
subspaces admitted by a quadratic differential operator J[u]. Section 5 is the concluding remarks on
this work.

2. Direct Extensions of Invariant Subspaces

2.1. Direct Extensions in R
2

Let us first give a brief account of the invariant subspace method as presented in [1]. Consider the
general evolution equation:

ut = F(x, u, ux, uxx, · · · , u(k)) ≡ F[u], x ∈ R (2)

where F is a k-th-order ordinary differential operator with respect to the variable x and F(·) is a given
sufficiently smooth function of the indicated variables. Let { fi(x), i = 1, · · · , n} be a finite set of
n � 1 linearly independent functions, and Wx

n denotes their linear span Wx
n = L{ f1(x), · · · , fn(x)}.

The subspace Wx
n is said to be invariant under the given operator F, if F[Wx

n ] ⊆ Wx
n , and then operator

F is said to preserve or admit Wx
n , which means:

F[
n

∑
i=1

Ci fi(x)] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x)

for any C(t) = (C1(t), · · · , Cn(t)) ∈ R
n, where Ψi are the expansion coefficients of F[u] ∈ Wx

n in the
basis { fi}. It follows that if the linear subspace Wx

n is invariant with respect to F, then Equation (2) has
solutions of the form:

u(t, x) =
n

∑
i=1

Ci(t) fi(x),

where Ci(t) satisfy the n-dimensional dynamical system:

C′
i = Ψi(C1, · · · , Cn), i = 1, · · · , n.

Moreover, assume that the invariant subspace Wx
n is defined as the space of solutions of the linear

n-th-order ODE:

Lx[v] ≡ dnv
dxn + an−1(x)

dn−1v
dxn−1 + · · ·+ a1(x)

dv
dx

+ a0(x)v = 0. (3)

If the operator F[u] admits the invariant subspace Wx
n , then the invariant condition with respect

to F takes the form:
Lx[F[u]]|[H] ≡ 0, (4)
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where [H] denotes the equation Lx[u] = 0 and its differential consequences with respect to x.
The invariant condition leads to the following theorem on the maximal dimension of an invariant
subspace preserved by the operator F.

Theorem 1. [1] If a linear subspace Wx
n determined by the space of solutions of linear Equation (3) is invariant

under a nonlinear differential operator F of order k, then:

n � 2k + 1.

It is inferred from Equation (4) and the invariant criteria for conditional Lie–Bäcklund
symmetry [32,33] that Equation (2) admits the conditional Lie–Bäcklund symmetry:

σ = Lx[u].

To look for the exact solutions of the form:

u(t, x, y) = ∑
i,j

Cij(t) fi(x)gj(y) (5)

of the two-dimensional nonlinear evolution equations:

ut = F[u] ≡ F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)), (6)

we now introduce the linear subspace:

Wxy
nm = L{ f1(x)g1(y), · · · , fn(x)g1(y), · · · , f1(x)gm(y), · · · , fn(x)gm(y)}

≡ {∑
i,j

Cij fi(x)gj(y), ∀(C11, · · · , C1m, · · · , Cn1, · · · , Cnm) ∈ R
nm}

as an extension to Wx
n . Assume that F[u] = F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)) is a k-th-order

differential operator with respect to the variables x and y, and {gj(y), j = 1, · · · , m} is a finite
set of m � 1 linearly independent functions of variable y. It is easy to see that the space
{ fi(x)gj(y), i = 1, · · · , n, j = 1, · · · , m} is also a set of linearly independent functions. Let Wy

m
denote the linear span of the set {gj(y), j = 1, · · · , m}, i.e., Wy

m = L{g1(y), · · · , gm(y)}. Similarly, the
space Wy

m is defined as the space of solutions of the linear m-th-order ODE:

Ly[w] ≡ dmw
dym + bm−1(y)

dm−1w
dym−1 + · · ·+ b1(y)

dw
dy

+ b0(y)w = 0. (7)

If u ∈ Wxy
nm, then there exists a vector (C11(t), · · · , C1m(t), · · · , Cn1(t), · · · , Cnm(t)) ∈ R

nm,
such that:

u = ∑
i,j

Cij(t) fi(x)gj(y). (8)

We rewrite u as:

u =
n

∑
i=1

(
m

∑
j=1

(Cij(t)gj(y)) fi(x) =
m

∑
j=1

(
n

∑
i=1

(Cij(t) fi(x))gj(y),

which means that:
Lx[u] = 0, and Ly[u] = 0. (9)
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On the other hand, if the function u = u(t, x, y) satisfies the condition (9), then u has the form (8).
Indeed, Lx[u] = 0 means that there exists a vector function (C1(t, y), · · · , Cn(t, y)), such that:

u =
n

∑
i=1

Ci(t, y) fi(x),

while Ly[u] = 0 means that:

Ly[u] = Ly[
n

∑
i=1

Ci(t, y) fi(x)] =
n

∑
i=1

fi(x)Ly[Ci(t, y)] = 0.

Since fi(x) (i = 1, · · · , n) are linearly independent, the above equation leads to:

Ly[Ci(t, y)] = 0, i = 1, · · · , n.

Hence, there exists a set of vectors (Ci1(t), · · · , Cim(t)) ∈ R
m, such that:

Ci(t, y) =
m

∑
j=1

Cij(t)gj(y), i = 1, · · · , n.

As above, we are able to obtain the invariance condition of the subspace Wxy
nm with respect to

F, i.e., F[Wxy
nm] ⊆ Wxy

nm, which takes the form:

Lx[F[u]]|[Hx ]∩[Hy ] ≡ 0, and Ly[F[u]]|[Hx ]∩[Hy ] ≡ 0, (10)

where [Hx] ∩ [Hy] denotes Lx[u] = 0, Ly[u] = 0, and their differential consequences with respect to
x and y. If F[u] admits the invariant subspace Wxy

nm, then Equation (6) has solutions (5) and can be
reduced to an nm-dimensional dynamic system.

We next consider a special case of the function (5). If 1 ∈ Wx
n ∩ Wy

m, then a0(x) = 0 in (3) and
b0(y) = 0 in (7). Without loss of generality, we assume f1(x) = 1 and g1(y) = 1. Note that the function
of the form:

u(t, x, y) = C1(t) +
n

∑
i=2

Ci(t) fi(x) +
m

∑
j=2

Bj(t)gj(y) (11)

is a special case of (5), which is a separable function with respect to spacial variables x and y. We denote:

Wxy
n+m−1 = L{1, f2(x), · · · , fn(x), g2(y), · · · , gm(y)}

≡
{

C1(t) +
n

∑
i=2

Ci(t) fi(x) +
m

∑
j=2

Bj(t)gj(y)

}
,

which is a linear span of the set {1, fi(x), gj(y), i = 2, · · · , n, j = 2, · · · , m}. Clearly, if u ∈ Wxy
n+m−1, then:

Lx[u] = 0, Ly[u] = 0, and uxy = 0. (12)

On the other hand, if uxy = 0, then the function u has the form:

u = f (t, x) + g(t, y).

From Lx[u] = 0 (notice that a0(x) = 0), we obtain:

Lx[ f (t, x) + g(t, y)] = Lx[ f (t, x)] = 0,
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which means that there exists a vector (A1(t), C2(t), · · · , Cn(t)), such that:

f (t, x) = A1(t) +
n

∑
i=2

Ci(t) fi(x).

Similarly, Ly[u] = 0 leads to:

g(t, y) = B1(t) +
m

∑
j=2

Bj(t)gj(y),

where Bj(j = 1, · · · , m) are functions of t. We denote C1 = A1 + B1. Hence, u ∈ Wxy
n+m−1 if and only if

u satisfies the condition (12). Then, we can obtain the invariance condition of the subspace Wxy
n+m−1

with respect to F, i.e., F[Wxy
n+m−1] ⊆ Wxy

n+m−1, which takes the form:

Lx[F[u]]|[H] ≡ 0, Ly[F[u]]|[H] ≡ 0, and (F[u])xy|[H] ≡ 0. (13)

where [H] denotes the set {Lx[u] = 0} ∩ {Ly[u] = 0} ∩ {uxy = 0}, and their differential consequences
with respect to x and y. In this case, Equation (6) has the solution of the form (11) and can be reduced
to an (n + m − 1)-dimensional dynamic system.

Assume that the k-th-order differential operator F[u], including the term ∂ku/∂xk, admits the
invariant subspace Wxy

nm (or Wxy
n+m−1), and note that the operator F[u] can also be regarded as a

differential operator only with respect to x; the first identity in the condition (10) (or (13)) leads to the
estimate n � 2k + 1. The same estimate is also true for m.

Remark 1. It is noted that the Wxy
mn and Wxy

n+m−1 demonstrate two special forms of invariant subspaces of the
operator F[u]. The general form can be introduced as below, which will be used in the following sections.

Let { fi(x, y), i = 1, · · · , n} be a finite set of n � 1 linearly independent functions, and Wn denote
their linear span Wn = L{ f1(x, y), · · · , fn(x, y)}. The subspace Wn is said to be invariant under the
given operator F[u], if F[Wn] ⊆ Wn, and then, operator F[u] is said to preserve or admit Wn.

2.2. Invariant Subspaces of a Quadratic Operator in R
2

Consider the quadratic operator:

A[u] ≡ α(Δ2u)2 + γuΔ2u + δ|∇u|2 + εu2.

We will look for the invariant subspaces Wxy
n+m−1 and Wxy

nm of A[u]. Note that the operator A[u]
is symmetric with respect to x and y; we assume that n = m. The cases of n = 2, 3, 4, 5 will be
considered respectively. In the rest of this paper, the following notations will be used:

ur0 =
∂ru
∂xr , u0s =

∂su
∂ys , urs =

∂r+su
∂xr∂ys , r, s = 1, 2, · · · .

2.2.1. The Space Wxy
n+n−1

We first consider the case of n = 3. In this case, we look for the invariant subspaces Wxy
3+3−1 of the

operator A[u], which are determined by the following ODEs:

L3
x[v] ≡

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0, L3
y[w] ≡ d3w

dy3 + b2
d2w
dy2 + b1

dw
dy

= 0. (14)
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Here and hereafter, ai, bi are constants. The invariant conditions take the form:

G1 = L3
x[A[u]]|[H] ≡ 0, G2 = L3

y[A[u]]|[H] ≡ 0, and G3 = (A[u])xy|[H] ≡ 0, (15)

where [H] denotes the set {L3
x[u] = 0} ∩ {L3

y[u] = 0} ∩ {uxy = 0} and their differential consequences
with respect to x and y.

Substituting A[u] into (15), we obtain:

G1 =(−4a2δ − 4a3
2α − 3a2γ + 6a1αa2)u2

20

+ (6ε − 6a1γ − 8a2
2αa1 + a2

2γ + 6a2
1α − 6a1δ)u10u20 + (2a2ε + a2γa1 − 4a2αa2

1)u
2
10,

G2 =(−4b2δ − 4b3
2α − 3b2γ + 6b1αb2)u2

02

+ (6ε − 6b1γ − 8b2
2αb1 + b2

2γ + 6b2
1α − 6b1δ)u01u02 + (2b2ε − 4b2αb2

1 + b2γb1)u2
01,

G3 =2αb2a2u02u20 + (2αb1a2 − γa2)u01u20 + (−γb2 + 2αb2a1)u10u02

+ (−γb1 − γa1 + 2αb1a1 + 2ε)u01u10.

In view of the coefficients in Gi (i = 1, 2, 3), we deduce a system of ai, bi, α, γ, δ and ε, which
includes ten equations. Solving the resulting system, we arrive at the following results.

Proposition 1. Assume that the subspaces Wxy
3+3−1 are determined by the system (14). Then, the quadratic

operators A[u] in R
2 preserving the invariant subspaces Wxy

3+3−1 determined by uxy = 0 and the following
constraints are presented as below, where α, γ, δ, ε, ai, bi(i = 1, 2) are arbitrary constants.

(1) A[u] = γ[uΔ2u − |∇u|2], with:

L3
x[v] =

d3v
dx3 − b1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;

(2) A[u] = α[(Δ2u)2 − b2
2|∇u|2], with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b2

d2w
dy2 = 0;

(3) A[u] = α[(Δ2u)2 − 8
9 b2

2uΔ2u + 16
81 b4

2u2], with:

L3
x[v] =

d3v
dx3 − 4

9
b2

2
dv
dx

= 0, L3
y[w] =

d3w
dy3 + b2

d2w
dy2 +

2
9

b2
2

dw
dy

= 0;

(4) A[u] = γ[(a1 + b1)(Δ2u)2 + 4a1b1uΔ2u + (a1 − b1)
2|∇u|2 + a1b1(a1 + b1)u2], with:

L3
x[v] =

d3v
dx3 + a1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;

(5) A[u] = α[(Δ2u)2 + b1|∇u|2], with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b1

dw
dy

= 0;

(6) A[u] = α(Δ2u)2 + γuΔ2u + (γb1 − αb2
1)u

2, with:

L3
x[v] =

d3v
dx3 + b1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;
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(7) A[u] = α(Δ2u)2 + γuΔ2u + δ|∇u|2, with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 = 0;

Solving the systems (14) yields the corresponding invariant subspaces. Here, we just present the
invariant subspaces in the fourth case. The invariant subspaces for the other cases can be obtained in a
similar manner. In the fourth case, we get the following invariant subspaces:

Wxy
3+3−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L{1, cos(
√

a1x), sin(
√

a1x), cos(
√

b1y), sin(
√

b1y)}, a1 > 0, b1 > 0,
L{1, cos(

√
a1x), sin(

√
a1x), cosh(

√−b1y), sinh(
√−b1y)}, a1 > 0, b1 < 0,

L{1, cos(
√

a1x), sin(
√

a1x), y, y2)}, a1 > 0, b1 = 0,
L{1, cosh(

√−a1x), sinh(
√−a1x), cosh(

√−b1y), sinh(−√−b1y)}, a1 < 0, b1 < 0,
L{1, cosh(

√−a1x), sinh(
√−a1x), y, y2)}, a1 < 0, b1 = 0,

L{1, x, x2, y, y2}, a1 = 0, b1 = 0.

In the case of n = 2, we assume that the subspace Wxy
2+2−1 is determined by the system:

L2
x[v] ≡

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] ≡ d2w

dy2 + b1
dw
dy

= 0. (16)

By the similar calculation, we obtain the following results.

Proposition 2. Any operators A[u] that admit the subspaces Wxy
2+2−1 determined by the system (16)

are presented as follows:

(1) A[u] = γ[(a2
1 + b2

1)(Δ2u)2 − 4a2
1b2

1uΔ2u − (a2
1 − b2

1)
2|∇u|2 + a2

1b2
1(a2

1 + b2
1)u

2], with:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(2) A[u] = α[(Δ2u)2 − b2
1|∇u|2], with:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

= 0;

(3) A[u] = α(Δ2u)2 + γuΔ2u − (αb2
1 + γ)b2

1u2, with:

L2
x[v] =

d2v
dx2 + b1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(4) A[u] = α(Δ2u)2 + γuΔ2u − (αb2
1 + γ)b2

1u2, with:

L2
x[v] =

d2v
dx2 − b1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(5) A[u] = α(Δ2u)2 + γuΔ2u + δ|∇u|2, with:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 = 0;
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In the case of n = 4, we consider the invariant subspaces Wxy
4+4−1 admitted by the operator A[u],

which are determined by the following ODEs:

L4
x[v] ≡

d4v
dx4 + a3

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0,

L4
y[w] ≡ d4w

dy4 + b3
d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0.
(17)

By the similar calculation as that in the case of n = 3, the invariant condition:

(A[u])xy|[H] = 2αu03u30 + γu10u03 + γu01u30 + 2εu10u01 ≡ 0

leads to α = γ = ε = 0, where [H] denotes the set {L4
x[u] = 0} ∩ {L4

y[u] = 0} ∩ {uxy = 0}, and their
differential consequences with respect to x and y. The invariant condition:

L4
x[A[u]]|[H] ≡ 0, L4

y[A[u]]|[H] ≡ 0

yields δ = 0, which shows that there are no operators A[u] preserving the invariant subspaces
determined by (17). Similarly, we are able to show that there are no operators A[u] to preserve the
subspace Wxy

5+5−1 defined by the following ODEs:

L5
x[v] ≡

d5v
dx5 + a4

d4v
dx4 + a3

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0,

L5
y[w] ≡ d5w

dy5 + b4
d4w
dy4 + b3

d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0.

2.2.2. The Space Wxy
nn

From the invariant condition (10), a similar calculation as above leads to the following results.

Proposition 3. There are no operators A[u] admitting the invariant subspaces Wxy
nn determined by the system:

Ln
x [v] ≡

dnv
dxn + an−1

dn−1v
dxn−1 + · · ·+ a1

dv
dx

+ a0v = 0,

Ln
y [w] ≡ dnw

dyn + bn−1
dn−1w
dyn−1 + · · ·+ b1

dw
dy

+ b0w = 0,
(18)

for n = 3, 4, 5. The operators A[u], which preserve the invariant subspaces Wxy
22 determined by the system (18)

for n = 2, are given as follows:

(1) A[u] = α(Δ2u)2 + γuΔ2u − (a0 + b0)[α(a0 + b0)− γ]u2, with:

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2v
dy2 + b0v = 0;

(2) A[u] = α[(Δ2u)2 − b2
1(2uΔ2u + |∇u|2) + 2b4

1u2], with:

L2
x[v] =

d2v
dx2 + b1

dv
dx

= 0, L2
y[w] =

d2v
dy2 + b1

dw
dy

= 0;

(3) A[u] = α[(Δ2u)2 − b2
1(2uΔ2u + |∇u|2) + 2b4

1u2], with:

L2
x[v] =

d2v
dx2 − b1

dv
dx

= 0, L2
y[w] =

d2v
dy2 + b1

dw
dy

= 0.
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The invariant spaces of the following two nonlinear equations can be constructed in a similar manner.

Example 1. Consider the Jacobian:

J(u, Δu) = uxΔ2uy − uyΔ2ux ≡ ux(uxxy + uyyy)− uy(uxxx + uxyy)

which is the nonlinear term in two-dimensional Rossby waves equation [34]:

Δut + J(u, Δu) + βux = 0.

It preserves the following invariant subspaces:

(1) Wxy
2+2−1, determined by the system:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0, with a1b1(a2
1 − b2

1) = 0;

(2) Wxy
3+3−1, determined by any of the following systems:

L3
x[v] =

d3v
dx3 + a1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + a1

dw
dy

= 0;

L3
x[v] =

d3v
dx3 − b2

2
dv
dx

= 0, L3
y[w] =

d3w
dy3 + b2

d2w
dy2 = 0;

L3
x[v] =

d3v
dx3 ± a2

d2v
dx2 = 0, L3

y[w] =
d3w
dy3 + a2

d2w
dy2 = 0;

(3) Wxy
4+4−1, determined by the system:

L4
x[v] =

d4v
dx4 + a2

d2v
dx2 = 0, L4

y[w] =
d4w
dy4 + a2

d2w
dy2 = 0;

(4) Wxy
22 , determined by any of the following systems:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

= 0;

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2w
dy2 + b0w = 0.

Example 2. The invariant subspaces W3 = L{1, x2, y2} and W6 = L{1, x2, y2, x2y2, x4, y4} admitted by
Monge–Ampère operator M[u] = uxxuyy − u2

xy were given in [1]. Here, we are looking for more invariant
subspaces of this operator. Indeed, it still admits the following invariant subspaces:

(1) Wxy
2+2−1, determined by the system:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0, with a1b1 = 0;

(2) Wxy
3+3−1, determined by any of the following systems:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0;
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(3) Wxy
22 , determined by any of the following systems:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

+ b0w = 0, with b0b1 = 0;

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2w
dy2 + b0w = 0;

(4) Wxy
33 = L{1, x, x2, y, y2, xy, x2y, xy2, x2y2}, determined by the system:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 = 0.

3. Invariant Subspaces under the General Change of Variables

In King’s papers [2,12], the formal solution of two-dimensional nonlinear diffusion equations:

C1(t) + C2(t)x + C3(t)y + C4(t)x2 + C5(t)xy + C6(t)y2 (19)

was proposed as a non-group-invariant exact solution, which belongs to the subspace
W6 = L{1, x, y, x2, xy, y2}. The solution:

U =C1(t) + C2(t)x + C3(t)x2 + C4(t)y + C5(t)y2 + C6(t)xy

+ C7(t)x(x2 + y2) + C8(t)y(x2 + y2) + C9(t)(x2 + y2)2 (20)

of the equation:
Ut = UΔ2U − |∇U|2 ≡ J[U], (x, y) ∈ R

2, (21)

was presented as a generalization of solution (19). The derivation was based on the change of variables.
King [2] discovered that Equation (21) was invariant under the following change of variables:

U(1) = (x2 + y2)−2U, x(1) =
x

x2 + y2 , y(1) =
y

x2 + y2 , t(1) = t, (22)

which means that:

Ut = J[U] −→ U(1)
t(1)

= J[U(1)], i.e., Ut = (x2 + y2)2 J[U(1)].

Hence, J[U] = (x2 + y2)2 J[U(1)]. On the other hand, since the operator J[U(1)] preserves the
invariant subspace:

W(1)
6 = L{1, x(1), (x(1))2, y(1), (y(1))2, x(1)y(1)}

≡ L
{

1,
x

x2 + y2 ,
x2

(x2 + y2)2 ,
y

x2 + y2 ,
y2

(x2 + y2)2 ,
xy

(x2 + y2)2

}
,

then the operator J[U] preserves the corresponding subspace:

Ŵ6 = L{x2, y2, xy, x(x2 + y2), y(x2 + y2), (x2 + y2)2}.

In [1], Galaktionov and Svirshchevskii used the Lie symmetry of Equation (21) to give the invariant
transformations of variables as (21). Then, they applied the invariant transformations and invariant
subspaces of the corresponding one-dimensional equation of (21), i.e., Ut = UUxx − U2

x , to obtain the
invariant subspaces W91 and W92. In general, we have the following result.
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Proposition 4. Given a two-dimensional nonlinear differential operator F[u] with respect to the variables x
and y, if the nonlinear evolution Equation (6) is invariant under the transformation:

u(1) = r(x, y)u, x(1) = p(x, y), y(1) = q(x, y), t(1) = t, (23)

and operator F[u] admits the linear space Wn = L{ f1(x, y), · · · , fn(x, y)}, then F[u] also admits the
linear space:

Ŵn = L{ f1(p(x, y), q(x, y))/r(x, y), · · · , fn(p(x, y), q(x, y))/r(x, y)}.

Proof: Equation (6) is invariant under the transformation (23), which means u(1)
t(1)

= F[u(1)]. On the

other hand, u(1)
t(1)

= r(x, y)ut. Hence, F[u(1)] = r(x, y)F[u]. Assume that:

u(1) =
n

∑
i=1

Ci fi(x(1), y(1)),

where Ci(i = 1, · · · , n) are arbitrary functions of t. Correspondingly,

u =
1

r(x, y)

n

∑
i=1

Ci fi(x(1), y(1)).

F[u(1)] admits the subspace W(1)
n = L{ f1(x(1), y(1)), · · · , fn(x(1), y(1))}, which means that there

exist functions Ψi(i = 1, · · · , n), such that:

F[u(1)] = F[
n

∑
i=1

Ci fi(x(1), y(1))] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x(1), y(1)),

i.e.,

r(x, y)F[u] = r(x, y)F[
1

r(x, y)

n

∑
i=1

Ci fi(x(1), y(1))] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x(1), y(1)).

Then, F[u] admits the subspace:

Ŵn = L{ f1(p(x, y), q(x, y))/r(x, y), · · · , fn(p(x, y), q(x, y))/r(x, y)}.

This completes the proof of the proposition. �

Example 3. In Proposition 1, we find that the operator J[U] admits the invariant subspaces:

W51 = L{1, cos(b1x), sin(b1x), cosh(b1y), sinh(b1y)} and.

Hence, by the changes of variables (22), the following subspace:

Ŵxy
3+3−1 = L

{
(x2 + y2)2, (x2 + y2)2 cos(b1

x
x2 + y2 ), (x2 + y2)2 sin(b1

x
x2 + y2 ),

(x2 + y2)2 cosh(b1
y

x2 + y2 ), (x2 + y2)2 sinh(b1
y

x2 + y2 )
}

is invariant under J[U].
Note that the transformation (22) is a special one, under which Equation (21) is invariant. We can

introduce a general transformation. As for the one-dimensional case [1]; two two-dimensional operators
F[u] and F̃[ũ] are said to be equivalent, if there exists the change of variables:

u = r(x, y)ũ, x̃ = p(x, y), ỹ = q(x, y)
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such that:
F̃[ũ] = F[u]/r(x, y).

It implies that if the operator F[u] preserves the invariant subspace Wn = L{ f1(x, y), · · · , fn(x, y)},
then the equivalent operator F̃[ũ] preserves the invariant subspace W̃n = L{ f̃1(x̃, ỹ), · · · , f̃n(x̃, ỹ)},
where f̃i(x̃, ỹ) = fi(x(x̃, ỹ), y(x̃, ỹ))/r(x(x̃, ỹ), y(x̃, ỹ))(i = 1, · · · , n).

4. Invariant Subspace in R and Lie’s Classical Symmetries

The Lie theory of the symmetry group plays an important role for differential equations, which
is a useful method to explore various properties and obtain exact solutions of nonlinear PDEs.
The approach and its several extensions are illustrated in the books [35,36] and the papers [32,33,37,38].
One of the multiple applications of the Lie symmetry method is the similarity reduction of PDEs
to ones with fewer variables. As usual, if an n-dimensional PDE admits one symmetry, then it can
be reduced to an n − 1-dimensional PDE equation and even to a ODE. It has been known that
the invariant subspaces of one-dimensional differential operator were used to construct solutions
of multi-dimensional nonlinear evolution equations of the radially symmetry form, which are
one-dimensional evolution equations. For the two-dimensional case, the radially-symmetric solution
can be regarded as the rotational-invariant solution. Accordingly, more invariant subspaces of
two-dimensional operators can be obtained by combining the Lie symmetry method with the invariant
subspaces of one-dimensional operators.

Example 4. Consider the invariant subspaces preserved by the quadratic operator J[U]. The equation:

ut = ∇× (u−1∇u) = (u−1ux)x + (u−1uy)y

can be changed into Equation (21) by the transformation u = 1/U. Indeed, for u > 0, the above equation can be
rewritten as:

ut = � ln u, (24)

which is a well-known equation for describing the Ricci flow in a two-dimensional space [39]. Lie’s classical
symmetries of Equation (24) were computed in [40–45]. Indeed, Equation (24) admits the Lie group of symmetry
with infinitesimal generator:

X = ξ∂x + η∂y + τ∂t + φ∂u,

where τ = k1 + k2t, ξ = ξ(x, y), η = η(x, y) and ξ, η and φ satisfy the following constraints:

φ = (2k2 − 2ξx)u, ξx − ηy = 0, ηx + ξy = 0. (25)

Clearly, the function ξ = ξ(x, y) satisfies the two-dimensional Laplace equation:

ξxx + ξyy = 0.

Solving Equation (25), we obtain the following infinitesimal generators admitted by Equation (24):

X1 = ∂x + ∂y, X2 = y∂x − x∂y, X3 = x∂x + y∂y − 2u∂u

X4 = xy∂x +
1
2
(y2 − x2)∂y − 2yu∂u, X5 =

1
2
(x2 − y2)∂x + xy∂y − 2xu∂u,

X6 = sinh(ax) sin(ay)∂x − cosh(ax) cos(ay)∂y − 2a cosh(ax) sin(ay)u∂u,

X7 = sinh(ax) cos(ay)∂x + cosh(ax) sin(ay)∂y − 2a cosh(ax) cos(ay)u∂u,

X8 = sinh(ay) sin(ax)∂x + cosh(ay) cos(ax)∂y − 2a sinh(ay) cos(ax)u∂u,

X9 = sinh(ay) cos(ax)∂x − cosh(ay) sin(ax)∂y + 2a sinh(ay) sin(ax)u∂u, etc.
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Here, a is a non-zero arbitrary constant. On the other hand, the corresponding infinitesimal
generators admitted by the Equation (21) can be obtained by the transformation u = 1/U, i.e.,

u −→ 1
U

, ∂u −→ −U2∂U ,

which reduce Equation (21) to one-dimensional equations. We denote them by X̃i (i = 1, · · · , 9).

(1) X̃1. For X̃1, its invariants are Ũ = U and z = x + y. The corresponding invariant solutions of (21)
are U = Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = 2(ŨŨzz − Ũ2
z ) ≡ J̃1[Ũ].

(2) X̃2. For X̃2, its invariants are Ũ = U and z = x2 + y2. The corresponding invariant solutions
of (21) are v = Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = 4zŨŨzz − 4zŨ2
z + 4ŨŨz ≡ J̃2[Ũ].

(3) X̃3. For X̃3, its invariants are Ũ = Ux−2 and z = y/x. The corresponding invariant solutions
of (21) are U = x2Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = (1 + z2)ŨŨzz − (1 + z2)Ũ2
z + 2zŨŨz − 2Ũ2 ≡ J̃3[Ũ].

(4) X̃4. For X̃4, its invariants are Ũ = vx−2 and z = x + y2/x. The corresponding invariant solutions
of (21) are U = x2Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = z2ŨŨzz − z2Ũ2
z + 2zŨŨz − 2Ũ2 ≡ J̃4[Ũ].

(5) X̃5. For X̃5, its invariants are Ũ = y−2U and z = y + x2/y. The invariant solutions of (21) are
U = y2Ũ(z, t), where Ũ(z, t) satisfies Ũt = J̃4[Ũ].

(6) X̃6. For X̃6, its invariants are Ũ = sinh−2(ax)U and z = cos(ay)/ sinh(ax). The invariant
solutions of (21) are U = sinh2(ax)Ũ(z, t), where Ũ(z, t) satisfies Ũt = a2 J̃3[Ũ].

(7) X̃7. For X̃7, its invariants are Ũ = sinh−2(ax)U and z = sin(ay)/ sinh(ax). The invariant solutions
of (21) are U = sinh2(ax)ṽ(z, t), where Ũ(z, t) satisfies Ũt = a2 J̃3[Ũ].

(8) X̃8. For X̃8, its invariants are Ũ = cosh−2(ay)U and z = sin(ax)/ cosh(ay). The invariant
solutions of (21) are U = cosh2(ay)Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = a2(1 − z2)ŨŨzz + a2(z2 − 1)Ũ2
z − 2a2zŨŨz + 2a2Ũ2 ≡ J̃5[Ũ].

(9) X̃9. For X̃9, its invariants are Ũ = U cosh−2(ay) and z = cos(ax)/ cosh(ay). The invariant
solutions of (21) are U = cosh2(ay)Ũ(z, t), where Ũ(z, t) satisfies Ũt = J̃5[Ũ].

Using the invariant subspace method for the one-dimensional case, we find that the nonlinear
operators J̃i[Ũ](i = 1, · · · , 5) only admit two- and three-dimensional subspaces determined by spaces
of solutions of linear ODEs as:

dnw
dzn + bn−1(z)

dn−1w
dzn−1 + · · ·+ b0(z)w = 0.

We concentrate on the three-dimensional invariant subspaces, which are listed as below:

(1) The operator J̃1[Ũ] admits the invariant subspaces:
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W̃3 =

⎧⎪⎨⎪⎩
L{1, z, z2}, b = 0,
L{1, cos(cz), sin(cz)}, b = c2,
L{1, exp(cz), exp(−cz)}, b = −c2,

determined by the spaces of solutions of the ODE:

d3w
dz3 + b

dw
dz

= 0.

(2) The operator J̃2[Ũ] admits the invariant subspaces:

W3 =

⎧⎪⎨⎪⎩
L{z, z ln z, z(ln z)2}, b = −1,
L{z, z1−c, z1+c}, b = −1 + c2,
L{z, z sin(c ln z), z cos(c ln z)}, b = −1 − c2,

determined by the spaces of solutions of the ODE:

d3w
dz3 +

b
z2

dw
dz

− b
z3 w = 0.

(3) The operator J̃3[Ũ] admits the invariant subspaces:

W̃3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L{(1 + z2), (1 + z2) arctan z, (1 + z2)(arctan z)2}, b = −4,
L{(1 + z2), (1 + z2) sin(c arctan z), (1 + z2) cos(c arctan z)}, b = −4 + c2,
L{(1 + z2), (1 + z2) exp(c arctan z), (1 + z2) exp(−c arctan z)}, b = −4 − c2,
L{1, z, z2}, b = 0,

determined by the spaces of solutions of the ODE:

d3w
dz3 +

b
(1 + z2)2

dw
dz

− 2bz
(1 + z2)3 w = 0.

(4) The operator J̃4[Ũ] admits the invariant subspaces:

W̃3 =

⎧⎪⎨⎪⎩
L{z2, z2 exp(− c

z ), z2 exp( c
z )}, b = 2c2,

L{z2, z2 sin( c
z ), z2 cos( c

z )}, b = −2c2,
L{1, z, z2}, b = 0,

determined by the spaces of solutions of the ODE:

d3w
dz3 − b

2z4
dw
dz

+
b
z5 w = 0.

(5) The operator J̃5[Ũ] admits the invariant subspaces:

W̃3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L{(z2 − 1), (z2 − 1) ln( z+1

z−1 ), (z
2 − 1)(ln( z+1

z−1 ))
2}, b = 8,

L{(z2 − 1), (z2 − 1) exp(carctanhz), (z2 − 1) exp(−carctanhz)}, b = −8 + 8c2,
L{(z2 − 1), (z2 − 1) sin(carctanhz), (z2 − 1) cos(carctanhz)}, b = −8 − 8c2,
L{1, z, z2}, b = 0,

determined by the spaces of solutions of the ODE:

d3w
dz3 − b

2(z2 − 1)2
dw
dz

+
bz

(z2 − 1)3 w = 0,
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where and hereafter b is an arbitrary constant, and c is a non-zero arbitrary constant.

Then, we can obtain the corresponding invariant subspaces preserved by J[U], which are
presented as below:

W3 = L{1, x + y, (x + y)2},

W3 = L{1, cos(c(x + y)), sin(c(x + y))},

W3 = L{1, cosh(c(x + y)), sinh(c(x + y))},

W3 = L{x2 + y2, (x2 + y2) ln(x2 + y2), (x2 + y2)(ln(x2 + y2))2},

W3 = L{x2 + y2, (x2 + y2)1−c, (x2 + y2)1+c},

W3 = L{x2 + y2, (x2 + y2) sin(c ln(x2 + y2)), (x2 + y2) cos(c ln(x2 + y2))},

W3 = L{x2 + y2, (x2 + y2) arctan(
y
x
), (x2 + y2)(arctan(

y
x
))2},

W3 = L{x2 + y2, (x2 + y2) sin(c arctan(
y
x
)), (x2 + y2) cos(c arctan(

y
x
))},

W3 = L{x2 + y2, (x2 + y2) cosh(c arctan(
y
x
)), (x2 + y2) sinh(c arctan(

y
x
))},

W3 = L{x2, xy, y2},

W3 = L{(x2 + y2)2, (x2 + y2)2 cosh(
cx

x2 + y2 ), (x2 + y2)2 sinh(
cx

x2 + y2 )},

W3 = L{(x2 + y2)2, (x2 + y2)2 sin(
cx

x2 + y2 ), (x2 + y2)2 cos(
cx

x2 + y2 )},

W3 = L{x2, x(x2 + y2), (x2 + y2)2},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) arctan
cos ay
sinh ax

,

(cos2 ay + sinh2 ax)(arctan
cos ay
sinh ax

)2},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) sin(c arctan
cos ay
sinh ax

),

(cos2 ay + sinh2 ax) cos(c arctan
cos ay
sinh ax

)},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) cosh(c arctan
cos ay
sinh ax

),

(cos2 ay + sinh2 ax) sinh(c arctan
cos ay
sinh ax

)},

W3 = L{sinh2 ax, cos ay sinh ax, cos2 ay},

W3 = L{(sin2 ax − cosh2 ay), (sin2 ax − cosh2 ay) ln
sin ax + cosh ay
sin ax − cosh ay

,

(sin2 ax − cosh2 ay)(ln
sin ax + cosh ay
sin ax − cosh ay

)2},

W3 = L{(sin2 ax − cosh2 ay), (sin2 ax − cosh2 ay) sin(carctanh
sin ax

cosh ay
)

(sin2 ax − cosh2 ay) cos(carctanh
sin ax

cosh ay
)},

W3 = L{(sin2 ax − cosh2 ay), (sin2 ax − cosh2 ay) cosh(carctanh
sin ax

cosh ay
),

(sin2 ax − cosh2 ay) sinh(carctanh
sin ax

cosh ay
)}.
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Since the operator J[U] is symmetric with respect to the variables x and y, the following invariant
subspaces can also be obtained from the above invariant subspaces:

W3 = L{cos2(ax), sinh(ay) cos(ax), sinh2(ay)},

W3 = L{sin2(ay), cosh(ax) sin(ay), cosh2(ax)}.

Example 5. Consider the two-dimensional porous medium equation:

ut = (upux)x + (upuy)y, p �= 0,−1, (26)

which can be changed into the equation:

Ut = U(Uxx + Uyy) +
1
p
(U2

x + U2
y) ≡ Jp[U] (27)

by the transformation U = up. Equation (27) admits the scaling invariance with the infinitesimal generator:

X̃3 = x∂x + y∂y + 2U∂U , (28)

which possesses the invariants:

Ũ =
1
x2 U(z, t), z =

y
x

, t̃ = t.

Under the Lie symmetry X̃3, this equation is reduced to:

Ũt = (1 + z2)ŨŨzz +
1
p
(1 + z2)Ũ2

z −
2(p + 2)

p
zŨŨz +

2(p + 2)
p

Ũ2 ≡ J̃p[Ũ].

The operator J̃p[Ũ] admits invariant subspace W3 = L{1, z, z2} determined by ODE d3w/dz3 = 0.
Hence, the operator Jp[U] admits the invariant subspaces W3 = L{x2, xy, y2}. On the other hand,
for p = −4/3, the operator J̃p[Ũ] admits another invariant subspace W3 = L{1, z2 + 1,

√
z2 + 1}

determined by the ODE:

d3w
dz3 − 3

z(z2 + 1)
d2w
dz2 +

3
z2(1 + z2)

dw
dz

= 0.

Therefore, the corresponding invariant subspace admitted by the operator J− 4
3
[U] is:

W3 = L{x2, x2 + y2, x
√

x2 + y2} ≡ L{x2, y2, x
√

x2 + y2}.

Accordingly, some invariant subspaces of J[U] can be obtained from the invariant subspace
L{1, z, z2} admitted by the operator J̃i[Ũ], which is the polynomial subspace. The polynomial
subspaces of nonlinear operators are studied in many papers, which were used to construct exact
solutions of nonlinear evolution equations, including porous medium equations, thin film equations
and Euler equations [1–3,12–14,28,29,46–49]. Using the Lie symmetry method, we may obtain
polynomial invariant subspaces of some two-dimensional nonlinear operators. Note that in Examples 4
and 5, the invariant subspace W3 = L{x2, xy, y2} can be obtained from the one-dimensional invariant
subspace W̃3 = L{1, z, z2} and the Lie group of symmetry (28). The subspace L{1, z, z2} is determined
by the space of solutions of linear ODE Ũzzz = 0, which can be explained by the conditional
Lie–Bäcklund symmetry with character Ũzzz [1,32,33]). Besides those, the nonlinear evolution equation
Ut = (UUx)y also admits the Lie group of transformation with the infinitesimal generator (28).
By the similar calculations as above, we find that the operator (UUx)y admits the invariant subspace

130



Symmetry 2016, 8, 128

L{x2, xy, y2}. In [10], the operators preserving a given invariant subspace were discussed, for instance
the space M = {x2, xy, y2}, which was regarded as a “simple” problem for the affine annihilator.

Example 6. Consider the evolution Monge–Ampère equation:

ut = uxxuyy − u2
xy. (29)

It is easy to verify that this equation admits the Lie groups of transformations with infinitesimal
operators:

X1 = y∂x ± x∂y, X2 = y∂x ± 1
2

∂y, X3 = x∂y ± 1
2

∂x.

We find that X1 has invariants ũ = u(z, t), z = x2 ± y2 and t̃ = t. With respect to this Lie
symmetry, Equation (29) is reduced to:

ũt = ±(−8zũzũzz + 4ũ2
z) ≡ M̃±[ũ].

The operator M̃±[ũ] admits the invariant subspace W̃3 = L{1,
√

z, z2} determined by the ODE:

d3w
dz3 +

1
2z

d2w
dz2 − 1

2z2
dw
dz

= 0,

and the invariant subspace W̃3 = L{1, z, z2} determined by ODE d3w/dz3 = 0. Hence, the
Monge–Ampère operator M[u] = uxxuyy − u2

xy admits the invariant subspaces:

W3 = L{1,
√

x2 ± y2, (x2 ± y2)2}, and W3 = L{1, x2 ± y2, (x2 ± y2)2}

Similarly, under the Lie symmetries X2,3, we obtain the following invariant subspaces preserved
by the Monge–Ampère operator:

W3 = L{1, (x ± y2)
3
2 , (x ± y2)3}, W4 = L{1, (x ± y2), (x ± y2)2, (x ± y2)3},

In general, assume that nonlinear evolution Equation (6) admits the Lie group of transformation
with infinitesimal generator X, which has invariants:

z = p(x, y), ũ =
u

r(x, y)
, t̃ = t,

and reduces it to the one-dimensional nonlinear evolution equation:

ũt = F̃(z, ũ, ũz, ũzz, · · · ) ≡ F̃[ũ].

We then obtain the following proposition.

Proposition 5. If the nonlinear differential operator F̃ admits the invariant subspaces
W̃n = L{ f1(z), · · · , fn(z)}, then two-dimensional nonlinear differential operator F preserves the invariant
subspaces Wn = L{r(x, y) f1(p(x, y)), · · · , r(x, y) fn(p(x, y))}.

The proof is similar to that of Proposition 4. Clearly, in this approach, the estimate on the
dimension of invariant subspace obeys Theorem 1.

5. Concluding Remarks

In this paper, several approaches are developed to obtain invariant subspaces of the
two-dimensional nonlinear operators, including two direct extensions to the invariant subspace method
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in R, the method of the general change of variables and the one-dimensional invariant subspace method
combined with the Lie symmetry method. In particular, we find that the subspaces Wxy

nm and Wxy
n+m−1

of the two-dimensional nonlinear differential operators are extensions of the invariant subspaces for
one-dimensional nonlinear differential operators, which are determined by the spaces of solutions
of ODEs completely. In R

2, the invariant subspaces admitted by the quadratic operator A[u] and
their applications are considered. In general, the extensions of the concept of invariant subspaces in
R

N could be introduced. Assume that { f j1(xj), · · · , f jmj(xj)} is a finite set of linearly independent

functions, and W
xj
mj denotes their linear span W

xj
mj = L{ f j1(xj), · · · , f jmj(xj)}, where j = 1, · · · , N.

The (m1 · · · · · mN)-dimensional subspace:

W̃ =

{
∑

i1,··· ,iN

Ci1···iN f1i1(x1) · · · · · fNiN (xN), ∀Ci1···iN ∈ R, ij = 1, · · · , mj, j = 1, · · · , N

}

can be introduced as an extension to the subspace Wxy
nm in R

N . Consider the N-dimensional
nonlinear operator:

F[u] ≡ F(u, Du, D2u, · · · , Dku),

where Du = (ux1 , · · · , uxN ), D2u = (ux1x1 , · · · , ux1xN , ux2x2 , · · · , ux2xN , · · · , uxN xN ), etc. Assume that
the subspace W

xj
mj is the space of solutions of the ODE:

Lxj [vj] ≡
dmj vj

dx
mj
j

+ ajmj−1(xj)
dmj−1vj

dx
mj−1
j

+ · · ·+ aj0(xj)vj = 0, j = 1, · · · , N.

Then, the invariance condition of the subspace W̃ preserved by the operator F[u] (i.e.,
F[W̃] ⊆ W̃) is:

Lxj [F[u]]|[H̃] ≡ 0, j = 1, · · · , N,

where [H̃] denotes Lxj [u] = 0, and their differential consequences with respect to xi, i, j = 1, · · · , N.
Similarly, we assume that {1, f j1(xj), · · · , f jmj(xj)} is a set of basis of solutions of the ODE system:

Lxj [vj] ≡
dmj vj

dx
mj
j

+ ajmj−1(xj)
dmj−1vj

dx
mj−1
j

+ · · ·+ aj1(xj)
dvj

dxj
= 0, j = 1, · · · , N.

Let W
xj
mj = L{1, f j1(xj), · · · , f jmj(xj)} denote the space of solutions of this ODE, where

j = 1, · · · , N. We can introduce the (m1 + · · ·+ mN − N + 1)-dimensional subspace:

W = L{1, f12(x1), · · · , f1m1(x1), · · · , fN2(xN), · · · , fNmN (xN)}

as an extension of Wxy
n+m−1 in R

N . Then, the invariance condition of the subspace W preserved by the
operator F[u] (i.e., F[W] ⊆ W) is:

Lxj [F[u]]|[H̄] ≡ 0, (F[u])xixj |[H̄] ≡ 0,

where [H̄] denotes Lxj [u] = 0, uxixj = 0, and their differential consequences with respect to xi,
i, j = 1, · · · , N, i �= j. The invariant subspaces obtained by this method can be regarded as original
subspaces and used to obtain new ones by the general changes of variables in Section 3.

To obtain more invariant subspaces of nonlinear differential operators, we adopt the direct sum of
invariant subspaces, which was used by Galaktionov and Svirshchevskii [1] to obtain the new invariant
subspaces preserved by a given operator. For example, in Proposition 6.1 of [1], it was shown that the
direct sum of the subspaces Wq

n = L{1, xixj, 1 � i � j � N} and Wlin
N = L{x1, · · · , xN} is preserved
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by the operator K[u]. It is expected that the formulation of the direct sum can be used to obtain the
invariant subspaces W91 and W92 of J[U] by them. Indeed, the following result is always true.

Proposition 6. Given a nonlinear differential operator F. If the linear subspaces Wn and Wm are preserved by
the operator F and Wn ∩Wm = {0}, then the direct sum of Wn and Wm, i.e., Wn ⊕Wm is invariant or partially
invariant under the operator F.

Clearly, for the “nonlinear property” of the nonlinear operator, F[Wn ⊕ Wm] ⊆ Wn ⊕ Wm is not
always true. However, in the case of F[Wn ⊕ Wm] �⊆ Wn ⊕ Wm, it is said to be partially invariant
under the operator F (see [1]). The linear space Wn is partially invariant under the operator F, i.e.,
F[Wn] �⊆ Wn, but for some part M of Wn, F[M] ⊆ Wn. If the subspace Wn is partially invariant under
a given operator, then the corresponding evolution equation can be reduced to an over-determined
system of ODEs. One can verify whether the direct sum of two invariant subspaces is invariant under
the given operator by a direct computation.

The following result is a further extension to Proposition 6.

Proposition 7. Let F be a given nonlinear differential operator. If the linear subspaces W1
n1

, · · · , Wm
nm are

preserved by the operator F, then the subspace W1
n1
∪ · · · ∪ Wm

nm is invariant or partially invariant under the
operator F.

Let us return to the invariant subspaces W91 and W92. We can express:

W91 = W1
3 ∪ W2

3 ∪ W3
3 ∪ W4

3 ,

where:
W1

3 = L{1, x, y}, W2
3 = L{x2, xy, y2},

W3
3 = L{x2, x(x2 + y2), (x2 + y2)2}, W4

3 = L{y2, y(x2 + y2), (x2 + y2)2}.

and express:
W92 = W1

5 ∪ W2
3 ∪ W3

3 ∪ W4
3 ∪ W5

3 ,

where:
W1

5 = L{1, cos 2y, sin 2y, cosh 2x, sinh 2x},

W2
3 = L{cos2 y, cosh x cos y, cosh2 x}, W3

3 = L{cos2 y, sinh x cos y, sinh2 x},

W4
3 = L{sin2 y, cosh x sin y, cosh2 x}, W5

3 = L{sin2 y, sinh x sin y, sinh2 x}.

Note that 2 cos2 y−1 = −2 sin2 y+1 = cos 2y, sinh2 x = (sinh 2x−1)/2, cosh2 x = (cosh 2x + 1)/2,
and every component of W91 and W92 can be obtained by the knowledge of algebra and ODEs

(see Sections 2 and 4). The following invariant subspace ̂̂Wxy
3+3−1 of J[U] can be obtained from Ŵxy

3+3−1
by the discrete symmetry x → y, y → x. Indeed, we have:

(1) Ŵxy
3+3−1 = W1

3 ∪ W2
3 , with:

W1
3 = L{(x2 + y2)2, (x2 + y2)2 cos(b1

x
x2 + y2 ), (x2 + y2)2 sin(b1

x
x2 + y2 )},

W2
3 = L{(x2 + y2)2, (x2 + y2)2 exp(b1

y
x2 + y2 ), (x2 + y2)2 exp(−b1

y
x2 + y2 )};

(2) ̂̂Wxy
3+3−1 = W3

3 ∪ W4
3 , with:

W3
3 = L{(x2 + y2)2, (x2 + y2)2 cos(b1

y
x2 + y2 ), (x2 + y2)2 sin(b1

y
x2 + y2 )},

W4
3 = L{(x2 + y2)2, (x2 + y2)2 exp(b1

x
x2 + y2 ), (x2 + y2)2 exp(−b1

x
x2 + y2 )}.
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Here, Wi
3(i = 1, · · · , 4) can be obtained by the method in Section 4. Similarly, we can check that

both the operator (UUx)y and Jp[U] admit the invariant subspace L{1, x, y, x2, xy, y2} = L{1, x, y} ∪
L{x2, xy, y2}. Hence, the porous medium Equation (26) has the exact solution of the more general form:

u = (c1(t) + c2(t)x + c3(t)y + c4(t)x2 + c5(t)xy + c6(t)y2)
1
p .

On the other hand, it was shown that the operator J− 4
3
[U] admits the following invariant subspaces

(see Example 5):

W1
3 = L{x2, xy, y2}, W2

3 = L{x2, y2, x
√

x2 + y2}, W3
3 = L{x2, y2, y

√
x2 + y2}

By direct calculation, one can check that the operator J− 4
3
[U] admits another invariant subspace:

W5 = L{x2, xy, y2, x
√

x2 + y2, y
√

x2 + y2} = W1
3 ∪ W2

3 ∪ W3
3 .

Hence, for p = −4/3, the porous medium Equation (26) has another solution of the form:

u = (c1(t)x2 + c2(t)xy + c3(t)y2 + c4(t)x
√

x2 + y2 + c5(t)y
√

x2 + y2)−
3
4 .

Finally, we would like to address some open questions. Firstly, although we have several operable
approaches to obtain the invariant subspaces of two-dimensional nonlinear operators, we do not
have a systematic approach to obtain the invariant subspaces of J[U] as W91 and W92 and those of the
Monge–Ampère operator as:

W13 = L{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x2y2, y4}.

Secondly, as mentioned in the Introduction, what is the maximal dimension of the certain types
of invariant subspaces of multi-dimensional k-th order nonlinear differential operators? All of these
questions will be the content of our future research.
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Abstract: A new definition of conditional invariance for boundary value problems involving a wide
range of boundary conditions (including initial value problems as a special case) is proposed. It is
shown that other definitions worked out in order to find Lie symmetries of boundary value problems
with standard boundary conditions, followed as particular cases from our definition. Simple examples
of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover,
the successful application of the definition for the Lie and conditional symmetry classification of a
class of (1 + 2)-dimensional nonlinear boundary value problems governed by the nonlinear diffusion
equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent,
k = −2, for the power diffusivity uk when the problem in question with non-vanishing flux on the
boundary admits additional Lie symmetry operators compared to the case k �= −2. In order to
demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear
problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems
are common in applications and describing a wide range of phenomena) to (1 + 1)-dimensional
problems. The structure and properties of the problems obtained are briefly analysed. Finally, some
results demonstrating how Lie invariance of the boundary value problem in question depends on the
geometry of the domain are presented.

Keywords: Lie symmetry; Q-conditional symmetry; nonlinear boundary-value problem; nonlinear
diffusion; exact solution

1. Introduction

Nowadays, the Lie symmetry method is widely applied to study partial differential equations
(including multi-component systems of multidimensional PDEs), notably for their reductions to
ordinary differential equations (ODEs) and for constructing exact solutions. There are a huge number
of papers and many excellent books (see, e.g., [1–5] and the papers cited therein) devoted to such
applications. During recent decades, other symmetry methods, which are based on the classical Lie
method, were derived. The Bluman–Cole method of non-classical symmetry (another widely-used
terminology is Q-conditional symmetry, proposed in [3]) is perhaps the best known among them, and
the recent book [6] summarizes results obtained by means of this approach for scalar PDEs (see also
the recent papers [7,8] for some results and references in the case of nonlinear PDE systems).

However, a PDE cannot model any real process without additional condition(s) on the unknown
function(s), a boundary value problem (BVP) based on the given PDE being needed to describe real
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processes arising in nature or society. One may note that symmetry-based methods have not been
widely used for solving BVPs (we include initial value problems within this terminology defining the
initial condition as a particular case of a boundary condition). The obvious reason follows from the
following observation: the relevant boundary and initial conditions are usually not invariant under any
transformations, i.e., they do not admit any symmetry of the governing PDE. Nevertheless, there are
some classes of BVPs that can be solved by means of the Lie symmetry-based algorithm. This algorithm
uses the notion of Lie invariance of the BVP in question. Probably the first rigorous definition of
Lie invariance for BVPs was formulated by G.W. Bluman in the 1970s [9] (the definition and several
examples are summarized in the book [1]). This definition was used (explicitly or implicitly) in several
papers to derive exact solutions of some BVPs. It should be noted that Ibragimov’s definition of BVP
invariance [10] (see also his recent paper [11]), which was formulated independently, is equivalent to
Bluman’s. On the other hand, one notes that Bluman’s definition does not suit all types of boundary
conditions. Notably, the definition does not work in the case of boundary conditions involving
points at infinity. In recent papers [12–14], a new definition of Lie invariance of BVPs with a wide
range of boundary conditions (including those involving points at infinity and moving surfaces) was
formulated. Moreover, an algorithm for the group classification for the given class of BVPs was worked
out and applied to a class of nonlinear two-dimensional and multidimensional BVPs of the Stefan type
with the aim of showing their efficiency.

However, there are many realistic BVPs that cannot be solved using any definition of the Lie
invariance of the BVP, for instance because the relevant governing equations do not admit any Lie
symmetry (or possess a trivial one only). Hence, definitions involving more general types of symmetries
should be worked out. Having this in mind, in this paper, we consider a class of (1 + 2)-dimensional
nonlinear boundary value problems (BVPs) modelling heat transfer (for example) in the semi-infinite
domain ω = {(x1, x2) : −∞ < x1 < +∞, x2 > 0}:

∂u
∂t

= ∇. (d(u)∇u) (x1, x2) ∈ ω, t ∈ R (1)

x2 = 0 : d(u)
∂u
∂x2

= q(t) (2)

x2 → +∞ :
∂u
∂x2

= 0 (3)

where u(t, x1, x2) is an unknown function describing a temperature field (say), d(u) is the positive
coefficient of thermal conductivity, q(t) is a specified function describing the heat flux of energy
absorbed at (or radiating from) the surface x2 = 0, zero flux is prescribed at infinity (actually, one
should use the condition d(u) ∂u

∂x2
= 0, but we assume that two are equivalent, provided d(u) �= 0

when x2 → +∞; a discussion of the dependence of the admissibility of such boundary conditions
at infinity on d(u) is a delicate one that lies outside the scope of the current work; however, some
results are presented at the end of Sections 3 and 4) and the standard notation ∇ =

(
∂

∂x1
, ∂

∂x2

)
is used.

Hereafter, we assume that d(u) �= constant (otherwise, the problem is linear and can be solved by
the well-known classical methods) and all of the functions arising in Problem (1)–(3) are sufficiently
smooth. It should be noted that we do not prescribe any initial condition assuming that the initial
profile can be an arbitrary smooth function that can be specified with respect to a symmetry of BVPs
(1)–(3) in question.

The paper is organised as follows. In Section 2, a theoretical background is developed, and
relevant examples are presented. In Section 3, the Lie symmetry classification of BVPs of the form
(1)–(3) is derived and the main result is presented in Theorem 2. In Section 4, all possible reductions of
BVPs (1)–(3) with the power-law thermal conductivity uk and a non-zero constant flux q(t) = q0 that
admit reductions to (1 + 1)-dimensional BVPs are constructed. In Section 5, the conditional symmetry
classification of the BVP class (1)–(3) is derived, and the relevant reductions are presented. In Section 6,
some results demonstrating how Lie invariance of the BVP in question depends on the geometry of
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the domain are presented. Finally, we discuss the results obtained and present some conclusions in the
last section.

2. Theoretical Background: Definitions and Examples

Here, we restrict ourselves to the case when the basic equation of the BVP is a multidimensional
evolution PDE of k-th order in space (k ≥ 2), i.e., our considerations here go well beyond the specific
Equation (1). Thus, the relevant BVP may be formulated as follows:

ut = F
(

t, x, u, ux, . . . , u(k)
x

)
, x ∈ ω ⊂ R

n, t > 0 (4)

sa(t, x) = 0 : Ba

(
t, x, u, ux, . . . , u(ka)

x

)
= 0, a = 1, 2, . . . , p, ka < k (5)

where F and Ba are smooth functions in the corresponding domains, ω is a domain with smooth
boundaries and sa(t, x) are smooth curves. Hereafter, the subscripts t and x = (x1, . . . , xn) denote
differentiation with respect to these variables and u(j)

x , j = 1, . . . , k denotes a totality of partial derivatives
of the order j with respect to the space variables, for example u(k)

x = (ux1...x1 , . . . , uxj1
,...,xjn

, . . . , uxn ...xn),

where uxj1
,...,xjn

= ∂ku
∂xj1

...∂xjn
, j = 1, 2, . . . , k; j1 + . . . + jn = k. We assume that BVPs (4) and (5) have a

classical solution (in a usual sense).
Consider the infinitesimal generator:

X = ξ0(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi
+ η(t, x, u)

∂

∂u
(6)

Hereafter, ξ0, ξi and η are known smooth functions, and summation is assumed from one to n over
repeated index i in operators. Assuming that this operator defines a Lie symmetry acting both on the
(t, x, u)-space and on its projection to (t, x)-space, consider the operator:

X
k
= X

k−1
+ σk

1
∂

∂ux1...x1

+ σk
2

∂

∂ux1...x1x2

+ . . . + σk
kn

∂

∂uxn ...xn

, k ≥ 2 (7)

corresponding to the k-th prolongation of X, whose coefficients are calculated via the functions
ξ0, . . . , ξ1,η and their derivatives by the well-known prolongation formulae [4,5] starting from the first
prolongation of X:

X
1
= X + σ1

0
∂

∂ut
+ σ1

1
∂

∂ux1

+ . . . + σ1
n

∂

∂uxn

In Formula (7), kn is the total number of different k-order derivatives of the function u w.r.t. the space
variables (there is no need to take into account k-order derivatives involving the time variable, because
(4) contains the first-order time derivative only).

Definition 1. [1] The Lie symmetry X (6) is admitted by the boundary value Problems (4)–(5) if:

(a) X
k

(
F
(

x, u, ux, . . . , u(k)
x

)
− ut

)
= 0 when u satisfies (4);

(b) X(sa(t, x)) = 0 when sa(t, x) = 0, a = 1, . . . , p;
(c) X

ka

(
Ba

(
t, x, u, ux, . . . , u(ka)

x

))
= 0 when sa(t, x) = 0 and Ba|sa(t,x)=0 = 0, a = 1, . . . , p.

Because BVPs (4)–(5) involve only the standard boundary conditions, Definition 1 cannot be
applied to BVPs (1)–(3), which involve boundary conditions defined at infinity. Moreover, Definition 1
cannot be generalised in a straightforward way to the boundary Condition (3) (see an example in [13]).
This issue was pointed out in [15], where it was suggested that an appropriate substitution be made
to transform the unbounded domain to a bounded one. This idea was formalised in [12,13], where it
was shown how this definition can be extended to classes of BVPs with more complicated boundaries
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and initial conditions. Here, we go essentially further, namely we extend the notion of BVP invariance
to the case of operators of conditional symmetry; we describe what kind of transformations can be
applied to transform boundary conditions at infinity to those containing no conditions at infinity; and
we show that the domain geometry plays an important role in the multidimensional (n > 1) case.

Consider a BVP for the evolution Equation (4) involving Condition (5) and boundary conditions
at infinity:

γc(t, x) = ∞ : γc

(
t, x, u, ux, . . . , u(kc)

x

)
= 0, c = 1, 2, . . . , p∞ (8)

Here, kc < k and p∞ are given numbers and the γc(t, x) are specified functions by which the domain
(t, x) on which the BVP in question is defined extends to infinity in some directions. We assume that
all of the functions arising in (4), (5) and (8) and the number of boundary and initial conditions are
such that a classical solution still exists for this BVP.

Let us assume that the operator:

Q = ξ0(t, x, u)
∂

∂t
+ ξi(t, x, u)

∂

∂xi
+ η(t, x, u)

∂

∂u
(9)

is a Q-conditional symmetry of PDE (4), i.e., the following criterion is satisfied (see, e.g., [1]):

Q
k

(
ut − F

(
t, x, u, ux, . . . , u(k)

x

)) ∣∣∣
M

= 0 (10)

where Q
k

is the k-th prolongation of Q and the manifold M = {ut − F
(

t, x, u, ux, . . . , u(k)
x

)
= 0, Q(u) = 0}

with Q(u) ≡ ξ0(t, x, u)ut + ξi(t, x, u)uxi − η(t, x, u).

Remark 1. Rigorously speaking, one needs to reduce the manifold M by adding the differential consequences
of equation Q(u) = 0 up to order k, which leads to huge technical problems in the application of the criterion
obtained. However, in the case of evolution equations, the resulting symmetries will be still the same provided
ξ0(t, x, u) �= 0 in Q, because each such differential consequence contains one or more mixed derivatives of
the function u w.r.t. the variables t and x, while the evolution equation in question does not involve any such
mixed derivatives.

Let us consider for each c = 1, 2, . . . , p∞ the manifold:

M = {γc(t, x) = ∞, γc

(
t, x, u, ux, . . . , u(kc)

x

)
= 0} (11)

in the extended space of variables t, x, u, ux, . . . , u(kc)
x (obviously, the space dimensionality will depend

on kc and, e.g., one obtains n + 2-dimensional space (t, x, u) in the case of Dirichlet boundary
conditions). We assume that there exists a smooth bijective transformation of the form:

τ = f (t, x), y = g(t, x), w = h(t, x, u) (12)

where y = (y1, . . . , yn), f (t, x) and h(t, x, u) are smooth functions and g(t, x) is a smooth vector
function that maps the manifold M into:

M∗ = {γ∗c (τ, y) = 0, γ∗c
(
τ, y, u, uy, . . . , u(k∗c )

y

)
= 0} (13)

of the same dimensionality in the extended space τ, y, w, wy, . . . , w(kc)
y (here k∗c ≤ kc).

Definition 2. BVPs (4)–(5) and (8) are Q-conditionally invariant under operator (9) if:

(a) Criterion (10) is satisfied;
(b) Q(sa(t, x)) = 0 when sa(t, x) = 0, Ba|sa(t,x)=0 = 0, a = 1, . . . , p;
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(c) Q
ka

(
Ba

(
t, x, u, ux, . . . , u(ka)

x

))
= 0 when sa(t, x) = 0 and Ba|sa(t,x)=0 = 0, a = 1, . . . , p;

(d) there exists a smooth bijective transform (12) mapping M into M∗ of the same dimensionality;
(e) Q∗(γ∗c (τ, y)) = 0 when γ∗c (τ, y) = 0, c = 1, 2, . . . , p∞;
(f) Q∗

k∗c

(
γ∗c

(
τ, y, u, uy, . . . , u(k∗c )

y

))
= 0 when γ∗c (τ, y) = 0 and γ∗c |γ∗

c (τ,y)=0 = 0, c = 1, . . . , r,

where γ∗c and γ∗c (τ, y) are the functions γc and 1
γc(t,x)

, respectively, expressed via the new variables. Moreover,
the operator Q∗, i.e., (9) in the new variables, is defined almost everywhere (i.e., except at a finite number of
points) on M∗.

Remark 2. Because any Q-conditional symmetry operator can be multiplied by an arbitrary function, say
sa(t, x), Definition 2 implies that the operator Q does not vanish provided sa(t, x) = 0. Rigorously speaking,
this restriction is valid also for Definition 1.

This definition coincides with Definition 1 if Q is a Lie symmetry operator and there are no
boundary conditions at infinity (i.e., of the form (8)). In the case of BVPs involving boundary conditions
at infinity, Definition 2 essentially generalises the definitions of Lie and conditional symmetry proposed
in [13,16], respectively. In fact, those definitions are valid only for two-dimensional BVPs with
essentially restricted forms of boundary conditions at infinity (for example, they work for the Dirichlet
conditions, but cannot be applied for the Neumann conditions, as shown in Example 2 below) because
they were created using the above-mentioned substitution from [15], which is a very particular case of
(12) with n = 1, τ = t, y = 1

x , w = u.
Now, we demonstrate how this definition works using simple examples. Because each

Q-conditional symmetry is automatically a Lie symmetry, we start from an example involving the Lie
symmetry only and continue with a second example involving pure conditional invariance.

Example 1. Consider the nonlinear BVP modelling heat transfer in a semi-infinite solid rod, assuming that
thermal diffusivity depends on temperature and that the rod is insulated at the left endpoint. Hereafter, we
neglect the initial distribution of the temperature in the rod. Thus, the nonlinear BVP reads as:

∂u
∂t

=
∂

∂x

(
d(u)

∂u
∂x

)
, t > 0, 0 < x < +∞ (14)

x = 0 : d(u)
∂u
∂x

= 0, t > 0 (15)

x = +∞ : u = u∞, t > 0 (16)

where u(t, x) is an unknown temperature field, d(u) is a thermal diffusivity coefficient and u∞ is a given
temperature at infinity.

The maximal algebra of invariance (MAI), i.e., the Lie algebra containing any Lie symmetry of the governing
Equation (14), is well-known and is spanned by the basic operators [5] 〈∂t, ∂x, 2t∂t + x∂x〉 provided d(u) is
an arbitrary function. Obviously, BVPs (14)–(16) are invariant w.r.t. the operator ∂t because the boundary
conditions do not involve the time variable, while the first one affects the operator ∂x (see Item (b) of Definition
2). Hence, we need to examine the third operator. Items (b)–(c) of Definition 2 are fulfilled in the case of the first
boundary condition, while one needs to find an appropriate bijective transform of the form (12) to check Items
(d)–(f).

Let us consider the obvious change of variables:

τ = t, y =
1
x

, w = u (17)

which maps M = {x = ∞, u = u∞} into M∗ = {y = 0, w = u∞}; both manifolds have the same
dimensionality D = 1, because they are lines in the three-dimensional space of variables, i.e., Item (d) is
fulfilled. Transform (17) maps the operator in question to the form 2τ∂τ − y∂y, and now, one easily checks
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that this operator satisfies Items (e)–(f) of Definition 2 on M∗. Thus, BVPs (14)–(16) are invariant under the
two-dimensional MAI 〈∂t, 2t∂t + x∂x, 〉, provided d(u) is an arbitrary function. Note that similarity reduction
associated with the second operator of this algebra is well known (see, for example, [14]) and could of course have
been identified without use of the definition developed here.

Example 2. Consider the reaction-diffusion-convectionequation:

∂u
∂t

=
∂

∂x
(umux) + λ1umux + λ2u−m (18)

where λk, k = 1, 2 and m �= −1, 0 are arbitrary constants, while ux = ∂u
∂x . Let us formulate a BVP with the

governing Equation (18) in the domain ω = {(t, x) : t > 0, x ∈ (0,+∞)} using the Neumann boundary
conditions:

x = 0 : ux = ϕ(t) (19)

and
x → +∞ : ux = 0 (20)

where ϕ(t) is the specified smooth function. Therefore, (18)–(20) are nonlinear BVPs, which is the standard
object for investigation. In [17], it was proven that (18) admits the Q-conditional symmetry:

Q =
∂

∂t
+ λ2u−m ∂

∂u
(21)

which is not equivalent to a Lie symmetry provided λ2 �= 0.
Now, we apply Definition 2 to BVPs (18)–(20) in order to obtain correctly-specified constraints when

this problem is conditionally invariant under Operator (21). Obviously, the first item is fulfilled by the correct
choice of the operator. Item (b) is satisfied automatically because of the operator structure. A non-trivial result is
obtained by the application of Item (c) to the boundary Condition (19). In fact, calculating the first prolongation
(i.e., ka = 1) of Operator (21):

Q
1
= Q + σ1

0
∂

∂ut
+ σ1

1
∂

∂ux

= Q +
(
ηt + utηu − ut(ξ0

t + utξ
0
u)− ux(ξ1

t + utξ
1
u)
)

∂
∂ut

+
(
ηx + uxηu − ut(ξ0

x + uxξ
0
u)− ux(ξ1

x + uxξ
1
u)
)

∂
∂ux

= ∂
∂t + λ2u−m ∂

∂u − mλ2u−m−1ut
∂

∂ut
− mλ2u−m−1ux

∂
∂ux

(22)

and acting on (19), one obtains the first-order ODE:

x = 0 : ϕ̇(t) + mλ2ϕ(t)u−m−1 = 0 (23)

to find the function ϕ(t). Because the BVP in question involves the condition at infinity (20), we also need to
examine Items (d)–(f). Let us consider the following change of variables (substitution of (17) does not work in the
case of zero Neumann conditions):

τ = t, y =
1
x

, w =
u
x

(24)

which maps M = {x = +∞, ux = 0} into M∗ = {y = 0, w = 0}. Since both manifolds have the same
dimensionality D = 1, Item (d) is fulfilled. Transform (24) maps the operator in question to the form:

Q∗ = ∂

∂τ
+ λ2y1+mw−m ∂

∂w
(25)

and now, one easily checks that this operator satisfies Items (e)–(f) of Definition 2 on M∗ provided
m ∈ (−1, 0). In the case m �∈ [−1, 0], one needs the additional constraint y1+mw−m → 0 as (y, w) → (0, 0)
in order to satisfy Item (f) in Definition 2 (this case is not examined here, but it can be done in a similar way).
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Thus, we have shown that BVPs (18)–(20) are Q-conditionally invariant under Operator (21) if and only if
Condition (23) and constraint m ∈ (−1, 0) hold.

One may note that Condition (23) corresponds to a Dirichlet condition, and generally speaking, will not be
compatible with the Neumann Condition (19). Happily (but not coincidentally), there is no contradiction in this
case. In fact, Operator (21) generates the ansatz:

u1+m = f (x) + λ2(m + 1)t

where f (x) is an unknown function. Substituting this ansatz into the governing Equation (18) and solving
the ordinary differential equation obtained, one finds that f (x) = C0 + C1e−λ1x (C0 and C1 are arbitrary
constants); hence, the exact solution:

u =
(

C0 + C1e−λ1x + λ2(m + 1)t
) 1

1+m (26)

of the nonlinear Equation (18) is constructed. Now, we need to specify the function ϕ(t) using (19); therefore,
ϕ(t) = −λ1C1

1+m (C0 + C1 + λ2(m + 1)t)−
m

1+m is obtained by simple calculations. The last step is to check the
additional Condition (23), which is fulfilled identically by the function ϕ(t) obtained.

Note that there is a case when Constraint (23) does not produce any boundary condition, namely ϕ(t) = 0,
i.e., the problem with the zero Neumann conditions (zero flux) on the boundary x = 0 and at infinity x = +∞
is invariant under the Q-conditional symmetry (21) provided m ∈ (−1, 0).

3. Lie Symmetry Classification of the BVPs Class (1)–(3)

Since the BVP class (1)–(3) contains two arbitrary functions, d(u) and q(t), the problem of Lie
group classification arises, i.e., to describe all possible Lie (or indeed conditional) symmetries that can
be admitted by BVPs from this class depending on the pair (d, q). The problem of group classification
for classes of partial differential equations (PDEs) was formulated by Ovsiannikov using notions of
the equivalence group Eeq and the principal (kernel) group of invariance [5]. The relevant algorithm
for solving this problem, the so called Lie–Ovsiannikov algorithm, is well known (see [5] for details).
During the last few decades, this problem was further studied, and more efficient algorithms were
worked out (see, e.g., [18–21] and the references cited therein). It is widely accepted that the problem
of group classification is completely solved for the given PDE class if it has been proven that:

(i) The Lie symmetry algebras are the maximal algebras of invariance of the relevant PDEs from the
list obtained;

(ii) All PDEs from the list are inequivalent with respect to a set of transformations, which are
explicitly (or implicitly) presented and, generally speaking, may not form any group;

(iii) Any other PDE from the class that admits a non-trivial Lie symmetry algebra is reduced by
transformations from the set to one of those from the list.

In [12,14], an algorithm for solving the group classification problem for BVP classes was proposed.
The algorithm, which is based on the concept of the equivalence group [22] of a class of BVPs, has
its origins in the Lie–Ovsiannikov algorithm. The main steps of the algorithm in the case of the BVP
class (1)–(3) can be formulated as follows:

(I) To construct the equivalence group Eeq of local transformations that transform the governing
Equation (1) into itself;

(II) To find the equivalence group EBVP
eq of local transformations that transform the class of BVPs

(1)–(3) into itself: to do this, one extends the space of the group Eeq action on the prolonged space,
where the function q arising in the boundary condition is treated as a new variable;

(III) To perform the group classification of Equation (1) up to local transformations generated by the
group EBVP

eq ;
(IV) Using Definition 2, to find the principal algebra of invariance of the BVP class (1)–(3), i.e., the

algebra admitted by each BVP from this class;
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(V) Using Definition 2 and the results obtained in Steps (III)–(IV), to describe all possible
EBVP

eq -inequivalent BVPs of the form (1)–(3) admitting MAIs of higher dimensionality (depending
on the pair (d, q)) than the principal algebra.

The algorithm can also be applied when one is looking for Q-conditional symmetries, because
such symmetries cannot generate any new group of transformations; hence, classification can be still
carried out modulo the group Eeq.

Now, we carry out the group classification of BVPs of the form (1)–(3) using the definition and the
algorithm presented above.

As the first step, we find the equivalence group Eeq of the class of PDEs (1) by direct calculations
and obtain the following result.

Lemma 1. The equivalence group Eeq of the PDE class (1) is formed by the transformations:

t̃ = αt + γ0, x̃ = βR(θ)x + γ, ũ = δu + γu, d̃ =
β2

α
d

where α,β,γu,γi (i = 0, 1, 2), δ, θ are arbitrary real constants obeying the conditions αβδ �= 0 and θ ∈
[−π,π); R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
is the rotation matrix; and the vectors x̃ =

(
x̃1

x̃2

)
, x =

(
x1

x2

)

and γ =

(
γ1

γ2

)
.

Note that this equivalence group can be easily extracted from paper [23], where Lie symmetries
of the class of reaction-diffusion equations of the form:

∂u
∂t

= ∇. (d(u)∇u) + Q(u) (27)

were completely described.
In the second step, we substitute the transformations from the group Eeq into (1)–(3) and require

that those transformations preserve the structure of the class: hence, we find the set EBVP
eq of equivalence

transformations that are essentially different, using the result of Lemma 1.

Lemma 2. The equivalence group EBVP
eq of the class of BVPs (1)–(3) is formed by the transformations:

t̃ = αt + γ0, x̃1 = βx1 + γ1, x̃2 = βx2, ũ = δu + γu,

d̃ =
β2

α
d, q̃ =

βδ

α
q

where α > 0,γu,γi (i = 0, 1), δ and β > 0 are arbitrary real constants obeying only the non-degeneracy
condition δ �= 0.

In the third step, we have used the known results [23] (it is interesting to note that Lie symmetries
of the nonlinear Equation (1) seem to have been described for the first time in paper [24], incidentally
not cited so often as [23] published 13 years later) for solving the relevant group classification problem
in the case of the equivalence group EBVP

eq and have proven the following statement.

Theorem 1. All possible MAIs (up to the equivalent transformations from the group EBVP
eq ) of Equation (1) for

any fixed non-negative function d(u) �= const are presented in Table 1. Any other equation of the form (1) is
reduced by an equivalence transformation from the group EBVP

eq to one of those given in Table 1.
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Table 1. Result of group classification of the class of PDEs (1). MAI, maximal algebra of invariance.

Case d(u) Basic Operators of MAI

1. ∀ AE(1, 2) = 〈T, X1, X2, D, J12〉
2. uk, k �= 0,−1 AE(1, 2), Dk
3. u−1 AE(1, 2),

A(x)∂x1 + B(x)∂x2 − 2Ax1 u∂u
4. eu AE(1, 2), De

Remark 3. In Table 1, the following designations of the Lie symmetry operators are used:

T = ∂t, X1 = ∂x1 , X2 = ∂x2 , D = 2t∂t + xa∂xa

J12 = x1∂x2 − x2∂x1 , Dk = kt∂t − u∂u, De = t∂t − ∂u
(28)

while A(x) and B(x) (hereafter, x = (x1, x2) and summation is assumed over the repeated index a = 1, 2) are
an arbitrary solution of the Cauchy–Riemann system Ax1 = Bx2 , Ax2 = −Bx1 .

Now, one needs to proceed to the final two steps of the group classification algorithm presented
above. The result can be formulated in form of the main theorem (Theorem 2), which gives the
complete list of the non-equivalent BVPs of the form (1)–(3) and the relevant MAIs.

Theorem 2. All possible MAIs (up to equivalent transformations from the group EBVP
eq ) of the nonlinear BVPs

(1)–(3) for any fixed pair (d(u), q(t)), where d(u) �= const, are presented in Table 2. Any other BVP of the form
(1)–(3) is reduced by an equivalence transformation from the group EBVP

eq from Lemma 2 to one of those listed in
Table 2.

Table 2. Result of group classification of the class of BVPs (1)–(3).

Case d(u) q(t) Basic Operators of MAI Relevant Constraints

1. ∀ ∀ X1

2. ∀ q0t− 1
2 X1, D

3. ∀ q0 X1, T
4. ∀ 0 X1, T, D
5. uk q0tp X1, Dkp k �= −2, p �= 0
6. uk q0e±t X1, D± k �= −2
7. uk q0 X1, T, Dkp p = 0
8. uk 0 X1, T, D, Dk k �= −1
9. u−2 ∀ X1, D± k = −2

10. u−2 q0t− 1
2 X1, D, Dk k = −2

11. u−1 0 X1, T, D, X∞ M
12. eu q0tp X1, Dp p �= 0
13. eu q0e±t X1, D±e
14. eu q0 X1, T, Dp p = 0
15. eu 0 X1, T, D, De

Remark 4. In Table 2 the arbitrary constant q0 �= 0 and the following designations of the Lie symmetry
operators are used:

Dkp = (k + 2)t∂t + [k(p + 1) + 1]xa∂xa + (2p + 1)u∂u

D± = ±(k + 2)∂t + kxa∂xa + 2u∂u

Dp = t∂t − (p − 1)xa∂xa − (2p − 1)u∂u

D±e = ±∂t − xa∂xa − 2∂u

(29)

In Case 11, the coefficient B(x) of the operator:
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X∞ = A(x)∂x1 + B(x)∂x2 − 2Ax1 u∂u

must satisfy the set of conditions M:
B(x1, 0) = 0 (30)

x2 → +∞ :
B(x1, x2)

x2
�= ∞,

∂B(x1, x2)

∂x2
�= ∞ (31)

Proof. The proof is based at Definition 2, Lemma 2 and Theorem 1. According to the algorithm
described above (see Steps (IV) and (V)), we need to examine the four different cases listed in Table 1.
First of all, we should consider Case 1 with the aim to find the principal algebra of invariance, i.e., the
invariance algebra, admitting by each BVP of the form (1)–(3). Taking the most general form of the Lie
symmetry in this case, one obtains:

X = (λ0 + 2λ3t)∂t + (λ1 + λ3x1 + λ4x2)∂x1 + (λ2 − λ4x1 + λ3x2)∂x2 (32)

where λ0, . . . , λ4 are arbitrary real constants. Applying Item (a) of Definition 2 to the first part of the
boundary condition (2), we immediately obtain:

X(x2)|x2=0 = 0 ⇔ λ2 = λ4 = 0 (33)

To finish application of Item (a), we need the first prolongation of operator (32) with λ2 = λ4 = 0,
because the boundary condition in question involves the derivative ux2 . Hence, using the prolongation
formulae (see, e.g., [4,5]), we arrive at the expression:

X
1

(
d(u)

∂u
∂x2

− q(t)
)∣∣∣∣

M
= −λ3q(t)− (λ0 + 2λ3t)q̇(t) = 0 (34)

where X
1
= X − λ3(2ut∂ut + uxa ∂uxa ) and:

M = {x2 = 0, d(u)
∂u
∂x2

= q(t)} (35)

Obviously, the zero flux case q(t) = 0 does not produce any constraints; hence λ0, λ1 and λ3 are
arbitrary, i.e., the relevant BVP is invariant under a three-dimensional MAI (see Case 4 of Table 4).
Rather simple analysis of the linear ODE λ3q(t) + (λ0 + 2λ3t)q̇(t) = 0 with non-zero q(t) immediately
leads to three different possibilities only:

(i) If q(t) is an arbitrary function, then λ0 = λ3 = 0, i.e., X = X1;
(ii) If q(t) = q0/

√
t + λ∗0 with λ∗0 = λ0/(2λ3), then X = λ0T + λ1X1 + λ3D (here, λ0 and λ3 �= 0 are

no longer arbitrary);
(iii) If q(t) = q0, q0 being a constant, then λ3 = 0, i.e., X = λ0∂t + λ2∂x2 .

The function q(t) and the operator X arising in Item (ii) can be simplified using Lemma 2

(see the transformation for t) as follows q(t) � q0/
√
t, X � λ1X1 +D Now, we need to find an

appropriate transform of the form (12). Let us consider the transformation:

τ = t, y1 = x1, y2 = x−ε
2 , ε > 0, u = x2w (36)

which transforms the manifold:
M = {x2 → +∞,

∂u
∂x2

= 0} (37)

into:
M∗ = {y2 = 0, w = 0} (38)
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provided the function w is differentiable at y2 = 0 (it should be noted that transforming only y (keeping
the other variables the same) does not work in that sense).

Now, one realizes that Items (e)–(f) of Definition 2 are automatically fulfilled if q(t) is an arbitrary
function and X = X1 (see Item (i) above); hence, we have found the principal algebra of invariance of
the BVP class (1)–(3), and one is listed in Case 1 of Table. To examine the other two items, one needs to
express the relevant operators via the new variables. In particular, the operator X = λ1X1 + D takes
the form:

X∗ = 2t∂t + (λ1 + x1)∂x1 − εy2∂y2 − w∂w (39)

Obviously, Items (e)–(f) of Definition 2 are automatically fulfilled for Operator (39), provided the
boundary condition is giving M∗; hence, Case 2 of Table 2 is derived. Obviously, the third possibility
for the function q(t) = q0 leads to Case 3 of Table 2. Thus, Case 1 of Table 1 produces the principal
algebra of invariance of the BVP class (1)–(3) and three extensions depending on the function q(t)
(see Cases 1–4 in Table 2).

Case 2 of Table 1 can be examined in quite a similar way as we have done above for Case 1.
Application of Definition 2 and Lemma 2 leads to the six different cases listed in Table 2 (see 5, . . . , 10).
It should be stressed that the power k = −2 is a special one (but not one for Lie invariance of
the governing PDE!) and leads to the two additional Cases 9 and 10 (see an analogous result for a
(1 + 1)-dimensional BVP in [14,25]).

The most complicated examination is in Case 3 of Table 1, because one needs to analyse an
infinite-dimensional Lie algebra. In this case, the MAI of Equation (1) is spanned by the following
operators:

T = ∂t, Xa = ∂xa , J = x2∂x1 − x1∂x2 , D = 2t∂t + xa∂xa , D−1 = t∂t + u∂u

X∞ = A(x1, x2)∂x1 + B(x1, x2)∂x2 − 2Ax1 u∂u

Hence, the most general form of Lie symmetry operator is:

X = (λ0 + (2λ4 + λ5)t)∂t + (λ1 + λ4x1 + λ3x2 + λ6 A(x1, x2))∂x1

+(λ2 − λ3x1 + λ4x2 + λ6B(x1, x2))∂x2 − (2λ6 Ax1 − λ5)u∂u
(40)

where λ0, . . . , λ6 are arbitrary real constant.
Obviously, we should assume λ6 �= 0, otherwise particular cases of the results already derived for

d(u) = uk will be obtained. First of all, we simplify Operator (40) as follows. Because the functions
A(x1, x2) and B(x1, x2) are harmonic, then we can construct the functions Ā = λ1 + λ3x2 + λ6 A(x1, x2)

and B̄ = λ2 − λ3x1 + λ6B(x1, x2). It can be easily seen that the functions Ā and B̄ are also harmonic.
Thus, without losing generality, the operator X reduces to the form:

X = (λ0 + (2λ4 + λ5)t)∂t + (Ā(x1, x2) + λ4x1)∂x1 + (B̄(x1, x2) + λ4x2)∂x2 − (2Āx1 − λ5)u∂u (41)

Applying Items (b)–(c) of Definition 2 to the boundary Condition (2), we obtain:

X(x2)|x2=0 = 0, X
1

(
u−1 ∂u

∂x2
− q(t)

)∣∣∣∣
M

= 0 (42)

where the first prolongation of the operator X has the form X
1
= X + ρ0∂ut + ρa∂uxa , and M is defined

in (35). We need to calculate only the coefficient ρ2, because (42) does not involve any other derivatives.
Since the known formulae mentioned above produce in the case of Operator (41):

ρ2 = −2
∂2B̄
∂x2

2
u +

(
λ4 + λ5 − 3

∂B̄
∂x2

)
ux2 −

∂Ā
∂x2

ux1 (43)
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the invariance conditions (42) are simplified to the form:

B̄(x1, 0) = 0,
∂Ā(x1, 0)

∂x2
= 0,

∂2B̄(x1, 0)
∂x2

2
= 0 (44)

provided q(t) = 0 (we remind the reader that the functions Ā and B̄ satisfy the Cauchy–Riemann
system). Obviously, Condition (44) is equivalent to this (30) if one takes into account that the second
and third equations in (44) are direct consequences of the first equation.

To finish the examination of Case 3 of Table 1 when the nonlinear BVP in question involves zero
flux q(t) = 0, one needs to check the invariance of the boundary Condition (3). Hence, using again
Transformation (36) and applying Items (f) and (e) of Definition 2, one arrives at the restrictions:

y2 = 0 : B̄(x1, y−1/ε
2 )y1+1/ε

2 = 0 (45)

and ((
B̄(x1, y−1/ε

2 )y1/ε
2 + 2

∂Ā(x1, y−1/ε
2 )

∂x1

)
w
)∣∣∣∣∣

M∗
= 0 (46)

Because Transformation (36) is bijective and differentiable, Formulae (45)–(46) are equivalent to (31).
Hence, we have proven that BVPs (1)–(3) with d(u) = u−1 and q(t) = 0 admit Operator (41) provided
Restrictions (30)–(31) are fulfilled. This immediately leads to the result presented in Case 11 of Table 2
(the rotation operator J12 must be excluded because its coefficient B = −x1 does not satisfy (30)).

The invariance Condition (42) leads to more complicated analysis if q(t) �= 0. We omit here the
relevant routine analysis and present the result only: the restrictions obtained on the functions Ā and
B̄ lead to the correctly-specified functions q(t) and MAIs listed in Cases 5–7 with k = −1 of Table 2
only. Thus, examination of Case 3 of Table 1 when d(u) = u−1 is completed.

Finally, Case 4 of Table 1 should be analysed. It turns out that the results obtained are very similar
to Case 2 of Table 1 when k �= −2; therefore, the MAIs of the same dimensionality and the fluxes q(t)
of the same forms were derived (see Cases 12–15 in Table 2).

The proof is now completed.

While Restrictions (30)–(31) on the harmonic functions A and B are very strong, the MAI of
the problem in Case 11 is still infinite-dimensional. The real and imaginary parts of the complex
function z−n = (x1 + ix2)

−n with arbitrary n = 1, 2, 3, ... generate the operator of the form X∞, which
is a symmetry of BVPs (1)–(3) with d(u) = u−1 and q(t) = 0. Note that here, we allow the singular
behaviour of X∞ at the origin (x1, x2) = (0, 0).

Example 3. The complex function z−1 = (x1 + ix2)
−1 generates the operator:

x1

x2
1 + x2

2
∂x1 −

x2

x2
1 + x2

2
∂x2 + 2

x2
1 − x2

2
(x2

1 + x2
2)

2
u∂u (47)

Applying Items (b) and (c) of Definition 2, one obtains (42) and (43) with λ4 = λ5 = 0 and Ā = x1
x2

1+x2
2
, B̄ =

− x2
x2

1+x2
2
. Now, one easily checks that the invariance conditions are satisfied (42) because the given functions Ā

and B̄ fulfil Condition (44).
Let us consider Transformation (36). As indicated above, one transforms Manifold (37) into (38).

Simultaneously, Operator (47) takes the form:

y1

|y|2ε
∂y1 +

1
|y|2ε

(εy2∂y2 + w∂w) + 2
y2

1 − y−2/ε
2

|y|4ε
w∂w (48)

where |y|2ε = y2
1 + y−2/ε

2 .
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After directly checking Items (d)–(f) of Definition 2 in the case of Manifold (38) and Operator (48), one
concludes that (47) is a Lie symmetry operator of BVPs (1)–(3) with d(u) = u−1 and q(t) = 0.

We conclude this section by presenting the following observation. Let us replace the last condition
in BVPs (1)–(3) by:

x2 → +∞ : d(u)
∂u
∂x2

= 0 (49)

which is more usually adopted in applications. It can be easily checked by direct calculations (each
Lie symmetry operator generates the corresponding Lie group of transformations) that the results
presented in Table 2 are still valid for BVPs of the form (1), (2) and (49). Moreover, the assumption
d(u) �= 0 for x2 → +∞ is not important (though it is of course significant with respect to BVP theory).
However, one should ideally show that there are no cases other than those presented in Table 2.
Unfortunately, this is a non-trivial task; in particular, Transformation (36) does not work in all cases as
above. For example, to examine the case of the power-law diffusivity d(u) = uk, k �= −1, one could
use the transformation:

τ = t, y1 = x1, y2 = x−ε
2 , ε > 0, u = x

1
k+1
2 w

which transforms M into:
M∗ = {y2 = 0, wk+1 = 0}

4. Lie Symmetry Reduction of Some BVPs of the Form (1)–(3)

First of all, it should be noted that each BVP of the form (1)–(3) reduces to a (1 + 1)-dimensional
problem using the operator X1 = ∂x1 . However, the problem obtained is simply the corresponding
(1 + 1)-dimensional one, with no dependence on x1; hence, we do not consider such a reduction below.

Another special case arises for each BVPs (1)–(3) with q(t) = q0 (Case 3 of Table 2) when the
problem reduces to the stationary one using the operator T = ∂t:

∇. (d(U)∇U) = 0 (50)

x2 = 0 : d(U)
∂U
∂x2

= q0 (51)

x2 → +∞ :
∂U
∂x2

= 0 (52)

where U(x1, x2) is an unknown function. BVPs (50)–(52) are linearisable via the Kirchoff substitution
W =

∫
d(U)dU, and the linear problem obtained can be treated by the classical methods for solving

linear problems for the Laplace equation.
A brief analysis of Table 2 shows that seven cases when the relevant problems are invariant under

the MAI of dimensionality three and higher are the most interesting, because a few different reductions
to BVPs of lower dimensionality can be obtained. Obviously, the most complicated case occurs for the
critical exponent k = −1 (see Case 11), and we are going to treat in detail this one elsewhere. On the
other hand, Cases 7 and 8 seem to be the most interesting, because the power diffusivity uk is very
common in applications and describes a wide range of phenomena depending on the value of k.

Let us consider Case 7. Because the operator Dkp with p = 0 has the form:

Dk0 = (k + 2)t∂t + (k + 1)xa∂xa + u∂u (53)

one needs to consider three different cases:

(i) k �= −1, −2;
(ii) k = −2;

(iii) k = −1.

151



Symmetry 2015, 7, 1410–1435

In the first case, the Lie algebra 〈X1, T, Dk0〉 leads only to two essentially different reductions, via the
operators T + vX1, v ∈ R and Dk0. Obviously, the operator T + vX1, v ∈ R generates the travelling
wave ansatz:

u = φ(y, x2), y = x1 − vt (54)

which reduces the nonlinear BVP:

∂u
∂t

= ∇.
(

uk∇u
)

, (x1, x2) ∈ ω, t ∈ R (55)

x2 = 0 : uk ∂u
∂x2

= q0 (56)

x2 → +∞ :
∂u
∂x2

= 0 (57)

to the (1 + 1)-dimensional elliptic problem:

−vφy = (φkφy)y + (φkφx2)x2 (58)

x2 = 0 : φkφx2 = q0 (59)

x2 → +∞ : φx2 = 0 (60)

where φ is an unknown function (hereafter, subscripts on φ denote differentiation w.r.t. the relevant
variables). Like other cases described below, the relevance of the function φ to a specific BVP will
depend on the behaviour at infinity of the initial data, and we shall make no attempt to explore such
matters here in detail.

The operator Dk0 generates a more complicated ansatz:

u = t
1

k+2 φ(ω1,ω2), ωa = xat−γ, γ =
k + 1
k + 2

(61)

After substituting ansatz (61) into BVPs (55)–(57), direct calculations show that one obtains the
(1 + 1)-dimensional elliptic problem:

1
k + 2

φ− γωaφωa = (φkφωa)ωa (62)

ω2 = 0 : φkφω2 = q0 (63)

ω2 → +∞ : φω2 = 0 (64)

In Case (ii), the Lie algebra 〈X1, T, −xa∂xa + u∂u〉 leads to three essential different reductions, via
the operators T + vX1, v ∈ R, 1

λT − xa∂xa + u∂u, λ �= 0 and −xa∂xa + u∂u. Obviously, the operator
T + vX1, v ∈ R leads to the same ansatz as in Case (i); hence, BVPs (58)–(60) with k = −2 are obtained.

The operator 1
λT − xa∂xa + u∂u generates a new ansatz of the form:

u = eλtφ(ω1,ω2), ωa = xaeλt, λ �= 0 (65)

which reduces BVPs (55)–(57) with k = −2 to the (1 + 1)-dimensional problem:

λφ+ λωaφωa = (φ−2φωa)ωa (66)

ω2 = 0 : φ−2φω2 = q0 (67)

ω2 → +∞ : φω2 = 0 (68)

Because the diffusivity φ−2 → ∞ as φ → 0, this singular nature of the diffusivity in (66) prevents
immediate physical interpretation of such reductions, but it is worth noting that the reduction (65)
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applies for a continuum of values of the similarity exponent λ. The one-dimensional case is instructive
here, yielding the equation:

q0 + λω2φ = φ−2φω2 (69)

This ODE is easily solved by setting ψ = ω2φ, and its general solution can be presented in the implicit

form (for q0 = 0 and λ =
q2

0
4 , the solutions are obvious):

C =
φ√

λ(ω2φ)2 + q0ω2φ+ 1

(
qλ + q0 + 2λω2φ

qλ − q0 − 2λω2φ

) q0
2qλ

(70)

where C is an arbitrary non-zero constant and qλ ≡
√

q2
0 − 4λ. Note that we need λ < q2

0/4 in order to
obtain a real solution. Because Solution (70) should satisfy also the condition at infinity (68), we need
to analyse it as ω2 → +∞. Indeed, it can be noted that:

φ ∼ φ∞

ω2
, ω2 → +∞ (71)

where φ∞ is a solution of the quadratic equation:

λφ2
∞ + q0φ∞ + 1 = 0 (72)

(there are two roots, and which should be used depends on sign of q0). Thus, we conclude that:

u ∼ φ∞

x2
, x2 → +∞, t = 0 (73)

whereby the similarity exponent λ ≤ q2
0/4 is determined in terms of this initial data via (72).

The operator −xa∂xa + u∂u generates the ansatz

u = x−1
1 φ(t, z), z =

x2

x1
(74)

reducing the (1 + 2)-dimensional BVP in question to the (1 + 1)-dimensional parabolic problem:

φt = (φ−2φz)z + z
(
φ−1 + zφ−2φz

)
z

(75)

z = 0 : φ−2φz = q0 (76)

z → +∞ : φz = 0 (77)

Remark 5. The reduced BVPs (75)–(77) were derived under assumption x1 > 0. In the case x1 < 0, the same
problem is obtained, but z → +∞ should be replaced by z → −∞.

Finally, we examine Case (iii), in which the Lie algebra 〈X1, T, t∂t + u∂u〉 arises. There are only
two essentially different reductions, via the operators T + vX1 and λX1 + t∂t + u∂u where (v, λ) ∈ R

2.
The first one again leads to a particular case of BVPs (58)–(60) with k = −1, while the second generates
a new (1 + 1)-dimensional elliptic problem of the form:

φ− λφw = (φ−1φw)w + (φ−1φx2)x2 (78)

x2 = 0 : φ−1φx2 = q0 (79)

x2 → +∞ : φx2 = 0 (80)

where
u = tφ(w, x2), w = x1 − λ log t (81)
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It should be noted that BVPs (78)–(80) with λ = 0 are equivalent to the problem (provided φ = eψ ≥ 0):

eψ = �ψ (82)

x2 = 0 : ψx2 = q0 (83)

x2 → +∞ : ψx2 = 0 (84)

where (82) is the known Liouville equation, which has been widely studied for many years (see, e.g.,
the books [26,27]), and its general solution (for n = 2) is well known.

Now, we make the following observation: while the BVP in question is a parabolic problem, all of
the (1 + 1)-dimensional BVPs obtained (except (75)–(77)) are elliptic. Each of the (1 + 1)-dimensional
BVPs derived above can be further analysed by symmetry-based, asymptotical and numerical methods,
and we shall investigate such matters in a forthcoming paper. Here, we present an interesting
example only.

Example 4. Here, we present in Figure 1 a result of numerical simulations of (75)–(77). Note that we take the
initial profile φ0(z) to agree the with boundary Conditions (76)–(77), namely φ(0, z) = φ0(z) ≡ − 1

q0(z+z0)
,

where z0 > 0, q0 < 0 are arbitrary constants. It is appropriate to touch on the large-time behaviour of BVPs
(75)–(77). This is best done in polar coordinates. From the symmetry point of view, it means that one uses
the ansatz:

u = r−1v(t, θ), θ = arctan
x2

x1
, r2 = x2

1 + x2
2 (85)

which is equivalent to (74). As a result, the reduced BVP takes form:

vt = (v−2vθ)θ − v−1 (86)

z = 0 : v−2vθ = q0 (87)

θ → π−

2
:

cos θvθ
v

→ 1 (88)

Note that the conditions θ → π−
2 : v = 0, cos θvθ → 0, which formally can be also used instead of (88), are

inappropriate, because (86) has no smooth solutions satisfying v = 0 at any finite θ.
The boundary Condition (88) implies that v → +∞ as θ → π−

2 (this allows d(u) ≡ u−2 = 0 when
x2 → +∞); this and (87) immediately lead to the conservation law:

d
dt

∫ π
2

0
v cos θdθ = −q0 (89)

where v(t, θ) cos θ = φ(t, tan θ) (see (74)). Then, the following three-layer structure is a plausible description
of the behaviour of v as t → +∞.

(A) Outer region θ = O(1): Here, v ∼ √
tψ(θ), which reduces (86) to:

1
2
ψ = (ψ−2ψθ)θ −ψ−1

hence, one obtains:

ψ ∼ 1
θ
√− log θ

as θ → 0+, ψ ∼ 1

(π2 − θ)
√
− log(π2 − θ)

as θ → π−

2

(B) Transition region θ = O(1), where −λ < θ < 0: Here, we set v = θ−1σ(t, ζ), ζ = log θ in order to
obtain from (86) the equation (note the term v−1 = θσ−1 is negligible under these scalings):

σt = (σ−2σζ)ζ + σ−2σζ (90)
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Whereby the middle term in (90) is negligible (for a large time) and σ ∼ σ(θ), θ = ζt−1, one obtains the
equation:

−θσθ = σ−2σθ

with the solution σ = 1√−θ
. The region dominates the integral in (89), whereby:

∫ 0

−λ

dθ√−θ
= −q0

so that λ (which plays a crucial role in the inner region) is given by λ =
q2

0
4 , a conclusion that also follows by

other arguments.
(C) Inner region y ≡ eλtθ = O(1): Here, we introduce the variable:

v ∼ eλtV(y)

(the large time solution behaviour may in fact also involve algebraic dependence on t; such refinements are of
little importance here). Using these variables and neglecting the final term in (86), one obtains the equation:

(V−2Vy)y = λV + λyVy

which is equivalent to the first order ODE:

V−2Vy = λyV + q0 (91)

if one takes into account (87). Now, we note that ODE (91) coincides with (69), which was analysed above. In

particular, the exponent λ =
q2

0
4 is associated with a repeated-root condition (see (72)). Thus, we obtain:

V ∼ 2
−q0y

, as y → +∞ (92)

which matches with Region (B) and provides an alternative route to the derivation of the value of the similarity
exponent λ.

In comparing this analysis with the numerics above (see Figure1), one notes that φ(t, z) scales as
√

t for
large z according to the result of (A). On the other hand, φ(t, z) is exponentially growing in time for t large and
z small. This is in agreement with (C)(see Formula (92)) and the boundary Condition (76).

5. Conditional Symmetry Classification of the BVPs Class (1)–(3)

Q-conditional (nonclassical) symmetries of the class of (1 + 2)-dimensional heat Equations (1)
were described in paper [28]. In contrast to the (1 + 1)-dimensional case, the result is very simple: in
the case of the Q-conditional symmetry Operator (6) with ξ0(t, x) �= 0, there is only a unique nonlinear
equation from this class, namely (1) with d(u) = u−1/2, admitting a conditional symmetry. Any other
nonlinear heat equation admits conditional symmetry operators of the form (6), which are equivalent
to the relevant Lie symmetry operators. In the case of Q-conditional symmetry Operator (6) with
ξ0(t, x) = 0, the system of determining equations is analysed in [28] (see System (3.30) therein), and
their conclusion is as follows: each known solution of the system leads again to a Lie symmetry, and
they were not able to construct any other solution.

Let us consider the equation:
∂u
∂t

= ∇.
(

u−1/2∇u
)

(93)

and its conditional symmetry:

Q =
∂

∂t
+ 2h(x1, x2)

√
u

∂

∂u
(94)
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where the function h is an arbitrary solution of the nonlinear equation �h = h2 (in [28], these
formulae have a slightly different form, because in the very beginning, the authors applied the Kirchoff
transformation to (1)). Now, we examine BVPs (93), (2) with d(u) = u−1/2 and (3) using Definition 2.

Figure 1. Numerical solution of BVPs (75)–(77) for φ(0, z) = φ0(z) ≡ − 1
q0(z+z0)

and z0 = 1.0, q0 = −0.2.

Obviously, Items (a) and (b) are automatically fulfilled. To fulfil Item (c), one needs the first
prolongation of Operator (94):

Q
1
=

∂

∂t
+ 2h

√
u

∂

∂u
+

(
2hx2

√
u + hu−1/2ux2

) ∂

∂ux2

(95)

Applying this operator to the boundary Condition (2) with d(u) = u−1/2, we arrive at the equation:

x2 = 0 : q′(t) = 2hx2 (96)

which immediately gives:
q(t) = q0 + 2q1t, hx2(x1, 0) = q1 (97)

where q0 and q1 are arbitrary constants. Finally, we can use again Transformation (36) for the
examination of Items (d)–(f), and direct checking shows that a sufficient condition is that the function
h be bounded as x2 → ∞.

Thus, BVPs (93), (2) with d(u) = u−1/2 and (3) are Q-conditionally invariant only in the case of
linear flux q(t) (see (97)), and the relevant conditional symmetry operator possesses the form (94),
where the function h solves the initial problem:

�h = h2, hx2(x1, 0) = q1 (98)

Remark 6. Because each conditional symmetry operator (6) multiplied by an arbitrary smooth function M is
again a conditional symmetry, we have examined also the operator M(t, x1, x2, u)Q and show that no further
results are obtained.

Now, we apply the Q-conditional symmetry (94) in reducing the nonlinear BVP with the governing
Equation (93) and conditions:

x2 = 0 : u−1/2ux2 = q0 + 2q1t (99)

x2 → +∞ : ux2 = 0 (100)
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Operator (94) produces the ansatz:

u = (tφ(x1, x2) + h(x1, x2))
2 (101)

where φ(x1, x2) is a new unknown function. It can be noted that Ansatz (101) was proposed (and
applied for finding exact solutions) in [29] without knowledge of symmetry (94). Substituting (101)
into BVPs (93), (99), (100) and taking into account (98), we arrive at the two-dimensional problem for
the nonlinear system of two elliptic equations:

�φ = φh, �h = h2, (102)

x2 = 0 : φx2 = q0, hx2 = q1 (103)

x2 → +∞ : φx2 = 0, hx2 = 0 (104)

6. Some Remarks about the Domain Geometry

A natural question arises: how do Lie and conditional invariance of BVPs depend on the
geometry of the domain ω? Obviously, the problem essentially depends on the space dimensionality.
For example, there are only three essentially different cases for BVPs with the (1 + 1)-dimensional
evolution equations, namely: ω is a finite interval, a semi-infinite interval and ω = R. Here, we treated
(1 + 2)-dimensional BVPs with ω = {(x1, x2) : −∞ < x1 < +∞, x2 > 0}. In the general case, the
domain can be any open subset ω ⊂ R

2 with a smooth boundary, i.e., one is formed by differentiable
(except possibly a finite number of points) curves. However, if one fixes a governing equation, then
the geometric structure of ω may be predicted in advance if one is looking for Lie and conditional
invariance of the relevant BVP. In the case of the governing Equation (1), all possible Lie symmetries
are presented in Table 1. Let us skip the critical Case 3, because this involves an infinite-dimensional
algebra. The projection of all MAIs arising in Cases 1, 2 and 4 on the (x1, x2)-space gives the Lie algebra
with basic operators:

X1 = ∂x1 , X2 = ∂x2 , J12 = x1∂x2 − x2∂x1 , D12 = x1∂x1 + x2∂x2 (105)

which is nothing else but the Euclidean algebra AE(2) extended by the operator of scale transformations.
Now, we realize that a non-trivial result can be obtained provided ω is invariant under transformations
generated by this algebra. For example, the case addressed above, namely ω = {(x1, x2) : −∞ <

x1 < +∞, x2 > 0}, is invariant under x1-translations and scale transformations generated by D12;
however, to note a simple such example, any triangle in the (x1, x2)-space does not admit any
transformations generated by (105). Of course, the domain ω = R

2 is invariant under the extended
Euclidean algebra (105); however, this domain is appropriate to initial value problems only (note that
interesting symmetry-based approaches for solving such problems were proposed in [30,31]), while
any boundary-value problem implies ω �= R

2.
It turns out that all of the domains admitting at least one-dimensional algebra can be described

using the well-known results of the classification of inequivalent (non-conjugate) subalgebras for
the extended Euclidean algebra, which are presented, for example, in [32]. The corresponding list
of subalgebras can be divided on subalgebras of different dimensionality. We present only those
of dimensionality one and two, because subalgebras of higher dimensionality immediately lead to
ω = R

2.
The one-dimensional subalgebras are:

〈X1〉 , 〈J12〉 , 〈D12〉 , 〈J12 + βD12〉 (β > 0)

and the two-dimensional ones are:

〈X1, X2〉 , 〈X1, D12〉 , 〈J12, D12〉 .
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Obviously, absolute invariants of each algebra can be easily calculated in explicit form (see, e.g., the
relevant theory in [4]); hence, we need only to provide a geometrical interpretation for each algebra. In
the case of the algebra 〈X1〉, the absolute invariant is x2; hence, the domain ω can be created by lines
of the form x2 = const. This means that there are only two generic domains, the strip ω1 = {(x1, x2) :
−∞ < x1 < +∞, C1 < x2 < C2} and the half-plane ω2 = {(x1, x2) : −∞ < x1 < +∞, x2 > C2}
(hereafter, C1 and C2 are arbitrary consts). Any other domain admitting the x1-translations can be
obtained via a combination of ω1 and ω2.

In the case of the algebra 〈J12〉, the absolute invariant is x2
1 + x2

2; hence, the domain ω can be created
by circles of the form x2

1 + x2
2 = const. This means that there are only three generic domains, the interior

of the circle ω1 = {(x1, x2) : x2
1 + x2

2 < C2}, the exterior of the circle ω2 = {(x1, x2) : x2
1 + x2

2 > C1 > 0}
and the annulus ω3 = {(x1, x2) : 0 < C1 < x2

1 + x2
2 < C2}.

In the case of the algebra 〈D12〉, the absolute invariant is x1
x2

; hence, the domain ω can be created by
lines of the form x1 = const x2 and x2 = 0. This means that there are only two generic domains, the wedge
ω1 = {(x1, x2) : C1x2 < x1 < C2x2} and the half-plane ω2 = {(x1, x2) : −∞ < x1 < +∞, x2 > 0}.

Finally, in the case of the one-dimensional algebra 〈J12 + βD12〉, the absolute invariant is√
x2

1 + x2
2 exp

(
−β arctan x1

x2

)
; hence, the domain ω can be created by the curves

√
x2

1 + x2
2 =

const exp
(
β arctan x1

x2

)
. In the polar coordinates (r, θ), such curves are the logarithmic spirals r =

const exp(βθ), and one obtains only the generic domain ω = {(r, θ) : C1 exp(βθ) < r < C2 exp(βθ)}
(0 < C1 < C2), which is the space between two spirals.

Examination of two-dimensional subalgebras listed above does not lead to any new domains.
In fact, the first and the third produce ω = R

2, while the second leads only to the half-space
ω = {(x1, x2) : −∞ < x1 < +∞, x2 > 0}, which is a particular case of the domain ω2 obtained above
for the algebra 〈X1〉.

The above considerations provide a symmetry-based motivation for investigating half-space
problems, as we have done above. The other domains just recorded should be taken into account for
further application of the technique established above.

7. Conclusions

In this paper, a new definition (see Definition 2) of conditional invariance for BVPs is proposed.
It is shown that Bluman’s definition [1,9] for Lie invariance of BVPs, which is widely used to
find Lie symmetries of BVPs with standard boundary conditions, follows as a natural particular
case from Definition 2. Simple examples of the direct applicability of the definition to nonlinear
(1 + 1)-dimensional BVPs, leading to both known and new results, are demonstrated.

The second main result of the paper consists of the successful application of the definition for Lie
and conditional symmetry classification of BVPs of the form (1)–(3). It turns out that a wide range
of possibilities arises for BVPs with the governing (1 + 2)-dimensional nonlinear heat equation if
one looks for Lie symmetries. Depending on the form of the pair (d(u); q(t)), there are 15 different
cases (see Table 2) in contrast to the four different cases only that arise for the governing Equation (1).
In particular, we have proven that there is a special exponent, k = −2, for the power diffusivity uk

when the BVP with non-vanishing flux on the boundary admits additional Lie symmetry operators
compared to the case k �= −2 (see Cases 9 and 10 in Table 2). It should be stressed that the power
k = −2 is not a special case for the governing Equation (1) with d(u) = uk in two space dimensions,
though in some respects, this result reflects its exceptional status in one dimension. It is worth noting
that the well-known critical power k = −1, leading to an infinite-dimensional invariance algebra of
the (1 + 2)-dimensional nonlinear heat equation, preserves its special status only in the case of zero
flux on the boundary (see Case 11 in Table 2 and Remark 4).

In the case of conditional symmetry classification of the BVP class (1)–(3), our result is modest,
because the governing Equation (1) admits a Q-conditional symmetry only for the diffusivity
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d(u) = u−1/2 [28]. Hence, we have examined BVPs (1)–(3) with d(u) = u−1/2 only and proven
that this problem is conditionally invariant under Operator (94) provided restriction (97) holds.

In order to demonstrate the applicability of the symmetries derived, we used those for reducing
the nonlinear BVPs (1)–(3) with power diffusivity uk and a constant non-zero flux (such problems
are common in applications and describe a wide range of phenomena depending on values of k).
One motivation was to investigate the structure of the (1 + 1)-dimensional problems obtained. It turns
out that all of the reduced problems (excepting the parabolic Problems (75)–(77), for which an analysis
is presented in Example 4) are elliptic ones. Some of them are well known (see (82)–(84)), while others
seem to be new and will be treated in a forthcoming paper.

Finally, we have described a brief analysis of a problem of independent interest, which follows in a
natural way from the theoretical considerations presented in Section 2. The problem can be formulated
as follows: how do Lie and conditional invariance of BVP depend on geometry of the domain, in which
the given BVP is defined? We have solved this problem for BVPs with the governing Equation (1)
and obtained an exhaustive list of possible domains preserving at least a one-dimensional subalgebra
of MAI of Equation (1). It turns out that the geometrical interpretation of the domains obtained is
rather simple. However, we foresee much more difficulties for BVPs in this regard with the governing
equations in spaces of higher dimensionality.
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Abstract: In this study, the Lie group method for constructing exact and numerical solutions of the
generalized time-dependent variable coefficients Burgers’, Burgers’–KdV, and KdV equations with
initial and boundary conditions is presented. Lie group theory is applied to determine symmetry
reductions which reduce the nonlinear partial differential equations to ordinary differential equations.
The obtained ordinary differential equations were solved analytically and the solutions are obtained
in closed form for some specific choices of parameters, while others are solved numerically. In the
obtained results we studied effects of both the time t and the index of nonlinearity on the behavior of
the velocity, and the solutions are graphically presented.

Keywords: Lie group method; Burgers’ Equation; Burgers’–KdV Equation; KdV Equation

1. Introduction

Burgers’ equation was formed as a model of turbulent fluid motion by Burgers in a series of several
articles. These articles have been summarized in Burgers’ book [1]. Burgers’ equation is used in the
modeling of water in unsaturated oil, dynamics of soil in water, mixing and turbulent diffusion [2], and
optical-fiber communications [3]. Burgers’ equation can be transformed to the standard heat equation by
means of the Hopf–Cole transformation [4,5]. It is well known that Burgers’ equation involves dissipation
term uxx and Burgers’ Korteweg–de Vries Burgers’ (BKdV) equation involves both dispersion term uxxx

and dissipation term uxx [6]. Typical examples describing the behavior of a long wave in shallow water
and waves in plasma, also describing the behavior of flow of liquids containing gas bubbles and the
propagation of waves on an elastic tube filed with a viscous fluid, [6] are considered.

Several numerical techniques for Burgers’ equation exist, such as Crank–Nicolson finite difference
method applied by Kadalbajoo and Awasthi [7] to the linearized Burgers’ equation. Gorguis applied
the Adomian decomposition method on Burgers’ equation directly [8] and Kutluay et al. applied the
direct approach via the least square quadratic B-spline finite element method [9].

In 1985, Ames and Nucci offered the analysis of fluid equations by group methods. Their work
included the solution of Burgers’ equation [10]. In 1989, Hammerton and Crighton derived the
generalized Burgers’ equation describing the propagation of weakly nonlinear acoustic waves under
the influence of geometrical spreading and thermo-viscous diffusion [11], which is, in non-dimensional
variables, reducible to the form ut + uux = g(t)uxx. In 2005, Wazwaz presented an analysis to generalized
forms of Burgers’, Burgers’–KdV, and Burgers’–Huxley equations using the traveling wave method [12].
In 2011, Abd-el-Malek and Helal applied an analysis to the generalized forms of Burgers’ and
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Burgers’–KdV with variable coefficients and with initial and boundary conditions using the group
theoretic approach [13].

There are several approaches for using Lie symmetries to reduce initial boundary value problems
(IBVPs) of partial differential equations to those of ordinary differential equations. The classical
technique is to require that the equation and both initial and boundary conditions are left invariant
under the one parameter Lie group of infinitesimal transformations. The first rigorous definition of
Lie’s invariance for IBVPs was formulated by Bluman [14]. This definition and several examples are
summarized in his book [15]. His definition was used (explicitly or implicitly) in several papers to
derive exact solutions of some IBVPs. On other hand, one notes that Bluman’s definition cannot be
applied directly to IBVPs which contain boundary conditions involving points at infinity. A new
definition of Lie invariance of IBVPs with a wide range of boundary conditions was formulated by
Cherniha et al. [16,17]. In this paper, we have to deal with the definitions of Lie’s invariance for IBVPs
that were defined by Bluman and Anco [15] and Cherniha and King [17].

In the present work we apply an analysis to the generalized Burgers’ equation, Burgers’–KdV, and
KdV equations with time-dependent variable coefficients as well as initial and boundary conditions
using the Lie group method. Hence, the obtained symmetries are used to reduce the partial differential
equation to an ordinary differential equation and some exact solutions are obtained for some cases
while numerical solutions are obtained for others.

2. The Generalized Burgers’ Equation

We consider the generalized Burgers’ equation in the form [12,13]

ut + α (un)x = β g(t) (un)xx, x > 0, t > 0, n > 1, α,β �= 0 (1)

Equation (1) can be written in the form

ut + α n un−1ux − β n (n − 1) g(t) un−2 u2
x − β ng(t) un−1 uxx = 0, x > 0, t > 0, n > 1, α,β �= 0

(2)
with initial and boundary conditions given by:

u(x, 0) → ∞, x > 0 (3)

u(0, t) = γ r(t), t > 0, γ �= 0 (4)

lim
x→∞

u(x, t) → ∞, t > 0 (5)

To specify the symmetry algebra of Equation (2), we use the Lie symmetry method. For a general
introduction to the subject we refer to [14,15,18,19] specifically [18].

Considering the infinitesimal generator of the symmetry group admitted by Equation (2), given by

X ≡ ξ1 ∂

∂x
+ ξ2 ∂

∂t
+ η1 ∂

∂u
(6)

Since the generalized Burgers’ equation has at most second-order derivatives, we prolong the
vector field X to the second order. The action of Pr(2)X on Equation (2) must vanish, where u is the
solution of Equation (2), and then we find the following determining equations:

ξ1
u = ξ1

t = ξ1
xx = 0 , ξ1

x = gt ξ2

g , gt ξ2

g = constant
ξ2

u = ξ2
x = ξ2

tt = 0

η1
x = η1

t = η1
uu = 0, η1 =

ξ1
x−ξ2

t
n−1 u

⎫⎪⎪⎬⎪⎪⎭ (7)

We have found all possible forms of g = g(t) when Equation (1) admits different Lie algebras of
invariance (see Table 1 (Tables 2–4)):

162



Symmetry 2015, 7, 1816–1830

Table 1. Infinitesimals for ut + α (un)x = β g(t) (un)xx.

No. g Infinitesimals

1 ∀ ξ1 = c2, ξ2 = 0, η1 = 0
2 tλ ξ1 = c1 λ x + c2, ξ2 = c1 t, η1 = λ−1

n−1 c1u
3 et ξ1 = c1 x + c2, ξ2 = c1, η1 = λ−1

n−1 c1u
4 1 ξ1 = c2, ξ2 = c1t + c3, η1 = −1

n−1 c1u

The Lie symmetries listed in Cases 1–3 in Table 1 are completely new; however, the Lie symmetries
listed in Case 4 in Table 1 have been obtained much earlier in [20].

We consider Case 2 in Table 1. The infinitesimal generator of the symmetry group admitted by
Equation (2) is given by X ≡ ( c1 λ x + c2)

∂
∂x + c1 t ∂

∂t + λ−1
n−1 c1u ∂

∂u .
The action of X on Equation (4) must vanish, i.e.,

X (u(0, t)− γ r(t) = 0) = 0 (8)

Therefore, c2 = 0, c1 �= 0 and −t dr(t)
dt + λ−1

n−1 r(t) = 0, from which we get:

r(t) = t
λ−1
n−1 , n > 1 (9)

Clearly, our initial and boundary conditions in Equations (3) and (5) include infinity. Therefore,
Bluman’s definition cannot be applied directly to IBVPs which contain boundary conditions with
points at infinity. Hence, we need to examine the operator X according to Definition 2 in [17]. Items
(b)–(c) of Definition 2 are fulfilled in the case of Equation (4). To check items (d)–(f) we need to
find an appropriate bijective transform. Let us consider the transform in form the y = 1

x , t = τ,
u = 1

U which maps M = {x → ∞, u → ∞} to M* = {y → 0, U → 0}, and both manifolds have the
same dimensionality. Now, item (d) is fulfilled. Our transform maps the operator X to the form
X∗ ≡ −c1 λ y ∂

∂y + c1 τ ∂
∂τ − λ−1

n−1 c1U ∂
∂U , and now, one can easily check that this operator satisfies

items (e)–(f) of Definition 2 on M*.
In the previous calculation, we have shown that the symmetry operator X which is admitted by

both Equation (1) and initial and boundary conditions (3)–(5) with r(t) being a power function is called
the dilatation operator, i.e., the operator corresponding to the one-parameter Lie group of scaling of the
variables x, t, and u. Also, Equation (1) admits a Lie symmetry generator which keeps the boundary
conditions invariant if and only if g(t) is a power function or constant.

By repeating the above procedures, the symmetry operator presented in Case 3 in Table 1 does
not leave the boundary conditions invariant and the same goes for Case 4 in Table 1. Consider Case 2
with λ = 0 as a special case.

The auxiliary equation according to the symmetry operator X, which satisfies the given initial
and boundary conditions, will be:

dx
c1λ x

=
dt

c1 t
=

du
c1(λ−1)u

n−1

(10)

Solving Equation (10), we get:

η(x, t) = x t−λ , u(x, t) = t
λ−1
n−1 F(η)

r(t) = t
λ−1
n−1 , g(t) = tλ

}
(11)

From Equations (9) and (11), u(x, t) = t
λ−1
n−1 F(η) = r(t) F(η), by choosing λ−1

n−1 < 0 (i.e., λ < 1,
since n > 1). Therefore, r(t) → ∞ and u(x,0) → ∞ as t → 0. Hence, a solution in this case exists;
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otherwise, a smooth solution of the problem may not exist. Finally, when λ < 1, the obtained solution
in this case will satisfy Equation (3) directly.

By substituting Equation (11) in Equation (2) we get:

β nFn−1F′′ + βn(n − 1)Fn−2F′2 − αnFn−1F′ = λ − 1
n − 1

F − ληF′ (12)

By substituting Equation (11) in Equations (4) and (5) we get:

F(0) = γ (13)

lim
η→∞

F(η) → ∞ (14)

Equation (12) can be written as(
Fn−1F′ − α

βn
Fn

)′
=

λ − 1
n (n − 1)β

F − λ

n β
η F′ (15)

We have shown that solution of the problem exists and Equation (3) is satisfied when λ < 1.
Therefore without loss of generality, we consider λ = 1/n. Hence Equation (15) reduces to:(

Fn−1F′ − α

βn
Fn

)′
= − 1

n2 β
(F + ηF′) (16)

from which its solution is:

F =

[
β

α2(n − 1)
+

η

α n
+

(
γn−1 − β

α2(n − 1)

)
e(

α (n−1) η
n β )

] 1
n−1

(17)

under the condition γn−1 > β
α2(n−1) which should satisfy Equation (14). Therefore

u(x.t) =
1

t
1
n

[
β

α2(n − 1)
+

x

α n t
1
n
+

(
γn−1 − β

α2(n − 1)

)
e
(α (n−1) x

n β t
1
n

)
] 1

n−1

(18)

which is the same as obtained by Abd-el-Malek and Helal [13] for the case g(t) = tλ. While we succeeded
to find other possible forms of g(t), the only case which keeps the boundary conditions invariant is a
power function or constant.

It is clear that the obtained similarity solutions which describe the behavior of the velocity field
u(x,t) decrease with the increase of time as shown in Figure 1a,b. Furthermore, the velocity field u(x,t)
decreases with the increase of the nonlinearity index “n” as it follows from Figure 1.
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Figure 1. Cont.
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Figure 1. (a) Exact solution Equation (18) for α = 2, β = 2, γ = 0.6, and n = 2; (b) Exact solution
Equation (18) for α = 2, β = 2, γ = 0.6, and n = 3; (c) Exact solution Equation (18) for α = 2, β = 2, γ = 0.6,
and n = 5.

3. The Generalized Burgers’–KdV Equation “GBKdV”

The generalized Burgers’–KdV equation “GBKdV” [12,13] will be studied by using the Lie
group method.

Consider the generalized Burgers’–KdV equation in form:

ut + α (un)x + uxx = β g(t) uxxx, x > 0, t > 0, n > 1, α,β �= 0 (19)

with the initial and boundary conditions

u(x, 0) = 0, x > 0 (20)

u(0, t) = γ r(t), t > 0, γ �= 0 (21)

ux(0, t) = 0, t > 0 (22)

uxx(0, t) = 0, t > 0 (23)

Apply Lie group again to Equation (19) as we did before in Equation (2) with the infinitesimal
generator

X ≡ ξ1 ∂

∂x
+ ξ2 ∂

∂t
+ η1 ∂

∂u
(24)

Since the generalized Burgers’–KdV equation has at most third-order derivatives, we prolong the
vector field X in Equation (24) to the third order. The action of Pr(3)X on Equation (19) must vanish,
where u is the solution of Equation (19). Clearly, the determining Equations can be split with respect
to different powers of u. Special cases of splitting cases arise if n �= 2 and if n = 2. Therefore, we
investigate two cases, namely n �= 2 and n = 2

Case 1: For n �= 2, the determining equations are:

ξ1
u = ξ1

t = ξ1
xx = 0 , ξ1

x = gt ξ2

g = 1
2 ξ2

t , gt ξ2

g = constant

ξ2
u = ξ2

x = ξ2
tt = 0, η1

x = η1
t = η1

uu = 0, η1 =
ξ1

x−ξ2
t

n−1 u

⎫⎬⎭ (25)
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We have found all possible forms of g = g(t) when Equation (19) admits different Lie algebras
of invariance:

Our initial and boundary conditions are satisfied only for Case 1 in Table 2, so g = g(t) =
√

t.
Then the infinitesimal generator of the symmetry group admitted by Equation (19) is given by
X ≡ ( 1

2 c1 x + c2 )
∂

∂x + c1 t ∂
∂t + −1

2 (n−1) c1u ∂
∂u , and the action of X on Equation (21) must vanish, i.e.,

X (u(0, t)− γ r(t) = 0) = 0 (26)

Table 2. Infinitesimals ut + α (un)x + uxx = β g(t) uxxx.

No. g Infinitesimals

1
√

t
ξ1 = c1

2 x + c2 ,ξ2 = c1 t,
η1 = −1

2 (n−1) c1u
2 1 ξ1 = c1 ,ξ2 = c2, η1 = 0

This gives c2 = 0, c1 �= 0 , and −t dr(t)
dt − 1

2 (n−1) r(t) = 0, from which we get:

r(t) = t
1

− 2 (n−1) (27)

The auxiliary equation will be:

dx
1
2 c1 x

=
dt

c1 t
=

du
−1

2 (n−1) c1u
(28)

Solving Equation (28)

η(x, t) = x√
t

, u(x, t) = t
1

−2(n−1) F(η)

r(t) = t
1

−2(n−1) , g(t) =
√

t

⎫⎬⎭ (29)

By inserting Equation (29) in Equation (19), it will be reduced to an ODE

β F′′′ − F′′ − αnFn−1F′ + 1
2

ηF′ + 1
2n − 2

F = 0 (30)

The conditions reduce to
F(0) = γ (31)

F′(0) = 0 (32)

F′′ (0) = 0 (33)

Equations (30)–(33) are identical with the results obtained by [13] for g(t) =
√

t.
We use the fourth, fifth-order Runge–Kutta method to solve Equation (30).
Solutions of Equation (30) are plotted in Figure 2 with two different values of the nonlinearity

index “n” (n = 5 and 100). The figure shows the vibrations of the variable “F” increase with the increase
of the nonlinearity index “n” values and the wave length is seen to decrease with increasing values of
“η”. The shape of these waves seems to be a bugle or the sound waves are reborn from the bugle, so
we can name these waves as “Bugle-shaped waves”.
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Figure 2. (a) Bugle-shaped wave solution of BKdV Burgers’–KdV Equation (30) for α = 1, β = 10, and
n = 5; (b) Bugle-shaped wave solution of BKdV Burgers’–KdV Equation (30) for α = 1, β = 10, and
n = 100.

Case (2): For n = 2, the determining equations are:

ξ1
u = ξ1

tt = ξ1
xx = 0 , ξ1

x = gt ξ2

g = 1
2 ξ2

t ,

ξ2
u = ξ2

x = 0 , η1 = 1
2

g ξ1
t −2 α gt ξ2 u

g α

⎫⎬⎭ (34)

We have found all possible forms of g = g(t) when Equation (19) with n = 2 admits different Lie
algebras of invariance.

One may note that g(t) =
√

t or g(t) = t from Table 3 also satisfy our initial and boundary
conditions, and we can repeat the same procedure from Equation (26) to Equation (33).

This case is completely new and has not been considered before by Abd-el-Malek and Helal [13].

Table 3. Infinitesimals ut + α (u2)x + uxx = β g(t) uxxx.

No. g Infinitesimals

1
√

t ξ1 = 1
2 c1 x + c2 t + c3, ξ2 = c1 t, η1 = c2−c1 α u

2 α
2 t ξ1 = ( c1 x + c2) t + c3, ξ2 = c1 t2, η1 = c1 x+c2−2 c1 t α u

2 α
3 1 ξ1 = c2 t + c3, ξ2 = c1, η1 = 1

2 α c2
4 ∀ ξ1 = c2 t + c3, ξ2 = 0, η1 = 1

2 α c2

4. The Generalized KdV Equation “GKdV”

We introduce the following generalized KdV (GKdV) equation [13,21],

ut + un ux + w(t) u + g(t) uxxx = 0, x > 0, t > 0, n > 1 (35)

with initial and boundary conditions

u(x, 0) → ∞, x > 0 (36)
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u(0, t) = γ r(t) t > 0, γ �= 0 (37)

ux(0, t) = 0, t > 0 (38)

uxx(0, t) = 0, t > 0 (39)

This type of GKdV equation with variable coefficients has several important physical
circumstances such as coastal waves in oceans, liquid drops and bubbles, and most interestingly, the
atmospheric blocking phenomenon, particularly dipole blocking [22]. The first term of Equation (35) is
the evolution term, the second term represents the nonlinear term, the third term is the linear damping
with time-dependent coefficient w(t), and the fourth term is the dispersion term with time-dependent
coefficient g(t).

The term w(t)u in the generalized KdV Equation (35) can be removed by the point transformation
as in [23,24]:

τ =
∫

e−n
∫

w(t)dtdt, x = x, v(x, τ) = en
∫

w(t)dt u, g̃(τ) = en
∫

w(t)dt g(t) (40)

By substituting Equation (40) in Equation (35) we get:

vτ + vn vx + g̃(τ) vxxx = 0, x > 0, τ > 0, n > 1 (41)

All results in Lie symmetries and exact solutions for Equation (35) can be derived from similar
results obtained for Equation (41).

Apply Lie group again on Equation (41) as we did before in Equation (19) with the infinitesimal
generator

X ≡ ξ1 ∂

∂x
+ ξ2 ∂

∂τ
+ η1 ∂

∂v
(42)

Since the generalized KdV equation has at most third-order derivatives, we prolong the vector
field X in Equation (42) to the third order. The action of Pr(3)X on Equation (41) vanishes where ν, the
solution of Equation (41), is, and then we find the following determining equations:

ξ1
u = ξ1

τ = ξ1
xx = 0 , ξ1

x = 1
3

g̃τ ξ2+g̃ ξ2
τ

g̃
ξ2

u = ξ2
x = ξ2

ττ = 0 ,

η1
x = η1

τ = 0 , η1 = (ξ1
x−ξ2

τ)
n v

⎫⎪⎪⎬⎪⎪⎭ (43)

The general solution of Equation (43) is

ξ1 = (c1 + n c4) x + c2 , ξ2 = c1 τ + c3, η1 = c4 v (44)

with the following restriction (c1 τ + c3) g̃τ = (2 c1 + 3 n c4) g̃.
We have found all possible forms of g̃(τ) when Equation (41) admits different Lie algebras

of invariance.
Clearly, by substituting w(t) = 0 in Equation (35), the latter reduces to Equation (41) with the same

initial and boundary conditions in Equations (36)–(39) (i.e., u = ν). The same result is also obtained by
substituting w(t) = 0 in Equation (40).

It can be easily checked using Equation (40) that when w(t) = δ
t , both g̃(τ) and g(t) are

power functions.
By substituting w(t) = δ

t in Equation (35), we get:

ut + un ux +
δ

t
u + g(t) uxxx = 0, x > 0, t > 0, n > 1 (45)

with initial and boundary conditions in Equations (36)–(39).
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By substituting w(t) = δ
t in Equation (40) and by using Case 2 in Table 4, Equation (45) reduces to

ut + un ux +
δ

t
u + tλ(1−δ n)−δ n uxxx = 0 (46)

which admits the Lie symmetry generators

X ≡
(

λ + 1
3

)
c1 x

∂

∂x
+

(
1

1 − δ n

)
c1 t

∂

∂t
+

(
λ − 2
3 n

− δ

1 − δ n

)
c1 u

∂

∂u
(47)

The action of X on Equation (37) must vanish, i.e.,

X (u(0, t)− γ r(t) = 0) = 0 (48)

This gives

r(t) = t
λ (1−δ n) − δ n − 2

3 n (49)

Table 4. Infinitesimals of vτ + vn vx + g̃(τ) vxxx = 0.

No. g̃(τ) Infinitesimals

1 ∀ ξ1 = c2, ξ2 = 0, η1 = 0
2 τλ ξ1 = c1

3 (λ + 1) x + c2 ,ξ2 = c1 τ, η1 = λ−2
3 n c1v

3 eτ ξ1 = c1
3 x + c2 ,ξ2 = c1, η1 = 1

3 n c1v
4 1 ξ1 = c1

3 x + c2 ,ξ2 = c1 τ + c3, η1 = −2
3 n c1v

We have shown that Equation (45) admits the Lie symmetry generator Equation (47), which keeps
the boundary condition invariant if and only if g(t) is a power function or constant.

The auxiliary equation is

dx
λ+1

3 c1 x
=

dt(
1

1−δ n

)
c1 t

=
du(

λ−2
3 n − δ

1−δ n

)
c1 u

(50)

Solving Equation (50), we get:

η(x, t) = x

t
(λ+1) (1−δ n)

3

u(x, t) = t
λ (1−δ n)−δ n−2

3 n F(η)

⎫⎬⎭ (51)

From Equations (49) and (51), u(x,t) = t
λ (1−δ n)−δ n−2

3 n F(η) = r(t) F(η) by choosing λ(1 − δn) −
δn −2 <0. Therefore, r(t) → ∞ and u(x, 0) → ∞ as t → 0 . Hence, the solution in this case exists;
otherwise, a smooth solution of the problem may not exist.

By substituting Equation (51) in Equation (35), we get:

F′′′ +

(
Fn +

(λ + 1) (δ n − 1)
3

η

)
F′ + (λ − 2) (1 − δ n)

3n
F = 0 (52)

Equation (52) can be written in the form(
F′′ +

1
n + 1

Fn+1
)′

= − (λ + 1) (δ n − 1)
3

ηF′ − (λ − 2) (1 − δ n)
3n

F (53)
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Assume λ = − n−2
n+1 , and by setting δ = 1, then λ(1 − δn) − δn −2 < 0. Thus, Equation (53)

reduces to (
F′′ +

1
n + 1

Fn+1
)′

= − n − 1
n + 1

(
ηF′ + F

)
(54)

Integrating Equation (54) once, we get:

F′′ +
1

n + 1
Fn+1 = − n − 1

n + 1
ηF + k3 (55)

where k3 is a constant. The condition that F(0) = γ leads to k3 = γn+1

n+1 , therefore

F′′ +
1

n + 1
Fn+1 +

n − 1
n + 1

ηF =
γn+1

n + 1
(56)

F(0) = γ (57)

F′(0) = 0 (58)

Equation (56) as well as Equations (57) and (58) are identical with the results obtained by Abd-el-Malek
and Helal [13] only for g(t) = tλ and w(t) = t− 1. We use the fourth, fifth-order Runge–Kutta method
to solve Equations (56)–(58).

It is clear that the wave vibrations of F take on a blubber vase-shaped wave as in Figure 3a,d with
an increase in the value of “η”. Figure 3b,d display the alternations of the variable F which increases
with the increase of the nonlinearity index “n” and the wavelength is seen to decrease with increasing
values of “η”.
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Figure 3. Cont.
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(c) 

(d) 
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Figure 3. (a) Wave solution of boundary-value problem (56)–(58) for w(t) = t− 1, n = 5, γ = 0.5;
(b) Wave solution of boundary-value problem (56)–(58) for n = 5, γ = 0.5, and η ε [ 0 , 50 ]; (c) Wave
solution of boundary-value problem (56)–(58) for w(t) = t− 1, n = 100, γ = 0.5; (d) Wave solution of
boundary-value problem (56)–(58) for n =100, γ = 0.5, and η ε [ 0 , 50 ].

We also succeeded to find other possible forms of g(t), but the only case which keeps the boundary
conditions invariant is a power function or constant.

5. Concluding Remarks

In this paper, we applied the Lie group method to generate all symmetries for the three nonlinear
partial differential equations, namely generalized Burgers’, Burgers’–KdV, and GKdV with initial
and boundary conditions. We used the suitable symmetry which satisfies the initial and boundary
conditions to reduce the partial differential equations to ordinary differential equations. According to
the Lie group method, the traveling wave solutions of all the given equations can be obtained.

Also, the function g(t) in the partial differential equations cannot take exponential form as our
initial and boundary condition will not be satisfied. We were able to find more solutions than those
that were obtained before by Abd-el-Malek and Helal [13].

The Lie group method can be applied easily to solve boundary value problems by simple procedures.
Finally, in Section 2, we succeeded in constructing the exact solution that describes the velocity

field of the generalized Burgers’ equation. However, in Sections 3 and 4, the reduced ordinary
differential equations could not be solved analytically, only numerically. The effect of the nonlinearity
index on the solutions was examined and the numerical solutions are graphically presented.
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Abstract: This research is a natural continuation of the recent paper “Exact solutions of the simplified
Keller–Segel model” (Commun Nonlinear Sci Numer Simulat 2013, 18, 2960–2971). It is shown that
a (1 + 2)-dimensional Keller–Segel type system is invariant with respect infinite-dimensional Lie
algebra. All possible maximal algebras of invariance of the Neumann boundary value problems based
on the Keller–Segel system in question were found. Lie symmetry operators are used for constructing
exact solutions of some boundary value problems. Moreover, it is proved that the boundary value
problem for the (1 + 1)-dimensional Keller–Segel system with specific boundary conditions can be
linearized and solved in an explicit form.

Keywords: Keller–Segel model; Lie symmetry; Neumann boundary-value problem; exact solution

1. Introduction

In 1970–1971, E.F. Keller and L.A. Segel published a remarkable papers [1,2], which they
constructed the mathematical model for describing the chemotactic interaction of amoebae mediated
by the chemical (acrasin) in. Nowadays their model is called the Keller–Segel model and used for
modeling a wide range of processes in biology and medicine. The one-dimensional (with respect to
the space variable) version of the Keller–Segel model reads as

Nt =
[
D1(N, P)Nx − χ(P)NPx

]
x,

Pt =
[
D2(P)Px

]
x + α(P)N − β(P)

(1)

where unknown functions N(t, x) and P(t, x) describe the densities of cells (species) and chemicals,
respectively, t and x denote the time and space variables, respectively, D1(N, P) and D2(P) are the
diffusivities of cells (species) and chemicals, while α(P) and β(P) are known non-negative smooth
functions. The function χ(P) (usually a constant χ0) is called the chemotactic sensitivity. Nowadays a
wide range of simplifications of the Keller–Segel model are used for modeling processes in biology and
medicine. Here we restrict ourselves on the (1 + 2)-dimensional Keller–Segel system of the form [3–6]

Nt(t, x, y) = d1 � N(t, x, y)− χ0∇(N(t, x, y)∇P(t, x, y)),
0 =� P(t, x, y) + αN(t, x, y)− βP(t, x, y)

(2)

where the parameters d1, χ0,α and β are non-negative constants, moreover, χ0α �= 0 (otherwise the
model loses its biological meaning). Nowadays, System (2), including the special case β = 0, is
extensively examined by means of different mathematical techniques, in particular, several talks were
devoted to this model at a special session within 10th AIMS Conference [7,8].

However, to the best of our knowledge, there are no papers devoted to application of the Lie
symmetry method for investigation of System (2), notably for construction of exact solutions. In this paper,

Symmetry 2015, 7, 1463–1474 173 www.mdpi.com/journal/symmetry
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we show that this nonlinear system with β = 0 is invariant with respect infinite-dimensional Lie algebra
generated by the operators involving three arbitrary functions, which depend on the time variable.
Moreover, the corresponding Neumann boundary-value problems also admit infinite-dimensional
Lie algebras. Using these algebras we find exact solutions for (1 + 1) and (1 + 2)-dimensional BVPs.
This research is a natural continuation of the recent paper [9].

The paper is organized as follows: in Section 2 maximal algebras of invariance (MAIs) of the
Keller–Segel system and corresponding Neumann boundary-value problems are presented. Section 3 is
devoted to the application of the Lie symmetry operators for finding exact solutions of some Neumann
boundary-value problems with correctly specified parameters. It is also proved that the boundary
value problem for the (1 + 1)-dimensional Keller–Segel system with specific boundary conditions can
be linearized and solved in an explicit form. The results are summarized in Conclusions.

2. Lie Symmetry of the Neumann Boundary-Value Problem

First of all, one notes that all the parameters, excepting β, can be dropped in System (2) if one
introduces non-dimensional variables using the standard re-scaling procedure, i.e., this simplified
Keller–Segel system is equivalent to

ρt(t, x, y) =� ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 =� S(t, x, y) + ρ(t, x, y)− β∗S(t, x, y)

(3)

where β∗ = βd1/α. Obviously, one may set β∗ = 0 provided βd1/α = ε << 1 in (2), hence the
nonlinear system

ρt(t, x, y) =� ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 =� S(t, x, y) + ρ(t, x, y)

(4)

is obtained.

Theorem 1. Maximal algebra of invariance (MAI) of the (1 + 2) KS System (4) is the infinite-dimensional Lie
algebra generated by the operators

G∞
1 = f1(t) ∂

∂x + x f ′1(t)
∂

∂S , G∞
2 = f2(t) ∂

∂y + y f ′2(t)
∂

∂S ,
X∞

S = g(t) ∂
∂S , Pt =

∂
∂t , J12 = −x ∂

∂y + y ∂
∂x ,

D = 2t ∂
∂t + x ∂

∂x + y ∂
∂y − 2ρ ∂

∂ρ

(5)

where f1(t), f2(t) and g(t) are arbitrary function, which possess derivatives of any order.

Proof of the theorem is obtained by straightforward calculations using the well-known technique
created by Sophus Lie in 80s of 19 century. Nowadays this routine can be done using computer algebra
packages therefore we used Maple 16.

Remark. Maximal algebra of invariance of System (3) with β∗ �= 0 is the trivial Lie algebra with
the basic Lie symmetry operators

Pt =
∂

∂t
, Px =

∂

∂x
, Py =

∂

∂y
, J12 = −x

∂

∂y
+ y

∂

∂x

It should be noted that the infinite-dimensional Lie algebra generated by Operators (5) contains
as a subalgebra the well-known Galilei algebra AG(1, 2) (see, e.g., [10]) with the basic operators

Pt, Px, Py, Gx = tPx + x ∂
∂S ,

Gy = tPy + y ∂
∂S , J12

and its extension AG1(1, 2) with the additional operator D. Here the operators Gx and Gy produce the
celebrated Galilei transformations.
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Commutators of the MAI (5) are presented in Table 1.

Table 1. Commutators of the maximal algebras of invariance (MAI) (5).

G∞
1 G∞

2 X∞
S Pt J12 D

G∞
1 0 0 0 − f ′1(t)

∂
∂x − x f ′′

1 (t)
∂

∂S − f1(t) ∂
∂y − y f ′1(t)

∂
∂S G∗

1

G∞
2 0 0 − f ′2(t)

∂
∂y − y f ′′

2 (t)
∂

∂S f2(t) ∂
∂x + x f ′2(t)

∂
∂S G∗

2
X∞

S 0 −g′(t) ∂
∂S 0 −2tg′(t) ∂

∂S
Pt 0 0 2 ∂

∂t
J12 0 0
D 0

G∗
1 =

(
f1(t)− 2t f ′1(t)

)
∂

∂x + x
(− f ′1(t)− 2t f ′′1 (t)

)
∂

∂S = f ∗1 (t)
∂

∂x + x f ∗′1 (t) ∂
∂S ,

G∗
2 = ( f2(t)− 2t f ′2(t))

∂
∂y + y

(− f ′2(t)− 2t f ′′2 (t)
)

∂
∂S = f ∗2 (t)

∂
∂y + y f ∗′2 (t) ∂

∂S

It is well-known that a PDE (system of PDEs) cannot model any real process without additional
condition(s) on unknown function(s). Thus, boundary-value problems (BVPs) based on the chemotaxis
systems of the form (1) are usually studied (see [2,3,11,12] and papers cited therein). In most of these
papers authors investigate Neumann problems with zero-flux boundary conditions. Here we examine
the Neumann problem for System (4) in half-plane

ρt(t, x, y) =� ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 =� S(t, x, y) + ρ(t, x, y),

y = 0 : ρy = q1(t), Sy = q2(t),
y = +∞ : ρy = Sy = 0

(6)

where q1(t) and q2(t) are arbitrary functions, which possess derivatives of any order.
Obviously, Lie algebra (5) cannot be MAI of the BVP (6) for arbitrary functions q1(t) and q2(t).

Moreover, BVP (6) involves conditions at infinity, so one cannot apply the definition [13,14] in order
to examine Lie invariance of this problem. Here we adapt for such purpose the definition proposed
in [15].

First, let us calculate the linear combination for all the operators listed in (5).

X = a1G∞
1 + a2G∞

2 + a3X∞
S + a4Pt + a5 J12 + a6D =

(a4 + 2ta6)
∂
∂t + (a1 f1(t) + a5y + a6x) ∂

∂x + (a2 f2(t)− a5x + a6y) ∂
∂y+(

a3g(t) + a1 f ′1(t)x + a2 f ′2(t)y
)

∂
∂S − 2a6ρ

∂
∂ρ

(7)

and its first prolongation

X
1
= X + σ1

0
∂

∂ρt
+ σ1

1
∂

∂ρx
+ σ1

2
∂

∂ρy
+ σ2

0
∂

∂St
+ σ2

1
∂

∂Sx
+ σ2

2
∂

∂Sy

where a1, . . . , a6 to be determined parameters.
Using Definition 2 [15] we formulate the following invariance criteria.

Definition 1. BVP (6) is invariant w.r.t. the Lie operator (7) if:

(a) Operator (7) is a Lie symmetry operator of System (4);
(b) X(y) = 0 when y = 0;

(c)
X
1
(
ρy − q1(t)

)
= 0 when y = 0, ρy = q1(t) and

X
1
(
Sy − q2(t)

)
= 0 when y = 0, Sy = q2(t);
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(d) there exists a smooth bijective transform T mapping M =
{

y = +∞, ρy = 0, Sy = 0
}

into M∗ ={
y∗ = 0, B1

(
ρ∗, ρ∗y∗

)
= 0, B2

(
S∗, S∗

y∗
)
= 0

}
of the same dimensionality;

(e) X∗(y∗) = 0 when y∗ = 0;

(f)
X
k
∗
(B1) = 0 when y∗ = 0, B1 = 0 and

X
k
∗
(B2) = 0 when y∗ = 0, B2 = 0, k = 0 or k = 1. Where

y∗, ρ∗, S∗ are new variables, X∗ is operator X expressed via the new variables and the functions B1 and B2

are defined by T.

Let us apply this definition to BVP (6).
Taking into account item (b) one immediately obtains the condition a2 f2(t) − a5x = 0 which

means that a2 = a5 = 0.
Now we apply the operator X

1
to the manifolds

{
y = 0, ρy = q1(t)

}
and

{
y = 0, Sy = q2(t)

}
(item (c))

X
1

(
ρy − q1(t)

)∣∣∣∣y=0,ρy=q1(t) = −3a6q1(t)− (a4 + 2a6t)
.
q1(t) = 0,

X
1

(
Sy − q2(t)

)∣∣∣∣y=0,Sy=q2(t) = −a6q2(t)− (a4 + 2a6t)
.
q2(t) = 0

Thus two conditions are obtained:

3a6q1(t) + (a4 + 2a6t)
.
q1(t) = 0,

a6q2(t) + (a4 + 2a6t)
.
q2(t) = 0

(8)

Let us consider the following change of variables, which was used in [15] for the similar purposes,
in order to examine items (d)–(f)

τ = t, x∗ = x, y∗ = 1
y

, U =
ρ

y
, V =

S
y

(9)

By direct calculations we have proved that Transform (9) maps M =
{

y = +∞, ρy = 0, Sy = 0
}

into M∗ = {y∗ = 0, U = 0, V = 0}. Since both manifolds have the same dimensionality, item (d) is
fulfilled. Transform (9) maps Operator X (7) (here we take into account that a2 = a5 = 0) to the form

X∗ = (a4 + 2a6τ) ∂
∂τ + (a1 f1(τ) + a6x∗) ∂

∂x∗ − a6y∗ ∂
∂y∗+(

a1 f ′1(τ)x∗y∗ + a3g(τ)y∗ − a6V
)

∂
∂V − 3a6U ∂

∂U

Now it is easy to check items (e)–(f)

X∗(y∗)
∣∣y∗=0 = −a6y∗

∣∣y∗=0 ≡ 0,
X∗(U)

∣∣y∗=0,U=0 = −3a6U
∣∣y∗=0,U=0 ≡ 0,

X∗(V)
∣∣y∗=0,V=0 =

(
a1 f ′1(τ)x∗y∗ + a3g(τ)y∗ − a6V

)∣∣y∗=0,V=0 ≡ 0

Thus we only need to satisfy Conditions (8). It can be noted that these conditions lead to four
different possibilities only:

1. if q1(t) and q2(t) are arbitrary function, which possess derivatives of any order, then a4 = a6 = 0,
i.e., X = a1G∞

1 + a3X∞
S ;

2. if q1(t) =
q0

1√(
t+ a4

2a6

)3
, q2(t) =

q0
2√

t+ a4
2a6

, where q0
1, q0

2 ∈ R, then X = a1G∞
1 + a3X∞

S + a4Pt + a6D

(here a4 and a6 �= 0 are no longer arbitrary);
3. if q1(t) = q0

1 = const, q2(t) = q0
2 = const then a6 = 0, i.e., X = a1G∞

1 + a3X∞
S + a4Pt;

4. if q1(t) = q2(t) = 0 then X = a1G∞
1 + a3X∞

S + a4Pt + a6D.
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Let us formulate the result as follows (we set t + a4
2a6

→ t without losing a generality).

Theorem 2. All possible MAIs of the (1 + 2)-dimensional Neumann boundary-value problem (6) depending on
the form of the functions q1(t) and q2(t) are presented in Table 2. In Table 2 q0

1, q0
2 ∈ R and

(
q0

1
)2

+
(
q0

2
)2 �= 0.

Table 2. MAIs and restrictions for Neumann BVP (6).

q1(t) q2(t) MAI

1 ∀ ∀ G∞
1 , X∞

S
2 q0

1√
t3

q0
2√
t

G∞
1 , X∞

S , D

3 q0
1 q0

2 G∞
1 , X∞

S , Pt
4 0 0 G∞

1 , X∞
S , Pt, D

3. Exact Solutions of Neumann Problems

This section is devoted to the applying of Lie symmetry operators obtained in Theorem 2 in order
to reduce the Neumann BVP (6) to BVPs of lower dimensionality and find exact solutions.

In the most general case we apply a linear combination of operators G∞
1 and X∞

s (case 1,
Theorem 2):

G∞
1 + a3X∞

s = f1(t)
∂

∂x
+

(
x f ′1(t) + a3 g(t)

) ∂

∂S
This operator generates ansatz

ρ(t, x, y) = �(t, y),

S(t, x, y) = ϕ(t, y) + f ′1(t)
2 f1(t)

x2 + a3
g(t)
f1(t)

x
(10)

Ansatz (10) reduces BVP (6) to the (1 + 1)-dimensional BVP

�t(t, y) = �yy(t, y)− (
�(t, y)ϕy(t, y)

)
y −

f ′1(t)
f1(t)

�(t, y),

0 = ϕyy(t, y) + �(t, y) + f ′1(t)
f1(t)

,

y = 0 : �y = q1(t), ϕy = q2(t),
y = +∞ : �y = ϕy = 0

(11)

Let us consider special case of BVP (11): f1(t) = 1 and q1(t) = q0
1, q2(t) = q0

2. In this case the
Nonlinear problem (11) can be presented as follows

�t(t, y) = �yy(t, y)− (
�(t, y)ϕy(t, y)

)
y,

0 = ϕyy(t, y) + �(t, y)
(12)

y = 0 : �y = q0
1, ϕy = q0

2,
y = +∞ : �y = ϕy = 0

(13)

In reality (12) and (13) is the (1 + 1)-dimensional analog of the (1 + 2)-dimensional BVP (6) with
qk(t) = q0

k , k = 1, 2. System (12) can be reduced to the 3-rd order PDE

ϕty = ϕyyy − ϕyy ϕy + ϑ(t)

where ϑ(t) is an arbitrary function. Setting ϑ(t) = 0, using the Cole–Hopf substitution

ϕy(t, y) = −2
Vy(t, y)
V(t, y)

(14)
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and taking into account the Boundary conditions (13), we obtain BVP problem for the heat equation

Vt = Vyy,

y = 0 : Vy +
q0

2
2 V = 0,

y = +∞ : Vy = 0

(15)

In order to solve (15) by using the classical technique, we should specify an initial profile. Let us set
for simplicity V(0, y) = V0 = const. Now one may use Laplace transform VL(s, y) =

∫ +∞
0 V(t, y)e−stdt

to reduce heat equation to the 2nd order ODE

V
′′
L − sVL(s, y) + V0 = 0 (16)

with boundary conditions

y = 0 : V′
L +

q0
2

2 VL = 0,
y = +∞ : V′

L = 0
(17)

The general solution of BVP (16) and (17) is

VL(s, y) =
q0

2V0

s
(
2
√

s − q0
2
) e−

√
sy +

V0

s

By using the inverse Laplace transform (see for example [16]) and the relevant simplifications one
obtains the general solution of the Linear BVP (15)

V(t, y) = V0

(
1 − erfc

(
y

2
√

t

)
+ e

(q0
2)

2

4 t− q0
2
2 y erfc

(
y

2
√

t
− q0

2
2

√
t

))

Now, by using Cole-Hopf substitution (14), one finds the exact solution for the Nonlinear problem
(12) and (13)

�(t, y) = q0
2

1√
πt

e−
y2
4t erf

(
y

2
√

t

)
+e

(q0
2)

2

4 t− q0
2
2 y erfc

(
y

2
√

t
− q0

2
2
√

t
)(

q0
2
2 erf

(
y

2
√

t

)
+ 1√

πt
e−

y2
4t

)
⎛⎝erf

(
y

2
√

t

)
+e

(q0
2)

2

4 t− q0
2
2 y erfc

(
y

2
√

t
− q0

2
2
√

t
)⎞⎠2 ,

ϕ(t, y) = −2 ln

(
erf

(
y

2
√

t

)
+ e

(q0
2)

2

4 t− q0
2
2 y erfc

(
y

2
√

t
− q0

2
2

√
t
))

+ h(t)

(18)

where h(t) is an arbitrary smooth function. Plots of Solution (18) are presented on Figure 1. It should
be noted that the very similar profile of the function ρ which describes density of cells was presented
in many papers (see, e.g., [2,17–19]). However, in papers [2,17,18] the traveling wave solutions were
found, and in [19] the numerical ones. So the exact Solution (18) is new because it is neither traveling
wave solution nor numerical. It possesses much more complicated structure. Nevertheless this profile
of the function ρ represents the traveling band of cells. This phenomenon was studied by J. Adler in
his experiments which were described in [20].
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Figure 1. Plots of functions �(t, y) and ϕ(t, y) with q0
2 = 1, h(t) = 0 and t = 50 (dot line), t = 100 (dash

line), t = 150 (solid line).

Consider Case 2 in Table 2. The linear combination of operators a1G∞
1 + a3X∞

S + D produces the
following ansatz

ρ(t, x, y) = 1
t ψ(ω1,ω2),

S(t, x, y) = φ(ω1,ω2) +
a1x
2
√

t

∫ f ′1(t)√
t

dt + κ(t),

ω1 = x√
t
− a1

2

∫ f1(t)

t
3
2

dt,

ω2 = y√
t

(19)

where κ(t) is an arbitrary smooth function.
This ansatz reduces BVP (6) to the elliptic BVP

� ψ −∇(ψ∇φ) + ω1
2 ψω1 +

ω2
2 ψω2 + ψ = 0,

ψ+ � φ = 0
(20)

ω2 = 0 : ψω2 = q0
1, φω2 = q0

2,
ω2 = +∞ : ψω2 = φω2 = 0

(21)

It can be easily established that System (20) is invariant w.r.t. the 4-dimensional MAI generated
by the operators

P1 =
∂

∂ω1
+

ω1

2
∂

∂φ
, P2 =

∂

∂ω2
+

ω2

2
∂

∂φ
, P3 =

∂

∂φ
, P4 = ω2

∂

∂ω1
−ω1

∂

∂ω2

In quite a similar way as it was done for BVP (6) we have proved that only operators P1 and
P3 are the Lie symmetry operators of BVP (20) and (21). The linear combination of these operators
P1 + λP3 = ∂

∂ω1
+

(
λ + ω1

2
)

∂
∂φ , λ ∈ R produces ansatz:

ψ(ω1,ω2) = ψ∗(ω2),

φ(ω1,ω2) = φ∗(ω2) +
ω2

1
4 + λω1
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which reduces the Elliptic BVP (20) and (21) to the problem for the second-order ODEs

ψ
′′
∗ − (ψ∗φ′∗)

′ + ω2
2 ψ′∗ + 1

2 ψ∗ = 0,
φ
′′
∗ + ψ∗ + 1

2 = 0,
ω2 = 0 : ∂ψ∗

∂ω2
= q0

1, ∂φ∗
∂ω2

= q0
2,

ω2 = +∞ : ∂ψ∗
∂ω2

= ∂φ∗
∂ω2

= 0

(22)

Unfortunately we were unable to solve BVP (22) because the governing system of ODEs is
non-integrable. Happily we noted that BVP (20) and (21) is invariant w.r.t. the Q-conditional symmetry
operator ∂

∂ω1
(in the sense of Definition 2 [15]). The ansatz generated by the operator ∂

∂ω1
has the form

ψ(ω1,ω2) = ψ̂(ω2),
φ(ω1,ω2) = φ̂(ω2)

(23)

In contrast to the previous ansatz, this one reduces BVP (20) and (21) to the simpler system
of ODEs

ψ̂′′ −
(

ψ̂ψ̂′
)′

+ ω2
2 ψ̂′ + ψ̂ = 0,

ψ̂ + φ̂′′ = 0
(24)

with boundary conditions
ω2 = 0 : ψ̂ω2 = q0

1, φ̂ω2 = q0
2,

ω2 = +∞ : ψ̂ω2 = φ̂ω2 = 0
(25)

System (24) can be reduced to the 4-th order ODE

φ̂(4) +
ω2

2
φ̂(3) −

(
φ̂′′ φ̂′

)′
+ φ̂′′ = 0

By integrating this equation twice and then using substitution φ̂′(ω2) = μ(ω2), one can obtain
the first order ODE

μ′ − 1
2
μ2 +

ω2

2
μ+ μ0

1ω2 + μ0
2 = 0 (26)

where μ1
0,μ2

0 ∈ R.
In order to construct the general solution of Equation (26), we apply the substitution (see, e.g., [21])

U(ω2) = e−
1
2
∫
μ(ω2) dω2

Now the linear ODE

U′′ +
ω2

2
U′ +

(
1
2
μ0

1 ω2 +
1
2
μ0

2

)
U = 0 (27)

is obtained with the general solution:

U(ω2) = A e−μ0
1ω2 K

((
μ0

1
)2

+ 1
2μ

0
2, 1

2 ,− 1
4
(
ω2 − 4μ0

1
)2
)
+

B
(
ω2 − 4μ0

1
)
e−μ0

1ω2 K
((

μ0
1
)2

+ 1
2μ

0
2 +

1
2 , 3

2 ,− 1
4
(
ω2 − 4μ0

1
)2
)

where A, B ∈ R and K(a, b, z) is Kummer’s function

K(a, b, z) = 1 +
∞

∑
k=1

(a)k
(b)k

zk

k!
, (a)k = a(a + 1)...(a + k − 1), (a)0 = 1
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Because Kummer’s functions lead to a very cumbersome solution of BVP in question, we consider
the special case μ0

1 = μ0
2 = 0 (let us note that more general case μ0

2 = −2
(
μ0

1
)2 leads to the same result

because of the Boundary conditions (25). In this case Equation (26) has the general solution

μ(ω2) =
e−

ω2
2

4

A −
√

π
2 erf

(ω2
2
)

From the Boundary condition (25) follows μ(0) = 1
A = q0

2, hence

μ(ω2) = q0
2

e−
ω2

2
4

1 − q0
2

√
π

2 erf
(ω2

2
)

Now one obtains the general solution of BVP (24) and (25)

φ̂(ω2) = −2 ln
(

1 − q0
2
√

π
2 erf

(ω2
2
))

,

ψ̂(ω2) = q0
2

ω2
2 e−

ω2
2

4
(

1−q0
2

√
π

2 erf(ω2
2 )

)
−q0

2e−
ω2

2
2(

1−q0
2

√
π

2 erf(ω2
2 )

)2

(28)

Since ψ′(0) = q0
1 one can calculate that q0

1 =
q0

2
2 − 2

(
q0

2
)3. Thus, the exact solution of BVP (6) with

q1(t) =
q0
2
2 −2(q0

2)
3

√
t3 and q2(t) =

q0
2√
t

has the form

ρ(t, x, y) = q0
2
t ·

y
2
√

t
e−

y2
4t

(
1−q0

2

√
π

2 erf
(

y
2
√

t

))
−q0

2e−
y2
2t(

1−q0
2

√
π

2 erf
(

y
2
√

t

))2
y√

t
,

S(t, x, y) = −2 ln
(

1 − q0
2
√

π
2 erf

(
y

2
√

t

))
+ a1x

2
√

t

∫ f ′1(t)√
t

dt + κ(t)

(29)

where κ(t) is an arbitrary smooth function. Solution (29) is continuous when q0
2 < 2√

π
.

4. Conclusions

In this work we studied a simplified version of (1 + 2)-dimensional Keller–Segel model. It is
well-known that Keller–Segel model is widely used for modeling a wide range of processes in biology
and medicine (especially for the tumour growth modeling) therefore one is extensively examined by
means of different mathematical techniques.

It was established that MAI of System (4) is the infinite-dimensional Lie algebra. Moreover
we have proved that different Neumann BVPs for this system of the form (6) still admit
infinite-dimensional Lie algebras depending on the form of fluxes q1(t) and q2(t). Using the definition
from [15], all inequivalent problems of the form (6) were found, which admit different MAIs (see
Theorem 2).

In order to construct the exact solutions of some Neumann problems, the Lie symmetry operators
were applied. In particular, we have proved that the BVP for the one-dimensional (in space)
Keller–Segel system in question can be linearized. As result, the exact solution of the BVP was
constructed in explicit form (18). It should be stressed that this solution has a remarkable properties,
which allow a biological interpretation.

Finally, the exact solution for the (1 + 2)-dimensional BVP with the correctly specified boundary
conditions was found (see Formula (29)).
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Abstract: A simplified Keller–Segel model is studied by means of Lie symmetry based approaches.
It is shown that a (1 + 2)-dimensional Keller–Segel type system, together with the correctly-specified
boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras.
A Lie symmetry classification of the Cauchy problem depending on the initial profile form is
presented. The Lie symmetries obtained are used for reduction of the Cauchy problem to that
of (1 + 1)-dimensional. Exact solutions of some (1 + 1)-dimensional problems are constructed.
In particular, we have proved that the Cauchy problem for the (1 + 1)-dimensional simplified
Keller–Segel system can be linearized and solved in an explicit form. Moreover, additional biologically
motivated restrictions were established in order to obtain a unique solution. The Lie symmetry
classification of the (1 + 2)-dimensional Neumann problem for the simplified Keller–Segel system is
derived. Because Lie symmetry of boundary-value problems depends essentially on geometry of the
domain, which the problem is formulated for, all realistic (from applicability point of view) domains
were examined. Reduction of the the Neumann problem on a strip is derived using the symmetries
obtained. As a result, an exact solution of a nonlinear two-dimensional Neumann problem on a finite
interval was found.

Keywords: Lie symmetry; algebra of invariance; nonlinear boundary-value problem; Keller–Segel
model; Cauchy problem; exact solution

MSC: 35K5; 22E70

1. Introduction

Nonlinear partial differential equations describe various processes in society and nature.
The well-known principle of linear superposition cannot be applied to generate new exact solutions to
nonlinear partial differential equations (PDEs). Therefore, the classical methods for solving linear PDEs
are not applicable for solving nonlinear PDEs. It means that finding exact solutions of most nonlinear
PDEs generally requires new methods. Finding exact solutions that have a physical, chemical or
biological interpretation is of fundamental importance. The most popular method for construction of
exact solutions to nonlinear PDEs is the Lie method, which was created by Sophus Lie, the famous
Norwegian mathematician, in 1880s–1890s and published in his papers and books. His most important
work in this direction is [1] (see also [2]). Nowadays, the Lie symmetry method is widely applied to
study partial differential equations (including multi-component systems of PDEs), notably for their
reductions to ordinary differential equations (ODEs) and for constructing exact solutions. There are
a huge number of papers and many excellent books [3–7] devoted to such applications.

In real world applications, mathematical models are typically based on PDEs with the relevant
boundary and/or initial conditions. As a result, one needs to investigate boundary value problems
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(BVPs) and initial problems (Cauchy problems). In the case of nonlinear BVPs and initial problems,
a fundamental difficulty arises in solving such problems using analytical methods. One may note
that the Lie method has not been widely used for solving BVPs and initial problems. A natural
reason follows from the following observation: the relevant boundary and initial conditions are
usually not invariant under transformations, which are generated by Lie symmetry of the governing
PDE. Nevertheless, there are some classes of BVPs that can be solved by means of the Lie symmetry
algorithm. A brief history concerning first attempts to apply Lie symmetries for solving BVPs are
discussed in the recent papers [8–11] and the relevant papers cited therein.

In this work, we continue study of a simplified (1+2)-dimensional Keller–Segel model, initiated in
the first part of this work [12]. This model is a particular case of the classical Keller–Segel model [13,14]
used for modeling a wide range of processes in biology, ecology, medicine, etc. The basic equations of
the simplified Keller–Segel model that we are interested in have the form (see more details about these
equations in [15–18]):

Nt(t, x, y) = d1�N(t, x, y)− χ0∇.(N(t, x, y)∇P(t, x, y)),

0 = �P(t, x, y) + αN(t, x, y)− βP(t, x, y),
(1)

where unknown functions N(t, x) and P(t, x) describe the densities of cells (species) and chemicals,
respectively; t and x denote the time and space variables; the parameters d1, χ0, α and β are
non-negative constants, χ0α �= 0 (otherwise, the model loses its biological meaning) and the operators
� = ∂2

x + ∂2
y, ∇ = (∂x, ∂y). We start from the nonlinear System (1) supplied by initial profiles

for unknown functions, i.e. the Cauchy problem, and continue by examination of System (1) with
Neumann boundary conditions (including zero flux conditions as an important particular case).

The paper is organized as follows. In Section 2, the Lie symmetry classification of the Cauchy
problem for a simplified Keller–Segel (SKS) system is derived. In Section 3, the exact solutions of the
(1 + 1) and (1 + 2)-dimensional Cauchy problems were constructed including a nontrivial example of
the exact solution for the correctly-specified initial profiles. In Section 4, Lie symmetry of BVPs with
the Neumann boundary conditions is studied. Because Lie symmetry of BVPs essentially depends
on geometry of the domain, which the problem is formulated on, all realistic (from applicability
point of view) domains were examined. In Section 5, a Lie symmetry operator was used in order to
reduce the (1 + 2)-dimensional Neumann problem for SKS and to construct the exact solution of the
corresponding (1 + 1)-dimensional Neumann problem. The results obtained are summarized in the
Conclusions section.

2. Lie Symmetry of the Cauchy Problem

It was shown in [12] that the SKS System (1) can be further simplified provided βd1/α = ε � 1.
In this case, one may reduce SKS System (1) to the form:

ρt(t, x, y) = �ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),

0 = �S(t, x, y) + ρ(t, x, y).
(2)

Of course, the system derived is still nonlinear; however, one admits infinite-dimensional Lie
algebra of invariance generated by the operators [12]:

G∞
1 = f1(t) ∂

∂x + x f ′1(t)
∂

∂S , G∞
2 = f2(t) ∂

∂y + y f ′2(t)
∂

∂S ,

X∞
S = g(t) ∂

∂S , Pt =
∂
∂t , J12 = −x ∂

∂y + y ∂
∂x ,

D = 2t ∂
∂t + x ∂

∂x + y ∂
∂y − 2ρ ∂

∂ρ ,

(3)

where f1(t), f2(t) and g(t) are arbitrary smooth functions.
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Now, we consider the Cauchy problem for the nonlinear System (2), which can be formulated
as follows:

ρt = �ρ −∇(ρ∇S),
0 = �S + ρ,
t = 0 : S = φ(x), ρ = −φxx(x),

(4)

where φ(x) is an arbitrary smooth function. In the most general case, this function may depend also
on the variable y; however, here we restricted ourselves in this case, in order to avoid cumbersome
calculations. To guarantee existence of a classical solution of the Cauchy Problem (4), the initial profile
for the component ρ should be specified as above.

Obviously, the Lie algebra (3) cannot be maximal algebra of invariance (MAI) of the Cauchy
Problem (4) for the arbitrary given Function φ(x). To determine which of the operators listed in (3)
are Lie symmetry operators of the Cauchy problem in question, we use the well-known criteria [4].
According to the criteria, one should examine whether initial conditions from Equation (4) are invariant
under the operator in question. In order to check this for all the operators listed in Equation (3), we
take their linear combination (hereafter, ai, i = 1, 2, 3... are arbitrary parameters):

X = a1G∞
1 + a2G∞

2 + a3X∞
S + a4Pt + a5 J12 + a6D =

(a4 + 2ta6)
∂

∂t
+ (a1 f1(t) + a5y + a6x)

∂

∂x
+

(a2 f2(t)− a5x + a6y)
∂

∂y
+

(a3g(t) + a1 f ′1(t)x + a2 f ′2(t)y)
∂

∂S
− 2a6ρ

∂

∂ρ
.

(5)

Applying operator X to the manifold M = {t = 0, S = φ(x), ρ = −φxx(x)} generated by the
initial conditions, one arrives at the restriction and two equations:

a4 = 0, (6)

(a1 f1(0) + a5y + a6x)φx(x) = a3g(0) + a1 f ′1(0)x + a2 f ′2(0)y, (7)

2a6φxx(x) + (a1 f1(0) + a5y + a6x)φxxx(x) = 0. (8)

Because Equation (8) is a differential consequence of (7), we need to analyze (7) only. Obviously,
the restriction means (6) that the Cauchy problem is not invariant w.r.t. time translation.

Equation (7) implies certain limitations on the function φ(x). This function can only be arbitrary
when both sides of equation vanish. When the multiplier on the left-hand-side is non-zero, then
one obtains a linear ordinary differential equation (ODE) to find φ(x). This ODE has been solved
depending on the values of the parameters ai, i = 1, 2, 3.... As a result, four different profiles for the
function φ(x) were derived. One of them, namely, φ(x) = γ ln |x|+ λ1 x + λ0 (this function springs up
if a6 �= 0), was exempted from the further examination because the function ln |x| possesses singularity.
The other three cases are presented in Table 1 together with the relevant MAIs.

Theorem 1. All possible MAIs of the (1+2)-dimensional Cauchy Problem (4), depending on the form of initial
profiles (up to translations w.r.t. the space variable x), are presented in Table 1.

Remark 1. Because G∞
1 , G∞

2 and X∞
S contain arbitrary functions on time (see Formulae (3)), one notes

corresponding restrictions on these functions in Table 1, which reduce their arbitrariness. For instance, MAI in
case 4 differs from that in case 1 because there is only a single restriction on the function f1, while there are
two restrictions on f1 in case 1.
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Table 1. maximal algebra of invariances (MAIs) of the Cauchy Problem (4).

φ(x) MAI

1 ∀
G∞

1 with f1(0) = f ′1(0) = 0,
G∞

2 with f ′2(0) = 0,
X∞

S with g(0) = 0

2 0

G∞
1 with f ′1(0) = 0,

G∞
2 with f ′2(0) = 0,

X∞
S with g(0) = 0,

J12, D

3 λ1x, λ1 �= 0

G∞
1 + b6D with f1(0) = 0, f ′1(0) = b6λ1,

G∞
2 + b5 J12 with f ′2(0) = b5λ1,

b1G∞
1 + X∞

S + b1a6D with g(0) = b1λ1 f1(0),
f1(0) �= 0, f ′1(0) = a6λ1

4 λ2x2 + λ0, λ2 �= 0
G∞

1 with f ′1(0) = 2λ2 f1(0),
G∞

2 with f ′2(0) = 0,
X∞

S with g(0) = 0

3. Application of Lie Symmetry for Constructing Exact Solutions of Cauchy Problems

The Cauchy Problem (4) can be reduced to a set of (1 + 1)-dimensional ones by using the Lie
symmetry operators. Nowadays, it is a standard routine in the case of application of symmetry
operators to PDEs in the case of Lie algebras of low dimensionality. In the case of BVPs with a wide
Lie symmetry, classification of inequivalent subalgebras of MAI and its application for reducing can be
highly nontrivial (see examples in [8]). One notes that all MAIs listed in Table 1 are infinite-dimensional,
hence here we restrict ourselves on the operator G∞

2 from case 1 of Table 1.
Because the operator G∞

2 contains an arbitrary function f2(t) with the property f ′2(0) = 0,
we consider two cases, namely: (i) f2(t) = conts �= 0, i.e., G∞

2 = ∂y, and (ii) f2(t) is an arbitrary
non-constant function.

3.1. Exact Solutions of the (1 + 1)-Dimensional Cauchy Problem

In case (i), one easily construct the ansatz:

S(t, x, y) = S(t, x), ρ(t, x, y) = ρ(t, x). (9)

Substituting ansatz (9) into Equation (4), the (1 + 1)-dimensional Cauchy problem,

ρt = ρxx − (ρSx)x,
0 = Sxx + ρ,
t = 0 : ρ = −φxx(x), S = φ(x),

(10)

is obtained. Thus, the same problem is derived, however, in the case of a single spacial variable. Let us
reduce the governing system to a single equation, extracting ρ = −Sxx from the second equation of
Equation (10) and substituting it into the first. Hence, the 4th order differential equation:

Stxx = Sxxxx − (SxxSx)x

is obtained, which is equivalent to the 3rd order equation:

Stx = Sxxx − SxxSx + θ(t),
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where θ(t) is an arbitrary function. The obvious substitution:

W(t, x) = Sx(t, x)

transforms the last equation to the nonlinear 2nd order equation:

Wt = Wxx − WxW + θ(t). (11)

It can be noted that the substitution:

W(t, x) = U(t, y) +
∫ t

0 θ(τ)dτ,
x = z + j(t),

where j(t) =
∫ t

0 (
∫ τ

0 θ(τ1)dτ1)dτ, reduces Equation (11) to the Burgers equation:

Ut = Uzz − UUz.

The Burgers equation is linearizable via the famous Cole–Hopf substitution [19,20]:

U(t, z) = −2
Vz(t, z)
V(t, z)

to the linear heat equation:
Vt = Vzz. (12)

All the substitutions mentioned above could be combined as follows:

Sx(t, x) = −2 Vz(t,z)
V(t,z) +

∫ t
0 θ(τ)dτ,

x = z + j(t).
(13)

It should be stressed that the Substitution (13) reduces the nonlinear Cauchy Problem (10) to the
linear problem for the heat Equation (12), which can be exactly solved. In fact, having the specified
initial profiles in (10), we find the initial condition for Equation (12) as follows:

−2
Vz(0, z)
V(0, z)

= (φ(z))z,

i.e.,

V(0, z) = a e−
1
2 φ(z) ≡ a p(z), a > 0. (14)

Obviously, the exact solution of Cauchy Problems (12) and (14) is the Poisson integral:

V(t, z) =
a√
4πt

∫ +∞

−∞
p(ξ) e−

(z−ξ)2
4t dξ. (15)

Thus, calculating the derivatives Vz(t, z) and Vzz(t, z), and using Substitution (13), one can
construct the solution of the Cauchy Problem (10):

S(t, x) =
∫

W(t, x)dx =
∫ (

U(t, z) +
∫ t

0
θ(τ)dτ

)
dx =

− 2 ln(V(t, z)) + x ·
∫ t

0
θ(τ)dτ + A(t) =

− 2 ln
(

1√
4πt

∫ +∞

−∞
p(ξ) e−

(x−j(t)−ξ)2
4t dξ

)
+ x ·

∫ t

0
θ(τ)dτ + A(t),
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ρ(t, x) =− Uz(t, z) = 2

(
Vzz(t, z)
V(t, z)

−
(

Vz(t, z)
V(t, z)

)2
)

=

− 1
t
·
∫ +∞
−∞ p′(ξ) (x − j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ
−

− 1
2t2 ·

⎛⎝∫ +∞
−∞ p(ξ) (x − j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ

⎞⎠2

.

Because the Cole–Hopf substitution in non-local transform (i.e., involves derivatives), we need to
examine the behavior of the solution as t → 0:

lim
t→0

S(t, x) = −2 ln
(

lim
t→0

(V(t, x))
)
+ A(0) = −2 ln(e−

1
2 φ(x)) + A(0) = φ(x) + A(0).

Hence, having chosen the function A(t) with the property A(0) = 0, we obtain
limt→0 S(t, x) = S(0, x), i.e., the function S(t, x) is continuous at t = 0.

In order to prove that limt→0 ρ(t, x) = ρ(0, x), one needs to show that limt→0 Vz(t, z) = Vz(0, z)
and limt→0 Vzz(t, z) = Vzz(0, z). The proof of the first equality can be found in [19]. We have proved that
limt→0 Vzz(t, z) = Vzz(0, z) under the restriction φ(x) = o(x2), x → ∞ (here, the relevant calculations
are omitted). Thus, the following statement can be formulated.

Theorem 2. The classical solution of the Cauchy Problem (10), in the case when φ(x) is differentiable twice
and φ(x) = o(x2), x → ∞ can be presented as:

S(t, x) =− 2 ln
(

1√
4πt

∫ +∞

−∞
p(ξ) e−

(x−j(t)−ξ)2

4t dξ

)
+

+ x ·
∫ t

0
θ(τ)dτ + A(t),

ρ(t, x) =− 1
t
·
∫ +∞
−∞ p′(ξ) (x − j(t)− ξ) e−

(x−j(t)−ξ)2

4t dξ∫ +∞
−∞ p(ξ) e−

(x−j(t)−ξ)2
4t dξ

−

− 1
2t2 ·

⎛⎝∫ +∞
−∞ p(ξ) (x − j(t)− ξ) e−

(x−j(t)−ξ)2

4t dξ∫ +∞
−∞ p(ξ) e−

(x−j(t)−ξ)2
4t dξ

⎞⎠2

,

(16)

where p(ξ) = e− 1
2 φ(ξ), A(0) = 0.

Obviously, the exact Solution (16) is not unique because one contains two arbitrary functions
θ(t) and A(t). To specify these functions, one needs additional biologically motivated restrictions.
We remind the reader that function S(t, x) describing the density of chemicals should be bounded
in space. Therefore, functions θ(t) must vanish (in this case, function j(t), which depends on θ(t),
also vanishes). In order to specify both functions θ(t) and A(t) one needs, for example, to assume
that the quantity of the chemical S(t, x) is finite in space and time, i.e.,

∫ +∞
−∞ |S(t, x)|dx < 0 for ∀t > 0.

This assumption immediately leads to the unique solution of Cauchy Problem (10) in the form:

S(t, x) = −2 ln
(

1√
4πt

∫ +∞
−∞ p(ξ) e−

(x−ξ)2
4t dξ

)
,

ρ(t, x) =− 1
t
·
∫ +∞
−∞ p′(ξ) (x − ξ) e−

(x−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−ξ)2

4t dξ
−

1
2t2 ·

⎛⎝∫ +∞
−∞ p(ξ) (x − ξ) e−

(x−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−ξ)2

4t dξ

⎞⎠2

.

(17)
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In order to present a non-trivial exact Solution of (10) in terms of elementary functions, we
consider the initial profiles:

S(0, x) = φ(x) = −2 ln(sin(γx) + 2) + 2 ln(3),

ρ(0, x) = −2γ2 1+2 sin(γx)
(sin(γx)+2)2 ,

(18)

where γ is an arbitrary constant.
Using Formula (17), one obtains:

S(t, x) = −2 ln
(

1
2
√

πt

∫ +∞

−∞
e−

1
2 φ(ξ) e−

(ξ−x)2
4t dξ

)
=

− 2 ln
(

2
3
+

1
6
√

πt
e−

x2
4t

∫ +∞

−∞
sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ

)
.

To calculate the integral I(t, x) =
∫ +∞
−∞ sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ, the Mellin transformation
(see, e.g., [21]) has been used:

I(t, x) =
∫ +∞

0
sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ −
∫ +∞

0
sin(γξ) e−

1
4t ξ2− x

2t ξ dξ =

i
2

√
2t e

x2
8t − t

2 γ2
(e−

ixγ
2 (D−1(

x√
2t

− iγ
√

2t) + D−1(− x√
2t

+ iγ
√

2t))−

e
ixγ
2 (D−1(

x√
2t

+ iγ
√

2t) + D−1(− x√
2t

− iγ
√

2t))).

Here, D−1(·) is a parabolic cylinder function. Using the known properties of such functions, the
integral in question can be explicitly calculated:

I(t, x) = 2
√

πt sin(γx)e
x2
4t −γ2t.

Now, we find the function:

S(t, x) =− 2 ln
(

2
3
+

1
6
√

πt
e−

x2
4t 2

√
πt sin(γx)e

x2
4t −γ2t

)
=

− 2 ln
(

sin(γx) e−γ2t + 2
)
+ 2 ln(3).

Because ρ(t, x) = −Sxx(t, x), one also finds the function ρ(t, x). Thus, the exact solution of the
Cauchy Problems (10) and (18) has the form:

S(t, x) = −2 ln
(

sin(γx) e−γ2t + 2
)
+ 2 ln(3),

ρ(t, x) = −2γ2e−γ2t e−γ2t+2 sin(γx)
(sin(γx) e−γ2t+2)2

.
(19)

Plots of this solution with γ = 1 are presented in Figures 1 and 2. Both functions, ρ(t, x) and
S(t, x), have attractive properties. For example, they are periodic, bounded and tend to some constants
if t → +∞. However, one notes that the function ρ(t, x), which usually describes the densities of
cells or species (see Introduction), are not non-negative for ∀x ∈ R. It turns out that this unrealistic
behavior (for real world applications) is a natural property of each non-constant solution of the
(1 + 1)-dimensional Cauchy Problem (10) with an arbitrary non-negative function φ(x) �= const.

189



Symmetry 2017, 9, 13

Figure 1. Plots of the functions S(0, x) and S(t, x) using Formulae (19) with γ = 1.

Figure 2. Plots of the functions ρ(0, x) and ρ(t, x) using Formulae (19) with γ = 1.

Let us show this assuming that there is a Solution of (10) with a non-negative function
φ(x) �= const, such that the functions ρ(t, x) and S(t, x) are non-negative for ∀(t, x) ∈ R

+ ×R. Let us
fix an arbitrary t = t0 > 0. Because 0 ≤ ρ(t0, x) = −Sxx(t0, x), the second derivative Sxx(t0, x) is
non-positive for all x. It means the continues function S(t0, x) is convex upwards for all x (otherwise,
one is a constant). Now, one realizes that any function with such property (like −x2 + c(t), −e−x + c(t),
etc.) cannot be non-negative for all x.

3.2. Reduction and Exact Solutions of (1 + 2)-Dimensional Cauchy Problem

Now, we apply the operator G∞
2 with an arbitrary non-constant function f2(t). In order to reduce

System (4), we need to construct an ansatz by solving the corresponding system of characteristic
equations for this operator. After rather standard calculations, the ansatz:

S(t, x, y) = f ′2(t)
f2(t)

· y2

2 + ψ(t, x), ρ(t, x, y) = Ψ(t, x) (20)

is obtained. Ansatz (20) reduces Cauchy Problem (4) to the (1 + 1)-dimensional Cauchy problem:

Ψt(t, x) =Ψxx(t, x)− Ψ(t, x)ψxx(t, x)−
Ψx(t, x)ψx(t, x)− f ′2(t)

f2(t)
Ψ(t, x),

0 = ψ(t, x) + f ′2(t)
f2(t)

+ Ψ(t, x),

t = 0 : ψ = φ(x), Ψ = −φxx(x).

(21)
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The function Ψ(t, x) can be easily found by using the second equation:

Ψ(t, x) = − f ′2(t)
f2(t)

− ψxx(t, x).

Substituting this expression into the first Equation of (21), one arrives at the fourth order partial
differential equation:

ψtxx =ψxxxx − (ψxxψx)x − 2 f ′2(t)
f2(t)

ψxx − f ′′2 (t)
f2(t)

,

which can be integrated twice w.r.t. the variable x. Thus, the second order nonlinear equation:

ψt = ψxx − 1
2
(ψx)

2 − 2 f ′2(t)
f2(t)

ψ − f ′′2 (t)
2 f2(t)

x2 + c1(t)x + c0(t), (22)

is obtained (c1(t) and c0(t) are arbitrary smooth functions).
In contrast to the nonlinear Equation (11), we were unable to linearize Equation (22) (we remind

the reader that f ′2(t) �= 0). To find particular solutions, we used a non-Lie ansatz (see [22] for
an example):

ψ(t, x) = ψ2(t)x2 + ψ1(t)x + ψ0(t). (23)

in order to reduce the partial differential Equation (22) to a system of ODEs. In fact, Substituting (23)
into Equation (22), the system of three ODEs:

ψ′
2 + 2ψ2

2 +
2 f ′2
f2

ψ2 +
f ′′2

2 f2
= 0,

ψ′
1 + 2ψ1ψ2 +

2 f ′2
f2

ψ1 = c1(t),

ψ′
0 − 2ψ2 +

1
2 ψ2

1 +
2 f ′2
f2

ψ0 = c0(t),

(24)

is obtained to find unknown functions ψ0(t), ψ1(t) and ψ2(t). Because System (24) has the same
structure as (38) [22], one is integrable. In fact, the first equation can be solved for arbitrary function
f2(t). By substituting the known function ψ2(t) into the second equation, one obtains the first
order linear ODE to find the function ψ1(t). Finally, having the known functions ψ1(t) and ψ2(t),
the third equation of System (24) can be easily solved. As a result, the general Solution of (24) has
the form:

ψ2(t) = 1
2(t−t0)

− f ′2
2 f2

, t0 ∈ R,

ψ1(t) = 1
(t−t0) f2(t)

(
∫
(t − t0) f2(t)c1(t)dt + k1) , k1 ∈ R,

ψ0(t) =
k0

f 2
2 (t)

− 1
2
+

1
f 2
2 (t)

∫ (
c0(t) f 2

2 (t) +
f 2
2 (t)

t − t0

)
dt−

1
f 2
2 (t)

∫ (
(
∫
(t − t0) f2(t)c1(t)dt + k1)

2

2(t − t0)2

)
dt, k0 ∈ R.

(25)

Taking into account that c1(t) and c0(t) are arbitrary smooth functions, we may simplify the
general Solution (25) to the form:

ψ2(t) = 1
2(t−t0)

− f ′2(t)
2 f2(t)

, t0 ∈ R,

ψ1(t) = c∗1(t),
ψ0(t) = c∗0(t),

(26)

by introducing new notations c∗1(t) and c∗0(t), which are arbitrary smooth functions, while t0 is
an arbitrary parameter.

Thus, using Equations (20), (23) and (26), we construct the exact solution:
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S(t, x, y) =
f ′2(t)

2 f2(t)
y2 − f ′2(t)

2 f2(t)
x2 +

1
2(t − t0)

x2+

c∗1(t)x + c∗0(t),

ρ(t, x, y) = 1
t0−t

(27)

of Cauchy Problem (4) with the correctly-specified initial profile φ(x) = − 1
2t0

x2 + c1x + c0.
Obviously, this solution blows up for the finite time t0 > 0, which makes its immediate biological

interpretation unlikely. On the other hand, it is in agreement with [18] (see also the references cited
therein) because the global solution of this problem requires the constraint

∫
R2 ρ(0, x, y)dxdy < 8π,

which does not take place for ρ(0, x, y) = 1
t0

. Notably, blow-up solutions occur in some physical models,
and they have been intensively studied since the 1980s (see, e.g., [23] and references therein).

4. Lie Symmetry of the Neumann Problems

In this section, we study Lie symmetry of BVPs with the Neumann boundary conditions.
Because the result depends essentially on geometry of the domain Ω, where BVP in question is
defined, one needs to examine different cases. In [12], the simplest case, when Ω is a half-plane,
was under study. In principle, Ω can be an arbitrary (bounded or unbounded) domain with smooth
boundaries. However, it was established in [10] that geometry of Ω is predicted by the Lie symmetry
of the governing equations of BVP in question. In particular, all possible domains were established if
the projection of MAI of the governing equations on the (x, y) space gives the Lie algebra with the
basic operators:

X = ∂x, Y = ∂y, J12 = −x∂y + y∂x, D12 = x∂x + y∂y. (28)

Now, one notes that such projection of MAI (3) is exactly the Lie algebra (28) (the projections of
G∞

1 and G∞
2 are the operators f1(t) ∂

∂x and f2(t) ∂
∂x , which are equivalent to X and Y because the time

variable is now a parameter). It means that all generic domains leading to non-trivial Lie symmetry of
any Neumann problem for the SKS System (2) are already known [10]. Here, we consider the most
important (from an applicability point of view) of them, and the first one is a strip.

4.1. Neumann Problem on the Strip

The Neumann problem on the strip Ω = {(x, y) : −∞ < x < +∞, 0 < y < π} can be formulated
as follows:

ρt(t, x, y) = �ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 = �S(t, x, y) + ρ(t, x, y),
t = 0 : S = ϕ(x, y), ρ = −�ϕ(x, y),
y = 0 : ρy = q1(t), Sy = q2(t),
y = π : ρy = 0, Sy = 0,

(29)

where ϕ(x, y), q1(t) and q2(t) are arbitrary smooth functions. We note that BVP on an arbitrary strip
Ω1 = {(x, y) : −∞ < x < +∞, C1 < y < C2} can be reduced to BVP (29) by the translation and
scaling transformation w.r.t. the variable y.

In contrast to the previous problem, BVP (29) does not involve boundary conditions at infinity;
hence, the standard definition of invariance can be applied in order to find Lie symmetry of
Problem (29). Let us apply the operator X (5) to the manifolds {y = 0}, {y = π}, {t = 0}:

X(y − 0)|y=0 = a2 f2(t)− a5x + a6y = a2 f2(t)− a5x = 0,
X(y − π)|y=π = a2 f2(t)− a5x + a6y = a2 f2(t)− a5x + a6π = 0,
X(t − 0)|t=0 = a4 = 0.

192



Symmetry 2017, 9, 13

A simple analysis of the conditions obtained above immediately leads to a2 = a4 = a5 = a6 = 0.
Now, one needs to apply the first prolongation X

1
to the manifolds {y = 0, ρy = q1(t)}, {y = 0, Sy = q2(t)},

{y = π, ρy = 0} and {y = π, Sy = 0}. Taking into account the restrictions a2 = a4 = a5 = a6 = 0,
one may easily check that the expressions:

X
1

(
ρy − q1(t)

) ∣∣∣y=0, ρy=q1(t) = −a4 q′1(t) = 0,

X
1

(
Sy − q2(t)

) ∣∣∣y=0, Sy=q2(t) = −a4 q′2(t) = 0,

X
1

(
ρy − 0

) ∣∣∣y=π, ρy=0 = 0,

X
1

(
Sy − 0

) ∣∣∣y=π, Sy=0 = 0,

are fulfilled automatically. Thus, there are no any restrictions on the functions q1(t) and q2(t). Finally,
we apply operator X with a2 = a4 = a5 = a6 = 0 to the initial profiles:

X (S − ϕ(x, y))
∣∣∣t=0, S=ϕ(x,y) = a1 f ′1(0)x − a1 f1(0)ϕx(x, y) + a3g(0) = 0,

X (ρ +�ϕ(x, y))
∣∣∣t=0, ρ=−�ϕ(x,y) = a1 f1(0)(ϕxxx(x, y) + ϕyyx(x, y)) = 0.

One notes that the second equation in these formulae is a differential consequence of the first.
Thus, we need solve only the equation:

a1 f ′1(0)x − a1 f1(0)ϕx(x, y) + a3g(0) = 0. (30)

Obviously, it is the linear ODE for the function ϕ(x, y) (variable y should be treated as a parameter).
A simple analysis of Equation (30) leads two different cases, f1(0) = 0 and f1(0) �= 0. As a result, the
following statement can be formulated.

Theorem 3. MAI of the Neumann Problem (29) does not depend on the form of the functions q1(t) and q2(t).
If the initial profile ϕ(x, y) is an arbitrary smooth function, then MAI is the infinite-dimensional Lie algebra
generated by the operators:

G∞
1 = f1(t)

∂

∂x
+ x f ′1(t)

∂

∂S
, X∞

S = g(t)
∂

∂S
, (31)

with f1(0) = f ′1(0) = 0 and g(0) = 0. In the case,

ϕ(x, y) = λ2 x2 + λ1x + μ(y),

where μ(y) is an arbitrary smooth function, this algebra is extended by operators of the form:

G∞
1 + bX∞

S , (32)

with f ′1(0)
2 f1(0)

= λ2, b g(0)
f1(0)

= λ1, f1(0) �= 0.
There are no other initial profiles ϕ(x, y), leading to extensions of the Lie algebra (31).

It is worth noting that Lie symmetry of the Neumann problem on the strip (29) is essentially
different than one for the same problem on the half-plane. In particular, there is no any dependence on
the form of flux (i.e., the functions q1(t) and q2(t)) in contrast to case of the half-plane (see Theorem 2
in [12]).
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4.2. Neumann Problem on Interior/Exterior of a Circle

Now, we turn to the case of a bounded domain. As it was pointed out in [10], the interior of the
circle Ω = {(x, y) : x2 + y2 < R2} is the simplest case of such domain, which may occur for the system
in question. It should be noted that the circle interior is a two-dimensional analog of the ball in the
3D space. On the other hand, the ball is a typical approximation of the domains arising in biomedical
applications (for instance, when the Keller–Segel model is applied for tumour growth).

The Neumann problem in Ω can be formulated as follows:

ρt(t, x, y) = �ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),

0 = �S(t, x, y) + ρ(t, x, y),

t = 0 : S = ϕ(x, y), ρ = −�ϕ(x, y),

x2 + y2 = R2 : ∂ρ
∂n = q1(t), ∂S

∂n = q2(t),

(33)

where ϕ(x, y), q1(t) and q2(t) are again arbitrary smooth functions, while n is the outer normal to the
boundary (the circus of the radius R) of the domain. Now, we formulate the theorem presenting the
Lie symmetry classification of this BVP.

Theorem 4. MAI of the Neumann Problem (33) does not depend on the form of the functions q1(t) and q2(t).
If the initial profile ϕ(x, y) is an arbitrary smooth function, then MAI is the infinite-dimensional Lie algebra
generated by the operator X∞

S with g(0) = 0.
In the case:

ϕ(x, y) = ψ(x2 + y2) + h0 arctan
y
x

, (34)

this algebra is extended by operator of the form:

J12 − h(t)
∂

∂S
, (35)

where ψ and h are arbitrary smooth functions of their arguments, the function h additionally satisfies the
condition h(0) = h0 with a fixed constant h0.

There are no other initial profiles ϕ(x, y) leading to extensions of the above Lie algebras.

The proof of the theorem is similar to that of Theorem 3 and is based on applying the invariance
criteria to the operator X (5). It is worth noting that the relevant calculations can be essentially simplified
if one applies the polar coordinates (r, θ) instead of the Cartesian of those (x, y). In particular, one
may see that Formula (34) is much simpler in the polar coordinates, and the operator J12 takes the
form J12 = − ∂

∂θ .
Another possible bounded domain is the annulus Ω = {(x, y) : R2

1 < x2 + y2 < R2
2} only [10].

In the case of the annulus, the corresponding Neumann problem has the form (33) with the additional
boundary conditions:

x2 + y2 = R2
2 :

∂ρ

∂n
= q3(t),

∂S
∂n

= q4(t), (36)

q3(t) and q4(t) being arbitrary smooth functions. It turns out that the result of the Lie symmetry
classification for such BVP will be the same as presented in Theorem 4.

Finally, the case of the domain, which is the interior of the circle Ω = {(x, y) : x2 + y2 > R2},
is also interesting. The Neumann Problem (33) in such domain should be supplied by the boundary
conditions at infinity. Typically, they have the form:

x2 + y2 → ∞ :
∂ρ

∂n
= 0,

∂S
∂n

= 0, (37)
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i.e., zero-flux at infinity. In order to establish Lie symmetry of the nonlinear BVPs (33) and (37),
one needs to examine separately the boundary Conditions (37). Because Formula (37) presents
conditions at infinity, we cannot apply the standard invariance criteria [3]; however, we may use
Definition 2 [10]. In fact, applying the transformation:

r∗ = 1
r

, U =
ρ

r
, V =

S
r

, (38)

to Equation (37) in the polar coordinates, one may easily calculate that the manifold M = {r =

+∞, ∂ρ
∂r = 0, ∂S

∂r = 0} corresponding to Equation (37) is mapped into M∗ = {r∗ = 0, U = 0, V = 0}. At
the final step, one checks invariance of the manifold M∗ w.r.t. the operators X∞

S and Equation (35),
taking into account transformation (38).

Thus, we have shown that Theorem 4 is also valid for the Neumann problems on Ω, which is
the annulus or the interior of the circle, and the additional boundary Conditions (36) or (37) take
place, respectively.

5. Exact Solutions of the Neumann Problem

This section is devoted to the application of the Lie symmetry operators obtained in the previous
section in order to reduce BVP (29) to BVPs of lower dimensionality and to find exact solutions.

Let us consider the case of the specified initial profile from Theorem 3:

ϕ(x, y) = λ2 x2 + λ1x + μ(y),

and apply operator (32). This operator generates ansatz:

ρ(t, x, y) = �(t, y),

S(t, x, y) = s(t, y) + f ′1(t)
2 f1(t)

x2 + b g(t)
f1(t)

x,
(39)

which reduces BVP (29) to the (1 + 1)-dimensional BVP:

�t(t, y) = �yy(t, y)− (�(t, y)sy(t, y))y − f ′1(t)
f1(t)

�(t, y),

0 = syy(t, y) + �(t, y) + f ′1(t)
f1(t)

,

t = 0 : s = μ(y), � = −μyy(y),
y = 0 : �y = q1(t), sy = q2(t),
y = π : �y = 0, sy = 0.

(40)

This (1 + 1)-dimensional BVP is still nonlinear, and it is a difficult task to construct its exact solution
in an explicit form. We are interested in the special case when f1(t) = 1 (then, automatically, λ2 = 0),
when Problem (40) is nothing else but the (1 + 1)-dimensional case of BVP (29), i.e., the Neumann
problem on the interval [0; π] for the simplified Keller–Segel system.

Nevertheless, the corresponding BVP can be solved for arbitrary smooth functions q1(t), q2(t),
and we take q1(t) = q1 = const, q2(t) = q2 = const in order to avoid cumbersome formulae. In this
case, the nonlinear Problem (40) takes the form:

�t(t, y) = �yy(t, y)− (�(t, y)sy(t, y))y,

0 = syy(t, y) + �(t, y),
(41)

t = 0 : s = μ(y), � = −μyy(y),
y = 0 : �y = q1, sy = q2,
y = π : �y = 0, sy = 0.

(42)
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First of all, we reduce System (41) to the 3rd order PDE in a similar way as it was done in Section 3;
hence, we arrive at:

sty = syyy − syysy + ϑ(t).

Setting ϑ(t) ≡ 0, one notes that it is the Burgers equation w.r.t. the function sy(t, y). Thus,
using the celebrated Cole–Hopf Substitution [20]:

sy(t, y) = −2
vy(t, y)
v(t, y)

, (43)

and taking into account the Conditions (42), one obtains the Neumann problem for heat equation:

vt = vyy, (44)

t = 0 : v = ω(y),
y = 0 : vy +

q2
2 v = 0,

y = π : vy = 0,
(45)

where ω(y) = Ce− 1
2 μ(y), C �= 0. We will use Fourier method to solve Problems (44) and (45).

Let v(t, y) = T(t)W(y), by substituting it into (44), we obtain:

W ′′

W
=

T′′

T
= −λ, λ > 0.

Thus, T(t) = ae−λt and W(y) = c1 cos(
√

λy) + c2 sin(
√

λy). Using boundary Conditions (45), we
obtain the equation for λ:

tan(
√

λπ) = − q2

2
√

λ
. (46)

Now, we can calculate the general solution for Equations (44) and (45):

v(t, y) =
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny)), (47)

where λn are the roots of Equation (46) and:

an =
1

||Wn||2
∫ π

0
ω(y)(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))dy,

||Wn||2 =
∫ π

0
(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))2 dy =

π

2
+

q2
2π − 2q2

8λn
,

for n > 0. Thus, using Substitution (43) and the second equation from (41), one constructs the exact
solution of the nonlinear BVPs (41) and (42):

s(t, y) =− 2 ln(v(t, y)) + B(t) =

− 2 ln

(
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(t),
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�(t, y) = 2
(

vyy

v
−

(vy

v

)2
)
=

− 2

( ∞
∑

n=1
anλne−λnt(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))

+

⎛⎝ an
√

λne−λnt(sin(
√

λny) + q2
2
√

λn
cos(

√
λny))

ane−λnt(cos(
√

λny)− q2
2
√

λn
sin(

√
λny))

⎞⎠2 )
,

where B(t) is an arbitrary function.
Because the Cole–Hopf substitution in non-local transform (i.e., involves derivatives) we need to

check whether this solution satisfies the initial and boundary conditions. Setting t = 0, we note that:

s(0, y) =− 2 ln

(
∞

∑
n=1

an(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(0) =

μ(y)− 2 ln |C|+ B(0).

Therefore, s(0, y) = μ(y) provided B(0) = 2 ln |C|. Simple calculations show that the second initial
condition �(0, y) = −μyy(y) is also fulfilled.

It can be easily checked that the functions s(t, y) and ρ(t, y) constructed above also satisfy zero
Neumann conditions from Equation (42).

Finally, our result can be formulated as the following theorem.

Theorem 5. The exact solution of the Neumann problem for the simplified Keller–Segel Systems (41) and (42)
can be presented as:

s(t, y) =− 2 ln

(
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(t),

�(t, y) =− 2

( ∞
∑

n=1
anλne−λnt(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))

+

⎛⎜⎜⎝
∞
∑

n=1
an
√

λne−λnt(sin(
√

λny) + q2
2
√

λn
cos(

√
λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))

⎞⎟⎟⎠
2 )

,

(48)

where λn are the roots of the transcendent equation tan(
√

λπ) = − q2
2
√

λ
, while:

an =
1

||Wn||2
∫ π

0
ω(y)(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))dy,

||Wn||2 =
π

2
+

q2
2π − 2q2

8λn
,

and for n > 0, ω(y) = Ce− 1
2 μ(y), C �= 0, B(t) is an arbitrary function, such that B(0) = 2 ln |C|.

Obviously, the exact Solution (48) is not unique because one contains the arbitrary function B(t)
and a parameter C. To specify this function, one needs additional biologically motivated restrictions;
however, it lies outside of the scope of this paper.

197



Symmetry 2017, 9, 13

6. Conclusions

In this paper, the simplified Keller–Segel model has been studied by means of Lie symmetry
based approaches. It is shown that (1 + 2)-dimensional Keller–Segel type System (2), together with the
relevant boundary and initial conditions, is invariant with respect to infinite-dimensional Lie algebras.
A classification of Lie symmetries for the Cauchy problem and the Neumann problem for this system
is derived and presented in Theorems 1, 3 and 4, which say that the Cauchy (initial) problem and
some Neumann problems for this system are still invariant w.r.t. infinite-dimensional Lie algebras
(with the relevant restrictions on the structure of arbitrary functions arising in Equation (3)). It should
be stressed that Lie symmetry of a boundary-value problem depends essentially on geometry of the
domain, which the problem is formulated on. All possible domains, which may lead to nontrivial Lie
symmetry of BVPs with the governing System (2), have been identified using the result of the recent
paper [10]. All realistic from applicability point of view domains (a strip, an interior and exterior of the
circle, an annulus) were examined (the case of a half-plane was studied earlier in [12]).

The results obtained, in particular infinite-dimensional Lie algebras of invariance, seem to be very
interesting because initial and boundary-value problems usually demonstrate a full scale breaking Lie
symmetry of the governing equation(s). For example, the classical example of the Cauchy problem
for the linear heat equation says that this problem can be invariant only w.r.t. finite-dimensional Lie
algebra [3]. Finite-dimensional Lie algebras of invariance occur also for boundary-value problems
involving the linear heat equation [3,24] and nonlinear heat equations [8,9]. However, one cannot
claim that the result obtained here is unique because infinite-dimensional Lie algebras of invariance
may occur for BVPs with the governing equation(s) possessing infinite-dimensional MAI. A non-trivial
example can be found in [10] (see case 11 in Table 2).

The Lie symmetries obtained are used for reduction of the problems in question to
two-dimensional those. Exact solutions of some two-dimensional problems are constructed.
In particular, we have proven that the Cauchy problem for the (1 + 1)-dimensional Keller–Segel type
system can be linearized and solved in an explicit form (see Theorem 2). Because the exact solution
involves two arbitrary functions, the relevant biologically motivated restrictions were proposed in
order to obtain a unique solution. A non-trivial example of the solution in terms of elementary
functions was also derived (see Formulae (19)). It should be stressed that exact solutions of Cauchy
problems with nonlinear governing PDEs can be derived only in exceptional cases because there are
no constructive methods for solving such nonlinear problems (in contrast to linear Cauchy problems).

Symmetry operators were applied also for reduction of the Neumann problems on the strip.
As a result, the exact solution of the Neumann problem for the (1 + 1)-dimensional simplified
Keller–Segel system has been constructed (see Theorem 5). The work is in progress for finding exact
solutions of the Neumann problem on bounded domains.
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Abstract: Dynamical symmetries are of considerable importance in elucidating the complex behaviour
of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative
phenomena as they arise in phase transitions, where conformal invariance has led to enormous
progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase
transitions can arise in much larger portions of the parameter space than equilibrium phase transitions.
The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry,
taking into account the different scaling behaviour of space and time, will be reviewed. Particular
attention will be given to the causality properties as they follow for co-variant n-point functions.
These are important for the physical identification of n-point functions as responses or correlators.

Keywords: Schrödinger algebra; conformal Galilei algebra; ageing algebra; representations; causality;
parabolic sub-algebra; holography; physical ageing

1. Introduction

Improving our understanding of the collective behaviour of strongly interacting systems
consisting of a large number of strongly interacting degrees of freedom is an ongoing challenge.
From the point of view of the statistical physicist, paradigmatic examples are provided by systems
undergoing a continuous phase transition, where fluctuation effects render traditional methods such
as mean-field approximations inapplicable [1,2]. At the same time, it turns out that these systems can
be effectively characterised in terms of a small number of “relevant” scaling operators, such that the
net effect of all other physical quantities, the “irrelevant” ones, merely amounts to the generation
of corrections to the leading scaling behaviour. From a symmetry perspective, phase transitions
naturally acquire some kind of scale-invariance, and it then becomes a natural question whether
further dynamical symmetries can be present.

1.1. Conformal Algebra

In equilibrium critical phenomena (roughly, for systems with sufficiently short-ranged, local
interactions), scale-invariance can be extended to conformal invariance. In two space dimensions,
the generators �n, �̄n should obey the infinite-dimensional algebra

[�n, �m] = (n − m)�n+m,
[
�̄n, �̄m

]
= (n − m)�̄n+m,

[
�n, �̄m

]
= 0 (1)

for n, m ∈ Z. The action of these generators on physical scaling operators φ(z, z̄), where complex
coordinates z, z̄ are used, is conventionally given by the representation [3]

�nφ(z, z̄) → [�n, φ(z, z̄)] = −
(

zn+1∂z + Δ(n + 1)zn
)

φ(z, z̄) (2)
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and similarly for �̄n, where the rôles of z and z̄ are exchanged. Herein, the conformal weights Δ,
Δ are real constants, and related to the scaling dimension xφ = Δ + Δ and the spin sφ = Δ − Δ
of the scaling operator φ. The representation (2) is an infinitesimal form of the (anti)holomorphic
transformations z �→ w(z) and z̄ �→ w̄(z̄). The maximal finite-dimensional sub-algebra of Equation (1)
is isomorphic to sl(2,R)⊕ sl(2,R) ∼= 〈

�±1,0, �̄±1,0
〉
. It is this conformal sub-algebra only which has an

analogue in higher space dimensions d > 2. Denoting the Laplace operator by S := 4∂z∂z̄ = 4�−1�̄−1,
the conformal invariance of the Laplace equation Sφ(z, z̄) = 0 is expressed through the commutator

[S , �n] φ(z, z̄) = −(n + 1)znSφ(z, z̄)− 4Δ(n + 1)nzn−1∂z̄φ(z, z̄) (3)

and analogously for �̄n. Hence, for vanishing conformal weights Δ = Δφ = 0 and Δ = Δφ = 0,
any solution of Sφ = 0 is mapped onto another solution of the same equation. Thermal fluctuations
in 2D classical critical points or quantum fluctuations in 1D quantum critical points (at temperature
T = 0) modify the conformal algebra (1) to a pair of commuting Virasoro algebras, parametrised
by the central charge c. Then Equation (2) retains its validity when the set of admissible operators
φ is restricted to the set of primary scaling operators (a scaling operator is called quasi-primary
if the transformation (2) only holds for the finite-dimensional sub-algebra sl(2,R) ∼= 〈�±1,0〉) [4].
In turn, this furnishes the basis for the derivation of conformal Ward identities obeyed by n-point
correlation functions Fn := 〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 of primary operators φ1 . . . φn. Celebrated
theorems provide a classification of the Virasoro primary operators from the unitary representations
of the Virasoro algebra, for example through the Kac formula for central charges c < 1 [5,6].
Novel physical applications are continuously being discovered.

1.2. Schrödinger Algebra

When turning to time-dependent critical phenomena, the theory is far less advanced. One of the
best-studied examples is the Schrödinger–Virasoro algebra sv(d) in d space dimensions [7,8]

[
Xn, Xn′

]
= (n − n′)Xn+n′ ,

[
Xn, Y(j)

m
]
=

(n
2
− m

)
Y(j)

n+m[
Xn, Mn′

]
= −n′Mn+n′ ,

[
Xn, R(jk)

n′
]
= −n′R(jk)

n+n′ (4)[
Y(j)

m , Y(k)
m′

]
= δj,k (

m − m′) Mm+m′ ,
[
R(jk)

n , Y(�)
m

]
= δj,� Y(k)

n+m − δk,� Y(j)
n+m[

R(jk)
n , R(�i)

n′
]

= δj,iR(�k)
n+n′ − δk,�R(ji)

n+n′ + δk,iR(j�)
n+n′ − δj,�R(ik)

n+n′

(all other commutators vanish) with integer indices n, n′ ∈ Z, half-integer indices m, m′ ∈ Z+ 1
2 and

i, j, k, � ∈ {1, . . . , d}. Casting the generators of sv(d) into the four families X, Y(j), M, R(jk) = −R(kj)

makes explicit (i) that the generators Xn form a conformal sub-algebra and (ii) that the families Y(j)

and M, R(jk) make up Virasoro primary operators of weight 3
2 and 1, respectively [7]. Non-trivial

central extensions are only possible (i) either in the conformal sub-algebra 〈Xn〉n∈Z, where it must be

of the form of the Virasoro central charge, or else (ii) in the so(d)-current algebra
〈

R(jk)
n

〉
n∈Z

, where

it must be a Kac–Moody central charge [5–7,9]. The maximal finite-dimensional sub-algebra of sv(d)
is the Schrödinger algebra sch(d) =

〈
X0,±1, Y(j)

±1/2, M0, R(jk)
0

〉
j,k=1,...d

, where M0 is central. An explicit

representation in terms of time-space coordinates (t, r) ∈ R×R
d, acting on a (scalar) scaling operator

φ(t, r) of scaling dimension x and of mass M, is given by [7]
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Xn = −tn+1∂t − n + 1
2

tnr ·∇r − M
4
(n + 1)ntn−1r2 − n + 1

2
xtn

Y(j)
m = −tm+1/2∂j −

(
m +

1
2

)
tm−1/2Mrj

Mn = −tnM (5)

R(jk)
n = −tn(rj∂k − rk∂j

)
= −R(kj)

n

with the abbreviations ∂j := ∂/∂rj and ∇r = (∂1, . . . , ∂d)
T. These are the infinitesimal forms of the

transformations (t, r) �→ (t′, r′), where

Xn : t = β(t′), r = r′
√

dβ(t′)
dt′

Ym : t = t′, r = r′ − α(t′) (6)

Rn : t = t′, r = R(t′)r′

where α(t) is an arbitrary time-dependent function, β(t) is a non-decreasing function and R(t) ∈ SO(d)
denotes a rotation matrix with time-dependent rotation angles. The generators Mn do not generate a
time-space transformation, but rather produce a time-dependent “phase shift” of the scaling operator
φ [10].

The dilatations X0 are the infinitesimal form of the transformations t �→ λzt and r �→ λr,
where λ ∈ R+ is a constant and z is called the dynamical exponent. In the representation (5), one
has z = 2.

Since the work of Lie [12], and before of Jacobi [13], the Schrödinger algebra is known to be a
dynamic symmetry of the the free diffusion equation (and, much later, also of the free Schrödinger
equation). Define the Schrödinger operator

S = 2M∂t −∇r ·∇r = 2M0X−1 − Y−1/2 · Y−1/2 (7)

Following Niederer [14], dynamical symmetries of such linear equations are analysed through
the commutators of S with the symmetry Lie algebra. For the case of sch(d), the only non-vanishing
commutators with S are

[S , X0] = −S , [S , X1] = −2tS − (2x − d)M0 (8)

Hence, any solution φ of the free Schrödinger/diffusion equation Sφ = 0 with scaling dimension
xφ = d

2 is mapped onto another solution of the free Schrödinger equation [15]. Finally, from
representations such as Equation (5), one can derive Schrödinger–Ward identities in order to compute
the form of covariant n-point functions 〈φ1(t1, r1) . . . φn(tn, rn)〉. With respect to conformal invariance,
one has the important difference that the generator M0 = −M is central in the finite-dimensional
non-semi-simple Lie algebra sch(d). This implies the Bargman super-selection rule [17]

(M1 + · · ·+Mn) 〈φ1(t1, r1) . . . φn(tn, rn)〉 = 0 (9)

Physicists’ conventions require that “physical masses” Mi ≥ 0. It it therefore necessary to define
a formal “complex conjugate” φ∗ of the scaling operator φ, such that its mass M∗ := −M ≤ 0
becomes negative. Then one may write, e.g., a non-vanishing co-variant two-point function of two
quasi-primary scaling operators (up to an undetermined constant of normalisation) [7]

〈φ1(t1, r1)φ
∗
2 (t2, r2)〉 = δx1,x2 δ(M1 −M∗

2) (t1 − t2)
−x1 exp

[
−M1

2
(r1 − r2)

2

t1 − t2

]
(10)
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Here and throughout this paper, δa,b = 1 if a = b and δa,b = 0 if a = b. While Equation (10) looks
at first sight like a reasonable heat kernel, a closer inspection raises several questions:

1. Why should it be obvious that the time difference t1 − t2 > 0, to make the power-law prefactor
real-valued ?

2. Given the convention that M1 ≥ 0, the condition t1 − t2 > 0 is also required in order to have a
decay of the two-point function with increasing distance |r| = |r1 − r2| → ∞.

3. In applications to non-equilibrium statistical physics, one studies indeed two-point functions of
the above type, which are then interpreted as the linear response function of the scaling operator
φ with respect to an external conjugate field h(t, r)

R(t1, t2; r1, r2) =
δ〈φ(t1, r1)〉
δh(t2, r2)

∣∣∣∣
h=0

=
〈
φ(t1, r1)φ̃(t2, r2)

〉
(11)

which in the context of the non-equilibrium Janssen–de Dominicis theory [2] can be re-expressed
as a two-point function involving the scaling operator φ and its associate response operator φ̃.
In this physical context, one has a natural interpretation of the “complex conjugate” in terms of
the relationship of φ and φ̃.
Then, the formal condition t1 − t2 > 0 simply becomes the causality condition, namely that a
response will only arise at a later time t1 > t2 after the stimulation at time t2 ≥ 0.

Hence, it is necessary to inquire under what conditions the causality of Schrödinger-covariant
n-point functions can be guaranteed.

1.3. Conformal Galilean Algebra

Textbooks in quantum mechanics show that the Schrödinger equation is the non-relativistic variant
of relativistic wave equations, be it the Klein–Gordon equation for scalars or the Dirac equations for
spinors. One might therefore expect that the Schrödinger algebra could be obtained by a contraction
from the conformal algebra, but this is untrue (although there is a well-known contraction from
the Poincaré algebra to the Galilei sub-algebra). Rather, applying a contraction to the conformal
algebra, one arrives at a different Lie algebra, which we call here the altern-Virasoro algebra [11,18–20].
av(d) =

〈
Xn, Y(j)

n , R(jk)
n

〉
n∈Z

with j, k = 1, . . . , d, but which nowadays is often referred to as infinite

conformal Galilean algebra. Its non-vanishing commutators can be given as follows

[Xn, Xn′ ] = (n − n′)Xn+n′ , [Xn, Y(j)
m ] = (n − m)Y(j)

n+m

[Xn, R(jk)
n′ ] = −n′R(jk)

n+n′ , [R(jk)
n , Y(�)

m ] = δj,�Y(k)
n+m − δk,�Y(j)

n+m (12)

[R(jk)
n , R(�i)

n′ ] = δj,iR(�k)
n+n′ − δk,�R(ji)

n+n′ + δk,iR(j�)
n+n′ − δj,�R(ik)

n+n′

An explicit representation as time-space transformation is [21]

Xn = −tn+1∂t − (n + 1)tnr ·∇r − n(n + 1)tn−1γ · r − x(n + 1)tn

Y(j)
n = −tn+1∂j − (n + 1)tnγj (13)

R(jk)
n = −tn (

rj∂k − rk∂j
)− tn

(
γj∂γk − γk∂γj

)
= −R(kj)

n

where γ = (γ1, . . . , γd) is a vector of dimensionful constants, called rapidities, and x is again a scaling
dimension. The dynamical exponent z = 1. The maximal finite-dimensional sub-algebra of av(d) is
the conformal Galilean algebra CGA(d) = 〈X±1,0, Y(j)

±1,0, R(jk)
0 〉j,k=1,...,d [11,18,22–27].

A more abstract characterisation of av(1) can be given in terms of α-densities Fα = {u(z)(dz)α},
with the action

f (z)
d
dz

(u(z)(dz)α) = ( f u′ + α f ′u)(z)(dz)α (14)
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Lemma 1. [33] One has the isomorphism, where � denotes the semi-direct sum

av(1) ∼= Vect(S1)�F−1 (15)

Clearly, it follows that CGA(1) ∼= sl(2,R)�F−1.

As before, the time-space representation (13) can be used to derive conformal-Galilean Ward
identities. For example, the CGA(d)-covariant two-point function takes the form

〈φ1(t1, r1)φ2(t2, r2)〉 = δx1,x2 δγ1,γ2 (t1 − t2)
−2x1 exp

[
−γ1 · (r1 − r2)

t1 − t2

]
(16)

Again, at first sight this looks physically reasonable, but several questions must be raised:

1. Why should one have t1 − t2 > 0 for the time difference, as required to make the power-law
prefactor real-valued ?

2. Even for a fixed vector γ1 of rapidities, and even if t1 − t2 > 0 could be taken for granted,
how does one guarantee that the scalar product γ1 · (r1 − r2) > 0, such that the two-point
function decreases as |r| = |r1 − r2| → ∞ ?

The finite-dimensional CGA(2) admits a so-called “exotic” central extension [34,35]. Abstractly,
this is achieved by completing the commutators (12) by the following[

Y(1)
n , Y(2)

m
]
= δn+m,0

(
3δn,0 − 2

)
Θ, n, m ∈ {±1, 0} (17)

with a central generator Θ. This is called the exotic Galilean conformal algebra ECGA = CGA(2) +CΘ
in the physics literature. A representation as time-space transformation of ECGA is, with n ∈ {±1, 0}
and j, k ∈ {1, 2} [21,24,36]

Xn = −tn+1∂t − (n + 1)tnr ·∇r − x(n + 1)tn − (n + 1)ntn−1γ · r − (n + 1)nh · r

Y(j)
n = −tn+1∂j − (n + 1)tnγj − (n + 1)tnhj − n(n + 1)θε jkrk (18)

R(12)
0 = −(

r1∂2 − r2∂1
)− (

γ1∂γ2 − γ2∂γ1

)− 1
2θ

h · h

The components of the vector h = (h1, h2) satisfy [hi, hj] = εijθ, where θ is a constant, ε is the
totally antisymmetric 2 × 2 tensor and ε12 = 1 [37]. The dynamical exponent z = 1. Because of
Schur’s lemma, the central generator Θ can be replaced by its eigenvalue θ = 0. The ECGA-invariant
Schrödinger operator is

S = −θX−1 + εijY
(i)
0 Y(j)

−1 = θ∂t + εij (γi + hi) ∂j (19)

with x = xφ = 1. The requirement that these representations should be unitary gives the bound
x ≥ 1 [24]. Co-variant n-point functions and their applications have been studied in great detail.

1.4. Ageing Algebra

The common sub-algebra of sch(d) and CGA(d) is called the ageing algebra age(d) :=
〈X0,1, Y(j)

± 1
2
, M0, R(jk)

0 〉 with j, k = 1, . . . , d and does not include time-translations. Starting from the

representation (5), only the generators Xn assume a more general form [38]

Xn = −tn+1∂t − n + 1
2

tnr ·∇r − n + 1
2

xtn − n(n + 1)ξtn − n(n + 1)
4

Mtn−1r2 (20)

such that z = 2 is kept from Equation (5). When the generator Xn is applied to a scaling operator,
the constant ξ describes a second scaling dimension, besides the habitual one denoted here by x, of
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that scaling operator φ. It is an important new aspect of extended dynamical symmetries, far from
a stationary state, that at least two distinct scaling dimensions of a given scaling operator φ must be
introduced. This will be made explicit later through concrete examples.

The invariant Schrödinger operates now becomes S = 2M∂t − ∂2
r + 2Mt−1

(
x + ξ − 1

2

)
, but

without any constraint, neither on x nor on ξ [39]. Co-variant n-point functions can be derived as
before [1,38,40], but we shall include these results with those to be derived from more general
representations in the next sections. The absence of time-translations is particular appealing for
application to dynamical critical phenomena, such as physical ageing, in non-stationary states far from
equilibrium, see [1].

In Figure 1 (on page 19 below), the root diagrammes [41] of the Lie algebra (a) age(1), (b) sch(1)
and (c) CGA(1) are shown, where the generators (roots) are represented by the black dots. This visually
illustrates that the Schrödinger and conformal Galilean algebras are not isomorphic, sch(d) ∼= CGA(d).

Comparing Figure 1a with Figure 1c, a different representation of CGA(1) can be identified.
This representation is spanned by the generators X0,1, Y±1/2, M0 from Equation (5), along with a new
generator V+, and leads to a dynamic exponent z = 2 [11]. It is not possible to extend this to a
representation of av(1) [33]. Explicit expressions of V+ will be given in Section 4.

This algebra also appears in more systematic approaches, either from a classification of
non-relativistic limits of conformal symmetries [42] or else from an attempt to construct all possible
infinitesimal local scale transformations [8,18].

1.5. Langevin Equation and Reduction formulæ

In non-equilibrium statistical mechanics [2], one considers often equations under the form of a
stochastic Langevin equation, viz. (we use the so-called “model-A” dynamics with a non-conserved
order-parameter)

2M∂tφ = ∇r ·∇rφ − δV [φ]
δφ

+ η (21)

for a physical field φ (called the order parameter), and where δ/δφ stands for a functional derivative.
Herein, V [φ] is the Ginzburg–Landau potential and η is a white noise, i.e., its formal time-integral is
a Brownian motion. In the context of Janssen–de Dominicis theory, see [2], this can be recast as the
variational equation of motion of the functional

J [φ, φ̃] = J0[φ, φ̃] + Jb[φ̃]

J0[φ, φ̃] =
∫
R+×Rd

dtdr φ̃

(
2M∂tφ −∇r ·∇rφ +

δV [φ]
δφ

)
(22)

Jb[φ̃] = −T
∫
R+×Rd

dtdr φ̃2(t, r)− 1
2

∫
R2d

drdr′ φ̃(0, r)c(r − r′)φ̃(0, r′)

where the term J0[φ, φ̃] contains the deterministic terms coming from the Langevin equation and
Jb[φ̃] contains the stochastic terms generated by averaging over the thermal noise and the initial
condition, characterised by an initial correlator c(r) [43]. In particular, by adding an external source
term h(t, r)φ(t, r) to the potential V [φ], one can write the two-time linear response function as follows
(spatial arguments are suppressed for brevity)

R(t, s) =
δ〈φ(t)〉
δh(s)

∣∣∣∣
h=0

=
∫
DφDφ̃ φ(t)φ̃(s)e−J [φ,φ̃] =

〈
φ(t)φ̃(s)

〉
(23)

with an explicit expression of the average 〈.〉 as a functional integral.

Theorem 1. [44] If in the functional J [φ, φ̃] = J0[φ, φ̃] + Jb[φ̃], the part J0 is Galilei-invariant with
non-vanishing masses and Jb[φ̃] does not contain the field φ, then the computation of all responses and
correlators can be reduced to averages which only involve the Galilei-invariant part J0.
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Proof. We illustrate the main idea for the calculation of the two-time response. Define the average
〈X〉0 =

∫DφDφ̃ X[φ]e−J0[φ,φ̃] with respect to the functional J0[φ, φ̃]. Then, from Equation (23)

R(t, s) =
〈

φ(t)φ̃(s)e−Jb [φ̃]
〉

0
=

∞

∑
k=0

(−1)k

k!

〈
φ(t)φ̃(s)Jb[φ̃]

k
〉

0
=

〈
φ(t)φ̃(s)

〉
0

since the Bargman super-selection rule (9) implies that only the term with k = 0 remains. Hence the
response function R(t, s) = R0(t, s) is reduced to the expression obtained from the deterministic part
J0 of the action.

Analogous reduction formulæ can be derived for all Galilei-covariant n-point responses and
correlators [1,44].

This means that one may study the deterministic, noiseless truncation of the Langevin equation
and its symmetries, provided that spatial translation- and Galilei-invariance are included therein, in
order to obtain the form of the stochastic two-time response functions, as it will be obtained from
models, simulations or experiments.

This work is organised as follows. In Section 2, we review several distinct representations of the
Schrödinger and conformal Galilean algebras, discuss the associated invariant Schrödinger operators
an co-covariant two-point functions. Applications to non-equilibrium statistical mechanics and the
non-relativistic AdS/CFT correspondence will be indicated. In Section 3, the dual representations and
the extensions to parabolic sub-algebras will be reviewed. In Section 4, it will be shown how to use
these, to algebraically derive causality and long-distance properties of co-variant two-point functions.
Conclusions are given in Section 5.

2. Representations

We now list several results relevant for the extension of the representations discussed in the
introduction. The basic new fact, first observed in [40], is compactly stated as follows.

Proposition 1. Let γ be a constant and g(z) a non-constant function. Then the generators

�n = −zn+1∂z − nγzn − g(z)zn (24)

obey the conformal algebra [�n, �m] = (n − m)�n+m for all n, m ∈ Z.

The commutator is readily checked. We point out that the rapidity γ serves as a second scaling
dimension and the choice of the function g(z) can be helpful to include effects of corrections to scaling
into the generators of time-space transformations. Next, we give an example on how these terms in
the generators �n appear in the two-point function, co-variant under the maximal finite-dimensional
sub-algebra 〈�±1,0〉.

Proposition 2. If φ(z) is a quasi-primary scaling operator under the representation (24) of the conformal
algebra 〈�±1,0〉, its co-variant two-point function is, where ϕ0 is a normalisation constant

〈φ1(z1)φ2(z2)〉 = ϕ0 δγ1,γ2 (z1 − z2)
−γ1−γ2 Γ1(z1)Γ2(z2), Γi(z) := zγi exp

(
−

∫ z

1
dζ

g(ζ)
ζ

)
(25)

Proof. For brevity, denote F(z1, z2) = 〈φ1(z1)φ2(z2)〉. Then the co-variance of F is expressed by the
three Ward identities, with ∂i := ∂/∂zi
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�−1F =
(
−∂1 − ∂2 + γ1z−1

1 + γ2z−1
2 − g(z1)z−1

1 − g(z2)z−1
2

)
F = 0

�0F = (−z1∂1 − z2∂2 − g(z1)− g(z2)) F = 0

�1F =
(
−z2

1∂1 − z2
2∂2 − γ1z1 − γ2z2 − g(z1)z1 − g(z2)z2

)
F = 0

Rewrite the correlator as F(z1, z2) = Γ1(z1)Γ2(z2)Ψ(z1, z2). Then the function Ψ(z1, z2) satisfies

(−∂1 − ∂2)Ψ = 0

(−z1∂1 − z2∂2 − γ1 − γ2)Ψ = 0(
−z2

1∂1 − z2
2∂2 − 2γ1z1 − 2γ2z2

)
Ψ = 0

which are the standard Ward identities of the representation (2) of conformal invariance, where the γi
take the rôle of the conformal weights. The resulting function Ψ is well-known [45].

One can now generalise the representation (5) of the Schrödinger–Virasoro algebra sv(d).

Proposition 3. If one replaces in the representation (5) the generator Xn as follows

Xn = −tn+1∂t − n + 1
2

tnr ·∇r − n + 1
2

xtn − n(n + 1)ξtn − Ξ(t)tn − n(n + 1)
4

Mtn−1 (26)

where x, ξ are constants and Ξ(t) is an arbitrary (non-constant) function, then the commutators (4) of the Lie
algebra sv(d) are still satisfied.

This result was first obtained, for the maximal finite-dimensional sub-algebra sch(d), by Minic,
Vaman and Wu [40], who also further take the dependence on the mass M into account and write
down terms of order O(1/M) and O(1) in v(t) explicitly. We extend this observation to sv(d), but do
not trace the dependence in M explicitly, although one could re-introduce it, if required. The proof is
immediate, since all modifications of the generator Xn merely depend on the time t and none of the
other generators of sv(d) changes t. For the sub-algebra age(d) ⊂ sch(d), the representation (20) is a
special case, with arbitrary ξ, but with Ξ(t) = 0.

It is obvious that similar extensions of the representations of time-space transformation of the
other algebras, especially av(d), its finite-dimensional sub-algebra CGA(d) or the exotic algebra ECGA

apply.

Proposition 4. Consider the representation (5), but with the generators Xn replaced by Equation (26), of the
ageing algebra age(d) and the Schrödinger algebra sch(d). The invariant Schrödinger operator has the form

S = 2M∂t −∇2
r + 2Mv(t), v(t) =

x + ξ − d/2
t

+
Ξ(t)

t
(27)

such that a solution of Sφ = 0 is mapped onto another solution of the same equation. For the algebra age(d),
there is no restriction, neither on x, nor on ξ, nor on Ξ(t). For the algebra sch(d), one has the additional
condition x = d

2 − 2ξ.

Proof. To shorten the calculations, we restrict here to d = 1. It is enough to restrict attention to the
generators X±1,0, and we must reproduce Equation (8) in this more general setting. We first look at
age(1). Consideration of X0 gives tv̇(t) + v − Ξ̇(t) = 0 and considering X1 gives x + ξ − 1

2 + Ξ(t) +
tΞ̇(t)− 2tv(t)− t2v̇(t) = 0, where the dot denotes the derivative with respect to t. The second relation
can be simplified to x + ξ − 1

2 + Ξ(t) − tv(t) = 0 which gives the assertion. Going over to sch(1),
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the condition [S , X−1] = 0 leads to ξ/t2 + Ξ̇(t)/t − Ξ(t)/t2 − v̇(t) = 0. This is only compatible with
the result found before for age(1), if ξ = −x − ξ + 1

2 , hence x = 1
2 − 2ξ, as claimed.

Example 1. For a physical illustration of the meaning of the explicitly time-dependent terms in the Schrödinger
operator (27), we consider the growth of an interface [46]. One may imagine that an interface can be created
by randomly depositing particle onto a substrate. The height of this interface will be described by a function
h(t, r). One usually works in a co-moving coordinate system such that the average height 〈h(t, r)〉 = 0
which we shall assume from now on. Then physically interesting quantities are either the interface width
w(t) = 〈h(t, r)2〉 ∼ tβ, which for sufficiently long times t defines the growth exponent β, or else two-time
height-height correlators C(t, s; r) = 〈h(t, r)h(s, 0)〉 or two-time response functions R(t, s; r) = δ〈h(t,r)〉

δj(s,0)

∣∣∣
j=0

,

with respect to an external deposition rate j(t, r). Their scaling behaviour is described by several non-equilibrium
exponents [1,2]. Herein, spatial translation-invariance was assumed for the sake of simplicity of the notation.

Physicists have identified several universality classes of interface growth, see e.g., [2,46].
For the Edwards–Wilkinson universality class, h is simply assumed to be a continuous function in space. Its
equation of motion for the height is just a free Schrödinger equation with an additional white noise. A distinct
universality class is given by the celebrated Kardar–Parisi–Zhang equation which contains an additional
term, quadratic in ∇rh. A lattice realisation may be obtained by requiring that the heights only take integer
values such that the height difference on two neighbouring sites, such that |r1 − r2| = a where a is the lattice
constant, is restricted to h(t, r1)− h(t, r2) = ±1. An intermediate universality class is the one of the Arcetri
model, where the strong restriction of the Kardar-Parisi-Zhang model is relaxed in that h is taken to be a

real-valued function, but subject to the constraint that the sum of its slopes ∑r〈∇rh(t, r)2〉 !
= N , where N is

the number of sites of the lattice [47] (this is just one of the many conditions automatically satisfied in lattice
realisations of the Kardar–Parisi–Zhang universality class). Schematically, in the continuum limit, the slopes
ua(t, r) = ∂h(t, r)/∂ra in the Arcetri model satisfy a Langevin equation

∂tua(t, r) = Δrua(t, r) + z(t)ua(t, r) +
∂

∂ra
η(t, r) (28)

Δr is the spatial Laplacian and η is a white noise. The constraint on the slopes can be cast into a simple form by
defining

g(t) = exp
(
−2

∫ t

0
dτ z(τ)

)
(29)

which can be shown to obey a Volterra integral equation

dg(t) = 2 f (t) + 2T
∫ t

0
dτ f (t − τ)g(τ), f (t) = d

e−4t I1(4t)
4t

(
e−4t I0(4t)

)d−1
(30)

where T is the “temperature” defined by the second moment of the white noise and the In are modified Bessel
functions. This model is exactly soluble [47] and the exponents of the (non-stationary) interface growth are
distinct from the Edwards–Wilkinson (if d < 2) and the Kardar–Parisi–Zhang universality classes.

It turns out that for all dimensions d > 0, there is a “critical temperature” Tc(d) > 0 such that
for T ≤ Tc(d), long-range correlations build up. For example, Tc(1) = 2 and Tc(2) = 2π/(π − 2).
For T ≤ Tc(d), the long-time solution of Equation (30) becomes g(t) ∼ t−� as t → ∞. This is compatible with
the large-time behaviour z(t) ∼ t−1 of the Lagrange multiplier in Equation (28).

Hence, recalling Theorem 1, it is enough to concentrate on the deterministic part. This is given by the
Schrödinger operator (27). Therein, the first term in the potential v(t), of order 1/t, represents the asymptotic
behaviour of the Arcetri model; whereas the term described by Ξ(t)/t takes into account the finite-time corrections
to this leading scaling behaviour [48].

Example 2. We give a different illustration of the new representations of age(d) with ξ = 0 (and Ξ(t) = 0).
Although we shall not be able to write down explicitly the invariant Schrödinger operator of the form specified in
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Equation (27), this example makes it clear that the domain of application of these representations extends beyond
the context of that single differential equation.

The physical context involved will be the kinetic Ising model with Glauber dynamics. The statistical
mechanics of the Ising model can be described in terms of discrete “spins” σi = ±1, attached to each site i of
a lattice. In one spatial dimension, one associates to each configuration σ = {σ1, . . . , σN } of spins an energy
(hamiltonian) H = −∑N

i=1 σiσi+1, with periodic boundary conditions σN+1 = σ1. The dynamics of these spins
is described in terms of a Markov process, such that the “time” t ∈ N is discrete. At each time-step, a single spin
σi is randomly selected and is updated according to the Glauber rates (also referred to as “heat-bath rule”) [52].
These are specified in terms of the probabilites

P (σi(t + 1) = ±1) =
1
2

[
1 ± tanh

(
1
T
(σi−1(t) + σi+1(t) + hi(t))

)]
(31)

where the constant T is the temperature and hi(t) is a time-dependent external field. From these probabilites
alone, the time-evolution of the average of any local observable, such as the time-dependent magnetisation or
magnetic correlators, can be evaluated analytically [52]. In one spatial dimension, and at temperature T = 0,
the model displays dynamical scaling and the exactly-known magnetic two-time correlator and response take a
simple form. In the scaling limit t, s → ∞ with t/s being kept fixed, one has [53–55]

C(t, s) = 〈σi(t)σi(s)〉 =
2
π

arctan
√

2
t/s − 1

(32)

R(t, s) =
δ 〈σi(t)〉
δhi(s)

∣∣∣∣
h=0

=
1√
2 π

1√
s(t − s)

(33)

This is independent of the initical conditions (which merely enter into corrections to scaling), hence these
results should be interpreted as being relevant to a critical point at Tc = 0 [1].

As a first observation, we remark that the form Equation (33) of the auto-response function R(t, s) =

R(t, s; 0) is not compatible with the prediction Equation (10) of Schrödinger-invariance. This means that the
representation (5) of the Schrödinger-algebra sch(1), with time-translation-invariance included, is too restrictive
to account for the phenomenology of the relaxational behaviour, far from a stationary state, of the one-dimensional
Glauber–Ising model [56].

In order to explain the exact results Equations (32) and (33) in terms of the representation (20) of age(d),
one first generalises the prediction Equation (10) of the Schrödinger algebra as follows, up to normalisation [44]

R(t, s; r) =
〈
φ(t, r)φ̃(s, 0)

〉
= R(t, s) exp

[
−M

2
r2

t − s

]
(34)

= δx+2ξ,x̃+2ξ̃
δ(M+ M̃) s−(x+x̃)/2

(
t
s

)ξ+� (
t
s
− 1

)−x−2ξ

exp
[
−M

2
r2

t − s

]
with � := 1

2 (x̃ − x) + ξ̃ − ξ. Herein, φ denotes the order parameter, with scaling dimensions x, ξ and of mass
M > 0. The response field φ̃, with scaling dimensions x̃, ξ̃ and mass M̃ = −M < 0 takes over the rôle of
the “complex conjugate” in Equation (10), but now time-translation-invariance is no longer required. Spatial
translation-invariance is implicitly admitted. Comparison of the auto-response R(t, s) with the exact result
Equation (33) leads to the identifications x = 1

2 , x̃ = 0, ξ = 0 and ξ̃ = 1
4 . Remarkably, only the second scaling

dimension ξ̃ of the response scaling operator φ̃ does not vanish—a feature also observed numerically in models
such as directed percolation or the Kardar–Parisi–Zhang Equation, see [57–59] for details.

On the other hand, along the lines of Theorem 1, the autocorrelator at the critical point T = Tc can be
expressed as an integral of a “noiseless” three-point response, up to normalisation [7]

C(t, s) =
∫
R+×Rd

dudR
〈

φ(t, y)φ(s, y)φ̃ 2(u, R + y)
〉

0
(35)
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Ageing-invariance fixes this three-point function up to a certain undetermined scaling function. Herein,
one considers φ̃ 2 as a new composite operator with scaling dimensions 2x̃2, 2ξ̃2. Up to normalisation, the
autocorrelator becomes (assuming t > s for definiteness) [38]

C(t, s) = s1+d/2−x−x̃2

(
t
s

)x+� (
t
s
− 1

)x̃2+2ξ̃2−x−2ξ−d/2

×
∫ 1

0
dv v2ξ̃2−�

[(
t
s
− v

)
(1 − v )

]d/2−x̃2−2ξ̃2

Ψ

(
t/s + 1 − 2v

t/s − 1

)
= C0

∫ 1

0
dv v2μ

[(
t
s
− v

)
(1 − v )

]2μ (
t
s
+ 1 − 2v

)2μ

(36)

where in the second line we recognised that the scaling function can be described in terms of the single parameter
μ = ξ + ξ̃2 and there remains an undetermined scaling function Ψ. Furthermore, the autocorrelator scaling
function should be non-singular as t → s. This implies Ψ(w) ∼ wx̃2−x−4ξ−d/2+μ for w � 1. The most simple
case arises when this form remains valid for all w. Using the values of the scaling exponents identified from the
autoresponse R(t, s) before, the exact 1D Glauber–Ising autocorrelator Equation (32) is recovered from Equation
(36), with the choice μ = − 1

4 and C0 = 2/
√

π [38].
Although the discrete nature of the Ising spins does not permit to recognise explicitly the continuum

equation of motion in the form Equation (27) (the underlying field theory of the model is a free-fermion theory,
and not a free-boson theory as in the first example [60]), this illustrates the necessity of the second scaling
dimension ξ, of the representation (20) of age(1). For d ≥ 2 dimensions, there is no known analytical solution
and one must turn to numerical simulations. The available evidence suggests that the second scaling dimensions
ξ + ξ̃ = 0 at criticality, at least for dimensions d < d∗ = 4, the upper critical dimension. For details and a
review of further examples, see [1].

How the choice of the representation can affect the physical interpretation, is further illustrated by
considering a “lattice” representation rather than the usually employed “continuum” representation of
the Schrödinger algebra sch(1). In Table 1, we list the generators of the “continuum” representation (5)
along with the one of the “lattice” representation. Herein, the non-linear functions of the derivative ∂r

are understood to stand for their Taylor expansions. The origin of the name of a “lattice” representation
can be understood when considering the generator Y−1/2 of “spatial translations”, which reads
explicitly

Y−1/2 f (t, r) = −1
a

(
f (t, r + a/2)− f (t, r − a/2)

)
(37)

It is suggestive to interpret this as a discretised symmetric lattice derivative operator, with a as a
lattice constant, although the Xn, Ym are still generators of infinitesimal transformations.

Table 1. The “lattice” representations of the Schrödinger algebra sch(1), and its “continuum”
representation, to which it reduces in the limit a → 0 [61].

Generator Continuum Lattice

X−1 −∂t −∂t

X0 −t∂t − 1
2 r∂r −t∂t − 1

a cosh( a
2 ∂r)

r sinh( a
2 ∂r)

X1 −t2∂t − tr∂r − 1
2Mr2 −t2∂t − 2t

a cosh( a
2 ∂r)

r sinh( a
2 ∂r)− M

2

(
1

cosh( a
2 ∂r)

r
)2

Y−1/2 −∂r − 2
a sinh( a

2 ∂r)

Y1/2 −t∂r −Mr − 2t
a sinh( a

2 ∂r)− M
cosh( a

2 ∂r)
r

M0 −M −M
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The Schrödinger operator has, in the “lattice” representation, the following form

S = 2M∂t − 1
a2

(
ea∂r + e−a∂r − 2

)
(38)

and the equation Sφ = 0 could be viewed as a “lattice analogue” of a free Schrödinger equation.
It is also of interest to write down the co-variant two-point functions. The extension of

Equation (10) reads, up to a normalisation constant [61]

Φ(t, n) := 〈φ1(t1, r1)φ
∗
2 (t2, r2)〉 = δM1,M2 δx1,x2 t1/2−x1 e−t In(t) (39)

where In is again a modified Bessel function, and with the abbreviations

t =
t1 − t2

M1a2 , n =
r1 − r2

a
(40)

Herein, both r1 and r2 must be integer multiples of the “lattice constant” a. In the limit a → 0,
all these results reduce to those of the “continuum” representation, discussed in Section 1. Again,
although at first sight this looks as a physically reasonable Green’s function on an infinite chain [62], the
same questions as raised in relation with Equation (10) should be addressed. The extensions discussed
in the above propositions 2–4 can be readily added, since those only concern the time-dependence of
the generators.

All representations of the Schrödinger algebra discussed so far have the dynamical exponent
z = 2, which fixes the dilatations t �→ λzt and r �→ λr. This can be changed, however, by admitting
“non-local” representations. We shall write them here, for the case z = ν ∈ N, in the form given for the
sub-algebra age(1), when the generators read [63]

X0 = −ν

2
t∂t − 1

2
r∂r − x

2

X1 =
(
−ν

2
t2∂t − tr∂r − (x + ξ)t

)
∂ν−2

r − M
2

r2

Y−1/2 = −∂r, Y1/2 = −t∂ν−1
r −Mr, M0 = −M (41)

and reduce to Equation (5) for z = ν = 2. Clearly, these generators (especially X1, Y1/2) cannot be
interpreted as infinitesimal transformations on time-space coordinates (t, r) and cannot be seen as
mimicking a finite transformation, as was still possible with the “lattice” representation given in Table 1.
In [63], a possible interpretation as transformation of distribution functions of (t, r) was explored, but
the issue is not definitely settled.

Proposition 5. [63] For any ν ∈ N, the generators (41) of the algebra age(d) satisfy the commutators (4) in
d = 1 spatial dimensions, but with the only exception

[X1, Y1/2] =
ν − 2

2
t2∂ν−3

r S (42)

where the Schrödinger operator S is given by

S = νM∂t − ∂ν
r + 2M

(
x + ξ +

ν − 1
2

)
t−1 (43)

These indeed generate a dynamical symmetry on the space of solutions of the equation Sφ = 0,
since the only non-vanishing commutators of S with the generators (41) are

[S , X0] = −ν

2
S , [S , X1] = −νt∂n−2

r S (44)
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Verifying the required commutators is straightforward (but there is no known extension to a
representation of av(1)). It is possible to generalise this construction to dimensions d > 1 and to
generic dynamical exponents z ∈ R+, but this would require the introduction of fractional derivatives
into the generators [39,64]. Formally, one can also derive the form of co-variant two-point functions
F(t1, t2; r1, r2) = 〈φ1(t1, r1)φ

∗
2 (t2, r2)〉.

Proposition 6. [63] For ν ∈ N, a two-point function F, covariant under the non-local representation (41) of
the Lie algebra age(1), defined on the solution space of Sφ = 0, where S is the Schrödinger operator (43), has
the form F = δ(M1 −M∗

2) t−(x1+x2)/ν
2 F(u, v, r), where

F(u, v, r) = (v − 1)−
2
ν [(x1+x2)/2+ξ1+ξ2−ν+2]v−

1
ν [x2−x1+2ξ2−ν+2] f

(
ru−1/ν

)
, ν even

F(u, v, r) = (v + 1)−
2
ν [(x1+x2)/2+ξ1+ξ2−ν+2]v−

1
ν [x2−x1+2ξ2−ν+2] f

(
ru−1/ν

)
, ν odd (45)

the function f (y) satisfies the equation dν−1 f (y)/dyν−1 + M1y f (y) = 0, and with the variables
r = r1 − r2, v = t1/t2 and

u = t1 − t2 if ν is even , u = t1 + t2 if ν is odd (46)

The set of admissible functions f (y) will have to be restricted by imposing physically reasonable
boundary conditions, especially limy→∞ f (y) = 0. The value z = ν of the dynamical exponent
is obvious.

Again, one should inquire into the behaviour when r → ∞. Furthermore, one observes that the
interpretation of u depends on whether ν is even or odd. In the first case, the co-variant two-point
functions could be a physical two-time response function, while in the second case, it looks more like a
two-time correlator, since it is symmetric symmetry under the exchange of the two scaling operators.

All representations considered here are scalar. It is possible to consider multiplets of scaling
operators. In the case of conformal invariance, one should formally replace the conformal weight Δ
by a matrix [65–69]. New structures are only found if that matrix takes a Jordan form. Analogous
representations can also be considered for the Schrödinger and conformal Galilean algebras and their
sub-algebras. Then, it becomes necessary to consider simultaneously the scaling dimensions x, ξ

and the rapidities γ as matrices [36,70–73]. From the Lie algebra commutators it can then be shown
that these characteristic elements of the scaling operators are simultaneously Jordan [36]. Several
applications to non-equilibrium relaxation phenomena have been explored in the literature [57,58,74,75],
see [59] for a review.

3. Dual Representations

In order to understand how the causality and the large-distance behaviour of the co-variant
two-point functions can be derived algebraically, it is helpful to go over to a dual description. The new
dual coordinate ζ is related to either the scalar mass M for the Schrödinger algebra (this was first
noted by Giulini [76] for the case of its Galilei-subalgebra) or else to the vector of rapidities γ for the
conformal Galilei algebra. It will therefore be scalar or vector, respectively. The dual fields are [11,77]

φ̂(ζ, t, r) :=
1√
2π

∫
R

dM eiMζ φM(t, r), for sch(d), age(d)

φ̂(ζ, t, r) :=
1

(2π)d/2

∫
Rd

dγ eiγ·ζφγ(t, r), for CGA(d) (47)

For the sake of notational simplicity, we shall almost always restrict to the one-dimensional case,
although we shall quote some final results for a generic dimension d.
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3.1. Schrödinger Algebra

From Proposition 3, the dual generators of the Schrödinger–Virasoro algebra take the form
(with j, k = 1, . . . , d)

Xn =
i
4
(n + 1)n tn−1r2∂ζ − tn+1∂t − n + 1

2
tnr∂r − n + 1

2
xtn − n(n + 1)ξtn − Ξ(t)tn

Ym = i
(

m +
1
2

)
tm−1/2r∂ζ − tm+1/2∂r (48)

Mn = itn∂ζ

with n ∈ Z and m ∈ Z+ 1
2 . This acts on a (d+ 2)-dimensional space, with coordinates ζ, t, r. According

to Proposition 3, not only the finite-dimensional sub-algebra age(1), but also the finite-dimensional
sub-algebra sch(1) [40] generates dual dynamical symmetries of the Schrödinger operator

S = −2i∂ζ∂t − ∂2
r − 2i

(
x + ξ − 1

2

)
t−1∂ζ (49)

Co-variant dual three-point functions have been derived explicitly [40].
In the context of the non-relativistic AdS/CFT correspondence, also referred to as non-relativistic

holography by string theorists, see [74,78] and references therein, one rather considers a (d +

3)-dimensional space, with coordinates Z, ζ, t, r. The time-space transforming parts of the Schrödinger–
Virasoro generators read (generalising Son [79], who restricted himself to the finite-dimensional
sub-algebra sch(d))

Xn =
i
4
(n + 1)n tn−1

(
r2 + Z2

)
− tn+1∂t − n + 1

2
tn (r ·∇r + Z∂Z)

Y(j)
m = i

(
m +

1
2

)
tm−1/2rj∂ζ − tm+1/2∂rj (50)

Mn = itn∂ζ

R(jk)
n = −tn

(
rj∂rk − rk∂rj

)
Clearly, the variable Z distinguishes the bulk from the boundary at Z = 0. Heuristically, if one

replaces Z∂Z �→ x and then sets Z = 0, one goes back from Equation (50) to Equation (48), with ξ = 0
and Ξ(t) = 0.

Following Aizawa and Dobrev [78,80], the passage between the boundary and the bulk is
described in terms of the eigenvalues of the quartic Casimir operator of the Schrödinger algebra
sch(1) [81]

C4 = (4M0X0 − Y−1/2Y1/2 − Y1/2Y−1/2)
2 − 2

{
2M0X−1 − Y2

−1/2, 2M0X1 − Y2
1/2

}
(51)

such that in the representation Equation (5), which lives on the boundary Z = 0, one has the eigenvalue
c4 = c4(x) := M2(2x − 1)(2x − 5). Since c4(x) = c4(3 − x), two scaling operators with scaling
dimensions x and 3 − x will be related. In order to formulate the holographic principle, which
prescribes the mapping of a boundary scaling operators ϕ to a bulk scaling operator φ, a necessary
condition is the eigenvalue equation (in the bulk)

C4φ(Z, ζ, t, r) = c4(x)φ(Z, ζ, t, r) (52)

The other condition is the expected limiting behaviour when the boundary is approached

φ(Z, ζ, t, r) Z→0−→ Zα ϕ(ζ, t, r), α = x, 3 − x (53)

216



Symmetry 2015, 7, 2108–2133

Lemma 2. [80] For the Schrödinger algebra in d = 1 space dimension, the holographic principle takes the form

φ(Z, χ) =
∫

d3χ′ Sα(Z, χ − χ′)ϕ(χ′) (54)

where χ = (ζ, t, r) is a label for a three-dimensional coordinate, d3χ = dζdtdr and

Sα(Z, χ) =

[
4Z

−2ζt + r2

]α

(55)

and where α = x or α = 3 − x.

Proof. We merely outline the main ideas. First, construct the Green’s function in the bulk, by solving

(C4 − c4(x)) G(Z, χ; Z′, χ′) = Z′4 δ(Z − Z′)δ3(χ − χ′)

In terms of the invariant variable

u :=
4ZZ′

(Z + Z′)2 − 2(ζ − ζ ′)(t − t′) + (r − r′)2

the Casimir operator becomes C4 = 4u2(1− u)∂2
u − 8u∂u + 5, hence G = G(u). Next, the ansatz G(u) =

uαḠ(u) reduces the eigenvalue equation to a standard hyper-geometric equation, with solutions
expressed in terms of the hyper-geometric function 2F1. Finally, Sα(Z, χ − χ′) = limZ′→0 Z′−αG(u)
leads to the assertion.

We refer to the literature for the non-relativistic reduction and the derivation of invariant
differential equations [78,80]. The consequences of passing to the more general representations
with ξ = 0 and Ξ(t) = 0 [40] remain to be studied.

3.2. Conformal Galilean Algebra I

Starting from Equation (48), a dual representation of the conformal Galilean algebra CGA(1) with
z = 2 is found if (i) the generator X−1 is dropped, (ii) the generator X1 is taken as follows and (iii) and
adds a new generator V+ [11]

X1 = ir2∂ζ − t2∂t − tr∂r − (x + ξ) t

V+ = −ζr∂ζ − tr∂t −
(

iζt +
r2

2

)
∂r − (x + ξ) r (56)

They are dynamical symmetries of the dual Schrödinger operator Equation (49).

3.3. Conformal Galilean Algebra II

Another dual representation of the algebra CGA(d) is given by (with j, k = 1, . . . , d)

Xn = +i(n + 1)ntn−1r · ∂ζ − tn+1∂t − (n + 1)tnr · ∂r − (n + 1)xtn

Y(j)
n = −tn+1∂rj + i(n + 1)tn∂ζ j (57)

R(jk)
n = −tn

(
rj∂rk − rk∂rj

)
− tn

(
ζ j∂ζk − ζk∂ζ j

)
In contrast with the representations studied so far, there are no central generators ∼ ∂ζ j .
The dualisation of the “lattice” representation and the non-local representations discussed in

Section 2 proceeds analogously and will not be spelt out in detail here.
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3.4. Parabolic Sub-Algebras

The other important ingredient is understood by considering the root diagrams of these
non-semi-simple Lie algebras, see Figure 1. Therein, it is in particular illustrated that the complexified
versions of these algebras are all sub-algebras of the complex Lie algebra B2, in Cartan’s notation [11].
In particular, it is possible to add further generators in the Cartan sub-algebra in order to obtain an
extension to a maximal parabolic sub-algebra. A parabolic sub-algebra is the sub-algebra of “positive”
generators, which from a root diagramme can be identified by simply placing a straight line through the
center (a.k.a. the Cartan sub-algebra). By definition, all generators which are not on the left of that line
are called “positive” [41]. In Figure 1, we illustrate this for the three maximal parabolic sub-algebras.
The notion of “maxima” does depend here on the precise definition of “positivity”. For a generic slope,
see Figure 1a, both the generators X−1 and V+ are non-positive, and one has the maximal parabolic
sub-algebra ãge(1) = age(1) + CN. This sub-algebra is indeed maximal as a parabolic sub-algebra:
for example an extension to a Schrödinger algebra by including the time-translations X−1 would no
longer be parabolic, according to the specific definition of “positivity” used in this specific context.
If a different definition of “positivity” is used, and the slope is now taken to be exactly unity, X−1 is
included into the positive generators, see Figure 1b, and we have the maximal parabolic sub-algebra
s̃ch(1) = sch(1) + CN. Finally, and with yet a different definition of “positivity”, where the slope
is now infinite, see Figure 1c, one has the maximal parabolic sub-algebra C̃GA(1) = CGA(1) +CN.
The Weyl symmetries of the root diagramme of B2 [41] imply that any other maximal and non-trivial
sub-algebra of B2 is isomorphic to one of the three already given. For a formal proof, see [11].

Y−1/2

X1

Y

M

e1

e

1/2N   X

( a )

2

0

0

V+

X−1 X Y−1 −1/2

X1

Y

M

e1

e

1/2

2

0

0

( b )

N   X

V+

N Y
e1

e2

( c )

X

0

X

Y

Y

0

11

−1−1

X

Figure 1. Root diagrammes of the Lie algebras (a) age(1); (b) sch(1) and (c) CGA(1). The generators
are represented by the black filled dots. The red circles indicate the extra generator N which extends
these algebras to maximal parabolic sub-algebras of the complex Lie algebra B2. The thick green line
indicates the separation between positive and non-positive roots.

It remains to construct the operator N explicitly, for each representation. We collect the results,
coming from different sources [11,40,77].

Proposition 7. Consider the dual representations (48) of the Schrödinger–Virasoro algebra, the z = 2 dual
representation (56) of the conformal Galilean algebra CGA(1), the z = 1 dual representation (57) of CGA(d)
and the dualisation of the non-local representation (41) of age(1), dualised with respect to the mass M. There
is a generator N which extends these representations to representations of the associated maximal parabolic
sub-algebra. The explicit form of the generator N is as follows:

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ∂ζ − t∂t + ξ ′ representation (48) of sch(d)
ζ∂ζ − t∂t + ξ representation (56) of CGA(1)
−ζ∂ζ − r∂r − ξ representation of CGA(d) as constructed in (57)
ζ∂ζ − t∂t + ξ ′ dualised non-local representation (41) of age(d)

(58)
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Herein, ξ is the second scaling dimension and ξ ′ is a constant. These generators give dynamical symmetries
of the Schrödinger operators S associated with each representation.

4. Causality

It turns out that the maximal parabolic sub-algebras are the smallest Lie algebras which permit
unambiguous statements on the causality of co-variant two-point functions. For illustration, we shall
concentrate on the dual representations (48) of sch(d) and (57) of CGA(d).

Proposition 8. [11,77] Consider the co-variant dual two-point functions. For the dual representation (48) of
s̃ch(d), it has the form, up to a normalisation constant

F̂(ζ, t, r) = 〈φ̂(ζ, t, r)φ̂∗(0, 0, 0)〉 = δx1,x2 |t|−x1

(
2ζt + ir2

|t|
)−x1−ξ ′1−ξ ′2

(59)

and where translation-invariance in ζ, t, r was used. For the dual representation (57) of C̃GA(1), one has, up to
a normalisation constant

F̂(ζ+, t, r) = 〈φ̂1(ζ1, t, r)φ̂2(ζ2, 0, 0)〉 = δx1,x2 |t|−2x1

(
ζ+ +

ir
t

)−ξ1−ξ2

(60)

and where ζ+ = 1
2 (ζ1 + ζ2).

This is easily verified by insertion into the respective Ward identities which express the co-variance.
Finally, we formulate precisely the spatial long-distance and co-variance properties of these
two-point functions.

Theorem 2. [11] With the convention that masses M ≥ 0 of scaling operators φ should be non-negative,
and if 1

2 (x1 + x2) + ξ ′1 + ξ ′2 > 0, the full two-point function, co-variant under the representation (5) of the
parabolically extended Schrödinger algebra s̃ch(d), has the form

〈φ(t, r)φ∗(0, 0)〉 = δ(M−M∗) δx1,x2 Θ(t) t−x1 exp
[
−M

2
r2

t

]
(61)

where the Θ-function expresses the causality condition t > 0, and up to a normalisation constant which depends
only the mass M ≥ 0.

Proof. This follows directly from Equation (59). Carrying out the inverse Fourier transform and
using the translation-invariance in the dual coordinate ζ, one recovers the habitual two-point function
multiplied by an integral representation of the Θ-function.

The treatment of the conformal Galilean algebra requires some further preparations, following
Akhiezer [82] (Chapter 11).

Definition 1. Let H+ be the upper complex half-plane w = u + iv with v > 0. A function g : H+ → C is
said to be in the Hardy class H+

2 , written as g ∈ H+
2 , if (i) g(w) is holomorphic in H+ and (ii) if it satisfies

the bound
M2 := sup

v>0

∫
R

du |g(u + iv)|2 < ∞ (62)

Analogously, for functions g : H− → C one defines the Hardy class H−
2 , where H− is the lower complex

half-plane and the supremum in Equation (62) is taken over v < 0.
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Lemma 3. [82] If g ∈ H±
2 , then there are square-integrable functions G± ∈ L2(0, ∞) such that for v > 0 one

has the integral representation

g(w) = g(u ± iv) =
1√
2π

∫ ∞

0
dγ e±iγw G±(γ) (63)

We shall use Equation (63) as follows. First, consider the case d = 1. Fix λ := r/t. Now, recall
Equation (60) and write F̂ = |t|−2x1 f̂ (u), with u = ζ+ + ir/t. We shall re-write this as follows:

f̂ (ζ+ + iλ) =: fλ(ζ+) (64)

and concentrate on the dependence on ζ+.

Proposition 9. [77] Let ξ := 1
2 (ξ1 + ξ2) >

1
4 . If λ > 0, then fλ ∈ H+

2 and if λ < 0, then fλ ∈ H−
2 .

Proof. The holomorphy of fλ being obvious, we merely must verify the bound (62). Let λ > 0. Clearly,
| fλ(u + iv)| = ∣∣(u + i(v + λ))−2ξ

∣∣ = (
u2 + (v + λ)2)−ξ . Hence, computing explicitly the integral,

M2 = sup
v>0

∫
R

du | fλ(u + iv)|2 =

√
π Γ(2ξ − 1

2 )

Γ(2ξ)
sup
v>0

(v + λ)1−4ξ < ∞

since the integral converges for ξ > 1
4 . For λ < 0, the argument is similar.

We can now formulate the second main result.

Theorem 3. [77] The full two-point function, co-variant under the representation (13) of the parabolically
extended conformal Galilean algebra C̃GA(d), has the form

〈φ1(t, r)φ2(0, 0)〉 = δx1,x2 δ(γ1 − γ2) |t|−2x1 exp
[
−2

∣∣∣γ1 · r
t

∣∣∣ ] (65)

where the normalisation constant only depends on the absolute value of the rapidity vector γ1.

Proof. Since the final result is rotation-invariant, because of the representation (13), it is enough to
consider the case d = 1. Let λ > 0. From Equation (63) of Lemma 3 we have

√
2π f̂ (ζ+ + iλ) =

∫ ∞

0
dγ+ ei(ζ++iλ)γ+ F̂+(γ+) =

∫
R

dγ+ Θ(γ+) ei(ζ++iλ)γ+ F̂+(γ+)

Now return from the dual two-point function F̂ to the original one. Let ζ± := 1
2 (ζ1 ± ζ2). We

find, using also that x1 = x2

F =
|t|−2x1

π
√

2π

∫
R2

dζ+dζ− e−i(γ1+γ2)ζ+ e−i(γ1−γ2)ζ−
∫
R

dγ+ Θ(γ+)F̂+(γ+)e−γ+λeiγ+ζ+

=
|t|−2x1

π
√

2π

∫
R

dγ+ Θ(γ+)F̂+(γ+)e−γ+λ
∫
R

dζ− e−i(γ1−γ2)ζ−
∫
R

dζ+ ei(γ+−γ1−γ2)ζ+

= δ(γ1 − γ2)Θ(γ1)F0,+(γ1)e−2γ1λ|t|−2x1

where in the last line, two δ-functions were used and F0,+ contains the unspecified dependence on the
positive constant γ1. An analogous argument applies for λ < 0.

5. Conclusions

Results on relaxation phenomena in non-equilibrium statistical physics and the associated
dynamical symmetries, scattered over many sources in the literature, have been reviewed. By analogy
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with conformal invariance which applies to equilibrium critical phenomena, it is tempting to try to
extend the generically satisfied dynamical scaling to a larger set of dynamical symmetries. If this
is possible, one should obtain a set of co-variance conditions, to be satisfied by physically relevant
n-point functions. In contrast to equilibrium critical phenomena, it turned out that in non-equilibrium
systems, each scaling operator must be characterised at least in terms of two independent scaling
dimensions.

A straightforward realisation of this programme was seen to lead to difficulties for a consistent
physical interpretation, related to the requirement of a physically sensible large-distance behaviour.
This is related to the fact that writing down simple Ward identities for the n-point functions, one
implicitly assumes that these n-point functions depend holomorphically on their time-space arguments,
see e.g., [83]. However, the constraint of causality, required for a reasonable two-time response function
R(t1, t2), renders R(t1, t2) non-holomorphic in the time difference t1 − t2. As a possible solution of this
difficulty, we propose to go over to dual representations with respect to either the “masses” or the
“rapidities”, which are physically dimensionful parameters of the representations of the dynamical
symmetry algebras considered. If, furthermore, the dynamical symmetry algebras can be extended
to a maximal parabolic sub-algebra of a semi-simple complex Lie algebra, then causality conditions,
which also guarantee the requested fall-off at large distances, can be derived.

This suggests that the dual scaling operators, rather than the original ones, might possess
interesting holomorphic properties which should be further explored. This observation might also
become of interest in further studies of the holographic principle.

Specifically, we considered representations of (i) the Schrödinger algebra sch(d), where the
co-variant two-point functions Equation (61) have the causality properties of two-time linear response
functions and also representations of (ii) the conformal Galilean algebra CGA(d), where the two-point
functions Equation (65) have the symmetry properties of a two-time correlator [84].

Although this has not yet been done explicitly, we expect that the techniques reviewed here can
be readily extended to several physically distinct representations of these algebras, see e.g., [85–88] for
examples [89].
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Abstract: We construct, for any given � = 1
2 + N0, second-order nonlinear partial differential

equations (PDEs) which are invariant under the transformations generated by the centrally extended
conformal Galilei algebras. This is done for a particular realization of the algebras obtained by coset
construction and we employ the standard Lie point symmetry technique for the construction of PDEs.
It is observed that the invariant PDEs have significant difference for � > 3

2 .
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1. Introduction

The purpose of the present work is to construct partial differential equations (PDEs) which are
invariant under the transformations generated by the conformal Galilei algebra (CGA). We consider
a particular realization, which is given in [1], of CGAs with the central extension for the parameters
(d, �) = (1, 1

2 +N0), where N0 denotes the set of non-negative integers. We also restrict ourselves to the
second-order PDEs for computational simplicity. Our main focus is on nonlinear PDEs since linear ones
have already been discussed in the literatures [1–4]. CGA is a Lie algebra which generates conformal
transformations in d + 1 dimensional nonrelativistic spacetime [5–8]. Even in the fixed dimension of
spacetime one has infinite number of inequivalent conformal algebras. For a fixed value of d each
inequivalent CGA is labelled by a parameter � taking the spin value, i.e., � = 1

2 , 1, 3
2 , 2, . . . . Each CGA

has an Abelian ideal (namely, CGA is a non-semisimple Lie algebra) so that it would be deformed.
Indeed, it has a central extension depending the value of the parameters. More precisely, there exist
two different types of central extensions. One of them exists for any values of d and half-integer �,
another type of extension exists for d = 2 and integer �. Simple explanation of this fact is found in [9].

It has been observed that CGAs for � = 1
2 and � = 1 play important roles in various kind

of problems in physics and mathematics. The simplest � = 1
2 member of CGAs is called the

Schrödinger algebra which was originally discussed by Sophus Lie and Jacobi in 19th century [10,11]
and reintroduced later by many physicists [12–17]. Recent renewed interest in CGAs is mainly due
to the AdS/CFT correspondence. The Schrödinger algebra and � = 1 member of CGA were used
to formulate nonrelativistic analogues of AdS/CFT correspondence [9,18,19]. One may find a nice
review of various applications of the Schrödinger algebras in [20] and see [21] for more references on
the Schrödinger algebras and � = 1 CGAs. Physical applications of � = 2 CGA is found in [22].

Now one may ask a question whether the CGAs with � > 1 are relevant structures to physical
or mathematical problems. To answer this question one should find classical or quantum dynamical
systems relating to CGAs and develop representation theory of CGAs (see [21,23,24] for classification
of irreducible modules over d = 1, 2 CGAs ). This is the motivation of the present work. We choose
a particular differential realization of CGAs then look for PDEs invariant under the transformation
generated by the realization. Investigation along this line for the Schrödinger algebras is found

Symmetry 2015, 7, 1989–2008 225 www.mdpi.com/journal/symmetry
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in [2,3,25–27] and for � = 1 CGAs in [28] and for related algebraic structure in [29,30]. For higher
values of � use of the representation theory such as Verma modules, singular vectors allows us to
derive linear PDEs invariant under CGAs [1,4]. More physical applications of CGAs with higher value
� are found in the literatures [31–45].

The paper is organized as follows. In the next section the definition of CGA for (d, �) = (1, 1
2 +N0)

and its differential realization are given. Then symmetry of PDEs under a subset of the generators is
considered. It is shown that there is a significant distinction of the form of invariant PDEs for � > 3

2 .
Invariant PDEs for � = 3

2 CGA are obtained in Section 3 For � ≥ 5
2 we first derive PDEs invariant

under a subalgebra of the CGA in Section 4, then derive invariant PDEs under full CGA in Section 5.
Section 6 is devoted to concluding remarks.

2. CGAs and Preliminary Consideration

The CGA for d = 1 and any half-integer � consists of sl(2,R) � so(2, 1) = 〈 H, D, C 〉 and �+ 1/2
copies of the Heisenberg algebra 〈 P(n), M 〉n=1,2,...,2�+1. Their nonvanishing commutators are given by

[D, H] = −2H, [D, C] = 2C, [H, C] = D,

[H, P(n)] = (n − 1)P(n−1), [D, P(n)] = 2(n − 1 − �)P(n), (1)

[C, P(n)] = (n − 1 − 2�)P(n+1), [P(m), P(n)] = −δm+n,2�+2 Im−1M

where the structure constant Im is taken to be Im = (−1)m+�+ 1
2 (2�− m)!m! and M is the centre of the

algebra. We denote this algebra by g�. The subset 〈 P(n), M, H 〉n=1,2,...,2�+1 forms a subalgebra of g�
and we denote it by h�.

We employ the following realization of g� on the space of functions of the variables
t = x0, x1, . . . , x�+ 1

2
and U [1]:

M = U∂U , D = 2t∂t +
�+ 1

2

∑
k=1

2(�+ 1 − k)xk∂xk , H = ∂t,

C = t2∂t +
�+ 1

2

∑
k=1

2(�+ 1 − k)txk∂xk +
�− 1

2

∑
k=1

(2�+ 1 − k)xk∂xk+1 −
1
2

((
�+

1
2
)
!
)2

x2
�+ 1

2
U∂U ,

P(n) =
n

∑
k=1

(
n − 1
k − 1

)
tn−k∂xk , 1 ≤ n ≤ �+

1
2

, (2)

P(n) =
�+ 1

2

∑
k=1

(
n − 1
k − 1

)
tn−k∂xk −

n

∑
k=�+ 3

2

(
n − 1
k − 1

)
Ik−1tn−kx2�+2−kU∂U , �+

3
2
≤ n ≤ 2�+ 1

where (n
k) is the binomial coefficient and Ik−1 is the structure constant appearing in Equation (1).

This is in fact a realization of g� on the Borel subgroup of the conformal Galilei group generated by g�
(we made some slight changes from [1]). Let us introduce the sets of indices for later convenience:

Iμ =
{

μ, μ + 1, . . . , �+
1
2
}

, μ = 0, 1, 2, . . . (3)

Now we take xμ, μ ∈ I0 as independent variables and U as dependent variable: U = U(xμ).
Our aim is to find second order PDEs which are invariant under the point transformations generated
by Equation (2) for � > 1/2 (� = 1/2 corresponds to Schrödinger algebra). Such a PDE is denoted by

F(xμ, U, Uμ, Uμν) = 0, Uμ =
∂U
∂xμ

, Uμν =
∂2U

∂xμxν
(4)
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We use the shorthand notation throughout this article. The left hand side of Equation (4) means
that F is a function of all independent variables xμ, μ ∈ I0, dependent variable U and all first and
second order derivatives of U. As found in the standard textbooks (e.g., [46–48]) the symmetry
condition is expressed in terms of the prolonged generators:

X̂F = 0 (modF = 0) (5)

where X̂ is the prolongation of the symmetry generator X up to second order:

X̂ = X +
�+ 1

2

∑
μ=0

ρμ ∂

∂Uμ
+ ∑

μ≤ν

σμν ∂

∂Uμν
, X =

�+ 1
2

∑
μ=0

ξμ ∂

∂xμ
+ η

∂

∂U
(6)

The quantities ρμ, σμν are defined by

ρμ = ημ + ηUUμ −
�+ 1

2

∑
ν=0

Uν(ξ
ν
μ + ξν

UUμ), (7)

σμν = ημν + ημUUν + ηνUUμ + ηUUμν + ηUUUμUν

−
�+ 1

2

∑
τ=0

ξτ
μνUτ −

�+ 1
2

∑
τ=0

(ξτ
μUντ + ξτ

νUμτ)−
�+ 1

2

∑
τ=0

ξτ
U(UτUμν + UμUντ + UνUμτ)

−
�+ 1

2

∑
τ=0

(ξτ
μUUν + ξτ

νUUμ + ξτ
UUUμUν)Uτ (8)

In this section we consider the symmetry condition Equation (5) for M, H and P(n) with
n = 1, 2, . . . , 2�+ 1.

Lemma 1. (i) Equation (4) is invariant under H, P(1) and M if it has the form

F
(

xa,
Uμ

U
,

Uμν

U

)
= 0, a ∈ I2, μ, ν ∈ I0 (9)

(ii) For � > 3
2 , a necessary condition for the symmetry of the Equation (9) under P(n) with n ∈ I2 is that the

function F is independent of U0m, m ∈ I3.

Proof of Lemma 1. (i) It is obvious from that the generators H and P(1) have no prolongation, while
the prolongation of M is given by

M̂ = U∂U +
�+ 1

2

∑
μ=0

Uμ∂Uμ + ∑
μ≤ν

Uμν∂Uμν (10)

(ii) The lemma is proved by the formula of the prolongation of P(n). For n ∈ I2 the generator P(n) is
given by

P(n) =
n

∑
k=1

(
n − 1
k − 1

)
tn−k∂xk

and its prolongation yields

P̂(n) =
n

∑
a=2

(
n − 1
n − a

)
tn−a

[
P̃(a) −

n

∑
k=a+1

(a − 1)Ua−1 k∂U0k

]
(11)
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where

P̃(n) = P̂(n)
∣∣∣
t=0

= ∂xn − (n − 1)

{
Un−1∂U0 +

(
(n − 2)Un−2 + 2U0 n−1

)
∂U00 +

n

∑
k=1

Un−1 k∂U0k

}
(12)

and the terms containing ∂x1 are omitted. We give the explicit expressions for small values of n which
will be helpful to see the structure of Equation (11):

P̂(2) = P̃(2),

P̂(3) = P̃(3) + 2t(P̃(2) − U13∂U03),

P̂(4) = P̃(4) + 3t(P̃(3) − 2U24∂U04) + 3t2(P̃(2) − U13∂U03 − U14∂U04)

Since P̃(n) is independent of t, each symmetry condition P̂(n)F = 0 decouples into some
independent equations. For example, P̂(4)F = 0 decouples into the following equations:

P̃(4)F = 0, (P̃(3) − 2U24∂U04)F = 0, (P̃(2) − U13∂U03 − U14∂U04)F = 0

The condition P̂(2)F = 0 is equivalent to the condition P̃(2)F = 0. It follows that the condition
P̂(3)F = 0 yields two independent conditions P̃(3)F = 0 and U13∂U03 F = 0. The second condition
means that F is independent of U03. Repeating this for P̂(n)F = 0 for n = 4, 5, . . . , �+ 1

2 one may prove
the lemma.

Now we show the Equation (11). Set ξk(n) =

(
n − 1
k − 1

)
tn−k then P(n) =

n

∑
k=2

ξk(n)∂xk (recall that

we omit ∂x1 ). By the Equations (6)–(8) we have

P̂(n) = P(n) −
n

∑
k=1

{
ξk

0(n)Uk∂U0 + (ξk
00(n)Uk + 2ξk

0(n)U0k)∂U00 +
n

∑
m=1

ξm
0 (n)Umk∂Umk

}
(13)

Thus the maximal degree of t in P̂(n) is n − 2. The following relation is easily verified:

∂a

∂ta ξk(n) =

⎧⎨
⎩

(n−1)!
(n−a−1)! ξk(n − a), (1 ≤ k ≤ n − a)

0, (n − a < k)
(14)

Using this one may calculate the higher order derivatives of Equation (13):

∂a

∂ta P̂(n) =
(n − 1)!

(n − a − 1)!
{

P(n−a) −
n

∑
k=n−a+1

n−a

∑
m=1

ξm
0 (n − a)Umk∂U0k

}

It follows that

P̂(n) =
n−2

∑
a=0

1
a!

(
∂a

∂ta P̂(n)
)

t=0
ta

=
n−2

∑
a=0

(
n − 1

a

)
ta[P̃(n−a) −

n

∑
k=n−a+1

(n − a − 1)Un−a−1 k∂U0k

]

By replacing n − a with a we obtain the Equation (11). The Equation (12) is readily obtained by
setting t = 0 in the Equation (13).

Remark 1. By Lemma 1 the symmetry condition for M, H, P(n) with n ∈ I1 is summarized as
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P̃(n)F
(

xa,
Uμ

U
,

U00

U
,

U01

U
,

U02

U
,

Ukm
U

,
)
= 0, a ∈ I2, μ ∈ I0, k, m ∈ I1 (15)

where P̃(n) is given by Equation (12).

The condition Equation (15) implies that F is independent of U00 if � ≥ 7/2, since P̃(n) has the term
U0k∂U00 with k ≥ 3. In fact one can make a stronger statement by looking at the symmetry conditions
for P(n) with �+ 3

2 ≤ n ≤ 2�+ 1.

Lemma 2. F given in Equation (15) is independent of U00 if � ≥ 5/2.

Proof of Lemma 2. We calculate the prolongation of P(n) for � + 3
2 ≤ n ≤ 2� + 1. The derivatives

∂t, ∂x1 , ∂U0k (k ∈ I3) are ignored in the computation. Then

P(n) =
�+ 1

2

∑
m=2

ξm(n)∂xm + η(n)∂U , (16)

ξm(n) =

(
n − 1
m − 1

)
tn−m, η(n) = −

n

∑
m=�+ 3

2

ξm(n)Im−1x2�+2−mU (17)

One may calculate derivatives of η(n) easily

ηk(n) =
∂η(n)

∂xk
=

⎧⎨
⎩

−ξ2�+2−k(n)I2�+1−kU 2�+ 2 − n ≤ k ≤ �+ 1
2

0 k < 2�+ 2 − n

First and second order derivatives need some care:

η1(n) =

⎧⎨
⎩

−I2�U n = 2�+ 1

0 otherwise

η2(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2�tI2�−1U n = 2�+ 1

−I2�−1U n = 2�

0 otherwise

Then a lengthy but straightforward computation gives the following expression for the
prolongation of P(n) up to second order:

P̂(n) = ηU M̂ +
�+ 1

2

∑
k=2

ξk(n)∂xk +
(
η0(n)−

�+ 1
2

∑
k=1

ξk
0(n)Uk

)
∂U0 +

�+ 1
2

∑
k=2�+2−n

ηk(n)∂Uk

+
(
η00(n) + 2η0U(n)U0 −

�+ 1
2

∑
k=1

(ξk
00(n)Uk + 2ξk

0(n)U0k)
)
∂U00

+ ∑
k=1,2

(
η0U(n)Uk −

�+ 1
2

∑
m=1

ξm
0 (n)Ukm

)
∂U0k − δn,2� I2�−1U0∂U02

− δn,2�+1
(

I2�U0∂U01 + 2�I2�−1(U + tU0)∂U02

)
+

�+ 1
2

∑
k=2�+2−n

�+ 1
2

∑
m=1

ηkUUm∂Ukm +
�+ 1

2

∑
k=2�+2−n

ηkUUk∂Ukk (18)
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We have already taken into account the invariance under M̂ so that the first term of Equation (18)
is omitted in the following computations. It is an easy exercise to verify that

∂a

∂ta η(n) =
(n − 1)!

(n − a − 1)!
×

⎧⎨
⎩

0 n − �− 1
2 ≤ a

η(n − a) 0 ≤ a ≤ n − �− 3
2

and

∂a

∂ta

�+ 1
2

∑
k=1

ξk(n) =
(n − 1)!

(n − a − 1)!
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n ≤ a

n−a

∑
k=1

ξk(n − a) n − �− 1
2 ≤ a ≤ n − 1

�+ 1
2

∑
k=1

ξk(n − a) 0 ≤ a ≤ n − �− 3
2

It follows that for 0 ≤ a ≤ n − �− 3
2

∂a

∂ta P̂(n) =
(n − 1)!

(n − a − 1)!
P̂(n−a) (19)

For n − � − 1
2 ≤ a ≤ n − 2 (i.e., 2 ≤ n − a ≤ � + 1

2 ) all the derivatives of η(n) vanishes and
Equation (13) is recovered. Therefore for all values of a from 0 to n − 2 the relation Equation (19) holds
true. Thus we have

P̂(n) =
n−2

∑
a=0

1
a!

(
∂a

∂ta P̂(n)
)

t=0
ta =

n−2

∑
a=0

(
n − 1

a

)
P̃(n−a)ta

where P̃(n) = P̂(n)
∣∣∣
t=0

. This means that the symmetry condition under P̂(n) is reduced to

P̃(n)F = 0, �+
3
2
≤ n ≤ 2�+ 1 (20)

Now we look at the part containing ∂U00 in Equation (18), namely, the second line of the equation.
The contribution to P̃(n) from the term ∑

k
ξk

0(n)U0k∂U00 is U0 �+ 1
2
∂U00 . Since �+ 1

2 ≥ 3 for � ≥ 5
2 the

condition Equation (20) gives ∂U00 F = 0 for this range of �. Thus F has U00 dependence only for
� = 3

2 .

Lemma 2 requires a separate treatment of the case � = 3
2 . In the following sections we solve

the symmetry conditions Equations (15) and (20) explicitly for � = 3
2 and for � > 3

2 separately.
Before proceeding further we here present the formulae of prolongation of D which is not difficult
to verify:

D̂ =
�+ 1

2

∑
k=2

2(�+ 1 − k)xk∂xk − 2U0∂U0 − δ�, 3
2

4U00∂U00 − 2 ∑
k=1,2

(�+ 2 − k)U0k∂U0k

− 2
�+ 1

2

∑
k=1

[
(�+ 1 − k)Uk∂Uk +

�+ 1
2

∑
m=k

(2�+ 2 − k − m)Ukm∂Ukm

]
(21)

The prolongation of C is more involved so we present it in the subsequent sections separately for
� = 3

2 and for other values of �.
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3. The Case of � = 3
2

The goal of this section is to derive the PDEs invariant under the group generated by g 3
2
. First we

solve the conditions Equations (15) and (20). We have from Equation (12)

P̃(2) = ∂x2 −
(
U1∂U0 + 2U01∂U00 + ∑

k=1,2
U1k∂U0k

)
(22)

and collecting the t = 0 terms of Equation (18)

P̃(3) = −2
[
U2∂U0 + U∂U2 + (U1 + 2U02)∂U00 + U12∂U01 + (U0 + U22)∂U02 + U1∂U12 + 2U2∂U22

]
,

P̃(4) = −6
[
x2U∂U0 − U∂U1 + (U2 + 2x2U0)∂U00 + (x2U1 − U0)∂U01 + (x2U2 + U)∂U02

−(2U1∂U11 + U2∂U12)
]

(23)

The symmetry conditions Equations (15) and (20) are the system of first order PDEs so that it can
be solved by the standard method of characteristic equation (e.g., [49]). It is not difficult to verify that
the following functions are the solutions to Equations (15) and (20).

φ1 =
U11

U
−

(
U1

U

)2
, φ2 =

U22

U
−

(
U2

U

)2
,

φ3 =
U12

U
− U1U2

U2 , φ4 =
U0

U
+

x2U1

U
− U22

2U
,

φ5 =
U01

U
− U0U1

U2 + x2φ1 − U2

U
φ3,

φ6 =
U02

U
+

U1

U
− U0U2

U2 − U2

U
φ2 + x2φ3,

φ7 =
U00

U
−

(
U0

U

)2
−

(
U1

U
+

2U02

U

)
U2

U
+

(
2U0

U
+

U22

U

)(
U2

U

)2

−
(

U2

U

)4
− x2

2φ1 + 2x2φ5 (24)

Thus we have proved the following lemma:

Lemma 3. Equation (4) is invariant under h 3
2
= 〈 M, H, P(n) 〉n=1,2,3,4 if it has the form

F(φ1, φ2, . . . , φ7) = 0 (25)

Next we consider the further invariance under D and C. The computation of the second order
prolongation of C for � = 3

2 is straightforward based on Equations (6)–(8). It has the form

Ĉ = −2x2
2 M̂ + tD̂ + 3x1P̃(2) − C̃,

C̃ = x2U2∂U0 + 3U2∂U1 + 4x2U∂U2 + 2(U0 + x2U02)∂U00 + (3U1 + 3U02 + x2U12)∂U01

+ (U2 + 4x2U0 + x2U22)∂U02 + 6U12∂U11 + (4x2U1 + 3U22)∂U12 + 4(U + 2x2U2)∂U22 (26)

It is an easy exercise to see the action of C̃ on φk :

C̃φ1 = 2φ3, C̃φ2 =
4
3

, C̃φ3 = φ2, C̃φ4 = −2
3

, C̃φ5 = φ6,

C̃φ6 = 0, C̃φ7 =
1
3

φ2 +
2
3

φ4
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It follows that the following combinations of φk are invariant of C̃ :

w1 =
1
2

φ2 + φ4, w2 = 2φ3 − 3
4

φ2
2, w3 =

1
2
√

2
φ6, w4 = φ1 − 3

2

(
w2φ2 +

1
8

φ3
2

)
,

w5 =
1√
2

φ5 − 3
4
√

2
w3φ2, w6 = φ7 − 1

2
w1φ2 (27)

On the other hand D̂ generates the scaling of wk :

w1 → e2εw1, w2 → e4εw2, w3 → e3εw3,
w4 → e6εw4, w5 → e5εw5, w6 → e4εw6

(28)

With these observations one may construct all invariants of the group which is generated by g 3
2

:

ψ1 =
w2

w2
1
=

Ψ1

Φ2 , ψ2 =
w2

3

w3
1
=

Ψ2
2

Φ3 , ψ3 =
w4

w2
3
=

Ψ3

Ψ2
2

,

ψ4 =
w2

5

w5
1
=

Ψ2
4

Φ5 , ψ5 =
w6

w2
=

Ψ5

Ψ1
(29)

where

Φ = 2(U0 + x2U1)U − U2
2 ,

Ψ1 = 8(U12U − U1U2)U2 − 3(U22U − U2
2)

2,

Ψ2 = (U1 + U02)U2 − U2
(
(U0 + U22)U − U2

2
)
+ x2(U12U − U1U2)U,

Ψ3 = 8U11U5 − 8U2
1U4 − 12(U22U − U2

2)(U12U − U1U2)U2 + 3(U22U − U2
2)

3,

Ψ4 = 4U01U4 − 4U0U1U3 − 3
(
(U1 + U02)U − U0U2

)
(U22U − U2

2)U + 3U2(U22U − U2
2)

2

+ x2
(
4U11U3 − 4U2

1U2 − 3(U22U − U2
2)(U12U − U1U2)

)
U,

Ψ5 = 4U00U3 − 2
(
2U2

0 + U0U22 + 2(U1 + 2U02)U2
)
U2 + 5(2U0 + U22)U2

2U − 5U4
2

+ 2x2
(
4U01U2 − (4U0U1 + 4U2U12 + U1U22)U + 5U1U2

2
)
U + 4x2

2(U11U − U2
1)U

2 (30)

Thus we obtain the PDEs with the desired symmetry.

Theorem 1. The PDE invariant under the Lie group generated by the realization Equation (2) of g 3
2

is given by

F(ψ1, ψ2, ψ3, ψ4, ψ5) = 0 (31)

where F is an arbitrary differentiable function and ψi is given in Equation (29). Explicit form of the symmetry
generators are as follows:

M = U∂U , D = 2t∂t + 3x1∂x1 + x2∂x2 , H = ∂t,

C = t(t∂t + 3x1∂x1 + x2∂x2) + 3x1∂x2 − 2x2
2U∂U ,

P(1) = ∂x1 , P(2) = t∂x1 + ∂x2 ,

P(3) = t2∂x1 + 2t∂x2 − 2x2U∂U ,

P(4) = t3∂x1 + 3t2∂x2 − 6(tx2 − x1)U∂U (32)
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4. The Case of � ≥ 5
2 : h�-Symmetry

As shown in Lemma 2 the function F is independent of U00 so that the PDE which we have at this
stage is of the form

F
(

xa,
Uμ

U
,

U01

U
,

U02

U
,

Ukm
U

,
)
= 0, a ∈ I2, μ ∈ I0, k, m ∈ I1 (33)

We wants to make the PDE Equation (33) invariant under all the generators of h�. Invariance
under M and P(1) has been completed. We need to consider the invariance under P(n) for n ∈ I2. The
symmetry conditions are Equations (15) and (20). We give P̃(n) more explicitly. From Equation (12) we
have

P̃(n) = ∂xn − (n − 1)
(
Un−1∂U0 + U1 n−1∂U01 + U2 n−1∂U02

)
, 2 ≤ n ≤ �+

1
2

(34)

For n ≥ �+ 3
2 the generator P̃(n) is obtained by collecting t = 0 terms of Equation (18). It has a

slightly different form depending on the value of n. For n = �+ 3
2 it is given by

P̃(�+ 3
2 ) = −(

�+
1
2
)[

U�+ 1
2
∂U0 + ∑

k=1,2
Uk �+ 1

2
∂U0k + a�

(
U∂U

�+ 1
2
+

�+ 1
2

∑
m=1

Um∂U
m �+ 1

2
+ U�+ 1

2
∂U

�+ 1
2 �+ 1

2

)]
(35)

where

a� =
((

�− 1
2
)
!
)2

For other values of n they are given by

P̃(n) = −In−1

[
−(2�+ 2 − n)x2�+3−n

(
U∂U0 + ∑

k=1,2
Uk∂U0k

)
+ U∂U2�+2−n

+
�+ 1

2

∑
k=1

Uk∂Uk 2�+2−n + U2�+2−n∂U2�+2−n 2�+2−n

]
, �+

5
2
≤ n ≤ 2�− 1

P̃(2�) = −I2�−1
[−2x3(U∂U0 + U1∂U01) + U∂U2 + (U0 − 2x3U2)∂U02 +

�+ 1
2

∑
k=1

Uk∂U2k + U2∂U22

]

and

P̃(2�+1) = −I2�
[−x2U∂U0 + U∂U1 + (U0 − x2U1)∂U01 − (U + x2U2)∂U02 +

�+ 1
2

∑
k=1

Uk∂U1k + U1∂U11

]

The best way to solve the symmetry condition is to start from the larger values of n. We first
investigate the symmetry conditions for P(2�+1) to P(�+ 3

2 ) in this order. They are separated in three
cases (two cases for � = 5

2 ).

Lemma 4. (i) Equation (33) is invariant under P(2�+1) and P(2�) if it has the form

F
(

xa,
U0

U
, φ̃,

Uk
U

, φ01, φ02, φ1b, φ2b, Ukm

)
= 0, a ∈ I2, k, m ∈ I3, b ∈ I1 (36)

where
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φ̃ =
U0

U
+ x2

U1

U
+ 2x3

U2

U
,

φ01 =
U01

U
− U0U1

U2 , φ02 =
U02

U
+

U1

U
− U0U2

U2 ,

φαk =
Uαk
U

− UαUk
U2 , α = 1, 2 (37)

(ii) Equation (36) is invariant under P(n), �+ 5
2 ≤ n ≤ 2�− 1 if it has the form

F

(
xa, φ,

U�+ 1
2

U
, φ01, φ02, φkm

)
= 0, a ∈ I2, k, m ∈ I1 (38)

where φ01, φ02 are given in Equation (37) and

φ =
U0

U
+

�− 1
2

∑
j=1

jxj+1
Uj

U
, φkm =

Ukm
U

− UkUm

U2 (39)

(iii) Equation (38) is invariant under P(�+ 3
2 ) if it has the form

F
(

xa, w, w01, w02, φkm
)
= 0, a ∈ I2, k, m ∈ I1 (40)

where φkm is given in Equation (39) and

w = φ −
U2
�+ 1

2

2a�U2 , w0α = φ0α −
φα �+ 1

2

a�

U�+ 1
2

U
, α = 1, 2 (41)

The constant a� is defined below the Equation (35).
For � = 5

2 we have the cases (i) and (iii).

Proof of Lemma 4. (i) The symmetry conditions P̃(2�+1)F = P̃(2�)F = 0 is a system of first order PDEs.
They are solved by the standard technique and it is not difficult to see that the φ̃ and φ’s given in
Equation (37) are solutions to the system of PDEs; (ii) It is immediate to verify that φ01, φ02 solve
the symmetry conditions P̃(n)F = 0 for �+ 5

2 ≤ n ≤ 2�− 1. Rewriting the symmetry conditions in
terms of the variables given in Equation (37) it is not difficult to solve them and find φ and φkm in
Equation (39) are the solutions; (iii) It is immediate to see that all φkm, k, m ∈ I1 solves the symmetry
condition P̃(�+ 3

2 )F = 0, however, φ, φ01 and φ02 do not. Rewriting the symmetry condition in terms
of φ’s then solving the condition is an easy task. One may see that the variables in Equation (41) are
solution of it.

Theorem 2. The PDE invariant under the group generated by h� with � ≥ 5
2 is given by

F
(
w, αn, βn, φkm

)
= 0, n ∈ I2, k, m ∈ I1 (42)

where F is an arbitrary differentiable function and
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αn = w01 + (n − 1)xnφ1 n−1

=
U01

U
− U0U1

U2 −
U�+ 1

2

a�U

(
U1 �+ 1

2

U
−

U1U�+ 1
2

U2

)
+ (n − 1)xn

(
U1 n−1

U
− U1Un−1

U2

)
,

βn = w02 + (n − 1)xnφ2 n−1

=
U02

U
+

U1

U
− U0U2

U2 −
U�+ 1

2

a�U

(
U2 �+ 1

2

U
−

U2U�+ 1
2

U2

)
+ (n − 1)xn

(
U2 n−1

U
− U2Un−1

U2

)
(43)

Proof of Theorem 2. Theorem is proved by making the Equation (40) invariant under P(n) with
2 ≤ n ≤ �+ 1

2 . It is easy to see that w and all φkm solve the symmetry conditions P̃(n)F = 0 with P̃(n)

given by Equation (34). Thus the symmetry conditions are written in terms of only xn and w0α :

(
∂xn − (n − 1)(φ1 n−1∂w01 + φ2 n−1∂w02)

)
F = 0, n ∈ I2

It is easily verified that the solutions of this system of equations are given by αn and βn. Thus we
have proved the theorem.

5. The Case of � ≥ 5
2 : g�-Symmetry

Our next task is to make the Equation (42) invariant under D and C. From the Equation (21) one
may see that D generates the following scaling:

w → e−2εw, αn → e−2(�+1)εαn, βn → e−2�εβn, φkm → e−2(2�+2−k−m)εφkm (44)

Now we need the prolongation of C up to second order. After lengthy but straightforward
computation one may obtain the formula:

Ĉ = − b�
2

x2
�+ 1

2
M̂ + tD̂ + 2�x1P̃(2) − C̃,

C̃ = −
�− 1

2

∑
k=2

λkxk∂xk+1 +
�+ 1

2

∑
k=2

2(�+ 1 − k)xkUk ∂U0

+
�− 1

2

∑
k=1

[
λkUk+1∂Uk +

�− 1
2

∑
m=k

(λkUk+1 m + λmUk m+1)∂Ukm + (λkUk+1 �+ 1
2
+ b�x�+ 1

2
Uk)∂U

k �+ 1
2

]

+ ∑
k=1,2

[
2(�+ 1 − k)Uk +

�+ 1
2

∑
m=2

2(�+ 1 − m)xmUkm + λkU0 k+1

]
∂U0k

+ b�
[

x�+ 1
2
U ∂U

�+ 1
2
+ (U + 2x�+ 1

2
U�+ 1

2
)∂U

�+ 1
2 �+ 1

2

]
, (45)

where

b� =
((

�+
1
2
)
!
)2

, λk = 2�+ 1 − k

One may ignore M̂ and P̃(2) since we have already taken them into account. C̃ is independent of t
so that the invariance under D and C is reduced to the one under D and C̃. An immediate consequence
of the Equation (45) of C̃ is that F may not depend on αn and βn :

Lemma 5. A necessary condition for the invariance of the Equation (42) under C is that the function F is
independent of αn and βn.
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Proof of Lemma 5. C̃ has the term U03∂U02 and this is the only term having U03. On the other hand F
is independent of U03 so that we have the condition ∂U02 F = 0. This means that F is independent of
U02, i.e., independent of βn. C̃ also has the term U02∂U01 and this is the only term having U02. Thus by
the same argument F is not able to depend on U01, i.e., αn.

Now we turn to the variables w and φkm. It is immediate to see that w is an invariant of C̃, however,
φkm’s are not:

C̃w = 0,

C̃φkm = λkφk+1 m + λmφk m+1, C̃φk �+ 1
2
= λkφk+1 �+ 1

2
, 1 ≤ k, m ≤ �− 1

2
C̃φ�+ 1

2 �+ 1
2

= b� (46)

Thus the generator C̃ has the simpler form in terms of φkm (we omit ∂U0k ):

C̃ =
�− 1

2

∑
k=1

�− 1
2

∑
m=k

(λkφk+1 m + λmφk m+1)∂φkm +
�− 1

2

∑
k=1

λkφk+1 �+ 1
2

∂φ
k �+ 1

2
+ b� ∂φ

�+ 1
2 �+ 1

2
(47)

The characteristic equation of the symmetry condition C̃F = 0 is a system of the first order PDEs
given by

dφkm
λkφk+1 m + λmφk m+1

=
dφ�+ 1

2 �+ 1
2

b�
, 1 ≤ k ≤ m ≤ �− 1

2
(48)

dφk �+ 1
2

λkφk+1 �+ 1
2

=
dφ�+ 1

2 �+ 1
2

b�
, 1 ≤ k ≤ �− 1

2
(49)

One may solve it recursively by starting with Equation (49) for k = �− 1
2 :

dφ�− 1
2 �+ 1

2

dφ
=

λ�− 1
2

b�
φ, φ = φ�+ 1

2 �+ 1
2

This gives the invariant of C̃ :

w�− 1
2 �+ 1

2
= φ�− 1

2 �+ 1
2
−

λ�− 1
2

b�

φ2

2
(50)

Next we rewrite the Equation (49) for k = �− 3
2 in the following way:

dφ�− 3
2 �+ 1

2

dφ
=

λ�− 3
2

b�
φ�− 1

2 �+ 1
2
=

λ�− 3
2

b�

(
w�− 1

2 �+ 1
2
+

λ�− 1
2

b�

φ2

2

)

Then we find an another invariant:

w�− 3
2 �+ 1

2
= φ�− 3

2 �+ 1
2
−

λ�− 3
2

b�
w�− 1

2 �+ 1
2

φ −
λ�− 3

2
λ�− 1

2

b2
�

φ3

3!
(51)

The complete list of invariants of C̃ is given as follows:

Lemma 6. Solutions of the Equations (48) and (49) are given by

236



Symmetry 2015, 7, 1989–2008

wkm = φkm − ∑
a+b≥1

cab(k, m)wk+a m+b

φa+b
�+ 1

2 �+ 1
2

(a + b)!
− γ(k, m)

φ2�+2−k−m
�+ 1

2 �+ 1
2

(2�+ 2 − k − m)!
, (52)

1 ≤ k ≤ �− 1
2

, k ≤ m ≤ �+
1
2

where a, b run over nonnegative integers such that a ≤ �− 1
2 − k, b ≤ �+ 1

2 − m and k + a ≤ m + b. The
coefficient γ(k, m) depends on cab(k, m) with the maximal value of a and b :

γ(k, m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ�− 1
2

b�
, (k, m) = (�− 1

2 , �+ 1
2 )

λ�− 1
2

b�
cmax(a) max(b)(k, m), otherwise

(53)

The coefficients cab(k, m) are calculated by the algorithm given below.

Algorithm. We borrow the terminology of graph theory.

(1) For a given wkm, draw a rooted tree according to the branching rules given in Figure 1.
Each vetex and each edge of this tree are labelled. The root is labelled by wkm. Other vertices and
edges are labelled as indicaed in Figure 1. Each vertex has at most two children according to its
label. The vertex has no children if its label is w�− 1

2 �+ 1
2
. Thus the hight of the tree is 2�− k − m.

An example for � = 7
2 is indicated in Figure 2.

(2) Take a directed path from the root to one of the verticies with label wk+a,m+b and multiply all
the edge labels on this path. For instance, take the path (w13, w14, w24) in Figure 2. Then the
multiplication of the labels is λ1λ3b−2

7/2.

(3) If there exit other vertices whose label is also wk+a,m+b (same label as (2)), then repeat the same
computation as (2) for the direct paths to such vertices. In Figure 2 there is one more vertex
whose label is w24 and the path is (w13, w23, w24). We have λ1λ3b−2

7/2 for this path, too.

(4) Take summation of all such multiplication for the paths to the vertices whose label is wk+a m+b,
then this summation gives the coefficient cab(k, m). For the tree in Figure 2 the coefficient of w24

is obtained by adding the quantities calculated in (2) and (3): c11(1, 3) = 2λ1λ3b−2
7/2.

Figure 1. Vertices and edges.
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Figure 2. Example of rooted tree: � = 7
2 .

Proof of Lemma 6. The lemma is proved by induction on height of the trees. We have a tree of height
zero only when label of the root is w�− 1

2 �+ 1
2
. In this case no cab appears so that Equation (52) yields

w�− 1
2 �+ 1

2
= φ�− 1

2 �+ 1
2
− γ

(
�− 1

2
, �+

1
2

)φ2
�+ 1

2 �+ 1
2

2

This coincide with Equation (50). To verify the legitimacy of the algorithm calculating cab(k, m)

we need to start with a tree of height one. There are two possible labels of the root to obtain a tree of
height one. They are w�− 3

2 �+ 1
2

and w�− 1
2 �− 1

2
. Let us start with the label w�− 3

2 �+ 1
2

It is not difficult to verify, by employing the algorithm, that we obtain the Equation (51) for this
case. For the label w�− 1

2 �− 1
2
, the algorithm gives the following result:

w�− 1
2 �− 1

2
= φ�− 1

2 �− 1
2
−

2λ�− 1
2

b�
w�− 1

2 �+ 1
2
φ�+ 1

2 �+ 1
2
− 2

(
2λ�− 1

2

b�

)2 φ3
�+ 1

2 �+ 1
2

3!
(54)

It is easy to see that C̃ annihilates Equation (54). Thus the lemma is true for trees of height one.
Now we consider trees of height h > 1. If label of the root is wkm (k < m < �+ 1

2 ), then the tree
has two rooted subtrees (height h − 1) such that one of then has the root whose label is wk+1 m and
another has the root whose label is wk m+1. On the other hand, if label of the root is wkk or wk �+ 1

2
, then

the tree has only one rooted subtree (height h − 1) such that the subtree has the root whose label is
wk k+1 or wk+1 �+ 1

2
. By the algorithm one may find relations between the coefficients cab, γ for the tree

of height h and the subtrees of height h − 1 :

cab(k, m) =
λk
b�

ca−1 b(k + 1, m) +
λm

b�
ca b−1(k, m + 1),

γ(k, m) =
λk
b�

γ(k + 1, m) +
λm

b�
γ(k, m + 1),

cab(k, k) =
2λk
b�

ca b−1(k, k + 1), γ(k, k) =
2λk
b�

γ(k, k + 1) (55)
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We understand that cab and γ are zero if their indices or arguments have a impossible value.
Assumption of the induction is that the lemma is true for any rooted subtrees whose height is

smaller than h. Namely, we assume that C̃wk+a m+b = 0 for a + b ≥ 1 and what we need to show
is that C̃wkm = 0. We separate out a + b = 1 terms from the summation in Equation (52) and use
Equation (46) to calculate the action of C̃ on wkm. For k < m < �+ 1

2 we have

C̃wkm = C̃φkm − λkwk+1 m − λmwk m+1

− b� ∑
a+b≥2

cab(k, m)wk+a m+b

φa+b−1
�+ 1

2 �+ 1
2

(a + b − 1)!
− b�γ(k, m)

φ2�+1−k−m
�+ 1

2 �+ 1
2

(2�+ 1 − k − m)!

= C̃φkm − λkwk+1 m − λmwk m+1

− ∑
a+b≥1

(
λkcab(k + 1, m)wk+1+a m+b + λmcab(k, m + 1)wk m+1

)φa+b
�+ 1

2 �+ 1
2

(a + b)!

− (
λkγ(k + 1, m) + λmγ(k, m + 1)

) φ2�+1−k−m
�+ 1

2 �+ 1
2

(2�+ 1 − k − m)!

The second equality is due to the relations Equation (55) and the replacement a − 1 (resp. b − 1)
with
a (resp. b). By the assumption of the induction one may use Equation (52) to obtain:

C̃wkm = C̃φkm − (λkφk+1 m + λmφk m+1) = 0

The second equality is due to Equation (46).
The proof of C̃wkk = C̃wk �+ 1

2
= 0 is done in a similar way. This completes the proof of

Lemma 6.

Corollary 1. The variables wk �+ 1
2
(1 ≤ k ≤ �− 1

2 ) are easily calculated by this method.

wk �+ 1
2
= φk �+ 1

2
−

�− 1
2−k

∑
n=1

(
2�+ 1 − k

n

)
wk+n �+ 1

2

(
φ�+ 1

2 �+ 1
2

b�

)n

−
(

2�+ 1 − k
�+ 1

2

)
1

b�+
1
2−k

�

φ
�+ 3

2−k
�+ 1

2 �+ 1
2

�+ 3
2 − k

Proof of Corollary 1. The rooted tree used for this computation is indicated in Figure 3. It follows that
the coefficient of wk+a �+ 1

2
is given by

ca0(k, �+ 1
2 ) =

λkλk+1 · · · λk+a−1
ba
�

=

(
2�+ 1 − k

a

)
a!
ba
�

By Equation (53) the coefficient γ(k, �+ 1
2 ) is calculated as γ(k, �+ 1

2 ) = λ�− 1
2
b−1
� c�− 1

2−k 0(k, �+ 1
2 ).

Thus we obtain the expression of wk �+ 1
2

given in the corollary.

Figure 3. Rooted tree for the computation of wk �+ 1
2
.
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Our final task is to consider the invariance under D. It is immediate to see that D̂ scales wkm as

wkm → e−2(2�+2−k−m)ε wkm

Together with the scaling law Equation (44) we arrive at the final theorem.

Theorem 3. The PDE invariant under the group generated by g� with � ≥ 5
2 is given by

F
( wkm

w2�+2−k−m

)
= 0, 1 ≤ k ≤ �− 1

2
, k ≤ m ≤ �+

1
2

(56)

where F is an arbitrary differentiable function. The variables w and wkm are given in Equations (41) and
(52), respectively. This is the PDE with �+ 3

2 independent and one dependent variables. The function F has
1
2

(
�− 1

2

)(
�+ 5

2

)
arguments.

Example 1. Invariant PDE for � = 5
2 .

F
(w11

w5 ,
w12

w4 ,
w13

w3 ,
w22

w3 ,
w23

w2

)
= 0

where

w =
U0

U
+ x2

U1

U
+ 2x3

U2

U
− U2

3
8U2 ,

w23 = φ23 − 1
18

φ2
33,

w22 = φ22 − 2
9

φ23φ33 +
2
35 φ3

33,

w13 = φ13 − 5
36

φ23φ33 +
5

2235 φ3
33,

w12 = φ12 − 1
9

φ13φ33 − 5
36

φ22φ33 +
5

2333 φ23φ2
33 −

5
2535 φ4

33,

w11 = φ11 − 5
18

φ12φ33 +
5

2234 φ13φ2
33 −

25
2434 φ22φ2

33 −
25

2436 φ23φ3
33 −

5
2438 φ5

33

The symmetry generators are given by

M = U∂U , D = 2t∂t + 5x1∂x1 + 3x2∂x2 + x3∂x3 , H = ∂t,

C = t(t∂t + 5x1∂x1 + 3x2∂x2 + x3∂x3) + 5x1∂x2 + 4x2∂x3 − 18x2
3U∂U ,

P(1) = ∂x1 , P(2) = t∂x1 + ∂x2 , P(3) = t2∂x1 + 2t∂x2 + ∂x3 ,

P(4) = t3∂x1 + 3t2∂x2 + 3t∂x3 − 12x3U∂U ,

P(5) = t4∂x1 + 4t3∂x2 + 4t2∂x3 − 24(2tx3 + x2)U∂U ,

P(6) = t5∂x1 + 5t4∂x2 + 10t3∂x3 − 120(t2x3 − tx2 + x1)U∂U

6. Concluding Remarks

We have constructed nonlinear PDEs invariant under the transformations generated by the
realization of CGA given in Equation (2). This was done by obtaining the general solution of the
symmetry conditions so that the PDEs constructed in this work are the most general ones invariant
under Equation (2). A remarkable property of the PDEs is that they do not contain the second order
derivative in t if � > 3

2 . It means that there exist no invariant PDEs of wave or Klein–Gordon type for
� > 3

2 . This type of �-dependence does not appear in the linear PDEs constructed in [1,4] based on
the representation theory of g�. This will be changed if one start with a realization of CGA which is
different from Equation (2).
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The CGAs considered in this work are only d = 1 members. Extending the present computation
to higher values of d would be an interesting future work. Because the d = 2 CGA has a distinct
central extension so that we will have different types of invariant PDEs. For d ≥ 3 CGAs have so(d) as
a subalgebra. This will also cause a significant change in invariant PDEs.
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Abstract: Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov
equation, but under the influence of an external driving force, are derived from non-standard
representations of the 2D conformal algebra. In the case without external forces, the symmetry of the
conformally-invariant transport equation is first generalized by considering the particle momentum
as an independent variable. This new conformal representation can be further extended to include an
external force. The construction and possible physical applications are outlined.
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1. Introduction

The Boltzmann transport equation (BTE) [1–4] furnishes a semi-classical description of the
effects of particle transport, including the influence of external forces on the effective single-particle
distribution function f = f (t, r, p) of a small cell in phase phase, centered at position r and momentum
p. For a system with identical particles of mass m, the Boltzmann equation reads:

∂ f
∂t

+
p
m
·∂ f

∂r
+ F· ∂ f

∂p
=

(
∂ f
∂t

)
coll

. (1)

Here, dN = f (t, r, p, )dr dp is the number of particles in a cell of phase volume dr dp, centered
at position r and momentum p [3]. In addition, F = F(t, r) is the force field acting on the particles
in the fluid. The term on the right-hand side is added to describe the effect of collisions between
particles. It is a statistical term and requires knowledge of the statistics that the particles obey, like the
Maxwell–Boltzmann, Fermi–Dirac or Bose–Einstein distributions. In his famous “Stoßzahlansatz” (or
hypothesis of molecular chaos), Boltzmann obtained an explicit form for it. In modern notation, for
example for an interacting Fermi gas, where a particle from a state with momentum p is scattered to a
state with momentum p′, whereas a second particle is scattered from a momentum q to a momentum
q′, the collision term reads:(

∂ f
∂t

)
coll

= − ∫
dp′dqdq′ w({p, q} → {p′, q′})

×[ f (p) f (q)(1 − f (p′))(1 − f (q′))− f (p′) f (q′)(1 − f (p))(1 − f (q))]

where w({pq} → {p′q′}) is the normalized transition probability from the two-particle state with
momenta {p, q} to the state labeled by {p′, q′}. Clearly, solving this widely-studied equation is a
very difficult task. It might be hoped that symmetries could be helpful. The equation without the
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collision term is known as the Vlasov equation [5]. The relationship with Landau damping and a
physicists’ derivation can be found in [6,7]. In this work, we shall explore a class of symmetries of the
(collisionless) BTE.

Throughout, we shall restrict to the d = 1 space dimension. (By analogy with other constructions
of local scale symmetries (see [8–11] and especially [12] and references therein), we expect a
straightforward extension of the results reported here to d > 1. Since we shall construct here a
finite-dimensional Lie algebra of dynamical conformal symmetries of the 1D collisionless BTE, one
should indeed expect that an extension to d > 1 exists. That symmetry algebra should contain
three generators X±1,0, along with a vector of generators Yn and also spatial rotations.) We start
from a non-standard representation, isomorphic to the infinite-dimensional Lie algebra of conformal
transformations in d = 2 dimensions. (For the sake of clarity, we shall adopt the following convention of
terminology: the infinite-dimensional Lie algebra 〈Xn, Yn〉n∈Z will be called a (centerless) “conformal
Virasoro algebra”. Its maximal finite-dimensional sub-algebra 〈Xn, Yn〉n∈{−1,0,1} will be called a
“conformal algebra”) This Lie algebra is spanned by the generators 〈Xn, Yn〉n∈Z and can be defined
from the commutators [9,12]:

[Xn, Xm] = (n − m)Xn+m, [Xn, Ym] = (n − m)Yn+m, [Yn, Ym] = μ(n − m)Yn+m (2)

where μ is a parameter. An explicit realization in terms of time-space transformation is [9,12]:

Xn = −tn+1∂t − μ−1[(t + μr)n+1 − tn+1]∂r − (n + 1)xtn − (n + 1) γ
μ

[
(t + μr)n − tn]

Yn = −(t + μr)n+1∂r − (n + 1)γ(t + μr)n (3)

such that μ−1 can be interpreted as a velocity (“speed of light/sound”) and where x, γ are constants.
(The contraction μ → 0 of Equation (3) produces the non-semi-simple “altern-Virasoro algebra” altv(1)
(but without central charges). Its maximal finite-dimensional sub-algebra is the conformal Galilean
algebra alt(1) ≡ CGA(1) [9,13]; see also [8,11]. The CGA(d) is non-isomorphic to either the standard
Galilei algebra or else the Schrödinger algebra.) Writing Xn = �n + �n and Yn = μ−1�n, where the
generators

〈
�n, �n

〉
n∈Z

satisfy [�n, �m] = (n − m)�n+m,
[
�n, �m

]
= (n − m)�n+m,

[
�n, �m

]
= 0, it can

be seen that, provided μ �= 0, the above Lie algebra Equation (2) is isomorphic to a pair of Virasoro
algebras vect

(
S1)⊕ vect

(
S1) with a vanishing central charge. However, this isomorphism does not

imply that physical systems described by two different representations of the conformal Virasoro
algebra, or the conformal algebra, with commutators Equation (2), were trivially related. For example,
it is well known that if one uses the generators of the standard representation of conformal invariance
or else the non-standard representation Equation (4) in order to find co-variant two-point functions,
the resulting scaling forms are different [9].

Now, consider the maximal finite-dimensional sub-algebra 〈X±1,0, Y±1,0〉, which for μ �= 0, in
turn, is isomorphic to the direct sum sl(2,R)⊕ sl(2,R). The explicit realization follows from from
Equation (3):

X−1 = −∂t, X0 = −t∂t − r∂r − x, X1 =

Y−1 = −∂r, Y0 = −t∂r − μr∂r − γ, Y1 = −t2∂r − 2μtr∂r − μ2r2∂r − 2γt − 2γμr (4)

Here, the generators X−1, Y−1 describe time- and space-translations, Y0 is a (conformal) Galilei
transformation (since the commutator [Y0, Y−1] does not vanish and does not give a central element
of the Lie algebra Equation (2), its structure is fundamentally different from algebras containing the
usual Galilei algebra as a sub-algebra), X0 gives the dynamical scaling t 
→ λt of r 
→ λr (with λ ∈ R),
such that the so-called “dynamical exponent” z = 1, since both time and space are re-scaled in the
same way, and, finally, X+1, Y+1 give “special” conformal transformations. In the context of statistical
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mechanics of conformally-invariant phase transitions, one characterizes co-variant quasi-primary
scaling operators through the invariant parameters (x, μ, γ), where x is the scaling dimension.

Finally, the finite-dimensional representation Equation (4) acts as a dynamical symmetry on the
equation of motion:

Ŝφ(t, r) = (−μ∂t + ∂r)φ(t, r) = 0. (5)

in the sense that a solution φ of Ŝφ = 0 is mapped onto another solution of the same equation. Indeed,
it is easily checked that: [Ŝ, Y±1,0] = [Ŝ, X−1] = 0 and

[Ŝ, X0] = −Ŝ, [Ŝ, X1] = −2tŜ + 2(μx − γ) (6)

It follows that for fields φ with scaling dimensions xφ = x = γ/μ, the algebra Equation (4) really
leaves the solution space of Equation (5) invariant.

In order to return to the Boltzmann equation, we consider Equation (5) in the form:

L̂ f = (μ∂t + v∂r) f (t, r, v) = 0 (7)

where f = f (t, r, v) is interpreted as a single-particle distribution function and where we consider
v as an additional variable. Equation (7) is a simple Boltzmann equation, without an external force,
without a collision term and in one space dimension. From Equation (6), with v fixed (and normalized
to v = 1), its solution space is conformally invariant. (With respect to Equation (5), μ 
→ −μ was
replaced. This change must also be made in the generators Equation (4) and commutators Equation
(2)). In Section 2, we shall generalize the above representation of the conformal algebra to the situation
with v as a further variable. In Section 3, we shall further extend this to the case when an external force
F = F(t, r, v), possibly depending on time, spatial position and velocity, is included. The aim of these
calculations is to determine which situations of potential physical interest with a non-trivial conformal
symmetry might be identified. This explorative study aims at identifying lines for further study, which
might lead later to a more comprehensive understanding of the possible symmetries of Boltzmann
equations. Taking into account the collision term is left for future work. We shall concentrate on the
d = 1 space dimension throughout. Conclusions and final comments are given in Section 4.

2. Collisionless Boltzmann Equation without External Forces

In our construction of conformal dynamical symmetries of the 1D collisionless BTE, we shall
often meet Lie algebras of a certain structure. These will be isomorphic to the two-dimensional
conformal algebra.

Proposition 1. The Lie algebra 〈Xn, Yn〉n∈Z defined by the commutators:

[Xn, Xm] = (n − m)Xn+m, [Xn, Ym] = (n − m)Yn+m, [Yn, Ym] = (n − m)(kXn+m + qYn+m) (8)

where k, q are constants, is isomorphic to the pair of centerless Viraso algebras vect
(
S1)⊕ vect

(
S1).

Proof. For either k = 0 or q = 0, this is either evident or else has already been seen in Section 1. In
the other case, consider the change of basis Xn = �n + �n and Yn = α�n − β�n, where �n, �n are two
families of commuting generators of vect

(
S1) and α and β are constants, such that α + β �= 0. It then

follows k = αβ and q = α − β.

This implies in particular the isomorphism of the maximal finite-dimensional sub-algebras, or
“conformal algebras” in the terminology chosen here. By definition, this “conformal algebra” obeys
the commutators Equation (8), but with n, m ∈ {−1, 0, 1}.
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Our construction of dynamical symmetries of the Equation (7) follows the lines of the construction
of local scale-invariance in time-dependent critical phenomena [9]. The physically-motivated
requirements are: First of all it, is clear that the equation is invariant under time-translations:

X−1 = −∂t, [L̂, X−1] = 0 (9)

Some kind of dynamical scaling must be present, as well. Its most general form is:

X0 = −t∂t − r
z

∂r − 1 − z
z

v∂v − x, [L̂, X0] = −L̂. (10)

Whenever the dynamical exponent z �= 1, we shall find an explicit dependence on v. In general,
we look for a family of generators Xn, for which we make the ansatz:

Xn = −an(t, r, v)∂t − bn(t, r, v)∂r − cn(t, r, v)∂v − dn(t, r, v). (11)

We shall find Xn from the following three conditions (throughout, we use the notations
∂t f =

.
f , ∂r f = f ′):

1. Xn must be a symmetry for the Equation (7); hence, [L̂, Xn] = λnL̂. This gives:

μ
.
an + va′n + μλn = 0,μ

.
bn + vb′n − cn + λnv = 0 (12)

μ
.
cn + vc′n = 0, μ

.
dn + vd′n = 0.

2. The generator X0 is assumed to be in the Cartan sub-algebra; hence, [Xn, X0] = αn,0Xn. It follows:

(1 + αn,0)an − t
.
a1 − r

z a′n − 1−z
z v∂van = 0 (13)

(1/z + αn,0)bn − t
.
bn − r

z b′n − 1−z
z v∂vbn = 0 (14)

((1 − z)/z + αn,0)cn − t
.
c1 − r

z c′n − 1−z
z v∂vcn = 0 (15)

αn,0dn − t
.
dn − r

z d′n − 1−z
z v∂vdn = 0. (16)

3. The action of X−1 is as a lowering operator; hence, [Xn, X−1] = αn,−1Xn−1. It follows:

.
an = αn,−1t,

.
bn = αn,−1r/z (17)

.
cn = αn,−1v(1 − z)/z,

.
dn = αn,−1x/z.

These conditions, combined with the following initial conditions:

a0 = t, b0 = r
z , c0 = 1−z

z v, d0 = x

a−1 = 1, b−1 = 0, c−1 = 0, d−1 = 0. (18)

must be sufficient for the determination of all admissible forms of Xn.
In the special case n = 1, we have α1,0 = 1 and find the most general form of X1 as a symmetry of

Equation (7) as follows (the requirement that 〈X±1,0〉 close into the Lie algebra sl(2,R) fixes α1,−1 = 2):

X1 = −a1(t, r, v)∂t − b1(t, r, v)∂r − c1(t, r, v)∂v − d1(t, r, v) (19)

and
a1(t, r, v) = t2 + A12r2v−2 + A110rv

2z−1
1−z + A100v

2z
1−z (20)

247



Symmetry 2015, 7, 1595–1612

b1(t, r, v) = 2
z tr +

(
A12
μ + z−2

z μ
)

r2v−1 + B110rv
z

1−z + B100v
z+1
1−z (21)

c1(t, r, v) = 2
z (1 − z)(vt − μr) + (B110 − A110

μ )v
z

1−z (22)

d1(t, r, v) = 2
z xt − 2

zμxrv−1 + D0v
z

1−z (23)

with a certain set of undetermined constants.
For conformal invariance, a family of generators Yn must also be found. Its construction is

straightforward if the explicit form of Y−1 is known. Really, X1 must act as a raising operator, in both
hierarchies, such that [9]:

[X1, Y−1] ∼ Y0, [X1, Y0] ∼ Y1. (24)

which implies that [Y−1, [Y−1, X1]] ∼ Y−1. However, the usual realization of Y−1 = −∂r as space
translations does not work, since if we set all undetermined constants in Equation (19) to zero, one
would have [Y−1, [Y−1, X1]] ∼ v−1Y−1. It is better to work with the form:

Y−1 = −v∂r. (25)

as we shall do from now on.
We first consider the special case, when all of the constants in the expression Equation (19) for

X1 vanish:
Case A: A12 = A110 = A100 = B110 = B100 = D0 = 0.

Proposition 2. The six generators:

X−1 = −∂t, X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z

X1 = −t2∂t −
( 2

z tr + z−2
z μr2v−1)∂r − 2(1−z)

z (vt − μr)∂v − 2
z xt + 2

zμxrv−1

Y−1 = −v∂r, Y0 = −(tv − μ
z r)∂r − z−1

z μv∂v + μ x
z

Y1 = −(
t2v − 2

zμtr − z−2
z μ2r2v−1)∂r − 2

z (z − 1)μ(vt − μr)∂v

+ 2
zμxt − 2

zμ
2xrv−1 (26)

span a representation of the conformal algebra Equation (2), which acts as dynamical symmetry algebra of the
Equation (7), for arbitrary dynamical exponent z.

Proof. It is readily checked that the generator Equation (26) satisfies the commutation relations (2),
with μ 
→ −μ . On the other hand, for any f = f (t, r, v), one has:

[L̂, X−1] = [L̂, Y−1] = [L̂, Y0] = [L̂, Y1] = 0

[L̂, X0] = −L̂, [L̂, X1] = −2tL̂,

which establishes the asserted dynamical symmetry.

Next, we treat the general case, when all of the constants are non-zero:
Case B: A12 �= 0, A110 �= 0, A100 �= 0, B110 �= 0, B100 �= 0, D0 �= 0.
Then, the generators are modified as follows:

X1 = X1 + X̃1

X̃1 = −
(

A12r2v−2 + A110rv
2z−1
1−z + A100v

2z
1−z

)
∂t

−
(

A12
μ r2v−1 + B110rv

z
1−z + B100v

z+1
1−z

)
∂r
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−(B110 − A110
μ )v

z
1−z ∂v − D0v

z
1−z , (27)

Y0 = Y0 + Ỹ0

Ỹ0 = 1
2 [X̃1, Y−1]

= −(A12rv−1 + 1
2 A110v−1+1/(1−z))∂t − 1

2μ (2A12r + A110v1/(1−z))∂r. (28)

Now, computing: [
Y0, Y−1

]
= −μY−1 + A12X−1 +

A12

μ
Y−1 (29)

we conclude that the cases A12 = 0 and A12 �= 0 must be treated separately.
Case B1: A12 = 0. It follows that the constants in Equation (19) are given by:

B110 = A110/μ, A100 =
A2

110
4μ2 , B100 =

A100

μ
=

A2
110

4μ3 , D0 = 0. (30)

Proposition 3. Let z �= 1 and A110 be arbitrary constants. Then, the six generators:

X−1 = −∂t, X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z

X1 = −(t2 + A110rv(2z−1)/(1−z) +
A2

110
4μ2 v2z/(1−z))∂t

−
(

2
z tr + z−2

z μr2v−1 + A110
μ rvz/(1−z) +

A2
110

4μ3 v(z+1)/(1−z)
)

∂r

− 2(1−z)
z (vt − μr)∂v − 2

z xt + 2
zμxrv−1

Y−1 = −v∂r

Y0 = − A110
2 vz/(1−z)∂t − (tv − μ

z r + A110
2μ v1/(1−z))∂r − z−1

z μv∂v + μ x
z

Y1 = −A110(tvz/(1−z) − μrv(2z−1)/(1−z))∂t

−
(

t2v − 2
zμtr − z−2

z μ2r2v−1 + A110
μ (tv1/(1−z) − μrvz/(1−z)

))
∂r

− 2
z (z − 1)μ(vt − μr)∂v +

2
zμxt − 2

zμ
2xrv−1 (30)

span a representation of the conformal algebra (the above result of Case A is recovered upon setting A110 = 0).
These generators give more symmetries of Equation (7).

Proof. From the above, the commutator Equation (2) is readily verified, with μ 
→ −μ . For the
dynamical symmetries, one checks the commutators:

[L̂, X−1] = [L̂, Y±1,0] = 0

[L̂, X0] = −L̂, [L̂, X1] = −(2t + A110
μ vz/(1−z))L̂.

which proves the assertion.

In contrast to the previous Case A, the representation acting only on (t, r), but keeping v as a
constant parameter, can no longer be obtained by simply setting z = 1. Rather, one must set A110 = 0
first, and only then, the limit z → 1 is well-defined.

Case B2: A12 �= 0, A110 �= 0, B110 �= 0, A100 �= 0, B100 �= 0, D0 �= 0.
It turns out that for A12 �= 0, the algebra also can be closed, but only if A12 = μ and A110 = 0

(then, all other constants also vanish).
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Proposition 4. Let z be an arbitrary constant. Then, the generators 〈X±1,0,Y±1,0〉, where:

X−1 = −∂t,X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z

X−1 = X−1,X0 = X0

X1 = −(
t2 + μr2v−2)∂t −

(
2
z tr + z+μ(z−2)

z r2v−1
)

∂r

− 2(1−z)
z (vt − μr)∂v − 2

z xt + 2
zμxrv−1

Y−1 = −v∂r

Y0 = −μrv−1∂t −
(
tv − (μz − 1)r

)
∂r − z−1

z μv∂v + μ x
z

Y1 = −μ
(
2trv−1 + (1 − μ)r2v−2)∂t −

(
t2v − 2

z (z − μ)tr + z(1−μ)−(z−2)μ2

z r2v−1
)

∂r

− 2
z (z − 1)μ(vt − μr)∂v +

2
zμxt − 2

zμ
2xrv−1 (31)

close into a Lie algebra, with the following non-zero commutation relations:

[Xn,Xn′ ] = (n − n′)Xn+n′ , [Xn,Ym] = (n − m)Yn+m

[Ym,Ym′ ] = (m − m′)(μXm+m′ + (1 − μ)Ym+m′), (32)

with n, n′, m, m′ ∈ {−1, 0, 1}. The algebra is isomorphic to the usual conformal algebra Equation (2) and
further extends the dynamical symmetries of Equation (7).

Proof. The commutation relation is directly verified. The isomorphism with the conformal algebra
follows from Proposition 1. The requirement to have a symmetry algebra of Equation (7) implies a
relation between the constants k, q (called α, β in Proposition 1) and μ, namely q =

(
k − μ2)/μ. In this

case at hand, we have k = μ, q = 1 − μ. It is then verified that [L̂,X−1] = [L̂,Y−1] = 0 and:

[L̂,X0] = −L̂

[L̂,X1] = −2(t + r
z v−1)L̂

[L̂,Y0] = −(k/μ)L̂ = −L̂

[L̂,Y1] = −2
(

k
μ t + k

zμ2 rv−1
)

L̂ = −2
(

t + 1
zμ rv−1

)
L̂.

which proves that these are dynamical symmetries of (7).

We now ask whether the finite-dimensional representation Equations (26), (30) and (31), with
μ �= 0, acting on functions f = f (t, r, v), and having a dynamical exponent z �= 1, can be extended
to representations of an infinite-dimensional conformal Virasoro algebra. The answer turns out to
be negative:

Proposition 5. The representation Equations (26), (30) and (31) of the finite-dimensional conformal algebra
〈Xn, Yn〉n∈{±1,0} with commutator Equation (8) cannot be extended to representations of an infinite-dimensional
conformal Virasoro algebra with commutator Equation (8) when z �= 1.

Similar no-go results have been found before for variants of representations of the Schrödinger
and conformal Galilean algebras [14]. On the other hand, for μ = 0, extensions to a representation of a
conformal Virasoro algebra with z �= 1 exist [15].

Proof. Since for the finite-dimensional representations Equations (26), (30) and (31), we have:
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[Xn, Xn′ ] =
(
n − n′)Xn+n′ , [Xn, Ym] = (n − m)Yn+n′ , n, n′, m = 0,±1

we suppose that this must be valid for all admissible n, m ∈ Z. Now, using the condition Equation (17)
for n = 2, a conformal Virasoro algebra should contain a new generator X2. Starting from the most
general form, X2 = −a2(t, r, v)∂t − b2(t, r, v)∂r − c2(t, r, v)∂v − d2(t, r, v) we find that the coefficients
are obtained from:

a2 = t3 + a21(r, v), b2 = 3
z t2r + 3 z−2

z μtr2v−1 + b21(r, v)

c2 = 3 1−z
z
(
vt2/2 − μrt

)
+ c21(r, v), d2 = 3

z xt2 − 6
z μx + d21(r, v),

where a21(r, v), b21(r, v), c21(r, v), d21(r, v) are unknown functions of their arguments, but do no longer
depend on the time t. We want to satisfy [X2, Y−1] = 3Y1. However, when calculating:

[X2, Y−1] = [−a2∂t − b2∂r − c2∂v − d2,−v∂r] =

= 3Y1 − va′21∂t − (3 1−z
2z t2v − 3

z (1 − z)μtr + vb′21 − c21 + 3 z−2
z μ2r2v−1)∂r

−(vc′21 + 3 1−z
z μ(tv − 2μr))∂v − vd′21 − 6

z μγrv−1

we see that closure is not possible for z �= 1. Indeed, although the dependence on r, v of the functions
a21, b21, c21, d21 can be chosen to satisfy the above closure condition, the t-dependence cannot be
absorbed into these functions. Hence, our new representation Equations (26), (30) and (31) of the
conformal algebra Equation (8) are necessarily finite-dimensional.

3. Symmetry Algebra of Collisionless Boltzmann Equation with an Extra Force Term

We write the collisionless Boltzmann equation in the form:

B̂ f (t, r, v) = (μ∂t + v∂r + F(t, r, v)∂v) f (t, r, v) = 0. (33)

We want to determine the admissible forms of an external force F(t, r, v), such that Equation (33)
is invariant under a representation of the conformal algebra Equation (8). The unknown representation
must include the “force” term and, in particular, for F(t, r, v) = 0, it should coincide with the
representations of conformal algebra obtained in the previous section.

The idea of the construction is similar to the one used in Section 2. First, we impose invariance
under basic symmetries:

• From invariance under time translation X−1 = −∂t, it follows:

[X−1, B̂] = − .
F = 0 → F = F(r, v) (34)

• From invariance under dynamical scaling X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z , we obtain that:

[B̂, X0] = −B̂, (35)

if F(r, v) satisfies the equation (r∂r + (1 − z)v∂v − (1 − 2z))F(r, v) = 0, with solution:

F(r, v) = r1−2z ϕ
(

rz−1v
)

, (36)

where ϕ(u) is an arbitrary function of the scaling variable u := rz−1v.
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It turns out that for the following calculations, it is more convenient to make a change of
independent variables (t, r, v) 
→ (t, r, u). In the new variables, the generator of dynamical scaling just
reads:

X0 = −t∂t − r
z

∂r − x
z

. (37)

Next, in order to be specific, we make the following ansatz for the analogue of space translations.
(Indeed, we might also require to find Y−1 from the conditions to be (i) a symmetry of Boltzmann
equation and (ii) to form a closed Lie algebra with the other basic symmetries X−1,0. Such requirements
lead to a system of differential equations, and the ansatz Equation (38) is a particular solution of
this system, which has the special property that the Boltzmann operator can be linearly expressed
B̂ = −μX−1 − Y−1 by the generators. We believe this to be a natural auxiliary hypothesis):

Y−1 = −r1−zu∂r − r−zΦ(u)∂u, Φ(u) = (z − 1)u2 + ϕ(u). (38)

In the same coordinate system, the collisionless Boltzmann equation becomes:

B̂ f (t, r, u) =
(

μ∂t + r1−zu∂r + r−zΦ(u)∂u

)
f (t, r, u) = 0. (39)

Here, some comments are in order. In the structure of Boltzmann Equation (39), as well as in
the form Equation (38) of the modified space translations, Y−1 enters an unknown function Φ(t, r, u).
Therefore, the form of X1 cannot be found only from its commutator with the other generators Xn, but
the constraints form the entire conformal algebra must be used, as well as the requirement that X1 and
Y0,1 are dynamical symmetries of Equation (39):

[B̂, X1] = λX1(t, r, v)B̂, [B̂, Y0] = λY0(t, r, v)B̂, [B̂, Y1] = λY1(t, r, v)B̂. (40)

In fact, commuting the unknown generators X1, Y0, Y1 with X−1 and X0, we can fix the t- and
r-dependence of the yet undetermined functions that occur in them:

Y0 = −rza0(u)∂t −
(
r1−zu + rb0(u)

)
∂r − (r−zΦ(u)t + c0(u))∂u − d0(u)

X1 = −(
t2 + r2za12(u)

)
∂t −

(
(2/z)tr + rz+1b12(u)

)
∂r

−rzc12(u)∂u − (2/z)xt − rzd12(u)

Y1 = −(
2trza0(u) + r2z A(u)

)
∂t −

(
t2r1−zu + 2trb0(u) + rz+1B(u)

)
∂r

−(
t2r−zΦ(u) + 2tc0(u) + rzC(u)

)
∂u + (2/z)μxt − rzD(u), (41)

with the four functions:

A(u) = 2zb0a12 + c0a′12 − za0b12 − a′0c12, C(u) = zb0c12 + c0c′12 − c′0c12 − a12Φ

B(u) = 2
z a0 + zb0b12 + c0b′12 − ua′12 − b′0c12, D(u) = 2

z xa0 + zb0d12 + c0d′12. (42)

In particular, looking for a representation of the analog of the extended Galilei algebra
〈X−1, X0, Y−1, Y0〉, we find that the unknown functions a0(u), b0(u), c0(u), d0(u) must satisfy the
system:

zua0(u) + Φ(u)a′0(u)− k = 0 (43)

zub0(u) + Φ(u)b′0(u)− c0(u)− qu = 0 (44)

Φ′(u)c0 − Φ(u)c′0(u) + (q − zb0)Φ = 0 (45)

Φ(u)d′0(u) = 0 (46)
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Because of Equation (46), one must distinguish two cases:

1. Φ(u) = 0, when d0(u) can be arbitrary
2. Φ(u) �= 0, when d0(u) = d0 = cste. is a constant.

In the second case, taking Equations (44) and (45) together, we obtain an equation for b0(u). It is:

Φ2(u)b′′
0 (u) + zuΦ(u)b′0(u) +

(
2zΦ(u)− zuΦ′(u)

)
b0(u)− 2sΦ(u) = 0, (47)

and has in general two independent solution: b01(u), b02(u). It follows that, for a given arbitrary value
of Φ(u) �= 0, we have in general two distinct realizations of the analogue of Galilei transformation; and
consequently, also two realizations of the analogue of the Galilei algebra. By construction, these are Lie
algebras of symmetries of the collisionless Boltzmann Equation (39) (with λY0 = −k/μ = −(μ+ q)):

[Y0, X−1] = Y−1, [X0, X−1] = X−1,

[Y0, Y−1] =
k−μ2

μ Y−1 + kX−1. (48)

Next, we include the generators of special conformal transformation X1 and Y1 to the extended
Galilei algebras Equation (48) just constructed. We must also satisfy the other commutators of the
conformal algebra Equation (8). Furthermore, the generators of the representation we are going to
construct are dynamical symmetries of the collisionless Boltzmann equation (we use the commutators
[Y1, Y0] = KX1 + QY1 and [Y1, Y−1] = k0X0 + q0Y0 in order to establish a relation between the constants
k, q and K, Q, k0, q0). We find:

λX1(t, r, u) = −2t − (rz/μ)
(
2zua12 + Φ(u)a′12(u)

)
= −2t − 2rza0(u)/μ (49)

for the eigenvalue and:

c12(u) = (2/z)μ− (u/μ)
(
2za12(u) + Φ(u)a′12(u)

)
+

(
2zub12 + Φ(u)b′12(u)

)
(50)

zuc12(u) + Φc′12(u)− c12(u)Φ′(u) + zb12(u)Φ(u)− 2c0(u) = 0 (51)

zud12(u) + Φ(u)d′12(u) + (2/z)μx = 0 (52)

Φ2(u)b′′
12(u) + 3zuΦ(u)b′12(u) + z

[
2zu2 + 3Φ(u)− 2uΦ′(u)

]
b12(u)

(53)
2zua12(u) + Φ(u)a′12(u)− 2a0(u) = 0 (54)

2zub12(u) + Φ(u)b′12(u)− c12(u)− 2b0(u) = 0 (55)

b0(u) = (u/μ)a0(u)− μ/z (56)

c0(u) = (Φ/μ)a0(u) (57)

d0(u) = cste. = −μx/z. (58)

k0 = α0k = 2k, q0 = α0q = 2q

2zuA(u) + Φ(u)A′(u)− 2qa0(u) = 0 (59)

2zuB(u) + Φ(u)B′(u)− C(u)− 2(k/z + qb0(u)) = 0 (60)

zuC(u) + Φ(u)C′(u)− Φ′(u)C(u) + zΦ(u)B(u)− 2qc0(u) = 0 (61)

zuD(u) + Φ(u)D′(u)− (2x/z)(k − μq) = 0. (62)
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K = k, Q = q (63)

(q − 2zb0)A(u)− c0 A′(u) + za0(u)B(u) + a′0(u)C(u) + ka12(u)− 2a2
0 = 0 (64)

(q − zb0)B(u)− c0B′(u) + uA(u) + b′0C(u) + kb12(u)− 2a0(u)b0(u) = 0 (65)

(q − zb0 + c′0(u))C(u)− c0C′(u) + Φ(u)A(u) + kc12(u)− 2a0(u)c0(u) = 0 (66)

(q − zb0)D(u)− c0D′(u) + kd12(u) +
2a0(u)μx

z = 0 (67)

2z(b12(u)A(u)− a12(u)B(u)) + c12(u)A′(u)− a′12(u)C(u) + 2a0(u)a12(u) = 0 (68)

(2/z)A(u)− c12(u)B′(u) + b′12C(u)− 2b0(u)a12(u) = 0 (69)(
zb12(u)− c′12(u)

)
C(u) + c12C′(u)− zc12(u)B(u) + 2c0(u)a12(u) = 0 (70)

(2x/z)(μa12(u) + A(u)) + zd12(u)B(u) + d′12(u)C(u)

(71)
The system of Equations (43)–(45) and (50)–(71) must give a solution for the unknown functions

a0(u), b0(u), c0(u), d0(u), a12(u), b12(u), c12(u), d12(u). Of course, it is possible that several of the
above equations are equivalent. Because of this fact, although the above system might look to
be over-determined, we have not yet been able to produce an explicit solution without making an
auxiliary assumption. A classification of all solutions of the above system is left as an open problem.
We shall now describe some examples of solutions of this large system.

Example 1: Let Φ(u) = 0. This case seems to be quite simple, provided it is compatible with our
system. From Equation (43), we obtain:

a0(u) =
k
z

u−1 (72)

Using this value of a0(u) from Equations (52)–(54) and (56)–(58), we directly obtain:

b0 = cste. = k
zμ − μ

z , c0(u) = 0, d0 = cste. = −μ
z x, (73)

a12(u) = k
z2 u−2, b12(u) = 1

μz2

(
k − μ2)u−1, c12(u) = 0, d12(u) = − 2μx

z2 u−1. (74)

When we substitute the above results in relation Equation (42), we also find:

A(u) = k
μz2

(
k − μ2)u−2, B(u) = 1

μ2z2

(
k
(
k − μ2)+ μ4)u−1

C(u) = 0, D(u) = 2μ2x
z2 u−1. (75)

One can now verify that the above results for the functions a0(u), b0(u), c0(u), d0(u) and
a12(u), b12(u), c12(u), d12(u), A(u), B(u), C(u), D(u) satisfy all equations of the above system. Now,
we can finally write the algebra generators:

X−1 = −∂t, X0 = −t∂t − r
z ∂r − x

z

X1 = −
(

t2 + k
z2 r2zu−2

)
∂t −

(
2
z tr + k−μ2

z2μ
rz+1u−1

)
∂r − 2

z xt + 2μx
z2 rzu−1,

Y−1 = −r1−zu∂r,

Y0 = − k
z rzu−1∂t −

(
tr1−zu + k−μ2

zμ r
)

∂r +
μx
z ,

Y1 = −
(

2k
z trzu−1 +

k(k−μ2)
z2μ

r2zu−2
)

∂t
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−
(

t2r1−zu + 2 k−μ2

zμ tr +
k(k−μ2)+μ4

z2μ2 rz+1u−1
)

∂r +
2
zμxt − 2μ2x

z2 rzu−1. (76)

We return to the original variables via the change (t, r, u) 
→ (t, r, v), done through the
substitutions u → rz−1v and ∂r → ∂r + (1 − z)r−1v∂v . Finally, we have the following representation
of a conformal symmetry algebra of the collisionless Boltzmann Equation (33):

X−1 = −∂t, X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z

X1 = −
(

t2 + k
z2 r2v−2

)
∂t −

(
2
z tr + k−μ2

z2μ
r2v−1

)
∂r

− (1 − z)
(

2
z tv + k−μ2

z2μ
r
)

∂v − 2
z xt + 2μx

z2 rv−1,

Y−1 = −v∂r − (1 − z)r−1v2∂v,

Y0 = − k
z rv−1∂t −

(
tv + k−μ2

zμ r
)

∂r − (1 − z)
(

tr−1v2 + k−μ2

zμ v
)

∂v +
μx
z ,

Y1 = −
(

2k
z trv−1 +

k(k−μ2)
z2μ

r2v−2
)

∂t −
(

t2v + 2 k−μ2

zμ tr +
k(k−μ2)+μ4

z2μ2 r2v−1
)

∂r

−(1 − z)
(

t2r−1v2 + 2 k−μ2

zμ tv +
k(k−μ2)+μ4

z2μ2 r
)

∂v +
2
zμxt − 2μ2x

z2 rv−1. (77)

Proposition 6. The generator Equation (77) close into the following Lie algebra:

[Xn, Xn′ ] = (n − n′)Xn+n′ , [Xn, Ym] = (n − m)Yn+m

[Ym, Ym′ ] = (m − m′)
(

kXm+m′ + k−μ2

μ Ym+m′
)

, (78)

for n, n′, m, m′∈{−1, 0, 1} and for an arbitrary dynamical exponent z. They give a representation of the
finite-dimensional conformal algebra, which acts as a dynamical symmetry algebra of the Boltzmann equation in
the form:

B̂ f (t, r, v) =
(

μ∂t + v∂r + (1 − z)r−1v2∂v

)
f (t, r, v) = 0. (79)

Proof. The commutation relation Equation (78) is directly checked. From the commutators [B̂, X−1] =

[B̂, Y−1] = 0 and:
[B̂, X0] = −B̂, [B̂, X1] = −2

(
t + k

zμ rv−1
)

B̂

[B̂, Y0] = −(k/μ)B̂, [B̂, Y1] = −2
(

k
μ t + k

zμ2 rv−1
)

B̂.

it is seen that they generate dynamical symmetries.

Example 2: Let k = 0. In this case, Φ(u) left arbitrary, which leads to a0 = 0 from Equation (43)
and:

b0 = cste. = −μ/z, c0 = 0, d0 = −μx/z (80)

Then, from Equation (42), we obtain:

A(u) = −2μa12(u), B(u) = −μb12(u)− ua′12(u)

C(u) = −μc12(u)− a12(u)Φ(u), D(u) = −μd12. (81)

However, when substituting in Equations (64)–(67), taking also into account that q = −μ, we find
that A(u) = a12(u) = 0. Then, it is easy to check that the condition Equations (68)–(71) are fulfilled.
This allows us to formulate:
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Proposition 7. Let Φ(u) = (z − 1)u2 + ϕ(u). Consider the generators:

X−1 = −∂t, X0 = −t∂t − r
z ∂r − 1−z

z v∂v − x
z

X1 = −t2∂t −
( 2

z tr + rz+1b12(u)
)
∂r

− (1 − z)
(

2
z tv + rzvb12(u) + r1−2z

1−z c12(u)
)

∂v − 2
z xt − rzd12(u),

Y−1 = −v∂r − (1 − z)
(

r−1v2 + r1−2z

1−z Φ(u)
)

∂v = −v∂r − r1−2z ϕ(u)∂v,

Y0 = −(
tv − μ

z r
)
∂r − (1 − z)

(
r1−2z

1−z ϕ(u)t − μ
z v

)
∂v +

μx
z ,

Y1 = −(
t2v − 2μ

z tr − μrz+1b12(u)
)
∂r +

2
zμxt + μrzd12(u) (82)

−(1 − z)
(

t2 r1−2z

1−z ϕ(u)− 2
zμtv − nμrzvb12(u)− μ r1−2z

1−z c12(u)
)

∂v,

where c12(u) = 2zub12(u) +
(
(z − 1)u2 + ϕ(u)

)
b′12(u) + 2μ/z and ϕ(u), b12(u), d12(u) satisfy:

[
(z − 1)u2 + ϕ(u)

]2b′′
12(u) + 3zu

[
(z − 1)u2 + ϕ(u)

]
b′12(u)

+z
[
(z + 1)u2 − 2uϕ′(u) + 3ϕ(u)

]
b12(u) + [(2 − z)u − ϕ′(u)]2μ/z = 0 (83)

zud12(u) +
[
(z − 1)u2 + ϕ(u)

]
d′12(u) + 2μx/z = 0. (84)

For any triplet (ϕ(u), b12(u), d12(u)), which gives a solution of the system Equations (83) and (84), the
generator Equation (82) close into the following Lie algebra:

[Xn, Xn′ ] = (n − n′)Xn+n′ , [Xn, Ym] = (n − m)Yn+m

[Ym, Ym′ ] = −μ (m − m′)Ym+m′ , (85)

for n, n′, m, m′∈{−1, 0, 1} and for an arbitrary constant z. Equation (82) is a representation of the
finite-dimensional conformal algebra and acts as the dynamical symmetry algebra of the Vlasov–Boltzmann
equation, with a quite general “force” term:

B̂ f (t, r, v) =
(

μ∂t + v∂r + r1−2z ϕ(u)∂v

)
f (t, r, v) = 0.

Proof. The commutators are satisfied for k = 0 and q = −μ if condition Equations (83) and (84) are
fulfilled. Under the same conditions, the symmetries are proven by the relations:

[B̂, X−1] = [B̂, Y−1] = [B̂, Y0] = [B̂, Y1] = 0

[B̂, X0] = −B̂, [B̂, X1] = −2tB̂.

In particular, if we implement the physical requirement that the “force” term should depend
only on the positions r, that is ϕ(u) = ϕ0 = cste., we can compute explicitly the representation of the
algebra Equation (82). To do this, one must find a solution of the system:[

(z − 1)u2 + ϕ0
]2b′′

12(u) + 3zu
[
(z − 1)u2 + ϕ0

]
b′12(u)

+z
[
(z + 1)u2 + 3ϕ0

]
b12(u) + 2μ 2−z

z u = 0 (86)

zud12(u) +
[
(z − 1)u2 + ϕ0

]
d′12(u) + 2μx/z = 0. (87)
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The solution of the second equation is relatively simple, even for an arbitrary z:

d12(u) = −δ0

[
(z − 1)u2 + ϕ0

] z
2(1−z)

∫
R

du
[
(z − 1)u2 + ϕ0

] z−2
2(1−z) , δ0 = cste. (88)

The solution of the Equation (86) for an arbitrary z can be expressed in terms of hypergeometric
functions, but we shall not give its explicit form here. However, for z = 2, the system Equations (86)
and (87) have an elementary solution:

b12(u) = b120
u

(u2+ϕ0)
2 + b121

u2−ϕ0

(u2+ϕ0)
2 , b120 = cste., b121 = cste.

d12(u) = −μx u
u2+ϕ0

. (89)

Substituting this into the generator Equation (82) for z = 2 gives a finite-dimensional representation
of the dynamical conformal symmetry of a collisionless Boltzmann equation of the form:

B̂ f (t, r, v) =
(

μ∂t + v∂r + ϕ0r−3∂v

)
f (t, r, v) = 0. (90)

4. Conclusions

In this work, we have described the results of the first exploration of dynamical symmetries
of collisionless Vlasov–Boltzmann transport equations. Our main finding is that these equations
admit conformal dynamical symmetries, although it does not seem to be possible to extend this to
infinite-dimensional conformal Virasoro symmetries, not even in the case of d = 1 space dimensions.
These conformal symmetries are new representations of the conformal algebra and are inequivalent
to the standard representation, which is habitually used in conformal field-theory descriptions of
equilibrium critical phenomena. Our first class of new symmetries was found by admitting the
momentum p (or equivalently, the velocity v = p/μ) as an additional independent variable, leading
to the representations Equations (26), (30) and (31). The second class of symmetries also allowed for
external driving forces F(t, r, v), and it has been one of the questions of which types of forces should
be compatible with conformal invariance. As an example, we have seen that time-independent forces
F(r, v) = r1−2z ϕ

(
rz−1v

)
, with an arbitrary scaling function ϕ, are admissible and lead to the general

representation Equation (82). However, the solutions of the associated system of equations for the
coefficients have not yet been classified and the complete content of these representations remains to
be worked out in the future.

Some intuition can be gleaned from some examples. We have written down the explicit
representations for the force F(r, v) = (1 − z)r−1v2, with an z > 1 arbitrary Equation (77) and for
F(r, v) = ϕ0 r1−2z Equations (82), (86), (87) with an arbitrary z > 1. In the later case, which could be
related to physical situations, we have given the explicit representation of the conformal algebra for
z = 2, when F(r, v) = ϕ0r−3, Equations (82) and (89). Having identified these symmetries, the next
step would be to use these to find either exact solutions [16] or else to use the algebra representations
for fixing the form of co-variant n-point correlation functions, in analogy to time-dependent critical
phenomena; see, e.g., [12].

The results derived here can be used as a starting point to derive forms of the transition
rates w in the collision terms, which would be compatible with the dynamical symmetries of the
collision-free equations. This kind of approach would be analogous to the one used for finding
dynamical symmetries of non-linear Schrödinger equations; see, e.g., [17,18]. We hope to return to
this elsewhere.
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Abstract: Diffusion-limited erosion is a distinct universality class of fluctuating interfaces. Although
its dynamical exponent z = 1, none of the known variants of conformal invariance can act
as its dynamical symmetry. In d = 1 spatial dimensions, its infinite-dimensional dynamic
symmetry is constructed and shown to be isomorphic to the direct sum of three loop-Virasoro
algebras. The infinitesimal generators are spatially non-local and use the Riesz-Feller fractional
derivative. Co-variant two-time response functions are derived and reproduce the exact solution of
diffusion-limited erosion. The relationship with the terrace-step-kind model of vicinal surfaces and
the integrable XXZ chain are discussed.

Keywords: meta-conformal invariance; representations; loop-Virasoro algebra; physical ageing;
diffusion-limited erosion; terrace-step-kink model

1. Introduction

Symmetries have since a long time played an important role in the analysis of physical systems.
The insight gained can be either calculational, in that a recognised symmetry becomes useful in
simplifying calculations, or else conceptual, in that the identification of symmetries can lead to new
level of understanding. In the statistical physics of equilibrium second-order phase transitions in
two dimensions, conformal invariance has ever since the pioneering work of Belavin, Polyakov and
Zamolodchikov [1] created considerable progress, both computationally as well as conceptually.
It then appears natural to ask if one might find extensions of conformal invariance which apply to
time-dependent phenomena. Here, we shall inquire about dynamical symmetries of the following
stochastic Langevin equation, to be called diffusion-limited erosion (DLE) Langevin equation, which reads
in momentum space [2]

dĥ(t, q) = −ν|q|ĥ(t, q)dt + ĵ(t, q)dt + (2νT)1/2 dB̂(t, q) (1)

and describes the Fourier-transformed height ĥ(t, q) = (2π)−d/2
∫
Rd dr e−iq·rh(t, r). Because of

the (Fourier-transformed) standard brownian motion B̂, with the variance 〈B̂(t, q)B̂(t′, q′)〉 =

min(t, t′)δ(q + q′), this is a stochastic process, called diffusion-limited erosion (DLE) process. Herein, ν, T
are non-negative constants and δ(q) is the Dirac distribution. Since we shall be interested in deriving
linear responses, an external infinitesimal source term ĵ(t, q) is also included, to be set to zero at the
end. Inverting the Fourier transform in order to return to direct space, Equation (1) implies spatially
long-range interactions. The conformal invariance of equilibrium critical systems with long-range
interactions has been analysed recently [3]. Equation (1) arises in several distinct physical contexts.

Symmetry 2017, 9, 2 259 www.mdpi.com/journal/symmetry
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Example 1. For the original definition of the (DLE) process [2], one considers how an initially flat interface
is affected by the diffusive motion of corrosive particles. A single corrosive particle starts initially far away
from the interface. After having undergone diffusive motion until the particle finally arrives at the interface,
it erodes a particle from that interface. Repeating this process many times, an eroding interface forms which
is described in terms of a fluctuating height h(t, r), see Figure 1. It can be shown that this leads to the DLE

Langevin Equation (1) [2,4].
Several lattice formulations of the model [2,5–7] confirm the dynamical exponent z = 1.

Figure 1. Schematics of the genesis of an eroding surface through the DLE process. (a) Initial state:
a diffusing particle (red path) arrives on a flat surface (full black line) and erodes a small part of it;
(b) Analogous process at a later time, when the surface has been partially eroded.

Example 2. A different physical realisation of Equation (1) invokes vicinal surfaces. Remarkably, for d = 1
space dimension, the Langevin Equation (1) has been argued [8] to be related to a system of non-interacting
fermions, conditioned to an a-typically large flux. Consider the terrace-step-kink model of a vicinal surface,
and interpret the steps as the world lines of fermions, see Figure 2. Its transfer matrix is the matrix exponential
of the quantum hamiltonian H of the asymmetric XXZ chain [8]. Use Pauli matrices σ±,z

n , attached to each site
n, such that the particle number at each site is �n = 1

2 (1 + σz
n) = 0, 1. On a chain of N sites, consider the

quantum hamiltonian [8–10]

H = −w
2

N

∑
n=1

[
2vσ+

n σ−
n+1 + 2v−1σ−

n σ+
n+1 + Δ

(
σz

nσz
n+1 − 1

)]
(2)

where w =
√

pq eμ, v =
√

p/q eλ and Δ = 2
(√

p/q +
√

q/p
)

e−μ. Herein, p, q describe the left/right bias
of single-particle hopping and λ, μ are the grand-canonical parameters conjugate to the current and the mean
particle number. In the continuum limit, the particle density �n(t) → �(t, r) = ∂rh(t, r) is related to the height
h which in turn obeys (1), with a gaussian white noise η [8]. This follows from the application of the theory of
fluctuating hydrodynamics, see [11,12] for recent reviews. The low-energy behaviour of H yields the dynamical
exponent z = 1 [8–10]. If one conditions the system to an a-typically large current, the large-time, large-distance
behaviour of (2) has very recently been shown [10] (i) to be described by a conformal field-theory with central
charge c = 1 and (ii) the time-space scaling behaviour of the stationary structure function has been worked out
explicitly, for λ → ∞. Therefore, one may conjecture that the so simple-looking Equation (1) should furnish an
effective continuum description of the large-time, long-range properties of quite non-trivial systems, such as (2).
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time

space
(b)

Figure 2. (a) Schematic illustration of a vicinal surface, formed by terraces. Fluctuations between
terraces are described by steps and kinks; (b) Reinterpretation of the steps of a vicinal surface as
non-intersecting world lines in 1 + 1 dimensions of an ensemble of fermionic particles.

The physical realisation of Equation (1) in terms of the DLE process makes it convenient to
discuss the results in terms of the physics of the growth of interfaces [13–15], which can be viewed
as a paradigmatic example of the emergence of non-equilibrium collective phenomena [16,17].
Such an interface can be described in terms of a time-space-dependent height profile h(t, r). This profile
depends also on the eventual fluctuations of the set of initial states and on the noise in the Langevin
equation, hence h should be considered as a random variable. The degree of fluctuations can be
measured through the interface width. If the model is formulated first on a hyper-cubic lattice L ⊂ Z

d

of |L | = Ld sites, the interface width is defined by

w2(t; L) :=
1
Ld ∑

r∈L

〈(
h(t, r)− h(t)

)〉2
= L2βz fw

(
tL−z) ∼ {

t2β ; if tL−z 
 1
L2βz ; if tL−z � 1

(3)

where the generically expected scaling form, for large times/lattice sizes t → ∞, L → ∞, is also
indicated. Physicists call this Family-Vicsek scaling [18]. Implicitly, it is assumed here that one is
not at the ‘upper critical dimension d∗’, where this power-law scaling is replaced by a logarithmic
scaling form, see also below. Herein, 〈.〉 denotes an average over many independent samples and
h(t) := L−d ∑r∈L h(t, r) is the spatially averaged height. Furthermore, β is called the growth exponent,
z > 0 is the dynamical exponent and α := βz is the roughness exponent. When tL−z � 1, one speaks of
the saturation regime and when tL−z 
 1, one speaks of the growth regime. We shall focus on the growth
regime from now on.

Definition 1. On a spatially infinite substrate, an interface with a width w(t) ↗ ∞ for large times t → ∞ is
called rough. If limt→∞ w(t) is finite, the interface is called smooth.

This definition permits a first appreciation of the nature of the interface: if in (3) β > 0, the
interface is rough.

In addition, dynamical properties of the interface can be studied through the two-time correlators
and responses. In the growth regime (where effectively L → ∞), one considers the double scaling limit
t, s → ∞ with y := t/s > 1 fixed and expects the scaling behaviour

C(t, s; r) :=
〈(

h(t, r)−
〈

h(t)
〉) (

h(s, 0)−
〈

h(s)
〉)〉

= s−bFC

(
t
s

;
r

s1/z

)
(4a)

R(t, s; r) :=
δ
〈

h(t, r)− h(t)
〉

δj(s, 0)

∣∣∣∣∣∣
j=0

=
〈

h(t, r)h̃(s, 0)
〉

= s−1−aFR

(
t
s

;
r

s1/z

)
(4b)
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where j is an external field conjugate to the height h. Throughout, all correlators are calculated with
j = 0. In the context of Janssen-de Dominicis theory, h̃ is the conjugate response field to h, see [17].
Spatial translation-invariance was implicitly admitted in (4). This defines the ageing exponents a, b.
The autocorrelation exponent λC and the autoresponse exponent λR are defined from the asymptotics
FC,R(y, 0) ∼ y−λC,R/z as y → ∞. For these non-equilibrium exponents, one has b = −2β [15] and the
bound λC ≥ (d + zb)/2 [19,20].

For the DLE process, these exponents are readily found form the exact solution of (1) [2,4,21]. For
an initially flat interface h(0, r) = 0, the two-time correlator and response are in Fourier space

Ĉ(t, s; q, q′) :=
〈

ĥ(t, q)ĥ(s, q′)
〉
=

T
|q|

[
e−ν|q||t−s| − e−ν|q|(t+s)

]
δ(q + q′), (5a)

R̂(t, s; q, q′) :=
δ〈ĥ(t, q)〉
δĵ(s, q′)

∣∣∣∣∣
j=0

= Θ(t − s) e−ν|q|(t−s) δ(q + q′). (5b)

In direct space, this becomes, for d �= 1 and with C0 := Γ((d + 1)/2)/(Γ(d/2)π(d+1)/2)

C(t, s; r) =
TC0

d − 1

[(
ν2(t − s)2 + r2

)−(d−1)/2 −
(

ν2(t + s)2 + r2
)−(d−1)/2

]
(6a)

R(t, s; r) = C0 Θ(t − s) ν(t − s)
(

ν2(t − s)2 + r2
)−(d+1)/2

(6b)

where the Heaviside function Θ expresses the causality condition t > s. In particular, in the growth
regime, the interface width reads (where C1(Λ) is a known constant and a high-momentum cut-off Λ
was used for d > 1)

w2(t) = C(t, t; 0) =
TC0

1 − d

[
(2νt)1−d − C1(Λ)

] t→∞�

⎧⎪⎨⎪⎩
TC0C1(Λ)/(d − 1) ; if d > 1
TC0 ln(2νt) ; if d = 1
TC0(2ν)1−d/(1 − d) · t1−d ; if d < 1

(7)

Hence d∗ = 1 is the upper critical dimension of the DLE process. It follows that at late times
the DLE-interface is smooth for d > 1 and rough for d ≤ 1. On the other hand, one may consider
the stationary limit t, s → ∞ with the time difference τ = t − s being kept fixed. Then one finds
a fluctuation-dissipation relation ∂C(s + τ, s; r)/∂τ = −νTR(s + τ, s; r). The similarity of this to what
is found for equilibrium systems is unsurprising, since several discrete lattice variants of the DLE

process exist and are formulated as an equilibrium system [5]. Lastly, the exponents defined above are
read off by taking the scaling limit, and are listed in Table 1. In contrast to the interface width w(t),
which shows a logarithmic growth at d = d∗ = 1, logarithms cancel in the two-time correlator C and
response R, up to additive logarithmic corrections to scaling. This is well-known in the physical ageing
at d = d∗ of simple magnets [22,23] or of the Arcetri model [20].

For comparison, we also list in Table 1 values of the non-equilibrium exponents for several other
universality classes of interface growth. In particular, one sees that for the Edwards-Wilkinson (EW) [24]
and Arcetri classes, the upper critical dimension d∗ = 2, while it is still unknown if a finite value of
d∗ exists for the Kardar-Parisi-Zhang (KPZ) class, see [13,14,25–28]. Clearly, the stationary exponents
a, b, z are the same in the EW and Arcetri classes, but the non-equilibrium relaxation exponents λC, λR
are different for dimensions d < d∗. This illustrates the independence of λC, λR from those stationary
exponents, in agreement with studies in the non-equilibrium critical dynamics of relaxing magnetic
systems. On the other hand, for the KPZ class, a perturbative renormalisation-group analysis shows
that λC = d for d < 2 [29]. For d > 2, a new strong-coupling fixed point arises and the relaxational
properties are still unknown. Even for d = 2, the results of different numerical studies in the KPZ class
are not yet fully consistent, but recent simulations suggest that precise information on the shape of the
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scaling function, coming from a dynamical symmetry [30], may improve the quality of the extracted
exponents [31].

Table 1. Exponents of growing interfaces in the Kardar-Parisi-Zhang (KPZ), Edwards-Wilkinson (EW),
Arcetri (for both T = Tc and T < Tc) and DLE universality classes. The numbers in bracket give the
estimated error in the last digit(s).

Model d z β a b λC λR References

KPZ 1 3/2 1/3 −1/3 −2/3 1 1 [25,29,32]
2 1.61(2) 0.2415(15) 0.30(1) −0.483(3) 1.97(3) 2.04(3) [33,34]
2 1.61(2) 0.241(1) - −0.483 1.91(6) - [35]
2 1.61(5) 0.244(2) - - - - [26]
2 1.627(4) 0.229(6) - - - - [36]
2 1.61(2) 0.2415(15) 0.24(2) −0.483(3) 1.97(3) 2.00(6) [31,33]

EW < 2 2 (2 − d)/4 d/2 − 1 d/2 − 1 d d
2 2 0(log) # 0 0 2 2 [24,37]

> 2 2 0 d/2 − 1 d/2 − 1 d d
Arcetri T = Tc < 2 2 (2 − d)/4 d/2 − 1 d/2 − 1 3d/2 − 1 3d/2 − 1

2 2 0(log) # 0 0 2 2 [20]
> 2 2 0 d/2 − 1 d/2 − 1 d d

T < Tc d 2 1/2 d/2 − 1 −1 d/2 − 1 d/2 − 1
DLE < 1 1 (1 − d)/2 d − 1 d − 1 d d

1 1 0(log) # 0 0 1 1 [4,21]
> 1 1 0 d − 1 d − 1 d d

# For d = d∗, one has logarithmic scaling w(t; L)2 ∼ ln t fw (ln L/ ln t).

Here, we are concerned with the dynamical symmetries of the DLE process. Our main results are
as follows.

Theorem 1. The dynamical symmetry of the DLE process, in d = 1 space dimension and with j = 0,
is a meta-conformal algebra, in a sense to be made more precise below, and is isomorphic to the direct sum of
three Virasoro algebras without central charge (or loop-Virasoro algebra). The Lie algebra generators will be
given below in Equation (29), they are non-local in space. The general form of the co-variant two-time response
function is (with t > s)

R(t, s; r) = FA (t − s)1−2x ν(t − s)
ν2(t − s)2 + r2

+FB (t − s)1+ψ−2x
(

ν2(t − s)2 + r2
)−(ψ+1)/2

cos
(
(ψ + 1) arctan

(
r

ν(t − s)

)
− πψ

2

)
(8)

where x, ψ are real parameters and FA,B are normalisation constants.

Remark 1. The exact solution (6b) of the DLE-response in (1 + 1)D is reproduced by (8) if one takes
x = 1

2 , ν > 0, FA = C0 and FB = 0. This illustrates the importance of non-local generators in a specific
physical application.

Remark 2. The symmetries so constructed are only dynamical symmetries of the so-called ‘deterministic
part’ of Equation (1), which is obtained by setting T = 0. We shall see that the co-variant two-time correlator
C(t, s; r) = 0. This agrees with the vanishing of the exact DLE-correlator (6a) in the T → 0 limit (fix d �= 1 and
let first T → 0 and only afterwards d → 1).

This paper presents an exploration of the dynamical symmetries of DLE process for d = 1 and is
organised as follows. In Section 2, we introduce the distinction of ortho-conformal and meta-conformal
invariance and illustrate these notions by several examples, see Table 2. In Section 3, we explain why
none of these local symmetries can be considered as a valid candidate of the dynamical symmetry
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of the DLE process. Section 4 presents some basic properties on the Riesz-Feller fractional derivative
which are used in Section 5 to explicitly construct the non-local dynamical symmetry of the DLE process,
thereby generalising and extending earlier results [21]. Section 6 outlines the formulation of time-space
Ward identities for the computation of covariant n-point functions and in Section 7 the two-point
correlator and response are found for the dynamical symmetry of the DLE process. The propositions
proven in Sections 5 and 7 make the Theorem 1 more precise and constitute its proof. The Lie algebra
contraction, in the limit ν → ∞, and its relationship with the conformal Galilean algebra is briefly
mentioned. This is summarised in Table 3.

2. Local Conformal Invariance

Can one explain the form of the two-time scaling functions of the DLE process in terms of
a dynamical symmetry? To answer such a question, one must first formulate it more precisely.

Definition 2. The deterministic part of the Langevin Equation (1) is obtained when formally setting B̂ = 0.

Our inspiration comes from Niederer’s treatment [38] of the dynamical symmetries of the free
diffusion equation. The resulting Lie algebra, called Schrödinger algebra by physicists, was found by
Lie (1882) [39]. The corresponding continuous symmetries, however, were already known to Jacobi
(1842/43) [40]. For growing interfaces, the Langevin equation of the EW class is the noisy diffusion
equation. Hence its deterministic part, the free diffusion equation, is obviously Schrödinger-invariant.
In this work, we seek dynamical symmetries of the deterministic part of the DLE process, that is,
we look for dynamical symmetries of the non-local equation (μ∂t −∇r)ϕ = 0, where the non-local
Riesz-Feller derivative ∇r will be defined below, in Section 4.

Since we see from Equation (1), or the explicit correlators and responses (5), that the dynamical
exponent z = 1, conformal invariance appears as a natural candidate, where one spatial direction is
re-labelled as ‘time’. However, one must sharpen the notion of conformal invariance. For notational
simplicity, we now restrict to the case of 1 + 1 time-space dimensions, labelled by a ‘time coordinate’
t and a ‘space coordinate’ r. Our results on the dynamical symmetries of the DLE process, see
Propositions 3 and 4, require us to present here a more flexible definition than given in [21,41].

Definition 3. (a) A set of meta-conformal transformations M is a set of maps (t, r) �→ (t′, r′) = M (t, r),
which may depend analytically on several parameters and form a Lie group. The corresponding Lie algebra is
isomorphic to the conformal algebra such that the maximal finite-dimensional Lie sub-algebra is semi-simple
and contains at least a Lie algebra isomorphic to sl(2,R)⊕ sl(2,R). A physical system is meta-conformally
invariant if its n-point functions transform covariantly under meta-conformal transformations; (b) A set of
ortho-conformal transformations O is a set of meta-conformal transformations (t, r) �→ (t′, r′) = O(t, r),
such that (i) the maximal finite-dimensional Lie algebra is isomorphic to sl(2,R)⊕ sl(2,R) and that (ii) angles
in the coordinate space of the points (t, r) are kept invariant. A physical system is ortho-conformally invariant
if its n-point functions transform covariantly under ortho-conformal transformations.

The names ortho- and meta-conformal are motivated by the greek prefixes o�θo: right, standard
and μετα: of secondary rank. Ortho-conformal transformations are usually simply called ‘conformal
transformations’. We now recall simple examples to illustrate these definitions. See Table 2 for
a summary.
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Table 2. Comparison of local ortho-conformal, conformal Galilean and meta-1 conformal invariance,
in (1 + 1)D. The non-vanishing Lie algebra commutators, the defining equation of the generators,
the invariant differential operator S and the covariant two-point function is indicated, where applicable.
Physically, the co-variant quasiprimary two-point function C12 = 〈ϕ1(t, r)ϕ2(0, 0)〉 is a correlator,
with the constraints x1 = x2 and γ1 = γ2.

Ortho Galilean Meta-1

Lie [Xn, Xm] = (n − m)Xn+m [Xn, Xm] = (n − m)Xn+m [Xn, Xm] = (n − m)Xn+m
algebra [Xn, Ym] = (n − m)Yn+m [Xn, Ym] = (n − m)Yn+m [Xn, Ym] = (n − m)Yn+m

[Yn, Ym] = (n − m)Xn+m [Yn, Ym] = 0 [Yn, Ym] = μ(n − m)Yn+m

generators (9) (15) (13)

S ∂2
t + ∂2

r - −μ∂t + ∂r

C12 t−2x1

(
1 +

( r
t
)2
)−x1

t−2x1 exp
(−2

∣∣ γ1r
t
∣∣) t−2x1

(
1 + μ

γ1

∣∣ γ1r
t
∣∣)−2γ1/μ

Example 3. In (1 + 1)D, ortho-conformal transformations are analytic or anti-analytic maps, z �→ f (z) or
z̄ �→ f̄ (z̄), of the complex variables z = t + ir, z̄ = t − ir. The Lie algebra generators are �n = −zn+1∂z and
�̄n = −z̄n+1∂z̄ with n ∈ Z. The conformal Lie algebra is a pair of commuting Virasoro algebras with vanishing
central charge [42,43], viz. [�n, �m] = (n − m)�n+m. In an ortho-conformally invariant physical system, the
�n, �̄n act on physical ‘quasi-primary’ [1] scaling operators φ = φ(z, z̄) = ϕ(t, r) and contain terms describing
how these quasi-primary operators should transform, namely

�n = −zn+1∂z − Δ(n + 1)zn , �̄n = −z̄n+1∂z̄ − Δ(n + 1)z̄n (9)

where Δ, Δ ∈ R are the conformal weights of the scaling operator φ. The scaling dimension is x := xφ = Δ + Δ.
Laplace’s equation Sφ = 4∂z∂z̄φ =

(
∂2

t + ∂2
r
)

ϕ = 0 is a simple example of an ortho-conformally invariant
system, because of the commutator

[S , �n] φ(z, z̄) = −(n + 1)znSφ(z, z̄)− 4Δn(n + 1)zn−1∂z̄φ(z, z̄). (10)

This shows that for a scaling operator φ with Δ = Δ = 0, the space of solutions of the Laplace equation
Sφ = 0 is conformally invariant, since any solution φ is mapped onto another solution �nφ (or �̄nφ) in
the transformed coordinates. The maximal finite-dimensional sub-group is given by the projective conformal
transformations z �→ αz+β

γz+δ with αδ − βγ = 1; its Lie algebra is sl(2,R)⊕ sl(2,R). Two-point functions of
quasi-primary scaling operators read

C12(t1, t2; r1, r2) := 〈φ1(z1, z̄1)φ2(z2, z̄2)〉 = 〈ϕ1(t1, r1)ϕ2(t2, r2)〉. (11)

Their ortho-conformal covariance implies the projective Ward identities XnC12 = YnC12 = 0 for n = ±1, 0 [1].
For scalars, such that Δi = Δi = xi, this gives, up to the normalisation C0 [44]

C12(t1, t2; r1, r2) = C0 δx1,x2

(
(t1 − t2)

2 + (r1 − r2)
2
)−x1

. (12)

Below, we often use the basis Xn := �n + �̄n and Yn := �n − �̄n, see also Table 2.

Example 4. An example of meta-conformal transformations in (1 + 1)D reads [45]

Xn = −tn+1∂t − μ−1[(t + μr)n+1 − tn+1]∂r − (n + 1)xtn − (n + 1)
γ

μ
[(t + μr)n − tn]

Yn = −(t + μr)n+1∂r − (n + 1)γ(t + μr)n (13)
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with n ∈ Z. Herein, x, γ are the scaling dimension and the ‘rapidity’ of the scaling operator ϕ = ϕ(t, r) on
which these generators act. The constant 1/μ has the dimensions of a velocity. The Lie algebra 〈Xn, Yn〉n∈Z
is isomorphic to the conformal Lie algebra [46], see Table 2, where it is called meta-1 conformal invariance.
If γ = μx, the generators (13) act as dynamical symmetries on the equation Sϕ = (−μ∂t + ∂r)ϕ = 0.
This follows from the only non-vanishing commutators of the Lie algebra with S , namely [S , X0] ϕ = −Sϕ

and [S , X1] ϕ = −2tSϕ + 2(μx − γ)ϕ. The formulation of the meta-1 conformal Ward identities does require
some care, since already the two-point function turns out to be a non-analytic function of the time- and
space-coordinates. It can be shown that the covariant two-point correlator is [41]

C12(t1, t2; r1, r2) = C0 δx1,x2 δγ1,γ2 |t1 − t2|−2x1

(
1 +

μ

γ1

∣∣∣∣γ1
r1 − r2

t1 − t2

∣∣∣∣)−2γ1/μ

. (14)

Although both examples have z = 1 and isomorphic Lie algebras, the explicit two-point functions (12)
and (14), as well as the invariant equations Sϕ = 0, are different, see also Table 2. That the form of
two-point functions depends mainly on the representation and not so much on the Lie algebra, is not a
phenomenon restricted to the conformal algebra. Similarly, for the so-called Schrödinger algebra at least
three distinct representations with different forms of the two-point function are known [47].

The representation (13) can be extended to produce dynamical symmetries of the (1 + 1)D Vlasov
equation [48].

Example 5. Taking the limit μ → 0 in the meta-conformal representation (13) produces the generators

Xn = −tn+1∂t − (n + 1)tnr∂r − (n + 1)xtn − (n + 1)nγtn−1r

Yn = −tn+1∂r − (n + 1)γtn (15)

of the conformal Galilean algebra (CGA) in (1 + 1)D [49–60]. Its Lie algebra is obtained by standard
contraction of the conformal Lie algebra, see Table 2. Hence the CGA is not a meta-conformal algebra, although
z = 1. About CGA-covariant equations, see [61]. The co-variant two-point correlator can either be obtained
from the generators (15), using techniques similar to those applied in the above example of meta-conformal
invariance [46,68], or else by letting μ → 0 in (14). Both approaches give

C12(t1, t2; r1, r2) = C0 δx1,x2 δγ1,γ2 |t1 − t2|−2x1 exp
(
−2

∣∣∣∣γ1
r1 − r2

t1 − t2

∣∣∣∣) (16)

Clearly, this form is different from both ortho- and meta-1-conformal invariance.

The non-analyticity of the correlators (14), and especially (16), in general overlooked in the
literature, is required in order to achieve C12 → 0 for large time- or space-separations, viz. t1 − t2 → ±∞
or r1 − r2 → ±∞.

All two-point functions (12), (14) and (16) have indeed the symmetries C12(t1, t2; r, r) = C21(t2, t1; r, r)
and C12(t, t; r1, r2) = C21(t, t; r2, r1), under permutation ϕ1 ↔ ϕ2 of the two scaling operators,
as physically required for a correlator. The shape of the scaling function of these three two-point
function is compared in Figure 3. In particular, the non-analyticity of the meta- and Galilean conformal
invariance at u = 0 is clearly seen, in contrast to ortho-conformal invariance, while for u → ∞,
the slow algebraic decay of ortho- and meta-conformal invariance is distinct from the exponential
decay of conformal Galilean invariance. This illustrates the variety of possible forms already for z = 1.
Below, we shall find another form of (meta-)conformal invariance, different from all forms displayed
in Figure 3.
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Figure 3. Scaling function f (u) of the covariant two-point correlator C (t, r) = t−2x1 f (r/t), over against
the scaling variable u = r/t, for ortho-, meta-1- and Galilean-conformal invariance, Equations (12),
(14) and (16) respectively, where x1 = γ1 = 1

2 and μ = 1.

3. Impossibility of a Local Meta-Conformal Invariance of the DLE Process

Can one consider these several variants of conformal invariance, which have z = 1 and are
realised in terms of local first-order differential operators, as a valid dynamical symmetry of the DLE

process in 1 + 1 dimensions ? The answer turns out to be negative:

1. The deterministic part of the DLE Langevin Equation (1) is distinct from the simple invariant
equations Sϕ = 0 of either ortho- or meta-1-conformal invariance.
For analogy, consider briefly Schrödinger-invariant systems with a Langevin equation of the
form Sϕ = (2νT)1/2 η, where η = dB

dt is a white noise of unit variance, and such that the
Schrödinger algebra is a dynamical symmetry of the noise-less equation (deterministic part)
Sϕ0 = 0. Then, the Bargman super-selection rules [69] which follow from the combination of
spatial translation-invariance and Galilei-invariance with z = 2, imply exact relations between
averages of the full noisy theory and the averages calculated from its deterministic part [70].
In particular, the two-time response function of the full noisy equation R(t, s; r) = R0(t, s; r),
is identical to the response R0 found when the noise is turned off and computed from the
dynamical Schrödinger symmetry [16,70].
We shall assume here that an analogous result can be derived also for the DLE Langevin equation,
although this has not yet been done. It seems plausible that such a result should exist, since in
the example (5b) and (6b) of the DLE process, the two-time response R is independent of T
(which characterises the white noise), as it is the case for Schrödinger-invariance.

2. The explicit response function (6b) of the DLE process is distinct from the predictions (12) ,
(14) and (16), see also Table 2. The form of the meta-1 conformal two-point function (14), is clearly
different for finite values of the scaling variable v = (r1 − r2)/(t1 − t2), and similarly for the
conformal Galilean case (16). The ortho-conformal two-point function (12) looks to be much closer,
with the choice x1 = 1

2 and the scale factor fixed to ν = 1, were it not for the extra factor ν(t − s).
On the other hand, the two-time DLE-correlator (6a) does not agree with (12) either, but might be
similar to a two-point function computed in a semi-infinite space t ≥ 0, r ∈ R with a boundary at
t = 0.

Looking for dynamical symmetries of the deterministic part of the DLE Langevin Equation (1),
in 1 + 1 dimensions, the first test will be the computation of the two-time response function R(t, s; r).
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By contrast, we shall show that the two-time correlator C cannot be found in this way. Indeed,
its ‘deterministic’ contribution vanishes: C0(t, s; r) = 0.

4. Riesz-Feller Fractional Derivative

Formulating (1) in direct space requires the Riesz-Feller fractional derivative [71–73] of order α.

Definition 4. For functions f (r) of a single variable r ∈ R, the Riesz-Feller derivative, of order α, is

∇α
r f (r) :=

iα

√
2π

∫
R

dk |k|α eikr f̂ (k) =
iα

2π

∫
R2

dkdx |k|α eik(r−x) f (x) (17)

where f̂ (k) denotes the Fourier transform of f (r). For brevity, we often write ∇r = ∇1
r and distinguish it from

the standard derivative ∂r.

Lemma 1. ([72], Prop. 3.6) Let f ∈ Hα/2(R) =
{

f ∈ L2(R)
∣∣∣∫

R
dk | f̂ (k)|2(1 + |k|2)α/2 < ∞

}
, a fractional

Sobolev space. For 0 < α < 2, the Riesz-Feller derivative ∇α
r f (r) exists.

Lemma 2. ([16] app. J.2, [21]) The following formal properties hold true, where α, β, q, μ are constants

∇α
r ∇β

r f (r) = ∇α+β
r f (r) , [∇α

r , r] f (r) = α∂r∇α−2
r f (r) , ∇α

r f (μr) = |μ|α∇α
μr f (μr)

∇α
r eiqr = (i|q|)α eiqr ,

(
∇α

r f (r)
∧)

(q) = (i|q|)α f̂ (q) , ∇2
r f (r) = ∂2

r f (r) (18)

Lemma 2 follows directly from the definition (17). The analogy with the rules of the ordinary
derivative ∂n

r , with n ∈ N, applied to exponentials eiqr and to Fourier transforms, motivated our choice
of (complex) normalisation in (17). Later, we shall also need the object ∂r∇−1

r , which is formally
written as

∂r∇−1
r f (r) =

1√
2π

∫
R

dk eikr sign (k) f̂ (k) (19)

but is best considered via its Fourier transform, viz.
(

∂r∇−1
r f (r)
∧)

(q) = sign (q) f̂ (q). This is

well-defined, since f ∈ Hα/2(R) ⊂ L2(R) and because of Plancherel’s theorem. The Fourier transform
of sign (q) is a distribution ([74] [Equation (2.3.17)]).

Corollary 1. One has the following formal commutator identities

[∇r, rn] = nrn−1∂r∇−1
r ,

[
r2∇r, r∂r

]
= −r2∇r ,

[
r∂r∇−1

r , r∇r

]
= −r ,

[∇r, ∂r] = [r∂r, r∇r] =
[
r, ∂r∇−1

r

]
=

[
rn∂r, ∂r∇−1

r

]
=

[
rn∇r, ∂r∇−1

r

]
= 0 . (20)

Proof. Most of these identities are immediate consequences of (17,18). The first one is proven by
induction, for all n ∈ N. We only detail here the computation of the third one. Formally, one has[
r∂r∇−1

r , r∇r
]
= −r

(
∂r∇−1

r
)2. Using (19), and its Fourier transform, gives

(
∂r∇−1

r

)2
f (r) =

∫
R

dk√
2π

eikrsign (k)
(

∂r∇−1
r f (r)
∧)

(k) =
∫
R

dk√
2π

eikr (sign (k))2 f̂ (k) = f (r)

which establishes the assertion.

Lemma 3. [72,75] If 0 < α < 2, one has for either f ∈ Hα/2(R) or else f ∈ S (R), the Schwartz space of
smooth, rapidly decreasing functions, for almost all r ∈ R

∇α
r f (r) =

1 − eiπα

4πi
Γ(α + 1)

∫
R

dy
|y|α+1 [ f (r + y)− 2 f (r) + f (r − y)] (21)
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If f ∈ S (R), ∇α
r f (r) can be defined beyond the interval 0 < α < 2.

5. Non-Local Meta-Conformal Generators

The deterministic part of (1) becomes Sϕ = (−μ∂r +∇r) ϕ = 0, where μ−1 = iν. Following earlier
studies [45], it seems physically reasonable that the Lie algebra of dynamical symmetries should at
least contain the generators of time translations X−1 = −∂t, dilatations X0 = −t∂t − r

z ∂r − x
z and space

translations Y−1 = −∂r. It turns out, however, if one wishes to construct a generator of generalised
Galilei transformations as a dynamical symmetry, the non-local generator −∇r automatically arises,
see below and ([16], Chapter 5.3). It is still an open problem how to close these generators into a Lie
algebra, for z �= 2 and beyond the examples listed above in Section 2.

This difficulty motivates us to start with the choice of a non-local spatial translation operator
Y−1 = −μ−1∇r. Here indeed, a closed Lie algebra can be found.

Proposition 1. [21] Define the following generators

X−1 = −∂t , X0 = −t∂t − r∂r − x , X1 = −t2∂t − 2tr∂r − μr2∇r − 2xt − 2γr∂r∇−1
r (22)

Y−1 = − 1
μ
∇r , Y0 = − 1

μ
t∇r − r∂r − γ

μ
, Y1 = − 1

μ
t2∇r − 2tr∂r − μr2∇r − 2

γ

μ
t − 2γr∂r∇−1

r

where the constants x = xϕ and γ = γϕ, respectively, are the scaling dimension and rapidity of the scaling
operator ϕ = ϕ(t, r) on which these generators act. The six generators (22) obey the commutation relations of
a meta-conformal Lie algebra, isomorphic to sl(2,R)⊕ sl(2,R)

[Xn, Xm] = (n − m)Xn+m , [Xn, Ym] = (n − m)Yn+m , [Yn, Ym] = (n − m)Yn+m (23)

Proposition 2. [21] The generators (22) obey the commutators

[S , Yn] ϕ = [S , X−1] ϕ = 0 , [S , X0] ϕ = −Sϕ , [S , X1] ϕ = −2tSϕ + 2(μx − γ)ϕ (24)

with the operator S = −μ∂t +∇r and thus form a Lie algebra of meta-conformal dynamical symmetries (of the
deterministic part) Sϕ = 0 of the DLE Langevin Equation (1), if only γ = xμ.

The non-local generators X1, Y0,1 in (22) do not generate simple local changes of the coordinates
(t, r), in contrast to all examples of Section 2. Finding a clear geometrical interpretation of the
generators (22) remains an open problem.

This meta-conformal symmetry algebra can be considerably enlarged.

Proposition 3. Consider the generators (22) and furthermore define

Z−1 = − 1
μ

∂r , Z0 = − 1
μ

t∂r − r∇r − γ

μ
∂r∇−1

r , Z1 = − 1
μ

t2∂r − 2tr∇r − μr2∂r − 2
γ

μ
t∂r∇−1

r − 2γr (25)

These generators are dynamical symmetries of the DLE Langevin equation, since [S , Zn] = 0 and they
extend the meta-conformal Lie algebra (23) as follows

[Xn, Zm] = (n − m)Zn+m , [Yn, Zm] = (n − m)Zn+m , [Zn, Zm] = (n − m)Yn+m (26)

Although Z−1 generates local spatial translations, the transformations obtained from Z0,1 are
non-local. In what follows, we write ξ := γ/μ for the second, independent scaling dimension of ϕ.

Corollary 2. Define the generators B±
n = 1

2 (Yn ± Zn), n ∈ {−1, 0, 1}. Then the non-vanishing commutators
of the Lie algebra (23) and (26) take the form

[Xn, Xm] = (n − m)Xn+m ,
[
Xn, B±

m
]
= (n − m)B±

n+m ,
[
B±

n , B±
m
]
= (n − m)B±

n+m (27)
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The B±
n are dynamical symmetries of the DLE process, since [S , B±

n ] = 0.

Corollary 3. Define the generators An = Xn − (B+
n + B−

n ) = Xn − Yn, n ∈ {−1, 0, 1}. Then the
non-vanishing commutators of the Lie algebra (27) are

[An, Am] = (n − m)An+m ,
[
B±

n , B±
m
]
= (n − m)B±

n+m (28)

This Lie algebra of dynamical symmetries of the deterministic part of the DLE Langevin Equation (1) is
isomorphic to the direct sum sl(2,R)⊕ sl(2,R)⊕ sl(2,R).

In this last choice of basis, all generators contain non-local terms. Their form, in Corollary 3,
is suggestive for the explicit construction of an infinite-dimensional extension of the above Lie algebra.

Proposition 4. Construct the generators, for all n ∈ Z and x, ξ constants

An = −tn+1 (∂t −∇r)− (n + 1) (x − ξ) tn

B±
n = −1

2
(t ± r)n+1 (∇r ± ∂r)− n + 1

2
ξ (t ± r)n

(
1 ± ∂r∇−1

r

)
(29)

Their non-vanishing commutators are given by (28), for n, m ∈ Z. Their Lie algebra is isomorphic to
the direct sum of three Virasoro algebras with vanishing central charges. They are also dynamic symmetries
of the deterministic equation Sϕ = (−∂t +∇r) ϕ = 0 of DLE process, provided that x = ξ, because of the
commutators

[S , An] = −(n + 1)tnS + (n + 1)n (x − ξ) tn−1 ,
[S , B±

n
]
= 0 (30)

Proof. For n = ±1, 0, the generators (29) are those given above in (22) and (25), using ξ = γ/μ

and rescaling μ �→ 1. One generalises the first identity (20) in the Corollary 1 to the following form,
with n ∈ N [∇r, (α ± r)n] = ±n (α ± r)n−1 ∂r∇−1

r

where α is a constant. The assertions now follow by direct formal calculations, using (18) and (20).

This is the DLE-analogue of the ortho- and meta-1 conformal invariances, respectively, of the
Laplace equation and of simple ballistic transport, as treated in Examples 3 and 4. In Table 3, it is called
‘’meta-2 conformal”. It clearly appears that both local and non-local spatial translations are needed
for realising the full dynamical symmetry of the DLE process, which we call erosion-Virasoro algebra
and denote by ev. The infinite-dimensional Lie algebra ev is built from three commuting Virasoro
algebras (obviously, the maximal finite-dimensional Lie sub-algebra is sl(2,R)⊕ sl(2,R)⊕ sl(2,R)).
The scaling operators ϕ = ϕ(t, r) on which these generators act are characterised by two independent
scaling dimensions x = xϕ and ξ = ξϕ. By analogy with conformal Galilean invariance [76], one expects
that three independent central charges of the Virasoro type should appear if the algebra (28) will be
quantised. Additional physical constraints (e.g. unitarity) may reduce the number of independent
central charges.

6. Ward Identities for Co-Variant Quasi-Primary n-Point Functions

A basic application of dynamic time-space symmetries is the derivation of co-variant n-point
functions. Adapting the corresponding definition from (ortho-)conformal invariance [1], a scaling
operator ϕ = ϕ(t, r) is called quasi-primary, if it transforms co-variantly under the action of the
generators of the maximal finite-dimensional sub-algebra of ev. A primary scaling operator transforms
co-variantly under the action of all generators of ev. In this work, we consider examples of n-point
functions of quasi-primary scaling operators.
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In the physical context of non-equilibrium dynamics, such n-point functions can either be
correlators, such as 〈ϕ(t, r)ϕ(t′, r′)〉, or response functions 〈ϕ(t, r)ϕ̃(t′, 0)〉 = δ〈ϕ(t,r)〉

δj(t′ ,0)

∣∣∣
j=0

, which can

be formally rewritten as a correlator by using the formalism of Janssen-de Dominicis theory [17] which
defines the response operator ϕ̃, conjugate to the scaling operator ϕ.

Proceeding in analogy with ortho-conformal and Schrödinger-invariance [1,16,43,44,77], the quasi-
primary ev-Ward identities are obtained from the explicit form of the Lie algebra generators (22)
and (25), generalised to n-body generators. In order to do so, we assign a signature ε = ±1 to each
scaling operator [21]. We choose the convention that εi = +1 for scaling operators ϕi and εi = −1 for
response operators ϕ̃i. In order to prepare a later application to the conformal Galilean algebra, to be
obtained from a Lie algebra contraction, we also multiply the generators Yi, Zi by the scale factor μ.
The n-body generators then read

X−1 = X[n]
−1 = ∑

i
[−∂i] , X0 = X[n]

0 = ∑
i
[−ti∂i − riDi − xi]

X1 = X[n]
1 = ∑

i

[
−t2

i ∂i − 2tiriDi − μεir2
i ∇i − 2xiti − 2μξiεiriDi∇−1

i

]
Y−1 = Y[n]

−1 = ∑
i
[−εi∇i] , Y0 = Y[n]

0 = ∑
i
[−εiti∇i − μriDi − μξi] (31)

Y1 = Y[n]
1 = ∑

i

[
−εi

(
t2
i + μ2r2

i

)
∇i − 2μtiriDi − 2μξiti − 2μ2ξiεiriDi∇−1

i

]
Z−1 = Z[n]

−1 = ∑
i
[−Di] , Z0 = Z[n]

0 = ∑
i

[
−tiDi − εiri∇i − μξiDi∇−1

i

]
Z1 = Z[n]

1 = ∑
i

[
−

(
t2
i + μ2r2

i

)
Di − 2εiμtiri∇i − 2μξiri − 2μξiεitiDi∇−1

i

]
with the short-hands ∂i =

∂
∂ti

, Di =
∂

∂ri
and ∇i = ∇ri . It can be checked that the generators (31) obey

the meta-conformal Lie algebra of the DLE process. Define the (n + m)-point function

Cn,m = Cn,m(t1, . . . , tn+m; r1, . . . , rn+m)

= 〈ϕ1(t1, r1) · · · ϕn(tn, rn)ϕ̃n+1(tn+1, rn+1) · · · ϕ̃n+m(tn+m, rn+m)〉 (32)

of quasi-primary scaling and response operators. Their co-variance is expressed through the
quasi-primary Ward identities, for k = ±1, 0

X[n+m]
k Cn,m = Y[n+m]

k Cn,m = Z[n+m]
k Cn,m = 0, (33)

The solution of this set of (linear) differential equations gives the sought (n+m)-point function Cn,m.

7. Co-Variant Two-Time Correlators and Responses

In order to illustrate the procedure outlined in section 6, we shall apply it to the two-point
functions.

Proposition 5. Any two-point correlator C2,0(t1, t2; r1, r2) = 〈ϕ1(t1, r1)ϕ2(t2, r2)〉, built from ev-quasi-primary
scaling operators ϕi, vanishes.

Proof. Time-translation-invariance, expressed by X−1C2,0 = 0, implies that C2,0 = C2,0(t; r1, r2),
with t = t1 − t2. Invariance under both non-local and local space-translations gives Y−1C2,0 = Z−1C2,0 = 0.
In Fourier space, this becomes

(ε1|q1|+ ε2|q2|) Ĉ2,0(t; q1, q2) = 0 , (q1 + q2) Ĉ2,0(t; q1, q2) = 0
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where the signatures are both positive, viz. ε1 = ε2 = +1. The only solution is Ĉ2,0(t; q1, q2) = 0.

Recall that the dynamical symmetry of the ev algebra is only a symmetry of the deterministic
part of the DLE Langevin equation (1), which corresponds to T = 0. The vanishing of C2,0 is seen
explicitly in the exact DLE-correlator (5a,6a), which indeed vanishes as T → 0. This result of the DLE

process is analogous to what is found for Schrödinger-invariant systems [16,77], where it follows from
a Bargman superselection rule [69]. Still, this does not mean that symmetry methods could only predict
vanishing correlators. For example, in Schrödinger-invariant systems, correlators with T �= 0 can be
found from certain integrals of higher n-point responses [16,70]. For a simple illustration in the noisy
Edwards-Wilkinson equation, see [78]. We conjecture that an analogous procedure might work for the
DLE process and hope to return to this elsewhere.

We now concentrate on the two-time response function R = R(t1, t2; r1, r2) = C1,1(t1, t2; r1, r2).
Time-translation-invariance, which imposes X−1R = 0, implies that R = R(t; r1, r2), with t = t1 − t2.
Invariance under non-local and local space-translations now give (in Fourier space)

ε1 (|q1| − |q2|) R̂(t; q1, q2) = 0 , (q1 + q2) R̂(t; q1, q2) = 0

since the signatures are now ε1 = −ε2 = +1. Here, a non-vanishing solution is possible and we can
write R = F(t, r), with r = r1 − r2.

Proposition 6. The ev-covariant two-point response function R = C1,1 from (32) satisfies the scaling form
R = 〈ϕ1(t, r)ϕ̃2(0, 0)〉 = t−2x f (v), with the scaling variable v = r/t. If the scaling function f (v) obeys the
following two conditions, with the abbreviations x = 1

2 (x1 + x2) and ξ = 1
2 (ξ1 + ξ2),

(ε1∇v + μv∂v + 2μξ) f (v) = 0 , (x1 − x2) (ε1∇v + μv∂v + μ) f (v) = 0. (34)

and the constraint ξ1 − ξ2 = x1 − x2 holds true, then all quasi-primary Ward identities are satisfied.

The conditions (34) come from the deterministic part of the DLE Langevin Equation (1) and do
not contain T. This is consistent with the T-independence of the exact DLE-response function (5b)
and (6b). A fuller justification, analogous to the derivation of the Bargman superselection rules of
Schrödinger-invariance [70,77], is left as an open problem, for future work.

Proof. Denote by xi and ξi (with i = 1, 2), the two scaling dimensions of the scaling operator ϕ1

and of the response operator ϕ̃2, respectively. Time-translation-invariance and non-local and local
space-translation-invariances produced the form R = F(t, r), with t = t1 − t2, r = r1 − r2 and the
signatures ε1 = −ε2 = +1. The other six Ward identities lead to the conditions, using (18)

[−t∂t − r∂r − x1 − x2] F = 0 (35a)

[−tε1∇r − μr∂r − μξ1 − μξ2] F = 0 (35b)[
−t∂r − με1r∇r − μ(ξ1 + ξ2)ε1∂r∇−1

r

]
F = 0 (35c)[

−t2∂t − 2tr∂r − μr2ε1∇r − 2x1t − 2μξ1ε1r∂r∇−1
r

]
F = 0 (35d)[

−t2ε1∇r − 2μtr∂r − μ2ε1r2∇r − 2μξ1t − 2μ2ξ1ε1r∂r∇−1
r

]
F = 0 (35e)[

−t2∂r − 2με1tr∇r − μ2r2∂r − 2μ2ξ1r − 2μξ1ε1t∂r∇−1
r

]
F = 0 (35f)

Herein, Equation (35d) is obtained by using Equations (35a) and (35c), and Equations (35e)
and (35f) are obtained by using (35b) and (35c). Actually, because of the identity
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[
−t∂r − με1r∇r − 2μξε1∂r∇−1

r

]
F = ε1

[
−tε1∇r∂r∇−1

r − μr∇2
r∇−1

r − 2μξ∂r∇−1
r

]
F

= ε1∂r∇−1
r [−ε1t∇r − μr∂r − 2μξ] F

the condition Y0F = 0, Equation (35b), implies Z0F = 0, Equation (35c). Since
(
∂r∇−1

r
)2 f (r) = f (r),

see the Corrollary 1, the converse also holds true. Next, Equation (35d) can be simplified further:
multiply Equation (35a) with t and subtract it from (35d), which gives[

−tr∂r − με1r2∇r − (x1 − x2)t − 2μξ1ε1r∂r∇−1
r

]
F = 0 (36)

Then multiply (35c) with r and substract it from (36). This gives the condition[
(x1 − x2) t + μ (ξ1 − ξ2) ε1r∂r∇−1

r

]
F = 0 (37)

Similarly, simplify Equation (35e): multiply (35b) by t and subtract from (35e), then multiply (36)
by μ and subtract as well. This gives

μ [(ξ1 − ξ2)− (x1 − x2)] tF = 0

Unless F ∼ δ(t) is a distribution, this gives the constraint ξ1 − ξ2 = x1 − x2. Finally, Equation (35f)
is simplified by multiplying first (35c) with t and subtracting and then multiplying (35b) with
r and subtracting as well. This leads to (ξ1 − ξ2)

[
μr + ε1t∂r∇−1

r
]

F = 0. Since in the proof

of the Corollary 1, we have seen that
(
∂r∇−1

r
)2 f (r) = f (r), this can be rewritten as follows:

(ξ1 − ξ2)ε1
(
∂r∇−1

r
) [

ε1μr∂r∇−1
r + t

]
F = 0. Taking the constraint into account, the last condition

can be combined with (37) into the single equation

(x1 − x2)
[
t + με1r∂r∇−1

r

]
F = 0 (38)

The form of F is now fixed by the three equations (35a,35b,38) and the constraint has to be obeyed.
Equation (35a) implies the scaling form F = t−2x f (r/t). Inserting this into (35b) produces, with

the help of (18), the first of the Equations (34). Finally, inserting the scaling form for F into (38) gives
(x1 − x2)

(
1 + με1v∂v∇−1

v
)

f (v) = 0. Since it is not immediately obvious if that condition is consistent
with the first Equation (34), we rephrase it as follows: use the commutator

[
v∂v,∇−1

v
]
= ∇−1

v to write
formally v∂v∇−1

v = ∇−1
v +∇−1

v (v∂v). Then, apply ∇v to the last condition on f (v) derived from (38),
in order to rewrite it as follows

∇v∇−1
v [(x1 − x2) (ε1∇v + μv∂v + μ)] f (v) = 0

and this equation is obeyed if the second Equation (34) holds true. We have found a sufficient set of
conditions to satisfy all nine DLE-quasi-primary Ward identities for R = C1,1.

The two conditions in Equation (34) are compatible in two distinct cases:

Case A: 2ξ = 1. Then (ε1∇v + μv∂v + μ) f (v) = 0 and x1 �= x2 is still possible.
Case B: x1 = x2. Then ξ1 = ξ2 and (ε1∇v + μv∂v + 2μξ) f (v) = 0.

We must also compare the differential operator S = −μ∂t + ∇r with the DLE Langevin
Equation (1). Taking into account the normalisation in the definition of the Riesz-Feller derivative,
we find μ−1 = iν. Physically, one should require ν > 0 in order that the correlators and responses
vanish for large momenta |q| → ∞.

273



Symmetry 2017, 9, 2

Proposition 7. The ev-co-variant two-time response function R12(t, r) = F(t, r) has the form

F(t, r) = FA δξ1+ξ2,1 δξ1−ξ2,x1−x2 t1−x1−x2
νt

ν2t2 + r2

+FB δx1,x2 δξ1,ξ2 t1+ψ−2x1
(

ν2t2 + r2
)−(ψ+1)/2

cos
(
(ψ + 1) arctan

( r
νt

)
− πψ

2

)
(39)

where ψ = (ξ1 + ξ2) − 1 is assumed real, FA,B are normalisation constants and the convention ε1 = +1
is admitted.

Proof. Both cases can be treated in the same way. The first Equation (34) becomes in Fourier space[
iε1|q| − μq∂q + μ(2ξ − 1)

]
f̂ (q) = 0

In case A, the constant term vanishes, while it is non-zero in case B. The solution reads

f̂ (q) = f̂0q2ξ−1 exp (iε1|q|/μ) = f̂0q2ξ−1 exp (−ε1ν|q|)

where f̂0 is a normalisation constant and we can now adopt ε1 = +1. We also introduced the constant
ν from the DLE Langevin Equation (1) to illustrate that f̂ (q) → 0 for |q| large when ν is positive.
Both cases A and B produce valid solutions of the linear Equations (34). Therefore, the general
solution should be a linear superposition of both cases. Carrying out the inverse Fourier transforms is
straightforward.

Remark 3. Propositions 4 and 7 contain the assertions in the Theorem 1, which are also listed in Table 3.
Proposition 5 proves the statement in Remark 2. We had already mentioned in Section 1 (Remark 1), that if
we restrict to case A and take x = x1 = x2 = 1

2 and ν > 0, the resulting two-time response F(t, r) =

F0 t1−2x ε1νt/(ν2t2 + r2), with t = t1 − t2 and r = r1 − r2, reproduces the exact solution (6b). We stress that
no choice of x1 will make the ortho-conformal prediction (12) compatible with (6b).

This is the main conceptual point of this work: The non-local representation (29) of the meta-conformal
algebra ev is necessary to reproduce the correct scaling behaviour of the non-stationary response of the
DLE process.

The non-local meta-2 conformal invariance produces the response function R = C1,1, whereas all local
ortho-, Galilean and meta-conformal invariances yielded a correlator C2,0.

The main result (8) and (39) on the shape of the meta-2-conformal response can be cast into the
scaling form tx1+x2R12(t, r) = f (r/t), with the explicit scaling function

f (u) =
(
1 + u2)−1

+ ρ
(
1 + u2)−ξ1 sin (πξ1 − 2ξ1 arctan u)

1 + ρ sin πξ1
. (40)

We see that the first scaling dimensions x1, x2 merely arrange the data collapse, while the form of
the scaling functions only depends on the second scaling dimension ξ1 = ξ2 and the amplitude ratio ρ

(the exact solution (6b) of the DLE-process corresponds to ρ = 0). The normalisation is chosen such
that f (0) = 1. For ξ1 = 1

2 , we simply have f (u) = (1 + u2)−1. In Figure 4, several examples of the
shape of f (u) are shown. Clearly, these are quite distinct from all the examples of ortho-, meta-1- and
Galilean-conformal invariance, displayed above in Figure 3.
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Figure 4. Scaling function f (u) of the covariant meta-2-conformal two-point response
R(t, r) = t−x1−x2 f (r/t), over against the scaling variable u = r/t, for ξ = ξ1 = [0.6, 1.0, 1.4] in
the left, middle and right panels, respectively, and several values of the amplitude ratio ρ.

Remark 4. By analogy with Schrödinger-invariance, we conjecture that the fluctuation-dominated correlators
should be obtained from certain time-space integrals of higher n-point responses [16,70]. Working with the
quantum chain representation of the terrace-step-kink model, Karevski and Schütz have calculated the stationary
two-point correlator of the densities, which in our terminology correspond to the slopes u(t, r) = ∂rh(t, r).
They find [10]

C(t, r) = CAt−2 1 − ζ2

(1 + ζ2)2 + CBt−ψ cos[2(q∗r − ωt)]
(1 + ζ2)ψ (41)

with the scaling variable ζ = (r − vct)/(νt), where vc is the global velocity of the interface, ψ ≥ 1
2 is a real

parameter and CA,B are normalisation constants. The structure of their result is qualitatively very close to the form
(8) and (39) for the two-time response of the ev-algebra, in the sense that it contains a dominant and monotonous
term and a non-dominant and oscillatory one. Indeed, it can be checked that from the exact height-height correlator
(5a) and (6a) this first term in (41) is recovered by computing the correlator 〈u(t, r)u(0, 0)〉 of the densities
u = ∂rh. We interpret this as an encouraging signal that it should be possible to find the correlators from the ev
as well, by drawing on the analogies with Schrödinger-invariance. The first step in this direction would be the
derivation of an analogue of a Bargman superselection rule, which is work in progress.

Remark 5. The consequences of the choice of the fractional derivative are difficult to appreciate in advance and
largely remain a matter of try and error. Our choice of the Riesz-Feller derivative was suggested that in this way
the Lie algebra becomes a dynamical symmetry of the DLE process. In the past, we had also worked [16,45] with
an extension of the Riemann-Liouville derivative by distributional terms [74]. For dynamical exponents z �= 1, 2,
this leads to a strong oscillatory behaviour of the response functions which appears to be physically undesirable.
We consider the success of the simple case study of the DLE process treated here as suggestive for
future investigations.

Corollary 4. In the limit μ → 0 (or ν → ∞) the Lie algebra ev can be contracted into the algebra

[Xn, Xm] = (n − m)Xn+m ,
[
Xn, B±

m
]
= (n − m)B±

n+m (42)

with n, m ∈ Z and with the explicit generators

Xn = −tn+1∂t − (n + 1)tnr∂r − (n + 1)xtn − n(n + 1)εγtn−1r∂r∇−1
r

B±
n = −1

2
tn+1 (ε∇r ± ∂r)− 1

2
(n + 1)γtn

(
1 ± ε∂r∇−1

r

)
(43)

where ε = ±1 is the signature and x = xϕ and γ = γϕ are the scaling dimension and the rapidity of the scaling
operator on which these generators act. The co-variant quasi-primary two-point correlator C2,0 = 0, whereas the
co-variant quasi-primary two-point response R = C1,1 is, with the normalisation constant R0
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R(t, r) = δx1,x2 δγ1,γ2 R0 t−2x1 exp
(
−2

∣∣∣γ1r
t

∣∣∣) . (44)

The algebra (42), which one might call meta-conformal Galilean algebra, contains the conformal
Galilean algebra as a sub-algebra, although the generators (43) are in general non-local, in contrast
with those in Equation (15). However, the co-variant two-point function is here a response, and not
a correlator.

Proof. In order to carry out the contraction on the generators (29), where Xn = An + B+
n + B−

n ,
we first change coordinates r �→ μr, let ξi = γi/μ and rescale the generators B±

n �→ μB±
n . Then the

last commutator in (27) becomes [B±
n , B±

m ] = μ(n − m)B±
n+m. Taking the limit μ → 0 produces

the generators (43) and the commutators (42) immediately follow. The Ward identities for the
finite-dimensional sub-algebra are written down as before and C2,0 = 0 follows. For the response
function, going again through the proof of the proposition 7 and recalling that μ−1 = iν, we see that
case A in (39) does not have a non-vanishing limit as ν → ∞. For case B, consider the scaling form
R(t, r) = t−2x1 f (r/t), with the scaling function f (v) written as

f (v) = f0

[(
ε1

iμ
− iv

)−ψ−1
+ eiπψ

(
ε1

iμ
+ iv

)−ψ−1
]

and ψ+ 1 = 2γ1/μ. If γ1 > 0, the first term (−i/μ − iv)−ψ−1 = (iμ)2γ1/μ (1 + μv)−2γ1/μ μ→0
= μ0e−2γ1v,

and where μ0 is a constant, to be absorbed into the overall normalisation. The second term vanishes,
since eiπψ = eiπ(−1+2iνγ1) = −e−2πνγ1 → 0 as ν → ∞. On the other hand, if γ1 < 0, one divides
f (v) by eiπψ, and redefines the normalisation constant. Now, the second term produces ∼ e+2γ1v

and the first one vanishes in the ν → ∞ limit. Both cases are combined into f (v) = f̄0e−2|γ1v|.
Alternatively, one derives from the Ward identities the two constraints x1 = x2 and γ1 = γ2. Global
dilation-invariance gives the scaling form R(t, r) = t−2x1 f (r/t) where the scaling function f (v) must
satisfy the equation f ′(v) + 2γ1sign (t) f (v) = 0 which leads to the asserted form, modulo a dualisation
procedure, analogous to [41,46] to guarantee the boundedness for large separations.

Our results on non-local meta-conformal algebras are summarised in Table 3.

Table 3. Comparison of non-local meta-2 conformal invariance, and meta-conformal galilei invariance
in (1 + 1)D. The non-vanishing Lie algebra commutators, the defining equation of the generators
and the invariant differential operator S are indicated. The usual generators are Xn = An + B+

n + B−
n ,

Yn = B+
n + B−

n and Zn = B+
n − B−

n , see also Table 2. Physically, the co-variant quasiprimary two-point
function R12 = 〈ϕ1(t, r)ϕ̃2(0, 0)〉 is a response function. In case B, one has ψ = 2ξ1 − 1.

Meta-2 Conformal Meta-Conformal Galilean Constraints

Lie [An, Am] = (n − m)An+m [Xn, Xm] = (n − m)Xn+m
algebra

[
B±

n , B±
m
]
= (n − m)B±

n+m
[
Xn, B±

m
]
= (n − m)B±

n+m

generators (29) (43)

S −μ∂t +∇r -

R12

t1−x1−x2 · νt
(
ν2t2 + r2)−1 - ξ1 + ξ2 = 1 (A)

x1 − ξ1 = x2 − ξ2

t2ξ1−2x1
(
ν2t2 + r2)−ξ1

t−2x1 exp (−2 |γ1r/t|) x1 = x2 (B)
· sin

[
πξ1 − 2ξ1 arctan

( r
νt
)]

ξ1 = ξ2 , or γ1 = γ2
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Abstract: The most general second order irrotational vector field evolution equation is constructed,
that can be transformed to a single equation for the Cole–Hopf potential. The exact solution to the
radial Burgers equation, with constant mass influx through a spherical supply surface, is constructed.
The complex linear Schrödinger equation is equivalent to an integrable system of two coupled real
vector equations of Burgers type. The first velocity field is the particle current divided by particle
probability density. The second vector field gives a complex valued correction to the velocity that
results in the correct quantum mechanical correction to the kinetic energy density of the Madelung
fluid. It is proposed how to use symmetry analysis to systematically search for other constrained
potential systems that generate a closed system of vector component evolution equations with
constraints other than irrotationality.

Keywords: Burgers equation; integrability; Schrödinger equation; Madelung fluid

1. Introduction

Generally speaking, integrable equations are related to linear equations either by a classical
Darboux transformation (c-integrable) or an inverse scattering transform (s-integrable) [1]. There are
two main pathways that use Lie symmetry groups to identify integrable equations. The first is the
detection of extended symmetries of order three or higher. Unlike first-order contact symmetries and
their equivalent second-order “vertical” symmetries, higher-order symmetry transformations cannot
be closed at some finite order [2]. While the very demanding condition of existence of a third-order
symmetry is still not a sufficient condition for integrability, it is a useful and practical sieve. Known
examples of equations with higher-order symmetries, are often members of a hierarchy of commuting
integrable symmetries at successively higher orders, connected by a symmetry recursion operator (e.g.,
[3,4]). This approach has the advantage that it may reveal equations that are integrable in either sense
of being s-integrable or c-integrable.

The second pathway involves detection of a general solution of a linear equation within the Lie
point symmetry group or the Lie group of potential symmetries of a Darboux integrable equation.
That method has the advantage of an inbuilt algorithm for finding the linearising transformation [5,6].

Classification of integrable scalar evolution equations in one space dimension, is well
understood [7]. An inverse scattering transform has been found for some systems of N-waves in two
and three dimensions [8]. However, it remains challenging to apply symmetry methods to classify
integrable systems of parabolic evolution equations in more than one space dimension. As a test bed for
such methods, in the following sections, some directly integrable vector-valued extensions of Burgers’
scalar equation in three spatial dimensions, are considered.
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The only source of nonlinearity in the Navier–Stokes momentum transport equation is the
deceptively innocuous-looking quadratic inertial term within the convective time derivative

Duj

Dt
=

∂uj

∂t
+ u · ∇uj.

Naturally, one seeks to gain insight from simplified transport models that at least retain this
nonlinear term. For example, in gas dynamics it is common to assume the inviscid first-order Euler
equations [9,10]. In one space dimension, there is the integrable transport model, the Burgers equation

ut + uux = νuxx (1)

This equation resembles the momentum transport equation of incompressible Newtonian fluid
but of course one-dimensional incompressible flow is trivial. Therefore solutions are considered with
ux non-zero. In this sense, Equation (1) is often used as a prototype model for compressible gas
dynamics, but with the shocks smoothed by the non-zero viscosity [11,12]. The equation has found
direct applications also in other areas, such as sedimentation [13] and soil-water transport [14], in
which u represents a scalar concentration variable.

The one-dimensional Burgers equation has long been known to be exactly transformable to the
classical linear heat diffusion equation by the Cole–Hopf transformation [15,16], previously given
as an exercise in the text by Forsyth ([17], p. 102, Ex. 3). However this linearisation applies to
the three dimensional prototype transport equation only after an additional constraint is appended.
The Cole–Hopf transformation was applied in [18] to the three dimensional Burgers equation but
necessarily with the additional constraint of irrotational flow. Matskevich [19] investigated how the
Cole–Hopf transformation could simplify the Burgers equation in invariant form adapted to flow on
a pseudo-Riemannian manifold. The outcome was that on a manifold with constant non-zero Ricci
curvature scalar, Burgers’ equation transforms to a reaction-diffusion equation for scalar Cole–Hopf
potential ψ, with linear diffusion term but nonlinear reaction term proportional to ψ log ψ. In Section 2
here, the reverse question is easily answered, namely after specifying that the Cole–Hopf potential
satisfies a general linear or semi-linear second-order reaction-diffusion equation. What is the most
general form of the integrable nonlinear vector equation that results from the Cole–Hopf transformation
in the reverse direction ?

In fact any system of the following form is integrable:

uk,0 = αij(r)[uk,ij + c1uk,i uj + c1uiuk,j] + α
ij
,k[c1uiuj + ui,j] +

+bi
,kui + biuk,i +

1
c1

γ,k(r); k = 1, · · · 3 (2)

εijk∂juk = 0 (∇× u = 0) (3)

where α(r), b(r) and γ(r) are differentiable symmetric tensor-valued, vector-valued and scalar-valued
functions respectively, and c1 is a non-zero constant. Here, uj,k = ∂kuj = ∂uj/∂xk, x0 is the time
coordinate, xj:j = 1 · · · n are the space coordinates, repeated indices are summed and εijk is the
alternating symbol that is +1(−1) for even(odd) permutations (ijk) of (123). The n-dimensional
version of Equation (2) (n > 3) remains integrable when u is the gradient of some scalar potential, as
shown in the next section. Unlike in one dimension, in higher dimensions it is more convenient to use
index notation, especially when the coordinates are allowed to be non-Cartesian.

2. Extension of Cole–Hopf Transformation to n-Dimensions

Suppose that the scalar function ψ(r, t) is a classical solution of the general linear second-order
parabolic equation
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ψ,0 = αij(r)ψ,ij + bi(r)ψ,i + γ(r)ψ − c2γ(r); (r, t) ∈ Ω ×�+, (4)

with ψ > c2, defined on a closed subset Ω of �n. Define a velocity potential φ by

ψ = ec1φ + c2.

φ(r, t) is a generalisation of a scalar velocity potential, which as a consequence of Equation (4), satisfies

φ,0 = αij(r)
[
φ,ij + c1φ,iφ,j

]
+ βi(r)φ,i +

γ(r)
c1

(5)

Then uk = φ,k satisfies the generalised Burgers Equation (2). Note that under this transformation,
the c2-dependent terms cancel, so that this parameter does not appear in Equation (2). For this reason
it is usually convenient to assume the homogeneous version of Equation (4) with c2 = 0. Note also that
Equation (2) is sufficiently general to allow the diffusion term to be an isotropic kinematic viscosity
coefficient multiplied by the Laplace-Beltrami operator for a Riemannian manifold, acting on ui. That
is the right hand side is

ν√|g|∂k

(√
|g|gkj∂jui

)
plus terms of order 1 and 0. Here, gkm is the inverse of the metric tensor, gkmgmp = δk

p. This acts as a
raising operator from a covariant vector to a contravariant vector:

uk = gkmum.

Even on a flat Euclidean space, when non-Cartesian coordinates are used, one needs to distinguish
between contravariant components of a vector (denoted by superscript indices) and covariant
components (denoted by subscript indices). In the usual Einstein summation convention, repeated
indices (one superscript and one subscript) are summed when a dyadic tensor product is contracted,
contravariant rank being reduced by 1 and covariant rank likewise being reduced by 1.

Similarly Equation (2) is sufficiently general to allow the partial derivative to be extended to a
covariant derivative

∇iuj = ∂iuj − Γk
ij(r)uk,

where Γk
ij is the Christoffel symbol for the usual Levi–Civita connection coefficients. This at least allows

one to express Burgers’ equation on flat space, in terms of a general coordinate system. For example,
in plane polar coordinates, the connection coefficients account for the centripetal acceleration
component of radial fluid acceleration, that is proportional to the square of the circumferential
component of fluid velocity.

As can be seen from [19], if a nonlinear source term of the form c3(ψ − c2) log(ψ − c2) is added
to Equation (4), the Cole–Hopf transformation results in an additional linear component c3uk in the
source term of Burgers’ equation. In the case of three spatial dimensions, a source term of this type in a
constant-coefficient reaction-diffusion equation for ψ, results in an 11-dimensional Lie point symmetry
algebra [20], spanned by the generators of common translations in space and time, the common
rotations in space, plus four other independent special symmetry generators. Coordinates xi and t
may be rescaled so that without loss of generality, the free parameter c3 may be assumed to be either
+1 or −1. Then the ψ equation may be taken to be

ψ,t = ∇2ψ + c3ψ log ψ; c3 = ±1, (6)

while the four independent generators may be taken to be
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Γ8 = ec3t ∂

∂ψ
; Γ8+j = ec3t ∂

∂xj −
c3

2
xjec3tu

∂

∂u
; j = 1 · · · 3. (7)

It is a natural question to ask what is the image of other types of nonlinear source terms in the
ψ equation, under the reverse Cole–Hopf transformation. It is a fact that only a source of the above
form will lead to a closed system of equations for the vector components ui. When any other nonlinear
source term of the form Λ(r)R(ψ) is assumed, the additional potential variable φ will appear in the
system of equations for uk, with an additional forcing term of the form

d
dφ

[
e−c1φR(ec1φ + c2)

]
uk + e−c1φR(ec1φ + c2)Λ,k. (8)

Quadratic uiuj terms necessarily appear in Equation (2) whenever αij depends on xk. This
dependence may originate intrinsically from a curvilinear coordinate system or extrinsically from
spatial dependence of viscosity. That variation could be induced for example, by controlling the
spatially variable temperature.

The three-dimensional Cole–Hopf transformation has been applied in [21] to a quadratically
forced Burgers equation representing transport in a solid medium. In the following two sections, the
limited application to gas dynamics will be briefly revisited.

3. Prototype Vector Transport Equations

Consider the prototype vector transport equation with an additional external conservative force:

uj
,0 + ukuj

,k = ν uj,k
k + Ξ,j ; j, k = 1, · · · , n (9)

which follows from the choice,

α
j

i = νδ
j

i ; c1 =
−1
2ν

; bi = 0; γ = c1Ξ.

With n = 3, Equation (9) is the same as the Navier-Stokes momentum equation for an
incompressible Newtonian fluid after we identify

Ξ,j = − 1
ρ

p,j − V,j,

that is a pressure gradient plus an external conservative force. However instead of appending the
usual incompressibility condition, by analogy with the one-dimensional Burgers equation, we allow
the divergence of u to be non-zero.

It has been well known since the origins of fluid mechanics that the theory of incompressible
irrotational flow is linear since the velocity potential satisfies Laplace’s equation. In fact, the prototype
vector transport Equation (9) remains linearisable when it is supplemented by the potential condition
Equation (11) for all gradient solutions with compressible flow vectors uj. The prototype Equation (9) is
significantly different from the Navier-Stokes momentum equation for a compressible fluid

uj
,0 + uk uj

,k =
μ

ρ
uj,k

k +
1
3

μ

ρ
∂j(uk

,k)−
1
ρ

p,j − V,j (10)

which combined with
ui = ∂iΦ, (11)

gives

Φ,j
0 + Φ,kΦ,j

k = νΦ,jk
k −

1
ρ

p,j − V,j. (12)
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where ν = 4
3

μ
ρ (e.g., [22]). For compressible Newtonian fluid flow, ρ varies in space and time, and it

satisfies the equation of continuity
ρ,0 +

(
ρuj

)
,j
= 0. (13)

The system consisting of Equation (11) combined with prototype vector transport Equation (9)
with ν constant, implies by integration,

Φ,0 +
1
2
(Φ,kΦ,k) = νΦ,k

k + Ξ, (14)

with Ξ determined up to an additive function of x0. This integrable multi-dimensional integrable
scalar equation generalises Bernoulli’s law to the case of non-zero viscosity. By the change of variable

Ψ = e−Φ/2ν ; Φ = −2ν log Ψ, (15)

Equation (14) is equivalent to the linear heat equation with linear source,

Ψ,0 = νΨ,k
k −

1
2ν

ΞΨ. (16)

The fact that the one-dimensional Burgers equation can still be linearised when the external
forcing term Ξ′(x) is included, has been discovered and re-discovered since the 1970s in various
contexts [23–25]. It has been used to investigate the effect of a random external force [26–28] and it has
been used to directly model flow in unsaturated soil with extraction by plant roots [29].

3.1. Radial Burgers Equation and Approach to a Spherical Shock

One standard type of irrotational solution is the radial solution of the form u = U(r)êr where
r = ||r|| is the Euclidean norm and êr = r/r. Radial solutions of Equation (9) must satisfy the
n-dimensional radial forced Burgers equation

U,t + UU,r = ν∂r

[
r1−n∂r

(
rn−1U

)]
+ Ξ,r

= νU,rr + (n − 1)νr−1U,r + (1 − n)νr−2U + Ξ,r. (17)

This is evidently an integrable equation. From any solution to the radial form of the linear
reaction-diffusion Equation (16), namely Ψ = R(r, t), with

R,t = νr1−n∂r

(
rn−1∂rR

)
− 1

2ν
Ξ(r, t)R, (18)

U = −2νR,r
R is a solution to Equation (17).

One very important three-dimensional solution in gas dynamics is that of a gas at higher density
and higher radial velocity exploding radially outwards at t = 0 through a small two-dimensional
spherical surface r = a, displacing initially stationary fluid downstream [30]. As in the well-known
travelling wave solution to the one-dimensional Burgers equation, such a solution would introduce
some viscous smoothing to the shock front of gas dynamics. Assume that the velocity of the gas at
r = a is U(a) = Q/4πa2, where Q is the source strength. From the methods of Chapter 9 of [31], one
such solution for the radial Cole-Hopf potential is

R = 1 +
[

1
hr

− a
r

] [
er f c

(
r − a
2
√

νt

)
− eh(r−a)+h2νter f c

(
r − a
2
√

νt
+ h

√
νt
)]

, (19)

where h = 1
a − Q

8πνa2 . As ν is taken to be small, this solution approaches a sharp shock with constant
radial speed. The radial solution, depicted in Figure 1, is in dimensionless units after rescaling by
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length scale a and time scale ts = a/U(a) by which the supply surface has radius r/a = 1, the fluid
speed at (r/a = 1) is uts/a = 1, the asymptotic travelling wave speed is cts/a = 1/2, in agreement
with the Rankine-Hugoniot relations for a shock, and the Reynolds number is Re = aU(a)/ν.

This solution, like others that have been produced, is not consistent with the physics of gas
dynamics [32], in comparison with approximate analytical solutions of the full physical gas dynamics
system when pressure, density and entropy are properly taken into account [30]. However, the exact
radial Burgers solution does have some appealing features, such as a realistic inertial term in the
momentum equation, and its approach to a viscous shock, that make this exact solution a useful bench
test for computational fluids software packages.

Figure 1. Solution to radial Burgers equation with constant mass supply.

4. Application of Cole–Hopf to the Schrödinger Equation

The single-particle Schrödinger wave function obeys a linear evolution equation that is analogous
to Equation (4) except that it is necessarily complex valued and wave-like after the viscosity coefficient
is replaced by a pure imaginary number:

∂tΨ =
i
2
∇2Ψ − iV(r)Ψ (20)

For convenience, Equation (20) has been rescaled so that the quantum of action is 1 and the mass
is 1. Then the real non-negative particle density satisfies the Liouville conservation equation

∂tρ +∇ · J = 0 (21)

where ρ = Ψ∗Ψ = |Ψ|2 and the particle current density is

Jk =
i
2
[Ψ∗Ψ,k − ΨΨ∗

,k] = Im{ΨΨ∗
,k}. (22)
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Now the Cole–Hopf transformation is simply

uk = ∂kΦ; Ψ = eiΦ,

which results in the complex valued vector transport equation

∂tuj + u·∇uj =
i
2
∇2uj − V,j . (23)

Note that the force per unit mass correctly emerges as −∇V. From the real valued particle density
and real valued current density, one may construct a real valued fluid velocity

v = J/ρ = −Im{∇ log Ψ} = Re{∇Φ} = Re{u}.

Note that Re{Φ} is the quantum mechanical phase, whereas Im{Φ} = − 1
2 log ρ. Then the

imaginary part of u is

w = −1
2
∇ log ρ. (24)

The velocity components vj do not satisfy a closed system of transport equations. Instead, they
are coupled to the components wj :

∂tvj + v · ∇vj =
−1
2

∇2wj + w·∇wj − V,j (25)

∂twj + v·∇wj =
1
2
∇2vj − w·∇vj (26)

When the supplementary conditions ∇× v = 0 and ∇× w = 0 are appended, this is a coupled
system of nonlinear transport equations. Presumably, similar integrable multi-component systems
could be constructed not only from a complex potential but from a quaternion potential or an octonian
potential.

The Cole–Hopf transformation links the vector fields v and w as real and imaginary components of
a gradient vector ∇(−i log Ψ). Without further modifications to the model, w is uniquely determined
by ρ, as in Equation (24) so that ρ and v form a closed system. That system is Madelung’s original
hydrodynamic analogue [33] that followed soon after Schrödinger’s publication of the complex wave
equation. It has been pointed out [34] that although the quantum vector field w is not independent,
there is a use of it in classical fluid mechanics to refocus on the volume-weighted velocity rather
than the mass-weighted velocity [35]. The two velocity fields v and w that are linked by the
Cole–Hopf transformation, are also linked in the measurement of physical quantities. Using the
Dirac formalism [36], the expectation of the energy of a particle in a conservative force field, in a pure
state |Ψ > is

< E >=< Ψ|( p̂ · p̂
2

+ V)|Ψ >,

where p̂ ≡ −i∇ in the Schrödinger representation. This can be shown to be equal to∫
R3

ρ(r)[
1
2
(|v|2 + |w|2) + V(r)] dr (27)

Hence, 1
2 ρ|u|2 is the quantum mechanical correction to the classical kinetic energy density of the

Madelung fluid. It may be interesting to extend the irrotational vector fields v and w to be independent
fields by adding independent solenoidal contributions:
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v = ∇Im{log Ψ}+∇× B,

w = −1
2
∇ log ρ +∇× C,

u = v + iw = ∇(−i log Ψ) +∇× A; A = B + iC.

After breaking the condition ∇ × u = 0, the system of equations for ui would no longer be
equivalent to a linear equation for Ψ but to a system of nonlinear equations for Ψ and Ai. The nonlinear
interactions would become negligible asymptotically if there were shear viscosity to dissipate the
vorticity, so that Ai could be neglected after some time.

5. Some Relevant Questions in Symmetry Analysis

It is well known (e.g., [37]) that after neglecting linear superpositions, the generators of Lie point
symmetries of a linear PDE for ψ(r, t) take the restricted infinitesimal form

a(r, t)∂t + b(r, t) · ∇+ c(r, t)Ψ∂Ψ (28)

which has an equivalent vertical Lie contact symmetry (e.g., [37]), in infinitesimal form

Ψ̄ = Ψ + ε[c(r, t)Ψ − a(r, t)∂tΨ − b(r, t) · ∇Ψ] +O(ε2) (29)

The Lie point symmetry classification of the Schrödinger equation with a general potential energy
function in two and three dimensions, was completed by Boyer [38]. After applying such an invariance
transformation, the gradient of −i log Ψ̄ is still an irrotational vector that satisfies the complex valued
vector transport Equation (23). Conversely, if a point transformation leaves the system of complex
vector transport equation plus condition of irrationality invariant, then the new solution ū(r, t) may
be integrated to construct a potential Φ̄(r, t) that is unique up to an additive complex function of t,
equivalent to multiplying Ψ by an arbitrary spatially uniform gauge function Ψg(t) that has no effect
on calculating physical expectation values (e.g., [36]).

From the class of nonlinear scalar parabolic equations, integrability of the one-dimensional
Burgers equation hierarchy can be detected by an extended higher-order Lie symmetry analysis (e.g.,
[2]) or by a potential Lie symmetry analysis associated with local conservation laws (e.g., [6]). The
system (2) and (3) of six partial differential equations for three functions ui(r, t) of four independent
variables xj and t, is integrable. That fact was found by extending the Cole–Hopf transformation that
was known from the one-dimensional version. It was not found from symmetry analysis. Using the
Cole–Hopf transformation, one may reconstruct Lie–Bäcklund symmetries of the integrable vector
system from those of the associated linear scalar equation. From the transformed solution Ψ̄(r, t) of the
scalar equation, the gradient operation u(r, t) = −2ν∇ log Ψ̄, preserves the irrotational condition of the
vector system. It also must preserve the governing transport equation of the vector transport equation
for u. For example, the linear heat equation ∂tΨ(r; t) = ∇2Ψ(r, t) is invariant under differentiation in
any fixed direction. An elementary third-order Lie–Bäcklund symmetry is

Ψ̄ = Ψ + ξ ijkΨ,ijk (30)

with ξ ijk the fixed components of a totally symmetric tensor. Then by the substitution Ψ,i = − 1
2 Ψui ,

the corresponding transformation for u is

ū� = u� +
1
4

ξ ijk[ui,�ujuk + 2u�,iujuk (31)

−2ui,juk,� − 4u�,iuj,k − 4ui,j�uk − 2u�,ijuk + 4ui,�jk] (32)
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In the one-dimensional case, all indices are 1 and this reduces to a known Lie–Bäcklund symmetry
of the standard Burgers equation (e.g., [7]):

ū = u + ξ111[uxxx − 3
2

uuxx − 3
2

u2
x +

3
4

u2ux]. (33)

In the case of the complex Burgers fluid representation of quantum particle dynamics,
incorporation of a solenoidal component of the complex fluid velocity u would extend wave mechanics
to have not only a scalar wave function, which is a function of the fluid velocity potential, but
also a vector potential Aj that satisfies a system of nonlinear PDE coupled to Ψ. Neither of the
two principal founders of wave mechanics, de Broglie and Schrödinger, accepted the Copenhagen
interpretation of the probability of outcomes of measurement [39,40]. Perhaps they would have found
a supplementary classical vector potential more palatable. Since the linear Schrödinger equation
correctly describes an evolving particle except when the wave function collapses to a single eigenstate
during the decoherence effect of observation by filtering, it can only possibly be the act of measurement
that introduces vorticity to the quantum fluid. The coupled nonlinear interaction between Aj and Ψ
may have a complicated ergodic dynamics. The probability density of an energy eigenstate may be the
measure of a region in state space that becomes the basin of attraction for a particular eigenstate when
the filtering observation is carried out. After the imposed vorticity decays, the state will again evolve
according to the Schrödinger equation.

Symmetry classification of some Burgers type systems is carried out in [41] (higher-order
symmetries) and [42] (Lie and conditional symmetries).

A point symmetry classification of the potential system, with side constraints other than the
irrotational condition, looks to be within the capability of symbolic packages, perhaps after making
some reasonable ansätze on the functions Bi and Ci. However the complexity of the calculation grows
rapidly with the number of variables, for example when one proceeds to tensor transport equations.

In one space dimension, there are other integrable nonlinear diffusion equations that are obtainable
from a linear equation for the potential variable, by a change of variable. Under the group of contact
transformations, the equivalence classes of these integrable equations are represented by canonical
forms [7] that include the linear equations, the Burgers class,

ut = ∂x[u−2∂xu] and (34)

ut = ∂x[u−2∂xu] + 1. (35)

For example, if u = φx, then the linear equation xt = xφφ is sufficient for Equation (34).
In one dimension, the hodograph transformation is crucial [43] but in three dimensions it has no
simple analogue.

6. Conclusions

From any exact solution of the linearly forced linear heat equation in n spatial dimensions, one may
construct an exact compressible solution to the prototype vector transport equation via a generalisation
Equation (14) of the potential Burgers equation to higher dimensions. The linearisation procedure
applies in three dimensions to compressible irrotational flows but not to rotational incompressible
flows. For example, there is a simple integrable radial Burgers equation, for which the radial Cole–Hopf
potential R(r, t) obeys the radial heat diffusion equation. In three dimensions, rR(r, t) must satisfy the
classical one-dimensional diffusion equation (Chapter 9 of [31]). This fact has been used to construct
an exact radial viscous gas flow with a shock. The simple examples provided above have zero forcing
term. However, exact solutions may be constructed similarly for simple conservative force fields such
as uniform gravity. Conceivably, hydrodynamic statistical distributions could be calculated from the
randomly forced 3D vector transport equation just as for the one-dimensional Burgers equation [44].
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Just like the one-dimensional Burgers equation, this has limited relevance for the interesting physical
phenomena of fluid mechanics that involve evolution of vorticity.

By way of contrast, in wave mechanics it is a linear second-order evolution equation, the
Schrödinger equation, that is physically relevant. Just as for the case of the linear heat equation,
one may apply the reverse Cole–Hopf transformation to the Schrödinger equation, leading to a
complex Burgers-type equation that is physically relevant. This is an integrable system of nonlinear
transport equations for two real velocity-like vectors. Both the real and imaginary parts of the Burgers
velocity have direct physical interpretations, while the squared modulus of the complex velocity is the
quantum mechanical correction to kinetic energy density. However, the Cole–Hopf transformation
suggests that the integrable gradient flows that are well understood, be extended by adding a rotational
component to the velocity-like fields, then carrying out a symmetry classification of the equivalent
systems of PDE for the potentials, with additional side conditions other than that of zero vorticity.
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Abstract: Additional nonlocal symmetries of diffusion-convection equations and the Burgers
equation are obtained. It is shown that these equations are connected via a generalized hodograph
transformation and appropriate nonlocal symmetries arise from additional Lie symmetries of
intermediate equations. Two entirely different techniques are used to search nonlocal symmetry of a
given equation: the first is based on usage of the characteristic equations generated by additional
operators, another technique assumes the reconstruction of a parametrical Lie group transformation
from such operator. Some of them are based on the nonlocal transformations that contain new
independent variable determined by an auxiliary differential equation and allow the interpretation as
a nonlocal transformation with additional variables. The formulae derived for construction of exact
solutions are used.

Keywords: nonlocal symmetries; potential symmetries; formulae of nonlocal superposition; formulae
for generation of solutions; generalized hodograph transformation

1. Introduction

We continue the nonlocal symmetries search of the diffusion-convection equations, connected
by a generalized hodograph transformation (GHT) [1]. For this purpose we use the additional Lie
symmetries (that are additional operators of invariance Lie algebras of higher dimension) of the
intermediate equations arising at steps of this transformation, which consists of potential substitution
and usual hodograph transformation. One can find many references and the extensive bibliography in
researches devoted to studying the potential symmetries of nonlinear partial differential equations
and systems [2–8]. The notion of potential symmetries of differential equations was introduced by
Bluman et al. [2,3]. Later, Lisle proposed in [9,10] the concept of potential equivalence transformations.
It was successfully applied in [11] for deriving complete list of potential symmetries for wide classes
of diffusion-convection equations.

On the other hand a number of interesting results for nonlinear equations are obtained for present
day within the nonlocal transformations approach.

Analogously to continuous groups of usual transformations, the theory of groups of Lie–Bäcklund
transformations, i.e., continuous groups of transformations involving derivatives of dependent
variables, was developed by Anderson and Ibragimov [12]. An effective tool for this method
application is the notion of recursion operator proposed by Olver [13].

A method for constructing nonlocally related PDE systems was introduced in [14,15]. Potential
and nonlocal symmetries has been investigated for wide classes of nonlinear PDE systems there. It
was shown that each point symmetry of a PDE system systematically yields a nonlocally related PDE
system. Appropriate nonlocal symmetries were presented in the form including a potential variable.
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The use of finite nonlocal transformations allowed to construct the formulae of generation of
solutions and nonlocal nonlinear superposition for wide variety of nonlinear partial differential
equations. This approach is based on the nonlocal transformations technic [16–21], which we regularly
use for study of symmetries of the given nonlinear equations in [1] and in the current paper.

To start with, we remind the main concepts and notions which are necessary for understanding of
the subsequent material. Let’s assume that finite nonlocal transformation of variables

T : xi = hi(y, v(k)), i = 1, . . . , n, uK = HK(y, v(k)), K = 1, . . . , m

exists and maps the given equation
F1(x, u(n)) = 0 (1)

into the equation Φ(y, v(q)) = 0 of order q = n + k. Suppose, that this equation admits a factorization
to another equation

F2(y, v(s)) = 0 (2)

i.e., Φ(y, v(q)) = λ F2(y, v(s)). Here λ is a differential operator of order n + k − s. Then we say that
Equations (1) and (2) are connected by the nonlocal transformation T

F1(x, u(n)) = λ F2(y, v(s))

Here the symbol u(r) denotes the tuple of derivatives of the function u from order zero up to order r.
In the case of two independent variables we use the special notation of the variables: x1 = x, x2 = t
and thus ut = ∂u/∂t = ∂tu, ux = ∂u/∂x = ∂xu.

Nonlocal transformations can be effectively used for construction of the formulae generating
solutions in both cases: for nonlocal invariance of equation

F2(y, v(n)) = F1(y, v(n))

and when the connected equations are different. In a special case, when equation F2 is linear,
one can construct the formulae of nonlinear nonlocal superposition of solutions for nonlinear
equation F1 [1,17,22]. We consider a case when the intermediate equations, connected by components
of the generalized hodograph transformation exist, and these equations possess invariance Lie algebras
of higher dimension. These, the last, we use for construction of corresponding nonlocal symmetries of
the given equations and for deriving the formulae generating solutions.

The paper is organized as follows: In Section 2 we introduce a chain of the equations connected by
steps of the GHT and compare the Lie invariance algebras obtained. Then (in Section 3) we construct
nonlocal symmetries of these equations, which are generated by additional operators of invariance
Lie algebras of the intermediate equations. Section 4 is devoted to the construction of finite nonlocal
invariance transformations for a given equation and appropriate formulae generating their solutions.
Namely, we combine the Lie symmetry transformation, generated by an additional operator X, which
has been admitted by the intermediate equation, with a transformation, mapping this intermediate
equation into the given one.

2. Lie Symmetries of Given and Intermediate Equations

We aim to consider two diffusion-convection equations from the class

ut − ∂x(C(u) + K(u) · ux) = 0 (3)

which possess Lie invariance algebras of different dimensions. It is easy to check the mapping of the
given equation

ut − ∂x

(
1
2

u−1 + u−2ux

)
= 0 (4)
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into the Burgers equation

zη − ∂ξ

(
−1

2
z2 + zξ

)
= 0 (5)

via all steps of the GHT. This transformation was found first by Storm in [23] for linearization of
nonlinear heat equations. Later this transformation was re-discovered in [24] and applied in [22,25] for
investigation of various nonlinear heat equations. The GHT includes the potential substitution

u = vx(x, t) (6)

which is being applied to Equation (4) transforms it into the potential equation

vt − 1
2

v−1
x − v−2

x vxx = 0 (7)

Then the hodograph transformation

v(x, t) = ξ, x = w(ξ, η), t = η (8)

maps Equation (7) into the equivalent form

wη +
1
2

w2
ξ − wξξ = 0 (9)

We will refer to Equation (9), Equation (7) obtained as “intermediate” equations.
Having applied one more potential substitution

wξ = z (10)

to Equations (9) we get the Burgers Equation (5). The composition of transformations Equations (6), (8)
and (10) introduced above we mark further as T .

Note that the relation of Equation (4) with the equation

ut − ∂x

(
u−2ux

)
= 0 (11)

is a particular case of the more general result established in [26]. The results concerning linearization
of Equation (11) were obtained by Rosen [27]. An example with Equation (11), particularly, was
considered in [14,15]. Nonlocal symmetries were described using a potential variable. Here we apply a
traditional approach [1] for searching nonlocal symmetries and aim to construct appropriate formulae
of generation of solutions to equations considered. Then we use them for construction of exact
solutions.

Consider some results of the classical Lie symmetry analysis for the equations connected by
all components of the transformation T . The maximal Lie algebra admitted by Equation (4) is
four-dimensional (see for example [28])

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + u∂u,
X4 = −2e

1
2 x∂x + e

1
2 xu∂u

while invariance algebra of the Burgers Equation (5) is spanned by five operators

X1 = ∂η , X2 = ∂ξ , X3 = η∂ξ + ∂z,
X4 = ξ∂ξ + 2η∂η − z∂z,
X5 = ηξ∂ξ + η2∂η + (ξ − zη) ∂z

(12)
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The operator X5 does not correspond to Lie symmetry of Equation (4). The appropriate nonlocal
symmetry of Equation (4) corresponding to the Lie symmetry X5 of the Burgers equation has been
investigated in details in [1]. Here we will take into account symmetries of the intermediate equations
for construction of the appropriate nonlocal symmetries of two given Equations (4) and (5).

The maximal Lie invariance algebra of Equation (7) is spanned by the generators

X1 = ∂t, X2 = ∂x, X3 = ∂v, X4 = v∂x + t∂v,

X5 = 2t∂t + v∂v, X6 =
(

t + 1
2 v2

)
∂x + t2∂t + tv∂v

X7 = b(v, t)e
1
2 x∂x, bt − bvv = 0

(13)

Since Equation (9) is equivalent to Equation (7) it admits the Lie invariance algebra of the
same structure

X1 = ∂η , X2 = ∂ξ , X3 = ∂w, X4 = η∂ξ + ξ∂w,

X5 = ξ∂ξ + 2η∂η , X6 = ηξ∂ξ + η2∂η +
(

1
2 ξ2 + η

)
∂w,

X7 = b(ξ, η)e
1
2 w∂w, bη − bξξ = 0

(14)

Note that both equations have two Lie symmetry generators more (X3 and X7) than Equation (5)
has.
It will be interesting to compare the symmetries obtained above with those ones, which are
admitted by a potential system, constructed for Equation (4)

vx − u = 0 (15)

2vt − u−1 − 2u−2 ux = 0 (16)

One can easily calculate the Lie symmetry of this system, which is spanned by generators

X1 = ∂t, X2 = ∂x, X3 = ∂v, X4 = v∂x − u2∂u + t∂v,
X5 = 2t∂t + ut∂u + v∂v,

X6 =
(

t + 1
2 v2

)
∂x + t2∂t + u (t − vu) ∂u + tv∂v,

X7 = 2b(v, t)e
x
2 ∂x −

(
2u2∂vb(v, t) + u

)
e

x
2 b(v, t)∂u,

bt(v, t)− bvv(v, t) = 0

(17)

Notice that to obtain an operator X7 we chose it in the form

X7 = 2b(v, t)e
x
2 ∂x −

(
2u2a(x, t)− u

)
e

x
2 b(v, t)∂u

where a(x, t) and b(v(x, t), t) are unknown differentiable functions.
Applying this operator to the system Equations (15) and (16), we get such conditions for

these functions:
a(x, t)b(v(x, t), t) + D1b(v(x, t), t) = 0 (18)

a(x, t)D1b(v(x, t), t)u(x, t) + b(v(x, t), t)ax(x, t) + D2b(v(x, t), t)u(x, t) = 0 (19)

Here D1 f (α, β) means the derivative of a function f (α, β) with respect to its first argument.
Substituting a solution of the first equation

a(x, t) = −D1b(v(x, t), t)
b(v(x, t), t)

and an equality
vx = u (20)
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into the second equation, we receive the equation for b(v, t)

bt(v, t)− bvv(v, t) = 0 (21)

In what follows we will use two entirely different techniques to search for nonlocal symmetry of
a given equation. The first is based on usage of the characteristic equation generated by an additional
operator. Another technique assumes reconstruction of a parametrical Lie group transformation from
such operator.

3. Nonlocal Symmetries Generated by Additional Lie Symmetries of the Intermediate Equations

Here we apply additional operators of Lie algebras obtained for intermediate equations to
search appropriate nonlocal symmetry of given equations and construct the formulae of generation
their solutions.

3.1. The Operator X 7th Case

Comparison of Lie algebras Equations (12) and (14) shows that Equation (9) admits an additional
(with respect to Equation (5)) generator X7. The characteristic equation corresponding to sum X7 + X3

of generators of algebra Equation (14) has the form

w + 2 ln |b| = 0

One can easily identify this formula with the known substitution linearizing Equation (9). To
present this expression via the variable z(ξ, η) we will differentiate it with respect to ξ

wξ + 2 bξ b−1 = 0 (22)

Then, substituting wξ = z into above equation, we find the characteristic equation which
determines appropriate nonlocal symmetry of Equation (5)

z + 2 bξ b−1 = 0 (23)

Therefore the “lacking” operator for the Burgers equation should be written in the form

X�
7 =

(
z + 2 ∂ξ ln b

)
∂z (24)

Note that an expression Equation (23) is well known Cole–Hopf substitution.
Conversely, applying the transformation Equation (8) with its differential consequence wξ = 1/vx

to the Equation (22), we find nonlocal symmetry for Equation (7)

vx + b/2bv = 0

Taking into account substitution Equation (20), this equation takes the form

u + b/2bv = 0 (25)

Here b(v, t) is an arbitrary solution of the linear heat Equation (21).
An application of the nonlocal transformation Equation (25) to Equation (4) generates an

expression which after simplification vanishes identically on the manifold defined by Equation (7) and
expression vx + b/2bv = 0 with its differential consequences.
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Usage of a classical linear superposition principle in Equation (25) allows one to get the formula
generating solutions of Equation (4)

uI + bI
(

2bI
v

)−1
= 0, uII + bII

(
2bII

v

)−1
= 0, → uIII = −

(
bI + bII

) (
2bI

v + 2bII
v

)−1
(26)

On the other hand the generator X7 of the Lie invariance algebra of the system Equations (15)
and (16) determines a potential symmetry of Equation (4) and admits presentation by the characteristic
equation

ux + u2 bv(v, t)
b(v, t)

+
1
2

u = 0 (27)

where u(x; t) and b(v; t) satisfy Equations (21) and (20). Thus, the appropriate “lacking” operator for
Equation (4) should be written in the form, depending on b(v, t)

X�
7 = b(v, t) e

1
2 x∂x −

(
u2 bv(v, t)

b(v, t)
+

1
2

u
)

b(v, t) e
1
2 x∂u (28)

Theorem 1. The characteristic Equation (27) determines nonlocal transformation with additional variables,
which connects Equations (4) and (7) taking into account Equation (21) and condition Equation (20). Additional
independent variable v(x, t) is determined by Equation (7) and additional dependent variable b(v, t) is an
arbitrary solution of the Equation (21).

To prove the statement formulated above we will first rewrite Equation (27), using equality
Equation (20) in the form

∂x ln |u|+ ∂x ln |b(v, t)|+ 1
2
= 0 (29)

and then integrate the result with respect to x

u(x, t) =
s(t) e−1/2x

b(v, t)
(30)

Having applied this transformation to Equation (4) and use the conditions

bt(v, t)− bvv(v, t) = 0, vxx = vtv2
x − 1/2vx, vx (x, t) =

s (t) e−1/2x

b(v, t)

we obtain a result, which vanishes identically after simplification.
The above assertion admits another form.

Theorem 2. The Equation (4) is invariant under action of the prolonged operator X�
7 on the manifold, determined

by Equation (7), condition Equation (20) and the Equation (21) with their differential consequences.

To deduce the characteristic equation, which corresponds to Equation (29) and determines
nonlocal symmetry of the Equation (4) in terms of variables x, t, u(x, t), we need to exclude a variable
v(x, t) from expression Equation (30), where b (v, t) is a function belonging to the set of solutions of
the linear heat Equation (21).

New designations will be necessary for us in what follows. Suppose that we can solve the
functional equation b(v, t) = a with respect to the first argument of b. Then a function β(a, t) : b(v, t) =
a → v = β(a, t), will denote a solution of this equation. Therefore

v (x, t) = β

(
s (t) e−1/2x

u
, t

)
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is a solution of Equation (30) with respect to v. Using potential substitution Equation (20) we
obtain equality

u (x, t)− ∂xβ

(
s (t) e−1/2x

u (x, t)
, t

)
= 0

Differentiating and simplifying this expression, we get the presentation of the onetime integrated
characteristic equation which determines nonlocal symmetry of Equation (4)

2u3 + D1β
(

s(t)e−1/2x

u , t
)

s (t) e−1/2xu

+2D1β
(

s(t)e−1/2x

u , t
)

s (t) e−1/2xux = 0
(31)

D1 f (α, β) means the derivative of a function f (α, β) with respect to its first argument.
For instance, a given simple solution of the linear heat Equation (21)

b (v, t) =
(

c1e
√

αv + c2e−
√

αv
)

c3eαt

allows one to obtain the expression Equation (30) in such particular form:

(
c1e

√
αv + c2e−

√
αv
)

c3eαt − s (t) e−1/2x

u (x, t)
= 0

Here α, ci, (i = 1, 2, 3) are arbitrary constants. This equation has two solutions for v(x, t)

v = ln
∣∣∣∣ s(t)e−1/2x±

√
s2(t)e−x−4c2

3e2αtu2c1c2
2c1c3eαtu

∣∣∣∣ (√α
)−1

Excluding the variable v from Equation (31), we can rewrite it as follows

u − ∂x

(
ln

∣∣∣∣ s(t)e−1/2x±
√

s2(t)e−x−4c2
3e2αtu2c1c2

2c1c3eαtu

∣∣∣∣ (√α
)−1

)
= 0 (32)

Finally we obtain two the onetime integrated characteristic equations which determine nonlocal
symmetries of Equation (4)

2ux + 2
√

αu2 + u ± 8
√

αc1c2c2
3e2αtu4√

s2(t)e−x−4c2
3e2αtu2c1c2+s(t)e−1/2x

= 0

Choosing in Equation (32), in particular, c2 = 0, c3 = 1, and integrating this equation, we obtain
two ansatzes

u = ± 1
2
√

α − g(t) e1/2x

which contain arbitrary functions of t, which must be specialized by Equation (4). So, finally we obtain
two solutions of this equation

u = ± 1
2
√

α − k e1/2x

Note that such functions can be obtained by means of the Lie ansatz.

Theorem 3. The operator Equation (28) allows one to construct the associated transformation determined by
the formulas

2(e
xI
2 + e

xII
2 ) + εbI(vI(xI, t), t)e

xI+xII
2 = 0 (33)
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uII(xII, t) = −
uI(xI, t)

(
−2 + bI(vI(xI, t), t)εe

xI
2

)

2 + 2uI(xI, t)D1bI(vI(xI, t), t)εe
xI
2

(34)

where ∂xI vI(xI, t) = uI(xI, t) and bI(vI(xI, t), t) is any arbitrary solution of the Equation (21).

To prove this theorem we restore a Lie group transformation using the operator Equation (28).
So, we obtain

2(e
x
2 + e

r
2 ) + εb(v(x, t), t)e

x+r
2 = 0, s = t,

p(r, s) = − u(x,t)
(
−2+b(v(x,t),t)εe

x
2
)

2+2u(x,t)D1b(v(x,t),t)εe
x
2

Making here change of notations for new variables, we find the Equations (33) and (34).
The algorithm of generation of solutions for Equation (4) based on these formulae works, as

follows. Let uI(xI, t) be any known solution of Equation (4), then vI(xI, t) =
∫

uI(xI, t)dxI + s(t) can be
found. Here s(t) is arbitrary function which can be specialized by Equation (29). Substituting obtained
vI and arbitrary solution of the linear heat equation bI(vI(xI, t), t) into Equation (33) and solving the
result with respect to xI, we get xI = χ(xII, t). Finally, inserting this xI into Equation (34) we find a new
solution of Equation (4).

Example 1. Choosing uI = e− xI
2 and integrating it with respect to x, we obtain vI = −2 e− xI

2 + s(t).

Specializing arbitrary function by Equation (29), we get vI = −2e− xI
2 + c1. Set arbitrary solution of the

linear heat equation bI = ec2t+
√

c2vI
, then D1bI =

√
c2 ec2t+

√
c2vI

. Rewriting these formulae and taking

into account vI = −2e
xI
2 + c1, we find

bI = ec2t+
√

c2(−2e
xI
2 +c1)

and

D1bI =
√

c2 ec2t+
√

c2(−2e
xI
2 +c1)

Substituting a found above bI into Equation (33) and solving this result with respect to xI,
we get xI = χ(xII, t)

xI = xII − 2 ln

∣∣∣∣∣∣∣
1
2

LambertW

⎛
⎜⎝√

c2εe

(
c1
√

c2+tc2−2
√

c2 e−
xII
2

)
e

xII
2

+
√

c2

⎞
⎟⎠
∣∣∣∣∣∣∣+ ln |c2|

After simplification Equation (34) with obtained xI = χ(xII, t), bI and D1bI we find a new solution
of Equation (4)

uII(xII, t) = ec1
√

c2+tc2−2
√

c2 e−
xII
2 − xII

2 G−1,

G = ec1
√

c2+tc2−2
√

c2 e−
xII
2

⎛
⎜⎝LambertW

⎛
⎜⎝√

c2εe

(
c1
√

c2+tc2−2
√

c2 e−
xII
2

)⎞
⎟⎠+ 1

⎞
⎟⎠

3.2. The Operator X 4th Case

The Lie invariance algebra Equation (13) of Equation (7) includes one operator X4 = v · ∂x + t · ∂v

more, than invariance algebra of Equation (4) has. This operator yields the characteristic equation

v · vx − t = 0 (35)
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Differentiating Equation (35) with respect to x and using substitution Equation (20) we obtain

v ux + u2 = 0 (36)

Excluding v(x, t) from this equation we get the second order differential equation for u which
determines nonlocal symmetry of Equation (4)

− 3u2
x + uuxx = 0 (37)

Solving Equation (37), we find non-Lie ansatzes of Equation (4)

u = ±
(√

−2F1 (t) x − 2F2 (t)
)−1

Substitution them into Equation (4) and splitting a result with respect to x yields the reduced
system of two ordinary differential equations

·
F1 (t)− (F1 (t))

2 = 0,
·

F2 (t)− F1 (t) F2 (t)− (F1 (t))
2 = 0

Solution of this system

F1 (t) = − (t − c2)
−1 , F2 (t) =

ln |t − c2| − c1

t − c2

allows us to construct appropriate solutions of Equation (4)

u = ±
√

2
2

√
t − c2

x − ln |t − c2|+ c1
(38)

The result obtained is closely connected with potential symmetry of Equation (4) determined
by the generator X4 of Lie algebra Equation (17). The characteristic equations corresponding to this
operator, are

v · ux + u2 = 0 (39)

v · vx − t = 0 (40)

They, obviously, coincide with Equations (36) and (35) accordingly. The solution of this system

u =
t√

2 · x · t + F1 (t) + F2 (t) · t
, v =

√
2xt + F1 (t)

yields the reduced system of ordinary differential equations

F2(t) = 0, t · ·
F1 −F1 (t) + 2t = 0

and, consequently, yields appropriate solution to the system Equations (39) and (40)

u =

√
t√

2x − 2 ln |t|+ c1
, v =

√
t
√

2x − 2 ln |t|+ c1

If we set c2 = 0 in Equation (38), we will obtain the previous expression for the function u.
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4. Nonlocal Invariance Transformations and Generation of Solutions

Here we construct the one-parameter group of Lie symmetries generated by operator, admitted
by the potential system Equations (15) and (16), and it is used for construction of the corresponding
formula for generation of solutions of Equation (4). This involves a successive implementation of
the transformations T and the one-parameter group of point transformations associated with the
corresponding infinitesimal operator which is admitted by the potential system.

Assume that the partial differential equation

F(x, t, u(k)) = 0 (41)

should admit at least one conservation law

Dtφ
t(x, t, u(r)) + Dxφx(x, t, u(r)) = 0 (42)

where Dt and Dx are total derivatives with respect to the variables t and x, φt and φx are conserved
density and flux, respectively. When Equation (41) admits representation Equation (42) there exists the
potential function v determined by the auxiliary system [2]

vx = φt(x, t, u(r)), vt = −φx(x, t, u(r)) (43)

Potential symmetry of the Equation (41) is determined by the Lie symmetry generator

X = ξ1(x, t, u, v)∂x + ξ2(x, t, u, v)∂t + η1(x, t, u, v)∂u + η2(x, t, u, v)∂v

admitted by system Equation (43) with at least one nonzero partial derivative

∂vξ1(x, t, u, v), ∂vξ1(x, t, u, v), ∂vη1(x, t, u, v)

In this case the one-parameter Lie point symmetry group associated with infinitesimal
generator X exists

r = x′ = f1(x, t, u, v; ε), s = t′ = f2(x, t, u, v; ε),
p(r, s) = u′ = g1(x, t, u, v; ε), q(r, s) = v′ = g2(x, t, u, v; ε)

(44)

Here ε is a group parameter.
As Equation (4) is connected with the potential system Equations (15) and (16), one can

construct the projection of the corresponding transformation Equation (44) onto the space of variables
(x, t, u(x, t)) using substitution Equation (20)

r = x′ = f1(x, t, u,
∫

u (x, t)dx; ε),
s = t′ = f2(x, t, u,

∫
u (x, t)dx; ε),

p(r, s) = u′ = g1(x, t, u,
∫

u (x, t)dx; ε)

(45)

This transformation is the finite Lie–Bäcklund transformation which leaves Equation (4)
nonlocal-invariant. Stated above allows formulating the following statement.

Theorem 4. Equation (4) is nonlocal-invariant under the transformations

r = ln
∣∣ 2

2−εt

∣∣+ (
∫

u dx)2
ε

4−2εt + x,
s = 2t

2−εt , p (r, s) = −2u
εt−u ε

∫
u dx−2 ;

(46)
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r = 2 ln
∣∣∣∣−2

(
−2 + b (

∫
u dx, t) εe

1
2 x
)−1

∣∣∣∣+ x, s = t,

p (r, s) = −
u
(
−2+b(

∫
u dx,t)εe

1
2 x

)

2+2u D1(b)(
∫

u dx,t)εe
1
2 x

(47)

and
r =

1
2

ε2t + ε
∫

u dx + x, s = t, p (r, s) =
u

u ε + 1
(48)

The proof of this statement for transformation Equation (46). Let us choose, for instance, the
operator

X6 = (t +
1
2

v2)∂x + t2∂t + (−vu + t) u∂u + tv∂v

This operator belongs to the Lie invariance algebra Equation (17) of the system Equations (15)
and (16). The corresponding Lie group transformation has the form

r = ln
∣∣ 2

2−εt

∣∣+ v2ε
4−2εt + x, s = 2t

2−εt ,
p (r, s) = − 2u

εt−vuε−2 , q (r, s) = 2v
2−εt

(49)

Excluding in these formulae v with the help of expression v =
∫

u (x, t)dx, we get a nonlocal
transformation in space of variables r, s, p Equation (46). Then we apply the transformation
Equation (46) to Equation (4), rewritten in new designations

∂s p (r, s)− ∂r

(
1
2

p (r, s)−1 + p (r, s)−2 ∂r p (r, s)
)
= 0 (50)

and substitute the integro-differential consequences of Equation (4)

uxx = u2ut +
1
2

ux + 2u−1u2
x (51)

and ∫
utdx =

1
2

u−1 + u−2ux (52)

into the obtained result. After simplification the last vanishes identically.
To prove this statement for transformation Equation (47) we consider the generator of Lie algebra

Equation (17)

X7 = e
1
2 xb (v, t) ∂x − u

(
ubv

b (v, t)
+

1
2

)
b (v, t) e

1
2 x∂u

where D2b (v, t)− D11b (v, t) = 0, v = v(x, t), which yields the group-invariant transformation of the
potential system Equations (15) and (16)

r = 2 ln
∣∣∣∣−2

(
−2 + b (v, t) εe1/2x

)−1
∣∣∣∣+ x, s = t,

p (r, s) = − u(−2+b(v,t)εe1/2x)
2+2u D1(b)(v,t)εe1/2x , q (r, s) = v

Hereinafter Di( f )(α, β) and Di,j( f )(α, β), (i, j = 1, 2) denote total derivatives of a function f (α, β)

with respect to i-th and j-th variables of the first and second order accordingly, ε is a group parameter
associated with the operator X7. Having substituted into previous formulae v(x, t) =

∫
u dx we get

a nonlocal transformation Equation (47).
To verify invariance of Equation (50) we apply to it Equation (47) and substitute Equations (51)

and (52) and expressions
D11b (

∫
u dx, t) = D2b (

∫
u dx, t) ,

D111b (
∫

u dx, t) = D12b (
∫

u dx, t) ,

304



Symmetry 2015, 7, 1751–1767

D11u (x, t) =
2D2u (x, t) (u (x, t))3 + u (x, t) D1u (x, t) + 4 (D1u (x, t))2

2 u (x, t)

into the obtained result. The expression obtained vanishes identically after simplification.
The proof of Theorem 4 for transformation Equation (48). Another operator of the Lie invariance

algebra Equation (17)
X4 = v∂x − u2∂u + t∂v

generates the finite Lie-group transformation

r =
1
2

ε2t + εv + x, s = t, p (r, s) =
u

uε + 1
, q (r, s) = v + εt (53)

Projection of this transformation onto the space of variables (x, t, u(x, t)) admits the form
Equation (48). This transformation leaves the Equation (4) nonlocal-invariant. The statement can be
proved like in the previous cases.

Let us consider some applications of the Theorem 4. If p(r, s) is a known solution of the
Equation (50), then the new solution of Equation (4) can be constructed by means of solution
Equation (46) after subsequent specialization of the arbitrary function appearing as a result of
integration in it.

Example 2. Inserting the solution of Equation (4) u (x, t) = − 1
2 e− 1

2 x into Equation (46), we obtain
the formulae of transformation, which contain an arbitrary function F(t)

r = ln
∣∣ 2

2−tε

∣∣+ x + ε(e−
1
2 x+F(t))2

4−2tε ,

s = −2t
−2+εt , p(r, s) = 2(− 1

2 e−
1
2 x)

2εt− 1
2 e−

1
2 x(e−

1
2 x+F(t))ε−4

(54)

Specializing F(t) by Equation (4) and supposing F(t) = 0 for simplicity of evaluations, we obtain

r = ln
∣∣ 2

2−tε

∣∣+ x + εe−x

4−2tε ,
s = −2t

−2+εt , p(r, s) = 2e−1/2x

2εt+e−xε−4

(55)

Solving two first equations of the Equation (55) with respect to x and t, we get

x = r + LambertW

(
− 1

16
ε (εs + 2)2

er

)
+ ln

∣∣∣2 (εs + 2)−1
∣∣∣ , t =

2s
εs + 2

Substituting these x, t into the third equation of system Equation (55) we receive after
simplification the solution of Equation (50)

p (r, s) = −
√

εs+2√
2

e−1/2r
(

1 + LambertW
(
− 1

16 ε (εs + 2)2 e−r
))−1

√
−ε−1erLambertW

(
− 1

16 ε (εs + 2)2 e−r
)

Example 3. Let us apply Equation (46) to the solution u (x, t) = t√
2t(x−ln|t|) . We choose for

simplicity the arbitrary function appearing as a result of integration, equal to zero. The change of the
independent variables has such a form:

x = ln
∣∣ 2s

εs+2

∣∣+ 2r−2 ln |s|
εs+2 ,

t = 2 s
εs+2
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After substitution of new independent variables into the expression

p (x, t) =

√
t

2(x − ln |t|)

we finally get the same solution of the Equation (4)

p (r, s) =
√

s
2(r − ln |s|)

Hence, this solution is an invariant solution with respect to the nonlocal transformation
considered.

Equations (47) and (48) too allow generating new solutions of the Equation (4) if p(r; s) is its
known solution.

The operator X4 generates two corresponding characteristic equations

v vx − t = 0, (56)

v ux + u2 = 0 (57)

The first equation determines usual Lie point symmetry of Equation (7). Equation (57) determines
potential symmetry of Equation (4). Both these equations are connected by the potential substitution
Equation (20).

Solving Equation (57) with respect to v

v = −u2ux
−1

and substituting this into Equation (56), we obtain the second order differential equation, determining
nonlocal symmetry of Equation (4)

uxxu4 − 2 ux
2u3 + t ux

3 = 0

and, consequently, appropriate nonlocal ansatzes for a given equation

u =
− f1(t)±

√
f1(t)2 + 2t f2(t) + 2tx

2( f2(t) + x)

Here fi, (i = 1, 2, 3) are the arbitrary functions of variable t. This ansatz can be used for
construction of solutions to Equation (4).

Let us describe symmetry of Equation (4) corresponding to Lie symmetry Equation (56) of
Equation (7). First we substitute vx = u into Equation (56)

v vx − t = v u − t = 0

and solve it for v(x, t). Differentiating the result with respect to x, we get

vx + t · u−2ux = 0

Note that if we wrote obtained above expression using Equation (20) in a form u3 + tux = 0,
we would make a mistake, because such symmetry is not admitted by Equation (4).

So, using substitution vvx − t = 0 in the previous expression, we get

u2 + v ux = 0
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(the second characteristic equation for X4). Solving the last equation for v(x, t) and differentiating it
with respect to x, we obtain

vx = −2u + u2u−2
x · ux x

Using here potential substitution Equation (20) and simplifying result, we get corresponding
nonlocal symmetry of the Equation (4)

uxx u − 3u2
x = 0

Integrating this equation we find two ansatzes for Equation (4)

u = ± 1√−2 f1(t) x − 2 f2(t)

They depend on arbitrary functions f1(t) and f2(t). Specializing them by Equation (4), we find
two solutions

u = ±
√

t − c2√
2c1e3 − 2 ln | − t + c2|+ 2(x + c3)

Since Equation (4) is invariant with respect to the time and space translations generated by the
operators X1 and X2 the last solution, Equation (38) and u-part of solution to the system Equations (39)
and (40) represent the same exact solution.

5. Conclusions

Two given diffusion-convection equations, which allow connection by the generalized hodograph
transformation are considered. It is shown in this paper that the intermediate equations possess the
additional (with respect to given equations) operators of invariance Lie algebras. The appropriate additional
operators allow to construct potential and nonlocal symmetries of the given differential equations. We have
constructed the one-parameter groups of Lie symmetries generated by operators, admitted by the potential
system Equations (15) and (16), and use them for construction of the corresponding formulae for generation
of solutions of Equation (4). This involves a successive implementation of appropriate transformations T
and the one-parameter group of point transformations associated with the corresponding infinitesimal
operator admitted by the potential system. New formulae for generation of solutions have been
constructed. Some of them are based on the nonlocal transformations that contain new independent
variable determined by an auxiliary differential equation. This type of transformations allows
interpretation as an example of the nonlocal transformation with additional variables. The obtained
formulae allow transformation of a known solution of the given equation into another its solution.
They have been used for construction of exact solutions, some of which are new. They are either
obtained in explicit form or presented in a new parametrical representations, where a functional
parameter is given implicitly. All found solutions can be extended to parametric families by means of
the Lie symmetry transformations or by using other formulae for generation of solutions.
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Abstract: Additional nonlocal symmetries of diffusion-convection equations and the Burgers
equation are obtained. It is shown that these equations are connected via a generalized hodograph
transformation and appropriate nonlocal symmetries arise from additional Lie symmetries of
intermediate equations. Two entirely different techniques are used to search nonlocal symmetry of a
given equation: the first is based on usage of the characteristic equations generated by additional
operators, another technique assumes the reconstruction of a parametrical Lie group transformation
from such operator. Some of them are based on the nonlocal transformations that contain new
independent variable determined by an auxiliary differential equation and allow the interpretation as
a nonlocal transformation with additional variables. The formulae derived for construction of exact
solutions are used.

Keywords: nonlocal symmetries; potential symmetries; formulae of nonlocal superposition; formulae
for generation of solutions; generalized hodograph transformation

1. Introduction

We continue the nonlocal symmetries search of the diffusion-convection equations, connected
by a generalized hodograph transformation (GHT) [1]. For this purpose we use the additional Lie
symmetries (that are additional operators of invariance Lie algebras of higher dimension) of the
intermediate equations arising at steps of this transformation, which consists of potential substitution
and usual hodograph transformation. One can find many references and the extensive bibliography in
researches devoted to studying the potential symmetries of nonlinear partial differential equations
and systems [2–8]. The notion of potential symmetries of differential equations was introduced by
Bluman et al. [2,3]. Later, Lisle proposed in [9,10] the concept of potential equivalence transformations.
It was successfully applied in [11] for deriving complete list of potential symmetries for wide classes
of diffusion-convection equations.

On the other hand a number of interesting results for nonlinear equations are obtained for present
day within the nonlocal transformations approach.

Analogously to continuous groups of usual transformations, the theory of groups of Lie–Bäcklund
transformations, i.e., continuous groups of transformations involving derivatives of dependent
variables, was developed by Anderson and Ibragimov [12]. An effective tool for this method application
is the notion of recursion operator proposed by Olver [13].

A method for constructing nonlocally related PDE systems was introduced in [14,15]. Potential
and nonlocal symmetries has been investigated for wide classes of nonlinear PDE systems there. It was
shown that each point symmetry of a PDE system systematically yields a nonlocally related PDE
system. Appropriate nonlocal symmetries were presented in the form including a potential variable.
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The use of finite nonlocal transformations allowed to construct the formulae of generation of
solutions and nonlocal nonlinear superposition for wide variety of nonlinear partial differential
equations. This approach is based on the nonlocal transformations technic [16–21], which we regularly
use for study of symmetries of the given nonlinear equations in [1] and in the current paper.

To start with, we remind the main concepts and notions which are necessary for understanding of
the subsequent material. Let’s assume that finite nonlocal transformation of variables

T : xi = hi
(

y, v(k)
)

, i = 1, · · · , n, uK = HK
(

y, v(k)
)

, K = 1, · · · , m

exists and maps the given equation
F1

(
x, u(n)

)
= 0 (1)

into the equation Φ
(

y, v(q)
)
= 0 of order q = n + k. Suppose, that this equation admits a factorization

to another equation
F2

(
y, v(s)

)
= 0 (2)

i.e., Φ
(

y, v(q)
)
= λF2

(
y, v(s)

)
. Here λ is a differential operator of order n + k − s. Then we say that

Equations (1) and (2) are connected by the nonlocal transformation T

F1

(
x, u(n)

)
= λF2

(
y, v(s)

)
Here the symbol u(r) denotes the tuple of derivatives of the function u from order zero up to order

r. In the case of two independent variables we use the special notation of the variables: x1 = x, x2 = t
and thus ut = ∂u/∂t = ∂tu, ux = ∂u/∂x = ∂xu.

Nonlocal transformations can be effectively used for construction of the formulae generating
solutions in both cases: for nonlocal invariance of equation

F2

(
y, v(n)

)
= F1

(
y, v(n)

)
and when the connected equations are different. In a special case, when equation F2 is linear, one
can construct the formulae of nonlinear nonlocal superposition of solutions for nonlinear equation
F1 [1,17,22]. We consider a case when the intermediate equations, connected by components of the
generalized hodograph transformation exist, and these equations possess invariance Lie algebras of
higher dimension. These, the last, we use for construction of corresponding nonlocal symmetries of
the given equations and for deriving the formulae generating solutions.

The paper is organized as follows: In Section 2 we introduce a chain of the equations connected by
steps of the GHT and compare the Lie invariance algebras obtained. Then (in Section 3) we construct
nonlocal symmetries of these equations, which are generated by additional operators of invariance
Lie algebras of the intermediate equations. Section 4 is devoted to the construction of finite nonlocal
invariance transformations for a given equation and appropriate formulae generating their solutions.
Namely, we combine the Lie symmetry transformation, generated by an additional operator X, which
has been admitted by the intermediate equation, with a transformation, mapping this intermediate
equation into the given one.

2. Lie Symmetries of Given and Intermediate Equations

We aim to consider two diffusion-convection equations from the class

ut − ∂x(C(u) + K(u)·ux) = 0 (3)
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which possess Lie invariance algebras of different dimensions. It is easy to check the mapping of the
given equation

ut − ∂x

(
1
2

u−1 + u−2ux

)
= 0 (4)

into the Burgers equation

zη − ∂ξ

(
−1

2
z2 + zξ

)
= 0 (5)

via all steps of the GHT. This transformation was found first by Storm in [23] for linearization of
nonlinear heat equations. Later this transformation was re-discovered in [24] and applied in [22,25] for
investigation of various nonlinear heat equations. The GHT includes the potential substitution

u = vx(x, t) (6)

which is being applied to Equation (4) transforms it into the potential equation

vt − 1
2

v−1
x − v−2

x vxx = 0 (7)

Then the hodograph transformation

v(x, t) = ξ, x = w(ξ, η), t = η (8)

maps Equation (7) into the equivalent form

wη +
1
2

w2
ξ − wξξ = 0 (9)

We will refer to Equation (9), Equation (7) obtained as “intermediate” equations.
Having applied one more potential substitution

wξ = z (10)

to Equations (9) we get the Burgers Equation (5). The composition of transformations Equations (6), (8)
and (10) introduced above we mark further as T .

Note that the relation of Equation (4) with the equation

ut − ∂x

(
u−2ux

)
= 0 (11)

is a particular case of the more general result established in [26]. The results concerning linearization
of Equation (11) were obtained by Rosen [27]. An example with Equation (11), particularly, was
considered in [14,15]. Nonlocal symmetries were described using a potential variable. Here we apply a
traditional approach [1] for searching nonlocal symmetries and aim to construct appropriate formulae
of generation of solutions to equations considered. Then we use them for construction of exact
solutions.

Consider some results of the classical Lie symmetry analysis for the equations connected by
all components of the transformation T . The maximal Lie algebra admitted by Equation (4) is
four-dimensional (see for example [28])

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + u∂u,
X4 = −2e

1
2 x∂x + e

1
2 xu∂u
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while invariance algebra of the Burgers Equation (5) is spanned by five operators

X1 = ∂η , X2 = ∂ξ , X3 = η∂ξ + ∂z,
X4 = ξ∂ξ + 2η∂η − z∂z,

X5 = ηξ∂ξ + η2∂η + (ξ − zη)∂z

(12)

The operator X5 does not correspond to Lie symmetry of Equation (4). The appropriate nonlocal
symmetry of Equation (4) corresponding to the Lie symmetry X5 of the Burgers equation has been
investigated in details in [1]. Here we will take into account symmetries of the intermediate equations
for construction of the appropriate nonlocal symmetries of two given Equations (4) and (5).

The maximal Lie invariance algebra of Equation (7) is spanned by the generators

X1 = ∂t, X2 = ∂x, X3 = ∂v, X4 = v∂x + t∂v,

X5 = 2t∂t + v∂v, X6 =
(

t + 1
2 v2

)
∂x + t2∂t + tv∂v

X7 = b(v, t)e
1
2 x∂x, bt − bvv = 0

(13)

Since Equation (9) is equivalent to Equation (7) it admits the Lie invariance algebra of the
same structure

X1 = ∂η , X2 = ∂ξ , X3 = ∂w, X4 = η∂ξ + ξ∂w,

X5 = ξ∂ξ + 2η∂η , X6 = ηξ∂ξ + η2∂η +
(

1
2 ξ2 + η

)
∂w,

X7 = b(ξ, η)e
1
2 w∂w, bη − bξξ = 0

(14)

Note that both equations have two Lie symmetry generators more (X3 and X7) than Equation
(5) has. It will be interesting to compare the symmetries obtained above with those ones, which are
admitted by a potential system, constructed for Equation (4)

vx − u = 0 (15)

2vt − u−1 − 2u−2ux = 0 (16)

One can easily calculate the Lie symmetry of this system, which is spanned by generators

X1 = ∂t, X2 = ∂x, X3 = ∂v, X4 = v∂x − u2∂u + t∂v,
X5 = 2t∂t + ut∂u + v∂v,

X6 =
(

t + 1
2 v2

)
∂x + t2∂t + u(t − vu)∂u + tv∂v,

X7 = 2b(v, t)e
x
2 ∂x −

(
2u2∂vb(v, t) + u

)
e

x
2 b(v, t)∂u,

bt(v, t)− bvv(v, t) = 0

(17)

Notice that to obtain an operator X7 we chose it in the form

X7 = 2b(v, t)e
x
2 ∂x −

(
2u2a(x, t)− u

)
e

x
2 b(v, t)∂u

where a(x, t) and b(v(x, t), t) are unknown differentiable functions.
Applying this operator to the system Equations (15) and (16), we get such conditions for these

functions:
a(x, t)b(v(x, t), t) + D1b(v(x, t), t) = 0 (18)

a(x, t)D1b(v(x, t), t)u(x, t) + b(v(x, t), t)ax(x, t) + D2b(v(x, t), t)u(x, t) = 0 (19)

Here D1 f (α, β) means the derivative of a function f (α, β) with respect to its first argument.
Substituting a solution of the first equation
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a(x, t) = −D1b(v(x, t), t)
b(v(x, t), t)

and an equality
vx = u (20)

into the second equation, we receive the equation for b(v, t)

bt(v, t)− bvv(v, t) = 0 (21)

In what follows we will use two entirely different techniques to search for nonlocal symmetry of
a given equation. The first is based on usage of the characteristic equation generated by an additional
operator. Another technique assumes reconstruction of a parametrical Lie group transformation from
such operator.

3. Nonlocal Symmetries Generated by Additional Lie Symmetries of the Intermediate Equations

Here we apply additional operators of Lie algebras obtained for intermediate equations to
search appropriate nonlocal symmetry of given equations and construct the formulae of generation
their solutions.

3.1. The Operator X 7th Case

Comparison of Lie algebras Equations (12) and (14) shows that Equation (9) admits an additional
(with respect to Equation (5)) generator X7. The characteristic equation corresponding to sum X7 + X3

of generators of algebra Equation (14) has the form

w + 2 ln|b|= 0

One can easily identify this formula with the known substitution linearizing Equation (9). To
present this expression via the variable z(ξ, η) we will differentiate it with respect to ξ

wξ + 2bξb−1 = 0 (22)

Then, substituting wξ = z into above equation, we find the characteristic equation which
determines appropriate nonlocal symmetry of Equation (5)

z + 2bξb−1 = 0 (23)

Therefore the “lacking” operator for the Burgers equation should be written in the form

X�
7 =

(
z + 2∂ξ ln b

)
∂z (24)

Note that an expression Equation (23) is well known Cole–Hopf substitution.
Conversely, applying the transformation Equation (8) with its differential consequence wξ = 1/vx

to the Equation (22), we find nonlocal symmetry for Equation (7)

vx + b/2bv = 0

Taking into account substitution Equation (20), this equation takes the form

u + b/2bv = 0 (25)

Here b(v, t) is an arbitrary solution of the linear heat Equation (21).
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An application of the nonlocal transformation Equation (25) to Equation (4) generates an
expression which after simplification vanishes identically on the manifold defined by Equation (7) and
expression vx + b/2bv = 0 with its differential consequences.

Usage of a classical linear superposition principle in Equation (25) allows one to get the formula
generating solutions of Equation (4)

uI + bI
(

2bI
v

)−1
= 0, uII + bII

(
2bII

v

)−1
= 0,→ uIII = −

(
bI + bII

)(
2bI

v + 2bII
v

)−1
(26)

On the other hand the generator X7 of the Lie invariance algebra of the system Equations
(15) and (16) determines a potential symmetry of Equation (4) and admits presentation by the
characteristic equation

ux + u2 bv(v, t)
b(v, t)

+
1
2

u = 0 (27)

where u(x; t) and b(v; t) satisfy Equations (21) and (20). Thus, the appropriate “lacking” operator for
Equation (4) should be written in the form, depending on b(v, t)

X�
7 = b(v, t)e

1
2 x∂x −

(
u2 bv(v, t)

b(v, t)
+

1
2

u
)

b(v, t)e
1
2 x∂u (28)

Theorem 1. The characteristic Equation (27) determines nonlocal transformation with additional variables,
which connects Equations (4) and (7) taking into account Equation (21) and condition Equation (20). Additional
independent variable v(x, t) is determined by Equation (7) and additional dependent variable b(v, t) is an
arbitrary solution of the Equation (21).

To prove the statement formulated above we will first rewrite Equation (27), using equality
Equation (20) in the form

∂x ln|u|+ ∂x ln|b(v, t)|+ 1
2
= 0 (29)

and then integrate the result with respect to x

u(x, t) =
s(t)e−1/2x

b(v, t)
(30)

Having applied this transformation to Equation (4) and use the conditions

bt(v, t)− bvv(v, t) = 0, vxx = vtv2
x − 1/2vx, vx(x, t) =

s(t)e−1/2x

b(v, t)

we obtain a result, which vanishes identically after simplification.
The above assertion admits another form.

Theorem 2. The Equation (4) is invariant under action of the prolonged operator X�
7 on the manifold, determined

by Equation (7), condition Equation (20) and the Equation (21) with their differential consequences.

To deduce the characteristic equation, which corresponds to Equation (29) and determines
nonlocal symmetry of the Equation (4) in terms of variables x, t, u(x, t), we need to exclude a variable
v(x, t) from expression Equation (30), where b(v, t) is a function belonging to the set of solutions of the
linear heat Equation (21).

New designations will be necessary for us in what follows. Suppose that we can solve the
functional equation b(v, t) = a with respect to the first argument of b. Then a function β(a, t) : b(v, t) =
a→ v = β(a, t) , will denote a solution of this equation. Therefore

v(x, t) = β

(
s(t)e−1/2x

u
, t

)
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is a solution of Equation (30) with respect to v. Using potential substitution Equation (20) we obtain
equality

u(x, t)− ∂xβ

(
s(t)e−1/2x

u(x, t)
, t

)
= 0

Differentiating and simplifying this expression, we get the presentation of the onetime integrated
characteristic equation which determines nonlocal symmetry of Equation (4)

2u3 + D1β
(

s(t)e−1/2x

u , t
)

s(t)e−1/2xu

+2D1β
(

s(t)e−1/2x

u , t
)

s(t)e−1/2xux = 0
(31)

D1 f (α, β) means the derivative of a function f (α, β) with respect to its first argument.
For instance, a given simple solution of the linear heat Equation (21)

b(v, t) =
(

c1e
√

αv + c2e−
√

αv
)

c3eαt

allows one to obtain the expression Equation (30) in such particular form:

(
c1e

√
αv + c2e−

√
αv
)

c3eαt − s(t)e−1/2x

u(x, t)
= 0

Here α, ci, (i = 1, 2, 3) are arbitrary constants. This equation has two solutions for v(x, t)

v = ln
∣∣∣∣ s(t)e−1/2x±

√
s2(t)e−x−4c2

3e2αtu2c1c2
2c1c3eαtu

∣∣∣∣(√α
)−1

Excluding the variable v from Equation (31), we can rewrite it as follows

u − ∂x

(
ln
∣∣∣∣ s(t)e−1/2x±

√
s2(t)e−x−4c2

3e2αtu2c1c2
2c1c3eαtu

∣∣∣∣(√α
)−1

)
= 0 (32)

Finally we obtain two the onetime integrated characteristic equations which determine nonlocal
symmetries of Equation (4)

2ux + 2
√

αu2 + u ± 8
√

αc1c2c2
3e2αtu4√

s2(t)e−x−4c2
3e2αtu2c1c2+s(t)e−1/2x

= 0

Choosing in Equation (32), in particular, c2 = 0, c3 = 1, and integrating this equation, we obtain
two ansatzes

u = ± 1
2
√

α − g(t)e1/2x

which contain arbitrary functions of t, which must be specialized by Equation (4). So, finally we obtain
two solutions of this equation

u = ± 1
2
√

α − ke1/2x

Note that such functions can be obtained by means of the Lie ansatz.

Theorem 3. The operator Equation (28) allows one to construct the associated transformation determined by
the formulas

2
(

e
xI
2 + e

xII
2

)
+ εbI

(
vI
(

xI, t
)

, t
)

e
xI+xII

2 = 0 (33)
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uII
(

xII, t
)
= −

uI(xI, t
)(−2 + bI(vI(xI, t

)
, t
)
εe

xI
2

)

2 + 2uI(xI, t)D1bI(vI(xI, t), t)εe
xI
2

(34)

where ∂xI vI(xI, t
)
= uI(xI, t

)
and bI(vI(xI, t

)
, t
)

s any arbitrary solution of the Equation (21).

To prove this theorem we restore a Lie group transformation using the operator Equation (28). So,
we obtain

2
(

e
x
2 + e

r
2

)
+ εb(v(x, t), t)e

x+r
2 = 0, s = t,

p(r, s) = − u(x,t)
(
−2+b(v(x,t),t)εe

x
2
)

2+2u(x,t)D1b(v(x,t),t)εe
x
2

Making here change of notations for new variables, we find the Equations (33) and (34).
The algorithm of generation of solutions for Equation (4) based on these formulae works, as

follows. Let uI(xI, t
)

be any known solution of Equation (4), then vI(xI, t
)
=

∫
uI(xI, t

)
dxI + s(t) can

be found. Here s(t) is arbitrary function which can be specialized by Equation (29). Substituting
obtained vI and arbitrary solution of the linear heat equation bI(vI(xI, t

)
, t
)

into Equation (33) and
solving the result with respect to xI, we get xI = χ

(
xII, t

)
. Finally, inserting this xI into Equation (34)

we find a new solution of Equation (4).

Example 1. Choosing uI = e− xI
2 and integrating it with respect to x, we obtain vI = −2e− xI

2 + s(t).

Specializing arbitrary function by Equation (29), we get vI = −2e− xI
2 + c1. Set arbitrary solution of the

linear heat equation bI = ec2t+
√

c2vI
, then D1bI =

√
c2ec2t+

√
c2vI

. Rewriting these formulae and taking

into account vI = −2e
xI
2 + c1, we find

bI = ec2t+
√

c2(−2e
xI
2 +c1)

and

D1bI =
√

c2ec2t+
√

c2(−2e
xI
2 +c1)

Substituting a found above bI into Equation (33) and solving this result with respect to xI, we get
xI = χ

(
xII, t

)

xI = xII − 2 ln

∣∣∣∣∣1
2

LambertW

(
√

c2εe(c1
√

c2+tc2−2
√

c2e−
xII
2 )e

xII
2 +

√
c2

)∣∣∣∣∣+ ln|c2|

After simplification Equation (34) with obtained xI = χ
(

xII, t
)
, bI and D1bI we find a new solution

of Equation (4)

uII
(

xII, t
)
= ec1

√
c2+tc2−2

√
c2e−

xII
2 − xII

2 G−1,

G = ec1
√

c2+tc2−2
√

c2e−
xII
2

(
LambertW

(
√

c2εe(c1
√

c2+tc2−2
√

c2e−
xII
2 )

)
+ 1

)

3.2. The Operator X 4th Case

The Lie invariance algebra Equation (13) of Equation (7) includes one operator X4 = v·∂x + t·∂v

more, than invariance algebra of Equation (4) has. This operator yields the characteristic equation

v·vx − t = 0 (35)
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Differentiating Equation (35) with respect to x and using substitution Equation (20) we obtain

vux + u2 = 0 (36)

Excluding v(x, t) from this equation we get the second order differential equation for u which
determines nonlocal symmetry of Equation (4)

− 3u2
x + uuxx = 0 (37)

Solving Equation (37), we find non-Lie ansatzes of Equation (4)

u = ±
(√

−2F1(t)x − 2F2(t)
)−1

Substitution them into Equation (4) and splitting a result with respect to x yields the reduced
system of two ordinary differential equations

·
F1(t)− (F1(t))

2 = 0,
·

F2(t)− F1(t)F2(t)− (F1(t))
2 = 0

Solution of this system

F1(t) = −(t − c2)
−1, F2(t) =

ln|t − c2| − c1

t − c2

allows us to construct appropriate solutions of Equation (4)

u = ±
√

2
2

√
t − c2

x − ln|t − c2|+ c1
(38)

The result obtained is closely connected with potential symmetry of Equation (4) determined
by the generator X4 of Lie algebra Equation (17). The characteristic equations corresponding to this
operator, are

v·ux + u2 = 0 (39)

v·vx − t = 0 (40)

They, obviously, coincide with Equations (36) and (35) accordingly. The solution of this system

u =
t√

2·x·t + F1(t) + F2(t)·t
, v =

√
2xt + F1(t)

yields the reduced system of ordinary differential equations

F2(t) = 0, t· ·
F1 − F1(t) + 2t = 0

and, consequently, yields appropriate solution to the system Equations (39) and (40)

u =

√
t√

2x − 2 ln|t|+ c1
, v =

√
t
√

2x − 2 ln|t|+ c1

If we set c2 = 0 in Equation (38), we will obtain the previous expression for the function u.
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4. Nonlocal Invariance Transformations and Generation of Solutions

Here we construct the one-parameter group of Lie symmetries generated by operator, admitted
by the potential system Equations (15) and (16), and it is used for construction of the corresponding
formula for generation of solutions of Equation (4). This involves a successive implementation of
the transformations T and the one-parameter group of point transformations associated with the
corresponding infinitesimal operator which is admitted by the potential system.

Assume that the partial differential equation

F
(

x, t, u(k)

)
= 0 (41)

should admit at least one conservation law

Dtφ
t
(

x, t, u(r)

)
+ Dxφx

(
x, t, u(r)

)
= 0 (42)

where Dt and Dx are total derivatives with respect to the variables t and x, φt and φx are conserved
density and flux, respectively. When Equation (41) admits representation Equation (42) there exists the
potential function v determined by the auxiliary system [2]

vx = φt
(

x, t, u(r)

)
, vt = −φx

(
x, t, u(r)

)
(43)

Potential symmetry of the Equation (41) is determined by the Lie symmetry generator

X = ξ1(x, t, u, v)∂x + ξ2(x, t, u, v)∂t + η1(x, t, u, v)∂u + η2(x, t, u, v)∂v

admitted by system Equation (43) with at least one nonzero partial derivative

∂vξ1(x, t, u, v), ∂vξ1(x, t, u, v), ∂vη1(x, t, u, v)

In this case the one-parameter Lie point symmetry group associated with infinitesimal generator
X exists

r = x′ = f1(x, t, u, v; ε), s = t′ = f2(x, t, u, v; ε),
p(r, s) = u′ = g1(x, t, u, v; ε), q(r, s) = v′ = g2(x, t, u, v; ε)

(44)

Here ε is a group parameter.
As Equation (4) is connected with the potential system Equations (15) and (16), one can

construct the projection of the corresponding transformation Equation (44) onto the space of variables
(x, t, u(x, t)) using substitution Equation (20)

r = x′ = f1(x, t, u,
∫

u(x, t)dx; ε),
s = t′ = f2(x, t, u,

∫
u(x, t)dx; ε),

p(r, s) = u′ = g1(x, t, u,
∫

u(x, t)dx; ε)

(45)

This transformation is the finite Lie–Bäcklund transformation which leaves Equation (4)
nonlocal-invariant. Stated above allows formulating the following statement.

Theorem 4. Equation (4) is nonlocal-invariant under the transformations

r = ln
∣∣ 2

2−εt

∣∣+ (
∫

udx)2
ε

4−2εt + x,
s = 2t

2−εt , p(r, s) = −2u
εt−uε

∫
udx−2 ;

(46)
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r = 2 ln
∣∣∣∣−2

(
−2 + b(

∫
udx, t)εe

1
2 x
)−1

∣∣∣∣+ x, s = t,

p(r, s) = −
u
(
−2+b(

∫
udx,t)εe

1
2 x

)

2+2uD1(b)(
∫

udx,t)εe
1
2 x

(47)

and
r =

1
2

ε2t + ε
∫

udx + x, s = t, p(r, s) =
u

uε + 1
(48)

The proof of this statement for transformation Equation (46). Let us choose, for instance,
the operator

X6 =

(
t +

1
2

v2
)

∂x + t2∂t + (−vu + t)u∂u + tv∂v

This operator belongs to the Lie invariance algebra Equation (17) of the system Equations (15)
and (16). The corresponding Lie group transformation has the form

r = ln
∣∣ 2

2−εt

∣∣+ v2ε
4−2εt + x, s = 2t

2−εt ,
p(r, s) = − 2u

εt−vuε−2 , q(r, s) = 2v
2−εt

(49)

Excluding in these formulae v with the help of expression v =
∫

u(x, t)dx, we get a nonlocal
transformation in space of variables r, s, p Equation (46). Then we apply the transformation Equation
(46) to Equation (4), rewritten in new designations

∂s p(r, s)− ∂r

(
1
2

p(r, s)−1 + p(r, s)−2∂r p(r, s)
)
= 0 (50)

and substitute the integro-differential consequences of Equation (4)

uxx = u2ut +
1
2

ux + 2u−1u2
x (51)

and ∫
utdx =

1
2

u−1 + u−2ux (52)

into the obtained result. After simplification the last vanishes identically.
To prove this statement for transformation Equation (47) we consider the generator of Lie algebra

Equation (17)

X7 = e
1
2 xb(v, t)∂x − u

(
ubv

b(v, t)
+

1
2

)
b(v, t)e

1
2 x∂u

where D2b(v, t)− D11b(v, t) = 0, v = v(x, t), which yields the group-invariant transformation of the
potential system Equations (15) and (16)

r = 2 ln
∣∣∣∣−2

(
−2 + b(v, t)εe1/2x

)−1
∣∣∣∣+ x, s = t,

p(r, s) = − u(−2+b(v,t)εe1/2x)
2+2uD1(b)(v,t)εe1/2x , q(r, s) = v

Hereinafter Di( f )(α, β) and Di,j( f )(α, β), (i, j = 1, 2) denote total derivatives of a function f (α, β)

with respect to i-th and j-th variables of the first and second order accordingly, ε is a group parameter
associated with the operator X7. Having substituted into previous formulae v(x, t) =

∫
udx we get a

nonlocal transformation Equation (47).
To verify invariance of Equation (50) we apply to it Equation (47) and substitute Equations (51)

and (52) and expressions
D11b(

∫
udx, t) = D2b(

∫
udx, t),

D111b(
∫

udx, t) = D12b(
∫

udx, t),
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D11u(x, t) =
2D2u(x, t)(u(x, t))3 + u(x, t)D1u(x, t) + 4(D1u(x, t))2

2u(x, t)

into the obtained result. The expression obtained vanishes identically after simplification.
The proof of Theorem 4 for transformation Equation (48). Another operator of the Lie invariance

algebra Equation (17)
X4 = v∂x − u2∂u + t∂v

generates the finite Lie-group transformation

r =
1
2

ε2t + εv + x, s = t, p(r, s) =
u

uε + 1
, q(r, s) = v + εt (53)

Projection of this transformation onto the space of variables (x, t, u(x, t)) admits the form Equation
(48). This transformation leaves the Equation (4) nonlocal-invariant. The statement can be proved like
in the previous cases.

Let us consider some applications of the Theorem 4. If p(r, s) is a known solution of the Equation
(50), then the new solution of Equation (4) can be constructed by means of solution Equation (46) after
subsequent specialization of the arbitrary function appearing as a result of integration in it.

Example 2. Inserting the solution of Equation (4) u(x, t) = − 1
2 e− 1

2 x into Equation (46), we obtain
the formulae of transformation, which contain an arbitrary function F(t)

r = ln
∣∣ 2

2−tε

∣∣+ x + ε(e−
1
2 x+F(t))

2

4−2tε ,

s = −2t
−2+εt , p(r, s) = 2(− 1

2 e−
1
2 x)

2εt− 1
2 e−

1
2 x(e−

1
2 x+F(t))ε−4

(54)

Specializing F(t) by Equation (4) and supposing F(t) = 0 for simplicity of evaluations, we obtain

r = ln
∣∣ 2

2−tε

∣∣+ x + εe−x

4−2tε ,
s = −2t

−2+εt , p(r, s) = 2e−1/2x

2εt+e−xε−4

(55)

Solving two first equations of the Equation (55) with respect to x and t, we get

x = r + LambertW

(
− 1

16
ε(εs + 2)2

er

)
+ ln

∣∣∣2(εs + 2)−1
∣∣∣, t =

2s
εs + 2

Substituting these x, t into the third equation of system Equation (55) we receive after simplification
the solution of Equation (50)

p(r, s) = −
√

εs+2√
2

e−1/2r
(

1 + LambertW
(
− 1

16 ε(εs + 2)2e−r
))−1

√
−ε−1erLambertW

(
− 1

16 ε(εs + 2)2e−r
)

Example 3. Let us apply Equation (46) to the solution u(x, t) = t√
2t(x−ln|t|) . We choose for

simplicity the arbitrary function appearing as a result of integration, equal to zero. The change of the
independent variables has such a form:

x = ln
∣∣ 2s

εs+2

∣∣+ 2r−2 ln|s|
εs+2 ,

t = 2 s
εs+2
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After substitution of new independent variables into the expression

p(x, t) =

√
t

2(x − ln|t|)

we finally get the same solution of the Equation (4)

p(r, s) =
√

s
2(r − ln|s|)

Hence, this solution is an invariant solution with respect to the nonlocal transformation
considered.

Equations (47) and (48) too allow generating new solutions of the Equation (4) if p(r; s) is its
known solution.

The operator X4 generates two corresponding characteristic equations

vvx − t = 0, (56)

vux + u2 = 0 (57)

The first equation determines usual Lie point symmetry of Equation (7). Equation (57) determines
potential symmetry of Equation (4). Both these equations are connected by the potential substitution
Equation (20).

Solving Equation (57) with respect to v

v = −u2ux
−1

and substituting this into Equation (56), we obtain the second order differential equation, determining
nonlocal symmetry of Equation (4)

uxxu4 − 2ux
2u3 + tux

3 = 0

and, consequently, appropriate nonlocal ansatzes for a given equation

u =
− f1(t)±

√
f1(t)

2 + 2t f2(t) + 2tx

2( f2(t) + x)

Here fi, (i = 1, 2, 3) are the arbitrary functions of variable t. This ansatz can be used for
construction of solutions to Equation (4).

Let us describe symmetry of Equation (4) corresponding to Lie symmetry Equation (56) of
Equation (7). First we substitute vx = u into Equation (56)

vvx − t = vu − t = 0

and solve it for v(x, t). Differentiating the result with respect to x, we get

vx + t·u−2ux = 0

Note that if we wrote obtained above expression using Equation (20) in a form u3 + tux = 0, we
would make a mistake, because such symmetry is not admitted by Equation (4).

So, using substitution vvx − t = 0 in the previous expression, we get

u2 + vux = 0
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(the second characteristic equation for X4). Solving the last equation for v(x, t) and differentiating it
with respect to x, we obtain

vx = −2u + u2u−2
x ·ux x

Using here potential substitution Equation (20) and simplifying result, we get corresponding
nonlocal symmetry of the Equation (4)

uxxu − 3u2
x = 0

Integrating this equation we find two ansatzes for Equation (4)

u = ± 1√−2 f1(t)x − 2 f2(t)

They depend on arbitrary functions f1(t) and f2(t). Specializing them by Equation (4), we find
two solutions

u = ±
√

t − c2√
2c1e3 − 2 ln|−t + c2|+ 2(x + c3)

Since Equation (4) is invariant with respect to the time and space translations generated by the
operators X1 and X2 the last solution, Equation (38) and u-part of solution to the system Equations (39)
and (40) represent the same exact solution.

5. Conclusions

Two given diffusion-convection equations, which allow connection by the generalized hodograph
transformation are considered. It is shown in this paper that the intermediate equations possess the
additional (with respect to given equations) operators of invariance Lie algebras. The appropriate
additional operators allow to construct potential and nonlocal symmetries of the given differential equations.
We have constructed the one-parameter groups of Lie symmetries generated by operators, admitted
by the potential system Equations (15) and (16), and use them for construction of the corresponding
formulae for generation of solutions of Equation (4). This involves a successive implementation of
appropriate transformations T and the one-parameter group of point transformations associated with the
corresponding infinitesimal operator admitted by the potential system. New formulae for generation
of solutions have been constructed. Some of them are based on the nonlocal transformations that
contain new independent variable determined by an auxiliary differential equation. This type of
transformations allows interpretation as an example of the nonlocal transformation with additional
variables. The obtained formulae allow transformation of a known solution of the given equation into
another its solution. They have been used for construction of exact solutions, some of which are new.
They are either obtained in explicit form or presented in a new parametrical representations, where a
functional parameter is given implicitly. All found solutions can be extended to parametric families by
means of the Lie symmetry transformations or by using other formulae for generation of solutions.

Acknowledgments: The author thanks the referees for a lot of helpful remarks and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Tychynin, V.A.; Petrova, O.V. Nonlocal symmetries and formulae for generation of solutions for a class of
diffusion–convection equations. J. Math. Anal. Appl. 2011, 382, 20–33. [CrossRef]

2. Bluman, G.W.; Reid, G.J.; Kumei, S. New classes of symmetries for partial differential equations. J. Math.
Phys. 1988, 29, 806–811. [CrossRef]

3. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989.
4. Anderson, I.M.; Kamran, N.; Olver, P.J. Internal, external and generalized symmetries. Adv. Math. 1993, 100,

53–100. [CrossRef]

322



Symmetry 2015, 7, 1751–1767

5. Reyes, E.G. Nonlocal symmetries and the Kaup–Kupershmidt equation. J. Phys. A Math. Gen. 2005, 46,
073507:1–073507:19. [CrossRef]

6. Bluman, G.W.; Doran-Wu, P. The use of factors to discover potential systems or linearizations. Acta Appl.
Math. 1995, 41, 21–43. [CrossRef]

7. Serov, M.; Omelyan, O.; Cherniha, R. Linearization of some systems of nonlinear diffusion equations by
means of non-local transformations. Dop. Nat. Acad. Ukr. 2004, 10, 39–45.

8. Sophocleous, C. Potential symmetries of nonlinear diffusion-convection equations. J. Phys. A Math. Gen.
1996, 29, 6951–6959. [CrossRef]

9. Lisle, I.G. Equivalence Transformations for Classes of Differential Equations. Ph.D. Thesis, University of
British Columbia, Vancouver, BC, Canada, 1992.

10. Lisle, I.G.; Reid, G.J. Symmetry Classification Using Invariant Moving Frames; ORCCA Technical Report
TR-00-08; University of Western Ontario: Ontario, Canada, 1992.

11. Popovych, R.O.; Ivanova, N.M. Potential equivalence transformations for nonlinear diffusion—Convection
equations. J. Phys. A Math. Gen. 2005, 38, 3145–3155. [CrossRef]

12. Anderson, R.L.; Ibragimov, N.H. Lie-BÄcklund Transformations in Applications; SIAM: Philadelphia, PA, USA,
1979.

13. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer-Verlag: New York, NY, USA, 1993.
14. Bluman, G.W.; Cheviakov, A.; Anco, S. Applications of Symmetry Methods to Partial Differential Equations;

Applied Mathematical Sciences; Springer: New York, NY, USA, 2010; Volume 168, p. 367.
15. Bluman, G.W.; Yang, Z.Z. A symmetry-based method for constructing nonlocally related PDE systems.

J. Math. Phys. 2013, 54, 093504:1–093504:22. [CrossRef]
16. Fuschych, W.I.; Tychynin, V.A. Preprint No 82.33; Institut of Mathematics: Kiev, Ukraine, 1982.
17. Fuschych, W.I.; Tychynin, V.A. Exact solutions and superposition principle for nonlinear wave equation.

Proc. Acad. Sci. Ukr. 1990, 5, 32–36.
18. Tychynin, V.A. Nonlocal Symmetries and Solutions for Some Classes of Nonlinear Equations of Mathematical

Physics. Ph.D. Thesis, Prydniprovsk State Academy of Civil Engineering and Architecture, Dnipropetrovsk,
Ukraine, 1994.

19. Tychynin, V.A. Non-local symmetry and generating solutions for Harry–Dym type equations. J. Phys. A
Math. Gen. 1994, 14, 2787–2797. [CrossRef]

20. Tychynin, V.A.; Petrova, O.V.; Tertyshnyk, O.M. Symmetries and Generation of Solutions for Partial
Differential Equations. SIGMA 2007, 3, 019:1–019:14. [CrossRef]

21. Rzeszut, W.; Vladimirov, V.; Tertyshnyk, O.M.; Tychynin, V.A. Linearizability and nonlocal superposition for
nonlinear transport equation with memory. Rep. Math. Phys. 2013, 72, 235–252. [CrossRef]

22. Fushchych, W.I.; Serov, M.I.; Tychynin, V.A.; Amerov, T.K. On non-local symmetry of nonlinear heat equation.
Proc. Acad. Sci. Ukr. 1992, 11, 27–33.

23. Storm, M.L. Heat conduction in simple metals. J. Appl. Phys. 1951, 22, 940–951. [CrossRef]
24. Bluman, G.W.; Kumei, S. On the remarkable nonlinear diffusion equation ∂

∂x

(
a(u + b)− 2 ∂u

∂x

)
− ∂u

∂x = 0. J.
Math. Phys. 1980, 21, 1019–1023. [CrossRef]

25. King, J.R. Some non-local transformations between nonlinear diffusion equations. J. Phys. A Math. Gen. 1990,
23, 5441–5464. [CrossRef]

26. Cherniha, R.; Serov, M. Symmetries, Ansätze and Exact Solutions of Nonlinear Second-order Evolution
Equations with Convection Terms, II. Eur. J. Appl. Math. 2006, 17, 597–605. [CrossRef]

27. Rosen, G. Nonlinear heat conduction in solid. Phys. Rev. B 1979, 19, 2398–2399. [CrossRef]
28. Cherniha, R.; Serov, M. Symmetries, Ansätze and Exact Solutions of Nonlinear Second-order Evolution

Equations with Convection Terms. Eur. J. Appl. Math. 1998, 9, 527–542. [CrossRef]

© 2015 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

323



symmetryS S

Article

Bäcklund Transformations for Integrable Geometric
Curve Flows

Changzheng Qu 1,*, Jingwei Han 2 and Jing Kang 3

1 Department of Mathematics, Ningbo University, Ningbo 315211, China
2 School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;

jingweih@hdu.edu.cn
3 Department of Mathematics, Northwest University, Xi’an 710069, China; jingkang@nwu.edu.cn
* Author to whom correspondence should be addressed; quchangzheng@nbu.edu.cn; Tel.: +86-574-8760-9976.

Academic Editor: Roman M. Cherniha
Received: 1 May 2015; Accepted: 30 July 2015; Published: 3 August 2015

Abstract: We study the Bäcklund transformations of integrable geometric curve flows in certain
geometries. These curve flows include the KdV and Camassa-Holm flows in the two-dimensional
centro-equiaffine geometry, the mKdV and modified Camassa-Holm flows in the two-dimensional
Euclidean geometry, the Schrödinger and extended Harry-Dym flows in the three-dimensional
Euclidean geometry and the Sawada-Kotera flow in the affine geometry, etc. Using the fact that
two different curves in a given geometry are governed by the same integrable equation, we obtain
Bäcklund transformations relating to these two integrable geometric flows. Some special solutions of
the integrable systems are used to obtain the explicit Bäcklund transformations.

Keywords: invariant geometric flow; Bäcklund transformation; integrable system; differential
invariant
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1. Introduction

Bäcklund transformations are a powerful tool to explore various properties of integrable nonlinear
partial differential equations [1,2]. They can be used to obtain more exact solutions of integrable systems
from a particular solution. The classical Bäcklund transformations are local geometric transformations,
which are used to construct surfaces of constant negative Gaussian curvature [1]. This provides a
geometric construction of new pseudospherical surfaces from a particular solution of an integrable partial
differential equation. Indeed, solutions of the sine-Gordon equation describe pseudospherical surfaces.
Applying Bäcklund transformations n times to a particular solution of sine-Gordon equation, one can
obtain a family of solutions of sine-Gordon equation. These solutions can be obtained using the Bianchi’s
permutability formula through purely algebraic means [2]. In [3], Chern and Tenenblat performed
a complete classification to a class of nonlinear evolution equations which describe pseudospherical
surfaces. It is noted that a nonlinear PDE describes pseudospherical surface if it admits sl(2) prolongation
structure. More generally, a Bäcklund transformation is typically a system of first-order partial differential
equations relating two equations, and usually depending on an additional parameter. In particular,
a Bäcklund transformation which relates solutions of the same equations is called an auto-Bäcklund
transformation. In [4], Wahlquist and Estabrook [4] provides a systematic method to construct Bäcklund
transformations of integrable systems by using the prolongation structure approach. Other effective
methods to construct Bäcaklund transformations of integrable systems were also proposed in a number
of literatures, see for example [2,5–12] and many more references.
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A particular nice feature of integrable systems is their relationship with invariant geometric flows
of curves and surfaces in certain geometries. Those flows are invariant with respect to the symmetry
groups of the geometries [13]. A number of integrable equations have been shown to be related to
motions of curves in Euclidean geometry, centro-equiaffine geometry, affine geometry, homogeneous
manifolds and other geometries etc., and many interesting results have been obtained [14–41].
Such relationship is helpful to explore geometric realization of several properties of integrable systems,
for example, bi-Hamiltonian structure, recursion operator, Miura transformation and Bäcklund
transformation etc. On the other hand, the topological properties of closed curves are shown to
be related to the infinite number of symmetries and the associated sequence of invariants [11]. The
relationship between integrable systems and geometric curve flows in R

3 was studied in 1970s by
Hasimoto [14], who showed that the integrable cubic Schrödinger equation is equivalent to the
binormal motion flow of space curves in R

3 (called vortex-filament flow or localized induction
equation) by using a transformation relating the wave function of the Schrödinger equation to the
curvature and torsion of curves ( so-called Hasimoto transformation). Furthermore, using the Hasimoto
transformation, Lamb [16] verified that the mKdV equation and the sine-Gordon equations arise from
the invariant curve flows in R

3. Marí-Beffa, Sanders and Wang [25] noticed that the Hasimoto
transformation is a gauge transformation relating the Frenet frame and parallel frame. The well-known
integrable equations including the KdV equation, the modified KdV equation, the Sawada-Kotera
equation,the Kaup-Kuperschmidt equation and Boussinesq equation were also shown to arise from
the invariant plane or space curve flows respectively in centro-equiaffine geometry [18,21,35,40],
Euclidean geometry [15,17,21], two-dimensional affine geometry [21,40], projective geometry [37,39]
and three-dimensional affine geometry [23].

In this paper, we are mainly concerned with Bäcklund transformations for integrable geometric
curve flows in certain geometries. Our work is inspired by the following result.

Proposition 1.1. [26] Let γ(s) be a smooth curve of constant torsion τ in R
3, parametrized by arclength s. Let

T, N and B be a Frenet frame, and k(s) the curvature of γ. For any constant C, suppose β = β(s, k(s), C) is a
solution of the differential equation

dβ
ds = C sin β − k. (1)

then
γ̃(s) = γ(s) +

2C
C2 + τ2 (cos βT + sin βN)

is a curve of constant torsion τ, also parametrized by arclength s.

Note that this transformation can be obtained by restricting the classical Bäcklund transformation
for pseudospherical surfaces to the asymptotic lines of the surfaces with constant torsion.

We will restrict our attention to the geometric plane curve flows

γt = f N + gT (2)

and space curve flows
γt = f T + gN + hB (3)

in Euclidean, centro-equiaffine and affine geometries, where T and N in Equation (2) denote frame
vectors of planar curves, and T, N and B in Equation (3) are frame vectors of spacial curves, f, g and h
depend on the curvatures of the curves γ and their derivatives with respect to the arclength parameter,
namely, these geometric flows are invariant with respect to the symmetry groups of the geometries.

For a planar or a spacial curve γ(t, s) in a given geometry, let γ̃(t, s) be another curve related to γ

through the following Bäcklund transformation

γ̃(t, s) = γ(t, s) + α(t, s)N + β(t, s)T (4)
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or
γ̃(t, s) = γ + α(t, s)T + β(t, s)N + χ(t, s)B. (5)

Throughout the paper, we assume that both curve flows for γ and γ̃ are governed by the same
integrable system, that means the curvatures of the curves γ̃ determined by the flows (4) or (5) satisfy
the integrable systems as for the curves γ. It turns out that the functions α(t, s), β(t, s) and χ(t, s)
for space case and α(t, s) and β(t, s) for planar case satisfy systems of nonlinear evolution equations.
Solving these systems then yields Bäcklund transformations between the two flows for γ and γ̃.

The outline of this paper is as follows. In Section 2, we first study the Bäcklund transformations
of planar curve flows in R

2, which include the modified KdV flow and the modified Camassa-Holm
flow. Bäcklund transformations of integrable space curve flows in R

3 including the Schrödinger
flow and the extended Harry-Dym flow will be discussed in Section 3. In Section 4, we consider the
Bäcklund transformations of the KdV and Camassa-Holm flows for planar curves in centro-equiaffine
geometry. Finally in Section 5, we discuss the Bäcklund transformations of the Sawada-Kotera flow in
two-dimensional affine geometry.

2. Bäcklund Transformations of Integrable Curve Flows in R
2

The invariant geometric curve flows in R
2 were discussed extensively from many points of view

in the last three decades. A number of interesting results have been obtained. It was shown that the
non-stretching plane curve flows in R

2 are related closely to the integrable systems including the
modified KdV equation [15,17,21] and the modified Camassa-Holm equation [42]. In this section, we
consider the Bäcklund transformations of those integrable flows.

Let us consider the flows for planar curves in R
2, governed by

γt = f n + ht, (6)

where t and n denote the unit tangent and normal vectors of the curves, respectively, which satisfy the
Serret-Frenet formulae

ts = kn, ns = −kt, (7)

where k is the curvature of the curve γ, s is the arclength of the curve and ds = gdp, p is a free parameter.
The velocities f and h in Equation (6) depend on k and it’s derivatives with respect to the arclength
parameter s. Let θ be the angle between the tangent and a fixed direction. Then t = (cos θ, sin θ),
n = (− sin θ, cos θ), and dθ = kds. Based on the flow (6), it is easy to show that the time evolutions of
those geometric invariants are given by [17]

tt= ( fs + kh)n,

nt= −( fs + kh)t, (8)

gt= g(hs − k f ),

and
θt= ( fs + kh),

kt=

(
dθ

ds

)
t
= fss + ksh + k2 f . (9)

Assume that the flow is intrinsic, namely the arclength does not depend on time. Then equation

hs = k f (10)

follows from Equation (8).
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2.1. The Modified KdV Flow in R
2

In [17], Goldstein and Petrich proved that the modified KdV equation arises from an non-stretching
curve flow in Equation R

2. Indeed, let f = ks, h = 1
2 k2 in Equation (6), then k satisfies the modified

KdV equation

kt = ksss +
3
2

k2ks. (11)

The corresponding curve flow is

γt = ksn +
1
2

k2t, (12)

which is the so-called modified KdV flow [17].
Let γ̃ be another curve in R

2 related to γ by

γ̃(t, s) = γ(t, s) + α(t, s)n + β(t, s)t. (13)

Assume that γ̃(t, s) is also governed by the modified KdV flow, namely it satisfies

γ̃t = k̃s̃ñ +
1
2

k̃2̃t, (14)

where s̃ is the arclength parameter of γ̃; t̃ and ñ denote the unit tangent and normal vector of γ̃,
respectively. A direct computation shows that t̃ and ñ are related to t and n by

t̃ =
F0t + G0n√

F2
0 + G2

0

, ñ = − G0t + F0n√
F2

0 + G2
0

, (15)

where
F0 = 1 + βs − kα, G0 = αs + kβ. (16)

It is inferred from Equation (13) that

γ̃t =
[
αt + ks +

(
kss +

1
2 k3

)
β
]
n +

[
βt +

1
2 k2 −

(
kss +

1
2 k3

)
α
]
t. (17)

Differentiating Equation (13) with respect to s, after using the Serret-Frenet formulae (7), yields

γ̃s = ((1 + βs − kα)t + αs + kβ)n := F0t + G0n. (18)

It follows that the arclength s̃ of γ̃ is related to s of γ by

ds̃ =
√

F2
0 + G2

0ds. (19)

Furthermore, differentiating Equation (18) with respect to s̃, and using Equation (19) yields

k̃ñ = γ̃s̃s̃ =
(

F2
0 + G2

0

)−2
(F1t + G1n) := F2t + G2n, (20)

where
F2 =

F1(
F2

0 + G2
0
)2 , G2 =

G1(
F2

0 + G2
0
)2 .

and
F1 = −k(1 + βs − kα)2(αs + kβ) +

(
βss − ksα − 2kαs − k2β

)
(αs + kβ)2

−(1 + βs − kα)(αs + kβ)(αss + ksα + kαs),
G1 = k(1 + βs − kα)3 + k(1 + βs − kα)(αs + kβ)2(αssksα + kαs)

−(1 + βs − kα)(αs + kβ)(βss − ksα − kαs).
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From Equation (20), we also have

k̃s̃ =
F0(G2s + kF2)− G0(F2s − kG2)

F2
0 + G2

0
:= F3,

k̃2 = −G0(G2s + kF2) + F0(F2s − kG2)

F2
0 + G2

0
:= G3.

(21)

Substituting Equations (15), (17) and (21) into Equation (14), we see that the modified KdV
flow is invariant with respect to the Bäcklund transformation (13) if and only if α and β satisfy the
following system

αt+ks + β

(
kss +

1
2

k3
)
=

1√
F2

0 + G2
0

(
1
2

G0G3 + F0F3

)
,

βt+
1
2

k3 − α

(
kss +

1
2

k3
)
=

1√
F2

0 + G2
0

(
1
2

F0G3 − G0F3

)
.

(22)

Theorem 2.1. The modified KdV flow (12) is invariant with respect to the Bäcklund transformation (13) if
α(t, s) and β(t, s) satisfy the system (22), where G0, F0, F3 and G3 are given in Equations (16) and (21).

It is noticed that a class of Bäcklund transformations for smooth and discrete plane curves in
Euclidean space governed by the modified KdV equation were discussed in [12], which are derived by
using the Bäcklund transformations of the potential modified KdV equation.

2.2. The Modified Camassa-Holm Flow

The modified Camassa-Holm equation

mt +
((

u2 − u2
s
)
m
)

s + ausss = 0, m = u − uss (23)

can be derived using the general approach of the tri-Hamiltonian duality from the modified KdV
equation [42]. A direct consequence of such approach shows us that the modified Camassa-Holm
equation is an integrable equation with bi-Hamiltonian structure. Interestingly, it has peaked solutions
and can describe wave breaking phenomena [43]. It was also shown in [43] that the modified
Camassa-Holm equation arises from a non-stretching planar curve flow in R

2. Indeed, let f = us,
h = 1

2
(
u2 − u2

s
)

in Equation (6), then the corresponding modified Camassa-Holm flow is

γt = usn + 1
2
(
u2 − u2

s
)
t, (24)

where u satisfies the modified Camassa-Holm Equation (23) with a = 1, where m = k = u − uss is the
curvature of the curve γ. Denote Λ = 1 − ∂2

s , then u = Λ−1k. Assume that γ̃ is another curve related
to γ by Equation (13), a direct computation shows

γ̃t = (us + αt + β( fs + kh))n +
(

1
2
(
u2 − u2

s
)
+ βt − α( fs + kh)

)
t. (25)

Using Equation (19), the corresponding geometric invariants of γ̃ can be expressed in

Λ̃ = 1 − ∂2
s̃ = 1 −

(
ds
ds̃

∂s

)(
ds
ds̃

∂s

)
,

ũ =
(

1 − ∂2
s̃

)−1
k̃,

ũs̃ = 1 − ∂2
s̃ )

−1k̃s̃,

ũ2 − ũ2
s̃ =

[(
1 − ∂2

s̃

)−1(
k̃ + k̃s̃

)][(
1 − ∂2

s̃

)−1(
k̃ − k̃s̃

)]
,

(26)
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where k̃ =
√

F2
1 + G2

1/
(

F2
0 + G2

0
)2. Assume that γ̃ is also governed by the modified Camassa-Holm

flow (24), namely, it satisfies
γ̃t = ũs̃ñ + 1

2
(
ũ2 − ũ2

s̃
)̃
t. (27)

Substituting Equations (15), (25) and (26) into Equation (27) and comparing the coefficients of t
and n in the resulting equation, we arrive at the following system for α(t, s) and β(t, s)

αt + us + β
[
uss +

1
2 (u − uss)

(
u2 − u2

s
)]

= ũs̃ F0√
F2

0 +G2
0
+ 1

2
(ũ2−ũ2

s̃ )√
F2

0 +G2
0
,

βt +
1
2
(
u2 − u2

s
)− α

[
uss +

1
2 (u − uss)

(
u2 − u2

s
)]

= − ũs̃G0√
F2

0 +G2
0
+ 1

2
(ũ2−ũ2

s̃ )√
F2

0 +F2
0

,
(28)

where u satisfies the modified Camassa-Holm Equation (23) with a = 1. Consequently, we have the
following result.

Theorem 2.2. The modified Camassa-Holm flow (24) is invariant with respect to the Bäcklund transformation
(13) if α(t, s) and β(t, s) satisfy the system (28), where G0 and F0 are given in Equation (16).

3. Bäcklund Transformations for Space Curve Flows in R
3

In this section, we consider the integrable flows for space curves in R
3

γt = Un + Vb + Wt, (29)

where t, n and b are the tangent, normal and binormal vectors of the space curve γ, respectively. The
velocities U, V and W depend on the curvature and torsion as well as their derivatives with respect to
arclength s. It is well know that the vectors t, n and b satisfy the Serret-Frenet formulae

ts = kn,

ns = −kt + τb,

bs = −τn,

(30)

where k and τ are curvature and torsion of γ. Governed by the flow (29), the time evolutions of these
geometric invariants fulfill [14,15]

tt =

(
∂U
∂s

− τV + kW
)

n +

(
∂V
∂s

+ τU
)

b,

nt = −
(

∂U
∂s

− τV + kW
)

t +
[

1
k

∂

∂s

(
∂V
∂s

+ τU
)
+

τ

k

(
∂U
∂s

− τV + kW
)]

b,

bt = −
(

∂V
∂s

+ τU
)

t −
[

1
k

∂

∂s

(
∂V
∂s

+ τU
)
+

τ

k

(
∂U
∂s

− τV + kW
)]

n,

gt = g
(

∂W
∂s

− kU
)

,

(31)

where g =|γp| denotes the metric of the curve γ. A direct computation leads to the equations for the
curvature k and torsion τ:

∂τ

∂t
=

∂

∂s

[
1
k

∂

∂s

(
∂V
∂s

+ τU
)
+

τ

k

(
∂U
∂s

− τV
)
+ τ

∫ s
kUds′

]
+ kτU + k

∂V
∂s

,

∂k
∂t

=
∂2U
∂s2 +

(
k2 − τ2

)
U +

∂k
∂s

∫ s
kUds′ − 2τ

∂V
∂s

− k
∂τ

∂s
V.

(32)

Assume that the flow is intrinsic, namely the arclength does not depend on time, it implies from
Equation (31) that
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∂W
∂s

= kU. (33)

From Equation (32), using the following Hasimoto transformation

φ = kη, η = exp
[
i
∫ s

τ(t, s′)ds′
]
, (34)

we get the equation for φ

∂φ
∂t =

(
∂2

∂s2 + |φ|2 + iφ
∫ s ds′τφ∗ + ∂φ

∂s

∫ s ds′φ∗
)
(Uη),

+
(

i ∂2

∂s2 + i|φ|2 + φ
∫ s ds′τφ∗ − iφ

∫ s ds′ ∂φ∗
∂s′

)
(Vη),

(35)

where φ∗ denotes the complex conjugate of φ.
Let U = 0, V = k and W = 0. Then we derive from Equation (32) the Schrödinger equation

iφt + φss +
1
2

∣∣∣∣φ
∣∣∣∣2φ = 0. (36)

Let U = −ks, V = −kτ. Then W = − 1
2 k2, and φ satisfies the mKdV system [15]

φt + φsss +
3
2

∣∣∣∣φ
∣∣∣∣2φs = 0.

We now consider the case of U = W = 0. Denote θ(t, s) =
∫ s

τ(s′, t)ds′, G = Vη. It follows from
Equation (35) that φ satisfies the equation

iφt + Gss+

∣∣∣∣φ
∣∣∣∣2G − φ

∫ s
G(cos θ − i sin θ)ks′ds′ = 0. (37)

Let ũ = k cos θ, ṽ = k sin θ and G = G1 + iG2. Then Equation (33) is separated into the
two equations

ũt = −G2,ss − ṽ∂−1
s [k(G1 cos θ + G2 sin θ)s],

ṽt = G1,ss + ũ∂−1
s [k(G1 cos θ + G2 sin θ)s].

(38)

Furthermore, letting ũ = u + vs, ṽ = v − us and choosing V = ∂−1
s

[(
u2 + v2

s
)
/k

]
, we find that u

and v satisfy the following system [41]

(u + vs)t= −G2,ss − (v − us)
(

u2 + v2
)

,

(v − us)t= G1,ss + (u + vs)
(

u2 + v2
)

,
(39)

where G1 = 2 cos θ∂−1
s (v cos θ − u sin θ), G2 = 2 sin θ∂−1

s (v cos θ − u sin θ), which is related to the dual
system of the Schrödinger equation [42].

3.1. The Schrödinger Flow

Corresponding to the Schrödinger Equation (36), the Schrödinger flow is given by [14]

γt = kb. (40)

In this case, the time evolution of frame vectors is governed by
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tt = −τkn + ksb,

nt = −
(

kss

k
− τ2

)
b + τkt,

bt = −kst −
(

kss

k
− τ2

)
n.

(41)

We now construct Bäcklund transformation of the Schrödinger flow (40)

γ̃ = γ + α(t, s)t + β(t, s)n + χ(t, s)b, (42)

where α, β and χ are the functions of t and s, to be determined. Using Equation (30), (40) and (41), a
direct computation leads to

γ̃s = (1 + αs − βk)t + (βs + αk − χτ)n + (χs + βτ)b, (43)

and
γ̃t = (αt + βτk − χks)t +

[
βt − χ

(
kss
k − τ2

)
− ατk

]
n

+
[
χt + k + αks + β

(
kss
k − τ2

)]
b.

(44)

Then the arclength parameter s̃ of curve γ̃ is related to s by

ds̃ =
∣∣∣∣γ̃s

∣∣∣∣ds =
√
(1 + αs − βk)2 + (βs + αk − χτ)2 + (χs + βτ)2ds := Fds.

The tangent vector of the curve γ̃ is determined by

t̃ = γ̃s
ds
ds̃

= A1t + A2n + A3b,

where A1 = F−1(1 + αs − βk), A2 = F−1(βs + αk − χτ), A3 = F−1(χs + βτ). Further computation
from Equation (43) yields

γ̃s̃s̃ = γ̃s̃s
ds
ds̃

=
A1s − kA2

F
t +

A2s + kA1 − τA3

F
n +

A3s + τA2

F
b,

which gives the curvature of γ̃:

k̃ =

√
(A1s−kA2)

2+(A2s+kA1−τA3)
2+(A3s+τA2)

2

F := H
F . (45)

Using the Serret-Frenet formulae, we obtain the normal and binormal vectors of γ̃ given by

ñ =
A1s − kA2

H
t +

A2s + kA1 − τA3

H
n +

A3s + τA2

H
b := B1t + B2n + B3b,

b̃ =
C1t + C2n + C3b√

C2
1 + C2

2 + C2
3

,
(46)

where C1 = F−1(B1s − kB2 + HA1), C2 = F−1(kB1 + B2s − τB3 + HA2) and C3 =

F−1(τB2 + B3s + HA3).
Assume that the curve γ̃ also fulfills the Schrödinger flow, that is

γ̃t = k̃b̃. (47)

Plugging Equations (44), (45) and (46) into Equation (47), we arrive at the following result.
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Theorem 3.1. The Schrödinger flow (40) is invariant with respect to the Bäcklund transformation (42) if α, β

and χ satisfy the system

αt + βτk − χks =
H
F

C1√
C2

1+C2
2+C2

3
,

βt − χ
(

kss
k − τ2

)
− ατk = H

F
C2√

C2
1+C2

2+C2
3
,

χt + k + αks + β
(

kss
k − τ2

)
= H

F
C3√

C2
1+C2

2+C2
3
.

3.2. The Extended Harry-Dym Flow

The extended Harry-Dym flow [19]

γt = τ− 1
2 b, (48)

is obtained by setting U = M = 0, and V = τ− 1
2 in the space curve flow (29). Here we consider the

curve flow with constant curvature k. Let k = 1, it follows from Equation (32) that the torsion of γ

satisfies the extended Harry-Dym equation [19]

τt =
[(

τ− 1
2

)
ss
− τ

3
2 + τ− 1

2

]
s
, (49)

which is equivalent to the flow (48). Making use of the transformation v = τ−1/2, we get the equation

(
v−1)

t =
1
2

(
vvss − 1

2 v2
s +

1
2 v2 − 3

2 v−2
)

s
.

In terms of the change of variables dx =
√

2v−1ds + 1√
2

(
vvss − 1

2 v2
s +

1
2 v2 − 3

2 v−2
)

dt, it is
deduced that

∂v
∂t = ∂

∂x

[
v
(

∂
∂x

( vx
v
)− 1

2
( vx

v
)2
)
+ 1

4 v3 − 3
4 v−1

]
. (50)

Again we set v = eϕ, then it is inferred from Equation (50) that ϕ satisfies the Calogero’s modified
KdV equation

ϕt = ϕxxx − 1
2

ϕ3
x +

3
2

ϕx cosh 2ϕ.

We now construct Bäcklund transformations to the extended Harry-Dym flow (48). In this case,
the corresponding time evolution of frame vectors t, n and b are given by

tt = −τ
1
2 n − 1

2
τ− 3

2 τsb,

nt = τ
1
2 t +

((
τ− 1

2

)
ss − τ

3
2

)
b,

bt =
1
2

τ− 3
2 τst −

((
τ− 1

2

)
ss
− τ

3
2

)
n.

(51)

In terms of Equation (51), a direct computation gives

γ̃t =
[
τ− 1

2 + α
(

τ− 1
2

)
s
+ β

((
τ− 1

2

)
ss
− τ

3
2

)
+ χt

]
b,

+
[

βt − ατ
1
2 − χ

((
τ− 1

2

)
ss
− τ

3
2

)]
n +

[
αt + βτ

1
2 + χ

(
τ− 1

2

)
s

]
t.

(52)

Assume that a new curve γ̃(t, s) is governed by the extended Harry-Dym flow, that means
γ̃ satisfies

γ̃t = τ̃− 1
2 b̃, (53)

332



Symmetry 2015, 7, 1376–1394

where τ̃ and b̃ are the torsion and binormal vector of γ̃, respectively, which is related to the geometric
invariants of γ through

τ̃ =
C1(B1,s − kB2) + C2(B1k + B2,s − τB3 + HA2) + C3(τB2 + B3s + HA3)

F
√

C2
1 + C2

2 + C2
3

,

b̃ =
C1t + C2n + C3b√

C2
1 + C2

2 + C2
3

.
(54)

Plugging Equations (52) and (54) into Equation (53) implies that the extended Harry-Dym equation
is invariant with respect to the Bäcklund transformation (42) if α, β and χ satisfy the following system

αt + βτ
1
2 + χ

(
τ− 1

2

)
s
= τ̃− 1

2 C1√
C2

1+C2
2+C2

3
,

βt − ατ
1
2 − χ

((
τ− 1

2

)
ss
− τ

3
2

)
= τ̃− 1

2 C2√
C2

1+C2
2+C2

3
,

χt + τ− 1
2 + α

(
τ− 1

2

)
s
+ β

((
τ− 1

2

)
ss
− τ

3
2

)
= τ̃− 1

2 C3√
C2

1+C2
2+C2

3
.

4. Bäcklund Transformations of the KdV and Camassa-Holm Flows

Integrable curve flows in the centro-equiaffine geometry were discussed extensively in [21,24,
33,35,40]. It turns out that the KdV equation arises naturally from a non-stretching curve flow in
centro-equiaffine geometry.

For a planar curve γ(p) in the centro-equiaffine geometry, which satisfies
[
γ, γp

] �= 0, one can
reparametrize it by the special parameter s satisfying [γ, γs] = 1, where the parameter s is said to
be centro-equiaffine arclength. It follows that in terms of the free parameter p, the centro-equiaffine
arclength is represented by

ds =
[
γ, γp

]
dp.

Furthermore, the centro-equiaffine curvature of the curve γ(s) is defined to be

φ = [γs, γss].

Consider the planar curve flow in the centro-equiaffine geometry, specified by

γt = f N + hT, (55)

where N and T are normal and tangent vectors of γ. One can compute the time evolution of N and T
to get (

T
N

)
t

=

(
hs − f fs + φh
−h − f

)(
T
N

)
. (56)

The Serret-Frenet formulae for curves in centro-equiaffine geometry reads

Ts = φN, Ns = −T. (57)

Assume that the flow is intrinsic, a direct computation shows that the curvature φ satisfies

φt =
(

D2
s + 4φ + 2φs∂−1) f . (58)

Letting f = φs in Equation (58), we get the KdV equation

φt = φsss + 6φφs. (59)
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The corresponding KdV flow is
γt = φsN + 2φT, (60)

which was introduced firstly by Pinkall [18]. Now we consider the Bäcklund transformation of the
KdV flow (60)

γ̃(t, s) = γ(t, s) + αN + βT, (61)

where α and β are functions of t and s.
We now construct the Bäcklund transformations of the KdV flow. Differentiating Equation (61)

with respect to t and using Equation (60), we get

γ̃t =
[
αt + (1 − α)φs + β

(
φss + 2φ2

)]
N + [2(1 − α)φ + βt + βφs]T. (62)

Assume that the curve γ̃ is also governed by the KdV flow, namely it satisfies

γ̃t = φ̃s̃Ñ + 2φ̃T̃, (63)

where s̃ is the arclength of γ̃, which satisfies ds̃ = (1 − α + βs)ds. In Equation (63), T̃ and Ñ are tangent
and normal vectors of γ̃, which are related to T and N through

T̃= γ̃s̃ = γ̃s
ds
ds̃

= T +
αs + βφ

1 − α + βs
N,

Ñ= −γ̃ = −βT + (1 − α)N. (64)

Further computation using Equation (62) leads to

γ̃s̃s̃ = γ̃s̃s
ds
ds̃ =

φ+
(

αs+βφ
1−α+βs

)
s

1−α+βs
N − αs+βφ

(1−α+βs)
2 T. (65)

It follows from Equations (64) and (65) that the centro-equiaffine curvature of γ̃ is given by

φ̃ = [γ̃s̃, γ̃s̃s̃] =
φ+

(
αs+βφ

1−α+βs

)
s

1−α+βs
+ αs+βφ

(1−α+βs)
3 . (66)

Plugging Equations (64) and (66) into the right hand side of Equation (63), and comparing the
coefficients of T and N with Equation (62), we deduce the following result.

Theorem 4.1. The KdV flow is invariant with respect to the Bäcklund transformation (61) if α and β satisfy the
system

αt + (1 − α)φs + β
(
φss + 2φ2) = (1 − α)φ̃s̃ + 2 αs+βφ

1−α+βs
φ̃,

βt − 2(1 − α)φ + βφs = 2φ̃ − βφ̃s̃,
(67)

where φ̃ is determined by Equation (66).

Example 4.1. It is easy to see that φ = 0 is a trivial solution of the KdV equation. Let φ = 0, then

φ̃ =

(
αs

1−α+βs

)
s

1 − α + βs
+

αs

(1 − α + βs)
3 ,

and system (67) becomes

⎧⎪⎪⎨
⎪⎪⎩

αt = (1 − α)

(
αs̃s̃ +

αs̃
(1−α+βs)

2

)
s̃
+ 2αs̃

(
αs̃s̃ +

αs̃
(1−α+βs)

2

)
,

βt = 2
(

αs̃s̃ +
αs̃

(1−α+βs)
2

)
− β

(
αs̃s̃ +

αs̃
(1−α+βs)

2

)
s̃
.

(68)
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This is a third-order quasi-linear system, it is difficult to solve it. For simplicity, we seek its
time-independent solutions: α = α(s̃), β = β(s̃). Denote

H = αs̃s̃ +
αs̃

(1 − α + βs)
2 .

Then system (68) reduces to

(1 − α)Hs̃ + 2αs̃ H = 0,
βHs̃ − 2H = 0.

Integrating it, we arrive at

H = c0(1 − α)2, β = α−1
αs̃

, (69)

where c0 �= 0 is an integration constant. Employing the chain rule and ds̃ = (1 − α + βs)ds., we have

βs = (1 − α + βs)βs̃.

Solving it for βs, we obtain
βs =

(1−α)βs̃
1−βs̃

.

A direct computation using Equation (69) yields

βs̃ = 1 + (1−α)αs̃s̃
α2

s̃
.

It follows from the above two equations that

1 − α + βs =
α2

s̃
αs̃s̃

.

In terms of αs̃, H can be denoted as

H = αs̃s̃ +
α2

s̃s̃
α3

s̃
.

Hence the first equation in Equation (69) becomes

αs̃s̃ +
α2

s̃s̃
α3

s̃
− c0(1 − α)2 = 0. (70)

Using the hodograph transformation

y = 1 − α(s̃), s̃ = w(y),

we get the equation for w(y)
w−3

y

(
w2

yy − wyy

)
− c0y2 = 0.

This equation is reduced to the first-order ordinary differential equation

h−3
(

h2
y − hy

)
− c0y2 = 0

by setting h = wy. Consequently, we derive a Bäcklund transformation (61) of the KdV flow (60),
where α(s̃) satisfies Equation (70) and β(s̃)= (α (s̃ − 1)/αs̃(s̃).
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Next we consider the Bäcklund transformation of the Camassa-Holm flow. Let f = vs(t, s) and
g = 2v(t, s), v =

(
1 − ∂2

s
)−1

φ, then flow (55) becomes

γt = vsN + 2vT, (71)

which gives the Camassa-Holm equation [6,44]

vt − vsst + vsss + 6vvs − 4vsvss − 2vvsss = 0. (72)

Therefore, Equation (71) is called the Camassa-Holm flow. Similar to the discussion for the
modified Camassa-Holm equation, we have the following result.

Theorem 4.2. The Camassa-Holm flow (71) admits the the Bäcklund transformation (61) if α(t, s) and β(t, s)
satisfy the system

αt + (1 − α)vs + β
(
(1 − 2v)vss + 2v2) = (1 − α)ṽs̃ + 2ṽG1,

βt + 2v(1 − α) + βvs = 2ṽF1 − βṽs̃,

where s̃ is the arclength of γ̃, determined by ds̃ = [(1 − α)(1 − α + βs) + β(αs + φβ)]ds, ṽ =(
1 − ∂2

s̃
)−1

(F1G2 − G1F2), with

F1 =
1 − α + βs

H
, G1 =

αs + βφ

H
,

F2 =
F1,s − G1

H
, G2 =

G1,s + φF1

H
,

H = (1 − α)(1 − α + βs) + β(αs + βφ).

5. Bäcklund Transformations of the Sawada-Kotera Flow

Motions of curves in the affine geometry were discussed in [13,21,23,33,40]. It is well-known that
the Sawada-Kotera equation arises from a non-stretching curve flow in affine geometry.

For a planar curve γ(p) satisfying
[
γp, γpp

] �= 0 in affine geometry, we can reparametrize it by
the special parameter s satisfying [γs, γss] = 1, where the parameter s is said to be the arclength. So the
affine arclength can be expressed by

ds =
[
γp, γpp

] 1
3 dp.

Consider the planar curve flow in affine geometry, governed by

γt = f N + hT, (73)

where N and T are affine normal and tangent vectors of γ. The Serret-Frenet formulae for curves in
affine geometry reads

Ts = N, Ns = −μT, (74)

where μ is the curvature of the curve γ, defined by

μ = [γss, γsss]. (75)

One can compute the time evolution of N and T, to get

(
T
N

)
t

=

(
hs − μ f fs + μh

H1 H2

)(
T
N

)
, (76)
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where H1 = hss − 2μ fs − μh, H2 = fss + 2hs − μ f . Assume that the flow is intrinsic, that means the
arclength does not depend on time. It is inferred from

[
∂
∂t , ∂

∂s

]
= 0 that

h = − 1
3 fs +

2
3 ∂−1

s (μ f ).

A direct computation gives the equation for the curvature [21]

μt =
1
3
(

D4
s + 5μD2

s + 4μsDs + μss + 4μ2 + 2μs∂−1μ
)

f . (77)

Letting f = −3μs in Equation (77), we obtain the Sawada-Kotera equation [45]

μt + μ5 + 5μμ3 + 5μ1μ2 + 5μ2μ1 = 0. (78)

The corresponding Sawada-Kotera flow is [21]

γt = −3μsN +
(
μss − μ2)T. (79)

We now consider the Bäcklund transformation of the Sawada-Kotera flow (79), determined by
Equation (61), where N and T are respectively the affine normal and tangent of γ, α(t, s) and β(t, s)
depend on t and s.

Using the Serret-Frenet formulae (74) and the Sawada-Kotera flow (79), we first have

γ̃t =
[
αt − 3μs − (μ3 + μμs)α − (

2μss + μ2)β
]
N

+
[
βt + μss − μ2 +

(
μ4 + 3μμ2 + μ2

s + μ2)α + (μ3 + μμs)β
]
T.

(80)

On the other hand, assume that the new curve γ̃ is also governed by the Sawada-Kotera flow,
which satisfies

γ̃t = −3μ̃s̃Ñ +
(
μ̃s̃s̃ − μ̃2)T̃, (81)

where s̃ is the arclength of γ̃, defined by ds̃ = [γ̃s, γ̃ss]
1
3 ds. In terms of the Sawada-Kotera flow, a direct

computation yields
γ̃s = (1 − αμ + βs)T + (αs + β)N := F1T + F2N,

γ̃ss = (F1,s − μF2)T + (F1 + F2,s)N := F3T + F4N.
(82)

Thus the arclength parameter of γ̃ can be determined by

ds̃ =
(

F2
1 + F1F2,s − F2F1,s + μF2

2
) 1

3 ds := H1ds. (83)

Using this and the flow (61), one can determine the tangent and normal vectors of γ̃ by

T̃ = 1
H1

(F1T + F2N),

Ñ = 1
H1

[((
F1
H1

)
s
− μ F2

H1

)
T +

(
F1
H1

+
(

F2
H1

)
s

)
N
]

:= H2T + H3N.

(84)

Thus the affine curvature of γ̃ is

μ̃ = H2(H2 + H3,s)− H3(H2,s − μH3) := H4. (85)

Further computation gives

μ̃s̃ =
H4,s
H1

:= H5, μ̃s̃s̃ =
1

H1

(
H4,s
H1

)
s

:= H6.
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It follows that

−3μ̃s̃Ñ +
(

μ̃s̃s̃ − μ̃2
)

T̃

=

[
−3H2H5 +

F1

H1

(
H6 − H2

4

)]
T +

[
−3H3H5 +

F2

H1

(
H6 − H2

4

)]
N.

Hence we have proved the following result.

Theorem 5.1. The Sawada-Kotera flow (79) is invariant with respect to the Bäcklund transformation (61) if α

and β satisfy the system

αt − (μ3 + μμs)α − 3μs −
(
2μss + μ2)β = −3H3H5 +

F2
H1

(
H6 − H2

4
)
,

βt + (μ3 + μμs)β +
(
μ4 + 3μμss + μ2

s + μ2)α + μss − μ2 = −3H2H5 +
F1
H1

(
H6 − H2

4
)
.
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Abstract: A conservation law theorem stated by N. Ibragimov along with its subsequent extensions
are shown to be a special case of a standard formula that uses a pair consisting of a symmetry and
an adjoint-symmetry to produce a conservation law through a well-known Fréchet derivative identity.
Furthermore, the connection of this formula (and of Ibragimov’s theorem) to the standard action of
symmetries on conservation laws is explained, which accounts for a number of major drawbacks that
have appeared in recent work using the formula to generate conservation laws. In particular, the
formula can generate trivial conservation laws and does not always yield all non-trivial conservation
laws unless the symmetry action on the set of these conservation laws is transitive. It is emphasized
that all local conservation laws for any given system of differential equations can be found instead
by a general method using adjoint-symmetries. This general method is a kind of adjoint version of
the standard Lie method to find all local symmetries and is completely algorithmic. The relationship
between this method, Noether’s theorem and the symmetry/adjoint-symmetry formula is discussed.

Keywords: conservation law; symmetry; adjoint-symmetry; Fréchet derivative identity; Ibragimov’s
theorem

1. Introduction

The most well-known method for finding conservation laws of differential equations (DEs) is
Noether’s theorem [1], which is applicable to any system of one or more DEs admitting a variational
formulation in terms of a Lagrangian. Noether’s theorem shows that every local symmetry preserving
the variational principle of a given variational system yields a non-trivial local conservation law.
Moreover, for variational systems that do not possess any differential identities, every non-trivial local
conservation law arises from some local symmetry that preserves the variational principle.

However, there are many physically and mathematically interesting DEs that are not variational
systems, and this situation has motivated much work in the past few decades to look for some
generalization of Noether’s theorem which could be applied to non-variational DEs. One direction
of work has been to replace the need for a variational principle by introducing some other structure,
but still making use of the local symmetries of a given DE system to produce local conservation laws.
In fact, a general formula is available that yields local conservation laws from local symmetries
combined with solutions of the adjoint of the symmetry determining equations. This formula first
appears (to the knowledge of the author) in a 1986 paper by Caviglia [2] and was later derived
independently in a 1990 Russian paper by Lunev [3], as well as in a 1997 paper by the author and
Bluman [4]. In the latter paper, solutions of the adjoint of the symmetry determining equations
were called adjoint-symmetries; these solutions are also known as cosymmetries in the literature
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on integrable systems [5]. Essentially the same formula appears in a more abstract form in the
cohomological framework for finding conservation laws, summarized in References [6–8].

In recent years, a similar conservation law formula has been popularized by Ibragimov [9–13] and
subsequently extended by others [14–17], where a “nonlinear self-adjointness” condition is required
to hold for the given DE system. However, in several papers [17–19], this formula sometimes is
seen to produce only trivial conservation laws, and sometimes, the formula does not produce all
admitted conservation laws. Furthermore, in a number of papers [14–17,20–22], the use of translation
symmetries is mysteriously avoided, and other more complicated symmetries are used instead, without
explanation.

The purpose of the present paper is to make several relevant remarks:

(1) Ibragimov’s conservation law formula is a simple re-writing of a special case of the earlier formula
using symmetries and adjoint-symmetries;

(2) Ibragimov’s “nonlinear self-adjointness” condition in its most general form is equivalent to
the existence of an adjoint-symmetry for a general DE system and reduces to the existence of
a symmetry in the case of a variational DE system;

(3) this formula does not always yield all admitted local conservation laws, and it produces
trivial conservation laws whenever the symmetry is a translation and the adjoint-symmetry
is translation-invariant;

(4) the computation to find adjoint-symmetries (and, hence, to apply the formula) is just as
algorithmic as the computation of local symmetries;

(5) most importantly, if all adjoint-symmetries are known for a given DE system (whether or not it
has a variational formulation), then they can be used directly to obtain all local conservation laws,
providing a kind of generalization of Noether’s theorem to general DE systems.

All of these remarks have been pointed out briefly in Reference [23], and Remark (2) has been
discussed in References [16,17], but it seems worthwhile to give a comprehensive discussion for all
of the remarks (1)–(5), with examples, as the formula continues to be used in recent papers when a
complete, general method for finding all local conservation laws is available instead. In particular,
for any given DE system, a full generalization of the content of Noether’s theorem is provided by
a direct method using adjoint-symmetries, based on the framework shown in References [24,25]
and presented in an algorithmic fashion in References [4,26–28]. In the case when a DE system
is variational, adjoint-symmetries reduce to symmetries, and the direct method reproduces the
relationship between symmetries and conservation laws in Noether’s theorem, but without the
need for a Lagrangian. A detailed review and further development of this general method appears in
Reference [29]. Consequently, there is no need for any kind of special methods to find local conservation
laws, just as there is no need to use special methods to find local symmetries, because the relevant
determining equations can be solved in a direct algorithmic manner.

The remainder of the present paper is organized as follows. Remarks (1) and (2) will be
demonstrated in Section 2. Remark (3), along with some further consequences and properties related
to the action of symmetries, will be explained in Section 3. Remarks (4) and (5) will be briefly discussed
in Section 4. Throughout, the class of DEs utt − uxx + a(u)(u2

t − u2
x) + b(u)ut + c(u)ux + m(u) = 0

will be used as a running example to illustrate the main points, and the notation in Ibragimov’s work
will be used to allow the simplest possible comparison of the results. Some concluding remarks are
made in Section 5.

Many examples of conservation laws of wave equations and other evolution equations can be
found in References [24,30,31] and the references therein.

2. Symmetries, Adjoint-Symmetries and “Nonlinear Self-Adjointness”

As preliminaries, a few basic tools from variational calculus will be reviewed. Let x = (x1, . . . , xn)

be n ≥ 1 independent variables and u = (u1, . . . , um) be m ≥ 1 dependent variables, and let ∂ku
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denote all k-th order partial derivatives of u with respect to x. Introduce an index notation for the
components of x and u: xi, i = 1, . . . , n; and uα, α = 1, . . . , m. In this notation, the components of
∂ku are given by uα

i1···ik , α = 1, . . . , m, iq = 1, . . . , n, with q = 1, . . . , k. Summation is assumed over each
pair of repeated indices in any expression. The coordinate space J = (x, u, ∂u, ∂2u, . . .) is called the jet
space associated with the variables x, u. A differential function is a locally smooth function of finitely
many variables in J. Total derivatives with respect to x applied to differential functions are denoted
Di =

∂
∂xi + uα

i
∂

∂uα + uα
ij

∂
∂uα

j
+ · · · .

The necessary tools that will now be introduced are the Fréchet derivative and its adjoint
derivative, the Euler operator and its product rule, and the Helmholtz conditions.

Given a set of M ≥ 1 differential functions fa(x, u, ∂u, . . . , ∂Nu), a = 1, . . . , M, with differential
order N ≥ 1, the Fréchet derivative is the linearization of the functions as defined by

(δw f )a =
( ∂

∂ε
fa(x, u + εw, ∂(u + εw), . . . , ∂N(u + εw))

)∣∣∣
ε=0

= wα ∂ fa

∂uα
+ wα

i
∂ fa

∂uα
i
+ · · ·+ wα

i1···iN

∂ fa

∂uα
i1···iN

.
(1)

This linearization can be viewed as a local directional derivative in jet space, corresponding
to the action of a generator X̂ = wα∂uα in characteristic form, X̂( f ) = δw f , where w =

(w1(x, u, ∂u, . . . , ∂ku), . . . , wm(x, u, ∂u, . . . , ∂ku)) is a set of m arbitrary differential functions.
It is useful also to view the Fréchet derivative as a linear differential operator acting on w. Then,

integration by parts defines the Fréchet adjoint derivative

(δ∗v f )α = va ∂ fa

∂uα
− Di

(
va ∂ fa

∂uα
i

)
+ · · ·+ (−1)N Di1 · · · DiN

(
va ∂ fa

∂uα
i1···iN

)
(2)

which is a linear differential operator acting on a set of M ≥ 1 arbitrary differential functions
v = (v1(x, u, ∂u, . . . , ∂ku), . . . , vM(x, u, ∂u, . . . , ∂ku)).

These two derivatives (1) and (2) are related by

va(δw f )a − wα(δ∗v f )α = DiΨi(w, v; f ) (3)

where the associated vector Ψi(v, w; f ) is given by the explicit formula

Ψi(w, v; f ) = wαva ∂ fa

∂uα
i
+

(
Djwα

)
va ∂ fa

∂uα
ji
− wαDj

(
va ∂ fa

∂uα
ji

)
+ · · ·

+
N

∑
q=1

(−1)q−1(Dj1 · · · DjN−q wα
)

Di1 · · · Diq−1

(
va ∂ fa

∂uα
j1···jN−qi1···iq−1i

)
.

(4)

The Euler operator Euα , or variational derivative, is defined in terms of the Fréchet derivative
through the variational relation

δw f = wαEuα( f ) + DiΦi(w; f ) (5)

which is obtained from integration by parts, yielding

Euα( f ) =
∂ f
∂uα

− Di

( ∂ f
∂uα

i

)
+ · · ·+ (−1)N Di1 · · · DiN

( ∂ f
∂uα

i1···iN

)
=

δ f
δuα

(6)

where
Φi(w; f )v = Ψi(w, v; f ). (7)
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Here, for simplicity, f (x, u, ∂u, . . . , ∂Nu) is a single differential function. In particular, an explicit
formula for Φi(w; f ) is given by

Φi(w; f ) = wα ∂ f
∂uα

i
+

(
Djwα

) ∂ f
∂uα

ji
− wαDj

∂ f
∂uα

ji
+ · · ·

+
N

∑
q=1

(−1)q−1(Dj1 · · · DjN−q wα
)

Di1 · · · Diq−1

∂ f
∂uα

j1···jN−qi1···iq−1i

(8)

from expression (4).
The Euler operator (6) has the following three important properties: First, it obeys the product rule

Euα( f g) = (δ∗g f )α + (δ∗f g)α. (9)

Second, its kernel
Euα( f ) = 0 (10)

is given by total divergences
f = DiFi (11)

holding for some differential vector function Fi. Third, its image consists of differential functions

Euα( f ) = gα (12)

characterized by the Helmholtz conditions

(δwg)α = (δ∗wg)α (13)

where wα is a set of arbitrary differential functions.
There are several common alternative notations for the Fréchet derivative and its adjoint:

δw f = f ′(w) and δ∗v f = f ′∗(v) appear in the literature on integrable systems and in Reference
[29]; δw f = Dw f and δ∗v f = D∗

v f are used in Olver’s book [24]; δw f = L[u]w is used in the early work
of Anco and Bluman [4,26,27] and in the book [31]. In contrast, Ibragimov [9,12] uses δ∗v f = f ∗[u, v].

2.1. Conservation Laws and Symmetries

Consider an N-th-order system of M ≥ 1 DEs

F = (F1(x, u, ∂u, . . . , ∂Nu), . . . , FM(x, u, ∂u, . . . , ∂Nu)) = 0. (14)

The space of solutions u(x) of the system will be denoted E . When the number of independent
variables x is n = 1, each DE is an ordinary differential equation (ODE), whereas when the number
of independent variables x is n ≥ 2, each DE is a partial differential equation (PDE). The number, m,
of dependent variables u need not be the same as the number, M, of DEs in the system.

A local infinitesimal symmetry [24,31,32] of a given DE system (14) is a generator

X = ξ i(x, u, ∂u, . . . , ∂ru)∂/∂xi + ηα(x, u, ∂u, . . . , ∂ru)∂/∂uα (15)

whose prolongation leaves invariant the DE system

prX(F)|E = 0 (16)
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which holds on the whole solution space E of the system. (In this determining equation, the notation E
means that the given DE system, as well as its differential consequences, are to be used). The differential
functions ξ i and ηα in the symmetry generator are called the symmetry characteristic functions.
When acting on the solution space E , an infinitesimal symmetry generator can be formally
exponentiated to produce a one-parameter group of transformations exp(εprX), with parameter
ε, where the infinitesimal transformation is given by

uα(x) → uα(x)+ε
(
ηα(x, u(x), ∂u(x), . . . , ∂ru(x))− uα

i (x)ξ i(x, u(x), ∂u(x), . . . , ∂ru(x))
)

+ O
(
ε2) (17)

for all solutions u(x) of the DE system.
Two infinitesimal symmetries are equivalent if they have the same action (17) on the solution

space E of a given DE system. An infinitesimal symmetry is thereby called trivial if it leaves all
solutions u(x) unchanged. This occurs iff its characteristic functions satisfy the relation

ηα|E = (uα
i ξ i)|E . (18)

The corresponding generator (15) of a trivial symmetry is thus given by

Xtriv.|E = ξ i∂/∂xi + ξ iuα
i ∂/∂uα (19)

which has the prolongation prXtriv.|E = ξ iDi. Conversely, any generator of this form on the solution
space E represents a trivial symmetry. Thus, any two generators that differ by a trivial symmetry
are equivalent. The differential order of an infinitesimal symmetry is defined to be the smallest
differential order among all equivalent generators.

Any symmetry generator is equivalent to a generator given by

X̂ = X − Xtriv. = Pα∂/∂uα, Pα = ηα − ξ iuα
i , (20)

under which u is infinitesimally transformed while x is invariant, due to the relation

prX − prX̂ = ξ iDi. (21)

This generator (20) defines the characteristic form for the infinitesimal symmetry. The symmetry
invariance (16) of the DE system can then be expressed by

prX̂(F)|E = 0 (22)

holding on the whole solution space E of the given system. Note that the action of prX̂ is the same as
a Fréchet derivative (1), and hence, an equivalent, modern formulation [24,29,31] of this invariance (22)
is given by the symmetry determining equation

(δPF)a|E = 0. (23)

(Recall, the notation E means that the given DE system, as well as its differential consequences,
are to be used in these determining equations.)

In jet space J, a group of transformations exp(εprX) with a non-trivial generator X in general
will not act in a closed form on x, u and derivatives ∂ku up to a finite order, except [24,31] for point
transformations acting on (x, u) and contact transformations acting on (x, u, ∂u). Moreover, a contact
transformation is a prolonged point transformation when the number of dependent variables is
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m > 1 [24,31]. A point symmetry is defined as a symmetry transformation group on (x, u), whose
generator is given by characteristic functions of the form

X = ξ(x, u)i∂/∂xi + ηα(x, u)∂/∂uα (24)

corresponding to the infinitesimal point transformation

xi → xi + ε ξ i(x, u) + O(ε2), uα → uα + ε ηα(x, u) + O(ε2). (25)

Likewise, a contact symmetry is defined as a symmetry transformation group on (x, u, ∂u) whose
generator corresponds to an infinitesimal transformation that preserves the contact relations uα

i = Diuα.
The set of all admitted point symmetries and contact symmetries for a given DE system comprises its
group of Lie symmetries. The corresponding generators of this group comprise a Lie algebra [24,31,32].

A local conservation law of a given DE system (14) is a divergence equation

DiCi|E = 0 (26)

which holds on the whole solution space E of the system, where

C = (C1(x, u, ∂u, . . . , ∂ru), . . . , Cn(x, u, ∂u, . . . , ∂ru)) (27)

is the conserved current vector. In the case when one of the independent variables represents a time
coordinate and the remaining n − 1 independent variables represent space coordinates, namely
x = (t, x1, . . . , xn−1), then C1 = T is a conserved density and (C2, . . . , Cn) = �X is a spatial flux vector,
while the conservation law has the form of a local continuity equation (DtT + Div�X)|E = 0. (Similarly
to the symmetry determining equation, the notation E here means that the given DE system, as well as
its differential consequences, are to be used).

A conservation law (26) is locally trivial if

Ci|E = DjΘij (28)

holds for some differential antisymmetric tensor function Θij(x, u, ∂u, . . . , ∂r−1u) on E , since any
total curl is identically divergence free, Di(DjΘij) = DiDjΘij = 0 due to the commutativity of
total derivatives. Two conservation laws are said to be locally equivalent if, on the solution space E ,
their conserved currents differ by a locally trivial current (28). The differential order of a conservation
law is defined to be the smallest differential order among all locally equivalent conserved currents.
(Sometimes a local conservation law is itself defined as the equivalence class of locally equivalent
conserved currents).

For a given DE system (14), the set of all non-trivial local conservation laws (up to local
equivalence) forms a vector space on which the local symmetries of the system have a natural
action [24,31,33]. In particular, the infinitesimal action of a symmetry (15) on a conserved current (27)
is given by [24]

Ci
X = prX(Ci) + CiDiξ

i − CjDjξ
i. (29)

When the symmetry is expressed in characteristic form (20), its action has the simple form

Ci
X̂ = prX̂(Ci) = δPCi. (30)

The conserved currents Ci
X and Ci

X̂
are locally equivalent,

(Ci
X̂ − Ci

X)|E = DjΘij (31)
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with
Θij = ξ iCj − ξ jCi (32)

which follows from the relation (21).
A DE system is variational if it arises as the Euler–Lagrange equations of a local Lagrangian.

This requires that the number of equations in the system is the same as the number of dependent
variables, M = m, and that the differential order N of the system is even, in which case the system is
given by

Fα = Euα(L), α = 1, . . . , M = m (33)

where the Lagrangian is a differential function

L(x, u, ∂u, . . . , ∂N/2u). (34)

The necessary and sufficient conditions [24,29,31,32] for a given DE system (14) to be variational
consist of the Helmholtz conditions (13), which are given by

(δwF)α = (δ∗wF)α (35)

where wα is a set of arbitrary differential functions. Note that these conditions (35) are required to hold
identically in jet space J (and not just on the solution space E of the DE system).

2.2. Ibragimov’s Conservation Law Formula

The starting point is the well-known observation [24] that any N-th-order system of M ≥ 1
DEs (14) can be embedded into a larger system by appending an “adjoint variable” for each DE in
the system, where this set of M ≥ 1 variables v = (v1, . . . , vM) is taken to satisfy the adjoint of the
linearization of the original DE system. Specifically, the enlarged DE system is given by

Fa(x, u, ∂u, . . . , ∂Nu) = 0, a = 1, . . . , M (36)

(δ∗v F)α = F∗
α (x, u, v, ∂u, ∂v, . . . , ∂Nu, ∂Nv) = 0, α = 1, . . . , m (37)

for uα(x) and va(x), in Ibragimov’s notation. This system (36)–(37) comprises the Euler–Lagrange
equations of the Lagrangian function

L = vaFa(x, u, ∂u, . . . , ∂Nu) (38)

since, clearly,
Eva(L) = Fa, Euα(L) = (δ∗v F)α (39)

through the product rule (9).
All solutions u(x) of the original DE system (36) give rise to solutions of the Euler–Lagrange

system (39) by letting v(x) be any solution (for instance v = 0) of the DEs (37). Conversely, all solutions
(u(x), v(x)) of the Euler–Lagrange system (39) yield solutions of the original DE system (36) by
projecting out v(x).

This embedding relationship can be used to show that every symmetry of the original DE
system (36) can be extended to a variational symmetry of the Euler–Lagrange system (39). The proof is
simplest when the symmetries are formulated in characteristic form (20).

Let
X̂ = Pα(x, u, ∂u, . . . , ∂ru)∂/∂uα (40)
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be any local symmetry generator (in characteristic form) admitted by the DE system (36). Under some
mild regularity conditions [29] on the form of these DEs, the symmetry determining Equation (23)
implies that the characteristic functions Pα satisfy

(δPF)a = RP(F)a (41)

where
RP = RP

b
a + RP

bi
a Di + RP

bij
a DiDj + · · ·+ RP

bi1···ir
a Di1 · · · Dir (42)

is some linear differential operator whose coefficients RP
b
a, RP

bi
a , . . . , RP

bi1···ir
a are differential functions

that are non-singular on solution space E of the DE system (14). Now, consider the action of
this symmetry generator (40) on the Lagrangian (38). From the operator relation (41) followed by
integration by parts, the symmetry action is given by

prX̂(L) = vaRP(F)a = FaR∗
P(v)

a + DiΘ̂i (43)

where
R∗

P = R∗
P

b
a − R∗

P
bi
a Di + R∗

P
bij
a DiDj + · · ·+ (−1)rR∗

P
bi1···ir
a Di1 · · · Dir (44)

is the adjoint of the operator (42), with the non-singular coefficients

R∗
P

b
a = RP

b
a − (DjRP

bj
a ) + · · ·+ (−1)r(Dj1 · · · Djr RP

bj1···jr
a ),

R∗
P

bi
a = RP

bi
a − (2

1)(DjRP
bji
a ) + · · ·+ (−1)r−1( r

r−1)(Dj1 · · · Djr−1 RP
bj1···jr−1i
a ),

R∗
P

bij
a = RP

bij
a − (3

1)(DkRP
bkij
a ) + · · ·+ (−1)r−2( r

r−2)(Dj1 · · · Djr−2 RP
bj1···jr−2ij
a ),

...

R∗
P

bi1···ir
a = RP

bi1···ir
a Di1 · · · Dir .

(45)

Although the Lagrangian is not preserved, the expression (43) for the symmetry action shows
that if the symmetry is extended to act on v via

X̂ext. = Pα∂/∂uα − R∗
P(v)

a∂/∂va, (46)

then, under this extended symmetry, the Lagrangian will be invariant up to a total divergence,

prX̂ext.(L) = vaRP(F)a − FaR∗
P(v)

a = DiΘ̂i. (47)

This completes the proof. A useful remark is that the vector Θ̂i in the total divergence (47) is
a linear expression in terms of Fa (and total derivatives of Fa), and hence, this vector vanishes whenever
u(x) is a solution of the DE system (36). Consequently, Θ̂i is a trivial current for the Euler–Lagrange
system (39).

Some minor remarks are that the proof given by Ibragimov [9] does not take advantage of the
simplicity of working with symmetries in characteristic form and also glosses over the need for
some regularity conditions on the DE system so that the symmetry operator relation (41) will hold.
Moreover, that proof is stated only for DE systems in which the number of equations is the same as
the number of dependent variables, M = m.

Now, since the extended symmetry (46) is variational, Noether’s theorem can be applied to
obtain a corresponding conservation law for the Euler–Lagrange system (39), without the need for
any additional conditions. The formula in Noether’s theorem comes from applying the variational
identity (5) to the Lagrangian (38), which yields
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prX̂(L) = φaFa + va(δPF)a = X̂(va)Eva(L) + X̂(uα)Euα(L) + DiΦi(P; L) (48)

for any generator
X̂ = Pα∂/∂uα + φa∂/∂va. (49)

The total divergence term DiΦi(P; L) is given by the formula (8) derived using the Euler
operator (6). This yields

Φi(P; L) = Pαva ∂Fa

∂uα
i
+

(
DjPα

)
va ∂Fa

∂uα
ji
− PαDj

(
va ∂Fa

∂uα
ji

)
+ · · ·

+
N

∑
q=1

(−1)q−1(Dj1 · · · DjN−q Pα
)

Di1 · · · Diq−1

(
va ∂Fa

∂uα
j1···jN−qi1···iq−1i

)
.

(50)

When this variational identity (48) is combined with the action (47) of the variational
symmetry (46) on the Lagrangian, the following Noether relation is obtained:

Di(Ψ̂i − Φi(P; L) = φaFa + PαF∗
α , φa = −R∗

P(v)
a (51)

where F∗
α is expression (37). Since Fa, F∗

α and Ψ̂i vanish when (u(x), v(x)) is any solution of the
Euler–Lagrange system (39), the Noether relation (51) yields a local conservation law

DiĈi|E(u,v) = 0, Ĉi = Φi(P; L) (52)

where E(u, v) denotes the solution space of the system (39) (including its differential consequences).
This conservation law is locally equivalent to the conservation law formula underlying Ibragimov’s
work [9,12], which is given by

DiCi|E(u,v) = 0, Ci = Ĉi − ξ iL (53)

where Ci|E(u) = Ĉi|E(u) since L|E(u) = 0. Strangely, nowhere does Ibragimov (or subsequent authors)
point out that the term ξ iL in the conserved current trivially vanishes on all solutions (u(x), v(x)) of
the Euler–Lagrange system!

Hence, the following result has been established.

Proposition 1. Any DE system (36) can be embedded into a larger Euler–Lagrange system (39) such
that every symmetry (40) of the original system can be extended to a variational symmetry (46) of the
Euler–Lagrange system. Noether’s theorem then yields a conservation law (52) for all solutions (u(x), v(x)) of
the Euler–Lagrange system (39).

A side remark is that the locally equivalent conservation law (53) also can be derived from
Noether’s theorem if the extended symmetry (46) is expressed in canonical form

Xext. = ξ i∂/∂xi + ηα∂/∂uα + (ξ iva
i − R∗

P(v)
a)∂/∂va (54)

as obtained from relations (20)–(21). In particular, the corresponding form of the variational
identity (48) becomes

prXext.(L) + (Diξ
i)L = X̂(va)Eva(L) + X̂(uα)Euα(L) + Di(ξ

iL + Φi(P; L)) (55)

where Pα = ηα − ξ iuα
i and Qa = −R∗

P(v)
a, while the action of the symmetry (54) on the Lagrangian is

given by

prXext.(L) + (Diξ
i)L = (Di(ξ

iva)− R∗
P(v)

a)Fa + vaprXext.(Fa)

= (Di(ξ
iva)− R∗

P(v)
a)Fa + va(RP(F)a + ξ iDiFa) = DiΘi

(56)
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where Θi vanishes whenever u(x) is a solution of the DE system (36). Hence, the Noether relation
obtained from combining Equations (55) and (56) yields the conserved current Ci = Φi(P, v; F)− ξ iL
modulo the locally trivial current Θi. If the original symmetry (40) being used is a point symmetry,
then this trivial current Θi can be shown to vanish identically, which is the situation considered in
Ibragimov’s papers [9,12] and in nearly all subsequent applications in the literature.

2.3. “Nonlinear Self-Adjointness”

The conservation law (52) holds for all solutions (u(x), v(x)) of the Euler–Lagrange system (39).
It seems natural to restrict this to solutions of the original DE system (36) for u(x) by putting v = 0.
However, the resulting conserved current is trivial, Φi(P; L)|v=0 = Φi(P; 0) = 0, because L is a linear
expression in terms of v. Consequently, some other way must be sought to project the solution space
E(u, v) of the Euler–Lagrange system onto the solution space E of the original DE system (36).

Ibragimov’s first paper [9] proposes to put v = u, which is clearly a significant restriction on
the form of the original DE system (36). In particular, this requires that F∗

α |v=u = Fa hold identically,
where the DE system is assumed to have the same number of equations as the number of dependent
variables, M = m, which allows the indices a = α to be identified. He calls such a DE system Fa = 0
“strictly self-adjoint”. This definition is motivated by the case of a linear DE system, since linearity
implies that (δuF)a = Fa and (δ∗uF)α = F∗

α |v=u are identities, whereby a linear DE system with M = m
is “strictly self-adjoint” iff it satisfies (δF)α = (δ∗F)α, which is the condition for the self-adjointness of a
linear system. However, for nonlinear DE systems, the definition of “strictly self-adjoint” conflicts with
the standard of definition [6,24] in variational calculus that a general DE system Fa = 0 is self-adjoint
iff its associated Fréchet derivative operator is self-adjoint, (δF)a = (δ∗F)α, which requires M = m.

Ibragimov subsequently [10] proposed to have v = φ(u), which he called “quasi-self-adjointness”.
A more general proposal v = φ(x, u) was then introduced first in Reference [14] and shortly later
appears in Ibragimov’s next paper [12], with the condition that F∗

α |v=φ(x,u) = λα
βFβ must hold for

some coefficients λα
β, again with M = m. This condition is called “weak self-adjointness” in Reference

[14] and “nonlinear self-adjointness” in Reference [12]. Ibragimov also mentions an extension of
this definition to v = φ(x, u, ∂u, . . . , ∂su), but does not pursue it. Later, he applies this definition in
Reference [13] to a specific PDE, where λα

β is extended to be a linear differential operator. However,
unlike in the previous papers, no conservation laws are found from using this extension. A subsequent
paper [15] then uses this extension, which is called “nonlinear self-adjointness through a differential
substitution”, to obtain conservation laws for several similar PDEs. Finally, the same definition is
stated more generally in Reference [17] for DE systems with M = m:

F∗
α |v=φ(x,u,∂u,...,∂su) = λα

βFβ + λα
βiDiFβ + · · ·+ λα

βi1···ip Di1 · · · Dip Fβ (57)

where the coefficients λα
β, λα

βi, . . . , λα
βi1···ip are differential functions.

These developments lead to the following conservation law theorem, which is a generalization of
Ibragimov’s main theorem [9,12] to arbitrary DE systems (not restricted by M = m), combined with
the use of a differential substitution [12,15,17].

Theorem 1. Suppose a system of DEs (14) satisfies

F∗
α |v=φ = λα

aFa + λα
aiDiFa + · · ·+ λα

ai1···ip Di1 · · · Dip Fa (58)

for some differential functions φa(x, u, ∂u, . . . , ∂su) and λα
a(x, u, ∂u, . . . , ∂su), λα

ai(x, u, ∂u, . . . , ∂su),. . .,
λα

ai1···ip(x, u, ∂u, . . . , ∂su) that are non-singular on the solution space E of the DE system, where F∗
α is the

adjoint linearization (2) of the system. Then, any local symmetry

X = ξ i(x, u, ∂u, . . . , ∂ru)∂/∂xi + ηα(x, u, ∂u, . . . , ∂ru)∂/∂uα (59)
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admitted by the DE system yields a local conservation law (26) given in an explicit form by the conserved
current (50) with va = φa and Pα = ηα − ξ iuα

i .

An important remark is that all of the functions φa, λα
a, λα

ai, . . . , λα
ai1···ip must be non-singular

on E , as otherwise, the condition (58) can be satisfied in a trivial way. This point is not mentioned in
any of the previous work [9,12,14,15,17].

The “nonlinear self-adjointness” condition (58) turns out to have a simple connection to the
determining equations for symmetries. This connection is somewhat obscured by the unfortunate
use of non-standard definitions and non-standard notation in References [9,12]. Nevertheless, it is
straightforward to show that Equation (58) is precisely the adjoint of the determining Equation (23) for
symmetries formulated as an operator Equation (41).

2.4. Adjoint-Symmetries and a Formula for Generating Conservation Laws

For any given DE system (14), the adjoint of the symmetry determining Equation (23) is given by

(δ∗QF)α|E = 0 (60)

for a set of differential functions Qa(x, u, ∂u, . . . , ∂ru). (Similarly to the symmetry determining equation,
the notation E here means that the given DE system, as well as its differential consequences, are to
be used). These differential functions are called an adjoint-symmetry [4], in analogy to the characteristic
functions of a symmetry (40), and so, Equation (60) is called the adjoint-symmetry determining equation.
As shown in Reference [29], this analogy has a concrete geometrical meaning in the case when
a DE system is an evolutionary system Fα = uα

t − fα(x, u, ∂xu, . . . , ∂N
x u) = 0 with M = m and

x = (t, x1, . . . , xn−1), where t is a time coordinate and xi, i = 1, . . . , n − 1, are space coordinates.
In this case, Qα can be viewed as the coefficients of a one-form or a covector Qαduα, in analogy to
Pα being the coefficients of a vector Pα∂/∂uα. The condition for Pα∂/∂uα to be a symmetry can be
formulated as

(L f Pα∂/∂uα
)|E = 0 where L f denotes the Lie derivative [24,29] with respect to the time

evolution vector X̂ = fα∂/∂uα. Then, the condition for Qαduα to be an adjoint-symmetry is equivalent
to

(L f Qαduα
)|E = 0. (Note the awkwardness in the index positions here comes from Ibragimov’s

choice of index placement Fα for a DE system with M = m. A better notation would be Fα and Fa

when M �= m, which is used in References [4,26,27,31].)
In the case when a DE system is variational (33), the symmetry determining equation is self-adjoint,

since (δ∗QF)α = (δQF)α. Then, the adjoint-symmetry determining Equation (60) reduces to the
symmetry determining Equation (23), with Qa(x, u, ∂u, . . . , ∂ru) = Pα(x, u, ∂u, . . . , ∂ru), where the
indices a = α can be identified, due to M = m. Consequently, adjoint-symmetries of any variational
DE system are the same as symmetries.

Other aspects of adjoint-symmetries and their connection to symmetries are discussed in
Reference [34].

Now, under some mild regularity conditions [29] on the form of a general DE system (14),
the adjoint-symmetry determining Equation (60) implies that the functions Qa satisfy

(δ∗QF)α = RQ(F)α (61)

where
RQ = RQ

b
α + RQ

bi
α Di + RQ

bij
α DiDj + · · ·+ RQ

bi1···ir
α Di1 · · · Dir (62)

is some linear differential operator whose coefficients RQ
b
α, RQ

bi
α , . . . , RQ

bi1···ir
α are differential functions

that are non-singular on the solution space E of the DE system (14). In Ibragimov’s notation
F∗

α (x, u, v, ∂u, ∂v, . . . , ∂Nu, ∂Nv) = (δ∗v F)α, the adjoint-symmetry Equation (61) coincides with the
“nonlinear self-adjointness” condition (58) in Theorem 1, where the operator on the right-hand side of
Equation (58) is precisely the adjoint-symmetry operator (62).
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Therefore, the following equivalence has been established.

Proposition 2. For a general DE system (14), the condition (58) of “nonlinear self-adjointness” coincides with
the condition of existence of an adjoint-symmetry (60). When a DE system is variational (33), these conditions
reduce to the condition of the existence of a symmetry.

One remark is that the formulation of “nonlinear self-adjointness” given here is more general
than what appears in References [12,15,17] since those formulations assume that the DE system has
the same number of equations as the number of dependent variables, M = m. Another remark is that
the meaning of “nonlinear self-adjointness” shown here in the case of variational DE systems has not
previously appeared in the literature.

Example: Consider the class of semilinear wave equations utt − uxx + a(u)(u2
t − u2

x) + b(u)ut +

c(u)ux + m(u) = 0 for u(t, x), with a nonlinearity coefficient a(u), damping coefficients b(u), c(u)
and a mass-type coefficient m(u). In Reference [20], the conditions under which a slightly more general
family of wave equations is “nonlinearly self-adjoint” (58) are stated for v = φ(u). These results will be
generalized here by considering v = φ(t, x, u). A first observation is that this class of wave equations
admits an equivalence transformation u → ũ = f (u), with f ′ �= 0, which can be used to put a = 0 by
f (u) =

∫
exp(A(u))du where A′ = a. (Equivalence transformations were not considered in Reference

[20], and so, their results are considerably more complicated than is necessary). This transformation
gives

utt − uxx + b(u)ut + c(u)ux + m(u) = 0. (63)

In Ibragimov’s notation, the condition of “nonlinear self-adjointness” with v = φ(t, x, u) is given
by 0 = Eu(vF)|v=φ where

F = utt − uxx + b(u)ut + c(u)ux + m(u). (64)

This yields (
D2

t φ − D2
xφ − bDtφ − cDxφ + m′φ

)∣∣
F=0 = 0. (65)

For comparison, the determining Equation (23) for local symmetries X̂ = P(t, x, u, ut, ux, . . .)∂/∂u
(in characteristic form) is given by(

D2
t P − D2

xP + bDtP + cDxP + (utb′ + uxc′ + m′)P = 0
)∣∣

F=0 = 0. (66)

Its adjoint is obtained by multiplying by Q(t, x, u, ut, ux, . . .) and integrating by parts, which
yields

(
D2

t Q − D2
xQ − Dt(bQ)− Dx(cQ) + (utb′ + uxc′ + m′)Q = 0

)∣∣
F=0 = 0. After the Dx terms are

expanded out, this gives the determining Equation (60) for local adjoint-symmetries(
D2

t Q − D2
xQ − bDtQ − cDxQ + (b′ut + c′ux + m′)Q

)∣∣
F=0 = 0 (67)

which coincides with the “nonlinear self-adjointness” condition (65) extended to differential
substitutions [12,14,16] given by v = Q(t, x, u, ut, ux, . . .). All adjoint-symmetries of lowest-order form
Q(t, x, u) can be found in a straightforward way. After Q(t, x, u) is substituted into the determining
Equation (67) and utt is eliminated through the wave Equation (63), the determining equation splits
with respect to the variables ut and ux, yielding a linear overdetermined system of four equations
(after some simplifications):

Qtt − Qxx − bQt − cQx − mQu + m′Q = 0, (68)

Qtu − bQu = 0, Qxu + cQu = 0, (69)

Quu = 0. (70)
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It is straightforward to derive and solve this determining system by Maple. Hereafter,
the conditions

b′ �= 0, c′ �= 0, m′′ �= 0, m(0) = 0 (71)

will be imposed, which corresponds to studying wave equation (63) whose lower-order terms are
nonlinear and homogeneous. The general solution of the determining system (68)–(70) then comprises
three distinct cases (as obtained using the Maple package ‘rifsimp’), after merging. This leads to the
following complete classification of solution cases shown in Table 1. The table is organized by listing
each solution Q and the conditions on b, c, m for which it exists. (From these conditions, a classification
of maximal linear spaces of multipliers can be easily derived). Note that if the transformation
u → ũ =

∫
exp(A(u))du is inverted, then Q transforms to Q̃ = exp(A(u))Q. (Also note that,

under the restriction Q = φ(u) considered in Reference [20], the classification reduces to just the first
case with m = const. and Q = 1).

Table 1. Adjoint-symmetries (“nonlinear self-adjointness”).

Q(t, x, u) b(u) c(u) m(u) Conditions

em2t+m3x arb. arb. m1u +
∫
(m2b + m3c)du m1 = m2

3 − m2
2

eαx+βt b0 + b1m′ c0 + c1m′ arb.
b1β + c1α = 1

β(β − b0) = α(α + c0)

eγxq(x ∓ t) b0 + b1m′ c0 + c1m′ arb.

γ = ±b0 = −c0,

b1 = 1/b0, c1 = −1/c0,

q(ξ) = arb.

The Fréchet derivative operator in the symmetry determining Equation (23) and the adjoint of this
operator in the adjoint-symmetry determining Equation (60) are related by the integration-by-parts
formula (3). For a general DE system (14), this formula is given by

Qa(δPF)a − Pα(δ∗QF)α = DiΨi(P, Q; F) (72)

where the vector Ψi(P, Q; F) is given by the explicit expression (4) with v = Q, w = P, and f = F.
As shown in References [2–4], this vector Ψi(P, Q; F) will be a conserved current

DiΨi(P, Q; F)|E = 0 (73)

whenever the differential functions Pα and Qa respectively satisfy the symmetry and adjoint-symmetry
determining equations. Moreover, it is straightforward to see

Ψi(P, Q; F) = Φi(P; L)|v=Q, (74)

which follows from relation (7), where Φi(P; L) is the Noether conserved current (50) and L is the
Lagrangian (38). Alternatively, the equality (74) can be derived indirectly by applying formula (72) to
the variational identity (48) with v = Q, giving

prX̂(L) = φaFa + va(δPF)a = φaFa + Pα(δ∗v F)α + DiΨi(P, v; F)

= X̂(va)Eva(L) + X̂(uα)Euα(L) + DiΨi(P, v; F)
(75)

which implies Ψi(P, v; F) = Φi(P; L) holds (up to the possible addition of a total curl).
When the relation (74) is combined with Propositions 1 and 2, the following main result

is obtained.
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Theorem 2. For any DE system (14) admitting an adjoint-symmetry (60) (namely, a “nonlinearly self-adjoint
system” in the general sense), the conserved current (50) derived from applying Noether’s theorem to the extended
Euler–Lagrange system (39) using any given symmetry (46) is equivalent to the conserved current obtained
using the adjoint-symmetry/symmetry formula (72).

This theorem shows that the “nonlinear self-adjointness” method based on Ibragimov’s theorem
as developed in papers [9,12,14,15,17] for DE systems with M = m is just a special case of
the adjoint-symmetry/symmetry formula (72) introduced for general DE systems in prior papers
References [2–4], which were never cited. Moreover, the adjoint-symmetry/symmetry formula (72) has
the advantage that there is no need to extend the given DE system by artificially adjoining variables to
get a Euler–Lagrange system.

Another major advantage of the adjoint-symmetry/symmetry formula is that it can be used
to show how the resulting local conservation laws are, in general, not necessarily non-trivial
and comprise only a subset of all of the non-trivial local conservation laws admitted by a given
DE system. In particular, in many applications of Theorem 1, it is found that some non-trivial
symmetries, particularly translation symmetries, only yield trivial conservation laws [17–19], and that
some local conservation laws are not produced even when all admitted symmetries are used.
These observations turn out to have a simple explanation through the equivalence of Theorem 1
and the adjoint-symmetry/symmetry formula (72), as explained in the next section.

Example: For the semilinear wave Equation (63), the extended Euler–Lagrange system in
Ibragimov’s notation consists of

F = utt − uxx + b(u)ut + c(u)ux + m(u) =
δL
δv

= 0, (76)

F∗ = vtt − vxx − bvt − cvx + (b′ut + c′ux + m′)v =
δL
δu

= 0, (77)

where F∗ is defined by the adjoint-symmetry Equation (67) with Q = v, and where the Lagrangian (38)
is simply L = vF = v(utt − uxx + b(u)ut + c(u)ux + m(u)) in terms of the variables u and v.
Consider any point symmetry of the wave Equation (76) for u, given by a generator

X = τ(t, x, u)∂/∂t + ξ(t, x, u)∂/∂x + η(t, x, u)∂/∂u. (78)

Its equivalent characteristic form is X̂ = P∂/∂u, with P = η − τut − ξux satisfying the symmetry
determining Equation (66) on the space of solutions u(x) of the wave Equation (76). Every point
symmetry can be extended to a variational symmetry (54) admitted by the Euler–Lagrange system,
which is given by the generator Xext. = X + (τvt + ξvx − R∗

P(v))∂/∂v where R∗
P is the adjoint of

the operator RP defined by relation (41) for the point symmetry holding off of the solution space
of the wave Equation (76). In particular, RP can be obtained by a straightforward computation of
δPF = RP(F), where the terms in δPF are simplified by using the equations τu = ξu = 0, τt = ξx and
τx = ξt that arise from splitting the determining Equation (66). This yields

RP = −τDt − ξDx + ηu − (τt + ξx), (79)

and thus
R∗

P = τDt + ξDx + ηu. (80)

Hence, the variational symmetry is simply

Xext. = τ∂/∂t + ξ∂/∂x + η∂/∂u − ηuv∂/∂v (81)

which is a point symmetry.
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The action of this variational symmetry on the Lagrangian L = vF is given by

prXext.(L) = −ηuvF + vprX(F) = −(τt + ξx)vF = −(Dtτ + Dxξ)L (82)

since prX(F) = τDtF + ξDxF + RP(F) = (ηu − (τt + ξx))F. This symmetry action then can be
combined with the variational identity (55) to get the Noether relation

Dt(τL + Φt(P; L)) + Dx(τL + Φx(P; L)) = −X̂ext.(v)F − X̂ext.(u)F∗ (83)

using F = Ev(L) and F∗ = Eu(L), where

Φt(P; L) = vDtP(b(u)v − vt)P, Φx(P; L) = −vDxP + (c(u)v + vx)P (84)

are obtained from formula (50). This yields a conservation law

(DtCt + DxCx)|E(u,v) = 0, Ct = Φt(P; L)− τL, Cx = Φx(P; L)− ξL (85)

on the solution space E(u, v) of the Euler–Lagrange system F = 0, F∗ = 0. Since L|E(u,v) = 0, this
conservation law is locally equivalent to the conservation law (52) which is given by

(DtĈt + DxĈx)|E(u,v) = 0, Ĉt = Φt(P; L), Ĉx = Φx(P; L). (86)

Moreover, from the identity (72) relating the symmetry Equation (66) and the adjoint-symmetry
Equation (67), the conserved current (Ĉt, Ĉx) in the conservation law (86) is the same as the conserved
current (Ψt, Ψx) in the adjoint-symmetry/symmetry formula

Ψt(P, Q; F)|Q=v = Φt(P; L), Ψx(P, Q; F)|Q=v = Φx(P; L) (87)

where
Ψt(P, Q; F) = QDtP + (b(u)Q − DtQ)P,

Ψx(P, Q; F) = −QDxP + (c(u)Q + DxQ)P.
(88)

In Reference [20], the conservation law formula (85) is used to obtain a single local conservation
law for a special case of the wave Equation (63) given by b = −c = − ln(u) and d = 0, corresponding
to ũtt − ũxx − (ũ2

t − ũ2
x) + ũ(ũt − ũx) = 0 after an equivalence transformation u → ũ = e−u is made.

The formula is applied to the adjoint-symmetry Q̃ = e−ũ and the point symmetry X̃ = e(t+x)/2∂/∂ũ
with characteristic P̃ = e(t+x)/2, which respectively correspond to Q = 1 and X = e(t+x)/2u∂/∂u with
P = e(t+x)/2u. The likely reason why the obvious translation symmetries X̃ = ∂/∂t and X̃ = ∂/∂x
were not considered in Reference [20] is that these symmetries lead to locally trivial conservation laws
when Q̃ = e−ũ is used.

To illustrate the situation, consider the translation symmetries

X1 = ∂/∂t, X2 = ∂/∂x (89)

admitted by the wave Equation (63) for arbitrary b(u), c(u), m(u). The characteristic functions of
these two symmetries are, respectively, P = −ut and P = −ux. Local conservation laws can be
obtained by applying formula (85), or its simpler equivalent version (86), with v = Q(t, x, u) being the
adjoint-symmetries classified in Table 1. The resulting conserved currents (Ψt, Ψx), modulo locally
trivial currents, are shown in Table 2.

Notice that for Q = const. the conserved currents (Ψt, Ψx) obtained from the two translation
symmetries vanish. This implies that Ibragimov’s theorem (85) yields just trivial conserved currents
(Ψt, Ψx) for some cases of the wave Equation (63) when a non-trivial conserved current exists. A full
explanation of why this occurs will be given in the next section.
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Table 2. Conserved currents from the adjoint-symmetry/symmetry formula.

X = ∂/∂t X = ∂/∂x

Conditions Q Ψt , Ψx Ψt , Ψx

m = m1u + m2
∫

b du
+ m3

∫
c du

m1 = m2
3 − m2

2

em3x+m2t m2Q(ut − m2u +
∫

b du),
m2Q(m3u − ux +

∫
c du)

m3Q(ut − m2u +
∫

b du),
m3Q(m3u − ux +

∫
c du)

b = b0 + b1m′

c = c0 + c1m′

b1β + c1α = 1

β(β − b0) = α(α + c0)

eαx+βt βQ(ut − βu +
∫

b du),
βQ(αu − ux +

∫
c du)

αQ(ut − βu +
∫

b du),
αQ(αu − ux +

∫
c du)

b = ±(γ + 1
γ m′)

c = −γ + 1
γ m′ eγxq(x ∓ t)

− eγx(q′′u ± q′(ut +
∫

b du)),

± eγx((γq′ − q′′)u
+ q(ux ∓

∫
b du))

eγx(±(q′′ + γq′)u
+ (q′ + γq)(ut +

∫
b du)),

eγx((q′′ − γ2q)u

−(q′ + γq)(ux ∓
∫

b du))

3. Properties of Conservation Laws Generated by the Adjoint-Symmetry/Symmetry Formula and
Ibragimov’s Theorem

To determine when a conserved current is locally trivial or when two conserved currents are
locally equivalent, it is useful to have a characteristic (canonical) form for local conservation laws,
in analogy to the characteristic form for local symmetries.

Any local conservation law (26) can be expressed as a divergence identity [24]

DiCi = RC
aFa + RC

aiDiFa + · · ·+ RC
ai1···ir Di1 · · · Dir Fa (90)

by moving off of the solution space E of the system, where RC
a, RC

ai, . . . , RC
ai1···ir
a are some differential

functions that are non-singular on E , under some mild regularity conditions [29] on the form of the
DEs (14). Integration by parts on the terms on the right-hand side in this identity (90) then yields

DiC̃i = Qa
CFa (91)

with
Qa

C = RC
a − DiRC

ai + · · ·+ (−1)rDi1 · · · Dir RC
ai1···ir , (92)

where
C̃i|E = Ci|E (93)

reduces to the conserved vector in the given conservation law (26). Hence,

(DiC̃i)|E = 0 (94)

is a locally equivalent conservation law. The identity (91) is called the characteristic equation [24]
for the conservation law (26), and the set of differential functions (92) is called the conservation
law multiplier [24]. In general, a set of functions f a(t, x, u, ∂u, ∂2u, . . . ∂su) will be a multiplier if it
is non-singular on E and its summed product with the DEs Fa in the system has the form of a
total divergence.

For a given local conservation law, the multiplier arising from the integration by parts formula (92)
will be unique iff the coefficient functions in the characteristic Equation (90) are uniquely determined
by the conserved vector Ci. This uniqueness holds straightforwardly for any DE system consisting
of a single equation that can be expressed in a solved form for a leading derivative [29]. For DE
systems containing more than one equation, some additional technical requirements are necessary [24].
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In particular, it is necessary that a DE system have no differential identities [24], and it is sufficient
that a DE system have a generalized Cauchy–Kovalevskaya form [24–27]. A concrete necessary and
sufficient condition, which leads to the following uniqueness result, is stated in Reference [29].

Proposition 3. For any closed DE system (14) having a solved form in terms of leading derivatives and having
no differential identities, a conserved current is locally trivial (28) iff its corresponding multiplier (92) vanishes
when evaluated on the solution space of the system.

This class of DE systems includes nearly all systems of physical interest, apart from systems such
as the Maxwell equations and the incompressible fluid equations, which possess differential identities.
Often the distinction between systems with and without differential identities is overlooked in the
literature on conservation law multipliers.

The importance of Proposition 3 is that, in a wide class of DE systems, it establishes that a unique
characteristic form for locally equivalent conservation laws is provided by multipliers. From this result,
it is now straightforward to derive a simple condition to detect when a local conservation law given by
the adjoint-symmetry/symmetry formula (72) is locally trivial (28).

Let Pα(x, u, ∂u, . . . , ∂ru) be the characteristic functions defining a symmetry (23), and let
Qa(x, u, ∂u, . . . , ∂su) be a set of differential functions defining an adjoint-symmetry (60). Then, the
adjoint-symmetry/symmetry formula (72) yields a local conservation law (73). The characteristic
equation of this conservation law is given by substituting the symmetry identity (41) and the
adjoint-symmetry identity (61) into the formula (72) to get

DiΨi(P, Q; F) = QaRP(F)a − PαRQ(F)α. (95)

Integration by parts gives

DiΨ̃i(P, Q; F) = (R∗
P(Q)a − R∗

Q(P)a)Fa (96)

where
Ψ̃i(P, Q; F)|E = Ψi(P, Q; F)|E . (97)

Hence, the conservation law multiplier is given by [35]

Qa
Ψ = R∗

P(Q)a − R∗
Q(P)a. (98)

This yields the following result.

Proposition 4. The adjoint-symmetry/symmetry formula (72) for a given DE system (14) produces a locally
trivial conservation law if the condition

(R∗
P(Q)a − R∗

Q(P)a)|E = 0 (99)

holds for the given symmetry and adjoint-symmetry pair, where Pα(x, u, ∂u, . . . , ∂ru) is the set of
characteristic functions of the symmetry (23) and Qa(x, u, ∂u, . . . , ∂su) is the set of functions defining the
adjoint-symmetry (60). This condition (99) is also sufficient whenever the DE system (14) belongs to the class
stated in Proposition 3.

Through the equivalence stated in Theorem 2, which relates the adjoint-symmetry/symmetry
formula (72) and the generalized version of Ibragimov’s conservation law formula in Theorem 1, it
follows that “nonlinear self-adjointness” through a differential substitution with v = Q produces a
conservation law (50) that is locally trivial when Qa(x, u, ∂u, . . . , ∂su) and Pα(x, u, ∂u, . . . , ∂ru) satisfy
condition (99).
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A useful remark is that the triviality condition (99) can be checked directly, without the need to
derive the local conservation law itself.

Example: For the semilinear wave Equation (63), consider the conserved currents obtained in
Table 2, which are generated from the three adjoint-symmetries

Q1 = em2t+m3x, Q2 = eαx+βt, Q3 = eγxq(x ∓ t), (100)

and the two translation symmetries (89). The operators δPF = RP(F) associated with the characteristics

P1 = −ut, P2 = −ux (101)

of these two symmetries (89) are given by the formula (79), which yields

RP1 = −Dt, RP2 = −Dx. (102)

For adjoint-symmetries of the form Q(t, x, u), the operator δ∗QF = RQ(F) is easily found to be

RQ = Qu. (103)

Hence, the operators associated with the three adjoint-symmetries (100) are simply

RQ1 = RQ2 = RQ3 = 0. (104)

The triviality condition (99) is then given by

R∗
P1
(Ql)− R∗

Ql
(P1) = DtQl = 0, R∗

P2
(Ql)− R∗

Ql
(P2) = DxQl = 0, l = 1, 2, 3. (105)

This shows that the two conserved currents obtained from Q1 will be trivial when m2 = 0 and
m3 = 0 hold, respectively, and that likewise, the two conserved currents obtained from Q2 will be
trivial when β = 0 and α = 0 hold, respectively. Similarly, for Q3, the first conserved current will
be trivial when q′ = 0 holds, while the second conserved current will be trivial when q′ + γq = 0
holds, corresponding to q = e−γ(x±t). These trivial cases can be seen to occur directly from the explicit
expressions for the conserved currents (Ψt, Ψx) in Table 2.

In general, while the adjoint-symmetry/symmetry formula (72) (and, hence, Ibragimov’s theorem)
looks very appealing, it has major drawbacks that in many examples [14–17,20–22] the selection of
a symmetry must be fitted to the form of the adjoint-symmetry to produce a non-trivial conservation
law, and that in other examples [17–19] no non-trivial conservation laws are produced when only
translation symmetries are available. More importantly, it is not (as is sometimes claimed) a
generalization of Noether’s theorem to non-variational DE systems.

As a reinforcement of these statements, consider the situation of variational DE systems, where
adjoint-symmetries coincide with symmetries. Then, the adjoint-symmetry/symmetry formula (72)
produces a conserved current directly from any pair of symmetries admitted by a given variational DE
system. However, from Noether’s theorem, this conserved current must also arise directly from some
variational symmetry of the system. Moreover, if the pair of symmetries being used are variational
symmetries that happen to commute with each other, then the resulting conserved current turns out to
be trivial, as shown in Reference [36].

To understand these aspects and other properties of the formula, the determining equations for
multipliers are needed.

3.1. Multiplier Determining equations

All conservation law multipliers for any given DE system can be determined from the property (10)
and (11) that a differential function is a total divergence iff it is annihilated by the Euler operator (6).

358



Symmetry 2017, 9, 33

Specifically, when this property is applied directly to the characteristic Equation (91) for local
conservation laws, it yields the determining equations

Euα(Qa
CFa) = 0, α = 1, . . . , m (106)

which are necessary and sufficient [24] for a set of differential functions Qa
C(x, u, ∂u, . . . , ∂su) to be

a multiplier for a local conservation law (26). Note the Equation (106) must hold identically in jet space
(and not just on the solution space E of the DE system).

The multiplier determining the Equation (106) have a close connection to the determining
Equation (60) for adjoint-symmetries. This can be immediately seen from the product rule (9) obeyed
by the Euler operator, which gives

0 = Euα(Qa
CFa) = (δ∗QC

F)α + (δ∗FQC)α (107)

holding identically in jet space J(x, u, ∂u, ∂2u, . . .). Notice that if this Equation (107) is restricted to
the solution space E ⊂ J of the given DE system (14), then it coincides with the adjoint-symmetry
determining Equation (60). Hence, every conservation law multiplier is an adjoint-symmetry. This is
a well-known result [4,24,26,27,29,31]. What is not so well known are the other conditions [4,29] that
an adjoint-symmetry must satisfy to be a conservation law multiplier. These conditions arise from
splitting the determining Equation (107) with respect to Fa and its total derivatives. As shown in
Reference [29], the splitting can be derived by using the adjoint-symmetry identity (61) combined with
the expression

(δ∗FQ)α = Fa
∂Qa

∂uα
− Di

(
Fa

∂Qa

∂uα
i

)
+ · · ·+ (−1)sDi1 · · · Dis

(
Fa

∂Qa

∂uα
i1···is

)
. (108)

Then, in the determining Equation (107), the coefficients of Fa, DiFa, and so on yield the system of
equations [29]:

(δ∗QC
F)α|E = 0 (109)

and

RQ
a
α + Euα(Qa

C) = 0 (110)

RQ
ai1···iq
α + (−1)qE

(i1···iq)
uα (Qa

C) = 0, q = 1, . . . , s (111)

where RQ
a
α and RQ

ai1···iq
α are the coefficient functions of the linear differential operator (62) determined

by Equation (109), and where Euα is the Euler operator (6) and E
(i1···iq)
uα is a higher-order Euler operator

defined by [24,29]

E
(i1···iq)
uα ( f ) =

∂ f
∂uα

i1···iq
− (q+1

1 )Dj

( ∂ f
∂uα

i1···iq j

)
+ · · ·+ (−1)r(q+r

r )Dj1 · · · Djr

( ∂ f
∂uα

i1···iq j1···jr

)
, q = 1, 2, . . .

(112)
for an arbitrary differential function f (x, u, ∂u, . . . , ∂su). This system (109)–(111) constitutes
a determining system for conservation law multipliers. Its derivation requires the same technical
conditions on the form of the DE system (14) as stated in Proposition 3.

Theorem 3. The determining Equation (107) for conservation law multipliers of a general DE system (14) is
equivalent to the linear system of equations (109)–(111). In particular, multipliers are adjoint-symmetries (109)
satisfying Helmholtz-type conditions (110)–(111) which are necessary and sufficient for an adjoint-symmetry to
have the variational form (92) derived from a conserved current.
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This well known result [4,26,27,29] gives a precise relationship between adjoint-symmetries
and multipliers, or equivalently between “nonlinear self-adjointness” and multipliers. In particular,
it provides necessary and sufficient conditions for an adjoint-symmetry to be a multiplier.
The simplest situation is when adjoint-symmetries of the lowest-order form Qα(x, u) are considered,
which corresponds to “nonlinear self-adjointness” without differential substitutions. In this case,

the only condition is Equation (110), which reduces to RQ
a
α +

∂Qa

∂uα
= 0. This condition is, in general,

non-trivial. (Unfortunately, some recent work [16] incorrectly asserts that, for any DE system, every
adjoint-symmetry of the form Qα(x, u) is a multiplier).

When Theorem 3 is applied to variational DE systems, it yields the following well-known
connection [4,26,27,29] with Noether’s theorem.

Corollary 1. For a variational DE system (33), the multiplier determining system (109)–(111) reduces
to a determining system for variational symmetries. In particular, the determining equation for
adjoint-symmetries (109) coincides with the determining equation for symmetries (23), and the Helmholtz-type
conditions (110)–(111) coincide with the necessary and sufficient conditions for a symmetry to be variational
(namely, that prX̂(L) = DiΓi holds for some differential vector function Γi, where L is the Lagrangian (34)).

Note that, in this modern formulation of Noether’s theorem, the use of a Lagrangian is completely
by-passed through the Helmholtz-type conditions (110) and (111).

Example: For the semilinear wave Equation (63), the determining equation for multipliers of
lowest-order form QC(t, x, u) is given by

0 = Eu(QCF) = δ∗QC
F + δ∗FQC. (113)

Since QC(t, x, u) does not depend on derivatives of u, this determining equation splits with
respect to the variables ut, ux, utt, uxx, giving an overdetermined linear system which can be derived
and solved directly by Maple. This provides the simplest computational route to finding all multipliers
of lowest-order form. The connection between multipliers and adjoint-symmetries arises when the
determining Equation (113) is instead split into the two terms δ∗QC

F and δ∗FQC, which are given by

δ∗QC
F = D2

t QC − D2
xQC − bDtQC − cDxQC + (b′ut + c′ux + m′)QC = RQC (F) (114)

δ∗FQC =
∂QC
∂u

F = Eu(QC)F (115)

where the operator RQC is obtained from expression (103). Hence, on the solution space E of the wave
Equation (63), the multiplier determining equation reduces to the adjoint-symmetry Equation (67).
Off of the solution space E , the multiplier determining equation then becomes

0 = RQC (F) + Eu(QC)F = 2
∂QC
∂u

F (116)

which splits with respect to F, yielding
∂QC
∂u

= 0. (117)

This Helmholtz-type Equation (117) together with the adjoint-symmetry Equation (67) constitutes
the determining system (109)–(111) for finding all lowest-order multipliers QC(t, x, u) admitted by the
wave Equation (63).

The Helmholtz-type Equation (117) directly shows that all adjoint-symmetries of the form Q(t, x)
are conservation laws multipliers QC(t, x), and so, the three adjoint-symmetries (100) each determine
a non-trivial conserved current through the characteristic equation

QCF = DtĈt + DxĈx. (118)
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These conserved currents (Ĉt, Ĉx) can be derived in terms of the multipliers QC(t, x, u) in several
different ways. One simple way is by applying integration by parts to the terms in QCF to get
a total time derivative DtĈt plus a total space derivative DxĈx, which yields (Ĉt, Ĉx). Another
way is by taking Ĉt(t, x, u, ut, ux) and Ĉx(t, x, u, ut, ux) as unknowns and splitting the characteristic
equation with respect to utt, utx, uxx to get a linear system of determining equations that can be
integrated. The resulting conserved currents are shown in Table 3. The specific relationship between
these conserved currents and the conserved currents derived in Table 2 will be explained in the
next subsection.

Table 3. Conserved currents.

Conditions QC Ĉt Ĉx

m = m1u + m2
∫

b du
+ m3

∫
c du

m1 = m2
3 − m2

2

em3x+m2t em3x+m2t(ut − m2u +
∫

b du) em3x+m2t(m3u − ux +
∫

c du)

b = b0 + b1m′

c = c0 + c1m′

b1β + c1α = 1

β(β − b0) = α(α + c0)

eαx+βt eαx+βt(ut − βu +
∫

b du) eαx+βt(αu − ux +
∫

c du)

b = ±(γ + 1
γ m′)

c = −γ + 1
γ m′ eγxq(x ∓ t) eγx(q(ut +

∫
b du)± q′u) eγx((q′ − γq)u − (ux ∓

∫
b du))

3.2. Conservation Laws Produced by a Multiplier/Symmetry Pair

From Theorem 3 and Proposition 3, every multiplier admitted by a given DE system determines,
up to local equivalence, a conserved current for the system. Since multipliers are adjoint-symmetries,
the adjoint-symmetry/symmetry formula (72) can be applied by using any multiplier (92) together
with any symmetry (40). The resulting conserved current produced this way is given by

Qa
C(δPF)a − Pα(δ∗QC

F)α = DiΨi(P, QC; F) (119)

where Pα(x, u, ∂u, . . . , ∂ru) is a given symmetry characteristic and Qa
C(x, u, ∂u, . . . , ∂su) is

a given multiplier. The following result characterizing these conserved currents will now be established
for DE systems in the class stated in Proposition 3. The case of DE systems consisting of a single DE
has appeared previously in Reference [23].

Theorem 4. Let Ψi(P, QC; F) be the conserved current produced from the adjoint-symmetry/symmetry
formula (72) by using any multiplier Qa

C(x, u, ∂u, . . . , ∂su) together with any symmetry characteristic
Pα(x, u, ∂u, . . . , ∂ru). This conserved current Ψi(P, QC; F) is locally equivalent to a conserved current (30)
that is given by the infinitesimal action of the symmetry X̂P = Pα∂/∂uα applied to the conserved current Ci

determined by the multiplier Qa
C. In particular, Ψi(P, QC; F) and Ci are related by

(Ψi(P, QC; F)− prX̂P(Ci))|E = DjΘij (120)

for some differential antisymmetric tensor function Θij(x, u, ∂u, . . . , ∂ku).

The proof consists of showing that both conserved currents Ψi(P, QC; F) and prX̂P(Ci) have the
same multiplier. Consider the local conservation law determined by the multiplier Qa

C. The symmetry
X̂P applied to the characteristic Equation (91) of this conservation law yields

prX̂P(DiC̃i) = prX̂(Qa
CFa) = δP(Qa

CFa) = (δPQC)
aFa + Qa

C(δPFa). (121)
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The second term in this equation can be expressed as

Qa
C(δPFa) = Qa

CRP(F)a = FaR∗
P(QC)

a + DiΓi(QC, F; P) (122)

using the symmetry identity (41) combined with integration by parts, where Γi(QC, F; P)|E = 0.
Next, the first term in Equation (121) can be expressed as

(δPQC)
aFa = Pα(δ∗FQC)α + DiΨi(P, QC; F) = −Pα(δ∗QC

F)α + DiΨi(P, QC; F)

= −PαRQC (F)α + DiΨi(P, Qc; F)
(123)

through the Fréchet derivative identity (3) combined with the multiplier determining Equation (107)
and the adjoint-symmetry identity (61). Integration by parts then yields

(δPQC)
aFa = −FaR∗

QC
(P)a + Di(Ψi − Γi(P, F; QC)) (124)

where Γi(P, F; QC)|E = 0. Substitution of expressions (124) and (122) into Equation (121) gives

prX̂P(DiC̃i) = (R∗
P(QC)

a − R∗
QC

(P)a)Fa + Di(Ψi(P, Qc; F) + Γi(QC, F; P)− Γi(P, F; Qx)). (125)

Finally, since prX̂P commutes with total derivatives [24,29], this yields

Di(prX̂P(Ci) + Γ̃i) = Qa
ΨFa (126)

where Γ̃i|E = 0 is a locally trivial conserved current, and where

Qa
Ψ = R∗

P(QC)
a − R∗

Q(P)a (127)

is the multiplier (98) of the local conservation law (96) from the adjoint-symmetry/symmetry
formula (72) with Qa = Qa

C. This completes the proof.
Theorem 4 is a generalization of a similar result [2,3,36] for variational DE systems, where the

adjoint-symmetry/symmetry formula (72) reduces to a formula using any pair of symmetries.

Corollary 2. For a variational DE system, let Ψi(P, QC; F) be the conserved current produced from the
adjoint-symmetry/symmetry formula (72) by using any symmetry characteristic Pα(x, u, ∂u, . . . , ∂ru) together
with any multiplier Qα

C(x, u, ∂u, . . . , ∂su) given by a variational symmetry characteristic. The conserved current
Ψi(P, QC; F) is locally equivalent to a conserved current (30) that is given by the infinitesimal action of the
symmetry X̂P = Pα∂/∂uα applied to the conserved current Ci determined by the multiplier Qα

C. Moreover,
through Noether’s theorem, the multiplier of this conserved current Ψi(P, QC; F) is the characteristic of a
variational symmetry given by the commutator of the symmetries X̂P = Pα∂/∂uα and X̂QC = Qα

C∂/∂uα.

Several basic properties of the adjoint-symmetry/symmetry formula (72) can be deduced from
Theorem 4, as first shown in Reference [23] for DE systems consisting of a single DE.

Theorem 5. (i) For a given DE system (14), let Qa
C be the multiplier for a local conservation law in which

the components of the conserved current Ci have no explicit dependence on x. Then, using any translation
symmetry X = ai∂/∂xi, with characteristic Pα = −aiuα

i where ai is a constant vector, the conserved current
Ψi(P, QC; F) is locally trivial. (ii) For a given DE system (14) that possesses a scaling symmetry X =

a(i)xi∂/∂xi + b(α)uα∂/∂uα, where a(i), b(α) are constants, let Qa
C be the multiplier for a local conservation law

in which the components of the conserved current Ci are scaling homogeneous. Then, using the characteristic
Pα = b(α)uα − a(i)xiuα

i of the scaling symmetry, the conserved current Ψi(P, QC; F) is locally equivalent to a
multiple w of the conserved current Ci determined by Qa

C. This multiple, w = const., is the scaling weight of
the conserved integral given by

∫
∂Ω CidSi where Ω is any closed domain in R

n and ∂Ω is its boundary surface.
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The proof is a straightforward extension of the proof in Reference [23] and will be omitted.
Part (i) of this theorem explains the observations made in many recent papers in which Ibragimov’s

theorem gave only trivial local conservation laws. This will happen whenever the only local
symmetries admitted by a DE system are translations and the only admitted adjoint-symmetries
have no dependence on x.

Part (ii) of the theorem first appeared in Reference [28]. It shows that the local conservation
laws admitted by any DE system with a scaling symmetry can be obtained from an algebraic formula
using the conservation law multipliers. This explains why in many recent papers, the use of scaling
symmetries in Ibragimov’s theorem has produced non-trivial local conservation laws.

A more important point comes from putting together Theorems 3 and 4. Together, these two
theorems show that the adjoint-symmetry/symmetry formula (72) cannot produce any “new” local
conservation laws, since any local conservation law admitted by a given DE system must already arise
directly from a multiplier. Moreover, for this formula to generate all of the local conservation laws for
a given DE system, it seems plausible that the set of admitted symmetries needs to act transitively on a
set of admitted local conservation laws, so then every multiplier arises from some symmetry applied
to some multiplier. The need for a transitive action is especially clear from Corollary 2, since if a pair
of commuting variational symmetries is used in the formula, then the resulting local conservation law
will have a trivial multiplier, and hence, will be a locally trivial conservation law.

These significant deficiencies should discourage the unnecessary use of the adjoint-symmetry/
symmetry formula (72), and consequently the unnecessary use of Ibragimov’s theorem, when local
conservation laws are being sought for a given DE system. It is much simpler and more direct to find
all multipliers and then to derive the conserved currents determined by these multipliers, as will be
explained further in the next section.

Example: For the semilinear wave Equation (63), Table 2 shows the conserved currents obtained
from the adjoint-symmetry/symmetry formula (72). Each of these conserved currents can be checked
to satisfy the characteristic Equation (118) with Ĉt = Ψt and Ĉx = Ψx, where the resulting multipliers
QΨ are shown in Table 4. There is a simple relationship (127) between each multiplier QΨ and the
adjoint-symmetry/symmetry pair Q, P used to generate the conserved current (Ψt, Ψx). In particular,
from expressions (100)–(104) for the symmetry characteristics, adjoint-symmetries and their associated
operators RP and RQ, the relationship (127) yields

QΨ(P1,Ql ;F) = R∗
P1
(Ql)− R∗

Ql
(P1) = DtQl , l = 1, 2, 3

QΨ(P2,Ql ;F) = R∗
P2
(Ql)− R∗

Ql
(P2) = DxQl , l = 1, 2, 3

(128)

in accordance with Table 4.
In particular, consider the case when m(u) is zero and both b(u), c(u) are arbitrary, so then the only

admitted multiplier of lowest-order form Q(t, x, u) is Q = 1 (up to a multiplicative constant), as shown
by Table 1. In this case, it is straightforward to show that (by solving the relevant determining
equations) there are no first-order multipliers and that the only admitted point symmetries are
generated by the translations (89). Consequently, when the set of multipliers Q(t, x, u, ut, ux) is
considered, a single non-trivial conservation law Ct = ut + ∫ b(u) du, Cx = −ux + ∫ c(u) du is admitted
by the wave equation utt − uxx + b(u)ut + c(u)ux = 0 with b(u) and c(u) arbitrary, whereas all of the
conserved currents (Ψt, Ψx) obtained from Ibragimov’s theorem (85) or from the simpler equivalent
adjoint-symmetry/symmetry formula (86), are trivial! Note that, correspondingly, the symmetry
action on the set of non-trivial conservation laws given by the set of multipliers Q(t, x, u, ut, ux) is not
transitive. This example succinctly illustrates the incompleteness of these formulas for generating
conservation laws.
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Table 4. Multipliers from the adjoint-symmetry/symmetry formula.

P Q Ψt , Ψx QΨ

−ut em3x+m2t m2em3x+m2t(ut − m2u +
∫

b du),

m2em3x+m2t(m3u − ux +
∫

c du)

m2em3x+m2t

= Dt(em3x+m2t)

−ux em3x+m2t m3em3x+m2t(ut − m2u +
∫

b du),

m3em3x+m2t(m3u − ux +
∫

c du)

m3em3x+m2t

= Dx(em3x+m2t)

−ut eαx+βt βeαx+βt(ut − βu +
∫

b du),

βeαx+βt(αu − ux +
∫

c du)

βeαx+βt

= Dt(eαx+βt)

−ux eαx+βt αeαx+βt(ut − βu +
∫

b du),

αeαx+βt(αu − ux +
∫

c du)

αeαx+βt

= Dx(eαx+βt)

−ut eγxq
− eγx(q′′u ± q′(ut +

∫
b du)),

± eγx((γq′ − q′′)u + q(ux ∓
∫

b du))

∓ eγxq
= Dt(eγxq)

−ux eγxq
eγx(±(q′′ + γq′)u + (q′ + γq)(ut +

∫
b du)),

eγx((q′′ − γ2q)u − (q′ + γq)(ux ∓
∫

b du))

eγx(q′ + γq)
= Dx(eγxq)

4. A Direct Construction Method to Find All Local Conservation Laws

The results stated in Proposition 3 and Theorems 3, 4 and 5 have been developed in References
[4,23,26–28] and extended in References [29,35]. This collective work provides a simple, algorithmic
method to find all local conservation laws for any given system of DEs. The method is based on the
general result that all local conservation laws arise from multipliers as given by the solutions of a
linear system of determining equations, where the multipliers are simply adjoint-symmetries subject
to certain Helmholtz-type conditions.

Consequently, all multipliers can be found by either of the two following methods [4]: (1) directly
solve the full determining system for multipliers; or (2) first, solve the determining equation for
adjoint-symmetries, and next, check which of the adjoint-symmetries satisfy the Helmholtz-type conditions.
The adjoint-symmetry determining equation is simply the adjoint of the symmetry determining equation,
and hence, it can be solved by the standard algorithmic procedure used for solving the symmetry
determining equation [24,31,32]. Likewise, the same procedure works equally well for solving the
multiplier determining system.

A natural question is, in practice, at which differential orders s ≥ 0 will multipliers or
adjoint-symmetries Qa(x, u, ∂u, . . . , ∂su) be found?

One answer is that the same situation arises for symmetries. Normally, point symmetries are
sought first, since many DE systems admit point symmetries, and since relatively fewer DE systems
admit contact symmetries or higher-order symmetries. Indeed, the existence of a sufficiently high-order
symmetry is one main definition of an integrable system [37], as this can indicate the existence of
an infinite hierarchy of successively higher-order symmetries. For multipliers, the most physically
important conserved currents always have a low differential order. Based on numerous examples,
a concrete definition of a low-order multiplier that seems to characterize these physically important
conserved currents, and distinguishes them from higher-order conserved currents arising for integrable
systems, has been introduced in recent work [29,35].

Another answer is that it is straightforward just to find all multipliers or adjoint-symmetries
with a specified differential order s = 0, 1, 2, . . ., going up to any desired maximum finite order.
Moreover, in some situations, a standard descent/induction argument [38–40] can be used to find the
multipliers or adjoint-symmetries to all orders s ≥ 0.

Once a set of multipliers has been found for a given DE system, the corresponding conserved
currents are straightforward to find in an explicit form. Several different methods are available.
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One algorithmic method is the direct integration of the characteristic equation [31,41] defining
the conserved current. Another algorithmic method is the use of a homotopy integral formula.
This method has several versions [4,24,26,27,29], all of which involve trade-offs between the simplicity
of the integration versus the flexibility of avoiding singularities (if any) in the integrand.

However, purely algebraic methods for the construction of conserved currents from multipliers
are known. One algebraic method is the use of a scaling formula [23,28,31], which is given by the
adjoint-symmetry/symmetry formula. This applies only to DE systems that admit a scaling symmetry,
but it has recently been extended to general DE systems by incorporating a dimensional analysis
method as shown in Reference [29]. In particular, with the use of this dimensional-scaling method, the
construction of conserved currents becomes completely algebraic.

Therefore, the general method just outlined provides a completely algorithmic computational
way to derive all local conservation laws for any given DE system. In particular, there is no need to
resort to any special methods or ansatzs (such as the “abc” technique [42], partial Lagrangians [43],
“nonlinear self-adjointness” [9,12,14,15,17], undetermined coefficients [44]), which at best just yield a
subset of all of the local conservation laws admitted by a DE system or just apply to restricted classes
of DE systems.

Example: The semilinear wave Equation (63) can be expected to admit conserved currents that
depend nonlinearly on ut and ux, in addition to the previous conserved currents in Table 3, all of
which have linear dependence on ut and ux. The multipliers (100) for the latter conserved currents
have the form QC(t, x). Conserved currents that depend nonlinearly on ut and ux will arise from
multipliers QC(t, x, u, ut, ux) that have explicit dependence on ut and ux. It is straightforward to find
all such multipliers by using Maple to set up and solve the multiplier Equation (113), which splits with
respect to the variables utt, utx, uxx, uttt, utxx, uttx, utxx, uxxx, giving an overdetermined linear system.
Alternatively, the multiplier Equation (113) can be split instead into the two terms δ∗QC

F and δ∗FQC,
which provides a direct connection between multipliers and adjoint-symmetries. In particular, the first
term in the multiplier Equation (113) consists of

δ∗QC
F = D2

t QC − D2
xQC − bDtQC − cDxQC + (b′ut + c′ux + m′)QC = RQC (F) (129)

where the operator RQC is found to be given by

RQ =
∂QC
∂ut

DtF +
∂QC
∂ux

DxF +
∂2QC
∂ut∂ut

F +
∂QC
∂u

− 2b
∂QC
∂ut

+ 2ut
∂2QC
∂u∂ut

+ 2utx
∂2QC

∂ux∂ut
+ 2(uxx − but − cux − d)

∂2QC
∂ut∂ut

(130)

for multipliers QC(t, x, u, ut, ux), through utt = uxx − b(u)ut − c(u)ux − m(u). The second term in the
multiplier Equation (113) is given by

δ∗FQC =
∂QC
∂u

F − Dt

(∂QC
∂ut

F
)
− Dx

(∂QC
∂ux

F
)
= −∂QC

∂ut
DtF − ∂QC

∂ux
DxF + Eu(Q)F (131)

where

Eu(Q) = − ∂2QC
∂ut∂ut

F +
∂QC
∂u

− ut
∂2QC
∂u∂ut

− ux
∂2QC
∂u∂ux

− 2utx
∂2QC

∂ux∂ut

+ (but + cux + d − 2uxx)
∂2QC
∂ut∂ut

(132)

for multipliers QC(t, x, u, ut, ux). On the solution space E of the wave Equation (63), the terms (131)
vanish, while the other terms (129) reduce to the adjoint-symmetry Equation (67). Off of the solution
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space E , these terms (129) and (131) become a linear combination of F, DtF, DxF, whose coefficients
must vanish separately. This splitting is found to yield a single Helmholtz-type equation

2
∂QC
∂u

− b
∂QC
∂ut

+ ut
∂2QC
∂u∂ut

− ux
∂2QC
∂u∂ux

− (but + cux + d)
∂2QC
∂ut∂ut

= 0. (133)

Taken together, this Helmholtz-type Equation (133) and the adjoint-symmetry Equation (67)
constitute the determining system (109)–(111) for finding all first-order multipliers QC(t, x, u, ut, ux)

admitted by the wave Equation (63).
The most computationally effective way to solve Equations (133) and (67) in the determining

system is by changing variables from t, x, u, ut, ux to μ = 1
2 (t + x), ν = 1

2 (t − x), u, uμ = ut + ux,
uν = ut − ux, based on null coordinates for the wave Equation (63). In these new variables, the general
solution of the determining system consists of three distinct cases (as obtained using the Maple package
‘rifsimp’), after the nonlinearity and homogeneity conditions (71) are imposed on b(u), c(u), d(u).
The resulting multipliers, after merging cases, are shown in Table 5. Each multiplier determines
a non-trivial conserved current through the characteristic Equation (118). These conserved currents
(Ĉt, Ĉx) can be derived in terms of the multipliers QC(t, x, u, ut, ux) in the same way discussed
previously for lowest-order multipliers. The results are shown in Table 6.

Table 5. First-order multipliers.

Conditions QC

2m1m2
m − m1

=
4m1
b ± c

=
∫
(b ∓ c) du

2m1 + (b ± c)(ut ± ux)

2m + (b ± c)(ut ± ux)

m = (m1 +
1
4
∫
(b − c) du)(b + c),

(1 − γ)b = (1 + γ)c
((1 − γ)ut + (1 + γ)ux)(b2 − c2)

((b + c)(ut + ux) + 2m)((b − c)(ut − ux)2m)

Table 6. First-order conserved currents.

Conditions Ĉt , Ĉx

2m1m2
m − m1

=
4m1
b ± c

=
∫
(b ∓ c) du

γ ln
( b ± c

2m1 + (b ± c)(γ + ut ± ux)

)
+ ut +

1
2
∫
(b ± c) du,

∓ γ ln
( b ± c

2m1 + (b ± c)(γ + ut ± ux)

)
− ux +

1
2
∫
(c ± b) du + γx

m =
(
m1 +

1
4
∫
(b − c) du

)
(b + c),

(1 − γ)b = (1 + γ)c

ln
((

γ
(∫

(b + c) du + 2(ut − ux)
)
+ m1

) 1
γ

γ
∫
(b + c) du + 2(ut + ux) + m1

)
,

ln
((

γ
(∫

(b + c) du + 2(ut − ux)
)
+ m1

) 1
γ

× (
γ
∫
(b + c) du + 2(ut + ux) + m1

))

5. Concluding Remarks

The conservation law theorem stated by Ibragimov in References [9,12] for “nonlinear self-adjoint”
DEs and subsequent extensions of this theorem in References [14,15,17] are not new. In its most general
form, this theorem is simply a re-writing of a standard formula [2–4] that uses a pair consisting of a
symmetry and an adjoint-symmetry to produce a conservation law through a well-known Fréchet
derivative identity [2,3,24,29,31]. Unfortunately, no references to prior literature are provided in
Ibragimov’s papers, which may give the impression that the results are original. One aspect that is
novel is the derivation of the formula by using an auxiliary Lagrangian, although it does not in any
way simplify either the formula or its content. Moreover, the condition of “nonlinear self-adjointness”
is nothing but a re-writing of the condition that a DE system admits an adjoint-symmetry [4,29], and
this condition automatically holds for any DE system that admits a local conservation law.
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The present paper shows how the symmetry/adjoint-symmetry formula is directly connected
to the action of symmetries on conservation laws, which explains a number of major drawbacks
in trying to use the formula and, hence, in applying Ibragimov’s theorem, as a method to generate
conservation laws. In particular, the formula can generate trivial conservation laws and does not always
yield all non-trivial conservation laws unless the symmetry action on the set of these conservation
laws is transitive, which cannot be known until all conservation laws have been found.

A broader point, which is more important, is that there is a completely general method [29,31]
using adjoint-symmetries [2–4,26,27] to find all local conservation laws for any given DE system.
This method is a kind of adjoint version of the standard Lie method to find all local symmetries.
The method is algorithmic [29], and the required computations are no more difficult than the
computations used to find local symmetries.
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Abstract: A direct approach is proposed for constructing conservation laws of discrete evolution
equations, regardless of the existence of a Lagrangian. The approach utilizes pairs of symmetries and
adjoint symmetries, in which adjoint symmetries make up for the disadvantage of non-Lagrangian
structures in presenting a correspondence between symmetries and conservation laws. Applications
are made for the construction of conservation laws of the Volterra lattice equation.
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1. Introduction

Noether’s theorem tells us that a symmetry of a differential equation leads to a conservation
law of the same equation, if the equation is derived from a Lagrangian, namely, it has a Lagrangian
formulation [1,2]. The Lagrangian formulation of the equation is essential for presenting conservation
laws from symmetries, and many physically important examples can be found in [1–4]. A natural
question arises whether there is any correspondence between symmetries and conservation laws
for differential equations not derivable from any Lagrangian. We would, in this paper, like to show
that it is possible to give a positive answer to the above question if we adopt adjoint symmetries.
More precisely, we want to exhibit that using symmetries and adjoint symmetries together can lead to
conservation laws for both Lagrangian and non-Lagrangian equations.

A good attempt to use adjoint symmetries in computing conservation laws of differential equations
was made in [5], and the approach utilizes adjoint symmetries, in which an adjoint invariance condition
equivalently requires the existence of an adjoint symmetry. More generally, nonlinear self-adjointness
was introduced on the basis of adjoint systems and successfully applied to construction of conservation
laws of differential equations [6,7]. In that theory, the nonlinear self-adjointness means that the second
set of dependent variables in an adjoint system stands for an adjoint symmetry.

We would like to consider regular differential-difference equations, and so, they can be written
as evolution equations. Equations of this type contain difference equations, since any difference
equation can be considered as a stationary equation of discrete evolution equations. We will utilize
pairs of symmetries and adjoint symmetries to present a direct formula for constructing conservation
laws, and thus conserved densities, for evolution equations. Our approach will be used to compute
conservation laws for the Volterra lattice equation. The general theory justifies that symmetries
really reflect conservation laws. However, the adoption of adjoint symmetries has not attracted much
attention within the mathematical physics community. It is expected that our findings could stimulate
to expose more mathematical properties of adjoint symmetries as well as develop efficient algorithms
for computing adjoint symmetries.

The paper is structured as follows. In Section 2, a general theory will be formulated for
constructing conservation laws and thus conserved densities from symmetries and adjoint symmetries

Symmetry 2015, 7, 714–725 369 www.mdpi.com/journal/symmetry
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for discrete evolution equations. In Section 3, an example will be analyzed, along with new conserved
densities. Finally in Section 4, a few of concluding remarks will be given with some discussion.

2. General Theory

We will use a plain language to formulate the framework of our results on the correspondence
between conservation laws and pairs of symmetries and adjoint symmetries.

Let the potential vector u be defined by

u = (u1, · · · , uq)T , ui = ui(n, t), 1 ≤ i ≤ q, n = (n1, · · · , np) ∈ Z
p, t ∈ R, (1)

and Ei, 1 ≤ i ≤ p, denote the shift operators for the variables ni, 1 ≤ i ≤ p, i.e.,

(Eiu)(n) = u(n1, · · · , ni−1, ni + 1, ni+1, · · · , np), n = (n1, · · · , np) ∈ Z
p, 1 ≤ i ≤ p. (2)

we introduce

Eα = Eα1
1 · · · E

αp
p , Eαu = (Eαu1, · · · , Eαuq) = (u1

α, · · · , uq
α), (Eαui)(n) = ui(n + α), (3)

where α = (α1, · · · , αp), n = (n1, · · · , np) ∈ Z
p, and n + α = (n1 + α1, · · · , np + αp). We denote by A

and B the space of all local C∞ functions in n, t, u and Eαu to some finite order α, and the space of all
C∞ functions in n, t, u and Eαu to some finite order α. Moreover, we assume that Ar and Br denote the
r-th order tensor products of A and B, respectively, i.e.,

Ar = A⊗ · · · ⊗ A︸ ︷︷ ︸
r

, Br = B ⊗ · · · ⊗ B︸ ︷︷ ︸
r

. (4)

The locality here means that for a function f (u) in A, any value ( f (u))(n) is completely determined
by the values of u at finitely many points n ∈ Z

p. The space A contains functions of polynomial
type, P(u, Eu, · · · , Eαu), where P is a polynomial in its variables, and the space B contains non-local
functions:

( f (u))(n) = ∑
|α|≤m

∑
k≥n

(Eαu)(k), m ≥ 1, |α| = |α1|+ · · ·+ |αp|.

For a local vector function X = X(u) = (X1, · · · , Xr)T ∈ Ar, we can compute its Gateaux
derivative operator as follows:

X′ = X′(u) = (Vj(Xi))r×q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V1(X1) V2(X1) · · · Vq(X1)

V1(X2) V2(X2) · · · Vq(X2)

...
...

. . .
...

V1(Xr) V2(Xr) · · · Vq(Xr)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Vi(Xj) = ∑

α∈Zp

∂Xj

∂ui
α

Eα, (5)

and its (formal) adjoint operator

X
′† = X

′†(u) = (V†
i (Xj))q×r, V†

i (Xj) = ∑
α∈Zp

E−α
∂Xj

∂ui
α

, (6)

where the action of the operator E−α f on g is given by (E−α f )g = E−α( f g), f , g ∈ B. The operator
X

′† can be explained as an adjoint operator of X′, if the inner products

〈Y, Z〉 = ∑
n∈Zp

s

∑
i=1

Yi(n)Zi(n), Y = (Y1, · · · , Ys)
T , Z = (Z1 · · · , Zs)

T ∈ Bs, s ≥ 1, (7)
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are well defined over some selected space of u. For example, for the adjoint operator E†
i = E−1

i of each
shift operator Ei (1 ≤ i ≤ p), we have

〈E†
i Y, Z〉 = 〈E−1

i Y, Z〉 = 〈Y, EiZ〉, Y, Z ∈ B.

Let us now consider an discrete evolution equation

ut = K(n, t, u), K ∈ Aq. (8)

its linearized equation and adjoint linearized equation are defined by

(σ(n, t, u))t = K′(n, t, u)σ(n, t, u), σ ∈ Bq, (9)

(ρ(n, t, u))t = −K
′†(n, t, u)ρ(n, t, u), ρ ∈ Bq, (10)

respectively. Here K′ and K
′† denotes the Gateaux derivative operator and the adjoint Gateaux

derivative operator of K with respect to u, respectively; and ft denotes the total derivative of f with
respect to t.

Definition 1. A vector field σ ∈ Bq is called a symmetry of the discrete evolution Equation (8), if it satisfies
the linearized Equation (9) when u solves Equation (8). A vector field ρ ∈ Bq is called an adjoint symmetry of
the discrete evolution equation Equation (8), if it satisfies the adjoint linearized Equation (10) when u solves (8).

It is easy to see that two local vector fields σ ∈ Aq and ρ ∈ Aq are a symmetry and an adjoint
symmetry of the discrete evolution Equation (8), if and only if they satisfy

∂σ(n, t, u)
∂t

= K′(n, t, u)σ(n, t, u)− σ′(n, t, u)K(n, t, u), (11)

∂ρ(n, t, u)
∂t

= −K
′†(n, t, u)ρ(n, t, u)− ρ′(n, t, u)K(n, t, u), (12)

respectively, when u solves Equation (8). Here σ′ and ρ′ are the Gateaux derivative operators of σ and
ρ, and ∂

∂t denotes the partial derivative with respect to t.

Definition 2. If a relation

ht =
p

∑
i=1

(Ei − 1) fi, h, fi ∈ B, 1 ≤ i ≤ p, (13)

holds when u solves the discrete evolution Equation (8), then Equation (13) is called a conservation law of
Equation (8), h a conserved density of Equation (8), and f = ( f1, · · · , fp)T a conversed flux of Equation (8)
corresponding to h. A conserved density h ∈ B is called trivial, if there exist gi ∈ B, 1 ≤ i ≤ p, such that
h = ∑

p
i=1(Ei − 1)gi holds on the solution set.

A conserved quantity means a quantity which does not vary with respect to time t on the solution
set. A quantity defined by I = ∑n∈Z p I(n), I = I(n, t, u) ∈ B, is called a functional. We would first
like to show a relation between conserved quantities and adjoint symmetries.

Proposition 1. Let I = I(n, u) be a functional which does not depend explicitly on time t. Then, I is a
conserved quantity of a discrete evolution equation ut = K, K = K(n, t, u) ∈ Bq, if and only if its variational
derivative δI

δu is an adjoint symmetry of the same equation.

Proof. Let S be the Schwartz space and the Gateaux derivative of an object P = P(u) with respect to
Y be defined by

P′[Y] = P′(u)[Y] = ∂P(n, t, u + εY)
∂ε

∣∣∣
ε=0

, Y ∈ Bq.
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We denote the variational derivative δI
δu by G, and so, the definition of variational derivatives tells that

I′[Y] = 〈G, Y〉, Y ∈ Sq,

where the inner product is defined as in Equation (7). Then the differentiability of functions of C∞

class guarantees that on the solution set, we have

It =
∂I
∂t

+
∂I(n, u + εut)

∂ε

∣∣∣
ε=0

= 〈G, ut〉 = 〈G, K〉.

It now follows that
(It)

′[Y] = 〈G′[Y], K〉+ 〈G, K′[Y]〉
= 〈G′†K, Y〉+ 〈K′†G, Y〉
= 〈G′

K, Y〉+ 〈K′†G, Y〉

= 〈∂G
∂t

+ G
′
K + K

′†G, Y〉, Y ∈ Sq,

where G
′† = G′ and ∂G

∂t = 0 were used. This last equality implies that I is conseved if and only if G is
an adjoint symmetry.

We use a conventional assumption below: an empty product of shift operators Eαi , αi ∈ Z,
1 ≤ i ≤ p, is understood to be the identity operator. For example, the operator Πl

i=kE2
i implies the

identity operator, when k > l. We would now like to prove the following lemma, in order to give a
direct formula for constructing conservation laws of the discrete evolution Equation (8).

Lemma 1. Let f and g be two C∞ functions in variables n1, · · · , np. Then for any α = (α1, · · · αp) ∈ Z
p,

we have

f Eαg − (E−α f )g = f (Eα1
1 · · · E

αp
p g)− (E−α1

1 · · · E
−αp
p f )g

=
p

∑
i=1

(Ei − 1)
[ αi

∑
βi=1

(E−α1
1 · · · E−αi−1

i−1 E−βi
i f )(Eαi−βi

i Eαi+1
i+1 · · · E

αp
p g)

−
−αi

∑
βi=1

(E−α1
1 · · · E−αi−1

i−1 E−αi−βi
i f )(E−βi

i Eαi+1
i+1 · · · E

αp
p g)

]
, (14)

where the value of an empty sum is conventionally zero.

Proof. First note that we have

aEk
i b − (E−k

i a)b

= (Ei − 1)
[ k

∑
l=1

(E−l
i a)(Ek−l

i b)−
−k

∑
l=1

(E−k−l
i a)(E−l

i b)
]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Ei − 1)

k

∑
l=1

(E−l
i a)(Ek−l

i b), k ≥ 0,

(Ei − 1)
−k

∑
l=1

(E−k−l
i a)(E−l

i b), k < 0,

(15)
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for any k ∈ Z and any two C∞ functions a and b in variables n1, · · · , np. Then we decompose that

f Eαg − (E−α f )g = f (Eα1
1 · · · E

αp
p g)− (E−α1

1 · · · E
−αp
p f )g

=
p

∑
i=1

[
(E−α1

1 · · · E−αi−1
i−1 f )(Eαi

i · · · E
αp
p g)− (E−α1

1 · · · E−αi
i f )(Eαi+1

i+1 · · · E
αp
p g)

]
.

It now follows from Equation (15) that each term in the above sum can be computed as follows:

(E−α1
1 · · · E−αi−1

i−1 f )(Eαi
i · · · E

αp
p g)− (E−α1

1 · · · E−αi
i f )(Eαi+1

i+1 · · · E
αp
p g)

= (E−α1
1 · · · E−αi−1

i−1 f )[Eαi
i (Eαi+1

i+1 · · · E
αp
p g)]

−[E−αi
i (E−α1

1 · · · E−αi−1
i−1 f )](Eαi+1

i+1 · · · E
αp
p g)

= (Ei − 1)
[ αi

∑
βi=1

(E−α1
1 · · · E−αi−1

i−1 E−βi
i f )(Eαi−βi

i Eαi+1
i+1 · · · E

αp
p g)

−
−αi

∑
βi=1

(E−α1
1 · · · E−αi−1

i−1 E−αi−βi
i f )(E−βi

i Eαi+1
i+1 · · · E

αp
p g)

]
, 1 ≤ i ≤ p,

where the value of an empty sum is conventionally zero. This allows us to conclude that the equality
Equation (14) holds for any α = (α1, · · · , αp) ∈ Z

p. The proof is finished.

Theorem 1. Let σ = (σ1, · · · , σq)T ∈ Bq and ρ = (ρ1, · · · , ρq)T ∈ Bq be a symmetry and an adjoint
symmetry of the discrete evolution Equation (8), respectively. Then we have a conservation law of the discrete
evolution Equation (8):

(σTρ)t = (
q

∑
i=1

σiρi)t

=
p

∑
k=1

(Ek − 1)
q

∑
i,j=1

∑
α∈Zp

[ αk

∑
βk=1

(E−α1
1 · · · E−αk−1

k−1 E−βk
k ρi

∂Ki

∂uj
α

)(Eαk−βk
k Eαk+1

k+1 · · · E
αp
p σj)

−
−αk

∑
βk=1

(E−α1
1 · · · E−αk−1

k−1 E−αk−βk
k ρi

∂Ki

∂uj
α

)(E−βk
k Eαk+1

k+1 · · · E
αp
p σj)

]
, (16)

where α = (α1, · · · , αp), and the value of an empty sum is conventionally zero. Therefore, σTρ is a conserved
density of the discrete evolution Equation (8).

Proof. Let us compute that

(σTρ)t = σT
t ρ + σTρt = ρTσt + σTρt

= ρTK′σ − σTK
′†ρ =

q

∑
i,j=1

(ρiVj(Ki)σj − σjV†
j (Ki)ρi)

=
q

∑
i,j=1

∑
α∈Zp

(ρi
∂Ki

∂uj
α

Eασj − σjE−αρi
∂Ki

∂uj
α

).

By using Lemma 1, for all 1 ≤ i, j ≤ q, α ∈ Z
p, we have
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ρi
∂Ki

∂uj
α

Eασj − σjE−αρi
∂Ki

∂uj
α

=
p

∑
k=1

(Ek − 1)
[ αk

∑
βk=1

(E−α1
1 · · · E−αk−1

k−1 E−βk
k ρi

∂Ki

∂uj
α

)(Eαk−βk
k Eαk+1

k+1 · · · E
αp
p σj)

−
−αk

∑
βk=1

(E−α1
1 · · · E−αk−1

k−1 E−αk−βk
k ρi

∂Ki

∂uj
α

)(E−βk
k Eαk+1

k+1 · · · E
αp
p σj)

]
,

where the value of an empty sum is conventionally zero. If then follows that the equality Equation (16)
is true, and thus, σTρ is a conserved density of the discrete evolution Equation (8). The proof is
finished.

This theorem tells us that a pair of a symmetry and an adjoint symmetry naturally yields a
conservation law. Moreover, the expression of the conserved density is only dependent on the pair of a
symmetry and an adjoint symmetry, but the expression of the conserved flux is dependent on the pair
of a symmetry and an adjoint symmetry as well as the underlying equation.

If for two functions h1, h2 ∈ B, there exist functions gi ∈ B, 1 ≤ i ≤ p, such that

h1 − h2 =
p

∑
i=1

(Ei − 1)gi, (17)

then we say that h1 is equivalent to h2, denoted by h1 ∼ h2. Obviously, this is an equivalence relation,
and can be used in classifying conserved densities. A trivial conserved density is equivalent to zero.

3. Applications to the Volterra Lattice Equation

Now we go on to illustrate by an example rich structures of the conservation laws resulted from
symmetries and adjoint symmetries.

Let us consider the Volterra lattice equation [8]:

ut = K(u) = u(E−1u − Eu), u = u(n, t), n ∈ Z, t ∈ R. (18)

Its linearized equation and adjoint linearized equation read

σt = (E−1u − Eu)σ + uE−1σ − uEσ, (19)

ρt = (Eu − E−1u)ρ − E(uρ) + E−1(uρ), (20)

respectively. There exist infinitely many symmetries [9]:

Ki = Φi(u(E−1u − Eu)), i ≥ 0, (21)

τi = Φi(t[K0, u] + u) = Φi(tK0 + u) = Φi(tu(E−1u − Eu) + u), i ≥ 0, (22)

where the hereditary recursion operator Φ is defined by

Φ = u(1 + E−1)(−(Eu)E2 + u)(E − 1)−1u−1.

Moreover, these symmetries constitute a Lie algebra [9]:

[Ki, Ki] = 0, [Ki, τj] = (i + 1)Ki+j, [τi, τj] = (i − j)τi+j, i, j ≥ 0, (23)

where [K, S] is defined by [K, S] = K′S − S′K, K′ and S′ being the corresponding Gateaux
derivative operators.

374



Symmetry 2015, 7, 714–725

By an inspection, the function defined by

S0 = u−1 (24)

is an adjoint symmetry of the Volterra lattice Equation (18). This means that S0 satisfies the
adjoint linearized Equation (20) while u solves Equation (18). The proof just needs a simple and
direct computation:

(S0)t = −u−2ut, (Eu − E−1u)S0 − E(uS0) + E−1(uS0) = (Eu − E−1u)u−1,

from which it directly follows that if u solves Equation (18), S0 satisfies Equation (20). Now, using
the principle in Theorem 1, we have infinitely many conserved densities, u−1Ki and u−1τi, i ≥ 0. In
particular, since we have

S0τ1 = S0(tK1 + Φu) ∼ u−1Φu,

(Φu)(n) = u(n)[−(n + 2)u(n + 1)− u(n) + (n − 1)u(n − 1)],

we obtain a nontrivial local conserved density of the Volterra lattice Equation (18):

(h1)(n) = −(n + 2)u(n + 1)− u(n) + (n − 1)u(n − 1). (25)

This generates a conservation law

h1t = (E − 1)[([n] + 1)u(Eu)− ([n]− 1)(E−2u)(E−1u)], (26)

where [n] is the operator
([n] f )(m) = m f (m), f ∈ B, m ∈ Z.

Except S0τ1 = S0(tK0 + u) ∼ 1, all other products of the same type, u−1τi, i ≥ 2, give us nontrivial
nonlocal conserved densities of the Volterra lattice Equation (18). But all u−1Ki, i ≥ 0, are trivial
conserved densities, which can be seen directly from the recursion structure of symmetries [10].

Based on Proposition 1, the Hamiltonian formulation of the Volterra soliton hierarchy [9]
guarantees that the Volterra lattice Equation (18) has a hierarchy of adjoint symmetries:

ρi = Ψi1 =
δHi
δu

, Ψ = Φ† = u−1(E − 1)−1(−(Eu)E2 + u)(1 + E−1)u, i ≥ 0, (27)

which generate, by Theorem 1, the conserved densities: ρiKj, ρiτj, i, j ≥ 0. The nontrivial conserved
density generated from ρ0τ1 is, due to K1 ∼ 0, equivalent to

(h2)(n) = (Φu)(n) = u(n)[−(n + 2)u(n + 1)− u(n) + (n − 1)u(n − 1)], (28)

whose associated conservation law reads

h2t = (E − 1){([n] + 1)[(E−1u)u2 + (E−1u)u(Eu)]− ([n]− 1)[(E−2u)2u + (E−2u)(E−1u)u]}. (29)

Moreover, we see that all symmetries, Ki = ρ0Ki and τi = ρ0τi, i ≥ 0, are also conserved densities,
and that the conserved densities ρiτ0 ∼ ρiu, i ≥ 0, present all standard ones associated with the
Hamiltonian functionals {Hi|i ≥ 0} [9], upon noting

u
δH
δu

= u ∑
α∈Z

E−α ∂H
∂(Eαu)

∼ ∑
α∈Z

(Eαu)
∂H

∂(Eαu)
= H, H = ∑

n∈Z
H(n), H ∈ A.
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The Volterra lattice Equation (18) also has the following Lax pair [11]:

U(u, λ) =

[
0 u

−1 λ

]
, V(u, λ) =

[
λ2 − u −λE−1u

λ −E−1u

]
, (30)

which means that the Volterra lattice Equation (18) is equivalent to the discrete zero curvature equation
Ut = (EV)U − UV. Let λs, 1 ≤ s ≤ N, be arbitrary constants, and introduce N replicas of the
spectral problems:

Eφ(s) = U(u, λs)φ
(s), φ

(s)
t = V(u, λs)φ

(s), φ(s) = (φ1s, φ2s)
T , 1 ≤ s ≤ N, (31)

and N replicas of the adjoint spectral problems:

Eψ(s) = (UT)−1(u, λs)ψ
(s), ψ

(s)
t = −VT(u, λs)ψ

(s), ψ(s) = (ψ1s, ψ2s)
T , 1 ≤ s ≤ N. (32)

Then, we have a class of adjoint symmetries represented in terms of eigenfunctions and adjoint
eigenfunctions [11]:

T0 =
1
u
(PT

2 AQ1 + PT
2 Q2), (33)

where the matrix A, and the two N dimensional vector functions Pi and Qi are defined by

A = diag(λ1, · · · , λN), Pi = (φi1, · · · , φiN)
T , Qi = (ψi1, · · · , ψiN)

T , 1 ≤ i ≤ 2. (34)

Now, Theorem 1 guarantees that we have the conserved densities: T0Ki and T0τi, i ≥ 0. This
particularly gives the following two conserved densities:

T0K0 = (E−1u − Eu)(PT
2 AQ1 + PT

2 Q2), (35)

T0τ0 = t(E−1u − Eu)(PT
2 AQ1 + PT

2 Q2) + (PT
2 AQ1 + PT

2 Q2). (36)

Again by Theorem 1, their corresponding fluxes read

−(PT
2 AQ1 + PT

2 Q2)E−1K0 − (E(PT
2 AQ1 + PT

2 Q2))K0, (37)

−(PT
2 AQ1 + PT

2 Q2)E−1τ0 − (E(PT
2 AQ1 + PT

2 Q2))τ0, (38)

respectively. The involvement of eigenfunctions and adjoint eigenfunctions exhibits strong nonlocality
of this kind of conservation laws.

4. Concluding Remarks

We have established a direct approach for constructing conservation laws and thus conserved
densities of discrete evolution equations, whether the evolution equations are derivable from a
Lagrangian or not. Our approach utilizes pairs of symmetries and adjoint symmetries, in which
adjoint symmetries make up for the disadvantage of non-Lagrangian structures in establishing a
correspondence between symmetries and conservation laws. The approach has been applied to the
generation of conserved densities of the Volterra lattice equation.

We remark that on one hand, all evolution equations become the first-order ordinary differential
equations (ODEs), when there is no spatial shift appeared in the equations. On the other hand, if we
remove the time derivative, i.e., there is no time involved in evolution equations, then we immediately
obtain conservation laws for difference equations. Moreover, our results pave a way to construct
conservation laws from symmetries for self-adjoint discrete evolution equations or difference equations,
since symmetries are also adjoint symmetries of self-adjoint discrete evolution equations or difference
equations. We also point out that our idea of constructing conservation laws by symmetries and
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adjoint symmetries is quite similar to that of carrying out binary nonlinearization under symmetry
constraints [12,13]. In the theory of binary nonlinearization [12,13], adjoint symmetries are used to
establish a balance with non-Lie adjoint symmetries generated from both spectral problems and adjoint
spectral problems.

There are many other approaches or theories on conservation laws of differential equations and
differential-difference equations. In the case of integrable equations, Hamiltonian formulations [14,15]
generate usual conservation laws associated with Hamiltonian functionals, and a bi-Hamiltonian
formulation presents a recurrence relation of conserved densities in the resulting conservation laws [16].
Moreover, Lax pairs are used to make Riccati type equations that ratios of eigenfunctions need to satisfy,
and series expansions of solutions of the resulting Riccati type equations around the spectral parameter
yield conservation laws (see, e.g., [17,18]). For continuous evolution equations, adjoint symmetries
are also called conserved covariants [19], and it is recognized that the product of a symmetry and an
adjoint symmetry presents a conserved density (see, e.g., [19–21]) and that a functional I is conserved
if and only if its variational derivative δI

δu is an adjoint symmetry (see, e.g., [13,20,21]).
There exists a geometrical theory to deal with adjoint symmetries of the second-order ODEs [22].

Adjoint symmetries are also used to show separability of finite-dimensional Hamiltonian systems
(see, e.g., [23]) and links to integrating factors of the second-order ODEs (see, e.g., [24]). An important
character for symmetries is the existence of Lie algebraic structures, and such Lie algebraic structures
can be resulted from a kind of Lie algebras of Lax operators corresponding to symmetries (see [25–27]
for the continuous case and [9,28] for the discrete case). Therefore, we are curious about whether there
exist any Lie algebraic structures for adjoint symmetries and what kind of Lie algebraic structures we
can have if they exist. We finally make a remark about this question. A natural binary operation for
adjoint symmetries could be taken as

[[ ρ1, ρ2 ]] = (ρ′1)
†ρ2 − (ρ′2)†ρ1,

where (ρ′1)
† and (ρ′2)† denote their adjoint Gateaux derivative operators. However, this doesn’t keep

the space of adjoint symmetries closed. For example, for the Volterra lattice Equation (18), we have
two adjoint symmetries ρ1 = 1 and ρ2 = u−1, which generate

[[ ρ1, ρ2 ]] = [[ 1, u−1 ]] = u−2,

but this function u−2 is not an adjoint symmetry of the Volterra lattice equation.
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Abstract: This paper addresses the problem of computing the family of two-filiform Lie algebra laws
of dimension nine using three Lie algebra properties converted into matrix form properties: Jacobi
identity, nilpotence and quasi-filiform property. The interest in this family is broad, both within the
academic community and the industrial engineering community, since nilpotent Lie algebras are
applied in traditional mechanical dynamic problems and current scientific disciplines. The conditions
of being quasi-filiform and nilpotent are applied carefully and in several stages, and appropriate
changes of the basis are achieved in an iterative and interactive process of simplification. This has
been implemented by means of the development of more than thirty Maple modules. The process
has led from the first family formulation, with 64 parameters and 215 constraints, to a family of 16
parameters and 17 constraints. This structure theorem permits the exhaustive classification of the
quasi-filiform nilpotent Lie algebras of dimension nine with current computational methodologies.

Keywords: Lie algebra; nilpotence; quasi-filiform algebra; Maple

1. Introduction

1.1. State of the Art

Traditionally, Lie algebras have been used in physics in the context of symmetry groups of
dynamical systems, as a powerful tool to study the underlying conservation laws [1,2]. At present,
space-time symmetries and symmetries related to degrees of freedom are considered. For instance,
non-trivial Heidelberg algebra arises right in the base of the Hamiltonian mechanics. Hamiltonian
mechanics describes the state of a dynamic system with 2n variables (n coordinates and n momenta),
and the other interesting observable physics quantities are functions of them. Thus, the observables
commute with the Hamiltonian respecting the Poisson bracket, and they constitute a Lie algebra of
infinite dimension. Furthermore, a description in quantum mechanics is obtained by an algebra of
Hermitian operators in a Hilbert space with the bracket product as the commutator. In such a case, the
Heisenberg algebra arises if n is one, and the generalized Heisenberg algebra results for other values of
n, since the traditional canonical variables preserve the Poisson bracket. In general, a transformation is
said to be symplectic if it preserves the Poisson bracket. Therefore, the study of symplectic structures
of nilpotent Lie algebras is worthwhile as a wide generalization of the Heisenberg algebra. These
symplectic Lie algebras appear in the study of traditional dynamic problems, like the problem of the
two bodies or the problem of the three bodies, as well as in current studies in solid state physics [3],
modern geometry [4] or particle physics [5]. Furthermore, Lie theory is closely connected to control
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theory in the controllability and optimization of the tracking without drift of complex dynamical
systems as a rolling sphere. Some other applications can be consulted in [6–8]. Hence, it is convenient
to classify the families of Lie algebras as large as possible.

The matter of Lie algebra classification comes down to classifying the solvable semisimple
algebras [9–11], since Levi’s decomposition theorem [12] permits one to state that any Lie algebra can
be decomposed into a semidirect sum of its radical, i.e., its maximal solvable ideal, and a semisimple
part called Levi’s subalgebra. The classification of semisimple Lie algebras in C is presently associated
with Dynkin diagrams (1945). However, the solvable Lie algebra classification problem comes down in
a sense (Goze and Khakimdjanov [12]) to the nilpotent Lie algebra classification.

Numerous researchers have tackled the problem of nilpotent Lie algebra classification. However,
their studies were restricted to the filiform case, due to the difficulties arising from a nilpotence
index higher than the dimension, providing a great number of parameters without restrictions among
them. The first lists of algebras were obtained by K. Umlauf [13] in 1891 in his PhD thesis, providing
the lists of all of the laws of dimensions less than or equal to six and all of dimensions 7, 8 and
9 that allow a basis {X0, X1, ..., Xn−1}, such that it satisfies [X0, Xi] = Xi+1 (1 � i � n − 2), in R or
C. Nilpotent Lie algebra classification had important progress thanks to Goze and Ancochea [14]
with the definition of a more powerful invariant than the known invariants up to that moment: the
characteristic series or Goze’s invariant. These authors achieved the classification of the complex
nilpotent Lie algebras of dimension seven and of the complex filiform Lie algebras of dimension
eight [15]. Gómez and Echarte [16] classified the complex filiform Lie algebras of dimension nine
using Goze’s invariant. Gómez et al. [17] classified the symplectic filiform Lie algebras that are not
two-to-two symplectic-isomorphic of dimensions less than or equal to 10 in 2001. Higher dimensions
were tackled by Boza et al. [18] and Echarte et al. [19,20] in the last ten years. The more the dimension
increases, the more and more complex is the determination of exhaustive lists of Lie algebras, so new
computation methodologies are a present field of research [21–23].

Cabezas et al. (1998) [24] study a family of Lie algebras that they call p-filiform with dimension n
and Goze’s invariant (n − p, 1, ..., 1). Since filiform algebras have Goze’s invariant (n − 1, 1), they are
included in the p-filiform family as one-filiform Lie algebras; analogously, the quasi-filiform algebras
are the two-filiform algebras [25], and the abelian algebras are the (n − 1)-filiform algebras. In a sense,
the study of the quasi-filiform Lie algebras appears natural, since they are only known until dimension
eight. On the other hand, in 1999, Camacho [26] studied the (n − 5)-filiform and (n − 6)-filiform
Lie algebras, closing the classification of the p-filiform Lie algebras up to dimension eight. Another
classification of the (n − 5)-filiform Lie algebras is provided by Ancochea and Campoamor [27]. Their
research line is used as the context for our piece of research, leaning on the current availability of
symbolic manipulation programs, such as Maple, which allow the user to perform the tedious algebra
and routine computations [28–30]. The present paper tackles the proof of the structure theorem of
quasi-filiform Lie algebras of dimension nine. The classification and a complete casuistry of that family
of Lie algebras was published in [31], based on the results of [32]. We strongly recommend the reading
of [33–37] to become familiar with Lie algebra terminology and concepts.

After this state of the art, Subsection 1.2. is included to declare the terminology that has
been developed from the 1990s to the present. Section 2 is devoted to the symbolic and iterative
computational proof of the structure theorem of the laws of every complex quasi-filiform Lie algebra of
dimension nine, which is the original contribution of the present paper. Finally, Section 3 summarizes
the computational work developed for the appropriate changes of the basis to demonstrate the
general theorem.

1.2. Terminology

The abelian algebra of dimension n is the only one with Goze’s invariant (1, ..., 1); in metabelian
algebras, the characteristic series is (2, ...2, 1, ...1); in Heisenberg algebras, it is (2, 1, ..., 1); in filiform
algebras, it is (n − 1, 1); and in quasi-filiform algebras, it is (n − 2, 1, 1). From now on, let us use the
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term Jac(x, y, z) for the Jacobi identity: Jac(x, y, z) ⇔ μ(x, μ(y, z)) + μ(y, μ(z, x)) + μ(z, μ(x, y)) = 0 .
Additionally, let us use B2(Cn) for the space of the bilinear applications of Cn × Cn in Cn, and let us
choose a basis {e0, e2, ..., en−1} of Cn. An element α of B2 can be determined from a set of scalars Ck

ij,

called structure constants, defined by α
(
ei, ej

)
=

n−1
Σ

k=0
Ck

ijek; thus, B2 can have a structure of affine space.

Then, a Lie algebra g can be considered as an element of B2; the set Ln of Lie algebras in Cn is the
affine algebraic set that is defined by the following polynomial expressions:

Ck
ii = 0, ∀i, k0 � i, k � n − 1 (1a)

Ck
ij = −Ck

ji∀i, j, k0 � i, j, k � n − 1 (1b)

n−1
Σ

k=0

(
Ck

ij.C
s
kl + Ck

jl .C
s
ki + Ck

li.C
s
kj

)
= 0, 0 � i, j, l, s � n − 1 (1c)

and it is parametrized by the n3−n2

2 structure constants Ck
ij.

If g is a Lie algebra, the series of ideals defined by:

D0(g) = g (2a)

Dk+1(g) =
[
Dk(g),Dk(g)

]
, k ∈ N ∪ {0} (2b)

is called the derived series of g, which satisfies g = D0(g) ⊇ D1(g) ⊇ ... ⊇ Di(g)... If there exists an
integer k, such that Dk(g) = {0}, the algebra is said to be solvable; in such a case, the smaller integer
that satisfies the previous condition is called the solvability index of g.

Levi’s theorem [33] states that every Lie algebra g can be decomposed in a semidirect sum of
its radical (the maximal solvable ideal) and semisimple subalgebras (Levi’s subalgebra). This result
reduces in a sense the Lie algebra classification problem to the classification of the solvable algebras
[[10], since semisimple algebra classification is known.

If g is a Lie algebra, the series of ideals defined by:

C0(g) = g (3a)

Ck+1(g) =
[
Ck(g), g

]
, k ∈ N ∪ {0} (3b)

is called the lower central series of g. It satisfies that g = C0(g) ⊇ C1(g) ⊇ ... ⊇ C i(g)... If there exists an
integer k, such that Ck(g) = {0}, the algebra is said to be nilpotent; in such a case, the smaller integer
that satisfies the previous condition is called the nilpotence index or nilindex of g. If the dimension is n
and the nilindex is n − 1, the algebras obtained are called filiform; they are said to be quasi-filiform if
their nilindex is n − 2. The abelian Lie algebras are the algebras with nilindex one.

The characteristic series or Goze’s invariant is defined as the maximum of the Segre symbols of the
nilpotent linear applications ad(X), where X is an element of the derived subalgebra complementary.
In other words, if g is a complex nilpotent Lie algebra of finite dimension n, for every X ∈ g− [g, g],
the series of the characteristic subspace dimensions of the nilpotent operator ad(X) in decreasing
order is denoted by c(X) = (c1(X), c2(X), , ..., 1). Reordering the set of series in lexicographical
order, the characteristic series is defined by c(g) = sup{c(X) : X ∈ g− [g, g]}. This invariant has been
used to classify the nilpotent Lie algebras of dimension seven. Obviously, c(g) is an invariant for the
isomorphisms, and by construction, there exists at least a vector X ∈ g− [g, g] that satisfies c(g) = c(X);
every vector that satisfies the previous condition is called the characteristic vector of the algebra.
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If g is a p-filiform Lie algebra of dimension n (i.e., nilpotent with characteristic series (n − p, 1, ..., 1),
then there exists a basis, which will be denoted as

{
X0, X1, ..., Xp, Y1, ..., Yn−p−1

}
, that satisfies:

[X0, Xi] = Xi+11 � i � p − 1 (4a)[
X0, Xn−p

]
= 0 (4b)[

X0, Yj
]
= 01 � j � n − p − 1 (4c)

This basis is called the adapted basis of the algebra, where X0 is a characteristic vector.

2. Structure Theorem

This section presents the development of the structure theorem of the family of laws of complex
quasi-filiform Lie algebras (QFLA) of dimension nine. Our objective was to find the simplest expression
of the family of laws. Every QFLA of dimension nine can have an adapted basis {x0, x1, ..., x8},
such that:

[x0, xi] = xi+1, 1 � i � 6; [x0, xi] = 0, 7 � i � 8 (5)

A first approximation of the family can be obtained just with the application of the Jacobi identity
to the three-tuple (x0, xi, xj), where xi, xj are basis vectors different from x0 vector [31].

A condition that sometimes is more difficult to apply is the nilpotence. The Engel theorem puts
nilpotence on a level with ad-nilpotence for Lie algebras. Therefore, a Lie algebra g is nilpotent if and
only if the characteristic polynomial of the matrix Adj(x) is λ9, for every vector x of g. Anyway, this
condition is often difficult to apply, so the moment in the process when the nilpotence condition is
applied or, much better, when the condition is applied for each vector has to be chosen carefully.

The condition of being quasi-filiform can be also interpreted in terms of matrices. Thus, the vector
candidate of characteristic vectors, i.e., the vectors in g− [g, g], has to satisfy that the respective adjoint
matrices do not have non-null minors of order � 7. As in the case of the nilpotence, this condition has
to be applied with caution and probably in several stages.

Theorem 1. The laws of every complex quasi-filiform Lie algebra of dimension nine can be described by the
following family with 16 parameters and 17 polynomial restriction equations:

[x0, xi] = xi+1, 1 � i � 6 (6a)

[x1, x2] = α1x4 + α2x5 + α3x6 + α4x7 + α5x8 (6b)

[x1, x3] = α1x5 + α2x6 + α3x7 (6c)

[x1, x4] = α6x5 + α7x6 + α8x7 + α9x8 (6d)

[x1, x5] = 2α6x6 + (2α7 − α1)x7 (6e)

[x1, x6] = α10x7 + α11x8 (6f)

[x1, x8] = α12x3 + α13x4 + α14x5 + α15x6 + α16x7 (6g)

[x2, x3] = −α6x5 + (α1 − α7)x6 + (α2 − α8)x7 − α9x8 (6h)

[x2, x4] = −α6x6 + (α1 − α7)x7 (6i)

[x2, x5] = (2α6 − α10)x7 − α11x8 (6j)

[x2, x8] = α12x4 + α13x5 + α14x6 + α15x7 (6k)

[x3, x4] = (−3α6 + α10)x7 + α11x8 (6l)

[x3, x8] = α12x5 + α13x6 + α14x7 (6m)
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[x4, x8] = α12x6 + α13x7 (6n)

[x5, x8] = α12x7 (6o)

subject to:
α5α12 = 0 (7a)

α6α12 = 0 (7b)

α6α13 = 0 (7c)

α9α12 = 0 (7d)

α9α13 = 0 (7e)

α9α14 = 0 (7f)

α10α12 = 0 (7g)

α11α12 = 0 (7h)

α11α13 = 0 (7i)

α11α14 = 0 (7j)

α11α15 = 0 (7k)

α11α16 = 0 (7l)

α11(3α1 − α7) = 0 (7m)

α12(α1 − α7) = 0 (7n)

α5α13 − 2α2
6 − α9α15 (7o)

2(α2 − α8)α12 + 3(α1 − α7)α13 + 2(α6 − α10)α14 = 0 (7p)

α5α14 − 2(2α1 + α7)α6 − α9α16 + (3α1 − α7)α10 = 0 (7q)

Proof of Theorem 1. Let g be a nilpotent Lie algebra of dimension n and the characteristic series (n −
2, 1, 1). Let x0 ∈ g− [g, g] be a characteristic vector of g. Then, there is a basis of g, {xi : 0 � i � n − 1},
such that [x0, xi] = xi+1, 1 � i � n − 3, and the other bracket products of x0 are null. On the whole, all
of the bracket products can be described by:

[
xi, xj

]
=

n−1
Σ

k=0
Ck

ij.xk, 0 � i, j � n − 1 (8)

where Ck
ij are the algebra structure constants. It is simple to prove that for a nilpotent Lie algebra of

dimension n and characteristic series (n − 2, 1, 1.., 1), like Cmg = 〈xn−2〉, it is true that xn−2 ∈ Z(g).
Then, in our case:[

xn−2, xj
]
= 0, ∀j0 � j � n − 1 → Ck

(n−2)j = 0, ∀j, k0 � j, k � n − 1 (9)

It is well known that the application of the anticommutativity to Jacobi identity will provide
Jac(y, x, z) ≡ [x, [y, z]] = [y, [x, z]]− [z, [x, y]]. In order to maintain this identity, the coefficients of xi,
0 � i � n − 1, must be the same at both sides of the equation. Our objective is to study the case
n = 9; therefore, the coefficients’ identification is tackled in an iterative and interactive way. A Maple
module called EcuJac has been developed to obtain all of the equations resulting from the application
of the aforementioned conditions. Figure 1 illustrates how the Maple module for applying the Jacobi
identity conditions has been written. EcuJac is executed iteratively, and each time, it prints a number of
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equations, so that the number of equations can be reduced in the next iteration. The other proprietary
modules executed in EcuJac (Leyes, ObtEcus, OrdApIIG and SimplEcu) are not provided, but their
functionalities are commented on in Figure 1.

Figure 1. Module for the application of the Jacobi identity conditions.

Before each new iteration of EcuJac, the simplest conditions are applied, and the process is
repeated until there are no restrictions of simple application. Thus, after a first iteration of module
EcuJac with substitutions like:

FromJac(x 0, x6, x8)→ C1
68= C2

68= C3
68= C4

68= C5
68= C6

68= 0 (10a)

FromJac(x 0, x5, x8) →
C1

58= C2
58= C3

58= C4
58= C5

58= C8
68= 0, C7

68= C6
58 (10b)

FromJac(x 0, x4, x8) →
C1

48= C2
48= C3

48= C4
48= C8

58= 0, C6
58= C5

48, C7
58= C6

48 (10c)

215 equations are obtained; some of them are repeated, and others are identities. Selecting
one of the simplest equations, like the one that corresponds to the coefficient of x6 in
Jac(x0, x3, x5) → C5

35 − C6
45 − C6

36 = 0 , it is possible to achieve the subsequent substitutions, like
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C5
45 = C3

16, C6
45 = C4

16, and to compute again the Jacobi equations (EcuJac), obtaining 151 equations.
Subsequent iterations provide 124 equations, 78 equations and 55 equations. Then, the first description
of the laws is:

[x0, xi] = xi+1, 1 � i � 6 (11a)

[x1, x2] = C1
12x1 + C2

12x2 + C3
12x3 + C4

12x4 + C5
12x5

+C6
12x6 + C7

12x7 + C8
12x8 (11b)

[x1, x3] = C1
12x2 + C2

12x3 + C3
12x4 + C4

12x5 + C5
12x6 + C6

12x7 (11c)

[x1, x4] = C3
14x3 + C4

14x4 + C5
14x5 + C6

14x6 + C7
14x7 + C8

14x8 (11d)

[x1, x5] =
(
2C3

14 − C1
12
)

x4 +
(
2C4

14 − C2
12
)

x5

+
(
2C5

14 − C3
12
)

x6 +
(
2C6

14 − C4
12
)

x7 (11e)

[x1, x6] =
( 5

3 C3
14 − C1

12
)

x5 +
( 5

3 C4
14 − C2

12
)

x6 + C7
16x7 + C8

16x8 (11f)

[x1, x8] = C2
18x2 + C3

18x3 + C4
18x4 + C5

18x5

+C6
18x6 + C7

18x7 + C8
18x8 (11g)

[x2, x3] =
(
C1

12 − C3
14
)

x3 +
(
C2

12 − C4
14
)

x4 +
(
C3

12 − C5
14
)

x5

+
(
C4

12 − C6
14
)

x6 +
(
C5

12 − C7
14
)− C8

14x8 (11h)

[x2, x4] =
(
C1

12 − C3
14
)

x4 +
(
C2

12 − C4
14
)

x5 +
(
C3

12 − C5
14
)

x6 +
(
C4

12 − C6
14
)

x7 (11i)

[x2, x5] =
1
3 C3

14x5 +
1
3 C4

14x6 +
(
2C5

14 − C3
12 − C7

16
)

x7 − C8
16x8 (11j)

[x2, x6] =
( 5

3 C3
14 − C1

12
)

x6 +
( 5

3 C4
14 − C2

12
)

x7 (11k)

[x2, x8] = C2
18x3 + C3

18x4 + C4
18x5 + C5

18x6 + C6
18x7 (11l)

[x3, x4] =
(

C1
12 − 4

3 C3
14

)
x5 +

(
C2

12 − 4
3 C4

14

)
x6 +

(
2C3

12 − 3C5
14 + C7

16
)

x7 + C8
16x8 (11m)

[x3, x5] =
(

C1
12 − 4

3 C3
14

)
x6 +

(
C2

12 − 4
3 C4

14

)
x7 (11n)

[x3, x6] =
( 5

3 C3
14 − C1

12
)

x7 (11o)

[x3, x8] = C2
18x4 + C3

18x5 + C4
18x6 + C5

18x7 (11p)

[x4, x5] =
(
2C1

12 − 3C3
14
)

x7 (11q)

[x4, x8] = C2
18x5 + C3

18x6 + C4
18x7 (11r)

[x5, x8] = C2
18x6 + C3

18x7 (11s)

[x6, x8] = C2
18x7 (11t)

Subject to the restrictions detailed in Tables 1 and 2.
With the basic change of basis: {

yi = xi, i �= 8
y8 = C2

18.x0 + x8
(12)

It can be supposed that C2
18 = 0, Equations (11f), (11l), (11p) and (11r) are simplified and Equation

(11t) disappears.
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Table 1. First group of constraints.

(1) C2
18C8

18 = 0
(2) − 10

3 C3
14C3

18 + 2C3
18C1

12 − C2
18C8

18 = 0
(3) −5C4

18C3
14 + 3C4

18C1
12 − 10

3 C3
18C4

14 + 2C3
18C2

12 − C3
18C8

18 = 0
(4) − 2

3 C3
18C3

14 − C2
18C8

18 = 0
(5) − 2

3 C3
18C4

14 − C4
18C3

14 − C3
18C8

18 = 0
(6) 2C7

16C3
18 + 2C5

18C3
14 − C4

18C4
14 − 4C3

18C5
14 + 2C3

18C3
12 − 2C5

18C1
12 − C4

18C8
18 = 0

(7) 2C8
16C3

18 = 0
(8) 2C3

18C3
14 − 2C3

18C1
12 − C2

18C8
18 = 0

(9) 2C3
18C4

14 − 2C3
18C2

12 − 3C4
18C1

12 + 3C4
18C3

14 − C3
18C8

18 = 0
(10) 2C3

18C5
14 − 2C3

18C3
12 + 3C4

18C4
14 − 3C4

18C2
12 − 2C5

18C1
12 +

4
3 C5

18C3
14 − C4

18C8
18 = 0

(11) 2C6
14C3

18 − 2C3
18C4

12 − 2C5
18C2

12 − 3C4
18C3

12 + 3C4
18C5

14 +
4
3 C5

18C4
14 − 5

3 C6
18C3

14 − C5
18C8

18 = 0
(12) 2C7

14C3
18 + 3C4

18C6
14 − 3C4

18C4
12 + 2C7

16C5
18 −C7

18C1
12 − 2C3

18C5
12 − 2C5

18C5
14 − 5

3 C6
18C4

14 −C6
18C8

18 = 0
(13) 2C8

14C3
18 + 2C8

16C5
18 − C8

18C1
12 = 0

(14) C8
16C2

18 = 0
(15) C8

16C3
18 = 0

(16) − 10
3
(
C3

14
)2

+ 16
3 C3

14C1
12 − C8

14C2
18 − 2

(
C1

12
)2

+ C8
16C4

18 = 0
(17) 14

3 C3
14C1

12 − 2
(
C1

12
)2 − 20

9
(
C3

14
)2

+ C8
16C4

18 = 0
(18) 4

3 C4
14C1

12 − 2C2
12C1

12 +
5
3 C3

14C2
12 +

5
9 C3

14C4
14 + C8

16C5
18 = 0

(19) 20
9
(
C3

14
)2 − 14

3 C3
14C1

12 + 2
(
C1

12
)2 − C8

16C4
18 = 0

(20) − 4
3 C4

14C1
12 + 2C2

12C1
12 − 5

3 C3
14C2

12 − 5
9 C3

14C4
14 − C8

16C5
18 = 0

(21) 10
3 C7

16C3
14 − 3C7

16C1
12 +

5
3 C2

12C4
14 + C2

18C8
12 − 10

3 C5
14C3

14 + 2C5
14C1

12 − 25
9
(
C4

14
)2 − C6

18C8
16 = 0

(22) C3
14C1

12 − 4
3
(
C3

14
)2 − C8

14C2
18 = 0

(23) 4C3
14C2

12 − 31
3 C3

14C4
14 + 6C4

14C1
12 − C8

14C3
18 − 2C2

12C1
12 = 0

(24) − 2
3 C3

14C1
12 +

4
9
(
C3

14
)2

= 0
(25) −2C4

14C1
12 +

28
9 C3

14C4
14 − 2

3 C3
14C2

12 = 0
(26) 3C7

16C1
12 − 10

3 C7
16C3

14 − 3C5
14C1

12 − 2C2
12C4

14 +
2
3 C3

12C3
14 +

8
3 C5

14C3
14 +

8
3
(
C4

14
)2

= 0
(27) 3C8

16C1
12 − 10

3 C8
16C3

14 = 0

Table 2. Second group of constraints.

(28) 8
3
(
C3

14
)2 − 16

3 C3
14C1

12 − C8
16C4

18 + 2
(
C1

12
)2

= 0
(29) 23

9 C3
14C4

14 − 10
3 C4

14C1
12 − C8

16C5
18 + 2C2

12C1
12 − 7

3 C3
14C2

12 = 0
(30) − 2

3 C5
14C3

14 +
2
3 C3

12C3
14 − 1

9
(
C4

14
)2 − 1

3 C2
12C4

14 − C6
18C8

16 − C5
14C1

12 + C2
18C8

12 = 0
(31) 8

3 C6
14C3

14 − 3C6
14C1

12 + 2C2
12C5

14 +
2
3 C4

12C3
14 − C7

18C8
16 − 2C3

12C2
12 + 5C3

12C4
14 +

7
3 C7

16C4
14 + C3

18C8
12 − 22

3 C4
14C5

14 = 0
(32) 7

3 C8
16C4

14 − C8
18C8

16 = 0
(33) 13

3 C3
14C1

12 − 2
(
C1

12
)2 − 8

3 C32
14 + C8

16C4
18 − C8

14C2
18 = 0

(34) 10
3 C4

14C1
12 − 4C2

12C1
12 − 32

9 C3
14C4

14 +
13
3 C3

14C2
12 + C8

16C5
18 − C8

14C3
18 = 0

(35) 2C5
14C1

12 − 4
3 C5

14C3
14 − 2C3

12C1
12 +

4
3 C3

12C3
14 +

10
3 C2

12C4
14 − 8

9
(
C4

14
)2 − 2

(
C2

12
)2

+ C6
18C8

16 − C4
18C8

14 = 0
(36) 4C6

14C1
12 − 13

3 C6
14C3

14 − 5
3 C4

12C3
14 − 7

3 C7
16C4

14 + C7
18C8

16 − 2C3
12C2

12 + 2C2
12C5

14 − 2C3
12C4

14 +
13
3 C4

14C5
14 − C5

18C8
14 = 0

(37) − 7
3 C8

16C4
14 + C8

18C8
16 = 0

(38) −C3
14C1

12 − C8
14C2

18 = 0
(39) 2C3

14C2
12 − 2C2

12C1
12 − C3

14C4
14 − C8

14C3
18 = 0

(40) C5
14C1

12 − 2C5
14C3

14 + 3C2
12C4

14 −
(
C4

14
)2 − 2

(
C2

12
)2 − 2C3

12C1
12 + 2C3

12C3
14 + C2

18C8
12 − C4

18C8
14 = 0

(41) C6
14C1

12 − 5
3 C6

14C3
14 + 4C2

12C5
14 − 3C4

14C5
14 − 4C3

12C2
12 + 3C3

12C4
14 + C3

18C8
12 − C4

12C3
14 − C5

18C8
14 = 0

(42) −C6
18C8

14 + 2C5
12C1

12 − 2C2
12C4

12 + 4C2
12C6

14 − 8
3 C4

14C6
14 − 4C5

12C3
14 + 4C3

12C5
14 − 2

(
C3

12
)2

+ C4
18C8

12 − 2
(
C5

14
)2

= 0
(43) 3C7

14C2
12 + 3C3

12C6
14 − 3C5

12C4
14 − 4C4

12C5
14 −C7

14C4
14 + 3C7

16C4
12 −C7

16C6
14 +C5

18C8
12 −C6

12C1
12 −C7

18C8
14 − 2C6

14C5
14 +C4

12C3
12 +

2
3 C6

12C3
14 = 0

(44) 3C8
14C2

12 − C8
14C4

14 + 3C8
16C4

12 − C8
16C6

14 − C8
18C8

14 = 0
(45) − 10

3 C3
18C3

14 + 2C3
18C1

12 = 0
(46) 8

3 C3
18C3

14 − 2C3
18C1

12 = 0
(47) 8

3 C3
18C4

14 − 2C3
18C2

12 − 3C4
18C1

12 + 4C4
18C3

14 = 0
(48) 6C3

18C5
14 − 4C3

18C3
12 − 2C7

16C3
18 + 4C4

18C4
14 − 3C4

18C2
12 − 2

3 C5
18C3

14 = 0
(49) − 2

3 C3
14C1

12 +
10
9
(
C3

14
)2

+ C8
14C2

18 = 0
(50) 2

(
C1

12
)2 − 13

3 C3
14C1

12 + 2
(
C3

14
)2 − C8

16C4
18 = 0

(51) 5C3
14C1

12 − 2
(
C1

12
)2 − 28

9
(
C3

14
)2 − C8

14C2
18 + C8

16C4
18 = 0

(52) 16
3 C4

14C1
12 − 20

3 C3
14C4

14 − 4C2
12C1

12 + 5C3
14C2

12 − C8
14C3

18 + C8
16C5

18 = 0
(53) C6

18C8
16 − C4

18C8
14 + 5C5

14C1
12 − 2

(
C2

12
)2

+ 16
3 C2

12C4
14 − 2C3

12C1
12 +

10
3 C7

16C3
14 +

2
3 C3

12C3
14 − 3C7

16C1
12 − 32

9
(
C4

14
)2 − 4C5

14C3
14 = 0

(54) 10
3 C8

16C3
14 − 3C8

16C1
12 = 0

(55) −4C3
18C1

12 + 6C3
18C3

14 = 0

A new computation of the Jacobi equations provides 52 restrictions and selecting:

fromcoeff.ofx6inJac(x1, x4, x5) → 1
3
(
3C1

12 − 4C3
14
)
C3

14 = 0 (13a)
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fromcoeff.ofx2inJac(x1, x2, x3) → C1
12C3

14 = 0 (13b)

It is deduced that C3
14 = 0, and:

fromcoeff.ofx8inJac(x1, x3, x5) → −3C1
12C8

16 = 0 (14a)

fromcoeff.ofx4inJac(x1, x3, x4) → −2
(
C1

12
)2

+ C8
16C4

18 = 0 (14b)

It is deduced that C1
12 = 0 and Equation (11) are simplified and Equations (11o) and

(11q) disappear.
A new computation of the Jacobi equations provides 31 restrictions and selecting:

fromcoeff.ofx7inJac(x1, x4, x6)

C8
16C4

18 = 0
(15a)

fromcoeff.ofx6inJac(x1, x3, x4)
10
3 C2

12C4
14 − 8

9
(
C4

14
)2 − 2

(
C2

12
)2

+ C6
18C8

16 − C4
18C8

14 = 0
(15b)

fromcoeff.ofx4inJac(x1, x2, x3)

3C2
12C4

14 −
(
C4

14
)2 − 2

(
C2

12
)2 − C4

18C8
14 = 0

(15c)

fromcoeff.ofx7inJac(x2, x3, x4)
16
3 C2

12C4
14 − 32

9
(
C4

14
)2 − 2

(
C2

12
)2

+ C6
18C8

16 − C4
18C8

14 = 0
(15d)

It is deduced that C4
14 = 0, and another simplification of the laws in (11) is applied subject to

18 restrictions.
In accordance to Engel theorem, if a Lie algebra is nilpotent, then it is ad-nilpotent, i.e., the

matrices associated with the adjoints of all of the Lie algebra elements have all of their eigenvalues
null. In this moment, a subprogram in Maple is used to calculate the characteristic polynomials of the
adjoints of all of the vectors in the basis in an iterative and interactive way. From:

Adj(x1) = λ3
(

λ − C2
12

)2(
λ + C2

12

)2(
λ2 − C8

18λ − C8
14C4

18

)
= 0 (16)

it is deduced that C2
12 = 0 and C8

18 = 0. Applying the resulting substitutions and with a new
computation of the Jacobi equations, the restrictions are reduced to 15, and the laws for QFLA of
dimension nine are described by:

[x0, xi] = xi+1, 1 � i � 6 (17a)

[x1, x2] = C3
12x3 + C4

12x4 + C5
12x5 + C6

12x6 + C7
12x7 + C8

12x8 (17b)

[x1, x3] = C3
12x4 + C4

12x5 + C5
12x6 + C6

12x7 (17c)

[x1, x4] = C5
14x5 + C6

14x6 + C7
14x7 + C8

14x8 (17d)

[x1, x5] =
(
2C5

14 − C3
12
)

x6 +
(
2C6

14 − C4
12
)

x7 (17e)

[x1, x6] = C7
16x7 + C8

16x8 (17f)

[x1, x8] = C3
18x3 + C4

18x4 + C5
18x5 + C6

18x6 + C7
18x7 + C8

18x8 (17g)

[x2, x3] =
(
C3

12 − C5
14
)

x5 +
(
C4

12 − C6
14
)

x6 +
(
C5

12 − C7
14
)− C8

14x8 (17h)

[x2, x4] =
(
C3

12 − C5
14
)

x6 +
(
C4

12 − C6
14
)

x7 (17i)

[x2, x5] =
(
2C5

14 − C3
12 − C7

16
)

x7 − C8
16x8 (17j)

389



Symmetry 2015, 7, 1788–1802

[x2, x8] = C3
18x4 + C4

18x5 + C5
18x6 + C6

18x7 (17k)

[x3, x4] =
(
2C3

12 − 3C5
14 + C7

16
)

x7 + C8
16x8 (17l)

[x3, x8] = C3
18x5 + C4

18x6 + C5
18x7 (17m)

[x4, x8] = C3
18x6 + C4

18x7 (17n)

[x5, x8] = C3
18x7 (17o)

With the change of basis: {
yi = xi, i �= 1

y1 = −C3
12x0 + x1

(18)

It can be supposed that C3
12 = 0. Let us consider the adoption of the simplified notation shown in

Table 3. Then, the laws for complex QFLA of dimension nine coincide with Equation (6).

Table 3. Notation for the quasi-filiform Lie algebra (QFLA) parameters.

α1 = C4
12 α2 = C5

12 α3 = C6
12 α4 = C7

12
α5 = C8

12 α6 = C5
14 α7 = C6

14 α8 = C7
14

α9 = C8
14 α10 = C7

16 α11 = C8
16 α12 = C3

18
α12 = C4

18 α14 = C5
18 α15 = C6

18 α16 = C7
18

Finally, the conditions to consider with the notation in Table 3 are:

fromcoeff.ofx7inJac(x1, x4, x8) → 2α10α12 = 0 (19a)

fromcoeff.ofx5inJac(x1, x2, x8) → 2α6α12 = 0 (19b)

fromcoeff.ofx6inJac(x1, x2, x8) → 2α12(−α1 + α7) + 3α6α13 = 0 (19c)

fromcoeff.ofx7inJac(x1, x2, x8) →
→ 2α12(−α2 + α8) + 3α13(−α1 + α7) + 2α14(−α6 + α10) = 0 (19d)

fromcoeff.ofx7inJac(x1, x5, x6) → α11α12 = 0 (19e)

fromcoeff.ofx7inJac(x1, x4, x6) → α11α13 = 0 (19f)

fromcoeff.ofx7inJac(x1, x3, x6) → α11α14 = 0 (19g)

fromcoeff.ofx7inJac(x1, x2, x6) → α11α15 = 0 (19h)

fromcoeff.ofx7inJac(x1, x4, x5) → α9α12 = 0 (19i)

fromcoeff.ofx7inJac(x1, x3, x4) → α9α14 − α11α16 = 0 (19j)

fromcoeff.ofx5inJac(x1, x2, x4) → α9α13 = 0 (19k)

fromcoeff.ofx6inJac(x1, x2, x4) → α5α12 − α11α16 = 0 (19l)

fromcoeff.ofx6inJac(x1, x2, x3) → −2α2
6 + α5α13 − α9α15 = 0 (19m)

fromcoeff.ofx7inJac(x1, x2, x3) →
→ −2α6(2α1 + α7) + α10(3α1 − α7)− α9α16 + α5α14 = 0 (19n)

fromcoeff.ofx8inJac(x1, x2, x3) → α11(3α1 − α7) = 0 (19o)

Thus, the restrictions simplified and rewritten coincide with Equation (7). Q.E.D.
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3. Concluding Remarks

In this paper, the proof of the theorem of the structure of the laws of every complex quasi-filiform
Lie algebra of dimension nine has been presented. Symbolic and iterative computation has been
indispensable in this piece of research. A PC Pentium 4 of 2.4 Ghz and the programming language
Maple 6®have been used in the process. It has been necessary to program modules to tackle, among
others, the following functions for the general treatment of processes on: the storage and recovery of
intermediate data of hypermatrices and restriction equations; the storage and recovery of matrices of
the change of the basis; the search of special substitutions; the print of laws in different formats; the
print and checking of hypermatrices. Furthermore, modules have been developed for specific treatment
on: the development of hypermatrices and general variables; the application of anticommutativity;
the application of conditions from Jacobi equations; simplification; the application of ad-nilpotence;
calculation of the lower central series. The library modules developed represent approximately 3000
lines of code. The massive application of the changes of the basis and the characteristic vector has
permitted obtaining the general family of QFLA laws of dimension nine.
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Abstract: Using elementary techniques, an algorithmic procedure to construct skew-symmetric
matrices realizing the real irreducible representations of so(3) is developed. We further give a
simple criterion that enables one to deduce the decomposition of an arbitrary real representation
R of so(3) into real irreducible components from the characteristic polynomial of an arbitrary
representation matrix.
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1. Introduction

Albeit the fact that the representation theory of semisimple Lie algebras in general, and the
orthogonal algebras so(n) and their various reals forms in particular, is well known and constitutes
nowadays a standard tool in (physical) applications (see, e.g., [1,2] and the references therein), specific
results in the literature concerning the explicit matrix construction of the matrices corresponding to
real irreducible representations of so(n) are rather scarce. Even if the structural properties of such
representations can be derived from the complex case [3], the inherent technical difficulties arising
in the analysis of irreducible representations over the real field make it cumbersome to determine an
algorithmic procedure that provides the specific real representation matrices explicitly.

Even for the lowest dimensional case, that of so(3), the description of real irreducible
representations is generally restricted to multiplets of low dimension appearing in specific problems [4].
One interesting work devoted exclusively to the real irreducible representations from the perspective of
harmonic analysis is given in [5]. Most of the applications of so(3) make use of the angular momentum
operators or the Gel’fand–Zetlin formalism, hence describing the states by means of eigenvalues of a
complete set of diagonalizable commuting operators. However, for real irreducible representations of
so(3), corresponding to rotations in the representation space, no such bases of states of this type are
possible, as no inner labeling diagonalizable operator over the real numbers can exist, the external
being the Casimir operator [6]. In spite of this fact, real representations are of considerable practical
importance, as they provide information on the embedding of so(3) into other simple algebras and,
thus, constitute interesting tools to determine the stability of semidirect sums of Lie algebras [7].
The hierarchy of real irreducible representations of simple Lie algebras is therefore deeply connected
to the embedding problem and the branching rules. In this context, it is desirable to develop a simple
algorithmic method for the construction of real irreducible representations R of so(3) in terms of
skew-symmetric matrices, as these correspond naturally to the embedding of so(3) as a subalgebra of
so(dim R).

In this work, we propose such a procedure, based on the elementary properties of rotation
matrices. It is shown that the class of a real irreducible representation R is completely determined by
the characteristic polynomial of a matrix in R. This further enables one to deduce the decomposition
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of an arbitrary real representation of so(3) into real irreducible factors from the properties of the
characteristic polynomial of a matrix within the representation.

1.1. Real Representations of so(3)

Recall that for sl(2,C), the standard basis is given by {h, e, f } with commutators:

[h, e] = 2e, [h, f ] = −2 f , [e, f ] = h. (1)

Let DJ denote the irreducible representation of sl(2,C) of dimension (J + 1), where J = 0, 1
2 , 1, 3

2 , · · · .
For the basis

{
e1, · · · , e2J+1

}
of the representation space, the matrices DJ for the generators h, e, f are

easily recovered from the matrix elements:

〈
ei
∣∣DJ(h)

∣∣ ej
〉
= δ

j
i (2J + 1 − 2i);

〈
ei
∣∣DJ(e)

∣∣ ej
〉
= δ

j
i+1(2J + 1 − i)

〈
ei
∣∣DJ( f )

∣∣ ej
〉
= δ

j+1
i (i − 1). (2)

As is well known, the Lie algebra sl(2,C) admits two real forms, the normal real form sl(2,R) obtained
by restriction of scalars, as well as the compact real form so(3) obtained from the Cartan map:

X1 =
i
2

h, X2 =
1
2
(e − f ), X3 =

i
2
(e + f ) (3)

and satisfying the brackets: [
Xi, Xj

]
= εijk Xk, 1 ≤ i, j, k ≤ 3. (4)

While the matrices of the representation DJ define a real representation of sl(2,R) for the compact real
form so(3), the matrices of DJ are complex, given by:

DJ(X1) =
i
2

DJ(h), DJ(X2) =
1
2
(

DJ(e)− DJ( f )
)
, DJ(X3) =

i
2
(

DJ(e) + DJ( f )
)
. (5)

In many applications, the representation space of DJ is best described by states of the type:

| μ, J(J + 1)〉, μ = −J, · · · , J (6)

on an appropriate basis, as, e.g., that commonly used in the theory of angular momentum [8]. It must
be observed, however, that such bases are not suitable for real representations, as geometric rotation
matrices are not diagonalizable over the real field R.

The problem of classifying the real irreducible representations of the compact real forms of
semisimple Lie algebras was systematically considered by Cartan and Karpelevich, being later
expanded for arbitrary real Lie algebras by Iwahori [9]. According to these works, real representations
are distinguished by the decomposition of their complexification. More precisely, if Γ is a real
representation of the (real) Lie algebra g, then:

1. Γ is called of first class, denoted by ΓI , if Γ ⊗R C is a complex irreducible representation of g.
2. Γ is called of second class, denoted by ΓI I , if Γ ⊗R C is a complex reducible representation of g.

Following this distinction, the representations DJ of so(3) with J ∈ N belong to the first class. This
in particular implies the existence of an invertible matrix U ∈ GL(2J + 1,C), such that for 1 ≤ k ≤ 3:

RI
J(Xk) = U DJ(Xk)U−1 (7)
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is a real matrix [9]. For half-integer values J ∈ 1
2N, no such transition matrices U can exist, and in order

to obtain a real representation, the dimension of the representation space must be doubled:

DJ(Xk) �→ DII
J (Xk) =

(
ReDJ(ak) −ImDJ(ak)

ImDJ(ak) ReDJ(ak)

)
. (8)

As a consequence, even dimensional irreducible real representations of so(3) only exist for n = 4q with
q ≥ 1 (details on the double-covering SU(2) → SO(3) can be found, e.g., in [10]).

Albeit not usually referred to in the literature, the class of a real representation of a (simple) Lie
algebra is deeply connected to the embedding problem of (complex) semisimple Lie algebras [11].
In particular, it determines whether an algebra is irreducibly embedded into another. Recall that
an embedding j : s′ → s of semisimple Lie algebras is called irreducible if the lowest dimensional
irreducible representation Γ of s remains irreducible when restricted to s′ [11]. Irreducible embeddings
play an important role in applications, as they allow one to construct bases of a Lie algebra s in terms
of a basis of irreducibly-embedded subalgebras and irreducible tensor operators [12].

From the analysis of so(3) representations, it is straightforward to establish the
following embeddings:

1. For J = 2, so(3) is a maximal subalgebra irreducibly embedded into sp(4) 
 so(5).
2. For J = 3, so(3) is irreducibly embedded into so(7) through the chain:

so(3) ⊂ G2,−14 ⊂ so(7).

3. For any integer J ≥ 4, so(3) is a maximal subalgebra irreducibly embedded into so(2J + 1).
4. For J = 3

2 , so(3) is embedded into so(4) through the chain:

so(3) ⊂ sp(4) ⊂ su(4) ⊂ so(7) ⊂ so(8)

5. For half-integers J ≥ 5
2 , so(3) is embedded into so(4J + 2) through the chain:

so(3) ⊂ sp(2J + 1) ⊂ su(2J + 1) ⊂ so(4J + 2)

In this context, a natural construction of real irreducible representations of so(3) should be by
means of skew-symmetric matrices that realize these embeddings.

2. Construction of the Matrices RI
J(Xk)

As already observed, for integer J, the representation RI
J given by (7) is of first class. Therefore,

so(3) can be represented as a subalgebra of the compact Lie algebra so(2J + 1). In particular, we can
find a transition matrix U ∈ GL(2J + 1,C), such that the matrices:

RI
J(Xk) = U DJ(Xk)U−1 (9)

are skew-symmetric for k = 1, 2, 3, thus describe the embedding.
The construction of skew-symmetric real matrices RI

J(Xk) satisfying the similarity Condition (9)
is essentially based on the following two properties of the (complex) representation matrices DJ(Xk),
the proof of which is straightforward using Equation (5):

Lemma 1. Let J be a positive integer. The following conditions hold:

1. The characteristic and minimal polynomials pJ(z) and qJ(z) of the matrices DJ(Xk) in (5) coincide and
are given by:

pJ(z) = qJ(z) = −z
(

z2 + 1
)(

z2 + 4
)
· · ·

(
z2 + J2

)
(10)
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for k = 1, 2, 3.
2. In the representation DJ, the Casimir operator C2 of so(3) is given by:

C2 = DJ(X1)
2 + DJ(X2)

2 + DJ(X3)
2 = −J(J + 1) Id2J+1. (11)

We show that, up to multiplicative factors, these properties are sufficient to construct
skew-symmetric matrices RI

J(Xk), such that:

[
RI

J(Xi), RI
J
(
Xj

)]
= εijkRI

J(Xk) (12)

holds and Equation (7) is satisfied. In particular, there is no need to consider the transition matrix U
explicitly. As a starting point, for any 1 ≤ α ≤ J, we define the 2 × 2 matrices:

Mα =

(
0 −α

α 0

)
. (13)

We further define the (2J + 1)× (2J + 1)-block matrix:

RI
J(X3) =

⎛
⎜⎜⎜⎜⎝

MJ
. . .

M1

0

⎞
⎟⎟⎟⎟⎠. (14)

It is obvious that RI
J(X3) belongs to so(2J + 1) and that the minimal and characteristic polynomials of

RI
J(X3) coincide. These polynomials are given by (10). It follows at once that RI

J(X3) is similar to the
matrices DJ(Xk) for any k = 1, 2, 3. Now, to construct skew-symmetric matrices RI

J(X1) and RI
J(X2)

satisfying (12), we consider block matrices of the type:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1

B1 0 A2

B2
. . .

0 AJ−1

BJ−1 0 −vT

v 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where Al , Bl are 2 × 2 real matrices for 1 ≤ l ≤ J − 1 and v = (v1, v2) is a vector. As S is assumed to be
a skew-symmetric matrix, for any index l, we have:

Bl + AT
l = 0. (16)

The choice of the matrix form is motivated by the fact that each block Ml of RI
J(X3) describes a rotation

in the two-plane generated by the vectors {el , el+1}. With this block structure, it is straightforward to
verify that the commutator of A3 and S has the following structure:

[
RI

J(X3), S
]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 C1

D1 0 C2

D2
. . .

0 CJ−1

DJ−1 0 −wT

w 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)
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where w = (−v2, v1) and for 1 ≤ l ≤ J − 1 the identities:

Cl = MJ+1−l Al − Al MJ−l ; Dl = MJ−l Bl − Bl MJ+1−l . (18)

hold. The matrix [A3, S] is still skew-symmetric, as can be easily shown using (16) and the
skew-symmetry of the (2 × 2)-matrices Mα. For each l, we have:

CT
l + Dl = AT

l MT
J+1−l − MT

J−l A
T
l + MJ−l Bl − Bl MJ+1−l

= Bl MJ+1−l − MJ−l Bl + MJ−l Bl − Bl MJ+1−l = 0.
(19)

As the matrix S is composed of 2× 2-blocks (with the exception of the vector v), the Al can be essentially
of two types: either Al is a diagonal matrix or it is skew-symmetric. A generic S-matrix will thus
depend at most on 3J − 1 parameters. In order to facilitate the computation of representatives to
describe the real representation RI

J , we consider all blocks Al being of the same type (by a change
of basis, an equivalent matrix representative with 2 × 2-blocks of a different type can be obtained).
Without loss of generality, we make the choice:

Al =

(
0 al

−al 0

)
, 1 ≤ l ≤ J − 1. (20)

By Equation (16), we have Bl = Al ; hence, the matrix S depends on (J + 1) parameters. For the
commutator matrix

[
RI

J(X3), S
]
, it now follows at once from (18) that:

Cl =

(
al 0
0 al

)
= −Dl (21)

for any 1 ≤ l ≤ J − 1. The blocks Cl correspond to the second possible type (diagonal) for the blocks
Al , showing that the result does not depend on the particular form chosen initially for the blocks.

If we now compute the iterated commutator
[
S,

[
RI

J(X3), S
]]

, we obtain a matrix having the same

block structure as RI
J(X3) and given explicitly by:

[
S,

[
RI

J(X3), S
]]

=

⎛
⎜⎜⎜⎜⎝

E1
. . .

EJ
0

⎞
⎟⎟⎟⎟⎠, (22)

where

E1 =

(
0 −2a2

1
2a2

1 0

)
; Ek =

(
0 2a2

k−1 − 2a2
k

−2a2
k−1 + 2a2

k 0

)
, 2 ≤ k ≤ J − 1 (23)

and

EJ =

(
0 2a2

k − v2
1 − v2

2
−2a2

k + v2
1 + v2

2 0

)
. (24)

Assuming that the blocks Al are given by (16), we define RI
J(X1) = S. Following Equation (12):

RI
J(X2) =

[
RI

J(X3), RI
J(X1)

]
. (25)

As a consequence, the matrix on the right hand side of the commutator (22) must coincide with RI
J(X3).

Comparing the entries leads to the quadratic system:
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J = 2a2
1,

J − l = 2
(

a2
l − a2

l−1

)
, 2 ≤ l ≤ J − 2

v2
1 + v2

2 − 2a2
J−1 = 1.

(26)

Up to the sign, the solution to this system is given by:

al = ±
√

2l J − l(l − 1)
4

, 1 ≤ l ≤ J − 1; v1 = ±
√

J(J + 1)
2

− v2
2, (27)

where v2 ≤
√

J(J+1)
2 is free. This shows that the matrices RI

J(Xk) transform like the so(3) generators (4).
As these matrices must satisfy the similarity Condition (7) with the matrices (5), the Casimir operator
must have the form (11). In particular, this implies that the following matrix identity must be fulfilled:

RI
J(X1)

2 + RI
J(X2)

2 =

⎛
⎜⎝

λ1
. . .

λ2J+1

⎞
⎟⎠, (28)

where
λ2q−1 = λ2q = (q − 1)2 − J(2q − 1), 1 ≤ q ≤ J

λ2J+1 = −J(J + 1).
(29)

A routine computation shows that the preceding system is satisfied identically for the values obtained
in (27). Therefore, the three matrices RI

J(Xk) have (10) as their characteristic and minimal polynomial,
and thus, there exists a complex matrix U transforming the matrices (5) onto the real matrices RI

J(Xk).
We observe that the value of v2 is not determined by either the commutator (12) or the Condition
(28). This parameter is however inessential, as it merely indicates the possibility of considering linear
combinations of the matrices RI

J(X1) and RI
J(X2). In fact, taking the case J = 1, the realization above

gives the matrices:

RI
J(X2) =

⎛
⎜⎜⎝

−
√

1 − v2
2

v2√
1 − v2

2 −v2

⎞
⎟⎟⎠, RI

J(X1) =

⎛
⎜⎜⎝

v2√
1 − v2

2

−v2 −
√

1 − v2
2

⎞
⎟⎟⎠. (30)

For v2 = 0, these matrices reduce to the standard rotation matrices in R
3 corresponding to the adjoint

representation of so(3). For this reason, in the following, we set v2 = 0 without loss of generality. As
the signs in (27) can further be chosen freely, we make the following choice:

al =

√
2l J − l(l − 1)

4
, 1 ≤ l ≤ J − 1; v1 =

√
J(J + 1)

2
. (31)

The matrices RI
J(Xk) constructed with these values satisfy Equation (7) and clearly belong to so(2J + 1),

showing that the linear map:

ϕJ : so(3) → so(2J + 1); Xk �→ RI
J(Xk) (32)

defines a Lie algebra homomorphism and an irreducible embedding. We observe that choosing
different signs for the parameters al gives rise to an embedding belonging to the same conjugation
class in so(2J + 1).
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Let
{

e1, · · · , e2J+1
}

denote a basis of the representation space of the real representation RI
J .

Further, let
[ n

2
]

denote the integer part of n
2 . Then, the matrix elements are easily described in terms of

the coefficients in (31) as:

〈
ek

∣∣∣RI
J(X1)|el〉 =

(
1+(−1)k−1

2

)(
δl

k+3 a([ k+1
2 ]) + δl+1

k a([ k−1
2 ])

)
−

(
aJ +

√
J2+J

2

)
×(

δl
2J+1δ2J

k − δl
2Jδ

2J+1
k

)
−

(
1+(−1)k

2

)(
δl

k+1a([ k
2 ])

+ δl+3
k a([ k−2

2 ])

)
.

(33)

〈
ek

∣∣∣RI
J(X2)|el〉= δl

k+2 a([ k+1
2 ]) − δl+2

k a([ k−1
2 ]) −

(
aJ +

√
J2 + J

2

)(
δl

2J+1δ2J−1
k − δl

2J−1δ2J+1
k

)
. (34)

〈
ek

∣∣∣RI
J(X3)|el〉=

(
1 + (−1)k

)
δl+1

k (2J + 2 − k) +
(
(−1)k − 1

)
δk+1

l (2J + 1 − k)

4
, (35)

where 1 ≤ k, l ≤ 2J + 1.
The first non-trivial case for which the method applies is J = 2 in dimension five. According

to (5), the complex matrices of the irreducible representation D2 are given by the diagonal matrix
D2(X1) = Δ( 2 i, i, 0,− i,−2 i) and:

D2(X2) =

⎛
⎜⎜⎜⎜⎜⎝

0 2 0 0 0
− 1

2 0 3
2 0 0

0 −1 0 1 0
0 0 − 3

2 0 1
2

0 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎠, D2(X3) =

⎛
⎜⎜⎜⎜⎜⎝

0 2 i 0 0 0
i
2 0 3i

2 0 0
0 i 0 i 0
0 0 3i

2 0 i
2

0 0 0 2 i 0

⎞
⎟⎟⎟⎟⎟⎠.

In this form, however, the matrices are not skew-symmetric, and hence, the properties of the
representation are not easily recognized. Using the matrix elements deduced in (33)–(35), we can easily
construct the corresponding real matrices RI

2(Xk). Their explicit expression is:

RI
2(X1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0

−1 0 0 0
√

3
0 0 0 −√

3 0

⎞
⎟⎟⎟⎟⎟⎠, RI

2(X2) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 1 0

−1 0 0 0 −√
3

0 −1 0 0 0
0 0

√
3 0 0

⎞
⎟⎟⎟⎟⎟⎠, RI

2(X3) =

⎛
⎜⎜⎜⎜⎜⎝

0 −2 0 0 0
2 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (36)

These matrices are linear combinations of the basis elements of the compact orthogonal Lie algebra
so(5), hence defining an embedding so(3) ⊂ so(5). If, moreover, {e1, · · · , e5} denotes the canonical
basis of the representation space, we can easily check that:

RI
2(X1)e1 = −e4, RI

2(X2)e1 = −e3, RI
3(X1)e1 = 2e2,

(RI
2(X1))

2e1 = −e1 +
√

3e5, (RI
2(X2))

2e1 = −e1 −
√

3e5,

showing that the action of so(3) is actually irreducible. It is routine to check that for 1 ≤ j ≤ 3, the
similarity relation RI

2
(
Xj

)
= U D2

(
Xj

)
U−1 is satisfied for the transition matrix:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2
√

3
0

√
3 0

√
3

2

0 −2i√
3

0 −2i√
3

0

0 −2√
3

0 2√
3

0
i√
3

0 0 0 −i√
3

− 1
2 0 1 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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3. Construction of the Matrices RII
J (Xk)

In contrast to the case of integer J, the matrices DII
J (Xk) are already given over the reals, as a

consequence of the dimension doubling in the representation space. It is straightforward to see that
the matrices DII

J (Xk) can be written in terms of tensor products as:

DII
J (Xk) =

(
1 0
0 1

)
⊗ ReDJ(Xk) +

(
0 −1
1 0

)
⊗ ImDJ(Xk). (37)

We observe that DII
J (X1) is skew-symmetric by construction, as DJ(X1) is diagonal with purely

imaginary entries. In general, however, DII
J (X2) and DII

J (X3) are not skew-symmetric, and therefore,
the representation is not given in terms of elements belonging to the (compact) Lie algebra so(4J + 2).
The two properties required to construct the skew-symmetric matrices realizing the representation RII

J
2

are again the characteristic polynomial and the eigenvalue of the Casimir operator. The procedure to
find such matrices is formally very similar to the previous case, up to the necessary modifications due
to the tensor product (37). For this reason, we merely indicate the mains steps, skipping the detailed
computations.

For any J
2 ∈ 1

2N, the characteristic and minimal polynomials of DII
J (Xk) are respectively given by:

pJ(z) =
1

22J+2

(
1 + 4z2

)2(
9 + 4z2

)2 · · ·
(

J2 + 4z2
)2

, qJ(z) =
√

pJ(x). (38)

The eigenvalue of the Casimir operator on such a representation is given by:

C2

(
DII

J

)
= − J(J + 1)

4
Id2J+1. (39)

In this case, the 2 × 2-matrices to start from are of the type:

Nβ =

(
0 − β

2
β
2 0

)
(40)

where 1 ≤ β ≤ J is an odd integer. With these blocks, we define the (4J + 2)× (4J + 2)-block matrix:

RII
J (X3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

NJ
. . .

N1

−N1
. . .

−NJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

For this rotation matrix, it is easy to verify that the characteristic and minimal polynomials satisfy
Equation (38). Next, we consider matrices of the type:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 A1

−AT
1 0 A2

−AT
2

. . .
0 AJ

−AT
J 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (42)
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where the Al are 2 × 2-matrices. We observe that, without loss of generality, these can be taken

as in (16). Repeating the same argument as for the integer case, the commutator
[

RII
J
2
(X3), S

]
is a

skew-symmetric matrix having the same block structure as (42). We thus define the matrix RII
J
2
(X1) = S

and also RII
J
2
(X2) =

[
RII

J
2
(X3), S

]
. Developing explicitly the commutators of these matrices, it can be

proven easily that the Al-blocks satisfy the constraint:

Al + AJ−l = 0, 1 ≤ l ≤
[

J
2

]
. (43)

Hence, the number of parameters for a generic matrix S is bounded by 3
([

J
2

]
+ 1

)
. Now, imposing

the condition
[

S,
[

RII
J
2
(X3), S

]]
= RII

J
2
(X3), we are again led to a quadratic system in the coefficients of

Nβ and Al . In this case, however, the solution can be computed up to the sign, and no free parameters
appear (this is a consequence of the constraint (43)).

Making, e.g., the choice of skew-symmetric blocks Al and fixing the positive sign for the solution
of the quadratic system, the matrix elements of RII

J
2
(Xk) for k = 1, 2, 3 are given by the formulae:

〈
ek

∣∣∣RII
J
2
(X1)|el〉 =

(
1+(−1)k−1

2

)(
δl

k+3 a([ k+1
2 ]) + δl+1

k a([ k−1
2 ])

)
−

(
1+(−1)k

2

)
×(

δl
k+1a([ k

2 ])
+ δl+3

k a([ k−2
2 ])

) (44)

〈
ek

∣∣∣RII
J
2
(X2)|el〉= δl

k+2 a([ k+1
2 ]) − δl+2

k a([ k−1
2 ]). (45)

〈
ek

∣∣∣RII
J
2
(X3)|el〉=

(
1 + (−1)k

)
δl+1

k (2J + 2 − k) +
(
(−1)k − 1

)
δk+1

l (2J + 1 − k)

4
(46)

As a byproduct of the method, we remark that the matrix elements (33)–(35), as well as those in
(44)–(46) provide a prescription to realize the Lie algebra so(3) in terms of vectors fields in R

2J+1 and
R

4J+2, respectively. More specifically, if M is the representation matrix of an element Y ∈ so(3), the
associated vector field Ŷ is given by:

Ŷ :=
〈

ek
∣∣∣M|el〉xk

∂

∂xl
. (47)

4. Tensor Products of Real Irreducible Representations

While the tensor products of complex representations of so(3) are well known and easily found
by means of the formula:

DJ ⊗ DJ′ = DJ+J′ ⊕ · · · ⊕ D|J−J′ |, (48)

for the tensor products of the real irreducible representations, the preceding formula is generally no
longer valid, due to the division into the first and second class [8]. As a consequence, in general,
such a tensor product will not be always multiplicity free, i.e., the irreducible real representations
appearing in the decomposition may have multiplicity greater than one. This is easily seen using the
corresponding complexification, to which Formula (48) applies. A simple computation shows that for
the tensor products of real irreducible representations RI

J and RII
J′
2

of so(3), three possibilities are given:

1. J, J′ ∈ N and J ≥ J′ :

RI
J ⊗ RI

J′ =
2J′

∑
α=0

RI
J+J′−α. (49)
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The tensor product is multiplicity free, and the irreducible factors are all of Class I. This actually
corresponds exactly to the tensor product of the complex representations DJ .

2. J ∈ N, J′ ≡ 1 (mod 2) :

RI
J ⊗ RII

J′
2
=

2J′

∑
α=0

RII
|2J+J′−α|

2

. (50)

The irreducible factors are all of Class II and have multiplicity one; hence, the product is also
multiplicity free.

3. J, J′≡ 1 (mod 2) :

RII
J
2
⊗ RII

J′
2
=

2J′

∑
α=0

4 RI
|J+J′−α|

2

. (51)

As expected, in this case, the irreducible factors are all of Class I, and the tensor product is not
multiplicity free. All factors have the same multiplicity λ = 4.

As follows from (38) when compared to (10), given an arbitrary matrix of a real irreducible
representation of so(3), its class can be immediately deduced from the characteristic polynomial.
Actually, a stronger assertion can be obtained using this property. The main fact in this context is that
the representation matrices of the three generators X1, X2, X3 of so(3) have the same characteristic and
minimal polynomials. This enables us to determine easily the characteristic polynomial for any linear
combination X = ∑3

k=1 λkXk and any real irreducible representation:

1. If RI
J is a representation of first class, then RI

J(X) has characteristic polynomial:

pJ(z) = −z
J

∏
α=1

(
z2 + ξ α2

)
, (52)

where ξ = λ2
1 + λ2

2 + λ2
3. Moreover, the minimal polynomial satisfies qJ(z) = pJ(z).

2. If RII
J
2

is a representation of the second class, then RII
J
2
(X) has characteristic polynomial:

p J
2
(z) =

1
22J+2

J−1
2

∏
β=0

(
4z2 + ξ (2β + 1)2

)2
(53)

where ξ = λ2
1 + λ2

2 + λ2
3. In this case, q J

2
(z) =

√
p J

2
(z).

It is worthy to be observed that the quadratic factor
(
z2 + 1

)
must appear in any representation

with integer J, while
(
4z2 + 1

)2 appears for any half-integer. This implies that the common factor ξ can
be easily found from the corresponding characteristic polynomial when the latter is rewritten taking
into account (10) and (38). This fact further enables us to deduce the decomposition of an arbitrary
real representation of so(3) by simply analyzing the characteristic polynomial of a matrix within this
representation. Let us inspect this fact more closely.

Let
R = μ0RI

0 ⊕ μ1RI
J1
⊕ · · · ⊕ μrRI

Jr
⊕ ν1RII

J′1
2

⊕ · · · ⊕ νsRII
J′s
2

(54)

be the decomposition of R into real irreducible factors, where μk, νl are positive integers, such that:

dim R =
r

∑
k=0

μk(2Jk + 1) +
s

∑
l=1

νl
(
2J′l + 2

)
(55)
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holds and Jk , J′l �= 0 for k, l �= 0. Without loss of generality, we can suppose that J1 < J2 < · · · < Jr and
J′1 < J′2 < · · · < J′s. The polynomial p(z) of R(X) thus factorizes as the product:

p(z) = pμ0
0 (z)pμ1

J1
(z) · · · pμr

Jr
(z) p J′1

2

(z)ν1 · · · p J′s
2
(z)νs . (56)

As follows from (52) and (53), there exists a common factor ξ in all quadratic factors of p(z). For
0 ≤ σ ≤ r and 1 ≤ τ ≤ s, define further:

mσ =
r

∑
k=σ

μk; nτ = 2
s

∑
l=τ

νl . (57)

Expanding the polynomial p(z), we obtain the expression:

p(z) = −zm0

(
J1
∏

α=1

(
z2 + ξ α2))m1

(
J2
∏

α=1+J1

(
z2 + ξ α2))m2

· · ·
(

Jr
∏

α=Jr−1+1

(
z2 + ξ α2))mr

×

s
∏
l=1

2−(2J+2)νl

⎛
⎜⎝

J′1−1
2

∏
β=0

(
4z2 + ξ (2β + 1)2

)⎞⎟⎠
n1

· · ·

⎛
⎜⎝

J′s−1
2

∏
β=

J′s−1−1
2

(
4z2 + ξ (2β + 1)2

)⎞⎟⎠
ns

.

(58)

Starting from the polynomial (58), we can go backwards and deduce the precise decomposition
(54) of R by merely inspecting the multiplicities of the different quadratic factors. In practice, the
coefficients of the polynomial simplify, so that the factor ξ must be first deduced from the quadratic real
irreducible factors, having in mind that for irreducible representations of the first class and second class,

they are of the form given in (52) and (53). On the other hand, the values J1, · · · , Jr and J′1
2 , · · · , J′s

2 of
the irreducible factors are uniquely determined as the highest values in the quadratic factors

(
z2 + ρ2)

and
(
4z2 + ω2) preceding a variation in the multiplicity. Therefore, the number of irreducible factors

in the decomposition of R is given by the number of different multiplicities of the quadratic factors
and that of z. The corresponding multiplicity of each irreducible factor of R is easily obtained by the
following prescription:

1. The multiplicity of z, given by m0, indicates the number of irreducible factors of Class I.
2. The multiplicity of RI

Jr
is given by mr, whereas the multiplicity of RI

Jk
is given by mk − mk+1 for

r − 1 ≥ k ≥ 1.
3. The multiplicity of the trivial representation RI

0 is given by m0 − m1.

4. The multiplicity of RII
J′s
2

is given by 1
2 ns, whereas the multiplicity of RII

J′l
2

is given by nl−ml+1
2 for

s − 1 ≥ l ≥ 1.

This proves that the essential information concerning the real irreducible factors of a real
representation is codified in the factorization of the characteristic polynomial of an arbitrary matrix.
This proves the following criterion:

Theorem 2. Let R be an arbitrary real representation of so(3) and X ∈ so(3). Then, the decomposition of R as
the sum of real irreducible representations is completely determined by the characteristic polynomial p(z) of the
matrix R(X).

As an example that illustrates the method, suppose that the matrix X belonging to a real
representation R of so(3) has characteristic polynomial:

p(z) = λ
(

25 + 2z2
)8(

225 + 2z2
)6(

625 + 2z2
)4(

1225 + 2z2
)2

, (59)
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where λ �= 0. The exponents are n1 = 8, n2 = 6, n3 = 4 and n4 = 2; thus, it follows at once that R must
be a sum of four irreducible factors of Class II, as z does not appear in the factorization of p(z) into real
irreducible factors. Taking into account Expression (38), the polynomial can be rewritten as:

p(z) = 2−20λ
(

50 + 4z2
)8(

450 + 4z2
)6(

1250 + 4z2
)4(

2450 + 4z2
)2

, (60)

Hence, we can extract the common factor ξ = 50. The values of J for the irreducible components are:

J2
1 = 1, J2

2 =
450
50

= 9, J2
3 =

1250
50

= 25, J2
4 =

2450
50

= 49. (61)

On the other hand, νJ4 = 1, ν3 = n3−n4
2 = 1, ν2 = n2−n3

2 = 1 and ν1 = n1−n2
2 = 1, showing that X is a

matrix belonging to the representation RII
1
2
⊕ RII

3
2
⊕ RII

5
2
⊕ RII

7
2

.

5. Conclusions

By means of elementary techniques of Lie algebras and matrix theory, explicit formulae to
construct real matrices of real irreducible representations of the first and second class of the compact
Lie algebra so(3) have been obtained. The procedure is based on the important observation that, as a
consequence of the Cartan map (3), the representation matrices of the so(3)-generators in an irreducible
representation have the same characteristic and minimal polynomial, a fact that is not true on the usual
Cartan–Weyl basis. This enables us to characterize the class of a real representation according to the
structure of these polynomials. Using the latter enables one to construct skew-symmetric matrices for
any irreducible real representation. The real matrices so constructed actually realize the embedding of
so(3) into the compact Lie algebras so(2J + 1) and so(4J + 2), respectively, depending on whether J is
an integer or half-integer and, hence, corresponding to matrices of the representation subduced by
the restriction of the defining representation of the orthogonal Lie algebras. As an application of the
method, it has been shown that for an arbitrary real representation R of so(3), the decomposition of R
into irreducible factors can be deduced from the characteristic polynomial of an arbitrary matrix in the
representation. This provides in particular a useful practical criterion to determine whether a given
matrix belongs to an irreducible real representation.

We finally remark that the realizations in terms of vector fields (47) that are deduced from the
matrix elements (33)–(35), as well as those in (44)–(46), are potentially of interest in the context of point
symmetries of ordinary differential equations. Systems of ordinary differential equations have been
exhaustively studied by means of the Lie method (see, e.g., [13–15] and the references therein), albeit
for systems containing arbitrary functions as parameters, there still remains some work to be done. In
this context, indirect approaches as that developed in [16] characterizing systems in terms of specific
realizations of Lie algebras constitute an alternative procedure that can be useful for applications.

As an elementary application of the real representations of so(3) to the Lie symmetry method,
consider the representation RI

J for J = 2. Using the prescription given in (47), the vector fields in R
5

associated with the matrices (36) are the following:

X̂1 = −x4
∂

∂x1
+ x3

∂
∂x2

− x2
∂

∂x3
+ (x1 −

√
3x5)

∂
∂x4

+
√

3x4
∂

∂x5
,

X̂2 = −x3
∂

∂x1
− x4

∂
∂x2

+ (x1 +
√

3x5)
∂

∂x3
+ x2

∂
∂x4

−√
3x3

∂
∂x5

,
X̂3 = 2x2

∂
∂x1

− 2x1
∂

∂x2
+ x4

∂
∂x3

− x3
∂

∂x4
.

(62)

Now, let Φ(t) �= 0 be an arbitrary function, and consider the equations of motion:

..
xi = Φ(t)

∂V
∂xi

, 1 ≤ i ≤ 5 (63)
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associated with the Lagrangian:

L =
1
2

( .
x2

1 + · · ·+ .
x2

5

)
+ Φ(t)V(x1, · · · , x5), (64)

where V(x1, · · · , x5) = αi1···i5 xi1
1 · · · xi5

5 is a homogeneous cubic polynomial. After some computation,
it can be shown that the preceding vector fields are point symmetries of (63) only if V(x1, · · · , x5) has
the following form:

V(x1, · · · , x5) = α
(

6
(

x2
1 + x2

2

)
x5 + 3

(√
3x1 − x5

)
x2

3 − 3
(√

3x1 + x5

)
x2

4 − 2x3
5 + 6

√
3x2x3x4

)
,

where α ∈ R. The realization (62) of so(3) obtained from the representation RI
2 further imposes

some restrictions on the existence of additional point symmetries. A generic point symmetry Z =

ξ(t, x) ∂
∂t + η j(t, x) ∂

∂xj
of (63) has components:

ξ(t, x) = b4t2 + b5t + b6,
η1(t, x) = −b1x4 + b2x3 + 2b3x2 + b4t x1 +

1
2 b5x1 + b7x1,

η2(t, x) = b1x3 + b2x4 − 2b3x1 + b4t x2 +
1
2 b5x2 + b7x2,

η3(t, x) = −b1x2 − b2

(
x1 +

√
3x5

)
+ b3x4 + b4t x3 +

1
2 b5x3 + b7x3,

η4(t, x) = b1

(
x1 −

√
3x5

)
− b2x2 − b3x3 + b4t x4 +

1
2 b5x4 + b7x4,

η5(t, x) =
√

3b1x4 +
√

3b2x3 + b4t x5 +
1
2 b5x5 + b7x5

(65)

where the coefficients b4, · · · , b7 are subjected to the constraint:

(10b4t + 5b5 + 2b7)Φ(t) +
(

2b4t2 + 2b5t + 2b6

)dΦ
dt

= 0. (66)

It follows that for non-constant generic functions Φ(t), the symmetry algebra is isomorphic to so(3),
whereas if Φ(t) satisfies the separable ordinary differential Equation (66), at most two additional point
symmetries can be found. It is easily verified that if the system possesses five point symmetries (these
are determined by the coefficients b6 and b7 = − 5

2 b5, corresponding to the time translation and a
scaling symmetry, respectively), then Φ(t) is necessarily a constant. It may be observed that, in any
case, the symmetries generating the so(3)-subalgebra are also Noether symmetries. We thus conclude
that for functions Φ(t) not satisfying the constraint (66), the algebras of point and Noether symmetries
coincide.

For the remaining values of J, a similar ansatz as the previous one can be applied to obtain criteria
that ensure that a non-linear system of ordinary differential equations exhibits an exact so(3)-symmetry.
Work in this direction is currently in progress.
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Abstract: We reveal the frame-exchange space-inversion (FESI) symmetry and the frame-exchange
time-inversion (FETI) symmetry in the Lorentz transformation and propose a symmetry principle
stating that the space-time transformation between two inertial frames is invariant under the FESI
or the FETI transformation. In combination with the principle of relativity and the presumed
nature of Euclidean space and time, the symmetry principle is employed to derive the proper
orthochronous Lorentz transformation without assuming the constancy of the speed of light and
specific mathematical requirements (such as group property) a priori. We explicitly demonstrate
that the constancy of the speed of light in all inertial frames can be derived using the velocity
reciprocity property, which is a deductive consequence of the space–time homogeneity and the space
isotropy. The FESI or the FETI symmetry remains to be preserved in the Galilean transformation at
the non-relativistic limit. Other similar symmetry operations result in either trivial transformations
or improper and/or non-orthochronous Lorentz transformations, which do not form groups.

Keywords: symmetry principle; Lorentz transformation; special relativity

PACS: 03.30.+p

1. Introduction

The importance of the Lorentz transformation (LT) in the special theory of relativity can hardly be
overemphasized. Physical laws are Lorentz-covariant between two inertial frames; namely, the form of
a physical law is invariant under the LT. This is called the Lorentz symmetry. The proper orthochronous
LT forms a group and reduces to the Galilean transformation (GT) as the speed of light approaches
infinity. The mathematical structure of the LT is simple, while the conceptual change involved
in interpreting it properly is profound. This explains the relentless interest in re-deriving and
re-deciphering the LT, even a century after the birth of the theory.

Einstein’s original derivation of the LT [1] was based on the principle of relativity and the
assumed constancy of the speed of light (Einstein’s second postulate). It is now known that the second
postulate is not a necessary ingredient in the axiomatic development of the theory. It has been shown,
as far back as 1910s [2,3], that the LT can be derived using the velocity reciprocity property for the
relative velocity of two inertial frames and a mathematical requirement of the transformation to be
a one-parameter linear group [4–7]. In fact, the mathematical form of the LT was known before
Einstein published his seminal paper. Pauli provided a brief historical background of the theoretical
development of the LT before Einstein’s 1905 paper [4]. In particular, it was Poincaré who first
recognized the group property of the LT and named it after Lorentz [8]. Both the velocity reciprocity
property [9,10] and the linearity property [11,12] can be deduced from the presumed space–time
homogeneity and the space isotropy, which are the embedded characteristics of Euclidean space
and time [13,14]. Therefore, special relativity can be formulated on a weaker base of assumptions
than Einstein’s, and special relativity becomes purely kinematic with no connection to any specific
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interactions or dynamical processes. These efforts are more than pedantic pursuits for intellectual
satisfaction, but greatly extend the original scope for unifying electrodynamics and mechanics. To the
present knowledge it is generally believed that the Lorentz symmetry serves as a universal principle
to describe the world manifold in which all fundamental processes take place, except, perhaps,
for the quantum gravity phenomena [15]. To put it in a modern context and future perspective,
recent interests in reformulating the logical foundation of special relativity have been mainly invoked
by the experimental search for the evidence of the Lorentz-violating effects [15–17]. For example,
relaxing some presumed postulates can lead to a “Very Special Relativity” proposed by Cohen and
Glashow [18–20] or an extension of special relativity by Hill and Cox [21] that is applicable to relative
velocities greater than the speed of light. These extensions largely widen our scope of exploring the
more fundamental side of Lorentz symmetry and give impetus to further experimental research.

A prevailing theme in the literature is to reformulate special relativity in terms of intrinsic
space–time symmetry principles [22–26], where the form of the space–time transformation is invariant
under the symmetry operations, and auxiliary mathematical requirements such as group property can
be minimized. The practice of replacing the mathematical requirement of group property by a more
fundamental symmetry principle is appealing. Not only is it more axiomatically natural from the
physical point of view, but it also provides a perspective capable of admitting fundamentally new
physical concepts. In this paper, we sort out the possible space–time symmetries which leave the LT
invariant under the corresponding symmetry operations. One of the most surprising observations is
that the LT is intrinsically related to some discrete space–time symmetry, while the LT itself forms the
basis to describe the continuous Lorentz symmetry to gauge physical laws. We reveal two symmetry
operations under which the LT is invariant; namely, (1) the frame-exchange space-inversion (FESI);
x′ ↔ −x , c′t′ ↔ ct ; and (2) the frame-exchange time-inversion (FETI); x′ ↔ x , c′t′ ↔ −ct . To best
demonstrate the utility of the proposed symmetry principle, we re-derive the LT without assuming
the mathematical group property a priori. We show that either the FESI or the FETI can lead to the
proper orthochronous LT, and both are preserved for the GT. This is the main contribution of this
work. Additionally, as has been known for a long time, we demonstrate that the second postulate can
be obtained by using the velocity reciprocity property [9,10]. Moreover, the necessary condition for
physical causality is shown to be a deductive consequence of this symmetry principle.

2. Derivation of the Lorentz Transformation

Originally motivated, we start with Einstein’s simple derivation of the LT in a popular science
exposition of relativity in 1916, in which he employed a symmetrized form of the space–time
transformation [27]. Although there have been a number of analyses on the 1905 paper [28–30],
this later formulation seems to receive little attention for its implications. In our point of view,
the formulation has the great advantage of providing streamlined reasoning and heuristic inspiration,
and is therefore suitable for presentation of the intrinsic symmetry hidden in the LT.

Let us now proceed to derive the LT. Consider the two inertial coordinate systems K and K’
depicted in Figure 1a. The x- and x’-axes of both systems are assumed to coincide permanently, and
the origins of the two systems coincide at t = 0. If a light-ray is transmitted along the positive direction
of x and x’, then the propagation of the light-ray is described by x − ct = 0 in K and x′ − c′t′ = 0 in
K’, respectively, where c and c’ are the light-speed measurements in K and K’. Our purpose is to find
a system of transformation equations connecting x, t in K and x’, t’ in K’. It is obvious that the simplest
equations must be linear in order to account for the presumed homogeneity property of space and
time, which can be formally proved [11,12,27]. Following Einstein [27], a symmetrized form of the
transformation reads:

x′ − c′t′ = λ (x − ct) (1)

where λ is a constant which may depend on the constant velocity v. Similar considerations, when
applying to the light-ray being transmitted along the negative direction of x and x’, lead to:
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x′ + c′t′ = μ (x + ct) (2)

where μ is another constant not necessary to be the same as λ [27]. Different from Einstein’s derivation,
we do not use the second postulate; namely, we do not require c’ = c at this point. We now show that
the constancy of the speed of light can be obtained from the velocity reciprocity property. For a proper
observer who is “at rest” in K, K’ is “moving” with a constant velocity v towards the positive x-axis.
The origin of K’ is specified by x’ = 0 in Equations (1) and (2); so, we have:

λ− μ

λ+ μ
=

v
c

(3)

Similarly (see Figure 1b), for a proper observer who is “at rest” in K’, K is “moving” with a constant
velocity v towards the negative x’-axis (the velocity reciprocity property) [9,10]. The origin of K is
specified by x = 0 in Equations (1) and (2), so we have:

λ− μ

λ+ μ
=

v
c′ (4)

Equations (3) and (4) lead to c′ = c. As we mentioned, this fact has been known for a long time.
Here we explicitly demonstrate it.

To determine the specific form of the transformation, we employ the symmetry principle.
If Equations (1) and (2) are invariant under the FESI or the FETI transformation, it is found that
λ and μ are mutually in inverse proportion to each other:

λμ = 1 (5)

For example, applying the FETI symmetry on Equation (1), we obtain x + ct = λ(x′ + c′t′).
Using Equation (2), we have x+ ct = λμ(x+ ct), thus yielding Equation (5). Together with Equation (3),
we obtain:

λ =
√

c+v
c−v

μ =
√

c−v
c+v

(6)

and c must be greater than v in order to constrain λ and μ being real numbers. Substituting Equation (6)
into (1) and (2), we obtain:

x′ = 1√
1−v2/c2 (x − vt)

t′ = 1√
1−v2/c2

(
t − v

c2 x
) (7)

which is the proper orthochronous Lorentz transformation.

3. Discussion

There are several interesting points to note from the above derivation of the LT. First, using the
symmetrized form of the transformation and the symmetry principle, all of the mathematical formulas
are essentially symmetric. This clearly gives some aesthetic satisfaction; second, this formulation
demonstrates that the second postulate is not at all necessary to be assumed a priori [31–37].
The velocity reciprocity property alone leads to the constancy of the speed of light. This may justify the
numerous studies re-deriving the LT by dispensing with the second postulate. On the other hand, if we
did use Einstein’s second postulate, Equation (5), together with Equations (1)–(3), it suffices to obtain
the LT while the velocity reciprocity property, Equation (4), now becomes a deduction. However, in this
way, we could not see that the existence of an invariant quantity with a dimension of speed is related
to the space isotropy. As has been constantly criticized by others, the (experimentally found) constancy
of light-speed is just an exhibition of the nature of space–time, but not a special property of any
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specific theory such as electrodynamics. It just happens that light is propagating in vacuum in this
specific speed; third, the FESI or the FETI symmetry principle replaces the group assumption of the
transformation in determining the functional form of the transformation parameters. The resulting LT
is proper and orthochronous, and thus forms a group post priori. Finally, the necessary condition of c
being a limiting velocity for the physical requirement of causality can be obtained without resorting to
auxiliary postulates. It is simply the result of the requirement of the transformation parameters being
real numbers.

Other similar space–time operations result in either trivial transformations or improper and/or
non-orthochronous LTs, which do not form groups [38]. For example, the following operations:

x′ ↔ x, c′t′ ↔ ct
x′ ↔ −x, c′t′ ↔ −ct

x′ ↔ ct, c′t′ ↔ x
x′ ↔ −ct, c′t′ ↔ −x

(8)

lead to the trivial transformation, λ = μ = 1, while the following operations:

x′ ↔ ct, c′t′ ↔ −x
x′ ↔ −ct, c′t′ ↔ x
x′ ↔ c′t′, x ↔ −ct
x′ ↔ −c′t′, x ↔ ct

(9)

result in improper and/or non-orthochronous LTs. Field [25] was able to derive the proper
orthochronous LT using the space–time exchange (STE); x′ ↔ ct′ , x ↔ ct (for completeness,
the operation of x′ ↔ −ct′ , x ↔ −ct , termed STE’, is also a proper choice, although it was not
discussed in the paper). Notice that these operations are performed in the same frames, respectively.
It can be seen that Equations (1) and (2) are also invariant under the STE (or the STE’) operation.
However, it has been pointed out [39] that the STE symmetry is not exactly preserved for the GT,
although the “broken symmetry” has its own subtleties [40,41]. On the other hand, the FESI or FETI
symmetry remains to be valid at the non-relativistic limit as c → ∞ , as can be shown easily.

Another compact presentation which is consistent with the FESI or the FETI symmetry utilizes
an involutive form of the transformation [42–44]. Starting with a change of sign of the spatial coordinate
in K only; x → −x , Equations (1) and (2) read:

x′ − c′t′ = −λ (x + ct) (10)

and:
x′ + c′t′ = −μ (x − ct) (11)

respectively. If one now assumes that the above equations are involutive; namely, they are invariant
under the operations x′ ↔ x and c′t′ ↔ ct , one obtains Equation (5). Unfortunately, the resulting LT is
an improper orthochronous LT, and the symmetry is not preserved for the GT (for completeness,
if one starts with t → −t in K only and assumes the transformation equations are involutive,
one obtains yet another improper orthochronous LT). To obtain the physically acceptable proper
orthochronous LT, one has to reverse the sign of x (in K only) post priori, thus making the whole
methodology ad hoc. Although this involutive formulation has the mathematical advantage of utilizing
well-established matrix algebra (e.g., the transformation matrix is involutory), it is not suitable to be
promoted to a physical principle.

410



Symmetry 2016, 8, 94

Figure 1. Two inertial frames K(O) and K’(O’) with (a) K’ moving with a relative constant velocity v
viewed by a proper observer in K; and (b) K moving with a relative constant velocity –v viewed by
a proper observer in K’.

4. Conclusions

In concluding this paper, among the possible discrete-type space–time symmetry operations
studied herein which leave the coordinate transformation between two inertial frames formally similar
to the LT, we have found that only the FESI or the FETI satisfies the following two requirements:
(1) the final resulting LT is proper and orthochronous and thus forms a group; and (2) the symmetry
remains to be valid at the non-relativistic limit. We demonstrate the utility of the revealed symmetry
principle through a derivation of the LT which closely follows the logic of Einstein in 1916.
The mathematical requirement of the group property for the space–time transformation is not assumed
a priori, but becomes a natural result due to the intrinsic symmetry principle of space–time.
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