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Preface to ”Imaging Floods and Glacier Geohazards

with Remote Sensing”

Remote sensing plays a pivotal role in understanding where and how floods and glacier

geohazards occur; their severity, causes and types; and the risk that they may pose to populations,

activities and properties. By providing a spectrum of imaging capabilities, resolutions and temporal

and spatial coverage, remote sensing data acquired from satellite, aerial and ground-based platforms

provide key geo-information to characterize and model these processes.

This book includes research papers published in the Special Issue “Imaging Floods and Glacier

Geohazards with Remote Sensing” of the journal Remote Sensing.

Launched in mid-2018, the Special Issue gathered 1 editorial and 11 research articles on novel

technologies (e.g., sensors, platforms), data (e.g., multi-spectral, radar, laser scanning, GPS, gravity)

and analysis methods (e.g., change detection, offset tracking, structure from motion, 3D modeling,

radar interferometry, automated classification, machine learning, spectral indices, probabilistic

approaches) for flood and glacier imaging.

Through target applications and case studies distributed globally, these articles contribute to the

discussion on the current potential and limitations of remote sensing in this specialist research field,

as well as the identification of trends and future perspectives.

Francesca Cigna, Hongjie Xie, Karem Chokmani

Editors
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Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere,
such as floods and glacial processes, may pose significant risks to populations, activities and properties.
Adverse weather, tsunamis, storm surges, sea level rise or even changes in land use (e.g., infrastructure
projects and resource exploitation) may cause coastal, fluvial and surface-water inundations.
Heavy snowmelt, ice jams and dam failure can lead to catastrophic flooding. Rock, snow and
ice avalanches impacting glacial lakes can trigger outburst floods. Sea ice and icebergs may disrupt
ship circulation along sea lanes worldwide.

Understanding how these geohazards occur, their severity, causes and types and the damage they
cause helps to design and improve forecasting methods and risk mitigation approaches. By providing
a spectrum of imaging capabilities, resolutions, temporal and spatial coverage, remote sensing plays a
pivotal role in achieving these objectives.

Developed within the “Remote Sensing in Geology, Geomorphology and Hydrology” section of
the journal Remote Sensing as part of a growing series of thematic volumes (e.g., [1–5]), the Special Issue
“Imaging Floods and Glacier Geohazards with Remote Sensing” [6] was launched in mid-2018 with
the aim to gather research articles and reviews on the use of satellite, aerial and ground-based remote
sensing to image floods and glacier geohazards. One of the key goals was to collect research studies on
novel technologies (e.g., new sensors and platforms), data (e.g., multi-spectral, radar, laser scanning,
GPS and gravity) and analysis methods (e.g., change detection, offset tracking, structure from motion,
3D modeling, radar interferometry, automated classification, machine learning, spectral indices and
probabilistic approaches), as well as case studies distributed globally and discussions of current trends
and future perspectives in this research field.

The Special Issue project was collaboratively led by an international team of three Guest Editors:
Dr Francesca Cigna from the Italian Space Agency in Italy, Prof Hongjie Xie from the University of
Texas at San Antonio in the USA and Prof Karem Chokmani from the National Institute of Scientific
Research in Canada. The three Guest Editors handled a total of 19 manuscripts over the 21 months
when the call for papers was disseminated and the system was open for submissions, namely from May
2018 until the end of February 2020 [6]. The average time from submission to acceptance was 63 days,
while the time from acceptance to online publication was 4 days. The first paper was published on
24 March 2019, and the last on 8 May 2020.

In total, 66 authors contributed to the submitted manuscripts, and a team of 35 anonymous
international experts in the field of flood and glacier remote sensing was involved in the peer-review
process to help the Guest Editors ensure a rigorous assessment of the submissions during the course of
the Special Issue project. On average, 2–3 reviewers provided feedback on each manuscript, and some
reviewers were involved in the assessment of more than one submission.

Remote Sens. 2020, 12, 3874; doi:10.3390/rs12233874 www.mdpi.com/journal/remotesensing1
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In the following paragraphs, this editorial paper provides an overview of the research articles
composing the Special Issue (Table 1), via a summary of the remote sensing data and methods used
and the initial scientific impact achieved in the first few months after publication of the last paper.

Table 1. Remote sensing data, methods and areas of interest discussed in the 11 research papers
composing the Special Issue (sorted in ascending order, according to the publication date). Notation:
BSI, Bare Soil Index; DEM, Digital Elevation Model; DInSAR, Differential Interferometric SAR; GEE,
Google Earth Engine; GEOBIA, GEographic Object-Based Image Analysis; GPS, Global Positioning
System; GRACE, Gravity Recovery and Climate Experiment; LWM, Land and Water Mask; NDMI,
Normalized Difference Moisture Index; NDVI, Normalized Difference Vegetation Index; NDWI,
Normalized Difference Water Index; NPCRI, Normalized Pigment Chlorophyll Ratio Index; RTK,
Real-Time Kinematic; SAR, Synthetic Aperture Radar; SfM, Structure from Motion; SRTM, Shuttle
Radar Topography Mission; SWIR, Short Wave InfraRed; UAV, Unmanned Aerial Vehicle.

Article Remote Sensing Data and Methods Event and/or Area of Interest

Paul 2019 [7]

Corona KH4-A/B declassified, Landsat-5/7/8,
Sentinel-2, QuickBird and WorldView; SRTM and

High Mountain Asia DEMs; red/SWIR band
ratios, contrast-enhancement, DEM differencing

2004, 2007 and 2016 glacier
collapses and surges at Amney

Machen mountain range (China)

Benoudjit and Guida 2019 [8]

TerraSAR-X and Sentinel-1 SAR; Landsat-5 and
Sentinel-2; iterative optimization through

stochastic gradient descent, NDWI, supervised
classifier, automated flood extent mapping

2007 flood in Tewkesbury (UK)
and 2015 flood in Mawlamyine

(Myanmar)

Amitrano et al. 2019 [9] Sentinel-1 SAR; frequency-domain offset tracking

2017 monitoring of Petermann,
Nioghalvfjerdsfjorden and

Jackobshavn Isbræ (Greenland)
and Thwaites (Antarctica) glaciers

Uddin et al. 2019 [10]

Sentinel-1 SAR; Landsat-8; SRTM; DEM; land
use/land cover mapping in GEE; NDVI, NDWI,
NDMI, BSI and NPCRI indices; LWM, GEOBIA,
supervised image classification, machine learning

2017 floods in whole country of
Bangladesh

Lin et al. 2019 [11]

Sentinel-1 SAR; King Air 350ER aerial photos;
SPOT-6, WorldView and QuickBird; distribution
normalization, Bayesian probability, probabilistic

thresholding, classification

2016 flood in Lumberton, North
Carolina (USA)

Idowu and Zhou 2019 [12] GRACE; terrestrial water storage anomaly;
precipitation data; flood potential index

2012 flood in Lower Niger River
Basin (Nigeria)

Ai et al. 2019 [13]
GPS RTK; ArcticDEM, UAV photogrammetric

DEMs; elevation changes estimation,
interpolation methods, DEM generation

2013–2015 mass changes at Austre
Lovénbreen and Pedersenbreen

glaciers (Svalbard)

Sebastiá-Frasquet et al. 2019
[14]

Sentinel-2; precipitation and wind data; Secchi
disk depth, suspended particulated matter;

chlorophyll a concentration, turbidity mapping

2017–2018 turbidity of Albufera de
Valencia lagoon (Spain)

Sajjad et al. 2020 [15]
Landsat-8; GPS data; Google Earth; supervised
classification, land use/cover change detection,

modified NDWI

2014 flood in Lower Chenab plain
(Pakistan)

Avian et al. 2020 [16]
Terrestrial laser scanning; Sentinel-1 SAR;

Sentinel-2; UAV photos; automatic cameras;
DInSAR; SfM

2001–2019 monitoring of Pasterze
glacier (Austria)

Liang and Liu 2020 [17]

Sentinel-1 SAR; Planet and DMCii imagery;
riverine flood depth, storm surge water height,

land cover; National Map 3D Elevation Program
DEM; NDWI, data fusion, daily inundation

probability, weight of evidence

2017 inundations in Harris,
Texas (USA)

The published Special Issue comprises 11 research articles. The pictorial word cloud in Figure 1
combines the thematic keywords used in their main metadata (namely, their titles, abstracts and
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keywords), while Table 1 summarizes the remote sensing data and methods used, and the areas of
interest investigated in each article.

Figure 1. Thematic keywords of the 11 research papers composing the Special Issue “Imaging Floods
and Glacier Geohazards with Remote Sensing” [6] of Remote Sensing (created with wordclouds.com).

The cloud shows that among the most frequently used keywords, there are not only terms
relating to the geophysical processes involved (e.g., surge, mass, deficit and storm) or the approaches
employed for flood and glacier imaging (e.g., supervised classification and comparison) but also
specific data types (e.g., digital elevation models), sensors and missions (e.g., Sentinel-1). The latter
data, in particular, were exploited in more than one article (see Table 1) and reflect a higher-level trend
that can be observed in the recent specialist literature in this field which increasingly exploits satellite
Synthetic Aperture Radar (SAR) imagery. A significantly high number of articles also focused on image
classifiers, probabilistic approaches and elevation and change detection methods.

Multi-sensor and multi-platform approaches were also quite common across the papers on specific
events or sites, and so were studies focused on algorithm development and testing. Most contributions
focused on flood events, hazard and risk, while only four on glacier monitoring.

MDPI’s article metrics powered by TrendMD were exploited with the aim to gather a flavor of the
visibility of the Special Issue across the journal readership in the first 6 months after the publication
of the last paper. TrendMD uses technologies such as Google Analytics by Google Inc. to track
the use of and interaction with webpages made by visitors (e.g., abstract and full-paper views and
downloads). The metrics for the 11 articles of the Special Issue show that since the publication of the
first article at the end of March 2019, the Special Issue received more than 15,500 views in total over the
20-month-long time span between March 2019 and November 2020. This reflected an average number
of 100 views/month for each paper. A positive exception is represented by the boosted performance of
the article by Uddin et al. 2019 [10], which attracted over 4400 views since its publication in July 2019
and as of mid-November 2020, i.e., approximately 260 views/month.

3
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The overall 64 citations in the indexed literature received as of mid-November 2020 also provide
an indication of the good scientific impact that the Special Issue is building across the scientific
community in the first few months after publication. A portion of these citations were made by articles
published in MDPI open-access journals, including Remote Sensing, Sustainability, Water, Hydrology
and Applied Sciences, while many others were received from articles in scientific journals of other
publishers, focused on the fields of hydrology, remote sensing and environmental and Earth sciences.
Looking at the scale of single articles, while generally, most of the papers of the Special Issue received
1 to 6 citations so far, two apparent positive outliers are the research articles by Benoudjit and Guida
2019 [8] and Uddin et al. 2019 [10], with outstanding achievements of 16 and 30 citations already
attracted, respectively.

Overall, the body of literature collected in the Special Issue provides a good representation of
the current state of the art and trends in this topical research field, showcasing remote sensing tools
currently used for imaging, characterizing and modeling floods and glacier processes. A wide range
of platforms, data sources, processing and analysis methods and models have been presented and
discussed, with several cases studies distributed globally. The Special Issue, thus, contributes, together
with other thematic volumes published in Remote Sensing, to the technical and scientific discussion on
the use of remote sensing data in geology, geomorphology and hydrology.

Author Contributions: Conceptualization, F.C. and H.X.; formal analysis, F.C.; data curation, F.C.; visualization,
F.C. and H.X.; writing—original draft preparation, F.C.; writing—review and editing, H.X. All authors have read
and agreed to the published version of the manuscript.
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Repeat Glacier Collapses and Surges in the Amney
Machen Mountain Range, Tibet, Possibly Triggered
by a Developing Rock-Slope Instability
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Abstract: Collapsing valley glaciers leaving their bed to rush down a flat hill slope at the speed of a
racing car are so far rare events. They have only been reported for the Kolkaglacier (Caucasus) in
2002 and the two glaciers in the Aru mountain range (Tibet) that failed in 2016. Both events have been
studied in detail using satellite data and modeling to learn more about the reasons for and processes
related to such events. This study reports about a series of so far undocumented glacier collapses
that occurred in the Amney Machen mountain range (eastern Tibet) in 2004, 2007, and 2016. All three
collapses were associated with a glacier surge, but from 1987 to 1995, the glacier surged without
collapsing. The later surges and collapses were likely triggered by a progressing slope instability that
released large amounts of ice and rock to the lower glacier tongue, distorting its dynamic stability.
The surges and collapses might continue in the future as more ice and rock is available to fall on
the glacier. It has been speculated that the development is a direct response to regional temperature
increase that destabilized the surrounding hanging glaciers. However, the specific properties of the
steep rock slopes and the glacier bed might also have played a role.

Keywords: glacier surge; glacier collapse; rock-slope instability; hazard; Landsat; Sentinel 2; Tibet

1. Introduction

Glacier surges have recently been in the focus of several scientific studies [1], largely because
remote sensing data with a sufficiently high spatial and temporal resolution allow accurate tracking of
surface and morphological changes as well as creation of dense time-series of flow velocities [2–12].
During a surge, large amounts of ice are transported at comparably high velocities (several m/day)
from an upper reservoir area downward to a receiving zone, possibly creating a strong advance of
the terminus. After a surge, the ice becomes stagnant and melts away while in the reservoir zone
new ice accumulates [8]. Whereas an improved understanding of possible surge mechanisms slowly
emerges [13–15], collapses of glaciers (where the ice is removed from a flat bed) have so far only rarely
been reported. The two most prominent and best-documented examples are the 2002 collapse of
Kolkaglacier in the Caucasus [16–19] and the 2016 collapse of two small valley glaciers in the Aru
mountain range of Tibet [20–23]. In both regions the collapses caused long-distance (several km) mass
movements with very high velocities (200 to 290 km/h) [19,22] that have not been thought possible
before they occurred. In contrast to the frequent ice break-offs at steep hanging glaciers [24], the Kolka
and Aru glaciers rested on beds of a comparably low slope and should thus have been resistant to
mechanical failure.

The history of events leading to the failure was different in both cases and they are thus unique
on their own. Kolkaglacier is a well-known surge-type glacier [17] that is mostly nourished by
avalanche snow and has been removed from its bed during its 2002 collapse, possibly due to a massive
loading with debris from rock fall of its surrounding slopes [25]. Kolkaglacier had a regular surge
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in 1969/70 and might have also collapsed in 1835 and 1902 [17]. The Aru glaciers were not known
as surging before [23], but showed a typical pattern of surge-related elevation changes before they
collapsed [21]. The twin-glacier collapse removed the lower parts of both glaciers, likely due to a
change in thermal/hydrologic conditions at the glacier bed [22].

The collapses reported here for a glacier (GLIMS ID G099443E34824N, Inventory ID CN5J352E0017)
located on the north-western slope of the Amney Machen (A’nyê Maqên) mountain range (34.822◦ N,
99.44◦ E) took already place in 2004, and again in 2007 and 2016. Figure 1a shows the location of the
mountain range and the glacier and Figure 1b is an oblique perspective view up-glacier showing the
study region after the second collapse in 2008. The surges and collapses of this glacier have so far not
been reported [26] or analyzed in the scientific literature, although they repeatedly buried a country
road that has been reconstructed after each event (Figure A1a). Hence, local authorities are aware of
the collapses and an information board describing the 2004 avalanche had been installed. The board
can be seen in a picture from a tourist [27] and shows the advancing glacier a few weeks before its
third collapse in 2016 (Figure A1b). The small valley glacier (size about 1.5 km2) has a homogenous,
gently sloping tongue (slope about 13◦) with a length of about 2 km and an elevation range of 450 m
(from 4800 to 5250 m). The tongue is nourished by ice from a steep (mean slope 36◦) and its once
connected upper part, that reaches as high as 5900 m.

 

Figure 1. (a) Location of the Amney Machen mountain range in north-eastern Tibet, China. The
collapsed glacier is marked with a red square. The location of the study region is marked in the inset
with a yellow arrow. Image sources: Screenshots from Google Earth. (b) Oblique perspective view
of the collapsed glacier as seen on a Quickbird image acquired on 13.1.2008, a few months after the
second collapse. The steep and partly already glacier-free rock walls can be seen in the background.
The extent of the 2004 collapse is still visible in the foreground, the deposit from the 2007 collapse can
be seen on top of it. Image source: Screenshot from Google Earth.

The Amney Machen mountain range is covered by numerous glaciers (covering about 80 km2), of
which several have been classified in a previous study as surge type and strongly advancing between
1966 and 1981 [28]. Time series of Landsat images (available since 1987) reveal that several of the larger
glaciers in this mountain range have surged again during the past three decades. Without temperature
measurements, any assumptions about thermal conditions of the ice and rock walls are speculative.
However, thermokarst features that can be found in the valley floor to the southwest of the mountain
range and the permafrost zonation map by Gruber (2012) [29] are providing evidence that the glaciers
higher up could be poly-thermal or cold-based. The purpose of this study is providing an overview
on the glacier surges and collapses between 1987 and 2017 based on the analysis of freely available
satellite image time series. A further analysis of the events using numerical modeling and field data is
worthwhile but beyond the scope of this study.
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2. Datasets

2.1. Satellite Data

The analysis of the surges and collapses of the glacier is based on optical satellite images from
different sources (Table A1). Declassified reconnaissance imagery from the Corona KH4-A and B
missions acquired in 1964 and 1969 are among the earliest sources of information about the region.
With a spatial resolution of about 3 to 5 m they reveal several details of the glacier tongue and its
forefield. However, sun-lit snow is over exposed. Landsat imagery covering the period 1987 to 2016
are mostly taken from Landsat 5 (21 scenes) at 30 m resolution (red-band), and Landsat 7 (14 scenes) at
15 m resolution (panchromatic band). The striping of Landsat scenes after 2003 due to the failure of
the scan-line corrector had little impact on this, as the study region is located close to the scene center.
Four Landsat 8 scenes acquired from 2013 to 2016 (15 m resolution) and four Sentinel 2 scenes acquired
in 2016 and 2017 (10 m resolution) have been used for the more recent analysis. Collectively, satellite
data provide an image in about every year for the full period (none in 1992/98), allowing a continuous
interpretation of events. Several further scenes have been used for a detailed analysis of the collapses,
partly also including scenes with snow cover and clouds. Key images of the surges and collapses are
provided as a separate dataset in the Supplemental Material.

Additional analysis was performed using very high-resolution imagery acquired by Quickbird
on 13 January 2008 and likely one of the Worldview satellites in winter 2016/17. These images were
directly analyzed at maximum resolution in Google Earth and maps from bing.com. For the latter,
the image source is not provided. The Corona and Landsat 5/7 scenes have been downloaded from
earthexplorer.usgs.gov. The Landsat 8 and Sentinel 2 images were obtained from remotepixel.ca.

2.2. Digital Elevation Models (DEMs)

For topographic analysis and calculation of elevation changes, the 30 m version of the SRTM
DEM (acquired in February 2000) has been used in combination with the 8 m High Mountain Asia
(HMA) DEM acquired in 2015 [30]. Hillshade versions of both DEMs are shown for the study region in
Figure 2. The latter suffers locally from data voids but is otherwise of very high quality. The SRTM
DEM has a more rough or ‘bumpy’ surface but is otherwise looking reasonable. The SRTM DEM was
downloaded from earthexplorer.usgs.gov and the HMA DEM from nsidc.org.

 

Figure 2. Visual comparison of the two DEMs for the region around the collapsed glacier (outlines
from RGI6.0 in black). (a) The 30 m SRTM DEM from 2000 (source: earthexplorer.usgs.gov), (b) the 8 m
HMA DEM from 2015 (source: nsidc.org/data/HMA_DEM8m_CT).

3. Methods

3.1. Satellite Data

As a base for quantitative assessments, glacier outlines were mapped automatically from the
Sentinel 2 scene acquired on 4 August 2017 using the red/SWIR band ratio method [31]. The various
extents of the glacier, the three debris fans, and the lake were created by on-screen digitizing using
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ArcGIS from ESRI. Contrast-enhanced versions of the highest resolution dataset (panchromatic bands
from Landsat 7 and 8) are used for this purpose. To identify the chronology of the surge and collapse
events, all images were displayed in chronological order in a Geographic Information System (GIS)
and flicker-images (going back and forth between two scenes) are used to follow the changes described
below. The changes are difficult to see in side-by-side comparisons of static images, so some of the
multi-panel images have been arranged to facilitate top-bottom comparison. For improved visibility of
the changes the reader is referred to the Supplemental Material.

3.2. Topographic Analysis

The HMA DEM provided elevation and slope values of the glacier and the surrounding mountain
range. In combination with the digitized glacier extents and deposit regions, elevation ranges have
been calculated to determine mean slope values. The related horizontal distances were directly
measured in the GIS using the Sentinel 2 image from 2017 in the background, i.e., the geometric
reference has UTM zone 47N with WGS 1984 datum. Elevation changes were calculated by subtracting
the SRTM DEM from the HMA DEM, after both were resampled bilinearly to 16 m resolution and
co-registered. Horizontal shifts were smaller than the cell size, but the different vertical datum caused
a bias of about 30 m that was subtracted. Due to artifacts in the difference DEM, elevation changes
were only analyzed locally. A manually digitized centerline through the glacier and deposit area was
used to derive elevation values from the co-registered DEMs.

4. Results: The History of the Surge and Collapse Events

4.1. The 1960s Situation

The Corona images from 1964 (Figure 3) and 1969 (not shown) revealed that the glacier was
connected to its eastern and southern tributary during that time and had a well developed tongue
with some debris cover along its northern margin. In the 1969 image, a crevasse across its entire width
is visible in its flat upper part (indicating a steep slope in the bedrock) and a small rock outcrop (in
the following RO-A) already existed in the northern part of its accumulation region. The terminus
was flat and retreating from 1964 to 1969 by about 50 m. The river leaving the glacier has eroded an
increasingly deeper trench in the foothill section of the mountain slope before reaching the main river
(Qu’ngoin He) draining the region into the Yellow River (Huang He). In its lower part, the outflow
is thus spatially well constrained, whereas in its upper part, erosion was less intense and a potential
flooding would have been able to leave the riverbed and spread out over a larger region. Apart from
this, nothing unusual (or a previous surge) can be detected on the images. The hill-slope section below
the glacier seems to be intact, i.e., not impacted by a previous collapse.

 
Figure 3. Corona image from 1964 showing the glacier being connected to its accumulation area and a
glacier forefield that is free of any avalanche deposits. Note: South is up to highlight the relief. Image
source: earthexplorer.usgs.gov.
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4.2. The 1987–1995 Surge

The few available Landsat Multispectral Scanner images covering the period 1972 to 1982 are too
sparse and too coarse to reveal any substantial variability in terminus position. It is thus assumed
here that the glacier had been about stagnant during the 1970s until 1985. The following Landsat TM
time series reveals a surging glacier tongue that advanced about 700 m from 1987 to 1995 (Figure 4).
The size of RO-A increased during this time and by 1997 it connected to the ice-free terrain further
down and was thus no longer an outcrop. As it is unlikely that all the ice has been removed by melting
(other glaciers at lower elevations are stable), it can be assumed that a larger part of it was deposited
on the lower glacier in form of ice avalanches. From 1996 to 2000, the terminus had been stationary
and the lower part of the glacier tongue showed the typical post-surge down-wasting.

 
Figure 4. Landsat images from (a) 15 August 1987 and (b) 10 August 1997 showing the first surge of
the glacier. The false colour images are showing (clean) ice and snow in cyan, rocks and gravel in pink
to purple, and vegetation in light green. Image source: earthexplorer.usgs.gov.

4.3. The Developing Slope Instability

From August 2000 to August 2002, the area of the ice-free terrain around the former RO-A
further increased, particularly in its upper parts (Figure 5a,b). The 2002 image also shows substantial
darkening of the northern part of the glacier (in its flat section), indicating that substantial rock fall
occurred before, maybe as a part of ice avalanches, maybe independently. This debris-covered part
remained until 2003. From 2002 to 2003, the lower part of the glacier did not change much but a
further rock-outcrop (RO-B) developed in the steep part of its eastern accumulation region. When
also considering the later very high-resolution satellite images, it seems that between August and
September 2003, a larger part of the main eastern tributary broke off and slid down onto the lower part
of the glacier. Afterwards, the terminus started surging.

4.4. The 2003/4 Surge and Collapse

The glacier advanced by about 230 m and collapsed at some point between 26.1.2004 (Figure 5c)
and 3.2.2004 as revealed by a largely snow-covered Landsat TM image. The ETM+ pan image form
11.2.2004 shown in Figure 5d has already much less snow so that the debris fan becomes visible. The
bright trace in the panchromatic band of the ETM+ image and the still snow covered part visible on the
TM image is indicating that a larger part of the collapsing glacier tongue has been deflected to the south
by a double moraine wall at the end of the short valley and left the river bed at the ‘potential overflow’
point marked in Figure 3. However, the related ice/rock/water mixture must have been sufficiently
fast/mobile to also overflow the c. 40 m high moraine wall. The marks of this first collapse can still be
identified in the very high-resolution image acquired by Quickbird on 13.1.2008 (cf. Figure 1b).
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Figure 5. Landsat ETM+ pan images from (a) 25 July 2000, (b) 31 July 2002, (c) 26 January 2004, and (d)
11 February 2004 showing in (a) the active terminus in 2000 compared to the maximum surge extent,
(b) the loading with debris by 2002, in (c) the maximum surge extent in 2004 before the collapse, and in
(d) the debris fan after the collapse. Image source: earthexplorer.usgs.gov.

The full extent of the deposit has been mapped using the 15 m panchromatic band of the Landsat
ETM+ scene acquired on 5 August 2004 (Figure A2a). With a measured area of 2.16 km2 and an
arbitrarily assumed mean thickness of maybe 10 m, the volume of the avalanche would be 20–25
million m3, which is much less than both avalanches in the Aru mountain range [21]. The Landsat
image also shows a lake (area 0.353 km2) that likely formed as a result of the blocking of the main
river by the avalanche deposit (Figure A2a). Until 14 September 2004 the lake grew to 0.534 km2 and
drained sometime between 29 June and 15 July 2005 at an even slightly larger size of 0.71 km2.

4.5. The 2007 Surge and Collapse

From 2004 to September 2007, the glacier advanced by about 300 m before it collapsed again at
some time between 23 September and 2 November 2007 (Figure 6). Its maximum extent before the
collapse was much smaller than in 2004, close to its ‘normal’ minimum extent (cf. Figure A2a,b). This
indicates that the surge/collapse mechanism might have been different, that lubrication by melt water
might have played a role, or that the glacier has reached a different point of dynamic stability. It is
well possible that after three years, the collapsed material was more a loose ice/rock mélange rather
than a homogenous glacier. The contrast-stretched close-up of the Quickbird scene acquired on 13
January 2008 (Figure 7) reveals that a small part of the flat, lower glacier remained in its bed. This part
is separated from highly crevassed dirty ice higher up that is still connected to the southern tributary.
In other words, the rupture did not follow a potential failure zone, but occurred somewhere across
the glacier.
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Figure 6. Two Landsat 7 ETM+ pan images showing the surging glacier in 2007: (a) before and (b) after
the collapse. Image source: earthexplorer.usgs.gov.

The resulting avalanche deposit is well visible on a Landsat ETM+ image from 16 August 2008
(Figure A2b) that has been used for mapping its extent (1.46 km2). The very low reflectance in the
ETM+ panchromatic band (that stretches well into the near infrared) indicates that the deposit has a
high water content, likely from the melting ice inside. The area covered by the deposit is considerably
(32%) smaller than in 2004, but a part of the ice–debris mixture flowed again over the double moraine,
indicating high flow velocities. The oblique perspective view in Figure 1b shows the fresh deposit on
top of the older, more extended deposit from the 2004 collapse. The nadir-view of the new deposit
(Figure 8) reveals several further details. It shows the larger extent of the 2004 collapse (that has
flattened out) with the new 2007 deposit on top of it. The latter has still considerable relief, indicating
high ice content. At the southern margin of the deposit, even crevasses can be seen, indicating that
most of the former glacier might be located here. The deposit is also filling a large part of the trench
and after a sharp turn to the south some material has been moved out of the trench and deposited
higher up. An additional stream on top of the main deposit (with a different surface pattern) indicates
that possibly a second wave of material came down after the main collapse. The image also shows the
buried country road and the overtopped moraine wall.

 
Figure 7. The large image shows a contrast-enhanced close-up of the glacier remnant (between the
arrows and the dashed line) after its 2007 collapse as seen on the 13 January 2008 Quickbird image
(image source: Screenshot from Google Earth). The smaller inset shows about the same region after the
2016 collapse on an undated satellite image. Image source: Screenshot from bing.com.
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Figure 8. Close-up showing the avalanche deposit zone as seen on a Quickbird scene acquired on 13
January 2008, i.e., about 3 months after the 2007 collapse. Remnants from the 2004 collapse can be seen
as well. Image source: Screenshot Google Earth. The inset shows a close-up of the third deposit from
the 2016 collapse. Image source: Screenshot from bing.com.

4.6. Further Head Wall Degradation after 2009

From 2008 to 2009, another larger part of the steep glacier around the second rock outcrop (RO-B)
started separating. The beginning of it is already visible on the Quickbird image from 13 January 2008
(Figure 1b). At some point between August 2010 and April 2011, this glacier part collapsed as well
and likely ended on the lower glacier tongue. Interestingly, the failure zone did not follow the major
crevasses but was located higher up. This means that the further development of the glaciers on this
rock wall is difficult to predict. In the 15 years from 1997 to 2012, the original rock outcrop RO-A
developed into a large, heart-shaped region of steep glacier-free terrain with only a small remnant of
the former eastern glacier tributary left.

4.7. The Surge and Collapse in 2016

From 2011 to 2016, the glacier surged again by about 700 m (Figure 9) and the ice-free region
around RO-B extended further upwards. The last phase of the surge and following collapse can be
followed on Sentinel-2 images at 10 m spatial resolution (Figure 10). The glacier was still surging on
30 July 2016 (Figure 10a), reaching its maximum extent shortly after 28 September 2016 (Figure 10b),
and collapsing until 18 October 2016 (Figure 10c). The inset in Figure 7 shows that approximately the
same part of the glacier remained in its bed as after the 2007 collapse. Whereas the big gap to its upper
eastern part is still there, this part is much less crevassed than in 2008.

A photograph that was taken on 12 September 2016 by G. Butler (Figure A1b) shows the advancing
tongue about three weeks before its collapse. As one can see from the image, the terminus looks
dual-layered with an upper layer of brighter ice over the ‘normal’ tongue. The image also shows some
vegetation growth on top of the 2007 avalanche deposit (in the foreground), the fine grained material
covering the mountain flanks to the north and south of the glacier valley (middle ground), and the
steep and dark, now nearly ice-free rock wall in the background. The path through the avalanche
deposit shown in Figure A1a reveals that the rocky material is rather small-grained and that the ice
underneath the debris layer melted away in the meantime.
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Figure 9. Time series of the 2013–2016 surge as seen with the Landsat 8 OLI panchromatic band. The
white arrow marks the position of the terminus. Image acquisition dates are: (a) 16 April 2013, (b) 6
June 2014, (c) 12 August 2015, and (d) 29 July 2016. Image source: earthexplorer.usgs.gov.

The Sentinel-2 image from 4 August 2017 shows the deposit in nadir-view (Figure 10d) and was
used to digitize its extent. It is smaller (area 1.25 km2) than the one from 2007 and the avalanche has
this time seemingly not overtopped the moraine walls at the end of the short valley. Hence, all material
was diverted to the south-west and the deposit covers a larger region here than in 2007; very similar to
2004 (Figure 11). However, it reached not that far down, i.e. did likely not cross the main river. The
inset in Figure 8 shows a subset of the fresh deposits on top of the former ones.

 

Figure 10. Time series of the 2016 glacier collapse as seen on false-colour composite images (near
infrared, red, and green as RGB) acquired by Sentinel-2. (a) The image from 30 July 2016 shows the
glacier during its surge. (b) Maximum extent on 28 September 2016 about 1 week before the collapse.
(c) After the collapse on 18 October 2016. (d) The deposit from the last collapse (in darker shades
of grey) in summer 2017. The destroyed country road (that is also used as a pilgrim path) has been
re-established over the fresh deposit. Image source: Copernicus Sentinel data 2016 and 2017.
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In Figure 11, the Sentinel-2 image from 4 August 2017 is shown along with overlays of all three
deposit extents and the various glacier extents (minimum and maximum) for comparison. Remarkable
are the large maximum surge extents from 2004 and 2016 compared to the extent before the 2007
collapse. The growth of rock outcrop RO-B from 2007 to 2017 and the re-established path crossing the
fresh avalanche deposit (Figure A1a) can also be seen.

 
Figure 11. Extents of the deposits and glaciers for the three surges shown on the background of
Figure 6d: Deposits from the 2004, 2007, and 2016 collapses are marked green, yellow, and blue,
respectively. Maximum glacier extents (before the collapse) from 2004, 2007, and 2016 are shown in red,
yellow, and orange, whereas minimum extents (after the collapse) from 2004 and 2017 are shown in
green and blue, respectively. Image source: Copernicus Sentinel data 2017.

The close-up from the very high-resolution satellite image in Figure 12 (acquired after the third
collapse) reveals that the bedrock is covered with fine-grained material and that the rock cliffs point
downwards. There is thus not much resistance offered by the terrain and a hanging glacier that
might get lubricated at its bed will have a severe stability problem. Furthermore, larger parts of the
rock outcrops seem to be covered by thin ice and the rocks as well as the fine-grained material are
comparably dark (i.e. they absorb much energy). It is thus well possible that the remaining glacier on
this steep slope will degrade further and maybe slide down, thereby providing additional material to
the lower glacier tongue. This could trigger further glacier surges and collapses in the future. Further
Landsat 8 and Sentinel-2 images from 2017 and 2018 indicate that the glacier started advancing again
in autumn 2017 but was in a stable position over most of 2018 at about the maximum 2007 extent
shown in Figure 11.

4.8. Elevation Changes and Topographic Analysis

Elevation changes between the SRTM DEM and the HMA DEM over the 2000–2015 period are
depicted in Figure 13 showing the difference grid and elevation profiles along a centerline through
the deposit and the glacier tongue for both DEMs. Apart from regions with strong elevation gain
(blue) and loss (red) that are related to DEM artifacts in regions of steep terrain and low contrast (snow,
shadow), elevation changes over glaciers are also well recognizable. When starting at the top, the
strong ice loss in the region of the former tributaries and later rock outcrops A and B (cf. Figure 12) is
clearly visible (values are from about −40 to −100 m). Despite artifacts being close, the heart-shaped
regions of the two rock outcrops match very well to the area of elevation loss.
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Figure 12. Close-up of the instable slope with the two large, heart-shaped rock outcrops (RO-A and
RO-B) that have merged in the meantime. Some remaining debris-covered ice is visible (partly snow
covered) in the outcrops that seem to be covered with dark and fine-grained sediment. The former
eastern accumulation area is now limited to a small remaining tongue (cf. Figures 4 and A1). A
larger piece of ice in the valley floor is still connected to the southern tributary but a large crevasse is
separating it from the rest of the glacier. Image source: Screenshot from bing.com.

Going further down, the (former) glacier tongue is also sharply depicted in the difference image.
At the acquisition date of the first DEM (SRTM), the tongue was still close to its maximum extent from
the first surge (Figure 4b) that was never reached again afterwards (Figure 11). Accordingly, from 2000
to 2015, this lower region showed a pronounced thickness loss (about 40 m). When the second DEM
was acquired in 2015, the glacier was again surging (Figure 9c) and the bluish region just in front of
the maximum 2007 extent in Figure 13 is depicting the slightly higher (about 5–10 m) elevation of the
terminus at this position compared to the year 2000 surface. The advancing tongue can also be seen in
the black profile shown in the inset of Figure 13. Higher up, the glacier surface in 2015 is generally
lower than in 2000 (also up to 40 m), and in the zone of the steep cliff, elevations are about the same.

Much more subtle and within the DEM uncertainty are the elevation changes for the deposit
region. However, closer inspection reveals a majority of bluish cells (elevations about 5–10 m higher)
within the limits of the 2007 deposit and more variable changes outside. This would confirm that this
is indeed a region of mass deposit, but the uncertainties are too high for a quantitative determination
of the deposited volume.

When the study region is separated in four units A: deposition, B: transition, C: flat glacier, D:
steep glacier (see bottom of Figure 13), the elevation, length, and slope values presented in Table 1
are found from the HMA DEM. The mean slope values indicate that the area of deposition is indeed
comparably flat (<6◦) and that the flat tongue of the glacier is in the typical range for valley glaciers
(about 13◦). The transition zone is somewhat steeper and the mean slope of the rock walls is 36◦,
However, locally, values exceeding 50◦ are found. The overall slope or Fahrböschung (measured from
the upper point of the collapsed glacier to the lowest point of the deposit) is 10.9◦ and thus within the
range of similar events [18].
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Figure 13. Elevation difference grid (SRTM-HMA DEM) over the 2000 to 2015 period showing volume
loss (red) of the glacier but also artefacts to the north and south of it. Glacier outlines and the extent
of the avalanche deposit from 2007 are shown in black, the elevation values for the inset are sampled
along the dotted line. Elevation contour lines (grey) have 50 m equidistance, sections A, B, C, and D are
described in the text. Elevation differences have been limited to a range of ±150 m. The inset shows
elevation profiles extracted from both DEMs along the center line.

Table 1. Topographic characteristics of the different zones as derived from the HMA-DEM.

Zone Name
Elevation (m)

Length (m) Mean Slope (◦)
Minimum Maximum Range

A Deposit 4250 4450 200 2000 5.7
B Transition 4450 4800 350 1200 16.3
C Flat glacier 4800 5250 450 2000 12.7
D Steep glacier 5250 5900 650 900 35.8

Overall slope 4250 5250 1000 5200 10.9

5. Discussion

The detailed analysis of optical satellite images allowed reconstructing the changes of a surging
and collapsing glacier in eastern Tibet in much detail. Useful scenes are available for nearly every year
and much denser time series could be used to constrain the timing of the collapses down to a week
when images from Landsat 5 and 7 are combined. Whereas the 30 m spatial resolution of Landsat
TM is sufficient to follow major changes of the glacier and the rock outcrops (Figure 4), the 15 m
panchromatic bands from Landsat 7 and 8 reveal several details much better (Figures 5, 6 and 9) and
have thus been used together with 10 m resolution images from Sentinel-2 (Figure 10) to follow the
changes and to map the extents of the glacier and the deposits (Figure 11). There are likely uncertainties
in the delineation, but these do not impact on the general interpretation of the events. Further in-depth
insights are provided by the very high-resolution satellite images from Quickbird (in Google Earth)
and the image of unknown source available in bing.com that show the situation after the second
and third collapses, respectively. Both images reveal fine details of the glacier remnants (Figure 7)
and deposits (Figure 8), as well as of the instable rock slope with its degrading hanging glaciers and
incompetent lithology (Figure 12). Several further insights can be derived from these images but they
would be more speculative.
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Additional quantitative information about glacier thickness changes is derived from two DEMs
representing the situation after the first (SRTM DEM from 2000) and during the fourth surge (HMA
DEM from 2015) of the glacier. Despite large artifacts close to the glacier, its volume loss, the
removed tributaries, and a small elevation gain in the region of the deposit are visible, confirming
the observations from the satellite images. In particular, the visibility of the 2015 surge front in the
difference image (that is also visible in the DEM hillshade of Figure 2b) confirms the high quality of
the elevation data and reliability of the results.

As a further back-up, elevation differences have also been calculated with the ALOS DEM
(AW3D30) that was merged from images acquired over the 2007 to 2011 period (not shown here).
These fully confirm the description of events presented above. The images for the DEM have likely
been acquired shortly after the second collapse (e.g., in 2008 or 2009) and show a completely removed
valley glacier, an even clearer elevation gain in the deposit area, a smaller area affected by elevation
loss in the region of RO-B, and that the artifacts marked in Figure 13 are due to the SRTM DEM. In
contrast, the difference between the ALOS and HMA DEM show a small surface lowering over the
deposit area (from ice melting), the fully re-developed glacier tongue up to its 2015 extent, only small
elevation changes in the region of RO-A and the strong surface lowering over RO-B.

Whereas the glaciologic and geomorphologic observations described above are comparably
robust, any reasoning about possible processes leading to the observed events is speculative. Hence,
only the more general characteristics of the Kolka and Aru glacier collapses are compared in the
following. The most striking difference is that the glacier observed here already collapsed three times
(2004, 2007, and 2016) in only 12 years. Repeat collapses might have also occurred for Kolkaglacier
as Kotlyakov et al. (2004) [17] wrote that the 1902 surge ended “in a catastrophic outburst of ice and
water” similar to the event in 2002 and that “in a few minutes, the ice spread over 9 km through the
valley”. However, the Kolkaglacier ”eruption” in 1902 occurred “at the height of a hot summer and
after heavy showers” [17] seemingly with large amounts of water, whereas only small amounts of
water could have been available for the 2004 mid-winter collapse reported here. The much longer
time period between the two collapses (100 years) is also different. Moreover, all collapses reported
here occurred during a surge with strong frontal advance. The Aru glaciers advanced only slightly
before they collapsed, but the observed elevation change pattern is fully compliant with an ongoing
surge [21]. In contrast to Kolkaglacier with its well-known surge history [17], both Aru glaciers had
not been known as surging before [23]. On the other hand, Kolka glacier was retreating from 1984 to
2002 and basically stagnant before its 2002 collapse.

Whereas the 2002 collapse of Kolkaglacier was likely triggered by the additional load of rock/ice
avalanches on its surface [19,26], the Aru collapses seem to be triggered by extreme water pressure in
combination with specific properties of the glacier bed [22]. The events reported here have likely been
facilitated by the accumulation of ice and debris from the instable rock wall. However, these likely
occurred in small portions and more gradually, so that the additional load might have first caused a
surge rather than a sudden collapse. A similar surge initiation has been observed for Lysiiglacier in
the Ak-Shirak mountain range of the Tian-Shan, where the material excavated from the Kumtor mine
has been dumped on its surface [32]. Based on the chronology of events and the DEM differences, it is
speculated that the 2003/04 surge was triggered by the extra load of ice and rock from RO-A, whereas
the growing RO-A and RO-B triggered the 2007 surge. The third event in Oct 2016 might have been
triggered by material mostly excavated from the region of RO-B. Compared to the Kolka and Aru
collapses, the events reported here were much smaller in volume. Chinese authorities estimated a
volume of 36 million m3 for the 2004 event (as written on the information board), resulting in a mean
thickness of about 15 m for the deposit. They speculated that the collapse was caused by a rising snow
line and freeze-thaw action.
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Regarding the short time between the first and the second collapse (3 years), one has to consider
that the ice mass coming down the second (and third) time was likely more a loose ice/rock mixture
rather than a compact glacier. The mechanical properties for the latter two failures might thus
have been different and need further investigation. More detailed studies (e.g., on ice avalanche
modeling, thermal conditions, climatic trends, bedrock lithology) are also required to understand
why and how the glacier has collapsed the first time, particularly when considering that the glacier
did not collapse during the first surge although it was much more extended then. Some fieldwork
in this region would certainly be helpful to constrain the physical properties of the glaciers and the
surrounding environment.

Overall, it seems that glacier collapses are not unique events but can occur repeatedly, particularly
when there is extraordinary and continuous supply of material from surrounding rock walls. As there
is still some ice left to fall on the glacier and the degradation of the steep rock walls continues, the
on-going but infrequent input of ice and rock will play an important role in keeping the surges
(and maybe also the collapses) alive. As the rock wall and the glacier are still very active, it can be
recommended to observe them more closely in the future.

6. Conclusions

This study presented a description of four glacier surges and three collapses of a small valley
glacier in the Amney Machen mountain range of eastern Tibet that took place from 1987 to 1995 (surge
only) and in 2004, 2007, and 2016. Whereas some characteristics of the events resemble similarities
of glacier collapses reported earlier (Kolka, Aru), the combination found here is unique, because
they already occurred three times with only a few years in-between and—despite the magnitude of
the events and their impacts on infrastructure—because they have not been reported so far in the
literature. The analysis of satellite images reveals that a developing rock-slope instability might be
responsible for the last three surges by infrequently adding mass on the lower glacier. However,
other reasons might play a role as well and more theoretical (numerical modelling) investigations
as performed for the Kolka and Aru collapses might provide additional insights into the governing
processes. The description of events presented here might help in analyzing related details in future
studies. Further collapses of this glacier might occur, as the supply of material from the degrading
rock wall is continuing. It is thus recommended to observe this glacier more closely in the future and
collect some field data to constrain modelling efforts.
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Key images of the surges and collapses.
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Appendix

 
Figure A1. Two images from the deposit taken by Brandon G. Butler on 12 September 2016. (a) A view
to the north showing the avalanche deposit to the left and right of the reconstructed road crossing
it. Image source: [27]. (b) A view to the east showing the advancing glacier (the white arrow marks
its front), about 3 weeks before its next collapse. Some grass is visible on the deposit of the previous
collapse in the foreground. The dark rock slope in the background (to the left of the image center) is
the now huge rock outcrop RO-B. Image source: [27].

 
Figure A2. Landsat 7 ETM+ scenes (pan band) used to mark the extent of the deposits. (a) Scene from
5 August 2004 (green: maximum glacier extent before the 2004 collapse, red: extent of the deposit, light
blue/yellow: lake extent from 5 August/14 September 2004. (b) Scene from 16 August 2008 (after the
2007 collapse) showing the new deposit in red. Image source: earthexplorer.usgs.gov.
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Table A1. Overview of the satellite images used for the analysis. All Landsat scenes have path-row
133-036 and the Sentinel-2 tile used is 47SNU. Corona scenes used: #1: KH-4A scene DS1015-2164DF117,
#2: KH-4B scene DS1108-2184DA110. Sensor names: L5 TM: Landsat 5 Thematic Mapper, L7 ETM+:
Landsat 7 Enhanced Thematic Mapper plus, L8 OLI: Landsat 8 Operational Land Imager, S2 MSI:
Sentinel-2 Multi-Spectral Instrument.

Nr. Sensor Date Nr. Sensor Date Nr. Sensor Date

1 Corona 30.12.1964 16 L7 ETM+ 16.08.2002 31 L5 TM 23.09.2007
2 Corona 16.12.1969 17 L7 ETM+ 03.08.2003 32 L7 ETM+ 02.11.2007
3 L5 TM 15.08.1987 18 L5 TM 12.09.2003 33 L7 ETM+ 16.08.2008
4 L5 TM 30.06.1988 19 L5 TM 14.10.2003 34 L5 TM 11.08.2009
5 L5 TM 21.09.1989 20 L5 TM 15.11.2003 35 L5TM 14.08.2010
6 L5 TM 06.07.1990 21 L5 TM 18.01.2004 36 L7 ETM+ 24.07.2011
7 L5 TM 11.09.1991 22 L7 ETM+ 26.01.2004 37 L7 ETM+ 12.09.2012
8 L5 TM 31.08.1993 23 L5 TM 03.02.2004 38 L8 OLI 16.04.2013
9 L5 TM 14.05.1994 24 L7 ETM+ 11.02.2004 39 L8 OLI 06.06.2014
10 L5 TM 20.07.1995 25 L7 ETM+ 05.08.2004 40 L8 OLI 12.08.2015
11 L5 TM 24.09.1996 26 L5 TM 14.09.2004 41 L8 OLI 29.07.2016
12 L5 TM 10.08.1997 27 L7 ETM+ 09.09.2005 42 S2 MSI 30.07.2016
13 L5 TM 31.07.1999 28 L7 ETM+ 26.07.2006 43 S2 MSI 28.09.2016
14 L7 ETM+ 25.07.2000 29 L5 TM 20.09.2006 44 S2 MSI 18.10.2016
15 L7 ETM+ 13.08.2001 30 L7 ETM+ 15.09.2007 45 S2 MSI 04.08.2017
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Abstract: When a populated area is inundated, the availability of a flood extent map becomes
vital to assist the local authorities to plan rescue operations and evacuate the premises promptly.
This paper proposes a novel automatic way to rapidly map the flood extent using a supervised
classifier. The methodology described in this paper is fully automated since the training of the
supervised classifier is made starting from water and land masks derived from the Normalized
Difference Water Index (NDWI), and without any intervention from the human operator. Both a
pre-event Synthetic Aperture Radar (SAR) image and an optical Sentinel-2 image are needed to
train the supervised classifier to identify the inundation on the flooded SAR image. The entire flood
mapping process, which consists of preprocessing the images, the extraction of the training dataset,
and finally the classification, was assessed on flood events which occurred in Tewkesbury (England)
in 2007 and in Myanmar in 2015, and were captured by TerraSAR-X and Sentinel-1, respectively.
This algorithm was found to offer overall a good compromise between computation time and
precision of the classification, making it suitable for emergency situations. In fact, the inundation
maps produced for the previous two flood events were in agreement with the ground truths for over
90% of the pixels in the SAR images. Besides, the latter process took less than 5 min to finish the
flood mapping from a SAR image of more than 41 million pixels for the dataset capturing the flood in
Tewkesbury, and around 2 min and 40 s for an image of 19 million pixels of the flood in Myanmar.

Keywords: flood extent mapping; supervised classification; NDWI; synthetic aperture radar (SAR);
web application

1. Introduction

According to a recent report from an important insurance company, flooding was at the same time
the costliest and the deadliest natural disaster in 2016, with considerable human fatalities [1]. In fact,
more than half of the natural hazards in 2016 were hydrological, which were the most devastating
type of disaster financially with 59 billion USD worth of damages. This latter category of disasters
is dominated by floods with 164 floods occurrences against 13 landslides. During the same year,
floods caused the greatest loss of life among all the disasters, with 4731 deaths [2]. Therefore, there is a
growing need for a quantification of the impact of the flood to help response authorities to mitigate the
damages and prioritize at the time of the emergency, as well as supporting insurance companies in
working out an assessment of the losses sustained by each property. A thorough understanding of the
potential flood risk can also assist development agencies to build resilient communities.

In the event of flooding, a clear cloud-free image acquired instantaneously is necessary to have
a synoptic view of the affected area. In this context, remotely sensed images are suitable to map
inundations, particularly when harsh climatic conditions are encountered and the access to the affected
site is impractical [3]. Moreover, satellite-borne Synthetic Aperture Radar (SAR) sensors have been
extensively used in the last decade to monitor many flooding events by taking advantage of their
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ability to operate independently of the sunlight, and in cloudy conditions which are common during
inundations. Thanks to the important number of SAR satellites in orbit, the user has a wide choice of
datasets which come in different wavelengths and resolutions. For the time being, X-band sensors like
TerraSAR-X and COSMO-SkyMed provide the highest spatial resolution among all SAR sensors [4].
With this metric-resolution configuration, floods could be detected even in complex scenarios, such as
urban settlements where streets are relatively narrow [5]. Furthermore, the systematic acquisition plan
of the Sentinel-1 C-band satellite increases the likelihood to find a reference image in the Sentinel Hub
archive. A deeper understanding of the flood hazard is achieved by extracting the extent and depth
flood features as well as assessing the velocity of the floodwater, which will help to efficiently manage
the inundation risk.

Operational flood mapping aims to reduce the delay between the acquisition of the satellite
image and the diffusion of the flood extent map produced from it to the civil protection authorities
for instantaneous relief efforts. This objective is achieved with a fully automated flood detection
service [6]. The flood mapping service developed in [6] is an improvement of [7], where the workflow
was adapted to operational situations covered by TerraSAR-X. Briefly, the service is triggered when the
TerraSAR-X product is downloaded to the FTP server, and at the end of the process the flood extent
map is available to visualize online via a Web interface. It should be mentioned that the radar pulse
from COSMO-SkyMed, which operates in the X-band like TerraSAR-X, was found to be attenuated by
the precipitation due to its relatively short wavelength [8]. Besides, due to the time delay between the
tasking of TerraSAR-X during an emergency flood situation and the actual acquisition of the image,
the peak of the inundation might be missed since this satellite needs at least 2.5 days to access the
requested site [9]. In this case, the systematic acquisition mode of the Sentinel-1 constellation would be
of great help. In [10], the flood mapping service proposed in [6] was modified to process Sentinel-1
SAR images. In particular, [6] was improved by adding a post-processing step which consists in
eliminating from the flood map areas higher than the nearest drainage network, using a thresholding
strategy. The process in [10] is in principal completely unsupervised yet the latter threshold was
determined empirically. The Sentinel-1 images were automatically downloaded and preprocessed
using the Sentinel Application Platform (SNAP), and then the classification carried on in a similar way
to [7]. It was found in [10] that among the polarizations offered by the Sentinel-1 sensor, VV-polarized
SAR images result in more accurate flood maps than cross-polarized (VH) products. In the same
context, [11] suggested that HH polarization realizes the highest accuracy in terms of flood mapping.
In the same prospect of an operational mapping of the flood, [12] proposed to detect the flood in
vegetated, forested and built-up areas, besides the normal low backscatter flood (open water), using a
Fuzzy logic approach which has permitted to combine data stemming from different sources (a DEM,
a Land Cover Map). The threshold values are retrieved from three selected backscattering models
(for agricultural, forested, and urban areas) applied with varying radar parameters to a number of
land covers. To keep the process simple, the threshold values are calculated by considering only a
few specific flood scenarios. As a result, it will be challenging to map the flood when, for instance,
the plant characterisitics change and the backscattering model’s preconditions become unsatisfied.
Although, this issue has been addressed by allowing the user to adjust manually the values of the
default thresholds, this leads to a lack of automation in the process as a consequence. An automated
flood mapping method based on the approximation of the Probability Density Function (PDF) of
the backscatter of the water was proposed by [13]. The threshold value is then defined as the point
where the PDF of the backscatter and the gamma distribution modelling the water, and having
backscatter values lower than this threshold, start to diverge. The Thresholding is followed with a
region growing and a pixel-based change detection. The authors in [14] addressed the challenging
task of the urban flood mapping in an unsupervised way, by improving the process introduced in [13]
with a more objective estimation of the region growing’s tolerance criterion. In the context of image
segmentation, the region growing cannot be generalized as its cost function is not defined a priori,
but is set empirically according to the specific application instead. Furthermore, it fails in practice
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when the edges of the object to detect are too smooth [15]. Another way the issue of the automation
of the flood mapping was addressed in the literature is with a service running regularly as in [16].
In this project, the multiyear ENVISAT ASAR dataset is tiled into splits of 1° longitude by 1° latitude,
and the training step is carried out by making use of the SRTM-derived water mask (SWBD) and
the features extracted from the tile, which consist mainly of the backscatter and the incidence angle.
Subsequently, pixels from nonlabeled images are classified using Bayes’ theorem to get a probability
map of water and land, after estimating the probability distributions for each class from trained
histograms. Nevertheless, the low spatial resolution of the water mask which is crucial to the training
phase, could impact negatively the precision of the classification, especially for smaller rivers.

Supervised and unsupervised learning methods were already applied, in a few studies, to tackle
SAR flood extent mapping problems. The work in [17] used a self-organizing map (SOM), which is
essentially an unsupervised artificial neural network, to segment then classify a flooded SAR image.
SOM being originally a dimensionality reduction technique, a moving window centered around
SAR image pixels forms a vector of neighbouring pixels that are passed as input into the neural
network to train it. At the end of the learning process, the central pixel of each sliding window is
mapped onto one of the neurons of a 2D grid, with multiple image pixels possibly being assigned
to the same neuron. This results in the flooded SAR image being segmented, with each neuron
representing a cluster. However, the eventual classification of the neurons on the grid into water and
non-water was performed with the help of ground truth pixels extracted manually. The authors in [18]
presented several semi-automatic and manual methods to map inundations, by exploiting free satellite
multispectral and SAR data. Similarly to the current paper, the authors took advantage of water
and vegetation indices like the Normalized Difference Vegetation Index (NDVI) and the Modified
Normalized Difference Water Index (MNDWI), although it was the variation in these indices that
was expected to reveal the presence of flooding. In another experiment, a supervised classifier was
also investigated for the same purpose by choosing samples manually from different types of land
cover. However, the latter two methods were applied separately and on multispectral optical images
that could suffer from the cloud cover. When the flood mapping was carried out on SAR images,
the threshold was manually adjusted either on a single flooded image or on the log ratio between a
pair of images captured before and after the flood. With the aim of mapping urban flooding in [19],
first an active contour model (snake) is employed to detect the flood in rural areas. Then, a supervised
Bayesian classification is carried out on adjacent flooded urban areas, where the training data for the
flood and the non-flood classes is chosen from the previously obtained rural flood map and from
urban areas situated higher than the rural water level on the LiDAR DSM (Digital Surface Model),
respectively. This method is semi-automated since the initialization of the snake and the selection of
the training dataset are both done manually.

This study will focus on the mapping of the flood extent characteristic by proposing a fully
automated classifier trained on a dataset retrieved from a pre-flood SAR image with the help of
an optical Sentinel-2 image. The availability of an optical image allows to derive a water-mask
without any human intervention from the Normalized Difference Water Index (NDWI), which,
when multiplied by the pre-flood SAR image, on a pixel basis, permits to build a training dataset
of backscatter values for the water and non-water classes. The labelled training dataset is thereby
extracted from the optical and the pre-flood SAR images in an automated fashion. The preprocessing
of the dataset and the classification are invoked from an online web application to map the extent of
the inundation present on a post-flood SAR image. This application is intended mainly for emergency
situations. As a consequence, it is of extreme importance to extract the flood map as quickly as
possible and in an unsupervised way. The current paper is structured as follows. In the next section
(Section 2), two datasets acquired with X-band TerraSAR-X and C-band Sentinel-1 of the inundations
in Tewkesbury in 2007 and in Myanmar in 2015, respectively, are presented. The SAR images depicting
these flood events will serve later on to assess the algorithm introduced relatively to a validation
dataset. Afterwards, the theory behind the supervised classifier used specifically to cluster the flooded
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SAR image into two classes and the post-processing utilized for refining the classified flood map,
as well as the entire automated flood mapping process, are explained in detail in Section 3. The results
of the flood mapping using the proposed method are validated and discussed in the following section
(Section 4). Eventually, this paper closes with a conclusion about the strengths and the constraints of
this algorithm.

2. Case Studies and Datasets

2.1. Tewkesbury 2007

This case study concerns the town of Tewkesbury (South-West England), which was flooded
in July 2007. The town of Tewkesbury is situated at the junction of the Severn and the Avon rivers,
and consequently the damages caused by the inundation there were considerable with the water
propagating to the town center. Both a pre-flood TerraSAR-X image (Figure 1a) and a Sentinel-2 optical
image of the studied area shown in Figure 1c with the ground truth superimposed on it, are required to
train the supervised algorithm. The trained classifier will be subsequently used to classify a post-flood
TerraSAR-X image (Figure 1b) of the flooded town of Tewkesbury into inundated and non-inundated
pixels. This SAR image captured the flood in Tewkesbury on the 25 July 2007, while TerraSAR-X was
still in its commissioning phase. The dataset used a pre-flood SAR image taken actually a year after the
flooded image on the 22 July 2008 in dry conditions. The availability of a pair of SAR images acquired
in the same configuration (3 m-resolution Stripmap and HH-polarized, as reported in Table 1) over
the same area and processed as Single Look Slant Range Complex (SSC) products, makes this dataset
suitable to conduct change detection analysis. The cloud-free Sentinel-2 optical image was acquired in
the same season and the same month as the pair of SAR images, but eight years later than the pre-flood
SAR image (19 July 2016).

(a) (b)

(c) (d)

Figure 1. Subset of the town of Tewkesbury (South-West of England) on (a) the pre-flood TerraSAR-X
image (22 July 2008), © DLR (2008) (b) the post-flood TerraSAR-X image (25 July 2007), © DLR (2007)
(c) the Environment Agency’s ground truth in red (20–24 July 2007) [20] superimposed on the Sentinel-2
optical image (19 July 2016), © Copernicus data (2016) (d) the resulting flood map obtained (white:
flood, black: no-flood).
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To confirm that no change in the land cover occurred between the time the pre-flood SAR image
was taken and the acquisition of the Sentinel-2 optical image, an optical image captured by the
Thematic Mapper (TM) sensor of Landsat-5 one month before the pre-flood SAR image and in the same
season (8 June 2008), was compared visually with the latter Sentinel-2 image. Overall, the Landsat-5
and the Sentinel-2 images showed consistency in terms of water bodies, at least for the subset studied.
For future flood events, thanks to the 5-days revisit time of the Sentinel-2 constellation currently in
orbit, it should be easier to find a cloud-free optical image acquired in the same season and the same
year as the reference SAR image to avoid any potential change in the land cover. In the current case
study, the previous Landsat-5 product could not be considered for the subsequent flood mapping
methodology due to its coarse 30 m spatial resolution.

Table 1. Radar parameters of the Tewkesbury 2007 Synthetic Aperture Radar (SAR) images.

Sensor Polarization Pixel Spacing after Terrain-Correction Type of Product

TerraSAR-X HH 2.2 m SSC (complex)

2.2. Myanmar 2015

Flooding hit Myanmar during the monsoon season between July and September 2015. The area
studied in this paper is situated in the South-East of the country, where the Salween River burst its
banks in the month of August of the same year. Sentinel-1 took a SAR image during the flooding on
the 6th of August 2015 (Figure 2b). Moreover, thanks to the systematic acquisition plan of Sentinel-1,
a pre-flood SAR image taken on the 19th of March 2015 was also provided in the same acquisition
parameters as the flooded SAR image (Figure 2a), to capture the same area in normal conditions.
Both 20 m-resolution SAR images were acquired in VV polarization and processed as Ground Range
Detected (GRD) products (Table 2). A cloud-free optical image was acquired a few years after the
flooding by Sentinel-2 (Figure 2c) in the same season as the dry SAR image, to avoid inconsistencies
between this pair in terms of presence or dryness of water bodies. Thanks to the open data policy of
the Copernicus programme, the Sentinel-1 and Sentinel-2 images in this dataset are distributed online
for free. Conversely, the commercial images from TerraSAR-X used in the previous case study can
only be made freely available, in a limited number, for scientific purposes after a research proposal
has been accepted. This last point introduces a constraint in the access to the SAR data following a
flood disaster, and shows the advantages satellites belonging to the Copernicus programme have over
commercial ones in the same context.

Table 2. Radar parameters of the Myanmar 2015 SAR images.

Sensor Polarization Pixel Spacing Type of Product

Sentinel-1 VV 10.0 m GRD (detected)
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(a) (b)

(c) (d)

Figure 2. Subset of the city of Mawlamyine (southeastern Myanmar) on (a) the pre-flood Sentinel-1
Synthetic Aperture Radar (SAR) image (15 March 2015), © Copernicus data (2015) (b) the post-flood
Sentinel-1 SAR (06 August 2015), © Copernicus data (2015) (c) the United Nations’s ground truth
vector in red (06 August 2015) [21] superimposed on the Sentinel-2 optical image (04 March 2018), ©
Copernicus data (2018) (d) the resulting flood map obtained (white: flood, black: no-flood).
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3. Methodology

3.1. Stochastic Gradient Descent

The Gradient Descent (GD) is an iterative optimization algorithm which aims to find the minimum
of a loss (cost) function [22]. It is based on the rationale that the cost function is minimized by moving
in the opposite direction to its gradient. The learning rate η in Equation (1) serves in this particular
case to regulate the steps taken down the slope (i.e., the negative of the gradient):

ωi+1 = ωi − η∇ωi L(ωi) (1)

where:

ωi+1: The model parameters to estimate,
ωi: The model parameters estimated in the previous iteration,
η: The learning rate,
L: The loss (cost) function.

The learning phase in the standard Gradient Descent (called also the Batch Gradient Descent,
BGD) requires that the derivative is calculated for all the samples in the training dataset in every
iteration. The Batch Gradient Descent is consequently computationally intensive especially when the
training set is too large [22]. The Stochastic Gradient Descent (SGD) used in this paper is another
variant of the Gradient Descent, which is trained instead on a single randomly chosen training sample
at a time. This online learning faculty of SGD makes it more scalable and quicker to train by allowing
it to be unconstrained in terms of the execution time by the size of the training dataset [23]. SGD was
in fact adopted in this study because in an operational context the objective is to produce the flood
map as quickly as possible, and therefore, satellite images being generally quite large, the classifier
chosen needs to fit rapidly to the training dataset regardless of the number of samples in it. The cost
function used to train the classifier in this paper is the Hinge loss function given by:

L(xj, yj) = max(0, 1 − yj · (ωxj + b)) (2)

where:

ω and b: The predicted model parameters,
xj: The input sample.
yj: The target class.

This function acts as a classification metric which appraises the linear model predicted with SGD
in every iteration of the learning phase, and modifies its two parameters (ω, b) accordingly using
Equation (1). In the case of the SGD classifier, ω corresponds to the weight assigned to the backscatter
feature in the decision function, and b is its intercept. An interesting property of the Hinge loss function
is that it punishes both misclassified samples and those who were correctly classified but with a low
confidence, in order to maximize the margin between the classes.

A regularization term is also added to the loss function L in Equation (1) to help the predicted
model to generalize to unlabeled data. The idea is to penalize complex models prone to overfitting,
which are characterized by larger values for the parameters ωi. The equations for the regularization
functions commonly used are:

L1 =
m

∑
i=1

|ωi| (3)

L2 =
m

∑
i=1

ω2
i (4)

The optimal values for the hyperparameters (model’s parameters) in Table 3, which are the
number of iterations of the SGD, the loss function, the regularization term and its coefficient α, can be

31



Remote Sens. 2019, 11, 779

determined by cross-validation where the classifier is trained on one part of the training dataset with
different values of these hyperparameters, and then validated on the rest of this same dataset. The set
of hyperparameters values producing the best accuracy scores during the cross-validation can be used
for the subsequent training on the whole learning dataset. Because the training of the classifier and
the test are performed in this case on two distinct datasets (the pre-flood and the post-flood SAR
images respectively), no improvement in terms of accuracy was observed with the cross-validation.
Furthermore, for the sake of a quicker computation time, the default hyperparameters values of the
SGD were kept and are reported in Table 3, except for the number of iterations which was increased to
a 1000 iterations.

Table 3. The values of the hyperparameters used during the training of the Stochastic Gradient Descent
(SGD) classifier.

Number of Iterations Loss Function Regularization Term Alpha

1000 Hinge loss L2 0.0001

3.2. Graph Cuts

A graph G = 〈V , E〉 is defined by its vertices (nodes) V linked by directed edges E , where each
edge connecting two nodes has a weight. Two terminal nodes, a source s and a sink t, are added to the
two extremities of the previous directed and weighted graph G to form a flow network. In the context
of a binary image segmentation, the image pixels are represented by the non-terminal graph nodes,
while the terminal nodes (s and t) are the labels to assign to each pixel [24]. With this in mind, an s-t
cut divides the flow network into two subsets S and T , in such a way that the source s belongs to S
and the sink t to T . This kind of cut can be seen as a binary classification or a labeling task, where each
non-terminal node (pixel) is assigned either to S or T , depending on whether the pixel belongs to
the foreground or the background for instance. For edges too, two types can be distinguished in flow
networks. N-links join together pixel nodes located in the same neighborhood on the image, whereas
t-links connect each pixel node to both terminals (s and t). The weight of a t-link allows to penalize a
node that was mislabeled compared to a prior knowledge, and that of an n-link ensures a smooth and
consistent labeling by encouraging pixels in the same neighborhood to be in the same class, after the
graph is split. The weights of n-links and t-links can be defined mathematically by the energy terms
Esmooth(L) and Edata(L) respectively, which appear in the energy function to minimize [24]:

E(L) = Edata(L) + Esmooth(L) (5)

Graph cut methods intend to find the labeling L that minimizes the energy function E in the
previous equation. When each energy term is replaced with its respective expression, the energy
function becomes [24]:

E(L) = ∑
p∈P

Dp(Lp) + ∑
(p,q)∈N

Vp,q(Lp, Lq) (6)

where:

Dp: The data penalty term for a pixel p,
Vp,q: The smoothness or regularization term between neighboring pixels p and q,
P : The set of image pixels p,
N : The set of pairs of adjacent pixels (p, q),
Lp: The labeling to assign to a pixel p.

The network flow in Figure 3 shows two pixel nodes p0 and p1, besides the two terminal nodes s
and t, and illustrates how each edge connecting a pair of nodes is assigned the adequate energy term.
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s

p0 p1

t

Dp0(Ls) Dp1(Ls)

Vp0,p1(Lp0 , Lp1)

Vp1,p0(Lp1 , Lp0)

Dp0(Lt) Dp0(Lt)

Figure 3. A flow network with a source node s, a sink node t, two non-terminal pixel nodes p0 and p1,
and the energies used as the edges’ weights.

Graphs cuts based energy minimization techniques were already used in the past to restore noisy
binary images in [25], who demonstrated that simulated annealing could get stuck in a local minimum
during the minimization of the energy. The Bokov-Kolmogorov min-cut/max-flow algorithm (BKA),
used in the current study, has proved effective in many image processing applications like image
segmentation, stereo matching, and image restoration [24]. It extends the idea in [25] by proposing
a graph cut algorithm that performs quickly and is even able to generalize to N-dimensional image
segmentation problems [26]. Analogously to when they were first proposed in [25], graph cuts will be
integrated in this paper’s methodology as a post-processing to enforce the spatial continuity between
pixels assigned to the same class. In other words, the objective of graph cuts as a post-processing
in this case is to take into account the spatial proximity between the pixels in the binary flood map,
by reclassifying the noisy pixels resulting from the previous pixel-based classification.

3.3. Flood Extent Mapping

The process chain shown in the flowchart in Figure 4 consists in a supervised classifier
trained automatically to build the model that maps the floodwater on the post-flood SAR image.
Briefly, a labelled training dataset of water and land classes is gathered in an automated way from a
Sentinel-2 optical image and a pre-flood SAR image, and is next fed into the classification algorithm
during the learning phase. Although the classifier is normally supervised, in the sense that a labelled
training dataset needs to be provided beforehand to train it, the selection and the labelling of the
training samples is carried out automatically in this paper. Ultimately, the trained classifier will be
ready to discriminate the pixels individually in the flooded SAR image into flood and non-flood pixels.
Each phase of the process will be explained in more detail below.
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Figure 4. Flowchart of the automatic flood mapping process including the preprocessing, the extraction
of the training dataset, and the classification.
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3.3.1. Preprocessing

The SAR images taken prior and after the flooding were radiometrically calibrated and
speckle-filtered with a 5 × 5 Gamma Map filter to avoid having a noisy flood map later. Afterwards,
masks of shadow and layover were extracted automatically from the SAR images with the help of the
free SRTM DEM. Pixels where these geometric distortions appear will be systematically disregarded
during the training and classified as unflooded after that. The shadow and layover pixels detected on
the pair of SAR images showing the studied area in Myanmar appear in a homogeneous black color on
the mountains located to the right of the river (Figure 2a,b). The SAR images with masked shadow and
layover were eventually converted to dB and projected to the ground-range with a terrain-correction
(TC) using the same DEM. The subsetting operation was left till the very end of the preprocessing to
get perfectly rectangular images after the terrain-correction.

The Sentinel-2 optical image used to calculate the NDWI (Normalized Difference Water Index)
has to be atmospherically corrected by processing it to a Level-2A product on the user side.
This preprocessing step aims to remove the effect of the atmosphere (i.e., clouds, aerosols, gases. . .)
from optical satellite images, and is necessary before computing the NDWI. Recently, the Sentinel Hub
started distributing online products already processed as Level-2A Bottom-Of-Atmosphere (BOA)
Sentinel-2 products.

The pre-flood SAR image needed also to be collocated with the Sentinel-2 image using the Sentinel
Application Platform (SNAP) Python API, prior to the extraction of the SAR training samples from it.

3.3.2. Extraction of the Training Dataset

The Normalized Difference Water Index (NDWI) was initially presented in [27] to detect water
bodies from multispectral optical images. The NDWI mathematical expression is given by:

NDWI =
Green − NIR
Green + NIR

(7)

where, similarly to [28]:

Green: Band 3 in the Sentinel-2 product,
NIR: Band 8 in the Sentinel-2 product.

It is based on the idea that water has at the same time a high reflectance in the green band
and a low one in the near-infrared (NIR) one, while other types of land cover to disregard (soil
and vegetation) appear brighter in the latter band [29]. The NDWI was originally calculated from
multispectral images captured by Landsat’s Multispectral Scanner (MSS) [27], but was estimated in
further works from Landsat’s ETM+ bands [29], high-resolution Quickbird ones [30], and even from
Sentinel-2 images [28]. In rural areas, pixels with a positive NDWI were expected to correspond to
water. However, this could lead to false alarms in urban areas where houses rooftops for instance
were found to have positive NDWI values, although lower than that of water. Consequently, a higher
threshold was determined in [30] (Equation (8)) by the same author who proposed the NDWI, in order
to identify the water surfaces in swimming pools which constitute a common place for mosquitoes to
lay their eggs. The NDWI threshold could nevertheless fail to detect water surfaces that are concealed
by protruding vegetation or shadowed by trees or buildings.

Class =

{
Water, if NDWI ≥ 0.3

Land, otherwise
(8)

Other water indices were also proposed in the literature like the Modified Normalized Difference
Water Index (MNDWI) [29], which was calculated by replacing the near-infrared (NIR) band in
Equation (7) with the shortwave infrared (SWIR) one. The MNDWI was proposed to prevent the
obtained water mask from including false positives from urban areas, based on the observation that
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the spectral response from built-up land was higher in the SWIR band compared to the green band.
Therefore, built-up areas would be expected to result in negative MNDWI values, on the contrary
of the NDWI ones. However, the SWIR band used to calculate the MNDWI has a 20 m spatial
resolution in Sentinel-2 products, as opposed to the 10 m spatial resolution of NIR and visible bands
(Table 4). As a result, the calculation of the MNDWI from Sentinel-2 bands should be preceded either
by a downsampling of the green band to 20 m-resolution, or by a sharpening of the SWIR band to
10 m-resolution [28]. Besides, according to a few experiments carried out on the Sentinel-2 datasets
used in this paper, the MNDWI still required a threshold greater than zero to identify the water,
although it should be lower than the NDWI one according to [29]. Lastly, most high-resolution optical
satellite sensors currently in orbit have a NIR band but lack a SWIR band.

Table 4. The Sentinel-2 bands used to calculate the Normalized Difference Water Index (NDWI) and
their resolutions.

Band Name Band Number Resolution [m]

Green Band 3 10
NIR Band 8 10

In the current study, the NDWI index is calculated using Equation (7) from the green and
near-infrared (NIR) bands of the Sentinel-2 Bottom-Of-Atmosphere (BOA) level-2A optical image,
which was collocated with the preprocessed pre-flood SAR one in the previous step. Then, by applying
the threshold in Equation (8) to the NDWI, a water mask is produced. The land mask is simply the
logical negation of the water mask. Both the NDWI-derived water and land masks produced in the
previous step were separately multiplied with the pre-flood SAR image present in the same stacked
product, to extract from the latter image the pixels belonging to water and land classes, respectively.
The previous step depends on the accurate collocation between the optical and the pre-flood SAR
image, so that the location of one class (water or land) in the former product matches its location in
the latter one. Afterwards, an equal number of samples (1000 samples/class) was taken randomly
from the extracted water and land pixels, and was used as a training dataset. Having training classes
with the same number of samples helps to avoid favoring the majority class in the subsequent step.
One pre-requisite is that the training samples are randomly shuffled prior to the learning phase [23],
to avoid that the classifier recognizes in the post-flood SAR image the last class it was trained on better
than the first one.

3.3.3. Classification of the Post-Flood SAR Image

The learning dataset serves to train the supervised classifier to recognize water and land in
the post-flood SAR image using algorithms such as the Stochastic Gradient Descent (SGD) included
in the Scikit-learn library. Thanks to the online learning ability of the SGD, recalled in Section 3.1,
the classification is performed very quickly even when the training dataset is quite large. It is not
necessary in this case that the training and test datasets are normally distributed with zero mean and
unit variance, since there is only one feature (the backscatter in dB). Eventually, the trained classifier was
employed to segment the post-flood SAR image into water and non-water (land) classes. In summary,
the classifier is trained on water and land pixels from the pre-flood SAR image, and used to categorize
the post-flood SAR image pixels into the same two classes. The classification is thereby based on the
assumption that the flood has the same low backscatter signature on the SAR image as permanent
water bodies and rivers. This supposition can be confirmed visually, as their similar low radar return
makes them easily distinguishable from the rest of the land cover. Therefore, the trained classifier does
not differentiate floodwater from permanent water bodies on the flooded SAR image, since both of
them are classified as water. The water map produced is specific only to the post-flood SAR image
in the sense that potential changes in rivers morphologies, relatively to the date of acquisition of the
pre-flood SAR image, are captured by the latter thematic map.
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3.3.4. Post-Processing of the Flood Map

The Bokov–Kolmogorov min-cut/max-flow algorithm (BKA) [24] used during the post-processing
of the flood map requires to set the values of both the penalty and the regularization energy terms.
Knowing that the input flood map image has binary values (pi), the penalty (data) term is null when
the pixel is assigned the same label it got after the previous classification, otherwise it is equal to one:

D =

{
pi , if xi = 0

1 − pi , if xi = 1
(9)

where:

pi: The value of the pixel i in the input image,
xi: The label assigned to the pixel i.

For the smoothness term, an 8-connectivity neighborhood was considered so that each pixel is
connected with an n-link to the 8 pixels around it. The weights of n-links were set empirically to a
constant (V = 1) that matches the weights of the t-links (Equation (9)) in terms of order of magnitude
(D ∈ {0, 1}):

V = 1 (10)

The idea behind this regularization term is that a strong edge with a high weight connecting a
pair of adjacent nodes will not be broken during the cut, and these adjacent pixels will therefore be
encouraged to take the same label [31]. In a way, the smoothness term balances out the penalty one
during the minimization of the total energy. This post-processing of the flood map allows to take
into account the spatial contiguity between the image pixels in order to remove the noise created
by the previous pixel-based classification. In fact, the higher the value of the regularization term,
the smoother the segmentation is.

3.3.5. Implementation

The flood extent mapping algorithm can be called from a web application which was built with
the Django web framework. The preprocessing of the SAR images calls the requested SNAP operators
using its Python API. As for the SGD classification algorithm, it is implemented in Scikit-learn, which is
a machine learning library written in Python. The implementation of the max-flow algorithm (BKA)
utilized for the post-processing of the flood map is the one provided by a python wrapper (PyMaxflow)
available in [32], which is itself based on [24]. The flood mapping is followed by the visualization of
the produced flood map raster served by GeoServer on an Open Street Map rendered using Mapbox.
The developed application is cost-effective since all its dependencies are open-source libraries (SNAP,
Python, Scikit-learn, Django, PyMaxflow). It is also cross-platform and can be deployed on a server
and queried remotely, thanks to its ability to be called from the internet browser.

4. Results and Discussion

4.1. Accuracy Metrics

The overall accuracy of the classification was calculated for the resulting flood maps relatively to
the ground truth associated with them, according to the equation given in [33]. Besides the overall
accuracy, two other accuracy metrics are commonly used in remote sensing to assess the classification
of each class separately. These are the producer’s accuracy and the user’s accuracy which are the
complements of the omission error and the commission error, respectively [34]. In addition to these
accuracy metrics, the area flooded was also easily calculated by multiplying the number of pixels
classified as flooded by the pixel spacing of the SAR image:
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area = n · s (11)

where:

area: The flooded area in km2,
n: The number of pixels flooded,
s: The pixel area in m2, which is equal to the squared pixel spacing.

4.2. Tewkesbury 2007

The extent of the flooding mapped with the SGD in the town of Teweskbury is shown in Figure 1d.
The flood map obtained was validated against a ground truth vector (the red mask in Figure 1c),
which was collected by the Environment Agency using in situ surveys and aerial photography [20]
in the same town of Tewkesbury at least a day before the acquisition of the post-flood SAR image,
between the 20th and the 24th of July 2007. The ground truth vector had to be rasterized and confined
to the area of interest first, then the flood map produced in this paper was compared with it on a pixel
level. After an assessment of the results obtained with the SGD classifier (Table 5), the accuracy of
the classification was found to be around 77%. Moreover, from the producer’s accuracy of the flood
class (61.18%) in the same table, it can be inferred that there is an underestimation of the inundation
and consequently an overestimation of the non-flooded areas. The under-estimation of the floodwater
is also clear from the flooded area presented in km2 in Table 6. One type of land cover possibly
responsible for the missed classifications are flooded urban areas (clearly flooded in aerial images
in [19]) characterized by an increase in the backscatter, while the classifier was not trained to recognize
their signatures. However, it should be noted that the flooded SAR image was acquired on a different
day (25 July 2007) than the ground truth (20–24 July 2007), and therefore a flood recession should not
be ruled out between the two dates.

Table 5. The producer’s and user’s accuracies for the flood and non-flood classes and the overall
accuracy of the classification for the Tewkesbury 2007 dataset.

Class Producer’s Accuracy User’s Accuracy Overall Accuracy

Non-flood 94.15% 69.19% 77.03%Flood 61.18% 91.87%

Table 6. Area suffering from the flooding in km2 on the obtained flood map and on the ground truth
for the Tewkesbury 2007 dataset.

Product Flooded Area

Flood map 7.58 Km2

Ground truth 11.39 Km2

4.3. Myanmar 2015

For the Myanmar 2015 dataset, the validation was performed against flood maps obtained from
the same Sentinel-1 dataset by the United Nations Institute for Training and Research (UNITAR) [21].
The preprocessing step, consisting of masking out geometric distortions SAR images suffer from,
allowed to get rid of parts of the topographic shadows which otherwise could be misclassified as water
due to the similar dark appearance on the SAR image. The results in Table 7 were superior to those
realized on the previous dataset, reaching an accuracy over 90%. Due to the larger pixel spacing of
Sentinel-1 SAR images (10 m in Table 2), the missed classification translates into a larger difference
between the area inundated in km2 on the flood map and on the ground truth in Table 8.
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Table 7. The producer’s and user’s accuracies for the flood and non-flood classes and the overall
accuracy of the classification for the Myanmar 2015 dataset.

Class Producer’s Accuracy User’s Accuracy Overall Accuracy

Non-flood 98.96% 91.97% 93.47%Flood 82.06% 97.43%

Table 8. Area suffering from the flooding in km2 on the obtained flood map and on the ground truth
for the Myanmar 2015 dataset.

Product Flooded Area

Flood map 407.43 Km2

Ground truth 483.74 Km2

4.4. Classification of Urban and Non-Urban Areas in Tewkesbury 2007

The validation of the results for Tewkesbury 2007 went one step further and the flood maps were
assessed separately in the urban and non-urban areas. With this in mind, the urban mask was obtained
by thresholding the 25 m-resolution land cover map for the UK which was downloaded from [35],
while the non-urban mask was simply taken as the logical negation of the latter mask. The same
process described in the previous sections was applied on the SAR image as before, but the validation
was carried out on the two types of land use separately.

Tables 9 and 10 give an assessment of the results obtained by the SGD classifier in the urban and
the non-urban regions of the SAR image in Figure 1b, respectively. As expected, the classification
is slightly more accurate in non-urban areas compared to urban areas (almost 77.68% against 74.7%,
respectively). Nevertheless, in terms of False Negatives the classification in urban settlements did a lot
worse than in non-urban ones (close to 5% of producer’s accuracy against 68%, respectively). As stated
in the previous section, this might be explained by the fact that the classifier missed flooded urban
settlements characterized by an increase in the backscatter, while the training dataset identifies only
dark open-water on the pre-flood SAR image. Alternatively, the same reason also referred to in the
previous section regarding the different acquisition dates of the flooded SAR image and the ground
truth could possibly be responsible for the high missed detection in urban areas.

Table 9. The producer’s and user’s accuracies for the flood and non-flood classes and the overall
accuracy of the classification for the urban areas of Tewkesbury 2007.

Class Producer’s Accuracy User’s Accuracy Overall Accuracy

Non-flood 99.1% 74.87% 74.7%Flood 4.88% 65.6%

Table 10. The producer’s and user’s accuracies for the flood and non-flood classes and the overall
accuracy of the classification for the non-urban areas of Tewkesbury 2007.

Class Producer’s Accuracy User’s Accuracy Overall Accuracy

Non-flood 91.67% 66.46% 77.68%Flood 68.0% 92.19%

4.5. Maps of False Negatives and False Positives

The maps of False Negatives (FNs) and False Positives (FPs) for Tewkesbury and Myanmar
datasets (Figures 5 and 6, respectively) were produced in QGIS from the flood and the ground truth
binary maps using this equation:
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Error =

{
FN, if (predict − valid) · mask = −1

FP, if (predict − valid) · mask = 1
(12)

where:

Error: The type of misclassification in the masked area,
FN: A false negative,
FP: A false positive,
predict: The predictions,
valid: The ground truth,
mask: The urban or non-urban mask, if applicable.

(a) (b)

(c) (d)

Figure 5. Superimposed on the post-flood SAR image are: (a) the flood map produced from Tewkesbury
2007 TerraSAR-X image in cyan superimposed on the ground truth in red (b) The urban mask extracted
from the UK Land Cover map [35] in blue and the non-urban mask (negation of the urban mask) in
green (c) The false negatives (FN) in yellow and the false positives (FP) in magenta, in non-urban areas
(d) The false negatives (FN) in yellow and the false positives (FP) in magenta, in urban areas.

For the Tewkesbury dataset, the FNs and FPs were extracted separately for urban and non-urban
areas thanks to the availability of the UK land cover map [35]. The yellow field inside the red triangle in
Figure 5d was clearly not flooded on the post-flood SAR image of Tewkesbury (Figure 1b). This means
that its inclusion with the missed classifications was probably due to a flood recession in this area.
There were also some False Negatives in the urban regions of the same image (Figure 5d) appearing in
yellow, but the resolution of the SAR image was not high enough to detect the flood in narrow roads.
As for the False Positives appearing in magenta inside the red circle in Figure 5c, this rural area is
clearly flooded since it appears in dark due to the specular reflection from the water. One possible
explanation for it being considered a False Positive is that because the ground truth and the SAR
image were not acquired on the same date, different areas were flooded on the two dates of acquisition.
Other false alarms appearing in magenta in the same image (Figure 5c) might come from low grow
grass or bare fields which exhibit the same low backscatter that characterizes water on radar imagery,
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whereas in the lower-left corner of the image the shadow from the trees could have resulted in some
false positives.

(a) (b)

Figure 6. Superimposed on the post-flood SAR image are: (a) the flood map produced from Myanmar
2015 Sentinel-1 image in cyan superimposed on the ground truth in red (b) The false negatives (FN) in
yellow and the false positives (FP) in magenta.

Regarding the Myanmar 2015 flood map, the misclassification caused by False Negatives (yellow
pixels in Figure 6) is generally located on the boundaries of the flooded zones. It is suspected that the
speckle-filter smoothed out the boundaries of the flooding on the post-event SAR image, which led the
pixels constituting them to be wrongly classified as dry. The persistent dark topographic shadow which
exists even after masking out the geometric distortions, creates false positives visible in magenta inside
the two red circles in Figure 6. This might be explained by the relatively coarse resolution (around
30 m) of the DEM employed during the extraction of the shadow and layover from the SAR images.

4.6. Computation Time

Each operation performed during the flood mapping process was profiled individually,
by measuring the time it takes to run. The time to upload the optical and SAR images to process to the
Web server as well as the time to load the web page are included in the execution time. The upload time
is not considerable when working locally, however it very much depends on the internet speed and the
size of the images if the flood mapping Web application is deployed remotely. The computation times
for the preprocessing of the SAR images, the generation of the training dataset, and the classification
plus the post-processing are shown in Tables 11 and 12 when these operations were executed on the
Myanmar 2015 and the Tewkesbury 2007 datasets, respectively. Overall, the processing time of the
whole flood mapping chain for the Myanmar 2015 dataset is around 2 min and 40 s, considering
that the input SAR subsets have over 19 millions pixels each prior to the preprocessing. As for the
Tewkesbury 2007 dataset, the total processing time is nearly 1 min for SAR subsets of 5 million pixels
(Table 12).
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Table 11. The execution time for each operation of the flood mapping process for the Myanmar
2015 dataset.

Operation Execution Time [seconds]

Uploading SAR pair & optical image 0.87
Preprocessing SAR pair 96.82
Building training dataset 27.61
Training, classification, and post-processing 35.59

Total 160.89

Table 12. The execution time for each operation of the flood mapping process for the the Tewkesbury
2007 dataset.

Operation Execution Time [seconds]

Uploading SAR pair & optical image 1.58
Preprocessing SAR pair 36.91
Building training dataset 7.97
Training, classification, and post-processing 12.1

Total 58.56

4.7. Comparison with the Literature

The results in [7,10] and [36] were chosen to benchmark the flood mapping chain presented
in this paper, since these methods were also tested on the Tewkesbury 2007 dataset. However,
the performances of this paper’s method in terms of computation time cannot be objectively compared
relatively to these methodologies, since they were run on machines with different characteristics
and on image subsets of different dimensions. In absolute terms, this paper’s method finished the
whole processing in under 5 min (Table 13) on a large subset of Tewkesbury 2007 SAR dataset of
more than 41 million pixels (Figure 7), which is more than 8 times larger than the subset used in the
previous section (Section 4.6). Most of the execution time (more than 3 min) was in fact dedicated to
the preprocessing of the pair of SAR images, while the post-processing with graph cuts also required
a considerable amount of time to improve the flood map (over 1 min) because the image was quite
large. The current approach is thus suitable to operate in emergency situations, when it is necessary to
have a quick overview of the flood situation. In fact, the time taken to produce the flood map is in the
same order of magnitude as the targeted response time for critical calls in the UK. According to the
legislation, the Ambulance and the Fire & Rescue Services are expected to arrive at the location of the
reported incident in 8 and 10 min, respectively, 75% of the time [37]. By way of comparison, a method
with a similar purpose of mapping the inundation in near real-time in [7] took around 2.67 min on a
smaller subset of 5.4 million pixels. Furthermore, for [10] who adapted the process in [7] to Sentinel-1
SAR images, the whole chain took 45 min to map the flood on the entire Ground Range Detected (GRD)
image, but included the downloading of the SAR images which is normally dependent on the internet
speed. Accordingly, the process described in the current study extends the literature on operational
flood mapping from SAR images with a novel method suitable mainly for emergency situations.

The precision of the classification was assessed by running this algorithm on a workstation
equipped with a 6-core 2.67GHz Intel Xeon X5650 CPU and 24.0 GB of RAM. The overall accuracy
(90.66% in Table 13) was found to be comparable to other studies in the literature of operational flood
mapping (95.44% in [7]). The accuracy results were also compared by land use (urban and rural) to [36],
who performed the flood mapping on a subset of the Teweskbury 2007 dataset of roughly the same size.
The accuracy obtained in rural areas with the algorithm described in this paper (90.81% in Table 13)
is quite close to what [36] achieved on a similar subset (89%). As for the urban areas, the accuracy
in [36] dropped from 75% to 57%, depending on whether the shadow and the layover where the flood
cannot be detected were masked or not. The accuracies for rural and urban areas achieved in this
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paper are not too far from one another as can be seen in Table 13 (90.81% for non-urban areas and
88.97% for urban ones), considering that the DEM is too coarse to detect the geometric distortions in
Tewkesbury’s town center and that the surface is quite flat.

Figure 7. The flood map produced from a large subset of the the Tewkesbury 2007 dataset. The subset
assessed in Section 4.2 is inside the red rectangle.

Table 13. Comparison between the results obtained with this paper’s method on the large Tewkesbury
2007 subset in Figure 7, and those reported in [36] on the same dataset with a similar subset size.

Paper Overall Accuracy Urban/non-Urban Accuracy Execution Time [minutes]

This paper 90.66% Non-urban areas: 90.81% 4.74Urban areas: 88.97%

[36] -

Non-urban areas: 89%

19.1Urban areas:
75% if the shadow and layover are ignored,
57% otherwise

4.8. Training Dataset

Besides the water and non-water classes, the automated process proposed in this paper gives the
possibility to train the classifier on other classes, if additional training subsets can be extracted in an
unsupervised way. However, it may prove difficult to collect training datasets, for example, for flooded
urban or vegetated areas at the time of the disaster. In a separate experiment, the flood mapping
classifier was effectively trained with a dry vegetation class retrieved similarly to the water class,
by thresholding the Normalized Difference Vegetation Index (NDVI) according to [38]. The vegetation
threshold (NDVI ≥ 0.2) normally corresponds to the NDVI values exhibited by shrubs and grassland.
The previous heterogeneous non-water subset was thus split again into vegetation and non-vegetation.
But the accuracy results for the large subset of Tewkesbury in particular decreased by almost 10%,
after considering the vegetation as a separate class. For this reason, only water and non-water classes
were maintained in the previous tests.

Finally, it was found that when the water is not well represented in the pre-flood SAR image
and the optical image, the classification using the method in this paper might later fail to efficiently
recognize the flooding on the post-event SAR image. Another detail to point out concerns the muddy
water present at the mouth of the River Severn near the city of Bristol, which was not completely
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detected by the NDWI threshold. The river mouth is located on the same Sentinel-2 optical image but
to the southwest of the subset taken around Tewkesbury.

5. Conclusions

The novel method proposed in this paper proved capable of a quick and automatic mapping of the
extent of the inundation, which can assist response authorities to prioritize during rescue operations.
The rapidity of execution is a very important factor, especially when the main purpose of the flood
maps is to support relief efforts at the time of the disaster.

This approach was evaluated on two flood events captured by SAR sensors in different
wavelengths. The first SAR pair was taken in X-band by TerraSAR-X, while the other one was
captured by the Sentinel-1 C-band sensor. Thanks to the availability of a ground truth in both cases,
it was possible to assess the algorithm proposed and discuss the results obtained. The flood classifier
showed satisfying results, however it might fail if the water bodies and rivers are too small to appear
clearly in the pre-flood SAR image and the Sentinel-2 product. In this particular case, the classifier
cannot be trained efficiently to recognize the water class. Moreover, when the optical and the pre-event
SAR images are acquired a few years from each other, inconsistencies in terms of the presence and
absence of water bodies might exist between these two images, even if they were both taken during
the same season. The dates of acquisition of this pair of images is therefore a crucial parameter worth
considering, to avoid having pixels belonging to one class being labeled in the other one in the training
dataset. In this case, a change in the land cover between the pre-flood SAR image and the Sentinel-2
optical image is responsible for the mislabeling, when for instance the date of acquisition of the latter
image is almost a decade after the pre-flood SAR image (e.g., the Tewkesbury 2007 dataset). Cloud
coverage could also lead to a similar wrong labeling of the learning dataset, particularly when parts of
the water bodies are hidden by clouds. Nevertheless, the NDWI threshold utilized for extracting the
water mask from the optical bands appeared to generally provide a good compromise between over-
and under-estimations, although a thorough validation of this threshold on other datasets, preferably
from different climates, could become required in the future.

This process chain assumes the availability of a reference non-flooded SAR image and a dry
optical image, besides the flooded SAR image. However, this does not constitute a serious constraint
since areas at risk of a flooding can ensure that these reference images are at their disposal beforehand
and regularly updated. Furthermore, the systematic acquisition mode of the Satellites launched for the
Copernicus Programme (Sentinel-1 and Sentinel-2) increases the chances of finding suitable reference
images (SAR and optical products) in the archive. Like the DEM utilized to mask out the geometric
distortions (shadow and layover), Sentinel-1 and Sentinel-2 images are distributed for free, in contrast
to the images acquired by commercial satellite missions such as TerraSAR-X and COSMO-SkyMed,
and cover most of the Earth’s surface.

In the future, the proposed method could benefit from recent commercial optical sensors, capable
of delivering metric or even sub-metric resolution images, to address the abovementioned issue
concerning narrow river channels that cannot be distinguished with the 10 m-resolution optical bands
of Sentinel-2. Moreover, it is expected that SAR images of a higher spatial resolution could improve
the accuracy of the classification in flooded urban areas. With this in mind, both TerraSAR-X with its
staring spotlight mode and its future successor TerraSAR-X NG [39] can take SAR images with up
to 25 cm resolution. Finally, centimetric-resolution airborne LiDAR DEMs with finer horizontal and
vertical accuracies compared to the SRTM DEM used, should result in a more precise terrain-correction
and a more efficient masking out of the shadowed pixels from the SAR images.
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Abstract: The Sentinel-1 mission has now reached its maturity, and is acquiring high-quality images
with a high revisit time, allowing for effective continuous monitoring of our rapidly changing planet.
The purpose of this work is to assess the performance of the different synthetic aperture radar
products made available by the European Space Agency through the Sentinels Data Hub against
glacier displacement monitoring with offset tracking methodology. In particular, four classes of
products have been tested: the medium resolution ground range detected, the high-resolution ground
range detected, acquired in both interferometric wide and extra-wide swath, and the single look
complex. The first are detected pre-processed images with about 40, 25, and 10-m pixel spacing,
respectively. The last category, the most commonly adopted for the application at issue, represents
the standard coherent synthetic aperture radar product, delivered in unprocessed focused complex
format with pixel spacing ranging from 14 to 20 m in azimuth and from approximately 2 to 6 m in
range, depending on the acquisition area and mode. Tests have been performed on data acquired
over four glaciers, i.e., the Petermann Glacier, the Nioghalvfjerdsfjorden, the Jackobshavn Isbræ and
the Thwaites Glacier. They revealed that the displacements estimated using interferometric wide
swath single look complex and high-resolution ground range detected products are fully comparable,
even at computational level. As a result, considering the differences in memory consumption and
pre-processing requirements presented by these two kinds of product, detected formats should be
preferred for facing the application.

Keywords: synthetic aperture radar; offset tracking; displacements; Sentinel-1; glacier monitoring

1. Introduction

Under the aegis of the Copernicus Programme, the Sentinel-1 (S1) mission of the European Space
Agency (ESA) has been providing high quality synthetic aperture radar (SAR) images since 2014.
The short revisit time and the free and open data distribution policy is substantially affecting the
remote sensing downstream sector, with more and more users involved in an increasing number of
applications [1].

The S1 mission acquires data in different modes resulting in products at different spatial resolutions.
The most commonly used are the interferometric wide (IW) swath and the interferometric extra-wide
(EW) swath, in which data are acquired in swaths using the Terrain Observation with Progressive
Scanning SAR (TOPSAR) imaging technique [2]. Raw products are then processed and uploaded on
the Sentinels Data Hub (SDH) in two different formats: the single look complex (SLC) data format,
and the ground range detected (GRD) data format [3].
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SLC images represent the standard SAR product [4]. The products are in zero-doppler geometry.
Each row of pixels represents points along a line perpendicular to the sub-satellite track. The products
include a single look in each dimension, using the full available signal bandwidth and complex samples
preserving the phase information. For IW and EW acquisition modes, each sub-swath consists of a
series of bursts. Each burst is processed as a separate SLC image, and all processed bursts are finally
assembled into the final product [3]. In the first case, the pixel spacing is approximately 14 × 2 m in
azimuth/slant range directions. In the latter, it is approximately 6 × 20 m.

GRD products are detected, multi-looked and projected onto ground range (using an Earth
ellipsoid model) images. Ground range coordinates are the slant range coordinates projected onto
the Earth’s ellipsoid. The phase information originally contained in SLC products is not preserved.
The resulting product has approximately square resolution cell and square pixel spacing with reduced
speckle at a cost of reduced geometric resolution. These products are provided in three different
formats: the full resolution ground range detected (GRDF), the high-resolution ground range detected
(GRDH), and the medium resolution ground range detected (GRDM).

GRDF products present a pixel spacing of 3.5 m in azimuth/slant range directions and derive
only from stripmap (SM) acquisitions, which are scarcely tasked at the time of this research. GRDH
products have a pixel spacing of approximately 10 m in azimuth/slant range directions when derived
from SM or IW acquisitions, and up to about 25 m when images come from EW data. Finally, GRDM
products present 40-m pixel spacing roughly when acquired both in IW and EW mode. For a complete
reference concerning S1 products and acquisition modality, the reader should refer to [3,5].

Given the variety of S1 products, it is important to identify the best among them in feeding
information extraction algorithms and to assess each performance in relation to a specific application [6]
or image quality parameter [7]. This work has two main objectives: the first one is to assess the
performance of the three most available products in the SDH, namely the SLCs, the GRDHs, and
the GRDMs, with regard to a classic SAR remote sensing application, which is glacier displacement
monitoring with offset tracking (OT) [8–10]. The second one is to provide users and scientists interested
in this application with some guidelines concerning the exploitation of different products and the best
parameters setting based on quantitative analysis of the estimated displacements. The test cases here
concern four of the largest worldwide glaciers i.e., the Petermann Glacier (PG), the Nioghalvfjerdsfjorden
(NI), the Jackobshavn Isbræ (JAK) and the Thwaites Glacier (THW). The first three are in the Greenland
and the last in Antarctica. Displacements have been measured by processing 24 images per product
class in pairs, approximately a couple per month, during the year 2017.

Remote sensing technologies have been widely exploited for monitoring glaciers at continental
scale since the 1980s [11,12]. At that time, displacements were estimated through manual feature
tracking of natural color images acquired with long temporal baseline. From the 1990s, the literature
started to propose methodologies able to automatically track displacements exploiting correlation of
multispectral images [13–15].

Due to the large availability of free images, multispectral sensors were the privileged source of data.
Landsat 4 and 5 acquisitions were exploited to map displacements of the Ross [16] and Larsen [17] ice
shelves in Antarctica. Landsat 8 images were preferred for large scale mapping of ice flows of Greenland,
Antarctica and Alaska [18,19]. For estimation of ice velocity in Antarctica MODIS-based mosaics were
employed [20]. Historical trends of the Pamir-Karakoram-Himalaya system were retrieved from archive
Landsat 5 and 7 data [21]. The suitability of data acquired by the recently launched Sentinel-2 satellite
with glacier monitoring (not limited to displacements) was investigated in [22]. A data performance
comparison between Sentinel-2 and Landsat was provided in [23].

Due to the dependence upon light and weather conditions of passive sensors (which is particularly
severe at very high/very low latitudes [24]) SAR sensors have been widely preferred for glaciers
monitoring since the 1990s with the launch of the ERS-1 satellite. As explained in Joughin et al. [25],
initially SAR interferometry was exploited to map displacements [26–28]. However, these techniques
have limitations when applied to large displacements as discussed in the following Section. Therefore,
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intensity tracking methods, originally developed for multispectral data, started being developed
to deal with large displacements. OT methods have been successfully applied to map movements
of terrains due to natural phenomena such as landslides, earthquakes [29–31], human activities
(e.g., mining) [32,33] and glaciers [8–10,34–37]. In this paper, the technique is applied to pairs of S1
images acquired in different modalities to assess the performance of the different product classes and
determine the best in terms of accuracy of the estimated displacements and computational demand.

The work is organized as follows. Materials and methods are introduced in Section 2. Experimental
results are presented and commented in Section 3 according to inter-product comparison and
comparison with literature. It is worth stressing that the analysis has been performed from a
data product perspective only. In other words, the paper does not contain any physical interpretation
of the phenomenon considered (i.e., why glaciers move in one or another direction) but can advise an
expert in the field of the best S1 products to infer similar conclusions.

2. Materials and Methods

2.1. Offset Tracking

OT methods allow for large displacements estimation without the need to exploit the SAR
phase information. In this sense, they can be seen as complementary to classic differential synthetic
aperture radar interferometry (DInSAR) [38]. As is well-known, DInSAR-based estimations are
limited in the maximum observable displacement gradient (depending on the signal wavelength)
and on the preservation of the interferometric coherence. Hence, it is typically applied only on
areas exhibiting high temporal stability with respect to the signal phase (e.g., slow subsidence or
buildings) [29]. Moreover, classic DInSAR can measure just displacements in the slant range direction,
so no information concerning horizontal movements can be provided unless special techniques (such as
the one proposed in [39]) are applied.

OT methods, instead, are applied to the SAR amplitude channel, thus being less sensitive
to atmospheric effects and insensitive to phase instability of targets. They allow for measuring
South-North and East-West displacements without any limitation on the observable gradient and even
in areas typically characterized by low interferometric coherence, such as those highly vegetated [40].
This means that, by using just a couple of SAR images, movements of several meters can be detected
with a good degree of approximation [31].

The block diagram of the implemented frequency-domain OT technique is depicted in Figure 1.
It starts with a couple of SAR images as input to a coregistration block. The image acquired first is the
reference for the displacements estimation and it is called master. The image in which displacements are
evaluated is referred to as the slave image. They are co-registered with standard techniques [4]. When S1
data are selected, the application of precise orbit [41], if available, is advised before co-registration.

Figure 1. Block diagram of the implemented frequency-domain offset tracking (OT) technique.
The lower diagram is an exploded view of the OT processing block.
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Co-registered data feed the OT algorithm depicted in the lower diagram of Figure 1 [29]. It exploits
cross-correlation (CC) calculated on several windows extracted from the image pair to estimate the shift
between the master patch and the slave patch. Windows are extracted around grid-points (or ground
control points, GCPs) usually regularly distributed across the images.

The CC matrix C between two null-mean patches M and S from, respectively, the master and slave
image, is computed as follows:

C =
IFFT

{
FFT{M} × FFT{S}∗}√〈

M2〉× 〈S2〉 , C ∈ [0, 1], (1)

in which FFT and IFFT stand for the fast Fourier and the inverse fast Fourier transforms, respectively,
the apex * represents the complex conjugation operation, and the symbol <*> the mean operator.
In Equation (1), M and S are oversampled by a factor f (which must be a power of two in order to
optimize the FFT calculation) to take into account the sub-pixel movements, being the minimum
detectable displacement (in pixel units), i.e., the technique sensitivity, equal to 1/f.

The peak value of the matrix C, cmax, identifies the amount of the shift to be applied to the slave
patch to be superimposed to the master one. The higher the peak, the more reliable the estimated shift
is. Note that C is a circular matrix, therefore the maximum detectable shift is equal to ±d/2, where d is
the dimension of the patches.

In order to identify reliable shifts, two quality parameters for the selection of reliable GCPs,
i.e., the peak value cmax previously introduced and the ratio q = cmax/〈C〉 between the matrix peak and
the background, are considered [9]. For both parameters, a pre-determined user-defined threshold
is adopted to exclude invalid GCPs. Spatial smoothing filter is usually applied to minimize noisy
displacement patterns and reduce high-frequency noise [31]. Accepted GCPs are finally interpolated
to produce the displacement map. Due to interpolation it is possible that they show displacement
values under the sensitivity of the method dictated by the oversampling factor.

2.2. Algorithm Set-Up

In Table 1, the OT algorithm parameters setting for the implemented experiments are reported.
They vary as a function of the product class. The objective was to obtain output maps with comparable
sensitivity, i.e., with a minimum detectable displacement of the same order. Accordingly, due to the
different pixel spacing of the input products, a different parameters set-up was chosen for the grid
spacing, the oversampling factor and the cross-correlation window size. In the table, when the values
relevant to the sensitivity and the CC window size are in square brackets they refer to a range of
possible values used to set-up different experiments, which details are reported in Section 4.

As for the grid spacing, it was slightly increased as the product pixel spacing decreases in order to
reduce the computational load. In fact, the number of GCPs to be evaluated is given by the size of the
analyzed subset divided by the grid spacing. Intuitively, as the image resolution improves, the subset
size enclosing the glacier increases as well. Therefore, a less dense grid was preferred when running
the OT on the products with higher resolution.

The oversampling factor f (which determines the sensitivity with respect to the minimum
detectable displacement) is related to the phenomenon under observation and the product resolution.
As far as glaciers are concerned, a resolution in the order of a few meters is fit-for-purpose. Therefore,
f is set in such way to have a sensitivity ranging from 0.9 to 2.5 m in both azimuth and range directions.
Most of the experiments based on IW SLC images have been performed using an oversampling factor
of 8 in azimuth direction and 4 in range direction. As for IW GRDH, f was set to 8 in both azimuth and
range directions. Finally, the value for f in the case of EW GRDH and EW GRDM images was 16.

As a general guideline, it is a good practice to check the specific pixel spacing for each product as
reported in the respective metadata. The use of nominal values, those declared by ESA for a certain
product class in the product specification documents (see [3]), in place of the specific ones would bring
an error in the estimated displacements.
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Table 1. OT algorithm parameters for the different product classes and test sites.

Parameter Unit SLC GRDH10 GRDH25 GRDM Glacier

Pixel spacing
azimuth/range m

13.9/3.79 10.1/10.0 25.4/25.3 40.6/40.4 PG
13.8/3.49 10.1/10.0 na 40.5/40.0 NI
13.8/7.04 10.1/10.0 25.4/25.3 40.6/40.6 JAK
14.03/4.27 10.1/10.0 na 40.3/40.1 THW

Sensitivity
azimuth/range m

[0.9, 1.7]/0.9 [1.2, 2.5]/[1.2, 2.5] 1.6/1.6 2.5/2.5 PG
[0.9, 1.7]/0.9 [1.2, 2.5]/[1.2, 2.5] na 2.5/2.5 NI

1.7/1.7 [1.2, 2.5]/[1.2, 2.5] 1.6/1.6 2.5/2.5 JAK
[0.9, 1.7]/0.9 [1.2, 2.5]/[1.2, 2.5] na 2.5/2.5 THW

CC window size
azimuth/range m

[64, 128]/[64, 256] [64, 256]/[64, 256] [64, 128]/[64, 128] [64, 128]/[64, 128] PG
[64, 128]/[64, 256] [64, 256]/[64, 256] na [64, 128]/[64, 128] NI
[64, 128]/[64, 128] [64, 128]/[64, 128] [64, 128]/[64, 128] [64, 128]/[64, 128] JAK
[64, 128]/[64, 256] [64, 256]/[64, 256] na [64, 128]/[64, 128] THW

Grid size
azimuth/range Pixel 30/100

30/50 (JAK) 40/40 30/30 20/20

CC threshold 0.1
q threshold 4

Max flow speed m/day

8 PG
8 NI

40 JAK
20 THW

Subset size km2 × 103

37.8 25.0 53.8 47.4 PG
21.3 15.0 na 43.8 NI
9.65 4.43 13.42 7.22 JAK
23.5 13.6 na 22.8 THW

2.3. Test Areas and Data in Use

2.3.1. Petermann Glacier

The PG flows within the Hall Basin in the Nares Strait in Northwestern Greenland, constituting
one of the largest glaciers of the region. It drains ice from the center of the Greenland ice sheet to the
ocean through the Petermann Fjord, which is approximately 90 km long. The thickness of the ice shelf
is higher than 100 m, while its width is of approximately 15 km. This glacier is characterized by low
resistive stresses along flow because of the limited cohesion with the fjord walls [42]. It flows like
a river towards the sea with a velocity of approximately 1.1 km/year at its grounding line since the
1990s [43,44], delivering annually 12 tons of ice into the ocean [42].

2.3.2. Nioghalvfjerdsfjorden

NI is located in the Northeastern part of the Greenland, of which it represents the largest ice shelf.
Its length and width at mid-distance measure more than 70 km and approximately 20 km, respectively.
Together with the adjacent Zachariæ Isstrøm and Storstrømmen, it drains more than the 10% of the
Greenland ice sheet [45]. Potentially, this region alone could rise the global sea level of more than one
meter in the unlikely event of complete loss of the ice sheet [46]. The maximum velocities for NI, in the
order of 5 m/day, are found near the grounding line and have been quite stable in recent years [47].

2.3.3. Jackobshavn Isbræ

JAK is located in the Western part of Greenland and is the fastest glacier draining the ice sheet [48].
During the late 1990s, the ice tongue was involved in several break-up events causing the glacier
to increase its velocity. This phenomenon continued until recent years [49] and is influenced by the
warming of the water in the adjacent ocean [50]. The literature pointed out that this glacier is subject
to high velocity variability over the time [51]. Nowadays its peak velocity is, on average, more than
20 m/day [47].

2.3.4. Thwaites Glacier

THW is an extremely large and fast-moving Antarctic glacier flowing into Pine Island Bay.
As highlighted in [52], it is contributing to the global sea level rise for about one millimeter per year.
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The THW has a wide ice front (about 120 km long), and its ice flow speed increased, in its lower part,
from 50 to 100 m/year since 2009 [52]. Authors of recent studies believe that the THW has the greatest
potential for further near-term increases in ice flux, thus causing a rapid sea-level rise [53].

2.3.5. Data

The datasets used in this study have been acquired by the S1 constellation in 2017. For each test
site and for each product class (when available), 24 images organized in 12 pairs (approximately a
couple per month) have been analyzed for displacement estimation using OT. Overall, 168 couples
have been considered. In the case of the PG and JAK, all the product classes (IW SLC, IW GRDH, EW
GRDH, and EW GRDM) were available in the SDH. In the case of NI and THW, the EW GRDH product
class was not accessible, therefore the processing for EW acquisitions was limited to GRDM products.

Reference data for glaciers displacements along selected transects were provided in [47]. They were
retrieved using the OT algorithm implemented in the GAMMA-SAR software suite [54] and applied
to couples of S1 SLC images [54]. As declared by the authors, the spatial resolution of the output
velocity maps is of 388 m in ground range and 320 m in azimuth. After post-processing and filtering,
the final product was resampled on a 100 m × 100 m cartographic grid [47] representing the source
of information used in this study in the assessment phase. The number of sampling points for the
considered transects are the same as in [47]. Their values are: PG—900 along flow, 1107 across flow;
NI—800 along flow, 736 across flow; JAK—900 along flow, 699 across flow; THW—1800 along flow,
2135 across flow.

In Table 2, the monthly average flow velocity across the selected transects for the four considered
glaciers as extracted from the reference literature [47] is reported. The PG shows a quite uniform
behavior all over the year, with exceptions in the months of July (for both along and across flows),
and August (across flow only).

Table 2. Monthly average flow velocities for the four considered glaciers extracted from the reference
literature [47]. Values are expressed in m/day.

Time
PG NI JAK THW

Along Across Along Across Along Across Along Across

January 2.49 2.95 1.94 2.86 10.6 3.45 9.64 4.75
February 2.58 2.86 1.92 2.87 9.76 3.26 9.88 5.62

March 2.57 2.87 1.93 2.90 9.71 3.30 9.86 5.26
April 2.45 2.91 1.88 2.88 9.26 3.29 9.75 4.87
May 2.47 2.97 1.92 2.87 10.3 2.47 9.68 5.07
June 2.60 2.99 1.89 3.04 12.3 3.17 9.64 5.20
July 3.56 3.22 3.16 3.12 8.80 3.48 9.67 5.05

August 2.87 3.21 1.97 3.08 13.0 3.54 9.08 5.09
September 2.69 2.96 1.90 2.99 11.0 3.25 9.08 4.68

October 2.73 2.90 1.94 2.90 10.4 3.25 9.39 4.68
November 2.73 2.93 1.88 2.92 10.0 3.25 9.71 4.73
December 2.72 2.93 1.93 2.91 9.65 3.24 10.3 4.75

As for the NI, an abrupt change in the flow velocity (more than one meter per day above the
average over the rest of the year) is registered in the month of July for the along flow. As for the across
flow, it is more stable, with a slight increase during the summer.

The average monthly flow speed for JAK is more variable. As for the other Greenland glaciers,
a speed-up (especially in the along flow direction) is registered during summer, likely due to ice melting
effects, with exception made for the month of July, when the flow speed drops at its annual minimum.

As regards the THW, as reported in the last column of Table 2, the flow speed is almost uniform
all over the year, i.e., there are no remarkable seasonal effects in the glacier behavior.
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3. Results

The CC window dimension is determined by a trade-off between different needs. First, it must
be large enough to estimate the maximum expected displacement, since the maximum detectable
one (in pixel units) is equal to half the size of the correlation window. Large windows can affect
the preservation of the edges of the features of interest [55], present a higher likelihood of including
changing areas (thus causing a drop in the correlation peak) and tend to increase the computational
load. In the literature, some techniques are proposed for a feature-based selection of the CC window
size (see [56] as an example) but, in most of the cases, the simplest and safest way to operate is with a
trial-and-error application-oriented approach. Conversely, it is known that, if the correlation window
size is too small, the signal-to-noise ratio is low and this leads to a noisy estimate of the shifts between
the master and slave patches [57]. The tests performed revealed that the minimum window dimension
allowing for reliable results is 64 x 64 square pixel. As explained in the following, different windows
have been tested in order to find the best match between the displacements estimated through the
implemented OT and those available from past literature.

For a GCP to qualify as a good candidate, the quality parameters cmax and q need to be greater
than empirically pre-determined thresholds. In this study the threshold value for cmax has been set to
0.1 which is in line with similar choices in literature (as an example, in Reference [40] a threshold of 0.2
was suggested). However, in order to enforce the requirements for valid GCPs, both the conditions on
the maximum correlation and on the ratio with respect to the background, here estimated to be at least
4, have been imposed.

3.1. Comparison with Literature Data

First, the results of the implemented OT algorithm were compared with available literature data
provided in [47] and relevant to selected transects in along flow and across flow directions. A graphic
overview of the four test sites and of the corresponding analyzed transects (AA—along flow, BB—across
flow) is provided in Figure 2a–d for the PG, NI, JAK and THW, respectively. Greenland data have
been geocoded using a polar stereographic projection with origin latitude of 70 decimal degrees and
origin longitude of −45 decimal degrees. As for Antarctica data, the origin latitude was of −71 decimal
degrees and the origin longitude of 0 decimal degrees.

Data reported in the subsequent tables represent the root mean square error (RMSE) of the
estimated flow velocities against reference data calculated as follows:

RMSE =

√√√ N∑
i=1

(v̂i − vi)
2

N
, (2)

where v̂i is the estimated flow speed (expressed in m/day) and vi is reference flow speed for a given
point i along one of the considered transects.

3.1.1. Petermann Glacier

In Tables 3–5, the results obtained on the PG for the IW SLC, IW GRDH, and EW GRDH and
EW GRDM product classes, are shown respectively. Each table entry represents the root mean square
error (RMSE), expressed in meters per day, against reference data along the along flow and across
flow transects introduced above. Boxes with grey shading indicate the best performance with respect
to the considered literature data, while those with orange shading indicate the same result achieved
with a higher computational time. Each column corresponds to a selected combination of the CC
window size and of the oversampling factor, both declared on the top of the column (w stands for the
dimension of the CC window and f for the oversampling factor). When only one value for these two
parameters is present, it refers to both azimuth and slant range directions. Two numbers separated by
the slash character means that an asymmetric CC window and/or oversampling factor has been used
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for running that particular experiment. This notation is kept for all the subsequent tables reporting the
results of the experiments concerning the other analyzed glaciers.

 

(a) (b) 

 
(c) (d) 

Figure 2. SAR images (all acquired in right ascending orbit) of the test sites with the corresponding
analyzed transects (AA—along flow, BB—across flow). (a) Petermann glacier, (b) Nioghalvfjerdsfjorden,
(c) Jakobshavn Isbræ and (d) Thwaites glacier.

From the results we can see that, for IW products, the change in the window size does not
influence significantly the performance with respect to reference data which shows, in most cases, a
discrepancy of less than 20 cm per day, with a peak of 0.86 m/day for the pair 11–17 June using GRDH
data. The most significant effect is that of the CC window size on the computational time. Especially
for GRDH images, an increase in the dimension of the CC window has a negative impact on it, with
negligible variations of the estimated flow speed.

In Figure 3a–d, an example of the results obtained running the OT algorithm, respectively on PG
IW SLC, IW GRDH, EW GRDH and EW GRDM images, is shown. Examples of the quality parameter
maps, i.e., maximum CC and q, are reported in Figure 4a,b, respectively. Only the IW SLC case is
shown for brevity.
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Table 3. PG, IW SLC product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along flow and across flow transects.

Petermann–IW SLC

Observation Track
w = 64, f = 16/4 w = 64/128, f = 8/4 w = 128, f = 8/4 w = 64/256, f = 8/4

Along Across Along Across Along Across Along Across

6–12 Jan 26 AA 0.14 0.10 0.14 0.14 0.14 0.17 0.10 0.14
11–17 Feb 26 DD 0.30 0.26 0.28 0.28 0.28 0.28 0.28 0.26
1–7 Mar 26 DD 0.14 0.14 0.14 0.14 0.10 0.14 0.10 0.14
6–12 Apr 26 DD 0.20 0.14 0.22 0.14 0.22 0.14 0.20 0.14

18–24 May 26 DD 0.17 0.10 0.14 0.17 0.17 0.14 0.14 0.14
11–17 Jun 26 DD 0.14 0.10 0.28 0.24 0.17 0.35 0.20 0.28
11–17 Aug 26 DD 0.20 0.26 0.20 0.35 0.17 0.28 0.17 0.33
10–16 Aug 26 DD 0.26 0.45 0.22 0.45 0.22 0.44 0.24 0.35
9–15 Sep 26 DD 0.10 0.10 0.10 0.10 0.00 0.10 0.10 0.10
9–15 Oct 26 DD 0.14 0.17 0.14 0.17 0.14 0.17 0.14 0.17
8–14 Nov 26 DD 0.10 0.14 0.10 0.17 0.14 0.20 0.10 0.17
8–14 Dec 26 DD 0.24 0.32 0.26 0.35 0.24 0.35 0.26 0.36

Time ≈1.5 h ≈1.7 h ≈3.5 h ≈4 h

Table 4. PG, IW GRDH product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along flow and across flow transects.

Petermann–IW GRDH

Observation Track
w = 64, f = 8 w = 128, f = 8 w = 256, f = 4

Along Across Along Across Along Across

6–12 Jan 26 AA 0.17 0.24 0.14 0.17 0.14 0.32
11–17 Feb 26 DD 0.28 0.26 0.24 0.24 0.22 0.33
1–7 Mar 26 DD 0.26 0.24 0.24 0.22 0.22 0.30
6–12 Apr 26 DD 0.28 0.28 0.24 0.28 0.22 0.48

18–24 May 26 DD 0.28 0.32 0.26 0.30 0.17 0.45
11–17 Jun 26 DD 0.87 0.48 0.28 0.47 0.32 0.46
11–17 Aug 26 DD 0.36 0.32 0.32 0.28 0.28 0.37
10–16 Aug 26 DD 0.24 0.24 0.22 0.20 0.20 0.30
9–15 Sep 26 DD 0.17 0.17 0.17 0.28 0.42 0.30
9–15 Oct 26 DD 0.17 0.28 0.10 0.17 0.10 0.41
8–14 Nov 26 DD 0.24 0.20 0.24 0.20 0.14 0.33
8–14 Dec 26 DD 0.33 0.22 0.33 0.22 0.26 0.37

Time ≈1 h ≈7.5 h ≈8.8 h

Table 5. PG, EW GRDH and EW GRDM product classes experiments, RMSE (expressed in m/day) with
respect to available literature data measured along selected along flow and across flow transects.

Petermann–EW GRDH Petermann–EW GRDM

Observation Track
w = 64, f = 16 w = 128, f = 16 w = 64, f =16 w = 128, f = 16

Along Across Along Across Along Across Along Across

1–7 Jan 41 AA na na na na na na na na
12–18 Feb 41 DD na na na na na na na na
8–1 Apr 41 AA na na na na na na na na
1–13 Apr 41 AA 0.47 0.46 0.42 0.75 0.69 0.66 0.67 1.02
7–19 May 41 AA 0.45 0.62 0.44 0.62 0.67 0.91 0.73 1.17
10–22 Jun 41 AA na na 0.35 0.68 0.61 0.98 0.57 1.21
6–18 Jul 41 AA 0.88 0.82 0.62 0.68 0.49 0.68 0.75 1.07

11–23 Aug 41 AA 0.50 0.59 0.37 0.63 0.48 0.59 0.69 1.10
4–16 Sep 41 AA 0.36 0.40 0.32 0.41 0.62 0.94 0.60 1.14
10–22 Oct 41 AA 0.48 0.52 0.36 0.69 0.70 0.81 0.48 1.10
3–15 Nov 41 AA 0.33 0.35 0.35 0.45 0.71 0.71 0.42 1.07
9–21 Dec 41 AA 0.33 0.41 0.33 0.66 0.33 0.63 0.22 1.04

Time ≈0.8 h ≈22.4 h ≈1.7 h ≈15.6 h
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Figure 3. PG, flow speed maps obtained using (a) IW SLC, (b) IW GRDH, (c) EW GRDH and (d) EW
GRDM images. Observation periods are 6–12 January 2017 for IW images and 1–13 April for EW images.

  
(a) (b) 

Figure 4. PG, quality parameters maps obtained by processing the IW SLC pair 6–12 January 2017.
(a) Maximum correlation. (b) Ratio between the peak and the background of the correlation matrix
(q-parameter).
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Qualitatively, the flow speed maps obtained by processing IW products are quite similar. In both
cases, the velocity fields are very homogeneous outside the glacier area, where they are expected to be
almost null. Within it, there are no significant differences in the delineation of edges and features due
to the resolution change of the input product.

Considering the maps obtained by processing EW images, it is evident that, in both cases,
the lower resolution of the input product causes a blurring and a fragmentation of the estimated
velocity field. Outside the glacier area, many regions exhibiting non-null velocity appear. Inside the
glacier, the estimated velocity field tends to be flatter and the edges less defined. This effect is more
pronounced when using GRDM images.

The correlation map depicted in Figure 4a exhibits acceptable values all over the glacier, with no
significant presence of rejected GCPs which are mainly concentrated at the North edge of the glacier.
As a general comment, the correlation resulted higher south of the glacier, in areas where the ice melted
and, consequently, the bare land got exposed. Similar considerations hold for the q parameter and,
overall, for the quality parameters of the GRDH experiments (not shown for brevity) and this supports
the similarity of the outputs.

In Figure 5, the difference map (expressed in m/day) between the estimated velocity field and
reference data for the observation period 6–12 January 2017 is shown. In particular, Figure 5a is relevant
to SLC image input, while Figure 5b concerns to the IW GRDH experiment. Reference data in form
of map are available only for the central part of the glacier, therefore these pictures refer to a subset
of the whole study area. Data concerning EW GRDH and EW GRDM are not displayed for brevity.
As explained before, they are affected by the lower resolution of the input products, which shows
significant differences with respect to reference data, especially at the edges of the glacier.

 
(a) (b) 

Figure 5. PG, velocity difference map relevant to the observation period 6–12 January 2017 between the
implemented frequency domain OT and reference data for (a) SLC and (b) GRDH image input.

In both cases, very small differences can be appreciated in the two velocity fields, in particular
within the glacier area, where the maps show almost null differences. The higher values characterize the
edges of the glacier. This can be partially due to both the diverse windowing used by the two different
algorithms for the calculation of the CC and the resampling necessary to overlap the different maps.
Another area exhibiting moderate discrepancies is at the right-hand side of the glacier, where it forms a
sort of branch. Here, the differences are slightly more pronounced when using IW GRDH images.
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3.1.2. Nioghalvfjerdsfjorden

Results concerning the NI are shown in Tables 6 and 7 respectively for the IW SLC and GRDH
product classes. Those concerning EW GRDH images are omitted for brevity but will be discussed
afterwards together with aggregated data for all of the performed experiments.

Table 6. NI, IW SLC product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along/across flow transects.

Nioghalvifierdsfjorden–IW SLC

Observation Track
w = 64, f = 16/4 w = 64/128, f = 8/4 w = 128, f = 8/4 w = 256, f = 8/4

Along Across Along Across Along Across Along Across

3–9 Jan 74 AA 0.36 0.47 0.33 0.32 0.33 0.39 0.33 0.44
2–8 Feb 74 AA 0.24 0.20 0.30 0.26 0.30 0.24 0.30 0.30

4–10 Mar 74 AA 0.28 0.26 0.47 0.45 0.45 0.47 0.37 0.41
15–21 Apr 74 AA 0.14 0.22 0.10 0.22 0.10 0.24 0.10 0.30
3–9 May 74 AA 0.28 0.41 0.42 0.40 0.37 0.45 0.39 0.52
2–8 Jun 74 AA 0.52 0.59 0.70 0.66 0.49 0.48 0.49 0.53
2–8 Jul 74 AA 0.28 0.53 1.05 1.02 0.22 0.37 0.22 0.42

1–7 Aug 74 AA 0.42 0.40 1.35 1.04 0.24 0.37 0.26 0.40
6–12 Sep 74 AA 0.33 0.32 0.32 0.33 0.28 0.20 0.56 0.28
6–12 Oct 74 AA 0.14 0.20 0.14 0.30 0.10 0.14 0.14 0.20
5–11 Nov 74 AA 0.14 0.17 0.20 0.50 0.10 0.20 0.14 0.26
5–11 Dec 74 AA 0.14 0.22 0.22 0.17 0.22 0.20 0.22 0.17

Time ≈1 h ≈1.4 h ≈2.8 h ≈15.8 h

Table 7. NI, IW GRDH product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along/across flow transects.

Nioghalvifierdsfjorden–IW GRDH

Observation Track
w = 64, f = 8 w = 128, f = 8 w = 256, f = 4

Along Across Along Across Along Across

3–9 Jan 74 AA 0.24 0.33 0.22 0.32 0.17 0.26
2–8 Feb 74 AA 0.35 0.54 0.32 0.57 0.28 0.47

4–10 Mar 74 AA 0.30 0.56 0.24 0.52 0.22 0.45
15–21 Apr 74 AA 0.28 0.48 0.24 0.48 0.20 0.42
3–9 May 74 AA 0.24 0.33 0.24 0.33 0.24 0.39
2–8 Jun 74 AA 0.30 0.40 0.30 0.41 0.33 0.47
2–8 Jul 74 AA 0.17 0.24 0.20 0.26 0.14 0.28

1–7 Aug 74 AA 0.20 0.44 0.14 0.30 0.20 0.37
6–12 Sep 74 AA 0.61 0.50 0.32 0.24 0.63 0.22
6–12 Oct 74 AA 0.14 0.22 0.10 0.20 0.26 0.35
5–11 Nov 74 AA 0.10 0.10 0.10 0.36 0.22 0.36
5–11 Dec 74 AA 0.10 0.24 0.10 0.24 0.20 0.33

Time ≈0.7 h ≈4.5 h ≈5.3 h

As for the PG, the flow velocities estimated using the EW GRDH product class are highly affected
by the lower resolution. As better explained below, the RMSE with respect to reference data is
significant especially in the across flow direction, for which it is close to one meter per day.

Overall, the results are similar to those discussed above for the PG. Even in this case,
the performance of IW SLC and IW GRDH products are fully comparable against the reference
literature. Using SLC images, the higher values of the RMSE tend to occur during the summer when,
as reported in Table 2, the flow velocity is higher. The increase in the CC window size results in a more
stable RMSE, at the expense of computational times. Conversely, IW GRDH results are not significantly
affected by seasonal effects.
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3.1.3. Jackobshavn Isbræ

The results concerning JAK are reported in Tables 8 and 9 for the processed IW SLC and IW
GRDH images, respectively. Based on literature data, during 2017 this glacier reached peak velocities
of more than 30 m/day [47]. Therefore, over an observation period of 6 days, displacements in the order
of 200 m are expected. Using SLC images with range pixel spacing in the order of 3.5 m, the range
window size of 64 or 128 pixels is not enough to detect this order of displacements. Moreover, the use
of windows of 256 pixels in range direction (or bigger) leads to wide decorrelation areas preventing a
reliable estimate of the displacements. Therefore, for this glacier, a multilook factor of two in range
direction was applied to SLC products. Being an incoherent mean [4], multilooking increased the range
pixel spacing of input products to approximately 7 m (see Table 1) allowing, consequently, the adoption
of smaller CC windows.

Table 8. JAK, IW SLC product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along/across flow transects.

Jackobshavn–IW SLC

Observation Track
w = 64, f = 8/4 w = 64/128, f = 8/4 w = 128, f = 8/4 w = 128/256, f = 8/4

Along Across Along Across Along Along Along Across

4–10 Jan 90 AA 1.67 0.33 1.29 0.38 1.65 0.41 2.52 0.34
15–21 Feb 90 AA 1.57 0.31 1.35 0.22 1.44 0.26 2.15 0.22
5–11 Mar 90 AA 1.55 0.26 1.56 0.24 1.57 0.26 1.97 0.28
4–10 Apr 90 AA 1.58 0.38 1.10 0.41 1.20 0.42 1.90 0.37
4–10 May 90 AA 1.45 0.86 1.08 0.30 1.30 0.28 2.43 0.30
3–9 Jun 90 AA 1.59 0.47 1.22 0.26 1.83 0.26 2.97 0.24
2–2 Aug 90 AA 1.12 0.22 1.35 0.20 1.22 0.22 2.32 0.28

20–26 Aug 90 AA 2.25 0.65 2.39 0.20 1.40 0.26 3.40 0.24
13–19 Sep 90 AA 1.32 0.66 1.44 0.30 1.80 0.34 4.01 0.36
7–13 Oct 90 AA 1.75 0.48 1.27 0.31 1.55 0.36 2.20 0.33
6–12 Nov 90 AA 1.62 0.64 1.17 0.28 1.40 0.17 2.70 0.20
6–12 Dec 90 AA 1.88 0.55 1.51 0.24 1.63 0.26 2.35 0.28

Time ≈0.2 h ≈0.3 h ≈0.6 h ≈1.6 h

Table 9. JAK, IW GRDH product class experiments, RMSE (expressed in m/day) with respect to
available literature data measured along selected along/across flow transects.

Jackobshavn–IW GRDH

Observation Track
w = 64, f = 8 w = 64/128, f = 8 w = 128/64, f = 8 w = 128, f = 8 w = 256, f = 4

Along Across Along Across Along Across Along Across Along Across

4–10 Jan 90 AA 1.99 0.79 2.03 0.82 1.89 0.85 1.45 0.42 3.07 0.45
15–21 Feb 90 AA 1.44 0.24 1.82 0.26 1.27 0.24 1.42 0.24 2.46 0.49
5–11 Mar 90 AA 1.57 0.53 1.76 0.32 1.35 0.35 1.43 0.32 2.24 0.55
4–10 Apr 90 AA 1.81 0.77 1.37 0.37 1.17 0.40 1.10 0.35 1.98 0.49
4–10 May 90 AA 1.61 0.41 1.79 0.41 1.28 0.42 1.76 0.44 3.08 0.42
3–9 Jun 90 AA 1.52 0.79 1.69 0.39 1.06 0.45 1.24 0.36 3.42 0.41

27–2 Aug 90 AA 1.66 1.10 1.09 0.57 0.85 0.37 0.89 0.33 2.47 0.45
20–26 Aug 90 AA 1.86 0.58 1.88 0.57 1.20 0.37 1.17 0.28 2.91 0.32
13–19 Sep 90 AA 2.14 0.92 1.65 0.48 1.30 0.45 1.57 0.45 3.95 0.47
7–13 Oct 90 AA 1.82 0.91 1.57 0.20 1.29 0.20 1.31 0.17 2.63 0.42
6–12 Nov 90 AA 1.97 0.71 2.20 0.70 1.72 0.63 1.35 0.44 3.24 0.33
6–12 Dec 90 AA 1.94 0.72 1.90 0.36 1.51 0.35 1.55 0.35 2.80 0.37

Time ≈0.2 h ≈0.4 h ≈0.4 h ≈1.3 h ≈1.2 h

The RMSE values reported in the tables indicate that, even for JAK, there is no significant difference
in the performance of IW SLC and IW GRDH products. In the first case, the best fit with reference
data was obtained using a window size of 64 pixels in azimuth and 128 pixels in range. In the second
case, the best performance against the literature was given by an asymmetric window of 128 pixels in
azimuth and 64 pixels in range.
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As for EW GRDH and EW GRDM products, the estimated flow velocities were significantly
affected by the image lower resolution. Detailed results are not shown for brevity. Aggregated results
will be provided at the end of this section.

3.1.4. Thwaites Glacier

The last analyzed glacier was the THW. The RMSE for the estimated flow velocities calculated
against the reference literature for the 12 processed pairs is shown in Tables 10 and 11 for IW SLC and
IW GRDH experiments. As for the other glaciers, the results are quite similar. Some pairs exhibited
serious decorrelation issues, especially in the SLC case, where data on the pairs acquired in February,
March and August were not retrievable. These couples (in addition to that acquired in November)
were affected by the same problems using GRDH images but, in this case, the increase of the CC
window had positive influence on the correlation, thus allowing for a reliable retrieval of the velocity
field. The lack of any clear link to seasonal effects, such as ice melting during the Antarctic summer,
suggests that correlation patterns can be significantly modified by varying the product type and that the
pre-processing applied to data (standard TOPSAR, eventually followed by detection and resampling
in the case of GRD images) can play a significant role in the calculation of the velocity field.

Table 10. THW, IW SLC product class experiments, RMSE (expressed in m/day) with respect to available
literature data measured along selected along/across flow transects.

Thwaites–IW SLC

Observation Track
w = 64, f = 16/4 w = 64/128, f = 16/4 w = 128, f = 8/4 w = 128/256, f = 8/4

Along Across Along Across Along Across Along Across

9–15 Jan 65 AA 0.62 0.62 0.67 0.70 0.73 0.74 0.71 0.73
20–26 Feb 65 AA na na na na na na na na
10–16 Mar 65 AA na na na na na na na na
9–15 Apr 65 AA 0.51 0.52 0.48 0.50 0.50 0.49 0.47 0.49

15–21 May 65 AA 1.79 1.56 1.78 1.61 1.68 1.52 1.65 1.52
2–8 Jun 65 AA 1.17 1.28 1.13 1.37 1.11 1.34 1.08 1.35
2–8 Jul 65 DD 1.10 1.15 0.98 1.09 0.89 1.05 0.89 1.05

1–7 Aug 65 DD na Na na na na na na na
6–12 Sep 65 DD 1.64 1.10 1.75 1.27 1.77 1.25 1.65 1.09
6–12 Oct 65 DD 0.71 0.59 0.61 0.53 0.66 0.56 0.66 0.55
5–11 Nov 65 DD 0.99 0.68 0.94 0.63 0.96 0.69 0.78 0.59
5–11 Dec 65 DD 1.68 0.83 1.37 0.95 1.42 1.00 1.52 0.98

Time ≈0.75 h ≈1.5 h ≈2 h ≈4.9 h

Table 11. THW, IW GRDH product class experiments, RMSE (expressed in m/day) with respect to
available literature data measured along selected along/across flow transects.

Thwaites–IW GRDH

Observation Track
w = 64, f = 8 w = 128, f = 8 w = 256, f = 4

Along Across Along Across Along Across

9–15 Jan 65 AA 0.95 0.90 0.84 0.87 1.07 1.00
20–26 Feb 65 AA na na 1.64 1.51 1.71 1.51
10–16 Mar 65 AA na na na na 1.29 1.27
9–15 Apr 65 AA 1.55 1.20 1.41 1.21 1.47 1.26

15–21 May 65 AA 1.55 1.28 1.70 1.45 1.49 1.30
2–8 Jun 65 AA 1.52 1.51 1.55 1.47 1.45 1.39
2–8 Jul 65 DD 1.33 0.99 1.43 1.31 0.84 0.73

1–7 Aug 65 DD na na na na 1.38 1.26
6–12 Sep 65 DD 1.97 1.70 2.01 1.67 2.12 1.72
6–12 Oct 65 DD 1.28 1.28 1.20 1.20 1.26 1.23
5–11 Nov 65 DD na na 1.16 1.36 1.42 1.49
5–11 Dec 65 DD 1.49 1.43 1.57 1.56 1.73 1.36

Time ≈0.5 h ≈2.5 h ≈3.5 h
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3.1.5. Aggregated Results

Aggregated results for all of the performed experiments and test sites are provided in Table 12 and
in the four successive pictures. Data reported in the table represent the annual RMSE of the estimated
velocities against reference data calculated as described in Equation (2) using now the annual average
of the estimated and reference flow speeds. The average annual flow speed along the considered
transects for all the products involved in the comparison is depicted in Figures 6–9 for PG, NI, JAK
and THW, respectively.

Table 12. RMSE (expressed in m/day) against reference literature for the selected along/across
flow transects for the four analyzed glaciers and product classes calculated by averaging one year
of observations.

Glacier IW SLC IW GRDH EW GRDH EW GRDM

Along Across Along Across Along Across Along Across

Petermann 0.10 0.20 0.17 0.24 0.32 0.50 0.53 0.66
Nioghalvifierdsfjorden 0.17 0.20 0.14 0.20 na na 0.57 0.91

Jackobshavn 1.69 0.17 1.55 0.22 7.37 1.24 8.39 1.37
Thwaites 1.10 0.81 1.41 1.17 na na 1.63 1.01

  
(a) (b) 

Figure 6. PG, average annual flow speed for reference data (blue curve) and all the analyzed products
(IW SLC red curve, IW GRDH black curve, EW GRDH magenta curve, EW GRDM green curve).
(a) Along flow speed. (b) Across flow speed.

 
(a) (b) 

Figure 7. NI, average annual flow speed for reference data (blue curve) and all the analyzed products
(IW SLC red curve, IW GRDH black curve, EW GRDM green curve). (a) Along flow speed. (b) Across
flow speed.
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(a) (b) 

Figure 8. JAK, average annual flow speed for reference data (blue curve) and all the analyzed products
(IW SLC red curve, IW GRDH black curve, EW GRDH magenta curve, EW GRDM green curve).
(a) Along flow speed. (b) Across flow speed.

  
(a) (b) 

Figure 9. THW, average annual flow speed for reference data (blue curve) and all the analyzed products
(IW SLC red curve, IW GRDH black curve, EW GRDM green curve). (a) Along flow speed. (b) Across
flow speed.

From Table 12, it arises that for PG the performance of IW SLC and IW GRDH is fully comparable
with respect to reference data, with registered RMSE of few tens of centimeters per day on the annual
average in both along and across flow directions. The performance of EW products is still acceptable,
although the retrieved velocity field is noisier at the edge of the glacier (see Figure 6a,b). Overall,
a slight underestimation of the displacement velocity is registered whatever the product class is used if
compared with reference data.

As for NI, the displacement velocity estimated using EW GRDH products is not fitting the
reference distribution, as shown in Figure 7a,b. This is also confirmed by the RMSE values reported in
Table 12, which are higher with respect to those calculated for IW SLC and IW GRDH images. As a
general comment, the reference curves for the flow velocity for the along and across flow transects are
almost in the middle of those retrieved using these products, with those relevant to IW SLC images
placed slightly upper.

In the case of JAK, the differences between reference data and the results obtained by processing
IW SLC and IW GRDH images are concentrated in the along flow direction, with particular reference
to the first kilometers of the considered transect (see Figure 8a). Concerning the across flow direction,
the velocity field here estimated does almost perfectly match the values provided by the reference
literature (Figure 8b) as shown by the average RMSE in that direction, which is for both products of
few centimeters per day.

As for EW products, both the GRDH and GRDM product class failed in the reconstruction of
the velocity field of the JAK. As witnessed by the RMSE values reported in Table 12 and by the
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displacement velocity distributions depicted in Figure 8a,b, these product classes are not suitable for
the monitoring of this glacier.

In the case of THW, the behavior of the analyzed product classes is quite consistent. For all of
them, the trend is an underestimation of the displacement velocity with respect to reference data,
with the underestimation increasing as the product resolution decreases. As reported in Table 12,
the best registered performance against reference data is that of IW SLC products. Differences with
respect to the results obtained using IW GRDH images arise especially in the along flow direction
(see Figure 9a). In the across flow direction, the curves depicting the displacement velocity along the
transect almost overlap, especially where the glacier exhibits its peak velocity (see Figure 9a).

The same considerations can be made for the EW GRDM product class. The discrepancy with
respect to reference data is higher in the along flow direction, especially in the first and last kilometers
of the transect. If the across flow direction is considered, the performance of this product class is in line
with those of higher resolution data.

3.2. Same Algorithm Comparison

In the previous section, the velocity fields estimated by an in-house implemented OT algorithm
were compared with the outputs from a commercial software to test the reliability of the solution.
Here, the results are discussed fixing the algorithm and the parameter of the output flow velocity maps.
In other words, the comparison will be implemented between algorithm runs leading to maps having
comparable sensitivity and obtained with similar computational times.

In Table 13, data concerning PG (left panel) and NI (right panel) are reported. The reference
velocity field is that obtained using IW SLC images as input for the in-house OT. In the case of PG,
the reference experiments have been performed by setting the CC window dimension to 64 × 64 square
pixel and the oversampling factor to 16/4 in the azimuth/slant range directions, respectively. The same
settings were applied to reference NI experiments.

Table 13. RMSE (expressed in m/day) for the displacement velocities calculated with the in-house OT
algorithm with respect to reference IW SLC results for the PG (left panel) and NI (right panel).

Petermann Nioghalvifierdsfjorden

Observation Track
IW GRDH

Observation Track
IW GRDH

Along Across Along Across

6–12 Jan 26 AA 0.17 0.36 3–9 Jan 74 AA 0.47 0.39
11–17 Feb 26 DD 0.26 0.20 2–8 Feb 74 AA 0.47 0.59
1–7 Mar 26 DD 0.32 0.30 4–10 mar 74 AA 0.42 0.49
6–12 Apr 26 DD 0.26 0.35 15–21 Apr 74 AA 0.30 0.54

18–24 May 26 DD 0.36 0.30 3–9 May 74 AA 0.30 0.67
11–17 Jun 26 DD 0.44 0.92 2–8 Jun 74 AA 0.46 0.66
11–17 Jul 26 DD 0.35 0.73 2–8 Jul 74 AA 0.28 0.30

10–16 Aug 26 DD 0.26 0.69 1–7 Aug 74 AA 0.54 0.30
9–15 Sep 26 DD 0.20 0.20 6–12 Sep 74 AA 0.64 0.32
9–15 Oct 26 DD 0.14 0.22 6–12 Oct 74 AA 0.17 0.24
8–14 Nov 26 DD 0.22 0.14 5–11 Nov 74 AA 0.20 0.36
8–14 Dec 26 DD 0.33 0.17 5–11 Dec 74 AA 0.26 0.20

Mean 0.20 0.10 Mean 0.24 0.33

Comparison data are shown only for IW GRDH images for brevity, also because this product
class, together with the IW SLC, is showing the best agreement with the reference literature data.
For both the PG and the NI, the OT setting for these experiments was CC window of 64 × 64 pixels and
oversampling factor of 8 in both azimuth and slant range directions.

The table confirms that, as previously discussed, there are no significant differences in the
displacement velocities estimated for the two product classes. In particular, for the PG, a peak
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RMSE of 0.44 m/day was recorded in the along flow direction, while for the across flow the highest
MSE was of 0.92 m/day. Average values for the along flow and across flow RMSE were of 0.20 and
0.10 m/day respectively.

Similarly, for the NI, the peak values for the RMSE were of 0.64 and 0.67 m/day for the along flow
and across flow directions, respectively. On average, the registered RMSE was of 0.24 and 0.33 m/day
for the two reference directions.

Data concerning JAK and THW are reported in the left and right panel of Table 14, respectively.
As for the previous glaciers, only the comparison between reference IW SLC results and IW GRDH
outputs is considered for brevity.

Table 14. RMSE (expressed in m/day) for the displacement velocities calculated with the in-house OT
algorithm with respect to reference IW SLC results for JAK (left panel) and THW (right panel).

Jackobshavn Thwaites

Observation Track
GRDH10

Observation Track
GRDH10

Along Across Along Across

4–10 Jan 90 AA 1.36 0.75 9–15 Jan 65 AA 0.62 0.33
15–21 Feb 90 AA 1.19 0.20 20–26 Feb 65 AA na na
5–11 Mar 90 AA 1.23 0.32 10–16 Mar 65 AA na na
4–10 Apr 90 AA 1.79 0.30 9–15 Apr 65 AA 1.12 1.18
4–10 May 90 AA 0.95 0.42 15–21 May 65 AA 0.62 0.30
3–9 Jun 90 AA 0.95 0.56 2–8 Jun 65 AA 0.64 0.24

27–2 Aug 90 AA 1.34 0.40 2–8 Jul 65 DD 0.79 0.47
20–26 Aug 90 AA 2.36 0.42 1–7 Aug 65 DD na na
13–19 Sep 90 AA 1.38 0.36 6–12 Sep 65 DD 0.57 0.69
7–13 Oct 90 AA 1.24 0.35 6–12 Oct 65 DD 0.74 0.85
6–12 Nov 90 AA 1.18 0.73 5–11 Nov 65 DD 0.92 1.04
6–12 Dec 90 AA 0.90 0.26 5–11 Dec 65 DD 0.72 0.45

Mean 0.67 0.17 Mean 0.75 0.45

As for JAK, data relevant to IW SLC experiments have been collected by setting the CC window
to 64/128 pixels and the oversampling factor to 8/4 in the azimuth/slant range directions, respectively.
In the IW GRDH experiments, the CC window was 128/64 pixels in azimuth/slant range direction,
respectively, and the oversampling factor of 8 in both directions.

The highest performance difference between the two product classes is in the long track direction,
with a peak RMSE of 2.36 m/day for the observation period 20–26 August 2017. For almost all the
other pairs, the discrepancies are minor, leading to an average RMSE for the entire year of 0.67 m/day.
The agreement between the results obtained using the two different product types is better in the across
track direction, where the RMSE peak and yearly average recorded are 0.75 and 0.17 m/day, respectively.

The results on the THW were obtained, in the case of IW SLC images by setting the CC window
to 128/256 pixels and the oversampling factor to 8/4 in azimuth/slant range directions, respectively.
As for IW GRDH products, the CC window was set to 256 × 256 pixels and the oversampling factor to
8 for both directions.

The RMSE values calculated for both the along track and the across track directions are within the
expected values. In the first case, the highest registered RMSE is 1.12 m/day for the pair 9–15 April 2017.
All the other values are much lower than one meter per day, leading to a yearly average of 0.75 m/day.

In the across track direction, the peak RMSE, in the order of 1.18 m/day was registered for the
same pair. In this case, the yearly average was of 0.45 m/day.

3.3. Storage and Computational Times

As discussed in the previous Sections, the computational time necessary to produce displacement
maps with a sensitivity in the order of one meter in both the azimuth and slant range directions is
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roughly the same whatever the product class considered. This is because it is possible to balance the
higher resolution of the input image with a lower oversampling factor and, on the other side, the lower
resolution, requiring higher oversampling, by processing tiny subsets of the whole scan.

As an example, in the case of the PG, displacement maps with theoretical sensitivity of 0.9 m
in both azimuth and slant range directions have been produced using IW SLC products as input in
1.5 h running a serial code on an 8-cores machine with 128 GB of RAM memory. Using IW GRDH
products, a slightly lower theoretical sensitivity, in the order of 1.2 m in the two directions, has been
obtained in approximately one-hour processing time. Computational times of the same order have
been registered when producing maps with sensitivity of 1.6 and 2.5 m in the two directions using EW
GRDH and EW GRDM products, respectively. For these products, however, the increase of the CC
window dimension from 64 × 64 to 128 × 128 pixels had a destructive impact on computational times.
Similar considerations hold for the other glaciers analyzed.

The scenario changes if storage needs reported in Table 15 are considered. It arises that, to process
the four time-series using IW SLC products, approximately slightly less than one terabyte of data
was archived to output one image per month. This means that, the exploitation of the full temporal
resolution of the Sentinel-1 constellation, delivering up to one image every six days, would imply to
multiply by four the amount of data processed in this work, with the total reaching approximately
4 terabytes for the considered glaciers.

Table 15. Storage needs (in GB) per analyzed time-series, processing step, and product class.

Glacier Level-1 Coregistration Subset OT Map Product

PG

93.1 78.8 62.5 62.5 0.35 IW SLC
20.2 37.8 22.0 22.0 0.24 IW GRDH
15.2 18.2 5.66 5.66 0.77 EW GRDH
5.74 8.92 1.95 1.95 0.67 EW GRDM

NI
106 81.6 39.4 39.4 0.20 IW SLC
22.9 37.8 13.2 13.2 0.15 IW GRDH
6.07 8.66 2.21 2.21 0.27 EW GRDM

JAK

80.5 80.2 17.7 17.7 0.07 IW SLC
17.7 38.3 3.91 3.91 0.04 IW GRDH
17.6 19.2 1.70 1.70 0.17 EW GRDH
6.54 9.30 0.45 0.45 0.11 EW GRDM

THW
51.6 77.3 36.7 36.7 0.28 IW SLC
12.0 37.9 11.3 11.3 0.12 IW GRDH
6.40 9.28 1.28 1.28 0.20 EW GRDM

Using IW GRDH images, the total amount of data to be archived is less than 300 GB, about one
third less than that required for the full resolution complex product class. This value further decreases
using EW images up to less 100 GB exploiting the lowest resolution GRDM product class. These values
do not consider any data compression technique.

4. Discussion

The SAR literature is rich in works addressing glacier monitoring using OT techniques and,
currently, it is benefiting from the open data policy of ESA regarding acquisitions made under the
aegis of Copernicus Programme. The improved access to images is boosting the research in this field,
with particular focus on continuous monitoring. However, works addressing the problem at product
level, offering insights into the different product types performance, are still missing.

OT methods, using a pair of SAR images, can detect movements of several meters with a good
degree of approximation [31]. The accuracy of the estimated displacements depends on many factors
including the resolution of input images, the magnitude of real displacements, the acquisition geometry
and the correlation coefficient between the considered image patches [58]. These parameters are
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interconnected. Higher resolution images tend to maximize correlation at finer scale and should be
preferred when dealing, as an example, with landslides [30,56]. Spatial decorrelation can be also due to
orbital issues, i.e., differences in the acquisition geometry and/or large spatial baseline that, changing
speckle patterns or the response of rugged terrains [35], can affect the amplitude and the sharpness of
the correlation peak [59].

The general trend in the literature is to feed OT algorithms with complex images [25]. However,
as demonstrated in the previous Section, the use of pre-processed detected images presents advantages
at storage and computational level. Moreover, their performance is fully comparable with that of
complex products, in particular in the case of the PG and of the NI, which are characterized by the
smallest movements among the analyzed glaciers. A significant error of more than 2 m/day against
reference data was registered for the JAK case study of August 2017 using SLC images with correlation
windows of 64 × 64 square pixel and of 64 pixels in azimuth and 128 pixels in range. This can be due
to the combination of effects given by the small correlation window and the flow velocity, which reach
its peak in that month (see Table 2). A similar situation is observed in the IW GRDH case.

In some cases, it was not possible to retrieve the velocity field due to decorrelation issues.
This happened for the PG using interferometric extra-wide swath products and for the THW Glacier
using interferometric wide swath images, both complex and detected. In the first case, the decorrelation
was likely due to orbital issues, since footprints appear quite squinted. The same did not occur for the
THW Glacier, for which the acquisition geometries seem to be consistent. Moreover, an improvement of
correlation was registered with the increase of the calculation window using detected images, and this
allowed for a reliable estimation of the velocity field. Conversely, this was not possible exploiting
complex products. This suggests that correlation patterns can be significantly modified varying the
product type, and that they do not necessarily benefit from the enhancement of the resolution of the
input product. The investigation of the effects of pre-processing and/or image parameters on the
cross-correlation and, as a consequence, on the estimated velocity field, is an open point to be addressed
with further research.

Moving to aggregated results (see Section 3.1.5), the most remarkable differences with respect
to reference data arose for the JAK in the along flow direction, with particular reference to the first
kilometers of the considered transect (see Figure 8a). Due to the lack of any ground data and the
limited visibility of the algorithm implemented in the GAMMA-SAR software suite, it is difficult to
understand which result better represents the real movement of this part of the glacier. However,
the assessment of the best performing method is not the purpose of this paper which has focused on
the study of the performance of different classes of SAR products. In this perspective, it is possible to
argue that the performance of IW SLC and IW GRDH product classes is mostly equivalent. This is
confirmed by the values of the RMSE reported in Table 12.

5. Conclusions

Since 2014, the Sentinel-1 mission of the European Space Agency has been providing high-quality
synthetic aperture radar data allowing for more effective monitoring of our rapidly changing planet.
Data are delivered in different formats and at different stages of the SAR pre-processing chain.
However, only a few studies in literature are concerned with the assessment of the best product
for a specific application. In this work, we compared the performance of all the Sentinel-1 product
classes (interferometric wide swath single look complex, interferometric wide swath high-resolution
ground range detected, extra-wide swath high-resolution ground range detected, and extra-wide swath
medium-resolution ground range detected) in a classic radar remote sensing application, i.e., glacier
monitoring using offset tracking.

To this end, four different glaciers (namely the Petermann Glacier, the Nioghalvifierdsfjorden,
the Jakobshavn Isbræ and the Thwaites glacier) have been investigated using a state-of-the-art algorithm
applied to couple of images acquired with short temporal baseline (6 to 12 days) during the year
2017. The obtained flow velocities were compared initially with reference literature data obtained

66



Remote Sens. 2019, 11, 1322

using an offset tracking tool implemented in the commercial software suite GAMMA-SAR to test the
reliability of the implemented solution. Then, the comparison moved at product level (i.e., fixing the
offset tracking algorithm) to better understand each performance.

The results showed that the flow velocities retrieved along selected along/across flow transects by
using interferometric wide swath products (both complex and detected) were in good agreement with
literature data, although the implemented solution tend to slightly underestimate the flow velocities.
However, the lack of ground data as well as of information on the algorithm implemented in the
aforementioned commercial software suite makes it difficult to understand which solution better
depicts the real phenomenon. As a general comment, the flow velocities obtained using complex and
detected images were fully comparable. The most remarkable difference was observed in the case of
the Thwaites Glacier, in both along and across flow directions, where complex product performed
slightly better.

The passage to extra-wide swath images, instead, was disadvantageous, with results tending to
drift more from the reference as the resolution of the input product decreases. Another point against
these product classes is that the time span between two successive acquisitions on the same area is of
12 days in most of the cases (while for interferometric wide swath images is 6 days). This has a negative
impact on the correlation between the image pairs and, consequently, on the estimated displacements.

The product-level comparison aimed at the analysis of the velocity field output by the same
algorithm once fixed the parameters of the output map, i.e., theoretical sensitivity and the resolution,
and it mainly confirmed what arose from the comparison with the literature. The performance of
interferometric wide swath high-resolution ground range detected images was fully comparable with
that of complex ones, with yearly averages of the root mean square errors calculated along the transects
ranging from few centimeters to few tens of centimeters per day.

The major differences between the two product classes concern the pre-processing, applied to
prepare the images for the ingestion in the core information process, and storage needs. Ground range
detected images are ready-to-use data, which do not need any pre-processing before being ingested in
the offset tracking algorithm. On the contrary, complex images must be compensated for the TOPSAR
acquisition mode before being exploited for information extraction.

Storage needs greatly vary depending on the product class. Each step forward in the resolution
(from the extra wide swath medium resolution to the full resolution complex) roughly implied
quadrupling the storage capacity.

Summarizing, this work demonstrated that the performance of Sentinel-1 interferometric
wide swath images, both complex and detected, are fully comparable, making them a perfectly
interchangeable input for offset tracking procedures. However, detected images could be advantageous,
for example in case of studies requiring short revisit times, due to their faster processing (as no
pre-processing is required) and the lower storage demand. As for extra-wide swath images,
the estimated flow velocities are highly affected by the lower resolution of the input products.
Therefore, these product classes are not recommended for this kind of applications.
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Abbreviations

List of the acronyms (in order of appearance):
S1 Sentinel-1
ESA European Space Agency
SAR Synthetic Aperture Radar
IW Interferometric Wide swath
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EW Interferometric Extra Wide swath
TOPSAR Terrain Observation with Progressive Scanning SAR
SDH Sentinels Data Hub
SLC Single Look Complex
GRD Ground Range Detected
GRDF Full resolution Ground Range Detected
GRDH High-resolution Ground Range Detected
GRDM Medium resolution Ground Range Detected
SM Stripmap
OT Offset Tracking
PG Petermann Glacier
NI Nioghalvfjerdsfjorden
JAK Jackobshavn Isbræ
THW Thwaites Glacier
DInSAR Differential Synthetic Aperture Radar Interferometry
CC Cross-correlation
RMSE Root Mean Square Error
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Abstract: Bangladesh is one of the most flood-affected countries in the world. In the last few decades,
flood frequency, intensity, duration, and devastation have increased in Bangladesh. Identifying
flood-damaged areas is highly essential for an effective flood response. This study aimed at developing
an operational methodology for rapid flood inundation and potential flood damaged area mapping to
support a quick and effective event response. Sentinel-1 images from March, April, June, and August
2017 were used to generate inundation extents of the corresponding months. The 2017 pre-flood
land cover maps were prepared using Landsat-8 images to identify major land cover on the ground
before flooding. The overall accuracy of flood inundation mapping was 96.44% and the accuracy
of the land cover map was 87.51%. The total flood inundated area corresponded to 2.01%, 4.53%,
and 7.01% for the months April, June, and August 2017, respectively. Based on the Landsat-8 derived
land cover information, the study determined that cropland damaged by floods was 1.51% in April,
3.46% in June, 5.30% in August, located mostly in the Sylhet and Rangpur divisions. Finally, flood
inundation maps were distributed to the broader user community to aid in hazard response. The data
and methodology of the study can be replicated for every year to map flooding in Bangladesh.

Keywords: flood mapping; damage assessment; SAR image; Sentinel-1; Landsat-8; Google Earth
Engine; GEE; Bangladesh

1. Introduction

The Ganges, Brahmaputra, Meghna (GBM) basins are one of the most flood-prone basins in the
world. Due to being part of such big basins and most of the area being less than 7 m above mean
sea level, Bangladesh faces the cumulative effects of floods due to water flashing from nearby hills,
the accumulation of the inflow of water from upstream catchments, and locally heavy rainfall enhanced
by drainage congestion [1–4]. The country has a long history of destructive flooding that has had
very adverse impacts on lives and property [5–7]. Approximately 20,000 deaths have been reported
due to flooding from 1954–2007 [8]. An analysis by the Bangladesh Bureau of Statistics showed that
from 2009–2014, 56.62% of households have been affected by disasters at least once [9]. Among them,
24.44% were affected by flood events. More than 80% of the country is flood prone [10]. In an average
year, approximately 20–25% of the area of the country is inundated by floods, while in extreme years,
the inundated area makes up more than 60% of the country [11]. During the 2017 flood, more than 30%
of the country’s areas were inundated, causing at least 134 deaths and affecting more than 5.7 million
people [12]. Widespread frequent flooding is not only a profound problem for Bangladesh. Between
1995–2015, there was at least a $166 billion economic loss caused by different floods events around the
world [13].
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For effective response during flooding events, the rapid monitoring of flood situations, including
mapping the extent of the inundation and damage, is highly critical [14,15]. Before any flood event,
flood forecasting and simulation of the inundation extent is critical for risk mitigation [16]. At present,
flood early warning and monitoring information is produced by the Flood Forecasting and Warning
Centre (FFWC) as water levels change in major river systems in Bangladesh [5]. The extent of
inundation is also mapped by comparing the water level with the national digital elevation model
(DEM). Generating inundation maps from hydrological models requires an up-to-date and accurate
DEM as well as computing infrastructure to model the effects of obstacles on the flow of flood water
in the floodplains. Unfortunately, a sufficiently high accurate DEM and infrastructure data are often
not available [17]. Flood management based on water level forecasting is not effective in providing
a spatially distributed flood area for the timely monitoring of flood events [13,18]. Satellite-based
monitoring of flood extent overcomes the limitations of the hydrological model-based approach [19].
Various attempts have been made in the past to map the flood extent in Bangladesh from satellite
images [20]. Rasid and Pramanik [7] attempted comprehensive flood extent mapping of Bangladesh
in 1980 using National Oceanographic Atmospheric Administrative’s (NOAA) advanced very high
resolution radiometer (AVHRR) data. Islam, et al. [21] used MODIS surface reflectance images for
flood mapping for the years 2004 and 2007. Ahmed, et al. [22] used Landsat-8 and MODIS to determine
the impact of a 2017 flash flooding event on rice production in the Haor area. MODIS images also have
considerable potential for daily agriculture flood mapping of Bangladesh [23].

Although optical images have great potential for mapping during good weather conditions with
image analysis capacity and accuracy [16,24–26], their use is limited to flood mapping in Bangladesh
due to high (approximately 80%) cloud coverage during the monsoon and flood period. The average
cloud coverage for Bangladesh was found to be 88.5% in June, 90.8% in July, 78.3% in August, 78.3% in
September, and 17% in December (all at latitude: 24.921◦N and longitude 91.869◦E) [27]. In reality,
the acquisition of cloud-free MODIS and Landsat optical images for flood mapping during flooding
events is almost impossible. In April 2017, there were no cloud-free Landsat-8 images available for the
study area for flood mapping. Similarly, during the period of 22 March–6 April 2017, MODIS images
were not usable for mapping [22].

In Bangladesh, floods often occur when the sky is covered by clouds, thus making the utilisation
of optical satellite images is infeasible in providing inundation mapping during the disaster. Therefore,
spaceborne synthetic aperture radar (SAR) systems are the most preferred option for monitoring the
flood condition. The introduction of SAR sensors has shown great potential for flood mapping due to
their independence from solar illumination and very low dependency on atmospheric conditions [28].
Some studies have demonstrated that SAR images are useful for determining flood extent during a
disaster [29–31]. An analysis of the benefits of using SAR images for flood mapping in Bangladesh
was conducted using RADARSAT images from 1998–2004 and indicated strong applicability to flood
response [32,33]. Using six scenes of RADARSAT images from 1988 (July–September) and available
GIS database, Dewan, et al. [34] conducted a study on flood hazard mapping in Greater Dhaka.
In support of ground data, Hoque, Nakayama, Matsuyama and Matsumoto [32] analyzed RADARSAT
images to produce inundation maps from 2000–2004 and proposed unique flood hazard maps of the
north-eastern region of Bangladesh. Using the same RADARSAT images of 1998 and 2004, another
flood mapping study was conducted for the Kurigram district of Bangladesh [35]. Considering the
published literature, none of the studies produced flood maps (2005 onward) with national coverage
for damage assessment using Sentinel-1 and ALOS PALSAR images. However, the availability of free
SAR data through the European Space Agency’s (ESA) Sentinel-1 C-band SAR mission created a major
opportunity for flood extent monitoring in developing countries such as Bangladesh.

For an estimation of flood damaged areas, pre-flood national level land cover is also essential.
In the region, knowledge-based and object-based image analysis methods were used for the national
land cover change assessment of Bangladesh [36], Bhutan [37], and Nepal [38,39]. These studies
were mostly conducted at decadal intervals for addressing national environmental issues but are not
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useful for analyzing flood damage assessment. Considering the amount of image downloading and
processing required, the desktop based systems are not suitable for providing rapid processing services
critical for a flood response. The cloud-based image processing platform from Google Earth Engine
(GEE) is enabling the rapid processing of such big datasets covering a large area [40,41]. The GEE has
publicly made available large amounts of remote sensing satellite data collection and provides image
analysis functionality at large spatial scales [42].

In 2017, unpredicted early heavy rain caused flooding in several parts of Bangladesh and damaged
pre-harvested crops in April [22]. The flood started in April and continued until the last week of
August, causing substantial damage to housing, property, and infrastructure. As part of the rapid
response, the disaster management agencies were in urgent need of information about the inundated
areas to prioritize their relief and rescue activities [43,44]. This study aims to develop an operational
methodology to support the response agencies by providing timely information on such inundated
areas so as to prioritize emergency response activities. This study also aims to develop a methodology
for potential damage assessment by analyzing pre-flood land cover maps automatically on the GEE
platform. The inundation and flood damage data have been made publicly available for decision
making processes related to flood management.

2. Materials and Methods

2.1. Study Area

Figure 1 shows the study area for rapid flood mapping and potential damage assessment in
Bangladesh. Bangladesh encompasses the world’s largest delta system located in the southern part of
the foothills of the Himalayan mountain region and in the northern part of the Bay of Bengal, with a
boundary between 20◦N to 26◦N and 88◦N to 92◦E with an area of 147,570 km2 [45]. The southern part
of the delta is occupied by the world’s largest mangrove forest (the Sundarbans). The south-eastern
part includes Bangladesh’s main hilly region, while low hills characterize the north-east of Bangladesh
and the remaining area is mainly plain land.

Figure 1. Study area of the entire country of Bangladesh showing three large river systems: The Ganges
(Padma), Brahmaputra (Jamuna), and the Meghna forming the largest riverine delta in the world.

Approximately 50% of the country is within 7 m of mean sea level and most of the country is on a
delta plain under the influence of the Padma, Jamuna, and Meghna rivers. Most of the plain lands is
used for crop production and approximately 87% of rural households rely on agriculture for at least
part of their income. Rice production in Bangladesh is a crucial part of the national economy. Recently,
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Bangladesh has become one of the top 5 rice-producing countries in the world [46]. If no flood occurs in
the coming year, Bangladesh will remain in the top 5 rice-producing countries. Although Bangladesh
is a land of 6 seasons, the 3 most distinct seasons are the pre-monsoon hot season from March to May,
the rainy monsoon season lasting from June through October, and a cool, dry winter season from
November through February. The country has an average of 136 wet days per year, and approximately
80% of yearly rainfall occurs from June to September [47]. In a normal year, about one-third area of the
country gets inundated by flood water [48]. The planet’s highest rainfall occurs in Cherrapunji, which
is located just a few kilometres away from the north-eastern border of Bangladesh. The high annual
rainfall combined with the mountain terrain causes rivers from the north eastern border to flow with a
very high current due to high gradient topography. When this water reaches Bangladesh territory,
it spreads over a large area and regularly causes different levels of flood incidents in Bangladesh.
Sometimes, locally concentrated prolonged heavy rainfall worsens the flood situations.

2.2. Materials

To enable comprehensive inundation mapping across Bangladesh, approximately 11 frames of
Sentinel-1 C-band interferometric wide swath (IW) frames with a 250 km swath width were required
(Figure 2).

 

Figure 2. Sentinel-1 composites VH (red), VH (green), and VH/VV backscatter ratio (blue) images used
for inundation mapping of (a) March, (b) April, (c) June, and (d) August 2017.
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For the pre-flood (March) and post-flood (April, June, and August) inundation mapping, a total of
44 dual-polarization Sentinel-1 level-1 Ground Range Detected (GRD) products were used. The GRD
products consist of focused SAR data that was detected, multi-looked, and projected to the ground
range using the WGS-84 Earth ellipsoid model. The ellipsoid projection of the GRD products was
corrected using the terrain height specified in the product’s general annotation. Both the like-polarized
(vertical transmit and vertical receive (VV)) and cross-polarized (vertical transmit and horizontal
receive (VH)) channels were used in this study, and data were retrieved as Level-1 GRD products.
Sentinel-1 SAR images were useful as the data were freely available within 3 h of acquisition for near
real-time (NRT) emergency response and within 24 h for systematically archived data. Table S1 shows
the Sentinel-1 images that were used in this study, which were freely downloaded from the Copernicus
open access hub data portal of the European Space Agency (ESA).

In addition to SAR and as part of the flood damage assessment, pre-flood cloud-free Landsat-8
image collections between 1 January and 30 June 2017 were used for land use/land cover mapping in
the Google Earth Engine. To support land cover classification, additional ancillary data used in this
study included a 30-m resolution shuttle radar topography mission (SRTM) digital elevation models
(DEM) [49], which were retrieved from the United States Geological Survey (USGS) archived data
portal, as well as road network information from OpenStreetMap [50] and administrative boundary
data from the database of Global Administrative Areas (GADM) [51].

2.3. Methods

The methods used for this study are presented in Figure 3. Specifically, Sentinel-1 image
classification for flood mapping, with initial pre-processing carried out to mitigate the SAR-typical
speckle noise signatures from the images. During the pre-processing step, we rectified the radiometric
and geometric distortions due to the characteristics of the imaging system and imaging conditions and
performed radiometric corrections to improve visualization and interpretation for flood mapping.

 

Figure 3. Overall methodological framework for the flood inundation mapping and damage assessment
using multi-temporal Sentinel-1 and Landsat-8 satellite images.
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The pre-processing steps, including data import, radiometric calibration, speckle filtering,
radiometric terrain correction [52,53], linear-to-backscattering coefficient decibel scaling (dB)
transformation, and data export, were implemented using ESA’s Sentinel Application Platform (SNAP).
The open-access SNAP toolbox is capable of reading, pre-processing, and visualizing Sentinel-1
SAR images.

During the Sentinel-1 pre-processing, Level-1 images were first imported into the SNAP Desktop
tool. Secondly, Sentinel-1 images were radiometrically corrected by applying annotated image
calibration constants to arrive at physically meaningful radar backscatter pixel values. Thirdly, speckle
filters were applied to reduce the granular noise characteristic to SAR data. Fourthly, multi-look
processing was carried out to reduce the speckle further and improve image interpretability. Fifthly,
geometric distortions present in the SAR images were corrected by transforming the coordinates to
a standard reference frame. The ratio band of VH/VV was generated dividing the VH by the VV
band. Finally, a radiometric conversion from a linear scale to a dB scale was conducted using the
following expressions:

σ0
dB = 10 · log10 σ

0 (1)

where, σ0 (dB)—backscattering image in dB, σ0—Sigma nought image.
The preprocessed images were exported for classification. For automation, all processing steps

were assembled and connected through Graph Builder, which is available in SNAP and was run
in batch processing mode. The pre-processed stack of Sentinel-1 SAR images was imported into
ERDAS Imagine for knowledge-based image analysis. According to Janssen and Middelkoop [54],
knowledge-based classifications contain the following 5 characteristics: Aim, ancillary data, domain
knowledge, knowledge presentation, and inference. The knowledge engineer provides the interface
for an expert with first-hand knowledge of the data to develop an algorithm into a hierarchical decision
tree using logic or rules [55]. While performing expert classification, the Sentinel-1 images were
clustered to create a thematic raster layer by RGB clustering functions in ERDAS Imagine. In geospatial
applications, the unsupervised classification used to be known as the iso-clustering or migrating
means technique that helps to group the same type of features into homogeneous and diverse features
into heterogeneous clusters [56–58]. The RGB clustering is the most common technique for data
compression and iso-clustering works better on an optimal number of classes usually unknown [59,60].
The RGB clustering functions are a simple classification algorithm that quickly compresses a three-band
image into a single-band pseudo-colour image without necessarily classifying any particular features
and without a signature file and decision rule. The RGB clustering provides greater control over the
parameters used to partition the pixels into similar classes [61,62]. During Sentinel 1 image clustering,
the VH band is designated as a red band, the VV band as a green band, and the VH/VV band as
the blue band. Secondly, the RGB clustered image was processed to generate a clamped image for
converting thematic class values into uniquely numbered “polygons”, representing contiguous groups
of the original class values. Thirdly, within the clamped image, mean radar backscatter (dB) values
of the VH and VV bands were generated and used as input for an expert-guided classification of
flood and non-flood. VH and VV-band backscatter (dB) statistics for flood and non-flood samples are
presented in Figure S1. For this analysis, only two major classes, a “waterbodies” class and an “others”
class, were considered. Box plots were used to show the statistical distribution of the data. A distinct
separable backscatter value for water and other classes was used for image classification [44,63].

To understand the quality of the produced thematic maps, a validation process was required
for the classification results [39,64]. During the flood disaster, it is challenging to conduct fieldwork
for flood map validation [65]. Cloud-free Landsat-8 images (Landsat Surface Reflectance Level-2)
available during the flood period (from 22 August 2017) was used for cross comparison. The Landsat-8
image acquired on 22 August 2017 was classified for flood mapping in eCognition developer using
an object-based image analysis (OBIA) method called the geographic object-based image analysis
(GEOBIA). The detailed methodology used to prepare the flood maps is described in [43]. Briefly,
eCognition Developer software was used to divide the image into segments. The GEOBIA method
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segments remote sensing imagery into meaningful image objects based on the spatial, spectral,
and temporal characteristics of image pixels. During the Landsat based flood mapping, few procedures
were applied in terms of selected attributes using indices such as the normalized difference water
index (NDWI), normalized difference vegetation index (NDVI), a and the land and water mask
(LWM) derived from spectral values of the image, together with land band information. Finally,
developed rule sets exploring the image object mean value were used to generate Landsat-based flood
maps. The Landsat-based flood maps are shown in Figure 4c and were used to see omission and
commission errors with Sentinel-1-based flood maps. A comparison was made between Landsat and
Sentinel-1-derived inundation areas. Figure 4 shows the comparison of optical data and SAR-based
flood inundation maps.

In addition, 4500 reference points were collected from the Landsat-8 image of 22 August to validate
the flood map of 29 August that was the closest available flood map from 22 August. The expert-guided
classification scheme achieved an overall classification accuracy of 96.44%.

 

Figure 4. Comparison of optical data and synthetic aperture radar—(SAR) based flood inundation:
(a) False color composite Landsat-8 image from 22 August 2017; (b) classification result based on
Landsat-8 (dark blue: Perennial water; light blue: Flood inundation areas; green: Other areas); (c) false
color composite Sentinel-1 image from 29 August 2017, showing water bodies in blue; (d) classification
result based on Sentinel-1 data (same color assignment).

As the initially detected flood extent includes both permanent water bodies and flooded water,
pre-flood water extent must be removed from the classified map of flooded area [66]. Pre-flood
waterbodies classified from Landsat images acquired before 27 March 2017 was considered as perennial
waterbodies because no news reports about floods were received before that date [22]. Overlaying the
pre-flood waterbodies with the April, June, and August flood maps, the flood inundation area was
separated from perennial water bodies. Further analysis of the derived flood information was carried
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out in the ArcGIS environment to perform damage assessment as well as associated statistical analysis
at a 30-m resolution (flood area estimation, affected area estimation).

As part of the flood damage assessment, pre-flood land cover maps for the year 2017 were
prepared in GEE using Landsat images acquired between January and April of that year. For land
cover mapping, optical satellite images were used, e.g., Landsat are most common, and data were
freely accessible and are often used to explore unique spectral characteristics of different land cover
using image indices. The Google Earth Engine environment is a powerful computational fast analysis
processing platform that can handle huge volumes of remote sensing imagery [67,68]. GEE provides
online access to archived pre-processed Landsat imagery [69]. In the GEE, a sequence of processing
steps was followed (Figure 2) for image analysis and land use/land cover mapping. All the 2017
pre-flood Landsat data for the entirety of Bangladesh were processed to derive the pre-flood water
extent (https://code.earthengine.google.com/). First, as part of the atmospheric image correction,
a cloud-free Landsat-8 image composites were prepared using partially cloudy images available for
the period of January and April 2017. Using the derived cloud free image composites, the normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), normalized difference
moisture index (NDMI), bare soil index (BSI), normalized pigment chlorophyll ratio index (NPCRI),
and land and water mask (LWM) index were created and used for land cover mapping.

A supervised classification scheme was used to generate 2017 land cover maps from the set of
Landsat-8-based index layers. To facilitate the 2017 land cover classification, training data were acquired
using Google Earth High-resolution images as a basis. A total of 5484 training sets were collected for
areas under tree coverage (Madhupur forest, hill forest, and mangrove forest, as well as rural settlement
and homestead orchard), 8 were acquired for grassland, 346 for the barren area, 1039 for cropland, 3142
for waterbodies, and 86 for built-up areas. All the land cover legends were developed based on the land
cover classification system (LCCS), which was developed by FAO to provide a consistent framework
for the classification and mapping of land cover [70,71]. All training data were imported into the
Google Earth Engine environment in the form of a fusion table. Finally, a classification and regression
tree (CART) land cover classifier was applied using the imported training sets and the Landsat-related
raster layers. The CART is a decision tree (DT) based machine-learning method for constructing
prediction models from a set of training data using the concept of information entropy that shows the
strongly improved performance of classification [72,73]. In addition to the Landsat bands “B1”, “B2”,
“B3”, “B4”, “B5”, “B6”, “B7”, “B8”, and “B9”, the indices “NDVI”, “NDWI”, “NDMI”, “BSI”, “NPCRI”,
“LWM”, and the SRTM DEM were also used in the classification. As with any digitally classified
land cover product, there can be reasons for misclassification related to the environmental conditions
at the time of image acquisition (clouds, fog, etc.), variations in local forest types or limitations in
computational algorithms. Finally, the derived land cover maps were validated using another set of
samples collected from field data and independent training data from high-resolution images of Google
Earth. Publicly open earth observation data and online map tools like Google Map, Google Earth,
Collect Earth Online and OpenStreetMap allow the accuracy assessment of a national level land cover
based on very high-resolution satellite images [38,39,74–76]. The accuracy of the 2017 Landsat-derived
land cover map was assessed using (10 km × 10 km) 1400 reference points from Google Earth and
65 points from the ground. These were compared with the land cover map to calculate the error matrix,
and an overall accuracy of 87.51% was found.

3. Results

Developed national level pre and post-flood inundation maps for the entire country, during March,
April, June, and August 2017, based on the Sentinel-1 images, are presented in Figure 5. The results
show the presence of perennial waterbodies in March 2017 covering an area of 5.03% in Bangladesh.
In April 2017, a total flood-inundated area was 2.01%, with most inundation was occurring in cropland
(1.51%), followed by rural settlement and homestead orchard areas (0.21%), and other areas (0.29%).
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Similarly, more areas were inundated during the catastrophic June and August 2017 months, with
inundation covering 4.53% and 7.01%, respectively.

 

Figure 5. Comprehensive flood inundation map of Bangladesh for the months of (a) March, (b) April,
(c) June, and (d) August 2017.

The 2017 flood of Bangladesh caused significant inundation of cropland, rural settlement, and
homestead orchard, and other land use areas. Considering all crop-related land use and land cover
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types (Figure 6), the percentage of inundated cropland was found to be 1.51%, 3.46%, and 5.30% in
April, June, and August respectively. Significant inundation also occurred to residential property,
public infrastructure, and fish farming ponds. A total of 0.21% of the rural settlement and homestead
orchard areas were inundated in April, increasing to 0.47% in June, and 0.65% in August (Figure 7).

The time series flood data in Figure 8 shows that for the April to August 2017 time frame, some
of the areas experienced continuous inundation, while some areas were progressively inundated,
and some recovered from the flood waters as time progressed. Within the April and June 2017 time
frame, an inundated area of 257,729 ha was common for both months, while 410,853 ha were newly
flooded, and 38,776 ha recovered from the flood inundation. From June to August 2017, 532,173 ha
were common for both months, while 502,927 ha were newly inundated, and 136,406 ha recovered
from the floods (Figure 8).

 

Figure 6. 2017 land cover map of Bangladesh developed using Landsat 8 and Google Earth Engine
cloud computing.
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Figure 7. Flood affected major land cover categories. Flood extent was derived from Sentinel-1 SAR
data while land cover classes were extracted from cloud-free Landsat-8 imagery.

 

Figure 8. Flood recession and rise areas of Bangladesh between (a) April and June, (b) June and August.

A land cover map for the same year was also derived from Landsat-8 data for potential flood
damage assessment. The derived map was produced from a cloud-free Landsat-8 composite between 1
January and 1 April 2017 and is shown in Figure 6. The map consists of nine classes, namely, tree cover
(Madhupur forest, hill forest, and mangrove forest, as well as rural settlement and homestead orchard),
grassland, cropland, barren area, built-up area, and waterbodies.
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Through the possibility of an automatic SAR-based processing chain, flood inundation mapping
based on Sentinel-1 images have the potential to rapidly provide flood information for flood management.
During flood mapping, a significant difference in backscatter values for waterbodies and non-water
areas enables a separation between inundated areas and other land areas. Derived optimal backscatter
ranges for flood inundated areas in Sentinel-1 images shows a clear distinction from other classes, as
presented in Figure S1. The backscatter response in VH polarizations for inundated areas were between
−24.25 dB and −17.4 dB for this area of interest. In VV polarizations, water bodies showed a range
between −22.4 dB and −12.9 dB. The backscatter response in VH polarizations for non-water areas
was determined between −16 dB and −9.6 dB, and in VV polarizations it ranged between −10.8 dB
and −1 dB. Identified optimal ranges of backscatter values can be applied for the automation of flood
mapping using Sentinel-1 images to produce flood inundation maps for areas of similar topography.

For an accuracy assessment, the Sentinel-1 classification result for 29 August 2017, was evaluated
with the waterbodies map derived from Landsat-8 (22 August 2017) using 4500 reference points
collected from the Landsat-8 classification map. The overall accuracy of the 2017 August flood
inundation map was found to be 96.44%, with a kappa value of 0.81, standard error kappa of 0.02, and a
95% confidence interval between 0.770 to 0.850 (Table 1). The evaluation of the flood map from SAR
data compared to the optical image-based inundation map (Table S4) shows that for a particular cloud
free window, the Landsat- (22 August 2017) based map produced an inundated area of 70% while the
SAR-based map showed 59% of the areas inundated. Within the 70% Landsat-based inundated maps,
a 53% inundated area was common, 17% of the area was an omission, and 6% of the area differed
from the Sentinel-1-based study. A visual comparison of the Landsat-based (22 August 2017) and
Sentinel-1-based (29 August 2017) flood extent is also shown in Figure 4.

Table 1. Error matrix for the land cover map of 2017.

Class Name Flood Other Total Accuracy

Flood 1335 123 1458 91.56
Other 37 3005 3042 98.78
Total 1372 3128 4500 n.a.

Producer’s accuracy (%) 97.30 96.07 n.a. n.a.

The accuracy of the 2017 Landsat-derived land cover map was found to be 87.51%, with a kappa
value of 0.81, a standard error kappa of 0.02, a 95% confidence interval between 0.770 and 0.850, and a
0.906 maximum possible unweighted kappa, given the observed marginal frequencies (Table 2).

Table 2. Error matrix for the land cover map of 2017.
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Hill forest 155 1 1 8 1 166 93.37
Madhupur forest 7 1 1 9 77.78
Mangrove forest 43 1 44 97.73

Rural settlement and
homestead orchard 1 1 1 214 60 2 279 76.70

Grassland 1 3 1 1 6 50.00
Cropland 59 1 722 3 12 797 90.59

Barren area 1 19 1 1 22 86.36
Built-up area 3 2 6 11 54.55
Waterbodies 18 113 131 86.26

Total 156 9 45 279 4 812 23 7 130 1465 n.a.
Producer’s accuracy (%) 99.36 77.78 95.56 76.70 75.00 88.92 82.61 85.71 86.92 n.a. n.a.
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4. Discussion

It is well known that Bangladesh has a long history of natural disasters. Between 1980 and 2008,
it experienced 219 natural disasters that caused over USD $16 billion in total damage [77]. Due to the
flat topography and climatic features, more than 80% of the population is potentially exposed to floods.
Following the devastating disaster issues, Bangladesh has made significant efforts to reduce its disaster
vulnerability primarily through post-disaster management. The Government of Bangladesh (GOB)
recently constructed a good number of flood shelters, built flood protection embankments, sluice gates
and regulators on different rivers, and have been dredging the drainage channels and canals [78].
Compared to previous efforts, Bangladesh is now much safer from disasters due to these post-disaster
actions. Another survey of published literature concluded that considerably less research has been
conducted for operational flood mapping using earth observation data for emergency response. Space
based earth observation (EO) data can be used to deliver information on the extent of hazards during
response operations so as to mitigate damage [79].

In the past, vital research was conducted for the 1988 flood mapping to support relief operations [7].
After that, few flood mapping studies have been conducted by academic researchers related to flood
issues in Bangladesh without focusing on emergency response [6,14,21,33,35,48]. Relatively, cloud-free
satellite images showed that during the last three weeks of September, areas of inundation were
31% to 42% of Bangladesh. The actual flooded area was more from satellite image estimates which
differed from officially reported areas [80]. Although real-time flood monitoring plays a vital role
in relief operations [81,82], flood maps also play an important role in decision-making, planning,
and implementing flood management options [83]. Most of the studies have published their flood
mapping results ten years after a flood event [32]. Sometimes the flood duration is quite long, although
many researchers have mapped flooding areas for a single month. Furthermore, no dissemination
systems were implemented to support sharing the inundated area maps during the crisis or after
publishing the research article [84]. A number of monitoring systems have the potential for flood
management in Bangladesh, however limited access to discharge data from the upstream, and lack
of timely acquisition of geospatial data has an impact on the operational suitability of these systems.
In many cases, model-based inundation mapping does not provide good results on plain land area [18].
Cloudy weather also prevents optical systems to provide coherent image coverage to use for flood
inundation mapping. Due to the high level of cloud contamination during the monsoon time,
cloud-free Landsat images identification was difficult for flood mapping [85]. For Bangladesh, one of
the best opportunities for operational flood mapping comes from Sentinel-1 imaging as it is publically
available [63]. In Bangladesh, the agriculture sector is greatly impacted by floods, despite conventional
flood management systems paying very limited attention to this sector [63].

Under the circumstances that Bangladesh is under, the present study provides rapid flood
inundation maps for March, April, June, and August 2017 using publicly available Sentinel-1 data
using a replicable methodology. The derived flood maps provide spatial and temporal dynamics
of the flooding area across the county. The utilization of the GEE for image processing facility
in this study helped to promptly develop an operational land cover map for damage assessment.
The advanced image processing tools of GEE enables the generation of accurate land coverage for
large areas without downloading bulk data and prolonged desktop processing [86]. The method can
be used for monitoring land cover regularly as the analysis can easily be re-run while new Landsat
data is injected in GEE. The derived maps provide crucial information for local disaster management
agencies, which helps to prioritize relief and rescue operations. At the same time, automatically
generated land cover maps derived from pre-flood Landsat-8 data support the assessment of economic
loss and help in the prioritization of financial compensation due to crop damage. The use of SAR
images provides significant advantages, as their cloud-free and all-weather capabilities enable the
production of regularly sampled flood extent information in a near real-time delivery manner [7,87].
Before the launch of Sentinel-1B, the revisit time of Sentinel-1A was 12 days, which was challenging
for a rapid disaster response. After the launch of Sentinel-1B and the completion of the two satellite
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Sentinel-1 constellation, revisit times improved to six days over the area of interest. In the future,
a constellation of three Sentinel satellites would be much more useful for responding to flooding events
in near real-time. As part of this study, the team provided georeferenced GIS layers in addition to
jpg-formatted maps to encourage the broad use of data and to ensure that the data are fully compliant
with the GIS environments used by the response agencies [88].

For this study, the use of Sentinel-1 dual-polarization radar images showed a high potential for
flood mapping due to their free-of-charge nature. Adopting the image pre-processing techniques
and knowledge-based classification methods used in this study helped in developing scene-specific
standards and knowledge and achieved better classification accuracy on flood maps [89,90]. For this
exercise, the developed flood mapping system was run on a desktop-type computer. Hence,
the availability of sufficient computing hardware and internet bandwidth were the main limitations
discovered in this study. For future implementations, we will consider the utilization of cloud
computing resources, such as those offered by the Google Earth Engine, the ESA Thematic Exploitation
Platforms, or Amazon Web Services-based environments offered by NASA’s Alaska Satellite Facility
(ASF) DAAC with all Sentinel images. At the same time, utilizing recently released public-domain
Landsat-8 datasets via the Google Earth Engine or similar platforms may enable the establishment of a
framework for rapid land cover monitoring on a national level [40].

The present study produced a flood inundation map with optimum accuracy for the entirety of
Bangladesh. However, there were some uncertainties of flood maps due to the floating vegetated
areas [91]. On the Sentinel-1 images, sometimes cultivated land for rice plantation was appeared
as inundated areas. To overcome those uncertainties, local knowledge is crucial. Alternatively,
unmanned aerial vehicles (UAVs) are emerging tools for the monitoring of real time floods in disaster
management [92]. Due to flight endurance and payload capacity, UAVs would not be functional if
large areas were inundated [69]. In general, SNAP tools take a longer time for preprocessing Sentinel-1
images. There is also a lag time between the image availability in ESA Sentinel hub and in GEE. If lag
time is reduced in the future, the method could be implemented in GEE environment for a more rapid
production of flood extent.

Bangladesh is a flood-prone country and thus under constant threat of flooding. Every year, floods
destroy lives, livestock, and infrastructure, bringing an enormous financial toll. During disasters,
obtaining reliable information is crucial. As part of the operational methods, flood inundation
was validated using Landsat-8 images. Unfortunately, due to the dominance of cloudy conditions,
no (cloud-free) Landsat images were available during the peak flood period. Apart from wall-to-wall
comparisons with optical or field-based studies, a determination of the extent of flooding in Bangladesh
could serve disaster management purposes such as relief operations.

5. Conclusions

Based on the results of the study, we can conclude that earth observation and geospatial
technologies provide prompt information for effective decisions for comprehensive flood disaster
management for Bangladesh. Due to the predominance of severe weather conditions during flooding
time, freely available and regularly sampled Sentinel-1 SAR earth observation data has great potential
in producing flood information with high accuracy and high spatial resolution in a six day interval.
The method was based on publicly available free-of-charge data, particularly useful for less developed
countries. Cloud-based computation environments, such as the GEE platform, proved to be particularly
valuable for operational users in planning a flood-related emergency response and for understanding
flood damage by land cover mapping. Natural flood disasters are common and cannot be stopped.
However, efficient tools for flood inundation mapping and flood damage assessment can be useful for
emergency response and disaster management.
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Sentinel-1 images used for the flood inundation mapping, Table S2. Landsat 8 operational land imager (OLI)
spectral bandwidth spatial resolution, Table S3. Land cover classification system (LCCS) along with adopted
code, Table S4. Omission and commission (%) errors between Landsat (22 August 2017) and Sentinel images (29
August 2017).
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Abstract: In this study we explored the application of synthetic aperture radar (SAR) intensity time
series for urban flood detection. Our test case was the flood in Lumberton, North Carolina, USA,
caused by the landfall of Hurricane Matthew on 8 October 2016, for which airborne imagery—taken
on the same day as the SAR overpass—is available for validation of our technique. To map the
flood, we first carried out normalization of the SAR intensity observations, based on the statistics
from the time series, and then construct a Bayesian probability function for intensity decrease (due
to specular reflection of the signal) and intensity increase (due to double bounce) cases separately.
We then formed a flood probability map, which we used to create our preferred flood extent map
using a global cutoff probability of 0.5. Our flood map in the urban area showed a complicated
mosaicking pattern of pixels showing SAR intensity decrease, pixels showing intensity increase, and
pixels without significant intensity changes. Our approach shows improved performance when
compared with global thresholding on log intensity ratios, as the time series-based normalization
has accounted for a certain level of spatial variation by considering the different history for each
pixel. This resulted in improved performance for urban and vegetated regions. We identified smooth
surfaces, like asphalt roads, and SAR shadows as the major sources of underprediction, and aquatic
plants and soil moisture changes were the major sources of overprediction.

Keywords: SAR intensity time series; urban flood mapping; double bounce effect; Hurricane Matthew

1. Introduction

Flood extent maps based on synthetic aperture radar (SAR) have increasingly been used in recent
emergency response operations. For example, in the Sentinel Asia consortium (https://sentinel.tksc.
jaxa.jp), where national space agencies, research institutions, and end-user organizations work together
on emergency observation requests in the Asia-Pacific region, the responses to 20 of 23 activated
flood-related events in the year of 2017 used ALOS-2 SAR flood-mapping results [1]. These statistics
demonstrate the need for radar’s all-weather, day-and-night sensing capability, where in most cases
cloud cover and rains persist for the duration of a flood.

Flood extent maps are primarily extracted from SAR intensity (the squared amplitude of the
SAR return) information. The backscattering coefficient (σ0, log intensity in dB) decreases due to the
specular surface of open flood waters if radar energy is mostly forward-scattered. In other cases, σ0

may increase if the radar wave bounces first off the water surface (away from the satellite) and then
off a semivertical structure, such as a building wall, tree trunk, or even a car in the flood (towards
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the satellite); this is the “double bounce” effect. Compared with rural floods, urban flood mapping
suffers more from layover and shadow effects due to SAR’s side-looking nature. The layover zone is in
front of buildings, toward the satellite direction, and the length is usually longer than the building
height at incidence angles lower than 45◦ (layover length = building height × cot(incidence angle) [2]).
Within this zone there is a good chance of seeing stronger backscattering due to the double bounce
effect, and its strength is a function of the oblique angle between the flight direction and the building
orientation. The double-bounce intensity increase can be larger than 10 dB at 0◦ and remains high up
to 5◦; at an angle larger than 10◦ the increase will drop to a constant level [3,4]. The shadow zone, on
the other hand, has a smaller length (shadow length = building height × tan(incidence angle) [2]), and
the backscattering stays low at all times. The low intensity within the shadow may lead to false flood
detection if one uses a during-flood SAR image alone.

Several studies have tried to improve the accuracy of urban flood mapping by addressing layover
and shadow effects. For example, Mason et al. and Giustarini et al. [2,5,6], for a case study using
TerraSAR-X data, masked out the layover and shadow zones by using a SAR simulator. The accuracy
of open water flood mapping increases after applying the mask, but flooded pixels that show increased
brightness due to double-bounce scattering are left out from the flood map. In another example,
Pulvirenti et al. [7] developed an algorithm that adopted the double-bounce intensity values from
electromagnetic modeling as initial fuzzy thresholds, and they used fuzzy logic to map out the urban
flood with intensity increase in COSMO-SkyMed images. Mason et al. [8] also demonstrated the use of
an electromagnetic scattering model and high-resolution elevation data to simulate the double-bounce
effects. The simulated double-bounce scattering strength agrees with the observed data; hence, it
can provide information about the statistical distribution of pixels showing double bounce for better
thresholding decisions. Both model-based approaches have the advantage of being independent from
user biases when handling double-bounce effects, although the auxiliary data of a high-resolution
building model (or digital surface model) is not always available. Tanguy et al. [9] proposed to use
ancillary hydraulic data to refine the flood detected with RADARSAT-2 so as to overcome the SAR
limitations associated with viewing geometry. The availability of such high-resolution hydraulic data
is not, however, guaranteed. Recently, some studies have found that using interferometric coherence
in conjunction with intensity will improve the detection accuracy particularly associated with double
bounce [4,10–12]. The efficacy of augmenting moderate resolution interferometric coherence (from
Sentinel-1 SAR, for example) in urban flood detection still awaits systematic, quantitative validation [10].

In parallel to the developments in urban flood mapping, multitemporal SAR data analyses are
also gradually being adopted by scientists to study flood extents. Hostache et al. [13] suggested
to select the most appropriate pre-flood image for change detection from a time series perspective.
Schlaffer et al. [14,15] carried out harmonic analysis on seven years of ENVISAT ASAR data and
identified floods by looking at anomalies in the time series. D’Addabbo et al. [16] utilized Bayesian
networks to jointly consider SAR intensity and InSAR coherence time series of COSMO-SkyMed data,
as well as ancillary information including several hydraulic parameters, to study flood extent variation
over time. Clement et al. [17] utilized Sentinel-1 SAR intensity difference (change detection) time series
to identify the evolution of a flood with time. Ouled Sghaier et al. [18] utilized texture analysis on
multitemporal RADARSAT-2 and Sentinel-1 intensity data to study flood history. Among these studies,
some of them focus on flood evolution and treat each epoch independently, while others emphasize
the use of pixel history to improve the accuracy of flood detection on particular events.

The approach that we propose in this study focuses on both the urban and time series dimensions.
We would like to obtain the statistics of each pixel from the time domain and use them in a Bayesian
flood probability function. The flood probability is calculated based on the historical pixel intensity
values. The test data are Sentinel-1 SAR, whose open access and short repeat time make them a
priority choice in many emergency response cases. We test our approach on the Hurricane Matthew
flood in early October 2016 at the town of Lumberton, in North Carolina, USA. The Lumberton flood
offers a great opportunity in which nearly concurrent airborne optical imagery and spaceborne SAR
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observations coexist for the flooding epoch. It is also an ideal target to examine the efficacy of urban
flood mapping algorithms, as more than half of the flooded areas are in urban settings.

2. Study Area and Data

2.1. Study Area and Weather Event

Lumberton is located on the Coastal Plains of North Carolina, with an average elevation of
40 m and the Lumber River flowing through the town center (Figure 1). The test area was right
around the town center, approximately 5.5 × 12 km in dimension, with ~30% of the area being an
urban environment.

On 8 October 2016, Hurricane Matthew made landfall on the southeast coast of South Carolina
and slowly moved northwards into North Carolina. Even though it had significantly weakened from a
Category 5 to Category 1 hurricane at the time of landing, and was an extratropical cyclone by the time
it arrived at North Carolina [19], torrential rains still brought >200 mm cumulative precipitation depths
on 9 October (according to the National Oceanic and Atmospheric Administration (NOAA)’s ground
weather station USC00315177; see Figure 1 for location) and caused record-breaking flood levels along
the Lumber River. A levee broke, resulting in four flood-related deaths and more than 1500 people
evacuated. Most of the region was still in knee-deep water two days after the hurricane passed [19].

Figure 1. Lumberton in Robeson County, North Carolina, and the during-event airborne optical
imagery taken on 11 October 2016. The Lumber River flows right through the middle of the town.
USC00315177 is National Oceanic and Atmospheric Administration (NOAA)’s ground weather station.

2.2. Optical and Synthetic Aperture Radar (SAR) Imagery

Because the Carolinas experienced such serious flooding during the hurricane, the National
Oceanic and Atmospheric Administration (NOAA) Remote Sensing Division acquired inland aerial
photos between 11–16 October as rapid response imagery using a nadir-looking camera mounted on
NOAA’s King Air 350ER aircraft [20]. The Lumberton swath was taken during the daytime (around
noon local time, from 15:53 to 16:35 UTC) on 11 October at a ground resolution of ~30 cm (Figure 1).
The same-day Sentinel-1A interferometric wide swath SAR image was acquired at 19:13 EDT (23:13
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UTC). Given the seven-hour difference in the acquisition time, there will be some small but minimal
differences between the flood extents mapped from the two datasets, with potentially smaller flood
areas recorded in the SAR image.

Besides the aerial photos taken by NOAA, we also obtained a SPOT-6 image acquired on 6
September 2016 in order to study the pre-flood water bodies. This image, together with other
historical WorldView/QuickBird images available on Google Earth, showed that the location and area
of pre-existing water bodies along the Lumber River remained fairly constant through time.

For the SAR imagery, we obtained all scenes available in ascending track 77 that covered Lumberton
since the beginning of the Sentinel-1 mission until the end of August 2018. There is a total of 63
images, including the during-flood scene on 11 October 2016. Descending track 84 that covers this
region only contains 2 images throughout the whole time; therefore, we excluded the descending
track from our analysis. We treated all scenes except for the 11 October scene as nonflood imagery in
our multitemporal analysis, assuming a stationarity in land cover for all times except when the flood
occurred. All SAR images were processed and geocoded at 15 × 15 m ground pixel spacing using a
SRTMv3 DEM [21] oversampled by a factor of two.

3. Data Processing and Analysis

3.1. Validation Dataset

Radar intensity data contain more complicated responses than a simple binary dissection between
wet and dry areas. We therefore decided to create a validation dataset that also honored possible SAR
σ0 responses based on different land cover types. We manually classified the during-flood aerial image
into the following six classes (Table 1 and Figure 2):

Flood: This class was the open standing water surface as directly seen in the aerial image. It
was considered as an area of flooding associated with Hurricane Matthew. Intensity may decrease
or increase in the during-event epoch depending on the incidence angle of the SAR image and the
proximity of the pixel to any nearby vertical structures, such as trees or buildings.

Permanent Water: This class was identified based on the water bodies in the pre-flood SPOT-6
image. The SAR σ0 tended to stay low both in the non- and during-event images given the constant
specular reflection surface at all times.

Flooded Vegetation: This class represented small to medium-size patches of trees surrounded by
flood water from Hurricane Matthew. They mainly appeared in the urban area of Lumberton. Whether
the radar wave penetrated the tree crowns was subject to factors like radar wavelength, polarization,
and the density and structure of vegetation. If it did, double bounce and enhanced backward scattering
may occur, resulting in an increase in the during-event σ0. If the tree crown was too dense to penetrate,
SAR σ0 stayed relatively stable with potential seasonal variations.

Dry Vegetation: This class stood for small to medium-size patches of trees standing on dry land.
The SAR σ0 should also stay at a relatively constant level with potential seasonal variations.

Dry: The dry class represented buildings, roads, dry bare land or lawns. Any pixels that appeared
to be dry without ambiguity of underlying flood water were included in this class. The pixel values
may vary with time depending on the detailed land cover type (paved road, lawn, bare soil, etc.). We
did not expect to see significant intensity anomalies in buildings and roads on the during-event epoch,
although intensity changes associated with soil moisture may be observed on the bare land or lawns.

Uncertain: A large area of the Lumberton region is covered by dense forest where the Lumber
River flows through. Careful investigation of the spatial context showed that many of these large
forest patches were surrounded by flood water on all sides. What remains unclear is whether if there
was also flood water under the tree canopy. To honor this unidentifiable condition based on the
high-resolution optical imagery, we classified these large forest patches as uncertain. The SAR σ0 may
stay at a relatively high level due to the dense tree tops, but the actual level and the during-event
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response may vary within the same forest patch. We did not include pixels in this class in the final
confusion matrix calculation.

Figure 2. (a) The during-event aerial image and (b) the validation vector image with 30 cm resolution.
(c) The rasterized validation image at 15 m resolution. (d) The during-event Sentinel-1 synthetic
aperture radar (SAR) image at 15 m posting. The cyan box indicates the region used for Gaussian curve
fitting. (e,f) The magnified views of (a–d) for the urban area. The open circles labeled 1 to 6 in (b) are
the sample pixels of the time series (Figure 4) for each class.

After manual classification was done, we applied a nearest-neighbor sampling to convert the
validation vector data of 30 cm resolution (Figure 2b) into a raster image of 15 m resolution (Figure 2c).
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We took cautious steps to ensure that each pixel in the converted raster image registered to the pixels in
the SAR image. Note that there was potential change or loss of information during the down-sampling.
We also tested converting the vector file into a 30 m raster image, and the result showed significant loss
of spatial context, especially in urban regions. For example, buildings were concatenated together or
coalesced with trees; and smaller buildings could fully disappear. Our conclusion is that 15 m ground
resolution is minimally needed to undertake proper flood mapping in urban regions.

Table 1. Classes in the validation dataset and their backscattering responses.

Responses in During-Event Scene

Intensity Drop Intensity Increase Intensity Stays Low Intensity Stays High

Flooded Flood
Flood

Flooded Vegetation

Nonflooded
Permanent Water Dry Vegetation

Dry Dry

Not Determined Uncertain (not considered in evaluation metric)

3.2. Sentinel-1 SAR Data Processing

We developed our amplitude stack processing pipeline using the NASA Jet Propulsion Laboratory’s
InSAR Scientific Computing Environment (ISCE) version 2 (ISCE2 is now open-sourced at GitHub:
https://github.com/isce-framework/isce2). In this pipeline (Figure 3), we started from SLC files
in VV polarization mode, and incorporated Sentinel-1 radiometric calibration and thermal noise
calibration [22] on a burst-by-burst basis. Then we co-registered all slave images to a single master
image before merging the bursts. In this study, to ensure proper comparison with the validation dataset,
we produced a stack of intensity images in georeferenced coordinates. For an actual operational system,
we would switch to stack processing in radar coordinates.

After producing the geocoded amplitude stack of 15 × 15 m posting, we applied a 5 × 5 Lee
filter [23,24] to reduce speckle noise. We also tested 3 × 3 and 7 × 7 Lee filters, and comparison with
the validation dataset shows that the 5 × 5 window gave the optimal result at a ground pixel spacing
of 15 × 15 m. Since the incidence angle variation was small across the study area, from 35.7◦ at near
range to 36.4◦at far range, and the Lumberton region is relatively flat, we skipped the local incidence
angle correction proposed by [25]. Finally, we computed the backscattering coefficients (σ0) in decibels
(dB) by the following definition:

σ0 = 10log10
(
A2
)

(1)

where A stands for the amplitude of the SAR image in the complex domain after radiometric calibration
and thermal noise calibration [22]. We then looked into these σ0 values on a pixel-by-pixel basis in the
following multitemporal analysis.
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Figure 3. The processing flow chart for the intensity stack and flood proxy map. JPL ISCE, Jet Propulsion
Laboratory’s InSAR Scientific Computing Environment.

3.3. SAR Intensity Time Series

We first tried to observe if there was any characteristic temporal pattern associated with each of
the six classes defined in Section 3.1. For the Flood class (Figure 4a), we picked a pixel sitting in the
middle of open standing water (sample pixel 1 in Figure 2), and we observed a significant intensity
decrease (~15 dB) for the during-event epoch, while the background value remained between −5 and
−12 dB. It is worth pointing out that the histogram for this pixel (Figure 4b) looked similar to the Dry
class (Figure 4f), reflecting the nature that this pixel was dry under ordinary conditions. The flood
epoch was, therefore, an outlier (vertical line in Figure 4b) from the dry epochs, and this formed the
core of our flood detection approach (Section 4).

We picked the sample pixel for the Permanent Water class in the middle of a pond. Its σ0 slightly
varied with time but mostly stayed low, around −20 dB (Figure 4a; sample pixel 2 in Figure 2). In some
epochs the value may go 5 dB higher, close to some of the nonflooded epochs in the flood class. This
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natural variation may be associated with the changes of floating aquatic plants in the pond, which can
be observed in the WorldView/QuickBird images in Google Earth.

For the Flooded Vegetation and Dry Vegetation classes, we selected one sample each from the
flooded neighborhood in the south (sample pixel 3) and from the dry neighborhood in the north (sample
pixel 4). They both showed σ0 values between −5 and −8 dB in general, with the Dry Vegetation class
higher on average than the other (Figure 4b). This difference may simply represent different vegetation
density or structures between two sample pixels. The more important difference was the intensity
increase (~3 dB) in the time series of the Flooded Vegetation class on the during-event epoch, revealing
possible double-bounce backscattering between the tree and flood water surfaces.

The σ0 values for Dry class (sample pixel 5) stayed at a constant low level around −15 dB, even
more stable than the Permanent Water sample pixel (Figure 4c). This pattern reflects the characteristics
of paved road (Figure 2a,b), with the asphalt layer showing low backscattering intensity. We also
examined another pixel in the Dry class (sample pixel 5-1), and the values fluctuated within a wider
range, possibly due to the changes between land cover type (bare ground vs. lawn) and/or changes in
soil moisture. Regardless of different temporal patterns in these two sample pixels, neither of them
showed any intensity anomalies for the during-event epoch.

Figure 4. (a–c) σ0 time series of selected pixels for the 6 classes in the validation dataset. The location of
each sample pixel is marked in Figure 2, with the same ID number as shown in the legend (e.g., “1-Flood”
in the legend of Figure 4a is from the sample pixel 1 in Figure 2). The grey bars in the background
are 3-day cumulative precipitation from Global Precipitation Measurement daily solutions [26]. The
during-event epoch is marked by the precipitation record of >250 mm. (d–f) Histogram of the time
series. The vertical lines stand for the σ0 values on the during-event epoch. (g–i) Histogram of
normalized time series. Vertical lines stand for the during-event σ0 values after normalization.

Compared to the Dry class, the σ0 values for the Uncertain class seemed to show low-frequency
seasonal variations between the years of 2017 and 2018. As the pixel was located in the middle of
a dense forest (sample pixel 6), the undulations in the time series may reflect seasonal changes in
the forest.

We computed the histograms of σ0 for each of the time series. In Figure 4d, we can see that the
histogram for the Flood and Permanent Water classes looked very different, but their during-event

98



Remote Sens. 2019, 11, 1778

σ0 values were almost identical. For the Flooded Vegetation and Dry Vegetation classes (Figure 4e),
however, the histograms were more similar, with also small differences in the σ0 values on the
during-event epoch. Figure 4d,e together demonstrated that, in general, it was easier to map out the
open-water flood, whereas the double-bounce effect associated with flooded vegetation cannot be
easily identified. Given the high-frequency variation of σ0 values in almost every class, plus a much
smaller during-event σ0 change in the Flooded Vegetation class than that in the Flood class, identifying
the double bounce effect in the SAR image will never be an easy task.

4. Methods

4.1. Probabilistic Thesholding on Normalized Intensity Time Series

One way to address the information in the time series is to estimate the best-fitting model of
the time series—similar to what geodesists do with GPS or InSAR displacement time series (see [27]
for example). In a complete suite of parameterized time series analyses, one needs to decide what
functional terms to use in the modeling, such as a linear function (long-term rate), sinusoidal function
(seasonal patterns), step function (sudden and nonrecoverable changes), delta function (sudden and
recoverable changes), and even integrated B-splines (for transient changes). For SAR intensity time
series, Schlaffer et al. [14,15] used harmonic (sinusoidal) modeling on 7 years of ENVISAT intensity
data to account for seasonal variations before carrying out thresholding on the model-observation
residuals. In our study, we decided not to carry out this harmonic modeling for two reasons. The
first reason, also the most critical one, was that the number of total epochs may not always satisfy
rigorous time series modeling. In actual emergency responses we may have even fewer epochs than we
have in this study. Second, it may require time-consuming quality checks on the results of the model
fitting, as the existence of secular or transient signals may bias the fitting of sinusoidal patterns [28],
which in return may bias the model-observation residuals and, hence, the thresholding results. As the
determination of functional terms needed for each land cover type is a nontrivial process, we chose not
to pursue this direction in this study.

Here we propose a hybrid approach that combines the distribution normalization (so called
z-score) and Bayesian probability, with the latter based on the flood probability estimation and
classification [15,29]. We named this approach p50-ts for reference later in the discussion. The
procedure is as follows. On each pixel,

(1) Compute the mean (μts) and standard deviation (Sts) of σ0 from nonflood epochs in the time
series by excluding the during-event (kth) epoch:

μts =

∑n
i=1 σ

0
i

n
S2

ts =

∑n
i=0

(
σ0

i − μts
)2

n− 1
where i = 1, 2, . . . , n and i � k (2)

(2) Normalize the whole time series, including the during-event kth epoch:

σ̃0
i =
σ0

i − μts

Sts
(3)

This was the most critical step in our approach. The normalized intensities are read as the
deviation from their ordinary state (the historical mean) on the same scale (after being divided
by the time series standard deviation). The normalized during-event intensity can indicate how
anomalous it is from all the other pre-event epochs after considering the natural variations. When
we look at the histogram after normalization, the curve will be centered at zero (Figure 4g–i), with
the normalized during-event intensity being at either the left or right far end of the distribution
due to the presence of specular reflection or double bounce. As mentioned in Section 3.3, the
histogram actually reflects the probability of mainly the nonflooded condition. To honor the fact
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that the flooded condition should also have its own probability, next we tried to incorporate the
Bayesian approach into our method.

(3) With the normalized time series, for each pixel, construct the conditional probability of an epoch
to be flooded, using the following equation:

p
(
F
∣∣∣∣σ̃0

i

)
=

p(σ̃0
i

∣∣∣∣F)p(F)
p
(
σ̃0

i

∣∣∣∣F)p(F) + p(σ̃0
i

∣∣∣∣∣F)p(F) (4)

p(F) and p
(
F
)

are the prior probabilities for the flooded and nonflooded epochs. Here we assumed
the direction of intensity change on the same pixel, should it be flooded, remained unchanged
throughout the short time series. With this assumption, we can adopt the noninformative priors
of p(F) = p

(
F
)
= 0.5 for simplicity [29], on both cases of flooded with intensity decrease and

intensity increase. For the likelihood functions p(σ̃0
i

∣∣∣∣F) and p(σ̃0
i

∣∣∣∣F) , we assumed Gaussian
distributions for both, and the equations are as follows:

p
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σ̃0

i

∣∣∣∣F) = 1√
2πsF

exp [−1
2

(σ̃0
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2
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F

] (5)
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(
σ̃0
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∣∣∣∣F) = 1√
2πsF

exp [−1
2

(σ̃0
i −mF)

2

s2
F

] (6)

mF and sF are the mean and standard deviation for the nonflooded epochs in the normalized

backscattering (σ̃0
k) time series; therefore, their values are 0 and 1, respectively. The other set of

statistical descriptors, mF and sF, are for the flooded epochs. Since we only had 1 flooded epoch
in the whole time series, we proposed to use the statistics from the spatial domain, which we

can estimate from histogram fitting of the normalized during-event backscattering (σ̃0
k) using the

Levenberg–Marquardt algorithm [30] as suggested in [29,31]. We first chose a region that covered
central Lumberton, where intensity decreases and increases due to flood should both existed and
their components were more likely to be statistically meaningful (Figure 3d). Then, instead of
two Gaussians, we fit the histogram with the sum of three Gaussian curves:

h(y) = G1 + G2 + G3 = A1exp
[
− 1

2
[y−m1]

2

s2
1

]
+ A2exp

[
− 1

2
[y−m2]

2

s2
2

]
+

A3exp
[
− 1

2
[y−m3]

2

s2
3

] (7)

The third Gaussian curve fits the bulging part at the high end of the histogram and, hence, gives
lower root-mean-square errors compared with the two-Gaussian model (Figure 5a,b). We used
the parameters for the Gaussian curves on the left and on the right (Figure 5a), (m1, s1) and (m3,
s3), to approximate the mF and sF in the likelihood functions for the pixels of intensity decrease

(pD

(
σ̃0

i

∣∣∣∣F)) and intensity increase (pU

(
σ̃0

i

∣∣∣∣F)) respectively (Figure 5c). From here we can construct

the conditional probability function for each case separately (denoted as pD and pU in Figure 5d
using (4).

(4) Generate the flood probability map for the during-event epoch (kth) by putting σ̃0
k in pD and

pU. We can also define a probability cutoff value and form a binary flood map. In this case, we
adopted p = 0.5, which has been identified to be associated with the transition zone [29]. Next
we will describe the validation process using this binary flood map.
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Figure 5. (a) The histogram and 2-Gaussian curve fitting for the during-event epoch in the normalized
time series. (b) The curve fitting for 3-Gaussian model. RMSE = root-mean-square error. (c) The
probability for the nonflooded, the flooded with intensity decrease, and the flooded cases, with intensity
increase for the normalized backscattering in the time series. (d) The conditional probability of the
normalized backscattering in the time series being flooded with intensity decrease (blue curve) or
intensity increase (cyan curve). Black line with arrow indicates the cutoff threshold of p = 0.5 for a
binary flood map.

4.2. Validation Approach

As the flood probability maps for the during-event intensity decrease and increase cases are
constructed separately, we created the maximum flood probability map of pF by taking the maximum
value from the maps of pD and pU. We can interpret it as the probability of during-event intensity
changes, with pF = 0 for no change and pF = 1 for significant change (either intensity increase or
decrease). We derived the reliability diagram by comparing the observed flood frequency po with the
flood probability pF. For each i-th of the 10 bins with equal pF interval: [0.0, 0.1], (0.1, 0.2], . . . ,(0.9,1.0],
the corresponding po is derived by taking the ratio between the number of pixels in the Flood/Flooded
Vegetation class and the total number of pixels in the probability bin (ni). po can also be written in
contingency terms:

poi =
Pi

Pi + Ni
=

TPi + FPi
TPi + TNi + FPi + FNi

(8)

where T, F, P, and N stand for true, false, positive, and negative in the contingency table and the
combination thereof.
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In addition to the reliability diagram, in which the proximity to the 1:1 line represents the goodness
of model prediction, we can also compute the weighted root-mean-square error for the probability
map by [15,29,32]:

ε =

√√√√∑10
i=1 ni

(
pFi − poi

)2∑10
i=1 ni

(9)

This metric can be considered as the mean error of the probability map and, hence, is a metric
for reliability.

In addition to the reliability metric, we also looked at other metrics based on the contingency
matrix. We chose the critical success index (CSI), which is defined as

CSI =
TP

TP + FP + FN
(10)

As CSI removes the influence of the nonflooded fraction within the area of interest (AOI), this metric
was considered to better estimate the binary model accuracy [33,34]. In addition, we also obtained the
values of producer’s accuracy PA = TP/(TP + FN), user’s accuracy UA = TP/(TP + FP), and overall
accuracy OA = (TP + TN)/(P + N). TP, FP, TN, FN stands for true positive, false positive, true negative
and false negative in the contingency matrix. Higher PA and UA values stand for smaller numbers
of underpredicted pixels (FN) and overpredicted pixels (FP), respectively. OA is sensitive to the
proportion of dry pixels in the AOI, but since it is still widely used when discussing the performance
of flood mapping algorithms, we still included this metric for reference.

We tried to compare our mapping result with the best-possible (highest CSI) result obtained
through grid search in the threshold space. This way we could judge whether if the p = 0.5 criterion
served as a good threshold for flood mapping. We also conducted the same search on the log intensity
ratio between the during-event image and the epoch right before. By doing so we could better
understand the improvement made by considering the temporal statistics of each pixel.

5. Results

Figure 6a shows the mapping result at the cutoff probability of pD = 0.5 (black pixels) and
pU = 0.5 (grey pixels). The largest open-water flood body (with a w-shape) near the central part
of the AOI was well depicted. In the urban area (Figure 6b), we saw that a large proportion of the
urban floods were mapped by the criterion of pU ≥ 0.5, indicating that these pixels experienced an
intensity increase during the event epoch as compared with other epochs in their own history, and the
increase was significant enough such that the probability of being flooded was over 50%. However,
we could still observe that a visible portion of the urban flood could not be mapped by this p50-ts
method (Figure 6b). The unmapped pixels represented flooded areas without significant changes of
during-event backscattering in the time series. The mosaicking pattern of intensity decrease, intensity
increase, and even unchanged intensity signified the complexity of radar backscattering patterns of
floods in urban areas.

Next, we looked at the probability maps (Figure 6c–f). The transition zone of intermediate
probability (yellow color) was narrow, with the majority of the mapped flood at the high probability
end (p > 0.9; red color). The effect of underprediction was also demonstrated by having low probability
values in the pixels within the Flood and Flooded Vegetation classes (Figure 6b vs. Figure 6d,f). Their
spatial distributions were more clearly shown by the contingency map (Figure 7), where the mapped
urban flood was mainly surrounded by FN pixels. Overprediction (FP pixels), on the other hand, was
not as common within the urban area.
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Figure 6. Flood mapped by the probability threshold of p = 0.5 for (a) the whole area of interest (AOI)
and (b) the urban area. The second and third panels are for the probability maps of (c–d) intensity
decrease (pD) and (e–f) intensity increase (pU). Numbers in white circles are the patch IDs used
in discussion.

On the reliability diagram (Figure 8), we saw that the plots were mostly below the 1:1 line, with the
flood probability larger than the observed frequency, except for the first and second bin (pF = 0 ∼ 0.2).
In the first bin, po was mainly determined by FN/(FN+TN), so the ~5% higher in po than pF came from
the larger number of FN pixels than what pF predicted. In the last bin, po was mainly determined
by TP/(TP+FP), so the ~14% lower value in po than pF came from the larger number of FP pixels
than that predicted by pF (overprediction). It would be wrong to interpret the numbers as indicating
that the mapping results suffered more overprediction than underprediction because the sample
numbers varied greatly in each bin. The best way to view reliability is by looking at the weighted
root-mean-square error between the plot and the 1:1 line (ε in (9)), which was around 13%. This can be
interpreted as the average error in the probability map.
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Figure 7. Comparison between (a) the contingency map obtained by p = 0.5 cutoff threshold and (b)
the contingency map from the best result of grid search on log intensity ratio of during- and pre-event
image (i.e., nontemporal analysis). Pixels in the Uncertain class are masked out from the map.

Figure 8. The reliability diagram between the flood probability pF and the observed frequency po

(white circles). The number of pixels for each probability bin is shown in vertical bars color-coded
by contingency types. The deviation of the circles from the 1:1 line represents the error for each
probability bin. The pixel counts in different contingency types shows that the error comes from FN
(underprediction) for probability bins below 0.5, and FP (overprediction) for probability bins above 0.5.

The evaluation metrics echoed what we found in the maps and plots (Table 2). The comparison
with the best grid search result of the same normalized dataset showed that the p50-ts method could
reach identical performance as the best choice of thresholds. When comparing with the best grid
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search result of log intensity ratio, we could see that the p50-ts method had higher overall CSI (34%
vs. 24%) and OA (81% vs. 64%). There was a slight decrease in PA (~6%), but UA went from 30%
for the log intensity ratio method to 57% for our technique, suggesting significant improvement in
reducing the number of overpredicted (FP) pixels. In the urban area, the metrics from our method
and the log intensity ratio method were similar, but the resulting flood maps showed different flood
patterns (Figure 7). The difference was due to the fact that although global thresholds were used in
both approaches, the time series normalization accounted for a certain level of spatial difference by
considering the different history for each pixel; hence, the corresponding σ0 thresholds spatially varied.

Table 2. Evaluation Metrics.

Type
Overall Urban

CSI+ [%] OA+ [%] PA+ [%] UA+ [%] CSI [%] OA [%] PA [%] UA [%]

p50-ts method 34.4 80.8 45.5 56.7 40.2 42.8 43.4 83.3
Best result of grid search* on
normalized σ0 34.1 80.7 46.4 56.2 40.1 42.9 43.0 83.8

Best result of grid search* on
log intensity ratio 24.0 64.2 51.9 30.5 41.3 44.6 44.3 85.2

p50-ts method (treating
Flooded Veg. as nonflooded) 33.0 82.7 50.0 48.7 36.0 49.4 41.2 72.2

* Using overall critical success index (CSI) as the criterion. For reference purposes only. +CSI = critical success index;
OA = overall accuracy; PA = producer’s accuracy; UA = user’s accuracy

In summary, the p50-ts method improved flood mapping in the case of Hurricane Matthew flood
within the Lumberton area. The result is close to the best of what can be done with the optimal uniform
thresholding on a pair of SAR images. However, the result still suffers obvious underprediction and
overprediction. Next, we discuss the potential sources for the false predictions.

6. Discussion

The time series normalization allows us to identify the flood-related double bounce pixels and
specular reflection pixels of statistical significance. With that we can study the statistical distribution
for these two effects. We sorted out the pixels that were in the Flood class and mapped as flooded
due to intensity increase, and we interpreted these as due to double-bounce effect. We compared their
histogram with histograms for (1) pixels in the Flood class mapped as flooded due to intensity decrease,
interpreted as open water flood that saw specular reflection, and (2) pixels in the Dry class mapped
as nonflooded. The plots in Figure 9 indicate that, from the histogram perspective, the normalized
during-event intensity (Figure 9c) could better separate the pixels that saw double-bounce scattering
than the log intensity ratio (Figure 9b). For the open water flood, the normalized during-event
intensity and the log intensity ratio had similar efficacies in separating them from the nonflooded. The
single during-event intensity (Figure 9a) had the worst histogram separation among all three. The
better separation capability for double-bounce scattering marks the value of this method in studying
urban floods.

We also looked at the intensity changes with respect to the p50 threshold in the six validation
classes individually (Figure 10). In the Flood class, only 50% of the pixels were detected as flood,
among which 32% were identified with σ0 decrease and 18% with σ0 increase. In the remaining 50%
there was no clear σ0 anomaly based on the thresholds given. In the Flooded Vegetation class, we saw
more pixels with σ0 increase (18%) than those with σ0 decrease (12%). However, about 70% of the
pixels in the Flooded Vegetation class did not see significant σ0 changes. In the Permanent Water class,
22% of the pixels were identified as flood by σ0 decrease. As for the Dry and Dry Vegetation classes, we
saw a small fraction of false positives (6%–10%). Next, we would like to address the potential sources
that cause the underprediction in the Flood and Flooded Vegetation class as well as the overprediction
in the Permanent Water and Dry class.
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Figure 9. The histogram comparison between the pixels in the Dry class and mapped as nonflooded
(grey), Flood class and mapped as flooded with intensity decrease (cyan, interpreted as open water
flood), and Flood class and mapped as flood with intensity increase (cyan, interpreted as double bounce
scattering). (a) Histogram for the pixel during-event intensity. (b) Histogram for the pixel log intensity
ratio. (c) Histogram for the pixel during-event intensity after time-series normalization.

Figure 10. Pie charts showing, for each of the 6 classes, the proportions of pixels detected as flooded
with either σ0 decrease (blue) or σ0 increase (yellow), or as nonflooded with insignificant σ0 change at
the p50 thresholds.

6.1. Uncertainties in the Validation Dataset

One possible source of error is uncertainties in the validation dataset. We generated the validation
data by rasterizing the validation vectors of ~30 cm resolution into 15 × 15 m pixels. At a regional scale,
the rasterized image agreed in general with the vector file (Figure 2). However, when we zoomed in
to the local scale, we observed discrepancies between the two (Figure 10a,b and Figure 11a,b). The
discrepancies were associated with the sizes and orientations of the objects as well as their relative
portion within a pixel. The difference was particularly obvious in a setting where the objects were
densely distributed but isolated from one another. Thus, although the number of pixels falsely validated
may only account for a small portion in the AOI, we should always be aware of the existence of such
uncertainties, especially when utilizing moderate-resolution SAR images in flood mapping.
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6.2. Source of Underprediction

Underprediction (FN) accounted for the majority of false predictions. We first used patch 1
(Figure 6a) to discuss the possible sources of underprediction. In Figure 11d, there was a clear pattern of
underprediction, with four elongated zones of FN subparallel to each other. According to the pre-flood
optical image, these zones were asphalt roads (Figure 11c). Several studies have pointed out that
asphalt will show up as dark pixels in radar images due to its smooth surface and low subsurface soil
moisture content [32–34]. What we saw in this study was that the backscattering from asphalt surfaces
could be as low as that from a water surface and, hence, indistinguishable from the during-event flood
in the time series. This agrees with the point made by [6], that smooth surfaces such as tarmac, paved
road, and parking lots may serve as water surface-like radar response areas. In the cases where they
are actually flooded, there may not be any intensity anomaly compared to dry conditions. This is one
of the major sources of underprediction.

In patch 2, we saw another source of underprediction. This patch was inside a region with trees,
houses, and parallel small roads. These densely packed houses and trees may cause serious shadow
effects, leading to undetectable zones of constant low intensity (Figure 12c,d). Therefore, shadow was
an effect that the time series normalization would not be able to deal with.

One thing worth pointing out is that shadow and smooth surfaces usually cause overprediction in
the flood mapping with a single intensity image, while it causes underprediction in the log intensity
ratio method as well as our time series normalization method.

There is one more phenomenon that drew our attention: only a small portion of the Flooded
Vegetation was mapped as flooded (Figures 11e and 12e). Some of the tree patches showed significant
during-event intensity changes while others did not (Figure 11e). The logic behind the Flooded
Vegetation class is that since the small tree patches were surrounded by open water flood, backscattering
could be stronger when the radar wave penetrated the tree crown and reflected at the tree trunks and
at the water surface, or vice versa. This expected behavior was, however, only seen in 18% of the
Flooded Vegetation class, with another 12% seeing intensity decrease that could not be explained by the
double-bounce mechanism. Therefore, despite the higher probability of observing intensity increase as
compared with the Dry Vegetation class (Figure 10), it is likely that the backscattering for this class
was the combination of changes in trees and flood. There is no easy way to separate the contribution
from these two mechanisms. We had quickly tested to re-categorize this class as nonflooded, and this
gave better overall OA (+2%) and PA (+4.5%) but lower CSI (−1.4%) and UA (−8%) (Table 2). As tree
penetration capability is also a function of radar wavelength and polarization [35], there may not be a
single answer to what would be the most appropriate way to validate the flood mapping in this class.
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Figure 11. The during-event aerial photo for patch 1 (see Figure 6a for location), overlaid with (a) the
land cover classes in vector format, and (b) the rasterized land cover map in 15 × 15m resolution.
(c) The pre-event satellite image overlaid with the Dry class for reference. The white dashed lines
represent asphalt driveways. (d) The contingency map for the Flood class. (e) The contingency map for
the Flooded Vegetation class.
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Figure 12. Same caption as Figure 10 but for patch 2. See Figure 6a for location.

6.3. Source of Overprediction

A large proportion of overprediction (FP) was seen in the Permanent Water class (Figure 10). One
example is in patch 3, where part of the pond water was mapped as flooded (Figure 13a-c). When we
compared the pre-event and during-event optical images, we observed that some of the ponds were
possibly vegetated with aquatic plants. As aquatic plants such as macrophytes are known to cause
high backscattering intensity in C-band SAR [35], it is likely that we would see a during-event intensity
decrease when the pond water level increased higher than the plants. Vegetation in the permanent
waterbody is, therefore, one potential source of overprediction.

Another source of overprediction comes from the during-event intensity increase in the Dry
class (Figure 11). One example is shown in patch 4, in which the soil underneath the sparse low
meadow appeared darker in the during-event aerial image (Figure 12e) than the pre-event satellite
image (Figure 12d); However, there was no water visible on the surface. This is a known effect of
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soil moisture, where the rise in soil moisture will also give rise to a radar backscattering intensity
increase [36,37]. This effect is more obvious in bare soil or sparse meadow land cover types and, hence,
affects more the prediction of rural floods than urban floods.

Finally, the increase in backscattering intensity from buildings, possibly due to cumulated water
on the roof, also accounted for some overprediction in the Dry class, although the proportion was
relatively small in this case study.

Figure 13. The (a) pre-event optical image and (b) during-event aerial photo for patch 3. See Figure 6a
for location. (c) The contingency map for the Flood class. (d–e) Same as (a–b) for patch 4. (f) The
contingency map for the Dry class.

7. Conclusions

In this paper we presented an approach to utilize multitemporal SAR intensity information in a
Bayesian probability framework for mapping floods in Lumberton, North Carolina, caused by the 2016
Hurricane Matthew. We normalized during-event SAR intensity observations with statistics from the
SAR intensity time series, and we computed the flood probability with prior and likelihood functions.
Flood detections based on a cutoff probability of 0.5 showed improved performance when compared
with results from an approach that used the optimal uniform threshold in pre- and during-SAR
intensity pair analyses. The mapping result showed that a high percentage of the urban flood was
associated with SAR intensity increase (double-bounce effect), and the urban flood in Lumberton
was a complicated mosaic of pixels, with during-event intensity increase and intensity decrease as
well as pixels without significant intensity changes. Underprediction was as high as 50%, which we
interpreted to be mainly associated with asphalt surface cover and shadow effects. Overprediction is
possibly related to vegetation in permanent water bodies and local soil moisture increase.
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Abstract: Floods frequently occur in Nigeria. The catastrophic 2012 flood in Nigeria claimed 363 lives
and affected about seven million people. A total loss of about 2.29 trillion Naira (7.2 billion US Dollars)
was estimated. The effect of flooding in the country has been devastating because of sparse to no flood
monitoring, and a lack of an effective early flood warning system in the country. Here, we evaluated
the efficacy of using the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage
anomaly (TWSA) to evaluate the hydrological conditions of the Lower Niger River Basin (LNRB) in
Nigeria in terms of precipitation and antecedent terrestrial water storage prior to the 2012 flood event.
Furthermore, we accessed the potential of the GRACE-based flood potential index (FPI) at correctly
predicting previous floods, especially the devastating 2012 flood event. For validation, we compared
the GRACE terrestrial water storage capacity (TWSC) quantitatively and qualitatively to the water
budget of TWSC and Dartmouth Flood Observatory (DFO) respectively. Furthermore, we derived
a water budget-based FPI using Reager’s methodology and compared it to the GRACE-derived
FPI quantitatively. Generally, the GRACE TWSC estimates showed seasonal consistency with the
water budget TWSC estimates with a correlation coefficient of 0.8. The comparison between the
GRACE-derived FPI and water budget-derived FPI gave a correlation coefficient of 0.9 and also
agreed well with the flood reported by the DFO. Also, the FPI showed a marked increase with
precipitation which implies that rainfall is the main cause of flooding in the study area. Additionally,
the computed GRACE-based storage deficit revealed that there was a decrease in water storage prior
to the flooding month while the FPI increased. Hence, the GRACE-based FPI and storage deficit
when supplemented with water budget-based FPI could suggest a potential for flood prediction and
water storage monitoring respectively.

Keywords: flood; FPI; GRACE; terrestrial water storage anomaly; storage deficit

1. Introduction

Flooding is a major disaster in Nigeria, especially along the Niger and Benue Rivers. In Nigeria,
it occurs in three main forms: Coastal floods which occur in mangrove and delta coastlines; river
floods which occur on the flood plains of large rivers; and flash floods which are short-lived events
developing in less than 6 hours from rainfall to the onset of flooding [1,2].

In 2012, heavy rainfall during the wet season combined with the release of water from Ladgo
Dam in Cameroon led to a catastrophic flooding event that affected 30 states out of the 36 states of the
country. The flooding which was described by the Nigeria National Emergency Management Agency
as the worst in 40 years, claiming 363 lives, affecting about 7 million people, while a total loss of about
2.29 trillion Naira (7.2 billion US Dollars) was estimated.

The developed countries are still affected by disasters resulting from floods but have flood alert
systems (such as the European Flood Alert System [3] and the US National Weather Service Automated
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Flood Warning System [4]) in place which are effective in providing a monitoring and warnings service.
A significant portion of the economic losses caused by floods occur in developing countries where
ground flood monitoring and management programs are still inefficient, and the costs of building water
control infrastructure such as dams, weirs, embankments and gauging stations can be prohibitive [5].
Also, ground-based methods used to monitor floods are based on hydro-meteorological data such as
discharge and precipitation which are time-consuming in terms of collection and processing and are
also affected by varying weather conditions. Furthermore, worthy of mentioning is the recent problem
of security in Nigeria which may also inhibit the installation of these systems.

Over the years, there have been novel advances on remote sensing for forecasting and monitoring
hydrological extremes such as floods and droughts. Victor [6] studied the use of satellite data for
flood delineation, monitoring and prediction. Nasreddine et al. [7] developed a new flood forecasting
approach for flood disaster management in poorly or totally ungauged watersheds using precipitation
measurements. Sheffield et al. [8] and Zhang et al. [9] applied satellite data to monitoring and
forecasting drought.

In recent decades, satellite data availability has improved dramatically and to complement the
ground-based observations, flood monitoring has increasingly relied on the products obtained
with space-borne sensors such as National Aeronautics and Space Administration (NASA)
advanced microwave scanning radiometer for EOS (AMSR-E) [10] and moderate resolution imaging
spectroradiometer (MODIS) [11]. Zhan et al. [12] explored the marginal benefit of incorporating
space-borne soil moisture measurements into a hydrologic model for improved streamflow and flood
prediction. They incorporated the surface soil moisture data from the AMSR-E into the Noah land
surface model within the land information system (LIS). Their findings suggested the potential for
improving flood forecasting through the assimilation of remotely sensed soil moisture data into
a hydrologic model. Among the remote sensing products that have been used for flood monitoring,
prediction and forecasting, data from the Gravity Recovery and Climate Experiment (GRACE) [13,14]
are unique in that the changes in the amount of terrestrial water can be directly measured.

The GRACE satellite mission was launched in March 2002. It presents a means to observe
monthly variations in total/terrestrial water storage within large (>200,000 km2) river basins based
on measurements of changes in Earth’s gravity field [15]. These changes result when the amount of
water stored in a region increases or decreases, which produces a ripple effect leading to the gravity
signal in that region increasing or decreasing proportionately. The predictive ability of a GRACE-based
flood potential has been compared to flood prediction models that use traditional input data sources
such as river heights, snow amounts and the wetness of surface soils [16]. The method of GRACE
storage deficit estimates could be used in combination with traditional remote sensing methods of
precipitation forecasting to help assess the likelihood for flooding [16]. However, their reliability and
efficacy for applications in developing countries need to be assessed due to the sparse availability of
ground measurement data.

Reager and Famiglietti [17] proposed the flood potential index (FPI) to estimate flood risks
worldwide based on GRACE terrestrial water storage anomaly (TWSA) and precipitation records.
A qualitative comparison of FPI with a record of observed floods from the Dartmouth Flood Observatory
(DFO) data set suggested that the proposed FPI product is useful for flood risk assessment in most
regions [17].

Molodtsova et al. [18] tested the FPI in the United States where a dense network of flood gauges
has been established, and reported that, potentially, a greater use of this method is in developing
countries, where due to inadequate monitoring capability, floods tend to cause significant damage and
the most loss of life. Additionally, they reported that floods in African countries, as found through the
DFO database, are mainly caused by heavy rainfall events, for which the FPI seems to perform well in
predicting flood potential.

Molodtsova et al. [18] went further to study the Juba–Shabelle River Basin, a 783,000 km2 watershed
shared between Somalia and Ethiopia, and found an increasing FPI was in the watershed one month
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prior to the flood and during the month of the flood, where both predictions agreed well with the actual
flood extent area reported by the DFO. Based on their analysis, they inferred that developing countries
with sparse or inadequate flood monitoring networks are potential beneficiaries of this approach.

Sun et al. [19] evaluated the GRACE FPI over the Yangtze River Basin (YRB) in China and
suggested that estimates of terrestrial water storage based on GRACE, measured as FPI, are critical for
understanding and predicting flooding. Thus, they concluded that GRACE data can be effectively
used for monitoring and examining large floods in the YRB and elsewhere.

For our study, we chose the Lower Niger River Basin, Nigeria (Figure 1) as our area of interest,
and the flooding event in 2012 as our case study (Table 1) because it was the worst in 40 years.
We investigated the capacity of the GRACE TWSA (terrestrial water storage capacity, TWSC) in
accurately capturing and predicting the 2012 flood event, and other flood years within the basin.
We also evaluated the hydrological condition of the basin in terms of the available storage and
predisposition to flooding. The GRACE-derived FPI was validated using the DFO report and compared
to a water budget-derived FPI.

Figure 1. Map showing the boundaries of the Lower Niger River Basin in Nigeria with the states prone
to Flooding (Nigeria National Emergency Management Agency).
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2. Data and Methods

2.1. Study Area

The Lower Niger River Basin (LNRB) is so termed because of its location within the Niger River
Basin (NRB). Located in West Africa, the NRB covers 7.5% of the continent and cuts across ten countries.
With a total area of approximately 2.2 million km2 and a total length of 4100 km, the NRB is the
third-longest river in Africa. It is divided into four parts, the Upper Niger River System, the Inner
Delta, the Middle Niger River System and the LNRB. The major river within the basin is the Niger
River which starts in the highlands of Guinea (upstream) threading eastwards mainly through Mali,
Niger and Nigeria (downstream) before entering the Gulf of Guinea to the Atlantic Ocean. Its unusual
crescent shape takes it inland towards the Sahara before turning south-west to the Gulf. Along its
route, the river hydrology changes from its rain-fed headwaters, it loses flow and volume as it nears
the Sahara where it forms an inland delta. The inland delta is an area of high evaporation that is
composed of a number of slow-moving channels. Only after the Benue River joins the river in Nigeria
does it become a large river once more. The Benue River (Figure 1) which is the major tributary that
feeds the Niger River Basin in Nigeria meets the Niger River (Figure 1) to form a confluence in Lokoja
(Figure 2), Nigeria. Rivers Niger and Benue (Figures 1 and 2) are the two largest rivers in West Africa.
The water in the Niger River is partially regulated through dams.

In September, the Benue reaches its flood level. It begins to fall in October and falls rapidly in
November, continuing slowly over the next three months to reach its lowest level in March and April.
Annually, these rivers experience flooding as a result of the annual heavy rainfall which coincides with
the wet season in Nigeria [21] and because of poor urban planning, settlements located within the
floodplains and in the proximity of the river get flooded [22] (Figure 2).

Figure 2. NASA’s Terra (Moderate Resolution Imaging Spectroradiometer) satellite images showing
the pre flood (normal river geometry) and post flood river geometry of the Benue River and Niger and
Benue confluence point. Post – flood image was captured in 2012. (Modified after [23])

In 2012, the flooding was devastating and in spite of the increasing awareness in combating flood
hazard in along the rivers, the menace had recurred. This is because past flood control strategies
have not achieved the desired result due to a lack of understanding of the hydrological variables that
influence the persistence of these floods. The Nigerian National Emergency Management Agency
(NEMA), in 2012 listed the flood-prone states in the country. Most of these states are within the LNRB
and along the Niger and Benue Rivers (Figure 1).

117



Remote Sens. 2019, 11, 1970

2.2. Datasets

2.2.1. GRACE Terrestrial Water Storage Anomaly Products

The three official solutions (spherical harmonics solutions), the JPL (Jet Propulsion Laboratory),
GFZ (GeoforschungsZentrum Potsdam) and CSR (Center for Space Research at University of Texas,
Austin) of the GRACE RL05 TWSA product [24] were downloaded (http://grace.jpl.nasa.gov),
from January 2004 to December 2012. The workflow in Figure 3 was applied to the datasets to
derive the TWSA for the baseline of the study. The scaling factor suggested by the GRACE Tellus
data portal [24] was applied to the GRACE data to account for the attenuation of small-scale surface
mass variations [25]. For some years within our baseline of our study, some monthly TWSA data were
missing. This is because, since early 2011, the GRACE instruments were periodically turned off due to
active battery management. Those months were not considered in our study.

Figure 3. The basic workflow for the gravity recovery and climate experiment (GRACE) RL05 processing.

2.2.2. Evaluation of GRACE and Water Budget Terrestrial Water Storage Change (TWSC)

The GRACE TWSA was evaluated against the traditional water balance estimates before being
used in generating the FPI. First, we calculated the TWSC from GRACE TWSA, then from the traditional
water budget equation. The following water balance equation was used:

ds
dt

= P−R− ET − SM−GW (1)

where ds
dt is the monthly change in terrestrial water storage, P is monthly precipitation, R is a monthly

runoff, ET is monthly evapotranspiration, SM is soil moisture and GW is groundwater.
The change was calculated for our time steps using Equation (2).

ds/dt = TWSC(t) − TWSC(t− 1)/t (2)

For this study, the water balance data (P, R, ET, SM and GW) were obtained from the eartH2Observe
water cycle integrator (WCI) [26].
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2.2.3. Global Precipitation Climatology Centre (GPCC)

The 1 × 1 GPCC precipitation data, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA [27] were used for deriving the FPI. Monthly data from January 2004 to December 2012 were
downloaded while the datasets corresponding to the missing datasets in GRACE TWSA were removed
to create consistency in data comparison.

2.2.4. Dartmouth Flood Observatory

Since ground flood monitoring data range from sparse to not available in the study area, the DFO
data were used as validation of the performance of the DFO data beginning in 1985 and is based
on flood reports from news and governmental sources and therefore mainly refers to large floods in
densely populated regions. It also classifies a large flood event by the significant damage to structures,
agricultural land, loss to human life and/or long duration [18]. The DFO data was downloaded as
a GIS shapefile set providing catalog numbers and area affected map outlines, with much of the tabular
attribute data (e.g., dates, duration and fatalities) also included. It is worthy of note that DFO data are
mainly based on media reports which are expected to be biased towards the more densely populated
regions and/or regions of interest [18].

2.3. Methods

2.3.1. GRACE-Derived Flood Potential Index

We followed the methodology proposed by Reager and Famiglietti [17] to compute monthly
2004–2012 FPI for the study area using the GRACE TWSA product. For each grid, we defined and
computed the maximum water storage capacity (Smax) and storage deficit (Sdef ). Smax is the historic
maximum water storage capacity of the soil within a region [17] which for our study area we estimated
to be the maximum of GRACE TWSA for LNRB from 2004 to 2012. The Sdef, which represents the
available water on land before obtaining Smax, was calculated for each grid and month:

Sde f (t) = Smax− TWSA(t− 1) (3)

where TWSA(t − 1) is the saturation condition of the soil from the previous month [18]. The storage
deficit shows how much more water the soil within an area can store before achieving the maximum
capacity and was computed using the data from the previous month thus establishing a potential for
forecasting. It is, however, expected that Sdef is low during wetter parts of the year and high during
the drier part of the year. For visualization, Sdef for the study area was normalized to display the
hydrological state of the basin in terms of available water.

GPCC monthly precipitation anomalies (P) were multiplied by the length of each month to
estimate the amount of rainfall (in cm) that fell in the averaging interval:

Pmon(t) = P(t)dt. (4)

Example of GRACE TWSC, Sdef and Pmon are shown in Figure 7 for 9.5◦N, 12.5◦E. The flood
potential (F) for the month (t) was computed by:

F(t) = Pmon(t) − Sde f (t) (5)

where Pmon is monthly precipitation. Flood potential, F (t) is the quantity of incoming water that
cannot be stored based on the basin exceeding its maximum storage capacity. A high probability
of flooding in the current month would mean a low storage deficit and high precipitation for the
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previous month [17]. The flood potential was further normalized to derive the Reager’s flood potential
index (FPI):

FPI(t) = F
t

max[F[t]]
. (6)

The values of FPI vary from −∞ to 1 with positive values indicating that water input from
precipitation is above the mean water storage and should be interpreted as a potential risk for
flooding [17]. When normalized FPI nears 1, it indicates an abnormally high difference between
precipitation and regional storage ability and therefore high flood likelihood [17]. The derived FPI was
qualitatively validated against the DFO observational flood datasets.

2.3.2. Water Budget-Derived Flood Potential Index

The methodology in Section 2.2.1 was used in estimating the water budget FPI. The water
budget Smax was estimated from the time series of the water budget TWSC. Then we calculated the
water budget-based Sdef using Equation (3) and flood potential using Equation (5). For consistency,
we used the GPCC precipitation in the equation for calculating the water budget flood potential.
Using Equation (6), we derived the water budget-based flood potential index.

3. Results

3.1. Analysis of GRACE TWSA and Validation

We compared the three official GRACE TWSA data to each other and generated the time series
for the three solutions which gave a correlation coefficient of approximately 0.99 (Figure 4) showing
similar accuracy although processed using different solutions. As a result, we used the ensemble
mean [28,29] from the three solutions in our analysis.

Figure 4. GRACE terrestrial water storage anomaly (TWSA) time series for the three solutions: CSR,
GFZ and JPL for 9.5◦N, 12.5◦E from 2004 to 2012.

Furthermore, the time series of the GRACE-based TWSC and the derived water budget-based
TWSC estimates show a considerable consistency with a correlation coefficient of 0.8. Additionally,
they both are generally negative during the dry months (November to March) and positive during the
wet months (April to October). Figures 5 and 6 display the graphical relationship between GRACE
TWSC and water budget TWSC in the LNRB.

3.2. Hydrological State of the LNRB

Figures 7 and 8 graphically explain the relationship among the variables; GRACE-based TWSC,
water budget-based TWSC and their respective Sdef and Pmon. It also shows how an increasing
GRACE and water budget TWSC increases with precipitation, while there is a decrease in available
storage relative to the other variables. The months during which these three variables intersect implies
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a potential for flooding to occur. In the LNRB, 2005, 2007, 2008, 2009, 2010, 2011 and 2012 were flooding
years [22,30,31] which is consistent with Figures 7 and 8. Figure 7 also reveals that the 2012 flood was
the worst event among all.

Figure 5. Comparison between GRACE terrestrial water storage capacity (TWSC) and derived water
balance TWSC from 2004 to 2012 at the location of longitude 12.5 and latitude 9.5.

Figure 6. Scatterplot for GRACE TWSC and water budget-derived TWSC.

Figure 7. Variations in time series of monthly GRACE TWSC, storage deficit and precipitation for
longitude 12.5 and latitude 9.5 from 2004 to 2012.
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Figure 8. Variations in time series of monthly water budget TWSC, storage deficit and precipitation at
the location of longitude 12.5 and latitude 9.5 from 2004 to 2012.

3.2.1. Precipitation within the LNRB

Rainy season varies for different geopolitical zones in Nigeria which by extension is applicable to
the LNRB. The GPCC precipitation data corresponds to the wet season within the basin (Figure 8).
The rainy season is between April and October. The driest months are January and December which
implies 0 precipitation in both January and December. The peak month in the north is August and
September in the south, which agrees well with our results as shown in Figure 9.

Figure 9. Spatiotemporal distribution of precipitation in the Lower Niger River Basin (LNRB) in 2012
from January to December. June and November were not displayed so as to show consistency when
compared to GRACE data.
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3.2.2. GRACE-Based Storage Deficit within the LNRB

Zooming in to the 2012 flood year in the LNRB, Figure 10 visually depicts how the available
storage changes from surplus to deficit; because the storage deficit was derived using GRACE TWSA
from the previous month, the amount of available storage for the coming month was approximated.
For example, as shown in Figure 10, available storage for the month of September 2012 was derived
using the GRACE TWSA from August and the result shows a low Sdef for September 2012. With this,
we estimate the amount of hydrological input necessary to cause the system to flood, hence, establishing
the potential for flood prediction. Comparing Figures 9 and 10, we can infer that the available storage
began to decline from the rainfall peak months, August and September.

Figure 10. Spatiotemporal display of storage deficit (Sdef ) (normalized) in the LNRB from January to
December 2012. May and October 2012 are missing months in the GRACE TWSA time series due to
battery management. Hence, no Sdef and flood potential index (FPI) for June and November. The red
color shows areas with low Sdef while the blue areas represent areas with high Sdef.

3.2.3. GRACE Flood Potential Index (FPI)

The FPI for 2012 in the LNRB is shown in Figure 10. When compared to Figure 8, one could
see how sensitive the index is to precipitation. Different areas within the basin experiences flooding
at different rainfall peak times as shown in Figure 10. However, according to the Nigerian NEMA,
in September 2012, 30 out of 36 states in Nigeria was affected by flooding which corresponds to the
prediction by the FPI.

3.2.4. GRACE-Based RFPI Validation

We validated the GRACE-based FPI both quantitatively and qualitatively. The derived GRACE-based
FPI was quantitatively compared to the water budget-derived FPI from 2004 to 2012 (Figure 11) and
qualitatively validated against the DFO flood data for September 2005, 2007, 2009 and 2012 (Figure 11).
We found a good agreement between the FPI derived from GRACE and water budget estimates
as shown in Table 2, Figures 11 and 12. Figure 13 shows that both GRACE-based FPI and water
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budget-based FPI trend in the same direction. Table 2 further shows the similarities between the FPI
from GRACE and water budget.

Statistical Test for GRACE and Water Budget Flood Potential Index

For statistical significance, we posed a question of whether there is a significant difference in the
flood potential derived using GRACE TWSC and water budget TWSC. We used a Wilcoxon rank-sum
test to test the null hypothesis that there is no difference between the FPI estimates. We also tested
an alternative hypothesis, that there is a difference between the FPI estimates. Using an Alpha level of
0.05, our result showed that we can accept the null hypothesis, and at P > 0.05, we have no reason to
reject the null hypothesis that there is no difference in the flood potential estimates.

Figure 11. Scatterplot for GRACE-derived FPI and water budget-derived FPI.

Figure 12. Graphical comparison and validation of FPI from GRACE using the FPI from water
budget estimates.

Table 2. Tabular representation of the comparison between FPI from GRACE and water budget estimates.

Years Flood Potential Index

September GRACE-Based FPI Water Budget-Based FPI

2005 0.2 −0.3
2006 0.6 0.2
2007 0.7 0.3
2009 −0.3 −0.2
2010 0.4 0.2
2012 0.9 0.1
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Figure 13. Trend plots for GRACE-derived and water budget-derived FPIs.

We chose big flood events that got publicity within our period of study so as to see how well the
GRACE-based FPI compares to the DFO reported floods. However, because the DFO flood report is
based on news, it is more biased towards urban flood events. These flood events reported in our study
area in September 2005, 2007, 2009 and 2012 were also predicted by the GRACE-based FPI (Figure 14).
Also, the FPI values from GRACE (Table 3) predicted flooding for the flood-prone/worst-hit state in
September 2012 as reported by the Nigerian NEMA.

Figure 14. Comparison between GRACE-based FPI predicted floods and DFO reported floods.
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Table 3. GRACE-based FPI values for the flood-prone/worst-hit states in September 2012.

Year Flood Prone States FPI

2
0

1
2

Adamawa 1
Anambra 0.5
Bayelsa 0.4
Benue 0.8
Delta 0.5
Edo 0.4

Kebbi 0.5
Kogi 0.7

Kwara 0.5
Nassarawa 0.4

Niger 0.8
Rivers 0.7
Taraba 0.6

4. Discussion

Reager and Famiglietti [17] demonstrated that GRACE TWSA data can reveal when river basins
have been filling with water over several months, when it rains, and the basin becomes full, and floods.
The available storage or Sdef for LNRB (Figure 10) began to decrease August to October 2012 which
represents the peak rainy season in the study area. Further, since soil moisture is critical in the accurate
prediction of floods and general runoff [17], the storage deficit serves as an indicator in flood studies.
The correlation coefficients of –0.7 for storage deficit and precipitation shows the inverse relationship
that exists between the two variables which further supports the conclusion made by Reager and
Famiglietti [17] that the storage deficit can be used with traditional methods of precipitation forecasting
to determine the likelihood for flooding during the coming weeks. We also analyzed the relationship
between storage deficit and FPI and found that storage decrease with an increase in the potential for
flooding had a correlation coefficient of -0.8.

The FPI seems to perform well where flooding is mainly caused by heavy rainfall events [18]
which was the case in Nigeria and by extension, LNRB. Heavy rainfall that occurred in August and
September 2012 caused the major rivers, especially the Benue River, to overflow its banks, which led
to authorities releasing water from the dams located within the basin (Cameroon). For our analysis,
the FPI captured and predicted the flood events in LNRB in 2012 (Figures 12 and 15) which was also
reported by the Nigerian NEMA and DFO (Figure 14) [30,31]. For validation of the GRACE-based FPI
using the water budget-derived FPI, we tested the hypothesis that there is no difference between the
indices using the alpha value of 0.05. With a correlation coefficient of 0.9 and P > 0.05 we have no
reason to reject the null hypothesis.

The GRACE-based FPI and storage deficit, though invaluable, have limitations. The coarse spatial
(>200 km2) and temporal (monthly) resolutions of the GRACE data also makes it limited and unsuitable
for forecasting local scale and flash floods [15,18], which may, therefore, make the FPI less effective.
It has, however, an unequaled capability to monitor available water storage when combined with
precipitation forecasting data and could increase warning lead time from one month to two months [17].

However, the relationship between the GRACE and water budget-based FPI shows promise when
finer spatial and temporal resolutions data are used in deriving water budget TWSC (Equation (1)),
thus making it a supplement to the GRACE-based FPI and possibly reducing the limitation of the
GRACE TWSA.
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Figure 15. Spatiotemporal distribution of the flood potential index for 2012 in the LNRB. The red and
blue areas indicate high and low probability or likelihood of flooding. According to the Nigerian
National Emergency Management Agency (NEMA), 30 out of 36 states experienced flooding.

5. Conclusions

We estimated the hydrological conditions of the study area in terms of available storage and
precipitation prior to the 2012 catastrophic flood using GRACE TWSA and GPCC data respectively.
We also validated the GRACE TWSC using the water budget estimates TWSC, calculated the
GRACE-based FPI for the basin, quantitatively and qualitatively compared the result to the water
budget-based FPI and DFO flood report respectively. Based on our findings, we can make the
following conclusions.

The GRACE TWSA and the derived FPI are both sensitive to precipitation by showing peaks and
troughs in their time series which corresponds to wet season (peak) and dry season (trough). Based on
the hydrological conditions of the study area in terms of precipitation and antecedent water storage
state prior to flooding, the basin had a high amount of rainfall in August 2012 and could not balance
the amount of incoming precipitation for September 2012 which then led to flooding.

The GRACE TWSA limitations could be managed assuming the GRACE-based FPI is supplemented
with the water budget-derived FPI and using the water budget TWSC calculated from lower spatial
and temporal data.

Therefore, the GRACE-based TWSA, Sdef and FPI in combination with other precipitation
forecasting data and water budget-based TWSC/FPI could be utilized for operational flood monitoring
in developing countries like Nigeria, where the unavailability of technical manpower, security and
the cost of implementing and installing sophisticated flood monitoring/predicting measures could be
prohibitive. In terms of cost, most satellite data are relatively cheap and readily available. Additionally,
the current issue of security in some of the northern parts of the country prone to flooding might hinder
the installation of flood monitoring devices, thus making remote-sensing products a viable option and
an invaluable resource in flood studies in regions with little or no flood monitoring data.

127



Remote Sens. 2019, 11, 1970

Author Contributions: Conceptualization, D.I. and W.Z.; methodology, D.I. and W.Z.; validation, D.I.; formal
analysis, D.I.; data curation, D.I.; writing—original draft preparation, D.I.; writing—review and editing, W.Z.;
visualization, D.I.; supervision, W.Z.; project administration, W.Z.; funding acquisition, W.Z. and D.I.

Funding: This work was funded by the American Association of University Women (AAUW) scholarship in 2018,
and the Chevron international fellowship at the Colorado School of Mines in 2019.

Acknowledgments: We acknowledge the use of data products or imagery from the Land, Atmosphere Near
real-time Capability for EOS (LANCE) system operated by NASA’s Earth Science Data and Information System
(ESDIS) with funding provided by NASA Headquarters. Special thanks to Stephen Semmens, Ashton Krajnovich
and Kendall Wnuk for offering their constructive feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Folorunsho, R.; Awosika, L.F. Flood Mitigation in Lagos, Nigeria through Wise Management of Solid Waste:
A Case of Ikoyi and Victoria Islands, Nigeria. Paper Presented at the UNESCO—CSI Workshop Maputo,
Maputo, Mozambique, 19–23 November 2001.

2. Olajuyigbe, A.; Rotowa, O.; Durojaye, E. An assessment of flood hazard in Nigeria: The case of mile 12,
Lagos. Mediterr. J. Soc. Sci. 2012, 3, 367–375.

3. Bartholmes, J.C.; Thielen, J.; Ramos, M.H.; Gentilini, S. The European flood alert system EFAS – Part 2:
Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci.
2009, 13, 141–153. [CrossRef]

4. Scawthorn, C. Modeling flood events in the US. In Proceedings of the Euro Conference on Global Change
and Catastrophe Risk Management, HASA, Laxenburg, Austria, 6–9 June 1999.

5. Tariq, M.A.U.R. Risk-Based Planning and Optimization of Flood Management Measures in Developing
Countries: Case Pakistan. Ph.D. Thesis, VSSD, Delft University of Technology, Delft, The Netherlands, 2012.

6. Victor, K. Remote Sensing of Floods and Flood-Prone Areas: An Overview. J. Coast. Res. 2015, 31, 1005–1013.
7. Nasreddine, B.; Feng, Z.; Luca, B.; Yanbo, H.; Yumin, T. Near-Real-Time Flood Forecasting Based on Satellite

Precipitation Products. Remote Sens. 2019, 11, 252. [CrossRef]
8. Sheffield, J.E.F.; Wood, N.; Chaney, K.; Guan, S.; Sadri, X.; Yuan, L.; Olang, A.; Amani, A.; Ali, S.; Demuth, L.

A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security.
Bull. Amer. Meteor. Soc. 2014, 95, 861–882. [CrossRef]

9. Zhang, X.; Tang, Q.; Liu, X.; Leng, G.; Li, Z. Soil Moisture Drought Monitoring and Forecasting Using Satellite
and Climate Model Data over Southwestern China. J. Hydrometeor. 2017, 18, 23. [CrossRef]

10. Hossain, F.; Anagnostou, E.N. Assessment of current passive-microwave- and infrared-based satellite rainfall
remote sensing for flood prediction. J. Geophys. Res. Atmos. 2005, 110, D07102. [CrossRef]

11. Brakenridge, R.; Anderson, E. Modis-Based Flood Detection, Mapping and Measurement: The Potential for
Operational Hydrological Applications. In Transboundary Floods: Reducing Risks Through Flood Management;
Marsalek, J., Stancalie, G., Balint, G., Eds.; Nato Science Series IV: Earth and Environmental Sciences; Springer:
Dordrecht, The Netherlands, 2006; pp. 1–12.

12. Zhan, X.; Ryu, D.; Crow, W. Improving Flood Prediction Through the Assimilation of AMSR-E Soil Moisture
Retrievals into a Hydrologic Model; American Geophysical Union, Fall Meeting Moscone Center: San Francisco,
CA, USA, 2006; abstract ID: H23E-1545.

13. Adam, D. Gravity measurement: Amazing GRACE. Nature 2002, 416, 10–11. [CrossRef] [PubMed]
14. Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Ries, J.C. Low degree gravitational changes from GRACE: Validation

and interpretation. Geophys. Res. Lett. 2004, 31, L22607. [CrossRef]
15. Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE Hydrological estimates for small basins: Evaluating

processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 2010, 46, W11517. [CrossRef]
16. Reager, J.T.; Thomas, B.F.; Famiglietti, J.S. River basin flood potential inferred using GRACE gravity

observations at several months lead-time. Nat. Geosci. 2014, 7, 588–592. [CrossRef]
17. Reager, J.T.; Famiglietti, J.S. Global terrestrial water storage capacity and flood potential using GRACE.

Geophys. Res. Lett. 2009, 36, L23402. [CrossRef]
18. Molodtsova, T.; Molodtsov, S.; Kirilenko, A.; Zhang, X.; VanLooy, J. Evaluating flood potential with GRACE

in the United States. Nat. Hazards Earth Syst. Sci. 2016, 16, 1011–1018. [CrossRef]

128



Remote Sens. 2019, 11, 1970

19. Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J. Assessing Terrestrial Water Storage and Flood Potential Using GRACE
Data in the Yangtze River Basin, China. Remote Sens. 2017, 9, 1011. [CrossRef]

20. IFRCS—International Federation of Red Cross and Red Crescent Emergency Appeal; Nigeria: Floods.
Available online: http://reliefweb.int/sites/reliefweb.int/files/resources/MDRNG01401.pdf (accessed on
10 January 2019).

21. Kwari, J.W.; Paul, M.K.; Shekarau, L.B. The Impacts of Flooding on Socio-Economic Development and
Agriculture in Northern Nigeria: A Case Study of 2012 Flooding in Yola and Numan Areas of Adamawa
State Nigeria. Int. J. Sci. Eng. Res. 2015, 6, 1433–1442.

22. Mazawaje, D.F.; Tsenbeya, I.T.; Ismaila, A.B. Analysis of the determinants of floods in Numan Town, Nigeria.
J. Environ. Sci. Eng. 2014, B3, 264–273. [CrossRef]

23. NASA Earth Observatory—Flooding in Nigeria. Available online: https://earthobservatory.nasa.gov/images/
79404/flooding-in-nigeria (accessed on 20 August 2019).

24. Swenson, S.C. GRACE Monthly Land Water Mass Grids NETCDF RELEASE 5.0 Ver. 5.0. PO. DAAC, CA,
USA, 2012. Available online: http://dx.doi.org/10.5067/TELND-NC005 (accessed on 20 September 2018).

25. Velicogna, I.; Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 2016,
311, 1754–1756. [CrossRef] [PubMed]

26. EartH2Observe project, Plymouth Marine Laboratory Remote Sensing Group, European Union’s Seventh
Programme for Research, Technological Development and Demonstration under Grant Agreement No. 603608.
Available online: https://wci.earth2observe.eu/ (accessed on 10 October 2018).

27. Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis
Version 6.0 at 1.0◦ Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic
Data 2011. Available online: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata_v6_doi_
download.html (accessed on 23 September 2018). [CrossRef]

28. Sakumura, C.; Bettadpur, S.; Bruinsma, S. Ensemble prediction and intercomparison analysis of GRACE
time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [CrossRef]

29. NASA-JPL. GRACE D-103133 Gravity Recovery and Climate Experiment Level-3 Data Product User Handbook;
NASA-JPL: Pasadena, CA, USA, 2019.

30. DFO (Dartmouth Flood Observatory), Global Active Archive of Large Flood Events. Available online:
http://www.dartmouth.edu/~{}floods/Archives/ (accessed on 14 December 2018).

31. Climate-Data.Org. Climate Adamawa. Available online: https://en.climate-data.org/africa/niger/zinder/
adamawa-349376/ (accessed on 22 February 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

129





remote sensing 

Article

Latest Geodetic Changes of Austre Lovénbreen and
Pedersenbreen, Svalbard

Songtao Ai 1,*, Xi Ding 1, Florian Tolle 2, Zemin Wang 1 and Xi Zhao 1

1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China;
dingxi@chinare.cn (X.D.); zmwang@whu.edu.cn (Z.W.); xi.zhao@whu.edu.cn (X.Z.)

2 ThéMA, CNRS, Université de Bourgogne Franche-Comté, 25030 Besançon, France;
florian.tolle@univ-fcomte.fr

* Correspondence: ast@whu.edu.cn

Received: 24 October 2019; Accepted: 2 December 2019; Published: 4 December 2019

Abstract: Geodetic mass changes in the Svalbard glaciers Austre Lovénbreen and Pedersenbreen were
studied via high-precision real-time kinematic (RTK)-global positioning system (GPS) measurements
from 2013 to 2015. To evaluate the elevation changes of the two Svalbard glaciers, more than 10,000
GPS records for each glacier surface were collected every year from 2013 to 2015. The results of
several widely used interpolation methods (i.e., inverse distance weighting (IDW), ordinary kriging
(OK), universal kriging (UK), natural neighbor (NN), spline interpolation, and Topo to Raster (TTR)
interpolation) were compared. Considering the smoothness and accuracy of the glacier surface, NN
interpolation was selected as the most suitable interpolation method to generate a surface digital
elevation model (DEM). In addition, we compared two procedures for calculating elevation changes:
using DEMs generated from the direct interpolation of the RTK-GPS points and using the elevation
bias of crossover points from the RTK-GPS tracks in different years. Then, the geodetic mass balances
were calculated by converting the elevation changes to their water equivalents. Comparing the
geodetic mass balances calculated with and without considering snow depth revealed that ignoring
the effect of snow depth, which differs greatly over a short time interval, might lead to bias in mass
balance investigation. In summary, there was a positive correlation between the geodetic mass
balance and the corresponding elevation. The mass loss increased with decreasing elevation, and the
mean annual gradients of the geodetic mass balance along the elevation of Austre Lovénbreen and
Pedersenbreen in 2013–2015 were approximately 2.60%� and 2.35%�, respectively. The gradients at
the glacier snouts were three times larger than those over the whole glaciers. Additionally, some
mass gain occurred in certain high-elevation regions. Compared with a 2019 DEM generated from
unmanned aerial vehicle measurement, the glacier snout areas presented an accelerating thinning
situation in 2015–2019.

Keywords: mass balance; snow depth; glacier retreat; surface DEM; elevation change

1. Introduction

Glaciers are an important component of the cryosphere, playing an important role in global climate
change, and are often considered to be essential climate indicators [1,2]. In light of rapid global climate
change, glacier loss is a major contributor to increases in sea level; therefore, glacier mass balance has
become an important subject of research [3,4]. There are various methods for estimating glacier mass
balance, including direct measurements by stakes and snow pit surveying [5,6], modeling methods
based on the high correlation between the mass balance and selected meteorological parameters [7],
and geodetic methods involving the comparison of two surfaces at different times [8,9]. To determine
the applicable cases for glaciological and geodetic methods, these methods are often compared for
validation and calibration [10–13].

Remote Sens. 2019, 11, 2890; doi:10.3390/rs11242890 www.mdpi.com/journal/remotesensing131



Remote Sens. 2019, 11, 2890

Svalbard (74◦N–81◦N; 10◦E–35◦E) is covered by a large number of small glaciers and ice caps,
which compose 60% of the archipelago [14]. The total glaciated area on Svalbard is 34,560 km2, which
is approximately 6% of the worldwide glacier cover, except for Greenland and Antarctica [15]. Most
glaciers in Svalbard are polythermal glaciers, which are sensitive to climate changes; therefore, it is
important for scientists to monitor and study the glaciers of Svalbard. Many scientists, especially
Norwegian scientists, have performed studies on the glaciers in Svalbard. The glaciers Kongsvegen and
Kronebreen have been widely studied for a significant amount of time [16]. Since the Chinese Arctic
Yellow River Station was built in 2004, Chinese researchers have focused on Arctic glaciers, carrying
out long-term studies on Austre Lovénbreen and Pedersenbreen in Svalbard [17]. Chinese researchers
have investigated the volume of Austre Lovénbreen and Pedersenbreen [18] and estimated the mass
loss of Pedersenbreen during the periods from 1936 to 1990 and from 1990 to 2009 [9]. The velocities of
the two glaciers have also been studied, and the latest research has discussed the fastest ice flow region
of Austre Lovénbreen by combining modeling methods with in situ surveying methods [19].

Since the Little Ice Age (LIA), the glaciers in Svalbard have been retreating. Bamber and others
suggested that an increased thinning trend occurred in recent years based on aerial surveys performed
in 1996 and 2002 [8]. Małecki concluded that mass changes became more negative in central Svalbard
glaciers by comparing elevation changes over the periods 1960–1990 and 1990–2009 [20]. Hagen et
al. estimated the annual mass balance for the whole of Svalbard to be −0.1 m water equivalent (w.e.)
during the period 1979–2000 [21]. Nuth and others estimated that the annual mass balance of the
southern and western Spitsbergen glaciers in Svalbard during the period 1936–1990 was −0.30 m w.e,
according to geodetic mass balance estimate from aerial photography [22]. Norwegian researchers
observed the mass balance of the two glaciers, Austre Broggerbreen and Midtre Lovenbreen, adjacent
to Austre Lovénbreen during the period 1966–1988, finding that the ice surface decreased by 8.9 m
and 7.5 m, respectively [14]. A French team comprehensively investigated Austre Lovénbreen, and
concluded that the annual mass balance of the glacier during the period 1962–2013 was around −0.2 m
w.e., and the annual mass balance in 2008–2015 was about −0.4 m w.e. [23]. In our study, we mainly
used real-time kinematic global positioning system (RTK-GPS) data to map the surface topography and
analyze the interannual geodetic mass balance of Austre Lovénbreen and Pedersenbreen via elevation
changes, which is of significance as a reference for traditional glacier mass balance estimates.

2. Study Area

The glaciers Austre Lovénbreen (12.09◦E; 78.527◦N) and Pedersenbreen (12.175◦E; 78.515◦N) are
located in Svalbard in the Arctic (Figure 1) and are 6.2 km and 10 km away from the Chinese Arctic
Yellow River Station, respectively. These two glaciers are recognized as polythermal valley glaciers,
lying in a mountainous area, with the highest peak reaching 1017 m. Austre Lovénbreen has an area of
4.5 km2 with an altitude between 50 m and 550 m [23]. According to previous research, the glacier
valley of Pedersenbreen is V-shaped rather than U-shaped [18], with an area of approximately 5.6 km2

and an altitude between 60 m and 650 m. Pedersenbreen has a narrower snout than Austre Lovénbreen,
and both glaciers are relatively flat, and both are covered with small amounts of debris as the elevation
increases gradually from the north to the south.
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Figure 1. (a) Sketch view of Austre Lovénbreen and Pedersenbreen and (b) the locations of the glaciers
in Svalbard.

The Svalbard area, where the two glaciers are located, has a polar oceanic type climate mainly
affected by the North Atlantic current. This climate is characterized by cooler summers and warmer
winters than other regions with similar latitudes [24]. According to the weather station in Ny-Ålesund,
where the Chinese Arctic Yellow River Station is located, the annual mean temperature during the past
30 years (1981–2010) was −5.2 ◦C, with the mean temperatures of 3.8 ◦C and −12 ◦C of summer and
winter, respectively. The annual average precipitation is 427 mm w.e., which is mainly concentrated
in winter and autumn dominated by snow [25]. The annual temperature and precipitation during
the earlier period (1961−1990) were −6.3 ◦C and 385 mm, respectively, indicating that an obvious
climate change occurred in the different periods [25]. Overall, the entire archipelago has experienced a
warming trend of approximately 0.5 ◦C every decade since 1960 [26].

3. Data and Methods

3.1. Data

The 20-stake observation network on Austre Lovénbreen and five observation stakes along the
central line of Pedersenbreen were placed in July 2005 [27]. The movement of these stakes has been
annually monitored with high-precision GPS instruments for glacial movement and mass balance
studies [17]. In April 2013, April 2014, and May 2015, high-density RTK-GPS points on the surface
of Austre Lovénbreen and Pedersenbreen were collected via a snowmobile carrying GPS equipment,
and the GPS tracks are shown in Figure 2. The base station is located at the Yellow River Station in
Ny-Ålesund. The main purpose of this survey was to map the surface digital elevation model (DEM)
and to estimate surface changes. The height data from the GPS measurements were ellipsoidal heights,
which needed to be converted into altitudes above sea level. An elevation benchmark near the glaciers
(<10 km) was set in Ny-Ålesund. According to a previous study [18], the geoidal height at this point
was calculated as 35.158 m, which was used to convert the measured GPS heights to altitudes above
sea level. Because we used the relative change of elevations in this study, the tectonic movement at
Ny-Ålesund was neglected, since the two glaciers move together with the earth’s crust motions.
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Figure 2. Real-time kinematic global positioning system (RTK-GPS) tracks in different years: (a) 2013,
(b) 2014, and (c) 2015.

In order to evaluate the quality of the RTK surveys, all crossover points between different RTK
profiles in one survey period were picked out, and the height differences of crossover points are shown
in Table 1. In general, these small elevation differences proved the relatively high precision of the field
surveys in 2013–2015.

Table 1. Elevation differences of the crossover points between different RTK (real-time kinematic) profiles.
The Mean and RMSE (root mean square error) are the primary indicators for data quality evaluation.

Austre Lovénbreen Pedersenbreen

Year Count RMSE Max Mean Count RMSE Max Mean

2013 332 0.078 m 0.779 m −0.020 m 143 0.080 m 0.313 m −0.007 m
2014 573 0.061 m 0.582 m 0.002 m 527 0.080 m 0.437 m 0.000 m
2015 766 0.097 m 1.147 m −0.011 m 307 0.077 m 0.367 m 0.004 m

Snow cover measurements were performed on Austre Lovénbreen in April of 2013, 2014, and
2015 by a French team working in the area. A Pico drill was used to measure the depth and density of
the snow covering the glacier. In addition, ArcticDEM [28] topographic data and ice-surface DEMs of
the glacier snouts created by unmanned aerial vehicle (UAV) photogrammetry in 2019 were employed
as supplementary data for the investigation of geodetic changes.

3.2. Comparison of Interpolation Methods

Different DEM resolutions have an important impact on ice-surface-elevation change studies [29].
To reveal the impact of different resolutions on the interpolation results and to select a suitable
interpolation resolution, we compared different interpolation resolutions, including 0.2 m, 0.5 m, 1 m, 2
m, and 5 m. According to previous studies, interpolation is an important source of uncertainty in mass
change studies using DEMs [30,31]. Different interpolation methods need to be compared to determine
the most suitable method for generating the DEM. Several widely used interpolation methods were
examined—inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), natural
neighbor (NN), spline interpolation, and Topo to Raster (TTR) interpolation. IDW determines z-values
using a linearly weighted combination of a set of sample points. The influence of known points on the
interpolated values, based on their distance from the output point, can be controlled by defining the
power. Kriging is an advanced geostatistical procedure that generates an estimated surface from a
scattered set of points via z-values; it requires previous exploratory work on input data to determine
the parameters that have an important impact on the interpolation results [32]. Two widely used
kriging methods are OK and UK. OK assumes that the variation in the z-values is free of drift. UK is a
typical geostatistical method that is based on spatial autocorrelation models. It assumes that the spatial
variation in the z-values is determined by the drift and a random error [33] and is suitable for data
with an obvious trend. The NN approach interpolates a value by finding the closest subset of input
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samples to an unknown point and applies weights to them based on their proportionate areas [34].
The surface interpolated by splines passes through the input samples and is smooth everywhere except
at the locations of the input samples [35]. TTR is based on thin-plate smoothing splines; it creates
smooth, continuous surfaces passing through all the input points and aims to produce a raster of the
drainage structure [36]. In this study, we selected a spherical model as the semivariogram model for
OK, a linear drift model for UK, and a regularized spline for spline interpolation.

In total, 75% of the RTK-GPS points were randomly selected as training data for interpolating
the DEM, and the rest were used as testing data. To evaluate the accuracy of the interpolation
results, the errors at the testing points were evaluated by subtracting the interpolated values from
the ground records of the vertical coordinates. Root mean square errors (RMSEs) were calculated for
every interpolation method to assess their performance. All analyses were performed in ArcGIS 10.3
(Environmental Systems Research Institute, United States).

3.3. Estimation of Geodetic Changes

Based on the interpolation results, the optimal interpolation method was chosen for analyzing the
interannual geodetic glacier changes. The surface-elevation changes were analyzed by subtracting one
DEM from a later DEM. In addition, the trend of geodetic glacier changes was studied in detail by
calculating the elevation differences in the crossover points from the RTK-GPS tracks in different years.
The mass change research in our study belonged to the geodetic method and was based on real-time
kinematic (RTK)-global positioning system (GPS) data, which are advantageous for long-term studies.

If we ignore the influence of ice flux on the mass balance, elevation changes can be converted into
geodetic mass balances independent of dynamics [22]. Glacier mass change needs to be transformed
from an ice equivalent into a water equivalent, which means that the density of glacial ice and snow
should be estimated. Density assumptions or models for converting the geodetic glacier volume
change to mass change have been explored in many studies [37,38].

The net geodetic mass balance of a glacier can be calculated from the area-weighted mass balances
of different elevation ranges, similar to the traditional mass balance calculation, as in formula (1):

B =
n∑

i=1

BiSi (1)

where B is the net geodetic mass balance, and Bi and Si are the geodetic mass balance at different
elevation bins and the corresponding percentage of the projected area between two contour lines,
respectively. By calculating the average elevation changes obtained from the crossover points in the
different elevation bands, the geodetic mass balance can be obtained with a density model of the
ice surface.

For an investigation with such a short time interval, a density model is needed to convert the
ice-surface changes in a glacier into the water equivalent for a mass balance study, and in situ snow
data are important for estimating the geodetic mass balance. Taking snow depth into consideration,
the mass balance at a point can be calculated as in formula (2):

b = Δhρi + (s2 − s1)(ρs − ρi) (2)

where b is the annual mass balance at a given point calculated by the geodetic method (represented by
the water equivalent); Δh is the elevation change; ρi is the ice density (assumed to be 900 kg/m3); ρs is
the snow density (assumed to be 400 ± 100 kg/m3); and s1 and s2 represent the snow depths for the first
year and the following year, respectively. The snow depth at a given point can be calculated from the
interpolation of the snow depth data obtained from in situ snow depth measurements. Accordingly,
the mass balances for an entire glacier can be calculated from interpolation.
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4. Results

4.1. Comparisons of Different Interpolation Resolutions and Methods

Taking the RTK-GPS data of Pedersenbreen measured in 2013 as an example, we compared the
DEMs generated by IDW with spatial resolutions of 0.2 m, 0.5 m, 1 m, 2 m, and 5 m. More than
2800 testing points were used to examine the vertical accuracy of the DEMs derived from the five
interpolation resolutions. All the mean errors in Table 2 are close to zero but do not seem to be related
to the resolution. However, the quality of the interpolation result was mainly assessed by RMSE (root
mean square error). Table 2 illustrated that the RMSE was smaller with a higher resolution, which
means that the elevation extracted near the RTK-GPS tracks was more accurate at a higher resolution.
Similar conclusions could also be drawn from other interpolation methods at different resolutions.

Table 2. Errors in the IDW (inverse distance weighting) interpolation results with different resolutions
(unit: m).

0.2 m 0.5 m 1 m 2 m 5 m

Mean 0.004 0.035 0.021 −0.035 −0.023
RMSE 0.359 0.363 0.366 0.393 0.444
Max 4.096 4.158 4.106 3.631 4.104
Min −2.425 −2.385 −2.582 −2.951 −2.648

Range 6.521 6.543 6.688 6.582 6.752

There were few differences found between the DEMs with resolutions of 0.2 m, 0.5 m, and 1 m
based on a comparison of the RMSEs; the differences were at the millimeter level. Considering the limit
of the sampling interval of RTK-GPS data, the resolution of the DEM should be appropriate to avoid
meaningless interpolation at an over-detailed scale, which would increase the computational burden.
Therefore, the final resolution of the DEM in our study was set to 0.5 m. Then, the DEMs generated by
different interpolation methods with a resolution of 0.5 m were compared, and the statistics of the
errors are shown in Table 3. OK, NN, and spline had similar results; they each had a small RMSE and
range, and their mean errors were close to zero, which means that these methods could be considered
candidates for generating the DEM. IDW showed the extreme maximum and minimum values and a
larger RMSE compared to other methods. The unsatisfied estimation from IDW in this study confirmed
the results from other research [39,40]. Although UK had the lowest mean error, the RMSE showed
that it was not an optimal method for the surface interpolation of glaciers. TTR had a smaller mean
error than NN and spline, but its RMSE was larger than OK, NN, and spline, so we did not consider it
when generating the DEMs of the glaciers.

Table 3. Errors in different interpolation methods (unit: m).

IDW OK UK NN Spline TTR

Mean 0.035 0.024 0.011 0.028 0.029 0.027
RMSE 0.362 0.092 0.214 0.095 0.099 0.187
Max 4.158 0.7167 1.345 0.694 0.725 1.567
Min −2.385 −0.687 −1.418 −0.721 −0.714 −1.690

Range 6.543 1.404 2.763 1.415 1.439 3.257

IDW, OK, UK, NN, and TTR are abbreviations of inverse distance weighting, ordinary kriging, universal kriging,
natural neighbor interpolation, and Topo to Raster interpolation, respectively.

We compared the DEMs generated by OK, NN, and spline interpolation (Figure 3), and the
hillshade effect was added to the DEMs to evaluate their smoothness. Although OK produced the
lowest RMSE, the surface generated by OK was not as smooth as we would expect, whereas the glacier
surface generated by NN interpolation was smooth. The surface generated by spline interpolation
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had some abnormal regions in which the values varied greatly from the other interpolation results.
We selected NN interpolation as the most suitable method for analyzing the surface topography in
this study. In fact, there was no single ideal interpolation method for all ice terrains; the interpolation
method was chosen according to the terrain topography and the type of data analysis needed.

   
Figure 3. DEMs (digital elevation models) of Pedersenbreen in 2013 generated from different
interpolation methods: (a) OK (ordinary kriging), (b) NN (natural neighbor) interpolation, and
(c) spline interpolation.

4.2. Glacier Surface Elevation Changes

The DEMs of the two glacier surfaces in 2013–2015 were derived from NN interpolation. According
to the 2013 DEM in Figure 3 the surface DEM of Pedersenbreen generated by NN interpolation is
smoother than that of the other interpolation methods, and the lowest elevation is approximately 56 m
at the northern part of the glacier terminus. The elevation differences between years were acquired
by comparing the DEMs, and the elevation differences between 2013 and 2014 are shown in Figure 4.
For Austre Lovénbreen, we subtracted the 2013 DEM from the 2014 DEM and found that the range
of the surface-elevation differences was extremely large, as it could not be applied to the range of
elevation changes of a glacier in a year; similar results were found for Pedersenbreen. The errors
of DEM differences were calculated in Table 4; although the mean errors of the two glaciers seem
to indicate possible elevation changes in 2013–2014, and the extremely large ranges in Table 4 are
not suitable for interpreting the range of elevation changes. The spatial distribution of the elevation
differences in Figure 4. is not in accordance with the fact that ice elevations do not change drastically
over such a short time interval, assuming the glacier is in a steady state. This discrepancy is ascribed,
in part, to the data source of the DEM, as the abnormal regions are mainly distributed at edges with
steep topography that do not have GPS tracks in either 2013 or 2014. A similar result was also obtained
by comparing the DEMs in other years.
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Figure 4. Elevation differences in 2013–2014.

Table 4. DEM (digital elevation model) differences in 2013–2014 (unit: m).

Austre Lovénbreen Pedersenbreen

Mean −0.379 −0.202
STD 4.555 3.654
Min −41.714 −30.047
Max 30.042 34.976

Range 71.756 65.023

The RTK-GPS points measured in 2013–2015 were not dense enough to cover the entire glacier,
resulting in abnormal elevation difference values at certain regions where the RTK-GPS points were
sparse. Misleading elevation change results might be obtained by DEM comparisons. Therefore, an
alternative method was proposed: calculate the elevation difference in the crossover points from the
RTK-GPS tracks in different years, where the glacier surface changes could be partly revealed by
those points.

We derived the boundaries of the two glaciers in 2013–2015, as shown in Figure 5. Considering
the retreat of the glacier terminus beginning in 2009, and to ensure that we studied the crossover points
in glaciated regions, some crossover points located in the glacier terminus were removed according to
their boundaries, and the remaining points were used to study the elevation changes.
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Figure 5. Glacier boundaries of (a) Austre Lovénbreen and (b) Pedersenbreen.

The elevation differences in the crossover points of the RTK-GPS tracks from different years in
the glaciated regions are shown in Figure 6. From 2013 to 2014, the elevation differences ranged from
−2.3 to 1.7 m in the study region (Austre Lovénbreen and Pedersenbreen), and the values of most
points were negative. From 2014 to 2015, the elevation difference in the two glaciers was −2.0 to 1.9 m,
and the values of most points were positive. By observing the distribution of elevation difference at
the crossover points, we found that the trend in the elevation difference was more obvious than that
calculated by the DEM. The elevation difference gradually increased from north to south, and its value
changed from negative to positive. Combined with glacier topography, the altitude had an important
impact on elevation changes because elevation changes were negative in most regions with lower
altitudes. Higher altitude regions had a less negative elevation change, and, at even higher regions,
the elevation increased. In general, the elevations in high-altitude regions were increasing, and the
elevations in low-altitude regions were decreasing.

 
Figure 6. Elevation differences in the crossover points of the RTK-GPS (real-time kinematic global
positioning system) tracks from different years: (a) 2013–2014, (b) 2014–2015, and (c) 2013–2015.

We derived a continuous raster of the elevation differences using NN interpolation (Figure 7),
and the results illustrated that there was a good relationship between the change in elevation and
the corresponding elevation of the two glaciers. In the figure, the color gradient corresponds to
the elevation.
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Figure 7. Elevation differences in different years interpolated with the crossover points: (a) 2013–2014,
(b) 2014–2015, and (c) 2013–2015.

The regional distribution of the surface-elevation change is obvious. Austre Lovénbreen and
Pedersenbreen experienced significant losses at their terminuses. However, there were some obvious
regions of accumulation at the lower elevations of Austre Lovénbreen, such as the western margin area
and the eastern tributary margins. Pedersenbreen also exhibited an obvious accumulation region at
a relatively low elevation (at the eastern margin), which was mainly due to the mass compensation
caused by an avalanche around the edge of the glacier in 2015. These regions are marked in Figure 8.

There was an ablation region at the east margin of Austre Lovénbreen (marked with the number 4),
which was probably caused by an avalanche that occurred in 2013 but not in 2015, which caused the
extremely high elevation measured in 2013. Based on the hillshade topography of the Arctic DEM
around the glacier (Figure 8), we found that the mass flow path corresponded to the elevation change
area at the edges of the glaciers where slopes were steep.

 
Figure 8. Hillshade topography and elevation changes for Austre Lovénbreen (left) and Pedersenbreen
(right) from 2013 to 2015. The dashed ellipse marked regions represent ablation areas (green color,
number 4) and accumulation areas (red color, number 1, 2, 3, 5) near the margins of the glaciers.
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4.3. Geodetic Glacier Mass Balances

The average annual changes in different elevation bands were obtained from the crossover points,
and the results are shown in Table 5. For Austre Lovénbreen, the surface elevation of the entire
glacier covered 100–600 m, while Pedersenbreen covered a larger elevation range of about 60–650 m.
As shown in the table, there was an obvious relationship between mass change and elevation. The
elevation changes in low-altitude areas were negative, indicating that these areas were thinning, and
the elevation changes in high-altitude areas were positive, where mass accumulated. In addition, the
mass changes varied greatly in different years. In 2013–2014, except for a small amount of accumulation
above 500 m, the elevation in most areas of the two glaciers decreased, and the two glaciers seemed to
have experienced widespread mass loss. During 2014–2015, the mass accumulation of both glaciers
occurred above 300 m, and both glaciers seemed to have a positive mass balance.

Table 5. Elevation changes for Austre Lovénbreen and Pedersenbreen at different elevation intervals
(unit: m).

Glacier Year <200 200–300 300–400 400–500 ≥500

Austre
Lovénbreen

2013–2014 −0.919 −0.560 −0.253 −0.097 0.007
2014–2015 −0.528 −0.084 0.216 0.489 0.562
2013–2015 −1.594 −0.622 −0.052 0.418 0.520

Pedersenbreen
2013–2014 −0.833 −0.403 −0.311 −0.195 0.027
2014–2015 −0.489 0.066 0.258 0.367 0.445
2013–2015 −1.375 −0.336 −0.092 0.202 0.532

The snow depth and density of the two glaciers were not completely recorded in this study, and it
was difficult to estimate the precise mass density of the glaciers. Therefore, we tentatively used the
elevation changes to indicate geodetic changes over the years. In our study, using the elevation changes
at different elevation bins as Bi (the geodetic mass balance at different elevation bins) according to
formula (1), together with the data in Table 5, we calculated different years’ geodetic changes, which
were actually the mean surface elevation changes of the two glaciers, as shown in Table 6.

Table 6. Surface elevation changes in 2013–2015 (unit: m).

Year Austre Lovénbreen Pedersenbreen

2013–2014 −0.279 −0.164
2014–2015 0.236 0.309
2013–2015 −0.055 0.172

According to Table 6, Austre Lovénbreen and Pedersenbreen experienced various mass changes
in different years. The mass balance was negative in 2013–2014, while it was positive in 2014–2015, but
the geodetic balance in 2013–2015 was not completely in accordance with the sum of the mass balances
from 2013–2014 and 2014–2015. However, the bias was at the centimeter level, meeting the error level
threshold we anticipated. In addition, some differences could be obtained from comparisons; for
example, in 2013–2015, Austre Lovénbreen experienced a more serious mass loss than Pedersenbreen,
which experienced a mass gain.

To illustrate the relationship between elevation changes and the surface elevation more directly,
scatterplots are shown in Figure 9. There appeared to be a significant correlation between the elevation
and the elevation change in 2013–2015. In general, both glaciers showed that the correlation was
slightly lower in one-year intervals than in a two-year interval. The correlation at the glacier snout
differed from the correlation for the entire glacier area; the ice melted more dramatically in the glacier
snouts at elevations between 100 m and 200 m, according to the elevation change trend. According to
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Figure 9, the mass loss trend of Austre Lovénbreen was more dramatic than that of Pedersenbreen.
This finding was consistent with the mass balance results in Table 6.

 
Figure 9. Scatterplot of the ice-surface elevations versus the surface-elevation changes (unit: m) for
Austre Lovénbreen (a–c) and Pedersenbreen (d–f) in different years.

We evaluated the trends of the surface-elevation changes in different years. The corresponding
equilibrium line altitudes (ELAs) of Austre Lovénbreen in 2013–2014, 2014–2015, and 2013–2015 were
490 m, 287 m, and 375 m, respectively, and the ELAs of Pedersenbreen in 2013–2014, 2014–2015, and
2013–2015 were 550 m, 285 m, and 385 m, respectively. Shifts in the ELA are often considered to be
good indicators for assessing glacial imbalances and estimating mass budget changes [41]. The ELAs
in our study differed greatly in different years, and the long-term ELA seemed to be a more reliable
indicator. According to the French team, the average ELA of Austre Lovénbreen in 2008–2014 was 431
m [23]. The annual elevation gradient of the geodetic mass balance of Austre Lovénbreen in 2013–2015
was 2.60%�, which means that in the accumulation region, the accumulation increased by 260 mm for
every increase of 100 m in the elevation. In contrast, in the ablation area, the ablation increased by
260 mm for every decrease of 100 m in elevation. Accordingly, the annual elevation gradient of the
geodetic mass balance of Pedersenbreen was 2.35%�.

Estimating the mass balance of a glacier must consider changes in the entire area; however, field
surveys can cover most regions of glaciers, except for high-elevation regions and margins where the
slopes are steep. Therefore, in no-data regions, especially at the margin of the glacier snout where the
ice melts quickly, it is necessary to make an appropriate estimate of the mass change value. At glacier
snouts, the elevation changes need to be corrected. According to the relationship between elevation
changes and the elevation (Figure 9), the elevation change from 100 to 200 m for Austre Lovénbreen
and the elevation change from 60 to 200 m for Pedersenbreen could be corrected. Some previous
studies have made density assumptions of 900 kg/m3 in the ablation area, and 500 to 600 kg/m3 in the
accumulation area, dominated by firn [15,37,42,43]. If we ignore short-term changes in the vertical firn
density, we can assume that the density of the glacier surface is 900 kg/m3 in the ablation area and 500
kg/m3 in the accumulation zone when converting elevation changes into mass balances, represented by
their water equivalents. Finally, the geodetic mass balances of Austre Lovénbreen and Pedersenbreen
in 2013–2014, 2014–2015, and 2013–2015 are shown in Table 7. Because winter snow accumulation in
Svalbard does not vary greatly between years, the mass changes of glaciers are mainly dominated by
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the melting of snow and ice in summer [44]. If we assume that snowfall is invariable, in our study, the
geodetic balance in 2013–2014 should be approximately equal to the mass balance in 2013 calculated by
the glaciological method, and the geodetic balance in 2014–2015 should be close to the actual mass
balance in 2014.

Table 7. Geodetic mass balances in 2013–2015 after correction (unit: m w.e. (water equivalent)).

Year Austre Lovénbreen Pedersenbreen

2013–2014 −0.267 −0.165
2014–2015 0.079 0.129
2013–2015 −0.165 0.012

5. Discussion

There are some factors that may influence the accuracy of mass-balance assessments. We let April
to April of the next year be a balance year for the mass balance study, while September to September of
the next year is usually considered a hydrological year in the Arctic in the classic glaciological method.
Different survey time-spans may lead to some discrepancies in comparisons with the glaciological
method. Taking Austre Lovénbreen as an example, the net mass balances computed by the French
team were −1.111 m w.e. in 2013, 0.010 m w.e. in 2014, and −0.552 m w.e. in 2015 [23]. According to
the mass balance obtained by the French team, the geodetic mass balance of Austre Lovénbreen in
2013–2014 in Table 7 should be approximately equal to the sum of the summer mass balance in 2013
and the winter mass balance in 2014. In addition, the geodetic mass balance in 2014–2015 should be
close to the sum of the summer mass balance in 2014 and the winter mass balance in 2015. However,
our study appeared to underestimate the mass loss in 2013, which might be partly ascribed to ignoring
snow depth. On the other hand, it is difficult to calculate the mass balance accurately by a simple linear
simulation, as the elevation changes in the lateral zones of the glacier are smaller than the change in
the glacier’s center [22], and the classic glaciological method may not consider potential subglacier
mass changes. Although there may be some discrepancies, the mass balance change trend in our study
was consistent with the trend calculated by the French team, which means that the method proposed
here to calculate the geodetic mass balance is valid. Similar geodetic methods with high-density GPS
data were also applied to other regions. Repeated differential GPS surveys were carried out on Gangju
La glacier, Bhutan Himalaya; the annual and decadal geodetic mass balances calculated from the GPS
points and snow depth showed consistency with the direct mass balance observed from stakes [6].
Marinsek and Ermolin compared the elevation differences from kinematic GPS surveys on Bahía del
Diablo glacier on the Antarctic Peninsula in 2000–2001 and 2010, finding that the geodetic mass balance
calculated based on elevation change was close to the glaciological mass balance [45].

Snow depth data of Austre Lovénbreen were obtained from the French team for validation
and comparison over the same period (during 2013–2015). The snow depth distributions of Austre
Lovénbreen (Figure 10a–c) demonstrated that the snow depth logically increased from north to south,
with shallower snow depths at lower elevations and more snow accumulation at higher elevations,
representing a positive relationship between snow depth and elevation. According to Figure 10d–f,
more snow remained because of glacial accumulation in 2014 than in the other two years combined.
In addition, Austre Lovénbreen experienced similar snow accumulation at relatively low elevations
in 2013 and 2015, even though 2013 was shallower; in contrast, in the upper cirques of the glacier,
there was clearly a deeper snow depth in 2015 than in the two other years. This situation was in
accordance with the analyses we performed with RTK-GPS data; hence, we believed that the main
difference between 2014 and 2015 was that the snow at relatively high elevations in 2014 did not
melt completely during the melting season. In contrast, very little snow survived the summer of
2013, and little or no accumulation was observed. To accurately calculate the mass balance of Austre
Lovénbreen, the interpolated snow depths in three years measured by snow cores were removed from
the crossover points of the RTK-GPS tracks. Then, ice-surface elevation changes were calculated, as
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shown in Figure 10d–f. In conjunction with snow depth, the ice changes and snow changes were
calculated separately.

   

   

Figure 10. Spatial distributions of snow depth observed in (a) 2013, (b) 2014, and (c) 2015 and ice-surface
elevation changes in the crossover points of the RTK-GPS (real-time kinematic global positioning
system) tracks after removing the snow depth of Austre Lovénbreen in (d) 2013–2014, (e) 2014–2015,
and (f) 2013–2015.

According to formula (2), the mass balances of crossover points in different years could be
calculated; in addition, the mass balances for the entire glacier could be calculated from natural
neighbor interpolation. As the previous study suggested, the density of the winter snowpack was
between 350 and 450 kg m−3 for the Austfonna ice cap, Svalbard [46]. With the assumed ice density
of 900 kg/m3 and the assumed snow density of 350 kg/m3 in this study, the mass changes in the
crossover points of the RTK-GPS tracks were estimated with the ice changes and snow changes and
then interpolated, as shown in Figure 11. For the region without data, an appropriate approximation
of average mass balance was performed by extracting the mass balance values in the surrounding
areas covered by the mass balance interpolation results, and the corresponding area percentages of the
no-data regions and data covered region were calculated. Then, the mass balances of the entire glacier
were estimated from the area-weighted mass balances; the results are shown in Table 8. The mass
balance of Austre Lovénbreen in 2013–2014, shown in Table 8, was close to −0.760 m w.e., which was
the sum of the summer mass balance in 2013 and the winter mass balance in 2014. The mass balance in
2014–2015 was close to 0.136 m w.e, which was the glaciological mass balance recorded by the French
team over the same period. Although some discrepancies still exist in comparison with the actual

144



Remote Sens. 2019, 11, 2890

observation results, the mass balance results calculated when considering snow depth seemed to be
more reasonable than those calculated while ignoring snow depth.

    
Figure 11. Mass balances calculated considering the snow depth of Austre Lovénbreen in (a) 2013–2014,
(b) 2014–2015, and (c) 2013–2015.

Table 8. The geodetic mass balances for Austre Lovénbreen calculated with and without consideration
of snow depth and the mass balance calculated by the glaciological method over the same period (unit:
m w.e. (water equivalent)).

Year Ignoring Snow Depth Considering Snow Depth Glaciological Mass Balance

2013–2014 −0.267 −0.670 −0.760
2014–2015 0.079 0.184 0.136
2013–2015 −0.165 −0.490 −0.624

There was a large mass loss ascribed to ice melting in 2013. However, the deeper snow in
2014 compensated for the elevation change, leading us to underestimate the ice loss. To explain this
phenomenon more directly, we estimated the geodetic mass balance without snow depth data at a
point with formula (3):

b = Δhρ (3)

where b is the mass balance, Δh is the elevation change, and ρ is the estimated average density of the
ice and snow mixture. If formula (2) and formula (3) are both true, and the elevation change is not 0 m,
then the relationship between the assumed average density and the snow depth can be obtained as
formula (4):

ρ = ρi + (s2 − s1)(ρs − ρi)/Δh (4)

where ρi is the ice density; ρs is the snow density; and s1 and s2 represent the snow depths for the
first year and the following year, respectively. The snow density and ice density are assumed to be
invariant. Taking the years of 2013 and 2014 as an example, s2 is far larger than s1, and Δh is less than 0
m in most regions; hence, only when the average density ρ is larger than the ice density ρi, we can
obtain the correct geodetic mass balance. We usually assume the average density to be less than the ice
density. However, over a relatively long time interval, the elevation change is considerable, and the
snow depth can be neglected in comparison with the ice change; thus, the mass balance can be more
accurately calculated with the elevation change data. In fact, over a short time interval, the results
of the density assumption are inconsistent with the results obtained, considering limited volumetric
changes [37]. This means that, ignoring snow depth, which varied greatly during our research period,
might have resulted in a larger bias in the mass balance over a short time interval.
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Using a UAV-generated DEM of glacier snout in 2019, we calculated the elevation differences of
the glacier snouts between 2013 and 2019 by comparing the DEMs of different years; the results are
shown in Figure 12, according to which the two glacier snouts experienced serious mass loss from
2013 to 2019, and the elevation decreased by 17 m in maximum. In order to precisely compare the
elevation changes, we only extracted the 2019 surface elevations at crossover points whose positions
were derived from RTK-GPS tracks in 2013 and 2015 (Figure 12). At these specific point locations,
inside the 2019 DEM coverage, the mean elevation changes in different years were calculated as in
Table 9. Although the 2019 DEM covered only the snout area of each glacier, the point elevation changes
presented a clear tendency from 2013 to 2019. The mean value of elevation changes in 2015–2019 was
two to three times as much as that in 2013–2015, which proved that both glaciers are in an accelerating
thinning situation, at least over their snout areas.

  
Figure 12. Elevation changes for the glacier snouts of (a) Austre Lovénbreen and (b) Pedersenbreen
from 2013 to 2019. The 2019 boundaries of two glaciers were extracted from UAV (unmanned aerial
vehicle) images. The crossover points were extracted from RTK-GPS (real-time kinematic global
positioning system) tracks between 2013 and 2015.

Table 9. Mean elevation changes of crossover points at glacier snout areas from 2013 to 2019 (unit: m/a).

Year Austre Lovénbreen Pedersenbreen

2013–2015 −0.75 −1.19
2015–2019 −2.23 −2.26
2013–2019 −1.73 −1.90

In this study, we evaluated the smoothness and accuracy of the interpolated glacier surface using
different methods, and NN was finally chosen for our RTK-GPS data interpolation. However, the
optimum interpolation method depends on the characteristics of the source data, the complexity of
the terrain, and the desired properties of the interpolated result. Therefore, we need to evaluate
the interpolation methods cautiously in other instances. The terrain itself, the density, and the
uncertainty of input data are also important factors in choosing interpolation methods. For example,
NN interpolation will ignore details of the terrain, which fits well with glacier surfaces but may
not be suitable for complex terrains. Accuracy and smoothness are usually our desired properties.
However, the little experience can be obtained from previous studies. For instance, kriging was
applied to analyze the mass balance of Storglaciären [47]. Some researchers have used IDW to create
a continuous surface of thickness values along the branch lines at the bed of a glacier [48]. In other
studies, spline interpolation was chosen to generate the DEM of Alpine glaciers [49]. Bo and others
used NN interpolation to build regional DEMs within the Antarctic ice sheet [50]. Mölg concluded
that Kriging and Topo to Raster showed robust and reliable results in a mass balance study on the
Conejeras glacier, Colombia [51]. Pellitero and others presented a semi-automated method to generate
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ice thickness from bed topography along a palaeoglacier flowline by applying the standard flow law
for ice and generating the 3D surface of the palaeoglacier using multiple interpolation methods, in
which IDW and kriging performed well in volume estimation [52]. Kääb chose spline, kriging, and
IDW approaches to interpolate surface elevation changes along contour lines on the Svalbard glacial
Edgeøya, and the volume change estimations using three interpolation methods were similar [53].

To widely interpret the trends in the geodetic mass balance distribution of Arctic glaciers, we
compared the elevation changes and the geodetic mass balance of Austre Lovénbreen and Pedersenbreen.
They experienced similar geodetic mass balances: a serious mass loss in 2013–2014 and a slight mass
accumulation in 2014–2015. Nevertheless, some differences can be noted, as Austre Lovénbreen
displayed stronger thinning than Pedersenbreen. The elevation range distribution of these two glaciers
may explain this difference [17] because the area percentage of Pedersenbreen in higher altitude regions
is larger than Austre Lovénbreen.

In addition, high-density RTK-GPS measurements require considerable in situ work, considering
the complexity of RTK-GPS surveys. Therefore, surveys were only carried out in 2013, 2014, and 2015.
Due to this limited time, the mass change results may not be completely consistent with the long-term
trends; we found that geodetic balances varied greatly in 2013–2015. For a short-term trend, there seems
to be some uncertainty in estimating mass balances by the geodetic method, which requires caution
when converting the elevation changes estimated with RTK-GPS data into mass balances. Long-term
RTK-GPS data covering the entire glaciers are required for additional comprehensive analyses, which
would contribute to future comparative studies with the glaciological method.

6. Conclusions

Based on RTK-GPS data, the surface-elevation changes and the geodetic mass balances of Austre
Lovénbreen and Pedersenbreen were preliminarily studied. The following conclusions could be drawn
from our analysis.

(1) We compared different interpolation methods, and NN interpolation was more suitable for
generating the surface DEMs of glaciers.

(2) The elevation changes across different years were estimated both by the differences in the DEMs
and the differences in the RTK-GPS track-derived crossover point elevations; the latter was more
suitable for estimating elevation changes linked to the corresponding altitude.

(3) Ignoring the effect of snow depth over a short time interval might lead to a larger bias in the mass
balance, especially when the snow of the following year is far deeper than that of the first year
during a negative balance period. However, for a study spanning a long time interval (more
than 10 years), the snow depth could be neglected in comparison with the ice change. Therefore,
caution must be exercised when estimating mass balances with elevation change data from only
a few years, and the mass balances estimated with RTK-GPS data might be more accurate for
investigations over a longer time interval.

(4) The average ELA and the annual elevation gradient of the geodetic mass balance of Austre
Lovénbreen in 2013–2015 were 375 m and 2.60%�, respectively, and those of Pedersenbreen were
385 m and 2.35%�, respectively. The gradients of the two glaciers were three times larger at the
glacier snouts, according to the elevation changes at the crossover points from the RTK-GPS tracks.
In the study period, Austre Lovénbreen experienced a more serious mass loss than Pedersenbreen,
and both glaciers were in accelerating thinning status at snout areas.
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Abstract: Coastal lagoons are transitional ecosystems with complex spatial and temporal variability.
Remote sensing tools are essential for monitoring and unveiling their variability. Turbidity is a water
quality parameter used for studying eutrophication and sediment transport. The objective of this
research is to analyze the monthly turbidity pattern in a shallow coastal lagoon along two years with
different precipitation regimes. The selected study area is the Albufera de Valencia lagoon (Spain).
For this purpose, we used Sentinel 2 images and in situ data from the monitoring program of the
Environment General Subdivision of the regional government. We obtained Sentinel 2A and 2B
images for years 2017 and 2018 and processed them with SNAP software. The results of the correlation
analysis between satellite and in situ data, corroborate that the reflectance of band 5 (705 nm) is
suitable for the analysis of turbidity patterns in shallow lagoons (average depth 1 m), such as the
Albufera lagoon, even in eutrophic conditions. Turbidity patterns in the Albufera lagoon show a
similar trend in wet and dry years, which is mainly linked to the irrigation practice of rice paddies.
High turbidity periods are linked to higher water residence time and closed floodgates. However,
precipitation and wind also play an important role in the spatial distribution of turbidity. During
storm events, phytoplankton and sediments are discharged to the sea, if the floodgates remain open.
Fortunately, the rice harvesting season, when the floodgates are open, coincides with the beginning
of the rainy period. Nevertheless, this is a lucky coincidence. It is important to develop conscious
management of floodgates, because having them closed during rain events can have several negative
effects both for the lagoon and for the receiving coastal waters and ecosystem. Non-discharged solids
may accumulate in the lagoon worsening the clogging problems, and the beaches next to the receiving
coastal waters will not receive an important load of solids to nourish them.

Keywords: Sentinel; Secchi disk; chlorophyll a; sediments; phytoplankton

1. Introduction

Coastal lagoons are transitional ecosystems between inland and coastal waters. They are shallow
water bodies separated from the ocean by a barrier and connected, at least intermittently, to the ocean
by one or more restricted inlets [1]. Given these characteristics, they exhibit complex spatial and
temporal variability. They are usually part of wetland ecosystems and are among the most endangered
ecosystems, especially in coastal areas, due to several anthropogenic threats [2]. These ecosystems are
characterized by a high variability due to both natural intrinsic variability and anthropic pressures
variability (e.g., man-controlled hydrological cycle, wastewater discharge, etc.). In situ monitoring
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programs (e.g., Water Framework Directive) have difficulty diagnosing their quality status and the
effectiveness of restoration measures. Remote sensing is a complementary tool to the traditional
on-site approach that allows constructing a synoptic view that is not possible otherwise. During the
last decades, several studies have aimed at monitoring indicator parameters of water quality both in
inland and in coastal waters using satellite images. However, the spatial and temporal scale have been
constraints for small sized and highly variable ecosystems such as coastal lagoons. High temporal
resolution sensors (1–3 days) such as Moderate Resolution Imaging Spectroradiometer (MODIS) or
MEdium Resolution Imaging Spectrometer (MERIS) have a limited spatial resolution (250/500 m).
Higher spatial resolution sensors such as Landsat Thematic Mapper (TM) (30 m) or SPOT have a low
temporal resolution (16 days) not enough for the highly dynamic coastal lagoons [3,4]. The Copernicus
Sentinel-2 mission of the European Space Agency (ESA) comprises a constellation of two polar-orbiting
satellites, and the first one, Sentinel-2A is operational since June 2015. This mission combines both a
high spatial (10–60 m) and a high temporal resolution (5 days) that are necessary to monitor coastal
lagoons [4,5].

One of the major environmental problems of coastal lagoons is eutrophication, and one of the most
commons parameters used to monitor their ecological status is chlorophyll a (Chla) concentration [3,6,7].
Consequently, recent studies have applied the advances in remote sensing to study temporal and
spatial evolution of Chla using Sentinel-2 images [8]. A very recent study has applied Sentinel-2
images also to study phycocyanin concentration, which is an indicator of cyanobacterial blooms [7].
Turbidity is also a water quality parameter used as a eutrophication indicator [9]. Turbidity reduces
the availability of light underwater, and thus limits light availability for phytoplankton growth and
primary productivity [9,10]. Moreover, it is also important for nutrient dynamics, pollutants, and
sediment transport [9]. According to the ASTM-International definition, turbidity is an expression
of the optical properties of a liquid that causes light rays to be scattered and absorbed rather than
transmitted in straight lines through a sample. Turbidity, suspended particulate matter (SPM), and
Secchi disk depth are three variables closely related. Frequently, turbidity is used as an estimation
of SPM concentration [9,11]. In fact, traditionally, turbidity is estimated visually using a Secchi disk
depth or measured directly with nephelometry [10]. The analysis of turbidity is especially important in
optically complex waters where phytoplankton and SPM do not covary, and sediment contribution can
result in an overestimation of Chla [12,13]. Previous research applied remote sensing to map turbidity
in complex coastal waters. The authors of [14] used Landsat 8 and SPOT images in the Mar Menor
(Spain); in [4] the authors applied Landsat 5, 7, and 8 in the turbid Gironde and Loire estuaries (France);
the authors of [10] used Landsat 8 in Cam Ranh Bay and Thuy Trieu Lagoon (Vietnam), and in [9] the
authors applied a multisensory approach in the Danube Delta (Romania). Recently, the trend is to
apply Sentinel 2 advantages to monitoring highly variable ecosystems [5,12,13,15].

Determining turbidity in shallow waters requires the use of spectral bands that are sensitive to
turbidity and have a limited depth penetration to avoid substantial interference from the bottom [15].
Water absorption increases rapidly from red (645–700 nm) to red edge NIR (700–780 nm) [16]. This
absorption limits the light received from the bottom, while it returns light scattered by suspended
materials. These bands offer a good balance between turbidity detection and bottom detection [17].
Several studies have already indicated that these spectral bands are appropriate for monitoring
turbidity or suspended solids in optically complex regions [15,17,18]. According to [15], the 704 nm
wavelength gives the greatest return of light to the sensor at depths between 1 and 2 m. However, at
longer wavelengths, sensitivity to suspended material is lost in shallow and very turbid waters [15].

The objective of this research is to analyze the monthly turbidity pattern in a shallow coastal
lagoon along two years with different precipitation regime. The selected study area is the Albufera
de Valencia lagoon (Valencia, Spain). This lagoon faces a eutrophication problem, and it is at risk of
disappearing due to the accumulation of sediments. The analysis of turbidity is important to unveil
the sediment transport dynamics. For this purpose, we used Sentinel 2 images and in situ data from
the monitoring program of the Environment General Subdivision of the regional government, which

152



Remote Sens. 2019, 11, 2926

has been implemented since year 1995. Remote sensing is the only way to obtain a synoptic view of
the entire lagoon due to the high spatial complexity and the varying water quality of the more than
60 tributaries.

2. Materials and Methods

2.1. Study Area

The Albufera de Valencia lagoon is a shallow turbid coastal lagoon, located in the Mediterranean
coast, 10 km south of the city of Valencia (Figure 1) [19,20]. It has an average depth close to 1 m (1–3 m)
and covers an area of approximately 24 km2 [6]. This water body is characterized as hypertrophic, with
average annual Chla levels of 167 μg L−1 (4–322 μg L−1) and Secchi disk depth of 0.34 m (0.18–1 m) [6].

 
Figure 1. Study area, the Albufera de Valencia lagoon and surroundings. Numbered black points
are sampling stations from the monitoring program of the Environment General Subdivision of the
Valencian government.

It is part of the Albufera de Valencia coastal wetland, which is one of the most representative
wetlands in the Mediterranean basin, and holds several protection figures at national and international
level, such as Spanish Natural Park, Special Protection Areas (SPAs) for birds, Sites of Community
Importance (SCIs), and Ramsar Site.

The lagoon is surrounded by an agricultural area with an approximate surface of 223 km2 primarily
used for rice cultivation [6]. The local water council, under the direction of farmers, controls the
hydrological cycle in the watershed to meet the needs of rice crop [6,8]. Farming contributes about
60% of the inputs to the Albufera through 63 irrigation channels that carry water from the Turia and
Júcar rivers [21,22]. Other sources of water are treated wastewater from the urban and industrial
areas nearby, groundwater contributions, direct precipitation on the lagoon, and potential indirect
contributions of seawater through sea connections [3].
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The lagoon is connected to the Mediterranean Sea through three floodgates, “Golas” in Spanish,
from North to South, Gola de Pujol, Gola del Perelló, and Gola del Perellonet (Figure 1). The local
water council operates them according to the needs of the rice cycle. They are open from January to
March to allow the water level of the lagoon to increase for irrigation. During the rice growing season
(April–September) the floodgates remain closed to allow field flooding and with an insignificant flow
to the lagoon. Gates open in September to allow rice fields to dry for rice harvest. Finally, gates
close again in November to allow flooding of harvested rice fields, which favors the mineralization of
nutrients [23].

The eutrophication of the lagoon is an old problem that dates back to the 1960s. Since then, the
system shifted from a clear state to a turbid stable state that was consolidated by the almost total
disappearance of macrophytes in the early 1970s [24]. The turbid state has prevailed since then,
although some studies report short clear water events one or twice a year, with Chla concentrations
below 5 mg/m3 [6]. In addition, sediment deposition threatens the lagoon with clogging showing the
importance of studying turbidity patterns.

2.2. Precipitation and Wind Data

The first step was to select one year with total precipitation above the annual average and
one year below the annual average, to analyze turbidity patterns in different precipitation regime
conditions. The closest stations to the Albufera lagoon with full available data from 1995 to 2018
are the Valencia Airport station (north) and the Polinya del Xúquer station (south), which belong to
the State Meteorological Agency (AEMET) (Figure 1). This period was selected because the in situ
monitoring data began to be compiled in 1995. Within the Albufera Natural Park, there is a station that
belongs to the Valencian Association of Meteorology (AVAMET), called Tancat de la Pipa station. There
are available data for this station since 2016. We selected the year 2017 as a year below the average
precipitation, and 2018 as a year above the average, comparing the data from Tancat de la Pipa station
with historic records. Wind data were obtained from the Tancat de la Pipa station.

2.3. Secchi Disk and Suspended Matter

Secchi disk depth (SDD) (cm) and suspended particulated matter (SPM) (mg/L) were measured
monthly from 1995 to 2018 by the monitoring program of the Environment General Subdivision
of the Valencian government. There are five sampling stations in the Albufera lagoon, shown as
dots in Figure 1. These data are available online: http://www.agroambient.gva.es/es/ (accessed on
6 October 2019).

SDD was measured with a 30 cm diameter black-and-white disk, which was submerged in the
water until it was no longer visible to an observer on the surface [25,26]. Secchi disk depth is inversely
proportional to the amount of dissolved and/or particulate matter present in the water column; thus, is
a turbidity indicator. SPM was determined following the Standard Methods (2005) procedure, 2540D,
for surface waters.

SDD and SPM were standardized using the following Equation

Z =
x− x
SD

, (1)

where x is the month datum of year i, x is the month average from 1995 to 2018, and SD is the monthly
standard deviation from 1995 to 2018.

The standardized values were classified as follows: (1) values in the interval (−1, 1) indicate
normal values; (2) values in the interval (1, 1.6) are above normal conditions, and (3) values (>1.6)
are highly anomalous. The limit of the anomalous conditions was based on an Inverse Cumulative
Distribution Function (ICDF), in a normal distribution, which defines 1.6 standard deviations as the
limit of values without noise with 95% confidence [27,28].

154



Remote Sens. 2019, 11, 2926

Then, the month average of the standardized values from 1995 to 2018 was calculated to characterize
each month. The purpose is to characterize the temporal transparency pattern, which depends on the
rice cultivation cycle.

2.4. Satellite Data

We obtained Sentinel 2A and 2B images for the years 2017 and 2018 from the Sentinel Scientific
Data Hub available online: https://scihub.copernicus.eu/ (accessed on 6 October 2019) (Table 1). Only
cloud-free images were used to observe the spatial variation. The images were subset to the exclusive
area of the Albufera lagoon based on a shapefile before further processing.

Table 1. List of Sentinel 2A and 2B images used in this study by date. Only cloud-free images
were selected.

Year 2018 Year 2017

11 January 16 January
20 February 5 February

27 March 17 March
26 April 16 April
21 May 16 May
20 June 15 June
10 July 10 July

19 August 4 August
13 September 13 September

3 October 13 October
27 November 22 November
22 December 17 December

Software SNAP version 5 (Brockmann Consult) was used for image processing. All images were
downloaded in L1C product in order to use the same atmospheric correction for all of them, by means
of the Sen2Cor processor. This processor provides good results in eutrophic waters [8,20,29].

Following [5] results, we used band 5 (705 nm) to estimate turbidity with 20 m of spatial resolution.
The reflectance values of band 5 (705 nm) were spatially standardized following Equation (1), where x
is the month datum of sampling station i pixel, x is the month average of all Albufera lagoon pixels,
and SD is the monthly standard deviation of all Albufera lagoon pixels. The spatially standardized
results were transformed into raster format for mapping. The purpose was to characterize the spatial
turbidity pattern under different precipitation regime.

Chla concentration was estimated from L1C products with the “Case 2 Regional Coast Colour”
(C2RCC) processor of the SNAP software. Chla concentration was mapped to better understand the
contribution of phytoplankton to turbidity patterns in the Albufera lagoon.

The Spearman correlation test was used to test the statistical significance of the correlation between
remote sensing and in situ data. We contrasted the 2017 and 2018 standardized reflectance values
(band 5, 705 nm) with the monthly standardized data of SDD for the complete study period (1998 to
2018) for each sampling station. The remote sensing data of each pixel containing a sampling station
was extracted to compare with the historical in situ data.

3. Results

In Figure 2, monthly precipitation in 2017 and 2018 is compared for the following three
meteorological stations: Polinyà del Xúquer (south of study area), Valencia Airport (north of study area),
and Tancat de la Pipa (study area) (Figure 1). The three stations show the same precipitation trend and
similar values, except in the autumn of 2018 where Tancat de la Pipa experienced more rain. Then, the
average monthly precipitation from 1995 to 2018 was built with the average of the nearest stations with
available data, Valencia Airport and Polinya del Xúquer. In this Mediterranean-type climate region, the
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main rainy period is autumn and the average annual precipitation is 487.7 mm. In Figure 3, the average
monthly precipitation is represented (bars) against the monthly precipitation of years 2017 (orange
line) and 2018 (black line). The last data was obtained from Tancat de la Pipa station. In this station, the
total precipitation for 2017 was 307.0 mm being approximately 180 mm lower than average annual
precipitation. The total precipitation for 2018 was 709.8 mm, which was more than 200 mm above
the average annual precipitation. During the autumn months, September to November, accumulated
precipitation was only 45.8 mm in 2017, while in 2018 it was 561.0 mm exceeding the annual average.
October 2018 recorded the maximum precipitation with 287.6 mm, with 232.2 mm measured in a single
day (18 October 2018). In this area, prevailing wind direction shows a marked seasonal variability.
During the warm months the winds of the East and Southeast (winds to the west) prevail, while during
the rest of the year the winds of the West prevail (winds to the east), especially from the Southwest
(Northwest only in October).

Figure 2. Monthly precipitation (a) 2017 and (b) 2018, comparison of the three meteorological stations:
Polinyà del Xúquer (Polinya), Valencia Airport (Airport), and Tancat de la Pipa (Tancat).

Figure 3. Average monthly precipitation (1995 to 2018) calculated from Polinyà del Xúquer and Valencia
Airport stations (grey bars). Monthly precipitation 2017 (orange line) and 2018 (black line) at Tancat de
la Pipa station.

Table 2 summarizes data from the in situ monitoring program of the Environment General
Subdivision of the Valencian government, from January 2017 to December 2018. There is approximately
one measure of each variable (SPM, SDD, and Chla) per month. However, some data is missing; for
instance, December 2018 only has SDD data. The highest SPM values were observed in May and
June (June 2018 no data available), with values even higher than 100 mg/L, and SDD of about 17 cm
in all the sampling stations. The highest Chla values were observed in October 2017 (average about
150 mg m−3), and in October and November 2018 (average about 120 and 150 mg m−3 respectively).
To analyze if there is a monthly pattern associated to the irrigation cycle in the Albufera lagoon, we
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studied the in situ data of the entire period from 1995 to 2018. In order to detect anomalies above or
below the Albufera lagoon baseline, we calculated the standardized monthly averages of SDD (blue
bars) and SPM (brown bars) (Figure 4), in the five in situ sampling stations. In this figure, values above
zero standard deviations show higher values than the average, and values below zero are lower than
the average. SDD and SPM are inversely correlated variables [9,11], so months with high SDD have
low SPM. In general, from April to October SPM values are above the average, and the maximum
values are observed in May–June and October. However, sampling station 1 shows a different pattern,
with SPM values from March to August above the average, and the maximum values in April and
August. This can be explained due to East winds during warm months that may have a resuspension
and accumulation effect in this shallow area.

Table 2. Data from the monitoring program of the Environment General Subdivision of the Valencian
government. Suspended particulate matter (SPM), Secchi disk depth (SDD), and chlorophyll a (Chla).
nd = no data (missing data).

SPM (mg/L) SDD (cm) Chla (mg m−3)

Data Station

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

18 January 2017 28 34 40 60 60 35 30 33 25 30 10 3.7 6.9 6.4 3.9

9 February 2017 nd <1 <1 nd <1 nd 30 25 nd 25 nd 48.8 39.7 nd <0.1

14 February 2017 39 41 36 55 81 35 nd nd nd nd 20.1 14.1 15.6 11.1 18.3

20 March 2017 30 23 13 20 28 40 40 45 50 40 43.3 50.9 13.2 2.5 <0.1

3 April 2017 42 38 37 40 40 35 38 40 38 38 30.5 35 8.9 13.8 2.8

9 May 2017 98 nd 90 100 82 nd nd nd nd nd 46.6 nd 33.1 32.5 22.4

12 June 2017 67 140 97 60 105 18 20 14 17 20 33.9 27.6 88.9 74.7 57.7

11 July 2017 80 48 86 92 86 30 30 25 30 23 42.6 18.2 39.9 51 0.7

7 August 2017 25 nd 35 35 nd 30 30 30 30 30 46.7 nd 49.1 49 nd

11 September 2017 35 35 26 38 43 30 30 30 30 25 <0.1 37.5 <0.1 48.2 <0.1

17 October 2017 nd 76 nd 67 72 30 20 nd 20 25 65.5 157.4 nd 197.9 172

20 November 2017 58 78 84 31 74 30 37.5 30 30 37.5 89 60.6 70.9 69.2 72.6

21 December 2017 nd 41 43 nd 48 32 30 30 nd 30 61.2 73.5 75 nd 160

23 January 2018 52 52 50 nd 60 28 30 35 nd 25 84.3 71.4 82 nd 83.6

19 February 2018 <1 52 82 29 85 23 35 35 50 35 57.1 38.3 67.3 24.3 46.3

1 March 2018 73 64 83 88 103 20 31 30 30 29 163.1 91.1 90.1 98.6 <0.1

17 April 2018 66 116 88 92 90 23 25 23 25 25 <0.1 125.6 67 81.4 45.6

15 May 2018 108 130 130 130 130 30 17 17 20 17 30.6 127.1 167.8 167.2 229.7

13 June 2018 <1 nd nd nd nd 40 25 25 25 25 22.5 nd nd nd nd

11 July 2018 28 22 18 34 40 30 35 35 30 30 101.1 42.9 26.3 41.3 36.2

20 August 2018 22 25 30 35 21 25 35 42 35 37 108.4 26.2 23.5 25.7 23.1

18 September 2018 nd 8 nd 9 25 25 35 nd 35 35 nd 61.6 nd 101.1 38.4

17 October 2018 46 38 53 51 50 nd 30 30 30 30 nd 130.1 92.3 137 117.3

12 November 2018 28 20 20 18 15 nd 30 30 30 30 nd 157.8 143.3 172.1 130.5

11 December 2018 nd nd nd nd nd nd 35 40 nd 50 nd nd nd nd nd

17 December 2018 nd nd nd nd nd nd 25 25 25 25 nd nd nd nd nd

Average 49 49 52 52 58 28 29 29 29 29 55.7 63.7 57.3 67.1 66.6

SD 32 40 38 36 38 14 11 14 15 11 41.9 50 45.8 59 63.1
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Figure 4. Standardized monthly averages of Secchi disk depth (blue bars) and suspended particulated
matter (brown bars) for the period 1995 to 2018, in the five sampling stations of the Albufera lagoon.
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Monthly turbidity is mapped in Figure 5 (year 2018) and Figure 6 (year 2017) to better analyze the
spatial pattern. Turbidity is represented as standardized reflectances of band 5 (705 nm) from Sentinel
2A and 2B. This reflectance represents turbidity as follows: values in the interval (−1, 1) indicate
average values (blue color); values in the interval (1, 1.6) are above average conditions (yellow color),
and values (>1.6) are highly anomalous (red color). Applying the spatially standardized anomalies
approach is important to be able to detect deviations from the baseline.

Figure 5. Monthly standardized reflectances band 5 (705 nm) from Sentinel 2A and 2B, year 2018,
in the Albufera lagoon. Turbidity is represented as follows: values in the interval (−1, 1) indicate
average values; values in the interval (1, 1.6) are above average conditions, and values (>1.6) are
highly anomalous.
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Figure 6. Monthly standardized reflectances band 5 (705 nm) from Sentinel 2A and 2B, year 2017, in
the Albufera lagoon. Turbidity is represented as follows: values in the interval (−1, 1) indicate average
values; values in the interval (1, 2) are above average conditions, and values (>1.6) are highly anomalous.

The spatial distribution of turbidity is quite heterogeneous. Despite the five in situ sampling
stations are located all around the lagoon, the high spatial variability is much better captured with
remote sensing. The correlation between remote sensing and in situ data was analyzed with the
Spearman correlation test. We contrasted the 2017 and 2018 standardized reflectance values (band 5,
705 nm) with the monthly standardized data of SDD for the complete study period (1998 to 2018) for
each sampling station (Table 3). We wanted to test if turbidity patterns mapped with remote sensing in
the studied years followed the monthly historical pattern. According to p-values, the correlation was
statistically significant (p-value < 0.05) for all sampling stations except sampling station 2, 2018.

It is important to remember that high turbidity values can be due to inorganic particulated matter
(sediments) but also to high phytoplankton values [12,13]. Monthly Chla concentration in the Albufera
lagoon is mapped in Figure 7 (year 2018) and Figure 8 (year 2017). Chla is used a phytoplankton
biomass indicator. In general, the highest Chla values do not coincide with the highest turbidity values,
which indicated the major importance of inorganic particles during high turbidity events. For instance,
April 2018 is characterized by high Chla values while turbidity is under the average (<0) in nearly all
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of the lagoon. Phytoplankton biomass behavior showed differences between a wet year (2018) and a
dry year (2017). In 2018, the highest phytoplankton biomass (Chla) was observed in April and affected
nearly the entire lagoon. In 2017, the highest biomass from May to July also affected nearly the entire
lagoon. Both years had a second Chla maximum in October.

Table 3. Correlation between the monthly standardized data of Secchi disk depth and standardized
band 5 (705 nm) of Sentinel (for each year n = 12).

2017 2018

Sampling
Stations

Spearman
Correlation

p-Value
Spearman

Correlation
p-Value

1 0.613 0.034 0.614 0.034
2 0.860 0.000 0.557 0.060
3 0.887 0.000 0.665 0.018
4 0.897 0.000 0.658 0.020
5 0.622 0.031 0.594 0.042

Figure 7. Monthly chlorophyll a concentration in the Albufera lagoon 2018.
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Figure 8. Monthly chlorophyll a concentration in the Albufera lagoon 2017.

To better analyze temporal variability and the effect of extreme meteorological events, we mapped
turbidity and Chla before and after the most important storm of the study period (Figure 9). This
storm was on October 18 and total precipitation was 232.2 mm. Before the precipitation, Chla levels
were above 75 mg m−3 in nearly the entire lagoon. After the precipitation, a generalized decrease
was observed.
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Figure 9. Chlorophyll a concentration and turbidity before and after a storm in the Albufera lagoon.
The storm was on October 18 and total precipitation was 232.2 mm.

4. Discussion

In our study, we applied the standardized anomalies approach to the analysis of spatial and
temporal patterns. According to the anomalies theory, the baseline is interpreted as the boundary
on which if a value is above it is described as a positive anomaly (or increase), while if a value is
below it indicates a negative anomaly (or decrement) [27,28]. The baseline was calculated from the
period 1995 to 2018, the available historical data that defines the recent average behavior. Thanks to
that analysis, in Figure 4, we can clearly distinguish the seasonal pattern. The temporal pattern in
the Albufera lagoon is highly dependent on the rice cycle regulation of water inflows. SPM is higher
from April to October in all sampling stations (except sampling station 1 from March to August), and
thus the SDD is lower from April to October (Figure 4). The rice growing season is approximately
from March-April to September. This period is characterized by high residence time of water in the
lagoon since floodgates are closed and freshwater inputs are minimum [3]. In September, floodgates
are opened to dry the fields for harvesting. The rainy season starts in September in this Mediterranean
area when the floodgates are open; this favors water renewal. During the study period, from 1995 to
2018, the lowest water transparency is in May–June and October in sampling stations 2 to 5. Sampling
station 1 exhibits slightly different behavior. A lower water transparency is maintained from March
to September and transparency only shows a recovery during November to January. This station is
located in the western area of the lagoon, which is the shallowest part (<0.9 m).
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In general, the turbidity temporal and spatial pattern is similar in a wet year (2018, Figure 5) than
in a dry year (2017, Figure 6). Thanks to the spatially standardized anomalies approach, it is important
easy to detect deviations from the baseline. The highest turbidity values were observed on the west
shore of the lagoon during most of the year. This agrees with the lagoon hydrological sectors proposed
by [30]. According to them, the Northwest and West sectors have the lowest water circulation, while
the Northeast and Southeast areas have the highest due to the proximity of the gates. The highest Chla
values are also observed very close to the western shore, as observed also by [3], but also the northern
shore reaches very high values.

The spatial distribution of turbidity observed in Figures 5 and 6 is closely related to meteorological
events. From September to November 2018, several heavy rain events carried more sediments to
the lagoon through surface runoff. In [22] the authors explained that heavy storms were one of the
main factors explaining the variation in the limnology of the Albufera lagoon. Storms may last only
a few hours in this Mediterranean area, and a single storm could double the annual mean rainfall
(e.g., October 2018 precipitation was higher than 2017 annual precipitation). During these storms, the
potential for soil infiltration is low, so runoff is very important. We observed high turbidity both in
the western sector of the lagoon and near the outflowing channels (eastern sector). In these areas, the
phytoplankton and sediments can be transported to the sea because the floodgates (Golas) are open.
These high turbidity values are mapped in yellow color (values above the average) and in red (highly
anomalous values). From July to September, during the rice growing season, when freshwater inflows
to the lagoon are greatly reduced, the most important variable is east wind. The wind dominant
direction from sea to land causes the accumulation of suspended material in the western area of the
lagoon. In April a false anomaly is observed, which was due to cloud presence. The study images
were selected taking into account the lowest cloud coverage to avoid these interferences, but no better
image was available in April 2018.

In recent decades, a clear water phase (CWP) has been observed yearly, but it does not show a
regular pattern, either temporally or spatially in the lagoon [30,31]. During this phase cyanobacteria
plankton is substituted by other microalgae, especially diatoms, which are consumed by filter-feeders
such Daphnia magna [31]. The authors of [8] studied with Landsat images a CWP event that happened
in March 2000. They observed that the re-eutrophication process started from the northwest shoreline,
which is the area with lowest circulation [30]. A CWP was reported in January 2017 [7]. As shown
in Figure 5, we observed an area of high transparency next to the west shoreline and a highly turbid
area in the southeast part of the lagoon. In this month, an important rain event was the most possible
cause of sediment transport towards the floodgates. In [7] the authors found two annual minima of
cyanobacteria (March and September), which is the dominant phytoplankton in this hypereutrophic
lagoon. These minima coincide with the maximum area of transparency in Figure 5, and with low
Chla values in Figures 7 and 8. However, in 2017 the lowest Chla values were detected in February.
The authors of [7] observed one cyanobacteria maximum in May. Then, they describe a sharp
decline in primary production that contrasts with other authors such as [3], who found that Chla
concentrations increase from May to August 2006 due to the low water circulation. We can appreciate in
Figures 4 and 5 an increase in turbidity from March to May, and a decrease in turbidity from May
to August, which is more marked in 2018 (Figure 5). In our results, the Chla pattern is different
each studied year, in 2017 high Chla levels are constant from May to July, while in 2018 there is an
important decrease after April. The main difference between both years was an important precipitation
event of 82.6 mm on 3 June 2018. This shows the importance of meteorological events on the lagoon
dynamics. To analyze this further, Figure 9 shows Chla concentration before and after the most
important precipitation in October 2018. The decrease in Chla after the storm and the water quality
improvement can be explained by rapid flushing. If we compare Figures 5 and 6 with Figures 7 and 8,
the highly anomalous values of turbidity cannot be attributed to Chla, which suggests the importance
of inorganic particulated matter, and indicates sediment transport.
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The analysis of turbidity gives information about organic and inorganic suspended materials, that
is, about phytoplankton and inorganic particles. Previous remote sensing research [8,32] focuses mainly
on Chla study, which is an indicator of phytoplankton biomass. Our study of turbidity patterns provides
important supplementary information to those previous studies. The authors of [30] demonstrated
that flushing pulses are key to improve water quality and to remediate eutrophication. In our study,
we demonstrated that during important rain events the turbidity pattern shows higher values towards
the floodgates “Golas”. Then, it is important that during rain events the connection between the
lagoon and the sea remains open to allow sediment discharge and prevent clogging of the lagoon.
Dredging the lagoon to remove the sediments has been considered by the managers for several years
to solve both eutrophication and clogging problems [33]. However, dredging is a desperate measure,
very costly, and with environmental consequences. An improved water management, with increased
flushing pulses frequency would be a good management measure that could help in alleviating not
only eutrophication problems but also lagoon clogging. For that reason, it is essential to maintain the
freshwater inflow to this lower part of the Júcar and Turia rivers. In recent years, three constructed
wetlands have been developed in the Albufera lagoon (Tancat de la Pipa, Tancat de Mília, and Estany
de la Plana), but their functioning is not maximizing the removal of phytoplankton, phosphorus, and
nitrogen [6,34]. A better understanding of turbidity patterns can provide relevant information to
choose the most suitable location for future restoration measures.

5. Conclusions

In our study, we applied the standardized anomalies approach to the analysis of spatial and
temporal patterns of turbidity. This methodology allows comparing variables measured with different
units, such as SPM and SDD in this study, and detecting deviations from a baseline. Thanks to this
approach we can define the seasonal pattern of turbidity, which is not possible by the analysis of
an isolated year or a reduced number of study years. In addition, we can define the areas with the
highest values above the spatial baseline, which means we can identify the lagoon areas with the most
anomalous values.

Turbidity patterns in the Albufera lagoon show a similar trend in wet and dry years, which is
mainly linked to the irrigation practice of rice paddies. High turbidity periods are linked to higher
water residence time and closed floodgates. However, precipitation and wind also play an important
role in the spatial distribution of turbidity. During storm events, phytoplankton and sediments are
discharged to the sea, if the floodgates remain open. Fortunately, the rice harvesting season, when the
floodgates are open, coincides with the beginning of the rainy period. Nevertheless, this is a lucky
coincidence. It is important to develop a conscious management of floodgates, because having them
closed during rain events can have several negative effects both for the lagoon and for the receiving
coastal waters and ecosystem. Non-discharged solids may accumulate in the lagoon worsening the
clogging problems, and the beaches next to the receiving coastal waters will not receive an important
load of solids to nourish them.
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Abstract: In flood-prone areas, the delineation of the spatial pattern of historical flood extents,
damage assessment, and flood durations allow planners to anticipate potential threats from floods
and to formulate strategies to mitigate or abate these events. The Chenab plain in the Punjab
region of Pakistan is particularly prone to flooding but is understudied. It experienced its worst
riverine flood in recorded history in September 2014. The present study applies Remote Sensing
(RS) and Geographical Information System (GIS) techniques to estimate the riverine flood extent
and duration and assess the resulting damage using Landsat-8 data. The Landsat-8 images were
acquired for the pre-flooding, co-flooding, and post-flooding periods for the comprehensive analysis
and delineation of flood extent, damage assessment, and duration. We used supervised classification
to determine land use/cover changes, and the satellite-derived modified normalized difference water
index (MNDWI) to detect flooded areas and duration. The analysis permitted us to calculate flood
inundation, damages to built-up areas, and agriculture, as well as the flood duration and recession.
The results also reveal that the floodwaters remained in the study area for almost two months, which
further affected cultivation and increased the financial cost. Our study provides an empirical basis
for flood response assessment and rehabilitation efforts in future events. Thus, the integrated RS and
GIS techniques with supporting datasets make substantial contributions to flood monitoring and
damage assessment in Pakistan.

Keywords: floods; Landsat-8; remote sensing; GIS; disaster mapping; damage assessment; Lower
Chenab Plain

1. Introduction

Flood disasters are among the most frequent and destructive of all-natural disasters,
posing a potential threat to life and property. Every year, human lives, agricultural activities,
and infrastructures are seriously affected by shattering flood disasters around the globe [1–3]. In the
past three decades, flood disasters affected nearly 2.8 billion people and resulted in over 200,000
causalities with substantial damages to property and economy [4]. Floods account for ~47% of all
weather-related disasters that occur across the world [5]. Climate change and rapid population
increases in floodplains enforce and boost the frequency and magnitude of riverine flood damages [6,7].
As flood disasters increase in magnitude, the Asian region continues to face a large number of flood
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hazards and associated losses in lives and all kinds of infrastructure and economic progress [4,7].
In recent years, the south Asia region has been experiencing intense flooding with increased frequency,
especially in Pakistan [8–10].

In Pakistan, flood events are recognized as a major natural hazard that historically originates from
the Indus and Chenab rivers [11–13]. Since the creation of Pakistan, 1955, 1959, 1973, 1976, 1988, 1992,
1995, 1996, 1997, 2006, 2010, and 2014 are recorded as the years for destructive floods that resulted in
adverse impacts on human lives, property, and the country’s economy [9,14,15]. Floods in Pakistan
mostly occur in the monsoon months of July and September, due to heavy rains and the melting of snow
upstream in the Himalaya region. This results in riverine floods that produce tremendous detrimental
impacts on human lives, agriculture, and infrastructure [16–18]. For instance, the 2010 riverine flood
caused a large inundation that covered an area of 70,238 km2, with 884,715 affected houses [8,12,18].
Likewise, the 2011 flood affected 5.88 million people and damaged standing crops and infrastructure
covering an area of 16,440 km2 and 1882 km2, respectively [19]. In 2014, heavy rains coupled with
the melting of glaciers in the upstream part of Chenab caused flash flooding in mountainous areas
and riverine floods in the upper and lower Chenab plain [20–22]. It was considered one of the
worst riverine flood catastrophes in terms of damages to standing crops, housing, and infrastructure
along the floodplain areas of the Chenab river [13,16,22,23]. This indicates that flooding is a serious
problem in Pakistan that requires significant efforts to reduce its effects, mainly through effective
post-disaster monitoring and management, especially in the Chenab plain [22–24]. As such, we provide
a scientific basis that provides a rapid flood 2014 mapping and monitoring using Landsat-8 data,
with a focus on the lower Chenab plain. We first provide the limitation of previous studies on the
riverine flood of 2014 that focused less on post-flood mapping, monitoring, and damage assessment.
These previous studies mainly focused on the upper Chenab plain [13,16,21,22] without focusing on the
lower Chenab plain. This is despite the fact that the lower Chenab plain is a fertile flood-prone plain and
considered an economically underdeveloped region in the Punjab province of Pakistan. Despite being
an understudied area, negligence adds to the problems with a lack of localized flood management
strategies. Therefore, accurate post-flood mapping, monitoring, and evaluating damages are the
utmost requirements for rapid flood risk assessment in lower Chenab plain. Secondly, to a basis for
rapid flood risk mapping, we make use of multispectral remote sensing open data in conjunction with
Geographical Information System (GIS) techniques for monitoring and evaluating damage assessment
in the severely flood-affected areas of the lower Chenab plain, Punjab, Pakistan.

The use of remote sensing and GIS techniques is chosen as it contributes to an exploration of flood
causes and additionally provides accurate mapping of flood extents that enables detailed investigations
of flood instances [18,19,25]. Moreover, these techniques can be applied in damage assessment to
standing crops and infrastructure. Effective flood modeling and mapping are important for flood
assessment, loss estimation, and sustainable land use planning along flood plains to mitigate flood
risk effectively [25,26]. Multi-temporal remote sensing images provide a wide source of low-cost
information with a reliable accuracy that can be beneficially utilized for flood mapping [27,28].
Furthermore, multispectral remote sensing-derived indexes and GIS-based classifications can be
exploited to detect flooded areas [18,29,30]. a wide range of open-source remote sensing data has
permitted valuable and accurate historical data, which is essential for a comprehensive study on
flood disaster mapping and damage assessment [31]. For example, moderate resolution Landsat data
have provided free, up-to-date satellite images across the globe since 1972, which can be used for
flood disaster monitoring and damage assessment [32,33]. High-resolution Google Earth (GE) images
provide historical and recent data that can also be used for flood monitoring and temporal flood
mapping [34]. GE images can also be used as input datasets to digitize land uses, particularly useful in
small areas [5], and for the validation of supervised classified images [35]. Thus, the current study
uses remote sensing and GIS techniques to detect flood inundation and duration, and evaluate flood
damages on different land uses, such as agricultural land and built-up areas. We used the identified
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relationship between land uses and flood instances to estimate the overall damage, flood extent,
and propose emergency flood management for future floods on the lower Chenab plain.

2. Materials and Methods

2.1. Study Area

The study area is the lower Chenab plain, which is located in the downstream part of river
Chenab, central Pakistan. It is located between 70◦41′13.2”E and 29◦6′0”N, and 71◦37′58.8”E and
30◦31′33.6”N, within the three main districts of Punjab province, namely the Multan, Muzaffar Garh,
and Bahawalpur districts (Figure 1). It is one of the fertile plains of Punjab province, where floods
occur almost every year. The Chenab river originates from the Indian state of Himachal Pradesh.
Then, it flows through Indian-occupied Kashmir and enters at Marala Headwork into the province of
Punjab, Pakistan. The southern part of the study area includes the Panjnad Barrage where the Sutlej
River joins the Chenab, as shown in Figure 1. The total length of the River Chenab is about 974 km,
of which 729 km fall within Pakistan. Of the 729 km, we selected approximately 215 km as our study
area. We then divided the 215 km into three equal sections, each approximately 71 km long (Figure 1),
to enable the visualization and detailed investigation of the results. We also created a 6-km-wide
buffer around the Chenab River that covers a distance of about 215 km from north to south as the final
extent of our study area. The mean annual Chenab discharge is 1.52 million m3 [36,37]. The highest
temperature documented in the study area is 50 ◦C in the month of June with the lowest recorded
temperature of 2 ◦C in the month of January [20]. The average yearly rainfall is 157 mm, with July
receiving a maximum of 45 mm and October receiving a minimum of only 2mm [20]. The main source
of livelihood in the study area is agriculture with main crops being sugarcane, cotton, maize, rice,
and fodder.
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Figure 1. Location of the lower Chenab plain in Pakistan, and the zoomed area represents the river
Chenab system, and also shown is the 6-km buffer zone and the extent of our study area.

2.2. Materials

The main data source of this study is Landsat 8 imagery (Table 1), acquired from the United States
Geological Survey (USGS). Landsat images have a temporal resolution of ~16 days that has provided
free up-to-date images across the globe since 1972 [22,33,38,39]. However, the study area provides
a unique opportunity with a high temporal resolution of ~8 days since the area lies within two adjacent
Landsat paths of 150 and 151 (Figure 2; Table 1), which enables us to make an in-depth analysis of the
flood duration and inundation. In total, we used 9 temporal images acquired between 7 August and
27 November 2014 (Table 1). We used 8 temporal images for flood monitoring. Furthermore, we used
3 temporal images for flood damage assessment using land use/cover classification during flood
instances in lower Chenab plain (Table 1).

We also used GPS and the Google Earth (GE) platform to collect spatial training datasets,
which were used to support land use/cover classification. The GPS data were collected after the
flood waters had ceased, as it was challenging to do field survey during flooding time, due to flood
inundation. These points were also used to validate classification and inundation results. Due to
its high resolution, the GE platform provides a better visualization of the real-world scenario of
land use/cover change in the study area [34]. Furthermore, GE images of three flood instances (and
with similar acquisition dates as the Landsat-8 images) were taken for cross-comparison with the
Landsat-based land use/cover classification. The Pre-flood image was acquired on 4 August, 2014,
the Co-flood image was taken on 13 September, 2014, and the closest available Post-flood image
was acquired on 11 November, 2014. To further understand post-flood situation in the study area,
a comprehensive field survey was conducted to identify damages and affected areas and observe the
Post-flood effects and rehabilitation process.
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Table 1. Specifications of used Landsat-8 data.

Path Row Date of Acquisition
Flood

Instances
Use Resolution (m)

151 39 and 40 7 August 2014 Pre-flood Land-use
classification 30

150 39 and 40 17 September 2014 Co-flood
Land-use

classification and
Flood monitoring

30

151 39 and 40 24 September 2014 Co-flood Flood monitoring 30

150 39 and 40 3 October 2014 Post-flood Flood monitoring 30

151 39 and 40 10 October 2014 Post-flood Flood monitoring 30

150 39 and 40 19 October 2014 Post-flood Flood monitoring 30

151 39 and 40 26 October 2014 Post-flood Flood monitoring 30

151 39 and 40 11 November 2014 Post-flood Flood monitoring 30

151 39 and 40 27 November 2014 Post-flood
Land-use

classification and
Flood monitoring

30

Figure 2. Landsat satellite images: Path 150 and 151 show the study area and districts.

2.3. Methods

The overview of the used methodology is presented in Figure 3. Firstly, we applied radiometric
correction, layer stacking and mosaicking and resampling to the Landsat-8 images before use.
Then, we converted the digital number values on the Landsat images to reflectance using ENVI’s
Radiometric Calibration Tool [18]. Finally, we used Arc GISs’ spatial analysis tools for Layer stacking
and mosaicking, and resampling. The pre-processed Landsat-8 pre-flood, co-flood, and post-flood
images were subjected to supervised classification for land use/cover mapping in ArcGIS 10.5, as shown
in Figure 3. Landsat data are most common and is often used for different land use/cover mapping and
water extraction mapping [13,40]. The Supervised classification method is used to extract information
from Landsat data [29,41]. In addition, a maximum likelihood (ML) approach was applied for land
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use/land cover classification of flood instances. The ML approach is widely used and is easy to apply
for land use/cover classification. The ML approach has also been applied to land use/cover mapping of
pre-flooding, co-flooding, and post-flooding [11,18,22,39–42]. We identified water, agriculture land,
and vegetation, built up, sand, barren land, and deposited material as the six land-use classes in the
study region. To facilitate the ML approach for classification, a total of 360 spatial training samples
were collected from a GPS field survey and comparatively high-resolution GE images, and were further
assigned to the pixel values of the most probable land use/cover class. All spatial training datasets
were compiled and prepared in Microsoft Excel and were imported into the Arc GIS 10.5 environment.
The classified images were converted into a shapefile format and used as input for the GIS-based
spatial overlay analysis. This allows us to spatially compare and intersect all classified land uses to
provide a clear picture of flood inundated and damaged land uses in lower Chenab.

Figure 3. Methodological framework for the flood inundation mapping and damage assessment using
multi-temporal Landsat-8 images.

For damage assessment, we defined a damaged area as an area that experienced a change from
‘agricultural’ and ‘built up’ in pre-flood to ‘deposited material’ in post-flood. a pre-flood image was
used as a reference and a change detection technique was used to evaluate damages to agriculture and
built-up areas in the study area.

2.3.1. MNDWI Index

The Modified Normalized Difference in Water Index (MNDWI) was used to delineate the spatial
pattern of flood-2014 inundation along the lower Chenab plain. The MNDWI index is widely used
for the rapid delineation of floodwater required for flood monitoring and assessment, and has been
compared to other indices, i.e., the NDWI and Water Ratio Index (WRI) [43,44]. The Normalized
Difference Water Index (NDWI) presented by McFeeters [45], is very efficient at delineating water
information but has difficulties in case a built-up area exists in water environment. Therefore, Xu [46]
presented an effective MNDWI index, which is much better at distinguishing between water and
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built-up areas. The MNDWI is calculated using green (Band 3) and shortwave infrared (Band 6)
wavelengths to delineate water, as given by Equation (1):

MNDWI =
(Band3) − (Band 6)
(Band3) + (Band6)

(1)

where GREEN (Band 3) = Green wavelength (0.53–0.59mm) and SWIR (Band 6) = Short-wave infrared
Wavelength (1.57–1.65 mm)

This index is utilized for the removal of built-up area noise, and it uses Band 3 wavelength to
maximize water reflectance. The resulting value ranges from −1 to +1. The low water reflectance
and high reflectance of built-up in Band 6 result in positive values of water and negative values of
built up in the MNDWI image. The limitation of the MNDWI index is that it does not efficiently
distinguish between hill shadow and water body [47,48]. From literature, the MNDWI index has been
used for the extraction of water on a flat plain with scattered built-up areas using Landsat 8 OLI and
SAR data, achieving high accuracy and better performance. Thus, it was also strongly recommended,
in comparison with other indexes, to be applied on Landsat images [49–52].

2.3.2. Classification and Inundation Validation

The classified images and index-derived inundation were validated using GPS and Google earth
(GE) points. For this, the random sample points’ tool within the Arc GIS spatial analyst was used to
extract random points on the classified land uses of inundated and non-inundated images. These points
were then converted into a kml format and overlaid on GE. The values of these points were evaluated
using visual interpretation and expert knowledge. The accuracy of classified images was assessed
using 557 Arc GIS random points and 150 GPS points. We have used 30 Arc GIS random points of class,
namely: water, agriculture, built-up, barren, sand, and deposited material, to each flood instance image.
In addition to this, we have further used 25 GPS points of above-mentioned classes to only post-flood
instance for the validation process. The accuracy of inundation maps was assessed using 400 ArcGIS
random points and 200 GPS points. Furthermore, for each inundation map, we have used 50 ArcGIS
random points and 25 GPS points for the validation of water and non-water classes. Lastly, the results
from the comparison of random samples and GPS with GE images were used to create the confusion
matrix. The confusion matrix was used to evaluate the accuracy of the ML land use/cover classification
and MNDWI inundation. We also used the Kappa Coefficient (KC) as an indicator to validate the
qualitative agreement, either positive or negative, between classified samples and ground-truth points.
It is normally calculated from a statistical assessment to evaluate the proportional improvement by the
classifier over ground-truth samples to land-use classes.

3. Results

3.1. Accuracy Assessment

The overall inundation accuracy obtained from all images is above 90%, as shown in Table 2.
The highest overall accuracy of 92% is obtained from the peak-flood image (17 September) and the
post-flood image (27 November), while the least overall accuracy of 88% is acquired from the post-flood
(11 November) image. Similarly, the obtained average user and producer accuracy of both classes
is nearly 90%. The highest user accuracy of the water class is attained from the peak-flood image
(17 September), which is 96%, and the least is 85%, which is obtained from the post-flood (11 November)
image. On the other hand, the highest user accuracy of the non-water class is achieved from the
post-flood (27 November) image, which is 93%, and the least is 86%, which is from the peak-flood
(17 September) image. Furthermore, the highest attained producer accuracy of the water class is 94%
from the post-flood (26 October) image, and the least is 87% from the peak-flood (17 September) image.
The highest obtained non-water class producer accuracy is 96% from the peak-flood (17 Sepember)
image and the least is 86%, which is obtained from the post-flood (11 November) image. The highest
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KC accuracy of 85% is achieved from the post-flood (27 November) image and the least KC accuracy
is obtained from the post-flood (11 November) image. The average KC accuracy of all the images is
above 80% (Table 2).

The highest overall supervised classification accuracy obtained is 92% from the post-flood image.
Whereas, the lowest accuracy of 85% was obtained from the co-flood image, as shown in Table 3.
The KC accuracy shows that the highest accuracy of 90% is obtained from the post-flood (27 November)
image and that the lowest of 81% is obtained from the co-flood (17 September) image. Similarly,
the user and producer accuracies were also calculated, which are listed in Table 3. The highest user
accuracy was attained by water, barren land, and sand classes of 92%, 96%, and 99%, respectively.
Likewise, the highest producer accuracy was obtained by the water, built-up area, and deposited
material classes at 99%, 98%, and 95%, respectively. The overall land-use classification accuracy
suggests that classified images are reliable for further analysis.
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3.2. Flood Mapping and Monitoring

The temporal flood 2014 extent maps were prepared and used to determine the most inundated
areas in the study area, as a tool for flood monitoring. Figure 4a,b shows the flood inundation with
a flood peak on 17 September, which remained stable until the 24 September, and then the inundation
gradually decreased till post-flood 27 November. Figure 4a and Table 4 show that northwestern
Muzaffargarh and northeastern Multan Saddar part was the most inundated and affected region along
with the southeastern ShuJabad and Jalalpur Pirwala. The flooded area receded in three phases: In the
first phase from 24 September to 10 October, the southern part gradually receded from west to east.
The central part began to recede from 10–26 October 2014 in the second phase, and in the third phase,
almost all the flood water receded until 27 November 2014. Hence, the flood duration result shows
that Muzaffargarh and Multan Saddar remained inundated for almost two months and reported the
most affected areas by flood-2014 in lower Chenab plain.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) Comprehensive flood inundation and recession in the lower Chenab plain. (b) Flood
recession in the lower Chenab plain from 17 September (peak-flood) to 27 November 2014 (post-flood).
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The peak-flood (17 September) extent is compared in Figure 5a,b. In Figure 5a, the MNDWI index
shows the accumulated flood extent that covers an area of 1380km2. Whereas, in Figure 5b, the classified
image shows that about 1330.03 km2 of the area was inundated, which represents a 2% deviation
from the MNDWI results. The result shows that both the MNDWI index and supervised classification
produce almost similar inundation areas in lower Chenab plain. Furthermore, these inundation results,
when incorporated with the GE images acquired at the same time as the Landsat-8 images, also showed
the severe spatial pattern of inundation, and they also validate our estimated flood inundation extent,
confirming that flood waters remained for almost two months and receded very slowly (Section 3.3).

Figure 5. Spatio-temporal flood inundation (a) using the MNDWI index (b) using
Supervised Classification.

3.3. Land Use and Land Cover Changes

Figures 6–8 show the results of the supervised ML classification for land use/land cover mapping
of Pre-flood (07 August), Co-flood (17 September), and Post-flood (27 November) images in the lower
Chenab plain. We classified water, built-up, agriculture land and vegetation, barren land, sand,
and deposited material on the pre- and post-flood images. However, deposited material was not
identified in co-flood image due to intensive flood inundation (Figure 7). The results show significant
changes in all classified land uses in relation to flood instances. In pre-flood, only 8% was covered
by the water body, 17.39% of built up, 55.37% of vegetation/agriculture land, 4.84% of barren land,
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8.32% of sand, and 5.92% of deposited material within a total area of 2536.11 km2 (Figure 6). The water
body showed only 8% in the pre-flood situation. However, after the flood occurrence in the month of
September, 2014, an abrupt change appeared in the water body that represents a massive increase to
50% of the area, as shown in Figure 7. The massive water had not only inundated but also severely
affected all other land uses. The built-up area considerably decreased from 17.39% to 11.85% in the
study area. Likewise, we noticed a massive increase in water that affected the agriculture/vegetation
covered area, which decreased from the initial total area of 2536.11 km2, from 52.37% to 32.40%.
The noticeable decrease of sand was from 8.3% to 1.1%. The slight decrease is noticed in barren land
from 4.8% to 4%. Thus, the massive increase in water caused a large part of the agricultural/vegetation
area to be flooded and destroyed most of the standing crops. In addition, the built-up area was also
severely affected and flooded.

Figure 6. Land use/Land cover map of the pre-flood image developed using Landsat-8 images and
supervised classification.
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Figure 7. Land use/Land cover map of the co-flood image, 17 September, 2014, developed using
Landsat-8 images and supervised classification.
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Figure 8. Land use/Land cover map of the post-flood image developed using Landsat-8 images and
supervised classification.

In the post-flood period (Figure 8), water receded to its original pre-flood stage and decreased to
only 6% from 50% in the co-flood image. Similarly, built up also regained its original pre-flood stage and
increased to 17.79%. After the flood occurred, water receded back but large amounts of sediment and
other materials remained, representing a dramatic increase from 5.92% to 30%. Similarly, an increase in
the vegetation and agriculture area can be noticed from 32.40% to 37.50%. The barren land area did not
change much as it remained constant in each instance. Sand slightly increased to 4.4% from 1.17% of
total 2536.11 km2 area, as shown in Figures 8 and 9. The total area in km2 of each class is statistically

184



Remote Sens. 2020, 12, 714

represented in Figure 9. Hence, all classified images show a similar pattern of land use/cover classes
compared to high resolution GE images (Figure 10).

Figure 9. Change detection of land use/land cover in the lower Chenab plain using Landsat-8 flood
instances images.

The classification result and GE images show the same pattern of land use changes in the study
area. The agriculture and built-up areas along the river are clearly visible in the pre-flood image
(Figure 10A). Conversely, the co-flood image (Figure 10B) depicts the abnormal change in water area
that has increased drastically and caused an inundation to all the surrounding agricultural and built-up
areas. As shown in Figure 10C the post-flood image shows the huge amount of deposited material
along the river and its surrounding areas that dramatically increased and destroyed standing crops,
which caused late sowing of agricultural crops, and further leads to low productivity in the study area.
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Figure 10. Google Earth 7.3.2.5776. (A. 4 August, 2014, B. 13 September, 2014, C. 11 November, 2014).
Section 1, the lower Chenab plain. 30.290058◦ N,71.378478◦ E, Eye alt 11.42 mi. Also shown are
validation points.

3.4. Damage Assessment

The results revealed that agriculture/vegetation areas were the most severely inundated, ~495 km2,
and while inundation in the built-up area covered 229 km2, from the total inundated area of 1330 km2,
as shown in Figure 11a,b. The damage result further showed that a total of 361.43km2 of agricultural
land and 187.36km2 of built-up areas were damaged due to deposited material. This result shows that
the Multan district is the most affected/damaged district from flood-2014, as also shown in Figure 12a.
Further details on the damaged agriculture land and built-up areas of the involved districts are listed
in Figure 12b.
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(a)

(b)

Figure 11. (a) Inundated agriculture and vegetation areas and built-up areas in the lower Chenab plain.
(b) a graph of inundated agriculture and vegetation area, and built-up areas in the lower Chenab plain.
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(a)

(b)

Figure 12. (a) Damaged agriculture and vegetation areas and built-up areas in the lower Chenab plain.
(b) a graph of damaged agriculture and vegetation areas and built-up areas in the lower Chenab plain.
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4. Discussion

Pakistan is a flood-prone country with historical records of various magnitudes of flood
events [37,53,54]. In the past decade, flood disasters in Pakistan have surpassed all other disasters in
terms of the frequency of occurrences, and also killed over 5700 people coupled with severe damages
to the country’s economy [5,12,15,17]. In the year of 2014, the flood started from late monsoon rainy
season when the river Chenab inflow significantly increased from its upstream tributaries and resulted
in high discharge, which exceeded the limits of the river flowing capacity and subsequently caused
a huge inundation in the study area, as shown in Figures 7 and 10b.

Our results show that open satellite data coupled with an ML-supervised classification approach
and the MNDWI allow the delineation of flood inundated and damaged areas with high overall accuracy.
To obtain high accuracy levels, appropriate satellite data is critical. Firstly, temporal relationship
between flood occurrence and satellite characteristics is an important parameter in flood modeling.
For instance, a low-resolution (~250 m), multispectral Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite with its daily revisit time has already been used to obtain a co-flood image for
certain flood events in Pakistan, but with questionable accuracy [19,55]. However, due to absence
of any co-flood open access high resolution, e.g., Sentinel-1, for the study area, we opted to use
moderate spatial resolution Landsat data (~30 m) for flood monitoring and assessment [9,18,22].
Despite a relatively better resolution, Landsat data are limited in such a way that they lack the timely
acquisition of geospatial data, which sometimes reduces their suitability for flood monitoring and
inundation mapping [26,39,56]. In the study area however, two adjacent Landsat satellite paths (150
and 151) made it possible to acquire high temporal resolution Landsat data (~7 days), against a single
temporal resolution of 15 days for an area [9,18,57]. As such, the high temporal resolution of
Landsat data enables a detailed investigation of operational flood mapping and monitoring in a study
area. Secondly, existences of cloud cover can restrain the availability of flood instances images.
Certainly, SAR (Sentinel 1,2,3) and RADAR satellites can easily penetrate clouds and acquire images
in comparison to optical satellites (Landsat, MODIS) [26,58]. In our cases, the free SAR data were
not available and the study area was entirely cloud free during the 2014 flood, since the causative
meteorological events happened in upper Chenab plain. These events generated the flood peak that
happened almost 10 days prior to the flooding in lower Chenab plain. Thirdly, consideration of
land use/cover change of the flooded area is also an important factor in choosing the satellite data.
The inundated agriculture and built-up area can easily be detected by most Radar SAT and optical
satellites [59]. With multispectral Landsat images, we can recognize flooded areas even after several
days of flood occurrence [41,42,56]. Nevertheless, we used Landsat-8 data as it is also possible to
detect sediment material over agriculture fields and built-up areas with reliable accuracy [26,59].
Despite that, high resolution SAR data and a field survey are necessary for accurate and reliable
flood mapping and damage assessment [59,60]. Finally, we have to consider the accuracy of the
applied methods to the satellite data in order to ascertain the reliability of the flood monitoring results.
This study produces an overall accuracy for the MNDWI index of almost 90% (Table 2), while classified
images had an average overall accuracy of about 88% (Table 3). The water class attained the highest
overall accuracy in this study, which has the ability to obtain a highest possible accuracy of 100% [49].
Despite that sand also shows reliable accuracy, in some occasions, wet sand was confused with water
and vegetation/agriculture land. This is also noted in some instances where agriculture and built-up
areas are also confused in transition areas due to mixed pixels.

During the flood-2014 event, the peak-flood water arrived on 17 September, 2014, and then
remained constant for a while. The water slightly receded at a rate of 7 km2/day, until 24 September,
while a recharge of flood water continues from upstream areas. Here, the flood water started to decrease
at a rate of 23km2/day until 26 October, exposing a once flooded area of 636.35 km2. On 27 November,
the river regained its pre-flood stage and flowed normally. However, inundation remained for almost
two months in the study area, as shown in Figure 4. As shown in Figures 11 and 12, the flood-2014
caused huge inundation and damages to agriculture land and built up in the study area.
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The field survey reveals that most of the local people live in mud houses, which are highly
vulnerable to flood disaster and have no flood resilience capacity [25]. As a result, already vulnerable
mud houses were badly destroyed by the flood, besides infrastructure being destroyed by the gushing
flood-2014. Moreover, the survey reveals that the month of November is considered agriculture land
preparation and sowing season for new Rabi season crops and simultaneously harvesting season of
certain kharif crops, such as sugarcane and rice in the study area. As a result, vegetation/agriculture
land slightly increased to 37% in the post-flooding instance. Likewise, the built-up area also increased
to 17.7%, which regained its pre-flood situation, probably due to the receded flood water and
reconstruction. Furthermore, the survey shows that the Chenab river carried a huge amount of
sediment material from its upstream mountainous areas, and it was ultimately deposited along
the lower Chenab plain in 2014. However, deposited material immensely increased to 30% in the
post-flooding instance (Figure 10). In our case, the field survey provided real-time reliable information,
which is immensely required for comprehensive flood disaster assessment.

The moderate 30m resolution Landsat data that we used indicated that tracking inundated
and damaged agriculture areas and built-up areas is reliable and acceptable. This mostly applies
to damage assessment, which could be used for post-flood rehabilitation and a relief operation.
However, for mapping the of detailed built up and agriculture area with a high overall accuracy,
we must utilize high-resolution satellite data (RADARSAT, SAR), aerial photography, and extensive
field survey, which are very often time and cost intensive and the required high-resolution satellite
images are not open access. In this work, we did a field survey in order to evaluate real time damages,
geo-location information, and the validation of Remote Sensing (RS) results. Thus, we correlated our
survey findings for the validation of RS results and formulated an emergency damage assessment.
Our damage analysis aims to provide a rapid and low-cost assessment of damaged agricultural and
built-up areas but does not provide direct information on monetary losses and indirect damages,
which may occur after flooding.

Landsat-8 data are affected by clouds, spectral sensitivity, and moderate spatial resolution and
can only detect surface reflectance changes. Conversely, Radar satellite data can easily penetrate
clouds and will perform properly in all weather conditions and detect changes in vegetation structure
and moisture [59,60]. Radar data is more reliable when extracting flood inundation and damages
in agricultural and built-up areas [25]. This well-known advantage allows Radar data to find the
inundated and damaged areas in the post-flood stage in order to carry out an emergency flood damage
assessment [58–60]. However, Radar data is costly and is not applicable for historical data analysis.
However, despite such limitations, the integration of field and ancillary data allowed us to extract
flood inundation and damage assessment with reliable accuracy. We noticed a number of factors
that affected the tracking of damage assessment in this study. The lower Chenab floodplain contains
numerous mangoes and other Bela forests. The co-flood Landsat image reveals that flood inundation
beneath thin mangoes and other tree canopy covers was easily detected but thick or dense canopy
covers’ pixels were not identified due to the moderate resolution. This resulted in addition to the
overall omission error and also caused the least identification of inundated areas in change detection
analysis during flood instances. Secondly, a misclassification error was found in the classified images
as the open land classified as the deposited material class in the post-flood image due to the moderate
resolution and spectral sensitivity. Then, this error was removed and corrected through field-survey
findings. Finally, the moderate 30-m spatial resolution of the Landsat images contributed to mix-up
and misclassification in built-up areas where floodwaters pass through housing structures, roads,
and other features. This increases the brightness of otherwise dark pixels (water), resulting in an
increase in omission errors, which is a limitation for built-up damage assessments.

5. Conclusions

In this study, we presented a low cost and user-friendly flood monitoring and damage assessment
with the integration of open access optical remote sensing and appropriate processing methods
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jointly exploited with field data. In particular, we used Landsat-8 data and processed them with
open-source, GIS-based, supervised classification for damage assessment and a satellite-derived
MNDWI index for flood inundation and monitoring. The classified images and inundation mapping
produced an excellent overall accuracy of about 90%, which is validated and shows reliable results.
we conclude that these methods have been proven to be useful for estimating and understanding
a future flood phenomenon with its diverse impacts. These methods do not require more time and
provide near real-time information using the user input with indigenous knowledge and expertise.
Furthermore, the classified result reveal that the agriculture sector has been the most affected land
use/cover in the study area. In a large context, people are mostly engaged with agricultural activities,
and this pattern of flood impacts are a major concern as it directly influences the livelihood of the
floodplain community. The index result shows that about 75% of the area experienced severe flooding,
which lies mostly in the southern and central part of study area, and further revealed that flood
inundation remained for almost two months. Finally, despite the fact that flood disasters are recurrent
phenomena, our study proves that the used datasets and methods can be useful for emergency,
real-time, automated flood monitoring and damage assessment in order to formulate emergency flood
disaster management, particularly for relief and response operations. In contrast, traditional flood
monitoring and damage assessment with paid on-demand data provides comparatively accurate
results, but it is a more resource- and time-consuming process.

Despite that our study is local to Pakistan, a few points from our results can be applied in
other areas and thereby contribute to science and global perspectives on flooding. In this paper,
we have shown that the existing supervised classification methods, combined with the MNDWI
and ground-based validation point, can solve a problem of flooding and provide flood management
solutions to local authorities. The combination of supervised classification and the MNDWI has
contributed to the accurate mapping of flood extents using Landsat imagery. Despite that these two
methods are mostly applied separately, the combined application in flood mapping can help to produce
reliable results, with complimentary properties. Furthermore, in the unique agricultural environment
along the river, the approach of combining two classification methods can provide insights into flood
instances and inundation in both build up and agricultural areas, enabling a rapid check on damages
to both built up and agricultural crops and thereby providing an estimation of loss that can support
ground-based research. We have also shown that despite a low temporal resolution of Landsat images,
the exploitation of two adjacent Landsat paths can provide a high temporal resolution, which can
be applied not only to flood management and monitoring but also other fields that require high
temporal resolution data, especially where another dataset is not available. This exploitation increased
the temporal resolution by two-fold, from ~15 days to ~ 7 days, which can also be factored into
operational flood monitoring for emergency responses, such as early response and relief operations.
Thus, our study has given another perspective to flood monitoring and management using the available
and free satellite imagery.
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Abstract: Earth observation offers a variety of techniques for monitoring and characterizing
geomorphic processes in high mountain environments. Terrestrial laserscanning and unmanned
aerial vehicles provide very high resolution data with high accuracy. Automatic cameras have become
a valuable source of information—mostly in a qualitative manner—in recent years. The availability
of satellite data with very high revisiting time has gained momentum through the European Space
Agency’s Sentinel missions, offering new application potential for Earth observation. This paper
reviews the status of recent techniques such as terrestrial laserscanning, remote sensed imagery, and
synthetic aperture radar in monitoring high mountain environments with a particular focus on the
impact of new platforms such as Sentinel-1 and -2 as well as unmanned aerial vehicles. The study
area comprises the high mountain glacial environment at the Pasterze Glacier, Austria. The area is
characterized by a highly dynamic geomorphological evolution and by being subject to intensive
scientific research as well as long-term monitoring. We primarily evaluate landform classification and
process characterization for: (i) the proglacial lake; (ii) icebergs; (iii) the glacier river; (iv) valley-bottom
processes; (v) slope processes; and (vi) rock wall processes. We focus on assessing the potential of
every single method both in spatial and temporal resolution in characterizing different geomorphic
processes. Examples of the individual techniques are evaluated qualitatively and quantitatively in the
context of: (i) morphometric analysis; (ii) applicability in high alpine regions; and (iii) comparability
of the methods among themselves. The final frame of this article includes considerations on scale
dependent process detectability and characterization potentials of these Earth observation methods,
along with strengths and limitations in applying these methods in high alpine regions.
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1. Introduction

Glaciers and their changes are well recognized as crucial indicators for climate change [1–4].
Glacier retreat has many, potentially severe, impacts on human life, as exemplified by its influence on
the availability of freshwater [5,6] or its role in an increase of hazardous events [7]. Glacier fluctuations
cause massive impacts on glacio-hydrological or geomorphological process systems across various
scales. Changes within a cryospheric environment in the form of glacier retreat result, e.g., in local
hazard events [8,9], changes in regional water cycle systems [10–12], and sea level rise on a global
scale [13,14]. The impacts of glacier retreat in a socio-economic context are far-reaching [15,16], affecting
different areas from energy supply [15] to tourism [17,18]. As a consequence, glacier retreat induces
hazards due to changing conditions within and different resilience of process systems [8]. Concluding
insights from glacier monitoring are able to raise people’s awareness to the importance of glaciers for
the society [19].

High mountain environments are undergoing major changes due to the impact of the ongoing
climate change [2,20]. A large variety of processes—often showing accelerating magnitudes and rates
in the last two decades [21]—have been reshaping high mountain environments in recent years [22,23].
Especially areas extensively covered by glaciers—such as the European Alps—show a fast transition
from glacially dominated to pro- and paraglacial landscapes since the 1970s [24,25]. Information about,
e.g., changes in glacier length, area, and volume are high-confidence indicators of climate change [26,27].
In the European Alps, monitoring the cryosphere, and in particular glaciers, has been performed since
the end of the 19th century [28,29]. Since then, there has been an increase in both the number of glaciers
observed and the number of measurements per glacier. As a result, countries within the Alps with a long
tradition of monitoring systems (such as Austria, France, and Switzerland) have valuable information
of glacier change [19,30].

Glaciers are a crucial part of a geomorphological process system and should not be analyzed
separately. Different processes occurring with different magnitudes on different spatial and temporal
scales are a challenge for establishing a comprehensive monitoring system. Therefore, careful
evaluation of every single remote sensing method is essential.

This paper aims to present a quantitative and qualitative evaluation of remote sensing methods
for monitoring geomorphic processes in a cryospheric environment. Geomorphic processes under
investigation are characterized by different occurrence frequency and different superordinate process
types (glacial vs. proglacial processes and valley bottom to rock wall processes). Consequently,
particular focus lies on the evaluation of the observation of the dynamics of: (i) the proglacial lake;
(ii) icebergs; (iii) the glacier river; (iv) valley-bottom processes; (v) slope processes; and (vi) rock
wall processes.

Therefore, this work seeks to provide answers to the following aspects:

• What are the specifications, uncertainties, and constraints of Earth observation techniques in
monitoring geomorphic processes in an cryospheric environment?

• How do the Earth observation techniques presented prove to be appropriate for monitoring
glacial, and paraglacial processes/landforms of different magnitudes and scales?

This paper provides a review of a variety of Earth observation techniques and demonstrates their
applicability in monitoring different geomorphic processes. This extensive overview results in the
following breakdown: Section 2 gives a broad overview of the use of Earth observation techniques in
the characterization of geomorphic processes in high alpine regions, with special focus on the Alpine
region. Section 3 provides an outline of the geomorphic processes and landforms investigated in
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the study area. Section 4 describes Earth observation methods specifically used for monitoring these
processes at the Pasterze Glacier area (in terms of technical specifications, monitoring configurations,
and quality assessment). Section 5 presents the quantitative results of Earth observation techniques
in monitoring certain geomorphic processes and landforms in the study area. Section 6 discusses the
applicability of every single method for characterizing the analysed geomorphic processes. Section 7
provides a classification of Earth observation methods comparing data acquisition specification and
processes characteristics. Finally, Section 8 evaluates the applied Earth observation techniques with
regard to their suitability for monitoring the processes and landforms, as well as their practical
application in the study area.

2. Earth Observation Techniques for Characterizing Processes in Cryospheric Environments

Earth observation techniques provide valuable databases by area wide data acquisition in order
to characterize geomorphic processes in a cryospheric environment. Typically, these include high
resolution optical data (aerial images and satellite-borne multi-spectral images) as well as data which
are subsequently processed to high resolution digital terrain models (DTMs). In Austria, aerial images
have been used to, e.g., delineate the extent of glaciers since the 1950s leading to the first so-called
Glacier cadaster in 1969 [29] in high mountain applications. Beginning around 2000, airborne (ALS) [31]
as well as terrestrial (TLS) [32] laserscanning became a crucial technique to acquire very precise and high
resolution surface data. This section provides a short technical description of every Earth observation
technique used in this work, and addresses main applications in monitoring geomorphic processes.

2.1. Terrestrial Laserscanning

TLS is a time-of-flight system which allows measurements with a range accuracies of a few
centimeters [32]. Laserscanning combines the specifications and hence advantages of laser (directional
nature of the rays) and radar (location) [33]. Principles of TLS are summarized in [34,35]. The resulting
point cloud is registered with the aid of (reflective) objects such as spheres or cylinders representing
known coordinates. Carefully registered point clouds enable precise comparison of multi-temporal
measurements. TLS uses the near-infrared section of the spectrum at different wavelength such
as approximately 1000 nm for snow and ice applications (e.g., Riegl LPM-i800HA [36] and Riegl
VZ6000 [37]), in which the wavelength coincides with the measurement range [38] and approximately
1500 nm for other applications (e.g., Riegl LMS Z620 [24]).

High mountain applications have been a frequent scope in the usage of TLS such as monitoring
rock faces [39–42], sediment budgets [43], the evolution of paraglacial areas [44] and subsequent
slope instabilities [45], the characterization of rock glaciers [46,47], or snow applications [36]. First
long-term measurements on Austrian glaciers were carried out by Bauer et al. [48] at Gössnitzkees
(Schober Mountains, Austria), Avian et al. [49] on Pasterze Glacier, and Stötter et al. [50] in Tyrol
(e.g., Hintereisferner). Some of these works were the basis for upcoming monitoring networks such
as the permanent TLS-observation station ‘Im Hinteren Eis’ at the Hintereisferner Glacier [51] (using
Riegl VZ6000). To assess the glacier mass balance, model input or validation data were discussed
by Fischer et al. [29] for small glaciers in Switzerland, Prantl et al. [37] for snowline variations on
glaciers, and Gabbud et al. [52] for surface melt rates. Monitoring glacier transition zones (i.e., para-
and proglacial areas) caused by glacier retreat were the scope at, e.g., Gepatschferner [53] and Pasterze
Glacier [24] in Austria; Aletsch Glacier in Switzerland [45]; the Miage Glacier [54] and Macugnaga
Glacier in Italy [55]; or the Brenva Glacier in France [56].

In the last decade, massive glacier retreat, especially of large valley glaciers, has resulted in an
increased formation of glacial lakes [57]. Due to natural hazards related to glacial lakes such as glacier lake
outburst floods (GLOFs), monitoring these lakes has become a crucial task in cryosphere research [58,59].
Since GLOFs are not among the most frequent hazards in the Alps, monitoring the evolution of glacier
lakes using TLS was limited to work on Brenva Glacier [54]. For TLS, methodological consideration
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discussing monitoring concepts, accuracies and uncertainties were made by Ingensand et al. [60], and in
a geomorphological context by Fey and Wichmann [61].

2.2. Radar Satellite Application: Backscatter

SAR instruments generally provide backscatter measurements which are influenced by the terrain
structure (surface roughness). High backscatter values are caused by surfaces with higher roughness
as incoming radar pulses are scattered in all directions (diffuse reflection) [62]. Contrarily, calm
water surfaces show a very smooth surface, reflecting the radar pulse away from the sensor (specular
reflection). Therefore, water surfaces typically show lower backscatter values than adjacent surface types
and can be measured applying a simple threshold approach. A widely used approach for threshold
selection was provided by Otsu [63]. This method, however, relies on a bimodal histogram with a clear
minimum, dividing areas of water and land surface. Manual classification was shown applicable to
delineate glacial lakes [64] as well as extracting buffered polygons of the lake area in order to obtain a
bimodal histogram [65], or recently by level-set segmentation [66].

2.3. Radar Satellite Application: Differential Interferometric Synthetic Aperture Radar (DInSAR)

DInSAR offers a range of approaches to detect small surface deformations with sub-centimeter
accuracy. Repeat acquisition of the same constellation can be used to identify small changes in range
direction through measured differences in phase. Consequently, it is possible to measure ground
deformations in the magnitude of a fraction of the used wavelength [67]. To determine this particular
component of the phase (caused by surface displacement), other interfering aspects have to be separated,
such as error components due to atmosphere, orbital errors, or phase noise [68]. This can be achieved by
using pixels of small phase-noise, which is realized by two reflector types: (i) Permanent or Persistent
Scatterers (PS), which consist of a dominating scatterer persisting over time; and (ii) Distributed
Scatterers (DS), which feature constant signals caused by different small scatterers [68]. In applying
Persistent Scatterer Interferometry (PSI), PS within a time series are used by calculating interferograms
in relation to one single master scene [69,70]. Small Baseline Subset (SBAS) is the second multi-temporal
InSAR method, which particularly incorporates DS. In contrast to PSI, the retrieval of DS in SBAS
becomes increasingly unlikely for interferograms with larger temporal baselines. Therefore, SBAS is not
based on one single master scene. Rather, multiple master-slave combinations with small baselines are
used in the calculation of the interferograms [71].

In high mountain environments, DInSAR using ERS data was applied to detect slope movements
in the Swiss Alps, allowing the implementation of an inventory of mass movement types [72]. However,
limitations were identified for steep rock walls and northern and southern facing slopes due to partial
illumination by the sensor [72,73]. Slope movements showing varying deformation patterns were
further investigated using TerraSAR-X data applying PSI and SBAS [74]. To assess rock glacier
movement rates, DInSAR was successfully applied to determine displacement rates [75–77]. Landslide,
rock glacier movement rates, and, e.g., surface displacement mapping using DInSAR was determined
in order to assess hazards related to GLOFs [78].

DInSAR was also used to measure glacier movement at several study areas [79,80]. However due
to snowfall, snowdrift, and melting, which leads to temporal decorrelation, mainly data with short
repeat-pass were used [81]. To estimate surface velocities of glaciers, DInSAR using Sentinel-1 data
was applied, exhibiting low deformation rates and therefore low decorrelation [82].

2.4. Multi-Spectral Satellite Data

The widespread use of multi-spectral satellite data to monitor and characterize high mountain
processes started about 30 years ago. Landsat 5 [83], Landsat ETM+ [84], or ASTER [85,86] were
the basis of space-borne glacier mapping mainly using the visible and near-infrared section of
the spectrum. Creation of glacier inventories is mainly based on multi-spectral satellite data using
automatic procedures [87]. For the Alps, the use of multi-spectral data for monitoring high mountain
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areas was presented, e.g., for the example of Switzerland in a synoptic view by Huggel et al. [88] as
well as the perspectives for a worldwide assessment e.g., using satellite data by Gärtner-Roer et al. [19].
A comprehensive review of global glacier characterization using space-borne sensors was presented
by Kääb et al. [89]. For characterizing glacier lake dynamics, Landsat 8 images were used by Li and
Sheng [90]. To create a nation-wide glacier lake inventory, Sentinel-2 data were the basis for mapping
more than 400 glacier lakes in Norway by Nagy and Andreassen [91] or a classification of glacier lakes
by Verma and Ghosh [92].

Sentinel-2 is a two-satellite mission: Sentinel-2A was launched on 23 June 2015 and Sentinel-2B
on 07 March 2017 [93]. This constellation yields a revisiting time of five days at the equator showing a
substantial improvement in temporal resolution to other missions such as Landsat 8 [94]. Sentinel-2
satellites are equipped with a multi-spectral instrument providing 13 bands from the visible light (VIS),
near (NIR), and short wave infrared (SWIR) with up to 10 m spatial resolution [95]. Compared to
Landsat 8, the spatial resolution of Sentinel-2 (10 m VIS) is nine times better than Landsat-8 (30 m VIS).

2.5. Structure from Motion—Unmanned Aerial Vehicles

UAV-based images are processed using structure-from-motion (SfM) photogrammetry [96]. SfM
photogrammetry uses images captured from different perspectives, automatically assembled to point
clouds using image matching techniques. This matching uses the identification of interest points and is
based on the Scale-Invariant Feature Transform algorithm [97]. In combination with multi-view stereo
(MVS) techniques, SfM photogrammetry allows simultaneously reconstructing dense 3D models,
camera positions, and orientations [98,99]. Currently, SfM-MVS photogrammetry is increasingly used
for generating ortho-images and DTMs for different applications (e.g., [100–103]. All applications
differ in both scaling and flight altitude. Thus, to achieve the necessary image resolution for every
particular application, different heights over ground are necessary; e.g., for sediment analysis, low
height over ground is required (limit of approximately H = 12 m [104]) compared to large scale
applications (e.g., H = 100 m for mapping river sections [105]).

UAV applications at high mountain environments are challenging due to the following reasons:
(1) limited accessibility to unstable surfaces due to hazardous conditions causes constraints in the
acquisition of ground data (for registration and accuracy assessment); (2) changing meteorological
conditions (temperature, wind, fog); and (3) surface conditions: e.g., proglacial lake water surface
covers large parts of the investigation area, which cannot be used in photogrammetry. Analysis using
UAV-based SfM-MVS often lack of information about survey design and image measurement and
processing [106–108]. In addition, the SfM-MVS approach is somewhat limited, and results such as
DTMs and ortho-images can be erroneous [109].

Recently, unmanned aerial vehicles (UAV) have become a well-established platform in acquiring
high resolution data, covering various fields of application, e.g., surveying [110–112]. Currently,
UAV-based glacio-morphological analyses are increasingly conducted, e.g., the monitoring of glacier
surface changes [113–118]. The use of UAVs is also increasing for monitoring fluvial systems [119].
UAV are the basis for data collection for requested bathymetry of river sections (for numerical modeling)
and the observation of morphodynamic processes, such as quantifying erosion and accumulation or
stream bank failure [105,120]. On a smaller scale, UAV-based SfM analysis are used to determine:
(i) the sediment composition and distribution; and (ii) hydraulic parameters, such as grain roughness,
etc. [104,121]. For the description of channel characteristics and follow-up hydraulic processes, however,
both are necessary: the geometry (DTM) as a basis for hydraulic modeling and the characteristic grain
sizes, grain roughness, etc. as its input parameters. For this reason, it is usually required in river
engineering to conduct additional flights of characteristic sections at different flight altitudes.

2.6. Automatic Cameras

Due to essential developments in cameras for terrestrial photogrammetry, automatic time-laps
cameras have been frequently used in monitoring geomorphological processes in the last decade.
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High spatiotemporal resolution, cost efficiency, and independent operating in remote places [122–124]
are valuable improvements. In contrast to optical remote sensing techniques, cloud coverage is a by far
smaller problem. In the Austrian Alps, a yearly average of 60% of pixels are hidden by clouds [125].
The application of automatic time-lapse cameras as a monitoring tool in mountain regions is versatile:
selected examples are glacier terminus position [126], snow cover monitoring [127–131], monitoring mass
movements [132], supraglacial lakes drainage events [133], snow melt, and vegetation phenology [134].

3. Study Area: Relevant Pre-Work and Geomorphological Setting

Starting in 1893, Pasterze Glacier was one of the first glaciers constantly monitored in annual
measurements, leading to the longest record of measurements of a single glacier [135]. Next to linear
and punctual information, the complexity of a glacier system revealed the need for measurements
showing more spatial significance such as spatially well distributed measurements. Multi-spectral
satellite data were used to quantify changes in glacier extent changes using images from Landsat MSS
(1976), Landsat TM (5 during 1984–1992), Landsat ETM+ (2000), and Ikonos (2000) by Hall et al. [136].
Methodological considerations of this work were presented by Hall et al. [137]. DInSAR was only used
to determine flow velocity patterns of the Pasterze Glacier by Kaufmann et al. [138] using five ERS–1/2
image pairs between 1995 and 2001. Aerial images were widely used to characterize several processes
and impacts: both using multi-temporal ortho-images, Kellerer-Pirklbauer et al. [139] analyzed the
influence of supra-glacial debris cover at the Pasterze Glacier tongue and Kaufmann et al. [102]
gave a comprehensive analysis of Pasterze Glacier retreat between 2003 and 2009. At Mittlerer
Burgstall mountain (MBUG), a first quantification of the large rockfall event in 2007 and possible
relations to climate change was given by Kellerer-Pirklbauer et al. [140]. Kaufmann [141] provided
a detailed determination using high resolution aerial images. At Pasterze Glacier terminus area,
a first assessment of sub-surface ice and glacier lake evolution using TLS and UAV was given by
Kellerer-Pirklbauer et al. [142] and Kellerer-Pirklbauer et al. [143].

The study area comprises the catchment area of Pasterze glacier, which includes the maximum
extent of Pasterze Glacier of 1851 (Little Ice Age (LIA) glaciation (Figure 1) [102]. Since the LIA-maximum,
Pasterze Glacier has undergone a constant retreat, which accelerates since the 1990s [135]. Pasterze
Glacier lost 37% of its area (a decrease from 26.5 to 16.6 km2) and 63% of its volume (a decrease from 3.10
to 1.16 km3) between 1852 and 2012 [135].

Starting hypsographically at the accumulation area, Pasterze Glacier is characterized by the
following sub-areas (Figure 1A(1–7)):

• Accumulation area Pasterzenboden (Figure 1A(1)): In 2019, the accumulation area Pasterzenboden
is a large predominantly flat glacier basin between 3460 m (Johannisberg summit) and 2700 m
(Hufeisenbruch-area) [102].

• Connection between Pasterzenboden and Glacier tongue (Figure 1A(2)): The so-called Hufeisenbruch
summarizes a terrain step from approximately 2700 to 2300 m a.s.l. connecting the latter areas.
In 2019, only two small connections are left such as one approximately 50-m-wide serac-area from
the so-called Teufelskampkees and one larger connection SW from the MBUG area.

• Nourishment from tributary glaciers (Figure 1A(3)): The detachment of several tributary glaciers
also contribute to the main glacier retreat: In 2019, no tributary glaciers are connected with the
main glacier anymore.

• Glacier tongue (Figure 1A(4),C): The tongue of Pasterze Glacier changed its surface characteristics
significantly in the last decades. Whereas the glacier tongue showed a predominant clean ice
surface, the glacier surface now is increasingly dominated by supraglacial till [139].

• Adjacent slopes at the Pasterze Glacier tongue area: Slope areas at Pasterze Glacier tongue show
different characteristics due to predominant geological settings:

– Grossglockner (NE-facing) slope (Figure 1A(5)) consists of a mixture of prasenite and minor
mica-schist areas. There is decreasing glaciation with varying extent in every cirque relief
(up to 3798 m a.s.l.).
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– Fuscherkarkopf (FKK) (SW-facing) slope (Figure 1A(6)) is mainly composed of mica-schist
and therefore large debris covered. There is minor glaciation at the Burgstall area, relief up
to 3331 m a.s.l. Upper slopes are very prone to rock falls, lower slope sections are dominated
by consolidation after glacier retreat and linear processes (fluvial erosion). Footslope areas
are mainly characterized by dead ice degradation and fluvial erosion.

• Glacier lakes (Figure 1A(7)): Historically, the Pasterze Glacier system includes only the so-called
Sandersee Lake since 1958 at approximately 2060 m a.s.l., with a maximum extent in 1979
(121,500 km2). From 2004 onwards, a braided river system evolved into a second lake (Pasterzensee),
which was established in 2010. A constant decrease of dead-ice islands sections and therefore
subsequently prevailing water surface developed since then. Lake Pasterzensee is a main object
of interest in this work.

Figure 1. Study area Pasterze Glacier. (A) Catchment area Pasterze Glacier area with respective
codes for Pasterze Glacier sub-areas (1–7); location of automatic cameras and TLS scanning positions;
acquisition areas for TLS and UAV; and view sectors of automatic cameras. (B) TLS configuration
Burgstall rock fall area (BUG). Red dots indicate stable areas for TLS quality assessment. (C) Situation
at the Pasterze Glacier terminus and proglacial area. TLS configuration Franz- Josefs-Höhe (FJH) and
Hofmanns Hütte (HH). Red areas indicate stable areas for DInSAR quality assessment, red dots stable
areas for TLS quality assessment.
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4. Application of Earth Observation Techniques at Pasterze Glacier: Data Basis, Spatial and
Temporal Variability, Quality Assessment

Based on the technical description presented in Section 2, this section comprises the particular
applications of the single monitoring configurations at Pasterze Glacier area indicating: (i) technical
specifications of used instruments, and satellite systems; and (ii) monitoring configuration. Furthermore,
we present the characteristics of the single datasets and applied approaches (including quality
assessment). To ensure interpretability of measurements, monitoring of glacial and proglacial landscape
should always be carried out as close as possible to the end of the hydrological year. By definition, the
hydrological year ends with the ablation period before the onset of winter (at alpine glaciers mostly
in September). Therefore, for the Pasterze Glacier area, at least one measurement is carried out in
September designated as annual measurement campaigns.

4.1. Terrestrial Laserscanning

Annual TLS measurements have been carried out since 2001 at the scanning positions,
Franz-Josef-Höhe and Hofmanns-Hütte (FJH and HH, Figure 1C). Two devices have been used
since 2001: from 2001 to 2009 the Riegl LPM-2k system and from 2009 on the Riegl LMS-Z620 system
(Table 1). Technical specifications can be found in [24,49]. A comprehensive overview of previous
work including scanning geometries at Pasterze Glacier tongue area is also given in [24].

Table 1. Acquisition dates of TLS data in the respective years of the observation period 2014–2019 [MM-DD].

Year Date 1 Date 2 Data 3

2014 09-09
2015 09-12
2016 08-27
2017 06-19 08-05 09-22
2018 08-04
2019 08-03

In the upper part of the Pasterze Glacier area, a massive rockfall at MBUG occurred in 2007 [140].
Therefore, the TLS monitoring network ‘Burgstall rock fall area’ was established in 2010, comprising
the eastern part of the rock fall area of MBUG and the S-face of the Hohe Burgstall Mountain
(HBUG, Figure 1B). The scanning position Burgstall (BUG) is located at the eastern margin of the
Wasserfallwinkelkees glacier at a bedrock ridge in 2800.34 m a.s.l. TLS acquisition at Burgstall area
was conducted in a distance of 500–750 m at MBUG and a distance of 100–300 m at HBUG (Figure 1B)
using six stable, permanent reference points [144]. Thus, the respective ground sampling distances
(GSD) at MBUG was 0.25 m (at 650 m distance) and 0.10 m (at 100 m distance) at HBUG. At MBUG,
for special analysis such as void size and density for geological interpretation, detail scans with a GSD
of 0.15 m were acquired to cover very active rock fall areas.

TLS data processing (e.g., registration) was performed in Riegl RiScan; the rectified point cloud
was afterwards exported to Golden Software Surfer 15 to calculate respective DTMs to obtain the
area-wide vertical elevation changes and volumetric information in reasonable calculation time.
DTMs with different spatial resolutions were calculated: 1 m for the area-wide assessment of vertical
surface changes (e.g., for mass balances) and 0.5 m for geomorphological interpretation and process
characterization of specific areas of interest [24]. The quality of a TLS measurements is influenced by
four factors: instrument calibration, atmospheric conditions, object properties, and scan geometry [145].
As we compare measurements using the same instrument and meteorological conditions are integrated
in the processing chain, we focus on the influence of distance measurements and the incidence angle
on the accuracy of TLS measurements. Inaccuracies of measurements are assessed by calculating
euclidian distances between two point clouds (using CloudCompare) with respect to measurement
distance and incidence angle (Figure 2).
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Uncertainties of distance measurement show sufficiently small values for incidence angles larger
than 50◦: at distances of around 1150 m, measurements on rock walls (mean incidence angle 86◦) show
rather small uncertainties between 0.091 and 0.154 m. The influence of the incidence angle on distance
measurements was shown at several stable areas such as 0.042 and 0.049 m (mean incidence angle
50◦) and 0.188 and 0.203 m (mean incidence angle 50◦) at two adjacent stable areas in a distance of
377 and 390 m. For the single stable areas, uncertainty values were stable over the observation period
(Figure 2).

Figure 2. Quality of TLS measurements: Mean euclidian distance between point pairs at stable areas at
different measurement distances of the scanning positions FJH and BUG. Color of point pairs indicates
incidence angle between laser beam and surface.

4.2. Radar Satellite Application—Backscatter

To quantify the extent of Lake Pasterzensee using backscatter information, Sentinel-1 Single
Look Complex (SLC) data were processed using Sentinel Application Platform (SNAP). As precise
geolocation is a crucial precondition of comparability, precise orbit files were applied. Pixel values were
radiometrically calibrated to derive physical units. Speckle filtering and multi-looking was applied to
reduce noise with a subsequent SAR-simulation terrain correction for geometric adjustment. To further
reduce noise, the mean of VV and VH data was used to delineate lake extents. Thresholds were set for
each scene individually between −14 and −17 dB, and lake extents were calculated per year for every
scene taken between June and October. Quality assessment mainly covers co-registration of images on
one master image to avoid any existing shift to assure spatial comparability.

Being a mountainous study area, Pasterze Glacier area is widely affected by topographical
limitations such as shadowing, foreshortening and layover. which limit a threshold selection based on
the image histogram.

4.3. Radar Satellite Application—DInSAR

The DInSAR analysis carried out at Pasterze Glacier is a pilot study for the applicability of Sentinel-1
DInSAR for surface deformation assessment in the entire Grossglockner area. The analysis is based on
149 SLC images of Sentinel-1A and 1B taken in Interferometric Wide swath (IW) between late spring
2017 (2017-06-04) and late fall 2019 (2019-10-28). It covers swaths of 250 km with a spatial resolution
of 5 m by 20 m and incidence angles from 29◦ to 46◦ with a repeat cycle of six days. Three different
DInSAR approaches were investigated and compared. While the underlying data basis is the same in
terms of raw input data and temporal resolution, the three methods differ with respect to (aggregated)
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spatial resolution. Due to decorrelation effects in the winter seasons (snow cover), only summer scenes
were used. The area is covered by ascending orbits 44 and 117, and descending orbit 95.

The first approach is based on a SNAP-StaMPS (Stanford Method for Persistent Scatterers)-
workflow to perform persistent scatterer interferometry (PSI) using the Stanford Method for Persistent
Scatterers [146]. Sentinel-1 pre-processing for PSI was performed utilizing the software SNAP. At first,
the optimal master scene was selected for ascending and descending orbits, respectively. The sub-swath
covering the region of interest was identified and images were split accordingly. After application of an
orbit correction, the images were co-registered and interferograms were computed. Potential PS-points
were pre-selected by using the amplitude dispersion, and phase stability was estimated using phase
analysis. PS pixels were subsequently filtered and dropped if they were too noisy or if they were
influenced by neighboring elements. The wrapped phase was then corrected for spatially-uncorrelated
look angle errors followed by phase unwrapping. Eventually, the spatially-correlated look angle error
was calculated. Compared to regular grid of aggregated SBAS pixels, the PSI point distribution is more
irregular with a point distance of roughly 3 m × 14 m.

The second approach tested within this study is the P-SBAS (Parallel SBAS) service of European
Space Agency (ESA) Geohazards Thematic Exploitation Platform (GEP). This online service provides an
unsupervised implementation of the P-SBAS algorithm, which is a parallel computing implementation
of the SBAS approach [147,148]. The spatial resolution is specified with 90 m, yet actual point intervals
were measured with approximately 60 × 90 m.

The third approach for assessing surface deformations derived via DInSAR is also based on small
baselines and includes the developments in [71,149–151]. For the pre-processing of the Sentinel-1
stack, the joint azimuth shift estimation as in [152] was applied, which is slightly different from the
method used in [147]. The analysis was conducted using the Remote Sensing software Graz (RSG [151])
software suite. Results are aggregated to a spatial resolution of 80 × 80 m.

To assess quality and accuracy of the processed DInSAR results, 24 stable areas were manually
identified by delineating areas where no deformations are expected (Figure 1C). Selection of these
areas was based on a geomorphological assessment. These areas comprise 19 stable terrain areas
(bedrock) and 5 polygons related to artificial structures (buildings and parking lots around TLS
scanning position FJH). Areas were chosen considering a trade-off between the size of the polygons
and the uniformity with respect to aspect and slope angle. As the area of each single polygon is still
comparably small—particularly with respect to the SBAS pixel spacing—deformation results were
aggregated the main two categories ‘bedrock’ and ‘infrastructure’ in order to provide more robust
indication on mean annual (pseudo-)deformation rates. Resulting deformation rates are computed
as a linear regression of deformation rates on the date. To quantify variability, we use the standard
deviation (SD) of the residuals.

(Pseudo-)deformation rates of the ascending orbit (44) show a higher variability with respect
to the (linear) trend across all DInSAR methods and for both the bedrock and the infrastructure
cluster (Table 2). This might be explained by the slope exposition, as almost all areas are located on
slopes facing southwest. In fact, foreshortening effects are more prominent in ascending orbits than in
descending ones. Compared to the bedrock cluster, the standard deviation of residuals is slightly lower
for the infrastructure cluster, which is consistent with the expectation that particularly PSI should
perform better on PS than on DS [153].

Notably, PSI shows a systematic trend on both orbit directions with a comparably high variability.
However, results are consistent across both orbits and both clusters. Arguably, SBAS-based methods
seem to be better suited in (high) alpine environments because of their capability to handle DS,
too. Both SBAS methods show rather small trends with residual standard deviation of only a few
millimeters. Nevertheless one has to keep in mind, that all time series are not optimum as we had to
mask out all ‘winter-acquisitions’ leading to long time periods without data. This has severe negative
impacts on, e.g., the removal of atmospheric effects.
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Table 2. Annual DInSAR (pseudo-)deformation values in line-of sight (LOS) for stable area clusters.
mean values refer to the slope of the linear trend within one year (365.25 days), obtained from a linear
regression of deformation rates on the date. SD denotes the corresponding standard deviation of the
residuals. The infrastructure cluster comprises polygons of five horizontal artificial areas (building
flat roofs and parking areas). The bedrock cluster comprises polygons of 17 bedrock areas (Figure 1C).
Abbreviations: StaMPS, Stanford Method for Persistent Scatterers; P-SBAS, Parallel Small Baseline
Subset; RSG, Remote Sensing Software Graz; GEP, Geohazard Thematic Exploitation Platform.

Stable Area DInSAR Orbit 44 Orbit 95
Cluster Method Mean SD Mean SD

[mm] [mm] [mm] [mm]

PSI (StaMPS) −1.89 7.38 1.97 5.01
Infrastructure P-SBAS (RSG) 0.04 3.20 −0.17 1.35

P-SBAS (GEP) – – 1.76 1.41

PSI (StaMPS) −1.01 7.92 1.75 6.25
Bedrock P-SBAS (RSG) 1.50 5.47 0.44 2.84

P-SBAS (GEP) 0.39 4.29 3.76 2.04

4.4. Multi-Spectral Satellite Data

Sentinel-2 data were used to enhance inter-annual data availability due to potential high revisiting
time. ESA’s Sentinel-2 mission consists of two polar-orbiting satellites flying on the same orbit, phased
at 180◦ to each other. Its wide-swath, high-resolution, multi-spectral imaging satellites comprise 13
spectral bands, with four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution
covering the Visible and Near Infra-Red (VNIR) and Short Wave Infra-Red (SWIR). The mission has a
high revisit time of five days at the equator for both satellites with an orbital swath width of 290 km.

To map glacier lake extension accurately, respective satellite images should be chosen showing
the glacier lake’s maximum extent. This is ensured when using images without snow and ice cover
to avoid misinterpretations. Furthermore, cloud coverage and shadowed areas due to the relief have
to be considered. In detail, 27 Sentinel-2 Top of atmosphere Level 1C images (Table 3) were available
in the observation period 2015–2019. Due to a misregistration of more than one pixel (>10 m) of
multi-temporal Sentinel-2 acquisitions [154], all scenes had to be co-registered to the acquisition of
2016-08-07, which matched satisfactorily with the corresponding TLS dataset. For co-registration the
software SNAP was used, which computes the offset between master and slave images by maximizing
the cross-correlation within sub-images.

Table 3. Acquisition dates of Sentinel-2 data in the respective years of the observation period 2015–2019
[MM-DD].

Year Date 1 Date 2 Data 3 Date 4 Date 5 Date 6 Date 7 Date 8

2015 07-04 08-03 09-12
2016 08-07 08-27 09-26 10-16
2017 06-13 06-23 08-22 10-11 10-16
2018 07-18 08-27 08-17 09-21 09-26 10-11 10-16 10-26
2019 06-28 07-23 09-11 09-16 09-21 10-11 10-26

Subsequently, Sentinel-2 data were classified applying the Normalized Difference Water Index
(NDWI), using the green and near-infrared bands [88,155,156]. For this analysis, the respective Bands
3 and 8 of Sentinel-2 images were used:

NDWI =
Bgreen − BNIR

Bgreen + BNIR
=

B3 − B8

B3 + B8
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For water bodies, the reflectivity of the green light is maximized, while the near infrared reflectivity
is typically low and therefore minimized. Water features exhibit positive values, while while soil
and vegetation show lower values due to higher reflectivity of near infrared than green light [157].
Thresholding of the resulting NDWI-maps has widely been used [155,158] but the individual values
are dependent on the specific application. In delineating glacier lakes, the threshold value must be
high enough to distinguish between glacier ice and water but also low enough for the omission of the
water pixels [91].

4.5. Structure from Motion

Structure from Motion (SfM) using UAV for monitoring glacier and proglacial area was carried
out at the tongue of the Pasterze Glacier, the proglacial area of Pasterze Glacier, the Burgstall rockfall
area, and the Oberer Pasterzenboden (Figure 1). Data from Burgstall represent a first flight campaign
in order to monitor the entire Burgstall mountains for subsequent geological analysis. Data acquired at
the Oberer Pasterzenboden are the basis for glacier mass balance measurements.

The glacial/proglacial transition zone was covered by two UAV surveys in September 2016
and June 2019 (Table 4, VB/GL). Using a fixed-wing UAV (a Quest UAV) in the 2016-11 survey, the
consumer grade camera Sony α 6000 was used (E 16 mm F2.8 lens, sensor size is 23.5 × 15.6 mm,
resolution 6000 × 4000 px). During the campaign in June 2019, topographic conditions (Figure 1) and
platform specifications furthermore necessitated that the southeastern part of the glacier lake was
measured using a multi-rotary UAV (DJI Phantom 4. integrated camera (resolution 4000 × 3000 px)).
The SfM-MVS photogrammetry processing was based on ground control points (GCPs), which were
used for indirect georeferencing of the UAV imagery. GCPs were measured by GNSS solution in
real-time kinematic (RTK) mode (EPOSA). The SfM-MVS processing was conducted using the software
Agisoft Photoscan (1.2.5 build 2735; 1.3.4 build 5067) with a default key point limit of 40,000 and a
maximum of 4000 tie points (sparse point cloud generation). Thereafter, a bundle adjustment and
camera self-calibration were conducted followed by a dense point cloud processing.

To independently assess the vertical accuracy of the photogrammetrically processed DTMs,
the same geodetic method was used to measure so-called independent check points (ICPs) for
validation of geolocation. The mean vertical differences between the DTMs and ICPs was 0.08–0.13
m with a standard deviation of from ±0.12 to ±0.15 m (Table 4). The resulting ortho-images were
visually interpreted and the analysis of DTMs focused on the quantification of vertical changes using
DTM differencing.

SfM for glacier river characterization comprised the documentation of the channel evolution
downstream in autumn 2018 with regard to estimate the future sediment (bed load) input into the
reservoir Margaritze [159]. The investigation area (proglacial river, Figure 1C), between the glacier
terminus and the delta area of the Lake Pasterzensee (100 m wide and 1000 m long), was mapped
with an UAV (Hexacopter model KR615), equipped with compact camera (ILCE-6000; 6000 × 4000 px;
Table 4). In the case of the high image resolution for sediment analysis and the depth of the incised
river channel, an additional flight for the inaccessible sections was done at surrounding terrain level
(around 15 m above water level).

The calculated DTM serves as a basis for the 1D hydraulic model of the proglacial part of the
river Möll. The DTM was generated using the program Agisoft [160] and registered using GCPs
measured with a GNSS device with RTK provider (APOS). Some of the GCPs (20–30%) serve as
ICPs to quantify uncertainties of the dataset. The resulting sparse point cloud was cleaned up by
depth filtering and the removing of points with high reprojection error. Finally, the dense point cloud
contains around 478 million points (computation time of 14 days, 10 h). The resulting point cloud
shows a point density of around 4000 points/m2, a GSD of 1.59 cm/px and a RMSE (X,Y,Z) of 2.55,
4.38, and 2.44 cm (Table 4). This is a significantly higher accuracy than the one, e.g., presented by
Vázquez-Tarrío et al. [121] (GSD = 2 cm/px) and more detailed mapping of the topography is shown.
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Table 4. UAV based surveys for the focus of proglacial river (GR) and valley-bottom/glacier lake
assessment (VB/GL). Information about the height over ground (HoG), ground sampling distance
(GSD), number of images, the root mean square error (RMSE) in both the horizontal plane (xz) and the
vertical plane (z), as well as vertical quality of the DTM are indicated.

HoG
[m]

GSD
[m]

Number RMSE RMSE Image Vertical Vertical
Focus Date of XY Z Plane Quality Quality

Images [m] [m] [px] stdv [m] mean [m]

VB/GL 2016-11-03 138 0.032 343 0.06 0.07 0.9 0.12 0.08
VB/GL 2019-06-17 132 0.046 304 0.13 0.16 3.3 0.15 0.13

GR 2018-09-26 34.5 0.0159 1375 0.057 0.024 0.336 – –

4.6. Automatic Cameras

In the Pasterze Glacier area, six automatic cameras are installed in order to monitor mainly
glaciological processes with a very high temporal resolution and, as a side-effect, to validate other
methods qualitatively (configuration: Table 5; location: Figure 1). The main focus of cameras operated
by ZAMG (Table 5, 1–5) is the assessment of the snow cover extent. Due to complex terrain, different
camera locations were selected for a maximum coverage of the glacier. Next to snow cover, individual
cameras were also applied for flow velocity or determination of the glacier outline. The panoramic
camera at Franz-Josefs-Höhe area (Figure 1 and Table 5, 6) was installed in 2010, which is a valuable
source for scientific work and has been used for time-lapse studies of the entire glacier tongue. The five
cameras operated by ZAMG are Canon EOS1200D digital single lens reflex cameras. The two cameras
at the site Pasterze have a EF-S10-22mm f/3.5-4.5 USM lens. The tree other cameras are equipped with
a EF-S 18-55mm III lens.

Table 5. Automatic cameras. Location of cameras are indicated in Figure 1. Cameras 1–5 are operated
by ZAMG and Camera 6 is operated by Grossglockner Hochalpenstraße AG (GROHAG).

Nr. Camera Label
Elevation Alignment Recording Beginning of Main
[m a.s.l.] Rate Recording Topic

1 Burgstall 1 Hufeisen (PAS) 2661 NW 10min 2017-10-27 snow cover
2 Burgstall 2 Vertical (PAS) 2661 NW 10min 2016-06-20 snow cover

+ velocity
3 Freiwandeck (FWE) 2843 W 10min 2015-10-05 snow cover

+ glacier outline
4 Fuscherkarkopf (FKK) 3234 W 10min 2015-10-24 snow cover
5 Grossglockner (GLO) 3750 N 10min 2015-10-12 snow cover
6 Franz-Josefs-Höhe (FJH) 2370 panoramic/180◦ 5min 2010-08-10 surface

center SW

5. Results: Monitoring of Processes and Landforms

In the following, the quantitative results of every single Earth observation techniques with
respect to particular geomorphic process systems are presented. Geomorphic process systems were
distinguished into glacial processes (directly at the glacier) and paraglacial processes (in the vicinity of
the glacier since the LIA maximum of 1851).

5.1. Glacial Processes

At Pasterze Glacier, the glacial process group include glacier lake evolution (fluctuations), and
the identification of icebergs.

5.1.1. Glacier Lake Evolution

The evolution of Lake Pasterzensee at the terminus area of Pasterze Glacier was analyzed using
all three sensor types: TLS, Sentinel-1 for backscatter analysis, and Sentinel-2 (using different bands for
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calculating the NDWI). TLS delineated the largest lake extent compared to other methods, except for
the year 2015, where the value was even slightly lower than for the same month of the preceding year.

Quantitatively, for Sentinel-1, the lake extent nearly doubled in the time from 2015 to 2019. For TLS
and Sentinel-2, the increase of extent was larger due to lower values in 2015 and larger values in 2019
compared to Sentinel-1. The lake areas delineated from Sentinel-1 and -2 are similar for similar epochs
with some differences in 2016 and in the early season of 2019 (Figure 3). Results exhibit an inter-annual
pattern, which is visible in each year: Lake extent increases to a certain level, reaches a peak around
early September, and decreases again towards the end of the season. This might be an interesting
aspect to be further investigated.

Figure 3. Evolution of the extent of Lake Pasterzensee from 2014-09-01 to 2019-10-01. Abbreviations
of data sources: S-1 (VV/VH), Sentinel-1 polarization VV/VH (vertically transmitted and vertically
or horizontally received radiation (spatial resolution = 5 × 20 m); S-2 (MSI), Sentinel-2 multispectral
instrument (spatial resolution = 10 m); TLS, Terrestrial Laserscanning (spatial resolution = 1 m).

Results of qualitative assessment revealed that TLS data provided very accurate results in
delineating the glacier lake extent: rhe mean GSD of TLS raw data is between 0.12 and 0.54 m [24]
with a mean error in single point geolocation of approximately 0.15 m (Figure 2). Data gaps due to
shadowing are of minor importance at the dead ice zones at the hillslope area, but point density at the
transition between the glacier terminus area and the lake is very small. Summing up, uncertainties
affecting the delineation of water bodies using TLS data are much smaller than the increase of the
extent of Lake Pasterzensee (Figure 4).

For the period 2015–2019, in total, 27 Sentinel-2 scenes (at least three scenes per year) could be used
to delineate the extent of Lake Pasterzensee (Table 3). Sentinel-2 images were classified using NDWI,
where thresholds of 0.12–0.4 in the different scenes were used to classify water. NDWI values between
0.09 and 0.23 typically indicate ice; water areas are classified with NDWI values < 0.60 [91]. However,
lakes with strong turbidity are classified as glacier surface [93], which is proved at Lake Pasterzensee.
Glacier lake extent at Lake Pasterzensee show a clear increase of area in the observation period from
136× 103 (±12× 103) to 288× 103 (±8× 103) m2 (Figure 3). To assess uncertainties of automatic glacier
lake extent qualitatively, we used: (i) high resolution ortho-images (2018); and (ii) a combination of
TLS-based delineation of lake extent and visual interpretation of the automatic camera at FJH (at a
5 min basis) (see Figure 4). Assuming that 0.5 pixels are an average error in image classification, we
applied buffers of ±5 m that indicated a mean accuracy of ±34 × 103 m2 for water body classification.
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The glacial lake delineation based on Sentinel-1 data was conducted using scenes from the same
orbit with a revisiting time of 12 days for the years 2015 and 2016 (Sentinel 1A) and 6 days for the
years 2017, 2018, and 2019 (Sentinel-1 A and B). For the study area, between 10 and 25 relevant scenes
per year could be analyzed during the snow-free period (June to October) between 2015 and 2019.
In total, four acquisitions (in June and October) had to be excluded due to partial freezing of the lake.
Although mostly weather independent, wind and rain may cause roughening of the water surface
leading to a reduction in contrast between water and land surfaces. Furthermore, the noise-like effect
of speckle may decrease the accuracy of the delineated lake extent. To reduce this effect, the mean
of the available polarizations VV (vertically transmitted and received radiation) and VH (vertically
transmitted and horizontally received radiation) was used and overall threshold values of 14–17 dB
were applied. To estimate classification accuracies, the change in lake extent was assessed depending
on threshold value. A change in threshold of 0.5 dB led to a change of 3–7% depending on contrast
conditions between water and terrain.

5.1.2. Proglacial River

In addition to the challenges of using UAV applications in high mountain environments, there are
also problems in recording channel geometries. On the one hand, the recording of moving elements,
such as the water surface level, provides blanks in recording and no points in the model, and on the
other hand the river bed topography cannot be mapped as there is no detection of the bathymetry
below the water surface; a general problem of UAV applications for mapping river geometries. Thus,
the river bed geometry must be obtained from terrestrial surveying (e.g., GNSS devices) and will
finally be combined with the UAV data to get the whole river geometry for high water stages. Thus,
it is inevitable to intersect elements with different point density to a final DTM, linear cross-sections
with planar information from UAVs. This ’sampling problem‘ applies to TLS mapping as well.

These results are calculated based on the UAV derived DTM, whose positional accuracy is
determined by a point using a GNSS device (dx = 4 cm, dy = 0 cm). Due to the high mountain
environment, just one point was available. Based on the chosen flight altitude, camera and modeling
settings, this DTM has a resolution of 1.59 cm/px (Table 4), necessary for the photogrammetric
sediment analyses.

5.1.3. Icebergs

Icebergs are a frequent phenomenon at Pasterze Glacier terminus. Contrary to other glaciers,
icebergs at Pasterze Glacier seem to develop more from sub-water dead-ice areas than directly from the
glacier part itself. Hence, at Pasterze Glacier, we combine analysis of dead-ice areas and icebergs at the
glacier lake as dependent processes. The limited lifecycle of icebergs complicate the detection in remote
sensing techniques (Figure 5). TLS and multispectral satellite images only detect icebergs randomly
and therefore a detection does not support a substantial analysis. The only method providing valuable
information is the use of temporal high-frequent automatic cameras. However, since information is
provided only qualitatively (occurrence and trajectories), a quantification of iceberg characteristics
(e.g., size) cannot be conducted satisfactorily with the available monitoring system at Pasterze Glacier
(using automatic cameras).

TLS provides the most accurate delineation of icebergs however in our case at the lowest temporal
frequency. In addition, with Sentinel-2 icebergs are clearly distinguishable, although the resolution of
10 m often leads to mixed pixel information for these oftentimes small and highly dissected features.
In many cases, clusters of icebergs may seemingly merge into one or be connected to the lake border.
Smaller icebergs—clearly detectable with TLS—may also be misclassified. To some extent, icebergs
are also distinguishable with Sentinel-1, however the speckled nature of SAR data often hinders a
confident delineation. Furthermore, islands, similar to sandbanks, are hardly distinguishable due to
their smooth surface and therefore backscatter values similar to water.
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Figure 4. Comparison of glacier lake delineation and different data basis on 2016-08-27: (A) automatic
Camera at 12:15; (B): automatic glacier lake delineation based on Sentinel-2 data at 12:10 using NDWI
classification (threshold); (C) manuel glacier lake delineation based on point cloud TLS data at 17:00;
and (D) automatic Camera at 16:25. Codes for areas of interest: 1–3, dead-ice/sander island; 4, dead-ice
island/peninsula; 5, glacier terminus area.

210



Remote Sens. 2020, 12, 1251

Figure 5. Examples of the high dynamics of icebergs on Lake Pasterzensee (2015-08-28). The iceberg
moves about 500 m in 3 h (11:00–14:00 CEST): (A) 11:00; (B) 12:00; (C) 13:00; and (D) 14:00. During
this process, the iceberg also rotates around its own vertical axis (C,D). To automatically track the
movement of icebergs, high temporal resolution of the data basis is required. Additionally, due to
rotational movements of the iceberg, such automatic monitoring must also be able to process changes
in the geometry of the iceberg. Images provided by GROHAG.

5.2. Paraglacial Processes

5.2.1. Valley-Bottom and Slope Processes

At the valley-bottom area of Pasterze Glacier terminus area, TLS was conducted with measurement
distances between 300 (dead-ice terraces) and 800 m (debris covered glacier area) to the scanning
position. This leads to distance-dependent GSD of 0.12–0.20 m at 300 m and 0.33–0.54 m at 800 m.
Depending on the analysis of different process groups, calculated DTMs were resampled to the
following spatial resolution: 0.25 m for visual geomorphological interpretation, 0.5 for sectoral, and
1.0 m for area wide calculations [24]. To quantify uncertainties, 13 stable (bedrock) areas beneath
the scanning position FJH (Figure 1) were used at distances of 345–1186 m (Figure 2). Calculated
uncertainties are 0.083–0.192 m for mean Euclidean distance error and −0.025 to 0.033 m for dz.

TLS based analysis revealed several interesting areas based on the work of [24]. For the period
2018–2019, two areas were exemplarily chosen for further analysis. Figure 6A shows the vertical
elevation patterns of a sliding area towards the Lake Pasterzensee. This landform covers an area of
16,750 m2 with a mean surface subsidence of −0.32 m of the entire area. Within this entire landform,
patterns of different vertical surface elevation changes can be detected comprising distinct sub areas
such as with maximum dz of −0.92 m Figure 6A(1)), maximum dz of −0.81 m (Figure 6A(2)), and
maximum dz of −1.28 m (Figure 6A(3)).

Figure 6B shows typical erosion process with downslope channel structure (Figure 6B(3)) covering
an area of 14,500 m2. In terms of mass balance, erosional (Figure 6B(1)) and deposition processes
(Figure 6B(2)) nearly cancel each other out with a calculative dV of 290 m3 (corresponding to a mean
surface subsidence of −0.02 m).

Using Sentinel-1 for DInSAR applications, no significant deformation rates indicating valley
bottom or slope processes can be detected in the main study area Pasterze Glacier. However, close
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to the main study area, DInSAR analysis delivered one particularly interesting process. Ongoing
erosional processes are clearly detectable in PSI and SBAS analysis for the landslide Guttal (Figure 7)
in the detachment area. We measured deformation values of −6.1 cm/a (away from the satellite) for
P-SBAS in orbit 117 and −4.6 cm/a for PSI in orbit 44.

Figure 6. Examples of valley bottom and slope processes at Pasterze glacier terminus area. Calculated
vertical surface elevation differences are based on TLS measurements from 2018-08-04 and 2019-08-03.
(A) Slide at footslope area towards the Lake Pasterzensee, where 1–3 indicate special patterns of vertical
surface elevation changes. (B) Erosional processes with detectable detachment areas (1), accumulation
areas (2), and channel structure. CRS, MGI/Austria GK M31 (EPSG:31258).

Figure 7. Deformation values of Racherin-Wasserradkopf ridge derived from P-SBAS, relative orbit
117. High deformation values indicate processes within the Guttal landslide. CRS, MGI/Austria GK
M31 (EPSG:31258).

5.2.2. Rock Fall Processes

Rock wall processes are monitored at the Burgstall Mountains mainly using TLS. Quality
considerations were conducted similar to the glacier terminus area using stable areas Figure 2.
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At MBUG, four stable areas were defined showing a good geometric distribution in terms of distance
and inclination angle. Calculated mean Euclidean distances vary from 0.045 m (distance 472 m) to
0.166 m (distance 665 m, Figure 2), with calculated dz values from 0.021 m (distance 472 m) to 0.065 m
(distance 665 m). At HBUG, six stable areas were defined showing a good geometric distribution
in terms of distance and inclination angle. Calculated mean Euclidean distances vary from 0.012 m
(distance 166 m) to 0.042 m (distance 188 m, Figure 2), with calculated dz values from 0.009 m (distance
166 m) to 0.037 m (distance 188 m).

6. Discussion

In this chapter, we analyze the applicability and the constraints of single methods used in
monitoring particular geomorphological processes at the Pasterze Glacier area.

6.1. Glacial Lakes

TLS was conducted once a year at Pasterze Glacier area, only in 2017 inter-annual TLS data were
acquired three times. Measurements at Pasterze Glacier area are limited to three regular measurement
campaigns due to logistics and as a consequence costs. However, spatial resolution show remarkable
results both in high dynamic (e.g., evolution of Lake Pasterzensee) as well as processes showing small
magnitudes (e.g., slope processes) depending on the measurement distances [161]. TLS provides very
dense point clouds but lacks in reflectivity especially in close vicinity to the Pasterze glacier terminus.

Water saturated sander and dead-ice bodies as well debris covered glacier do not reflect laser
impulses sufficiently and therefore margins and transition zones from water to terrain are not
represented accurately. Water at Lake Pasterzensee exhibits high turbidity and diurnal variations of
water level which influences signal reflection and interpretability of results. Topographical situations
leading to unfavorable scanning geometry (small incidence angle close to the glacier terminus) yield
different extents or data gaps, which subsequently have to be interpreted carefully.

The selection of appropriate Sentinel-2 images proved to be difficult due to frequent cloud
coverage. Therefore, of the total of about 30 potentially available images taken between June and
October, only the images in 2015 and eight images in 2018 are suitable for further analysis. However,
in terms of assessing the inter-annual variability, Sentinel-2 images do increase the temporal resolution
of data availability, e.g., for delineating glacier lakes. Analysis on a one- to two-monthly basis (in the
summer period) can be enabled (Figure 3), which is already sufficient for a single test region with a
few lakes and would be a valuable support for area wide quantification of glacier lake extent.

The spatial resolution of 10 m of Sentinel-2 images is a valuable improvement for area-wide
assessment compared with available multi-spectral data so far (e.g., Landsat 8: 30 m spatial resolution,
panchromatic 15 m). However, in detail, small scale dynamics such as degradation of ice-terraces
or the dynamics of sander areas are hardly detectable with Sentinel-2 images. Spatial resolution of
Sentinel-2 and reflectivity characteristics of the surface cause misclassifications (Figure 4). Especially
shallow water areas (Figure 4 A–D(1,5)) are often classified as terrain and small-scale features are not
represented accurately (Figure 4A–D(3)). At Pasterze Glacier, the water level shows distinct diurnal
variations of max. 0.5 m especially in August. A comparison of small-scale landforms in shape and
size based on TLS and Sentinel-2 data is very problematic due to the rapidly varying water levels
(Figure 4A–D(1–3)).

Sentinel-1 provides data with high temporal resolution with a revisiting time of six days
(for Sentinel-1 A and B). Since results are hardly affected by cloud cover, this yields clear benefits
compared to optical remote sensing for frequent mapping of glacial lakes [64,65]. Because Sentinel-1 is
a side-looking sensor, terrain correction with a high resolution DTM is essential in order to achieve
correct geolocation in mountainous terrain. The necessity of an appropriate DTM for glacier lake
delineation, which is essential in cases of rapidly developing lakes [162,163], was also pointed out by
Strozzi et al. [64] and Wangchuk et al. [65]. In this study, a DTM with a spatial resolution of 10 m was
used. DTMs with lower resolution, such as SRTM-3 (3 s, i.e. approximately 90 m spatial resolution)
would lead to distortions of several tens of meters.
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However, compared to other sensors used for glacial lake delineation, SAR data are subject to
higher noise levels. Especially the noise-like effect of speckle may lead to classification uncertainties.
In addition, special care must be taken regarding acquisitions with lower contrast, when the water
surface is roughened due to wind or rain. In this type of situation, the delineation of lake extent
or areas which exhibit lower backscatter due to topographic effects may be difficult. Consequently,
manual correction of delineation results is necessary. The challenges of speckle and the effects of
wind and waves was also pointed out by Strozzi et al. [64], who therefore also preferred a manual
classification of glacial lake outlines. Topographic effects may also lead to classification challenges.
The slopes facing away from the satellite naturally exhibit lower backscatter values, as the density
of scatter points is lower. Very steep slopes may show low values comparable to water surfaces.
We therefore chose an orbit with a steep incidence angle in order to minimize these topographic
influences. Furthermore, Sentinel-1 provides the same spatial resolution as Sentinel-2 (10 × 10 m),
also leading to mixed pixel information. This mainly affects small island detection in the lake which
potentially leads to misclassification. Another source of misclassification are areas of wet sand or wet
snow, which exhibit very low backscatter values similar to water [64]. Sander islands (cf. Figure 4A,B)
are therefore mostly misclassified due to their low backscatter intensity.

Summarizing glacier lake evolution (at Lake Pasterzensee) is one particular process which benefits
from the variety of data availability. TLS and UAV provides information with very high spatial
resolution and accuracy in a minimum annual and maximum three times a year temporal resolution.
Multi-spectral data Glacier lake extent in late summer season undergoes diurnal variations, which is a
crucial indication for subsequent process related data interpretation.

6.2. Icebergs

Because of a short lifecycle, icebergs on Lake Pasterzensee cannot be identified with most remote
sensing techniques thus far. Icebergs can be detected using TLS due to the high spatial resolution and
accuracy. However, to characterize icebergs, a drawback of using TLS is the low temporal resolution
(maximum three times per year). Thus, the detection of icebergs and their general occurrence at the
time of measurement and the validity of interpretation of long-term is rather random. The usage of
multi-spectral is strongly influenced by turbidity and shallow water areas, which delivers mixed-pixel
information. Icebergs can be detected due to different reflectivity but delineation causes inaccuracies due
to spatial resolution of the multi-spectral satellite data and the small size of icebergs. However, at Pasterze
Glacier, the usage of the automatic camera is a very valuable support for geomorphic interpretation. The
automatic camera gives qualitative information about the occurrence and disappearing, the movement
(Figure 5), and special dynamics of icebergs as a high dynamic process (e.g., tilting of icebergs [142]).
Figure 5 also shows the high dynamics in the movement of several other icebergs within this period of 3
h. Automatic tracking is limited due to sudden rotating and even tilting of the iceberg and accordingly
leading to a changing geometry of the iceberg for tracking purposes [143].

To automatically track the movement of this landform, a high temporal resolution is required.
In addition, due to the rotational movements of the iceberg in the water, such automatic monitoring
must also be able to process changes in the geometry of the iceberg

6.3. River Processes

To determine the potential of erosional processes, the quantification of fluvial processes particularly
of the proglacial channel system was based on UAVs and TLS. To describe processes accurately, grain
sizes of the sediment have to be determined by using sampling information from several pixels [104].
In detail, roughness coefficients are subsequently deduced from calculated DTMs.

To achieve all requirements from a process point of view, the resulting point density of the point
cloud has to be in the range of 15–20 points/m2. By analyzing statistical parameters (e.g., 2σ) from the
vertical elevation differences (dz) of the calculated DTM, correlations between the calculated statistical
values and reference samples (from field work) can be observed [121,164]. Consequently characteristic
grain sizes can be defined, but no grain size distributions can be determined.
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Despite low GSD, the fines fraction is strongly underestimated in both SfM and TLS-based
DTMs. Thus, these two applications are limited for characterizing diamictic sediment [121,164].
In [159], the characteristic grain diameter d90 (90% of the particles in the sediment sample are
finer than the respective d90 grain size), necessary for hydraulic 1D modeling, could be determined
photogrammetrically with the achieved GSD (1.59 cm/px), similar to what Hauer and Pulg [165]
obtained during fieldwork. The in-situ determination of any characteristic grain sizes in the proglacial
river at the Pasterze, however, is not be possible due to the described characteristics of the torrent.

However, the photogrammetric grain size determination has a major uncertainty: the orientation
of each grain may not be determined exactly due to the top view. Thus, the important b-axis for grain
size distribution curves probably cannot be measured. Nevertheless, for the determination of large
characteristic grain sizes (e.g., d90), photogrammetric evaluation was found to be applicable.

Next to the challenges of using SfM applications in high mountain environments, there are further
problems in measuring channel geometries. On the one hand, the recording of, e.g., the water level
provides data gaps in the model. To avoid limitations of high water level in assessing river bed
topography, low water level situations support area wide determination of bathymetry.

If water level is high and only mono-temporal surveys are possible, the river bed topography
must be obtained from terrestrial surveying (e.g., GNSS devices) and will then finally be combined
with the SfM-based data to get the entire river geometry. Thus, it is essential to include the information
of these linear transverse cross-sections in the 3D information of the SfM-based DTM.

This ‘sampling problem’ applies to TLS mapping as well. In addition, such high (up to 15 m)
and steep slopes, such as the studied canyon-like channel in [159], lead to big ‘scan shadows’, which,
however, can be minimized by changing the position of the TLS device several times. This in turn
implies a good accessibility of the channel.

6.4. Valley Bottom and Slope Processes

In high mountain environments, slope processes in the vicinity of ongoing glacier retreat show a
large variety of process magnitudes [166]. At Pasterze Glacier slope, processes can be distinguished in
areas: (i) reworked by downwasting of dead ice; and (ii) areas mainly stabilized, but partly reworked
by gullying and debris faces [24].

For this work, valley bottom and slope processes were analyzed exemplarily comprising changes
in dead-ice areas, erosional processes, and small landslides (Figure 6). Due to very fast glacier retreat
at Pasterze Glacier these process types show an accentuated temporal succession (e.g., [24]). In the
vicinity of the Lake Pasterzensee dead-ice degradation with a vertical subsidence of some decimeters
per year are detectable, e.g., using TLS (Figure 6A). High accuracy of data enable the determination of
process patterns leading to the fragmentation of landform due to their activity status (Figure 6A(1–3)).
Erosional process chains showing lower magnitudes are also clearly detectable indicating areas of
erosion and areas of deposition (Figure 6B).

Using multi-spectral images, the information received from quantitative assessment of slope
processes is limited. The change of size of dead-ice areas bordering the the glacial lake is the only
application which is possible due to significant difference of the spectral information and the spatial
resolution of data. Thus, the monitoring of slope processes using multi-spectral surface information is
not possible due to the coarse spatial resolution of Sentinel-2 in regard to process magnitudes.

The applicability of DInSAR techniques in characterizing high mountain processes has to be
discussed diversely. To measure surface deformations, the approach of using stable areas for testing
PSI and SBAS applications provides interesting insights into using different orbits and software
applications (StaMPS, GEP, and RSG). However, results do not deliver satisfying results in terms of
the required accuracy needed for the characterization of processes at this stage of analysis. Results at
slope areas close to the Pasterze Glacier do not show consistent patterns of deformation values, which
can be validated with other techniques.
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DInSAR analyses show only minor drifts over time. However, deviations of single epochs from
the trend line are higher than reported in other publications. This is probably mainly attributable to
insufficiently modeled atmospheric turbulences. For the correction of atmospheric phase delays, the
methods of Cong et al. [167] are available. However, first experiments with ECMWF (European Centre
for Medium-Range Weather Forecasts) ERA5 model parameters confirmed larger inaccuracies of such
corrections, especially in the ‘turbulent’ summer season. Therefore, only annual mean deformation
rates were estimated for all DInSAR methods applied in this study. Furthermore, results are based on
an assessment in line-of-sight only. This may cause systematic effects in the vertical (up/down) or
horizontal (east/west) deformation rate estimation [168].

One particular process, which is clearly detectable with DInSAR techniques, is surface deformation
in the upper part of the landslide Guttal, some 4.3 km east of Franz-Josefs-Höhe. This area shows
significantly higher deformation values than the surrounding surface in every analysis (cf. Figure 7).
Due to the lack of reference data, the validity of the magnitude of the single deformation values cannot
be stated in this early stage of using Sentinel-1 data for high mountain applications. There is neither
additional information about movement patterns of the Guttal landslide using other techniques, nor
recent quantifications in prework [169,170].

6.5. Rockfall Processes

For the characterization of rockfall processes, TLS provides point clouds as a valuable basis for
further analysis such as geological interpretation. At both test sites (MBUG and HBUG), analysis
delivered information about distinct areas of rock fall, larger block falls, and the changes in the
accumulation area of the large rock fall of 2007. Rock fall processes produce small to large blocks,
thus the minimum detectable object (MDO) of the methods is a crucial factor. Substantially different
measurement distances cause different reasonable GSDs leading to different MDOs. At MBUG, the
mean GSD varies from 15 (for special areas) to 40 cm for practical reasons (measurement time and data
handling). Consequently, rocks larger than 15 cm are potentially detectable in the accumulation area,
as well as, interestingly, changes in the detachment area.

Due to small measurement distances (100–250 m), joints and planes of bedding are detectable in
data from HBUG. At MBUG, we adapted the scanning increment the achieve the similar GSD in order to
measure special areas of rock falls effectively. In the deposition area of the rock fall in 2007, the positive
vertical changes deduce rock fall activity and area-wide negative vertical changes are most likely
evidence of block consolidation and/or subsidence due to underlying glacier retreat. In some situations,
scanning geometry and topography lead to pseudo-deformations due to misalignments. As geolocation
of particular point clouds are not equal, breaklines such as ridges are represented differently.

Qualitative assessment of rock fall activity especially at HBUG east-face was conducted using
the automatic camera of Fuscherkarkopf (FKK in Figure 1). Visual inspections of the rock faces
were conducted during measurement campaigns to avoid misinterpretations due to inaccurate
representation of the surfaces in the models. In the last four years, rock fall activity was not limited to
the south-face of HBUG. Frequent rock falls were also reported from the east-face affecting the track
to the Oberwalder Hütte, which is one of the main training bases of the Austrian Alpine Club. TLS
scanning sectors do not cover this areal thus, for subsequent monitoring of possible rock faces, the
automatic camera was a valuable support. In August 2019, a first UAV-based campaign was conducted
covering both MBUG and HBUG as reference measurements. The quality assessment of the resulting
DTM is still in progress. Annual SfM derived DTMs will be the basis for a comprehensive geological
analysis in upcoming years.

7. Synopsis: Processes/Landforms and Data Acquisition

All the consideration made in this section are condensed into a final synopsis of spatial and
temporal scales for both methods and processes. To draw conclusions about the applicability of Earth
observation techniques for monitoring high alpine environments, both the processes with respect to
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landforms and the required data are analyzed in spatial and temporal resolution. For this purpose, the
processes or consequent landforms are classified with respect to their: (i) persistence of occurrence
(lifecycle); and (ii) the extent of occurrence (including the determined morphometric parameter(s)).
The data acquisition was quantified with respect to the minimum spatial and temporal resolution
in order to monitor these processes and landforms to their changes independently of the sensor
specification (Table 6).

The occurrence of Lake Pasterzensee is persistent over a year. The landform itself and the changes
are detectable over the parameter area. Changes over one year are in the order of >100 m2 and thus data
acquisition with a spatial resolution of 10 m is sufficient to monitor the glacier lake accurately. If the
temporal resolution is increased, information about the water body size delivers further information
about, e.g., dead-ice degradation, iceberg dynamics, and sediment transport.

Icebergs show pronounced dynamics in lifecycle of days to weeks. These fast changes occurring
in size and shape are quantified with the parameter area and qualified with movement tracks.

Proglacial rivers are characterized by a high spatiotemporal variability, whereby there may be
big differences in the longitudinal direction of supply and sorting of sediments. Near the glacier
terminus, lateral channel changes may occur within days to weeks. The already developed and
incised part of the channel, however, seems to be stable for months up to a year. Both sections were
determined morphometrically over the parameters area (=position), length (=elongation), and depth (dz).
For the upper section, the short persistence of occurrence leads to minimum observation periods of
approximately one day to one month. In terms of sediment budgets, acquisition should be conducted
at least monthly close to the glacier terminus with spatial resolution of 1–2 cm to determine grain sizes
(b-axis = second longest one). A similar high temporal resolution is necessary for the measurement of
large roughness elements in the developed section.

The persistence of occurrence for dead-ice landforms strongly relates to the distance to the glacier.
Close to the glacier, they are characterized by a high temporal variation with lifecycles of about
weeks. With increasing distance to the glacier, dead-ice landforms persist for an observation year.
The determinate morphometric parameters are area and vertical elevation changes (dz). To detect
the area of these landforms, a minimum spatial resolution of 0.5–10 m is necessary (depending
on the distance to the glacier). Temporal resolution of one year is sufficient to calculate area-wide
characterization of dead-ice areas. Detailed process characterization needs higher temporal resolution
due to higher process rates, e.g., lateral melting of dead-ice peninsulas. Qualitative considerations can
be done using automatic cameras but they lack quantification so far.

Slope processes were analyzed exemplarily for the processes erosion and landslides. Erosional
processes have a lifecycle ranging from a few weeks to a year. They are primarily detectable using the
parameter area and vertical elevation changes (dz). A minimum spatial resolution in the horizontal
plane for area of 0.5–1 m is necessary to detect process related landforms and changes. A temporal
resolution of at least six months is sufficient for area-wide characterization. An increased temporal
resolution provides the differentiation of spontaneous and continuous slope processes (supported
by automatic cameras). Landslides show a lifecycle of minimum one year and are detectable by the
parameters area, dz, and dr. Rock fall is a spontaneous and extreme rapid process. Rock falls range in
size from single stones to large failures, involving several 100,000 m3 (see Rockfall Burgstall). Due to
their infrequent nature, it is almost impossible to monitor the process trigger in detail—except with
automatic cameras. Nevertheless, the accumulation of debris over time is persistent and thus the
process and its changes is detectable over the parameters volume and dz with one year.

Overall, the DInSAR results demonstrate the feasibility to monitor deformation even in the
challenging alpine environment. Further analysis is required to better understand the effects of DS and
PS characteristics, the influence of slope aspect, and exposition and especially best suited atmospheric
corrections that can deal with the very local meteorological conditions and large missing data in the
analyzed time series.
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Table 6. Schematic classification of processes and data acquisition: quantification of lifecycle (persistence),
morphometry, spatial resolution, and temporal resolution. Codes: area, area of landform; dz, vertical
difference; dr, differential range → euclidean distance.

Process Data Acquisition

Process/Landform Lifecycle Morphometry Spatial Resolution Temporal Resolution

Glacial lake 1 year area 10 m2 1 year
Icebergs 1 day to weeks area 10 m2 daily
Proglacial river 1 day to 1 month area 0.5–10 m2 monthly

dz 0.01–0.1 m
cross section 0.05–0.5 m

Dead ice weeks–1 year area 0.5–10 m2 monthly
dz 1–5 m

Erosion weeks to 1 year area 0.5–5 m2 6 months
dz 0.5–1 m

Landslide weeks to 1 year area 0.5–10 m2 monthly
dz 0.5–1 m
dr 0.25–0.40 m

Rockfall Burgstall 12 months volume 10 cm3 1 s to 1 min
dr 0.25–0.40 m

8. Conclusions

The characterization of the dynamics of geomorphological processes is always a crucial task in
assessing geohazards. The evaluation of the specification, uncertainties, and limitations of monitoring
techniques provide valuable information about their applicability. Amongst other aspects, we therefore
focused on the comparison of available spatial resolution and feasible, effective temporal resolution.

This article comprises a variety of approaches monitoring geomorphological processes in different
magnitudes and temporal as well as spatial scales in the test site Pasterze Glacier area in the observation
period 2015–2019. The synoptic usage of data acquired by different remote sensing sensors proves to
be a reasonable approach in monitoring geomorphic processes. As different sensors becomes more
easily accessible and the usage more frequent in recent years, a closer look at accuracies and effective
availability is crucial in terms of interpretability of the geomorphic processes (Table 7).

Table 7. Comparison of applied methods for monitoring geomorphological processes in terms of technical
specification and quality characteristics: Codes: coverage, spatial extent of dataset; completion time. time
period from the survey to the usable dataset; accuracy. both geolocation and pixel value (elevation for
TLS and UAV; reflectivity for backscatter; phase for DInSAR reflectivity for multi-spectral; no additional
pixel information for automatic camera); TRL, technology readiness level for the application monitoring
geomorphic processes.

Parameter TLS UAV
Radar Radar Multi- Automatic

Backscatter DInSAR Spectral Camera

Coverage + ++ +++ +++ +++ ++
Spatial resolution +++ +++ + + ++ ++
Temporal resolution + + +++ +++ +++ +++
Completion time + + ++ ++ +++ +++
Accuracy +++ ++ ++ + ++ +
Survey time + ++ +++ +++ +++ +++
TRL +++ +++ +++ ++ +++ +++

Nearly all applied techniques were able to quantify glacier lake extent sufficiently. TLS and UAV
delivered high resolution datasets with very high accuracy. One drawback is the comparable low
temporal resolution due to logistics and costs. Automatic classification of multi-spectral data and radar
backscatter analysis provided quantifications with a very high temporal resolution but show some
problems in accuracy due to spatial resolution. Summarizing glacier lake extent assessment using this
pool of techniques delivered very interesting details in lake evolution.
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Conducting sediment analysis such as in the example of river bed characterization, the most
efficient method seems to be UAV applications due to: (i) low water depth and high geometric (canyon)
and roughness features (boulders); and (ii) limiting errors due to lacking penetration of the water
surface. Moreover, terrestrial surveying (e.g., TLS) is limited due to: (i) problems with the scanning
geometry (shadowing, GSD); (ii) the dangerous characteristics of torrents (e.g., pronounced riverbed
structures and high flow velocities); and (iii) the very steep slopes of torrents.

To quantify valley bottom, slope, and rock wall processes, TLS and UAV also provided precise
data with very high spatial resolution. Even slow processes with small magnitudes can be detected
over the observation period of one year. UAV could be utilized for large areas consistently, whereas
TLS shows drawbacks of small incidence angle or shadowing. To cope with these challenges several
scanning positions are necessary, which is not possible at Pasterze Glacier area due to accessibility and
time effectiveness. DInSAR using Sentinel-1 data is a rather new application in monitoring geomorphic
processes. Spatial patterns of deformation values do not deliver explicit information. We assume
that accuracy is significantly dependent on atmospheric influences, which are difficult to correct
for, particularly in high alpine environments, although larger deformation values of, e.g., landslide
processes are clearly discriminable from adjacent terrain.

Today, automatic cameras become a valuable source of information mostly in a qualitative
manner. Especially the availability of public, high quality cameras increasingly improve scientific
work. Temporal resolution is a major upgrade in order to better understand processes or to validate
processes dynamics. Further development of camera system (e.g., resolution) and available software
(registration) will enhance the applicability in upcoming years.
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Airborne Laserscanning
BUG Burgstall (Scanning position)
DInSAR Differential Interferometric Synthetic Aperture Radar
DS Distributed Scatterers
DTM Digital Terrain Model
ECMWF European Centre for Medium-Range Weather Forecasts
ERS European remote sensing satellite
ESA European Space Agency
FJH Franz-Josefs-Höhe (Scanning position)
FKK Fuscherkarkopf (camera position)
FWE Freiwandeck (camera position)
GCP Ground control points
GEP Geohazards Thematic Exploitation Platform
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GL Glacier lake
GLO Grossglockner (camera position)
GLOF Glacier lake outburst floods
GROHAG Grossglockner Hochalpenstraßen AG
GSD Ground sampling distance
HBUG Hoher Burgstall
HH Hofmanns Hütte (Scanning position)
ICP Independent check point
InSAR Interferometric synthetic aperture radar
HoG Height over Ground
IW Interferometric Wide swath
LIA Little Ice Age
LOS Line of sight
MBUG Mittlerer Burgstall
MDO Minimum detectable object
MSI Multi-sprectral instrument
MVS Multi view stereo
NDWI Normalized Difference Water Index
NIR Near infrared
PAS Burgstall 1, Burgstall 2 (camera position)
PS Persistent Scatterer
P-SBAS Parallel Small Baseline Subset
PSI Persistent Scatterer Interferometry
RMSE Root-mean-square-error
RTK Real-time kinematic
S-1 Sentinel-1
S-2 Sentinel-2
SAR Synthetic aperture radar
SBAS Small Baseline
SAR Synthetic aperture radar
SD Standard deviation
SLC Single Look Complex
SfM Structure from motion
SNAP Sentinel Application Platform
StaMPS Stanford Method for Persistent Scatterers
SWIR Short wave infrared
TLS Terrestrial Laserscanning
TRL Technology Readiness Level
UAV Unmanned aerial vehicles
VB Valley-bottom
VV/VH Vertically transmitted and vertically or horizontally received radiation
VIS Visible light
VNIR Visible and Near Infra-Red
VV Vertically transmitted and vertically received radiation
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Abstract: Heavy precipitation and storm surges often co-occur and compound together to form
sudden and severe flooding events. However, we lack comprehensive observational tools with high
temporal and spatial resolution to capture these fast-evolving hazards. Remotely sensed images
provide extensive spatial coverage, but they may be limited by adverse weather conditions or platform
revisiting schedule. River gauges could provide frequent water height measurement but they are
sparsely distributed. Riverine flood and storm surge models, depending on input data quality and
calibration process, have various uncertainties. These lead to inevitable temporal and spatial gaps in
monitoring inundation dynamics. To fill in the observation gaps, this paper proposes a probabilistic
method to estimate daily inundation probability by combining the information from multiple sources,
including satellite remote sensing, riverine flood depth, storm surge height, and land cover. Each data
source is regarded as a spatial evidence layer, and the weight of evidence is calculated by assessing
the association between the evidence presence and inundation occurrence. Within a Bayesian model,
the fusion results are daily inundation probability whenever at least one data source is available.
The proposed method is applied to estimate daily inundation in Harris, Texas, impacted by Hurricane
Harvey. The results agree with the reference water extent, high water mark, and extracted tweet
locations. This method could help to further understand flooding as an evolving time-space process
and support response and mitigation decisions.

Keywords: fusion; inundation probability; remote sensing; Hurricane Harvey; NDWI; ADCIRC

1. Introduction

In the past 50 years, over 650 Atlantic cyclones have lead to life loss, property damage,
and psychological consequences [1,2]. On average, in the U.S., two to three tropical cyclones cause
about 50 deaths per year. Nearly 90% of fatalities are water-related, such as those caused by drowning,
among which the storm surge is responsible for roughly half of the total deaths. The deadliest storm
from 1963 to 2012 was Katrina, costing nearly 40% of the fatalities [3]. In 2017, the hurricane season in
the Atlantic got the most attention due to its abnormal intensity and enormous damage, notably from
Harvey, Irma, and Maria. For example, Harvey brought record-setting rainfall and caused devastating
flooding. During Hurricane Harvey, about half of the casualties were found outside the FEMA 500-year
floodplain [4]. The majority of deaths (80%) occurred within the first week after the hurricane landfall.
To facilitate early warning and prevent damage, risk maps need to be well prepared and communicated
with emergency agencies and the public as frequently as possible.

As greenhouse gases continue to increase in concentration, the resulting rising sea level and
intensifying storm activity will increase flood risk in the coming decades [5–8]. The heat content
in the Gulf of Mexico was highest in the summer of 2017, and decreased dramatically after the
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dismissal of Hurricane Harvey, in the form of unprecedented rainfall. Some locations observed more
than 1500 mm precipitation. It is estimated that climate change could increase rainfall by 35% [9].
The annual probability of such precipitation has increased six-fold (to 6%) since the late twentieth
century. Flood characteristics with a high spatial and temporal resolution are scarce, such as information
of the return period, height, and inundation extent [10].

Remote sensing is the most widely used and effective technique to map large-scale flood extents.
Open water can be distinguished from dry land based on its spectral characteristics, which have low
reflectance in visible and infrared bands, or based on its low emitted radiation and backscattering
in microwave bands. On the one hand, studies using optical sensors can employ more spectral
information and benefit from a long archive of consistent observations [11,12]. On the other hand,
active and passive microwave signals can penetrate clouds, and thus sensors using the microwave
are able to monitor inundation regardless of adverse illumination and weather. There is increasing
availability of microwave sensors, and their applications in flood mapping have been published [13–18].
Remote sensing has advantages in both long-time-period and near-real-time applications. However,
due to the current design tradeoff between revisit time and spatial resolution in public satellite data,
continuous observations with both high spatial and temporal resolution are absent. No single sensor
can provide reliable daily observation for rapid flood response.

Flood inundation models are effective for risk mapping, damage assessment, forecast and
engineering [19–21]. Based on hydrological simulations, these models require streamflow
measurements and forecasts for flooding predictions and early-warning [22]. The river monitoring
system is far more sophisticated in developed regions than in the developing countries where
flood risk is increasing. With high-quality data acquisition and processing, empirical methods are
straightforward and accurate. Other state-of-the-art flood modeling approaches are hydrodynamic
models and conceptual models. The hydrodynamic models describe water motion by assuming
conversion of mass and momentum, yet the conceptual models are non-physically based and fastest in
computation for large scale applications [19]. Assessing the hazard of storm surge flooding demands
an understanding of storm activity, local storm surge, and sea level. While there are numerous models
addressing those topics, various uncertainties persist [5]. Model uncertainties have various sources,
ranging from model inputs (like precipitation, streamflow, topography, etc.), underlying stochastic
processes, to incomplete understanding of the underlying hydrologic mechanisms [19].

Numerous attempts have been made to facilitate flood observation and rapid response. However,
one single source of information could not provide comprehensive coverage with high spatial and
temporal resolution. To fill the gaps of lacking consistent flood maps, this study proposes a probabilistic
method to combine multi-source data, including remote sensing data, estimation from riverine
flooding and storm surge models, and underlying surface features, into a daily inundation risk map.
The proposed method can estimate inundation probability during an emergency, through an open and
flexible framework. It is able to deal with different data availability for different days. When at least
one data source is accessible, the fusion method could estimate inundation probability. Data acquired
by observation or model, of various qualities, are combined by the Bayesian framework. To our
knowledge, this is the first method to estimate daily inundation probability using discrete data sources
with different mechanisms, aiming to capture fast-changing hurricane impact. The following sections
detail the proposed method (Section 2), data collection and processing (Section 3), results (Section 4),
discussion (Section 5), and conclusions (Section 6).

2. Method

The proposed method fuses different data sources into a series of probabilistic flood maps,
indicating the inundation probability for each pixel. Each data source could contain information for
specific time points, and here the smallest unit of the time period is a day. The estimation of inundation
probability is conducted on a daily basis, whenever data are available either from satellite imagery,
flood models using gauge input, and/or storm surge models. Each data source is regarded as an
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evidence layer, and multiple pieces of evidence of one pixel are combined into a probabilistic value to
show inundation occurrence. The evidence is weighted by a Bayesian framework, and more details are
given in the following subsections. Section 2.1 describes the weight of evidence theory, along with the
validation and assessment scheme given in Section 2.2.

2.1. Weight of Evidence

Weight of evidence is a model to combine different information based on the Bayesian conditional
probability framework [23,24]. Suppose that there are N(M) pixels in the area of interest, among which
event A occurs in N(A) pixels. In other words, there are N(A) inundated pixels. The prior probability
Pprior could be estimated as N(A)/N(M) when a pixel is selected randomly showing the event A.
Furthermore, there are N(B) pixels that evidence B are present, and N

(
B
)

pixels that B is absent or not
observed. With such information, the probability of A conditioning on B could be estimated. Given the
event A, a positive (W+) and a negative (W−) weight could be estimated for the spatial evidence B,
using the formulas

W+ = ln
P(B|A)
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(
B
∣∣∣A) (1)

W− = ln
P
(
B
∣∣∣A)

P
(
B
∣∣∣A) (2)

where the conditional probabilities P(B|A), P
(
B
∣∣∣A), P

(
B
∣∣∣A), and P
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∣∣∣A) are calculated by the occurrences
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where N(B∩A) is the amount of pixels that both inundation (event A) and evidence B are observed;
N
(
B∩A

)
means that evidence B is present but there is no inundation, similarly for P

(
B
∣∣∣A) and P

(
B
∣∣∣A).

A large sample size is required for statistically significant weights where the significance of weights
could be estimated by

S2W+ =
1

N(B∩A)
+

1

N
(
B∩A

) (7)

S2W− =
1

N
(
B∩A

) + 1

N
(
B∩A

) (8)

Based on the positive and negative weights, the contrast of weights is defined as their difference

C = W+ −W− (9)

This contrast of weights C measures the spatial association between the event A and the spatial
evidence B, in which C > 0 suggests a positive spatial association and C < 0 a negative one. When C
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approaches zero, there is no obvious spatial association. The statistical significance of spatial association
could be calculated by studentizing C,

S(C) =
√

S2W+ + S2W− (10)

S(C) can help to combine the multiclass evidence into predictor maps. When a confidence level
is provided, it is compared to S(C) to finalize the weight, either positive W+ or negative W−. In this
study, the evidence layers are assumed to be positively associated with water presence. When S(C)
is larger than a predefined confidence level, the corresponding positive weight of the subset of the
evidence layer would be used.

The predictor map is obtained by combining the presence and absence of spatial evidence. For a unique
condition, the posterior probability is estimated by prior probability and the weights of spatial evidence

Ppost =
e
∑n

j=1 Wj+ln O(A)

1 + e
∑n

j=1 Wj+ln O(A)
(11)

where
O(A) = Pprior/

(
1− Pprior

)
(12)

Wj denotes the positive weight (W+
j) of the spatial evidence Bj in this study, and O(A) is the

prior odd of inundation event A. The variance of Ppost could be estimated by the variance of weights as

s2
(
Ppost
)
=

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N(A)

+
n∑

j=1

s2
(
Wj
)⎤⎥⎥⎥⎥⎥⎥⎦× Ppost

2 (13)

2.2. Validation and Assessment

The proposed method estimates inundation probability, which is difficult to be directly evaluated.
The available ground reference data are either numeric or binary, including optical images, high water
marks, published flood maps, and posted flood locations. In order to evaluate the proposed method,
the inundation probability is compared to a referenced water extent derived from an optical image,
which is acquired on the same day of prediction, as well as a published flood map. Given the validated
water extent, a quantile–quantile plot could be generated as a reliable diagram [15,25]. The reliable
diagram shows the actual occurrence ratios and the estimated probability using discrete intervals.
For an example of statistically reliable estimation, among the pixels with 80–90% inundation probability,
around 85% of these pixels could be actually flooded according to the validated water extent. Ideally,
the reliable diagram is a dot plot aligning a 1:1 line. The difference between the ideal 1:1 line and the
estimation could be measured by their weighted root-mean-square difference (WRMS) ε

ε =

√√∑N
i=1(p̃i − p̂l)

2ni∑N
i=1 ni

(14)

where N is the number of intervals that the range of probability values [0, 1] split into for ε calculation, and ni
is the pixel number of the ith interval; p̃i, and p̂i are the estimated and validated inundation probability.

Additionally, daily inundation probability is estimated over an extended period of time and
collected. Over that time period, the maximum of the daily inundation probability for each pixel is
calculated and compared to the high water mark and flood location. The optical images are collected
from two commercial platforms (Planet and DMCii). The high water mark dataset is collected and
distributed by FEMA. This dataset provides information on qualified flood location and its associated
flood depth, which is the height of flood water above ground level. The flood location is extracted
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from Twitter using the Location Extractor API [26]. The published flood map is generated by FEMA,
for which extensive remote sensing data have been used.

3. Data

The data used as spatial evidence layer include SAR backscatter, optical water index, riverine flood
depth, storm surge simulated water height, and land cover. The description and preprocessing of each
data source are provided in the following sub-sections, along with data collected for the study case in
Harris, Texas, during Hurricane Harvey.

3.1. SAR Backscatter Intensity

The SAR could provide all-sky observations by the received signal of backscatter intensity, which is
sensitive to surface roughness. Water, as a smooth surface, usually shows a rather low backscatter value.
As a part of the Copernicus initiative, the Sentinel-1 program focuses on land and ocean monitoring
and emergency response. It consists of two polar-orbiting satellites, among which Sentinel-1A was
launched in April 2014 and Sentinel-1B in April 2016. They both carry a C-band (5.4 GHz) imaging
SAR [27]. With an aim to build a long-term data archive, the Sentinel-1 inherits SAR data from
European Remote Sensing satellite, ENVISAT, and the Canadian satellite RADARSAT, and continues
their observations. The imagery products are free of charge to all users and fast delivered, at best
within hours for emergency response. The Sentinel-1 consists of four imaging modes with different
resolution and coverage, single and dual-polarization, and improved revisit time. The repeat cycle for
one satellite is 12 days at the equator and 6 days for the constellation.

Following standard instruction, the SAR preprocessing in this study is conducted by using
the Sentinel Application Platform (SNAP) from the European Space Agency, including radiometric
calibration and terrain correction. The ground range detected (GRD) product contains information
needed to convert digital pixel values into calibrated backscatter intensity. This backscatter intensity of
each pixel is then transformed into the decibel unit as spatial evidence. In the process of geometric
correction, the elevation data are downloaded from the National Elevation Dataset (NED) with a
spacing of 1/3 arc-second. The SNAP also provides automatically downloaded digital elevation models
(DEMs) from several products. Speckle has been reduced to some extent for the GRD products,
so additional filtering except the default setting in SNAP is skipped to preserve the fine pixel resolution.
This study uses backscatter intensity to generate spatial layers and calculate weights. For urban
flooding in densely developed areas, interferometry coherence could be useful in future studies.

3.2. Optical Water Index

Surface water extent is obvious in the optical imagery so water classification is rather straightforward
using an optical image. The spectral characteristics of water are special, and the Normalized Difference
Water Index (NDWI, [28]) is one of the most widely used spectral indices to delineate water.

NDWI = (green−NIR)/(green + NIR) (15)

When an optical image is available, its spectral bands of green and near-infrared (NIR) are used
to calculate the NDWI and used as an evidence component. In this study, two optical images were
collected from the two constellations of satellites, namely Planet and DMCii. Provided by PlanetScope,
the Planet image includes RGB and NIR bands, with a spatial resolution of 3 m. The DMCii image
also has three spectral bands (R, G, NIR) but a coarse spatial resolution of 22 m. Both radiometric
calibration and registration are conducted for the collected satellite images from PlanetScope and
DMCii. From the two optical images, the PlanetScope one is used to estimate the weight, and the
DMCii one is used as a reference to assess the result.
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3.3. Riverine Flood Depth

The riverine flood depth is calculated by the river flow model and gauge readings, which is processed
by FEMA. It requires a high-resolution (usually 5 m) digital elevation model (DEM) from USGS.
Stream or river gauges with reference to mean sea level are collected from the National Weather Service.

When the water level in the river is rising, the calculated flood extent may not reflect reality.
This calculation needs to be continued and regularly updated as the flooding evolves. On a daily
basis, gauges report their water stage readings when the river reaches its crest. If some location
cannot observe crests during the time frame of interest, the highest record would be reported and used.
All available gauge readings are collected and converted into the same datum (NAVD88). The updated
water stage readings, crest or highest records are used to provide water surface elevation as the sum of
readings and referenced sea level. The result is called the standardized water surface elevation.

Gauges are spatially sparse so that information between existing gauges needs to be estimated by
interpolation. The interpolation processing relies on the understanding of the hydraulic situation—how
water flows on a terrain surface. To facilitate this interpolation, the National Hydrography Data
flow lines are used to create reinforcement points. A flow line depicts the path of a stream or river,
and the gauges are located along a river. While the flow lines link the gauges, points on the flow line
intersections and between gauges are used as reinforcement points. Water levels of the reinforcement
points are estimated based on the gauge’s readings and the distance to the gauges located on the
upstream and downstream.

Once the water level elevations are available for the gauges and reinforcement points, a triangulated
irregular network (TIN) is generated to represent the continuous water surface. This water surface
is then converted to a raster image, with the same geo-reference and grid alignment as the ground
DEM data. Overlaying the water surface with the DEM, flood depth can be calculated as the difference
between the water surface elevation and ground elevation (similar to [29]). Flood extent is identified
as regions where the flood depth is positive. For isolated flood areas, if they are not adjacent to gauges
and reinforcement points, they are regarded as disconnected false flooding areas and are removed.
The flooded region with depth information is the final product and denoted as the riverine flood depth.
The flood depth is categorized into a multi-class set and is used as one spatial evidence to estimate the
presence probability of flooding.

3.4. Storm Surge Simulated Water Height

The Advanced CIRCulation (ADCIRC) model is a finite element model to forecast or estimate
water height caused by storms [30,31]. Millions of elements are used in the domain of interest where
the element sizes are various, ranging from ten meters along the coast to ten kilometers in the deep
ocean. For each element, wind and pressure fields are required and obtained from multiple hydraulic
data sources. The ADCIRC model outputs include water surface elevation and velocity over the
domain continuously. This study makes use of the estimated water surface elevation to interpolate
water height caused by storm surge for the study region.

The storm surge model nodes calculate water height continuously, and the daily maximum records
are used to generate the storm surge surface. The dense point set is transformed into a continuous
surface through Thiessen polygon creation. Although the point set is relatively dense, the discrete
points could not be directly combined with the other raster data. Thiessen polygons, also known
as Voronoi diagram, are generated from the point set, in which the polygons share the same value,
here water height, as the center point. In a space X, a Thiessen polygon Rk surrounding a point Pk
could be expressed as

Rk =
{
x ∈ X

∣∣∣∣d(x, Pk) ≤ d
(
x, Pj
)

for all j � k
}

(16)

where the distance function d( ) used in this study is the Euclidean distance. After the Thiessen
polygons are created and their values of water height are assigned, they are converted into rasters to
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match other data sets, regarding georeferenced and grid properties. Then the height is categorized as
the riverine flood depth data using multiple quantiles of the total data.

3.5. Land Cover

The land cover information is obtained from the National Land Cover Database (NLCD) at a
resolution of 30 m [32,33]. According to the modified Anderson Level II classification system, there are
16 classes of land use and cover in the NLCD product. The Level I classification is used in this study to
aggregate the land cover types, including water, developed, barren, forest, shrubland, herbaceous,
planted/cultivated, and wetlands. Each land cover type is used as layers of spatial evidence.

3.6. Data Collection for Hurricane Harvey

In August 2017, Hurricane Harvey swept Southeast Texas as the wettest and costliest tropical
cyclone. More than 1000 mm of rain was received in many regions over four days, with a peak of
over 1500 mm rain accumulations. The catastrophic flooding caused the death of over 100 people,
displacement of more than 40,000 people and damage worth over 125 billion US dollars, according to the
National Oceanic and Atmospheric Administration (NOAA). Harvey was formed on 17 August 2017,
moved towards the northwest and made multiple landfalls. With an intensification phase of a Category
4 hurricane, Harvey made landfall on 25 August at San Jose Island and Holiday Beach, after leaving
Barbados and Saint Vincent. After that, a torrential downpour of rain led to unprecedented flooding.
Oil refineries were shut down, declining energy production, and some chemical plants suffered from
explosions due to a power outage [10]. On 2 September, Harvey weakened and dissipated.

In Texas, the Department of Public Safety estimated that about 300,000 structures and 500,000
vehicles had been destroyed or damaged [4]. Houston metropolitan areas observed over 990 mm
of precipitation during August, the wettest record since 1892. On 27 August, the National Weather
Service office in Houston measured 408 mm of daily rainfall accumulations. Emergencies of flash
flooding were issued several times from 26 August onwards. Harris County Flood Control District
estimated that 25–30% of the county was submerged, around 450 square miles. The regions in Figure 1
are investigated, including the Addicks and Barker Reservoirs in the left part. These reservoirs were
built by the US Army Corps of Engineers with aims to prevent flood damages to the city of Houston.

Harris County is the site of interest in this study, shown in Figure 1. According to the US Census
Bureau, Harris is the most populous county in Texas and ranked third in population across the country,
home to 4.5 million people. The county seat, Houston, is the fourth largest city in the U.S. In Figure 2,
developed areas with different intensities are depicted in various shades of red (Land Cover Class
21–24), making up a large portion of the county area.

Located in the Gulf Coastal Plain, the region of interest is mainly made up of clay-based soils
and it is low-lying. The digital elevation model and the derived slope are shown in Figures 3 and 4.
The northwest part is higher in elevation than the southeast part where most rivers and streams flow.
The slope is usually small, except along the mountain ridges and the river banks. This area is a vast
floodplain depending on San Jacinto River and Buffalo Bayou to carry away flood and stormwater.
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Figure 1. The study site Harris County, Texas, aerial image composited by RGB bands.

 

Figure 2. Land use and land cover from NLCD 2011.
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Figure 3. Elevation of Harris, Texas.

Figure 4. Slope of Harris, Texas.

The digital elevation model (DEM) was collected from the National Map 3D Elevation Program,
and the source data are products of LIDAR point clouds, with a spatial resolution or ground spacing
of 10 m. Based on the DEM, the slope is determined by the change rate of the surface in vertical and
horizontal directions. An increase in slope suggests that the terrain is changing from a relatively flat
state to a steeper state. As water flows from regions of high elevation to low elevation and usually is
trapped in flat areas, the slope is a reasonable indicator of inundation. However, for this study site,
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a large portion of the area is of a very small slope, so this may not add much useful information as a
spatial evidence layer.

The riverine floodplain and depth were calculated using gauges and flow lines shown in Figure 5.
The nodes to simulate storm surge by the ADCIRC model are shown in Figure 6, with an enlarged
frame for the dense points. Notice that the storm surge simulation could not provide full coverage of
the study site and it is available for the coastal regions.

Figure 5. Riverine gauges and flow lines used for FEMA flood depth calculation.

Figure 6. Storm surge model simulation nodes.
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The riverine flood depth was collected and processed on 27–30 August, and 1 September (list in
Table 1). The ADCIRC model outputs, simulated water heights, were collected and processed as
the previous section from 27 to 30 August. As shown in Figure 7, the SAR images were acquired
from Sentinel-1 on 18, 24, 30 August, and 5 September; the Planet and DMCii images were used to
calculated NDWI on 31 August and 1 September. The Planet image could not cover the whole study
region, missing the eastern part. The inundation areas were detected using the satellite images (Planet
and Sentinel-1) and support vector machine classification with manually selected training samples.
Then the inundation extent was used to estimate the weights of different spatial evidence based on the
Bayesian conditional probability framework (Section 2.1).

Figure 7. Remotely sensed data from SAR (a,b) and optical (c,d) sensors.

Table 1. Available dates for different information sources.

Sources 8/18 8/24 8/27 8/28 8/29 8/30 8/31 9/1 9/5

River stream gauge √ √ √ √ √
Storm surge model √ √ √ √

Planet √
DMCii √

Sentinel-1 √ √ √ √

To assess the estimated inundation, satellite images and flood maps from multiple data sources
were used as the ground reference, including supervised classification on the high-resolution optical
image from DMCii and flood maps released by FEMA.
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4. Results

In this study, the water extent derived from the satellite image acquired on August 30 (Sentinel-1)
and 31 (Planet) was used to estimate the weights of various spatial evidence, and the resulting weight
of evidence is listed in Table 2. Each evidence layer is divided into multiple subsets, according to
quantiles or land cover types. As the riverine flood depth and the storm surge water height can
be available daily, the depth and height of the day that the remotely sensed image was acquired
are used to generate the multi-class evidence layers. The ranges of different variable classes are
also included in Table 2, which correspond to quantiles of the spatial evidence or land cover types.
Regions of low SAR backscatter intensity (for both polarization), high NDWI, flood depth or storm
surge height have larger positive weights W+ and contrasts C, indicating possibilities of positive spatial
association. The areas with SAR backscatter intensity below −18 dB for polarization VH (vertical
transmit, horizontal receive) and below −25 dB for VV (vertical transmit and receive) are possibly
open water. In addition, open water (Land Cover Class 11) and bare soil (31) are also highly related to
inundation, having positive weights of 4.45 and 1.42. Grassland (71) and cropland (82) are less relevant
(weights lower than 0.25). The standard deviations of weights and contrast are small, thanks to the
large sample size (amount of image pixels). The studentized contrast C/S(C) is used to determine the
final weights of spatial evidence, with a bold value in Table 2, suggesting the final weight selected to
calculate inundation probability. Since the five types of spatial evidence are assumed to be positively
related to inundation, only positive weights are used for the presence of spatial evidence. As mentioned
in Section 2, the variance of the posterior probability Ppost could be estimated by the variance of weights
by Equation (13). The variance of weights, S2W+ listed in Table 2, are small, ranging from 8× 10−7 to
1× 10−4. Based on Equation (13) and the calculated variance of weights, the variance of inundation
probability Ppost is small.

The predictor map, the posterior probability of inundation, is obtained by combining the presence
of different forms of spatial evidence and their weights. The prior odd of inundation is estimated
as the ratio of open water to the total area of interest. In Figures 8 and 9, the posterior probabilities
of inundation are shown for Harris, Texas, on 18, 24, 27–30 August, and 1 and 5 September 2017.
During this period, the water extent increased and submerged areas could be found along the rivers
and streams, and around the reservoirs (Addicks and Barker Reservoir). From 27 August (Figure 8c),
flood water could be found near the center of Houston, along the streams. From 18 August to
1 September (Figures 8d–g and 9), inundation probability around the two reservoirs was increased.
However, the inundation evolution is not smooth. The water area near the reservoirs expands in
Figure 8d–f, with relatively low inundation probability. In Figure 8g, the water area decreases but the
inundation probability increases. This inconsistency may be due to data availability. River stream
gauge data are available from 28 to 30 August and 1 September, the storm surge model 28 to 10
August, and satellite data from 30 August to 1 September. Except for 28 and 29 August, the daily data
availability is different, even for two consecutive days. Such a difference in data availability and data
quality could lead to the inconsistency of estimated probability.
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(a)8/18 (b)8/24 

(c)8/27 (d)8/28 

(e)8/29 (f)8/30 

(g)8/31 (h)9/5 

Figure 8. (a–h) The posterior probability of inundation from 18 August to 5 September 2017.

242



Remote Sens. 2020, 12, 1495

Figure 9. The posterior probability of inundation on 1 September 2017.

There is no available storm surge simulation on 1 September, so the inundation probability map
(Figure 9) is generated by remote sensing data, riverine flood depth, and land cover data. An optical
image is used to assess the effectiveness of the method. This image was collected by DMCii with a
multi-spectral sensor and a spatial resolution of 22 m. Six locations in Harris are selected to show
detailed water distribution, as in the yellow boxes in Figure 10.

As shown in Figures 11–16, the validated water extent (blue areas in (b)) agrees well with the
regions of inundation probability larger than 0.9. The estimation generated from the proposed method
is more accurate than the FEMA flood map, which tends to overestimate the water extent.
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Figure 10. The DMCii image acquired on 1 September, along with boxes frames indicating flooded
areas to be investigated.

Figure 11. Enlarged site (A): inundation probability (a), the corresponding optical image on September
1 (b), and (c) FEMA flood map, with water shown in blue.
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Figure 12. Enlarged site (B): inundation probability (a), the corresponding optical image on 1 September
(b), and (c) FEMA flood map, with water shown in blue.

Figure 12 shows the Addicks Reservoir and the Barker Reservoir, which is a ‘dry’ reservoir covered
by vegetation usually. From these two reservoirs, water was released with control towards the Buffalo
Bayou after 28 August. Despite the original attempts to protect the neighboring area, the Addicks
Reservoir began to spill out after reaching its capacity. The recorded water level during Hurricane
Harvey was the highest since the construction of the reservoirs.

Figure 13. Enlarged site (C): inundation probability (a), the corresponding optical image on 1 September
(b), and (c) FEMA flood map, with water shown in blue.

Figure 14. Enlarged site (D): inundation probability (a), the corresponding optical image on 1 September
(b), and (c) FEMA flood map, with water shown in blue.
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Figure 15. Enlarged site (E): inundation probability (a), the corresponding optical image on 1 September
(b), and (c) FEMA flood map, with water shown in blue.

Figure 16. Enlarged site (F): inundation probability (a), the corresponding optical image on 1 September
(b), and (c) FEMA flood map, with water shown in blue.

Based on the time series maps from 18 August to 5 September (Figures 8 and 9), the maximum
estimated inundation probability for each pixel along the time series is produced and shown in
Figure 17, along with extracted tweets and high water marks. The observed points are usually inside
or near the regions of high inundation probability, especially around the streams or large water bodies.
For the areas with low inundation probability, if those regions are at high flood risk, for example,
places with a short distance to the river and with low elevation, inundation could be possible. However,
the low inundation probability in potential flooded urban areas implies a major limitation of the
proposed fusion method.

246



Remote Sens. 2020, 12, 1495

 

Figure 17. Extracted tweets and high water marks on top of the max-inundation probability from
14 August to 5 September when data are available.

Similarly to the calculation of maximum inundation probability, the mean and standard deviation
are also calculated and shown in Figure 18. High mean inundation probability suggests normal or
permanent water, and areas of high standard deviation are generally flooded regions where surface
water is uncommon. Using the maps of mean and standard deviation, flooded regions with severe
impact could be identified, such as Addicks Reservoir, Barker Reservoir, and the riverside near
downtown Huston.

Figure 18. (a,b) The mean and standard deviation of inundation probability from 17 August to
5 September when data are available.
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A reliable diagram of 1 September (Figure 19) is used to quantitatively assess the prediction.
The probability range [0, 1] is split into ten intervals [0, 0.1], (0.1, 0.2], . . . , (0.9, 1]. Pixels of estimated
probability within each interval form a subset, and in such a subset, the validated water extent ratio is
used as the validated probability. Generally, the prediction is close to the validation, especially for the
regions with relatively small (<0.5) or large (around 0.7 and 0.9) inundation probability. Though the
prediction reliabilities of intervals (0.5, 0.6] and (0.7, 0.9) are lower than other intervals, the pixel
amount of these intervals is rather small, as listed in Table 3. In order to consider the pixel number,
the weighted root-mean-square difference εwas calculated, with a value of 0.0686.

Figure 19. Estimated and validated probability.

Table 3. The number of pixels for different predicted probability intervals.

Predicted Probability Number of Pixels

[0, 0.1] 101,463,434
(0.1, 0.2] 3,457,280
(0.2, 0.3] 1,687,411
(0.3, 0.4] 1,438,002
(0.4, 0.5] 119,149
(0.5, 0.6] 37,904
(0.6, 0.7] 69,981
(0.7, 0.8] 269,509
(0.8, 0.9] 151,728
(0.9, 1] 3,422,574

5. Discussion

In this paper, we proposed a framework to fuse multi-source information to generate daily maps
of inundation probability. We incorporated remote sensing data, riverine flood depth, storm surge
simulation, and land use and land cover. The fusion framework makes use of available data of a
given day, because the multi-source data could not be acquired with the same frequency. In line with
previous studies [11–18], the remotely sensed inundation extent is clearly useful to observe flood events,
but such a technique could be sensitive to the timing of image acquisition. The SAR images used in this
study are theoretically accessible every six days, but observation gaps still exist. The optical images,
though more informative, are limited due to heavy cloud coverage, which is often present during a
flood event. When the optimal data sources are limited, we utilized other information sources and
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provided a series of consistent probability maps. We found that each data source has some limitations
and uncertainty, but the fused result is more accurate than each component in terms of identifying the
inundation extent. The estimated inundation probabilities using fused components are more realistic
than the ones using a single data source.

Each data source has limitations in mapping inundation. In Figure 20, the light blue regions
indicate areas of high uncertainty. The land use and land cover data are static during the flood evolution,
so the probabilities estimated from the land cover are also constant for different days. Areas with high
probability in NDWI and SAR backscatter are correlated with the high probability areas in the fusion
result. In this study case, NDWI estimates an extensive area of rather low inundation probability.
SAR backscatter estimates less water extent but with higher inundation probability than that from
NDWI. Although the probability maps estimated from NDWI and SAR backscatter are for different
days, the difference in probability could be dramatic for the same event.

Figure 20. (a–f) Estimated inundation probability using single and fused components.
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The riverine flood depth relies on the estimation of water surface elevation, which could inevitably
include some inaccuracies or even errors. First, gauge readings are usually fairly accurate, but on the
one hand, not every record is uploaded and usable. On the other hand, the daily highest water level
may not correspond to the water level of the flood crest. Second, interpolation based on gauges and
reinforcement points may not capture the reality among areas without reliable observation. Third,
flood depth calculation using DEM would suffer from the propagated error of the input data. Lastly,
the removal of isolated flooded regions could ignore some actually flooded areas.

Similarly, the water heights simulated by the storm surge model have their uncertainties from input
data qualities and modeling reliability. Furthermore, the transformation from storm surge nodes (points)
to surface (raster) via Thiessen polygons might have some local issues. For example, the boundaries
of river banks or coasts show artifacts with abrupt transitions. More complex interpolation and
post-processing considering topography could be helpful. One possible solution would be using the
initial storm surge model mesh to interpolate water heights, but given the fine resolution in the coastal
mesh, the improvement may not be significant. Nevertheless, the Thiessen polygon generation would
be more efficient for near-real-time or real-time applications, because one set of polygons could be
applied to the flood event for a few days or even months, without repeating interpolation processes.

The fused result (Figure 20f) is a statistical combination of the different components (Figure 20a–e).
In the Results section, we compared the estimated inundation probability with the remotely sensed water
extent and observation points (flood Tweets and high water mark). Areas with high probability tend to
be flooded (Figures 11–16). However, observation points can be found near places of relatively low
probability, especially in the city center. This is a major limitation of the proposed method. Although the
observation points are not evenly distributed and of different scales (much higher resolution than the
spatial evidence layers), the points are reliable data showing water presence. The overlaid map of
points and probability shows that regions with low probability can be flooded when those regions are
at high flood risk. Future studies can consider flood risks, such as distance to rivers or low-elevation
places, modeled flood return period, and historic flood frequency. In addition, additional data in urban
areas can be beneficial, including sewer systems and SAR interferometry coherence.

We also tried to include elevation and slope information but later found that the elevation-based
information could not improve the results. The weight of evidence modeling assumes conditional
independence among different predictors. Since the elevation data were used to calculate riverine flood
depth and slope, the elevation and slope do not provide additional information as other independent
spatial evidence.

The spatial evidence layers used in this study are assumed to be independent as they are collected
from independent measurements. These layers are combined through a probabilistic approach so
that a higher probability value suggests a lower level of uncertainty. However, the uncertainty over
each day of the time period varies for different places, because the availability of spatial evidence
layers is different most of the days. Another issue that has not been addressed is the propagation
of uncertainty in calculating inundation probability. Although the measurements of remote sensors
and river gauges are assumed to be accurate enough, the weights of spatial evidence are calculated
for non-overlapped subsets of each layer. For example, the final weight W f inal of river flood depth
between 5.96 and 8.15 feet is 0.27, and W f inal of depth between 8.15 and 10.36 feet is 1.82. Within a
subset (e.g., 5.96–8.15), the uncertainty is assumed to be even. Areas of flood depth 8.14 and 8.16 feet
have quite different final weights (0.27 and 1.82). Consequently, uncertainty may propagate from layer
preprocessing, so layer value could end up falling in a less reliable weight.

In Harris County, Texas, only 15% of homes have flood insurance, according to the National Flood
Insurance Program (NFIP). Meanwhile, flooding has been common since the founding of Houston;
for example, the previous floods in May 2015 and April 2016. Houston had been submerged by three
500-year floods in three consecutive years before Harvey. Due to the lack of planning and zoning
restrictions, Houston’s urban sprawl is astonishing, even within floodplains. Around the reservoirs
in Harris, the population increased from 400,000 in the 1940s to six million in 2017. To address
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the increasing challenge from environment and society [34], mitigation and adaptation measures,
including seawalls, levees, and building codes, need to be employed. All these measures need to be
informed by timely and continuous inundation maps. As disasters like Harvey will happen with
increasing frequency and intensity, mitigation and adaptation are required based on an understanding
of event evolution. By providing the inundation probability, this study could be readily implemented.

6. Conclusions

Extreme precipitation and sea level rise in a warming climate are aggravating flooding—a
billion-dollar disaster, as called by the NOAA. Flood response, mitigation and adaptation require a
comprehensive understanding of inundation evolution, yet our flood observations are limited regarding
spatial and temporal coverage. This study tried to improve flood detection and observation in coastal
areas by combining current satellite remote sensing-based techniques, in situ information from gauge
measures, and storm surge model outputs. We proposed a fusion framework to integrate available
information based on Bayesian conditional probability. The fusion product is a daily inundation
probability map utilizing all accessible data. The input data could be different for each day, but the
output is consistent within the probability range [0, 1]. Probabilistic flood maps could incorporate
uncertainty propagated from the input data. The maps are useful for rapid response when important
decisions such as collecting emergency aid or relocating residents need to be made.

Although this proposed methodological framework could provide useful results for the case
studies, there are several limitations regarding input data uncertainty and error propagation.
The accuracy of the proposed flood mapping methods varies in different regions of an image, but the
error models between geographic characters have not been investigated. Lacking such information
about the error, the generalizability of the proposed algorithms would be limited. The fusion model
was trained locally for one study site, so additional consideration would be necessary when transferring
the model to new sites.
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