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(a) EDA Features. (b) ACC Features.

Figure 2. Top-ranking features selected for the EDA and ACC signals.

4.2. Relaxation Method Suggestion by Analyzing the Physical Activity-Based Context

Context is a broad term that could contain different types of information such as calendars, activity
type, location and activity intensity. Physical activity intensity could be used to infer contextual information.
In more restricted environments such as office, classrooms, public transportation and physical activity
intensity could be low, whereas, in outdoor environments, physical activity intensity could increase.
Therefore, an appropriate relaxation method will change according to the context of individuals.

For calculating physical activity intensity, we used the EDAExplorer tool [41]. The stillness metric
is used for this purpose. It is the percentage of periods in which the person is still or motionless. Total
acceleration must be less than a threshold (default is 0.1 [41]) for 95 percent of a minute in order for this
minute to count as still [41]. Then, the ratio of still minutes in a session can be calculated. For the ratio
of still minutes in a session, we labeled sessions below 20% as still, above 20% as active and suggested
relaxation method accordingly (see Figure 3).

Figure 3. The whole system diagram is depicted. When a high stress level is experienced, by analyzing the
physical activity based context, the system suggests the most appropriate reduction method.

4.3. Description of the Data Collection Procedure

The proposed stress level monitoring mechanism, for real-life settings, was evaluated during an eight
day Marie Skłodowska-Curie Innovative Training Network (ITN) training event in Istanbul, Turkey, for the
AffecTech project. AffecTech is a program funded by Horizon 2020 (H2020) framework established by the
European Commission. The AffecTech project is an international collaborative research network involving
15 PhD students (early stage researchers (ESR)) with the aim of developing low-cost effective wearable

84



Healthcare 2020, 8, 100

technologies for individuals who experience affective disorders (for example, depression, anxiety and bipolar
disorder).

The eight-day training event included workshops, lectures and training with clearly defined tasks
and activities to ensure that the ESR had developed the required skills, knowledge and values outline prior
to the training event. At the end of the eight-day training, ESRs were required to deliver a presentation
about their PhD work to two evaluators from the European Union where they received feedback about
their progress (see Figure 4 for raw physiological signals at the start of the presentation). For studying the
effects of emotion regulation on stress, yoga, guided mindfulness and mobile-based mindfulness, sessions
were held by a certified instructor.

 

 

Figure 4. Sample data belong to a presentation session. The increase in EDA, ST and IBI could be observed
when the subject started the presentation.

During the training, physiological and questionnaire data were collected from the 16 ESR participants
(9 men, mean age 28); 15 ESRs and one of the AffecTech project academics, all of whom gave informed
consent to participate in the study. Participants were from different countries with diverse nationalities
(two from Iran, two from Spain, two from Italy, one from Argentina, one from Pakistan, one from China,
one from Switzerland, one from Belarus, one from France, one from England, one from Barbados, one
from Turkey and one from Bulgaria). Due to the fault of one of the Empatica E4 devices, it was not
possible to include data from one participant. The remaining 15 participants completed all stages of the
study successfully.

During the eight days of training and presentations, psychophysiological data were collected from 16
participants during the training event from Empatica E4 smart band while they are awake. For studying
the effects of emotion regulation on stress, yoga, guided mindfulness and mobile-based mindfulness
sessions were held by a certified instructor. The timeline of the event is shown in Figure 5.
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Figure 5. Time-line depicting eight days of the training event. Presentations, relaxations and lectures
are highlighted.

4.3.1. Physiological Stress Data

The psychophysiological signal data were collected using the Empatica E4 smart band whilst
participants were awake throughout the eight days of the AffecTech training. Physiological data included
IBI, EDA, ACC (Accelerometer) and ST and stored in different csv files. In addition, 27.39% of the data are
obtained from free times (free day and after training until subjects slept 5:00 p.m.–10:00 p.m.), 43.83% of
the data comes from lectures in the training, 11.41% is the presentation session and relax sessions consist
of 17.35% of the data. As mentioned previously, we randomly undersampled (most commonly applied
method [55] ) the data to overcome the class imbalance problem. The participants’ blood pressure (BP) was
also recorded using CE(0123) Harvard Medical Devices Ltd. automated sphygmomanometer prior to and
after each stress reduction event (yoga and mindfulness), in order to demonstrate whether the participants
stress levels were modified. On each occasion that the participants’ BP was recorded, the mean of three
recordings was used as the final BP. A reduction in the participants’ blood pressure and/or pulse rate may
be seen, which demonstrates a reduction in stress level.

4.3.2. Ethics

The procedure used in this study was approved by the Institutional Review Board for Research with
Human Subjects of Boğaziçi University with the approval number 2018/16. Prior to data acquisition, each
participant received a consent form describing the experimental procedure and its benefits and implications
to both the society and the subject. The procedure was also explained verbally to the subject. All of the data
are stored anonymously.

4.3.3. Questionnaire Self-Report Stress Data

A session-based self-report questionnaire comprised of six questions based on the Nasa Task Load
Index (NASA-TLX) [57]. The frustration scale was specifically used to measure perceived stress levels [32].
We asked the following question to the participants for each session:

How irritated, stressed and annoyed versus content, relaxed and complacent did you feel during the task?

Questionnaires were completed daily (at the end of the day) and, after each presentation, lecture and
stress reduction event (such as yoga and mindfulness).

4.3.4. Stress Management Scheme Using Yoga and Mindfulness

During the eight day training, it is assumed that the participants’ stress levels are likely to have
increased day by day because they were required to give a presentation (perceived as a stressful event)
reporting their PhD progress to the EU project evaluators at the end of the training.

Underpinned by James Gross’s Emotion Regulation model (see Figure 6) [4], we modified the situation
to help the participants to reduce their thoughts of the end of the training presentation. To help participants
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manage their stress levels, we applied Yoga and mindfulness sessions on two separate days (day three and
day four, respectively). These sessions lasted approximately 1 h and, throughout the sessions, participants
wore an Empatica E4 smartband. In addition to the physiological signals coming from the Smartbands,
participants’ blood pressure values were also recorded before and after the yoga and mindfulness sessions.

Figure 6. Application of James Gross’s Emotion Regulation model [4] in the context of stress management.

5. Experimental Results and Discussion

5.1. Statistical Data Analysis

5.1.1. Validation of Different Perceived Stress Levels by using the Self-Reports

In order to validate that the participants experienced different perceived stress levels in different contexts
(lecture, relaxation, presentation), we used the Frustration item (see Section 4.5) from the NASA-TLX [57].
The distribution of answers is demonstrated in Figure 7. Our aim is to show that the perceived stress
levels (obtained from self-report answers) differ in relaxation sessions considerably when compared to the
presentation session (high stress). To this end, we applied the t-test (in R programming language) to the
perceived stress self-report answers of yoga versus presentation, mindfulness versus presentation and pause
(mobile mindfulness) versus presentation session pairs. The paired t-test is used to evaluate the separability
of each session. The degree of freedom is 15. We applied the variance test to each session tuple; we could not
identify equal variance in any of the session tuples. Thus, we selected the variance as unequal. We used
99.5% confidence intervals. The t-test results’ (p-values and test statistics) are provided in Table 5. For all
tuples, the null hypothesis stating that the perceived stress of the relaxation method is not less than the
presentation session is rejected. The perceived stress levels of participants for all meditation sessions are
observed to be significantly lower than the presentation session (high stress).

Table 5. T-test results for session tuple comparison of perceived stress levels using self-reports.

Session Tuple t-Test Statistic p-Value

Yoga—Presentation −4.0027 p < 0.005
Guided Mindfulness—Presentation −5.4905 p < 0.005
Mobile Mindfulness—Presentation −4.2677 p < 0.005
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Figure 7. Visual representation of the frustration scores collected in different types of sessions.

5.1.2. Before and After Physiological Measurements for Evaluating Performance of Yoga and Mindfulness
with Blood Pressure

In this section, we compared the effect of stress management tools such as yoga and mindfulness on
blood pressure. It is expected that blood pressure sensors will be part of unobtrusive wrist-worn wearable
sensors soon. We plan to integrate a blood pressure (BP) module to our system when they are available.
Therefore, by using the measurements of a medical-grade blood pressure monitor, we provided insights
about how stress reaction affects BP. We further applied and tested the prominent emotion regulation
model of James Gross by analyzing these measurements in the context of stress management. We measured
the diastolic and systolic BP and pulse using a medical-grade blood pressure monitor before and after the
yoga and mindfulness sessions. In order to ensure that the participants were relaxed and that an accurate
BP was recorded, BP was measured three times with the mean as the recorded result. A one-sample t-test
was applied to the difference between mean values. The results are shown in Table 6.

Mindfulness decreased the systolic BP, –1.13% (ns), increased diastolic BP, +1.75% (p < 0.05) and
decreased the pulse –5.75% (p < 0.05). Medicine knows that systolic blood pressure (the top number or
highest blood pressure when the heart is squeezing and pushing the blood around the body) is more
important than diastolic blood pressure (the bottom number or lowest blood pressure between heartbeats)
because it gives the best idea of the risk of having a stroke or heart attack. In this view, the significant
reduction of systolic BP after mindfulness is an important result.

Moreover, the difference between systolic and diastolic BP is called pulse pressure. For example, 120
systolic minus 60 diastolic equals a pulse pressure of 60. It is also known that a pulse pressure greater than
60 can be a predictor of heart attacks or other cardiovascular diseases, while a low pulse pressure (less
than 40) may indicate poor heart function. In our study, pulse pressure was lower after mindfulness (we
had both a significant reduction in systolic BP and an increase in diastolic BP), but its value was higher
than 40 (42.69 mean difference before the mindfulness and 40.48 mean difference after the mindfulness),
suggesting that this result can also be considered clinically positive.

During yoga, there was a decrease in systolic BP by −5.81% (p < 0.05), diastolic BP by −1.93% (ns)
and increase in pulse +8.06% (p < 0.05). Yoga appears to be more effective than mindfulness at decreasing
systolic and diastolic blood pressure, although mindfulness seems to be more effective than yoga for
decreasing the pulse due to the activity involved in yoga.
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Table 6. The difference between the mean diastolic blood pressure, the mean systolic blood pressure and
the mean pulse, before and after sessions of guided mindfulness and guided yoga. (* p < 0.05).

Activity Systolic Diastolic Pulse

Guided Mindfulness −1.31% 1.75% * −5.75% *
Guided Yoga −5.81% * −1.93% 8.06% *

5.2. Physiological Stress Level Detection with Wearables by Using Context Labels as the Class Label

We tested our system by using the known context labels of sessions as the class label. We used Lecture
(mild stress), Yoga and Mindfulness (relax) and Presentation in front of the board of juries (high stress) as
class labels by examining perceived stress self-report answers in Figure 6. We investigated the success of
relaxation methods, different modalities and finding the presenter.

5.2.1. Effect of Different Physiological Signals on Stress Detection

We evaluated the effect of using the interbeat-interval, the skin conductance and the accelerometer
signals separately and in a combined manner on two and three class classification performance. These
classes are mild stress, high stress and relax states from mindfulness and yoga sessions. The results are
shown in Tables 7–9. For the three-class classification problem, we achieved a maximum accuracy of 72%
by using MLP on only HRV features and 86.61% with only accelerometer features using the Random Forest
classifier and 85.36% accuracy combination of all features with LDA classifier (see Table 7). The difficulty
in this classification task is a similar physiological reaction to relax and mild stress situations. However,
since the main focus of our study is to discriminate high stress from other classes to offer relaxation
techniques in this state, it did not affect our system performance. We also investigated high-mild stress
and high stress-relax 2-class classification performance. For the discrimination of high and mild stress,
HRV outperformed other signals with 98% accuracy using MLP (see Table 8). In the high stress-relax
2-class problem, only HRV features with RF achieved a maximum accuracy of 86%, whereas ACC features
with MLP achieved a maximum of 94% accuracy. In this problem, the combination of all signals with RF
achieved 92% accuracy which is the best among all classifiers (see Table 9). For all models, EDA did not
perform well. This might be caused by the loose contact with EDA electrodes in the strap due to loosely
worn smartbands.

Table 7. Effect of different modalities and their combination on the system performance. Note that the
number of classes is fixed at 3 (high stress, mild stress and relax).

Algorithm
Accuracy, %

HRV EDA ACC Combined

MLP 72.14 36.61 74.29 82.68

RF 67.86 36.96 86.61 85.18

kNN 65.00 29.82 70.89 78.39

LDA 69.82 31.96 73.39 85.36

SVM 47.14 30.54 58.57 46.96
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Table 8. Effect of different modalities and their combination on the system performance. Note that the
number of classes is fixed at 2 (high stress and mild stress).

Algorithm
Accuracy, %

HRV EDA ACC Combined

MLP 98.00 60.00 64.00 98.00

RF 98.00 42.00 72.00 98.00

kNN 94.00 44.00 58.00 94.00

LDA 94.00 40.00 54.00 94.00

SVM 66.00 54.00 54.00 66.00

Table 9. Effect of different modalities and their combination on the system performance. Note that the
number of classes is fixed at 2 (high stress and relax).

Algorithm
Accuracy, %

HRV EDA ACC Combined

MLP 82.00 66.00 96.00 90.00

RF 86.00 60.00 94.00 92.00

kNN 82.00 66.00 88.00 90.00

LDA 78.00 64.00 92.00 88.00

SVM 78.00 62.00 52.00 74.00

5.2.2. Effectiveness of Yoga, Mindfulness and Mobile Mindfulness (Pause)

We applied three different relaxation methods to manage stress levels of individuals. In order to
measure the effectiveness of each method, we examined how easily these physiological signals in the
relaxation sessions can be separated from high stress presentations. If it can be separated from high stress
levels with higher classification performance, it could be inferred that they are more successful at reducing
stress. As seen in Tables 10 and 11, mobile mindfulness has lower success in reducing stress levels. Yoga
has the highest classification performance with both HR and EDA signals.

Table 10. The classification accuracy of the relaxation sessions using stress management methods and
stressful sessions using EDA.

Algorithm
Accuracy, %

Guided Mindfulness Yoga Mobile Mindfulness

MLP 65.71 78.57 75.00

RF 67.14 87.14 67.64

kNN 64.29 82.86 77.94

LDA 65.71 80.00 51.47

SVM 70.00 72.86 58.82
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Table 11. The classification accuracy of the relaxation sessions using stress management methods and
stressful sessions using HRV.

Algorithm
Accuracy, %

Guided Mindfulness Yoga Mobile Mindfulness

MLP 90.00 97.50 93.94

RF 97.50 95.00 87.89

kNN 90.00 90.00 93.93

LDA 87.50 87.50 75.75

SVM 85.00 80.00 81.82

6. Conclusions

In this study, by using our automatic stress detection system with the use of Empatica-E4 smart-bands,
we detected stress levels and suggested appropriate relaxation methods (i.e., traditional or mobile) when
high stress levels are experienced. Our stress detection framework is unobtrusive, comfortable and suitable
for use in daily life and our relaxation method suggestion system makes its decisions based on the physical
activity-related context of a user. To test our system, we collected eight days of data from 16 individuals
participating in an EU research project training event. Individuals were exposed to varied stressful and
relaxation events (1) training and lectures (mild stress), (2) yoga, mindfulness and mobile mindfulness
(PAUSE) (relax) and (3) were required to give a moderated presentation (high stress). The participants
were from different countries with diverse cultures.

In addition, 1440 h of mobile data (12 h in a day) were collected during this eight-day event from
each participant measuring their stress levels. Data were collected during the training sessions, relaxation
events and the moderated presentation and during their free time for 12 h in a day, demonstrating that
our study monitored daily life stress. EDA and HR signals were collected to detect physiological stress
and a combination of different modalities increased stress detection, performance and provided the most
discriminative features. We first applied James Gross ER model in the context of stress management and
measured the blood pressure during the ER cycle. When the known context was used as the label for stress
level detection system, we achieved 98% accuracy for 2-class and 85% accuracy for 3-class. Most of the
studies in the literature only detect stress levels of individuals. The participants’ stress levels were managed
with yoga, mindfulness and a mobile mindfulness application while monitoring their stress levels. We
investigated the success of each stress management technique by the separability of physiological signals
from high-stress sessions. We demonstrated that yoga and traditional mindfulness performed slightly better
than the mobile mindfulness application. Furthermore, this study is not without limitations. In order to
generalize the conclusions, more experiments based on larger sample groups should be conducted. As future
work, we plan to develop personalized perceived stress models by using self-reports and test our system
in the wild. Furthermore, attitudes in the psychological field constitute a topic of utmost relevance, which
always play an instrumental role in the determination of human behavior [58]. We plan to design a new
experiment which accounts for the attitudes of participants towards relaxation methods and their effects on
the performance of stress recognition systems.
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