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Preface to ”Design Space Exploration and Resource

Management of Multi/Many-Core Systems”

The reliance of computing systems of various scales, e.g., embedded to cloud computing,

on multi-/many-core chips, mainly to satisfy the high-performance requirement of complex software

applications, is increasing. At the same time, depending on the applications to be executed,

these systems also demand energy efficiency, reliability and/or security. These demands can

be fulfilled by exploring the design space by considering the software applications and the

multi-/many-core chips to find the design points leading to efficiency in all the required metrics.

Furthermore, considering varying workloads in the systems over time, efficient resource management

methodologies need to be developed that can exploit the explored design points and/or perform

online optimizations to meet the requirements of performance, energy efficiency, reliability and/or

security. This Special Issue collects eight papers from leading researchers in this field and

demonstrates the spectrum of design space exploration and resource management strategies for

multi-/many-core systems. In addition, the collection provides visionary views of the computing

landscape to be observed in future.

Amit Kumar Singh, Amlan Ganguly

Editors
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Abstract: As modern embedded systems are becoming more and more ubiquitous and interconnected,
they attract a world-wide attention of attackers and the security aspect is more important than
ever during the design of those systems. Moreover, given the ever-increasing complexity of the
applications that run on these systems, it becomes increasingly difficult to meet all security criteria.
While extra-functional design objectives such as performance and power/energy consumption are
typically taken into account already during the very early stages of embedded systems design, system
security is still mostly considered as an afterthought. That is, security is usually not regarded in
the process of (early) design-space exploration of embedded systems, which is the critical process
of multi-objective optimization that aims at optimizing the extra-functional behavior of a design.
This position paper argues for the development of techniques for quantifying the ’degree of secureness’
of embedded system design instances such that these can be incorporated in a multi-objective
optimization process. Such technology would allow for the optimization of security aspects of
embedded systems during the earliest design phases as well as for studying the trade-offs between
security and the other design objectives such as performance, power consumption and cost.

Keywords: embedded computer systems; cyber security; system-level design and design-space
exploration; multi-objective optimization; system trade-offs

1. Introduction

Embedded computer systems are ubiquitous and have a major impact on our society. Examples of
such systems are close at hand—modern TVs contain one or multiple computer systems to handle
functionality such as decoding the input signal, performing various image enhancement techniques
as well as displaying and updating live information (e.g., program guide or weather forecast).
Smart-phones rely on embedded computer systems to allow users to make phone calls, shoot photos
and videos, perform GPS navigation, browse the Internet, execute apps, and so on. The use of
embedded computer systems is, however, by no means restricted to consumer electronics: in industrial,
medical, automotive, avionic, or defense applications they are equally pervasive.

The complexity of the underlying system architectures of modern embedded systems forces
designers to start with modeling and simulating (possible) system components and their interactions
in the very early design stages. This is often referred to as system-level design [1]. The system-level
models typically represent application workload behavior, characteristics of the underlying computing
platform architecture, and the relation (e.g., mapping, hardware-software partitioning) between
application workload(s) and platform architecture. These models are applied at a high level of
abstraction, thereby minimizing the modeling effort and optimizing the simulation speed. This is
especially needed for targeting the early design stages since many design decisions are still open and,
therefore, many design alternatives still need to be studied. High-level system modeling allows for
the early verification of a design and can provide estimates on the extra-functional properties of a
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design such as system performance and energy/power consumption. The system-level models are
typically accompanied by a methodology for efficient design-space exploration (DSE) [2], which is
the process of assessing alternative design instances with respect to (i) the platform architecture
that will be deployed (e.g., the number and type of processing elements in the platform, the type of
network to interconnect the processors, etc.) and( ii) the mapping of application tasks to the underlying
platform components [3]. It is a multi-objective optimization problem that searches through the space
of different implementation alternatives to find optimal design instances. Exploration of different
design choices, especially during the early design stages where the design space is still at its largest,
is of eminent importance. Wrong decisions early in the design can be extremely costly in terms of
re-design effort, or even deadly to the product’s success. Consequently, considerable research effort in
the embedded systems domain has been spent in the last two decades on developing frameworks for
system-level modeling and simulation that aim for early design-space exploration.

As embedded systems are becoming more and more ubiquitous and interconnected (illustrated by,
e.g., the strong trend towards the Internet of Things), they also attract a world-wide attention of
attackers. This makes the security aspect more important than ever during the design of these
systems [4]. Moreover, given the ever-increasing complexity of the applications that run on modern
embedded systems, it becomes increasingly difficult to meet all security criteria. While design
objectives such as performance and power/energy consumption are usually taken into account
during the early stages of design (as explained above), system security is still mostly considered
as an afterthought. That is, security is typically not regarded in the process of (early) design-space
exploration of embedded systems. However, any security measures that may eventually be taken
much later in the design process do affect the already established trade-offs with respect to the other
extra-functional properties of the system like performance, power/energy consumption, cost, and
so forth [4]. Thus, covering the security aspect in the earliest phases of design is necessary to design
systems that are, in the end, optimal with regard to all extra-functional objectives. However, this poses
great difficulties because unlike the earlier mentioned conventional system objectives, like performance
and power consumption, security is hard to quantify—there exists no single metric with which one
can measure the degree of secureness of a design.

This position paper argues for the need for security-aware, system-level design-space exploration
methods and techniques for embedded systems. To this end, we will discuss a multifaceted,
scoring-based methodology for quantifying the degree of secureness of embedded system design
instances. This methodology allows for incorporating the secureness quantifications in a multi-objective
optimization process and would thus enable optimization of the security aspect during the earliest
phases of design. However, we want to emphasize the fact that this is a position paper and therefore
does not present an actual implementation of the proposed solution nor any experimental results.

The remainder of this paper is organized as follows. In the next section, we will provide a brief
introduction to the concept of design-space exploration. In Section 3, we will describe our proposal for
a security-aware DSE approach, focusing on a method to quantify the secureness of embedded system
design instances. Section 4 discusses related work, after which Section 5 concludes the paper.

2. Design-Space Exploration

During the design-space exploration (DSE) of embedded systems, multiple optimization
objectives—such as performance, power/energy consumption, and cost—should be considered
simultaneously. This is called multi-objective DSE [2]. Since the objectives are often in
conflict, there cannot be a single optimal solution that simultaneously optimizes all objectives.
Therefore, optimal decisions need to be taken in the presence of trade-offs between design criteria.
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2.1. Multi-Objective Optimization

Given a set of m decision variables, which are the degrees of freedom (e.g., parameters like the
number and type of processors in the system, application mapping, etc.) that are explored during DSE,
a so-called fitness function must optimize the n objective values [2]. The fitness function is defined as:

fi : Rm → R1. (1)

A potential solution x ∈ Rm is an assignment of the m decision variables. The fitness function fi
translates a point in the solution space X into the i-th objective value (where 1 ≤ i ≤ n). For example,
a particular fitness function fi could assess the performance or energy efficiency of a certain solution x
(representing a specific design instance). The combined fitness function f (x) subsequently translates a
point in the solution space into the objective space Y. Formally, a multi-objective optimization problem
(MOP) that tries to identify a solution x for the m decision variables that minimizes the n objective
values using objective functions fi with 1 ≤ i ≤ n :

Minimize y = f (x) = ( f1(x), f2(x), ..., fn(x))

Where x = (x1, x2, ..., xm) ∈ X

y = (y1, y2, ..., yn) ∈ Y.

Here, the decision variables xi (with 1 ≤ i ≤ m) usually are constrained. These constraints make
sure that the decision variables refer to valid system configurations (e.g., using not more than the
available number of processors, using a valid mapping of application tasks to processing resources,
etc.), that is, xi are part of the so-called feasible set. In the remainder of this section, we assume a
minimization procedure, but without loss of generality, this minimization procedure can be converted
into a maximization problem by multiplying the fitness values yi with −1.

With an optimization of a single objective, the comparison of solutions is trivial. A better fitness
(i.e., objective value) means a better solution. With multiple objectives, however, the comparison
becomes non-trivial. Take, for example, two different embedded system architecture designs:
a high-performance system and a slower but much cheaper system. In case there is no preference
defined with respect to the objectives and there are also no restrictions for the objectives, one cannot
say if the high-performance system is better or the low-cost system. A typical MOP in the
context of embedded systems design can have a variety of different objectives, like performance,
energy consumption, cost and reliability. To compare different solutions in the case of multiple
objectives, the Pareto dominance relation is generally used. Here, a solution xa ∈ X is said to dominate
solution xb ∈ X if and only if xa < xb:

xa < xb ⇐⇒ ∀i ∈ {1, 2, ..., n} : fi(xa) ≤ fi(xb) ∧
∃i ∈ {1, 2, ..., n} : fi(xa) < fi(xb).

Hence, a solution xa dominates xb if its objective values are superior to the objective values
of xb. For all of the objectives, xa must not have a worse objective value than solution xb.
Additionally, there must be at least one objective in which solution xa is better (otherwise they
are equal).

An example of the dominance relation is given in Figure 1, which illustrates a two dimensional
MOP. For solution H the dominance relations are shown. Solution H is dominated by solutions B, C
and D as all of them have a lower value for both f1 and f2. On the other hand, solution H is superior
to solutions M, N and O. Finally, some of the solutions are not comparable to H. These solutions are
better for one objective but worse for another.

The Pareto dominance relation only provides a partial ordering. For example, the solutions A to F
of the example in Figure 1 cannot be ordered using the ordering relation. Since not all solutions x ∈ X
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can be ordered, the result of a MOP is not a single solution, but a front of non-dominated solutions,
called the Pareto front. A set X′ is defined to be a Pareto front of the set of solutions X as follows:

{x ∈ X′ | �xa ∈ X : xa < x}.

The Pareto front of Figure 1 contains six solutions: A − F. Each of these solutions does not
dominate the other. An improvement on objective f1 is matched by a worse value for f2. Generally, it
is up to the designer to decide which of the solutions provides the best trade-off.

G

H

C
D

L

B
I

E

O

M

F

K

f1

f2

J

A

Pareto Front

N

Dominates H

Dominated by HIncomparable to H

Figure 1. A Pareto front and an example of the dominance relation (taken from Reference [2]).

2.2. Search for Pareto Optimal Solutions

The search for Pareto optimal design points with respect to multiple design criteria entails two
distinct elements [5]:

1. The evaluation of a single design point using the fitness function(s) f (x) regarding all
the objectives in question like system performance, power/energy consumption and so on.
These evaluations are usually based on measurements using real systems or predictions from
either analytical models or simulation models [2].

2. The search strategy for navigating through and covering the design space during the DSE process.
Such search strategies can be based on exact, but typically unscalable, methods that guarantee
finding the optimal solution(s). These exact methods can, for example, be implemented using
integer linear programming (ILP) solutions (e.g., References [6,7]) or branch & bound algorithms
(e.g., Reference [8]). Alternatively, so-called meta-heurisics, such as genetic algorithms (GA) or
simulated annealing, can be used to search the design space for optimal solutions. They only
perform a finite number of design point evaluations, and can thus handle larger design spaces.
However, there is no guarantee that the global optimum will be found using meta-heuristics,
and therefore the result can be a local optimum within the design space. GA-based DSE has been
widely studied in the domain of system-level embedded design (e.g., References [9–12]) and has
demonstrated to yield good results.

In this paper, we focus on the fitness evaluation aspect of DSE. More specifically, we argue that
while there are well-established techniques and metrics for the fitness evaluation of traditional design
objectives such as performance, power/energy consumption, cost, and reliability, this is not the case
for evaluating the fitness of design instances in terms of how secure they are. This lack of security
fitness evaluation methods and metrics inhibits the use of system security as a first-class citizen in the
process of early design-space exploration of embedded systems. As was indicated before, such design
practice leads to suboptimal products because any security measures that may be taken later in the
design process do affect the already established trade-offs with respect to the other extra-functional
properties of the system like performance, power/energy consumption, cost, and so forth.

In the next section, we will therefore argue for the development of a security-aware DSE approach,
based on a multifaceted, scoring-based security quantification methodology. This methodology allows
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for quantifying the degree of secureness of design instances such that these can be incorporated in the
DSE’s multi-objective optimization process. Eventually, once such a security-aware DSE would have
been implemented, it would allow for optimization of security aspects of embedded systems in their
earliest design phases as well as for studying the trade-offs between security and the other design
objectives like performance, power consumption and cost. Evidently, such technology would provide
a substantial competitive advantage in the embedded systems industry.

3. Towards Security-Aware, System-Level DSE

The envisioned approach for security-aware system-level design-space exploration, adopting
a multifaceted, scoring-based security quantification methodology, is illustrated in Figure 2.
Below, we will explain the different components of this approach. The blue parts of Figure 2 refer
to the methodology components that only need to be specified or performed once, whereas the red
parts refer to components that are dependent on the design-space exploration process and thus must
be revisited every time a new design instance is evaluated in terms of extra-functional properties
such as performance, power consumption, and of course, in the scope of this paper, also secureness.
Before describing our approach in detail, however, we will first discuss several assumptions that
delimit our proposed approach.

3.1. Assumptions

We focus on security threats in which the underlying embedded system architecture plays a
central role, and do not consider any security flaws that can be exploited purely at the application
level. This implies that we restrict ourselves to the following set of attack types:

1. Side-channel attacks like power analysis attacks, timing attacks such as the recent Spectre and
Meltdown attacks, scan attacks, differential fault analysis attacks and electromagnetic analysis
attacks (see References [13,14] for an overview of these side-channel attacks);

2. Denial of service attacks [15,16];
3. Software-based attacks such as buffer overflows for which protection mechanisms may be available

at the system (architecture) level (e.g., Reference [13]);
4. Attacks directed towards breaking encryption algorithms [17].

For each of the above attacks, we subsequently consider a range of protection
mechanisms—derived from literature—that can be applied to protect specific system components or
the entire system against these attacks.

Moreover, we consider system-level DSE in which both the platform architecture (e.g., selection of
platform components such processing elements, memories, and networking components) as well as the
mapping of application tasks and communications to the selected platform components are optimized
for traditional objectives such as performance, power consumption, and cost, but now also for
secureness. Such system-level design-space exploration is depicted in the top-middle part of Figure 2
and could, for example, be performed with system-level DSE frameworks such as Sesame [18,19] or a
similar environment (e.g, References [20–22]). Important to note here is that the performance, power
and cost models used in the DSE also need to account for the effects of deploying specifically selected
security protection mechanisms (as discussed above) inside a platform architecture.
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Figure 2. Proposed approach for security-aware system-level design-space exploration (DSE) using a
multifaceted, scoring-based security quantification methodology.

3.2. A Multifaceted, Scoring-Based Methodology for Secureness Quantification

As a first step in our methodology, shown in the top left of Figure 2, the applications that need
to execute on the target embedded system together with their extra-functional requirements are
identified and specified. The specified extra-functional requirements include the traditional ones
such as performance and real-time requirements, power/energy consumption budgets, and so forth,
but also requirements in terms of secureness. Regarding the latter, one can use the well-known
CIA triad to indicate the needs with respect to the security aspects Confidentiality (preventing
sensitive information from reaching the wrong people), Integrity (maintaining consistency, accuracy,
and trustworthiness of data) and Availability (ensuring timely and reliable access to, and use of,
information) [23]. Here, a domain-specific language (DSL) could be developed to specify these
extra-functional requirements. The application workloads themselves can be specified using task or
process graphs, explicitly describing application tasks and their interactions (communications).

Given the attack types we consider in our proposed approach, as discussed in Section 3.1 and
shown at the left in Figure 2, only those attacks that are relevant for the embedded system under
design need to be identified, which we refer to as the so-called domain-specific attacks. To this end, we
need to consider the security requirements of the target embedded system as specified using the CIA
triad as well as the characteristics of the specific attack types in terms of, for example, passivity and
accessibility. Here, passivity refers to what extent an attack manipulates the target system, either as
a means or a goal of the attack. For example, a denial of service attack clearly is an active attack as
its sole aim is to manipulate the system, whereas a side-channel attack based on power analysis is a
passive attack. Accessibility refers to the access level that is required for an attack to be performed.
Revisiting the example of a side-channel attack via power analysis, such an attack obviously requires
physical access to the embedded system, whereas for example, a software-based attack does not require
this. If we now consider, for example, an anti-lock braking system, then confidentiality is not a major
concern as such a system does not process sensitive information. This makes passive attacks such as
side-channel attacks not relevant and can therefore be excluded from the set of domain-specific attacks.
However, the braking system may not be disrupted or manipulated (i.e., integrity and availability are
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crucial CIA elements) thereby making active attacks highly relevant. Table 1 provides an overview of
the required access level and passivity of the attack types we consider in this paper. Here, virtual access
level attacks require access to one process that runs within an application on the embedded system in
question. Cryptanalysis attacks often do not require access to the system. For example, in the case of
public key cryptography, the public key is distributed to other systems and therefore freely available.

Table 1. Required access level and passivity of various types of attacks on embedded systems.

Attack Sub-Type Access Level Passivity

Side-channel Power analysis Physical Passive

Timing attack Virtual Passive

Scan attack Physical Active

Fault Analysis Physical & Virtual Passive & Active

Electromagnetic Analysis Physical Passive

Denial of Service Virtual Active

Software Buffer overflow Virtual Active

Cryptanalysis None Passive

Once the set of domain-specific attacks has been determined, those attacks that are relevant to
the different components in the underlying platform architecture can be determined: for example,
a networking component is not susceptible to a software-based buffer overflow attack, whereas a
microprocessor component is. To do so, we also need the mapping information (i.e., which application
tasks and communications are mapped onto what platform components) of the design instance(s) that
are currently being explored by the system-level DSE process. Subsequently, for each component in
the platform architecture, we can now determine the set of possible security protection mechanisms
that can be deployed to effectively increase its secureness (’Per-component protection mechanisms’ in
Figure 2). These sets of possible per-component protection mechanisms are an important ingredient of
our envisioned scoring-based security quantification methodology: they allow for determining the
coverage with respect to the protection mechanisms that are actually deployed in the design instances
being explored by the system-level DSE. To achieve this, a scoring technique would be needed that
can capture binary coverage relationships (i.e., a certain protection mechanism is available or not) as
well as numerical coverage relationships. The latter applies in cases where, for example, a certain
amount of random noise is added to a system component to disguise real power behavior in order to
complicate or even prevent side-channel attacks based on power analysis [24] (here, the amount of
noise forms a power/security trade-off) or when the strength of a cryptographic processor is identified
as a function of the key-size it uses.

Besides the coverage of protection mechanisms deployed in the platform architecture components,
one can take two other facets into account to determine the security score of a particular design instance.
First, the spatial isolation realized in design instances can be considered. That is, reducing the amount
of resource sharing between applications or even between tasks from a single application will increase
the secureness of the system, as this will complicate certain types of attacks such as side-channel attacks.
Therefore, a proper technique for quantifying the spatial isolation (using the mapping information
from the system-level DSE) would be required such that it can be used for security scoring purposes.
As a final ingredient of our anticipated security score, the platform component utilization can be
used. The rationale behind this is that higher utilized components typically are more prone to certain
attacks. Moreover, higher utilized components possibly also play a more important role in achieving
the CIA-triad system requirements. To include the platform component utilization, we need to profile
the application(s) to measure the activity of application tasks and communications, that is, the degree
to which they utilize the underlying resources. Hereafter, this information is related to the mapping of
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these application tasks and communications onto the platform architecture. The resulting component
utilization can then be used to weight the protection mechanism coverage and spatial isolation of
design instances in the final security scoring (as shown at the bottom of Figure 2).

3.3. Scoring the Security of Design Instances

Above, we described the ingredients of our envisioned security scoring methodology. We do
realize that we have not provided any details on how such security scoring could actually be
implemented. Actually, this remains a topic for future research, which will hopefully also be picked up
by the community. Nevertheless, in this section, we would like to provide a rough sketch of a fairly
simple approach to do such scoring.

Given a mapping of a (set of) application(s) to the underlying resources of a possible platform
architecture, which includes the mapping of application tasks to computational resources as well as
the mapping of inter-task communications to network and memory resources. Then, for each utilized
component in the platform, we could calculate a security score along the following lines. Let ATx be
the set of Attack Types (see e.g., the second column of Table 1) to which component x is susceptible:

ATx = {
⋃

∀ti |ci mapped on x
Attacksti |ci

}.

For ATx, we only consider the application tasks ti or inter-task communications ci (dependent on
whether x is a processing or communication component) that are mapped to component x. Attacksti |ci

refers to the possible attacks for task ti or communication ci, taking into account its security
requirements according to the CIA triad as well as taking into account the access level and passivity of
the various attacks (see Table 1). To determine a security score Sx for a component x, one could then
perform the following calculation:

Sx =

∑
p∈PATx

Protection-level(p, x)

|ATx|
·

1
Utilizationx

.

Here, p is a particular protection mechanism and is part of the set PATx that consists of the
possible protection mechanisms for the attacks listed in set ATx for component x. The function
Protection-level(p, x) returns a value that indicates the extent to which component x implements
protection mechanism p. This function could, for example, return a value between 0 and 1: The value
0 would mean that the component does not implement the protection mechanism, implying that
component x would be fully susceptible to the associated attack type. The value 1, on the other
hand, would refer to an available implementation of protection mechanism p such that component
x is fully protected against attacks of the associated type. Evidently, the returned value may also
be in between 0 and 1, indicating partial protection. For example, in the case protection mechanism
p adds a certain amount of random noise to a component to disguise real power behavior in order
to prevent side-channel attacks based on power analysis [24], the level of added noise (which is
a trade-off between power consumption and security) would determine the returned value of the
function Protection-level(p, x). To calculate Sx, we also consider the reciprocal of the utilization of
component x. Here, the utilization refers to the fraction the computing/communication component x
contributes to the overall computing or communication time of an application. The rationale behind
this is that one could argue that those components (both processing and communication components)
that are less active over time will be less susceptible to certain types of attacks, like side-channel attacks.
To determine the overall security score of a specific design instance (i.e., a particular application
mapping to a selected platform architecture), one could simply accumulate the Sx scores for all
components x used in the design instance.
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The above scoring example is by no means meant to be a complete and fully-fledged solution to
the security scoring problem. It is merely meant to act as an illustration for the direction of thought
as presented in this paper. Moreover, in the above scoring example, we also do not consider spatial
isolation as part of the security score. One direction to accomplish this, would for example, to penalize
the mapping of multiple application tasks or communications to a single platform component.

The multifaceted, scoring-based security quantification methodology as outlined in this section
could provide a real innovation to system-level embedded system design as it would facilitate designers
to study the trade-offs between the performance, power consumption, cost, and secureness of design
instances during the early stages of design.

4. Related Work

The need for recognizing security as a first-class citizen, next to traditional design objectives
such as performance, cost and power consumption, in the design of embedded systems is not new.
For example, quoting from Reference [4], “However, security is often misconstrued by embedded
system designers as the addition of features, such as specific cryptographic algorithms and security
protocols, to the system. In reality, it is a new dimension that designers should consider throughout
the design process, along with other metrics such as cost, performance, and power.” Nevertheless,
the integration of security aspects in the process of system-level design-space exploration of embedded
systems has never really got off the ground and is still a largely uncharted research ground. Only a
few efforts exist that address this problem but, at best, most of them provide partial solutions or
solutions to very specific security problems. For example, in Reference [25], the evaluation of security
protocols is integrated in the design process. For instance, it rates the security of a system based on the
probability of a hash collision. However, it does not cover other types of attacks, such as timing attacks
and power analysis. The authors of Reference [26] try to neutralize several types of side-channel
attacks by means of spatial isolation in a DSE setting but, again, they do not consider any other types
of attacks/protection mechanisms. In Reference [27], a small number of attacker capabilities and
corresponding requirements that refer to the CIA triad are defined in the context of DSE. The problem
of this approach is that it is not trivial to relate types of attacks to those capabilities and requirements.
The work of Reference [28] incorporates security in system-level DSE by first generating potential
architecture configurations, after which an automated security analysis is performed to check the
generated configurations against designer-specified security constraints.

In all the above works of References [26–28] security is modelled as a requirement in the DSE
process, which does not allow for studying actual trade-offs between performance, power consumption
or cost in relationship to secureness of a design.

An alternative approach for quantifying security is by means of a security risk assessment using
a specific attack model [29]. For example, Reference [30], proposes an attack tree model to evaluate
the user’s privacy risks associated with an Internet-of-Things eco system. They evaluate the potential
risks based on varying attack attributes, the probable considerations or preferences of an adversary,
and the varying computational resources available on a device. Research efforts like this are, however,
typically not focused on the process of (early) DSE.

To the best of our knowledge, only the works of References [31,32] and Reference [33] are similar
to what we propose in terms of aiming at incorporating security as an objective that can be traded
off with other objectives in the process of early DSE. In References [31,32], the authors introduce an
UML-based approach in which application security requirements can be described together with
security ‘capabilities’—in addition to other extra-functional aspects such as performance and power
consumption—of system components stored in a library. This then allows for a DSE process during
which the application requirements are matched with the component capabilities. The very recent work
of Reference [33] introduces a novel DSE framework that allows for considering security constraints,
in the form of attack scenarios, and attack mitigations, in the form of security tasks. Based on the
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descriptions of the system’s functionality and architecture, possible attacks, and known mitigation
techniques, the framework tries to find the optimal design for an embedded system.

5. Conclusions

As embedded systems are becoming increasingly ubiquitous and interconnected, they attract a
world-wide attention of attackers. This makes the security aspect during the design of these systems
more important than ever. However, state-of-the-art design tools and methodologies for embedded
systems do not consider system security as a primary design objective. This is especially true for the
early design phases in which the process of design-space exploration is of eminent importance for
performing trade-off analysis. Any security measures that may eventually be taken much later in
the design process will then affect the already established design trade-offs with respect to the other,
and more traditional, design objectives like system performance, power consumption and cost. It goes
without saying that such a design practice leads to suboptimal products.

In this position paper, we therefore argued for security-aware design methods for embedded
systems that will allow for the optimization of security aspects of embedded systems in their earliest
design phases as well as for studying the trade-offs between security and the other design objectives
such as performance, power consumption and cost. To this end, we proposed a multifaceted,
scoring-based methodology for quantifying the degree of secureness of embedded system design
instances, which would allow for incorporating these secureness quantifications in early design-space
exploration of embedded systems. The proposed methodology has not yet been implemented,
and would require further research to do so. We do hope, however, that this position paper will
be a trigger for more wide-spread research on techniques that allow for incorporating security as a
first-class citizen in the process of early design-space exploration of embedded systems.
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Abstract: Many-core platforms are rapidly expanding in various embedded areas as they provide the
scalable computational power required to meet the ever-growing performance demands of embedded
applications and systems. However, the huge design space of possible task mappings, the unpredictable
workload dynamism, and the numerous non-functional requirements of applications in terms of
timing, reliability, safety, and so forth. impose significant challenges when designing many-core
systems. Hybrid Application Mapping (HAM) is an emerging class of design methodologies for
many-core systems which address these challenges via an incremental (per-application) mapping scheme:
The mapping process is divided into (i) a design-time Design Space Exploration (DSE) step per application
to obtain a set of high-quality mapping options and (ii) a run-time system management step in which
applications are launched dynamically (on demand) using the precomputed mappings. This paper
provides an overview of HAM and the design methodologies developed in line with it. We introduce
the basics of HAM and elaborate on the way it addresses the major challenges of application mapping
in many-core systems. We provide an overview of the main challenges encountered when employing
HAM and survey a collection of state-of-the-art techniques and methodologies proposed to address these
challenges. We finally present an overview of open topics and challenges in HAM, provide a summary
of emerging trends for addressing them particularly using machine learning, and outline possible future
directions. While there exists a large body of HAM methodologies, the techniques studied in this paper
are developed, to a large extent, within the scope of invasive computing. Invasive computing introduces
resource awareness into applications and employs explicit resource reservation to enable incremental
application mapping and dynamic system management.

Keywords: Hybrid Application Mapping (HAM); many-core systems; embedded systems; composability;
design space exploration (DSE); resource management; Network-on-Chip (NoC); real-time guarantees;
predictability; machine learning
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1. Introduction

The ever-increasing computational power requirements of embedded applications have substantially
changed the design process of embedded systems over the past decade. To address the performance
demands of emerging applications, embedded domains have undergone a paradigm shift from single-core
platforms to many-core platforms. Many-core platforms such as Tilera TILE-Gx [1], Kalray MPPA-256 [2],
Intel SCC (Single-chip Cloud Computer) [3], the KiloCore [4], or the upcoming SiPearl Rhea processor
family [5] integrate tens, hundreds, or even thousands of processing cores on a single chip with a highly
scalable communication scheme. This enables them to deliver a scalable computational power which is
required to meet the progressively growing performance demands of emerging embedded applications
and systems. Along the same line, modern platforms also incorporate heterogeneous processing resources
to cater to the specific functional and non-functional requirements of applications from different domains
of computing, see, for example, Reference [6]. In addition to the current practice of integrating various
types of general-purpose cores on a chip, many-core platforms are also on the verge of incorporating
domain/application-specific processing resources, for example, Digital Signal Processor (DSP) cores
for signal/image processing [7], Graphics Processing Units (GPUs) for graphics processing and AI
acceleration in deep learning [8,9], and Coarse-Grained Reconfigurable Arrays (CGRA) for the acceleration
of (nested-)loops [10,11]. Moreover, Field Programmable Gate Arrays (FPGAs) have also been incorporated
to provide a reconfigurable fabric for hardware acceleration [9,12]. While a large number of (possibly
heterogeneous) processing resources increases the available computational power dramatically, it also
introduces a significant number of additional design decisions to be made during the phases of system
design as well as application mapping. In the following, an overview of the major challenges of many-core
application mapping is provided.

1.1. Many-Core Application Mapping Challenges

1.1.1. Task Mapping Complexity

To exploit the massive computational power of many-core platforms, parallel computation models
have been increasingly adopted in the development of embedded applications [13]. In such models,
each application is partitioned into several (processing) tasks that can be executed concurrently on
different cores and exchange data with each other. In this context, the optimization of the application
mapping, that is, finding a suitable assignment of an application’s tasks to platform resources, becomes a
particularly challenging effort. This is due to the number of possible mappings for an application growing
exponentially with the application size (number of application’s tasks) and the platform size (number of
cores). In fact, the many-core application mapping problem is known to be an NP-hard [14,15] optimization
problem which renders an enumeration of all possible mappings for realistic problem sizes impractical,
if at all feasible. As a consequence, system designers resort to meta-heuristic optimization algorithms,
for example, evolutionary algorithms [16–18] and particle swarm optimization [19], for the automated
Design Space Exploration (DSE) of possible application mappings. Meta-heuristic optimization algorithms
have proven effective in finding satisfactory mappings at an affordable computational effort.

1.1.2. Complexity of Evaluation and Verification Techniques

In addition to functional correctness, embedded applications typically also need to satisfy a set of
non-functional requirements, often provided in the form of upper/lower bound constraints on timing,
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reliability, security, safety, and other qualities [20,21]. For each mapping of an application, the satisfaction
of the application’s non-functional requirements must be verified, for example, by means of measurement,
simulation, or formal analysis. Subject to the characteristics of the application and the platform resources,
the choice of non-functional requirements, and the strictness of their constraints, the verification process
may become fairly complex and/or demand a considerable amount of computational effort and time.

1.1.3. Workload Dynamism

Another factor contributing significantly to the design complexity of modern embedded systems is
the growing dynamism of workload. In these systems, a mix of applications—each with its own set of
non-functional requirements—must typically be executed concurrently. Recent years give evidence of a
rapid increase in the number of concurrent applications in embedded systems with different requirements.
In these systems, the system’s workload scenario, that is, the mix of concurrently executed applications
(also known as the system’s use-case [22]), tends to change over time such that, at each point in time,
only a fraction of all applications in the system are active. These workload variations, including the
activation and the termination of applications, often happen in reaction to external events whose arrival
pattern cannot be predicted, for example, user requests or changes in the environment with which the
system is interacting. In general, the number of system workload scenarios, that is, possible mixes of
concurrently active applications, grows exponentially with the number of applications in the system [23].
The increasing trends in (i) the number of applications in the system and in (ii) the dynamic workload of the
applications each contribute exponentially to the complexity of the process of finding optimal mappings
of the applications to system resources [24]. To alleviate the design complexity w.r.t. the increased number
of applications, the integrated design approach, where the mappings of all applications are considered at
the same time, has been gradually replaced by an incremental (constructive) design approach in which the
mapping process is partitioned into a phase with a per-application mapping optimization step followed
by a system integration step.

1.2. Hybrid Application Mapping

Application mapping methodologies for multi/many-core systems are generally classified into
two categories, namely, design-time (static) and run-time (dynamic) approaches, see Reference [25].
In this paper, in the context of application mapping, the terms static, offline, and design-time are used
interchangeably to denote that the operation in question is performed at design time. Likewise, the terms
dynamic, online, and run-time are used interchangeably to denote that the operation in question takes place
at run time.

In design-time (static) mapping approaches, all mapping decisions are conducted statically at design time
(offline). These approaches employ compute-intensive optimization and verification techniques to find
an optimal mapping for each application which is also verified to satisfy the application’s requirements.
Since each system design generated by static approaches is tailored to a single scenario, these approaches
either cannot at all be used for the design of dynamic systems or have to resort to single solutions
compromising between different expected run-time scenarios.

In the second class of mapping approaches, namely, run-time (dynamic) mapping approaches,
all mapping decisions are made dynamically at run time (online) when an application must be launched.
These approaches take into account the current system workload in their mapping decisions. This offers
an adaptive solution for the design of dynamic systems and eliminates the need to statically compromise
between different workload scenarios. This advantage, however, comes at the expense of increased
time pressure, since the time overhead of the application mapping process has a direct impact on the
system’s performance. Due to this time pressure, run-time mapping methodologies cannot afford powerful
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mapping optimization and non-functional verification procedures. Instead, they are limited to lightweight
(incremental and/or iterative) mapping heuristics to find an acceptable mapping at a low computational
effort, see, for example, Reference [26]. Consequently, they mostly yield sub-optimal mappings and
will often not strictly provide non-functional guarantees which require compute-intensive verification
processes, for example, reliability analysis or worst-case timing verification.

Hybrid Application Mapping (HAM) is a new class of mapping approaches which addresses the
aforementioned many-core application mapping challenges (discussed in Section 1.1) by combining static
and dynamic mapping approaches to exploit the individual strengths of each, see Reference [25]. In HAM,
a set of Pareto-optimal mappings is computed for each application at design time where compute-intensive
mapping optimization and non-functional verification techniques are affordable. These mappings are then
used at run time to launch the application on demand by selecting one of the precomputed mappings
which fits best to the current system workload state and resource availability. Combining (Pareto-)optimal
mappings with guaranteed non-functional properties while coping with the workload dynamism, HAM is
regarded as a promising paradigm for the design of future embedded systems. In this paper, we provide
an overview of HAM and the design methodologies developed in line with it.

Since the introduction of many-core platforms in embedded domains, numerous proposals for
application mapping on these platforms have been registered, addressing a broad range of application
mapping challenges. In the same line, new programming paradigms have emerged to enable a
systematic design approach for the incremental mapping of applications to embedded many-core systems.
Invasive computing [6] is an emerging many-core programming paradigm in which resource awareness is
introduced into application programming, and dynamic per-application resource reservation policies are
employed to achieve not only a high utilization of resources but also providing isolation between resources
and applications on demand in order to create predictability in terms of timing, safety, or security [27,28].
This setup is particularly promising for HAM and has served as the base for a large number of works in
the scope of HAM.

1.3. Paper Overview and Organization

1.3.1. Paper Overview

In this paper, we introduce the fundamentals of HAM and elaborate on the way HAM addresses the
major design challenges in mapping applications to many-core systems. The fusion of offline mapping
optimization and online mapping selection in HAM, however, also gives rise to new challenges that
must be addressed to boost its effectiveness. In this paper, we also provide an overview of the main
challenges encountered when employing HAM and survey a collection of state-of-the-art techniques
and methodologies proposed to address these challenges. We also discuss a collection of open topics
and challenges in HAM, present a summary of emerging trends for addressing them particularly using
machine learning, and outline some promising future directions. The majority of the techniques studied in
this paper are developed within the scope of invasive computing which serves as an enabler for HAM and
incremental design. An early overview of HAM techniques can, for example, be found in Reference [25].

1.3.2. Paper Organization

The remainder of this paper is organized as follows. In Section 2, a review of static and dynamic
application mapping schemes—which can be considered HAM predecessors—is given and schemes for
incremental design are presented. Section 3 provides an overview of the application and architecture
models commonly used to describe the application mapping problem in embedded many-core systems.
In Section 4, the basics of HAM are presented. Sections 5 and 6 present an overview of state-of-the-art
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methodologies and techniques in HAM—Techniques discussed in Section 5 aim at reducing the complexity
of HAM at different stages of design while the approaches presented in Section 6 focus on enabling HAM
for real-time systems as a predominant class of embedded systems. Section 7 presents open topics and
challenges in HAM, discusses a collection of emerging trends for addressing them particularly using
machine learning, and outlines promising future directions. The paper is concluded in Section 8.

2. Related Work

Design methodologies for many-core systems generally deal with the problem of mapping multiple
applications to the resources of a many-core platform. In addition to functional correctness, a high-quality
mapping must also satisfy the non-functional requirements of the application, for example, timing,
reliability, and security, while exhibiting a high performance w.r.t., for example, resource utilization and
energy efficiency. Prior to the introduction of HAM, application mapping methodologies for embedded
systems were typically classified into two categories: design-time (static) approaches and run-time (dynamic)
approaches. An elaborate survey of these techniques is presented in Reference [25].

The majority of existing application mapping methodologies fall into the category of static approaches,
see, for example, References [29–33]. In these approaches, all mapping decisions are made offline.
These approaches rely on a global view of the whole system, and in particular, the complete set of
applications in the system, and exploit this knowledge to find an optimal mapping of all applications in the
system to platform resources [25]. Due to their offline scheme, they can afford compute-intensive mapping
optimization and non-functional verification techniques which are often inevitable, for example, in the case
of applications with hard real-time constraints. Given the NP-hard nature of the many-core application
mapping optimization problem [14,15], static approaches employ DSE techniques based on meta-heuristic
optimization approaches, for example, evolutionary algorithms [16–18], simulated annealing [34], or particle
swarm optimization [19], to find high-quality mapping solutions with a reasonable computational effort.
For instance, for the DSE in References [15,35], genetic algorithms are used. In Reference [36], simulated
annealing is used, while Reference [37] adopts particle swarm optimization. In spite of its advantages,
this static design scheme is practical only for systems with a relatively static workload profile and is,
thus, impractical for systems with dynamic workload scenarios or systems in which the complete set of
applications is not known statically [25,38].

Dynamic mapping approaches offer a flexible and adaptive application mapping scheme that
can be used for the design of systems with dynamic workload scenarios (use cases). In these
approaches, mapping decisions are conducted online at the time an application must be launched, see,
for example, References [26,39,40]. In spite of their flexibility, the processing power available for the
online decision processes is limited to the resources of the underlying platform, and the time for their
decision making is restricted by application-specific deadlines. Therefore, dynamic approaches cannot
afford compute-intensive techniques for their mapping decisions and, hence, typically yield application
mappings of inferior quality, compared to static approaches.

Hybrid Application Mapping (HAM) is an emerging category of mapping methodologies which
employs a combination of offline mapping optimization and online mapping selection to address the
shortcomings of both static and dynamic mapping methodologies [25]. A large body of work exists on
HAM, for example, References [23,41–47]. At design time, HAM approaches employ DSE to compute a
set of high-quality mappings for each application. Similarly to static approaches, the offline DSE in HAM
benefits from compute-intensive optimization and verification techniques, for example, for worst-case
timing verification. By using statically verified mappings as candidates for online application mapping,
HAM enables the dynamic mapping of a broad range of applications for which the verification of
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non-functional requirements involves time-consuming analyses and, hence, cannot be done online.
An overview of a collection of state-of-the-art HAM techniques is given in Sections 5 and 6.

The majority of many-core design methodologies, including those listed above, follow an incremental
design approach consisting of a per-application mapping computation step and a subsequent system
integration step. An incremental design, verification, and integration approach alleviates the design
complexity significantly [24]. To enable this design scheme, system composability is essential. Composability
is a system property ensuring that the non-functional behavior of each application in the system is
not affected by other applications [24,48]. For instance, in a timing-composable system, for example,
CoMPSoC [49] or T-CREST [50], concurrent applications are decoupled from each other w.r.t. their
(worst-case) timing behavior. This allows timing verification of each application to be performed
individually and irrespectively of the other applications.

Composability can be established using temporal/spatial isolation between applications [24]. In the
case of spatial isolation, resources are exclusively reserved for applications. Spatial isolation has been used
to eliminate inter-application timing interferences for real-time applications [51] and side-channel attacks
for security-critical applications [52]. In the case of temporal isolation, resource sharing among applications
is allowed under exclusive resource budget reservation per application and a timing-composable
arbitration/scheduling policy. Examples of such policies include Time Division Multiple Access (TDMA)
used in References [49,50] or Weighted Round Robin (WRR) used in References [41,51,53]. In the
same line, new programming paradigms have emerged which promote the isolation of applications
in favor of composability to enable an incremental design scheme. For instance, in the paradigm
of invasive computing [6,28], application programs can exclusively allocate (invade) resources and
later release them again (retreat). Invasion establishes spatial isolation between concurrently executed
applications to achieve timing composability by means of explicit resource reservation per application,
see, for example, Reference [27]. Such support is particularly crucial for HAM which relies on separate
mapping optimization of individual applications at design time. The HAM techniques discussed in this
paper (in Sections 5 and 6) are developed based on these principles.

3. System Model

Most approaches for design automation require a formal system model which serves as a basis
for the optimization and verification processes performed throughout the DSE. The design problem of
heterogeneous embedded systems, including the many-core application mapping problem, is typically
represented using a graph-based system model, referred to as a specification which consists of (i) an
application graph representing the application, (ii) an architecture graph representing the target many-core
platform architecture and (iii) a set of mapping edges which connect these two graphs to reflect
the task-to-core assignment options, see References [15,21]. This section provides an overview of
the application and architecture models commonly used in the embedded many-core domain and
demonstrates how these models can be converted into the graph-based specification.

3.1. Application Model

In the parallel-processing paradigm of multi/many-core systems, an application is typically
partitioned into a set of (processing) tasks which communicate with each other via a set of messages [13].
To reflect this structure, each application is modeled by an acyclic, directed, and bipartite graph
GP(T ∪ M, E) called the application graph (also known as task graph or problem graph) [27]. Here, T denotes
the set of tasks, M denotes the set of messages exchanged between the tasks, and E ⊆ (T × M) ∪ (M × T)
is a set of directed edges which specify the data dependencies among tasks and messages. Figure 1a
illustrates an exemplary application graph where T = {t0, . . . , t5} and M = {m0, . . . , m5}.
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Figure 1. Example of a specification composed of (a) application graph, (b) architecture graph,
and (c) mapping edges connecting them (depicted only for task t5).

Tasks and messages in an application graph may also be annotated with additional information that
might be required for the generation and/or the evaluation of the mappings. For instance, in the case
of periodic applications, the execution period of each task and the production period of each message is
provided to be used for resource scheduling. Similarly, in the case of real-time applications, the Worst-Case
Execution Time (WCET) of each task and the maximum number of its memory operations may be provided
to be used in the latency analysis and timing verification of the generated mappings. Also, the maximum
payload size of a message and the maximum number of memory operations necessary to read/write the
message from/to memory might be provided.

3.2. Architecture Model

Many-core platforms, for example, References [1–3], typically follow a regular and two-dimensional
organization of resources in which resources are partitioned into a set of so-called (compute) tiles,
interconnected by a two-dimensional Network-on-Chip (NoC) with a mesh topology, see, for example,
Figure 2. Each tile in a many-core platform consists of a set of processing cores, one or multiple shared
memories, and a Network Adapter (NA) which connects the on-tile resources to the routers of the NoC.
The resources on each tile are interconnected via one or multiple (memory) buses. Each core may have
a private L1 cache, and each tile may have an L2 cache shared among the resources located on that
tile. In a heterogeneous many-core platform, the cores within each tile are typically from the same type
(homogeneous) while different tiles comprise cores of different types. In addition to the compute tiles,
a many-core platform may also contain one or multiple memory tiles to provide mass storage on the chip.
Moreover, a set of I/O tiles may be available for connectivity with off-chip media, for example, cameras
or sensors.

Many-core platforms employ a NoC interconnection infrastructure for inter-tile connectivity,
chiefly due to its scalability [54]. A NoC consists of a set of routers and NAs which are interconnected via
a set of links. Each router is associated with one tile of the platform and is connected to the NA located on
that tile. In a mesh NoC, each router is also connected to its adjacent routers in the four cardinal directions.
Each NoC connection enables the exchange of data in both directions using two uni-directional links.
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Figure 2. Example of a 7 × 7 heterogeneous tiled many-core architecture. Tiles are interconnected by a
2D mesh Network-on-Chip (NoC). Each tile consists of a set of processing cores, a set of memories, and
a Network Adapter (NA), interconnected via one or more (memory) buses. Different tiles may contain
different types of cores, here denoted by color.

The architecture of a many-core platform is typically modeled by a graph GA(R, L) called architecture
graph, see, for example, References [27,41]. Here, R denotes the set of resources on the platform, that is,
cores, memories, buses, NAs, and routers. The connections between these resources are reflected by the set
of edges L ⊆ R × R. Resources which access the NoC over the same NA are grouped into one tile u ∈ U.
In heterogeneous systems, the processing cores C on different tiles can differ in architecture, instruction
set, frequency, energy consumption, and so forth. To reflect this, each tile u ∈ U can be of a certain
resource type r_type ∈ P with |P| different resource types in the system. Tiles that contain the same types
of resources have the same resource type. Figure 1b illustrates the architecture graph of an exemplary
heterogeneous many-core platform which is (for simplicity of illustration) composed of only two tiles:
tile0 and tile1. Each tile consists of two cores (the type of each core is indicated by color), a NA, two shared
memories, and two memory buses. Each bus connects the cores and the NA to one of the memories.
The two tiles are each composed of different types of cores and are, thus, of different resource types.

3.2.1. Memory Model

Due to their scalability, distributed memory schemes are widely used in many-core systems.
These schemes—also known as No Remote Memory Access (NORMA) memory architectures—restrict the
accessibility of memories in each tile to resources located on that tile only [55]. The memory space in each
tile may also be further partitioned into regions dedicated to individual resources or individual tasks on
that tile.

3.2.2. Communication Model

The memory scheme of a many-core platform heavily impacts its viable choices for the communication
of messages between tasks. Given the shared-memory scheme inside each tile, an exchange of data between
resources located on one tile (intra-tile communications) is realized by the producer (sender) writing the data
in a given space in the tile’s shared memory and the consumer (receiver) reading the data from that memory
location afterwards. For an exchange of data between different tiles (inter-tile communications), however,
explicit message passing between the producer and the consumer is necessary due to the distributed
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memory scheme between tiles. To that end, once the producer (sender) writes the data into the memory of
the source tile, the local NA reads the data and injects it into the local router. Then, the data is forwarded
through a chain of NoC routers on a hop-by-hop basis and in a pipeline fashion towards the destination
router which provides the data to the NA on the destination tile. The destination NA stores the data in a
dedicated memory space from where the consumer (receiver) can read the data thereafter.

3.3. Mapping

The application graph and architecture graph in the specification are connected by so-called mapping
edges V. Each mapping edge v = (t, c) ∈ V denotes that task t ∈ T can be executed on core c ∈ C.
Moreover, each mapping edge v = (t, c) may be annotated with a set of attributes which reflect the
execution characteristics of task t when executed on core c. For instance, in the context of heterogeneous
many-core systems, mapping edges of a task t can also reflect the execution time of t on different types of
cores in the system. Figure 1c, illustrates two exemplary mapping edges for task t5, indicating that t5 can
be executed on core0 or core1.

4. Fundamentals of Hybrid Application Mapping

Hybrid Application Mapping (HAM) methodologies employ a pseudo-dynamic application mapping
strategy, embodying a combination of offline mapping computation and online mapping selection.
The standard flow of HAM is illustrated in Figure 3. This flow consists of (i) a design-time (offline) Design
Space Exploration (DSE) step per application, followed by a (ii) run-time (online) system management
step. These steps are detailed in the following.
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many-core platform

control
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Figure 3. Flow of Hybrid Application Mapping (HAM). At design time, Design Space Exploration (DSE) is
used to compute a set of Pareto-optimal mappings per application (top). At run time, a Run-time Platform
Manager (RPM) launches applications using their precomputed mappings (bottom).
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4.1. Offline Design Space Exploration (DSE)

In HAM, the computation of mappings for each application is performed in a DSE at design time
(offline), see Figure 3 (top). The DSE takes as input the specification (detailed in Section 3) describing the
space of design decisions of the currently considered application. During the DSE, various mappings of
the application on the platform are generated by a mapping optimizer and are, subsequently, examined by a
(set of) mapping evaluator(s) which assess the quality of each mapping w.r.t. a given (set of) non-functional
design objective(s), for example, latency, throughput, and energy consumption. Subject to the application
domain and the type of each non-functional objective, the respective evaluation can be performed using
simulation, measurement, formal analysis, or a combination of them.

Each mapping candidate of the application on the given platform is generated in the course
of four steps of design decisions, namely, resource allocation, task-to-core binding, message routing,
and task/message scheduling, following the classical practice of system-level synthesis [15]. In the
(i) allocation step, a set of platform resources, for example, cores, NAs, and routers, are specified and
allocated for the execution of the application’s tasks and/or for the communication of messages among
them. In the (ii) binding step, the assignment of each task to the allocated cores is specified. In the
(iii) routing step, a NoC route (sequence of connected routers) is specified for the communication of each
message exchanged between data-dependent tasks which are bound to different tiles. Recall that messages
communicated between tasks bound to the same tile are exchanged implicitly through the shared memories
on that tile and, therefore, do not require a NoC route. Finally, in the (iv) scheduling step, the schedule of
tasks t∈T and messages m∈M on their respective resources is specified, for example, a periodic (time)
budget is computed for each task/message in case of a periodic application.

Given the NP-hard complexity of the many-core mapping optimization problem [14,15], the DSE
usually employs a meta-heuristic optimization technique to find high-quality (Pareto-optimal) mappings
at an acceptable computational effort. The majority of these meta-heuristic techniques operate based on
an iterative optimization of a so-called population of solutions (mappings). Here, in the course of several
optimization iterations, the population is used to generate new mappings (e.g., through genetic operators of
mutation and crossover), and is updated with the new mappings. The set of non-dominated Pareto-optimal
mappings iteratively generated thus far is always preserved. Generally, a large share of mappings
generated this way could be infeasible (invalid) solutions, for example, mappings lacking the necessary
NoC links for inter-tile communications. This harms the optimizer’s performance as it would strive for
finding feasible mappings rather than the optimization aspect [56]. As a remedy, hybrid optimization
approaches combining exact (e.g., SAT or ILP ) and meta-heuristic (e.g., evolutionary algorithm) techniques
have emerged. These approaches, for example, SAT-decoding [57], implement powerful repair mechanisms
which are capable of unambiguously mapping every point in the search space to a feasible solution, see
also Reference [58].

4.2. Online System Management

In HAM, the statically computed set of mappings for each application is used at run time to launch
that application on demand. For this purpose, the mappings are provided to a so-called Run-time Platform
Manager (RPM), see Figure 3 (bottom). Whenever an application shall be launched, the RPM selects one of
the precomputed mappings of that application for which the required resources are currently available
and uses that mapping to launch the application. In addition to launching applications, the RPM also
terminates applications on demand and, if necessary, modifies the mapping of running applications
(re-mapping) in reaction to unexpected events, for example, resource failures, or to enhance the system
utilization, for example, through load/thermal balancing.
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5. Tackling the Complexity

The task of application mapping is to find an allocation, binding, routing, and scheduling that is
best with respect to the objectives of interest. However, with the huge amount of resources on many-core
systems and more and more parallel tasks and messages of applications in modern use cases, the amount
of possible mappings is immense. In particular, the large number of task-to-resource assignment options
contributes significantly to the size of the search space. Finding the best or even only an optimized
mapping out of this huge search space is, thus, a complex and time-consuming task. The HAM scheme
described in Section 4 allows us to split the problem of application mapping between design time and
run time. The general idea is to explore as much as possible of the search space already at design time.
At the same time, there should be sufficient options left for the RPM to react to dynamic and unforeseeable
system scenarios.

To achieve this, the DSE has to efficiently find the Pareto-optimal mapping options within this huge
search space to be handed to the RPM. At the same time, the RPM must be able to efficiently find a feasible
mapping candidate that can be realized on the available system resources. This section summarizes a
selection of techniques that cope with the immense search space of application mapping by eliminating
architectural symmetries (i.e., recurring resource-organization patterns) as well as applying architecture
decomposition to decompose the complex problem into more tractable sub-problems. These techniques
are likewise applicable as part of the design-time DSE and the run-time management.

The design-time DSE typically produces a huge number of Pareto-optimal mappings due to the large
number of design objectives. Considering all Pareto-optimal mappings for RPM is not practical since a
large set of candidates can quickly exhaust the available storage and computational capacity of the RPM.
Therefore, only a fraction of the Pareto-optimal mappings must be retained, whose choice is particularly
crucial for the system performance and requires new multi-objective truncation techniques tailored to
many-core mapping selection. In this section, we also present a technique called mapping distillation that
aims at reducing the number of mapping options determined by DSE so that the RPM can actually benefit
from the DSE-based pre-optimization.

5.1. Constraint Graphs for Symmetry Elimination from the Search Space

Many-core architectures are heterogeneous and composed of different types of resources
interconnected via a communication infrastructure. However, with the increasing parallelism, also an
increasing amount of resources of equivalent resource types will be present on the chip, appearing in
recurring patterns across the architecture. This means that the search space contains a large degree
of redundancy in terms of symmetries, that is, mappings with equivalent resource requirements and
non-functional properties. A major solution to deal with the scalability issue is, therefore, to choose
a mapping representation that eliminates such symmetries. The classical application mapping as
presented in Section 3 represents every possible mapping of tasks to resources. The representation
introduced in Reference [41] and applied for DSE in Reference [45] instead uses a task-cluster-to-resource-type
representation. A task cluster thereby describes a subset of application tasks which must be mapped on
the same resource at run time. Each task cluster is also annotated with a resource type which specifies the
type of the resource to which it must be mapped.

Figure 4 presents an example where an application consisting of tasks t0, t1, and t2 should be mapped
onto an architecture containing four tiles u0,0, u1,0, u0,1, and u1,1. A classical task-to-resource application
mapping results in 43 = 64 mapping combinations. Figure 4c illustrates four different concrete mappings.
In each mapping, tasks t0 and t1 are mapped to a resource of type r_type0 while t2 is mapped to a resource
of type r_type1. The mappings differ from each other in their choice of resource instances. However,
all four mappings are identical in terms of the number of allocated resources (one instance of resource type
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r_type0 and one of r_type1), the assignment of tasks to the allocated resource types, and the hop distance,
direction, and allocated bandwidth for the messages exchanged between tasks t0 → t2 and t1 → t2. This is
indicated in the abstract representation in Figure 4d which is referred to as a constraint graph.
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Figure 4. Illustration of application mapping and architectural symmetries, adopted from Reference [45].
The specification consists of (a) an application graph and (b) an architecture graph. (c) A design-time
DSE explores mappings. Shown are four different concrete mappings for the three tasks t0, t1, and t2

of the application onto the architecture containing four tiles u0,0, u1,0, u0,1, and u1,1 where tile types
are distinguished by color. (d) Each mapping is transformed into an intermediate representation called
constraint graph [41]. The constraint graph encodes rules for the RPM on how to feasibly embed the
application. As depicted, the resulting constraint graph is identical for all four concrete mappings in (c).

The constraint graph is a representation that allows us to remove the symmetries from the search space
when performing DSE based on this representation. However, it is also a representation that abstracts
from concrete positional information. Determining a concrete application mapping based on a constraint
graph is referred to as constraint graph embedding.

5.2. Symmetry-Eliminating DSE Using Constraint Graphs

Symmetry-eliminating DSE based on constraint graphs is introduced in Reference [45]. The main
idea of symmetry-eliminating DSE is to explore symmetric task-cluster-to-resource-type mappings on a
given target architecture based on constraint graphs instead of exploring concrete task-to-resource-instance
mappings. As depicted in Figure 5, the steps to construct a mapping candidate in symmetry-eliminating
DSE include (i) to explore on which resource type to bind each task (task assignment problem), (ii) to
cluster subsets of tasks that are assigned to the same resource type together into task clusters (task
clustering problem), and (iii) to combine the messages exchanged between the resulting task clusters to
message clusters (to be routed over the NoC) and construct the constraint graph. The task assignment,
task clustering, and message routing problems can be formulated as a 0-1 Integer Linear Program (ILP).
The DSE can then work on this formulation by making use of SAT-decoding (see Section 4.1).
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Figure 5. Symmetry-eliminating exploration consisting of three steps: (i) mapping tasks to resource types,
(ii) clustering of tasks, and (iii) construction of constraint graph. For the sake of clarity, messages are not
shown in the application. The example is adopted from Reference [45].

While the task-cluster-to-resource-type based mapping representation significantly reduces the search
space, it is shown in Reference [45] that it still over-approximates the search space of feasible mappings:
Due to the platform-independence of the representation (constraint graphs just encode a set of mapping
solutions, but do not provide a concrete feasible one), the search space may still contain solutions, that is,
constraint graphs, that cannot be feasibly mapped to a given target architecture instance due to topological
constraints in a concrete architecture. Figure 6 depicts such an example of a constraint graph that cannot
be feasibly mapped to the concrete architecture since resources of the required type are only available at
a minimum hop distance of 4 in the target architecture, whereas the routing constraint in the constraint
graph restricts the allowed distance to a maximum hop distance of 3. As a remedy, the DSE also has
to perform a formal feasibility check to ensure that all considered solutions can be feasibly mapped to a
concrete instance on the given target architecture. Techniques for determining feasible constraint graph
embeddings on a given target architecture are discussed in Section 5.3. However, by means of Satisfiability
Modulo Theories (SMT) techniques, it is possible to take the result of such a feasibility check as feedback
for improving the DSE subsequently. For this purpose, the conditions that render a solution infeasible
are extracted, and then this knowledge is added to the 0-1 ILP formulation so that not only this single
but all other solutions that fulfill these conditions are removed from the search space. For the example in
Figure 6, it can be deduced that all solutions with identical clustering of tasks and an identical mapping
but a lower maximum hop distance (i.e., hops ≤1 and hops ≤2) will only be harder to embed and, thus,
can also be excluded from the search space. Since also bandwidth requirements, hop distances, and the
task clustering are included in the 0-1 ILP formulation, this can be learned by formulating respective
constraints and adding them after each failed feasibility check. In Reference [45], it has been shown that
this problem-specific learning technique has the potential of excluding large parts of the search space with
much fewer feasibility checks.

5.3. Constraint Graph Embedding

Embedding a constraint graph in a given architecture requires (i) binding of task clusters to resources
and (ii) routing of messages between them on the NoC. Predictable application execution is only possible
when embedding follows the resource reservation configuration of the constraint graph. This basically
means that sufficient computation resources have to be provided to bind all task clusters as well as sufficient
bandwidth on communication resources to route all message clusters with the maximum allowed hop
distance. Selection of resources could be done by counting the required number of resources of each
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resource type and, then, selecting available resources on the architecture, that is, treating this problem as a
knapsack problem as, for example, done by References [59–61]. However, these approaches neglect the
routing of messages between the selected resources. Also, restricting the resource selection to resources
which lie within a maximal hop distance (as, for example, done by Reference [46]) neglects constrained
availability of shared resources as well as resource consumption.
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Figure 6. Illustration of a constraint graph which cannot be embedded on a given architecture: Since the
constraint graph (left) formulates the requirement for a maximum hop distance of 3 for the transfer of m0

and m1 between the two task clusters, it is not embeddable on the given architecture (right), where the
minimum hop distance between the corresponding resource types is 4.

5.3.1. Constraint Satisfaction Problem (CSP)

The above approaches may serve as a preliminary test for deciding whether there exists a feasible
embedding of a constraint graph at all, as they have polynomial time complexity and form at least a
necessary condition for feasibility. However, for determining the actual embedding, all constraints for a
feasible binding have to be tested. Therefore, Reference [41] proposes to handle the embedding problem as
a Constraint Satisfaction Problem (CSP) based on the constraint graph. Generally, a CSP is the problem of
finding an assignment for a given set of variables which does not violate a given set of constraints.

The specific problem of constraint graph embedding consists of finding a binding for each task cluster of
the constraint graph, as well as a routing between the sender and the receiver of each message. For each
task cluster, a feasible binding fulfills the following binding constraints: (i) The resource type of the selected
resource matches the required type annotated to the task cluster. (ii) The target resource provides sufficient
capacity for scheduling the tasks in the cluster. For each message cluster, a feasible routing fulfills the
following routing constraints: (i) The hop distance between the resource of the sending task cluster and
the resource of the receiving task cluster is no greater than the hop distance annotated to the message
cluster. (ii) Each link along the route provides sufficient capacity to meet the bandwidth requirement of
the message cluster.

5.3.2. Constraint Solving Techniques

There exists a smorgasbord of techniques for solving CSPs in general. For the specific problem of
constraint graph embedding, two major techniques have been evaluated which are briefly introduced in
the following.

Constraint Graph Embedding Using SAT Solvers

The authors of Reference [45] formulate the constraint graph embedding problem as a
satisfiability (SAT) problem. Here, the binding and routing constraints are described by a set of linear
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Pseudo-Boolean equations over binary decision variables, thus, forming a 0-1 ILP. This formulation is
passed to a SAT solver that returns the binding of task clusters and the routing of messages, if existent.

Constraint Graph Embedding Using Backtracking Solvers

The constraint graph embedding problem can also be solved by a backtracking algorithm as initially
proposed in Reference [41]. In contrast to SAT solving techniques which work on binary decision variables,
backtracking techniques work directly based on an application-specific representation of the problem.
They recursively try to find a binding of each task cluster of the constraint graph to a target resource
of suitable type in the architecture, while ensuring that a feasible routing between assigned variables
remains possible. In case no feasible binding can be determined, a backtracking step from the most recent
assignment is performed, and then, it is recursively proceeded until either all task clusters are bound or it
has been verified that no embedding exists at all.

The major advantage of backtracking approaches over SAT solving is that application-specific
optimizations can be applied as suggested in Reference [62], for example, restricting the resource candidates
for binding a task cluster to the hop distance of already mapped connected task clusters as well as executing
parallel solvers which start their search in different partitions of the architecture. With such measures,
backtracking solvers exhibit better scalability for RPM as they have less memory demands compared to
SAT solving techniques and are even able to determine feasible embeddings at run time within a few
milliseconds also for systems with more than 100 cores. A run-time management technique to manage the
mapping of multiple applications in a dynamic many-core system by applying these backtracking solvers
has been proposed in Reference [42].

5.4. Architecture Decomposition for Complexity Reduction

Another natural way to reduce the problem complexity in both the design-time DSE and the run-time
management in HAM is a decomposition of the input specification. In particular, a decomposition of the
target architecture (cf. Figure 7) is well-suited for large-scale many-core architectures since they oftentimes
contain multiple instances of the same resource types in a (semi-)regular topology. A careful elimination of
available resources from a specification via architecture decomposition significantly reduces the number of
mapping possibilities so that speed-ups and quality improvements can be achieved for both the design-time
DSE and the run-time embedding in HAM.

5.4.1. Design-Time Decomposition

In the design-time DSE, architecture decomposition can be applied to reduce the size of the
search space by eliminating allocatable resources and, consequently, mapping possibilities from the
input specification (see Section 3). This allows for a more efficient exploration of the reduced search
space and, consequently, results in a better optimization of mapping candidates. A first approach to
decompose the architecture is static decomposition as proposed in Reference [63]. This variant of architecture
decomposition removes a predetermined number of computational resources from the input specification
before performing DSE, so that a sub-architecture of predetermined topology and size remains, see,
for example, the three statically determined sub-architectures in Figure 7. This approach works especially
well for regular many-core architectures, since it can easily be ensured that at least one resource of each
required resource type remains in each sub-architecture. By performing the DSE on a number of different
sub-architectures—whilst aggregating the results—it can be ensured that a variety of optimized mapping
candidates is derived.

The authors of Reference [64] propose a second possibility of architecture decomposition that is better
suited for irregular architectural topologies or for cases where an a-priori decision about the number
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and type of resource instances to be removed cannot be made. There, a dynamic decomposition approach
is presented which utilizes information from a short preliminary DSE, that is, a pre-exploration based
on the complete architecture, to determine resources to be pruned dynamically for the actual extensive
DSE. During the pre-exploration, a heat map of the architecture is generated which stores information
about resources allocated in high-quality mappings. Low-temperature areas of the heat map, that is,
resources not part of high-quality mappings, are subsequently pruned from the architecture before the
actual DSE is performed. State-of-the-art data-mining techniques are demonstrated to be able to extract
suitable sub-architectures as well [65]. Similarly to dynamic architecture decomposition using heat maps,
data mining is applied during a pre-exploration of the complete architecture. In particular, frequent-itemset
mining and emergent-pattern mining are used to determine differences in resources allocated in high-
vs. low-quality mappings during the DSE. Based on the obtained results, un-promising areas of the
search space can thus be pruned while a reduced sub-architecture is used as input for the main DSE.
All approaches discussed above are demonstrated to result in a higher quality of solutions derived by
the DSE and reduce the exploration time of DSE significantly for many-core application mapping in the
general case but also for constraint graphs in symmetry-eliminating DSE (cf. Section 5.1).

u0,0

u0,1

u0,2

u0,3

u0,4

u0,5

u1,0

u1,1

u1,2

u1,3

u1,4

u1,5

u2,0

u2,1

u2,2

u2,3

u2,4

u2,5

u3,0

u3,1

u3,2

u3,3

u3,4

u3,5

u4,0

u4,1

u4,2

u4,3

u4,4

u4,5

u5,0

u5,1

u5,2

u5,3

u5,4

u5,5

{t0, t1}
r_type0

{m0, m1}
bw=90%, hop≤1

{t2}
r_type1

Figure 7. Constrain graph embedding on a 6 × 6 tiled many-core architecture with 3 possible
sub-architectures (red boxes) created by architecture decomposition. The complexity of the constraint graph
embedding problem for both the design-time DSE and the run-time embedding in HAM is significantly
reduced by limiting the set of allocatable resources to such decomposed sub-architectures.

As mentioned in Section 5.2, a symmetry-eliminating DSE requires an additional feasibility check to
guarantee that there exists at least one feasible concrete mapping on the given target architecture [45].
Since the complexity of the NP-complete constraint graph embedding problem grows exponentially with
the number of resources in the architecture (see Section 5.3), architecture decomposition is a suitable method
to reduce the complexity of such feasibility checks as well. For example, it is shown in Reference [66] how to
apply architecture decomposition during feasibility checks by creating a large set of increasingly complex
sub-architectures and searching for a feasible embedding on each of them. This achieves noteworthy
speed-ups on average, despite the fact that the constraint graph embedding problem must eventually be
solved for the complete architecture if no embedding on any generated sub-architecture exists. However,
if embedding on a sub-architecture is possible, the embedding time is crucially reduced. Since each
and every mapping out of the hundreds of thousands of mapping candidates generated during DSE
must undergo this feasibility check, the speed-ups achieved for individual mappings accumulate to a
tremendous speed-up of the overall DSE.
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5.4.2. Run-Time Decomposition

At run time, the system synthesis problem must be solved to find a feasible mapping of an application
on the target architecture which may already be partially occupied by concurrently running applications.
The same holds true when using the constraint graph representation for run-time embedding. Architecture
decomposition can decrease the embedding time in this scenario as well by limiting the search for a
feasible embedding to selected parts of the architecture [62,66]. For both SAT- and backtracking-based
formulations of the constraint graph embedding problem (cf. Section 5.3.2) with architecture decomposition,
it is furthermore possible to parallelize the solving process by using separate solvers for different
decompositions of the architecture and collating the results for even greater embedding speed-ups [62].

5.5. Mapping Distillation

The relatively high run-time overhead of constraint-graph embedding often restricts the number of
mapping candidates that can be considered by the RPM. Yet, the offline DSE in HAM often delivers a
huge set of Pareto-optimal mappings as it considers many design objectives: On the one hand, mappings
are optimized w.r.t. several quality objectives, for example, latency, energy, and reliability, subject to the
application domain. On the other hand, several resource-related objectives are often incorporated to diversify
the resource demand of mappings for a better fit in various resource-availability scenarios [41,43,44].
The resulting high-dimensional objective space results in an immense number of Pareto-optimal mappings.
Due to timing (and storage) restrictions at run time, only a fraction of these mappings can be provided to
the RPM, necessitating the distillation (truncation) of the mappings set [67].

In the domain of multi-objective optimization, the truncation problem is well studied [68],
and numerous techniques have been proposed for retaining a representative subset of Pareto-optimal
points by maximizing the diversity of retained points in the space of design objectives, see, for example,
References [69–71]. However, when adopted for mapping distillation, these well established yet generic
truncation techniques typically retain mappings which exhibit a prohibitively low embeddability. The main
problem here lies in the fact that these techniques regard all design objectives similarly, whereas quality
objectives and resource-related objectives are of very different natures: Quality objectives denote
independent qualities of a mapping where a high diversity of retained mappings is desired to offer
a representative blend of quality trade-offs. In contrast, resource-related objectives jointly affect the
embeddability of a mapping and, hence, must be considered collectively during the truncation process
where both resource diversity and efficiency are desired.

In line with these observations, an automatic mapping distillation technique is presented
in Reference [67] which operates as follows: The original set of Pareto-optimal mappings is first projected
into the space of resource-related objectives where Pareto ranking [72] is used to sort the mappings. Then,
the mappings are projected into the space of quality objectives where a grid-based selection scheme
is employed to retain mappings from different regions of the quality space (ensuring diverse quality
trade-offs) based on the previously computed Pareto ranks (ensuring resource efficiency and diversity).
Experimental results in Reference [67] demonstrate that while retaining only a fraction (as few as only 3%)
of the original set, this distillation technique highly preserves the embeddability and quality diversity of
the original set and outperforms generic truncation techniques substantially.

6. Support for Hard Real-Time Applications

Embedded applications often have a set of non-functional requirements in terms of timing, safety,
security, reliability, and so forth. A mapping of such applications is considered useful only if it is
verified to satisfy the application’s requirement(s). Real-time applications which have timing constraints,
for example, w.r.t. their latency and/or throughput, are particularly prevalent in embedded systems.
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While soft real-time applications can tolerate occasional violation of their timing constraints, for a hard
real-time application, any timing violation can lead to a system failure which is not tolerable. In recent
years, the rapid spread of many-core systems in various embedded domains, for example, safety-critical
areas of automotive electronics, avionics, telecommunications, medical imaging, consumer electronics,
and industrial automation, has led to a significant increase in the number and diversity of embedded
applications with hard real-time requirements, see, for example, Reference [73] as an overview.

The hybrid (design-time/run-time) mapping scheme in HAM offers a unique opportunity for
supporting hard real-time applications in dynamic embedded systems. As a result, several techniques
have been proposed in recent years which enable a predictable and adaptive execution of hard-real
time applications in dynamic embedded systems using HAM. In this section, we review a collection
of these works after introducing the key system properties necessary for the adoption of HAM for
real-time applications.

6.1. Predictability and Timing Composability

Hard real-time applications require worst-case timing guarantees to ensure a strict satisfaction of
their timing constraints. Deriving temporal guarantees in many-core systems is particularly challenging
due to their typically unpredictable execution context: On the one hand, uncertain resource behaviors,
for example, (pseudo-)random cache replacement policies, branch prediction, or speculative execution,
often lead to intractable variations in the timing behavior of applications such that useful worst-case
timing guarantees cannot be derived. On the other hand, contention between concurrent applications
for accessing shared resources renders the timing behavior of each application dependent not only on
the arbitration policy of shared resources but also on the behavior of the concurrent applications. In a
dynamic system, this dependence often results in an extensive number of possible execution scenarios
which complicates the timing analysis of applications such that even if timing guarantees can be derived,
they are typically too loose to be of any practical interest.

In this context, to enable deriving practical (useful) worst-case timing guarantees, two complexity-
reducing system properties have been introduced: predictability and timing composability. Here, predictability
ensures that each and every resource in the system has a predictable behavior which enables deriving
useful bounds on the worst-case timing behavior of applications by means of formal timing analysis and
verification [48]. Timing composability, on the other hand, ensures that concurrent applications are separated
and, therefore, cannot affect the (worst-case) timing behavior of one another [48]. In a timing-composable
system, resources (or resource budgets) are exclusively assigned per running application so that concurrent
applications are temporally and/or spatially isolated from each other. This enables analyzing the
worst-case timing behavior of each application based on its reserved resources, regardless of the presence
or behavior of other applications in the system. Together, predictability and timing composability serve
as the key system properties necessary for enabling an incremental design of systems with real-time
applications.

Application mapping in such systems, on the one hand, involves compute-intensive timing analyses to
examine the satisfaction of hard real-time constraints of each application. On the other hand, the typically
dynamic nature of the application workloads in these systems necessitates workload-adaptive deployment
and management of applications. These requirements render HAM methodologies particularly effective
as they enable mapping optimization and timing verification for hard real-time applications at design time
while empowering adaptive deployment and management of applications at run time. In this context,
several HAM techniques have been proposed lately, enabling a predictable and adaptive execution of
hard-real time applications in dynamic embedded systems using HAM. A collection of these works is
presented in the following.
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6.2. Adaptive Inter-Application Isolation and Timing Verification

In a many-core system, timing composability can be established by means of spatial isolation and/or
temporal isolation among concurrent applications where resources (and/or resource budgets) are exclusively
reserved for each running application at launch time. The resource reservation policy followed by the
applications in a system is specified by the so-called (inter-application) isolation scheme selected for that
system. Existing many-core systems typically employ one of the three following isolation schemes and
a timing analysis tailored to their choice of isolation scheme to derive worst-case timing guarantees for
real-time applications: (i) tile reservation in which each tile is exclusively reserved to one application,
for example, References [41,46,47], (ii) core reservation in which each core is exclusively reserved to one
application, for example [35], and (iii) core sharing in which core budgets are exclusively reserved per
application such that a core may be shared among multiple applications. Noteworthy, sharing the NoC
can hardly be avoided [73]. The choice of a system’s isolation scheme regulates the amount of resources
reserved for each application. This not only affects the timing behavior of that application, necessitating
a timing analysis tailored to the system’s isolation scheme to derive worst-case timing guarantees but
also has a significant impact on other non-functional qualities, for example, resource utilization and
energy efficiency.

A fixed isolation scheme imposes a single resource reservation policy on each and every application
in the system where the amount of resources reserved per application cannot be fine-tuned according
to its specific resource demands. Consequently, the majority of hereby obtained mappings either fail to
satisfy the timing constraints of the application (common under a core-sharing scheme), or they exhibit an
over-provisioning of resources which results in their poor performance w.r.t. other properties, for example,
resource utilization and energy efficiency (common under core/tile-reservation schemes).

This issue can be lifted by exploring the choices of isolation schemes for each application during its
mapping optimization process to find mapping solutions in which the amount of reserved resources is
adjusted to the application’s demands [51]. The advantage of this practice is exemplified in Figure 8 for
an illustrative mapping of an application deployed on two adjacent tiles with a hard deadline of 600 ms.
Figure 8c–e correspond to the three cases of fixed isolation schemes introduced above while, in Figure 8f,g,
a combination of multiple isolation schemes is used. The resulting latency and resource cost reported
below Figure 8c–g denote that the fixed-scheme solution in Figure 8e fails to meet the application’s
deadline, and those in Figure 8c,d are respectively outperformed by the ones in Figure 8f,g where isolation
schemes are used in combination.

Applying isolation schemes in combination requires a timing analysis that is applicable to mappings
with a mix of different isolation schemes. To address this, an isolation-aware timing analysis is presented
in Reference [51] which is applicable to mappings with arbitrary combinations of isolation schemes on
different used resources. This analysis captures the interplay between the applied mix of isolation schemes
and automatically excludes inter-application timing-interference scenarios that are impossible under the
given mix of isolation schemes. Reference [51] then extends the offline DSE of HAM to also perform
isolation-scheme exploration during mapping optimization. During the DSE, the choice of isolation scheme
for each resource (core/tile) is explored, and the worst-case timing behavior of each thereby obtained
mappings is analyzed using the aforementioned timing analysis. This approach has been shown to
improve the quality of the obtained mappings significantly (up to 67%) compared to classical fixed-scheme
approaches [51].
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Figure 8. Example of inter-application isolation schemes for a mapping of an application (a). The mapping
is visualized under five isolation-scheme scenarios: (c) fixed tile-reservation isolation scheme; (d) fixed
core-reservation isolation scheme; (e) fixed core-sharing isolation scheme; (f) a combination of core sharing
(core0) and tile reservation (bottom tile) isolation schemes; (g) a combination of core sharing (core0) and
core reservation (core3 and core5) isolation schemes. The resulting latency and resource cost of the mapping
under each scheme is given below the respective sub-figure. The description of the color code for the core
(compute) budgets in (c)–(g) is given in (b).

6.3. Thermal Safety and Thermal Composability

The dense integration of resources in a many-core chip results in a high density of power consumption
on the chip which, in turn, leads to an increased on-chip temperature. Due to their technological limitations,
chip packaging and cooling systems often fail to dissipate the generated heat fast enough which may
result in overheated regions (so-called hot spots) and even lead to a chip burn-down [74]. To preserve a
thermally safe operation, many-core systems employ Dynamic Thermal Management (DTM) schemes
which monitor the thermal state of the chip and use mechanisms such as power gating or Dynamic Voltage
and Frequency Scaling (DVFS) to prevent or counteract hot spots [75]. Since DTM countermeasures
interfere with the execution of applications running in the hot spots, they may lead to the violation of hard
real-time constraints which is not acceptable.

In order to preserve both temperature and timing guarantees, it is necessary to ensure the thermal
safety of real-time applications proactively, for example, using worst-case thermal analysis of their mappings
during DSE. Moreover, due to heat transfer between adjacent regions of a chip, the thermal interactions
between concurrent applications must also be accounted for to ensure that the thermal behavior of one
application will never lead to DTM countermeasures which affect other (possibly real-time) applications.
Such an indirect inter-application interference can arise in cases where the scope of DTM countermeasures
extends beyond a single core, for example, tile-level or even chip-level DVFS. Moreover, in systems where
a core can be shared between multiple applications (see the core-sharing isolation scheme in Section 6.2),
such indirect interferences can happen even under core-level DTM countermeasures. To eliminate such
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temperature-related inter-application interferences, thermal composability must be established and preserved
in the system.

Figure 9 illustrates the significance of thermal composability in an example where a new application
(gray) is to be launched in a system which is partially occupied by other running applications and is
initially in a safe thermal state, see Figure 9a.
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Figure 9. Example of possible thermal scenarios subsequent to launching a new (gray) application.
Dots denote overheated cores. Initially, the platform is partly occupied and in a safe thermal state (a).
Three possible post-launch thermal scenarios are shown: no thermal violations occur (b), a core in use by
the new application is overheated (c), or a core in use by another application is overheated (d).

The mappings of all applications are individually verified at design time to be thermally safe.
Although in some scenarios, the thermal safety of the system remains unaffected by the launch
(e.g., see Figure 9b), subject to the initial thermal state of the system and the thermal behavior of the
new application, thermal scenarios may arise in which the heat transfer between cores in use by different
applications leads to thermal violations. This can result in two types of dangerous situations: (i) An
application can be launched using a mapping that causes thermal violations on one or more cores it uses,
see Figure 9c. This triggers DTM countermeasures, for example DVFS, that may affect the execution of
this application and may violate its real-time constraints. (ii) Due to heat transfer between adjacent cores,
the mapping used to launch an application can affect the temperature profile of the neighboring cores used
by other applications and cause a thermal violation there, see Figure 9d. This exposes the applications
running on the affected core(s) to DTM countermeasures, though they have not induced the thermal
violation in the first place.

Establishing thermal composability is a challenging task. Whereas timing composability can be achieved
by exclusive resource reservation and/or proper choice of arbitration policies to regulate the timing impact
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of concurrent applications on each other, achieving thermal composability is more difficult since heat
transfer between neighboring cores used by different applications cannot be anticipated or controlled.
To address this issue, Reference [76] presents a HAM approach which establishes thermal composability by
introducing a (i) thermal-safety analysis to be used offline during/after the DSE and (ii) a set of thermal-safety
admission checks to be used online by the RPM. There, the offline thermal-safety analysis computes a
so-called Thermally Safe Utilization (TSU) for each mapping generated by the DSE. The TSU of a mapping
denotes the maximum number n of active cores in the system for which that mapping is guaranteed not to
lead to any thermal violations. By using the Thermal Safe Power (TSP) analysis from References [77,78],
the TSU of each mapping is derived based on its power-density profile and for the worst-possible selection
of n active cores (resulting in the highest temperature) so that the thermal-safety guarantee holds for
any selection of n active cores. At run time, when launching a new application, the RPM uses a set of
lightweight thermal-safety admission checks to examine the thermal safety of each mapping candidate for
the current system state based on the TSU of that mapping, the TSU of other running applications, and the
number of active cores in the system. By avoiding mappings that do not pass these checks, the RPM
preserves thermal safety proactively and establishes thermal composability.

While TSU can be calculated for the mappings after the offline DSE before they are provided to the
RPM, the authors of Reference [76] show that by incorporating TSU as an additional design objective to
be maximized during the offline mapping optimization process, the DSE will deliver mappings with a
higher TSU, meaning that these mappings are thermally safe for a higher number of active cores in the
system. Therefore, they can be used in a larger number of system utilization levels, each corresponding
to a given number of active cores in the system. This not only enables launching the application in a
higher occupation of the system, but it also enhances the flexibility of the RPM as it enlarges the number
of admissible mapping options available to it at different system states. This flexibility can be exploited
towards secondary goals, for example, load balancing.

6.4. Online Mapping Adaptation with Hard Timing Guarantees

Run-time resource management approaches generally benefit from adapting the mapping of running
applications during their execution, for example, for load balancing (see, for example, References [14,79]),
temperature balancing (see, for example, References [80,81]), or to release the resources that are required
for launching a new application. Besides such beneficial but often optional adaptions, in some situations,
changing the mapping of a running application becomes inevitable. For instance, due to technology
downsizing, many-core systems are subject to an increased rate of temporary/permanent resource failures
as a consequence of, for example, overheating or hardware faults. A resource failure necessitates a mapping
adaptation for the application(s) that depend on the affected resource in order to preserve their execution.
Moreover, the performance requirements of an application may also change dynamically, for example,
upon user request, such that in some cases the newly imposed requirements cannot be satisfied by the
mapping already in use, thus, necessitating an online adaptation of the application’s mapping.

Mapping adaptation involves changing the distribution of an application’s task on the platform and
is mainly realized by means of task migration. The adaptation process typically interferes with the timing
behavior of the application and may lead to the violation of its hard real-time constraints which is not
acceptable. Therefore, worst-case timing verification of the adaptation process and the post-adaptation
mapping becomes necessary to ensure a seamless satisfaction of the real-time constraints. Such a timing
verification, however, often relies on compute-intensive timing analyses that are not suitable for online
use. In this context, the design-time/run-time scheme of HAM provides a unique opportunity to enable
dynamic mapping adaptations with hard real-time guarantees at a negligible run-time compute overhead.
In this line, References [82,83] present a methodology for hard real-time mapping adaptation in the form
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of a reconfiguration between the statically computed mappings of an application. Since in HAM, the set
of mappings to be used at run time for each application are computed offline, the timing verification of
possible reconfigurations between the mappings can also be performed offline to obtain worst-case timing
guarantees for each reconfiguration option. These guarantees can then be provided to the RPM to be used
for conducting reconfiguration decisions, hence, eliminating the need for online timing verification.

Mapping reconfiguration between two mappings of an application is illustrated in Figure 10. In each
mapping, the dashed red arrows denote the destination tile to which the respective task must be migrated
if a reconfiguration to the other mapping is performed. The authors of References [82,83] present a
(i) deterministic reconfiguration mechanism which enables the RPM to perform each reconfiguration (involving
possibly several migrations) predictably so that worst-case reconfiguration latency guarantees can be
derived using formal timing analysis. They also present an (ii) offline reconfiguration analysis developed
based on the proposed reconfiguration mechanism. During the offline analysis, first, efficient migration
routes with minimized allocation overhead and migration latency are identified for the migrating tasks of
each reconfiguration. Then, the worst-case latency of the whole reconfiguration process is bounded base
on the worst-case timing properties of the source and target mappings and the identified migration route
for each migrating task. The computed migration routes and timing guarantee of each reconfiguration are
then provided to the RPM. At run time, the RPM verifies the real-time conformity of each reconfiguration
candidate based on this information, the current timing requirements of the application, and the actual
resource availability.
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Figure 10. Example of reconfiguration between two mappings of an application (a) on a 2 × 3 section of a
many-core platform. In each mapping, namely A (b) and B (c), the red dashed arrows denote migrating
tasks and their destination tile for a reconfiguration to the other mapping.

This mapping reconfiguration approach is improved upon in Reference [83]: Generally, a large part of
the reconfiguration latency is imposed due to the migration of tasks between tiles over the NoC. Given that
the latency analysis of migration routes in a composable system is a lightweight process, in Reference [83],
this part of the reconfiguration analysis is postponed to run time where the actual NoC load is known.
Therefore, instead of relying on pessimistic assumptions about the online NoC load, the actual available
bandwidth of the NoC is considered to alleviate the pessimism in the reconfiguration latency guarantee.
The resulting reduction in the derived latency bounds renders many reconfiguration options admissible
which would have been rejected based on their statically derived latency guarantees.

Recently, it has been demonstrated that in a composable many-core system, task migrations can be
performed in such a way that a lightweight analysis of worst-case migration latency becomes possible.
In this line, the authors of Reference [84] present a (i) deterministic task migration mechanism supported by
a (ii) lightweight worst-case timing analysis which enables on-the-fly timing verification for the migration
of any arbitrary subset of an application’s tasks. Using this approach, the RPM is able to conduct
migration decisions dynamically at run time. Thus, instead of being restricted to a limited set of
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reconfiguration options which were pre-explored at design time, the RPM can fine-tune its choice of
migrating tasks according to the given situation at run time and verify the admissibility of the migration
timing overhead on-the-fly.

7. Upcoming Trends and Future Directions: A Machine Learning-Based Perspective

Machine Learning (ML) techniques have recently gained tremendous attention from both academia
and industry and are considered as promising solutions in many application domains. In this section,
we discuss how ML techniques can be used to further enhance HAM methodologies. For the sake of brevity,
we refrain from discussing approaches which focus on individual components of HAM, for example,
the use of ML techniques for guiding the mapping optimizer during the offline DSE [85–88]. Instead,
our discussion will be focused on some promising recent approaches which are more specifically tailored
to a combination of mapping optimization at design time and dynamic system management at run time.
In our following discussion, we categorize the approaches into two groups, see Figure 11: (i) Approaches
which focus on learning the properties of individual mappings, the platform, or its environment and
(ii) approaches which focus on learning the actions suited for different run-time conditions.

Optimization
Algorithm

Models of
Platf./Env.
(learned)

Mapping Candidate,
Platform Status

Prediction
of Impact

Platform Status

Control (Mapping)

(a)

Policy
(learned)

Platform Status

Control (Mapping)

(b)

Figure 11. HAM can be supported by Machine Learning (ML)-based techniques in two ways. (a) Learning
properties of mappings, the platform, or its environment (visualized here for learning platform and
environment properties to predict the impact of mapping candidates). (b) Directly learning actions, i.e.,
learning the policy that decides the suitable action for each given situation, e.g., selecting mappings based
on current platform status.

7.1. Learning Properties

The majority of challenges in HAM root in the increasing complexity of the design space of DSE and
the decision space of the RPM. The exploration of the design/decision space in quest of near-optimal
mappings involves the consideration of a large number of concrete mappings, each of which must be
evaluated w.r.t. multiple design objectives. The extent of both spaces depends exponentially on the number
of applications and tasks in the system, the number of cores on the platform, the number of possible core
configurations (e.g., voltage/frequency-levels), and so forth, leading to a combinatorial explosion of the
aforementioned spaces. Consequently, exploring the whole design/decision space in its entirety becomes
impractical. Instead, a trade-off between the search overhead and the quality of the obtained solutions
must be made which depends on factors such as the number of considered design points and the accuracy
of their quality evaluation. This trade-off must be tackled differently by the DSE (at design time) and the
RPM (at run time).

Traditionally, DSE relies on accurate methods, for example, simulation, to evaluate the quality of a
mapping. The time required for the evaluation of each mapping can be considerably high and can even
become the main timing bottleneck of the entire DSE, dictating whether the DSE is efficient, if at all
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feasible. Reducing the complexity of evaluations while maintaining a high accuracy is quite challenging.
In contrast to the DSE, the RPM always has a strong requirement for low overhead. Hence, heuristic policies
with negligible overhead have emerged for online use, for example, policies for maximizing the power
budget in a greedy manner [89]. However, such policies may result in a low quality of run-time decisions
because heuristic metrics cannot accurately capture complex platform and environment behaviors and
interdependencies. At the same time, these heuristics impose only a very low overhead. Hence, a slight
increase in their overhead is affordable if this improves the quality of RPM’s decisions. This, however,
is fairly challenging to achieve. In summary, both DSE and RPM require a flexible trade-off between
accuracy and overhead.

ML models built based on Supervised Learning (SL) are known for their capability in approximating
black-box functions. Thereby, both the achievable prediction accuracy and the prediction overhead depend
on the complexity of the chosen prediction model. Importantly, SL models facilitate the exploration of
different overhead-accuracy trade-offs, for example, by varying the topological parameters of a Neural
Network (NN). This is a valuable property for both the design-time DSE and the run-time management
in HAM.

Figure 12 illustrates how SL can enhance the overhead-accuracy trade-off in different steps of
HAM. The offline DSE inherently relies on the evaluation of mappings w.r.t. several design objectives.
The traditional exact analyses (e.g., using simulation) offer high accuracy, yet suffer from high overhead.
Ultimately, this overhead becomes the main timing bottleneck of the DSE. The so-called surrogate approaches
employ a NN to substitute a time-consuming simulation with a fast quality assessment of mappings at
a decreased accuracy, see Figure 12 (top). On the other hand, RPMs traditionally rely on heuristics,
which commonly have very low overhead but also abstract from many aspects, resulting in sub-optimal
run-time decisions and, hence, limiting the achievable overall system performance. A higher performance
can be achieved if the impact of each decision on the system can be assessed with a higher accuracy.
ML-based models promise increased accuracy, yet at the cost of an inflated overhead, see Figure 12 (bottom).
In the following, both research directions are discussed in more detail.
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Figure 12. Learning properties using Supervised Learning (SL) can be used to enhance the
overhead-accuracy trade-off for both the DSE at design time (right) and RPM at run time (left) in HAM.
The ability of SL in approximating black-box functions enables a higher accuracy of run-time decisions or a
faster evaluation of mappings during DSE.
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7.1.1. Learning Properties for DSE

As outlined previously, reducing the evaluation time of mappings is an important research objective in
the DSE community. One group of approaches which have recently been shown to be particularly effective
for this purpose are surrogate approaches [90]. These approaches exploit the fact that most optimization
techniques used in the context of DSE rely solely on the relative quality of each mapping in comparison with
other mappings rather than the exact (absolute) quality of each mapping. Therefore, they rely on the fidelity
of the evaluation function rather than its accuracy. In this context, surrogate approaches achieve significant
evaluation-time reduction by (partially) replacing the computationally intensive exact evaluations with
lightweight approximations with acceptable evaluation errors (to establish a high fidelity). The applicability
of surrogates depends on the presence of patterns within the evaluation function, which must be detectable
with an overhead justified by the speedup achieved through the incorporation of the surrogate method
within the DSE. Naturally, their ability to predict/approximate the values of a black-box function based
on previous observations makes ML-based approaches—in particular, from the domain of SL—such
as linear/polynomial regressors, NNs, or Bayesian approaches, ideal candidates for the creation of
surrogates [91–94].

7.1.2. Learning Properties of the Platform and its Environment

As discussed before, the limited quality of RPM decisions is a major restrictive factor of the achieved
system performance at run time. In this scope, compared to traditional techniques, ML-based techniques
may enhance the trade-off between the quality and the overhead of RPM decisions. One way to achieve
this is to use ML-based techniques to learn models that predict the properties of the platform and its
environment. These models may be used to predict the impact of a mapping candidate on metrics like
power, performance, temperature, and so forth. The input to such a model is the current platform status
and some features of the mapping candidate. The platform status also includes relevant features about the
characteristics of the current workload. Using the prediction models, the optimization algorithm used by
the RPM in its decision processes can consider the impact of many mapping candidates on various system
quality metrics.

Models of the properties of the platform and its environment can be built with SL algorithms,
where training data is extracted with the help of run-time or design-time profiling. Such techniques have
been successfully employed, for example, for deciding task migrations [95,96]. In this scope, Reference [95]
uses a lightweight NN to predict the steady-state temperature after a task migration. Reference [96]
employs a NN-based model to predict the performance of a task after migrating it to another core.
This model takes into account the complex workload-specific dependencies of the performance on average
cache latency and power budget. Many migration candidates are assessed based on the performance
prediction and the best one is selected for execution.

One advantage of learning properties is its good interpretability compared to learning actions directly.
By learning properties, resource-management decisions can easily be understood by designers because
the model outputs are physical properties like temperature or performance that are familiar to designers.
Furthermore, since the models learn properties of the platform, they generalize to different management
strategies. For instance, if a platform has several operation modes (e.g., high performance, low temperature,
etc.), the models are valid in all modes and do not need to be retrained. Here, only the optimization
algorithm used by the RPM needs to be adapted upon a mode change. A key drawback is that each
mapping candidate needs to be assessed individually. This results in a high overhead if the number of
potential actions is high [97]. To reduce this overhead, only a limited number of mapping candidates can
be assessed. This, however, may result in sub-optimal mappings if mapping candidates are created at
run time. HAM offers a potential to mitigate this problem through its offline pre-filtering of the possible
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mappings during DSE such that only Pareto-optimal mappings will be provided to the RPM. However,
future work is required in this direction. We highlight some future perspectives later in Section 7.3.

7.2. Learning Actions

Existing HAM approaches offer numerous advantages over purely static or purely dynamic
application mapping approaches. However, in most existing HAM-based approaches, the offline design
step and the online management (decision making) step are only weakly interlinked and still strongly
resemble static and dynamic design approaches, respectively. In particular, in HAM, the RPM is provided
with a set of Pareto-optimal mappings generated within the offline DSE, however, without receiving any
information as to which mappings to use in which run-time situations. The amount of Pareto-optimal
mappings can still have a considerable size, especially in cases where abstract design goals have to be
transformed into (a large number of) quantifiable objectives. The ensuing necessity to search the decision
space consisting of these mappings at run time compromises the responsiveness of the RPM and/or the
quality of its decisions. In what follows, we discuss a few directions to address this issue by means of
ML-based techniques, namely, Imitation Learning (IL) and Reinforcement Learning (RL), which can be applied
either at design time or at run time to refine the decision strategy of the RPM.

7.2.1. Imitation Learning (IL)

Imitation Learning (IL) uses Supervised Learning (SL) to construct an oracle for sequential
mapping-decision processes. The prerequisite for IL is the availability of labeled training data that
resembles the platform status occurring at run time. The training data is created at design time with
the help of training benchmarks. Each training sample hereby represents a certain platform status and
is labeled with a mapping which is considered optimal for this platform status. This typically involves
brute-forcing a large number of mappings to find the optimal one (The optimal mapping for a given
platform status can be found, e.g, by an enumeration of the available mappings). Since it is not possible to
evaluate every existing mapping combination, only a reduced set of pre-optimized mappings found by
the DSE are considered as labels. The RPM learns the actions of choosing mappings at design time and
then imitates the actions at run time by adapting them to the given platform status.

The authors of Reference [98] propose a HAM approach that uses IL and incorporates—in addition
to the platform status—the influence of input data onto the execution characteristics of the applications
into the mapping-inference process. Here, no functional properties of the applications have to be known.
To reduce the computation complexity, input data with similar execution properties are clustered into data
scenarios. This allows for a finer granularity of mapping decisions since the workload dynamism induced
by the varying input data can be captured by tailored mappings for each data scenario. The clustering of
data into scenarios and the optimization of corresponding mappings are performed at design time using
the data-driven scenario-aware DSE approach from Reference [99] based on training data.

This approach entails identifying the best-suited scenario for incoming data at run time before
inferring the mapping. However, for complex input data like images, it may not be possible to determine
the best scenario prior to processing the data and identifying/observing its execution properties. As a
consequence, the scenarios are identified after processing the data based on the evoked execution properties.
For that, SL is used where a NN is trained at design time to classify the execution data vectors of the
training data depending on the current platform status into the best-suited scenarios. This NN is then used
to identify the scenario of incoming input data at run time. The scenario for the next data is afterwards
derived from the identified scenarios of the previously processed input data. Here, another model is
utilized whose selection algorithm is optimized offline by genetic programming based on the sequence of
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training data. If no correlation between subsequent input data is found in the training sequence, a scenario
optimized for the average-case data is chosen.

Finally, a mapping is selected from the set of mappings tailored to the chosen scenario depending on
the given objectives. It has been shown for a soft real-time setting in Reference [100], that IL with a NN
outperforms a statistic-based approach in terms of both the number of deadline misses and the energy
consumption. Here, the NN infers the mapping based on a fixed deadline and the history of execution
properties of the previously processed input data. The combination of all three models of (i) scenario
identification, (ii) scenario selection, and (iii) mapping selection forms the entity of a scenario-based RPM
responsible for the online system management of the scenario-aware HAM. The structure of this HAM
approach for a single application is shown in Figure 13 differentiating between the offline (design time)
phase and the online (run time) phase.

Figure 13. Structure of the data-driven scenario-based HAM. At design time (bottom), a DSE optimizes
data scenarios and mappings, and ML models are optimized for the mapping inference using training
data. At run time (top), the RPM uses the optimized models, scenarios, and mappings to select tailored
mappings for the application depending on the incoming input data.

In summary, IL can help to tackle the uncertainty of workload distribution at run time by learning
patterns in the interplay between input and application characteristics from training data at design time.
In the HAM approach above, a mapping is not directly inferred by a single IL model, but instead, by a
succession of three separate models specialized on different aspects of mapping selection. This facilitates
the training and convergence of the models. Additionally, the whole mapping-decision process becomes
more comprehensible which, for example, facilitates the detection of outliers.

7.2.2. Reinforcement Learning (RL)

The majority of existing HAM approaches, as outlined in the previous sections, are established
based on a relatively straightforward combination of existing static (design-time) and dynamic (run-time)
approaches. A major challenge encountered by these HAM approaches, during both the offline DSE and the
online system management steps, is the evaluation of mappings, that is, the estimation of their impact on
the overall system performance. In a static system, where exactly one mapping is used throughout the entire
lifetime of the system, mappings can be evaluated purely based on their non-functional characteristics,
for example, energy consumption, which are easy to quantify. The performance of a dynamic system,
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on the other hand, is not determined based on the quality of a single mapping, but instead, based on the
entire decision strategy of the RPM, that is, the set of available mappings and the rules dictating which
mapping to use in which run-time situations. The usefulness of a single mapping can, therefore, (i) only be
evaluated when taking into account the other mappings and the decision rules of the RPM’s strategy and
(ii) in some cases, may only become apparent after a prolonged time interval. The design and decision
approaches used in most existing HAM solutions are not capable of (efficiently) considering these complex
interrelations between individual mappings and the overall system performance, which significantly
impairs their ability to generate RPM strategies.

In the domain of ML, Reinforcement Learning (RL) approaches have been specifically designed to
generate sophisticated behavior strategies to address various conditions in complex dynamic environments.
In particular, these approaches are designed to consider the non-trivial long-term effects of the chosen
actions. In the following, we discuss opportunities to adopt RL techniques in HAM.

Reinforcement Learning (RL) at Run Time

When used at run time, RL offers the opportunity to incorporate learning capabilities into the decision
process of the RPM in a dynamic system. By observing the effects of the mappings it selects in particular
run-time situations, the RPM can, over time, estimate the utility of each available policy, denoting the
performance impact of a particular choice of mapping in a particular situation. This ability enables the
RPM to (i) generate a system management strategy which is precisely tailored to the observed online
conditions and (ii) adapt the strategy in the case of (unforeseen) changes in the conditions. For an example
of an adaptable system applying RL at run time, see Reference [101].

While RL approaches are capable of dynamically generating a suitable strategy for (previously
unknown) dynamic conditions, the time (in terms of the number of mapping selection actions) until
a high-quality strategy is found scales with the number of possible conditions and the number of
possible actions and, hence, can become prohibitively long. Furthermore, the learning process typically
involves a trial-and-error phase, during which the RPM is likely to take undesirable—or, in the case
of safety-critical systems, even dangerous—actions. The long adaptation times and the necessity of an
unstable exploration phase have, for a long time, been the main impediments to the application of RL
in the area of (safety-critical) real-time embedded systems. With its capability to significantly reduce
the decision space of the RPM—and, thereby, also the size of the state space of any RL algorithm used
therein—HAM offers a unique opportunity to overcome these weaknesses and unleash the potential of
run-time RL techniques for dynamically adapted systems.

Reinforcement Learning (RL) at Design Time

Most existing design approaches utilizing RL techniques use them exclusively for the run-time
adaptation of the system. However, an integration of RL techniques into the offline design phase of
HAM offers several advantages. Extending static optimizers with the concepts of long-term utility and
a cooperative usage of the mappings can address the previously outlined weaknesses of HAM w.r.t. the
evaluation of individual mappings. Furthermore, considering (parts of) the interactions between the
system and its environment (which imposes run-time conditions onto the system) at design time enables
the offline optimization of not only the mappings, but also their activation conditions. In such a scheme,
the RPM is provided with a decision strategy which is pre-optimized for the (statically known portion
of the) environment characteristics, so that a run-time learning phase can be significantly shortened,
carried out within safe action bounds, or even completely avoided.

Based on these ideas, the authors of Reference [102] present a novel optimization framework, LOCAL,
which is specifically tailored for HAM in adaptable systems. In its structure, LOCAL is inspired by Learning
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Classifier Systems (LCSs) [103], optimization frameworks developed specifically for complex and dynamic
problems. Instead of individual mappings, LOCAL co-optimizes a set of rule-action tuples, so-called
policies, where the action corresponds to a concrete mapping and the rule describes the run-time conditions
for the usage of this mapping. By emulating the iterative interactions between the adaptive system
and its environment, LOCAL considers (i) the available information about the dynamic external events
expected at run time, (ii) the way in which the adaptive system influences its environment, and (iii) the
long-term utility of individual policies (rule-action tuples). Within each interaction with the environment
(corresponding to new conditions imposed by the environment), LOCAL generates/optimizes policies
in a constrained DSE, which is restricted to explore only the search space of mappings that are applicable
under the given conditions. With this search-space reduction, LOCAL is capable of generating mappings
which are exactly tailored to realistic run-time situations.

In Reference [102], LOCAL is used to optimize the embeddability of applications in a many-core
system featuring a dynamic launch and termination of applications. It has been shown that, compared to
the mapping set generated by a static optimizer, the strategy generated by LOCAL offers a higher
embeddability, while containing a significantly smaller number of mappings.

7.3. Future Perspectives

While the approaches presented above already demonstrate the great potential of using ML techniques
in HAM, there are still several open questions demanding further research and investigation. In the
following, we discuss two particularly interesting research directions, both centered on the way that the
design approach addresses the availability of information at design time.

7.3.1. Integration of Expert Knowledge

The first research direction focuses on the exploitation of problem-specific knowledge available at
design time. Similarly to any other optimization process, the effectiveness of both offline and online steps
of HAM is directly influenced by the amount of the injected problem-specific knowledge. Particularly,
in embedded domains, where a large amount of experience and expertise has been accumulated over
decades, the development of efficient ways to incorporate this information into the design process
is of paramount importance. Techniques gathering information about different application classes or
their launch patterns (see Sections 7.2.1 and 7.2.2) constitute the first steps in this direction. However,
the integration of more complex knowledge such as known property dependencies (e.g., the fact that power
increases monotonically with the voltage/frequency level) or functional application knowledge remains
challenging. This applies in particular to optimization approaches comprising multiple interdependent
phases (e.g., the scenario-based RPM presented in Section 7.2.1) and complex ML approaches such as NNs
which, while offering multiple different points for the injection of expert knowledge [97], are especially
difficult to customize and to interpret.

7.3.2. Balancing Offline and Online Learning

The second research direction which we would like to highlight focuses on finding the best way
to address uncertainties in the run-time conditions. Thanks to the great versatility of ML approaches,
uncertainties in the run-time conditions of the designed system can be addressed during either the offline
or the online step of HAM. This introduces an interesting trade-off: On the one hand, the time and
compute power available at design time can be used to train a complex model, enabling the system to
react to any possible outcome of the uncertainty at hand. On the other hand, transferring the learning
process to run time may enable the creation of a lightweight model which fits the actually observed
situations. While a more lightweight model is likely to result in a faster and more energy-efficient
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inference, unexpected changes in run-time conditions may render it useless or necessitate a retraining
phase. The development of HAM approaches which are capable of automatically finding the optimal
balance between offline and online learning—which is highly problem-dependent and has a strong impact
on the efficiency and reliability of the designed system—constitutes one of the most challenging and
promising directions for future research.

8. Conclusions

This paper provides an overview of Hybrid Application Mapping (HAM) as a promising approach
for mapping emerging applications to embedded many-core systems. We introduced the fundamentals of
HAM and the major design challenges addressed by HAM. An elaborate discussion of the new challenges
encountered by HAM was presented together with an overview of a collection of state-of-the-art techniques
proposed to address these challenges. The paper also outlined a series of open topics and challenges in
HAM, presented a summary of some emerging machine-learning-based directions for addressing these
challenges, and highlighted possible future directions.
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Abstract: Due to the amount of data involved in emerging deep learning and big data applications,
operations related to data movement have quickly become a bottleneck. Data-centric computing
(DCC), as enabled by processing-in-memory (PIM) and near-memory processing (NMP) paradigms,
aims to accelerate these types of applications by moving the computation closer to the data. Over the
past few years, researchers have proposed various memory architectures that enable DCC systems,
such as logic layers in 3D-stacked memories or charge-sharing-based bitwise operations in dynamic
random-access memory (DRAM). However, application-specific memory access patterns, power and
thermal concerns, memory technology limitations, and inconsistent performance gains complicate the
offloading of computation in DCC systems. Therefore, designing intelligent resource management
techniques for computation offloading is vital for leveraging the potential offered by this new
paradigm. In this article, we survey the major trends in managing PIM and NMP-based DCC systems
and provide a review of the landscape of resource management techniques employed by system
designers for such systems. Additionally, we discuss the future challenges and opportunities in
DCC management.

Keywords: processing-in-memory; near-memory processing; resource management; code annotation;
compiler optimizations; online heuristics; energy efficiency; 3D-stacked memories; non-volatile memories

1. Introduction

For the past few decades, memory performance improvements have lagged behind compute
performance improvements, creating an increasing mismatch between the time to transfer data and
the time to perform computations on these data (the “memory wall”). The emergence of applications
that focus on processing large amounts of data, such as deep machine learning and bioinformatics,
have further exacerbated this problem. It is evident that the large latencies and energies involved with
moving data to the processor will present an overwhelming bottleneck in future systems. To address
this issue, researchers have proposed to reduce these costly data movements by introducing data-centric
computing (DCC), where some of the computations are moved in proximity to the memory architecture.

Two major paradigms of DCC have emerged in recent years: processing-in-memory (PIM) and
near-memory processing (NMP). In PIM architectures, characteristics of the memory are exploited
and/or small circuits are added to memory cells to perform computations. For example, [1] takes
advantage of dynamic random-access memory’s (DRAM) charge sharing property to perform bitwise
PIM operations (e.g., AND and OR) by activating multiple rows simultaneously. These PIM operations
allow computations to be done on memory where they are stored, thus eliminating most of the data
movement. On the other hand, NMP architectures take advantage of existing compute substrates
and integrate compute cores near the memory module. For example, modern 3D-stacked DRAM
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includes a logic layer where a compute core can be integrated beneath multiple DRAM layers within
the same chip [2,3]. Although the computation is carried out a little further away from memory than
in PIM systems, NMP still significantly improves the latency, bandwidth, and energy consumption
when compared to conventional computing architectures. For example, a commercial NMP chip
called UPMEM implemented a custom core into conventional DRAM memory chips and achieved 25×
better performance for genomic applications and 10× better energy consumption in an Intel x86 server
compared to an Intel x86 server without UPMEM [4].

Both PIM and NMP systems have the potential to speed up application execution by reducing
data movements. However, not all instructions can be simply offloaded onto the memory processor.
Many PIM systems leverage memory characteristics to enable bulk bitwise operations, but other types
of operations cannot be directly mapped onto the in-memory compute fabric. Even in NMP systems
that utilize cores with full instruction set architecture (ISA) support, performing computation in the
3D memory stack can create high power densities and thermal challenges. In addition, if some of the
data have high locality and reuse, the main processor can exploit the traditional cache hierarchies and
outperform PIM/NMP systems for instructions that operate on these data. In this case, the downside
of moving data is offset by the higher performance of the main processor. All of these issues make it
difficult to decide which computations should be offloaded and make use of these PIM/NMP systems.

In this article, we survey the landscape of different resource management techniques that decide
which computations are offloaded onto the PIM/NMP systems. These management techniques broadly
rely on code annotation (programmers select the sections of code to be offloaded), compiler optimization
(compiler analysis of the code), and online heuristics (rule-based online decisions). Before providing a
detailed discussion of resource management for PIM/NMP systems, Section 2 discusses prior surveys
in PIM/NMP. Section 3 discusses various PIM/NMP design considerations. Section 4 discusses the
optimization objectives and knobs, as well as different resource management techniques utilized
to manage the variety of PIM/NMP systems proposed to date. Lastly, Section 5 concludes with a
discussion of challenges and future directions.

2. Prior Surveys and Scope

Different aspects of DCC systems have been covered by other surveys. Siegl et al. [5] focus on the
historical evolution of DCC systems from minimally changed DRAM chips to advanced 3D-stacked chips
with multiple processing elements (PEs). The authors identify the prominent drivers for this change:
firstly, memory, bandwidth, and power limitations in the age of growing big data workloads make
a strong case for utilizing DCC. Secondly, emerging memory technologies enable DCC; for example,
3D stacking technology allows embedding PEs closer to memory chips than ever before. The authors
identify several challenges with both PIM and NMP systems such as programmability, processing speed,
upgradability, and commercial feasibility.

Singh et al. [6] focus on the classification of published work based on the type of memory,
PEs, interoperability, and applications. They divide their discussion into RAM and storage-based
memory. The two categories are further divided based on the type of PE used, such as fixed-function,
reconfigurable, and fully programmable units. The survey identifies cache coherence, virtual memory
support, unified programming model, and efficient data mapping as contemporary challenges.
Similarly, Ghose et al. [7] classify published work based on the level of modifications introduced into
the memory chip. The two categories discussed are 2D DRAM chips with minimal changes and 3D
DRAM with one or more PEs on the logic layer.

Gui et al. [8] focus on DCC in the context of graph accelerators. Apart from a general discussion
on graph accelerators, the survey deals with graph accelerators in memory and compares the benefits
of such systems against traditional graph accelerators that use field programmable gate arrays (FPGA)
or application-specific integrated circuits (ASIC). It argues that memory-based accelerators can achieve
higher bandwidth and low latency, but the performance of a graph accelerator also relies on other
architectural choices and workloads.
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In addition to DRAM, emerging memory technologies have been used to implement DCC
architectures. Umesh et al. [9] survey the use of spintronic memory technology to design basic logic
gates and arithmetic units for use in PIM operations. The literature is classified based on the type
of operations performed, such as Boolean operations, addition, and multiplication. An overview of
application-specific architectures is also included. Lastly, the survey highlights the higher latency
and write energy with respect to static random-access memory (SRAM) and DRAM as the major
challenges in large-scale adoption. Similarly, Mittal et al. [10] discuss resistive RAM (ReRAM)-based
implementations of neuromorphic and PIM logical and arithmetic units.

The surveys discussed above adopt different viewpoints in presenting prominent work in the
DCC domain. However, all of these surveys limit their discussion to the architecture and/or application
of DCC systems and lack a discussion on the management techniques of such systems. With an increase
in the architectural design complexity, we believe that the management techniques for DCC systems
have become an important research area. Understandably, researchers have begun to focus on how to
optimally manage DCC systems. In this survey, unlike prior surveys, we therefore focus on exploring
the landscape of management techniques that control the allocation of resources according to the
optimization objectives and constraints in a DCC system. We hope that this survey provides the
background and the spark needed for innovations in this critical component of DCC systems.

3. Data-Centric Computing Architectures

As many modern big data applications require us to process massive datasets, large volumes of
data are shared between the processor and memory subsystems. The data are too large to fit in on-chip
cache hierarchies; therefore, the resulting off-chip data movement between processors (CPUs, GPUs,
accelerators) and main memory leads to long execution time stalls as main memory is relatively slow
to service large influx of requests. The growing disparity in memory and processor performance is
referred to as the memory wall. Data movement also consumes a significant amount of energy in
the system, driving the system closer to its power wall. As data processing requirements continue
to increase, the cost due to each wall will make conventional computing paradigms incapable of
meeting application quality-of-service goals. To alleviate this bottleneck, PEs near or within memory
have emerged as a means to perform computation and reduce data movement between traditional
processors and main memory. Predominantly, prior work in this domain can be classified depending
on how PEs are integrated with memory.

For DCC architectures, solutions can be divided into two main categories: (1) PIM systems, which
perform computations using special circuitry inside the memory module or by taking advantage of
particular aspects of the memory itself, e.g., simultaneous activation of multiple DRAM rows for
logical operations [1,11–25]; (2) NMP systems, which perform computations on a PE placed close to
the memory module, e.g., CPU or GPU cores placed on the logic layer of 3D-stacked memory [26–42].
For the purposes of this survey, we classify systems that use logic layers in 3D-stacked memories as
NMP systems, as these logic layers are essentially computational cores that are near the memory stack
(directly underneath it).

3.1. Processing-In-Memory (PIM) Designs

PIM solutions proposed to date typically leverage the high internal bandwidth of DRAM dual
in-line memory modules (DIMM) to accelerate computation by modifying the architecture or operation
of DRAM chips to implement computations within the memory. Beyond DRAM, researchers have also
demonstrated similar PIM capabilities by leveraging the unique properties of emerging non-volatile
memory (NVM) technologies such as resistive RAM (ReRAM), spintronic memory, and phase-change
memory (PCM). The specific implementation approaches vary widely depending on the type of
memory technology used; however, the modifications are generally minimal to preserve the original
function of the memory unit and meet area constraints. For instance, some DRAM-based solutions
minimally change the DRAM cell architecture while relying heavily on altering memory commands

53



J. Low Power Electron. Appl. 2020, 10, 30

from the memory controller to enable functions such as copying a row of cells to another [16],
logical operations such as AND, OR, and NOT [18,22,24], and arithmetic operations such as addition
and multiplication [1,23,43]. Both DRAM and NVM-based architectures have demonstrated promising
improvements for graph and database workloads [1,18,24,44] by accelerating search and update
operations directly where the data are stored. In the next sections, we will briefly discuss different PIM
architectures that use DRAM and NVM.

3.1.1. PIM Using DRAM

The earliest PIM implementations [11,14,15] integrated logic within DRAM. The computational
capability of these in-memory accelerators can range from simply copying a DRAM row [16] to
performing bulk bitwise logical operations completely inside memory [1,18,23,44]. For example, [1,16,23]
use a technique called charge sharing to enable bulk AND and OR operations completely inside memory.
Charge sharing is performed by the simultaneous activation of three rows called triple row activation
(TRA). Two of the three rows hold the operands while the third row is initialized to zeros for a bulk
AND operation or to ones for a bulk OR operation. Figure 1 shows an example TRA where cells A and
B correspond to the operands (A is zero and B is one) while cell C is initialized to one to perform an OR
operation . The wordlines of all three cells are raised simultaneously ,, causing the three cells to share
their charge on the bitline. Since two of the three cells are in a charged state, this results in an increase
in voltage on the bitline. The sense amplifier  then drives the bitline to VDD, which fully charges
all three cells, completing the “A OR B” operation. In practice, this operation is carried out on many
bitlines simultaneously to perform bulk AND or OR operations. In addition, with minimal changes
to the design of the sense amplifier in the DRAM substrate, [1,44] enable NOT operations in memory,
which allows the design of more useful combinational logic for arithmetic operations like addition and
multiplication. Besides bitwise operations, DRAM PIM has been shown to significantly improve neural
network computation inside memory. For example, by performing operations commonly found in
convolutional network networks like the multiply-and-accumulate operation in memory, DRAM PIM
can achieve significant speedup over conventional architectures [45].

Figure 1. An example of an OR operation being performed on DRAM cells A and B using charge-sharing
in triple-row activation [1].

In order to extract even more performance improvements, [12] places single instruction, multiple
data (SIMD) PEs adjacent to the sense amplifiers at the cost of higher area and power per bit of memory.
The inclusion of SIMD PEs inside the memory chip enables DRAM PIM to take advantage of the high
internal DRAM bandwidth and minimizes the need for data to traverse power hungry off-chip links
while enabling more complex computations than those afforded by TRA-based operations.

While PIM operations have been shown to outperform the host CPU (or GPU) execution,
there are some technical challenges with their implementation. To enable these operations in DRAM,
PIM modifications to DRAM chips are often made at the bank or sub-array level. If the source rows
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containing the operands do not share the same sensing circuitry, large amounts of data may need to be
internally copied between banks, increasing latency and energy consumption, necessitating the use
of partitioning and data-mapping techniques. In addition, DRAM PIM operations that use TRA are
normally destructive, requiring several bandwidth consuming row copy operations if the data need
to be maintained [1,16]. Alternative ways to accomplish computation inside DRAM chips include
using a combination of multiplexers and 3T1C (three transistors, one capacitor) DRAM cells [46,47].
While 3T1C cells allow non-destructive reads, these significantly increase the area overhead of the
PIM system compared to the single transistor counterparts [1,16,44]. Moreover, DRAM is typically
designed using a high threshold voltage process, which slows down PIM logic operations when PIM
PEs are fabricated on the same chip [48]. These factors have resulted in relatively simple DRAM PIM
designs that prevent entire applications from running entirely in memory.

3.1.2. PIM Using NVM

Charge-storage-based memory (DRAM) has been encountering challenges in efficiently storing and
accurately reading data as transistor sizes shrink and operating frequencies increase. DRAM performance
and energy consumption have not scaled proportionally with transistor sizes like they did for processors.
Moreover, the charge storage nature of DRAM cells requires that data be periodically refreshed.
Such refresh operations lead to higher memory access latency and energy consumption. Kim et al. [49]
have also demonstrated that contemporary DRAM designs suffer from problems such as susceptibility
to RowHammer attacks [50], which exploit the limitations of charge-based memory to induce bit-flip
errors. Solutions to overcome such attacks can further increase execution time and reduce the energy
efficiency of DRAM PIM designs.

On the other hand, alternative NVM memory technologies such as phase-change memory
(PCM) [51–54], ReRAM [22,24,55–59], and spintronic RAM [60–66] show promise. NVM eliminates
the reliance on charge memory and represents the data as cell resistance values instead. When NVM
cells are read, cell resistances are compared to reference values to ascertain the value of the stored bit,
i.e., if the measured resistance is within a preset range of low resistance values (Rlow), the cell value
read is a logical “1”, whereas a cell resistance value within the range of high resistance values (Rhigh) is
read as a logical “0”. Writing data involves driving an electric current through the memory cell to
change its physical properties, i.e., the material phase of the crystal in PCM, the magnetic polarity in
spintronic RAM, and the atomic structure in memristors and ReRAM. The data to be stored in all cases
are embedded in the resultant resistance of the memory cell, which persists even when the power
supply shuts off. Thus, unlike DRAM, such memories store data in a non-volatile manner. In addition
to being non-volatile, the unique properties of these memory technologies provide higher density,
lower read power, and lower read latency compared to DRAM.

PIM using NVM, while based on a fundamentally different memory technology, can resemble its
DRAM counterpart. For example, Li et al. [24] activate multiple rows in a resistive memory sub-array
to enable bitwise logical operations. By activating multiple rows, the sense amplifiers measure the
bitwise parallel resistance of the two rows on the bitlines and compare the resistance with a preset
reference resistance to determine the output. Figure 2a shows how any two cells, R1 and R2, on the
same bitline connect in parallel to produce a total resistance R1||R2, where || refers to the parallel
resistance of two cells. Figure 2b shows how the parallel resistance formed by input resistances (Rlow
or Rhigh) measured at the sense amplifier, together with a reference value (RrefOR/RrefAND), can be used
to perform the logical AND and OR operation in memory [24].
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R1 R2 R1||R2 R1||R2 < RrefOR R1||R2 < RrefAND

1 1

|| 1 0

|| 1 0

0 0

(a) (b)

Figure 2. Example of AND and OR operations in memory that use resistance-based memory cells.
(a) Activating two resistors R1 and R2 on the same bitline in a memristive crossbar array (MCA) results
in an effective resistance of R1||R2 on the bitline (figure adapted from [56]). This effective resistance can
be compared against preset reference resistance values (RrefOR, RrefAND) to ascertain the result of the
Boolean operation; (b) shows the truth table [24].

Aside from the inherent benefits of NVM technology—e.g., energy efficient reads, persistence,
and latency—NVM-based PIM allows AND/OR operations on multiple rows as opposed to just two in
DRAM. This is because as long as each memory cell has a large range of resistances, resistive memory can
have multiple levels of resultant resistances that can represent multiple states. Another technological
advantage for NVM PIM is that, unlike DRAM, reads are not destructive. This eliminates the need to
copy data to special rows before operating on them, as done in DRAM-based PIM solutions.

Besides conventional logical operations, NVM PIM has also proven particularly useful for
accelerating neural network (NN) computations [9,10]. Cell conductance in the rows of memristive
crossbar arrays (MCA) can be used to represent synaptic weights and the input feature values can be
represented by wordline voltages. Then, the current flowing through each bitline will be related to
the dot product of input values and weights in a column. As this input-weight dot product is a key
operation for NNs, PIM architects have achieved significant acceleration for NN computation [19] by
extending traditional MCA to include in-memory multiply operations. Other applications that have
been shown to benefit from NVM PIM include data search operations [67,68] and graph processing [57].

A significant drawback of using NVM for PIM is area overhead. The analog operation of
NVM requires the use of DAC (digital-to-analog convertor) and ADC (analog-to-digital converter)
interfaces. This results in considerable area overhead. For example, DAC and ADC converters in the
implementation of a 4-layer convolutional neural network can take up to 98% of the total area and
power of the PIM system [69].

In summary, PIM designs typically allow for very high internal data bandwidth, greater energy
efficiency, and low area overhead by utilizing integral memory functions and components. However,
to keep memory functions intact, these designs can only afford minimal modifications to the memory
system, which typically inhibits the programmability and computational capability of the PEs.

3.2. Near-Memory Processing (NMP) Designs

NMP designs utilize more traditional PEs that are placed near the memory. However, as the
computations are not done directly in memory arrays, PEs in NMP do not enjoy the same degree
of high internal memory bandwidth available to PIM designs. NMP designs commonly adopt a
3D-stacked structure such as that provided by hybrid memory cube (HMC) [2] or high bandwidth
memory (HBM) [3]. Such designs have coarser-grained offloading workloads than PIM but can use the
logic layer in 3D stacks to directly perform more complex computations. In the following sections,
we discuss the different PE and memory types that have been explored for NMP systems.
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3.2.1. PE Types

Many different PE types have been proposed for NMP designs. The selection of PEs has a
significant impact on the throughput, power, area, and types of computations that the PE can perform.
For example, Figure 3 compares the throughput of different PE types in an HMC-based NMP system
executing a graph workload (PageRank scatter kernel). The throughput is normalized to the maximum
memory bandwidth, which is indicated by the solid line. This indicates that, while multi-threaded
(MT) and SIMD cores allow flexibility, they cannot take advantage of all the available bandwidth.
On the other hand, ASICs easily saturate the memory bandwidth and become memory-bound. In this
particular situation, reconfigurable logic like FPGA and coarse-grained reconfigurable architecture
(CGRA) may be better to balance performance and flexibility. However, in the end, this tradeoff point
depends on the application, memory architecture, and available PEs. Therefore, the choice of PE is an
important design consideration in NMP systems. We highlight the three types of PEs below.

Figure 3. Normalized throughput with respect to maximum memory bandwidth for different PEs
executing the PageRank scatter kernel: multi-threaded (MT) programmable core, SIMD programmable
core, FPGAs, CGRAs, and fixed-function ASICs [41].

Fixed-function accelerators: Fixed-function accelerator PEs are ASICs designed with support
for a reduced set of operations to speed up a particular application or task—for example, graph
processing [8,32,57]. These accelerators are highly specialized in their execution, which allows them
to achieve much greater throughput than general purpose processors for the same area and power
budget. However, it is costly and challenging to customize an accelerator for a target workload. As these
accelerators only execute a limited set of instructions, they cannot be easily retargeted to new (or new
versions of existing) workloads.

Programmable logic: Programmable logic PEs can include general purpose processor cores
such as CPUs [31,40,70–72], GPUs [26,27,38,73,74], and accelerated processing units (APU) [75] that
can execute complex workloads. These cores are usually trimmed down (fewer computation units,
less complex cache hierarchies without L2/L3 caches, or lower operating frequencies) from their
conventional counterparts due to power, area, and thermal constraints. The main advantage of using
these general purpose computing cores is flexibility and programmability. As opposed to fixed function
accelerators, NMP systems with programmable units allow any operation normally executed on the
host processor to potentially be performed near memory. However, this approach is hampered by
several issues such as difficulty in maintaining cache coherence [31], implementing virtual address
translation [76], and meeting power, thermal, and area constraints [29,73,77–79].

Reconfigurable logic: Reconfigurable logic PEs include CGRAs and FPGAs that can be used to
dynamically change the NMP computational unit hardware [21,25,41,80]. In NMP systems, such PEs
act as a compromise between the efficiency of simple fixed-function memory accelerators and the
flexibility of software-programmable complex general purpose cores. However, the reconfiguration of
hardware logic results in runtime overhead and additional system complexity.
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3.2.2. Memory Types

The type of memory to use is an important decision for DCC system designers working with NMP
systems. Different memory technologies have unique advantages that can be leveraged for particular
operations. For example, write-heavy operations are more suited to DRAM than resistive memories due
to the larger write latency of resistive memories. This fact and DRAM’s widespread adoption has led
to the creation of a commercial DRAM NMP solution UPMEM [4]. UPMEM replaces standard DIMMs,
allowing it to be easily adopted in datacenters. A 3D-stacked DRAM architecture like the HMC [81]
can accelerate atomic operations of the form read-modify-write (RMW) due to the memory level
parallelism supported by the multi-vault, multi-layer structure shown in Figure 4. In fact, NMP designs
prefer 3D-DRAM over 2D-DRAM due to several reasons. Firstly, 3D-DRAM solutions such as HMC
2.0 [81] have native support for executing simple atomic instructions. Secondly, 3D-DRAM allows for
easy integration of a logic die that provides greater area for placing more complex PEs near memory
than 2D counterparts. Thirdly, PEs are connected using high bandwidth through-silicon vias (TSVs) to
memory arrays as opposed to off-chip links, providing much higher memory bandwidth to the PE.
Fourthly, the partitioning of memory arrays into vaults enables superior memory-level parallelism.

Figure 4. The architecture of hybrid memory cube (HMC) [81].

Resistive memory in its memristive crossbar array (MCA) configuration can significantly accelerate
matrix multiply operations commonly found in neural network, graph, and image processing
workloads [19,82–89]. Figure 5a shows a mathematical abstraction of one such operation for a
single-layer perceptron implementing binary classification, where x are the inputs to the perceptron,
w are the weights to the perceptron, sgn is the signum function, and y is the output of the perceptron [90].
The MCA is formed by non-volatile resistive memory cells placed at each crosspoint of a crossbar
array. Figure 5b shows how the perceptron can be mapped onto an MCA. The synaptic weights of the
perceptron, w, are represented by physical cell conductance values, G. Specifically, each weight value
is represented by a pair of cell conductances, i.e., wi ∝ Gi ≡ G+

i −G−i to represent both positive and
negative weight values. The inputs, x, are represented by proportional input voltage values, V , applied
to the crossbar columns. For the device shown, V = ±0.2 V. In this configuration, the weighted sum of
the inputs and synaptic weights (y =

∑9
i=0 wixi) can be obtained by reading the current at the each

of the two crossbar rows (I+ =
∑9

i=0 G+
i Vi and I− =

∑9
i=0 G−i Vi). Finally, the sign of the difference in

the current flowing through the two rows (sgn
[∑9

i=0 G+
i Vi −∑9

i=0 G−i Vi
]
) can be determined, which is

equivalent to the original output y. In this manner, MCA is able to perform the matrix multiplication
operation in just one step.
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(a) (b)

Figure 5. (a) A mathematical abstraction of a single-layer perceptron used for binary classification. (b) A
memristive crossbar array implementing the weighted sum between inputs xi (mapped to wordline
voltages Vi) and weights wi (mapped to cell conductance Gi) [90].

While the choice of a PE and memory type are important factors in determining the advantages
of an NMP system over a PIM system, some features are shared by most NMP designs. Due to the
external placement of the PE, NMP can afford a larger area and power budget compared to PIM
designs. However, NMP also has lower maximum data bandwidth available to the PE compared to
PIM systems.

3.3. Data Offloading Granularity

For both PIM and NMP systems, it is important to determine what computation will be sent
(offloaded) to the memory PE. Offloading can be performed at different granularities, e.g., instructions
(including small groups of instructions) [1,13,16,19,24,25,28,32,37,39,40,42,57,91,92], threads [71], Nvidia’s
CUDA blocks/warps [27,29], kernels [26], and applications [38,41,73,74]. Instruction-level offloading is
often used with a fixed-function accelerator and PIM systems [1,13,16,19,24,25,28,29,32,37,39,42,57,92].
For example, [42] offloads atomic instructions at instruction-level granularity to a fixed-function
near-memory graph accelerator. Coarser offloading granularity, such as kernel and full application,
requires more complex memory PEs that can fetch and execute instructions and maintain a program
counter. Consequently, coarse-grained offloading is often used in conjunction with programmable memory
PEs such as CPUs [71,93] and GPUs [26,27,38,73,74].

4. Resource Management of Data-Centric Computing Systems

Although it would be tempting to offload all instructions to the PIM or NMP system and
eliminate most data movements to/from the host processor, there are significant barriers to doing so.
Firstly, memory chips are usually resource constrained and cannot be used to perform unrestricted
computations without running into power/thermal issues. For example, 3D-DRAM NMP systems
often place memory processors in the 3D memory stack that can present significant thermal problems if
not properly managed. Figure 6 [29] demonstrates how the peak temperature of a 3D-stacked DRAM
with a low-power GPU on the logic layer changes with the frequency of offloaded operations (PIM rate).
Consistent operation at 2 op/ns will result in the DRAM module generating a thermal warning at 85 ◦C.
Depending on the DRAM module, this can lead to a complete shutdown or degraded performance
under high refresh rates. If the PIM rate is unmanaged, the DRAM cannot guarantee reliable operation
due to the high amount of charge leakage under high temperature.
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Figure 6. Peak DRAM temperatures at different workload offloading frequencies (referred to as “PIM
rate” in the original work) in a 3D-DRAM NMP system [29].

Secondly, memory processors are not guaranteed to improve power and performance for all
workloads. For example, workloads that exhibit spatial or temporal locality in their memory accesses
are known to perform worse in PIM/NMP systems [26,28]. When executed on a host processor,
these workloads can avoid excessive DRAM accesses and utilize the faster, more energy efficient on-chip
cache. Only the least cache-friendly portions of an application should be offloaded to the memory
processors while the cache-friendly portions are run on the host processor. Figure 7 [28] compares the
speedup achieved for a “Host-Only” (entire execution on the host), “PIM-Only” (entire execution on
the memory processor), and “Locality-Aware” (offloads low locality instructions) offloading approach
to an NMP system for different input sizes. It should be noted that in [28], PIM refers to an HMC-based
architecture that we classify as NMP. For small input sizes, all except one application suffers from
severe degradation with “PIM-Only”. This is because the working set is small enough to fit in the
host processor’s cache, thus achieving higher performance than memory-side execution. As input
sizes grow from small to medium to large, the performance benefit of offloading is realized. Overall,
the locality aware management policy proves to be the best of the three approaches and demonstrates
the importance of correctly deciding which instructions to offload based on locality. Another useful
metric to consider when making offloading decisions is the expected memory bandwidth-saving from
the offloading [38,42,94].

Lastly, these DCC systems can include different types of PE and/or multiple PEs with different
locations within the memory. This can make it challenging to determine which PE to select when
specific instructions need to be offloaded. For example, NMP systems may have multiple PEs placed
in different locations in the memory hierarchy [94] or in different vaults in 3D-based memory [26].
This will result in PEs with different memory latency and energy depending on the location of the data
accessed by the computation. In these cases, it is vital that the correct instructions are offloaded to the
most suitable candidate PE.

To address and mitigate the above issues in DCC systems, offloading management policies are
necessary to analyze and identify instructions to offload. Like every management policy, the management
of DCC systems can be divided into three main ideas: (1) defining the optimization objectives,
(2) identifying optimization knobs or the parts of the system that the policy can alter to achieve its
goals, and (3) defining a management policy to make the proper decisions. For the optimization
objectives, performance, energy, and thermals have been targeted for PIM and NMP systems. The most
common optimization knobs in DCCs include selecting offloading workloads for memory, selecting
the most suitable PE in/near memory, or the timing of executing selected offloads. To implement the
policy, management techniques have employed code annotation [1,13,16,19,24,25,28,31,32,37,40,57,91,95],
compiler-based code analysis [27,39,40,70,92,96], and online heuristics [27–29,38,71,72,74]. Table 1
classifies prominent works based on these attributes. We further discuss the optimization objectives,
optimization knobs, and management techniques in Sections 4.1–4.3, respectively.
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Figure 7. The speedup achieved by a Host-Only, all offloaded (PIM-Only), and low-locality offload
(Locality-Aware) approaches in a DRAM NMP system for different application input sizes [28].

Table 1. Classification of resource management techniques for DCC systems (E: energy, P: performance,
Pow: power, T: temperature).

Management
Method

Objectives Architecture
Offload

Granularity
Work (Year)

Code Annotation

E NMP Instruction [91] (2014)

P
NMP Group of

instructions [31] (2017)

PIM Instruction [13] (1995); [24] (2016); [25] (2017)

P/E
NMP

Instruction [28] (2015); [32,37] (2017); [40,57] (2018)

Group of
instructions [75] (2014); [95] (2016)

PIM Instruction [16] (2013); [19] (2016); [1] (2017)

Compiler
P NMP

Instruction [42] (2017); [92] (2019)

Group of
instructions [96] (2015); [70] (2017)

P/E NMP
Instruction [40] (2018); [39] (2019)

Thread [27] (2016)

Online Heuristic

P NMP Thread [71] (2018)

P/E NMP

Instruction [28] (2015)

Group of
instructions [72] (2020)

Thread [27] (2016); [74] (2019)

Application [26] (2016)

Pow/P/E NMP Application [38] (2020)

T NMP Instruction [29] (2018)
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4.1. Optimization Objectives

An optimization objective is pivotal to the definition of a resource management policy. Although the
direct goal of PIM/NMP systems is to reduce data movement between the host and memory,
the optimization objectives are better expressed as performance improvement [1,13,16,19,22,24,25,31,
32,37–41,57,59,71–73,75,92,96], energy efficiency [38,73,91], and thermal feasibility [29] of the system.

4.1.1. Performance

DCC architectures provide excellent opportunities for improving performance by saving memory
bandwidth, avoiding cache pollution, exploiting memory level parallelism, and using special purpose
accelerators. Management policies are designed to take advantage of these according to the specific
DCC design and workload. For example, locality-aware instruction offloading [26–28,38,42,74] involves
an analysis of the cache behavior of a set of instructions in an application. This analysis is based on
spatial locality (memory locations are more likely to be accessed if neighboring memory locations
have been recently accessed) and temporal locality (memory locations are more likely to be accessed
if recently accessed). If a section of a code’s memory access pattern is found to exhibit little spatial
and temporal locality, then these instructions are considered a good candidate for offloading to a
memory PE. The specific method to assess locality varies across different implementations. Commonly
applied methods include cache profiling [27,28,42], code analysis [26,39,42,70,96], hardware cache-hit
counters [28], and heuristic or machine learning techniques [27–29,38,71,72,74].

Another source of superior performance is the use of fixed-function accelerators. While lacking
programmability, these special purpose accelerators can perform specific operations many times
faster than general purpose host processors. Examples include graph accelerators [8,32–36,57],
stencil computation units [39], texture filtering units [37], vector processing units [92], and neuromorphic
accelerators [25]. When such fixed-function accelerators are used, it is important that the policy offloads
only instructions that the fixed-function accelerator is able to execute.

Finally, in the case of multiple PEs, data placement and workload scheduling become important
to realizing superior performance. For example, the compiler-based offloading policy outlined in [92]
selects the PE which minimizes the resulting inter-PE communication resulting from accessing data
from different memory vaults during execution. Similarly, [97] uses compiler and profiling techniques
to map operations to PEs that minimize data movement between memory vaults in a 3D-stacked HMC.

4.1.2. Energy Efficiency

DCC architectures have demonstrated tremendous potential for energy efficiency due to a
reduction in expensive off-chip data movement, the use of energy-efficient PEs, or by using NVM
instead of leakage-prone DRAM. Off-chip data movement between a host CPU and main memory is
found to consume up to 63% of the total energy spent in some consumer devices [40]. The excessive
energy consumption can be significantly reduced by using locality-aware offloading, as discussed
in the previous section. A related metric used by some policy designs is bandwidth saving. This is
calculated by estimating the change in the total number of packets that traverse the off-chip link due
to an offloading decision about a set of instructions. For example, in [42], the cache-hit ratio and
frequency of occurrence of an instruction is considered along with the memory bandwidth usage to
decide if an instruction should be offloaded.

Another source of energy efficiency is fixed-function accelerators. Since these accelerators are
designed to execute a fixed set of operations, they do not require a program counter, load-store units,
or excessive number of registers and arithmetic logic units (ALU), which significantly reduces both
static and dynamic energy consumption. Using NVM can eliminate the cell refresh energy consumption
in DRAM, due to the inherent non-volatility in NVMs. In addition, NVMs that use an MCA architecture
can better facilitate the matrix multiplication operation, requiring only one step to calculate the product
of two matrices. In contrast, DRAM requires multiple loads/stores and computation steps to perform
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the same operation. This advantage is exploited by management policies which map matrix vector
multiplication to ReRAM crossbar arrays [19,82–89].

4.1.3. Power and Thermal Efficiency

DCC systems require power to be considered as both a constraint and an optimization objective,
motivating a range of different management techniques from researchers. The memory module in
particular is susceptible to adverse effects due to excessive power usage. It can lead to high temperatures,
which may result in reduced performance, unreliable operation, and even thermal shutdown. Therefore,
controlling the execution of offloaded workloads becomes important. Various ways in which power
efficiency/feasibility is achieved using policy design include using low-power fixed-function accelerators,
smart scheduling techniques for multiple PEs, and thermal-aware offloading. For example, when atomic
operations are offloaded to HMC, it reduces the energy per instruction and memory stalls compared to
host execution [28,29,32]. Data mapping and partitioning in irregular workloads like graph processing
reduces peak power and temperature when multiple PEs are used [36]. A more reactive strategy is
to use the memory module’s temperature as a feedback to the offloading management policy [29] to
prevent offloading in the presence of high temperatures.

4.2. Optimization Knobs

There are several knobs available to the resource management policy to achieve the goals defined
in the optimization objective. Typically, the management policy identifies which operations to offload
(we call the operations that end up being offloaded as offloading workloads) from a larger set of
offloading candidates, i.e., all workloads that the policy determined can potentially run on a memory
PE. If multiple PEs are available to execute offloading workloads, a selection must be made between
them. Finally, decisions may involve timing offloads, i.e., when to offload workloads.

4.2.1. Identification of Offloading Workloads

The identification of offloading workloads concerns the selection of single instructions or groups
of instructions which are suitable for execution on a memory-side processor. Depending on the
computation capability of the available processor, the identification of offloading workloads can be
accomplished in many ways. For example, an atomic unit for executing atomic instructions is used as
the PE in [32]; then, the offloading candidates are all atomic instructions. The identification of offloading
workloads is simply identifying which offloaded atomic instructions best optimizes the objectives.
However, the process is not always simple, especially when the memory-side processors offer a range
of computation options, each resulting in different performance and energy costs. This can happen
because of variation in state variables such as available memory bandwidth, locality of memory accesses,
resource contention, and the relative capabilities of memory and host processors. For example, [26] uses
a regression-based predictor for identifying GPU kernels to execute on a near-memory GPU unit.
Their model is trained on kernel-level analysis of memory intensity, kernel parallelism, and shared
memory usage. Therefore, while single instructions for fixed-function accelerators can be easily
identified as offloading workloads by the programmer or compiler, identifying offloading workloads
for more complex processors in a highly dynamic system requires online techniques like heuristic or
machine-learning-based methods.

4.2.2. Selection of Memory PE

A common NMP configuration places a separate PE in each memory vault of a 3D-stacked HMC
module [34,92,97]. This can lead to different PEs encountering different memory latencies when
accessing operand data residing in different memory vaults. In addition, the bandwidth available to
intra-vault communication is much higher (360 GB/s) than that available to inter-vault communication
(120 GB/s) [34]. Ideally, scheduling decisions should aim to utilize the higher intra-vault ban dwidth.
An even greater scheduling challenge is posed by the use of multiple HMC modules connected by
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a network [34,35]. The available bandwidth for communication between different HMC modules is
even lower at 6 GB/s. Therefore, offloading decisions must consider the placement of data and the
selection of PEs together to maximize performance [34,35,98]. Similarly, a reconfigurable unit may
require reconfiguration before execution can begin on the offloaded workload [41].

Finally, the selection of the PE can be motivated by load balancing, especially in graph processing,
where workloads are highly unstructured, e.g., when multiple HMC modules are used for graph
processing acceleration. In this case, the graph is distributed across the different memory modules.
Since graphs are typically irregular, this can cause irregular communication between memory modules
and imbalanced load in the memory PEs [34,35]. If load distribution is not balanced by PE selection,
it can lead to long waiting times for under-utilized cores. These issues influence offloading management,
often requiring code annotation/analysis and runtime monitoring.

4.2.3. Timing of Offloads

While identifying offloading workloads and selecting the PE for execution are vital first steps,
the actual execution is subject to the availability of adequate resources and power/thermal budget.
Offloading to memory uses off-chip communication from the host processor to the memory as an
essential step to convey the workload for execution. If available off-chip bandwidth is currently
limited, the offloading can be halted, and the host processor can be used to perform the operations
until sufficient bandwidth is available again [26,27,38,42]. Alternatively, computation can be “batched”
to avoid frequent context switching [34]. Moreover, using the memory-side PE for computation incurs
power and thermal cost. If it is predicted that the memory and processor system will violate power or
thermal constraints while the offloading target is executed, offloading may be deferred or reduced
to avoid degrading memory performance or violating thermal constraints [29]. Hence, in a resource
constrained PIM/NMP system, naively offloading all offloading candidates can lead to degraded
performance as well as power/thermal violations. Therefore, a management policy should be able to
control not just what is being offloaded but also when and where it will be offloaded.

4.3. Management Techniques

In order to properly manage what is offloaded onto PIM or NMP systems, where it is offloaded (in
the case of multiple memory PEs), and when it is offloaded, prior work has utilized one of three different
strategies: (1) code annotation: techniques that rely on the programmers to select and determine
the appropriate sections of code to offload; (2) compiler optimization: techniques that attempt to
automatically identify what to offload during compile-time; (3) online heuristics: techniques that use
a set of rules to determine what to offload during run-time. We discuss the existing works in each of
the three categories in the following sections.

4.3.1. Code Annotation Approaches

Code annotation is a simple and cost-effective way to identify offloading workloads with the
programmer’s help. For these techniques to work, the programmer must manually identify offloading
workloads based on their expert knowledge of the underlying execution model while ensuring the
efficient use of the memory module’s processing resources. Although this approach allows for greater
consistency and control over the execution of memory workloads, it burdens the programmer and relies
on the programmer’s ability to annotate the correct instructions. This policy has been demonstrated
to work well with fixed-function units [1,16,24,28,32,37] since the instructions that can be offloaded
are easy to identify and the decision to offload is often guaranteed to improve the overall power
and performance without violating thermal constraints. For example, [16] introduces two simple
instructions for copying and zeroing a row in memory. The in-memory logic implementation of these
operations is shown to be both faster and more energy-efficient, motivating the decision to offload all
such operations. Code annotation has been successfully used in both PIM [1,25,98] and fixed-function
NMP [28,32,40,57].
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Although the most popular use of code annotation is found in PIM or fixed-function NMP,
code annotation’s simplicity also makes it appealing to more general architectures. This is especially
true when the policy focuses more on NMP-specific optimizations such as cache-coherence, address
translation, or logic reconfiguration than the system-wide optimizations outlined in Section 4.1.
For example, code annotation is used in architectures with fully programmable APUs [75], CPUs [31],
and CGRAs [95]. In [31], an in-order CPU core is used as a PE in 3D-stacked memory. The task of
offloading is facilitated by the programmer selecting portions of code by using macros PIM_begin and
PIM_end, where the main goal of the policy is to reduce coherence traffic between the host and memory
PE. For more general purpose PEs and a greater number of PEs, the offloading workload becomes
harder to identify with human expertise.

One major downside of code annotation approaches is that the offline nature of code annotations
prevents it from adapting to the changes in the system’s state, i.e., the availability of bandwidth, the cache
locality of target instructions, and power and temperature constraints. To address this, code annotation
has been used as a part of other management techniques like compiler-based methods [40] and online
heuristics [28] that incorporate some online elements. Other variations of the technique include an
extension to the C++ library for identifying offloadable operations [24,98], extensions to the host ISA
for uniformity across the system [16,19,57,91], or a new ISA entirely [25]. Extending the software
interface in this manner is particularly useful when the source code is not immediately executable on
memory PEs or requires the programmer to repeatedly modify large sections of code. For example,
a read-modify-write operation, expressed with multiple host instructions, can be condensed into
a single HMC 2.0 atomic instruction by introducing a new instruction to the host processor’s ISA.
Similarly, library extensions provide compact functions for ease of use and readability.

• Case Study 1: Ambit—In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology

Bulk bitwise operations like AND and OR are increasingly common in modern applications like
database processing but require high memory bandwidth on conventional architectures. Ambit [1]
uses a 2D-DRAM-based PIM architecture for accelerating these operations using the high internal
memory bandwidth in the DRAM chip. To enable AND and OR operations in DRAM, Ambit proposes
triple row activation (TRA). TRA implements bulk AND and OR operations by activating three DRAM
rows simultaneously and taking advantage of DRAM’s charge sharing nature (discussed in detail in
Section 3.1.1). As these operations destroy the values in the three rows, data must be copied to the
designated TRA rows prior to the Boolean operation if the original data are to be maintained.

To allow more flexible execution, Ambit also implements the NOT operation through a modification
to the sense amplifiers shown in Figure 8. The NOT operation uses a dual-contact DRAM cell added
to the sense amplifier to store the negated value of the cell in a capacitor and store it on the bitline
when required. To perform the NOT operation, the value of a cell is read into the sense amplifier by
activating the desired row and the bitline. Next, the n-wordline, which connects the negated cell value
from the sense amplifier to the dual-contact cell capacitor is activated, which allows the capacitor
to store the negated value. Finally, activating the d-wordline drives the bitline to the value stored
in the dual-contact cell capacitor. AMBIT then uses techniques adapted from [16] to transfer the
result to an operand row for use in computation. By using the memory components with minimal
modifications, Ambit adds only 1% to the memory chip area and allows easy integration using the
traditional DRAM interface.
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Figure 8. Ambit’s implementation of the NOT operation by adding a dual-contact DRAM cell to the
sense amplifier. The grey shaded region highlights the dual-contact cell [1].

To execute the Boolean operations, Ambit adds special bulk bitwise operation (bbop) instructions
of the form shown in Figure 9 to the host CPU’s ISA. These bbop instructions specify the type of
operation (bbop), the two operand rows (src1 and src2), a destination row (dst), and the length of
operation in bytes (size). Since the Ambit operations operate on entire DRAM rows, the size of the
bbop operation must be a multiple of the DRAM row size. Due to Ambit’s small set of operations, it is
relatively easy to identify the specific code segments that can benefit from these operations. However,
the authors expect that the implementers of Ambit would provide API/driver support that allows the
programmer to perform code annotation to specify bitvectors that are likely to be involved in bitwise
operations and have those bitvectors be placed in subarrays such that corresponding portions of each
bitvector are in the same subarray. This is key to enabling TRA-based operations.

Figure 9. Ambit [1] extends the ISA to include a bulk bitwise operation (bbop) instruction for computation
which will be offloaded to PIM. The format of the instruction is shown.

Applications that use bulk bitwise operations show significant improvement using Ambit.
Ambit accelerates a join and scan application by 6× on average for different data sizes compared
to a baseline CPU execution. Ambit accelerates the Bitweaving (database column scan operations)
application by 7× on average compared to the baseline, with the largest improvement witnessed
for large working sets. A third application uses bitvectors, a technique used to store set data using
bits to represent the presence of an element. Ambit outperforms the baseline for the application by
3× on average, with performance gains increasing with set sizes. Ambit also demonstrates better
energy efficiency compared to traditional CPU execution of applications using bulk bitwise operations.
While raising additional wordlines consumes extra energy, the reduction of off-chip data movement
more than makes up for it, reducing energy consumption by 25.1× to 59.5×.

While the architecture of Ambit shows significant promise, its management policy is not without
issues. The benefits would rely heavily on the programmer’s expertise as the programmer would still
need to identify and specify which bitvectors are likely to be involved in these bitwise operations.
Fortunately, this technique avoids runtime overhead since all offloading decisions are part of the
generated binary. However, as Ambit operates on row-wide data, the programmer is required to ensure
the operand size to be a multiple or row size. Additionally, all dirty cache lines from the operand
rows need to be flushed prior to Ambit operations. Similarly, cache lines from destination rows need
to be invalidated. Both of these operations generate additional coherence traffic, which reduces the
efficiency of this approach.
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4.3.2. Compiler-Based Approaches

The main advantage of using compilers for automatic offloading over code annotation is the
minimization of programmer burden. This is because the compiler can automatically identify offloading
workloads [92], optimize data reuse [71], and select the PE to execute the offloading workloads [35,36].
Offloading using compilers also has the potential to outperform manual annotation by better selecting
offloading workloads [30]. Like code annotation, this is an offline mechanism and avoids hardware
and runtime overhead. However, similar to code annotation, this results in a fixed policy of offloads
suited in particular to simple fixed-function memory accelerators which are relatively unconstrained
by power and thermal limits [39,92]. While compilers can be used to predict the performance of an
offloading candidate on both host and memory processors, in the case of more complex PIM and NMP
designs, compiler-based offloading cannot adapt to changing bandwidth availability, memory access
locality, and DRAM temperature, leading to sub-optimal performance while risking the violation of
power and thermal constraints.

Compiler-based techniques have been used with both fixed-function [39,92,96] and
programmable [27,40,70] memory processors. For fixed-function accelerators like vector processors [92]
and stencil processors [39], the compiler’s primary job is to identify instructions that can be offloaded
to the memory PE and configure the operations (e.g., vector size) to match the PE’s architecture.
When the type of instruction is insufficient to ascertain the benefit of offloading, compiler techniques
like CAIRO [42] use analytical methods to quantitatively determine the benefit of offloading by profiling
the bandwidth and cache characteristics of instructions offline, at the cost of adding design (compile)
time overhead.

Another advantage of using compilers is the ability to efficiently utilize NMP hardware by
exploiting parallelism in memory and PEs. For example, [30] achieves 71% better floating-point
utilization than hand-written assembly code using loop and memory access optimizations for some
kernels. While CAIRO relies on offline profilers and [30] requires some OpenMP directives for
annotation, the compiler in PRIMO [92] is designed to eliminate any reliance on third-party profilers
or code annotation. Its goal is to reduce communication within multiple memory processors by the
efficient scheduling of vector instructions. It can be noticed that when the memory processor is capable
of a wider range of operations, compiler-based techniques have to account for aspects like bandwidth
saving, cache-locality, and comparative benefit analysis with the host processor [42] while still working
offline, which is not easy. Further complications arise when multiple general purpose processor options
exist near memory as runtime conditions become a significant factor in exploiting the benefits of
memory-side multi-core processing [27].

• Case Study 1: CAIRO

CAIRO uses an HMC-based NMP architecture to accelerate graph processing using bandwidth-
and locality-aware offloading of HMC 2.0’s atomic instructions using a profiler-based compiler.
To enable high bandwidth and low energy, HMC stacks DRAM dies and a CMOS logic die and connects
the dies using through-silicon vias (TSVs). Starting with HMC 2.0 specification, HMC has supported
18 atomic computation instructions (shown in Figure 10) on the HMC’s logic layer. HMC enables a
high level of memory parallelism by using a multiple vault and bank structure. Several properties
of graph workloads make HMC-based NMP a perfect choice to accelerate execution. For example,
graph computation involves frequent use of read-modify-write operations which can be mapped to
HMC 2.0 supported instructions. When performed in HMC, the computation exploits the higher
memory bandwidth and parallelism supported by HMC’s architecture.
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Figure 10. HMC atomic instructions in HMC 2.0 [81].

Identifying offloading candidates (instructions that can be offloaded) and choosing suitable
memory PEs are important compiler functions for accelerating computation. While this is the main
goal with CAIRO, the authors note that additional benefits can be realized when effective cache size
and bandwidth saving is considered for offloading decisions. By default, all atomic instructions are
considered as offloading candidates and all data for these instructions are marked uncacheable using a
cache-bypassing policy from [32]. This technique provides a simple cache coherence mechanism by
never caching data that offloading candidates can modify. The underlying idea is that offloading an
atomic instruction will inherently save link bandwidth when cache-bypassing is active for all atomic
instructions regardless of host or memory-side execution. This is because offloading the instruction to
HMC uses fewer flits than executing the instruction on the host CPU, which involves the transfer of
operands over the off-chip link. Moreover, if the offloaded segment does not have data access locality,
it avoids cache pollution, making more blocks available for cache-friendly data. Finally, the NMP
architecture allows faster execution of atomic instructions, eliminating long stalls in the host processor.

CAIRO’s first step is to identify offloading candidates that can be treated as HMC atomic
instructions. Given these instructions, CAIRO then attempts to determine how much speedup can
be obtained from offloading these instructions. One of the major factors in determining the speedup
is the main memory bandwidth savings from offloading. Since offloading instructions frees up
memory bandwidth, it is important to understand how applications can benefit from the higher
available bandwidth to estimate application speedup. For applications that are limited by low
memory bandwidth, increasing the available memory bandwidth leads to performance improvements
(bandwidth-sensitive applications) since these applications exploit memory-level parallelism (MLP).
On the other hand, compute-intensive applications are typically bandwidth-insensitive and
benefit little from the increase in available memory bandwidth. To categorize their applications,
the authors analyze the speedup of their applications after doubling the available bandwidth and
conclude that CPU workloads and GPU workloads naturally divide into bandwidth-insensitive and
bandwidth-sensitive, respectively. The authors do note that, for exceptional cases, CAIRO would need
the programmer/vender to specify the application’s bandwidth sensitivity.

Given the application’s bandwidth sensitivity, CAIRO uses two different analytical models to
estimate the potential speedup of offloading instructions. For bandwidth-insensitive applications,
they model a linear relationship between the candidate instruction’s miss ratio (MR), density of host
atomic instructions per memory region of the application ( ρHA), and speedup due to offloading the
candidate instruction (SUtot), as shown in Figure 11a. In other words, the decision to offload an atomic
instruction depends on how often it misses in cache and how much cache is believed to be available to
it. The model incorporates several machine-dependent constants, C1, C2, and C3, shown in Figure 11b,
that are determined using offline micro-benchmarking. When there is positive speedup (SUtot > 0),
CAIRO’s compiler heuristic offloads the instruction to the HMC.
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(a) (b)

Figure 11. CAIRO’s performance estimation for bandwidth insensitive applications. (a) Speedup given
the host atomic instructions per memory region (ρHA) and its miss ratio. (b) Equation for total speedup,
SUtot, is the sum of speedup due to avoiding inefficient cache use SUMR and speedup due to avoiding
the overhead of executing atomic instructions on the host processor SUHA [42].

On the other hand, bandwidth-sensitive applications can also experience additional speedup
by utilizing the extra memory bandwidth due to offloading atomic instructions. Therefore,
CAIRO considers bandwidth savings due to offloading in addition to the miss ratio and density of
atomic instructions. As shown in Figure 12, for miss ratios higher than MissRatioH, the instruction will
be offloaded. Similarly, for miss ratios lower than MissRatioL, the instruction will not be offloaded.
However, in the region between MissRatioH and MissRatioL, additional bandwidth saving analysis
is performed before making the offloading decision. The speedup due to bandwidth saving, SUBW ,
is calculated by estimating the bandwidth savings achieved, BW′saving (Equations (1) and (2)). BWreg and
BWo f f load are estimated using hand-tuned equations based on last-level cache (LLC) hit ratios, the packet
size of offloading an instruction, and the number of instructions (more details in [42]). Constants M1 and
M2 are machine-specific and obtained using micro-benchmarking. Similar to the bandwidth-insensitive
case, CAIRO’s compiler heuristic offloads the instruction when the calculated speedup is greater than 0.

SUBW =
(
M1 × BW′saving

)
+ M2, (1)

SUBW : Speedup from bandwidth savings (bandwidth-sensitive applications)

BW′saving : Normalized bandwidth savings

M1, M2 : Machine-dependent constants

BW′saving =
BWreg − BWoffload

BWreg
=

BWsaving

BWreg
, (2)

BWreg : Regular bandwidth usage (without offloading)

BWoffload : Bandwidth usage wth offloading

CAIRO’s compiler heuristic allows it to consider the most important factors in offloading decisions
while avoiding runtime overhead. For bandwidth-insensitive applications, the amount of speedup
achieved by CAIRO increases with the cache miss ratio of the application. For a miss ratio of greater
than 80%, CAIRO doubles the performance of bandwidth-insensitive CPU workloads compared to
host execution. For bandwidth-sensitive applications, the amount of speedup increases with the
amount of bandwidth saved by CAIRO. For bandwidth savings of more than 50%, CAIRO doubles the
performance of GPU workloads. In addition, CAIRO derives energy efficiency from the reduction
in data communication inherent to the HMC design. Similar to prior work [28,32], it extends the
HMC instructions and ALU to support floating-point operations without violating power constraints.
Despite CAIRO’s performance and energy improvements, it has its drawbacks. The miss ratio and
bandwidth saving analysis is machine- and application-dependent and involves considerable design
time overhead. Moreover, since the heuristic does not work online, offloading decisions are based on
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analytical assumptions about runtime conditions. For instance, due to its offline design, CAIRO does
not consider the temperature of HMC, which can significantly impact the performance [29].

Figure 12. CAIRO’s performance estimation for bandwidth insensitive applications: for miss ratios
between MissRatioL and MissRatioH, additional bandwidth saving analysis is performed before making
the decision to offload [42].

• Case Study 2: A Compiler for Automatic Selection of Suitable Processing-In-Memory Instructions
(PRIMO)

NMP designs with a single PE like CAIRO can focus on offloading the most suitable sections of
code to reduce off-chip data movement and accelerate execution. However, when the NMP design
uses multiple PEs near memory, designers have to consider the location of data with respect to the PE
executing the offloaded workload. The compiler PRIMO [92] is designed to manage such a system.
It uses a host CPU connected to an 8-layer HMC unit with 32 vaults. Each of the 32 vaults has a
reconfigurable vector unit (RVU) on the logic layer as a PE. The RVU uses fixed-function FUs to
execute native HMC instructions extended with an Advanced Vector Extensions (AVX)-based ISA
while avoiding the area overhead of programmable PEs. Each RVU has wide vector registers available
to facilitate vector operations. They allow a flexible vector width with scalar operands of as little as
4 bytes and vector operands up to 256 bytes. Moreover, multiple RVUs can coordinate to operate on
vector lengths of as high as 4096 bytes.

With this architecture, PRIMO has to identify not only offloading candidate code segments
to convert to special NMP instructions but also which execution unit minimizes data movement
within memory by exploiting internal data locality. Another way by which the compiler improves
performance is the utilization of the vast number of functional units (FUs) by optimizing the vector
length of offloaded instructions for the available hardware. For example, if the RVU architecture can
execute instructions up to a vector size of 256 bytes, the compiler will automatically compile offloading
candidate code sections with vectors larger than 256 bytes into NMP instructions, whereas operations
involving smaller vector sizes are executed by the host CPU. In short, the compiler performs four
functions: (1) identify operations with large vector sizes, (2) set these operations’ vector size to a
supported RVU vector size, (3) check for data dependencies with previously executed instructions
and map instructions to the same vector unit as the previous instructions, and (4) create the binary
code for execution on the NMP system. Figure 13a shows the code for a vec-sum kernel. Figure 13b,c
compare the compiled version of the kernel for an x86 AVX-512 capable processor and an NMP
architecture, respectively. The AVX-512 version performs four loads, followed by four more loads
and four adds with a vector length of 64 bytes. Finally, four store operations complete an iteration
of the loop. In comparison, the NMP code uses just two instructions to load the entire operand data
in 256-byte registers, followed by a single 256-byte add and store operation. The NMP instruction
PIM_256B_LOAD_DWORD V_0_2048b_0 [addr] loads 256 bytes of data starting at addr into register 0 of
vault 0. The actual choice of the vault and RVU is made after checking for data dependencies between
instructions. The use of large vector sizes allows PRIMO to exploit greater memory parallelism while
the locality-aware PE minimizes data movements between vaults.
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Figure 13. PRIMO code generation [92].

While identifying vector instructions is common to all compiler-based management techniques,
PRIMO achieves better FU utilization and minimizes internal data movement by optimizing instruction
vector size and selecting PEs considering the location and vector size of the operand data. It also
manages to completely automate the process and eliminate the need to annotate sections of code or
run offline profilers. In addition, PRIMO performs all optimizations at design time, which allows it to
eliminate runtime overhead. PRIMO achieves an average speedup of 11.8× on a set of benchmarks from
the PolyBench Suite [99], performing the best with large operand vector sizes. However, such benefits
come at the cost of a static policy that is unable to react to dynamic system conditions like available
memory bandwidth, variations in power dissipation, and temperature. Additionally, the energy
efficiency of specialized hardware and instructions need to be studied further.

4.3.3. Online Heuristic

Online heuristic-based policies use human expert knowledge of the system to make offloading
decisions at runtime. To this end, additional software or hardware is tasked with monitoring and
predicting the future state of the system at runtime, to inform the offloading workload identification,
determining the memory PE, and timing control. The online nature of heuristic policies enables
the policy to adapt to the runtime state, but it also increases its complexity and runtime overhead.
The quality of decisions depends on the heuristic designer’s assumptions about the system. When the
assumptions are incomplete or incorrect, online heuristics will suffer from unexpected behavior.

Online heuristics are used widely when the goal is to accelerate an entire data-intensive application
on general purpose memory processors [27,38,71,72,74]. In addition, online heuristics may be used in
combination with code annotation and compiler-based methods [27,75]. For example, PIM-enabled
instructions (PEI) [28] extends the host ISA with new PIM-enabled instructions to allow programmers to
specify possible offloading candidates for PIM execution. These instructions are offloaded to PIM only
if a cache hit counter at runtime suggests inefficient cache use; otherwise, the instructions are executed
by the host CPU. Similarly, Transparent Offloading and Mapping (TOM) [27] requires the programmer
to identify sections of CUDA code as candidate offloading blocks. The final offloading decision involves
an online heuristic to determine the benefit of offloading by estimating bandwidth saving and co-locate
data and computation across multiple HMC modules. Different from CAIRO, where the bandwidth
saving analysis is performed entirely before compilation, TOM uses heuristic analysis of bandwidth
saving both before and after compilation. It marks possible offloading candidates during a compiler
pass, but the actual offloading decision is subject to runtime monitoring of dynamic system conditions
like PE utilization and memory bandwidth utilization. Other methods that rely on online heuristics
include [38], which uses a two-tier approach to estimating locality and the energy consumption of
offloading decision, [74], which performs locality-aware data allocation and prefetching, and [29],
which optimizes for thermally feasible NMP operation by throttling the frequency of issuing offloads
and size of CUDA blocks offloaded to an HMC-based accelerator.

• Case Study 1: CoolPIM—Thermal-Aware Source Throttling for Efficient PIM Instruction Offloading
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As noted in Section 4.1.3, 3D-stacked memory is vulnerable to thermal problems due to high power
densities and insufficient cooling, especially at the bottom layers. In fact, with a passive heatsink, HMCs
cannot operate at their maximum bandwidth, even without PIM and NMP (see Figure 14) [29,100].
A particular problem in these systems is that heating exacerbates charge leakage in DRAM memory
cells, which demands more frequent refreshes to maintain reliable operation. Therefore, offloading in
NMP, among other online runtime conditions, requires awareness of the memory system’s temperature.
CoolPIM [29] attempts to solve this problem by using an online-heuristic-based mechanism to control
the frequency of offloading under the thermal constraints of an NMP system.

Figure 14. Peak DRAM temperature with various data bandwidth and cooling methods (passive,
low-end, commodity, and high-end) [29].

CoolPIM considers a system that has a host GPU executing graph workloads with an HMC
memory module capable of executing HMC 2.0 atomic instructions. In order to allow the offloading
of atomic operations written in Nvidia’s CUDA to HMC, the compiler is tweaked to generate an
additional executable version for each CUDA block of computation. This alternative HMC-enabled
version has the HMC’s version of atomic instructions to be executed near-memory if the heuristic
decides to offload it. All atomic instructions in HMC-enabled blocks execute on functional units on the
HMC’s logic layer as provided by the HMC 2.0 Specification [81]. It must be noted that the role of the
compiler is not to make offloading decisions but rather to generate a set of offloading candidates that
the online heuristic can select from at runtime.

The main goal of CoolPIM is to keep the HMC unit under an operational maximum temperature.
The HMC module includes a thermal warning in response packets whenever the surface temperature
of the module reaches 85 ◦C. Whenever the thermal warning is received, CoolPIM throttles the intensity
of offloading by reducing the number of HMC-enabled blocks that execute on the GPU. To this end,
CoolPIM introduces a software-based throttling and hardware-based throttling technique, as illustrated
in Figure 15. The software-based throttling technique controls the number of HMC-enabled blocks that
execute on the GPU using a thermal warning interrupt from the HMC. It implements a token-based
policy where CUDA blocks request a token from the pool before starting execution. If a token is
available, the block acquires it and the offloading manager executes the NMP version of the block.
However, if a thermal warning is encountered, the token pool is decremented, which effectively
decreases the total number of blocks that can be offloaded to the memory PE.

Figure 15. Overview of CoolPIM [29].

On the other hand, the hardware-based throttling technique controls the number of warps per
block that are offloaded to the memory PE as a reaction to the thermal warning interrupt. Unlike the
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software-based method, which requires that all warps in executing thread blocks finish before the
throttling decisions take effect, the hardware-based mechanism allows the system to react faster to
the temperature warning by changing the number of warps with NMP-enabled instructions during
runtime. The hardware-based control is achieved by adding a hardware component to the system
which can replace NMP-enabled instructions with their CUDA counterparts during the decoding
process. The HMC-disabled warps, with NMP instructions replaced with CUDA instructions, will then
execute entirely on the host GPU to help manage the rising HMC temperature. Figure 15 details the
implementation of the policy.

The use of an online heuristic allows CoolPIM to adapt to system conditions at runtime and
control temperature even when an application goes through different phases. The additional system
awareness not only improves the offloading decisions to better realize the benefits of NMP but also
develops a more proactive approach to management. CoolPIM improves performance by up to 40%
compared to both host execution and naïve offloading while effectively managing memory temperature.
While an increase in the heuristic’s complexity is expected to produce better offloading decisions and
performance improvement, it is necessary that runtime overhead remains manageable. While CoolPIM
manages to do this, it does not consider data locality and bandwidth saving while making offloading
decisions. Similarly, it does not consider energy savings except as a byproduct of minimizing the
DRAM refresh rate.

• Case Study 2: Making Better Use of Processing-In-Memory through Potential-Based Task Offloading

Although works under the code annotation and compiler categories use profiling and analysis to
understand the effects of offloading on key objectives, the generated results may be affected by runtime
conditions related to input data, concurrent workloads, and other dynamic policies. Kim et al. [38]
look at the number of L2 misses, memory stalls, and power in their online heuristic policy to determine
offload decisions to optimize performance, energy, and power. They consider an NMP system with a
host GPU and a trimmed-down GPU as the memory PE in the logic layer of an HBM unit. The GPU
used as a memory PE has a lower number of streaming multiprocessors (SM) to accommodate the
thermal constraints on the logic layer of the HBM. To accomplish their goals, the authors divide the
heuristic into two stages: the first stage determines if the decision meets a time-energy constraint
(OCT−E), and if it passes, the second stage will determine if it passes a time-power constraint (OCT−P).
Offloading is performed only if the conditions in both stages are met. This process is represented in
Figure 16.

Figure 16. Overview of the offloading policy used in [38]. The offloading decision is separated into
two stages. The first stage checks whether it would pass a time-energy constraint (OCT−E) while the
second stage checks whether it passes a time-power constraint (OCT−P ). If it passes both, the task is
offloaded onto the memory module.
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The first stage starts by profiling the application for the number of L2 misses per instruction
(L2MPI) and the number of cycles L1 was stalled due to a request to L2 (L1S). The reason behind this
choice is that the higher the value of each of these metrics, the slower the task will run on the host GPU
and the better it will perform on the high memory bandwidth near-memory GPU. The two values
are used to determine if the task should be offloaded using a simple linear model derived through
empirical data from profiling (Equation (3)). If the value of this model exceeds a threshold (TH),
then the task is considered as an offloading candidate based on the time-energy constraint.

58× L2MPI + 0.22× L1S + 0.005 > TH (3)

If a task passes the first stage, the next stage is to determine the impact of the offloading decision
on power consumption. Specifically, power is treated as a constraint with a fixed budget of 55W with a
high-end-server active heat sink. The power model for estimating the task’s power consumption in
NMP execution is based on several assumptions. Idle power is ignored in this work. Static power is
scaled by the ratio of the areas of the host and memory GPU. For the dynamic power estimation, different
components of the host power are scaled down using information from profiling the application.
Equation (4) shows how the relationship is modeled.

PIMSM = α× ((ActiveSMHost + L2Host + ICNTHost) + 0.25× (MCHost + DRAMHost)) (4)

All dynamic power components are scaled by an experimentally determined parameter α.
These components include the power consumed by the active streaming multiprocessor (SM)
(ActiveSMHost), the L2 cache in the host processor (L2Host), and the interconnect network (ICNTHost).
The DRAM and memory controller (MC) power components (MCHost and DRAMHost) are further scaled
down by 0.25, which is the experimentally determined ratio between DRAM and active SM power.
The value of α is estimated by profiling the application. The L2MPI and percentage of active SMs
to idle SMs is used to infer how much the application would benefit from executing on the memory
side PE. The assumption is that large L2MPI values indicate inefficient use of cache and wastage of
memory bandwidth. Similarly, a low percentage of active cores indicates that the application will not
experience a slow-down due to the lower number of compute units in the memory PE.

Finally, another linear model based on these assumptions of power scaling is used to check if the
use of dynamic voltage and frequency scaling (DVFS) will make some offloading decisions feasible
within the power constraint. If all tests are passed, the task is offloaded to the memory-side GPU.

This technique comprehensively considers the energy, power, and performance aspects of
offloading to power constrained NMP systems. Compared to host-only execution, the proposed
technique achieves a 20.5% increase in instructions per cycle (IPC) and a 67.2% decrease in energy
delay squared product (ED2P). The approach comes with additional design time and runtime
overhead compared to code annotation and compiler-based methods. Additionally, it is based on
strict assumptions about the system dynamics derived from profiling characteristic applications.
Practically, the different system components may interact in a variety of unpredictable ways, breaking
the assumption of stationarity.

5. Conclusions and Future Challenges and Opportunities

PIM and NMP architectures have the potential to significantly reduce the memory wall and
enable future big data applications. However, it has been demonstrated that naïve use of these DCC
systems can run into thermal issues and even reduce the performance of the overall system. This has
led many to investigate offloading management techniques that are able to identify low data locality
instructions or react to thermal emergencies. In this paper, we have organized these works based
on the optimization objective, optimization knobs, and the type of technique they utilize. However,
there are several challenges and opportunities for resource management of PIM/NMP substrates related
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to generalizability, multi-objective considerations, reliability, and the application of more intelligent
techniques, e.g., machine learning (ML), as discussed below:

• Due to the large variations in DCC architectures proposed to date, the management policies
have been very architecture- and application-specific. For example, a policy for a near-memory
graph accelerator involves the offloading of specific graph atomic operations, a policy for a
stencil accelerator involves the offloading of stencil operations, and so on. This could lead
to technology fragmentation, lower overall adoption, and inconsistent system improvements.
As an example, an NMP system designed to exploit the high density of connections in small
graph areas fails to extract significant speedup when graph connections are more uniform [33].
Future DCC architectures and resource management policies need to explore the generalizability
of these systems.

• Nearly all past work has focused on the efficient use of PEs across the system, i.e., they offload tasks
which minimize data movement between the host processor and memory. However, high frequency
of offloading can cause the memory chip to overheat and lead to a complete shutdown. The issue
is addressed reactively in [29] but more proactive and holistic resource management approaches
are needed to consider both thermal- and performance-related objectives together.

• Reliability has yet to be considered in the management policies for DCC systems [59]. There is no
analysis of the impact of reliability concerns in emerging NVM substrates or DRAM cells on the
efficacy of PIM/NMP offloading strategies. Due to deep nanometer scaling, DRAM cell charge
retention is becoming increasingly variable and unpredictable. Similarly, the use of unproven and
new NVM technologies that are susceptible to disturbances during non-volatile programming
brings some level of uncertainty at runtime. Resource management techniques need to be designed
in a manner that is robust to these reliability issues in memory substrates when making decisions
to offload to memory PEs.

• ML-based applications have exploded in recent years. ML’s potential has been demonstrated for
identifying offloading targets [71] using a simple regression-based model with cache performance
metrics as the input. More generally, ML techniques like reinforcement learning have proven
successful in improving performance by intelligently scheduling workloads on heterogenous
systems [101]. As we adopt more general architectural designs, management policies will need
to account for the diversity of applications and variability of processing resources. On the other
hand, Internet of Things (IoT) devices have great potential to use ML for smart operation, but they
lack the resources for training ML models on large datasets. Recent work [102] has shown
that executing ML algorithms using near-data vector processors in IoT devices can significantly
improve performance. Hence, a promising direction is to leverage the DCC approach to empower
IoT devices to process data locally to improve privacy and reduce latency.

• Heterogenous manycore architectures running multi-threaded applications result in complex
task mapping, load balancing, and parallelization problems due to the different PEs. Recently,
complex network theory, originally inspired by social networks, has been successfully applied to
the analysis of instruction and data dependency graphs and identification of “clusters” of tasks to
optimally map instructions to PEs [103]. Similarly, complex network theory can be extended to
include the PIM and NMP domain in order to optimize software, data orchestration, and hardware
platform simultaneously.
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Abstract: With the advancement of technology scaling, multi/many-core platforms are getting
more attention in embedded systems due to the ever-increasing performance requirements and
power efficiency. This feature size scaling, along with architectural innovations, has dramatically
exacerbated the rate of manufacturing defects and physical fault-rates. As a result, in addition
to providing high parallelism, such hardware platforms have introduced increasing unreliability
into the system. Such systems need to be well designed to ensure long-term and application-
specific reliability, especially in mixed-criticality systems, where incorrect execution of applications
may cause catastrophic consequences. However, the optimal allocation of applications/tasks on
multi/many-core platforms is an increasingly complex problem. Therefore, reliability-aware resource
management is crucial while ensuring the application-specific Quality-of-Service (QoS) requirements
and optimizing other system-level performance goals. This article presents a survey of recent works
that focus on reliability-aware resource management in multi-/many-core systems. We first present
an overview of reliability in electronic systems, associated fault models and the various system
models used in related research. Then, we present recent published articles primarily focusing
on aspects such as application-specific reliability optimization, mixed-criticality awareness, and
hardware resource heterogeneity. To underscore the techniques’ differences, we classify them based
on the design space exploration. In the end, we briefly discuss the upcoming trends and open
challenges within the domain of reliability-aware resource management for future research.

Keywords: multi/many-core platforms; reliability; resource management; mixed-criticality

1. Introduction

From the colossus machines of 1943 [1], to the modern Internet of Thing (IoT) devices,
there has been a massive growth in the variety of applications that use electronic computing
systems. Every sector of our day-to-day lives—Consumer products, Telecommunication,
Education, Agriculture, Healthcare, Automobiles, Military defence etc.—usually involves
some form of information processing on electronic systems. While the scale of such infor-
mation processing platforms can vary from small energy-harvesting IoT nodes to large
data centres, the overall computing performance requirements for each of the application
areas has undoubtedly increased in the last two decades. Prior to the 2000s, the major
semiconductor manufacturers would answer the need for increasing performance require-
ments by technology scaling and micro-architectural enhancements only. Methods such as
deep pipelining, increased cache sizes and complex dynamic Instruction Level Parallelism
(ILP) were the primary tools as long as Dennard scaling could be achieved [2]. However,
as shown in Figure 1a, the quest for higher clock frequency at lower technology nodes
resulted in high power density and heat dissipation beyond the capacity of inexpensive
cooling methods. This phenomenon, is often referred to as the power-wall [3]. Further,
the continued technology scaling and micro-architectural innovations did not necessar-
ily translate to faster memory technologies. As a result, the increasing gap between the
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compute clock frequency and the memory access frequency, referred to as the memory-
wall, did not provide much benefits even at very high computation speeds. As a result,
as shown in Figure 1b, the rate of improvement in single thread performance reduced
considerably [4]. Further, the data dependencies of each application imposes implicit limits
to the extent to which the application can exploit ILP. Traditional approaches to exploiting
ILP such as deeper pipelines and branch prediction can exacerbate the power density
problem while increasing the time and energy wastage due to branch mispredictions.

The cumulative effect of the three walls—memory, power and ILP—has led to dimin-
ishing returns from the efforts to provide performance scaling by increasing clock frequency
of single core systems. As shown in Figure 1b, since 2005, the semiconductor industry has
adopted the on-chip integration of multiple cores and processors as the weapon-of-choice
for satisfying increasing computation complexity. In addition to using the ILP for each core,
the multi-/many-core systems allow the software developer to exploit any form of thread-,
task- and data-level parallelism in the application. Further, the technology scaling allows
for additional application-specific cores to be integrated on the chip. The heterogeneity of
the cores could be targeted for generic objectives such as power-performance trade-offs
(e.g., big.LITTLE from ARM [5]) or for some specific computations (e.g., the CELL Broad-
band Engine [6]). However, the quest for increasing the number of on-chip transistors
through technology scaling and improving performance of each core through architectural
innovations have also increased the reliability issues across all electronic systems. Increased
unreliability—either in terms of computation errors or the reduced lifetime of systems—has
led to the increasingly complex problem of ensuring the reliable execution of applications
on increasingly unreliable hardware [7].
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Figure 1. Technology scaling and its impact. (a) Power density trends. (b) Impact of cheaper transistors [4].

1.1. Need of Reliability in Multi/Many-Core Systems

The increasing unreliability of electronic systems can be explained using the bath-tub
curves shown in Figure 2. The reliability-specific life-cycle of typical electronic systems is
characterized by three types of failures. The infant mortality, caused by premature failure
of weak components as a result of manufacturing defects and burn-in testing, the constant
failures due to random faults and the wearout-based faults due to aging. The solid curve
in the figure shows the net effect of all three factors. With aggressive technology scaling,
the rate of manufacturing defects has increased, resulting in higher infant mortality and
higher susceptibility to aging-related faults. Similarly, the architectural innovations such as
deeper pipelines and supply voltage scaling have reduced the clocking-window masking
and electrical masking, respectively [8], thus increasing the constant failure rate due to
random faults. Further, the parallel processing of multiple cores can increase the power
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dissipation resulting in accelerated aging. The net result of all these factors is the increased
failure rate as shown by the dashed bath-tub curve in Figure 2. However, each of the these
factors can manifest as degradation of different system-level performance metrics and the
priority of each such metric may vary with each application.

For instance, in real-time systems the timeliness of execution has the highest priority.
Similarly, in financial and scientific computations, the accuracy of calculations would
be more important than the execution time. Additionally, in systems such as consumer
products and space missions, extended lifetime of the system may have higher priority.
Further, in a system executing multiple applications, each of the application may have
varying criticality w.r.t. each reliability-related performance metric. In this scenario,
the ideal solution would be to design a custom hardware platform for each application.
However, from a market perspective, every application may not warrant the development
of a custom hardware platform. Hence, standard multi-/many-core systems should be used
for ensuring application-specific Quality of Service (QoS) requirements—both reliability-
related and otherwise.

Past

Present/ 
Projected

Figure 2. Increasing unreliability in electronic systems.

1.2. Reliability-Aware Resource Management in Multi-/Many-Core Systems

Given the variety of applications executed on multi-/many-core systems, optimal al-
location of on-chip resources is an increasingly complex problem. We define this reliability-
aware resource management problem as below:

Definition 1. Reliability-aware resource management refers to the appropriate allocation of on-
chip resources—computation, communication and memory—to applications/tasks executing on a
multi-/many-core system while ensuring application-specific QoS and optimizing other system-level
performance goals.

The increasing unreliability in electronic systems has also resulted in a large body of
research being devoted to ensuring reliable execution of applications. The research works
related to solving the problem stated in Def. Figure 1 usually focus on one or more of
following aspects:

1. Application Specificity: The varying priority among QoS metrics across different
applications presents both a scope for application-specific optimization as well as
challenges for ensuring application specific constraints.

2. Mixed criticality: Scheduling tasks with different criticality levels on a common plat-
form is challenging, in which executing the tasks must be guaranteed in terms of both
safety and real-time aspects to prevent the probability of failure and, consequently,
catastrophic consequences.

85



J. Low Power Electron. Appl. 2021, 11, 7

3. Resource Heterogeneity: The heterogeneity of cores provides a scope for leverag-
ing the availability of custom hardware implementations. Similarly, the availability
of reconfigurable logic provides the scope for implementing accelerators on stan-
dard hardware platforms. However, such heterogeneity also introduces additional
complexity for ensuring optimal resource sharing.

4. Design Space Exploration: All the above aspects introduce additional degrees of
freedom in the design space. Consequently, the Design Space Exploration (DSE) for
the joint optimization across all these aspects can result in an exponential increase
in complexity.

In this article, we provide a survey of some of the more recent research works that
explore these aspects. The rest of the article is organised as follows. We provide a brief
overview of the relevant background and the taxonomy that is used through the rest of
the article in Section 2. A generic system model and the generic problem statement along
with the classification of the approaches is presented in Sections 3 and 4, respectively.
We provide a detailed survey of related works across Sections 5–7. We present a brief
discussion of emerging approaches to reliability management in Section 8. Finally, we
conclude the article with a summary in Section 9.

2. Background and Taxonomy for Reliability Management Methodologies

The research works surveyed in this article aim to improve one or more aspects of
reliability using different techniques of resource management under varying scenarios.
The scenario can vary depending upon the executing application(s) and the resources
available on the hardware platform. Similarly, the resource management could be aimed at
maximizing different types of reliability and may be achieved by implementing various
DSE methods. Figure 3 shows the taxonomy for the various terms that will be used
frequently in the rest of the article for reviewing the related works. The tree-like structure
in Figure 3 is used to categorize and show the relationships among these different aspects
addressed by the related works discussed in this article. The figure also serves as a checklist
for determining the scope and the assumptions used in each reviewed article. The colour
coding of the rectangular boxes relates to the major aspects of reliability management as
discussed in Section 1.2. The orange boxes show the terms related to reliability-types and
causes. The gray and green boxes correspond to application and architecture scenarios,
respectively. The blue boxes show the terms related to DSE. The current and the next
section provide the background of and relationship (shown as arrows) among the terms
shown in Figure 3.

Design Space 
Exploration

ArchitectureApplication

Reliability

Figure 3. Taxonomy: The terms used in the article are categorized under four aspects of reliability-aware resource
management—Application, Architecture, Reliability and Design Space Exploration.
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2.1. Reliability in Electronic Systems

The rise in fault-rates in electronic systems has led to adverse effects on system
performance in more than one way. Direct effects include application failures in terms
of incorrect functionality and inability of the system to complete execution within the
specified timing constraints. Similarly, indirect effects include over-designing for fault-
mitigation—e.g., the high power dissipation of Triple Modular Redundancy (TMR)—
leading to accelerated aging in the system and multiple re-executions of some critical
tasks—for reducing chances of error—resulting in deadline violations. Given the variations
in application-specific requirements across different application domains, the reliability-
related QoS can be categorized as discussed next.

2.1.1. Lifetime Reliability

The expected operational life of the system can be characterized by its lifetime reliabil-
ity. Depending upon whether the system is repairable, and the cost of such repairs, metrics
such as Mean Time To Failure (MTTF), Mean Time To Crash (MTTC) and Availability can
be used to characterize the system’s lifetime reliability. MTTF refers to the expected time to
the first observed failure in the system. In healthcare applications and consumer electronics,
the need for predictable and extended MTTF can be the primary objective. Similarly, MTTC
refers to the expected operational time for the point at which the system does not have suf-
ficient resources for ensuring the expected behavior and is usually applicable for repairable
systems. In applications with long mission times such as space exploration, repairing the
failure mechanism is used to extend the MTTC. However, repair-time plays a critical role
in high-availability applications such as automated control of power generation.

The reduced lifetime in electronic systems usually occurs due to the aging caused
by electrical stress [9]. Most research works focus on improving the lifetime reliability by
one/more of the following methods—reducing continuous computation on the processing
elements, reducing the power dissipation, improving heat dissipation, reducing compu-
tations involved in executing the application etc. The availability of multiple processing
elements enables improving the lifetime reliability by utilizing such techniques more ef-
fectively. For instance, the electrical stress on a single processing element can be reduced
by using different resources for different execution instances. However, selecting the ap-
propriate optimization technique along with the optimal configuration poses a significant
research problem.

2.1.2. Timing Reliability

The performance of the system in terms of the expected behavior concerning the
timeliness of execution completion can be expressed as its timing reliability. It is used only
in terms of real-time systems and depending upon the criticality of the application, can be
expressed in terms of Worst-case Execution Time (WCET), Mean Time between Failures
(MTBF), Probability of Completion and Average Makespan [10–12]. WCET is usually used
in hard real-time systems such as pacemakers and automobile safety features where any
instance of missing a deadline can have fatal consequences. MTBF, frequently used in the
context of repairable systems, can also be used for expressing the timing reliability in firm
real-time systems such as manufacturing assembly lines, where infrequent failures can be
tolerated, provided sufficient availability is ensured. Average makespan and probability
of completion are usually used in soft real-time systems such as streaming devices and
gaming consoles where frequent deadline misses can be tolerated as long as they do not
affect user experience.

As more and more applications that require fast reaction times implement some level of
automaton, for example autonomous driving, timing reliability can be a prime QoS metric
for a large number of systems. Usual methods for improving timing reliability include
faster execution, isolation of critical computation and communication etc. The spatial
parallelism in many/multi-core systems can be used to exploit the inherent parallelism in
an application and reduce the execution latency. However, distributing the computation
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across multiple processing elements introduces design complexities in terms of isolation
and communication latency.

2.1.3. Functional Reliability

With the rising constant failure rates during the normal life of the system, the chances
of such failures manifesting as incorrect computations has also increased. Hence, in appli-
cations that require high levels of computational accuracy such as financial transactions
in point-of-sales systems or ATMs, scientific applications, the corresponding QoS can
be expressed in terms of functional reliability. It concerns the correctness of the results
computed by a system operating in a fault-inducing environment. The functional relia-
bility can be quantified by the probability of no physical fault-induced errors occurring
during application execution or the MTBF. Improving the functional reliability usually
involves implementing one/more among–Spatial, Temporal and Informational redundancy.
In many/muti-core systems, additional processing elements can be used to implement
spatial redundancy effectively without considerable overheads on the execution latency.
However, the increased power dissipation overheads and reduced spatial parallelism for
computation resulting from this approach can adversely affect the other reliability metrics.

2.2. Fault Model

The reliability-specific events in a system can be classified as one of–failure, error
and fault [13]. An application failure refers to an event where the service delivered by
the system deviates from the expected service defined by the application requirements.
An error refers to the deviation of the system from a correct service state to an erroneous
one. Faults refer to the adjudged or hypothesized cause of the error. The physical faults in
a system can be further classified into the following types, based on their frequency and
persistence of occurrence.

1. Transient faults occur at a particular time, remain in the system for some period
and then disappear. Such faults are initially dormant but can become active at any
time. Examples of such faults occur in hardware components which have an adverse
reaction to some external interference, such as electrical fields or radioactivity.

2. Intermittent faults show up in systems from time to time due to some inherent design
issue or aging. An example is a hardware component that is heat sensitive—it works
for some time, stops working, cools down and then starts to work again.

3. Permanent faults such as a broken wire or a software design error show a more
persistent behavior than intermittent faults—start at a particular time and remain in
the system until they are repaired.

The reliability-aware resource management presented in this article concerns the
mitigation of physical faults only. Such physical faults, if unmasked, lead to errors which
in turn may lead to application failures. The manifestation of all types of physical faults
can be studied under two broad categories—Soft-errors and Aging. The effects of soft-
errors caused by transient faults are considered for functional reliability analysis. Similarly,
the aging-related intermittent and permanent faults are used in the analysis for lifetime
reliability. Timing reliability issues occur usually due to aging-induced slower execution
and additional computations that are employed to mitigate soft-errors.

2.2.1. Soft-Errors

Soft-error refer to non-reproducible hardware malfunctions caused by transient faults.
The additional charge induced by external interference (such as alpha particles from
radioactive impurities in chip packaging materials [14], and neutrons generated by cosmic
radiation’s interaction with the earth’s atmosphere [15]) can sometimes (when > Qcrit)
lead to changing the logic value of the affected nodes in the system. While in memory
elements the changed value is retained until the next refresh, in combinational circuits
the computations are affected only if the wrong value is latched by a memory element.
The probability of such computational errors is reduced by either of the three masking
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effects—Logical masking, Electrical masking and Latching-window masking. In the quest
for faster faster systems, although logical masking has remained unchanged, the deeper
pipelines and aggressive voltage scaling have reduced latching-window masking and
electrical masking, respectively, leading to increased Soft Error Rate (SER).

2.2.2. Aging

The term aging broadly refers to the degradation of semiconductor devices due to
continued electrical stress that may lead to timing failures and reduced operational life of
the integrated circuits (ICs). The primary physical phenomena causing aging are listed
next [16].

1. Bias Temperature Instability (BTI) results in an increase in the threshold voltage, Vth
due to the accumulation of charge in the dielectric material of the transistors [17].
The use of high-k dielectrics in lower technology nodes has resulted in an increased
contribution of BTI to aging.

2. Hot Carrier Injection (HCI) occurs when charge carriers with higher energy than the
average stray out of the conductive channel between the source and drain and get
trapped in the insulating dielectric [18]. Eventually it leads to building up electric
charge within the dielectric layer, increasing the voltage needed to turn the transis-
tor on.

3. Time Dependent Dielectric Breakdown (TDDB) comes into play when a voltage
applied to the gate creates electrically active defects within the dielectric, known
as traps, that can join and form an outright short circuit between the gate and the
current channel. Unlike the other aging mechanisms, which cause a gradual decline
in performance, the breakdown of the dielectric can lead to the catastrophic failure of
the transistor, causing a malfunction in the circuit.

4. Electromigration (EM) [19] occurs when a surge of current knocks metal atoms loose
and causes them to drift along with the flow of electrons. The thinning of the metal
increases the resistance of the connection, sometimes to the point that it can be-
come an open circuit. Similarly, the accumulation of the drifted material can lead to
electrical shorts.

3. System Model

The research works reviewed in this article, in general, aim at improving the reliability
of the system. These improvements could be aimed at mitigating one or more types of
faults across a subset of all the components of the system. In order to evaluate the impact
of the proposed improvements, each of the works makes certain assumptions regarding
the system components. We provide an overview of the system components under two
models—Architecture and Application.

3.1. Architecture Model

The architecture model encapsulates all the features and the assumptions regarding
the hardware platform. Figure 4 shows the components of a typical architecture model.
The fault mechanisms discussed in Section 2.2 can affect different aspects of processing-
computation, memory and communication.
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Figure 4. Architecture model.

3.1.1. Computation

As shown in Figure 4 we will use the term Processing Element (PE) to refer to each
core/processor/accelerator implemented on the reconfigurable logic of the architecture.
Soft-errors and the stuck-at faults due to aging directly affect the factional reliability. Simi-
larly aging-related delays can result in timing violations. A more indirect impact of the
timing and lifetime reliability can be observed as a result of fault-mitigation measures
implemented for reducing errors in computation. Spatial redundancy measures such as
TMR and Dual Modular Redundancy (DMR) result in higher power dissipation, thereby
accelerating aging. Similarly, temporal and information-redundancy based methods intro-
duce additional computations for processing the same workload and can led to degradation
of both timing and lifetime reliability. The architecture may be homogeneous or heteroge-
neous w.r.t. the extent of spatial redundancy and other hardening techniques implemented
in each of the PEs. Other types of heterogeneity may be due to the result of varying
implementations for low-power design (ex. Big-Little from ARM), ISAs, ASIPs, etc.

3.1.2. Communication

As shown in Figure 4, we use the term on-chip interconnect to denote the set of
communication-related components on the hardware architecture. Although the imple-
mentation of the on-chip interconnect may vary among bus-based, etc., with the rising
number of PEs, Network-on-Chip (NoC)-based communication is being increasingly used
in multi-/many-core systems [20]. Reliability of the on-chip interconnects involves en-
suring error-free inter PE communication by using a combination of different types of
redundancy methods across multiple layers of the Open Systems Interconnect (OSI) model.
A detailed account of various reliability issues in on-chip interconnects and their mitigation
can be found in [21,22]. Resource management of communication elements usually in-
volves allocating links and routers to communicating tasks. Depending upon the reliability
requirements and the criticality, the allocation algorithm may choose to provide different
types of redundancy methods.

3.1.3. Memory

Similar to computation, soft-errors and stuck-at faults may result in incorrect values
being read from the memory elements on the hardware platform, leading to reduced
functional reliability. Information redundancy in the form of additional bits for Error
Checking and Correcting (ECC) is commonly used for both Static Random Access Memory
(SRAM)-based caches and Dynamic Random Access Memory (DRAM)-based main memory.
Hamming [23] or Hsiao [24] code based Single-bit-Error-Correcting (SEC) and Double-bit-
Error-Detecting (DED) codes are usually sufficient for most systems. More robust methods
like Double-bit-Error-Correcting (DEC) and Triple-bit-Error-Detecting (TED) codes can be
used for higher resilience against random bit errors. Storage overhead and power are the
cost factors associated with design of a resilient memory system. Flexible error protection
methods can enable adaptation to system-level requirements, both at design-time as well
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as run-time. ECC granularity and fault-coverage provide tunable parameters, while the
memory controller acts as the tuning knob for varying error protection levels based on
system requirements.

3.2. Application Model

In general, one application or multiple applications within a system can be executed
on a platform according to its mission. These applications consist of different tasks whose
properties are dependency, periodicity, execution time, and criticality. We introduce each
property of these tasks briefly.

3.2.1. Task Dependencies

Tasks within an application can be dependent or independent to each other. Inde-
pendent tasks mean that there is no precedence or communication among them, while
the dependency represents the flow of data between tasks and induces a partial order on
the task set. Such precedence relations are usually described through a Directed Acyclic
Graph (DAG), where tasks are represented by nodes, and precedence relations by ar-
rows. Figure 5a represents a combination of dependent (as DAG) and independent tasks.
Synchronous Data Flow Graph (SDFG) is another common application representation that
models cyclic dependency. This task model is used in streaming multimedia applications,
in which support for pipe-lined execution are needed [12,25,26]. Figure 5b shows an ex-
ample of SDFG for the H.263 encoder application [25,26], in which nodes are called actors.
Each actor is executed by reading data from its inputs and writing the results as a token on
the output port.

(a) (b)

Figure 5. Examples of task dependency. (a) DAG of UAV application [27]. (b) SDFG of H.263 encoder application [26].

3.2.2. Application/Tasks’ Periodicity

Another property of tasks is their execution periodicity (i.e., the time of activation
to be executed) that can be periodic, aperiodic, or sporadic. A periodic task consists of
an infinite sequence of jobs, that are regularly activated at each period (i.e., the time to
complete one iteration). An aperiodic task also consists of an infinite sequence of jobs,
but their activations are not regularly interleaved. Sporadic tasks are aperiodic tasks where
consecutive jobs are separated by minimum initiation time interval.

3.2.3. Application/Tasks’ Criticality

In general, all tasks running on a common platform, may not be equally critical (i.e.,
not uniform criticality) for doing a correct service. Avionics, automotive and medical
devices are examples of these systems. Indeed, due to the various safety demand for
tasks, within an application, tasks can have different reliability requirements and criticality
levels [28]. The systems with different criticality tasks are called mixed-criticality. In this
regard, a set of industrial standards, e.g., DO-178B [29], has been introduced with five
levels of safety, i.e., A, B, C, D, and E, (A and E provide the highest and the lowest levels
of safety, respectively). A failure occurring in tasks with different criticality levels has a
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different impact on the system, which are shown in Table 1. The Probability-of-Failure-per-
Hour (PFH) values (adopted by safety standards for tasks’ safety measurement) have been
determined for all the criticality levels to guarantee system safety.

In these mixed-criticality systems, the correct execution of tasks with higher criti-
cality levels and QoS of tasks with lower criticality levels are considered, especially for
service-oriented systems. Furthermore, mixed-criticality tasks may be real-time, i.e., the
high-criticality tasks must be executed correctly before their deadlines to not cause catas-
trophic consequences. For tasks with lower-criticality levels, guaranteeing the deadlines is
commonly regarded as a QoS parameter. Therefore, to ensure the correct execution of high-
criticality tasks in any situation and the minimum QoS of low-criticality tasks while the
system computation time is beneficially utilized, different WCET estimations, pessimistic
(CHI

i ) and optimistic (CLO
i ), are used. As a result, different operational modes, according

to the number of WCET estimations are considered for these systems. Figure 5a shows
an example of mixed-criticality applications, Unmanned Air Vehicle (UAV), where some
tasks are dependent on other tasks. In this application, T1, T2 and T3 are the high-criticality
(HC) tasks which are responsible for the collision avoidance, navigation, and stability of
the system. Failure in the execution of these tasks may lead to system failure and cause
irreparable damage to the system. Besides, low-criticality (LC) tasks ({T4, . . . , T8} in the
figure) are responsible for recording sensors data, GPS coordination, and video transmis-
sions, to help the system carry out its mission successfully. Furthermore, as shown in this
figure, since the correct execution of high-criticality tasks is crucial, two different WCETs
are computed for them.

Table 1. DO-178B safety requirement [29].

x A B C D E

PFHx <10−9 <10−7 <10−5 ≥10−5 -
Failure Condition Catastrophic Hazardous Major Minor No Effect

From the mixed-criticality system operation perspective, the system starts execution in
the low-criticality mode in which all tasks are expected to finish their execution before their
optimistic WCET (CLO

i ). If the execution of at least one high-criticality task exceeds its CLO
i ,

while the correct output of the task is not ready, the system switches to the high-criticality
mode and all task are expected to finish their execution before their pessimistic WCET
(CHI

i ). Hence, since the requested demand for the system computation time is increased in
this mode, some low-criticality tasks may be dropped to guarantee the correct execution of
high-criticality tasks.

4. Reliability Management in Multi/Many-Core Systems

4.1. Problem Statement

The related research problem involves the optimization of the allocation of the avail-
able hardware resources to the computation, communication and storage requirements
of an application(s) while satisfying the reliability and criticality constraints. We formu-
late an optimisation problem that serves as a generic framework, and the research works
mentioned in this article are discussed with reference to it.

Application: Each application is represented as a tuple Gg(Tg,Eg) containing the
set of nodes Tg representing tasks/actors, and a set of directed edges Eg, representing
the precedence and the communication between the tasks. Similarly, a scenario denoting
the applications executing in parallel can be represented by a set of applications Ss =
{G1, G2, . . . }.

Architecture: Similar to an application, a mesh NoC-based hardware platform can
be represented by a tuple H(SW,C). SW is the set of switches and C represents the
connections among the switches. Each switch Sws ∈ SW can be attached to one or more
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cores. Assuming Ps cores are connected to Sws, the total number of cores in H(SW,C) is
|P| = ∑ |Ps|Sws∈SW, where the set P denotes the collection of cores.

Allocation: Resource management involves timely allocation of appropriate hardware
resources for all the tasks and communication in the scenario. We represent the resource
allocation by two sets—(1) Task allocation: Talloc = {(Tt, Pt, Stt), ∀Tt ∈ T}, where T is the
set of all tasks in the scenario, and (2) Edge allocation: Ealloc = {(Ee, Ce, Ste), ∀Et ∈ E},
where E is the set of all edges in the scenario. For a feasible solution, the sets Talloc and
Ealloc must satisfy certain constraints. The constraints may be of the following types:

• Precedence constraints: Any task must start execution only after all its preceding tasks
and incoming communication is complete.

• Scheduling constraints: Properties such as each task/actor assigned to a single core,
not more than a single task executing on a single core at a time etc. must be satisfied.

• Criticality constraints: PFH and reliability requirements should be corresponded with
the criticality levels.

Performance Estimation: Varying the resource allocation results in varying system-
level performance. Different methods of estimating these performance metrics—both
analytical and empirical—as a function of Talloc and Ealloc have been used across the works
discussed in this article. We use the notation shown in Equation (1) to denote these methods.
The estimated performance is used during the decision-making for reliability resource
management. While the priority of each metric varies with application, Equation (2) shows
the generic optimization problem. The terms w〈m〉 determine the application-specific
priority of the system-level metrics (〈m〉). Similarly, the terms c〈m〉 are used to denote the
existence of constraints due to application-specific QoS requirements. The terms Talloc and
Ealloc represent the set of all possible task and edge allocations, respectively.

System-level Performance Estimation: Timing Reliability: Tsys = f uncRT(Talloc, Ealloc)

Functional Reliability: Fsys = f uncRF(Talloc, Ealloc); Lifetime Reliability: Lsys = f uncRL(Talloc, Ealloc)

Power Dissipation: Wsys = f uncP(Talloc, Ealloc); Energy Consumption: Jsys = f uncE(Talloc, Ealloc)

(1)

minimize
∀Talloc∈Talloc ,∀Ealloc∈Ealloc

{
wT Tsys, wFFsys, wLLsys, wWWsys, wJ Jsys

}
s.t., Tsys ≥ cT TSPEC;

Fsys ≥ cF FSPEC; Lsys ≥ cL LSPEC;

Jsys ≤ cJ JSPEC; Wsys ≤ cW WSPEC;

(2)

4.2. Classification of Solution Approaches

The research articles discussed in this survey employ various methods for finding
the optimal resource allocation. Further, each article focuses on optimizing a subset of
the system-level performance metrics shown in Equation (2). In addition to providing an
overview of the various approaches and prioritization (among different metrics) presented
in each of the articles, we also classify them based on the criterion shown in Figure 6. Some
of the criteria, such as fault-types, application model, architecture model, and criticality
have been covered in the earlier sections. Additionally the articles can be classified on
the experimental evaluation methodology. While some works use analytical methods
to estimate the effectiveness of their proposed methods, others use simulation based
approaches. In most of the cases real-world applications, in terms of standard benchmark
suites have been used for the experiments. Along with reliability, other system level metrics
such as power dissipation, energy consumption, throughput and thermal limits have been
reported from the experiments as well. Further, some works—especially for reconfigurable
systems—use resource utilization as an optimization objective.
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Figure 6. Classification criterion.

The DSE approach used in the research works can be categorized under (1) Design-
/compile-time, (2) Run-time, and (3) Hybrid. While in most cases the methods used in each
article can be classified under one of the three types, in some cases more than one of the
approaches have also been used—typically for different objectives.

• Design-/compile-time: In this approach all the design decisions and the related
optimizations are performed before the system is deployed. As shown in Figure 7,
the related analysis is made under the design-time assumptions regarding both the
application workload and the system’s hardware resource availability. This approach
allows the designers to generate highly optimized solutions. However, it also limits
the adaptability of the system to dynamic operating conditions.

• Run-time: This approach involves implementing all resource allocation decisions
only after the deployment of the system. This allows the system to adapt to varying
operating conditions—both external and internal. External variations might include
changing external radiation, changing workload resulting in varying QoS require-
ments etc. Internal variations include the changing performance/availability of the
cores due to aging, as shown in Figure 7, low energy availability in mobile systems
etc. In the run-time DSE approach the dynamic adaptability comes at the cost of result
quality. Since all the resource management decisions are determined at run-time, it
may result in sub-optimal solutions due to computation and availability constraints.

• Hybrid: The hybrid approach attempts to combine the best of both design-/compile-
time and run-time approaches. It usually involves analysing most of the possible run-
time operating conditions, finding the optimal solution for each condition of design
time and storing the optimal solution to be used for run-time adaptation. As shown
in Figure 7, the design-time analysis could involve determining the possible scenarios
and determining the optimal solution for each scenario for varying core availability
that might change during run-time due to aging and the resulting physical faults.
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Figure 7. DSE approaches: Design-time/Compile-time, Run-time and Hybrid.

5. Lifetime Reliability Management in Multi/Many-Core Processors

Resource management for improving lifetime reliability may involve direct approaches
such as allocating spare cores in case of faults or indirect approaches such as wear-leveling
and thermal management to delay the onset of faults. We summarize the related works
under three categories; design-time approaches (D.T), run-time approaches (R.T), and hy-
brid (H), which we discuss in detail as follows. Table 2 lists the works in lifetime reliability
management of these three categories for both uniform and mixed-criticality task mod-
els in detail. In this table, we also present the considered criteria in the state-of-the-arts,
such as fault model (Transient, Intermittent, permanent), system model (Components
and Heterogeneity), and application model (Dependency-Independent (I), Dependent (D),
Periodicity-Periodic (P), Sporadic (S), Aperiodic (A)), that have been explained in detail,
in Section 2.2, Section 3.1, and Section 3.2, respectively.

5.1. Design-Time Strategies

A purely design-time DSE approach to improving the system’s lifetime reliability usu-
ally involves significant analytical estimation of workload stress. Furthermore, the scope
of design-time analysis is limited by the assumptions of complete knowledge of the appli-
cations that will be executed on the hardware platform. Similarly, the estimation usually
employs assumptions about the variability of the execution time of the various tasks in the
application. The case for resource allocation explicitly targeting lifetime improvements
is presented by [30]. Hartman er al. showed the improvement in system lifetime when
task-mapping was optimized directly for reducing aging rather than trying to reduce
the thermal stress in the system. The authors used an Ant Colony Optimization (ACO)-
based design-time optimization of lifetime and compared the results with randomized
task-mapping and task-mapping optimized for reducing the temperature using Simulated
Annealing (SA). The authors attribute the improvements in the ACO-based approach to
the negligence of the temperature optimization approach to factors such as supply voltage,
current density and the aging-related interaction between the application and the archi-
tecture. Ref. [31] improved upon the lifetime optimization approach with task-mapping
by determining the appropriate allocation of computation, communication and memory
resources during the design of an NoC-based system for an application. Specifically, the au-
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thors have proposed the search for the optimal allocation of execution slack, storage slack
and communication architecture during the hardware platform design. The authors ex-
tended this approach in [32] to perform joint optimization of system lifetime and the yield.
While the optimization for lifetime involves slack distribution such that the system can
survive most wear-out induced failures, the yield optimization involves surviving the most
defect-induced failures in the system. The optimization methodologies presented in [30–32]
use system-level simulation for estimating the lifetime as a result of the design decisions.
In [33], Ma et al. presented a Multi-Armed Bandit (MAB)-based exploration for allocating
less simulations for sampling of weaker solutions. The authors compared their approach
against regular Monte-Carlo Simulations (MCS) in the optimization of lifetime-aware
Multi-Processor System-on-Chip (MPSoC) design and report similar quality of results as
MCS with up to 5.26× fewer samples. A more analytical approach, proposed in [34], for the
estimation of system-level lifetime reliability in multi-core systems have found use in
multiple research works that rely on design-time optimization for the DSE problem. In [35],
Das et al., used the average execution time of each task, and the corresponding wear-out
due to EM, to estimate the systems MTTF for varying task-mapping configurations and
different Dynamic Voltage and Frequncy Scaling (DVFS) modes. The net aging effect on
each core has been modelled as the average across all the tasks mapped to the core in every
period (of periodic applications). The aging estimation methodology used in [35] is based
on the techniques presented by [34]. Further, [26] use similar lifetime estimation approach
to present a DSE methodology for showing the trade-off between permanent and transient
fault-tolerance. Specifically, the authors explore the effect of temporal redundancy on the
EM-related wear-out failures. Figure 8a shows the results from [26], depicting the effect of
increasing number of checkpoints in the tasks of an application, on the average (expected)
execution time and transient- and permanent-fault reliability. A more indirect approach of
improving system lifetime by reducing the core temperatures is presented in [36], where
the authors explore both the temporal and spatial effects of task-mapping on the peak
temperature of a core. Recently, [37] have proposed a more generic DSE framework for
joint optimization across varying types of redundancy methods and multiple design ob-
jectives. The authors presented the benefits of using a cross-layer optimization approach
and proposed improved Multi-Objective Evolutionary Algorithms (MOEA)-based search
methods for the large design space. Most design-time DSE works for lifetime reliability
use the wear-out estimation for electromigration. Such EM-related wear-out effects are
particularly disruptive for on-chip communication components. To this end, [38] proposed
a dual physical channel switch architecture that was designed to improve the system’s
lifetime in the presence of permanent faults. The design-time analysis and optimization
for mixed-criticality systems introduces the additional complexity of considering multi-
ple criticality levels across the tasks. Related research for mixed criticality systems are
discussed next.
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(a)

(b)

(c)

Figure 8. Design space exploration for lifetime reliability. (a) Design-time DSE results in [26]. (b)
Aging estimation for run-time DSE [39]. (c) Hybrid DSE [40].
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Table 2. Summary of state-of-the-art approaches in lifetime reliability aware resource management.

Fault Model App. Model System Model Imp. DSE Technique
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Hartman’10 [30] × × � × D P × � × Het. × � D.T Task Mapping
Meyer’10 [31] × × � × D P � � � Het. × � D.T Slack Allocation
Meyer’14 [32] × × � × D P � � � Het. × � D.T Slack Allocation, Yield

Ma’17 [33] × × � × D P � � × Het. × � D.T MAB Simulation
Das’14 [35] � × � × D P × � × Hom. × � D.T Task Mapping
Das’13 [26] � × � × D P × � × Het. × � D.T Task Mapping
Das’14 [36] × × � × D P × � × Hom. × � D.T Task Mapping

Sahoo’20 [37] � × � × D P × � × Het. × × D.T Task Mapping
Kakoee’11 [38] � × � × × × � × × × × � D(R).T Hardware Redundancy

Hartman’12 [41] × × � × D P � � × Het. × � R.T Task (Re)-Mapping
Duque’15 [42] × � � × D P × � × Hom. × � R.T Task (Re)-Mapping
Sahoo’16 [39] × � � × D P × � × Hom. × � R.T Task (Re)-Mapping

Rathore’19 [43] × × � × D P × � × Hom. × � R.T Task (Re)-Mapping
Venkataraman’15 [44] × × � × D P × � × Hom. × × R.T Hardware Migration

Wang’19 [45] × × � × D P × � × Hom. × � R.T Task (Re)-Mapping
Haghbayan’16 [46] × × � × D P × � × Hom. × � R.T Task (Re)-Mapping
Haghbayan’17 [47] × × � × D P × � × Hom. × � R.T Task (Re)-Mapping

Rathore’18 [48] × × � × D P × � × Hom. × � R.T Task (Re)-Mapping
Raparti’17 [49] × × � × D P � � × Hom. × � R.T (3D) Task Mapping
Bauer’15 [50] � � � × D P � � × Het. × � R.T Multi-layer
Das’13 [51] × × � × D P � � × Hom. × � H Task (Re)-Mapping
Das’16 [52] × × � × D P � � × Hom. × � H Task (Re)-Mapping
Das’13 [53] × � � × D P × � × Hom. × � H Task (Re)-Mapping

Bolchini’13 [54] × × � × D P � � × Hom. × � H Task (Re)-Mapping
Namazi’19 [55] � × � × D P � � × Hom. × � H Task (Re)-Mapping
Kriebel’16 [56] � × � × D P � � × Hom. × � H Task (Re)-Mapping
Nahar’15 [57] � × � × D P � � × Hom. × � H Redundancy
Sahoo’19 [40] � × � × D P × � × Het. × × H Task (Re)-Mapping
Axer’11 [58] � × � � I P × � × Hom. × × D.T Redundancy

Pathan’17 [59] � × � � I S × � × Hom. × × D.T Redundancy
Safari’20 [60] � × � � D P × � × Hom. × × D.T Redundancy

Saraswat’09 [61] � × � � I P � � � Het. × � R.T Task Re-Mapping
Liu’13 [62] × × � � I P × � × Hom. × × R.T Task Re-Mapping

Ranjbar’19 [63] × × × � D P × � × Hom. × � R.T Thermal Management
Iacovelli’18 [64] × × � � I P × � × Hom. × × H Task (Re)-Mapping
Bayati’16 [65] × × � � I S × � × Hom. × × H Task (Re)-Mapping

Using redundancy in multi-core systems is one of the most useful techniques to man-
age permanent faults and consequently, lifetime reliability at design-time, used in [58–60].
Ref. [58] have presented a reliability analysis to tolerate soft errors by using checkpointing
and redundancy techniques. The application is modeled as a set of independent tasks
that consist of fault-tolerant tasks, which are more critical, and non-fault-tolerant tasks.
In this paper, the lifetime reliability is represented by MTTF, and to improve the reliability,
in addition to checkpointing, redundancy is used that each task is mapped two times
perhaps on the same core (time redundancy) or different cores (hardware redundancy).
To evaluate their method and show the improvement of lifetime reliability, the results
are compared to a reference Monte-Carlo simulation. The work in [59] has presented a
resource-efficient scheduling algorithm for independent safety-critical sporadic tasks. In
this algorithm, first, the number of sufficient backups (multiple instances) for each task
is determined to guarantee timing and lifetime reliability. Then, to reduce the processing
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resources consumption, the number of active backups for tasks are determined and the
other backups are counted as passive. Hence, active backups can execute in parallel with
primary tasks, while the passive backups would be executed in the case of occurring faults
in active backups. In the end, the effectiveness of their proposed method is shown by using
an example application.

In [60], researchers have presented an approach for dependent mixed-criticality tasks
running on homogeneous multi-core processors, in which parallelism and redundancy
policy have been applied for fault-tolerance. They enhance the reliability at design-time
by using spare cores and tolerate both transient and permanent faults. Hence, they just
improve the reliability of tasks with higher criticality by running task replica on the spare
core. To allocate tasks on cores, first, all tasks are mapped to primary cores, and if the
deadline of at least one high-criticality task is missed, the parallelism policy is used. It
means the low-criticality tasks that can be scheduled concurrently are re-mapped one by
one to spare cores until high-criticality tasks’ deadlines are met. If there is still a high-
criticality task whose deadline is missed, the reduction policy is used in which the QoS
of low-criticality tasks is aggravated by reducing the worst-case execution time of low-
criticality tasks on primary cores. To enhance reliability, they schedule the replicas of
high-criticality tasks in the spare core by postponing the execution of replicas as much
as possible. After allocating tasks on primary and spare cores, the free slack in each core
is used to minimize the energy consumption by changing the V-f levels, such that the
reliability constraints of criticality tasks would not be violated. Eventually, the presented
method has been evaluated in simulation by using some random task graphs.

5.2. Run-Time Strategies

Run-time optimization of system lifetime usually involves periodically assessing the
aging-level of each core and other components in the hardware platform and modifying
the workload distribution in order to achieve wear-leveling. Wear-out estimation using
special hardware structures and corresponding task-remapping to improve the system
lifetime was proposed by [41]. The authors in [41] assumed the presence of wear sensors
in every PE in the architecture and showed that the usage of such sensors instead of
temperature sensors can improve the lifetime of a system by up to 14.6% compared to a
thermal optimization approach. A heuristic scoring system, based on the weighted score
from the wear sensors of the various architecture elements, is used for evaluating the
candidate mapping solutions at run-time and perform the task-remapping accordingly.
There have been more recent works that leverage the frequency of the occurrence of
intermittent faults for wear-out estimation instead of using special hardware structures
such as those used by [41]. For instance, ref. [42] presented a averaging window-based
approach, that computes the average number of intermittent faults observed in each core
over a fixed number of past execution cycles (moving window), to determine the wear-out
level in each core. They ranked the cores in terms of their wear-out level to remap the tasks
of an application accordingly. However, the evaluation in [42] involved experiments with
the Infant Mortality stage of the system lifecycle (Figure 2), which primarily represents the
initial failures due to manufacturing defects and burn-in tests, and not the wear-out region
that represents the aging of electronic components. Ref. [39] improved upon this approach
by using the Centroid test [66] over the arrival times of the intermittent faults in each core,
as shown in Figure 8b. The centroid test presents a better statistical estimate of the wear-out
of each core compared to a moving window approach. While the moving window approach
suffers from a form of short-term memory, the centroid test is more reflective of the trends
of aging seen by any arbitrary PE. Using this approach, considerable improvements
over [42] were reported in [39]. Both [39,42] used the partial repairable nature of aging
mechanism such as Negative Bias Temperature Instability (NBTI) to improve the lifetime
both in terms of MTTF and MTTC. However, both [39,42] present the results with known
workloads and do not consider the optimization for new application execution requests.
Ref. [43] presented an aging-aware run-time task-remapping methodology that can cater to
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new application requests in addition to using a Reinforcement Learning (RL)-based online
adaptation method for ensuring performance and improving lifetime. The authors present
a learning based approach to keep track of the interactions between the tasks and cores
to learn the process variations and the aging effects in the many-/multi-core system in
order to determine the optimal operating frequency for each core. The authors show their
approach to be scalable with the number of cores in the architecture. A novel approach to
reducing the overheads during task-remapping due to permanent or intermittent faults
was presented by [44]. The authors proposed a hardware-based task-migration technique
that could reduce the re-mapping latency by up to 6.5×. A host of such run-time estimation
and wear-leveling across multiple layers and different architectures are presented in [50].
Most works focused towards improving system lifetime treat the performance metrics such
as throughput and latency as constraints and the lifetime as the optimization objective.
However, ref. [45] presented a resource management approach that aims at optimizing
the throughput under user-specified system lifetime constraints. The authors presented
a run-time DSE methodology that implements a borrowing strategy to differentiate the
resource allocation for compute- and communication-intensive applications. Specifically,
the proposed method relaxes the short-term lifetime reliability constraints to improve
throughput for communication-intensive applications while ensuring long-term lifetime of
the system.

Most of the articles discussed in this section do not show the scalability of their
proposed methods for many number of cores in the architecture. The scaling performance
of these methods is especially important in the dark silicon era [67]. Dark Silicon refers to
the phenomenon where, with each technology generation, the thermal and power limits
of the system reduces the fraction of transistors that can operate at maximum frequency.
Therefore, appropriate run-time resource management becomes crucial for enabling the
useful integration of a large number of cores in the architecture. In [46], Haghbayan et al.
present a methodology for lifetime-aware run-time task-mapping in many-core systems
for the dark silicon era. The proposed technique involved running a long-term reliability
analysis unit to track the aging of the cores along with a short-term re-mapping unit. The re-
mapping unit utilizes the information from the analysis unit to provide longer recovery
times to highly aging cores in the system. In [47], Haghbayan et al. extended this approach
for the joint optimization of performance and lifetime reliability. Additionally, they adopted
a hierarchical approach to task re-mapping where the first stage determined the appropriate
region in the hardware and the second stage determined the appropriate PEs in the selected
region to be used for mapping the application. A similar hierarchical approach to lifetime-
aware run-time mapping of applications to many-core systems is presented by [48], where
the authors intersperse the selected region with dark cores to maintain the thermal limits
and reduce accelerated aging. An aging-aware run-time task-mapping for 3D NoC-based
systems is presented in [49]. In this work, Raparti et al. consider the additional aging
effects faced due to the 3D nature of the hardware platform. The higher current densities
and limited number of power pins in such structures warrant special considerations for
the EM-related aging of the power delivery network along with the aging of the PEs in
the system.

Next, we discuss some related research in the context of mixed criticality systems.
As we mentioned, one of the techniques to guarantee lifetime reliability is using task
re-mapping at run-time. As shown in Table 2, Refs. [61,62] have used this technique that
we explain each work in detail. Ref. [61] proposed a heuristic to manage the transient and
permanent faults for mixed-criticality systems that tasks can be hard or soft (a task is said
to be hard if missing its deadline may cause catastrophic consequences and, also a task
is said to be soft if missing the deadline cause a performance degradation [68]). In this
heuristic, checkpointing and roll-back recovery is used to tolerate transient faults and also
task re-mapping to tolerate permanent faults. Meeting the deadlines of hard tasks and
maximizing the QoS of soft tasks through task re-mapping are the targets of the heuristic.
In the case of a permanent failure for a core, first the hard tasks and then soft tasks re-
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mapped to other healthy cores. Besides, researchers in [62] have proposed an algorithm for
independent periodic mixed-criticality tasks to minimize the number of task re-mapping,
while the most critical applications continue to meet their deadlines in homogeneous multi-
core systems. When a core fails due to the permanent faults, first high-criticality tasks
are re-mapped to other healthy cores, then, low-criticality tasks running on the processor
may be re-mapped to other processors or even dropped to increase performance. Indeed,
the algorithm makes a trade-off between the number of task re-allocations and the system’s
performance. The efficiency of the algorithm has been evaluated through simulation with
a random task generation.

On the other hand, in [63,69], online peak power, and thermal management heuristic
has been proposed, in which the re-mapping technique is used in the case of available
dynamic slack to re-map a ready task from the hot core to a core with a lower temperature
to manage the system’s maximum temperature which improves the lifetime reliability.
In addition, researchers have also proposed an approach to assign available dynamic slack
to an appropriate task among k look-ahead tasks, which has more impact on system power
and maximum temperature and reduce the V-f levels. The proposed method has been
evaluated for dependent periodic mixed-criticality tasks (both real-life and random task set
generation) in simulation. Figure 9 depicts an example of the thermal hotspot mitigation
result of the system based on the proposed method in [63] and a state-of-the-art [27]).
As shown, the proposed method can help in balancing the difference in temperature
between the cores, which results in lifetime reliability improvement in the long-term.
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Figure 9. Temperature profiles of different approaches. (a) [27]. (b) [63], k = 1. (c) [63], k = 4.

5.3. Hybrid Strategies

The hybrid DSE approach to improving lifetime reliability usually involves searching
and storing multiple system configurations for various fault/aging-scenarios at design-
/compile-time that the system can be reconfigured to during run-time. Correspondingly,
ref. [51] presented a methodology for reliability-driven task-mapping for MPSoCs that
could be used for multiple applications as well. Their compile-time analysis used con-
vex optimization to find the optimal task-mapping for different system states resulting
from permanent faults to one or more cores. The run-time optimization in [51] involved
considering the aging of the NoC for determining the appropriate task-mapping to be
selected dynamically. The experimental evaluation in [51], involved testing the proposed
methods for both DAG and SDFG representation of synthetic and real-world applications.
Ref. [52] used a similar approach with the added design objective of energy consumption
and the consideration of the thermal effect of adjoining cores on the reliability of any
arbitrary core. In another similar work, ref. [53] presented hybrid DSE approaches that
considered the occurrence of both permanent and intermittent faults during design-time
analysis. The run-time optimization in [53] takes into account the energy consumption
of task-remapping during the selection of the appropriate dynamic system configuration.
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Similarly, Ref. [54] presented a task-remapping methodology for mitigation of core aging
and reduction of communication energy. In addition to selecting and storing a set of
Pareto-front points obtained from design-time optimization for performance and reliabil-
ity, they proposed a fast heuristics-based run-time task-remapping for reducing energy
consumption. A similar two-pronged approach to improve system lifetime is proposed
in [55]. Here, the authors use the offline optimization to counter the effect of transient
faults and the online re-mapping is aimed at migration-reduced adaptation to permanent
faults. Similarly, in [56], Kriebel et al. propose an aging-aware resource management in the
context of Redundant Multi-Threading (RMT). RMT allows the mitigation of soft-errors by
executing copies of a task as two parallel threads. However, RMT can also lead to more
aging of the core due to higher utilization. Kriebel et al. store multiple compiled versions
of the application exhibiting varying vulnerability to soft-errors, aging and execution time.
At run-time, the appropriate version is selected to be executed on an appropriate PE, along
with the decision to enable/disable RMT, depending upon the vulnerability and aging-
impact of the application. All of the works implementing run-time adaptation to failing PEs
implement some form of task-migration. However, ref. [57] proposed a spatial redundancy
based task-mapping approach that aims to remove the task-migration overhead completely
by replicating the execution of tasks. In Nahar and Meyer [57], provide tolerance to both
transient and permanent faults by ensuring that no single failure affects more than one copy
of the redundant task. The authors report considerable improvements in the fault-tolerant
lifetime of the system compared to traditional spatial redundancy-based methods such as
TMR and DMR.

Most of the works in hybrid DSE store either the complete set or a subset of the Pareto-
front points that are used during run-time. Recently [40] proposed a methodology where
additional non-Pareto points are also stored by the system. These additional points were
useful in providing configurations that resulted in lower reconfiguration time at the cost
of slightly sub-optimal performance. Figure 8c shows the rationale behind this approach.
In the figure, the system has to reconfigure due to changing requirements (S → S′) at
run-time. If only Pareto-front points were stored, it would result in the system switching
from FOp to F′

Op However there might be non-dominating points (such as F′′
Op) that satisfy

the new requirements while costing lower reconfiguration than F′
Op. Thereby, storing

additional points within ΔErrRate and ΔAvgMS around the Pareto-front points may result
in better dynamic adaptation.

There are a few works [64,65], in which the researchers have taken advantage of both
run-time and design-time phases to improve the lifetime reliability in mixed-criticality
systems. In [64], researchers have considered an independent periodic task model that tasks
with different criticality levels run on a homogeneous multi-core processor. The algorithm
has two steps, task partitioning between cores and core utilization optimization. So, tasks
are sorted in decreasing order of criticality and then assigned to the cores with the least load
allocated. Indeed, the design-time algorithm adapts the resource shortage at run-time. Now,
in run-time phase, if a permanent failure happens in a core, the algorithm must re-map tasks
to other cores. In the case of not having enough space on the remaining cores, the heuristic
drops first tasks with the least criticality and utility. In addition, the work in [65] proposed
a Mixed Integer Linear Programming (MILP) based design space exploration process to
design a reliable mixed-criticality system. At design-time, tasks are mapped, and the task
schedulability in each core is tested by MILP. At run-time, to support the tasks running
on cores from permanent faults, the re-mapping technique is used in run-time phase.
Therefore, each high-criticality task would be run in two processors, primary and backup.
When the primary processor fails, the high-criticality tasks on the failed processor are
re-mapped to the predefined backup processor, and all low-criticality tasks assigned in
the primary failed processor are dropped. Hence, this algorithm just supports a single
processor failure.

102



J. Low Power Electron. Appl. 2021, 11, 7

5.4. Critique and Perspectives

Almost all the works discussed for improving lifetime reliability use one or more from
a very limited set of techniques. These techniques involve either a reactive re-mapping of
tasks in the event of a fault, or, pro-active distribution of workload for reducing the electri-
cal stress on the individual cores to achieve wear-leveling. Most articles typically use an
additional design objective along with system lifetime to present their novel methodology.
While this does result in solving a problem of higher complexity, it does not necessarily
contribute to improving system lifetime. Similarly most works listed in Table 2 ignore the
reliability of communication and memory structures of the hardware platform. With in-
creasing usage of NoCs for many-/multi-core systems, the reliability of communication
elements should find more focus in research. Further, with emerging technologies shifting
the focus to memory systems—for both storage and computation—reliability of memory
elements needs more research. Finally, the evaluation methodology for lifetime reliability
optimizations should include real world benchmarks that include more relevant applica-
tions from the domain of machine learning, computer vision etc. Further, lifetime reliability
optimization for mixed criticality applications needs more direct approaches to improve
system lifetime compared to the more prevalent indirect approach of thermal management.

6. Timing and Functional Reliability Management in Multi/Many-Core Processors

In this section, we aim to study the state-of-the-art works, which manage the timing
or functional reliability in multi/many-core processors. In general, most papers have
employed redundancy techniques, such as timing, hardware and information to guarantee
the reliability in the systems. In the following, we present the existing criticality-aware and
non-criticality-aware approaches in three categories of design-time, run-time, and hybrid
strategies. Table 3 lists the works based on the criteria in detail. In the end of this section,
we discuss about the critique and perspectives on the presented research works.

6.1. Design-Time Strategies

Some of works discussed under the lifetime reliability optimization earlier also ana-
lyze for functional and/or timing reliability as a design objective. For instance, ref. [26]
used checkpointing with rollback recovery for mitigating the effect of transient faults on
functional reliability. The analysis in [26] is aimed at determining the appropriate number
of checkpoints in each constituent task of the application for providing sufficient functional
correctness. Similarly in [35], Das et al. included the impact of DVFS on soft-error rate
while varying the number of replications for each task. In a similar approach, ref. [37]
proposed a methodology for an early stage evaluation of the impact of using multiple types
of redundancies on the application’s timing and functional reliability. In their analysis,
ref. [37] integrated the effect of DVFS, imperfect fault-mitigation and implicit fault-masking
across multiple layers. Figure 10a,b show the effect of DVFS and varying implicit mask-
ing on the average execution time and probability of error of a single task, respectively.
Ref. [37] used a Markov Chain-based model to estimate the average execution time and
the probability of error. A similar modelling approach for estimating the probability of
task completion within a deadline was also presented recently by [70]. A task-mapping
and priority assignment for similar deadline miss ratio-constrained systems has been pro-
posed by [71]. In [71], the authors provide a design-time optimization for a heterogeneous
architecture and use the stochastic execution time of tasks to optimize the task-mapping.
A collection of methods for improving the fractional and timing reliability by using various
mitigation methods across different layers, and with varying resource requirements, can be
found in [50,72,73]. Similarly, research works targeting improved functional and timing
reliability of on-chip communication include [38,74–76].
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Table 3. Summary of state-of-the-art approaches in timing/functional reliability aware resource management.
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Manolache’08 [71] × × × × D P � � × Het. × � D.T Task Mapping
Das’14 [35] � × � × D P × � × Hom. × � D.T Task-Replication

Bauer’15 [50] � � � × D P � � × Het. × � R.T Hardware blackundancy
Das’13 [26] � × � × D P × � × Het. × � D.T Checkpointing

Sahoo’20 [37] � × � × D P × � × Het. × × D.T Cross-layer Redundancy
Frantz’07 [74] � × × × × × � × × × × � D.T HW/SW Redundancy

Lehtonen’07 [75] � � � × × × � × × × × � D.T Fault-spec. Opt.
Vitkovskiy’10 [76] × × � × × × � × × × × � D(R).T Latency Reduction

Kakoee’11 [38] � × � × × × � × × × × � D(R).T Hardware Redundancy
Duque’15 [42] × � � × D P × � × Hom. × � R.T Task (Re)-Mapping
Wells’08 [77] × � × × I S × � × Hom. × � R.T Hardware Redundancy

Lehtonen’10 [78] × × � × × × � × × × × � R.T Online Testing
Yu’10 [79] � × � × × × � × × × × � R.T Hardware Redundancy

Rehman’16 [80] � × × × D A × � × Hom. × � H Cross-layer
Weichslgartner’18 [81] × × × × D A � � � Het. × � H Task Mapping

Sahoo’19 [40] � × � × D P × � × Het. × × H Cross-layer Redundancy
Pourmohseni’19 [82] × × × × D P � � × Het. × � H Task Mapping

Pathan’17 [59] � × � � I S × � × Hom. × × D.T Hardware Redundancy
Safari’20 [60] � × � � D P × � × Hom. × × D.T Hardware Redundancy
Safari’19 [83] � × × � I P × � × Hom. × × D.T Hardware Redundancy

Rambo’17 [84] � × × � I P � � × Hom. × × D.T Hardware Redundancy
Bolchini’13 [85] � × × � D P � � × Het. × × D.T Hardware Redundancy

Kang’14 [86] � × × � D P � � × Hom. × � D.T Hardware Redundancy
Kang’14a [87] � × × � D P � � × Het. × � D.T Hardware Redundancy
Choi’18 [88] � × × � D P/S × � × Hom. × � D.T Hardware Redundancy
Jiang’18 [89] � × × � D P � � × Hom. × × D.T Hardware Redundancy
Zeng’16 [90] � × × � I S × � × Hom. × � D.T Hardware Redundancy

Caplan’17 [91] � × × � I S × � × Hom. × × D.T Hardware Redundancy
Axer’11 [58] � × � � I P × � × Hom. × × D.T Timing Redundancy

Saraswat’09 [61] � × � � I P � � � Het. × � D.T Timing Redundancy
Saraswat’10 [92] � × × � I P � � � Het. × × D.T Timing Redundancy
Bagheri’14 [93] � × × � D - � � × Hom. × × D.T Timing Redundancy

Kajmakovic’19 [94] � × × � × × × × � × � × D.T Information Redundancy
Liu’19 [95] � × × � D P � � × Het. × × D.T Rel.-Aware Mapping

Thekkilakattil’14 [96] � × × � I P × � × Hom. × × H Mapping & Redundancy
Koc’19 [97] × × × � D P × � × Het. × × H Mapping & Redundancy

Next, we study the prior works that managed the timing or functional reliability
of mixed-criticality systems in the design-time phase. Most of the papers that exploited
the multi/many-core processors achieve reliability improvement by using redundancy
technique, such as hardware redundancy (using replica, which is Active, Passive, or Hy-
brid), timing redundancy using re-execution after error detecting and check-pointing with
roll-back recovery, and information redundancy by using the addition of redundant infor-
mation to data to mitigate soft error. A summary of the literature based on their exploiting
techniques are detailed as follows.
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Figure 10. DSE for timing and functional reliability. (a) Reliability and DVFS [37]. (b) Implicit
masking [37]. (c) Hybrid DSE results [40].

6.1.1. Multi-Core Platform Used for Spatial and Temporal Redundancy

Two types of redundancy, which are used in the most papers [59,60,83–91] for tolerat-
ing faults and consequently, improving reliability are timing and hardware. Some papers
have used the feature of multi-core platforms and applied just the hardware redundancy,
i.e., replication [59,60,83–85]. As we mentioned in Section 5, authors in [59,60] have used
backup redundancy to improve timing and lifetime reliabilities, while the deadline of
tasks is guaranteed. In [83], a scheme has been presented to minimize energy, guaran-
tee reliability by computing the optimum number of replication for each criticality task,
and maximize QoS when the systems switch to the high-criticality mode. To map tasks
on cores, first high-criticality tasks and their replicas and then, low-criticality tasks are
mapped on cores that are selected based on worst-fit decreasing and first-fit decreasing.
Safari et al. claimed that worst-fit decreasing is the best policy from the energy-awareness
perspective. The effect of this algorithm is validated through simulation based on random
task generation. Besides, ref. [84] have presented a replica-aware co-scheduling method
for mixed-criticality systems by exploiting cross-layer fault tolerance mechanisms. This

105



J. Low Power Electron. Appl. 2021, 11, 7

method has supported network-on-chip communication delay and replication manage-
ment overheads. In addition, ref. [85] have presented a methodology to map and schedule
tasks on heterogeneous multi-core processors and optimize overall performance. In this
methodology, different fault management techniques (Fault Detection/Tolerance) are ex-
ploited on different portions of the task graph. Indeed, for some parts of a task graph that
needed to be tolerated against faults, different reliability improvement techniques such as
replication would be exploited based on architecture features.

On the other hand, there are some works [86–91] that considered both hardware and
timing (re-execution) redundancies to tolerate faults before tasks’ deadlines and improve
timing reliability. In [86,87], an offline heuristic for mapping optimization has been pro-
posed for dependable tasks with different reliability requirements and tolerated transient
faults and, consequently, guaranteed the tasks’ reliability before their deadlines. The num-
ber of re-execution or replication for each task is defined based on its criticality. Besides,
ref. [88] have presented a framework to find an optimal mapping of dependent mixed-
criticality tasks on multi-core processors, while the QoS is increased in the faulty state and
also the power consumption in the normal and faulty states are minimized. To tolerate
the transient faults based on the probability distribution of fault occurrences, re-execution
and replication are used, and also, the algorithm is designed to endure the maximum
number of faults. Choi et al. use the genetic algorithm to find the optimum mapping while
all objectives are guaranteed. To investigate the fault tolerance techniques on message
communication between dependent tasks, ref. [89] have proposed an optimization to map
tasks, minimize the scheduling length and application security vulnerability by considering
fault-tolerant constraints. Two techniques of re-execution and active replication are used to
tolerate faults of tasks.

Besides, ref. [90] find the optimum number of replication and re-execution for each
criticality task to guarantee the reliability of tasks based on the DO-178B safety require-
ments, in which PFH is defined as their metric. In [91], the authors have used this metric to
guarantee the reliability of high-criticality tasks in the case of fault occurrence in different
situations. In that paper, an efficient mapping and scheduling algorithm based on the
genetic algorithm is proposed on heterogeneous multi-core platforms, while transient
faults are tolerated by using on-demand redundancy. In on-demand redundancy, three
types of Dual Modular Redundancy, Triple Modular Redundancy, and Passive Replication
are supported. In this algorithm, all low-criticality tasks must be executed in a normal
situation. If the system is overloaded or a fault occurs, these tasks can be dropped to
guarantee the correct execution of high-criticality tasks. Hence, the QoS of low-criticality
tasks is one of the objectives of this algorithm that would be maximized.

6.1.2. Timing Redundancy with Check-Pointing and Rollback Recovery

The authors in [58,61,92,93] have improved the reliability by using Check-pointing and
rollback recovery for mixed-criticality systems in multi-core processors. Using the Check-
pointing technique helps to tolerate transient faults and guarantee reliability. At design-
time, authors find the optimum number of check-points during the execution of tasks,
such that the deadline of tasks would be guaranteed. In the case of faults occurring
during run-time phase, the faulty task is recovered from the previous check-point and
continues its execution. In [92], a Tabu search-based approach for task mapping is presented,
in which the deadlines of the hard tasks (higher criticality tasks) are guaranteed, even in
the case of transient faults, and the QoS for the soft tasks (tasks with lower criticality) is
maximized. To improve the timing reliability of tasks with higher criticality, check-pointing
with rollback recovery is used. The optimum number of check-points is calculated by
considering the overheads of establishing the check-point, error detection, and recovery,
while the task deadlines are guaranteed. The proposed algorithm has been evaluated with
several random and real-life benchmarks. In [93], a framework of dependable NoC-based
multiprocessor is designed for mixed-criticality DAG task models, in which the inter-task
communication has been considered. Bagheri and Jervan [93] guarantee the deadline of just
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high-criticality tasks even in the presence of transient faults. Transient faults are tolerated
by check-pointing, and also, its timing overhead is considered as part of WCET.

6.1.3. Information Redundancy, Mitigating Soft Errors by Using Parity

From the perspective of reliability improvement of memories, ref. [94] have considered
soft errors and used redundant parity bit to detect and recover the data utilizing the parity
bit. Considering mixed-criticality for memories allows us to improve the system reliability
and increase the protection of more criticality memory parts. In this work, faulty data
would be corrected in the minimum time to maximize the performance and minimize the
run-time memory overhead. Indeed, this parity approach to detect soft errors is explored to
use in the design-time phase. In the case of detecting fault at run-time, faulty data recover
by copying healthy data. Hence, the Kajmakovic et al. have not used any additional
hardware components to tolerate faults.

6.1.4. Task Reliability-Aware Mapping

Another technique to guarantee the reliability of tasks is finding an efficient mapping
of mixed-criticality tasks on heterogeneous multi-core platforms to ensure the timing
reliability and minimize the probability of fault occurrence. In [95], a heuristic has been
proposed that the reliability requirements are satisfied, and also the deadline miss ratio
of high-criticality tasks is minimized. In this heuristic, the authors find the optimum
mapping and scheduling of tasks with different criticality and reliability requirements
on multi-cores with different reliability levels to reduce the probability of transient fault
occurrence. The proposed heuristic efficiency has been validated through simulation and
shows an outstanding reduction in the deadline miss ratio.

6.2. Run-Time Strategies

Run-time adaptation for improving functional and timing reliability usually involves
varying the redundancy levels and using faster cores, respectively. While achieving better
functional reliability with a purely run-time approach may be achieved by avoiding faulty
cores and/or replicating task execution (both spatially and/or temporally), guarantee-
ing/improving timing reliability requires much more analysis and is better achieved with
a hybrid approach. For instance, multiple research works involve detection of perma-
nent faults in cores and re-mapping tasks to healthier cores [39,41,42]. Similarly, ref. [77]
proposed multiple mitigation approaches for intermittent faults including pausing ex-
ecution, using spare cores and avoiding faulty cores to allow for self-repair. Similarly,
ref. [50] proposed multiple resource management methods that include both proactive
(avoiding hot-spots) and reactive (online testing and error detection) methods. Some of the
approaches proposed in [50] also include using TMR for improving functional reliability.
Similar redundancy based improvement of on-chip communication by using information
encoding and spare wires are proposed by [75]. A novel methodology for online testing,
detection and bypassing of permanent faults in NoCs is presented in [78].

From the run-time criticality-aware reliability management perspective, ref. [98] have
recently investigated MC systems. In this paper, authors have presented the Information
Processing Factory (IPF) paradigm to achieve long-term dependability for MC systems,
where a 5-layer hierarchical organization has been introduced. IPF is introduced as a self-
aware and self-organizing system used to manage resources by decomposing approach,
planning, and confining them during run-time. The IPF can also detect and predict po-
tential hazards and handle these upcoming risks in different layers. As a result, in this
introduced framework, the requirements of safety-critical functions are always met at
run-time. In the end, the proposed method efficiency has been evaluated by showing
achieving the reliability levels (functional reliability) and MTTF as lifetime reliability.
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6.3. Hybrid Strategies

The design-/compile-time analysis for improving functional reliability involves deter-
mining the different levels of error tolerance provided by varying levels of redundancy.
For timing reliability, the analogous stage involves finding the various resource allocation
configurations that ensure the timing requirements of the application(s). Ref. [80] proposed
a cross-layer reliability approach in single-processor systems, where multiple executables
for each task, with varying execution time and error probabilities, were generated at com-
pile time. The run-time allocation involved dynamically selecting the appropriate version
of each task, depending upon the available slack w.r.t. the deadline. Ref. [81] also tackled
the problem of achieving predictable execution time in MPSoCs with a hybrid approach.
The authors presented a compile time DSE methodology for generating clustered tasks
and constraint graphs based on the timing requirements of the application (modelled
as a DAG). The run-time management involved mapping the clustered tasks and edges
on available cores and interconnects of the hardware platform. A similar approach to
mapping of hard real-time applications on many-core system using a hybrid approach
was presented by [82]. A novel methodology for using hybrid DSE to adapt to varying
QoS requirements was proposed by [40]. In addition to ensuring timing and functional
reliability, the run-time process proposed in [40] allowed the user to dynamically select
the priority of energy consumption and reconfiguration cost during run-time adaptation.
Figure 10c shows the different trade-offs obtained for a sample application by varying the
user-controlled parameter pRC.

From the perspective of criticality-aware strategies, some papers have improved the
timing reliability for mixed-criticality tasks in both design-time and run-time phases [96,97].
For example, ref. [96] have presented an approach to map and schedule tasks with different
criticality levels on multi-core processors in which the timing constraints of high-criticality
tasks are guaranteed at design-time even in the case of fault occurrence and also, the flexi-
bility for the low-criticality tasks are ensured. To tolerate the faults and improve reliability,
the timing redundancy technique, re-execution, is used for high-criticality tasks at design-
time and low-criticality tasks at run-time. Besides, the work [97] has focused on finding
the best mapping of mixed-criticality tasks to minimize execution latency by considering
the reliability of both system and high-criticality tasks at design-time. At run-time, when
the system switches to the high-criticality mode, high-criticality tasks are re-mapped to the
highly reliable cores to be executed before their deadlines and, if possible, low-criticality
tasks are scheduled without exceeding the minimum latency.

6.4. Critique and Perspectives

Most works in this category have evaluated their proposed approaches in simulation,
which can be seen in Table 3. Although simulation can validate the proposed method
good enough, it is not sufficient due to some reasons such as overheads at run-time, like
communication, and fault detection and tolerance; then the proposed method may not be
applicable in some cases. Researchers in [69] have discussed that if the timing overheads,
such as the delay for changing the V-f levels of cores, are not considered while scheduling
the tasks, it may cause deadline violation and consequently, catastrophic consequences
may happen. Therefore, evaluating the proposed methods based on real applications on a
real platform is needed, which has not been considered in most existing works.

Besides, as mentioned in this section, most of the works have used redundancy
techniques to guarantee timing or functional reliability. Since the system may execute
safely without fault occurrence, these techniques such as hardware and timing redundancy
may waste the system’s resources.Therefore, investigating the run-time approaches is
needed to efficiently use the computational resources and optimize the other objectives.

In addition, intermittent faults are one of the common faults in embedded systems.
The reason for these faults can be inherent design issue or unstable hardware. Due to
the behavior of repeated conditions of causing faults, errors may occur. Investigating the
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intermittent faults can help the system be optimized more efficiently at run-time, which
has not been considered in previous works.

From the criticality-aware reliability management perspective, most of the existing
works have guaranteed the timing reliability only for the tasks with higher criticality
tasks in any system operational modes. However, in some mixed-criticality embedded
systems, such as avionics, low-criticality tasks, are mission-critical, and guaranteeing the
reliability requirement of both low- and high-criticality tasks are crucial. Most of the
existing approaches cannot be applied to these systems; thus, new studies to guarantee
each criticality level’s reliability in each operational mode are required in multi-core mixed-
criticality systems.

As can be illustrated from Table 3, most of the works have not considered the commu-
nication and memory of multi/many-core processors and only focused on guaranteeing
the reliability in computational parts. However, the memories and data sharing can be the
bottleneck to guarantee the reliability of applications in multi-core platforms. Designing the
system for reliability management and analyzing it at run-time by having a comprehensive
view on the whole system resources are required in multi/many-core platforms.

7. Reliability Management in Reconfigurable Architectures

Some of the related works discussed till now assume the availability of reconfigurable
logic on the hardware platform and tackle the related problem of resource management by
allocating accelerators to a select subset of tasks of an application (hardware/software par-
titioning). Therefore the DSE methods presented in works such as [26,40,50] can be directly
used. However, in this section we survey the works that assume the complete architecture
comprising of reconfigurable hardware logic, specifically for Field Programmable Gate
Array (FPGA)s.

Improving functional reliability in FPGAs has mostly been focused on improving
the reliability of the configuration bits. Traditional methods methods such as ECC [99],
scrubbing [100] and hardware checkpointing [101] have been used to provide protection
from transient faults in the configuration memory. Additionally, circuit design methods
that involve TMR has also been employed for enabling the usage of FPGAs in high-
radiation environments [102]. However, there has been a growing trend of lifetime reli-
ability improvement in FPGA-based systems. For instance, ref. [103] proposed various
phenomenon-specific methods, tailored for each failure mechanism, to mitigate aging in
FPGAs. Similarly, ref. [104] proposed multiple generic electrical stress hot-spot reduction
techniques for FPGAs. Ref. [105] presented a stress-aware run-time wear-leveling approach
that leverages Dynamic Partial Reconfiguration (DPR) in FPGA-based systems. In [106],
Zhang et al. used module diversification, to generate multiple accelerator designs with
spatially varying aging effects. These diverse modules were used to leverage DPR by
periodically swapping accelerators that use different CLBs of the FPGA fabric. A novel
approach combining module diversification and dynamic adaptation to varying aging-
effects at run-time was proposed by [107]. Similarly, ref. [108] presented a reliability-aware
floorplanning methodology along with delay-based aging estimation and run-time re-
configuration. A joint mitigation methodology using DPR, aimed at both soft errors and
permanent faults in FPGAs was proposed by [109]. The authors presented reconfiguration
as a solution to both types of faults, which can be a costly approach. Almost all the research
works employing DPR assume using homogeneous Partially Reconfigurable Region (PRR)
(comprising of equivalent amount of FPGA resources). However, as shown in Figure 11, Sa-
hoo et al. [110,111] proposed a hardware/hardware partitioning methodology that allows
using application specific heterogeneous PRRs, that provided the scope for improving both
the latency (average makespan) and reliability (MTTF) in DPR-based systems.
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Figure 11. Reliability-aware HW/HW partitioning [110].

A few papers such as [112–116], have addressed reconfigurable processors in a sys-
tem with different criticality tasks to improve timing reliability. In [112,113], Santos, et al.
have proposed a new efficient scrubbing mechanism to increase the system’s reliability by
considering the criticality and timing of the hardware task execution. Hence, scrubbing
mechanism takes advantages of FPGA reconfiguration, and verify the reconfiguration peri-
odically to tolerate faults like Single Event Upset (SEU) in the Static-RAM (SRAM) [112,117].
Researchers in [112] have proposed a static heuristic to schedule the tasks based on their
criticality level, running on reconfigurable embedded systems to maximize each task’s reli-
ability. In addition, they have presented a dynamic scrubbing mechanism in [113] to have
high reliability by using the windows and fixed priority scheduling. They also consider the
reliability as well as the criticality level for the tasks. They have claimed that they signifi-
cantly reduce the amount of memory required to store the scrubbing schedule. Ref. [114]
have presented an efficient resource management mechanism and then architecture to pro-
vide fault tolerance in the context of a time-triggered NoC-based mixed-criticality system
that invokes reconfiguration. Their method establishes the fault-recovery and efficient
resource utilization in Mixed-Criticality Networks-on-Chip (MCNoCs) by monitoring the
resource requests and reconfiguring them based on a recovery strategy. Besides, ref. [115]
have proposed a reliability driven scheduling approach for mixed-criticality tasks by han-
dling periodic, aperiodic, and sporadic tasks on FPGAs against hardware trojan horse
attacks. In this approach, redundancy is used to increase reliability on task criticality
level, offline, and then attempt to prevent faulty data propagation in the run-time phase.
Ref. [116] have detected an error by using the Secure Hash Algorithm and corrected them
by using parity based two-dimensional erasure code, while the performance is reduced,
which consists of time error detection and correction. This method has taken the execution
period and criticality into account to correct faulty data.

8. Upcoming Trends and Open Challenges

In this section, we briefly address the upcoming trends and challenges relevant to
reliability-aware resource management in multi/many-core systems.

• Cross-layer Reliability: Most of the research articles discussed in this survey em-
ploy/select different redundancy-based methods to improve the system’s reliability.
Similarly, there is an increasing trend of using multiple layers of the system stack in the
design for reliability [73,118]. This is unlike the traditional approach of mitigating each
fault-mechanism at the hardware layer and providing a fault-free abstraction to the
other layers. Although this phenomenon-based approach makes the design process
simpler for the non-hardware layers, the high cost of hardware-based fault-mitigation
can make this approach infeasible for resource-constrained systems. In contrast,
the cross-layer approach involves multiple layers sharing the fault-mitigation activ-
ities during run-time [119]. Similarly, various methods of leveraging at cross-layer
reliability at design-time have been proposed [50].
One of the major advantages of the cross-layer approach is the inherent suitability
for application-specific optimizations. Since the overheads of fault-tolerance varies
with the type of redundancy being used, application-specific tolerances to degra-
dation in some form of reliability can be used to improve other reliability metrics.
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Further, with the cross-layer approach, the implicit masking of multiple layers can
be used to provide low-cost fault-tolerance [120]. However, the joint optimization
across multiple layers increases the design space considerably. Recently there have
been multiple works that try to provide efficient DSE for cross-layer reliability for
various system-level design tasks such as task mapping [37], hardware-hardware
partitioning [121], run-time adaptation [40], hardware design [72] etc. However,
most of the works assume rather simplistic reliability models such as the one shown
in Figure 12a where each layer is limited to a specific type of redundancy [37,40,121].
A more holistic approach to the design of cross layer reliability is necessary for
more realistic reliability models that integrate multiple reliability methods at each
layer. As shown in Figure 12b having reliability interfaces, similar to those used for
functionality and performance, can enable far better DSE than current state-of-the-
art works. An interface for functional reliability was proposed by [80] that used
Architectural Vulnerability Factor (AVF), Instruction Vulnerability Index (IVI) and
Function Vulnerability Index (FVI) for characterising different implementations of an
embedded processor, instruction set and function libraries, respectively. However,
similar interfaces for timing and lifetime reliability need to be developed for designing
efficient cross-layer reliability.

• Self-Aware System Design: In general, design-time approaches are applied to optimize
resource usage and guarantee the reliability in the worst-case scenarios. However,
due to the various run-time behaviors of applications and fault occurrence, we cannot
efficiently manage the reliability, especially lifetime reliability and system utilization.
Therefore, run-time system monitoring and optimization are essential to control
and have a reliable operation of applications, especially mixed-criticality applications,
and efficient resource management of multi/many-core platforms [122]. IPF paradigm
is recently used to manage the system dynamically, according to the changes in system
and workload [98,123]. This self-aware paradigm improves the reliability and resource
utilization by combining different techniques in different hierarchical layers. As a
result, the online optimization based on the current state and variations in applications
and system by monitoring the hardware and software components, and using the IPF
to conquer the complexity is essential, especially for safety-critical systems.

• Reliable Communication and Data Sharing: Safety and dependability are critical issues
in designing the mixed-criticality systems on multi/many-core platforms, in which
data are shared between concurrent execution of tasks with different criticality [124].
The strict control of data (critical and non-critical), communication, sharing, and stor-
age in such systems for safety assurance, e.g., in medical devices, is crucial. Most
state-of-the-art works have concentrated on the reliability management of tasks in
processors of multi/many-core systems regardless of safe data sharing among com-
munication and memories. As a result, safe mixed-criticality system design consider-
ing all system resources, like communications, and memory access, and processors
are needed.

In addition to the trends discussed above many new approaches to computing have
emerged over the past few years. These emerging technologies have brought forward
novel opportunities and challenges to reliability-aware resource management. For example,
Approximate Computing (AxC) has emerged as a new computing paradigm that offers
the promise of low-power and faster execution [125]. While AxC might hold promise for
improving timing and lifetime reliability, the deliberate introduction of computational
inaccuracies requires careful design for dependable systems. Similarly, the introduction of
post-CMOS transistors for next-generation computing requires a thorough reliability analy-
sis of emerging devices. Finally, we are already witnessing AI-based resource management
in multi-/many-core systems for both design-time optimization and run-time adaptation
to varying operating conditions [40,126,127].
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Interfaces for cross-layer design approach.

9. Conclusions

With increasing susceptibility of modern electronic systems to physical faults, reliability-
aware resource management is a topical research problem. While technology scaling and
architectural innovations such as 3D integration allows us to integrate more and more cores
in a system, extracting reliable performance from increasingly unreliable semiconductor
heightens the need for resource management in multi-/many-core systems. To this end,
this article presents our perspective on the related research. To begin, we have provided a
detailed overview of the various phenomena that have contributed to the growing need
for reliability in modern electronic systems. Then, we provided a taxonomy along with a
detailed background of the various aspects of reliability improvements that are explored in
related research works. Specifically we looked at the different types of reliability—lifetime,
timing and functional (the different fault models and the system model) application and
architecture. We formulated a generic problem statement for reliability-aware resource
management that lets us determine the scope and classify the methods adopted in each of
the related works. A survey of the related works is then presented, categorized under the
type of DSE approach—design/compile-time, run-time and hybrid–adopted for each type
of reliability. We have also presented a brief survey related research works targeted for
FPGA-based systems. The presented survey focuses on the application-specific reliability,
mixed-criticality awareness and hardware resource heterogeneity. In the end, we have pro-
vided a brief discussion on the upcoming trends in reliability-aware resource management
and the challenges therein, to encourage further research in this topic.
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Abbreviations

The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
AVF Architectural Vulnerability Factor
AxC Approximate Computing
BTI Bias Temperature Instability
DAG Directed Acyclic Graph
DEC Double-bit-Error-Correcting
DED Double-bit-Error-Detecting
DMR Dual Modular Redundancy
DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DSE Design Space Exploration
DVFS Dynamic Voltage and Frequncy Scaling
ECC Error Checking and Correcting
EM Electromigration
FPGA Field Programmable Gate Array
FVI Function Vulnerability Index
HCI Hot Carrier Injection
ICs integrated circuits
ILP Instruction Level Parallelism
IoT Internet of Thing
IPF Information Processing Factory
IVI Instruction Vulnerability Index
MAB Multi-Armed Bandit
MCS Monte-Carlo Simulations
MILP Mixed Integer Linear Programming
MOEA Multi-Objective Evolutionary Algorithms
MPSoC Multi-Processor System-on-Chip
MTBF Mean Time between Failures
MTTC Mean Time To Crash
MTTF Mean Time To Failure
NBTI Negative Bias Temperature Instability
NoC Network-on-Chip
PE Processing Element
PFH Probability-of-Failure-per-Hour
PRR Partially Reconfigurable Region
QoS Quality of Service
RL Reinforcement Learning
RMT Redundant Multi-Threading
SA Simulated Annealing
SDFG Synchronous Data Flow Graph
SEC Single-bit-Error-Correcting
SER Soft Error Rate
SEU Single Event Upset
SRAM Static Random Access Memory
TDDB Time Dependent Dielectric Breakdown
TED Triple-bit-Error-Detecting
TMR Triple Modular Redundancy
WCET Worst-case Execution Time
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Abstract: The Network-on-chip (NoC) paradigm has been proposed as a promising solution to
enable the handling of a high degree of integration in multi-/many-core architectures. Despite their
advantages, wired NoC infrastructures are facing several performance issues regarding multi-hop
long-distance communications. RF-NoC is an attractive solution offering high performance and
multicast/broadcast capabilities. However, managing RF links is a critical aspect that relies on both
application-dependent and architectural parameters. This paper proposes a design space exploration
framework for OFDMA-based RF-NoC architecture, which takes advantage of both real application
benchmarks simulated using Sniper and RF-NoC architecture modeled using Noxim. We adopted the
proposed framework to finely configure a routing algorithm, working with real traffic, achieving up
to 45% of delay reduction, compared to a wired NoC setup in similar conditions.

Keywords: RF; NoC; OFDMA; simulator; routing; reconfigurable

1. Introduction

The significant integration of a large number of cores into the same chip for
creating multi-/many-core Systems-on-Chips (SoCs) created new challenges for designers.
The Network-on-Chip (NoC) paradigm has been promoted as a viable solution to deal with
multi-/many-core emerging trends. Despite its strengths, NoCs have significant performance
limitations due to the high latency and power consumption resulting from long multi-hop wired links
used to deliver the data, especially in long-range communications across the chip. Several interconnect
technologies have been proposed based on photonic, 3D, and Radio-Frequency (RF) to overcome
this issue. Hybrid architectures were also introduced, combining multiple interconnect technologies.

Photonic solutions provide a way to reach near speed-of-light communications across on-chip
wires [1,2]. These approaches achieve very low latency, but they face the problem of the considerable
area dedicated to the signal conditioning circuitry. In this case, the optical NoC is introduced to enable
high-speed links and negligible power dissipation. However, signal noise and waveguide losses are
not negligible.

3D-NoC is an interesting approach to address the problem of the interconnection scale.
This architecture responds to future multi-/many-core architectures’ requirements by exploiting short
vertical links between adjacent layers to improve network performance [3,4] considerably. However,
the advantages of this technology cannot neglect thermal problems as the number of layers increases.

Another approach based on radio-frequency waves is the RF-NoC interconnect. It provides
flexible communication and single-hop long-range communication, aiming at reducing latency.
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This technology is based on the transmission of electromagnetic waves through the chip, allowing high
bandwidth communication and low delay. Two types of radio-frequency interconnects exist, the first
one making use of antennas and leading to free space communication (wireless), the other one
exploiting communication using a waveguide (wired RF). The latter is similar to wireless propagation
in terms of CMOS compatibility, high throughput, low overall power consumption, and near-light
speed signals. Solutions using antennas have greater flexibility, but they also increase consumption and
suffer from less immunity to interference when compared to waveguide [5]. Besides, the waveguide
provides a communication channel, perfectly known at the design phase. Moreover, design and sizing
of RF elements for RF-NoC architectures based on waveguides have already been proposed in the
literature, demonstrating the feasibility of the approach. The interested reader could find more details
in [6–8].

To take advantage of all the benefits of these new technologies, an efficient multiple access
technique is required to share the spectrum resources among the different elements wishing to
communicate. Many multiple access techniques exist, such as Frequency Division Multiple Access
(FDMA), Time-Division Multiple Access (TDMA), and Wavelength Division Multiple Access (WDMA).
To achieve high spectral efficiency, a multi-carrier modulation approach, namely Orthogonal Frequency
Division Multiplexing (OFDM), is used. Among the significant advantages provided by OFDMA,
it achieves high spectral efficiency and allows a flexible resource allocation while being a robust
multi-carrier modulation against inter-carrier interference.

Regarding the NoC architecture, many parameters have an impact on power and performance.
This is the case of the traffic occurring inside the NoC, which depends mainly on the applications
running on the system. Synthetic traffics (e.g., Transpose Matrix and Random) are good choices for
a first study but may not reflect traffics generated from real applications and scenarios. The NoC
topology is also a crucial parameter. It leverages the choice of routing and selection algorithms as well
as micro-architectural NoC parameters. All of these parameters have to be jointly considered when
evaluating the performance of such architectures.

In particular, when adding a second interconnection layer based on RF, it becomes very
complicated for a designer to make decisive choices that will ultimately have a relevant impact
on power and performance figures. For example, the resource allocation strategy of RF interconnects,
as well as the NoC routing policy, have to be finely defined to efficiently balance the traffic over the
wired NoC or RF links.

Given the number of design choices, a need has emerged for simulation tools capable of simulating
these emerging architectures. There are two main categories of simulators: (1) application-level
simulators to analyze the behavior of a given application running on a specified multi-core architecture,
and (2) Cycle-accurate NoC simulators, which perform fine-grained simulation of the NoC architecture,
leading to more accurate power and latency results.

This paper introduces a simulation framework based on Noxim and Sniper simulators,
enabling design space exploration for RF-NoC OFDMA architectures while considering real
application traffic. The use of RF-NoC architectures with OFDMA brings some interesting advantages
since OFDMA can adjust the channel usage to serve single o multiple users (the processing elements)
simultaneously. In this sense, OFDMA is a very good option for low bandwidth applications,
also thanks to the better frequency reuse and low latency. At best of our knowledge, there are
no other simulation frameworks that allow the evaluation of such architectures by finely tuning the
routing algorithm parameters for OFDMA RF-NoCs such as the ones introduced in [9,10].

The remainder of this paper is structured as follows. A comparative study of NoC simulators is
presented in Section 2. Then, the considered RF-NoC architecture based on OFDMA is presented in
Section 4, and the proposed framework is detailed in Section 5. Simulations results are presented in
Section 6.1. Finally, conclusions are drawn in Section 7.
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2. NoC Simulators

Before proceeding with the hardware implementation or the emulation of a NoC design,
the use of a simulation framework is almost mandatory. A good simulation framework, indeed,
allows minimizing implementation costs through an early estimation of different figures of merit
before the physical implementation of the system, helping in the process of making the right design
decisions suitable for the considered scenario. Most NoC simulators are developed in C++ or SystemC,
and some of them in Java. Simulators written in Java are usually high-level simulators. They offer better
code portability but lead to less efficiency. Simulators can be classified depending on their accuracy
(e.g., cycle-accurate, and discrete event-driven) or depending on their programming abstraction level
(i.e., high/low). In the following, most adopted existing NoC simulators are introduced with a
particular focus on Noxim.

Booksim is a cycle-accurate simulator written in C++ by Dally and Towles from the University of
Stanford in the USA [11]. Booksim is the first version not intended for a specific on-chip environment
but mostly a generic simulator. This version was extended to overcome limitations in order to include
some advanced features and technologies for on-chip networks. Booksim2 provides a wide diversity
of topologies such as mesh, torus, tree, and butterfly. It supports a variety of routing algorithms and
several options to customize the micro-architecture of routers to simulate.

DARSIM is a cycle-level, parallel simulator from the Massachusetts Institute of Technology
(MIT) [12]. It allows simulating both 2D and 3D mesh architectures. DARSIM provides a large
advanced set of NoC parameters such as different virtual channel (VC) allocation and memory models.
The simulator offers diverse routing algorithms due to its highly parameterized routing table-based,
which provides two possibilities: running the simulation from application traces or synthetic patterns.
One of the strengths of this simulator is the ability of the hardware configuration, such as bandwidth,
pipeline depth, and geometry. Besides, it allows to split the tasks between cores equally and achieves
cycle-accurate simulations.

HNOCS (Heterogeneous NoC Simulator) [13] is dedicated to heterogeneous NoC architectures
and is based on OMNet++. OMNet++ provides C++ APIs to a wide range of services to describe in
detail the network topology. Moreover, the basic elements for the network configuration (routing
algorithms/topologies/VC), HNOCS simulator provides parallelism, various Quality-of-Service
(QoS), different arbitrary technologies, and power estimation. It offers three different router types,
asynchronous, synchronous, and synchronous virtual output queue and performance statistics such as
throughput, VC acquisition, and transfer latency.

Nigram is a cycle-accurate and discrete event simulator developed in SystemC by the Malaviya
National Institute of Technology India and the University of Southampton UK [14]. It provides various
network configuration commands to simulate different NoC architectures such as routing algorithms
(source, XY, odd-even, adaptive), topologies (Tree, Torus, Mesh, and Ring), two flow control techniques
(deflection and wormhole). The simulation statistics include throughput and latency.

Noxim is developed by the group of computer architectures at the University of Catania [15].
It is a low level, open-source, and cycle-accurate simulator written in C++/SystemC. Noxim
provides various configuration parameters such as packet and buffer sizes, packet injection rate,
different routing algorithms (XY, Odd-Even, West-first, North-last), traffic distributions (Random,
Transpose, Bit-reversal, Butterfly Shuffle, Table Based traffic, hotspot), structures, and topologies.
In addition to the wired NoC simulation, Noxim also supports Wireless NoC (WiNoC) evaluation and
provides power consumption, throughput, and latency as performance analysis. Access Noxim is an
extended version that supports 3D NoC architecture and adaptive routing [16].

Orion 3.0 is a simulator dedicated to evaluating the power performance of the NoC. It provides
component dynamic and leakage power models. Orion3.0 [17] overcomes the limitations of the Orion
simulator by supporting power models estimated from actual post-placement and routing layout
and area.
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SunFloor-3D is the extended version of the SunFloor simulator. SunFloor is able to generate a
system specification that allows designing NoC architectures from a set of defined input constraints
(energy, area, and model). SunFloor-3D is dedicated to 3D-NoC architectures [18] and provides many
advanced features such as the placement of components in the 3D layers. It enables the characterization
of the core assignment and communication bandwidth.

3. System Simulators

In the following, the two most adopted system-level simulators, namely Gem5 and Sniper,
are introduced with a particular focus on Sniper, which, together with Noxim, has been chosen to
evaluate the considered RF-NoC architecture.

Gem5 is one of the more general simulators that come to the aid of computer architecture
researchers. It is the result of the combination of two simulators GEMS [19] and M5 [20].
GEMS provides a flexible and detailed memory system and multiple cache protocols. GEMS simulator
supports many commercial Instruction Set Architectures (ISAs) such as x86 (64 bits), MIPS, ARM,
ALPHA, SPARK, and PowerPC and implicates Linux boot on ARM, ALPHA, and x86. Gem5 [21,22]
also includes the best features of M5, especially the highly configurable environment to simulate
various processor models. Specialized versions of Gem5 exist, for example Gem5-gpu [23] which is a
simulator dedicated to heterogeneous CPU-GPU.

Sniper is a multi-core simulator based on the infrastructure of Graphite [24].
Sniper allows parallel, fast and accurate simulations and supports both homogeneous and
heterogeneous multi-core architectures [25]. The principal simulator feature is the core model based
on interval simulation. Sniper is considered as a high-speed simulator due to the interval simulation,
which raises the abstraction level. It is useful for core and system-level studies that need details more
than the typical one-IPC models. It includes SPLASH-2 (Barnes, Cholesky, FFT, FMM, Lu, Ocean,
Radix, Radiosity, and Raytrace) and Parsec (Blackscholes, Bodytrack, Canneal, Dedup, Facesim,
Ferret Fluidanimate, Freqmine, Raytrace, Streamcluster, Swaptions, VIPS, and x264) benchmarks in
order to evaluate the NoC architecture. Sniper also provides SimAPI interfaces and Python to monitor
and control its behavior at run time.

This section, together with the previous one provided a comparison of simulation tools to
help decide on the suitable simulator regarding NoC designs and proposals starting from both
NoC-/system-level available simulation tools. Each of these tools has its own peculiarities when
adopted in a standalone or combined fashion. For example, Booksim2 provides a highly flexible
simulation environment that allows fine-grained management of many elements, such as buffer size,
virtual channels, and routing algorithms, and Gem5, coupled with Garnet2.0, offers the support to
Full System (FS) simulations. Tables 1 and 2 summarize the different NoC and system simulators,
respectively. These simulators, detailed above, are just a representative set of the existing possibilities
taken into account in this research. By the way, no simulator found in literature includes all evaluation
criteria at the same time. The proposed framework, detailed in Section 5, is based on two simulators:
Noxim and Sniper. Noxim has been preferred to other NoC simulators since it already supports
Wireless NoC architectures. Therefore, it offers an already established starting base and core elements
such as Radio Hubs to simulate long-distance, single-hop communications. Also, Noxim comes with
a tool, namely noxim explorer, that helps the user run batch simulations after defining the ranges of
values for the simulator’s parameters. Radio Hubs and Noxim Explorer have been extended to support
the use case presented in the submitted manuscript. For what concerns Sniper, it has been chosen for
its flexibility, the availability of its SimAPI to control the simulator’s behavior at run-time, and the fact
it allows tracing the traffic of real applications running on multi-core NoC-based architectures.
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Table 1. NoC Simulators Comparison.

Simulator Team Language Abstraction Topologies Benchmark Heterogeneous Ref
Level Support

BookSim University of Stanford C++ High Many - - [11]
DARSIM MIT C++ High Any + - [12]
HNOCS Technion Israel Institute of Technology OMNET++ High 2D/3D Mesh + + [13]
Nigram University of Southampton SystemC Low Any - - [14]
Noxim University of Catania SystemC Low Many - - [15]

Table 2. System Simulators Comparison.

Simulator Team Language Abstraction Topologies Benchmark Heterogeneous Ref
Level Support

Sniper Ghent University SystemC High Many + + [25]
Gem5 AMD, ARM,HP, MIPS,Princeton, MIT, etc. C++ High Many + + [21,22]
Gem5-GPU AMD, ARM,HP, MIPS,Princeton, MIT, etc. C++ High Any + + [23]

4. RF-NoC OFDMA Architecture

The communication between cores in a conventional NoC is ensured by wired links and multiple
switches/routers. To overcome the latency and power consumption issue, we selected a hybrid
topology based on RF links for single-hop long-distance communications. In this section, we present
the considered RF-NoC OFDMA architecture introduced in [9]. In this work, RF-NoC based on
waveguide is preferred over the more widespread WiNoC based on mm-wave antennas since wired
RF transmission lines are considered a more suitable candidate for the implementation of high-speed
EM propagation-based on-chip interconnects with consolidated CMOS technology.

4.1. Topology

The topology defines the physical layout and the connections between nodes in the network.
It impacts network performance and cost since the topology constrains the minimum number of hops
a packet must perform to reach its destination. There are two main classes of topologies: direct and
indirect. In the case of direct topologies, each node of the NoC consists of both a Processing Element (PE)
and a router. Therefore, nodes are able to both perform computation and manage the communication
towards other nodes. These topologies are called direct because each node has a direct (point-to-point)
link to a subset of other nodes in the network; a mesh, as the one shown in Figure 1, is a classic
example of direct topology. In the case of indirect topologies, computation and communication (packet
routing) features are managed in separated nodes and, in particular, each computation node (PE) is
connected to a switching node (or router) that enables the communication with other computation
nodes. A classic example of indirect topology is Multi-stage Interconnect Networks (MINs) Figure 1.

Figure 1. Representation of a 4 × 4 mesh and of an 8 nodes Multistage Interconnection Network as
representative examples of direct and indirect topologies, respectively.
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The considered RF-NoC architecture has a direct topology. It presents two levels of hierarchy
covering the communication among cores (though a wired interconnect) and clusters (through an
RF interconnect). Clusters are sets of cores providing another layer of hierarchy. In the considered
architecture, 1024 cores are divided into 32 clusters, containing 32 cores. The communication within a
cluster is handled through a 2D mesh wired NoC since the average path length is short compared to
the global network. Figure 2 shows the wired links connecting cores within the cluster. Note that wired
links between adjacent routers of separate clusters also exist. Moreover, each cluster contains a Radio
Hub (RH) that attaches to it the four routers located in the cluster center. The RH is the component
that leads to the second level of the hierarchy, i.e., the communications between clusters through the
RF waveguide. Thus, each cluster features an RF-NoC Interface, located at its center, to access the
waveguide. It is connected on one side to the four central routers, as illustrated in Figure 2, and on the
other side to the RF waveguide.

Figure 2. RF-NoC architecture.

4.2. OFDMA for RF Resource Allocation

As mentioned previously, Orthogonal Frequency-Division Multiple Access (OFDMA) is used.
This approach allows for achieving high spectral efficiency by dividing the bandwidth into several
orthogonal narrow sub-channels. The use of OFDMA allows simultaneous communications between
multiple radio hubs using different frequency channels. In our configuration, a bandwidth B of 10 GHz
is divided into 1024 sub-carriers. A frequency spacing of 9.76 MHz between each sub-carrier is thus
obtained. The OFDMA symbol duration of Ts is computed as follows and is equal to 102.4 ns:

Ts =
Nsc

B
(1)

with Nsc representing the number of sub-carriers.
The data rate R can be changed to transmit more or less information per OFDMA symbol,

by modifying the modulation order M:

R =
M · Nsc

Ts
(2)

with M representing the number of bits per QAM symbol: this number is 2 for QPSK, 4 for
16-QAM, and so on.
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Each cluster can transmit data through its RF interface using a group 32 contiguous sub-carriers
but can receive the entire bandwidth, making possible multicast and broadcast communications
between clusters. Based on the given configuration, the maximal binary throughput per channel can
reach 625 Mbit/s when QSPK is chosen, while omitting the possible use of synchronization techniques.
The overall theoretical throughput is 20Gbit/s for QSPK. The block diagram of the OFDMA transmitter
and receiver is presented in Figure 3. Each cluster has its own OFDMA transceiver. However,
to effectively exploit RF-NoC architectures, one of the main problems is the definition of an appropriate
routing algorithm.

Figure 3. Block Diagram of the OFDMA transmitter and receiver paths.

4.3. Threshold-Based Routing Algorithm

We used a routing algorithm suitable for RF-NoC [9] that is based on the comparison of two
distances. The first distance regards the wired path separation between the packet source and
destination, and the second distance the wireless path using the RF link. If the wireless distance
is greater than the wired distance, then the packets are transmitted using the wireless link, leading to a
reduction of the network’s average delay. A naive solution could be to take the minimum distance
but this could rapidly create a bottleneck at the radio hub. Therefore, an adjusting threshold γ is
defined to control the utilization of the RF link to avoid network congestion [9]. In the next section,
we investigate the impact of the threshold value of the considered routing algorithm by comparing
performance figures obtained using a proposed framework against synthetic traffics used into Noxim.

5. Proposed Framework

In this section, we detail the proposed framework, depicted in Figure 4, which is specific for the
performance evaluation of RF-NoC architectures. This framework is based on the combination of two
existing simulators: Sniper and Noxim. We selected Noxim as in its released version it already supports
wireless communications thus its extension to RF-NoCs allows us to have in the same framework
the availability of three different NoC architectures, namely, traditional wired NoC, heterogeneous
wired WiNoC, and heterogeneous wired RF-NoC. In addition, to obtain the communication patterns
generated by an application, it needs executing the application on a multi-core simulator and tracing all
the communication flows induced during the execution of the application. To this end, we used Sniper.

Figure 4. Flow of the proposed Framework.
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5.1. Sniper NoC Configuration

The major exploited benefits offered by Sniper are the integrated benchmarks that enable fast
tests with common tasks, the possibility to write custom test applications, and the full details of the
interconnection network, core models, and cache. Sniper was thus used to model our NoC topology
and to obtain communication traces from real application benchmarks. Sniper includes several folders
that provide built-in tools and configuration files for the simulation parameters. The main folders used
in our framework are: config which contains the NoC configuration file that describes the network to
be simulated. Figure 5 gives an example of NoC configuration specifying the number of cores, memory
cache levels, network topology, cores concentration, and bandwidth in bit per cycle; Benchmarks,
which contains various benchmarks such as those from SPLASH-2, PARSEC, and SPEC CPU®2006
sets. test in which a set of applications to evaluate the network such are collected. The initial set
of applications come from Sniper (e.g., FFT) but it is possible to add the custom applications to test;
Finally tools folder includes python-coded tools to analyze simulation results.

After providing the NoC configuration file with all network parameters and the chosen
application, Sniper produces a set of output files containing (i) general information related to
the simulation (sim.info), (ii) the final configuration of the simulated architecture (sim.cfg), (iii),
the results of the simulation in the form of a table (sim.out), and (iv) other statistics related to the
execution (sim.stats).

Figure 5. Sniper NoC configuration.

5.2. Trace File

Results provided by Sniper are not directly exploitable by Noxim. Thus, we developed a
python script to format the output results provided by Sniper for Noxim properly. In more detail,
Sniper provides a tool called SIFT that allows for trace recording. We extract the communication
statistics from this trace file and generate the appropriate traffic-based routing table for Noxim.

In more details, firstly, the total number of exchanged packets between cores per link and the
number of cycles are extracted. Secondly, the packet injection rates per link are computed, to finally
generate the corresponding routing table.

To calculate the packet injection rate for each source/destination pair, we use a tool provided by
Sniper, namely dumpstats, which provides simulation statistics. After the statistics have been stored
in a file, the information regarding the timing and size of each communication is parsed by a python
script introduced to extrapolate the number of packets P exchanged per link as well as the number of
cycles C for each core to get the actual PIR (Packet Injection Rate) using the following equation:

PIR =
P
C

(packet/cycle/node) (3)

From these statistics, the total number of communication occurring inside the RF-NoC is easily derived.
The python script, proposed for PIR’s evaluation, is then able to generate the traffic table. This traffic
table is a text file in which each line represents the communication between a source and a destination
and their associated PIR. Figure 6 shows an example of a few lines of the generated traffic table.
This format of the traffic table is supported by the Noxim simulator. From the user point of view,
all the previous steps are automatically done by the framework.
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Figure 6. Traffic table format.

5.3. RF-NoC Simulation under Noxim

The choice of Noxim simulator is based on its capability of supporting WiNoC topologies.
It includes a fundamental component of wireless interconnects which is the radio-hub. The radio-hub
allows single-hop links between faraway nodes in order to avoid multiple wired hops. It provides
also the channel component which abstracts a flit transmission using a given wireless frequency.
Noxim makes use of the Transaction Level Model (TLM) to simulate wireless communications.
It provides also an energy model that includes both wireless and wired energy consumption. However,
OFDMA is not supported natively. This will be detailed after. To perform simulations using Noxim,
a YAML configuration file that contains all NoC parameters has to be filled. This file is divided into
four parts: in (i) Topology and Structure are defined all necessary details of the components for the
considered NoC architecture, such as the number of cores, router buffer size, radio-hub configuration
(attached nodes, buffer size, access technique), and channel data rate (bit/s). Then (ii) the Workload
part contains various data traffic models (uniform, butterfly, transpose, hot-spot), the packet injection
rate, and the packet size. The parameters, such as the routing algorithm, channel access technique,
and the choice between wired/wireless communication, are defined in part (iii) Dynamic behavior.
Finally, the Simulation section collects parameters regarding the simulation setup itself, such as the
number of cycles, warm-up time, reset time, and the level for statistics details. In addition to the
traffic models provided by Noxim, it gives the possibility to simulate a real application by mapping
its communication graph into custom table-based traffic. This table-based traffic allows defining the
source/destination pairs with the packet injection rate, its statistical distribution, and traffic volume to
be injected. Thanks to this feature, we can easily use in the proposed framework the generated traffic
table detailed above, which is supported by Noxim.

After defining Noxim inputs in accordance with Sniper configuration, the simulator provides
a set of performance statistics at the end of each simulation in order to evaluate the simulated
architecture. In particular, they are: received packets, that reports the total number of packets effectively
delivered at their destinations; the average communication delay, calculated as the difference between
the clock cycles in which the packet is generated and consumed by the destination, respectively;
the network throughput, defined as the ratio between the total received flits and the simulation duration
in clock cycles. Finally, energy consumption summarizes the energy consumption of links, routers,
radio-hubs, and network interfaces. Starting from the existing features, Noxim was extended to
support RF-NoC OFDMA architecture. Noxim implements the token-ring technique to access the
radio channels, and only one radio hub can transmit information on the wireless link at a time. As a
consequence, we extended Noxim to support OFDMA and concurrent accesses to wireless channels.
In addition, the threshold-based routing algorithm in Section 4.3 was also integrated into the simulator.
Noxim provides a tool called Noxim explorer which is dedicated to the design space exploration.
It allows for the execution of a set of simulations with different configuration parameters. We extended
Noxim explorer to perform various simulations with different threshold values and consequently study
the impact of threshold to the topology and the traffic distribution.

Regarding input Noxim parameters, some of them are directly defined according to Sniper
configuration file, such as the number of cores, the topology, link bandwidth, etc. However, the user
could still define other NoC architectural parameters as well as RF-related parameters e.g., number of
sub-carriers, total frequency bandwidth, etc.
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6. Performance Evaluation and Experimental Results

The traffic distribution strongly affects the performance of the network. In this part, we compare
the results of synthetic traffic natively included in Noxim and the results obtained using the proposed
framework, which integrates traffic generated from a real application. This comparison aims to
validate the accuracy of the framework and draw conclusions about the choice of the threshold
value for different application scenarios and different topologies. Moreover, this framework aims at
showing the interest of automatically support real application traffic during design space exploration
of OFDMA-based RF-NoC.

6.1. Synthetic Traffic Results

We define three different application scenarios according to the amount of long-distance
communications, namely scenarios 1, 2, and 3, with their respective percentage of long-distance
communications 75%, 50%, and 25%. This approach allows to classify the results according to the
traffic pattern. In addition, to have a fair comparison between synthetic and real traffics, the total
number of communications inside the RF-NoC remains approximately the same for all the experiments.
This lets us study the impact of the threshold value most efficiently. From the following application
specifications and the NoC topology, we generated a table-based traffic, depending on the network
size, the number of hops to discriminate between short and long-range communications, and the
packet injection rate, using a custom python script. Note that, for the considered topology, we define a
communication as “long-distance communication” when the distance from the source to destination is
greater than 8 wired hops, and then it is not necessary to exploit the RF link between adjacent clusters.
The generated table-based traffic is used as input for Noxim.

Figure 7 reports threshold values for 32 × 32, 16 × 32 and 16 × 16 RF-NoC architectures under
the three different traffic scenarios, with their respective delay reductions. We choose three different
packet injection rate values to study the evolution of the threshold and the delay reduction value under
different traffic loads. In these results, the total number of communications is 1 × 105, which is similar
for the real application traffic generated from Sniper and the synthetic ones, and all communications
have the same packet injection rate. This total number of communications remains constant to have a
consistent comparison. The reported threshold for different PIR values and different topologies in the
following results refers to the appropriate threshold to reach the maximum network delay reduction.

Starting from the 32 × 32 architecture results, we notice that for a PIR of 5 × 10−6, the threshold
remains constant (5 hops) regardless of the scenario, and the delay reduction is about 53% for the
first scenario with a slight decrease for other applications. Then, the threshold value increases for
PIR equal to 5 × 10−5, with values of 25, 20, and 10 hops for the scenarios with 75%, 50%, and 25%
of long-range communications, and we reach a significant delay reduction. Finally, for PIR equal to
5 × 10−4, we observe that the threshold and the delay reduction are decreasing because the network
enters in the saturation zone and is no longer able to manage the traffic load. We notice that the
latency reduction decreases with the percentage of long-distance communications; for example, for a
PIR value of 5 × 10−6, we achieve 53% of delay reduction in the first scenario and 33% in the third
application scenario.

For the 16 × 32 architecture, it can be seen that we have the same trend with a slight degradation
of the threshold value and we reach a delay reduction of 79% in the case of 75% long-distance
communications for a PIR equal to 5 × 10−5. For this same PIR value, we notice that this topology
allows achieving better latency reduction compared to 32 × 32 topology under the first traffic scenario.

From the results of 16 × 16 architecture, we can see that the threshold decreases with the network
size Figure 7c. This value is between 10 and 5 hops for this topology for different application scenarios
and PIR values. We can also note that the delay reduction is less significant for this architecture,
particularly for low PIR values, i.e., 5 × 10−6 and regardless of the type of traffic.

The presented results show that the threshold value is impacted by the application scenario,
which refers to the percentage of long-distance communications in an application, and the traffic load,
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represented by the PIR value. These results also give an idea about the percentage of latency reduction
that could be achieved compared to a wired NoC, which helps to decide on the use of the RF link and
topology choice.

(a) (b) (c)

(d) (e) (f)

Figure 7. Threshold values for 32 × 32 (a), 16 × 32 (b), and 16 × 16 (c) architectures, with respective
delay reductions (d–f).

6.2. Design Space Exploration

In this section, we present an example of a design space exploration using the proposed framework.
Following the steps shown in Figure 4, we chose Splash2-FFT as benchmark provided by Sniper to
evaluate three different RF-NoC topologies 32 × 32, 16 × 32 and 16 × 16. Table 3 includes simulation
parameters. Then, we generate the corresponding traffic table for Noxim to get performance statistics.
Finally, the following results illustrated in Figure 8 were obtained.

Table 3. Sniper NoC configuration.

Parameter Value

Cores number 1024/512/256
Memory cache levels 2
Memory model emesh hop by hop
Core model Nehalem
System model magic
Hop latency (cycles) 2
Core concentration per tile 1
Link bandwidth (bits/cycle) 64

Figure 8a shows the average delay of both wired NoC and RF-NoC for different threshold values.
We notice a high latency when the threshold is between zero and five hops, which reflect the overuse
of the RF link. The RF utilization is about 85%, with a threshold value of zero. It means that most of the
packets are routed towards the radio hubs, which leads to network congestion. However, the latency
gets reduced in a significant way when the threshold increases until it reaches the value of 25 hops.
This threshold value leads to a delay reduction of 45%, as shown in the graph depicted in Figure 8b,
which confirms the importance of the choice of the threshold to attend a maximum delay reduction.
Once the threshold is greater than 25 hops, the average delay increases again.
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(a) (b) (c)

Figure 8. Average latency (a), delay reduction (b), and network throughput (c) in the considered
32 × 32 architecture under Splash2-FFT benchmark.

The IP throughput metric was also evaluated for all architectures depending on the threshold
value as illustrated by Figure 8c. We notice that the RF-NoC provides the same throughput as the
conventional NoC expected for low threshold values, which is due to network congestion.

The same steps were applied for 16 × 32 and 16 × 16 topologies and Figure 9 shows the threshold
value evolution and the maximum reached delay reduction. We notice that the threshold value and the
delay reduction increases along with the network size for the considered application. From Figure 9
we can conclude that for Splash2-FFT, in a 32 × 32 topology, and 25 hops as threshold form the best
combination leading for the highest network latency reduction, as illustrated in Figure 8b showing the
importance of the threshold selection.

Figure 9. Threshold and maximum delay reduction percentage of 32 × 32, 16 × 32 and
16 × 16 architectures.

6.3. Results Comparison

After presenting the results obtained with the synthetic traffic and the results provided by the
proposed framework, we compare these two outcomes. For this, we consider the example of the
Splash2-FFT application for the 32 × 32 NoC architecture. The first step is the characterization of
the application reported in Table 4 in order to identify the closest scenario and PIR value. Then,
we compare these values with results reported in Figure 7a,d. The considered application has 75% of
long-range communications and the nearest PIR value is 5 × 10−5. Note that there is a small difference
between the total number of communications inside the RF-NoC between the synthetic traffic and
the real one (17,560 communications) that has to be taken into account, that’s why we pass to the PIR
value of 5× 10−5. The suitable threshold value is 25 hops, which is proved by the proposed framework
in Figure 8a. For delay reduction, we reach almost the same percentage (about 50%) compared to
the conventional NoC. If we apply the same steps for 16 × 32 and 16 × 16 topologies, we found
almost the same threshold value, but there is a difference in the percentage of the delay reduction.
The synthetic traffic reports a higher percentage of latency reduction in Figure 7e,f compared to results
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obtained from the use of the framework in Figure 9 which is due to the difference in the total number
of communications that is not negligible in these topologies.

Table 4. Application characterization.

Benchmark Splash2-FFT
Topology 32 × 32
Packet size (flit) 8
Flit size (bit) 64
Average PIR (packets/cycle) 8 × 10−6

% of long range communication entries 80%
% of long range communication 60%
Total number of nodes communication (see Section 5.2) 117,560

6.4. Simulation Time

An important feature of a design exploration framework is the simulation time.
Figure 10 represents the simulation times when simulating Splash2-FFT benchmark for the 3 considered
topologies i.e., 32 × 32, 16 × 32 and 16 × 16 using the framework. All simulations were done on a
DELL Latitude 5580 computer, with Intel core i7 processor, 16 Gb RAM, running ubuntu 16.04 LTS.
The simulation time of Sniper depends on the benchmark, whereas the simulation time of Noxim
depends on the number of clock cycles we want to simulate. In this example, we set the simulation time
to 10k clock cycles in Noxim. That is, actual communication flows simulated by Sniper are replaced
with statistical communication flows in Noxim. According to Figure 10, we observe that the simulation
times increase along with the benchmark complexity. Thus, the fraction of simulation time of Sniper
dominates the total simulation time. Even if we change Noxim’s input parameters (threshold value,
RF bandwidth, modulation order, etc.) the results may remain roughly the same.
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Figure 10. Simulation times for 3 architectures obtained using the framework.

7. Conclusions

In this paper, we presented a design space exploration framework for RF-NoC architectures.
This framework is based on the joint use of the Sniper simulator, allowing to take advantage of real
application benchmarks, and an extended version of Noxim, which supports OFDMA and integrates
a suitable routing algorithm. We compared the results obtained from a real application using the
proposed framework with those coming from an equivalent synthetic traffic. We demonstrated that
the framework provides an efficient way to consider application-dependent and RF-NoC related
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parameters to achieve the best delay reduction. In this study, a delay reduction of respectively 45%,
30% and 25% were obtained by the RF-NoC for the considered real application, with the appropriate
threshold value. As future works, further investigations with different types of benchmarks e.g.,
stream and RF-NoC configuration, will be done.
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Abstract: Multiple multi-threaded tasks constitute a modern many-core application. An accompanying
generic Directed Acyclic Graph (DAG) represents the execution precedence relationship between
the tasks. The application comes with a hard deadline and high peak power consumption.
Parallel execution of multiple tasks on multiple cores results in a quicker execution, but higher peak
power. Peak power single-handedly determines the involved cooling costs in many-cores, while its
violations could induce performance-crippling execution uncertainties. Less task parallelization,
on the other hand, results in lower peak power, but a more prolonged deadline violating execution.
The problem of peak power minimization in many-cores is to determine task-to-core mapping
configuration in the spatio-temporal domain that minimizes the peak power consumption of an
application, but ensures application still meets the deadline. All previous works on peak power
minimization for many-core applications (with or without DAG) assume only single-threaded tasks.
We are the first to propose a framework, called PkMin, which minimizes the peak power of many-core
applications with DAG that have multi-threaded tasks. PkMin leverages the inherent convexity in the
execution characteristics of multi-threaded tasks to find a configuration that satisfies the deadline,
as well as minimizes peak power. Evaluation on hundreds of applications shows PkMin on average
results in 49.2% lower peak power than a similar state-of-the-art framework.

Keywords: peak-power management; many-core; directed acyclic task graphs

1. Introduction

A many-core application is made up of tens of tasks. All of the tasks are inherently multi-threaded.
An accompanying generic Directed Acyclic Graph (DAG) models the execution dependency between
the tasks and therefore determines the precedence order for execution [1]. The application must
complete execution within a given hard deadline. One way to meet the deadline is to execute as many
tasks as possible in parallel. Executing them with the maximum parallelization permitted under the
DAG with all available cores results in a short execution time, but also results in high peak power.

The highest power consumption observed during the task’s execution defines its peak power.
Rated peak power consumption predominantly determines the cost (and weight) of cooling
infrastructure that accompanies the many-core. Higher peak power also results in higher on-chip
temperatures, which leads to reliability issues [2–4]. Higher temperatures can also trigger performance
crippling thermal-throttling, which makes execution unpredictable [5]. We can minimize peak power
by executing all of the tasks sequentially on a single core, but such an execution will violate the deadline.

The problem of peak power minimization [6,7] in many-cores is to determine a spatio-temporal
task-to-core mapping (configuration) that still meets the application deadline, but minimizes the
peak power. We make use of two well-known observations in the execution of multi-threaded tasks
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in order to efficiently solve the problem. First, Figure 1a shows that the execution time of tasks in a
many-core application is discretely convex with increasing core allocation [8–11]. Second, Figure 1b
shows that the peak power of tasks is discretely linear with increasing core allocation. These two
observations open up the possibility of employing convex optimization in order to solve this problem.
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Figure 1. Execution characteristics of different tasks with different core allocations.

Most works on peak power minimization for many-core applications only assume
single-threaded tasks. Therefore, they have no hope for the exploitation of execution characteristics
that are shown in Figure 1, which are specific to multi-threaded tasks. In this work, we propose a
framework called PkMin that minimizes the peak power of multi-threaded many-core applications
with DAG under deadline constraint by exploiting the observations made in Figure 1. We evaluate
PkMin against a similar state-of-the-art framework [12] while using hundreds of applications for a
thorough evaluation. Empirical evaluations show that PkMin results in on average 48% lower peak
power than the state-of-the-art.

2. Motivational Example

Figure 2 shows a motivational example of the problem of peak power minimization in many-cores.
We use Sniper [13] multicore x86 simulator to execute the binaries that are associated with the task.
Sniper directly reports the execution time values (in clock cycles) for the binaries and also generates
traces that is then used by downstream tools, like McPAT [14], to estimate the power consumed by
various per core components like L1 (I/D) caches, instruction fetch units, L2 caches, etc., as well uncore
components, like memory controllers and DRAM subsystem. This methodology avoids the insertion of
costly instrumentation hooks within the program. We account for the power consumption only on the
“active” cores, i.e., those that are directly reponsible for execution of the application. Figure 2a gives a
DAG for an application composed of four tasks that we need to execute on many-core within 425 ms.
Tasks A and B are composed of DFS. Tasks C and D are composed of CilkSort.
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Figure 2. Motivational example for peak power minimization of multi-threaded many-core applications
with Directed Acyclic Graph (DAG) under a deadline constraints.

Figure 2b shows the execution time of the benchmark in a configuration that executes the tasks
serially with all available cores. The execution in Figure 2b meets the deadline, but leads to a high
peak power of 75.95 W. Figure 2c shows the execution time of the application in a configuration
that parallelizes the execution, but does not use multi-threading in tasks. Execution in Figure 2c
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leads to low peak power, but it violates the deadline. Figure 2d shows the execution time of the
application in an optimal configuration generated by PkMin that allocates just enough cores to tasks,
such that both precedence and deadline constraints are met, but with a minimal peak power of 10.77 W.
Figure 2d results in 85.82% lower and only 17.45% higher peak power than the configuration in
Figure 2b,c, respectively.

3. Related Work

Peak power minimization in the context of multi-/many-core scheduling is an active subject
of research [15]. The problem is important in both embedded [16–18] as well as super-computing
domain [19,20]. The authors in [21] propose an algorithm to minimize peak power for an application
with a task graph without a deadline. The authors of [22] were the first to study the problem of
peak power minimization in the context of task graph-based many-core applications with a deadline.
They propose an optimal algorithm that schedules a set of independent tasks from the application on a
many-core to minimize application’s peak power while meeting its deadline. The authors of [23] work
on the same problem, but proposed an alternative light-weight heuristic algorithm. Most recently,
the authors in [24] proposed an algorithm to minimize peak power for many-core applications with
DAG under reliability constraints. All of the works that target the peak power minimization problem
directly assume the tasks with DAG within the many-core application to be single-threaded and
thereby individually schedulable only on a single core. On the contrary, we focus on tasks that are all
individually multi-threaded, wherein the level of multi-threading in each of them is an independently
configurable design knob for solving the peak power minimization problem.

4. Convex Optimization Sub-Routine for Solving Serialized DAG

This section provides the details of the convex optimization sub-routine that is at the heart
of PkMin. This sub-routine solves the problem of peak power minimization for a many-core application
with a serial DAG optimally in the continuous domain and near-optimally in the discrete domain,
as the problem is NP-Hard in the discrete domain. PkMin uses this sub-routine to perform peak power
minimization of any generic DAG in Section 5.

System Model: we need to execute an application with M ∈ N multi-threaded tasks indexed
while using i on a many-core with N ∈ N cores. Tasks execute serially in an order ordained by the
serialized DAG. Ni is the maximum number of cores that can be allocated to the task i. Each task i
is executed with Ci ∈ R+ number of cores with the domain constraint 1 ≤ Ci ≤ Ni. The number of
cores Ci allocated to the task i in practice needs to be discrete. However, we, at first, assume it to be a
non-negative real value greater than equal to 1 and less than equal to Ni for tractability.

Based on the observations made in Figure 1a, we assume execution time τi : R+ → R+ of task i
with Ci cores allocated to be a univariate convex function of the number of allocated cores. In the
domain [1, Ni] ∈ R+ allocated cores, the execution time τi(Ci) is a monotonically decreasing convex
function of the number of allocated cores Ci. Based on observations made in Figure 1b, we assume the
power ρi : R+ → R+ of a task i with Ci cores allocated to be a univariate linear function of the number
of allocated cores.

Execution Model: the execution time of the application in totality τ : RM
+ → R+ with

configuration (core allocation vector) �C = 〈C1, C2, ..., CM〉 ∈ RM
+ is the sum of the execution time

of the individual tasks.

τ(�C) =
M

∑
i=1

τi(Ci) (1)

Because the execution time of each task is individually convex and the sum of convex
functions is a convex function, then the application’s execution time τ(�C) is a multivariate convex
function of configuration �C. Figure 3a shows the non-negative convex execution time surface of a
two-task application.
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Figure 3. Characteristics for a two-task application (with a serialized DAG) with different core
allocations for each task in the continuous domain.

Peak Power Model: peak power of the application ρ̂ : RM
+ → R+ with configuration �C is given

by task with the maximum power amongst all of the tasks.

ρ̂(�C) =
M

max
i=1

ρi(Ci) (2)

The application’s peak power ρ̂(�C) is a multivariate convex function of configuration �C, as the
peak power of each task is individually linear and the max of linear functions is a convex function.
Figure 3b shows the non-negative convex peak power surface of a two-task application.

Deadline Model: the peak power function ρ̂(�C) attains its lowest value when all of the tasks
execute with bare minimum cores (∀i Ci = ni), but this is only permitted when there is no constraint
on the execution time. The application’s hard deadline of τ̂ ∈ R+ put a constraint τ(�C) ≤ τ̂ on its
execution time. The deadline τ̂ divides the domain for minimization of peak power function ρ̂(�C) into
feasible and infeasible regions.

Given a deadline, we are required to minimize the peak power over the feasible region F ⊂ RM
+ .

We now prove the feasible region F to be a convex set. Let �Cx, �Cy ∈ F be two feasible configurations.
By feasibility definition

τ(�Cx) ≤ τ̂ and τ(�Cy) ≤ τ̂ (3)

Because τ(�C) is a convex function,

τ(λ�Cx + (1 − λ)�Cy) ≤ λτ(�Cx) + (1 − λ)τ(�Cy)

Using Equation (3), we obtain

τ(λ�Cx + (1 − λ)�Cy) ≤ λτ̂ + (1 − λ)τ̂

≤ τ̂

Therefore, F is a convex set, since, for any �Cx, �Cy ∈ F and any λ ∈ [0, 1], we have
τ(λ�Cx + (1 − λ)�Cy) ∈ F. Figure 4 shows the feasible region F for an application with two tasks
with a given hard deadline.
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Figure 4. Feasible region for a two-task application (with a serialized DAG) with different number of
cores allocated to each task given a hard deadline.

Solution: our problem reduces to minimizing a convex peak power function ρ̂(�C) over the
feasible convex set F as its domain. Formally, it can also be summarized, as follows

minimize ρ̂(�C)

subject to τ(�C) ≤ τ̂

1 ≤ Ci ≤ Ni ∀Ci ∈ R+ (4)

We solve the above convex optimization problem in the continuous domain using NLOpt [25]
tool that internally solves the problem whlileusing the Method of Moving Asymptotes (MMA) [26]
algorithm. The problem-solving time is insignificant, even with an extremely large number of tasks.

Solution Discretization: when we modify the constraint in Equation (4) to force cores allocated to
the task to be integers i.e., ∀Ci ∈ Z+ in the domain [1, Ni] ∈ Z+ instead of real-numbers, the problem
becomes an NP-Hard Convex Mixed Integer Non-Linear Programming (CMINLP) problem [27].
Still, we can expect local optima in the discrete domain to be close to the discrete global optimum,
because the optimization is tractable using convex programming in its relaxed continuous domain,
unlike an arbitrary optimization problem [28].

We first solve Equation (4) to obtain the optimal real-valued configuration in the
continuous domain. We then round up all of the individual real-valued core allocations to the
nearest integer. The rounding up/down decision is tricky, because there are 2task graph size possibilities,
all of which cannot be exhaustively tested for optimality. Two choices are immediately obvious,
i.e., to round-down all the allocations or round-up all of them. Because the execution time is
non-increasing with increasing core allocation for any task (Figure 1a), rounding down can make the
allocation infeasible while rounding up will preserve the feasibility, although it not guaranteed to be
optimal in the discrete domain. For example, if the optimal configuration in a continuous domain for
a three task application is found to be �C = 〈4.1, 3.4, 5.9〉, then we round up to discrete configuration
�C = 〈5, 4, 6〉.

5. Peak Power Minimization with PkMin

The problem of peak power minimization for many-core applications with precedence and
deadline constraints is inherently a multi-dimensional bin-packing problem, which is well-known to
be NP-Hard [29]. We introduce a framework, called PkMin, which solves the problem near-optimally
by exploiting the observations in Figure 1. At the heart of PkMin is a convex optimization sub-routine
that can solve the problem optimally for a serialized DAG in a continuous domain. Section 4 provides
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the details of the sub-routine. The problem is NP-Hard, even with a serialized DAG, in the discrete
domain [27]. Therefore, the sub-routine extrapolates the real-valued solution to the discrete domain.

In general, an application DAG allows for the possibility of multiple tasks to be run in parallel.
For a given deadline, parallel execution allows for tasks to individually stretch out further along in the
time domain more than a serialized execution. Therefore, we can execute tasks with a fewer number
of cores being allocated to them individually and still meet the deadline. Tasks execute with a lower
peak power (Figure 1b) with a smaller number of cores. However, parallel execution is not guaranteed
to lower the peak power of the application, because the peak power of tasks that execute in parallel
adds up.

Figure 5 shows the functioning of PkMin with the help of a flowchart. PkMin begins by serializing
the DAG for an application by applying a topological sorting procedure [30]. It then passes the DAG
to a convex optimization sub-routine (Section 4) that computes an allocation for the serialized DAG.
PkMin then enumerates all of the task pairs that can be executed in parallel by computing the transitive
closure [31] of the DAG that exposes the pairwise independent tasks. A pair of independent tasks is
then “stacked” together to form a single unified task.

Begin DAG Serialization Convex Optimization Exit? Report Previous Config.
Y

Stop

Find Task PairsMerge Best Task PairsUpdate DAG

Figure 5. Execution Flow for PkMin.

All of the sub-tasks in the unified task always execute with the same number of cores.
The execution time and peak power of the unified task is the max and sum of the execution times
and peak powers of the sub-tasks, respectively. The sum operator preserves the linearity of power
characteristics, while the maximum operator preserves the convexity of execution time characteristics.
The new unified task has characteristics that are similar to its constituent tasks. If there are multiple
task pairs to choose from, PkMin chooses the task pair that gives the greatest reduction in execution
time on unification.

The unified task replaces its sub-tasks in the original DAG. PkMin then serializes the modified
DAG and passes it to the convex optimization sub-routine again in order to obtain a new feasible
configuration. It repeats the process of DAG modification, followed by convex optimization iteratively
until an exit condition is encountered in one of the following ways.

1. The new configuration yields a higher peak power than the previous configuration, i.e., a local
minimum is reached.

2. There are no more candidate task pairs that can be parallelized.

PkMin reports the configuration from the previous iteration as the final solution configuration.

Working Example

This section explains the functioning of PkMin with the help of a working example.
Figure 6 visualizes the steps that were taken by PkMin to solve the motivational example shown
in Figure 2. PkMin begins with the original DAG that is shown in Figure 2a. It then serializes the DAG,
as shown in Figure 6a. It then runs the convex optimization module from Section 4 in order to obtain
the core allocation for the serialized DAG, as shown in Figure 6b. It then tries to stack Task B and Task
C together by combining them into a new Task B||C and create a new DAG, as shown in Figure 6c.

Figure 6d gives the characteristics of unified Task B||C, which inherits the convexity properties
of the parent tasks under equal core distribution. Because the DAG in Figure 6c is already serialized,
then PkMin can directly operate on it. PkMin runs convex optimization sub-routine again on the
unified DAG to obtain a new core allocation as shown in Figure 6e. However, allocation in Figure 6e
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has worse peak power than the allocation in Figure 6b, and, therefore, the algorithm terminates with
allocation in Figure 6b as the reported solution.

When compared to the worst-case peak power in Figure 2b, the solution reported by PkMin has
85.15% lower peak power. The solution reported by PkMin has only 4.27% higher peak power when
compared to the optimal solution in Figure 2d.

Figure 6. Working example for peak power minimization of the motivational example that is shown in
Figure 2 using PkMin.

6. Experimental Evaluation

Experimental Setup: we use Sniper simulator [32] to simulate the execution of multi-threaded
many-core applications. The simulated multi-core is composed of eight tiles—with two cores
each—arranged in a 4 × 2 grid connected while using a Network on Chip (NoC) with hop latency
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of four cycles and link bandwidth of 256 bits. Two cores within the tile share a 1 MB L2 cache.
Cores implement Intel x86 Instruction Set Architecture (ISA) and run at a frequency of 4 GHz with
each core holding a 32 KB private L1 data and instruction caches. Many-core’s power consumption is
provided by the integrated McPat [14] assuming a 22 nm technology node fabrication.

Application Task Graphs: we use a set of five benchmarks—CilkSort, DFS, Fibonacci, Pi,
and Queens—from Lace benchmark suite [33] to create our tasks. In order to generate random DAGs
of size N, we first sample with replacement N tasks from the benchmark set, thereafter with a
probability p, we add an edge between select pair of nodes, such that the acyclic property of the
resulting directed graph is preserved. The setup allows for us to thoroughly evaluate PkMin with
an arbitrarily large number of tasks while simultaneously generating a large number of randomized
applications for a given number of tasks.

Application Deadline: setting up arbitrarily short deadlines will render application
execution infeasible. In order to set up a feasible deadline, we first note the minimum execution
time that is achievable by all of the benchmarks, as, for example, illustrated in Figure 1a for DFS
and CilkSort. Let B be the benchmark execution time that is worst among all of the benchmarks
considered. We then set the deadline to B · N for an application task graph with N tasks. This ensures
the existence of a feasible solution. This is also a fairly tight deadline, as all of the tasks are forced to
execute with maximum available cores, if they choose to execute one after the other in a serial fashion.
If the application deadline is relaxed further, then other execution configurations with much lower
cores (and hence peak power) may become feasible.

Baseline: we are unaware of any work that also solves the problem of peak power minimization
for multi-threaded many-cores applications with DAG under deadline constraints. The authors of [12]
propose a framework, called D&C, which uses a divide and conquer algorithm to minimize
execution time for multi-threaded many-core applications with DAG under a peak power constraint.
Therefore, D&C solves dual of the problem solved by PkMin. We modify D&C to DCPace that solves
the same problem as PkMin by replacing the constraint from peak power to deadline and replacing the
objective function from minimizing executing time to minimizing peak power. Modification keeps the
underlying algorithm’s ethos intact. DCPace thus acts as a suitable baseline for PkMin.

DCPace begins by allocating cores to tasks, to run them in their most energy-efficient configuration,
i.e., the one with minimum energy consumed. It then generates an intermediate schedule by scheduling
the tasks at the earliest possible time permitted under precedence constraints. It then identifies the
midpoint of the schedule along the time axis. All of the tasks that are actively executing at the midpoint
must be independent. DCPace divides the task into three bins beg, mid, and end. All three bins are
assigned a sub-deadline that is equal to the third of the original deadline. All independent tasks in
mid are greedily scheduled, such that the bin’s peak power is minimized under the available core
and sub-deadline constraints. This is done using a strip packing heuristic, like Next-Fit Decreasing
Height (NFDH) [34]. In a strip-packing problem, a collection of rectangles of different height and
width are to be packed on a rectangular bin, with a fixed width and unbounded height, such that
no two rectangles overlap. This problem is NP-complete. NFDH begins by sorting the rectangles
in decreasing order of their heights. After that, it packs the rectangle in a left-justified fashion until
the next rectangle can no longer fit in the remaining space to the right. A new level is defined as the
packing restarts from the remaining rectangles. DCPace continues to divide recursively mid and end
using their midpoint. Recursion breaks when a bin becomes a singleton with only one task.

Power and Energy Consumption Analyses: Figure 7 illustrates the working of DCPace and
PkMin algorithms. In this experiment, we use tasks graph with 100 tasks and set the deadline to
1700 million clock cycles or 425 ms. DCPace chooses the most energy-efficient core allocation to
execute each task, which is not changed thereafter. Given the task execution time and task peak power
characteristics, as shown in Figure 1, the minimum energy allocation can only occur either when all of
the cores are allocated, or a minimum number of core is allocated to each task. Figure 7b, shows the
variation in the total cores allocated as the application execution proceeds in time. Both DCPace
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and PkMin show considerable variations in the total-cores allocated, although the former exclusively
varies between the maximum and the minimum possible allocations. Because the goal of PkMin is
to reduce peak power exclusively, its allocations amongst tasks under PkMin are such that any two
different non-overlapping tasks have almost similar peak power consumption when compared to
DCPace. PkMin exploits the convexity properties of the task characteristics in order to achieve this
“equivalent power” allocations. The power trace of application execution in Figure 7a under PkMin
has almost no peaks and troughs as compared to DCPace.
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Figure 7. Power consumption and core utilization trace.

Performance Evaluation: we evaluate the efficacy of PkMin in minimizing peak power for
applications with an increasing number of tasks. We also evaluate the same applications using DCPace
to put the performance of PkMin in context.

First, we show the peak power savings for application task graph of sizes varying from 10 to 100.
We set the deadline to 17 · N million clock cycles, where the best possible execution time of each task is
17 million clock cycles and N is the number of tasks in the application. Figure 8a shows that PkMin
has, on average, 48% lower peak power when compared to the DCPace. The energy consumption of
PkMin is, however, around 0.8% higher than the DCPace, as illustrated in Figure 8b.

Figure 9 orthogonally shows the efficacy of PkMin in minimizing the peak power of hundred
random applications, each with 100 tasks. The deadline is similarly set to 1700 million clock cycles.
PkMin results in lower peak power than DCPace, with only 1% additional energy overhead.

Figure 10 shows the efficacy of PkMin in minimizing peak power in a random application
(with 100 tasks) as its deadline is relaxed. In this case, the improvement of peak power for PkMin over
DCPace comes at the cost of worsening energy consumption. However, a significant reduction in the
peak power of approximately 88% is possible with less than 10% increase in energy consumed.
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Figure 8. Application performance under PkMin normalized with respect to DCPace. Application size
varies from 10 tasks to 100 tasks.
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Figure 9. Application performance under PkMin with 100 task applications normalized against their
performance under DCPace.
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Figure 10. Peak power under PkMin for a 100-task application with different deadlines that are
normalized against its peak power under DCPace.

Scalability: PkMin uses NLOpt internally, which has a low polynomial-time computational
complexity. It invokes NLOpt at the max number of tasks |M| times, keeping the computational
complexity still polynomial. PkMin also uses topological sort and transitive closure graph algorithms
that also have a worst-case polynomial computational complexity of O(|M|) and O(|M|2), respectively.
This low polynomial-time computational complexity makes PkMin highly scalable. Figure 11 shows
the increase in worst-case problem-solving time that is required under PkMin with an increase in the
number of tasks in applications. For a 100-task application, PkMin requires 1.3 s to compute the
near-optimal configuration.
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Figure 11. Runtime of PkMin for applications with different number of tasks.

7. Conclusions

We introduced a framework, called PkMin, in this work that solves the problem of peak power
minimization for a multi-thread many-core application with DAG under a deadline. PkMin exploits
the execution characteristics of multi-threaded tasks in many-core applications to optimally solve the
problem for a serialized DAG in the continuous domain while using convex optimization. It then uses
the convex optimization sub-routine to solve the problem near-optimally for any generic DAG.
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Empirical evaluations on hundreds of applications show configurations obtained under PkMin
have, on average, up to 48% lower peak power than similar state-of-the-art with less than 1% additional
total energy. The peak power savings can be further increased to 88% with less than 10% energy
overheads whenever the deadline is relaxed. PkMin has polynomial-time computation complexity with
negligible problem-solving overheads, which makes it suitable for use at both run-time and design-time.
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Abstract: Servers in a data center are underutilized due to over-provisioning, which contributes
heavily toward the high-power consumption of the data centers. Recent research in optimizing
the energy consumption of High Performance Computing (HPC) data centers mostly focuses on
consolidation of Virtual Machines (VMs) and using dynamic voltage and frequency scaling (DVFS).
These approaches are inherently hardware-based, are frequently unique to individual systems,
and often use simulation due to lack of access to HPC data centers. Other approaches require
profiling information on the jobs in the HPC system to be available before run-time. In this paper,
we propose a reinforcement learning based approach, which jointly optimizes profit and energy in the
allocation of jobs to available resources, without the need for such prior information. The approach is
implemented in a software scheduler used to allocate real applications from the Princeton Application
Repository for Shared-Memory Computers (PARSEC) benchmark suite to a number of hardware
nodes realized with Odroid-XU3 boards. Experiments show that the proposed approach increases the
profit earned by 40% while simultaneously reducing energy consumption by 20% when compared
to a heuristic-based approach. We also present a network-aware server consolidation algorithm
called Bandwidth-Constrained Consolidation (BCC), for HPC data centers which can address the
under-utilization problem of the servers. Our experiments show that the BCC consolidation technique
can reduce the power consumption of a data center by up-to 37%.

Keywords: high performance computing; data centers; resource allocation; profit; energy consumption;
machine learning; reinforcement learning; server consolidation

1. Introduction

High Performance Computing (HPC) data centers typically contain a large number of computing
nodes each consisting of multiple processing cores. The size and performance of these systems
continue to increase which causes concerns to be raised over higher energy requirements [1–4].
Research estimates that data centers worldwide account for 1.1–1.5% of global electricity use [5].
It is therefore important to take measure that reduce this energy consumption.
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Different techniques have been proposed in the literature to improve the energy efficiency of the
data center. Dynamic Power Management (DPM) and Dynamic Voltage Frequency Scaling (DVFS) are
popular techniques to reduce the power consumption of under-utilized resources. Consolidation of
virtual machines (VMs) running in different servers into fewer servers to enable aggressive DPM or
DVFS has become a major focus area in the research community [6–13].

However, server-consolidation with the sole objective of power reduction can impact the
performance of the HPC data center negatively if the network is incapable of supporting the resultant
aggregated traffic patterns or hotspot scenarios [14]. Therefore, careful attention to the impact of
consolidation on network performance is necessary.

HPC data centers maintain queues of jobs which arrive periodically and must schedule these
jobs to be executed in order to produce a profit. It is common to assign values to jobs which imply
their level of importance compared to other jobs: higher value equates to higher importance [15].
Value is typically assigned based on expected profit earned from the completion of the job. In HPC
systems, the scheduling of jobs is influenced by their value; typically a resource management system
will attempt to maximize its profits by allocating its limited resources to the highest-value jobs in the
queue. This is especially true when jobs arrive at a rate higher than the rate at which the system can
process and execute them. Typically, the value obtained by completion of a job is time-dependent
which reflects the necessity to schedule as early as possible.

Existing approaches which optimize resource management use fast heuristics to very quickly find
practical allocations for the dynamically arriving jobs. The use of heuristics over more complicated
algorithms reduces overhead in the delay of allocations and also lowering the resource requirement of
the resource management system itself. Research has also been conducted which considers profiling
results from design-time testing to improve both the run-time computational complexity and the
quality of the heuristics [16,17]. While the results of these researches show significant improvement
over other approaches, the technique is only applicable in select situations due to the required accurate
information and assumption that there is little deviation in resources required by the jobs in the
system. The challenge to overcome these disadvantages is to design an algorithm that accounts for this
variation and builds up a full history of information about jobs in real-time instead of requiring the
information to exist already.

In an orthogonal direction, novel data center network (DCN) technologies, leveraging emerging
interconnection paradigms such as millimeter-wave (mmWave) interconnects have been proposed
to reduce the power consumption of the networking equipment [18,19]. Wireless data center
architectures have been proposed where Top-of-Rack (ToR) switches are interconnected with
mmWave links while the intra-rack communication is achieved through traditional Ethernet [20–23].
Alternatively, server-centric wireless DCNs where direct wireless links are used for server-to-server
communication have also been designed [24,25]. These wireless data center architectures can be
considered as viable alternate for traditional wired architecture for HPC computing for reducing even
more power consumption. Furthermore, designing adequate server consolidation techniques can
result in further power saving.

Contribution: This paper attempts to address this challenge by using ideas from reinforcement
learning techniques and designing a novel server consolidation technique. The resource management
system performs allocations that optimize both profit (value) and energy using a combination of
light-weight heuristics and historic run-time results. The system considers the scheduling problem
as a Multi-Armed Bandit (MAB) model where each individual job allocation is a possible action.
The approach uses a novel algorithm, inspired by the Upper-Confidence Bound technique [26],
collects profiling information at run-time (exploration) to optimize future allocations of jobs
(exploitation). We also propose a network-aware approach to server-consolidation called Bandwidth
Constrained Consolidation (BCC) and study its impact on a data center. While consolidating tasks
can reduce the power consumption of data centers, due to the arrival of new tasks and completion
of existing tasks, the consolidated utilization profile of the servers may change adversely affecting
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the power consumption over time. Hence, the BCC consolidation algorithm should be repeated
periodically. Hence we also propose a method to find the optimal inter-consolidation time for a
data center and derive a mathematical formulation to estimate the optimal inter-consolidation time.
This will enable optimally scheduling consolidation in a data center without the need for extensive
simulations and measurements to achieve the optimality.

Paper Organization: Section 2 presents work related to this paper. Section 3 introduces the
problem, including the definition of a job and its value, the MAB model, and the model of HPC
systems. The novel, reinforcement learning-based approach is introduced in Section 3.4. In Section 4
we introduce the network aware server consolidation technique, traffic model, our proposed algorithm,
and mathematical model to estimate optimal inter-consolidation time. Experimental results are
presented in Sections 5 and 6 concludes the paper.

2. Related Work

It is proven that the use of market-inspired resource allocation heuristics provides promising
results in the common situation that HPC systems are overloaded with more jobs than they can
handle [27]. These heuristics use some implementation of a value for jobs, both fixed [28] and changing
over time [15]. Most of them choose the highest value job first, which might consume too many
resources, leaving limited resources for jobs arriving in the future. Therefore, resources required for
each job should be optimized.

Other heuristics exist such as value density (value divided by resource requirement) which
addresses the issue of the highest value job consuming too many resources [29–31]. This heuristic
instead will prefer jobs which are small and have reasonably high value over very large jobs with high
value. However, this heuristic, and others like it, do not consider energy consumption.

A number of reinforcement learning techniques were compared for scheduling tasks on large-scale
distributed systems [32]. In this comparison, energy efficiency was considered by attempting to
maximize CPU utilization. This intuitively increases energy efficiency by reducing the wasted energy
of having CPUs powered on but in an idle state. Similar reinforcement learning techniques are explored
for data centers [33]. However, these researches only considered the fulfillment of the service level
agreement (SLA) which provides a fixed value when jobs are completed before a specified deadline.
This research instead considers the common case where the value of a job changes gradually as a
function of time, known as a value-curve. In addition, the energy efficiency optimization does not
focus on the reduction of energy consumption directly.

A report identified that the use of profiling results in jointly optimizing the value and energy of a
job [17]. Further research also expanded the optimizations to monitoring and adapting the allocations
during tasks’ execution by migrating to a different set of resources [34]. Both approaches require
profiling of jobs at design-time, and the latter also requires the ability for jobs to pause execution
and resume on a different set of resources. In contrast, the bandit-based technique in this paper
attempts to similarly predict the value and energy of jobs without relying on the assumptions that
prior information is obtainable and migration of jobs is possible.

In a complementary direction, under-utilization of the servers in a data center has always
been observed mainly due to the over-provisioning for the peak demand hours [35]. In [6],
various formulations of the cost-aware application placement problem for servers were first introduced
without considering network performance. Similarly, in [7], a system was proposed that optimizes
power consumption, performance benefits, and transient costs incurred by server consolidation.
In [8] an efficient power-aware resource scheduling strategy was proposed that reduces data center
power consumption based on live VM migration. A framework for VM migration and placement was
proposed in [9] considering both the network topology and network traffic demands to minimize
energy consumption while satisfying as many network-demands as possible. In [10], energy-aware VM
placement was proposed where application dependencies were considered to reduce network energy
consumption. In [11], a network-aware VM consolidation scheme was proposed for solving combined
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VM consolidation problems to conserve the energy of the data center. In [12], a heuristic to control
VM migration based on prioritizing VMs with steady capacity was proposed. In addition to server
consolidation, an opportunistic approach to reduce power consumption is proposed in [36]. From all
of these studies, it is clear that if an adequate consolidation algorithm can be designed, a significant
amount of power reduction can be possible for the HPC data centers.

Orthogonally, various designs have been proposed to address DCN design issues such as energy
consumption, cabling complexity, scalability, and over-subscription. One popular topology used today
in data center networks is a fat-tree topology. To address oversubscription and other issues in wired
DCNs many alternative DCN architectures have been proposed such as BCube, DCell, DOS, VL2,
and Helios [35,37]. However, these innovations still rely on copper or optical cables and do not mitigate
the challenges due to high power consumption, design, and maintenance of a DCN with physical
links. To alleviate the issues of DCNs with power-hungry switching fabrics and bundles of cables
wireless data centers with mm-wave inter-rack links are envisioned in [18,20,21]. Most of the recent
works on wireless data centers propose interconnecting entire racks of servers as units with 60 GHz
wireless links primarily in order to utilize the commodity Ethernet switching between servers inside
individual racks [18]. Phased antenna arrays or directional horn antennas are used to establish wireless
links between ToRs in the entire data center [21–23]. Line-of-Sight (LoS) communication paths are
necessary between the antennas for reliable communication in a wireless data center [21]. In [25] a
novel wireless DCN architecture, based on 60 GHz wireless links between the individual servers of
namely, S2S-WiDCN was proposed which drastically reduces the power consumption of the network
portion of the data center while sustaining comparable performance. Hence, adopting an adequate
wireless architecture for the HPC environment can result in significant power saving.

3. System and Problem Definition for Scheduling Problem

Figure 1 shows a simplified model of a typical HPC data center. Users submit their jobs to the
data center which stores them in some data structure such as a queue until they can be allocated.
Attempted allocations usually occur upon a change in the system, such as new jobs arriving or current
allocations finishing which frees resources.

Figure 1. The model of the system targeted by this paper. A High Performance Computing (HPC) data
center containing multiple nodes with many-core CPUs.
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3.1. HPC System

The HPC Data Center (HDC) consists of a resource management system (RMS) connected
to a number of different nodes (N0, N1, ..., Ni) each containing a set of processing cores
(Core0, Core1, ..., Corem). Each node represents a physical server in the data center being considered.
The processing cores are homogeneous and communicate with each other via an interconnect. The RMS
operates on its own set of resources and assigns arrived jobs to a set of cores within a single node.
A single job is considered to use resources of a single node to avoid communication overhead between
nodes. Further, to avoid migration overhead, it is assumed that jobs cannot be paused or migrated to a
different set of resources during execution.

The HPC system is created in hardware as three Odroid-XU3 boards connected in a local area
network (LAN). The CPU in these boards, Samsung Exynos5422, is powered by Arm® big.LITTLE™
architecture: four Cortex®-A15 cores at 2.0 GHz and four Cortex®-A7 cores at 1.4 GHz. As our
model requires homogeneous cores in the nodes, only the A15 cores are used for job allocation.
This conveniently allows the proposed RMS to execute solely on the A7 cores of one board instead of
requiring separate hardware for its own set of resources. This represents a many HPC system with
three nodes and many HPC systems are realized in the same way, where one node (server) or a set
of cores act as the manager and other nodes (servers) are used to execute jobs after allocation [34].
Without the loss of generality and having better and more hardware availability, a large HPC system
can be realized.

3.2. Jobs and Value Curves

Each job j is modeled as an tuple J = (T; A), where T is the arrival time of the job and A is the
application to be executed in order to complete the job. Each job j also has its own value curve function
VCj which converts a completion time of its execution to the value of the job to its user. These functions
are typically monotonically-decreasing until reaching zero at a certain threshold of time, as shown in
Figure 2. It is assumed that the value curves are pre-designed for each job and accurately reflect the
economic importance to the user as the economic model is out of the scope of this paper.

The PARSEC benchmark suite was used as the set of applications to queue in the system. This is
because the benchmark applications were designed to have a range of multi-threading and other
resource requirements. The focus on emerging workloads means the jobs are representative of
potential future workloads in all situations including but not exclusive to HPC systems. A number of
applications from the suite were selected and value-curves were designed for each application based
on testing the execution time across different numbers of cores. In particular, we considered PARSEC
applications listed in Table 1. The table also represents the value-curve for each application in terms
of execution time and the value achieved if job is executed by that time. The jobs are generated by
selecting a random application from this list and assigning an arrival time to it. Short and long periods
of no jobs arriving are created to realize periods of no users (such as nights and weekends); these allow
the scheduler to “catch-up” on remaining jobs in the queue.

Table 1. Value at different execution times for PARSEC benchmark applications.

Application Execution Time (s) Value (Currency)

blackscholes 4 6 9 12 100 80 50 0
bodytrack 6 8 11 14 100 80 50 0

dedup 5 7 9 12 100 80 50 0
facesim 8 15 18 22 100 80 50 0
ferret 22 26 29 31 100 80 50 0

fluidanimate 7 9 11 14 100 80 50 0
freqmine 9 15 17 20 100 80 50 0

streamcluster 22 28 35 42 100 80 50 0
vips 9 11 13 16 100 80 50 0
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The value curves create a natural “soft deadline” which implies an ideal time for a job to
finish, but also that violation of the deadline does not mean the job completion was irrelevant [38].
Instead, the value of the job is reduced depending on the extra time the user has had to wait for
completion [15,39]. Major violations of the deadline will create no value for the user and therefore the
energy consumed by the computation was wasted.
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Figure 2. An example value curve of a job.

3.3. Problem Definition

The problem addressed by the paper is the allocation of jobs to a finite set of resources such that
value obtained from completion of the jobs is maximized while energy consumption is minimized
simultaneously. The problem is defined as follows:

• Input: Job queue (j1, ..., jn), Value curve for each job VCj, Nodes within the HPC data
center (N0, ..., Ni).

• Constraints: Restricted available cores on the nodes in HDC.
• Objective: Jointly optimize overall value Valtotal and energy consumption Etotal , by maximizing

the quotient Valtotal/Etotal .

The RMS needs to make very fast decisions on which node to allocate a job and which cores
within that node should do the computation. It is assumed that any one job requires a minimum of
one core and individual cores are never shared between multiple jobs.

3.4. Proposed Approach Based on Reinforcement Learning

This section describes the proposed approach. It first outlines the Adapted Multi-Armed
Bandit (AMAB) model and discusses the assumptions and constraints of using such a model.
Finally, the algorithm is described and explained in detail.

3.4.1. Adapted Multi-Armed Bandit Model

The MAB is a common model in reinforcement learning [40]. The model is of a game played in
rounds from time t = 1, ..., T. At each round, the player must select a single action from a known
set of actions at ∈ A. The environment then generates a reward rt ∼ Rat where Rat is an unknown
probability distribution. The goal of the game is to maximize the cumulative reward ∑T

t=1 rt by
selecting actions which are likely to give high rewards. Due to the unknown nature of the reward
distributions, players are required to first “explore” the possible actions to figure out the distributions
before they can “exploit” the actions with the highest average probability.

For this paper, the problem is modeled as an adaptation of the MAB (AMAB) model. The possible
actions are the different possible allocations of single jobs currently in the RMS queue, i.e., for each
job there exists an action for each possible number of cores available for it to be allocated to.
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There may be multiple jobs of the same type in the queue which will create duplicate allocation
possibilities, however, they will likely have different schedule delays. The rounds are the allocation
stages, which occur at every change in the job queue or available resources. Therefore, the time step
between each round varies significantly. The rewards are Valj/Energyj for each job after computation
is complete.

The MAB model does not perfectly fit the described problem due to a number of assumptions:
rounds are at discrete time steps, every action is available at every round, exactly one action is selected
per round, and rewards are received instantly after selecting an action. As such, the problem model
differs in the following ways: only a subset of all possible actions are available per round, multiple or
no actions may be selected per round, and rewards at the start of some round in the future after
selecting an action. To fit the model, this paper considers the use of the Upper Confidence Bound
(UCB) algorithm [41], which is described in the next subsection.

3.4.2. Upper Confidence Bound Algorithm

The premise of the UCB algorithm is to model the uncertainty of information gathered through
experimentation, allowing for exploitation to occur naturally as uncertainty is reduced. The UCB
algorithm records the average rewards received for each action r̂i alongside the number of times that
action was chosen Ci. It uses this count of previous rewards to calculate the uncertainty of the recorded
average. This uncertainty and the average are combined to give a largest possible estimate for the
actual mean of the reward distribution.

μ̂i = r̂i +

√
2 log( 1

δ )

Ci
(1)

where δ is a confidence value which is usually chosen or search for via parameter optimization. If the
value is very small then the result is optimistic of a higher possible mean, while a high value implies
less optimism. Possible values for δ are explored in experimentation. The algorithm simply chooses
the action with the maximum μ̂i as it is predicted to be the action with the best average rewards.
As actions are repeated, the uncertainty represented by the second part of Equation (1) decreases due
to the increased Ci. However, the equation relies on Ci �= 0. Due to this requirement, the algorithm
must first attempt each action at least once before estimating the means. Usually, implementations of
UCB will spend the first k rounds, where k = |A|, selecting each action in turn. This gives an initial
estimate for the average reward, though with a high uncertainty.

The final selection rule for UCB is as follows.

at =

⎧⎨
⎩

arg max
i

μ̂i , if t > k ;

t , otherwise .
(2)

However, UCB makes various assumptions which do not fit our adapted model, such as that
the rewards are in the interval [0, 1]. The next section describes these assumptions and the required
adaptations to be compatible with our HPC system.
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3.4.3. Proposed Algorithm for Confidence-Based Approach

For the purpose of this paper, the algorithm created will be referred to as the Confidence-Based
Approach (CBA) from its UCB inspiration. The CBA algorithm features a similar selection rule to UCB,
however, it is modified to accommodate the new assumptions. The first modification is the selection:
as every action is not available on every round, it cannot guarantee exploration of action t for t ≤ k. Instead,
it always attempts to find the maximum possible mean from the available actions. When an action i with
Ci = 0 is encountered, the algorithm overrides the search for the maximum possible mean and instead
allocates according to the job and number of cores of that action. This ensures full exploration of all possible
actions that are encountered by the scheduler as soon as they are encountered.

The rewards from each action i are not guaranteed to be in the interval [0, 1] either, as they are
dependent on the user-specified value curve and the energy consumed by the system. This means
that Equation (1) is not an accurate representation of the highest possible mean of an action.
However, knowing the typical interval for the rewards can be used to scale the uncertainty part
of the equation up to somewhat compensate for the difference. This can be done relatively easily using
the specifications for the processing cores to obtain expected power and adding constraints to the
maximum of the user specified value-curves. For our jobs, described in Section 3.2, typical reward
values (>75%) were in the range [0, 5] so we use a scaling multiplier of 5.

The reward, value divided by energy, is not strictly dependent on the job and number of allocated
cores. Instead, it is derived from the sum of the computation time of the job, which is directly
dependent on the allocation, and also the delay in scheduling of the job (time spent in the queue
waiting). Due to this, the algorithm does not record the average reward from allocations but instead
records the average computation time t̂i and energy êi. During the scheduling process, it combines this
average computation time with the current schedule delay of the job to estimate the expected average
value for the current moment in time. The average energy consumed is not affected by schedule delay
so is used directly to calculate the expected reward.

The final scheduler is shown in Algorithm 1. The loop on line 1 of Algorithm 1 is the initialization
of the data required to estimate the average rewards. The full list of possible allocations is the list of
every combination of the type of job and number of cores, i.e., for each job there is an entry for every
number of cores between its maximum number of cores and 1. Lines 7–31 show the allocation “rounds”
in the bandit algorithm. First, all finished jobs are accounted for with appropriate updates of resources
and historical data, then newly arrived jobs are added to the queue, and finally, the algorithm attempts
to allocate jobs to newly freed resources if possible. The selection rule is on line 24 and is nearly identical
to the rule described in Equation (2). Possible values for δ are explored during experimentation.

The Odroid boards used for the experiment support monitoring the energy consumption of the
quad-core Cortex®-A15. The power sensor can only detect the energy consumed by the entire processor
and not the individual cores. This means that it is impossible to get an accurate recording of energy
use for a single job using less than four cores. Instead, the energy recorded over the duration of a
job is simply an estimate and will vary based on other jobs running simultaneously on the nodes.
Therefore, most jobs will have their energy consumption over-estimated and the reward Valj/Energyj
will be underestimated. Experimentation for different levels of confidence using the δ parameter can
give insight into how the variation in energy consumption estimates affects the learning algorithm.
Energytotal for the full system can be still be recorded accurately for comparison.
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Algorithm 1: CBA Resource Allocation.
Input: Incoming Jobs, HPC Data Center HDC.
Output: Resource Allocation for Incoming Jobs.

1 for i in possible single allocations do

2 end

3 t̂i ⇐ 0;
4 êi ⇐ 0;
5 Ci ⇐ 0;
6 while 1 do

7 if any running_job(s) have finished or job(s) arrive then

8 Update data center resources;
9 Update t̂i, êi and Ci for all jobs finished;

10 Update jobQueue;
11 while Any possible allocations do

12 selectedAllocation ⇐ null;
13 maxU ⇐ 0;
14 for j in jobQueue do

15 for c = maxAvailableCores to 1 do

16 i ⇐ allocation(j, c);
17 if Ci = 0 then

18 selectedAllocation ⇐ i;
19 go to 31;
20 end

21 curDelay ⇐ curTime − j.arrivalTime;
22 v̂i ⇐ j.getValueAtTime(curDelay + t̂i);
23 r̂i ⇐ v̂i

êi
;

24 u ⇐ r̂i + 5

√
2 log ( 1

δ )
Ci

;

25 if u > maxU then

26 selectedAllocation ⇐ i;
27 maxU ⇐ u;
28 end

29 end

30 end

31 Allocate job according to selectedAllocation;
32 Update data center resources;
33 end

34 end

35 end

4. System and Problem Definition for Network Aware Server Consolidation

To augment the efficient scheduling algorithm discussed above, we propose a server consolidation
algorithm which will ensure optimal resource utilization under the performance constraints of the
data center network.

4.1. Network Aware Server Consolidation

Server consolidation is a process where VMs running in one server are relocated to one or more
different servers. However, as discussed earlier we propose a network-aware consolidation approach
which takes into account the traffic interaction between the VMs running on the servers. In order for
the VM migration approach to be network or traffic-aware, we first need to understand the nature of
traffic interaction over the data center network.
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4.2. Traffic Pattern Model

The traffic pattern in a data center network can be modeled in terms of multiple parameters
such as flow arrival rates, flow injection rates, flow sizes, flow completion time and proportion of
inter-rack and intra-rack flows [42]. In [25] a novel wireless DCN architecture, based on 60 GHz
wireless links between the individual servers of namely, S2S-WiDCN was proposed which drastically
reduces the power consumption of the network portion of the data center while sustaining comparable
performance. The proposed network aware server consolidation can be adopted for S2S-WiDCN or
conventional wired fat-tree data center networks. In the S2S-WiDCN, there are six separate directional
antenna arrays in the vertical plane of the server, and another one array on the top of the server.
Therefore, seven simultaneous links from a server can co-exist at the same time. We represent the
number of possible simultaneous links per server as θ. Let F be a vector whose elements are the
number of existing flows along each sector determined from the number of flows existing in each
server based on their destinations and the routing protocol. Let f denote the traffic flow rate. It is to be
noted, that the flow rate f , has a Gaussian distribution [42,43]. Therefore, to support 99.86% (one-sided
z-distribution) of the flow rates, the required channel throughput should be

r = fμ+3σF, (3)

where elements of the vector r, are the required channel throughput in each of the sectors and fμ+3σ is
the value of the flow rate which is three standard deviations higher than the mean. For the S2S-WiDCN,
to accommodate multiple channel access, a single 60 GHz IEEE802.11ad link is subdivided into nOFDM
number of separate OFDM channels. Therefore, the bandwidth of each OFDM channel is given by,

BW = B60GHZ/nOFDM, (4)

where B60GHZ is the bandwidth of the single physical channel. For a wired network, BW would be
equal to the bandwidth of the connected wire link. Therefore, to reduce the adverse effect of server
consolidation on network performance, the following inequality must be satisfied for all wireless links
or sectors from each server in the S2S-WiDCN,

rx < BW ∀ x (5)

where rx is an element of r. If the inequality in (5) cannot be satisfied due to high flow rates,
consolidation will result in worsening of data center network performance as discussed in the results.

Moreover, it has been observed from the measurement of a variety of data centers in [43], a large
proportion of the server-to-server traffic flows, up to 80%, are intra-rack, meaning between servers in
the same rack. Only a small remaining proportion of about 20% is inter-rack, or between servers in
different racks. Therefore, to reduce the effective load on the network while consolidation, VMs that
communicate more often should be migrated into the same physical server. Hence, in addition to
reducing server underutilization, co-location of highly communicating VMs is also a desirable goal as
it will reduce both power consumption and network traffic. This way, in our consolidation algorithm,
we considered both the inequality of (5) and the proportion of inter and intra-rack traffic to make it
network-aware.

4.3. The Network-Aware Consolidation Algorithm

The primary goal for consolidation is to reduce the total power consumption by reducing the
number of active servers as well as network utilization. The underlying assumption is that the
computational requirement for every VM running in the HPC data center and the injection rates of
every flow from each VM is known and readily available. In a single server, multiple VMs can run at a
single instance. However, during the server consolidation, we considered all the VMs running as a
single entity, meaning if migration is possible, all the VMs running on the server would be migrated
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to the new physical server for consolidation. The migrations happen in online mode following live
migration [10]. While this will reduce the granularity of the consolidation, it is a more scalable approach
suitable for large data centers with thousands of servers. Moreover, the task-level granularity for
a network-aware consolidation requires the knowledge of traffic flow per task, which is difficult to
model, predict, or access in large data centers. Data center traffic rates are modeled usually among
entire servers [42] limiting us to design consolidation algorithms at a server-level granularity.

We assume that every server has the same computational capacity and VMs running on a server
utilizes a variable percent, collectively which can be represented by u. Let us assume that the maximum
permissible utilization, without any significant degradation in performance or violation of legal
contracts of any server, is Du. Du is a manufacturer specified parameter and can vary from model to
model. The pseudo-code for implementing the BCC is shown in Algorithm 2. At first, all the servers
running in the data center are divided into smaller clusters, such that servers within a cluster have a
large number of flows exchanged among themselves, whereas servers in different clusters have a much
smaller number of flows exchanged among them. Such a clustering places highly communicating
servers in the same cluster. This intra-cluster consolidation reduces the communication among these
highly communicating servers. This clustering is a Graph Partitioning Problem, which is to partition
graph vertices into disjoint groups with minimum edge cut cost. The Kernighan–Lin algorithm [44]
is adopted for the graph-partitioning tasks in our work. Here we treat servers as vertices and the
number of flows going outside of the server as edge costs. After the partitioning, all the servers in
each cluster are sorted according to their utilization u. The outer loop (line 5 in Algorithm 2) in the
proposed algorithm chooses the candidate to migrate in the ascending order of utilization starting with
the least utilized one. The inner loop (line 6 in Algorithm 2) chooses the destination to migrate in the
descending order of utilization starting with the most utilized one. If the sum of the utilization of the
candidates to migrate and the potential destination is less than Du and each element of the vector sum
of their required injection rates is less than the channel throughput per OFDM channel, the candidate
is migrated to the destination. This flow rate related condition for migration is informed by our traffic
model related constraint in (5). After a successful migration, the inner loop is broken out of, to choose
the next server in the outer loop for potential migration. If either of the two conditions fails, the inner
loop continues till the list of servers for the potential destination is exhausted. For each completion of
the inner loop, the outer loop progresses to the next candidate for migration.

Algorithm 2: Algorithm for Bandwidth-Constrained Consolidation (BCC).

The necessary steps of the migration function (Migrate) used in the pseudo-code of BCC
Algorithm 2 are shown in Algorithm 3. The function migrates server a to server b. At first, all the
VMs running in migrating server a is migrated in the destination server b. So the utilization of the
destination server increases which is the summation of the utilization of both the servers. Vector rb
is updated based on all the flows running on server b post migration. After successful migration,
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server a is put into the PowerNap state [45] having zero utilization. In the PowerNap state, most of the
components of the server are powered down except the network interface card (NIC), the wireless
transceivers, and a small portion of the CPU to get the signal for waking up when required.

Algorithm 3: Migration Function.

4.4. Complexity Analysis

Optimizing the performance of the scheduler in the data center has been a major research focus
area for the last few years [46]. The calculation for the consolidation algorithm operations take place
on the scheduler. The complexity of server consolidation over the entire data center to provide the
optimal solution using exhaustive search method is O(NN) where N is the total number of servers
in the entire data center. This is because N set of VMs can be potential candidates for migration to
N servers in N ways. Therefore, each of N set of VMs has N options for potential migrations and
for each of the N such scenarios the other sets of VMs also have all N options to create each possible
migration scenario. However, this complexity is too high even for moderately large data centers.
Therefore, we compare our proposed BCC consolidation algorithm with the Clustered Exhaustive
Search (CES) algorithm, which finds the optimal migration within each cluster using the exhaustive
search. We have adopted the Kernighan–Lin algorithm to do the clustering in the beginning of the BCC
consolidation. If all the servers are equiprobable to have links between themselves, the computational
complexity becomes O(N2 log N) [44]. If the average number of servers in a cluster is n and if the
number of the clusters formed is m, the computational complexity of the CES algorithm after clustering
is O(mnn) and is an np-hard problem. With the clustering, the complexity of the CES algorithm is
O(N2 log N + nnm). On the contrary, for the BCC algorithm, inside each cluster, the servers are sorted
according to their utilization having a complexity of O(n log n) using merge sort [47]. Next, the two
loops for finding the source and destination of the migration has the complexity of O(n2) in the worst
case. So the overall complexity of BCC for all m clusters becomes O(N2 log N + mn log n + mn2).
Therefore, BCC has a much lower complexity compared to the overall exhaustive search algorithm.
As the clustering is similar in both CES and BCC, the difference in their complexity comes from
the mechanism of determining candidates for migration. The complexity of BCC after clustering is
O(mn log n + mn2) ≈ O(mn2) which, is lower than that of the CES after clustering.

4.5. Optimizing the Inter-Consolidation Time

Due to the arrival of new tasks and the completion of existing tasks, the consolidated utilization
profile of the servers may change over time. Therefore, the power consumption of the HPC data center
may be adversely affected over time. Hence, the BCC consolidation algorithm should be repeated
periodically. Repeating the consolidation too often might not reduce the total power consumption
enough to justify the additional network traffic introduced as a result of the consolidation. On the
contrary, delaying the consolidation can adversely affect the potential opportunity to save power.
Hence, to determine the optimal time interval between two consecutive consolidations, an appropriate
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cost function, to capture the trade-off between power savings and network traffic is required. We define
the expected value of the time-dependent cost function C(t) for inter consolidation time interval as

C(t) = κE[A(t)]− E[B(t)], (6)

where A(t) is migration cost related to the network traffic which represents the total traffic movement
for the consolidation operation, B(t) is the total power saving due to the consolidation, t represents
the time interval between two consecutive consolidation operation, and κ is a scaling constant which
captures the relative significance of network traffic and power savings. E[·] represents the expected
value and is necessary as random task arrivals and completion make A(t) and B(t) random processes.
At the optimal inter-consolidation time interval of t∗, the cost C(t) should have the minimum value,
that is,

t∗ = argmin
t∈R

C(t) (7)

Figure 3 represents the timeline for the consolidation operation which shows two consecutive
consolidation operations. u denotes the utilization profile of all the servers in the HPC data center,
where u = [u1, u2, ..., uN ]

T ∈ RN
+ if N is the total number of servers in the data center. At time t0,

when the utilization profile is u0, first consolidation operation takes place, and immediately after
the consolidation, at time t1, the utilization profile of the servers becomes u1. After t seconds at t2

the utilization profile of the servers becomes u2 and a second consolidation is carried out which is
completed at t3 with a final utilization profile of u3. Hence, it can be written that, u1 = Γ (u0) and
u3 = Γ (u2), where Γ represents the consolidation operation. Furthermore, it holds that,

u2 = u1 + δt, (8)

where [δ]i is the task increase rate. A(t) is directly related to the amount of traffic transferred through
the network for the migration. If the average size of traffic per migration is ν, then A(t) can be
represented by,

A(t) = ν
(
‖u1 + δt‖0 − ‖Γ(u1 + δt)‖0

)
, (9)

where ‖·‖0 represents the �0-norm and returns the number of non-zero entries of its vector argument
that is the total number of active servers. Therefore the difference between the �0-norms capture the
total number of VMs migrating as a result of the consolidation.

Let, η0, η1, η2(t), and η3(t) represent the number of idle servers at time t0, t1, t2, and t3,
respectively, where

η0 = N − ‖u0‖0,

η1 = N − ‖Γ(u0)‖0,

η2(t) = N − ‖u1 + δt‖0,

η3(t) = N − ‖Γ(u1 + δt)‖0,

(10)

and N is the total number of servers in the data center. Hence, from (9) and (10), the expected value of
A(t) can be expressed as

E[A(t)] = ν
(
η3(t)− η2(t)

)
. (11)

If the aggregate load running across the data center remains approximately constant between two
consolidations, the expected number of idle servers after any consolidation operation will be similar,
i.e., η1 ≈ η3(t) and does not depend on t. This assumption especially is valid when the granularity of
the tasks are small compared to the capacity of an individual server. Hence, the expected value of A(t)
can be written as

E[A(t)] = ν
(
η1 − η2(t)

)
. (12)
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Figure 3. Timeline of consolidation operations.

On the other hand, the expected value of B(t) can be estimated as

E[B(t)] =Pidleη2(t) + P · ‖u1‖1 + (N − η2(t))P0 − Pidleη1 − P · ‖u2‖1 − (N − η1)P0. (13)

Here, Pidle is the power consumption per server in the PowerNap mode and P0 represents the
power consumption per server just after waking up from the PowerNap mode. P is the slope of
the linear regime of the power profile of the server as discussed in Section 5.2.2. ‖·‖1 represents the
�1-norm and returns the sum of the utilization of all the active servers.

As the aggregate load across the data center is approximately constant over time, the total
utilization of all active servers is approximately constant. Moreover, as the power consumption of the
active servers is almost a linear function, it can be estimated that, ‖u1‖1 ≈ ‖u2‖1 Hence, Equation (13)
can be rewritten as

E[B] = Pidle
(
η2(t)− η1

)
− P0

(
η2(t)− η1

)
=

(
η2(t)− η1

)(
Pidle − P0

)
=

(
η2(t)− η1

)
K (14)

Here K = Pidle − P0 is a constant with respect to t. Combining Equations (6), (12) and (14),
the estimated cost of the consolidation after time interval t can be found to be

C(t) = κν
(
η1 − η2(t)

)
− K

(
η2(t)− η1

)
=

(
η1 − η2(t)

)
(κν + K)

=
(
η1 − η2(t)

)
K′ (15)

where K′ = (κν + K) is a constant with respect to t. Thus to estimate t that minimizes the cost,
we have to find the t that minimizes η2(t), though η2(t) is not known. Below we present a model for
approximate η2(t).

To approximate η2(t), we consider that the servers follow the model of M/M/1 queuing processes [48],
where λ and μ represent the new task arrival rate and task finishing rate per server, respectively. Hence,
if a server initially has a utilization i, then t seconds later it will have utilization k, with the probability,

p(i)k (t) =e−(λ+μ)t
[
ρ

k−i
2 Ik−i(at) + ρ

k−i−1
2 Ik+i+1(at) + (1 − ρ)ρk

∞

∑
j=k+i+2

ρ−j/2 Ij(at)
]
, (16)

where ρ = λ
μ , a = 2

√
λμ and Ik =

∞
∑

m=0

(−1)m

m!Γ(m+k+1)

( x
2
)2m+k represents the modified Bessel function

of the first kind of k-th order [48]. This model is valid only for λ < μ, which is essentially true for
sustenance of data centers of interest.
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The probability that a node becomes idle at time t can be found from (16) by replacing k with zero.
Hence the probability of a node becoming idle can be expressed as

p(i)0 (t) = e−(λ+μ)t
[
ρ−

i
2 I−i(at) + ρ

−i−1
2 Ii+1(at) + (1 − ρ)

∞

∑
j=i+2

ρ−j/2 Ij(at)
]
. (17)

Hence, the expected number of the idle nodes at t2 = t1 + t can be expressed as,

ηmodel
2 (t) =

N

∑
l=0

∑
J⊆[N]

∏
n∈J

pi(n)
0 (t) ∏

m/∈J

(
1 − pi(m)

0 (t)
)

(18)

where [N] = {1, 2, 3, ...., N} and J is all the possible realizations of l idle nodes. In view of (18) and
(15), the inter consolidation cost can be approximated as

Cmodel(t) =
(
η1 − ηmodel

2 (t)
)
K′

= η1K′ − K′
N

∑
l=0

∑
J⊆[N]

∏
n∈J

pi(n)
0 (t) ∏

m/∈J

(
1 − pi(m)

0 (t)
)

. (19)

Cmodel(t) in (19), can be calculated for any t, since pi
0(t) is known for any t. Thus optimal

inter-consolidation time can be approximated by

t∗model = argmin
t∈G

Cmodel(t) = argmax
t∈G

ηmodel
2 (t), (20)

where G is a finite-length fixed-step grid in R. From this mathematical model, the optimal
inter-consolidation time can be estimated without the need for thousands of simulations involving
different random utilization profiles of servers. The accuracy of the mathematical model is verified
with a Monte-Carlo simulation in Section 5.2.4.

5. Experimental Results

In this section, we discuss and evaluate the performance and effectiveness of both CBA and BCC
algorithms. At first we discuss the results related to CBA, followed by the results related to BCC.
Then we discuss the effect of combining CBA and BCC algorithms.

5.1. Experimental Results for CBA Algorithm

Initial experimentation was required to find a good confidence value δ. These experiments used
a high arrival rate of jobs, though it is possible to repeat these experiments for other arrival rates if
desired. A few values were tested in the range [0.01, 0.95], however, the search for the optimal value
was purposely shallow. This was due to the possibility that the search is not possible for systems
implementing a similar approach in the future; instead, the experiments were designed to find a rough
approximation which was more generalized (i.e., how optimistic should similar algorithms be for best
results). The results of the parameter optimization are shown in Figure 4. The results of using different
δ values were compared to a baseline of δ = 1 which implied complete certainty in the recorded job
averages as log (1) = 0, so μ̂i = r̂i. The graph shows that a high confidence level (0.95) was the most
successful which implies there was little variation in the data and, therefore, the true mean was not
plausibly significantly higher than previous readings. However, experiments using δ ≤ 0.75 performed
worse than δ = 1 which shows that it was better to be slightly overconfident in previous results than
to be very optimistic in higher possible mean reward. Optimizing the parameter further is considered
a secondary objective to the problem addressed by this paper, as such further experimentation in this
area is recommended for systems with different assumptions which may affect reward distributions.
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Figure 4. Value/energy for different confidence values.

To evaluate the scheduling algorithm in different situations, the arrival rate of jobs was adjusted
to realize larger periods of time with high/low activity compared to the small periods as described in
Section 3.2. The small periods of time realized as nights and weekends were kept the same length for
consistency; the scheduler must handle a higher number of jobs in the same amount of time. In total,
50 days and nights were simulated of which 14 days were weekends. In a single day, the number of
jobs which arrive depends on the arrival rate: 20 jobs arrived at the high rate, 12.5 jobs (on average)
arrived at the medium rate, and eight jobs arrived at the low rate. In these experiments, we considered
the Valtotal/Energytotal recordings of the previous experiments and also the percentage of jobs which
provided no value to the customer: either they finished computation after computation or are rejected
due to r̂i = 0.

5.1.1. Experimental Baselines

As discussed in Section 2, the approaches which considered the joint optimization of value
and energy required prior information collected at design-time of jobs [17,34]. Similar approaches
considered indirect energy optimization by minimizing CPU idle time [32] which was not a solution to
the problem addressed by this paper. We compared results of experiments using the CBA approach
to a simple heuristic approach. As no prior information was available, the heuristic used was the value
obtained by the job if completion was instantaneous, i.e., heuristic was a value optimizing approach [15,28].
This approach, further referred to as the Heuristic-Based Approach (HBA), was implemented by
replacing lines 22–24 with u ⇐ j · getValueAtTime(curDelay) .

5.1.2. Profit and Energy Consumption Results at Varied Arrival Rates

Figure 5 displays the total value earned (profit) and the energy consumed by both HBA and
CBA at the different arrival rates. At the high arrival rate, jobs arrived very frequently while at the
low arrival rate the jobs arrived much less frequently. An interesting initial observation of the figure
is that the value earned by HBA decreased as the arrival rate increased while the value earned by
CBA increased instead. This was likely due to the poor estimation of value by the HBA algorithm:
high schedule delays of jobs which arrived earlier but were delayed in preference of other jobs may still
have lain at the peak of the value curves, earning less value when the computation time resulted in a
value much further down the curve than the heuristic can predict. For the CBA algorithm, the increased
arrival rate of jobs increased the total value as it had more options for allocation. It also tended to
execute more jobs simultaneously as jobs with a very low schedule delay were often allocated to far
fewer cores, likely due to significantly lower energy consumption compared to a relatively minor drop
in value.

At the low arrival rate, the value earned was slightly higher for CBA than HBA while the energy
consumed was slightly higher for the latter approach. However, this difference did not seem to be very
significant at <1% change in both cases. We believe that this change would be more significant for
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experiments over a longer period of time for a number of reasons: the overhead of initial exploration
by CBA would be a smaller fraction of the total time and the algorithm would explore less frequently
as jobs were executed more times. This effect occurred at all arrival rates but was more prevalent at the
low arrival rate as the initial exploration took much more time.

Figure 5. Value earned and energy consumed at different arrival rates.

In general, HBA resulted in higher profit and lower energy consumption when compared
to CBA. On an average, HBA optimized profit and energy consumption by 40% and 20%,
respectively, compared to CBA.

5.1.3. Percentage of Zero-Value Jobs

This metric is important as it relates to user satisfaction with the system: more jobs successfully
serviced implies more users serviced and therefore more satisfied users. Figure 6 shows the percentage
of zero-value jobs for both approaches at each of the different arrival rates. The average over each of
the different arrival rates is also shown. Note that the rejections of jobs were implicit in the maximum
reward check, they were not actually removed from the queue though it would be possible to add that
functionality. It can be observed that, for all arrival rates, CBA had a lower percentage of zero-value
jobs. This was less significant at the high and low arrival rates. For the high arrival rate, this was
due to such a large number of jobs arriving that it was impossible to service a large number of them
regardless of approach. For the low arrival rate, the difference was again likely due to the exploration
part of the algorithm. The initial exploration caused a number of early jobs to be executed after the
deadline while the algorithm learned the initial average reward for each possible allocation. The effect
of exploration based on uncertainty after initial exploration was unlikely to have much effect on the
number of jobs which give zero-value as this exploration favored jobs with reasonably high expected
value already. On average, CBA provided 5% more user satisfaction than that of HBA.
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Figure 6. Percentage of zero-value jobs at various arrival rates.

169



J. Low Power Electron. Appl. 2020, 10, 32

5.1.4. Overhead Analysis

Computational complexity of CBA was no higher than the heuristic algorithm HBA. It did perform
slightly more mathematical operations per iteration, but it was the same number of iterations required.
The average time to find the allocation for a job by CBA was 0.12 milliseconds and the average energy
consumption for it was 0.3 millijoules, which was quite low.

Memory overhead of CBA as compared to HBA was negligibly higher as it stored only a few
extra numbers per job.

These overheads both in terms of timing and energy consumption were part of the overall profit
and energy consumption results, which were better by CBA over HBA. Next, we will discuss the
results related to BCC algorithm.

5.2. Experimental Results for BCC Algorithm

In this section, we discuss modeling, results and the corresponding analysis of the proposed server
consolidation method. We first estimate the power reduction from proposed BCC server consolidation
algorithm for both wired and wireless networks. Next, we evaluate the network-level performance
with the consolidation algorithm in an HPC data center with network-level simulations. Before
presenting and analyzing the results we describe the data center traffic generation procedure and
simulation platform in the next subsections.

5.2.1. Traffic Generation and Simulation Platform for BCC

The BCC algorithm was evaluated with a set of traffic flows based on application demands.
Real data center traffic for typical query/search type applications like map-reduce and index-search
were measured in [43]. Using these measured traffic flows, a Poisson shot-noise based model to
synthesize data center traffic was proposed and verified in [42]. According to [42], the new flow
arrival time, the flow duration and the injection rate for each application followed a Poisson, Pareto
and, Gaussian distribution respectively. The new flow arrival time was generated using a Poisson
distribution with an average flow arrival rate. The average flow arrival rate was considered to be
1000 flows/s for the small-sized DCN [43]. In our evaluations, we considered a Gaussian distribution
for the injection rate to have a mean of 8.0 Kbps as the base case for the simulation. Application flow
duration was generated following an independent Pareto distribution having a minimum duration
of 10 microseconds [43] and a mean of 1 s. We then increased the average injection rates on an
incremental basis to 8 Mbps, 100 Mbps, 400 Mbps, and 650 Mbps and regenerated new traffic
which represented different types of multimedia traffic and repeat the simulations. We used the
Network Simulator-3 (NS-3) suite [49] to evaluate the performance of BCC for both wired fat-tree and
wireless S2S-WiDCN networks. NS-3 supported the characteristics of wireless propagation as well as
network-level communications. This simulation platform was used to evaluate the S2S-WiDCN with
and without consolidation and compare it with the fat-tree wired DCN. For the fat-tree based wired
data center architecture, we considered 1.0 Gbps links between servers to access switches and 40.0
Gbps upper-layer links. For all the cases, the migration cost for consolidation is not included in the
performance analysis. We have compared the performance of the BCC consolidation algorithm for
S2S-WiDCN with traditional wired fat-tree based DCN. We considered a small data center consisting
of 800 servers arranged in a 20 × 8 array of racks as [25]. Each of the racks housed five servers and
occupied an area of 0.6 m × 0.9 m and is 2 m high. There were 10 racks arranged in a single row and
two columns of 8 rows, totaling 160 racks. In our simulations, the racks were assumed to be without
any front or back door. In the traditional wired fat-tree based DCN, we considered the same number
of servers arranged in same layout as S2S-WiDCN. We considered three hierarchical network layers
consisting of 160 access, two aggregate, and two core layer switches, where each rack having an access
layer switch.
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5.2.2. Power Consumption Analysis of BCC

Here we discuss the model and parameters used in power estimation followed by the results.
Power Model for BCC:
It was not a straightforward task to estimate the actual electrical power consumed by an HPC data

center. The power consumption depended on several internal factors such as utilization of computing
power, the cooling mechanism, and data center networks. Data center power consumption was also
affected by external parameters like the geographical location, weather, temperature, and humidity.
The total IT power consumption of a data center, PIT consisted of power consumption of the servers
(PServer) and network component (PNetwork) of the HPC data center. Hence,

PIT = PServers + PNetwork (21)

A major portion of PIT comes from PServers [50,51]. However, the power consumption of servers
varies significantly with the change in CPU utilization [45]. If the utilization of i-th server is denoted by
ui, the Power consumption of that server can be given by PServer(ui), where the dependence of server
power on utilization is adopted from [52]. Hence, Equation (21) can be rewritten as:

PIT =
N

∑
i=1

Pserver(ui) + Pnetwork (22)

For the power analysis, we used the power profile of Dell Inc. PowerEdge C5220 (Intel
Xeon E3-1265LV2) servers. Power consumption at different server utilization was modeled from
the measurement done by the Standard Performance Evaluation Corporation’s SPECpower_ssj2008
database for the same server [52]. In addition to the above power model for the server, we considered
an idle server to be placed in the PowerNap state [45] with minimal power consumption. The power
profile of a server against different utilization is shown in Figure 7. Although compared to the server
power, the power consumption of the network of an HPC data center was small, but it was not
negligible [50]. One of the issues with the networking equipment was that they needed to be turned
on all the time. The static power portion of the networking equipment dominated the total power
consumed by the network [53]. In [53], it was shown that for a network switch, only 8% power
reduced during full load to no load transition. Moreover, for the wired network, upper-level switches
experienced a similar amount of traffic before and after the consolidation as the majority of the flows
remained inside of the rack. For this reason, we neglected the change in networking power equipment
due to the variation in injection rate or throughput. We estimated power consumption for wired DCNs
using commercially available data from Cisco network switches [54] and Silicom network interface
cards (NIC) [55]. The power consumption of each device used in the network is shown in the Table 2.
The total network power is:

PNetwork = NCorePCore + NAggPAgg + NAccPAcc + NPNIC, (23)

where NCore, NAgg, NAcc, N are the number of cores, aggregation, access switches, and the total
number of servers, respectively; PCore, PAgg, PAcc, PNIC are the power consumption of an individual
core, aggregation, access switches, and network interface cards, respectively. In S2S-WiDCN, however,
no core, aggregate or access layer switches were needed, but only antennas, transceivers and NICs
were required for wireless communication. The power consumption of the wireless 60 GHz transceiver
was modeled based upon the assessment of 60 GHz transceivers [56]. The NICs of S2S-WiDCN were
equipped with transceivers for horizontal and vertical communication. In the traditional DCN, external
connections were established via the two Cisco 7702 switches. To provide equivalent connectivity
in S2S-WiDCN, we employed two servers to work as gateways, and their power consumption was
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modeled as that of the Cisco 7702 switch. The power consumption for communication per server in
S2S-WiDCN was calculated as:

PWireless = 7P60GHzTran + PWi f iCntrl + PNIC, (24)

where P60GHzTran is the power consumption of a single 60 GHz transceiver required for each of the six
sectors and the horizontal link and PWi f iCntrl is the power consumption of the IEEE802.11 2.4/5 GHz
ISM adapter for the control channel. Finally, the total power consumption in S2S-WiDCN was:

PNetwork(WiDCN) = NCorePCore + N.PWireless. (25)

Table 2. Power consumption of different data center network (DCN) components.

Device Model Used in Power (W)

Access Layer Switch Cisco 9372 Fat-Tree 210.0
Aggregate Layer Switch Cisco 9508 Fat-Tree 2527.0

Core Layer Switch Cisco 7702 Fat-Tree, S2S-WiDCN 837.0
Network Interface Card Silicom PE2G2I35 Fat-Tree, S2S-WiDCN 2.64

60 GHz Transceiver Analog Device HMC 6300/6301 S2S-WiDCN 1.70
IEEE802.11 2.4/5 GHz Adapter D-link DWA-171 S2S-WiDCN 0.22

Comparative Analysis of Power Consumption for BCC:
The IT power consumption of wired and S2S-WiDCN data centers with different consolidation

methods including the BCC algorithm with variation in the flow injection rate are shown in Figure 8.
These power consumption are computed based on the power model described in the previous
sub-section for each of the simulation cases ran in the NS-3 simulator for different consolidation
algorithm. In [45], it is observed that the majority of the utilization factor of a server is within the
range of 20–30%. Here we adopted the utilization of the server capacity of each server without any
consolidation from [45]. Figure 8a represents the power consumption of the HPC data center with no
consolidation normal condition (NC) while Figure 8d represents BCC. The figure also contains the
power consumption pattern if Clustered Exhaustive Search (CES) algorithm was adopted instead of
BCC in Figure 8b. CES is a variant of the BCC algorithm, which finds the optimal migration within each
cluster using the exhaustive search, hence being much more computationally expensive. For the sake of
comparison, we also simulated a network-unaware greedy approach based consolidation (GRD) which
is a variant of NICE [11] and the power consumption pattern is shown in Figure 8c. For both wired and
wireless networks, at lower injection rates, all the consolidation techniques performed similarly and
resulted in significant power consumption reduction compared to NC, while CES consumed the least
power. BCC algorithm consumed only 2.83% more power than CES, whereas CES was significantly
more computationally complex than BCC because of exhaustive search as discussed in Section 4.4.
Hence during the consolidation operation, for moderate to large size of data centers, CES algorithm
became impractical to implement as it was not able to perform real-time operations, whereas the
BCC algorithm could. BCC algorithm for S2S-WiDCN reduced 37% power consumption compared to
the NC case.

For higher injection rates, CES and GRD consumed significantly less server power compared to
BCC for wired networks. This was because the CES and GRD did not consider the network bandwidth
constraints while consolidating, resulting in more aggressive consolidation that in the BCC. Therefore,
this difference became more apparent with increase in flow injection rates. However, this reduction
of power came at the cost of the lower throughput because the CES and GRD algorithms did not
consider the network traffic characteristics. This impact on performance will be discussed in detail in
Section 5.2.3. Moreover, the computational complexity of CES was orders of magnitude higher than
the BCC.
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Figure 7. Power profile with varying utilization of PowerEdge C5220 server [52].

For BCC consolidation in S2S-WiDCN, similar to the wired network, with the increase in flow
injection rate, the server power consumption increased, while for CES and GRD power consumption
remained the same. Hence, at higher injection rate, CES and GRD consumed less power compared
to BCC. However, this reduction of power came at the cost of lower throughput as CES and
GRD algorithms did not consider the network traffic characteristics while consolidating. However,
the increase in power consumption in BCC for S2S-WiDCN was not as drastic as in the case of
wired data center. This is demonstrated by the trend arrows in Figure 8d. This was because, in the
S2S-WiDCN architecture, a server had the potential to sustain a maximum of seven simultaneous links
at a time with other servers in its vertical plane and horizontal line. On the contrary, in the wired
architecture, there existed only one link per server albeit, of higher bandwidth. As a result, for the
wired DCN with BCC, many of the VM migration attempts failed due to the violation of the inequality
of (5) compared to the S2S-WiDCN. This suggested that the bandwidth constrained network-aware
consolidation, BCC, was more effective on S2S-WiDCN.

(a) (b) (c) (d)

Figure 8. Power consumption comparison of different architecture for (a) no consolidation (NC) (b)
clustered exhaustive search (CES) (c) Greedy approach base consolidation (GRD) and (d) bandwidth
constrained consolidation (BCC). The arrows denote the power saving due to BCC.

5.2.3. Performance Analysis of BCC

Here we present the network-level performance of the S2S-WiDCN with BCC along with a
comparative analysis with respect to wired fat-tree DCNs in terms of throughput.

The throughput was defined as the average rate of bit transferred per second over the DCN.
The normalized throughput of both S2S-WiDCN and fat-tree architecture for different injection rates at
NC, CES, GRD and BCC consolidation are shown in Figure 9. Normalized throughput was defined as
the ratio of the average throughput achieved and average injection rate. For NC, although it was seen
that for lower injection rate both S2S-WiDCN and fat-tree network showed similar throughput, but for
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both the networks, the achieved throughput started to decrease as the average injection rate went
beyond 100 Mbps. However, degradation was different for wired and wireless DCNs. The throughput
reduced more for the wireless DCN than the wired counterpart for higher injection rates due to the
lower physical bandwidth available per channel for the wireless links of 0.563 Gbps compared to
1.0 Gbps for the wires. Further, from Figure 9, it can be seen that, for the lower injection rates, there was
no significant difference in achieved throughput with BCC consolidation for both wired and wireless
data centers. These throughputs were also similar compared to that NC case. However, for higher
injection rates beyond 100 Mbps, for both S2S-WiDCN and fat-tree network, achieved throughput
increased compared to the NC. The main contributing factor was that, due to the VM migrations, in
many cases, both source and destination of flows ended up in the same physical server. Therefore, these
flows are effectively eliminated from the network, which ultimately increased the average throughput
of the entire network compared to NC. On the other hand, instead of BCC, if CES or GRD consolidation
was implemented, at lower injection rates, there was no significant difference in achieved throughput
for both S2S-WiDCN and fat-tree networks compared to BCC. For the higher injection rates beyond
100 Mbps, the performance of the wireless networks improved compared to NC, but not as well as
BCC. However, the performance of the wired network degraded with the incorporation of CES or
GRD consolidation algorithm. This contrasting behavior was mainly due to the number of channels
available in different architectures. Due to all flows in the wired data center being channelized over the
same link, the aggregate flow rate after CES or GED exceeded the physical link bandwidth violating (5).
This caused degradation in throughput. On the contrary, in the S2S-WiDCN, due to the presence of
multiple vertical sectors and the horizontal link a relatively larger number of flows did not violate (5)
resulting in better performance compared to the wired data center.

Figure 9. Average throughput for different data center architecture with NC, CES, GRD and BCC
consolidation normalized with flow injection rate.

5.2.4. Accuracy of Inter-Consolidation Time Modeling

In this section, the inter-consolidation time for the BCC algorithm is analyzed and the accuracy of
the mathematical estimation of inter-consolidation time is evaluated. The expected inter consolidation
cost estimated from (15) is shown in Figure 10 for a data center consisting of 800 servers as discussed
in Section 5.2.1.
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Figure 10. Consolidation cost estimated from mathematical analysis (dashed line) and from Monte
Carlo simulation (solid line) with respect to inter-consolidation time.

To verify the mathematical model for cost of consolidation (15), we ran a Monte Carlo simulation
for each ρ 300 times and calculated the value of the cost function. For these cases, the values for η1,
ν, κ considered here were 200, 1000, and 1 respectively. The average size of migration ν was considered
as 1000 Megabytes which represents a practical value. For η1, we ran the server consolidation simulation
for different random initial conditions for thousands of times and used the average number of idle
servers in PowerNap mode after the first cycle of server migration. We considered κ = 1 to put equal
emphasis on power saving and network performance on the cost. Nevertheless, these values needed
not necessarily be exactly the same across all the data centers. Depending on the capacity, performance
requirements and physical limitations, these values could vary for different HPC data centers.

The average of the simulated values from the different run for each ρ are shown in Figure 10.
The cost estimates in this method relied on many repetitive simulations and were highly
computationally expensive as each of simulation at a particular ρ and t was repeated at least 1000 times
to find the expected cost using Monte-Carlo method. On the contrary, using (15) the cost and optimal
inter-consolidation time could be approximated much faster. The optimal inter-consolidation time for
different ρ identified from both methods is shown in Figure 11. It was observed that for lower values
of ρ (ρ ≤ 0.55) the optimal inter-consolidation time estimated from the mathematical equation closely
approximated the measured value from the Monte Carlo simulation. On the contrary, for higher values
of ρ, the optimal inter-consolidation time estimated from the mathematical analysis deviated from the
value measured through simulations. However, at higher ρ, the absolute value of the cost was less
sensitive to the inter-consolidation time. This shows that although at higher ρ the inter-consolidation
time suggested by the model may deviate from the actual optimal interval, the actual cost incurred at
this non-optimal interval was not much different compared to that at the optimal interval. Hence the
optimal inter-consolidation time could be estimated reasonably accurately from the mathematical form.

We used MATLAB R2018b on a system having Intel Core i7 with 16 GB memory to calculate the
inter consolidation time with both Monte-Carlo simulation and mathematical model. On average,
computation time required for the Monte-Carlo simulation took 1039.4 s to complete the calculation
while the mathematical model took only about 0.798 s on average. Hence there was more than 1000×
speedup in calculation time using the mathematical model.

175



J. Low Power Electron. Appl. 2020, 10, 32

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

5

10

15

20

25

tim
e 

(s
ec

on
ds

)

t*
t*model

Figure 11. Comparison of optimal inter-consolidation time obtained from the mathematical model and
Monte-Carlo simulations at different ρ.

5.3. Overall Power Saving with a Combination of BCC and CBA

In this subsection we discuss the combined effect of CBA and BCC together for power saving.
We evaluated the power consumption of a data center consisting of 800 servers with a higher injection
rate traffic having an average flow rate of 400 Mbps. For this comparison, the power consumption of
each server was modeled based on Odroid-XU3 board. The power consumption of the Odroid-XU3
at PowerNap was conservatively assumed to be 1 watt and the full load power consumption was
20 Watts. We also assumed that the power saving ratio per device followed the energy saving ratio
due to CBA algorithm. In Figure 12 we showed the power consumption of the data center in different
cases including, normal condition (NC), utilizing BCC only, utilizing CBA only and finally, utilizing
both BCC and CBA together.

At higher datarate, BCC consolidation could reduce the power consumption of the overall data
center more for S2S-WiDCN compared to fat-tree network. The CBA algorithm working standalone
outperformed BCC for fat-tree wired network while in S2S-WiDCN, BCC could reduce more power
compared to CBA. Nevertheless, for both wired and wireless networks, combining both BCC and CBA
could achieve maximum power reduction.

Figure 12. Power consumption comparison between normal condition, BCC, CBA and combination of
BCC and CBA.

6. Conclusions

In this paper we investigated an algorithm for jointly optimizing value and energy when
considering resource allocation in HPC data centers. The algorithm was created under the assumption
that no prior information is available for accurate predictions of job value and energy, instead it
used a technique inspired by reinforcement learning to explore the value and energy of jobs before
exploiting in future allocations. It has also been shown that the percentage of zero-value jobs is
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lower for all of the different arrival rates for CBA. We have also incorporated a server consolidation
algorithm BCC for both wired and wireless data center networks. We have shown that both the
approaches significantly reduce energy and power consumption of the entire data center. It has
been observed that, if BCC and CBA are adopted simultaneously for the wireless HPC data center
architecture, maximum power saving can be achieved. We also derived a mathematical model for BCC
for determining optimal inter-consolidation interval to enable the data center resource management
unit to schedule consolidations at optimal intervals without relying on computationally expensive
simulations to estimate the optimal interval.
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Abstract: Contemporary embedded systems may execute multiple applications, potentially concurrently
on heterogeneous platforms, with different system workloads (CPU- or memory-intensive or both)
leading to different power signatures. This makes finding the most energy-efficient system configuration
for each type of workload scenario extremely challenging. This paper proposes a novel run-time
optimization approach aiming for maximum power normalized performance under such circumstances.
Based on experimenting with PARSEC applications on an Odroid XU-3 and Intel Core i7 platforms,
we model power normalized performance (in terms of instruction per second (IPS)/Watt) through
multivariate linear regression (MLR). We derive run-time control methods to exploit the models in
different ways, trading off optimization results with control overheads. We demonstrate low-cost and
low-complexity run-time algorithms that continuously adapt system configuration to improve the
IPS/Watt by up to 139% compared to existing approaches.

Keywords: energy-efficient computing; run-time management; machine learning; concurrent
workloads; multi-core systems

1. Introduction

Modern computing continues to evolve with increasing complexity in both hardware and software.
More applications of different types are concurrently executed on platforms featuring an increasing
number and type of parallel computing resources (cores) [1,2]. The advantages are clear, as parallel
computing can help delay the potential saturation of Moore’s Law and better use the performance
and energy efficiency opportunities provided by technology scaling [3,4]. However, managing
resources in this complex space for energy efficiency is proving highly challenging, especially when
different application scenarios (single or concurrent) need to be taken into account [5,6].

Contemporary processors, such as those from Arm and Intel, feature dynamic voltage
frequency scaling (DVFS) as a means of handling the energy and performance trade-off [7,8].
Power governors enable DVFS at the system software level. For instance, Linux includes different
power governors that can be activated based on the system requirements. These include powersave for
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low-power, low-performance mode, ondemand for performance-sensitive DVFS, performance for higher
performance, and userspace for user-specified DVFS. These governors attempt to suitably tune the
voltage/frequency pairs according to performance and energy requirements and workload variations.
The voltage/frequency can be tuned to just satisfy the performance requirements according to the
workload, but not more, in order to reduce energy consumption.

Performance requirements continue to increase, making DVFS alone less effective [9]. As a result,
DVFS is often coupled with task mapping (TM), which distributes workloads among multiple cores [10].
When satisfying the same performance requirement, using more cores means that each core has a lighter
load and aggressive DVFS can be applied to reduce the overall energy consumption. On the other hand,
in order to achieve such energy efficiency, it is crucial to understand the synergy between hardware
and software [11].

Core allocations to threads (TM) are usually handled by a scheduler, instead of the governor which
takes care of DVFS [12]. A typical Linux scheduler does load balancing, i.e., it distributes the overall
workload at any time across all available cores to achieve maximum utilization. Although this objective
is rational the implementation tends to be crude. For instance, there is usually no discrimination about
the type of task or thread being scheduled, such as CPU- or memory-intensive [12]. Given particular
performance requirements, different types of threads should be treated differently for performance
and energy optimization. Indiscriminate treatment may lead to sub-optimal energy efficiency [13].

A number of approaches have been reported on the research of using DVFS and TM synergistically
for energy-efficient multi-core computing [13]. These approaches broadly fit into two types: offline
(OL) and run-time (RT). In OL approaches, the system is extensively reasoned to derive energy
and performance models [13,14], which lead to run-time decisions based on these models which stay
constant. In RT approaches, the models are typically learned using monitored information [15,16].
Since RT modeling is costly in terms of resources, often a combination of OL and RT are used [13].

Section 2 provides a brief review of these approaches. A recurring scheme in these approaches is
that the focus is primarily on single-application workloads in isolation. However, the same application
can exhibit different energy/performance trade-offs depending on whether it is running alone
or concurrently with other different workloads. This is because: (a) a workload application may switch
between memory- and CPU-intensive routines, and (b) architectural sharing between applications affect
the energy/performance trade-offs (see Section 7.1.2). Table 1 summarizes the features and limitations
of existing approaches.

Table 1. Features and limitations of existing methods when compared with the proposed approach.

Approach Platforms WLC Validation Apps Controls Size

[17,18] homo. No simulation single TM+DVFS P

[19] hetero. No simulation single RT, TM+DVFS P

[15] homo. No practical single RT, DVFS L
[14] hetero. No simulation single OL, TM+DVFS P

[13] hetero. OL practical conc. RT, DVFS NP

[16] not CPUs. RT practical conc. RT, DVFS NP

This work hetero. RT practical conc. RT, TM+DVFS L

Tackling energy efficiency in concurrent applications considering the workload behavior changes
highlighted above is non-trivial. When mapping onto heterogeneous multi-core systems, this becomes
more challenging because the state space is large and each application requires different optimization.
The hardware state space of a multi-core heterogeneous system includes all possible core allocations
and DVFS combinations. Here, we discuss this using the scenario of multiple parallel applications
running on one of the example experimental platforms used in this paper, the Odroid XU3 (detailed
in Section 4.2), which has two types of CPU cores, A7 and A15, organized into two DFVS domains,
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as motivational examples. Here, Napps is the total number of concurrent applications running on
the system; NA7 is the number of A7 cores used and NA15 is the number of A15 cores used. Table 2
shows the number of possible core allocations for a total Napps number of applications running on the
Odroid with NA7 = 3 and NA15 = 4. The “brute force” value represents (NA7 + 1)Napps · (NA15 + 1)Napps

combinations, not all of which are actually allowed considering the following rules: (1) each application
must have at least one thread; and (2) no more than one thread per core is allowed. However, there is
no simple algorithm to iterate through only valid core allocations and an explosion of the search state
space is inevitable. The number of possible core allocations is then multiplied by the number of DVFS
combinations, which is calculated as MA7 · MA15, where MA7 is the number of DVFS points in the A7
domain, and MA15 is the number of DVFS points in the A15 domain.

Table 2. Number of possible core allocations for different multi-application scenarios.

N-apps Brute Force Valid

1 20 19

2 400 111

3 8000 309

4 1.6 · 105 471

5 3.2 · 106 405

6 6.4 · 107 185

7 1.28 · 109 35

In this work, we addressed these limitations with an adaptive approach, which monitors
application scenarios at RT. The aim was to determine the optimal system configuration such that the
power normalized performance can be maximized at all times. The approach is based on profiling
single and concurrent applications through power and performance measurements. For the first time,
our study reveals the impact of parallelism in different types of heterogeneous cores on performance,
power consumption, and power efficiency in terms of instruction per second (IPS) per unit power
(i.e., IPS/Watt) [20]. In our proposed approach, we make the following specific contributions:

1. using empirical observations and CPU performance counters, derive RT workload
classification thresholds;

2. based on the workload classification and multivariate linear regression (MLR) to model power
and performance trade-offs expressed as instructions per second (IPS) per Watt (IPS/Watt),
propose a low-complexity approach for synergistic controls of DVFS and TM;

3. using synthetic and real-world benchmark applications with different concurrent combinations,
investigate the approach’s energy efficiency, measured by power-normalized performance in
IPS/Watt, and implement the low-complexity approach as a Linux power governor and validate
through extensive experimentation with significant IPS/Watt improvements.

To the best of our knowledge, this is the first RT optimization approach for concurrent applications
based on workload classification, refined further with MLR-based modeling, practically implemented
and demonstrated on both heterogeneous and homogeneous multi-core systems. The rest of the paper
is organized as follows. Section 2 reviews the existing approaches. The proposed system approach
is described in Section 3. Section 4 shows the configuration of systems used in the experiments
and the applications. Workload classification techniques are described in Section 5, where Section 5.2
details the run-time implementations. Section 6 deals with combining workload classification with
multivariant linear regression, with the decision space of the latter significantly reduced by the former.
Section 7 discusses the experimental results, and, finally, Section 8 concludes the paper.
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2. Related Work

Energy efficiency of multi-core systems has been studied extensively over the years. A power
control approach for multi-core processors executing single application has been proposed in
Reference [21]. This approach has three layers of design features also shown by other researchers:
firstly, adjusting the clock frequency of the chip depending on the power budget; secondly, dynamically
group cores to run the same applications (as also shown in Reference [22,23]), and finally, modifying the
frequency of each core group (as also shown in Reference [11,24]). Among others, Goraczko et al. [17]
and Luo et al. [18] proposed DVFS approaches with software task partitioning and mapping of single
applications using a linear programming (LP) based optimization during RT to minimize the power
consumption. Goh et al. [25] proposed a similar approach of task mapping and scheduling for single
applications described by synthetic task graphs.

Several other works have also shown power minimization approaches using practical
implementation of their approaches on heterogeneous platforms. For example, Sheng et al. [19]
presented an adaptive power minimization approach using RT linear regression-based modeling of
the power and performance trade-offs. Using the model, the task mapping and DVFS are suitably
chosen to meet the specified performance requirements. Nabina and Nunez-Yanez [15] presented
another DVFS approach for field-programmable gate array (FPGA)-based video motion compensation
engines using RT measurements of the underlying hardware.

A number of studies have also shown analytical studies using simulation tools, like gem5, together
with McPAT [14,26], for single applications. These works have used DVFS, task mapping, and offline
optimization approaches to minimize the power consumption for varying workloads.

Over the years substantial research has been carried out addressing RT energy minimization
and/or performance improvement approaches. These approaches have considered a single-metric
based optimization: primarily performance-constrained power minimization, or performance
improvement within a power budget [27]. For example, Shafik et al. proposed an RT DVFS control
approach for power minimization of multiprocessor embedded systems [28]. Their approach uses
performance and user experience constraints to derive the lowest possible operating voltage/frequency
points through reinforcement learning and transfer principles. Das et al. presented another power
minimization approach that models RT workload characterization to continually update the DVFS
and core allocations through multinomial logic regression based predictive controls [29].

An RT classification of workloads and corresponding DVFS controls based on similar principles
is proposed by Wang and Pedram for performance-constrained power minimization [16]. As far as
performance optimization within a power budget is concerned, Chen and Marculescu proposed a
distributed reinforcement learning algorithm to model power and performance trade-offs during
RT [30]. Using this model, the DVFS and core allocations are adapted dynamically using feedback from
the performance counters. Another power-limited performance optimization approach is presented
by Cochran et al. showing programming model based power budget annotations and corresponding
controls [31]. Based on application requirements, Nabina and Nunez-Yanez [15] presented a DVFS
approach for FPGA-based video motion compensation engines. Santanue et al. [32] and Tiago et al. [33]
suggested a smart load balancing technique to improve energy efficiency for single applications
running on heterogeneous systems. This technique depends on the sense-predict-balance process
through the variation of workload and performance/power trade-offs.

Gem5 with McPAT have been used to demonstrate four different core types, where each core
operated in a fixed frequency. Petrucci et al. [14] proposed a thread scheduling algorithm called (lucky),
which is based on lottary scheduling. This algorithm is implemented by using Linux 2.6.34 kernel
with performance monitor to optimize the thread-to-core affinity. Matthew et al. [34] proposed
a DVFS approach with different core allocated for controlling concurrent applications exercised on
homogeneous systems at RT.

Numerous studies have focused on using classification-based techniques in dynamic power
management with DVFS together at run-time [9,31,35–39]. For instance, Gupta et al. [9] proposed
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a new run-time approach based on workload classification. To build this classifier extensive offline
experiments are made on heterogeneous many core platforms and MATLAB is used to determine
the classifier parameters offline. Pareto function is used to determine the optimal configuration.
However, this classification is heavily based on offline analysis results and assigns an application
a fixed type, regardless of its operating context. It also requires the annotation of applications by
application programmers through using a special API.

Dey et al. [40] suggested a new management technique for a power and thermal efficiency agent
for mobile MPSoC platforms based on reinforcement learning. Fundamental to this approach is
the use of software agent to explore the DVFS in mobile CPU and GPU based on user’s interaction
behavior. This approach has been validated on Galaxy Note 9 smartphone utilizing Exynos 9810.
The experimental results show that this new management technique can increase performance while
reducing temperature and power consumption.

A model-free RT workload classification (WLC) approach with corresponding DVFS controls is
proposed by Wang and Pedram [16]. This approach employs reinforcement learning, with the action
space size a big concern for the authors, even though for only homogeneous systems at much higher
granularity than CPU cores. WLC has also been used OL, but this produces a fixed class for each
application [13] and cannot deal with workload behavior changes during execution.

For a comprehensive survey on the wider related field of energy management in energy-critical
systems, see Reference [41]. This paper is based on our previous work published in PATMOS 2018 [42],
with substantial extensions.

3. Proposed Methodology

Our method studies concurrent application workloads being executed on various hardware
platforms with parallel processing facilities, and we attempt RT management decision optimization
from the results of this analysis.

The RT management (RTM) decisions consist of TM and DVFS, which influence system
performance and power dissipation [11]. The RTM takes as input information derived from system
monitors, including hardware performance counters and power monitors, available from modern
multi-core hardware platforms. Based on this information, the RTM algorithms attempt to increase
power normalized performance by tuning the TM and DVFS outputs. The general architecture of this
system view is shown in Figure 1. We develop a simple RTM algorithm based on workload classification
(WLC), which classifies each workload by its usage of CPU and memory (Section 5). This minimal-cost
algorithm may be used on its own or be optionally augmented and refined with an MLR procedure to
further optimize the power normalized performance of the execution at an additional cost (Section 6).
The WLC procedure significantly reduces the decision space of any additional MLR step making the
total overhead much lower than implementing the entire optimization process purely with MLR [6]
(Section 7).

Figure 1. Run-time management (RTM) architecture showing two-way interactions between concurrent
applications and hardware cores.
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4. System Fundamentals

In this section, we describe the platforms, workload applications, and performance counters
used in this investigation. We study a homogeneous and a heterogeneous parallel processing
platform, which both provide all the performance counters and power monitors we need for
the methodology. We chose standard benchmark application workloads, which provide a variety of
degrees of concurrency and memory access and CPU usage scenarios. The two hardware platforms,
PARSEC workload applications, and performance counters are further detailed below.

4.1. Homogeneous System

The homogeneous experimental platform is a PC based on an Intel Core i7 Sandybridge CPU
which contains no on-chip GPU facility. This CPU is chosen because it has a reasonable number of hard
(4) and soft (8) cores, has no on-chip GPU to complicate the power consumption and communications,
and has a relatively large number of possible operating frequencies and voltages. The operating system
is Ubuntu Linux.

Run-time power monitoring is developed for the experimental platform for validation purposes.
This is done by inserting a precision shunt resister into the earth side of the power connection to
the CPU. As high-precision current meters tend to have a 1A upper limit, which many CPU operations
will exceed, the shunt resister allows the inference of current via measuring voltage.

The performance and power utility Likwid [43] is used to obtain the majority of the experimental
data. Likwid makes use of on-chip performance counters (sensors) in Intel CPUs to collect performance
and power data. For instance, the Running Average Power Limit (RAPL [44]) counters are accessed
to infer power dissipation. The form factor of the platform allows the actual measurement of CPU
power by way of an inserted shunt resister into the CPU power supply circuit, and readings from these
measurements were used in initial experiments to build confidence on the RAPL readings.

Before the main experiments, Likwid was first confirmed to be accurate for the experimental
platform through cross-validation with physical power measurements using the shunt resister,
described above. The use of performance counters rather than external power measurement in
most of the experiments is motivated by the desire of developing an RTM, which, for practicality
and wide applicability, can only rely on built-in sensors and not shunt resisters.

4.2. Heterogeneous System

The popularity of heterogeneous architectures, containing two or more types of different CPU
cores, continues to grow [45]. These systems offer better performance and power trade-off flexibility;
however, it may be more complicated to ensure optimal energy consumption. The Odroid-XU3 board
supports techniques, such as DVFS, affinity, and core disabling, commonly used to optimize system
operation in terms of performance and energy consumption [46,47].

The Odroid-XU3 board is a small eight-core computing device implemented on energy-efficient
hardware. The board can run Ubuntu 14.04 or Android 4.4 operating systems. The main component of
Odroid-XU3 is the 28nm System-on-Chip (Soc) Exynos 5422. This SoC is based on the ARM big.LITTLE
heterogeneous architecture and consists of a high performance Cortex-A15 quad core processor block,
a low power Cortex-A7 quad core block, Mali-T628 MP6 GPU cluster, and 2GB DRAM LPDDR3.
The board contains four real time current sensors that give the possibility of power measurement
on the four separate power domains: big (A15) CPUs, LITTLE (A7) CPUs, GPU cluster, and DRAM.
In addition, there are also four temperature sensors for each of the A15 CPUs and one sensor for
the GPU cluster. This work only concerns the CPU blocks, and the other parts of the SoC may be
investigated in future work.

On the Odroid-XU3, for each CPU power domain, the supply voltage (Vdd) and clock frequency
can be tuned through a number of pre-set pairs of values. The performance-oriented Cortex-A15
block has a range of frequencies between 200 MHz and 2000 MHz with a 100 MHz step, whilst the
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low-power Cortex-A7 quad core block can scale its frequencies between 200 MHz and 1400 MHz with
a 100 MHz step.

4.3. Workload Applications

The PARSEC [48] benchmark suite attempts to represent both current and emerging workloads
for multiprocessing hardware. It is a commonly used benchmark suite for evaluating concurrency
and parallel processing. We therefore use PARSEC on the Odroid-XU3 platform, in which heterogeneity
can be representative of different design choices that can greatly affect workloads. PARSEC applications
exhibit different memory behaviors, different data sharing patterns, and different workload partitions
from most other benchmark suites in common use. The characteristics of applications, according to
Reference [48], which are used in this paper can be seen in Table 3.

Table 3. Qualitative summary of the inherent key characteristics of PARSEC benchmarks [48].

Program Application Domain Type
Parallelization

Model Granularity
Working Set

Data Usage
Sharing Exchange

bodytrack Computer Vision CPU+mem data-parallel medium medium high medium

ferret Similarity Search CPU pipeline medium unbounded high high

fluidanimate Animation mem data-parallel fine large low medium

canneal Engineering CPU unstructured medium unbounded high high

freqmine Data Mining CPU data-parallel fine unbounded high medium

streamcluster Data Mining mem data-parallel medium medium low medium

Whilst we experimented with all PARSEC applications at various stages of work, six applications
from the suite are selected for presentation in the paper to represent CPU-intensive, memory-intensive,
and a combination of both. Such a classification reduces the effort of model characterization for
combinations of concurrently running applications (Section 5). We found no surprises worth reporting
in the accumulated experimental data with regard to the other PARSEC applications.

4.4. Performance Counters

In this work, we use performance counters to monitor system performance events (e.g., cache
misses, cycles, instruction retired) and, at the same time, capture the voltage, current, power,
and temperature directly from the sensors of Odroid-XU3. For the Intel Core i7, real power
measurements with a shunt resister were used to establish confidence in the RAPL power counters
initially, whilst the majority of experiments are based on performance counter readings once
the confidence has been achieved. The performance counter consists of two modules: kernel module
and a user space module.

For the Odroid, the hardware performance counter readings are obtained using the method
presented by Walker et al. [49], with similar facilities used through Likwid for the Core i7.

Here, we describe the Odroid case in more detail. In the user space module, the event specification
is the means to provide details of how each hardware performance counter should be set up. Table 4
lists notable performance events, some of which are explained as follows:

1. INST_RETIRED is the retired instruction executed and is part of the highly reported instruction
per cycles (IPC) metric.

2. Cycles is the number of core clock cycles.
3. MEM_ACCESS is Memory Read or Write operation that causes a cache access to at least the level

of data.
4. L1I_CACHE is level 1 instruction cache access.
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Table 4. Performance counter events.

perf_eventt_name Description

INST_RETIRED Instruction architecturally executed.

BUS_CYCLE Bus cycle

MEM_ACCESS Data memory access.

L1I_CACHE Instruction Cache access.

L1D_CACHE_WB Data cache eviction.

L2D_CACHE Level 2 data cache access

L2D_CACHE_WB Level 2 data cache refill

L2D_CACHE_REFILL Level 2 data cache write-back.

5. Workload Classification RTM

This section makes use of both heterogeneous and homogeneous systems in its investigations
but mainly concentrates on the heterogeneous Odroid XU3 in its discourse, unless otherwise noted.
Different types of cores are especially useful for demonstrating the advantages of the approach.

5.1. Workload Classification Taxonomy

The taxonomy of workload classes chosen for this work reflects differentiation between
CPU-intensive and memory-intensive workloads, with high- or low-activity. Specifically, workloads
are classified into the following four classes:

• Class 0: low-activity workloads;
• Class 1: CPU-intensive workloads;
• Class 2: CPU- and memory-intensive workloads; and
• Class 3: memory-intensive workloads.

Extensive exploratory experiments are run in this work to investigate the validity of these
general concepts.

The experiments are based on our synthetic benchmark, called mthreads [50], which attempts to
controllably re-create the effect of memory bottleneck on parallel execution. The tool accomplishes
this by repeatedly mixing CPU-intensive and memory-intensive operations, the ratio of each type
is controlled by the parameter M. The CPU-intensive operation is a simple integer calculation.
The memory-intensive operation is implemented by randomly writing to a 64 MB pre-allocated
array. The randomization helps reduce the effect of caching. Parameter M = 0 gives CPU-intensive
execution, M = 1 leads to memory-intensive execution; the values in between provide a linear relation
to the number of memory accesses per instruction. The execution is split into N identical parallel
threads, each pinned to a specific core. Figure 2 presents the flowchart of the tool.

Figure 3 shows the energy efficiency of mthreads running on 2 to 4 A7 cores (one of the A7
cores may have a heavy operating system presence—if C0 is turned off, the operating system stops;
hence, this data does not include the single core case, which would be skewed by this system behavior)
with M values ranging from 0 to 1. It can be seen that it is better to use fewer cores for memory-intensive
tasks (larger M), but it is better to run more cores in parallel for CPU-intensive tasks (smaller M).
Characterization results sweeping through the frequency ranges and core combinations with mthreads
confirm the validity of the classification taxonomy and establish a TM and DVFS strategy based on
relative CPU and memory use rates. The full set of mthreads data, supported by experiments with
applications other than mthreads including the entire PARSEC suite, is used to generate our run-time
management (RTM) presented in subsequent sections.
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Figure 2. Flowchart of mthreads synthetic benchmark. M and N are controlled parameters.

Figure 3. instruction per second (IPS)/Watt for different memory use rates (0 ≤ M ≤ 1).

5.2. Run-time Management Based on Workload Classification

Figure 1 presents the general architecture of RTM inside a system. In this section, we explain
the central RTM functions—classification and control actions based on performance monitors
and actuators (e.g., TM and DVFS). The general approach does not specify the exact form of
the taxonomy into which workloads are classified, the monitors and actuators the system need to
have, nor the design figure of merit. Our examples classify based on differentiating CPU and memory
usages and the execution intensiveness, try to maximize IPS/Watt through core-allocation and DVFS,
and get information from system performance counters [42].

The governor implementation is described in Figure 4, which refines Figure 1. At time ti, task i
is added to the execution via the system function execvp(). The RTM makes TM and DVFS decisions
based on metric classification results, which depends on hardware performance counters and power
monitors to directly and indirectly collect all the information needed. This helps avoid instrumenting
applications and/or special API’s (unlike, e.g., Reference [51]), providing wider support for existing
applications. The TM actuation is carried out indirectly via system functions. For instance, core pinning
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is done using sched_affinity(pid), where pid is the process ID of a task. DVFS is actuated through the
userspace governor as part of cpufreq utilities.

Figure 4. Governor implementation based on RTM.

5.3. Workload Classification

Real applications do not have precisely tuneable memory usage rates, unlike mthreads. They may
also have phases during which they may appear to be one class or another during their execution;
therefore, attempts at classifying each application as a whole offline (as seen in Reference [13]) may be
of limited value (see Section 7.1.1 for detailed discussions). In this work, information from performance
counters is used to derive the classes of all applications running on the system for each control decision
cycle. The assumption is that, during a control decision cycle, the class of an application is unlikely to
change. This assumption requires that the length of control cycles is sufficiently short relative to the rate
of class change of the applications (according to the Nyquist/Shannon sampling principle). The choice
of control cycle length therefore depends on expected application scenarios and what happens when/if
Nyquist/Shannon is violated should be carefully considered by the designer. This point will be
discussed in detail in Section 7.1.2, with the help of system design case studies.

The classification using performance counter readings is based on calculating a number of metrics
from performance counter values recorded at set time intervals and then deriving the classes based on
whether these metrics have crossed certain thresholds. Example metrics and how they are calculated
are given in Table 5.

Table 5. Metrics used to derive classification.

Metrics Definitions

nipc (InstRet/Cycles)(1/IPCmax)

iprc InstRet/ClockRe f

nnmipc (InstRet/Cycles − Mem/Cycles)(1/IPCmax)

cmr (InstRet − Mem)/InstRet

uur Cycles/ClockRe f

Normalized instructions per clock (nipc) measures how intensive the computation is. It is
the instructions per unhalted cycle (IPC) of a core, normalized by the maximum IPC (IPCmax). IPCmax

can be obtained from manufacturer literature. Cycles is the unhalted cycles counted. Normalization
allows nipc to be used independent of core types and architectures.

Instructions per reference clock (iprc) contributes to determining how active the computation is.
ClockRef is the total number of clock cycles given by ClockRe f = Freq/Time with Freq and Time from
the system software.
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Normalized non-memory IPC (nnmipc) discounts memory accesses from nipc, indicating CPU
activity. From experiments with our synthetic benchmark, this shows an inverse correlation to
the memory use rate.

CPU to memory ratio (cmr) relatively compares CPU to memory activities.
Unhalted clock to reference clock ratio (urr) determines how active an application is.
The general relationship between these metrics and the application (workload) classes are clear,

e.g., the higher nnmipc is, the more CPU-intensive a workload will be. A workload can be classified
by comparing the values of metrics to thresholds. Decision-making may not require all metrics.
The choice of metrics and thresholds can be made by analyzing characterization experiment results
for each platform. From studying the relationship between M and the list of metrics from mthreads
experiments on the Odroid XU3, we find that nnmpic and cmr show the best spread of values with
regard to corresponding to different values of M (see Figure 5). Whichever one of these to use depends
on designer preferences on the range of threshold values between different application classes to use.
We choose nnmipc to differentiate CPU and memory usage rates and urr to differentiate low and high
activity. The thresholds used are determined based on our mthreads characterization database and
given in Table 6. We tested this approach by running PARSEC programs and obtaining values of the
chosen metrics, with the results shown in Table 7. These confirm that nnmipc can be used to differentiate
CPU- and memory-intensive applications. For instance, ferret is regarded as CPU-intensive [52] and its
per-core nnmipc value is above 0.35. The other metrics may work better on other platforms and are
included here as examples of potential candidates depending on how a mthreads-like characterization
program behaves on a platform with regard to the relationships between M values and the metrics.

Figure 5. CPU to memory ratio (cmr) and Normalized non-memory IPC (nnmipc) metrics for different
memory use rates (0 ≤ M ≤ 1).

Table 6. Classification details for Odroid XU3.

Metric Ranges Class

urr of all cores [0, 0.11] 0: low-activity

nnmipc per-core [0.35, 1] 1: CPU-intensive

nnmipc per-core [0.25, 0.35) 2: CPU+memory

nnmipc per-core [0, 0.25) 3: memory-intensive
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Table 7. PARSEC applications and their performance counter metrics on XU3.

Applications nnmipc nipc iprc cmr urr

Bodytrack 0.306 0.417 0.503 0.754 0.603

Ferret 0.384 0.560 0.978 0.739 1.01

Fluidanimate 0.206 0.317 0.690 0.723 1.08

Streamcluster 0.166 0.286 0.570 0.465 0.995

To confirm our approach, another set of experiments were carried out on the Intel Core i7
platform, as can be seen in Table 8. These results agree with those found from the Odroid XU3. Based
on these experiments, we also choose nnmipc to differentiate CPU and memory usage rates and urr for
differentiating low and high activity. Threshold values are established from Core i7 characterization
experiments and are different from those for Odroid XU3.

Table 8. PARSEC applications and their performance counter metrics on Intel i7 Processor.

Applications iprc nnmipc cmr

Bodytrack 0.727449908 0.573472873 0.788333

Caneal 0.71442 0.58642 0.750138

Fluidanimate 0.6949938 0.50526088 0.727001

Freqmine 0.867086053 0.629553377 0.726056

Streamcluster 0.370102144 0.248135025 0.67045

In principle, for each hardware platform, based on the available performance counters, the choice
of metrics and the classification threshold values should both be based on classification results obtained
from that platform.

5.4. Control Decision Making

This section presents an RTM control algorithm that uses application classes to derive its decisions.
The behavior is specified in the form of two tables: a threshold table (Table 6), used for determining
application classes; and a decision table (Table 5), providing a preferred action model for each
application class.

The introduction of new concurrent applications or any other change in the system may cause
an application to change its behavior during its execution. It is therefore important to classify
and re-classify regularly. The RTM works in a dedicated thread, which performs classification
and decision-making action every given time frame. The list of actions performed every RTM cycle is
shown in Algorithm 1.

Algorithm 1 Inside the RTM cycle.

1: Collect monitor data
2: for each application do
3: Compute classification metrics � Section 5.3
4: Use metric and threshold table to determine application class � Table 5
5: Use decision table to find core allocation and frequency preferences � Table 6
6: Distribute the resources between the applications according to the preferences
7: Wait for Tcontrol � Section 5.4
8: end for
9: return

In Algorithm 1, Tcontrol is the time between two RTM control cycles. The RTM determines the TM
and DVFS of power domains once each control cycle, and these decisions keep constant before the next
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control cycle. The data from the system monitors (performance counters and power meters) is collected
asynchronously. Every core has a dedicated monitor thread, which spends most of its time in a sleep
state and wakes every Tcontrol to read the performance counter registers. The readings are saved in
the RTM memory. This means that the RTM always has the latest data, which is at most Tcontrol old.
This is mainly done because ARM performance counter registers can be accessed only from code on
the same CPU core. In this case, asynchronous monitoring has been empirically shown to be more
efficient. In our experiments, we chose Tcontrol = 500 ms, which has shown a good balance between RT
overhead and energy minimization. The time the RTM takes (i.e., RT overhead) is negligible compared
to 500 ms for the size of our system. This interval can be easily reduced with slightly higher overheads
or increased with less energy efficiency trade-offs. The flowchart of the entire RTM cycle is shown in
Figure 6.

Ev
er

y 
T c

on
tr
ol

Collect monitor data

Compute classification metrics (Table 5)

Determine task/app class  (Table 6)

TM and DVFS  decisions (Table 9)

Distribute resources between 
tasks/apps (Algorithm 2)

Figure 6. Flowchart of the RTM cycle.

The RTM uses monitor data to calculate the classification metrics discussed in Section 5.2.
These metrics form a profile for each application, which is compared against the thresholds (Table 6).
Each row of the table represents a class of applications and contains a pre-defined value range for each
classification metric. Value ranges may be unbounded. A metric x can be constrained to the range
[c, +∞), equivalent to x ≥ c. An application is considered to belong to a class, if its profile satisfies
every range in a row. If an application does not satisfy any class, it is marked as “unclassified”
and gets a special action from the decision table. An application is also unclassified when it first joins
the execution. In that case, it goes to an A15 core for classification.

The decision table (Table 9) contains the following preferences for each application class, related
to system actuators (DVFS and core allocation decisions): number of A7 cores, number of A15
cores, and clock frequencies. Number of cores can take one of the following values: none, single,
or maximum. Frequency preference can be minimum or maximum. The CPU-intensive application
class (Class 1) runs on the maximum number of available A15 cores at the maximum frequency as
this has shown to give the best energy efficiency (in terms of power normalized performance) in our
previous observations [7].

193



J. Low Power Electron. Appl. 2020, 10, 25

Table 9. RTM control decisions.

Class Frequency A7 A15

0 min single none

1 max none max

2 min max max

3 max max none

unclassified min single none

Tables 6 and 9 are constructed OL in this work based on large amounts of experimental data,
with those involving PARSEC playing only a supporting role. For instance, although ferret is regarded
as CPU-intensive, it is so only on average and has non CPU-intensive phases (see Section 7.1.1).
Therefore, Table 9 is obtained mainly from analyzing experimental results from our synthetic
benchmark mthreads (which has no phases), with PARSEC only used for checking if there are gross
disagreements (none was found). Because of the empirical nature of the process, true optimally is
not claimed.

In this work, we assume that the RTM does not have to deal with more threads than the number
of cores in the system—if there are more threads than cores, some will not get scheduled by the system
scheduler, which is outside the domain of the RTM. Our experiments therefore do not feature
more concurrent applications than the number of cores in the system. The RTM attempts to satisfy
the preferences of all running applications. In the case of conflicts between frequency preferences,
the priority is given to the maximum frequency. When multiple applications request cores of the same
type, the RTM distributes all available cores of that type as fairly as possible. When these conflicting
applications are of different classes, each application is guaranteed at least a single core. Core allocation
(TM) is done through the following algorithm.

Algorithm 2 shows the procedure APPLYDECISION for mapping the RTM decisions to
the core affinity masks. RTM provides a decision for each app and for each core type dj,i ∈
{NONE, MIN, MAX}, where j ∈ {A7, A15} is the core type, and 1 ≤ i ≤ m is the app index,
given the total number of apps m. The decisions are arranged in arrays DA7 = (dA7,1, . . . , dA7,m)

and DA15 = (dA15,1, . . . , dA15,m). Additional constants used by the algorithm are: nA7, nA15 are the total
number of little and big cores, respectively, and the IDs of cores by type are listed in the pre-defined
CA7 =

(
cA7,1, . . . , cA7,nA7

)
, CA15 =

(
cA15,1, . . . , cA15,nA15

)
. The complexity of the algorithm is linear to m.

The result of the algorithm is the set of core IDs Ci, which can be used to call the sched_setaffinity
function for the respective app i.

194



J. Low Power Electron. Appl. 2020, 10, 25

Algorithm 2 mapping the RTM decisions to the core affinities

1: procedure APPLYDECISION(DA7, DA15)
2: (rA7,1, . . . , rA7,m) ← REQCORES (DA7, nA7) � Get per-app number of little cores
3: (rA15,1, . . . , rA15,m) ← REQCORES (DA15, nA15) � Get per-app number of big cores
4: for 1 ≤ i ≤ m do
5: Ci,A7 ← (next rA7,i elements from CA7)
6: Ci,A15 ← (next rA15,i elements from CA15)
7: Ci ← Ci,A7 ∪ Ci,A15 � Use Ci to set core affinity mask for the app i.
8: end for
9: end procedure

10: function REQCORES((d1, . . . , dm) , n)
11: kMIN ← count (di = MIN) for 1 ≤ i ≤ m
12: kMAX ← count (di = MAX) for 1 ≤ i ≤ m
13: if kMAX > 0 then
14: v ← �(n − kMIN) /kMAX� � v is the MAX number of cores
15: w ← (n − kMIN) mod kMAX � w is the remainder
16: end if
17: for 1 ≤ i ≤ m do
18: if di = MAX then
19: if w > 0 then � Distribute the remainder
20: ri ← v + 1
21: w ← w − 1
22: else
23: ri ← v
24: end if
25: else if di = MIN then
26: ri ← 1
27: else
28: ri ← 0
29: end if
30: end for
31: return (r1, . . . , rm)
32: end function

6. Low-Complexity Run-time with WLC and MLR

Although an RTM purely based on workload classification is low-cost, its coarse granularity may
affect its optimality, and further improvement may be possible with an additional MLR step to refine
the control decisions. Figure 7 shows the algorithm with which workload classification may be used
to reduce the decision space of the subsequent MLR step to achieve a right balance of complexity
reduction and optimization quality.

The first step is to update the application queue—during the preceding interval, new applications
may have joined the queue. If so, Algorithm 1 is used to determine the application class of each new
interval, as explained in Section 5.1. This may reduce the state space of the subsequent search for
optimality. For example, for Class 0, the search of optimal configuration for Odroid XU-3 is reduced
from 4 × 13 × 4 × 19 = 4004 different frequency and core configurations (four A7 cores with 13 DVFS
points and four A15 with 19 different DVFS points) to one by using C0 (or the first available A7 core)
and F = 200 MHz as the optimal configuration. For class 1, the search for optimal configuration
is reduced by more than 75% because we used the A15 cores at high frequencies (800–2000 MHz),
and the state space is reduced by more than 80% for Class 3 because we used the A7 cores at high
frequencies (800–1400 MHz). After this reduction of search space, MLR is used to determine the optimal
frequency and core allocations for each class type using the method described in Reference [6].
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Figure 7. Flow chart for multivariate linear regression (MLR) with workload (WL) classification.

7. Experimental Results

Extensive experiments have been carried out with a large number of application scenarios
running on the XU3 platform, with additional confirmatory explorations on the Intel i7 platform.
These experiments include running single applications on their own and a number of concurrent
applications. In the concurrent scenarios, multiple copies of the same application and different
applications of the same class and different applications of different classes have all been tested.

7.1. Workload Classification-Only Results

7.1.1. A Case Study of Concurrent Applications

An example execution trace with three applications is shown in Figure 8. Parts at the beginning and
end of the run contain single and dual application scenarios. The horizontal axis is time, while the vertical
axis denotes TM and DVFS decisions. Cores C0–C3 are A7 cores, and C4–C7 are A15 cores. The figure
shows application classes and the core(s) on which they run at any time. This is described by numbers, for
instance, “2/3” on core C1 means that App 2 is classified as of Class 3 and runs on C1 for a particular time
window. “1/u” means that App 1 is being classified. The lower part of the figure shows the corresponding
power and IPS traces. Both parameters are clearly dominated by the A15 cores.

As can be seen, initial classifications are carried out on C4, but, when C4 is allocated to
an application, C7 is reserved for this purpose. The reservation of dedicated cores for initial
classification fits well for architectures where the number of cores is greater than the number of
applications, as in the case of modern multi-core systems, such as Odroid XU3.

Re-classification happens for all running applications at every 500 ms control cycle, according
to Algorithm 1. Each application is re-classified on the core where it is running. Figures 8 and 9
show the motivation for this. The same application can belong to different classes at different
times. This proves that an OL classification method, which gives each application an invariable
class, is unusable for efficient energy minimization.

Figure 9 shows example traces of the PARSEC apps ferret and fluid animate being classified
whilst running as single applications. It can be seen that the same application can have different
CPU/memory behaviors and get classified into different classes. This is not surprising as the same
application can have CPU-intensive phases when it does not access memory and memory-intensive
phases where there is a lot of memory access. In addition, it is also possible for an application to behave
as belonging to different classes when mapped to different numbers of cores. The classification can also
be influenced by whether an application is running alone or running in parallel with other applications,
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if we compare Figures 8 and reftwoapp. These are all strong motivations for RT re-classification.
The result of classification affects an application’s IPS and power (see Figure 8).
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Figure 8. Execution trace with task mapping (TM) and dynamic voltage frequency scaling (DVFS)
decisions and their effects on performance and power.

Figure 9. Fluid animate (left) and ferret (right) classification and power traces.

7.1.2. RTM Stability, Robustness and Control Decision Cycle Selection

Algorithm 1 can oscillate between two different sets of classification and control decisions in
alternating cycles. This may indicate the loss of stability of the RTM approach. The reasons for such
oscillations have been isolated into the following cases:

• The control cycle length coincides with an application’s CPU and memory phase changes.
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• An application’s behavior takes it close to particular threshold values, and different instances of
evaluation put it on different sides of the thresholds.

• An application is not very parallelizable. When it is classified on a single core, it behaves as
CPU-intensive, but, when it is classified on multiple cores, it behaves as low-activity. This causes
it to oscillate between Class 0 and Class 1 in alternating cycles.

We address these issues as follows. Case 1 rarely happens, and, when it happens, it disappears
quickly because of the very low probability of an application’s phase cycles holding constant
and coinciding with the control cycle length. This can be addressed, in the rare case when it is necessary,
by tuning the control cycle length slightly if oscillations persist. In general, if the Nyquist/Shannon
sampling frequency requirement is not violated, this is not a worry.

Case 2 also happens rarely. In general, increasing the number of classes and reducing the distances
between control decisions of adjacent classes reduce the RTM’s sensitivity to threshold accuracy;
hence, Case 2 robustness does not have to be a problem, and thresholds (Table 6) and decisions (Table 9)
can be tuned both OL and during RT.

Case 3 is by far the most common. It is dealt with through adaptation. This type of oscillation
is very easy to detect. We put in an extra class, “low-parallelizability”, and give it a single big core.
This class can only be found after two control cycles, different from the other classes, but this effectively
eliminates Case 3 oscillations.

Empirically, the PARSEC applications used in this paper as examples tend to have relatively
stable periods during which their classes do not change. These periods can run from hundreds of ms
to multiple seconds. We chose a control decision cycle of 500 ms such that it may, on rare occasions,
violate the Nyquist/Shannon sampling principle for some applications, in order to expose potential
oscillatory behavior and test the effectiveness of our mitigating methods. The experimental results
confirm the validity of our methods of dealing with the different cases of oscillatory behavior.

7.1.3. Comparative Evaluation of the WLC-Only RTM

Complexity: Our RTM has a complexity of O(Napp ∗ Nclass + Ncore), where Napp is the number of
applications (tasks) running, Nclass is the number of classes in the taxonomy, and Ncore is the number
of cores. Nclass is usually a constant of small value, which can be used to trade robustness and quality
with cost. The RTM’s computation complexity is therefore linear to the number of applications running
and the number of cores. In addition, the basic algorithm itself is a low-cost, lookup-table approach
with the table sizes linear to Nclass.

Schemes found in existing work, with, e.g., model-based [6], machine-learning [53], linear
programming [18], or regression techniques [6,19], have a decision state space size of O((NA7DVFS
∗ NA15DVFS) ∗ (NA7 ∗ NA15)Napp ) , where NA7 and NA15 are the numbers of A7 and A15 cores
and NA7DVFS and NA15DVFS are the numbers of DVFS points of the A7 and A15 power domains,
for this type of platform. This NP complexity is sensitive to system heterogeneity, unlike our approach.

Overheads: We compared the time overheads (OH) of our method with the linear-regression
(LR) method found in, e.g., Reference [6,19]. For each 500 ms control cycle, our RTM, running at
200 MHz, requires 10 ms to complete for the trace in Figure 8. Over 90% of this time is spent on
monitor information gathering. In comparison, LR requires 100 ms to complete the same actions.
It needs a much larger set of monitors. The computation, also much more complex, evenly divides its
time in model building and decision-making. In addition, a modeling control, such as LR, requires
multiple control intervals to settle and the number of control decision cycles needed is combinatorial
with NA7, NA15, NA7DVFS, and NA15DVFS.

Scalability: Our RTM is scalable to any platform as it is (a) agnostic to the number and type of
application running in concurrently and (b) independent of the number or type of cores in the platform,
and their power domains. This is because the complexity of the RTM only grows linearly with increased
number of concurrent applications and cores. Our experiments on the Intel i7 platform confirm this.
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7.2. Comparative Results between Our Three RTM Types

In this section, we compare the IPS/Watt results from MLR-only, workload classification-only,
and the combined workload classification plus MLR RTM types.

7.2.1. MLR-Only RTM Results

We previously explored an MLR-only RTM with PARSEC applications on the Odroid XU3 in
comparable experimental conditions [6]. This power governor/RTM aims to improve IPS/Watt,
the same as the RTM’s developed in this paper. The results from Reference [6] are compared to those
obtained from this work in Table 10.

Table 10. Percentage IPS/Watt imporovement of the RTM over the Linux ondemand governor, all with
Odroid XU3.

Application Scenarios Workload Multivariate Linear MLR + WLC
Classification (WLC) Regression (MLR)

Fluidanimate alone 127% 127% 139%

Two different class applications 68.60% 61.74% 128.42%

Three different class applications 46.60% 29.30% 61.27%

Two Class 3 applications 24.50% 19.81% 40.33%

Three Class 3 applications 44.40% 36.40% 58.25%

Two Class 1 applications 31.00% 26.53% 41.74%

7.2.2. WLC-Only and WLC Combined with MLR RTM Results

In this work, we propose two new power governors (RTMs). The first is the light-weight WLC-only
approach described in Section 5. The second is the more sophisticated approach of combining WLC
with a further step of MLR-based optimization, described in Section 6.

Figure 10 shows the results obtained from running the WLC-only RTM on the Odroid XU3,
comparing the IPS/Watt metric obtained with the performance of the Linux ondemand governor [54].
These results show IPS/Watt improvements of 24 to 127% over the benchmark ondemand governor in
the application scenarios included in the figure.

Figure 10. IPS/Watt between the proposed WLC-only power governor and the ondemand governor on
Odroid XU3.
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Experiments with the combined WLC+MLR approach demonstrate that it is possible to further
improve IPS/Watt by supplementing the WLC method with additional MLR optimization. Figure 11
show the IPS/Watt comparisons between this method and the Linux ondemand governor on the Odroid
XU3. It can be seen from these results that further improvements over Figure 10 are evident.

Figure 11. IPS/Watt Comparison between the proposed WLC+MLR and ondemand [54] governors on
Odroid XU3 .

This combined method is also applied to the Intel Core i7 platform and the IPS/Watt results
obtained are compared with those from running the Linux ondemand governor in Figure 12.
The improvements on IPS/Watt range from 20% to 40%.

Figure 12. IPS/Watt comparison between the proposed WLC+MLR and ondemand [54] governors on
Intel i7, with all cores allocated to the tasks/apps.

In general, it is found that the heterogeneous Odroid XU3 platform demonstrates the methods
proposed in this paper better than the Intel Core i7 platform. This is mainly because the latter is not
specifically designed for CPU power efficiency, and there is a limited scope for IPS/Watt improvement
by tuning TM and DVFS. There is a comparatively high background power dissipation, whatever
the TM and DVFS decisions are. On the other hand, the Odroid platform, based on ARM big.LITTLE
architecture, has CPU energy efficiency at the core of its hardware design philosophy and provides
a much wider scope of IPS/Watt improvements via TM and DVFS decisions.
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As a result, we concentrate on comparing the different RTM methods based on data obtained from
the Odroid XU3 experiments. Table 10 compares the results of all three RTMs against the ondemand
governor on the Odroid XU3 platform.

From Table 10, it can be seen that the improvements in IPS/Watt obtained by the combined WLC
with MLR approach is higher than the WLC-only and MLR-only methods.

The main problem with the MLR-only approach is that it does not take changes of application
behavior in each control decision cycle into account. An MLR model typically takes multiple control
cycles to settle, and, after it settles, it may no longer be optimal.

The WLC-only approach improves on this by re-classifying every control cycle and this improves
the optimality of the control decisions and reduces the controller overhead at the same time.
However, because of its coarse-grain nature the decisions tend to be sub-optimal leaving further
improvements possible.

By combining WLC and MLR modeling, the WLC+MLR method makes use of the WLC technique
to provide a coarse-grain pre-decision which is then potentially refined through MLR modeling for
further IPS/Watt improvements. This results in quick decisions, vastly reduced MLR learning space
and more up to date MLR model results that approximate true optima much better.

By comparing with the ondemand governor, we seek a vehicle for indirect comparisons with
a relatively broad range of existing and upcoming research, as this governor is popular target for result
comparisons in most related types of work. To demonstrate the efficacy of this approach, we look
at the following example. Gupta [9] proposed a run-time approach consisting of a combination of
offline characterization and run-time classification. The thesis describes experimental results showing
an average increase of 81% in IPS/Watt compared to the ondemand governor for memory intensive
applications running alone. Results, such as this, can be compared with our results listed in Table 10.
Although the experimental scenarios may not be entirely like-for-like, much can be inferred as to
the effectiveness of different methods from this kind of indirect comparison. In this specific case,
the Gupta improvement figure of 81% is most appropriately compared with the fluid animate alone
figure in Table 10, where our approaches obtain over 120% of improvements.

Data collected from our large number of validation runs shows the RTM out-performing the Linux
ondemand governor by considerable margins on IPS/Watt, as shown in Table 10. The method can
be generalized to other optimization targets, such as throughput, energy-delay product, and any
energy and throughput trade-off metric. It is also possible to switch targets at RT. This will require
constructing multiple decision tables and switching between them during RT. This is a subject for
future work.

8. Conclusions

An optimization scheme targeting power-normalized performance was developed for controlling
concurrent application executions on platforms with multiple cores.

In the first instance, models are obtained off-line from experimental data. Explorations with
model simplification are shown to be successful as by and large optimal results are obtained from
using these models in RT control algorithms compared with existing Linux governors. In many cases,
the improvements obtained are quite significant.

A run-time workload classification management approach is proposed for multiple concurrent
applications of diverse workloads running on heterogeneous multi-core platforms. The approach is
demonstrated by a governor aimed at improving system energy efficiency (IPS/Watt). This governor
classifies workloads according to their CPU and memory signatures and makes decisions on core
allocation and DVFS. Due to model-free approach, it leads to low RTM complexity (linear with
the number of applications and cores) and cost (lookup tables of limited size). The governor
implementation does not require application instrumentation, allowing for easy integration in existing
systems. Experiments show the governor provides significant energy efficiency advantage compared
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to existing approaches. Detection of low-parallelizability improves the stability of the governor.
A synthetic benchmark with tunable memory use supports the characterization process.

This method is further improved with tuning the results of workload classification by
a learning-based optimization using multivariant linear regression. With the workload classification
having drastically reduced the modeling space, the regression-based learning has been shown to work
effectively. This RTM is demonstrated on both heterogeneous and homogeneous platforms.

For experimental purposes of homogeneous and heterogeneous systems, we demonstrated a novel
RT approach, capable of workload classification and power-aware performance adaptation under
sequential and concurrent application scenarios in heterogeneous multi-core systems. The approach
is based on power and performance models that can be obtained during RT by multivariate linear
regression based on low-complexity hypotheses of power and performance for a given operating
frequency. The approach is extensively evaluated using PARSEC-3.0 benchmark suite running on
the Odroid-XU3 heterogeneous platform.

A selection of experimental results was presented to illustrate the kinds of trade-offs in
a variety of concurrent application scenarios, core allocations, and DVFS points, highlighting
an improvement of power normalized performance which produced IPS/Watt improvements between
26% and 139% for a range of applications. It is expected that modern embedded and high-performance
system designers will benefit from the proposed approach in terms of a systematic power-aware
performance optimization under variable workload and application scenarios. Our future work will
include investigating the scalability of the approach to more complex platforms and higher levels
of concurrency.
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