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During recent years we have witnessed a systematic progress in the understanding of complex
systems, both in the case of particular systems that are classified into this group and, in general,
as regards the phenomenon of complexity [1]. This is possible owing to an outburst of research interest
in the science of complexity and a joint effort made by the researchers representing different disciplines
and backgrounds which resulted in the enormous number of interdisciplinary studies carried out. This
progress has been achieved on both the theoretical, model, and experimental levels. However, in order
to comprehend the complexity in full detail, much is still to be done. This is particularly true in the
case of the systems involving human society and behaviour.

This Special Issue of Entropy was intended to attract researchers specializing in interdisciplinary
studies of complex systems, with the economic and social systems in particular, and to collect in
one place their contributions that otherwise could be scattered among many journals and issues. We
believe that the papers spanning this issue can be considered as valuable input to their specific fields,
but also to complexity science in general. Some of them because they relate to general concepts and
thus their conclusions can be exploited in various situations across many fields and others because of
the methods that were used there, the knowledge of which can be disseminated more broadly. We are
glad that our idea was met with a positive response and now we can present as many as 23 genuine
research papers on a wide spectrum of topics. The largest set of papers is related to the economical
systems, while smaller sets to the social systems and to general complexity, with such a proportion
reflecting the total amount of the current scientific output in these fields.

Complexity still lacks a commonly accepted strict definition. In many practical cases it suffices to
understand this notion intuitively as a nontrivial, irreducible order (i.e., other than simple regularity or
a straightforward effect of a lower level of organization) that spontaneously emerges from an overall
chaos [1], but there is also a strong need to provide a strict definition that, for instance, can be applied
to categorize various systems based on their structure and dynamics or to construct a measure of
complexity. There were a plenty of attempts in that direction but they largely failed. An interesting
step towards resolving this issue is presented in a paper [2] where its authors propose a measure of
complexity based on a nonlinear transformation of time-dependent entropy that attributes the highest
complexity to the optimally mixed states between maximum regularity and maximum disorder.

Various tools based on entropy are frequently used in the context of complex systems and it is
not surprising that they are applied in a few other contributed papers. One of the principal directions
of research is looking for precursors of the oncoming structural phase transitions. For example,
transfer entropy quantifying dependence asymmetry between two systems is used to construct a
network of information transfers among cryptocurrencies. The resulting network topology reveals
significant alteration during turmoils and forecasts a systemic risk increase [3]. The Tsallis nonextensive
entropy has already proved useful in studying complex systems [4]. It is applied to analyze the

Entropy 2021, 23, 133; doi:10.3390/e23020133 www.mdpi.com/journal/entropy1
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cross-shareholding networks of companies. In this context it offers a measure of market polarisation
and a tool for analyzing market self-organization in response to external shocks [5]. Finally, the moving
average cluster entropy is proposed to study the long-range dependence in time series and proves
useful as a measure capturing endogenous sources of risk over different temporal horizons [6].

Risk, which quantifies market or asset stability and vulnerability to external shocks, has always
been one of the key topics in economics, but it is also an important issue from the complexity
perspective [7]. A few more papers from this Special Issue consider systemic risk as one of their
central points. If such a risk is quantified in terms of some framework, it is possible to observe its
evolution on a given market. For example, the Chinese stock market network topology analysis leads
to a conclusion that the systemic risk can be decomposed into a clear trend and periodic fluctuations
with the former reflecting the gradual improvement of the management and operation of the market
and the latter reflecting the events of excessive strength [8]. Among the most important sources of risk
is leverage trading but this relation can rather be non-trivial with either stabilizing or destabilizing
impact depending on the leverage trading share in total market activity [9]. In order to manage risk,
one needs to construct realistic models that are able to predict the probability of financial losses [10]
and to use reliable measures able to provide one with sufficiently early alerts [3]. On the other hand,
risk can also be managed by identifying the key companies or sectors that are its sources of centers [11].

Financial markets are among the most interesting complex systems from a perspective of
the empirical data analysis, because they provide incomparably clean data. This is why much
effort dedicated to studying these markets can be fruitful far beyond the field of economics [1].
Self-organization of the stock markets and their hierarchical structure can be approached from the
angle of information transfer between different sectors in various time intervals [12]. This also refers to
the cross-shareholding market structure which self-organizes under the influence of external shocks [5].
Both the external shocks and the internal market events can produce excessive demand for information,
which, if properly quantified, may offer a way to monitor oncoming market events that are difficult to
predict by using other methods. A new tool is proposed based on an internet search engine like the
Chinese Baidu [13].

Another signature of market complexity is pricing and timing of the stocks during their initial
public offerings. In [14], a few results on the IPO timing properties are considered and discussed.
Studying the temporal properties of financial dynamics, which is a property related to their complexity,
offers verification for one of the key paradigms of financial markets, namely the efficient market
hypothesis [6], and testing for nonlinearity and chaos [15]. Temporal properties of financial dynamics
can in turn be one of the consequences of stock liquidity and it is thus important to have a reliable
method to quantify it [16].

Same as the most financial markets offer high quality data, the cryptocurrency market offers also
a unique possibility of observation of the whole process of new complex system development from
scratch [17]. The cryptocurrency market is also interesting as the possible future fate of money. So their
evolution and reacting to external shocks like the COVID-19 pandemic is particularly interesting and
instructive [3], especially as it seems that this market gradually reaches maturity [18].

Modelling of the economical systems can go beyond the financial markets and also be applied to
more general problems like the wealth condensation in society (simple but effective an agent-based
model in [19]), the innovation-related performance on a market (the innovation pressure effects of
private-owned enterprises and public companies [20]), and the impact of the macroprudential policy
on economy and the financial system (with the results on the stabilizing effects of such policy during
the turmoils and crises [21]). From this general system level one may look downwards into the system
component parts, which reveal complexity on their own: the geographical regions or administrative
divisions. It is possible to quantify their economical development by a newly proposed method of the
public administration website quality assessment [22] and to analyze differences in an inter-regional
business ecosystem structure or economic activity efficiency level by means of a network approach [23].
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Complex phenomena occurring on the interface between economical activity and spatial structure
are the subject of a study of land speculation on the outskirts of a sample city in Ethiopia [24]. This
study investigates motivations the speculators are driven by and concludes on a possible direction
local governments should proceed in order to diminish negative impact of such practices on city
development. An even more important social phenomenon with a negative impact on the society
is fake news. A model of rumour spreading with evolutionary information search dynamics allows
one for analyzing optimal search strategies that maximize pay-off for the society and potentially
provides the policy makers with the recommendations how to minimize the harmful impact of fake
news [25]. The most sociologically-oriented study of this Special Issue considers the research output of
the male and female scientists quantified in terms of their publication citations from the perspective
of the gender productivity gap [26]. It occurs that a larger gender inequality can be found in the
STEM disciplines (i.e., science, technology, engineering, and mathematics) as compared with the
non-STEM ones.

Finally, it is worth to mention a more history-oriented essay on the impact of physics (with
thermodynamics in particular) on the development of ideas in the contemporary economics [27]. It is
an interesting example of the innovation-generating potential of the interdisciplinary cooperation in
science, which is the exceptionally welcome in the science of complex systems.

After this introduction, readers are warmly invited to read the papers collected in this
Special Issue.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Recently, it has been argued that entropy can be a direct measure of complexity, where the
smaller value of entropy indicates lower system complexity, while its larger value indicates higher
system complexity. We dispute this view and propose a universal measure of complexity that is based
on Gell-Mann’s view of complexity. Our universal measure of complexity is based on a non-linear
transformation of time-dependent entropy, where the system state with the highest complexity is
the most distant from all the states of the system of lesser or no complexity. We have shown that
the most complex is the optimally mixed state consisting of pure states, i.e., of the most regular and
most disordered which the space of states of a given system allows. A parsimonious paradigmatic
example of the simplest system with a small and a large number of degrees of freedom is shown
to support this methodology. Several important features of this universal measure are pointed out,
especially its flexibility (i.e., its openness to extensions), suitability to the analysis of system critical
behaviour, and suitability to study the dynamic complexity.

Keywords: dynamical complexity; universal complexity measure; irreversible processes; entropies;
entropic susceptibilities

1. Introduction

Analysis of the concept of complexity is a non-trivial task due to its diversity, arbitrariness,
uncertainty, and contextual nature [1–10]. There are many different levels/scales, faces, and types
of complexity, researched with very different technologies/techniques and tools [11–13] (and refs.
therein). In the context of dynamical systems, Grassberger suggested [14] that a slow convergence of the
entropy to its extensive asymptotic limit is a signature of complexity. This idea was materialized [15,16]
further by information and statistical mechanics techniques. It generalizes many previous approaches
to complexity, unifying physical ideas with ideas from learning and coding theory [17]. There also
exists a connection of this approach to algorithmic or Kolmogorov complexity. The hidden pattern
can be the essence of complexity [18–21]. Techniques adapted from the theories of information
and computation have led physical science (in particular, the region extended between classical
determinism and deterministic chaos) to discover hidden patterns and quantify their dynamic
structural complexity [22]. The above approaches are not universal—they only capture small fragments
of the concept of complexity.

We must remember that complexity also depends on the conditions imposed (e.g., boundary or
initial conditions), as well as the restrictions adopted. This creates a challenge for every complexity
study. It concerns the complexity that can appear in the movement of a single entity and collection of
entities braided together. These entities can be irreducible or straightforward, simple systems, but they
can also be complex systems.

Entropy 2020, 22, 866; doi:10.3390/e22080866 www.mdpi.com/journal/entropy5
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When we talk about complexity, we mean irreducible complexity, which can no longer be divided
into smaller sub-complexities. We refer to this as a primary complexity. Considering the primary
complexity here, we mean one that can be expressed at least in an algorithmic way—it is an effective
complexity if it also contains a logical depth [23–27]. We should take into account that our models
(analytical and numerical) and theories describing reality are not fully deterministic. The evolution of
a complex system is potentially multi-branched and the selection of an alternative trajectory (or branch
selection) is based on decisions taken randomly.

One of the essential questions concerning a complex system is the problem of its stability/robustness
and the question of the stationarity of its evolution [28]. Moreover, the relationship between
complexity and disorder on the one hand, and complexity and pattern on the other is an important
question—especially in the context of irreversible processes, where non-linear processes, running away
from the equilibrium, play a central role. Financial markets can be a spectacular example of these
processes [29–39].

The central question of whether entropy is a direct measure of complexity is one we answer in the
negative. In our opinion, based on the Gell–Mann concept of complexity, the measure of complexity is
appropriately, non-linearly transformed entropy. This work is devoted to finding this transformation
and examining the resulting consequences.

2. Definition of a Universal Measure of Complexity and Its Properties

In this Section, we translate the Gell–Mann general qualitative concept of complexity into the
language of mathematics, and we present the consequences of this.

2.1. The Gell–Mann Concept of Complexity

The problem of defining a universal measure of complexity is urgent. For this work, the Gell–Mann
concept [23,40] of complexity is the inspirational starting point. We apply this concept to irreversible
processes, by assuming that both fully ordered and fully disordered systems cannot be the complex.
The fully ordered system essentially has no complexity because of maximal possible symmetry
of the system, but the fully disordered system contains no information as it entirely dissipates.
Hence, the maximum of complexity should be sought somewhere in between these pure extreme states.
This point of view allows for the introduction of a formal quantitative phenomenological complexity
measure based on entropy as a parameter of order [29,41]. This measure reflects the dynamics of the
system through the dependence of entropy on time. The vast majority of works analyzing the general
aspects of complexity, including its basis, are based on information theory and computational analysis.
Such an approach requires supplementing with a provision allowing a return from a bit representation
to physical representation—only this will allow physical interpretations, including understanding of
the causes of complexity.

We define the phenomenological partial measure of complexity as a non-linear function of entropy
S of the order of (m, n),

CX(S; m, n) def.
= (Smax − S)m(S − Smin)n

= CX(S; m − 1, n − 1)

[(
Z
2

)2
− (S − Sarit)2

]
, m, n ≥ 1, (1)

where Smin and Smax are minimal and maximal values of entropy S, respectively, Sarit = Smin+Smax

2 ,

and the entropic span Z def.
= Smax − Smin, whereas m and n are natural numbers (an extension to real

positive numbers is possible but this is not the subject of this work). They define the order (m, n) of
the partial measure of complexity CX. Let us add that this formula is also applicable at a mesoscopic
scale. In other words, complexity appears in all systems for which we can build entropy. Notably, Smax

does not have to concern the state of thermodynamic equilibrium of the system. It may refer to the
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state for which entropy reaches its maximum value in the observed time interval. However, in this
work, we are only limited to systems having a state of thermodynamic equilibrium. Below, we discuss
the Equation (1), indicating that it satisfies all properties of the measure of complexity. Of course,
when m = 0 and n = 1 then CX simply becomes S − Smin, i.e., the entropy of the system (the constant
is not important here). However, when m = 1, n = 0, we obtain the information contained in the
system (constant does not play a role here). Equation (1) gives us a lot more—showing this is the
purpose of this work (helpful features of CX are shown in Appendix A).

The partial measure of complexity given by Equation (1) is determined with the accuracy of
the additive constant of S, i.e., this constant does not contribute to the measure of the complexity of
the system.

Using Equation (1), we can also enter the partial measure of specific complexity, as follows,

cx(s; m, n) def.
=

1
Nm+n CX(Ns; m, n), (2)

where N is the number of entities that make up the system and specific entropy s = S/N. As one can
see, the partial measure of specific complexity cx is independent of N for an extensive system. Specific
entropy and specific complexity are particularly convenient when comparing different extensive
systems and when we do not examine the complexity dependence on N.

However, the extraction of an additional multiplicative constant (e.g., particle number) to have
s independent of N often presents a technical difficulty, or may even be impossible, especially for
non-extensive systems. Then it is more convenient to use the entropy of the system instead of the
specific entropy. It is also important to realize that determining extreme entropy values (or extreme
specific entropy values) of actual systems can be complicated and it requires additional dedicated
tools/technologies, algorithms, and models.

The partial measures of complexity are enslaved by entropy in every order (m, n) of complexity.
However, the kind of entropy we use in Equation (1) depends on the specific situation of the system
and what we want to know about the system, because our definition of complexity does not specify
this. From our point of view, relative entropies formulated in the spirit of Kullback–Leibler seem to be
the most appropriate (this is referred to in Appendix B). Using the Kullback–Leibler type of entropy,
one can express both ordinary entropies and conditional entropies, in particular one can describe the
entropy rate increasingly used in the context of complexity analysis.

The entropy here can be both additive (the Boltzmann–Gibbs thermodynamic one [42], Shanon
information [17], Rényi [43]), and non-additive entropy (Tsallis [44]). The measure CX(S) is a concave
(or convex up) function of entropy S, which disappears on the edges at points S = Smin and S = Smax.

It has a maximum

CXmax = CX(S = Smax
CX ; m, n) = mm nn

(
Z

m + n

)m+n
(3)

at point

S = Smax
CX = S =

mSmin + nSmax

m + n
=

1
m Smax + 1

n Smin

1
m + 1

n
(4)

as at this point dCX(S)
dS |S=S = 0 and d2CX(S)

dS2 |S=S < 0. The quantity Smax
CX is a characteristic also

because it is a weighted average. The quantity CXmax is well suited to global universal measurements
of complexity, because (at a given order (m, n)), it only depends on the entropy span Z. The quantity

cxmax def.
= CXmax/Nm+n might also be a good candidate for measuring the logic depth of complexity.

7
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2.2. The Most Complex Structure

The question now arises about the structure of the system corresponding to entropy Smax
CX given

by Equation (4). The answer is given by the following constitutive equation,

S
(

Y = YCXmax
)
= Smax

CX , (5)

where Y is the set of variables and parameters (e.g., thermodynamic), on which the state of the system
depends. However, Y = YCXmax

is a set of such values of these variables and parameters that are the
solution of Equation (5). This solution gives the entropy value S = Smax

CX that maximizes the partial
measure of complexity, that is CX = CXmax. Hence, with the value of YCXmax

, we can finally answer the
key question: what structure/pattern is behind CXmax or what the structure of maximum complexity
looks like.

There are a few comments to be made regarding the constitutive Equation (5) itself. It is a
(non-linear) transcendental equation in the untangled form relative to the Y. This equation should
be numerically solved, because we do not expect it to have an analytical solution for maximally
complex systems. An instructive example of a specific form of this equation and its solution for a
specific physical problem is presented in Section 3. However, this will help us to understand how our
machinery works.

Equation (4) legitimizes the measure of complexity we have introduced. Namely, its maximum
value falls on the weighted average entropy value, which describes the optimal mixture of completely
ordered and completely disordered phases. To the left of S, we have a phase with dominance of
order and to the right a phase with dominance of disorder. The transition between both phases at
S is continuous. Thus, we can say that the partial measure of complexity that we have introduced
also defines a certain type of phase diagram in S and CX variables (phase diagram plain). Section 2.5
provides more detailed information.

2.3. Evolution of the Partial Measure of Complexity

Differentiating Equation (1) over time t, we obtain the following non-linear dynamics equation,

dCX(S(t); m, n)
dt

= χCX(S; m, n)
dS(t)

dt
= (m + n) [Smax

CX − S(t)]CX(S(t); m − 1, n − 1)
dS(t)

dt
, (6)

where the entropic S-dependent (non-linear), susceptibility is defined by

χCX(S; m, n) def.
=

∂CX(S; m, n)
∂S

= (m + n) [Smax
CX − S(t)]CX(S(t); m − 1, n − 1) (7)

and dS(t)
dt can be expressed, for example, using the right-hand side of the master Markov equation

(see Ref. [45] for details). However, we must realize that the dependence of entropy on time can,
in general, be non-monotonic, because real systems are not isolated (cf. the schematic plot in Figure 2).
One can see how the dynamics of complexity is controlled in a non-linear way by the evolution of the
entropy of the system.

In concluding this Section, we state that Equations (1)–(6) together provide a technology for
studying the multi-scale aspects of complexity, including the dynamic complexity. However, it is still a
simplified approach, as we show in Section 4.

2.4. Significant Partial Measure of Complexity

We consider the partial measure of complexity to be significant when the entropy of the system
is located between two inflection points of the CX(S; m, n) curve, i.e., in the range S−

ip ≤ S ≤ S+
ip.

This case occurs for n, m ≥ 2. We then obtain

8
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Smin < S∓
ip = Smin +

n(n − 1)√
n(n + m − 1)

Smax − Smin√
n(n + m − 1)±√

m
< Smax, (8)

see Figure 1d for details.
There are two different cases where a single inflection point is present. Namely,

Smin < S−
ip =

2Smax + m(m − 1)Smin

2 + m(m − 1)
< S, for m ≥ 2, n = 1, (9)

and

S < S+
ip =

2Smin + n(n − 1)Smax

2 + n(n − 1)
< Smax, for m = 1, n ≥ 2. (10)

In Figure 1b, we present the case defined by Equation (9), while that defined by Equation (10) is
shown in Figure 1c.

For n = m = 1, the curve CX(S; m, n) vs. S has no inflection points and it looks like a horseshoe
(cf. Figure 1a).

Notably, we can equivalently write

Smin < S∓
ip = Smax − m(m − 1)√

m(n + m − 1)
Smax − Smin√

m(n + m − 1)∓√
n
< Smax, for n, m ≥ 2. (11)

Let us consider the span Zip = S+
ip − S−

ip of the two-phase area. From Equation (8), or equivalently
from Equation (11), we obtain

Zip =
2
√

nm
(n + m)

√
n + m − 1

Z. (12)

As one can see, the span Zip depends linearly on the span Z and in a non-trivial way on the
exponents n and m. Thus, with the Z set, only Zip’s non-trivial dependence on the order (m, n) of
measure of complexity CX occurs, which is different from CXmax dependence. In other words, Zip is
less sensitive to complexity than CXmax.

The significant partial measure of complexity ranges between the two inflection points only for
the case n, m ≥ 2 (cf. Figure 1d). Indeed, a mixture of phases is observed in this area. For areas where
Smin ≤ S < S−

ip and S+
ip < S ≤ Smax, we have (practically speaking) only single phases, ordered and

disordered, respectively (see Section 2.5 for details). The case defined by Equation (8), and equivalently
by Equation (11), is the most general, while taking into account the fullness of complexity behaviour
as a function of entropy. Other cases impoverish the description of complexity. Therefore, we will
continue to consider the situation, where n, m ≥ 2.

The choice of any of the CX(S; m, n) forms (i.e., exponents n and m) is a somewhat arbitrary
function of the state of the system as it depends on the function of the state, that is on the entropy. In our
opinion, the shape of the CX(S; m, n) measure vs. S we present in Figure 1d is the most appropriate,
because only then the significant complexity is ranging between non-vanishing inflection points S−

ip
and S+

ip.
In generic case we should, however, use the series of partial measures defined by Equation (1).

Then, we define the order of the partial complexity using the pair of exponents (n, m). The introduction
of the order of the partial complexity is in line with our perception of the existence of multiple levels
of (full) complexity.

We are able to discover the nature of the CX measure, i.e., its dynamics and, in particular,
its dynamical structures, when we analyze the entropy dynamics S(t) (see Figure 2 for details).

9
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Figure 1. Plots of the partial measure of complexity CX(S; m, n) vs. S given by Equation (1) for four
characteristic cases: (a) Case n = m = 1 where no inflection points, S∓

ip are present. (b) Case m = 2 and

n = 1 where a single inflection point S+
ip is present. (c) Case m = 1 and n = 2 where a single inflection

point S−
ip is present. (d) Case m = 2 and n = 2 where both inflection points are present. The shape of

the curve, containing two inflection points, is typical for partial measures of complexity, characterized
by exponents m, n ≥ 2. Numbers 1–4 mark individual phases differing in the degree of order.

Figure 2. Schematic plot of the partial measure of complexity CX(S; m, n) vs. S and t given by
Equation (1). The red curve shows the dependence of entropy S on time t. The black curve represents
CX(S(t); m, n) in three dimensions. The blue curve represents projection of the black curve on the
(S, CX) plane. We show different variants of this blue curve presented in Figure 1. The non-monotonic
dependence of the entropy on time visible here indicates the open nature of the system. However,
this non-monotonicity is not visible through the blue curve. For instance, the three local maxima of the
black curve collapse to one of the blue curve.

The measurability of the partial measure of complexity is necessary for characterizing it quantitatively
and to be able to compare different complexities. Following Gell–Mann [40], we must identify the

10
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scales at which we perform the analysis and thus determine coarse-graining to define the entropy.
Its dependence on complexity cannot be ruled out.

However, the question of direct measurement of the partial measure of complexity in an
experiment (real or numerical) remains a challenge.

2.5. Remarks on the Partial Entropic Susceptibility

An essential tool for studying phase transitions is the system susceptibility—in our case, the partial
entropic susceptibility of the partial measure of complexity. Here, it (additionally) plays the role of the
partial order parameter.

The plot of susceptibility χCX(S; m, n) vs. S is presented in Figure 3. Four phases, already marked
in Figure 1, are visible (also numbered 1 to 4).

Figure 3. Plot of the partial entropic (non-equilibrium) susceptibility χCX(S; m, n) of the partial measure
of complexity vs. S given by Equation (7) at fixed order (m = 2, n = 2). The finite susceptibility
value at the S−

ip and S+
ip phase transition points (cf. Figure 1) may be considered to correspond to finite

susceptibility value in absorbing the non-equilibrium phase transition in the model of direct percolation
at a critical point in the presence of an external field [21]. However, the situation presented here is
richer, because susceptibility changes its sign, smoothly passing through zero at S = Smax

CX . At this
point, the system is exceptionally robust and, therefore, is poorly affected by data artefacts, because its
susceptibility vanishes there.

Phase number 1 is almost entirely ordered—the disordered phase input is residual. At point S−
ip,

there is a phase transition to the mixed-phase marked with number 2, still with the predominance of
the ordered phase. At the S−

ip inflection point, the entropic susceptibility reaches a local maximum.
By further increasing the entropy of the system, it enters phase 3 as a result of phase transition at the
very specific Smax

CX transition point. At this point, the entropic susceptibility of the partial measure of
complexity disappears. This mixed phase (number 3) is already characterized by the advantage of
the disordered phase over the ordered one. Finally, the last transition, which occurs at S+

ip, leads the
system to the dominating phase of the disordered phase—the input of the ordered phase is residual
here. At this transition point, the susceptibility reaches a local minimum. Intriguingly, entropic
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susceptibility can have both positive and negative value passing smoothly through zero at S = Smax
CX ,

where the system is exceptionally robust. The presence of phases with positive and negative entropic
susceptibility is an exceptionally intriguing phenomenon. The phases discussed above, together with
the above-mentioned inflection points, are also marked in Figure 1d. Let us add that the location of the
phases mentioned above, i.e., the location of the inflection points, depends on the order (m, n) of the
partial measure of complexity. This is clearly seen in Figures 4 and 5.

The values of local extremes of the entropic susceptibility of the partial measure of complexity are
finite here and not divergent, as in the case of (equilibrium and non-equilibrium) phase transitions in
the absence of an external field. We use this definition to describe the critical behaviour of a system
that we demonstrate in Section 2.7, where it requires an explicit dependence on N.

2.6. Universal Full Measure of Complexity

The full universal measure of complexity X is a weighted sum of the partial measures of
complexity CX(S; m, n) for individual scales. That is,

X(S; m0, n0) = ∑
m≥m0,n≥n0

w(m, n)CX(S; m, n), m0, n0 ≥ 0, (13)

where w(m, n) is a normalized weight, which must be given in an explicit form. This form is to some
extent imposed by the power-law form of partial complexity. Namely, we can assume

w(m, n) =
(

1 − 1
M

)2 1
Mm−m0+n−n0

, M > 1, (14)

which seems to be particularly simple because

w(m + 1, n)
w(m, n)

=
w(m, n + 1)

w(m, n)
=

1
M

, (15)

independently of m and n.
As one can see, Equation (13), supported by Equation (15), is the product of the sums of two

geometric series,

X(S; m0, n0) = (Smax − S)m0

(
1 − 1

M

)
∑

m≥m0

(Smax − S)m−m0

Mm−m0

× (Smax − S)n0

(
1 − 1

M

)
∑

n≥n0

(Smax − S)n−n0

Mn−n0
. (16)

If both series converge for any Smin ≤ S ≤ Smax, which is the case if and only if the condition
Z(= Smax − Smin) < M is met, then we directly obtain

X(S; m0, n0) =

(
1 − 1

M

)2 (Smax − S)m0

1 − Smax−S
M

(S − Smin)n0

1 − S−Smin

M

. (17)

In other words, the M parameter can always be chosen, so that the sums of both series in
Equation (21) diverge for all S values. Thus, m0, n0 ≥ 1 is the natural lower limit of m0, n0, satisfying
the condition of X(S; m0, n0) disappearing for S = Smin, Smax. We still assume more strongly that
m0, n0 ≥ 2, which has already been explained above.

For extensive systems, Equation (17) can be presented in a form that clearly shows the dependence
of the X complexity on the number of entities N, simply replacing S entropy by Ns, where s is already
N-independent specific entropy. Subsequently,
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X(Ns; m0, n0) =

(
1 − 1

M

)2
Nm0+n0

(smax − s)m0

1 − N
M (smax − s)

(s − smin)n0

1 − N
M (s − smin)

. (18)

We emphasize that X does not scale with N, as opposed to partial measures of complexity.
In Figures 6 and 7, we show the dependence of X on N (on the plane) and on N and s (in three

dimensions), respectively. We obtained the singularities of full complexity, Ncr
j (s), j = 1, 2, as a result

of the zeroing of denominators in the Equation (17) at nonzero numerators.
Note that, for M � Z, both measures of complexity have approximate values

X(S; m0, n0) ≈ CX(S; m0, n0). Important differences between these two measures only appear
for Z/M close to 1, because only then does the denominator in Equation (17) play an important role.
Of course, M is a free parameter, and possibly its specific value could be obtained from some additional
(e.g., external) constraint.

In Figure 4, we compare the behaviour of the partial (black curve) and full (orange curve) measures
of complexity, where we used the entropy instead of the specific entropy. Whether CX lies below or
above X depends both on M parameter (determining the weight at which individual measures of
partial complexity enter the full measure of complexity), and on the Z/M ratio.

Figure 4. Comparison of the partial measure of complexity CX(S; m = 2, n = 2) given by Equation (1)
and full measure of complexity X(S; m0 = 2, n0 = 2) given by Equation (17), for instance, for the
symmetric case of m = n = m0 = n0. In addition, we assume that Smin = 0, Smax = 8 and
M = 10. Vertical dashed lines indicate inflection points: black for the CX curve, orange for the
X curve, while Smax

CX = Smax
X = 4. Notably, Smax

X maximizes X (here at a given ratio Z/M = 0.8).
Vertical dashed lines mark the locations of inflection points on both curves.

We continue to determine the full entropic susceptibility of the full measure of complexity,

χX(S; m0, n0) =
dX(S; m0, n0)

dS
= (m0 + n0)(Smax

CX − S)X(S; m0 − 1, n0 − 1)

+
2

M2 X(S; m0, n0)
S − Sarit(

1 − Smax−S
M

) (
1 − S−Smin

M

) , m0, n0 ≥ 1, (19)

where Smax
CX is given here by Equation (4) but for m = m0 and n = n0. Notably, for the symmetric cases

m = n and/or m0 = n0, we have Smax
CX = Smax

X = Sarit, which are independent of m, m0.
Similarly to the partial entropic susceptibility of a partial measure of complexity, we obtain the

full entropic susceptibility of a full measure of complexity,

χX(Ns; m0, n0) =
dX(S; m0, n0)

dS
= (m0 + n0) N (smax

CX − s)X(Ns; m0 − 1, n0 − 1)

+
2

M2 X(Ns; m0, n0)N
s − sarit(

1 − N
M (smax − s)

) (
1 − N

M (s − smin)
) , m0, n0 ≥ 1, (20)
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where smax
CX = Smax

CX /N, sarit = Sarit/N, smin = Smin/N, and smax = Smax/N. The progression of
susceptibility χX(S; m0, n0), depending on S, for selected parameter values is shown in Figure 5.
This progression course is similar to the analogous one that is presented in Figure 3.

Figure 5. Plot of the full entropic susceptibility χX(S; m0, n0) of the full measure of complexity vs. S
given by Equation (19), at arbitrary fixed order (m0 = 2, n0 = 2). As expected from the comparison
with Figure 3, the turning points of CX (cf. Figure 4) lie within the S interval bounded by inflection
points of X.

Thus, the evolution of X is governed by an equation that is analogous to Equation (6), except that
χCX present in that equation should be replaced by χX given by Equation (19). Therefore, we have

dX(S(t), m0, n0)

dt
= χX(S(t); m0, n0)

dS(t)
dt

. (21)

The relationship between measures of complexity and time is implicit in our work—complexity
indirectly depends on time through the dependence of entropy on time. It should be emphasized that
the dependence of entropy on time is external in our approach—it can be taken into account based on
additional modelling that is dedicated to specific real situations. We have already signalled this when
discussing Equation (6).

2.7. Criticality in Extensive Systems

By using Equation (17), we show when the universal full measure of complexity diverges and,
thus, the system enters a critical state. We assume that we are dealing with an extensive system,
i.e., that Equation (17) can be represented as

X(Ns; m0, n0) =

(
1 − 1

M

)2
Nm0+n0

(smax − s)m0

1 − N
M (smax − s)

× (s − smin)n0

1 − N
M (s − smin)

,
Nz
M

< 1, (22)

where entropy densities s(= S/N), smin(= Smin/N), smax(= Smax/N) are (at most) slowly varying
functions of the number N of elements making up the system and special entropy span z = smax − smin.
As one can see, the measure X is divergent in two critical points Nmax

cr (s) = M
smax−s and Nmin

cr (s) = M
smin−s ,
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where smin < s < smax. Moreover, the susceptibilities given by Equations (19) and (20) diverge at the
same points where measures of complexity given by Equations (17) and (18) diverge, which underlines
the self-consistency of our approach.

Equation (22) can now be written in a form that explicitly includes both critical points (both
physical and non-physical):

X(Ns; m0, n0) =

(
1 − 1

M

)2
Nm0+n0

(smax − s)m0(
1 − N

Nmax
cr (s)

)βmax × (s − smin)n0(
1 − N

Nmin
cr (s)

)βmin , (23)

where critical exponents assume the mean-field values βmax = βmin = 1. In this case, we could speak
of two-criticality were it not for the fact that one of these criticalities is unphysical.

Figure 6 shows dependence X(Ns; m0, n0) vs. N at fixed s = 0.8. The values of parameters are
shown there, while the specific entropy s is chosen so that the condition s − smin < smax − s is satisfied
(this is equivalent to a condition s < sarit). This means that s is closer to smin than smax. The existence
of these divergences is a signature of criticality. However, the situation for borderline cases s = smin or
s = smax changes rapidly—it is a different consideration.

Critical numbers of entities in the system Nmax
cr (s) and Nmin

cr (s) are determined by the ratio
of the M parameter characterizing the hierarchy/cascade of scales in the system and the distance
between entropy density s and its extreme values smin and smax. The construction of these critical
numbers resembles the canonical critical temperature structure for the Ising model in the mean-field
approximation, where βc Jz = 1 (here βc = 1/kBTc and kB is the Boltzmann constant). In our case,
the role of the inverse temperature βc is played by Nmax

cr and Nmin
cr , the role of the coupling constant J is

1/M, while the role of the mean coordination number z is played by smax − s and s − smin, respectively.
The hierarchy is the source of criticality here. Criticality is an immanent feature of our

full description of complexity. Nevertheless, in this work, we do not specify the sources of this
hierarchy—it could be self-organized criticality or due to some other sources.

For the sake of completeness, note that the dependence on N of the partial measure of complexity
is given by Equation (2). This means that for extensive systems this measure increases powerfully
depending on N. Therefore, only the weighted infinite sum of these measures generates the existence
of singularity.

Figure 6. Dependence of the universal full measure of complexity X vs. number of entities N given
by Equation (23). It should be emphasized that the full measure of complexity and its susceptibility
have singularities in the same points. As one can see, we are dealing here with complexity barriers
separating the phases/states of the system and the small and large number of objects forming them.
The parameters we adopted here are as follows: M = 30, smin = 0, smax = 2, s = 0.8, m0 = n0 = 2,
hence, point Nmax

cr (s = 0.8) = 25 and point Nmin
cr (s = 0.8) = 37.5.
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Let us now consider in more detail the behaviour of X(Ns; m0, n0) depending on N and s.
A three-dimensional plot of Figure 7 will be helpful here. One can see how the mutual location of the
singularities of Nmax

cr (s) and Nmin
cr (s) changes with the increase of s. From the situation of s < sarit,

in which Nmax
cr (s) > Nmin

cr (s), through the situation when s = sarit in which Nmax
cr (s) = Nmin

cr (s), up to
the situation in which Nmax

cr (s) > Nmin
cr (s) for s > sarit.

It must be clearly stated that the area physically accessible is the one in front of the first singularity,
which is further emphasized in Figure 7 by blue curves. Let us emphasize that the N range in which
criticality occurs is sufficient to cover the corresponding values of N discussed in the literature to date,
especially the Dunbar numbers [46–49] (e.g., N = 5, 15, 50, and N = 150). However, it should be noted
that our view of complexity is complementary to that presented in the literature.

Figure 7. Dependence of the universal full measure of complexity X vs. number of entities N and
specific entropy s given by Equation (23), for m0, n0 ≥ 1. Notably, the full measure of complexity
and its susceptibility have singularities at the same points Nmax

cr (s) and Nmin
cr (s). We are dealing

here with complexity barriers separating the phases/states of the system and the small and large
number of entities that form them. The parameters we adopted here are, as follows: M = 30,
smin = 0, smax = 2, s = 0.8, m0 = n0 = 2. These are the same parameters that we used to construct the
plain plot in Figure 6.

3. Finger Print of Complexity in Simplicity

Let us consider a perfect gas at a fixed temperature, which is initially closed in the left half of an
isolated container. The partition is next removed, and the gas undergoes a spontaneous expansion.
Here we are dealing (practically speaking) with an irreversible process, even for a small number of
particles (at least the order of 102).

Let us recall the definition of ’perfect gas’. It is a gas of particles that cannot ‘see’ each other,
i.e., there are no interactions between them. Thus, from a physical point of view, it is a dilute
gas at high temperature. We further assume that all of the particles have the same kinetic energy.
A legitimate question is whether such a gas will expand after the partition is removed. We notice
that the thermodynamic force is at work here, being roughly proportional to the difference in the
number of particles in the right and left parts of the container. This force causes the expansion process.
Thus, we are dealing with the simplest paradigmatic irreversible process [50]. The particles remain
stuck in the final state and will not leave it (with accuracy subject to slight fluctuations in the number
of particles in the right half of the container). Such a final state of the whole system is referred to as the
equilibrium state. The simple coarse-grain description of the system allows us to introduce here the
concept of configuration entropy.

Note that the macroscopic state of the system (generally, the non-equilibrium and
non-stationary/relaxing one) can be described by the instantaneous number of particles in the left
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(NL(t)) and right (NR(t)) parts of the container, with N = NL(t) + NR(t), where N is the fixed total
number of particles in the container (isolated system). It allows for one to define the weight of the
macroscopic state Γ(NL(t)), also called thermodynamic probability. This is the number of ways to
arrange the NL(t) particles in the left part of the container and NR(t) = N − NL(t) in the right. Hence,

Γ(NL(t)) =
N!

NL(t)!(N − NL(t))!
. (24)

Here we do not distinguish permutations of particles inside each part of the container separately.
We only take into account permutations of particles located in different halves of the container. This is
because our resolution here is too small to observe the location of particles inside each container
separately. Such a coarse-graining creates an information barrier: more information can mask the
complexity of the system. We will not be able to see the complexity, because we will not be able to
construct entropy. This creates a paradoxical situation: the surplus of information makes the task
difficult and does not facilitate obtaining the insight into the system. Here we have an analogy with
chaotic dynamics, where chaos is only visible in the Poincaré surface cross-section of the phase space
and not in the entire phase space.

The configuration entropy at a given time t we define, as follows,

S(NL(t)) = ln Γ(NL(t)), (25)

where Γ(NL(t)) is given by Equation (24). The above expression can be used both for the equilibrium
and non-equilibrium states.

It can be demonstrated using the Stirling formula that for large N, entropy S is reduced to the
BGS form,

ln Γ(NL(t)) = −N [pL(t) ln pL(t) + pR(t) ln pR(t)] = Ns(t), (26)

where pJ(t)
def.
=

NJ(t)
N , J = L, R, and s(t) is a specific entropy. The law of entropy increase Equation (A8)

is also fulfilled here, as expected.
We now prepare the equation for determining NCXmax

L , i.e., the number of particles in the left part of
the container that maximizes the partial complexity measure CX. To this end, we assume, for instance,
the symmetric partial measure of complexity of the order of (m = 2, n = 2). Next, we substitute
NL = NCXmax

L into the both sides of Equation (25) and according to constitutive Equation (5), we equate
Equation (25) to Smax

CX . Hence, we obtain a constitutive equation for the relaxing perfect gas,

S(NL(t) = NCXmax

L ) = Smax
CX , (27)

where NCXmax

L is our sought quantity.
Now, we need to independently determine Smax

CX . Recall that the number of NL particles that
maximize entropy is the number of Neq

L particles in the statistical/thermodynamic equilibrium state of
the system. This number is equal to half of all particles in the container, i.e., Neq

L = N/2. It can still be
assumed (without reducing the general considerations) that Smin = 0. Therefore,

Smax = S(N/2). (28)

However, from Equation (A5), we know that Smax
CX = Smax/2. By using it, we transform

Equation (27) into the form,

S
(

NCXmax

L

)
=

1
2

S(N/2). (29)

Equation (27) is an example of the general constitutive Equation (5), where NCXmax

L plays the role
of YCXmax

. This equation has the following explicit form,
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[
Π

N−NCXmax
L

j=1

(
1 +

NCXmax

L
j

)]2

= ΠN/2
j=1

(
1 +

N
2j

)
, for n = m = 2. (30)

Just deriving Equation (30) (see Appendix C for details) is the primary purpose of this example.
This is a transcendental equation of which the exact analytical solution is unknown. When deriving
Equation (30), we used the initial condition for the entropy that is, S(t = 0) = Smin = ln Γ(NL = N) = 0,
which follows from Equations (24) and (25). Even for such a simple toy model, determining the partial
measure of complexity is a non-trivial task, also because NL is different from N/2 (as we show below).

The numerical solutions of Equation (30), i.e., the relationship of NCXmax

L to N, are shown in
Figure 8 (for simplicity, L defining the vertical axis on the plot means NCXmax

L ). Both of the solutions
(small circles above and below the solid straight line) show that NCXmax

L is significantly different from
N/2. Thus, the most complex state is significantly different from the equilibrium state.

Figure 8. Dependence of L(= NCXmax

L ) vs. N. There are two solutions of Equation (30): one marked
with blue circles and the other with orange ones. Above N ≈ 102, both dependencies are linear, which
is particularly clearly confirmed in Figure 9. That is, in a log-log scale, their slopes equal 1. However,
in linear scale, the directional coefficients of these straight lines equal 0.11 and 0.89, respectively. This is
clearly shown in Figure 9. Only the solution with orange circles is realistic, because the chance that 89%
of particles will pass in a finite time to the second part of the container (as indicated by the solution
marked with blue circles) is negligibly small. The black solid tangent straight line indicates a reference
case NCXmax

L = N/2.

Figure 9. Directional coefficient of linear dependencies L vs. N as a function of N. For N greater
than 102, no N-dependence of this coefficient is observed. Both of the solutions (having L/N = 0.11
and L/N = 0.89) are mutually symmetric about the straight horizontal line L/N = 1/2, but we only
consider the solution L/N = 0.89 to be realistic. The black horizontal straight solid line indicates a
reference case NCXmax

L = N/2.

18



Entropy 2020, 22, 866

Having the NCXmax

L dependence on N, we can obtain the dependence of the partial measure of

specific complexity cxmax def.
= CXmax/Nm+n on N order (m = 2, n = 2). We can write

cxmax =

(
s(N/2)

2

)4

=

[
1

2N
ln
(

ΠN/2
j=1

(
1 +

N
2j

))]4
, (31)

as in our case smax = s(N/2) equals the logarithm of the right-hand side of Equation (30) divided by
N. Notably, Equation (31) is based on Equation (A12).

In Figure 10, we present the dependence of cxmax on N. Quantity cxmax is a non-extensive
function—it reaches the plateau for N � 1. For N ≈ 104 the plateau is achieved with a good
approximation. This is important for researching complexity. Namely, systems can attain complexity
already on a mesoscopic scale. Although the absolute value of the complexity measure is relatively
small, it is evident and possesses a structure that is related to the current inflection point there
(near N = 10).

Figure 10. Dependence of cxmax on N given by Equation (31). As one can see, cxmax is a non-extensive
function—it reaches the plateau for N � 1. For N ≈ 104 the plateau is achieved with a good
approximation. This is an important issue for researching complexity. Namely, systems can attain
complexity already on a mesoscopic scale. It can be said that the curve’s inflection point (located near
N = 10) marks the beginning of the complexity stabilization region.

This example shows that even such a simple arrangement of non-interacting objects may have
non-equilibrium non-stationary complexity. A necessary (but not sufficient) condition is the possibility
of constructing entropy and the presence of a time arrow.

4. Concluding Remarks

In many recent publications [5,8,9,51] it is argued that entropy can be a direct measure
of complexity. Namely, a smaller value of entropy indicates more regularity or lower system
complexity, while its larger value indicates more disorder, randomness and higher system complexity.
However, according to Gell–Mann, more disorder means less, and not more, system complexity.
These two viewpoints are contradictory—this is a serious problem, which we have addressed.

Our motivation in solving the above problem was based on Gell–Mann’s view of complexity.
This is because we fail to agree that the loss of information by the system as it approaches equilibrium
increases its complexity; notably, ΔI(peq, peq) (see Appendix B for detail) takes its minimum value
then, and complexity must decrease.

In addition, the differences between entropies in Equation (1) eliminate the useless dependence of
complexity on the additive constant that may appear in the definition of entropy. It can be said that the

19



Entropy 2020, 22, 866

system state with the highest complexity is the state most distant from all of the states of the system of
lesser or no complexity.

Thus, in the sense of Gell–Mann, the measure of complexity should supply complementary
information to the entropy or its monotonic mapping.

Therefore, in this work, we have presented a methodology which allows building a universal
measure of complexity as a function of a system state based on non-linearly transformed entropy.
This is a non-extensive measure. This measure should meet a number of conditions/axioms, which
we have indicated in this work. A parsimonious example, of the simplest system with a small and a
large number of degrees of freedom, is presented in order to support our methodology. As a result of
this approach, we have shown that (generally speaking) the most complex are optimally mixed states
consisting of pure states, i.e., of the most regular and most disordered, which the space of states of a
given system allows. This also applies to the distinctive examples outlined in Appendixes D and E
(although this requires a redefinition of some variables and parameters).

We should pay attention to an essential issue regarding the definition of the phenomenological
partial measure of complexity that is given by the Equation (1). This definition is open in the sense that
if the description of complexity requires, for example, one additional quantity, then the Equation (1)
takes on an extended form,

CX(S, E; m1, n1, m2, n2)
def.
= (Smax − S)m1(S − Smin)n1(Emax − E)m2(E − Emin)n2 ≥ 0, (32)

whereby Emin ≤ E ≤ Emax this new quantity is marked. This definition has still an open character.
Specifically, this definition also allows (if the situation requires) the replacement of one quantity with
another, e.g., entropy with free energy, or considering some derivatives (e.g., of the type ∂S

∂E ). Openness
and substitutability should be the key features of the measure of complexity. Moreover, exponents
mj, nj, j = 1, 2, determine the order of complexity, i.e., its level or scale. We emphasize that the
measure of complexity introduced can describe isolated and closed systems (although in contact with
the reservoir), as well as open systems that can change their elements.

From Equations (13) and (32), we get the phenomenological universal full measure of complexity
in the form, which extends Equation (17),

X(S, E; m0
1, n0

1, m0
2, n0

2) =

(
1 − 1

MS

)2 (Smax − S)m0
1

1 − Smax−S
M1

(Smin − S)n0
1

1 − Smin−S
M1

×
(

1 − 1
M2

)2 (Emax − E)m0
2

1 − Emax−E
M2

(Emin − E)n0
2

1 − Emin−E
M2

≥ 0. (33)

The full measure of complexity is a weighted sum of partial measures of complexity across all
complexity scales. As one can see, this full measure may contain singularities. They are the necessary
signatures of criticality existing in the system. This meets the expectations presented in the literature.

Definitions of measures of complexity Equations (1) and (17) and their possible extensions are
universal and useful. It is due to entropy that is associated not only with thermodynamics (Carnot,
Clausius, Kelvin) and statistical physics (Boltzmann, Gibbs, Planck, Rényi, Tsallis), but also with the
information approach (Shannon, Kolmogorov, Lapunov, Takens, Grassberger, Hantschel, Procaccia),
and with the approach from the side of cellular automata (von Neumann, Ulam, Turing, Conway,
Wolfram, et al.), i.e., with any representation of the real world using a binary string. Today, we already
have several very effective methods for counting entropy of such strings, as well as other macroscopic
characteristics sensitive to organization and self-organizing systems, as well as to their synchronization
(synergy, coherence), competition, reproduction, adaptation—all of them sometimes having local and
sometimes global characters.

Our definition of complexity also extends to meet research into the complexity of the biologically
active matter. In this, especially research on the consciousness of the human brain can derive a
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fresh impulse. The point is that most researchers believe that the main feature of conscious action
is a maximum complexity or even a critical complexity [52]. In our approach, it would be CXmax

and X(Ncr
1 s).

We hope that our approach will enable: (i) the universal classification of complexity, (ii) the analysis
of a system critical behaviour and its applications, and (iii) the study of dynamic complexity. All of
these constitute the background to the science of complexity.

Appendix A. Properties of the Partial Measure of Complexity

It is worth paying attention to Equations (1)–(4). For a fixed span of Z and the order (m, n),
there may still be systems of different complexities. The complexity description only using CXmax is
insufficient, because there can be many systems with the same span and order. However, we assume
systems to be equivalent, i.e., belonging to the same complexity class (Z, m, n), if they have the same
span at a given order. We can still distinguish them as, in general, they differ in the location of Smax

CX .
We can say that a given class has a greater partial measure of complexity if it has a larger CXmax. In a
given class, the system has a larger complexity if the system stays closer to CXmax, i.e., its current
entropy S is closer to Smax

CX . For a given CX with Equation (1), we obtain (for each order (m, n)) two S
solutions: one on the left and the other on the right of CXmax (except when S = Smax

CX ). Division into
classes allows us to introduce an additional classification of complexity.

A distinction should be made between two cases of measuring complexity: (i) Z < m + n and
(ii) Z > m + n. This is particularly evident when we consider the ratio of both types of complexity
measures for m + n > 1,

CXmax(Zi)

CXmax(Zii)
=

(
Zi
Zii

)m+n
< 1, (A1)

where Zi belongs to case (i), while Zii to case (ii). Thus, the greater the exponent m + n, the greater the
difference between CXmax(Zii) and CXmax(Zi).

The alternate form of Equation (1),

CX(Δ) =
(

n
n + m

Z + Δ
)n ( m

n + m
Z − Δ

)m
, (A2)

where deviation Δ = Δ(t) = S(t)− Smax
CX makes the operating of the CX coefficient easier in the vicinity

of Smax
CX , where the parabolic expansion is valid. We then have:

CX(Δ) ≈ CXmax

[
1 − 1

2mn

(
(n + m)

Δ
Z

)2
]
≈ CXmax exp

(
− 1

2mn

(
(n + m)

Δ
Z

)2
)

, (A3)

that is a Gaussian form, which has variance σ2 = nm
(n+m)2 Z2. Only in the narrow range of S around

Smax
CX is the measure of complexity CX symmetrical regardless of the order (m, n).

In fact, only the location of the maximum of CX(S; m, n) is determined (for a given range of S) by
the ratio of m to n. However, to have dependence of coefficient CX on entropy in the entire entropy
range Smin ≤ S ≤ Smax, it is necessary to determine two extreme values of entropy (Smin and Smax)
and two exponents (n and m). In general, finding these parameters and exponents is still far from
trivial because they have a contextual (and not a universal) character.

However, in a particular situation, when the maximum complexity is symmetrical, i.e., when
m = n, we obtain

Smax
CX = S =

Smin + Smax

2
(A4)
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and

CXmax =

(
Z
2

)2n
. (A5)

Equation (1) of the partial measure of complexity applies both to single- and multi-particle
problems because entropy can also be built even for a very long single-particle trajectory. Moreover,
Equation (1) emphasizes our point of view that any evolving system for which one can introduce the
concept of entropy and which has a state of thermodynamic equilibrium (for which entropy reaches a
global maximum) contains at least a signature of complexity. For systems of negligible complexity,
i.e., for which S ≈ Smin or S ≈ Smax, the measure CX(S; m, n) is close to zero. This does not mean,
however, that we cannot locate Smax

CX near Smin or Smax. It is then sufficient to have strongly asymmetric
situations when n � m or n � m, respectively.

Appendix B. Non-Stationary Entropies

In this Appendix, we sketch a non-stationary situation, which is what we are dealing with
throughout this work. We are dealing with systems evolving to a state of statistical equilibrium,
even from states far from statistical equilibrium.

Non-stationary entropy is understood to be entropy based on coarse-grained time-dependent
probability distributions—this type of entropy is most often used [43–45,51]. A very characteristic
example is the entropy class built on time-dependent probability distributions, {pj(t)}, satisfying the
master (Markovian) or M-equation, in the presence of detailed balance conditions. Thus, we are only
considering systems evolving to statistical equilibrium.

Here we give two very characteristic (non-equivalent) examples of non-stationary entropies
(more preciselly: one should talk about specific entropies). In addition, entropies given by
Equations (A6) and (A7) belong to the category of relative entropies. Namely,

S(t) = S0

[
1 − ∑

j
peq

j f

(
pj(t)

peq
j

)]
(A6)

and

S(t) = −S0 ln ∑
j

peq
j f

(
pj(t)

peq
j

)
, (A7)

where pj(t) is a probability of finding a system in state j at time t, while peq
j is a corresponding

equilibrium probability. We are considering only discrete states here. The function S0 f (x) ≥ 0, where

domain 0 ≤ x ≤ ∞, is a non-negative convex function obeying S0
d2 f
dx2 ≥ 0. It can be shown [45] that

entropies defined in this way meet the law of entropy increase, i.e., its derivative

dS(t)
dt

≥ 0; (A8)

therefore S(t) → Smax from below when pj(t) → peq
j , for any j. Equation (A8) is the key property of

entropy. Let us add that at the limit pj(t) = peq
j , for any j, entropy defined by Equations (A6) and

(A7) disappears. In other words, these entropies are negative and grow to zero as the system tends
to equilibrium.

It is worth paying attention to the possibility of defining generalized information gain, whereby
this information gain is calculated here relative to the equilibrium distribution. We can write,

ΔI(p(t), peq) = −S(t), (A9)
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where p(t) = {pj(t)} and peq = {peq
j }. Furthermore, entropy S(t) is closely related to partition

function. Therefore, in this approach, the entropy is a base function.
Most often the function f (x) is selected in the form [45,56],

f (x) = xα, α > 1, (A10)

coupled with a constant S0 = 1
α−1 , where α can converge to 1. With these choices the entropy given

by Equation (A6) is called Tsallis (relative) entropy and the entropy given by Equation (A7) Rényi
(relative) entropy. Usually, the entropic index α is denoted by q in the case of Tsallis entropy.

Entropies given by Equations (A6) and (A7) converge, with the help of Equation (A10), to
Kullback-Leibler entropy [9] when entropy index α → 1. However, the Rényi and Tsallis entropies are
essentially different for α 
= 1. The Rényi entropy is an additive function describing extensive systems,
while the Tsallis is not. It is a non-additive function describing non-extensive systems.

Using relative entropy in the definition of complexity measures is productive. It is because other
types of entropy can be derived from it, such as ordinary entropy (or Boltzmann-Gibbs-Shannon one)
and conditional entropy.

Appendix C. Derivation of the Constitutive Equation for Perfect Gas

The derivation of constitutive Equation (30) comes down to presenting both sides of Equation (29)
in explicit form, shortening of common factors, proper organization and presentation. Accordingly,
the left side of Equation (29) takes the form,

Smax
CX = S

(
NCXmax

L

)
= ln Γ

(
NCXmax

L

)
= ln

N!
NCXmax

L !
(

N − NCXmax
L

)
!

= ln

(
NCXmax

L + 1
) (

NCXmax

L + 2
)
· . . . · (N − 1)N

1 · 2 · 3 · . . . · (N − NCXmax
L

)
= ln Π

N−NCXmax
L

j=1

(
1 +

NCXmax

L
j

)
, (A11)

where the number of factors in the numerator and denominator is the same and equals N − NCXmax

L .
As for the right side of Equation (29), we present it in an explicit form,

1
2

S(N/2) =
1
2

ln Γ(N/2) =
1
2

ln
N!(

N
2

)
!
(

N
2

)
!

=
1
2

ln

(
N
2 + 1

) (
N
2 + 2

) (
N
2 + 3

)
· . . . ·

(
N
2 + N

2

)
1 · 2 · 3 · . . . · N

2
=

1
2

ln ΠN/2
j=1

(
1 +

N
2j

)
. (A12)

Comparison of Equations (A11) and (A12) just leads to Equation (30).

Appendix D. Entropies of Time Series—A Sketch

The entropy study of various time series is a crucial issue in system dynamics. The point is that
the activity of the systems is perceived precisely through time series. The study of nonlinear time series
is particularly important. Below we outline two essential methodologies for constructing entropy
(including a multi-scale one). Then we show how to connect our complexity measure with these
methodologies.
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Appendix D.1. Entropy of Embedded Time Series

Various time series from stock exchanges or Forex quotations are the central sources of empirical
data available from financial markets. The main question is about the entropy of the time series and
hence about the measure of time series complexity. Following Li et al. [51], we present a method of
constructing entropy for a finite time series.

We consider the time series {xj}N
j=1 consisting of N elements xj, j = 1, 2, . . .. From this we select

1 ≤ i ≤ N − l + 1 sub-series indexed by i. Each sub-series consists of l components defined as follows,

yl
i(k) : 0 ≤ k ≤ l − 1, where (for given indexes i and l) component yl

i(k)
def.
= x(i + k). As one can see,

m here means the embedding dimension.
Moreover, two subsequent sub-series characterized by the same l have l − 2 elements in common.

In the collection of sub-series, which create m-dimensional vector space, one can enter a topology
defined by the metric dij defining the distance between arbitrary sub-series i and j. Then one can
build a distribution (histogram), p(dij), of distances between vectors. Of course, the question of how
to choose the embedding dimension l is fully justified. For example, one could assume that this
dimension is equal to the correlation dimension [7]. However, we treat l as a free parameter, and we do
not impose any additional restrictions on it. With the probability distribution, p(dij), one can build the
entropy (for example, S(l) = −〈ln p(dij)〉) and hence the complexity of the time series (see Section 2.1
and Appendix B for details).

Similarly to the example with expanding gas in Section 3 and based on Equation (5), we can
formulate the constitutive equation in the form

S(lCXmax
) =

1
m S(lmax) + 1

n S(lmin)
1
m + 1

n
, (A13)

where S(lmax) = Smax and S(lmin) = Smin.
The transcendental Equation (A13) should be solved numerically due to the value of the unknown

lCXmax
sought. However, first, the values of lmin and lmax must be found (also numerically), which

leads to the determination of Smin and Smax, respectively. It allows us to determine CXmax. In the final
step, one can (similar to that presented in Appendix B) find informative relationships of the above
quantities lCXmax

, lCXmax
/N and CXmax from N.

This is all possible if one has sufficiently useful statistics, i.e., when N − l + 1 � l ≡ N−1
2 � l.

Appendix D.2. Multi-Scale Entropy

We can now proceed to define multi-scale complexity, but first we need to define multi-scale
entropy or the hierarchy of entropies. For this purpose, we prepare the coarse-grained scheme.
The primary time series consists of N elements. We divide it into n = Int[N/τ] non-overlapping
intervals, where τ is the time horizon/scale, i.e., the number of time steps that we use to separate the
elements of the first time series. Now we can build a new time series, of which the non-overlapping
elements are defined as arithmetic means in subsequent intervals of τ,

yτ
j =

1
τ

(j+1)τ

∑
i=jτ+1

xi , 0 ≤ j ≤ n − 1. (A14)

More can be said about the choice of τ using the (bilinear) autocorrelation function

AC(t) ≈ 1
n − t

n−t

∑
j=0

yτ
j yτ

j+t , n � t, (A15)

if we are dealing with a stationary and a long time series. Then time τ = τc can be considered,
e.g., as the half-life of this function, i.e., AC(τc) ≈ 1

2 AC(0). Other choices for τ can also
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be considered [43]. Note that the time series {yτ
j } can consist of τ > τc with statistically

independent elements.
With time series dependent on the time scale τ, we can build scale-dependent entropy Sτ(t) and

the corresponding complexity CX(Sτ) by the corresponding methods presented in Appendix D.1.
Thanks to this, for each scale τ separately (i.e., for each n separately), we can find quantities such as
nCXmax

, nCXmax
/N and CXmax.

Appendix D.3. Elements of Deterministic Chaos: A Cyclically Kicked Damped Rotor

Deterministic chaos can be an example of the complexity of single-particle motion
(i.e., the complexity of its phase space). It is caused by instability due to initial conditions. A typical
example of this is a cyclically kicked damped rotor [20] or a damped pendulum with cyclic driving
force [19]. Here we sketch this example.

The starting point is Newton’s equation for a rotor motion in the presence of viscous drag, which
takes the form

d2φ(t)
dt2 = −γ

dφ(t)
dt

, (A16)

where φ(t) is a time-dependent rotation angle of the rotor, γ is the viscous drag coefficient, and the
moment of inertia is equal to the unit. The exact solution of Equation (A16) is based on the
time-dependent exponential function.

Next, we enrich this equation with a non-linear impulse forcing force,

F = κ f (φ)
∞

∑
n=0

δ(t − nT), (A17)

where f (φ) is a non-linear function of φ and κ is its amplitude, while T is the period of this force.
Hence, in the stroboscopic variables (or in the Poincaré representation) we obtain the Poincaré map,

ωn+1 = exp(−γT)[ωn + κ f (φn)], (A18)

φn+1 = φn +
1 − exp(−γT)

γ
[ωn + κ f (φn)], (A19)

where ω = dφ
dt . The above set of recursive equations allows us to examine on the Poincaré surface

both dissipative deterministic chaos (e.g., logistic or Henon mapping) and conservative (i.e., Chirikov
mapping). This depends on the values of γ and κ parameters and the form of the function f .

Belief in the complexity of the phase space {ω, φ} of the system presented above is common.
The complexity requires a knowledge of entropy. The total entropy of the system is the entropy of its
long phase trajectory. However, we consider the complexity of the phase space structure mapped to
the Poincaré surface, i.e., based on narrow entropy describing only this mapped structure. Obviously,
this entropy depends on initial conditions and parameters assumed. Constructing entropy first requires
defining a long time series. We have this time series as one consisting of N two-component elements
{ωn, φn}N−1

n=0 . Indeed, the approach presented in Appendix D.1 can be used to calculate entropy.
The goal here is to have the entropy value Smax

CX at which the complexity measure reaches the
maximum value CXmax. It comes down to finding the dimension of the embedded subspace lmax

CX
for which the entropy S = Smax

CX . It is l that is the optimized parameter (in Section 3 it was the
dynamic variable NL). It can be expected that lmax

CX is neither too small nor too large compared with the
dimension N of the base space.
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Appendix D.4. Elements of Anomalous Diffusion

Let us consider as a typical example the deterministic dissipative motion of an extremely massive
single molecule in a viscous fluid. This simple motion is described by the Newton’s dynamics,
i.e., by the linear ordinary differential equation,

du(t)
dt

= −γ u(t), (A20)

where u(t) is a time-dependent molecule velocity and γ is a constant friction coefficient. The exact
solution of Equation (A20) is given by the time-dependent exponential function.

We are now moving from a deterministic level to a stochastic level by a relatively small extension
of Equation (A20). That is, we extend Equation (A20) so as to obtain the retarded general Langevin
equation (GLE) [50],

du(t)
dt

= −
∫ t

0
γ(t − t′)u(t′)dt′ + R(t)

m
, (A21)

where γ(t) is the retarded friction coefficient, R(t) is a random force of a thermal origin, i.e., caused
by the random action of fluid particles, and m is the mass of the molecule. Notably, the retardation is
present only when the mass of the molecule suspended in the fluid is not too heavy.

Equation (A21), which is the essence of the Ornstein-Uhlenbeck (OU) generalized theory of
Brownian motion, takes into account both the feedback effect associated with the reverse fluid flow
pushed by the molecule and the erratic nature of the molecule’s motion. Although it is still a linear
equation relative to u, the velocity the autocorrelation function, C(t), is no longer expressed by a
simple exponential, but exhibits a slower, power-law decay,

C(t) ∝
1

t2−α
, α =

1
2

, (A22)

for a long time, which is indeed more realistic. Equation (A22) is a central result of OU generalized
theory. As one can see, a relatively small extension of Equation (A20)—small because it still leaves
this equation in the domain of linear equations relative to u—led to decay according the power law.
Such a law is an essential attribute of a complex system. This algebraic fat tail was noticed for the first
time by Adler and Wainwright in molecular-dynamic simulation of hard spheres’ fluid [53], at least at
intermediate fluid densities. Equation (A22) is the result of a cooperative phenomenon in the form of a
positive feedback arising in the system between the molecule suspended in the fluid and the particles
of the fluid. The non-linear nature of this coupling in time (that is the nonlinear dependence of γ on
time) is contained in the integral kernel of Equation (A21). There is a wide class of physical problems
that can be modelled using this equation [28,54] (for almost arbitrary α). Equation (A21) is the first
level of complexity here.

Note that the direct consequence of Equation (A22) is the sub-diffusive behaviour of the suspended
molecule, i.e., for long times the variance of the stochastic process X (t) (without a drift) takes the form,

〈X(t)2〉 ∝ tα. (A23)

Now one can ask a question about what the distribution family with the variance given by the
above formula looks like. The answer is almost instant namely,

P(X, t) =
1

tα/2 f
( | X |

tα/2

)
, (A24)

which is a positive and normalized time-dependent probability distribution, where scaling function f
is almost an arbitrary one.
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Results Euqation (A23) and (A24) became the inspiration for extensive research on anomalous
diffusion [28]. For example, by taking restrictions on the shape exponent α, i.e., α can be generally
different from 1/2. This type of extension permits realistic considerations [28].

Characteristic Examples

Here we show how comprehensive the probability distribution given by Equation (A24) is.

Example A1. Brownian and Gaussian random walk.

Let us assume for α = 1,

f
( | X |

tα/2

)
=

1√
2π

exp

(
− X

2t

2
)

. (A25)

As one can see, the variance of the distribution given by Equation (A24) with the substitution
given by Equation (A25) satisfies Equation (A23)—it is a linear function of time, as it should be.
This example is our reference case.

Example A2. Brownian and non-Gaussian random walk.

Let us now assume that still α = 1 but

f
( | X |

tα/2

)
=

1
2

exp
(
−| X |

t1/2

)
, (A26)

that is, probability distribution P is a Laplace distribution. Despite this, the variance of this distribution
remains a linear function of time. Here we are dealing here with a Brownian and Laplace random walk.

Example A3. Non-Brownian and Gaussian random walk.

Let us here assume that

f
( | X |

tα/2

)
=

1√
2π

exp
(
− X2

2tα

)
, (A27)

where α is an arbitrary shape exponent. As one can see, the variance is here (in general) a non-linear
function of time: it can be both sub- and super-linear. Thus, we are dealing here with the fractional
Brownian motion.

Example A4. Non-Brownian and Non-Gaussian random walk.

Let us consider the Weibull distribution—this gives f function in the form,

f
(

X
tα/2

)
= κ

(
X

tα/2

)κ−1
exp

(
−
(

X
tα/2

)κ)
, X ≥ 0, (A28)

where κ > 1. The variance for Weibull distribution is given by Equation (A23). This means that we
can model both sub-diffusion (when α < 1) and super-diffusion (when α > 1) using the Weibull
distribution. Of course, with this distribution one can also model a Brownian (when α = 1) but
non-Gaussian random walk.
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Appendix D.5. Nonequilibrium Configuration Entropy

We are now constructing configuration entropy (i.e., based on configuration rather than phase
space). We first discretize the space, i.e., the X axis. Let the size of the discretization step be ΔX.
The time-dependent probability of finding a stochastic process at time t in the nth cell with size ΔX is,

pn(ΔX, t) =
∫ (n+1)ΔX

nΔX
P(X, t)dX, (A29)

where free parameter ΔX here defines the level of coarse-graining. Indeed, we use this probability in
Equations (A6) or (A7). The equilibrium probability needed there peq

n (ΔX) = pn(ΔX, t → ∞) constructs
in the usual way. That is, we confine the system to a very large but finite size. Then time t is going
to infinity. Next, both probabilities (the nonequilibrium for finite time t and equilibrium probability)
substitute to Equations (A6) or Equation (A7). Finally, the system goes to the thermodynamic limit.

The goal is to find ΔX size equal to ΔXmax
CX that maximizes CX, that is CXmax. This can only be

done by numerical means.
We emphasize that Equation (A21) is the dynamic basis of the (stochastic) Fokker–Planck

equation [45] as well as the Langevin [55] fractal equation and hence the Fokker-Planck [28] fractal
equation. The same Equation (A21) is a springboard to move to higher levels of complexity.

Appendix E. Dynamic Self-Organisation on a Complex Network—A Sketch

It is hard to imagine not using complex network technologies to analyze collective processes
in the socio-economic world. One of the fascinating sources of complexity is its capacity for
the self-organization—spontaneous (of endogenic) character or stimulated (of exogenic) character.
We consider the dynamic phase transition here, in which the network of the stock market companies
evolves towards a characteristic big-star structure—it condensates [6,32].

Appendix E.1. Minimal Spanning Tree of the Frankfurt Stock Exchange

Here we consider the canonical Minimal Spanning Tree (MST) of the Frankfurt Stock Exchange
(FSE) companies belonging to the widely-exploited class of correlation complex networks (the content
of this section was created with the participation of Mateusz Wiliński). They describe well the dynamics
of relationships between companies, that is the evolution of the MST. The MST is a very simple type of
a complex network that, although it resets the clustering rate, provides a lot of important information
about the structure and dynamics of real networks.

For example, in Figure A1, we present the self-organized structure of the Frankfurt Stock Exchange
as of 29 January 2007. As one can see, the prominent star centred at SALZGITTER (SZG) AG-Stahl und
Technologie company (the network node marked by the red circle located at the centre of the network)
dominates the stock market structure. The middle plot on the top and the plot on the right there
correctly reflect this type of behaviour. The former plot clearly shows the local minimum determining
the size of the average coordination zone of the SZG node. Its average radius (i.e., the MOL equals
about 2.5 separation steps) confirms that the SZG company is the centre of the star. The last plot shows
a red circle with a multiplicity of 1 and a degree close to 100, which represents the SZG node. This node
is an outlier—an excellent example of the appearance of a super-extreme event, i.e., dragon-king
event [29–31].
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Figure A1. A snapshot picture of Monday 29 January 2007. The plot on the top left shows the DAX
index in the years 2005–2010. This index is the emanation of the entire stock exchange. Of course,
a computer analyzes quotations of all companies on this stock exchange that are in the range mentioned
above. Two vertical red straight lines mark the scanning window, and its centre is marked by a blue
line. The current window location, i.e., the beginning and end, are given dates just below the DAX
and MOL plots. The same scanning window applied to the MOL indicator. The middle plot at the top
shows the course of the widely used mean-occupation layer (MOL) [32]. The upper plot on the right
shows the distribution of degrees of the vertices of the network shown below. The red circle on this
plot, which stands out significantly from the power-law distribution, concerns the centre of the star
(the most prominent red circle). The coloured circles in the legend and the abbreviations of the names
mean the companies presented in the graph. The figure was taken from our publication [32].

The structure dynamics of the dragon-king is presented in Figure A2. That is, we presented there
the dependence of the degree of this node on time, yielding a very meaningful λ peak characterizing
here a structural condensate (for details see [32]).

In Figure A3 we compare empirical degree entropies S(t) = −∑k P(k) ln P(k), where P(k) defines
the empirical degree distribution, versus time in the presence and absence of SZG company on
the network. In Figure A1, the upper plot on the right shows an example of the (non-normalized)
distribution, P(k), where k means the degree of a node. Various nodes are marked here with coloured
circles defined in the legend. As one can see, the presence of the SZG node significantly changes the
structure of the MST network. It is worth determining the complexity of such a network.
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Figure A2. The temporal SZG vertex degree, kSZG, vs. time. It forms the so-called λ-peak marked with
a red vertical dashed straight line. It shows temporary edge condensation on the SZG node. The span
of this peak is marked by the last blue vertical dashed straight lines. These lines are also plotted in
Figure A3 below. The equilibrium scale-free networks are placed outside this area. The centre of this
peak has been extrapolated on Thursday 25 January 2007—a deviation of two trading days from the
result shown in Figure A1 is irrelevant here. The plot was taken from the publication [32] with the
consent of the editors.

Figure A3. Degree entropy (defined in [32] by degree distributions) vs. time. The solid line marked
entropy in the presence of the SZG vertex but dotted after removing this node. One can see the
crucial role of this node in preparing the temporary network structure. The well-defined local absolute
minimum of degree entropy is placed on Thursday, 25 January 2007. The plot was taken from the
publication [32] with the consent of the editors.

Appendix E.2. Analysis for Case Z < 1

We note that the extreme entropy values, for the data shown in Figure A3, are as follows:
Smin(t = 2007-01-25) = 5.690 and Smax(t = 2005-03-15) = 5.948, which gives a span of Z = 0.258 < 1.
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Substituting these numbers into Equations (A4) and (A5) we get the entropy of the order
of (m = 2, n = 2),

Smax
CX = 5.819, (A30)

and complexity measure of the same order

CXmax = 2.769 10−4. (A31)

From the plot data: ‘Entropy with SZG ’in Figure A3, dates corresponding to the entropy given by
Equation (A30) can be read. There are many of them—we chose three particular ones: 6 January 2006,
21 December 2007, 15 April 2008. All of them concern the most complex networks.

Figure A4 shows the network corresponding to the second date. One can see how much it differs
from the least complex shown in Figure A1. This Figure shows a mixture of few mini stars with a degree
not greater than about 20 (but no central one with degree almost 100, as shown in Figure A1). It is
indicated by the degree distribution on the right-hand side of the plot, besides several skeletons and
developed cascades arranged there in a somewhat disordered way. It is a richer and more disordered
structure—more complex than that shown in Figure A1.

Figure A4. The snapshot picture of the Frankfurt Stock Exchange complex network on
21 December 2007. This network represents the most sophisticated state of the stock market, that is,
CXmax given by Equation (A31). One can see how much this network differs from that shown in
Figure A1—e.g., the dominant central star has ceased to exist. The network structure is now skeletal.
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Abstract: The aim of this paper is to examine the role of thermodynamics, and in particular,
entropy, for the development of economics within the last 150 years. The use of entropy has
not only led to a significant increase in economic knowledge, but also to the emergence of such
scientific disciplines as econophysics, complexity economics and quantum economics. Nowadays,
an interesting phenomenon can be observed; namely, that rapid progress in economics is being
made outside the mainstream. The first significant achievement was the emergence of entropy
economics in the early 1970s, which introduced the second law of thermodynamics to considerations
regarding production processes. In this way, not only was ecological economics born but also an
entropy-based econometric approach developed. This paper shows that non-extensive cross-entropy
econometrics is a valuable complement to traditional econometrics as it explains phenomena based
on power-law probability distribution and enables econometric model estimation for non-ergodic
ill-behaved (troublesome) inverse problems. Furthermore, the entropy economics has accelerated the
emergence of modern econophysics and complexity economics. These new directions of research
have led to many interesting discoveries that usually contradict the claims of conventional economics.
Econophysics has questioned the efficient market hypothesis, while complexity economics has shown
that markets and economies function best near the edge of chaos. Quantum economics has already
appeared on the horizon, which recognizes money as a fundamental measurement device in the
economy. The development of these sciences may indicate the need to reformulate all mainstream
economics from its foundations.

Keywords: entropy economics; non-extensive cross-entropy econometrics; non-ergodic ill-behaved
inverse problems; general system theory; econophysics; non-linear dynamics; complex adaptive
systems; homo oeconomicus; edge of chaos; complexity economics

1. Introduction

Since its emergence, economics has been strongly methodologically linked to physics. These links
made neoclassical economics possible. The aim of this paper is to review these relationships over the
last 150 years and to point out a number of key discoveries that have resulted from the application of
methods of physics in economics and that still remain outside mainstream economics. The probable
reason that they are constantly ignored is that they undermine traditional economic knowledge.

The emergence of neoclassical economics can be dated to the first half of the nineteenth century.
Its birth was influenced by economic issues related to various technical projects undertaken by French
engineers who employed mathematical methods in order to solve these problems. The group of
engineers included Jules Dupuit (1804–1866) and Charles Minard (1781–1870), but the achievements of
the former are most significant [1,2]. The economic knowledge gained in this way was supplemented
in the 1870s by Leon Walras, William Stanley Jevons and Carl Menger, but it was Alfred Marshall who
gave it a coherent form [3]. In an effort to raise the scientific status of economics, neo-classicists decided
to transfer to it the ideas and the mathematical apparatus from the leading science of that time—energy
physics—which became the nucleus of later thermodynamics. The basic concepts of physics of the
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mid-19th century were translated into economic language by Irving Fisher in 1892: material points
(particles) became economic entities (individuals), force was replaced by marginal utility, and energy
became equivalent to utility [4]. After this, the law of equilibrium could be transferred from physics
to economics. In physics, an equilibrium point is determined by the maximum of the function of
net energy, while the position of equilibrium in economics is determined by the maximum of the
function of gain. As a result, neoclassical economics, which is still taught today, was created, but its
methodological basis has been forgotten. This basis referred to thinking about markets and economies
as closed systems striving to achieve a state of equilibrium.

There is no doubt that thermodynamics significantly contributed to the emergence of neoclassical
economics and that in the early twentieth century it was a huge advance in science. Since then, however,
economics and physics have gradually started to move away from each other. The emergence of the
global financial crisis has made it clear that today we again need an economics based on physical
methods, but this can no longer be 19th-century physics—it has to be replaced by 21st-century physics.
This is proven by the results obtained by economics and econometrics of entropy, econophysics,
complexity economics and, more recently, by quantum economics. Upgrading economic knowledge is
not expensive; it is enough to abandon old, untrue dogmas.

The main aim of the paper is to examine the broadly understood impact of thermodynamics
and entropy on the development of economics, which indicates the need to include in the research
various types of entropy. The starting point for the analysis is entropy as a physical phenomenon,
described by Rudolf Clausius, reflected in the second law of thermodynamics, which initiated the
emergence of ecological economics. Next, various modifications of the entropy concept are taken
into consideration. In recent decades, the science of entropy has been developing very fast. This has
brought benefits to economics, in which the use of such forms of entropy as Shannon informational
entropy or non-extensive Tsallis entropy has become a factor of progress. The analogies and metaphors
combining entropy investigated in natural sciences with similar phenomena occurring in economic
systems are also significant for the development of economic sciences [5]. However, despite the great
importance of such analogies and metaphors, since the paper focuses mainly on similarities following
the isomorphism principle, attempts have been made to limit the transfer of entropy formulae from
physics to economics to logical homologies.

2. A Brief History of the Emergence and Development of the Entropy Concept

The emergence of entropy in physics was caused by an observation that in steam engines a large
part of energy was lost due to friction and dissipation and, therefore, could not be converted into
useful work. The research on this missing energy was conducted by Rudolf Clausius, who used the
term entropy to describe it. In 1854, he presented the first mathematical definition of entropy in the
following form [6] (p. 126):

S =
1
T

Q (1)

or

ΔS =

(
1

T2
− 1

T1

)
Q, (2)

where ΔS stands for changes in entropy, while Q is the quantity of heat passing from the body with
temperature T1 to another body with temperature T2. Clausius is also known for his concise and
beautiful presentation of the first and the second law of thermodynamics [6] (p. 365):

1. The energy of the universe is constant.
2. The entropy of the universe tends to a maximum.

According to his other statement, the second law of thermodynamics takes the following form:
heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at
the same time [6] (p. 117).
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A slightly different definition of entropy, being a measure of the molecular disorder of the system,
was formulated by Boltzmann. It has the following form [7] (p. 137):

S = kB ln W, (3)

where kB is the Boltzmann constant, while W is the total number of microscopic states, corresponding
to the macroscopic state of the system. Boltzmann entropy provides the basis for statistical mechanics,
but the concept of probability, which is crucial in statistical theory, does not result directly from it.
Thermodynamic probability W in formula (3) is not an ordinary probability, but an integer. However,
it is possible to modify Boltzmann entropy to enable the introduction of the notion of probability
distribution in Boltzmann statistics [8]. If an isolated system, consisting of N molecules belonging to n
energy states is examined, then – assuming a fixed number of molecules and fixed values of the total
energy – the total number of microscopic states of the system is given by the formula:

W =
N!∏n

i=1 Ni!
. (4)

Substituting (4) to (3), Boltzmann entropy is obtained in the following form:

S = kB ln
N!∏n

i=1 Ni!
≈ −kBN

n∑
i=1

pi ln pi , (5)

where pi =
Ni
N and for a large N means the probability that the molecule is in the i-th energy state.

Therefore, we obtain the entropy equation for the system consisting of N molecules distributed with
probability distribution p = (p1, p2, . . . , pn) among n energy states.

In the mid-20th century, the concept of entropy found its application in information theory. As it
turned out, thermodynamic entropy is very similar to information entropy. While the former concerns
energy loss, the latter concerns data loss in information transmission systems. In 1948, Claude E.
Shannon published his groundbreaking work, A Mathematical Theory of Communication, in which he
addressed the issues of measures of information, choice, and uncertainty. In this work, he formulated
the following function [9]:

H = −K
n∑

i=1

pi log pi , (6)

where H stands for the Shannon entropy, whereas K is a positive constant, the role of which comes
down only to a choice of a unit of measure. As can be easily observed, the H function represents
entropy known in statistical mechanics, where pi denotes the probability of a system being in cell
i of its phase space. Equation (5) therefore presents Shannon entropy, which measures uncertainty
related to a probability distribution (p1, p2, . . . , pn). Thus, for large classical systems, Boltzmann
entropy is proportional to Shannon entropy. At the same time, it should be emphasized that various
types of entropy represented by Equations (1), (3), (5) and (6) are logical homologies since they
present the same formal (mathematical) structure at various levels of reality. In particular, Shannon
informational entropy can be treated as a more general concept compared to statistical thermodynamic
entropy. In other words, this latter concept proves to be a special case of the former. In this way,
the prediction of equilibrium thermodynamic properties can provide a form of statistical inference
based on Shannon entropy as an information measure, while probabilities are interpreted in a subjective
manner. Therefore, a reinterpretation of statistical mechanics in which statistical mechanics is based on
information theory is possible. The entropy formula has a much deeper meaning than was initially
believed, as it is completely independent of thermodynamics. Consequently, entropy can become a
starting point for reflections, and the probability distribution maximising entropy can be used for
statistical inference [10,11].
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The idea of introducing the concept of entropy to information theory was put forward by John
von Neumann. Shannon wondered for a long time how to name the measure of missing information
he formulated (6). During a discussion, von Neumann gave him the following advice: You should call
it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, no one knows what entropy
really is, so in a debate you will always have the advantage [12] (p. 180). According to another version
of this anecdote, von Neumann said: Why don’t you call it entropy? In the first place, a mathematical
development very much like yours already exists in Boltzmann’s statistical mechanics, and in the second place,
no one understands entropy very well, so in any discussion you will be in a position of advantage! [13] (p. 81).

3. The Birth of Entropy Economics

Entropy first appeared in the economic sciences in 1971, when the American economist of
Romanian descent, Nicholas Georgescu-Roegen, published his opus magnum entitled The Entropy Law
and Economic Process. This created the foundations of a novel approach to the theory of production, which
consisted of applying the second law of thermodynamics to economic considerations. This gave rise to
ecological economics, also called bioeconomics. Georgescu-Roegen believes that—contrary to a widely
held belief—thermodynamics did not originate from striving to explain physical phenomena based
on heat transfer, but from efforts aimed at understanding phenomena based on pure economics [14].
For this reason, he called thermodynamics the physics of economic values. He regards the law of
entropy expressed by the second law of thermodynamics as the most economic of all the laws of
physics. Economic processes (production) turn the low entropy of the original goods and services into
the high entropy of the final goods and services. It is a very convincing explanation of the fact that low
entropy is responsible for the utility of a given good. Therefore, only thermodynamics can explain
why goods have economic value.

The constantly dwindling resources of low entropy in the environment of man are the main
reason for the scarcity of goods. Production processes are characterised by the fact that they reduce
the resources of low entropy, so the principal feature of economic phenomena is their irreversibility.
This leads one to the conclusion that—contrary to what conventional economics holds—economic
flows do not create a circular flow of income, but rather they are one-directional. High entropy can be
emitted to the environment both by natural physical processes and by economic processes. The latter
are characterised by the fact that they result from human purposeful actions and they are ultimately
proven right by joy and satisfaction with one’s life. The economic value originates from the value
that life presents to everyone. In this way, one can explain not only why people engage themselves
in production processes, but also the basic goal of their economic activity, which is the preservation
of mankind.

Paul A. Samuelson, a Nobel laureate in economics, said that entropy economics has changed the
perception of economic processes and the creator of its concept deserves to have his achievements
recognised and propagated in scientific circles. He also called him “a scholar’s scholar, an economist’s
economist” [15] (p. 125). The concepts developed by Georgescu-Roegen coincided with a well-known
work entitled The Limits to Growth: A report for the Club of Rome’s Project on the Predicament of
Mankind, published in 1972 [16], i.e., at nearly the same time as the basic work on entropy economics.
This coincidence of opinions bore some fruit in the form of cooperation between Georgescu-Roegen
and the team of authors of The Limits to Growth [17]. The Club of Rome reports refer to the entropy
paradigm as a major trend in economic research. Examples include Money and Sustainability: The
Missing Link. A Report from the Club of Rome–EU Chapter to Finance Watch and the World Business Academy,
published in 2012, which suggests that taking entropy into account in economic processes is a necessary
condition for the success of future monetary reforms [18].

Entropy economics contributed considerably to the development of economics by emphasising the
necessity of including ecological issues in the theory of economic growth. Another, rather unnoticed
and unappreciated achievement of entropy economics is the fact that it created favourable conditions for
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the development of such novel disciplines as econophysics and complexity economics [19]. However,
its creator, Nicholas Georgescu-Roegen, was never awarded the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel, despite the efforts of his followers [20]. As it turned out later,
this was caused mainly by the fact that he operated outside the neoclassical paradigm, which is
linked strongly with monetary reductionism, and it assumes that accelerated consumption of natural
resources does not pose a considerable threat to economic growth [21]. Monetary reductionism is a
frequently criticised feature of neoclassical economics. Its main idea is to reduce multidimensional
relations between the natural environment and production processes to one-dimensional monetary
issues. It consists in reducing non-monetary phenomena, such as health, socio-cultural, physical or
ecological processes or impacts, to their monetary equivalents [22–24]. In this way, such features of
economic phenomena as irreversibility and complexity are disregarded [25]. However, recent years
have seen great progress within entropy economics concerning the development of thermodynamic
techniques of modelling economic phenomena, which complement the standard econometric methods.

4. Thermodynamic Entropy as a Metaphor in Organization and Management Sciences

Thermodynamic entropy can be a useful metaphor in social science as a general measure of the
disorder of a system. It is usually associated with a key feature of the system, which, for certain
reasons, is to some extent irretrievably lost and cannot be used for its development. The management
and organizational sciences use the notion of corporate entropy, which should be understood as an
irretrievable loss of productive energy that cannot be transformed into useful work for the corporation.
The task of enterprise management is to coordinate and integrate human work, which saves time in
the entire enterprise, so that it is not lost on economic worries, complaints, beefing or partial and thus
ineffective reforms. Redirecting wasted energy to productive uses is a basic condition for converting
corporate entropy into useful work [26]. On the other hand, DeMarco and Lister talk about a new law,
called by them the second thermodynamic law of management, according to which entropy in an
organisation always grows, just like thermodynamic entropy in the universe. In their opinion, this law
should be understood as follows: most elderly institutions are tighter and a lot less fun than sprightly
young companies [27] (p. 97). They define corporate entropy as levelness or sameness. The uniformity
of attitudes, appearances, and thought processes in a corporation is perceived as entropy, since it
suppresses productive energy during work. This is somewhat reminiscent of Clausius’ reasoning,
initially using the term of equivalence-value (Equations 1 and 2) to describe entropy. An increase in
corporate entropy implies a decrease in the potential to generate energy or to perform work. The way
to fight corporate entropy is as follows: The most successful manager is the one who shakes up the local
entropy to bring in the right people and let them be themselves, even though they may deviate from the corporate
norm [27] (p. 97). Social sciences also refer to similar forms of entropy, such as cultural entropy,
education and school entropy, organizational entropy, as well as leadership entropy [28,29]. This last
one, for instance, means less efficient and effective work and a decrease in productivity. All of them,
just like corporate entropy, are based on metaphors.

5. Levels of Measurement as a Prerequisite for the Application of Thermodynamic Entropy
in Economics

Generally speaking, the level of measurement of a variable describes a type of information
contained in numbers assigned to the examined objects or subjects within a given variable. It specifies to
what extent data characteristics can be mathematically modelled [30] (p. 851). Economic applications of
various forms of entropy adopt Steven’s classification system, consisting of four levels of measurement:
nominal, ordinal, interval, and ratio [31–33]. Each of them contains various properties of numbers or
symbols, such as relations and operations, which specify measurements as well as the set of permissible
transformations. The type of scale is defined by the group of transformations whose performance does
not change the scale form. Permissible transformations include only those that do not infringe the
empirical information presented by the scale. Below is a brief description of each of the scales.
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1. The nominal scale is used only to classify or categorize the value of variables. It permits any
one-to-one substitution of the assigned numbers. Therefore, for nominal scales the only empirical
operation is the determination of equality.

2. The ordinal scale is used to order or rank the value of variables. It can be transformed using any
increasing monotonic function.

3. Using the interval scale, variables can be presented in a quantitative form and used to examine
usual statistical measures. The zero point, in this case, is a matter of convention or convenience
since the form of the scale does not change after adding a constant. This scale can be subjected to
linear transformation. A numerical value on one scale can be transformed to the value on the
other scale, by using the following equation: y = ax + b.

4. A prerequisite for the existence of the ratio scale is an indication of operations enabling
the determination of the following four relations: equality, rank-order, equality of intervals,
and equality of ratios. After establishing such a scale, its numerical values can be transformed
only by multiplying each of the values by a constant. The existence of an absolute zero is always
assumed. All types of statistical measures can be applied to ratio scales. Additionally, only those
scales enable logarithmic transformations.

Since the ratio scales are most commonly found in physics, their importance in research on
various types of entropy is high. On the other hand, in economics and in social sciences, all four
Stevens’ scale types are used, which means that entropy can be examined based on each of them.
Consequently, it seems that the isomorphism principle operates here, to some extent, regardless
of the assumed level of measurement of variables. Even the use of metaphors can be valuable.
In establishing logical homologies, the choice of scale type is certainly important because it clarifies
the considerations. As a consequence, the development of economics induced by applications of
entropy has resulted in shifting the emphasis to more frequent applications of the ratio scales in this
science. This explains the emergence of such scientific disciplines as econophysics and complexity
economics. Thus, the separation of these transdisciplinary research fields from mainstream economics
should be treated as a sign of certain cognitive conservatism. On the other hand, it must be admitted
that it is not yet fully clear whether the entire economics must be transformed into econophysics or
complexity economics.

Stevens used the doctrine of operationalism to develop a system for classifying the scales of
measurement. Individual classes of measurement scales are determined by empirical operations
required in the measurement processes and by formal (mathematical) properties of the scales. Statistical
measures, which can be in a justified way applied to empirical data, depend on the scale type used for
data arrangement. In the broadest sense, the measurement consists in assigning numerals to objects
or events following specific rules. The concept of operationalism is attributed to Percy W. Bridgman,
an American physicist and the winner of the Nobel Prize in Physics in 1946. Bridgman believed that it
was possible to redefine and at the same time to specify some unobservable entities only when we could
indicate physical and mental operations enabling their measurement. As an example, he provides the
concept of length. In order to determine the length of any object, the performance of certain physical
operations is necessary. To define the concept of length, it is necessary to indicate operations permitting
length to be measured. In other words, the concept of length is explained by providing the set of
operations, based on which the length is determined. Bridgman’s conclusion is as follows [34] (p. 5): we
mean by any concept nothing more than a set of operations; the concept is synonymous with the corresponding set
of operations. The physical concept is determined by actual physical operations, and the mental concept,
such as mathematical continuity, is described by mental operations. From an economic point of view,
his general comments on the operational point of view are extremely interesting [34] (pp. 31–32).
Adoption of operational definitions implies a far-reaching change in all our thinking habits, in that we
will not be able to use concepts that are not properly explained by operations as tools in our reasoning.
Initially, operational thinking may become an unsocial virtue. Later on, it has a chance to reform both
the social art of conversation, and all our social relations. This is particularly true – as Bridgman claims
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– of popular contemporary discussions on religious or moral topics. Thus operational thinking also
includes the use of different definitions of entropy in economics. Such research is expected to result
in moving the issues under consideration from mainstream economics towards econophysics and
complexity economics.

The application of Stevens’ classification system in economics, and in particular the growing use
of the ratio scales, leads to more frequent occurrences of operational definitions of entropy in this
science. As a result of such activities, the centre of thought is shifted from mainstream economics
to econophysics and complexity economics. At the same time, in natural sciences, the very concept
of entropy as a measure of disorder and uncertainty is constantly changing and developing, finding
its expression in the theory of deterministic chaos, the theory of stochastic processes and quantum
mechanics. This often involves replacing the notion of entropy with other, similar terms, better adjusted
to the context of the research. These research trends are gradually penetrating economics, which results
in the need to move on to econophysics and complexity economics in the further part of the paper.
This does not imply the tendency to omit various definitions of entropy in these approaches, but it
results from the partial transformation of this notion into related concepts such as the edge of chaos
or complexity.

6. Thermoeconomics and Operational Definitions of Entropy in Economics

As an effect of the operationalisation of the entropy concept in economics, resulting from the
introduction of the ratio scales, various definitions of entropy can be the subject of reification and
be applied to specific economic phenomena, such as monetary flow in the economy. In such a case,
the starting point for the discussion is the circular flow of income, in which flows of goods and services
as well as factors of production are compensated for with equivalent, but monetary flows in the opposite
direction. However, this process cannot be continued indefinitely, because the economy would then be
a perpetual motion machine, which violates the second law of thermodynamics. Wastes, which have
to be disposed of outside the economic system, are inevitably generated. This must be compensated
for by an influx of new resources from the environment. For this reason, the circular flow must be
supplemented with the linear throughput of matter-energy, which has to supply the constant movement
of money, goods and services, as well as factors of production. Linear throughput means the inflow to
the economy of low-entropy natural capital, such as solar energy, mines, wells, fisheries, croplands and
the outflow of high-entropy wastes, which are no longer economically valuable. An entropic flow is a
part of production processes and causes that the matter and the energy participating in such processes
to become less useful [35]. Therefore, economic entropy should be linked to the utility of goods and
services and factors of production. This leads to the conclusion that entropy is an inherent feature of
production processes, participates in the circular flow, and as such has a direct effect on real money
supply (including the consequences of inflation). It must, therefore, be to some extent a monetary
phenomenon itself.

The development of operational definitions of entropy was possible within a science referred to as
thermoeconomics, which deals with the application of laws of thermodynamics to study economic
phenomena. The processes of entropy generation in economic systems have been thoroughly analysed
by John Bryant in his book Entropy Man [36]. The production of entropy in the economy is formulated
in a way resembling Boltzmann entropy as follows:

S = ln
( V

X

)
, (7)

where V stands for the volume of economic activity, and X represents the level of the constraints for
that activity. Entropy changes in the economy per unit of time can be presented using a more detailed
formula [36] (Ch. 4):

dS = (ω−ωn + 1)
dV
V

=
(
1 +

1− n
r

)dV
V

, (8)
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where dV
V stands for the growth rate of volume flow, ω is the lifetime coefficient, n represents the

elastic index, while r is the natural rate of return. Factor (ω−ωn + 1) is referred to as the marginal
entropic index. After the integration of Equation (8), entropy generation per unit of time takes the
following form:

S = (ω−ωn + 1) ln V + C =
(
1 +

1− n
r

)
ln V + C , (9)

where C is a constant of integration. Economic entropy can be measured in units referred to as nats,
similar to entropy in information theory, where logarithms to the base of the mathematical constant
e ≈ 2.71828 are also used.

The above entropy formulas can be used to measure money entropy. In such a case, the rate of
return is approximately the long-term average or natural level of the velocity of money circulation.
When defining money entropy in the economy, one of the key potential constraints that should be also
considered is the level of interest rates. The demand for money is represented by a function of liquidity
preference formulated by John M. Keynes in his famous book The General Theory of Employment, Interest
and Money [37]. According to this function, the interest rate is the price of money, i.e., the price that has
to be paid to get people to part with liquidity for a specific period of time. Interest can be seen as a
form of value flow constraint. Thus, the change in money entropy in the economy takes the following
form [36] (Ch. 6):

dS =
dG
G
− dI

I
, (10)

where dG
G is the rate of change in output value flow G, and dI

I represents the rate of change in the Index
of Money Interest. In other words, the change in money entropy is the difference between the growth
rate of output value and the prevailing interest rate.

Changes in the interest rate are not the only factor influencing the output value flow and entropy
change, as employment factors are also of great importance. In this case, the entropy formula takes the
form [36] (Ch. 7):

dS = (ω−ωn + 1)
dv
v

=
(
1 +

1− n
r

)dw
w

, (11)

where dv
v stands for the rate of change in output volume flow per head, and dw

w represents the rate of
change in the wage rate. Taking unemployment into consideration, the analysis can also use the Phillips
curve, which is well-known in economics [38,39]. In line with this relationship, a high unemployment
rate is usually accompanied by low rates of wage growth and inflation, and when the unemployment
rate is low, rates of wage growth and inflation tend to increase. Taking this into account, the following
formula for generating entropy in the economy can be presented [36] (Ch. 7) as:

dS =
dG
G
− dJ

J
, (12)

where dG
G represents the rate of change in output value attributed to the labour sector, while dJ

J stands
for the rate of change in lost value from unemployment. In other words, a change in entropy generated
in the economy is equal to the difference between the output value attributed to labour that an economy
can support and the potential output value flow loss taken out through unemployment, which the
economy cannot support.

7. Non-Extensive Cross-Entropy Econometrics

Non-extensive cross-entropy econometrics (NCEE) is one of the most interesting trends in entropy
economics as it is based on power-law probability distribution and it is a method of econometric model
estimation, which is particularly useful for non-ergodic ill-behaved inverse problems [40,41]. It is based
on non-extensive Tsallis entropy, which is a generalisation of the widely known Boltzmann–Gibbs
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entropy. Tsallis entropy, Sq, is particularly useful in studying systems with strong correlations between
various microstates [42–45]. It is noted as the following formula:

Sq =
k

q− 1

⎛⎜⎜⎜⎜⎜⎝1−
W∑

i=1

pq
i

⎞⎟⎟⎟⎟⎟⎠, q ∈ R, (13)

where: k is a conventional positive constant, W ∈ N is the total number of possible (microscopic)

configurations,
{
pi

}
describes a discrete set of probabilities with the condition

W∑
i=1

pi = 1, and q is any

real number. The parameter q is often called the Tsallis index. It is a measure of the strength of the
correlation between different microstates of a system and it can take values smaller or greater than 1.
If this parameter approaches 1, then the Tsallis entropy reduces to the usual Boltzmann–Gibbs entropy
(SBG). We can write [44,45] it as:

pq
i = pip

q−1
i = pie(q−1) ln pi ∼ pi[1 + (q− 1) ln pi], (14)

hence,

S1 ≡ lim
q→1

Sq = klim
q→1

1−∑W
i=1 pi exp[(q− 1) ln pi]

q− 1
= −k

W∑
i=1

pi ln pi = SBG, (15)

where i denotes the number of different microstates each of which has its own probability pi of occurring.
There is some terminological confusion in the physics literature concerning such properties of

physical quantities as additivity and extensivity. This is of particular importance in research on
the entropy measure proposed by Tsallis, where those two notions are often treated as synonyms.
However, in this case, non-extensivity cannot be identified with non-additivity [46–49]. In fact,
the Tsallis entropy is pseudo-additive entropy of degree-q. If we have two independent systems A
and B, such as the probability distribution of the composite system A + B is expressed by the formula
P(A + B) = P(A)P(B), the Tsallis entropy of the A + B system is as follows:

Sq(A + B) = Sq(A) + Sq(B) + (1−q)Sq(A)Sq(B)/k . (16)

This property is referred to as pseudo-additivity. If q = 1, we are dealing with an additive system.
Integration of the classic econometric model with one of Tsallis non-extensive entropy,

which involves a proper choice of constraints, allows for generating new data, which reduce the
entropy of a system under study, thereby allowing for more precise estimation of the model parameters.
This approach allows for analysing complex systems described with heavy-tailed distributions,
with long memory and characterised by scale invariance. Since rare events occurring in non-ergodic
systems are associated closely with heavy tails, the use of normal distribution is limited. In this
manner, fractal and multifractal objects are included in considerations, which exhibit self-similarity in
different temporal and spatial scales [50,51]. Therefore, power-law probability distributions become
the focus of research attention; they are useful in describing systems both with low-frequency and
high-frequency events.

Generalisations of the normal distribution using the non-extensive Tsallis entropy can describe
ergodic and non-ergodic socio-economic systems. In the case of isolated macroscopic systems, ergodicity
means that, with time, a phase trajectory runs through all the allowed microstates. On the other
hand, non-ergodic systems are characterised by multi-level correlations between system microstates,
with the consequent occurrence of non-extensive entropy in them, which is not a linear function of
the number of possible states. There is quite convincing evidence that the amplitude and frequency
of socio-economic phenomena do not substantially diverge from many extreme events occurring
in nature if they are transformed by power law distribution into the same time or space scales.
A distribution arising from the aggregation of statistical data depends on the nature of the phenomena
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under study and it results from an effect of two attractors: the power-law attractor associated with
extreme events and the Gaussian attractor, which occurs in the central part of the data series. The use
of pseudo-additive Tsallis statistics in modelling allows for preserving long-range correlation and the
observed time-scale invariance structure of high-frequency series in the process of transformation
(aggregation) of high-frequency data to a lower frequency. The differences between an approach
typical of NCEE and other econometric methods become visible when aggregated data approach the
normal distribution, i.e., economic systems of relatively low complexity levels are considered. In such
cases, entropy econometrics referring to Gibbs–Shannon’s classic concepts gives a result similar to
NCEE, because the Tsallis complexity index (q) goes to one. Similar results can be obtained with classic
econometric techniques. However, NCEE methods are more useful in the case of complex systems
described by Lévy processes [52]. Therefore, the non-ergodic approach is at least non-inferior to the
parameter estimation methods now used in econometrics.

Entropy econometrics is particularly useful in forecasting input-output table parameters, which
are presented as an inverse problem. We have an inverse problem when we use a set of observations
to establish the causes that generated the set. In other words, the effects are used to establish the
causes. It is the reverse of a forward problem, whose solution starts with causes, which are then used
to determine the effects. A reverse problem can be defined as follows:

dobs = F(p), (17)

where dobs is a set of noted observations, F(p) denotes the forward map, and p stands for the set of
model parameters. It denotes the determination of the parameters of the model p, which generated the
set of observations dobs. When it comes to input-output tables, they are often unbalanced, due to which
a researcher faces an ill-behaved (troublesome) inverse problem. In such cases, the pseudo-additive
Tsallis entropy gives a numerically more stable result than the Shannon entropy. Nevertheless,
Shannon’s entropy is useful for solving many other economic problems, such as developing a new
interpretation for uncertainty and risk related to economic disparity [53] and analysing the quality
of institutions in the European Union countries from the perspective of their influence on the speed
of resource reallocation [54] or comparing the development level of the digital economy in various
countries [55].

The NCEE method also enables obtaining good results for the estimation of production function
parameters with constant elasticity of substitution (CES) between production factors, as it allows for
demonstrating that a non-linear function CES can have an analytically closed-form solution. So far,
solitons have been the best-known examples of such non-linear functions [56]. This result was achieved
at the model variance minima and varying q-Tsallis complexity index when the estimated CES function
was described with the power law. However, it required the previous demonstration of a relationship
between the power-law distribution and the macroeconomic aggregate structure of national accounts.
Moreover, calculations have demonstrated the superiority of the NCEE method over such traditional
estimation techniques as Shannon entropy, the non-linear least squares, the generalized methods of
moments, and the maximum likelihood approaches [57]. Non-extensive Tsallis entropy also finds
a number of applications on financial markets, which includes studies concerning the distribution
of return fluctuations for the Polish stock market index WIG20 [58], the origin of multifractality in
the time series [59], the exchange rate return fluctuations [60], relationship between the stock market
returns and corresponding trading volumes [61], the memory effect involved in returns of companies
from WIG 30 index on the Warsaw Stock Exchange [62] and the asymmetry of price returns on stock
and money markets [63]. Other types of entropy have also been applied to financial markets [64].

8. Program for the Development of Econophysics formulated by Zygmunt Rawita-Gawroński
in 1958

The foundations of modern econophysics were formulated by the Polish economist Zygmunt
Rawita-Gawroński. He pointed to the need to supplement the methodology of economics with some
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ideas of physics, mainly with the theory of stochastic processes and the non-linear dynamics he
anticipated, which he called an “aleatory momentum”. Rawita-Gawroński’s article is a collection of
ideas aimed at improving economics by the large-scale introduction of physics methods. This work is
still relevant and it seems that it will remain so for a very long time. Although written over 60 years
ago, it reads as if it was written yesterday. Rawita-Gawroński’s program of econophysical research
consists of the following elements [65]:

8.1. General Formulation of the Econophysics Scientific Problem

The rapid development of physics and the related progress in mastering natural forces should be
used to develop economic methodologies. First of all, the need to apply the concept of entropy and
selected elements of thermodynamics, statistical mechanics and quantum theory is stressed.

8.2. A Criterion for Applying Physics Methods in Economics

The greatest benefits may be gained by economic theories with the same approach to the
phenomena they study as in natural sciences. First of all, the microcosmic approach is mentioned,
which has to be cleared of any metaphysical tarnish in order for the object of research to be quantitatively
acceptable. This would allow for the application of mathematics. The importance of general principles
applicable to all sciences is also emphasized, which indicates thinking in terms of general system theory.

8.3. The Principium Rationis Sufficientis as a Mental Aspect of Causality

This principle, which stems from the fundamental criterion of praedicatus inest subjecto, is based on
divine wisdom. It is in line with Poincaré’s views, for whom the physical phenomenon is the result of
a combination of many causes, but their influences cannot be distinguished and evaluated. Causality
is also the basis of statistical laws, manifested in mass phenomena.

8.4. Development of the Classic Concept of Equilibrium Based on the Works of Walras and Pareto

It is impossible to formulate a definition of equilibrium in economics without referring to the
second law of thermodynamics. All isolated systems aim at a state of equilibrium corresponding
to the minimum of free energy in relation to the total energy of the system, which is equivalent to
the maximum of the entropy function. Movements leading to equilibrium can be reversible if they
originate from the causal laws, or are irreversible if they are a consequence of an increase in entropy
and thus the result of statistical laws.

8.5. Types of Equilibrium in Economics

Equilibrium should be classified according to how it is reached. This can be done by the cancellation
of opposing moves, by fusion or by accumulation. The first type is the mechanical equilibrium achieved
by cancellation, which occurs when all movements are homogeneous. Thermodynamic equilibrium,
on the other hand, is achieved by a fusion of unobservable micro-movements, which leads to a
macroscopic state associated with the maximum entropy. The third type is psychological equilibrium,
whose importance in economics cannot be overestimated, based on the accumulation of past states.
This is a fundamental issue in psychoanalysis and somewhat similar to inertia. This equilibrium is a
kind of attitude of man towards the world he wants to know.

8.6. Anticipation of the Definition of Complex Adaptive Systems given by Gell-Mann Several Decades Later

In the statistical equilibrium, the principle of cognitive level difference between the phenomenon
and its explanation scheme applies. The schemes are used to explain the forms of macroscopic
phenomena. They are temporary because they are improved during cognitive processes.
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8.7. Anticipating the Existence of Dissipative Structures in Economics and Physics

Statistical laws are a link between stochastic processes and life phenomena. The concept of
personality has no clear bottom limit and it emerges slowly as the complexity of material structures
increases. However, this explanation must not overlook the extremely important moment when
particle coordination occurs. The usefulness of the ideas of evolution derived from entropy gives an
important clue for further research in the sense that where organization and causality begins, statistical
probabilism and determinism ends.

8.8. The Need to Take Open Systems into Account in Economics

Physical and economic systems are not completely isolated from the environment, so there is a
possibility of fluctuations that counteract the trend towards the most probable state. This weakens the
operation of statistical laws, and the significance and role of fluctuations bring the researcher closer to
the problems of an individual and society and the organisation of the economy.

8.9. Anticipation of the Emergence of Ecological Economics (Bioeconomics) as Understood by Georgescu-Roegen
and its Critical Judgment

In open systems, the phenomenon of entropy does not have to express a constant, irreversible
degradation of energy in nature and reaching a state of complete homogeneity of the universe, where
time and space lose all sense. A decrease in system energy quality due to entropy, which means
a reduction in usable energy resources, is constantly hampered by technical progress in the use of
energy sources. According to the first law of thermodynamics, with a constant amount of energy in
the universe, entropy is equivalent to full energy deterioration only if we assume an unchanged level
of technology.

8.10. Similar Limitations of Cognition in Physics and in Economics

In both sciences, there is a need to abstract from a great many causes, which affect the phenomena
under study to a relatively small extent and thus can be omitted (ceteris paribus principle). In addition,
the boundaries of scientific thought are marked by certain imperfections, antinomies or contradictions,
such as Heisenberg’s uncertainty principle, the unattainability of full statistical equilibrium and the
impossibility of separating adjacent systems that are expressed by the same wave function or what
might be called an anti-accident.

8.11. Collective Facts as the Basis of Complexity Economics and Quantum Economics

Methodological constructions in economics, based on deterministic physics of the nineteenth
century, do not take into account uncertainty in human behaviour. On the other hand, the physics
contemporary to Rawita-Gawroński took into account stochastic probabilism, which he called the
aleatory momentum. The most important research problem he posed in this paper is whether methods
of physics in combination with the mathematics of aleatoric phenomena will allow capturing the whole
of human activities in economics. The criterion for assessing the scientific value of econophysics is its
ability to describe collective facts, which are the result of many individual actions.

8.12. The Role of Physics in Economics Development

Postulated by physics, stochastics is connected with the problem of economic assumptions revision.
It should be modified by replacing some causal or functional relations with stochastic relations.

8.13. The Basic Difference between Social and Physico-Chemical Sciences

The more accurate the statistical cognition and prediction in physics, the more related the condition
of the object under study is to stochastic chaos. Difficulties occur only when molecule coordination
occurs and causal relationships are revealed. The main role in the description of an object in social
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sciences is played by an organizational element and the associated causality. The aleatory momentum,
associated with stochastic chaos, is much less important, but it is the main connecting factor of
these sciences.

8.14. Sources of Econophysics Advantage over Mainstream Economics

Different world views, traditionalisms, political orientations, environmental influences, one’s own
temperament, etc., place a much greater mental burden on a theorist of economics than on a
physics theorist.

The well-known Italian physicist Ettore Majorana, much earlier than Rawita-Gawroński,
stressed the importance of statistical laws, especially those in thermodynamics and quantum mechanics,
for the development of economics and other social sciences. However, unlike the latter, he did not
formulate a more specific program of economics development supported by physical methods, i.e.,
econophysics [66,67]. Another difference between Majorana and Rawita-Gawroński is that the former
limited himself to an analogy between physics and social sciences, while the latter thought in terms
of the isomorphism principle formulated by von Bertalanffy. Nevertheless, Majorana was perfectly
aware of the importance of entropy for the development of social sciences. He treated it as an additive
quantity. He stressed that the development of physics emphasizes the importance of statistical laws
in the whole science. He also shared Sorel’s view that determinism applies only to the phenomena
classified as artificial nature, which do not occur in the presence of significant degradation of energy
as provided for by the second law of thermodynamics. He pointed out that this principle must be
understood as a statistical law, since entropy only describes macroscopic states, while the number
of internal possibilities is so large that it is impossible to isolate and explore them all. Therefore,
the number of these internal possibilities is a measure of the degree of hidden indeterminacy of the
system. One can only assume that they are equally probable. Analogies with social systems are
rather obvious.

Majorana perceived the role of quantum mechanics in the development of social sciences somewhat
differently. It is based on statistical laws, which, in his opinion, differ significantly from the classical
statistical laws, where uncertainty is the result of voluntary resignation for practical reasons from
establishing the initial conditions of systems in every detail. Quantum mechanics lacks objectivity
in the description of phenomena because the measurement itself changes the examined system.
Moreover, this theory changes the rules of the determination for internal configurations in systems,
which affects such phenomena as entropy. In classical theory, the number of internal possibilities
could be infinite, whereas in quantum theory there is an essential discontinuity in the description of
phenomena associated with the Planck constant. This means that the number of microstates is finite,
although still huge. Therefore, in quantum physics, we have probabilistic laws, which are hidden
at lower levels of reality than customary statistical laws. Rawita-Gawroński also sees this problem
and claims that the introduction of quantum theory into thermodynamics removes the inability to
accurately determine entropy and thus changes the definition of statistical equilibrium. It seems
that both Majorana and Rawita-Gawroński present here the nucleus of the idea developed later by
Gell-Mann, that deterministic chaos is a mechanism that reinforces indeterminacy inherent in quantum
mechanics to macroscopic levels—occurring both in physics and in economics.

9. Modern Econophysics

Econophysics is a transdisciplinary science based on the observation that physical and economic
objects can have a common theory. Since there are some logical homologies at its base it is
an exemplification of a known isomorphism principle developed by Ludwig von Bertalanffy.
The emergence of transdisciplinary areas of knowledge is consistent with the general system theory
paradigm which he formulated [68]. According to the isomorphism principle, there are structural
similarities between objects described by different science branches. Isomorphism is not associated
with analogies, which are only superficial similarities of phenomena and processes, but with logical
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homologies. They occur when factors affecting certain phenomena or processes are different, whereas
the formal laws that govern the dynamics of apparently different objects are identical. Discovering
homologies facilitates scientific work as it reduces the time needed to explain phenomena. An issue,
which is still a challenge in one branch of science, may be formally similar to another in a different
branch, which has long been explained. Imparting a relatively broad meaning to the concept of a system
enables transferring models from one area to another. Philip Mirowski carried out a comprehensive
analysis of the relationship between natural sciences, information theory and economics [69–73].

Mantegna and Stanley understand econophysics as activities of physicists who strive to solve
economic problems by applying methods already tested in different branches of physics [74]. However,
such a definition seems to be too one-sided because it assumes cognitive actions only by physicists.
One must admit that studies of this type were initiated after 1995 only by physicists [75], but now
an increasing number of economists can also apply modern methods and techniques originating in
physics to describe markets and economies. It seems that the dynamic development of econophysics
must be based on permanent cooperation between physicists and economists in solving economic
problems, which may prove beneficial for the development of both economics and physics [76–78].

Development of a branch of science is usually measured by its ability to formulate new knowledge
about reality. Progress in research can be identified both when the use of traditional methods has led
to the discovery of new facts and when new scientific laws have been discovered using innovative
methods. Econophysics is an attempt to develop economic science, which is based mainly on the
transfer of research methods and techniques from physics to economics. Thus, in this case we are
dealing with a second possibility of increasing the knowledge base. The methods of physics most
frequently used in economics include non-linear dynamics, the theory of stochastic processes, cellular
automata and quantum mechanics.

The very definition of econophysics shows a certain methodological primacy of physics over
economics, but numerous, although less known, examples can be given to the contrary: that economics
initiated the development of physics. The first power law was discovered in the late nineteenth
century by the Italian economist Vilfredo Pareto, who studied income distribution in different societies.
He observed a stable relationship, independent of time and space, which differed significantly from the
Gaussian curve [79,80]. Income distributions were similar in different countries and periods. If N(y)
denotes the number of people with the income not lower than y, then the power law will describe
changes in individuals’ wealth under stable economic conditions:

N(y) = C y−α, (18)

where C is a certain constant and α > 0 is called the critical exponent that Pareto estimated to be 1.5. Such
distributions were applied in physics much later, mainly owing to the work of Lévy and Mandelbrot.

It was similar to the random walk concept, which Bachelier developed and applied in the pricing
of options in speculative markets as early as 1900 [81]. This idea appeared in physics only five years
later in one of Einstein’s works [82]. In this context, the story of the discovery of the butterfly effect,
which means the sensitive dependence on initial conditions, occurring in non-linear dynamical systems,
is also very interesting. This was discovered by Poincaré in 1890, when he dealt with the restricted
three-body problem [83]. However, this discovery was forgotten for a long time. This phenomenon was
again encountered in the 1930s by the Swedish economist Palander when he studied certain models of
duopoly and oligopoly [84–86]. They were also observed in the early 1950s in the course of numerical
exploration of Goodwin’s non-linear business cycle model [87–89]. In physics, the butterfly effect was
rediscovered only in 1963, when Edward Lorenz revealed the presence of the chaotic attractor, known
today as the Lorenz attractor, in the non-linear model for atmospheric convection [90]. It can be seen
that science is holistic, and the lack of cooperation between economists and physicists has caused
considerable delays in its development. It is noteworthy that a certain cognitive balance between
physics and economics can be seen in the formulation of entropy economics given by Georgescu-Roegen,
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which speaks in favour of this approach. Therefore, it should be accepted that there is an inherent
two-way relationship between these sciences.

The most interesting achievements of econophysics apply to financial markets [91–95]. This is
because these markets generate sufficiently large and precise datasets, which is a prerequisite for the
effective application of physical methods. The flagship achievement here is the questioning of the
efficient market hypothesis, as a result of the finding of endogenous self-organisation processes in
major world stock exchanges [96]. Notable successes have also been achieved in modelling phase
transitions, catastrophic and critical phenomena [97–99]. Furthermore, the sphere of interests of
econophysicists embraces issues related to business cycles, factors of economic growth, income and
wealth distributions, economic equilibrium, property markets, mechanisms of hyperinflation and the
development of enterprises. Empirical research carried out within the framework of econophysics
either complements or contradicts traditional economic knowledge. If the latter occurs, it is necessary
to verify and update this knowledge constantly. The broad front of empirical research also forces
changes in economic theory. Progress, in this case, is two-directional. On the one hand, the logical
consistency of conventional economic models is being tested, while on the other, the possibility of
developing new theories of markets and economies is being created.

Although econophysics and mainstream economics have the same goal of solving economic
problems, due to significant methodological differences they are treated as two separate sciences [100].
Economists usually build their models on empirically untested premises that are treated as religious
dogmas [101,102]. Thus, mainstream economics is largely a deductive science that uses axiomatic
mathematical modelling. The application of economics to government policies regarding science
and technology is particularly unreliable. Its usefulness is especially limited as far as the rational
management of research and the conduct of thoughtful science policy are concerned [103]. Econophysics,
on the other hand, is an inductive science which emphasizes empirical research and discovers
relationships contained in data using mathematical tools and logic. Its essence is not to match
observations to a priori models, but to discover the mechanisms of real economic systems. The success
of econophysics as a science and the proper use of its achievements will only be possible if it has a
noticeable impact on the course of economic phenomena. For this to happen, econophysical models
must allow for accurate predictions and be accepted by economists as useful for economic policy.

10. Entropy, Ignorance and Complexity

As shown above, entropy and information are closely linked. It follows that entropy can be
understood as a measure of ignorance [104]. Information and ignorance are opposites, but what one of
them measures is also measured by the other. The entropy of a certain macrostate of the system is
a measure of our ignorance concerning the actual microstate and it is equal to the number of bits of
additional information necessary to describe that microstate, as long as all microstates in the macrostate
are equally probable. This reasoning also applies when the system is not in a single macrostate, but
can take many various macrostates, each with a different probability of occurrence. The entropy of
the macrostates should then be averaged using appropriate weights in the form of their probabilities.
Furthermore, entropy includes the number of bits of information necessary to determine a macrostate.
To sum up, entropy means the sum of the average ignorance referring to a specific microstate within
the macrostate and the ignorance of the macrostate itself. Thus, it can be claimed that—according to
the second law of thermodynamics—specification of the state is equivalent to order, while ignorance
corresponds to disorder.

The definition of entropy as a measure of ignorance may also take into account the operation of
Maxwell’s demon, which controls a vessel filled with a gas at uniform temperature [105] (pp. 308–309).
While individual gas molecules move at different speeds, the mean velocity of a large number of
molecules is the same. After dividing the vessel into two parts, A and B, the demon sorts the molecules
in such a way that faster ones are allowed to pass from A to B, and slower ones from B to A. As a result
of the demon’s action, the temperature of part B increases and the temperature of chamber A decreases,
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without performing work, which is contradictory to the second law of thermodynamics. Heat flows
from the cold gas to the hot one. The operation of the demon should be explained as follows. It can
force the flow of heat from cold to hot bodies, but in addition to being able to measure molecular
velocities, it must also collect information about these velocities. The entropy of the system consisting
of cold and hot bodies can be reduced at the expense of increasing the number of records in the demon’s
memory. However, this memory is finite and after it is filled in, it will be necessary to erase old records
to make room for new ones. The erasing of the last copy of the information record causes at least such
an increase in entropy that restores the operation of the second law of thermodynamics. Consequently,
Gell-Mann proposes a new definition of entropy of the entire system, which does not violate the
second law of thermodynamics, even when records exist. Algorithmic information content of records
with relevant information should be added to entropy being a measure of ignorance. The algorithmic
information content of a bit string is the length of the shortest computer program containing specific
information. This means the exchange of ignorance for records. A decrease in entropy results in
the information record to emerge, and then ignorance is reduced, but at the same time algorithmic
information content of the record increases. However, erasing the record reduces the information it
contains, but causes at least the same increase in ignorance related to the entire closed system.

The relationship between information and ignorance can be expressed by a mathematical formula.
The ignorance measure I can be defined based on Shannon informational entropy, in which the
multiplicative constant is omitted [106]:

I = −
∑

r
Pr log Pr , (19)

where Pr stands for coarse-grained probability for the individual member r of the ensemble, while
log means logarithm to the base 2 and, therefore, uncertainty is measured in bits. Based on this, a
generalized measure of ignorance Iq can be defined, taking the following form:

Iq = −
⎡⎢⎢⎢⎢⎣∑

r
(Pr)

q − 1

⎤⎥⎥⎥⎥⎦ /
(q− 1) , (20)

which is reduced to Equation (19) in the limit where q approaches 1. This measure can be applied to
describe complex systems operating at the edge of chaos, which—as will be demonstrated—are crucial
to understanding the functioning of markets and economies.

In order to solve problems related to the functioning of complex systems, such quantities as
the effective complexity and total information are used [107]. The effective complexity should be
understood as the length of a compact description of the regularities identified in the examined
system, while total information is the sum of the effective complexity and an entropy term, which
measures information necessary to describe the random aspects of the entity. Thus the total information
describes both rule-based features and the probabilistic features of the perceived entity. Comparison of
different sets of identified regularities of an entity permits us to show that the best set minimizes total
information, which leads to minimizing the effective complexity. The effective complexity specified
in such a way seems to be independent of the observer. Furthermore, there exists a relation between
effective complexity and Bennett’s logical depth [108]. If the effective complexity of the binary string
exceeds a certain clearly defined threshold, then this string has astronomically large depth. Otherwise,
the depth is arbitrarily small.

To conclude this part, it is worth mentioning a certain paradox associated with the growth of
knowledge. In recent years, our knowledge has been increasing exponentially, but ignorance has
been growing at an even faster rate [109]. Therefore, an increase in knowledge is accompanied by
an increase in entropy. Thus, total information about the examined system increases not only due to
an increase in effective complexity, but also as a result of increased ignorance. However, Maxwell’s
demon has limited memory, so it cannot indefinitely convert ignorance into records.
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11. Complexity Economics

Although econophysics has a lot in common with complexity economics, it is not possible
to equate these two sciences. Econophysics is a scientific discipline which consists of applying
physical models and methods to study economic phenomena [110–114]. Complexity economics,
in turn, is a broader discipline, since—apart from the fact that it contains almost all econophysics—it
examines economic problems within complexity science. Since it is the opposite of equilibrium
economics, it does not focus on order, determinacy, deduction or stasis, but as non-equilibrium
economics, it emphasizes the importance of contingency, indeterminacy, sense-making and openness
to change [115–119]. Equilibrium (neoclassical) economics is a special case of complexity economics.
Additionally, complexity economics has derived many ideas and concepts from biology because it
treats the economy as an evolutionary system [120,121].

Complexity economics is a response to certain shortcomings of conventional economics, such as
the homo oeconomicus model, treating markets and economies as closed systems or relying on the
assumption of linearity. The homo oeconomicus model defines a set of rules concerning human behaviour
in economic processes, which include unbounded rationality, unbounded willpower and unbounded
selfishness [122]. A closed system aiming at a state of thermodynamic equilibrium has become the main
metaphor determining economic thinking throughout almost the entire 20th century. This assumption
became the cornerstone of many elegant mathematical models of general equilibrium and certainly
inspired the creators of the rational expectation hypothesis. Linearity, on the other hand, consists in
reducing relations between phenomena to straight lines. If, in a certain system, a change of one variable
at a given time by a certain multiple or fraction will change the same or another variable at a later time
by the same multiple or fraction, then the system under consideration is linear. After plotting later
values of a given variable as a function of previous values of the same or another variable, it turns out
that the points lie on a straight line. These assumptions caused the cognitive gap between conventional
economics and reality to grow steadily as a result of humanity’s economic development. In such
conditions, the phenomenon of innovation or economic growth could only be explained by referring to
the random exogenous shock.

In recent years, it has become apparent that dissipative structures can be identified in economic
systems, i.e., those with steady states existing far from equilibrium. In such cases, we are dealing with
non-extensive entropy, without the features of additivity, i.e., which is not a sum of values calculated for
all subsystems. Entropy in an economic system is the sum of the production of entropy in the system
itself and its exchange with the environment. The inflow of negative entropy from the environment can,
therefore, compensate for the production of entropy in the system itself. After the introduction of certain
disorders into the dissipative systems, it appears that they do not have to go to a state of equilibrium
corresponding to the maximum entropy. In states far from equilibrium, orderly structures based on
long-range correlations are created, and the occurring phenomena are characterized by long-term
memory. The sensitivity of these systems to interactions of internal elements and environmental
influences is related to the dissipation of energy [123,124]. Identification of dissipative structures in
real systems was a significant advance in the development of the science of complexity and laid the
foundations for another scientific breakthrough in identifying complex adaptive systems in nature.

Complexity economics treats markets and economies as complex adaptive systems that are by their
very nature open, non-linear, consisting of interacting agents and exhibiting emergence. The sources of
interaction are agents, i.e., mainly people, although they may also be other biological organisms or
even computer programs. Complexity should be understood as the dynamic properties of a system
that cause its behaviour to be non-periodic or structural changes to occur in it due to endogenous
forces. A very important feature of these systems is emergence, which consists in their ability to create
ordered collective phenomena, which can only be described at a level higher than that used to describe
the components (basic rules). Complex adaptive systems collect information about their environment
and their relationships with it, discover regularities in them, and use this information to build cognitive
schemes that they use to operate in the real world. The effects of these activities generate a new, return
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flow of data used to evaluate the available set of cognitive patterns. As a result of this process, some of
these schemes will survive and be improved, while others will be rejected [104].

Within complexity economics, markets and economies are understood as extremely dynamic,
constantly evolving systems that resemble the brain, the Internet or the ecosystem in terms of their
functionality. The greatest differences between complexity economics and conventional economics
concern 10 issues: dynamics, agents, networks, emergence, evolution, technology, preferences, sources,
elements and the horizon of predictability [125,126]. New ideas developed by complexity economics
indicate that markets and economies tend to operate far from being balanced and that different agents
should be modelled individually. They usually have incomplete information, make mistakes, but also
have the ability to learn and adapt. Multilateral interactions between agents form networks that change
over time. There is no difference between microeconomics and macroeconomics, as the latter is the
emergent result of the interaction and behaviour of agents at the microeconomic level. The development
of markets and economies is possible as a result of innovation, which is an essential factor for economic
growth. Technological progress is endogenous to the economic system. The formation of individual
preferences is a central issue in complexity economics, and agents do not necessarily have to be
selfish. Complexity economics has its sources in biology, which is based on morphogenesis, structures,
shapes, forms, capabilities, self-organization and life cycles. The source of conventional economics,
on the other hand, is 19th-century physics, referring to balance and stability, which is why modern
economics textbooks are mainly based on prices and quantities. In complexity economics, forecasting
the dynamics of markets and economies is limited to the so-called Lapunov time, which is the inverse
of the Lapunov exponent known in non-linear dynamics. The latter is a measure of the butterfly effect,
so it determines whether the system is sensitive to initial conditions. The butterfly effect (deterministic
chaos) occurs when this exponent is positive.

According to some critics, complexity science has difficulty in defining the very concept of
complexity. Indeed, Horgan points to the existence of at least 45 different definitions of complexity,
most of which refer to concepts as imprecise as entropy, randomness or information [127]. However,
this is not evidence of the weakness of the concept of complexity, as this is the kind of differentiation
that should be expected. The concept of complexity is only partially objective, as it depends on the
level of knowledge of reality and the state of consciousness of a given agent. Therefore, the term is
irreducibly subjective. Undoubtedly, however, all agents acting in certain conditions can be assigned
shared initial knowledge, because what unites them is the search for order and regularity in a
turbulent world. A certain amount of subjectivity in the definition of complexity must result from
coarse-grained averaging, i.e., the accuracy with which a given agent (complex adaptive system)
perceives reality. Therefore, it is best to adopt the definition of the effective complexity of an entity
proposed by Gell-Mann. It should be understood as the length of a concise schema showing the
regularity of this entity, which has been drawn up by the observer – the chosen complex adaptive
system. The concept under consideration is, therefore, inherently and inextricably linked with the
cognitive agent, and disregarding this relationship will always be a source of misunderstanding.

In the greatest discovery of complexity economics, it was proved that some markets and economies
have the ability to tune in to the edge of chaos. A necessary, but not sufficient, condition is that they are
complex adaptive systems. The edge of chaos is the distinguished state of a system situated between
periodic and chaotic behaviour, where it has the maximum computing power. Around the edge of
chaos, the complexity of the system is close to optimal and its adaptability is the greatest [128,129].
The edge of chaos may have one of the following forms: chaotic attractors and repellers, catastrophes
of complexity, coexistence of attractors, sensitive dependence on parameters, final state sensitivity,
effects of fractal basin boundaries, chaotic saddles [130].

12. Conclusions

There is no doubt that the emergence of entropy in economics has led to many surprising and
important discoveries in the functioning of markets and national economies. However, not all of them
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have been fully accepted by mainstream economics. There are many reasons for this and they are quite
well known. Furthermore, entropy has contributed to the emergence of econophysics, complexity
economics, and quantum economics. This makes the situation in modern economics quite strange.
If one compares it to a tree, the branches representing mainstream economics are developing more
and more slowly, while the branches based on entropy are developing rapidly, creating new economic
knowledge quite quickly. This disequilibrium may end in two ways: either mainstream economics will
accept the achievements of econophysics, complexity economics and quantum economics, which will
require—as Rawita-Gawroński noted more than 60 years ago—a revision of the content of economic
assumptions, or economics will become the next physical science [131].

The concepts discussed here have contributed to the remarkable development of economics,
but some weaknesses, particularly in their practical application, have not been overcome. The most
important of these is the inability of econometrics, both traditional and non-extensive entropy-based,
to determine the value of parameters accurately. This boundary of cognition results directly from
non-linear dynamics, i.e., from the existence of deterministic chaos in the real world. Therefore, it is a
result of the very nature of reality. Econometricians assume the correctness of a predetermined model
with a number of unknown parameters and then try to forcefully match it to a non-stationary time
series by the best choice of parameters. However, non-linear dynamics indicate that by matching any
infinite precision model (stochastic or deterministic) to inherently finite precision data, non-uniqueness
cannot be avoided [132]. The source of such problems is the sensitive dependence on parameters in
non-linear dynamical systems, in which the parameter values associated with stable periodic orbits
may be close to chaotic parameter values. Moreover, being unable to determine the initial conditions
of the systems under study with infinite accuracy, we are exposed to the butterfly effect, whether we
want it or not. Thus, econometricians mislead themselves and others by thinking that their models are
helpful in understanding economic processes.

Some hopes for solving certain methodological problems are placed on a relatively new research
trend called quantum economics [133,134]. It also appears that many economic issues can be treated as
quantum phenomena. Logical homology, in this case, is a bridge connecting the dynamics of economic
objects with the laws of motion of particles, which are of interest to quantum mechanics. The basic
source of isomorphism here is Heisenberg’s uncertainty principle [135]. The more precisely we try to
determine the position of some particle, the less precisely we are able to determine its momentum
and vice versa. An example of a quantum phenomenon in economics can be the process of setting
the price of a good or service. In quantum economics the value of a good is rather undefined, so the
price reflecting it cannot be determined. Only making a transaction—by analogy to the uncertainty
principle—is a measurement of value and allows for determining the price precisely. During this
process, the exchange of money takes place and, therefore, money acts as a measuring device in the
markets. Therefore, money is a fundamental element of economic analysis in quantum economics [136].
This concept is very promising [137–142], but time will tell if it will broaden our understanding of the
regularities governing the markets and national economies. A number of arguments exist for including
quantum mechanics in social scientific debates, since consciousness is probably a macroscopic quantum
phenomenon [143].
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Abstract: In this work, we develop the Tsallis entropy approach for examining the cross-shareholding
network of companies traded on the Italian stock market. In such a network, the nodes represent the
companies, and the links represent the ownership. Within this context, we introduce the out-degree
of the nodes—which represents the diversification—and the in-degree of them—capturing the
integration. Diversification and integration allow a clear description of the industrial structure
that were formed by the considered companies. The stochastic dependence of diversification and
integration is modeled through copulas. We argue that copulas are well suited for modelling the joint
distribution. The analysis of the stochastic dependence between integration and diversification by
means of the Tsallis entropy gives a crucial information on the reaction of the market structure to the
external shocks—on the basis of some relevant cases of dependence between the considered variables.
In this respect, the considered entropy framework provides insights on the relationship between
in-degree and out-degree dependence structure and market polarisation or fairness. Moreover,
the interpretation of the results in the light of the Tsallis entropy parameter gives relevant suggestions
for policymakers who aim at shaping the industrial context for having high polarisation or fair joint
distribution of diversification and integration. Furthermore, a discussion of possible parametrisations
of the in-degree and out-degree marginal distribution—by means of power laws or exponential
functions— is also carried out. An empirical experiment on a large dataset of Italian companies
validates the theoretical framework.

Keywords: Tsallis entropy; copula functions; cross-shareholding network; finance

1. Introduction

The presence of interconnections among companies is the ground for the propagation of shocks
over the entire industrial structure of a country; see e.g., [1,2]. This evidence has led to a growing
number of studies exploring such structure through networks theories; see e.g., [3,4].

In this respect, a single company can be intuitively seen as a network node. The ownership
relationship can be represented through a network: there is a (directed) link from a company i to a
company j if i holds shares of j. For what concerns the mutual connections among companies, several
contexts can be explored on the basis of the topic under investigation. Here, we mention connections
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that are driven by technological transfer [5], the presence of personal relationships [6–8], the interlock
of directorates [9–12], and capabilities at the organisational level [7,13]. For a survey on this field,
see e.g., [14].

We propose a specific focus on the cross-shareholding matrix, which is associated to the directed
links, thereby capturing the so-called in-degree and out-degree of each node.

Specifically, the in-degree of a company—say, kin—is the number of companies holding some
ownership of the considered node. Such a concept has a clear interpretation on the integration of any
given company in its reference industrial and productive environment. Similarly, the out-degree of a
company—namely, kout—counts the companies included in the portfolio of the considered node. Thus,
kout is associated to diversification, which, in turn, might point to information on the possible reaction
of a considered company to markets fluctuations. For the concepts of integration and diversification,
we refer the interested reader to [15].

Notice that the so-followed approach is grounded on the existence of a connection—in terms of
ownership relations—between two companies. In so doing, we explore diversification and integration—
along with market concentration, which is a synthesis of them—as a matter of pure shareholding
strategies and through the singular attitude of companies to collect shares of other companies, and at
the same time to have shares own by other companies—“other companies”, which can be the same
being owner and owned (Renault SA, which is part-owned by the French state, owns 43% of Nissan
Motor Co, while the Japanese firm has 15% of the French carmaker—but with no voting rights in this
case). Within such thinking, the amount of inter company flows leads to a discussion on the size of
the connections between companies. In this setting, in-degrees and out-degrees should be reasonably
written as sums of percentages of in-flows and out-flows. Thus, the in-degree can be high in both
cases, i.e., when there is a large number of existing in-connections with small flows or small values
of in-connections with large entities of flows; the same consideration applies also for the out-degree,
of course. The numerical dimension of the connections is then lost—even if a new information on
the size of the flows is available. Yet, the analysis of such flows is clearly beyond the scopes of the
present paper.

While out-degrees are widely explored, for their natural connections with the resilience of an
industrial system, see e.g., [16–21], scarce attention has been paid to in-degrees. Let us point to a
noticeable contribution on the trade-off between diversification and integration in the analysis of
economic crises in [22].

Here, we are concerned by the market concentration—which represents a synthesis of diversification
and integration, by means of the entropy of the in-degree and out-degree distributions. The entropy
concept allows for understanding the position of the considered industrial structure between the
extreme cases of uniform diversification and integration and a contrario strong polarisation, with only
one company playing the role of the leader.

Furthermore, we also include a deep analysis of the particular features of the distributions through
a generalised concept [23,24] of Boltzmann–Gibbs (or equivalently Shannon information [24–26])
entropy. To this end, we move from [27] and deal with the Tsallis entropy for discussing the in- and
out-degrees distributions of the companies.

Tsallis entropy—introduced in [23]—has been applied in a number of contexts related to economics
and finance; see e.g., the excellent review in [28] and references therein. Most of the time, the studies
concern risk or portfolio management [29–34]. Our present report seems to be the first contribution
dealing with this powerful instrument in the context of the cross-shareholding matrix for its related
network of companies.

Tsallis entropy depends on a (usually real, see a complex case in [35]) parameter, whose interpretation
provides relevant information on the shape of the distributions. Indeed, when the parameter is negative
(positive), then Tsallis entropy attains its maximum in the highest polarisation case (in the uniform
distribution case). Moreover, a negative value of the parameter is associated to a strong relevance of fat
tails and rare events; see e.g., [24].
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To explore in depth the relationship between integration and diversification, we propose the analysis
of the joint distributions between such terms in the relevant cases of independence—i.e., when the
stochastic dependence is described by a product copula—and in the maximum level case of positive
(negative) dependence—i.e., when the dependence is given by the upper (lower) Frechet bounds copulas.
These represent the mathematical bounds of the set of the copulas corresponding to the cases of perfect
positive (negative) correlation; see [36]. For a complete description of the concept of copulas and on
how it serves as modelling stochastic dependence, see e.g., [37,38] and refer to the Sklar’s Theorem [39].
Indeed, Sklar’s Theorem provides a reading of the copulas as mathematical functions transforming the
marginal distributions of a set of random variables into their joint distribution (see also below).

We consider a high-quality dataset of holdings listed in the Italian Stock Market to validate our
theoretical proposal. Such a selection, the Italian Stock Market as reference context, has been driven by
data availability. Indeed, the phase of data collection has been particularly challenging, with manual
collection procedures and matching among different datasets—see the details in Section 4.1. Of course,
data availability is the premise of the data collection procedure. This said, even if it is theoretically
easy to reproduce the analysis for all the major markets—like the US and the UK ones, the practical
implementation in different contexts requires a non-trivial effort and data availability.

We also propose an extension of the analysis to a wide and universal economic system,
where in-degrees are assumed to be synthesised by two parametric functions of either power law or
exponential types, while the out-degree distribution obeys a power law; see e.g., [40]. In particular,
we have included the parameters of such functions in the calibrating quantities set. Such a proposed
extension leads to useful discussions about the assessment of missing links in the cross-shareholding
matrix, in line with some literature contributions, like e.g., [41–46].

Some results emerge from our study. The obtained outcomes suggest strategies that should
be implemented by policymakers if pursuing a highly polarised industrial structure goal—with a
company holding the shares of all the other ones and, at the same time, whose shares are included in
the portfolios of the others—or a fair joint distribution of diversification and integration. Such policies
are built on the basis of the dependence structure between in-degrees and out-degrees and on enforcing
the shapes of their distributions in a proper way.

The remaining part of the paper is organised as follows. Section 2 provides some information on
the reference literature on cross-shareholding. Section 3 gives the details of the methodological devices
used in the analysis. Section 4.1 provides a description of the dataset employed for the methodological
validation and, in particular, the network construction in Section 4.2. Section 5 describes and discusses
the obtained findings. Conclusions and comments on policy implications are found in Section 6.

2. Brief Review of the Reference Literature on Cross-Shareholdings

This section provides a list of key papers dealing with cross-shareholdings. Such a list is not
exhaustive, but the referred contributions are particularly close to the present study—even if they
present remarkable differences. As a premise, we have to state that the framework adopted in this
paper is quite new when compared to other papers on the cross-shareholdings.

In [47], a complex networks approach is used for identifying the companies that are central in the
information flow and for the control. The coupling among in-degree and out-degree is not examined
explicitly, although it intervenes in the empirical estimates of the flow-betweenness and of other
centrality measures.

The perspective in Abreu et al. [48] is of an empirical nature, without a precise focus on the relationship
between in-degrees and out-degrees, i.e., as integration and diversification measures, respectively.

In [49], the possibility to use cross-shareholdings for achieving the control of companies through
intermediaries is examined, but there is again no deeper insight on the relationship between integration
and diversification as optimal means toward the considered specific targets.

Vitali et al. [50] offer the analysis of the structure and topology of the transnational ownership
network of cross-shareholdings. This is a pretty empirical paper, without further steps in the analysis
of the stochastic dependence on integration and diversification.
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An analysis of the relevance of the cross-shareholdings in the Japanese markets can be found
in [51]. The target of the quoted paper is to understand the role of shareholdings in order to reduce the
risk/performance ratio. However, the aim is quite different from the one tackled in this present paper.

In [52], Okabe performs an economic analysis on cross-shareholdings in Japan, where this theme is
quite relevant. Trends and implications for the Japanese economic system and related public policies are
discussed. In [53,54] the focus is on the presence of the power law, and [55] adds more insights typical
of complex networks studies. However, such analyses are mostly performed from the perspective of
economics and empirical investigation rather than by proposing novel methods.

The framework of the stochastic dependence among integration and diversification considered in
the present paper is close to that in [56], but presently under a wider viewpoint; in [56], one uses a
rewiring procedure as methodological instrument.

3. Methodology

This section describes the techniques and the tools used for achieving the targets of the analysis.

3.1. Preliminaries and Notations

First, we introduce the main concepts that are used in the paper.
Given a node j ∈ V, the in-degree kin( j) represents the integration, i.e., the number of companies

owning shares of company j. It is defined as follows:

kin( j) =
N∑

i=1

aij

In the same line, given i ∈ V, the out-degree kout(i) represents the diversification, i.e., the number of
companies in the portfolio of company i. It is defined as follows:

kout(i) =
N∑

j=1

aij.

kin and kout both have to be considered here as random variables, whose empirical distributions are
obtained by considering the real data described in Section 4.1.

The cumulative distribution functions of kin and kout is denoted by Fkin : R→ [0, 1] and Fkout : R→
[0, 1], respectively. Their joint distribution is denoted by Fkin,kout : R2 → [0, 1].

The generic joint distribution function Fkin,kout is associated to a bivariate density function. It is
discrete, in the empirical case we are treating; the distribution is denoted by p = (pij : i = 1, . . . , n; j =
1, . . . , m) such that

pij = Prob(kin = i, kout = j), ∀ i, j, (1)

with ∑
i, j

pi j = 1.

The values of the integers n and m will be properly fixed in the subsequent empirical analysis.
In the sequel, for such a bivariate probability distribution, we compute the Tsallis entropy,

usually defined as follows:

Sq =
1

q− 1

⎛⎜⎜⎜⎜⎜⎜⎝1−
∑
i, j

pq
i j

⎞⎟⎟⎟⎟⎟⎟⎠, (2)

where q ∈ R is the Tsallis parameter.
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A bivariate copula C : [0, 1]2 → [0, 1] (see e.g., [38]) is a special function that is able to describe the
dependence structure between two random variables through the classical Sklar’s Theorem (see [39]).
We enunciate such a crucial result by employing the notation that is used in the present paper.

Theorem 1. Sklar’s Theorem: there exists a copula C : [0, 1]2 → [0, 1] such that, for each (s, h) ∈ R2, one has

Fkin,kout(s, h) = C(Fkin(s), Fkout(h)). (3)

If Fkin , Fkout are continuous, then C satisfying (3) is unique. Conversely, if C is a copula and Fkin , Fkout are
distribution functions, then Fkin,kout in (3) is a bidimensional joint distribution function with marginal distribution
functions Fkin,kout .

According to Theorem 1, copulas describe different types of stochastic dependence that could be
found between two random variables. In so doing, one is also capable of providing insights on the
nature of the stochastic dependence of tis empirical joint distribution.

We denote by FC
kin,kout

: [0, 1]2 → [0, 1] the joint distribution function resulting from the application
of Sklar’s Theorem with a generic copula C, according to the previous Formula (3).

Reasoning behind the Tsallis Entropy

This section is devoted to the justification of the selection of Tsallis entropy as a key methodological
measurement device. We provide a comparison between Tsallis entropy and the well-known and largely
used Gibbs entropy. In fact, Tsallis entropy is known to exhibit substantial strengths when compared to
the Gibbs one. To support this statement, we proceed under both technical and applied perspectives.

From a purely mathematical point of view, Tsallis entropy represents a generalisation of the Gibbs
entropy. Indeed, Tsallis entropy, formally a fractional exponential approach, depends on an often real
(but see [35]) parameter q, introduced in Equation (2); when q→ 1, the Tsallis entropy collapses to the
Gibbs entropy. Hence, the Tsallis entropy is able to capture several aspects that are not covered by
the Gibbs entropy—all of those aspects related to a not unitary parameter q. In our context, the main
results will be seen to be related to negative q values. Thus, it is clear that the Gibbs entropy would
not allow us to provide a deep understanding of the nature of the stochastic dependence between
in-degree and out-degree distributions.

In the context of applied science, we may recall that classical statistical mechanics of macroscopic
systems in equilibrium is based on Boltzmann’s principle and Gibbs entropy. However, Boltzmann–Gibbs
statistical mechanics and standard thermodynamics present serious difficulties or anomalies for
non-equilibrium, open, non-ergodic, non-mixing, systems, and for those that exhibit memory retention.
Within a long list, we might mention systems that involve long-range interactions (see e.g., [57,58]),
non-Markovian stochastic processes, like financial markets (see e.g., [59–64]), dissipative systems in a
phase space that has some underlying looking (multi)fractal-like structure (see e.g., [65]), like many
open social systems, all hardly having an additive property (see e.g., [66]).

In brief, Tsallis theory provides a better thermo-statistical description than the standard Boltzmann–
Gibbs formalism, because the Tsallis fractional exponential approach allows for encompassing cases of
non-equilibrium and dissipative systems into hard core statistical mechanics principles.

3.2. Outline of the Analysis

The analysis is carried out in two main directions.
First, we compute and discuss the Tsallis entropy of the joint distribution FC

kin,kout
, which is obtained

by applying the Sklar’s Theorem with some specific copulas C. In so doing, we provide useful insights
on the behaviour of the cross-shareholding system under different scenarios of interactions between
in-degrees and out-degrees.
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In particular, we address the corner cases of maximal positive and negative dependence, and the
case of independence. Such cases correspond to the following copulas:

• Product (independence)
CP(u, v) = uv (4)

• Lower Frechet (maximal negative dependence) and Upper Frechet (maximal positive dependence)

CLF(u, v) = max{u + v− 1, 0}, CUF(u, v) = min{u, v}. (5)

Second, we discuss the sensitivity analysis of the in- and out-degrees distributions when they are
properly parametrised, by means of the Tsallis entropy.

In this respect, while the literature points out the ubiquitous presence of a power law for the
out-degree distribution, the in-degree is much less studied. However, the main theoretical functions that
can be suitably used for approximating the in-degree empirical distribution are either the power law or
the exponential law (see [27] and references therein contained). Therefore, on one side, we consider the
marginal distribution of the out-degree as following a power law; on the other side, we consider two
cases, power law or exponential function for modelling the in-degree empirical distribution.

The power law and the exponential law for a generic discrete random variable X are defined,
as follows:

• Power law:
Prob(X = x) = ax−k, (6)

where x ≥ 0, a > 0 is a normalising constant and k > 0.
• Exponential law:

Prob(X = x) = ae−kx, (7)

where x ≥ 0, a > 0 is a normalising constant and k > 0.

Thereafter, we implement the sensitivity analysis in three cases:

(A) under the hypothesis of kout described by a power law as in (6) and kin has its empirical distribution,
the power law exponent k is allowed to change and is treated as a parameter;

(B) under the hypothesis of kin power law as in (6) and kout empirical: the power law exponent k is
allowed to change and is treated as a parameter; and,

(C) under the hypothesis of kin exponential as in (7) and kout empirical: the parameter k in the
exponential is allowed to change, as any parameter does.

Thus, in each case, there are two parameters: q for the Tsallis entropy and k for the power law or
exponential. In all cases, we have employed the three copulas CI, CLF, and CUF introduced in (4) and
(5) for deriving the joint probability distribution, according to Theorem 1.

4. The Network

Here, we present the cross-shareholding network that are used in the analysis.

4.1. The Data

We consider the data already used in [27,67]. The dataset gathers data of the Milan Stock Exchange
(MIB30) on 10 May 2008. First, data were obtained through the CONSOB database. For each company
j, an informative page is shown, which contains the information on the holdings, which is the list of
companies i, traded in the same market, which the shares of j are sold to. The set of all of the couples
(i, j) constitutes the matrix of cross-holdings. CONSOB is the major surveillance body for the Italian
Stock Market. CONSOB verifies the transparency of market operations; it has the power to stop the

66



Entropy 2020, 22, 676

market in case of excess of losses/returns; CONSOB controls the proper disclosure of information.
Unfortunately, only CONSOB records the holdings above 2%. Therefore, the data were cross-checked
through the Bureau Van Dijk platform.

Differently from the database of prices of the shares, there is no command that allows for
downloading all of the data at once. The data gathering requires manual opening of each file,
and manual storing of the relevant information. Moreover, the way in which the companies are named
is not uniform: sometimes, shortcuts are used instead of the original extended names. Therefore,
the data collection cannot be done automatically “blind folded”. The data also have to be gathered
at a selected date: it is like taking a picture of the actual situation of the market on a specific day.
The time needed for gathering the data and finalising the sample is quite long, since the data were
manually cross-checked with other databases. Notice that the data on banks were cross-checked with
the BANKSCOPE database, which, as the name suggests, is specifically focusing on banks, hence not
reporting data on other companies.

On the other side, AIDA provides some complementary information, since AIDA contains
information on all companies—apart from banks. The cross-checking was necessary to be sure that
we include in the database all ownerships due to investments and all cross-relationships among
companies—yet excluding some very minor ones due to the management of portfolios by mutual
funds. Alas, some companies had very incomplete data. Finally, the resulting sample contains the
cross-holdings of 247 stocks of companies. They represent 94% of the total amount of MTA segment
(MTA stands for Borsa Italiana’s Main Market, that is Italian Main Stock Market. MTA is a regulated
market subject to stringent requirements in line with the expectations of professional and private
investors.). The sample corresponds to 95.22% of the total capitalisation on that date, May 10th, 2008,
which nevertheless makes the analysis quite suitable for a whole outlook about the links among the
most relevant traded companies. Notice that the total number of cross-ownership is 243, thus less than
the number of companies. In fact, there are companies traded in the Italian Stock Market, which do not
buy or sell shares of other companies traded in the Italian market.

The vast majority of holdings is due either to industrial purposes or to an internal organisation
of companies: for instance, the energy company ENI owns shares of two other companies, SAIPEM
and SNAM RETE GAS, with a specific focus on gas delivery management. Another example is given
by the financial company IFIL, which is managing the financial parts of FIAT (now merged in FCA)
and JUVENTUS (football club). In turn, IFI PRIV owns the “privileged” part of IFI, belonging to the
Agnelli family.

The number of companies holding shares of k other companies decreases sharply as k increases.
In fact, there are 72 companies owning shares of only one other company; 16 companies owning
shares of two other companies; only seven and six companies are owning shares of three and
four other companies, respectively. There are only zero or one companies holding shares of six or
more other companies; the maximum ownership in 19 companies is due to the insurance company
“Assicurazioni Generali”, which uses ownership as part of its institutional mission. The clear prevalence
of shareholders who hold shares of only one or a few other companies has been detected in other
datasets [68,69].

A symmetric question holds: which is the number h of companies to which a specific company
has sold shares? According to the literature on this topic, the question is less popular than the previous
one. In our specific dataset, the maximum value of h is 10; there are 84 companies that sell their shares
to only one company; 29 companies sell their shares to two companies; 15 are selling to three; only five
companies have sold to four other companies, and another five are selling to more than four companies.
Therefore, roughly speaking, the very prevailing behaviour is the relation through a sale of shares to
only one other company in the market.
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4.2. Construction of the Network

The firms are represented by the nodes of an unweighted network. We collect them in a set
V = {1, · · · , N}. If a company j is held by company i, then there is a directed link from i to j. The links
are collected in a set E. In so doing, we create a network (V, E), whose adjacency matrix A = (aij)i, j∈V
is a N ×N matrix, such that aij = 1 if (i, j) ∈ E and aij = 0 otherwise.

The insulated nodes have been removed from the analysis; the giant component and the small
connected components being kept, the network is made of 158 nodes, hence the adjacency matrix is
158 × 158.

5. Results and Discussion

Here, we report the results of the analysis, along with a discussion of these.
As a premise, we set n = 10 and m = 19, in accord to the maximum values of kin and kout, which are

observed in the empirical dataset.
It is immediate to observe that the Tsallis entropy Sq in (2) is strictly decreasing with respect to the

parameter q ∈ R, with an asymptotic behaviour being given by

lim
q→−∞Sq = +∞; lim

q→+∞Sq = 0.

This said, we restrict our graphical representations of the behaviour of the Tsallis entropy with
respect to q to a small interval, including zero, for a better visualisation of the outcomes.

Figure 1 shows the behaviour of the values of the Tsallis entropy as the parameter q varies, in the
three cases of joint distributions, FC

kin,kout
with C = CP, CLF, CUF, as in (4) and (5)—in the upper, middle,

and lower panel, respectively.

Figure 1. The Tsallis entropy H = HP, HLF, HUF as a function of q, in the cases of copula C = CP, CLF, CUF

as in (4) and (5)—upper, middle and lower panel, respectively.

The Upper Frechet bound is the one with the slowest decrease; it is substantially flat with respect
to the other cases. Moreover, the Lower Frechet bound is associated to very high values of the Tsallis
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entropy when q approaches −1; such a case is also the one presenting a very rapid collapse of Sq as
q increases.

An interpretation of these results is in order. The predominance—to be intended as the highest
values of Tsallis entropy—of the case of copula CLF means that the joint probability between in-degree
and out-degree is highly polarised when there is a perfectly negative correlation between such
quantities. This is particularly true when q is negative; hence, the fat tails of the distribution do play a
key role in determining such an outcome. The results change when moving to the independence and
the maximum level of positive dependence. In particular, the Upper Frechet case corresponds to the
highest similarity between the uniform case and the considered joint probability distribution.

The policymaker should then force the in-degrees and out-degrees of the companies to
exhibit similar patterns—i.e., integration and diversification should coincide—when the target is a
homogeneous industrial structure; a contrario, integration and diversification should be forced to
exhibit a large discrepancy, if the aim of the policymaker is to foster the predominance of a company
over the others.

We now deal with the cases (A), (B) and (C) described in the previous section, which are related to
different parametrizations of the in- and out-degree marginal distributions.

(A) kout is described by a power law as in (6), while kin is taken with its empirical distribution.
Figure 2 shows the Tsallis entropy as a function of its parameter q and the exponent of the power law

k for the cases of copula C = CP, CLF, CUF as in (4) and (5)—upper, middle and lower panel, respectively.

Figure 2. Tsallis entropy as a function of its parameter q and the exponent of the power law k for the
out-degree. All the cases of copula C = CP, CLF, CUF, as in (4) and (5)—upper, middle, and lower panel,
respectively—are reported.

In all cases, we observe that Tsallis entropy is decreasing as k decreases and q increases. The growth
toward infinity is very rapid as q approaches −1. This behaviour is more evident when k assumes
large values, i.e., when the probability that kout assumes a large value is particularly small—and
when in-degree and out-degree are highly positively correlated or are uncorrelated. If in-degree and
out-degree have the maximum level of negative correlation, then the same behaviour seems to be
rather independent from the value of the power law parameter. The apparent crests on HLF actually
correspond to very high values of HLF; furthermore, the case with CLF is confirmed to have the highest
level of Tsallis entropy.
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We can read the results by stating that the joint probability of in- and out-degree shows a high
level of polarisation in the presence of a perfectly negative correlation. Such a finding does not depend
on the specific parametrisation of the out-degree through a power law. Differently, we see polarisation
only for k large enough when the cases of stochastic independence or perfectly positive correlations are
considered. This behaviour is amplified for negative q values, hence giving credit to the action of the
fat tails of the distribution in determining it.

The policymaker has now two devices for shaping the considered industrial structure.
Beyond dealing with the dependence between diversification and integration—we refer to the
comments stated above for Figure 1—she/he can also force the individual companies to form specific
out-degrees distributions. Indeed, in the particular cases of independence and maximum positive
correlation, one can obtain some polarisation by shaping the out-degrees in order to obtain a low
probability of having large values—i.e., by taking large values of the parameter k. Such an action is not
needed when the correlation between in-degree and out-degree is of perfectly positive type.

(B) kin is a power law as in (6) and kout has its empirical distribution.
Figure 3 presents the values of the Tsallis entropy as a function of q and k. Additionally, in this

case, copulas CP, CLF, CUF, as in (4) and (5), are in the upper, middle, and lower panel, respectively.
For a better visualisation of the results, we only display when q < 0.

The behaviour of the Tsallis entropy is quite similar to that of case (A), with four noticeable
exceptions. Firstly, the scales are completely different. The values of the Tsallis entropy are much
higher in this case than in case (A). Secondly, to appreciate the decreasing behaviour of the Tsallis
entropy, one needs to take q close to −2, instead of q = −1, as in the previous case. Thirdly, we observe
a deviation in the case of perfectly negative correlation, with two lines of local maxima occurring at
q 
 −2, for k = 2.7 and k = 1.8 (see the arrows in Figure 3). Fourthly, the crest appearing in the case of
perfectly negative correlation is much more jagged than in case (A).

Figure 3. Tsallis entropy as function of its parameter q and the exponent of the power law k for the
in-degree. The cases of copulas CP, CLF, CUF as in (4) and (5) are presented in the upper, middle,
and lower panel, respectively.

The similarities between cases (A) and (B) ensure that all of the comments raised for (A) remain
valid also for this case (B). The presence of local maxima and the jagged crest do point to the
questionability of the power law parameter as a device for controlling the polarisation of the joint
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distribution between in-degree and out-degree when the value of q is at its minimum. This is particularly
evident for the case of perfectly negative correlation—i.e., in the case of jagged crest—while an action
for properly calibrating the parameter k 
 −2.7 and 
 1.8 remains possible for the case of perfectly
positive correlation.

(C) kin has an exponential distribution as in (7) and kout has its empirical distribution.
The upper, middle, and lower panel of Figure 4 display the Tsallis entropy as a function of q and k,

for copulas CP, CLF, CUF as in (4) and (5), respectively; for a clear view of the behaviour of the surface,
we only present q < 0.

As for (B), the behaviour of Tsallis entropy is also analogous to the one observed for (A), but
with three main differences. Indeed, the decreasing behaviour of the Tsallis entropy can be properly
visualised for q close to −0.8 (it was −1 and −2 in cases (A) and (B), respectively); moreover, the crest
appearing in the middle panel at low values of q is more jagged here than in (A); finally, the minimum
value of q appearing in Figure 4 is −0.8 instead of −1 (case A)) and −2 (case B)).

Figure 4. Tsallis entropy as a function of parameter q and k for describing the exponential decrease of
the in-degree. The cases of copulas CP, CLF, CUF, as in (4) and (5), are described in upper, middle and
lower panel, respectively.

Some relevant insights can be derived by comparing the three cases (A), (B), and (C). When the
desired target is to shape the cross-shareholding network for a polarised situation—with a company
holding the widest part of shares of the others and, at the same time, whose shares are in the portfolios
of the other companies—then one has to impose a perfectly negative dependence between the in-degree
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and the out-degree. Moreover, one has also to shape the distribution of the in-degree as a power law;
this means that the probability of having a high in-degree value has to be lower than that of having a
low in-degree value. Lastly, the joint distribution between in-degree and out-degree should include
also the presence of fat tails, so that one can employ the informative content of the Tsallis entropy
in the case of large negative value of q. Under the conditions described above, the Tsallis entropy
attains its highest value—see case (B), middle panel. Differently, by imposing the maximum level of
positive dependence and a power law behaviour on the out-degree distribution, with a small value of
the parameter k, one pursues the objective of shaping the industrial structure towards a more uniform
integration and diversification; see case (A), lower panel.

6. Conclusions and Policy Implications

To conclude, we can offer some general remarks on policy implications.
The starting point of the analysis is to describe the industrial structure of a country—in terms of

market integration and diversification and, consequently, of concentration. In this respect, the policy
makers might aim at fostering the competition in the market or, conversely, at shaping the market for
having a leading company.

This theme is of paramount relevance for policy makers. Indeed, the interest of regulatory
authorities in the raise of concentration is witnessed by its explicit insertion in official documents.
For instance, the study of the classical Herfindahl-Hirschman index (HHi)—which is a relevant measure
of market concentration—plays a significant role in the assessment of possible enforcement of US
antitrust laws [70]. Since 1982, the Merger Guidelines by the U.S. Department of Justice and the Federal
Trade Commission [71] have provided an indication for the identification of post merger markets as
“unconcentrated”, mildly concentrated, or highly concentrated based on the value of HHi. For a more
scientific perspective, we refer e.g., to [56,72]. In this respect, we also mention [22], who have shown
that some peculiar combinations of integration and diversification might lead industrial structures to
be more vulnerable to financial fluctuations.
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Abstract: A perspective is taken on the intangible complexity of economic and social systems by
investigating the dynamical processes producing, storing and transmitting information in financial
time series. An extensive analysis based on the moving average cluster entropy approach has evidenced
market and horizon dependence in highest-frequency data of real world financial assets. The behavior
is scrutinized by applying the moving average cluster entropy approach to long-range correlated
stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and
Fractional Brownian motion (FBM). An extensive set of series is generated with a broad range
of values of the Hurst exponent H and of the autoregressive, differencing and moving average
parameters p, d, q. A systematic relation between moving average cluster entropy and long-range
correlation parameters H, d is observed. This study shows that the characteristic behaviour exhibited
by the horizon dependence of the cluster entropy is related to long-range positive correlation in
financial markets. Specifically, long range positively correlated ARFIMA processes with differencing
parameter d � 0.05, d � 0.15 and d � 0.25 are consistent with moving average cluster entropy results
obtained in time series of DJIA, S&P500 and NASDAQ. The findings clearly point to a variability of
price returns, consistently with a price dynamics involving multiple temporal scales and, thus, short-
and long-run volatility components. An important aspect of the proposed approach is the ability to
capture detailed horizon dependence over relatively short horizons (one to twelve months) and thus
its relevance to define risk analysis indices.

Keywords: cluster-entropy; Shannon-entropy; financial markets; time series; dynamics

1. Introduction

In recent years, much effort has been spent on studying complex interactions in financial markets
by means of information theoretical measures from different standpoints. The information flow can be
probed by observing a relevant quantity over a certain temporal range (e.g., price and volatility series
of financial assets). Socio-economic complex systems exhibit remarkable features related to patterns
emerging from the seemingly random structure in the observed time series, due to the interplay of
long- and short-range correlated decay processes. The correlation degree is intrinsically linked to the
information embedded in the patterns, whose extraction and quantification add clues to the underlying
complex phenomena [1–14].

An information measure S(x) was proposed by Claude Shannon to the aim of quantifying the
degree of uncertainty of strings of elementary random events in terms of their probabilities [15].
The elementary stochastic events are related to a relevant variable x whose values are determined
by the probability {pi}. For example, the size � of a string (block), corresponding to a particular
realization within the sequence, can be associated to the probability pi (�) that, for stationary processes,
does not depend on the actual position of the string (block) in the sequence. The Shannon measure is
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then given by the expectation value S(�) = ∑i pi(�) log pi(�) and is calculated over all possible strings
�. The entropy density is defined as s� = lim�→∞ S(�)/� and quantifies the rate at which the process
produces unexpected information as a function of the size �.

A complexity measure K(x) to quantify the amount of information contained in the string x was
proposed by Kolmogorov [16]. The relation between Kolmogorov complexity and Shannon entropy has
been extensively investigated, in particular the entropy density s� for a stationary process corresponds
to the Kolmogorov entropy rate [17].

The first step required for the practical implementation of entropy and complexity measures is a
suitable partition of the sequence which is critical to unbundle random and deterministic blocks of
given length (decryption). The method usually adopted for partitioning a sequence and estimating its
entropy is based on a uniform division in blocks with same length [18–21].

The cluster entropy method [9–11] implements the partition via a moving average process.
The clusters correspond to blocks of different sizes, defined as the portion between consecutive
intersections of a given time series and moving average. The cluster entropy method has been applied to
financial markets in [22,23]. Cumulative information measures (indexes) have been worked out with
the ability to provide deep insights on heterogeneity and dynamics. In particular:

• Heterogeneity. Volatility series have been analysed by using the cluster entropy approach over a
constant temporal horizon (six years of tick-by-tick data sampled every minute). An information
measure of heterogeneity, the Market Heterogeneity Index I(T, n), where T and n are respectively the
volatility and moving average windows, has been developed by integrating the cluster entropy curves
of the volatility series over the cluster length τ. It has been also shown that the Market Heterogeneity
Index can be used to yield the weights of an efficient portfolio as a complement to Markowitz and
Sharpe traditional approaches for markets not consistent with Gaussian conditions [22].

• Dynamics. Prices series have been investigated by using the cluster entropy approach over
several temporal horizons (ranging from one to twelve months of tick-by-tick data with sampling
interval between 1 up to 20 seconds depending on the specific market). The study has revealed
a systematic dependence of the cluster entropy over time horizons in the investigated markets.
The Market Dynamic Index I(M, n), where M is the temporal horizon and n is the moving average
window, defined as the integral of the cluster entropy over τ, demonstrates its ability to quantify
the dynamics of assets’ prices over consecutive time periods in a single figure [23].

The present study is motivated by the results obtained in [23] showing that cluster entropy of
real-world financial markets (NASDAQ, DJIA and S&P500) exhibits significant market and horizon
dependence. According to classical financial theories, subsequent price deviations are identically
and independently distributed (iid) and all the information are immediately reflected into markets,
thus hampering past observations to predict future outcomes. If that were true, correlation would
be negligible and prices would be simply modelled in terms of fully uncorrelated Brownian motion.
However, several studies have shown that real world markets only partially behave according to the
standard theory of perfectly informed and rational agents.

Here, we add further clues to the microscopic origin of the horizon dependence of the cluster
entropy in financial markets. To this purpose, the cluster entropy approach is applied to an extensive
set of artificially generated series with the aim of shedding light on the characteristic behaviour of
real world assets [23]. We report results of the cluster entropy in Geometric Brownian Motion (GBM),
Generalized Autoregressive Conditional Heteroscedastic (GARCH), Fractional Brownian Motion (FBM) and
Autoregressive Fractionally Integrated Moving Average (ARFIMA) processes. Those are well-known
processes characterized either by hyperbolically decaying or exponentially decaying correlation
functions, features reflected in long-range or short-range dependent dynamics of the elementary
random events. The performance of the Autoregressive Fractionally Integrated Moving Average (ARFIMA)
process and its variants are receiving a lot of attention and are under intense investigation in the
financial research community [24–28]. This work clearly demonstrates the relationship between the
endogenous dynamics of the time series and their long-range dependence.
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It is shown that deviations of the moving average cluster entropy behaviour in comparison to
simple Brownian motion is unequivocally related to the long-range dependence of real-world market
series. In particular, moving average cluster entropy results obtained on Fractional Brownian Motion
with Hurst exponent H in the range 0 ≤ H ≤ 0.5 (negatively correlated series) show no time horizon
dependence. Conversely, moving average cluster entropy results with Hurst exponent H in the range
0.5 ≤ H ≤ 1 (positively correlated series) exhibit some dispersion in the horizon dependence in
analogy with the real-world financial markets. Results obtained on ARFIMA series confirm and
extend the findings reported for FBMs. Horizon dependence of the cluster entropy is observed for a
differencing parameter 0 ≤ d ≤ 0.5. Fine tuning of the horizon dependence is obtained by varying the
autoregressive p and moving average q components in the ARFIMA series.

The low-frequency volatility has been identified as the long-run component to describe market
dynamic fundamentals in recent works [29–33]. The current work demonstrates the ability of the
cluster entropy to capture short-range and long-range variability in price returns, thus to identify
short-run and long-run factors in volatility and their linkages with macroeconomic variables and
asset prices. On account of the dispersion of the Market Dynamic Index I(M, n) at increasing values of
the horizon M, our findings confirm that the slowest dynamic components (slowly evolving market
fundamentals) reflect in the lowest-frequency volatility (large M scales) components of the assets.
In this context, volatility can be modelled as a time dependent function, for example through the
introduction of a quadratic spline to provide a smooth and nonlinear long-run trend in the volatility
time series in the spline-GARCH model [29].

ARFIMA and Spline-GARCH belong to the class of free-parameters model, as they require for
example the quadratic form of the time-dependence function parameters, or the autoregressive
parameters. Conversely, the cluster entropy approach does not require free parameters.
The cluster entropy is a parameter-free model based on data over some temporal horizons of choice.
Hence, the comparison between results obtained by ARFIMA, GARCH models and those obtained
by the cluster entropy approaches do not imply redundancy in the outcomes and is robust by design.
The ability to extract market dynamic dispersion based only on data could be of relevance to disentangle
performance of the different models at short and long horizons. This could be the case of ARFIMA
models that tend to perform better on estimating asset variance at long-horizons compared to ARMA
models that conversely produce superior results at short-horizons (see for example [24] where results
of S&P500 are also reported).

In this work, the method is applied to mainstream financial assets as NASDAQ, DJIA and S&P500
tick-by tick data over the year 2018. The choice of these assets derives mainly from the need to
validate the newly proposed cluster entropy approach on widely studied markets whose long range
dependence has been quite widely investigated and broadly assessed by several studies. Further
to these markets, interesting developments can be envisioned in different sectors that are strongly
affected by macroeconomic variables and shock (e.g., time dependent variance and persistence have
been observed in Real Estate securities [30] highlighting linkages between real estate stocks and market
fundamentals, related to endogenous dynamics and horizon dependence).

The organisation of the work is as follows. The cluster entropy method used for the analysis and
the investigated market and artificial data are described in Section 2. Results on cluster entropy and
market dynamic index estimated over Geometric Brownian Motion (GBM), Generalized Autoregressive
Conditional Heteroskedastic (GARCH), Fractional Brownian Motion (FBM) and Autoregressive Fractionally
Integrated Moving Average (ARFIMA) series, are reported in Section 3. Finally, results are discussed,
conclusions are drawn and a path for future work is suggested in Section 4.

2. Methods and Data

In this section the cluster entropy approach developed in [9,10] is briefly recalled. The second
part of this section is devoted to the description of financial market data used in [23]. For the sake
of completeness, we also recall the main definitions related to the Geometric Brownian Motion,
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Generalized Autoregressive Conditional Heteroskedastic, Fractional Brownian Motion, Autoregressive
Fractionally Integrated Moving Average processes.

2.1. Cluster Entropy Method

It is well-known that the general idea behind Shannon entropy is to measure the amount of
information embedded in a message to identify the shortest subsequence actually carrying the relevant
information and the degree of redundancy which is not necessary to reproduce the initial message.
The Shannon functional is written as:

S(τ, n) = ∑ P(τ, n) log P(τ, n), (1)

where P(τ, n) is a probability distribution associated with the time series y(t). To estimate the
probability distribution P(τ, n), it is necessary to partition the continuous phase space into disjoints
sets. The traditionally adopted methods divide the sequence into segments of equal lengths (blocks).
Here, we follow another approach.

In [9,10] the time sequence y(t), is partitioned in clusters by the intersection with its moving
average ỹn(t), with n the size of the moving average. The simplest type of moving average is defined
at each t as the average of the n past observation from t to t − n + 1,

ỹn(t) =
1
n

n−1

∑
k=0

y(t − k). (2)

Note that while the original series is defined from 1 to N, the moving average series is defined from
1 to N − n+ 1 because n samples are necessary to initialize the series. The original series and the moving
average series are indicated as {y(t)}N

t=1 and {ỹn(t)}N−n+1
t=1 respectively. Consecutive intersections of the

time series and of the moving average series yield a partition of the phase space into a series of clusters.
Each cluster is defined as the portion of the time series y(t) between two consecutive intersection of y(t)
itself and its moving average ỹn(t) and has length (or duration) equal to:

τj ≡ ||tj − tj−1||, (3)

where tj−1 and tj refers to two subsequent intersections of y(t) and ỹn(t). For each moving average
window n, the probability distribution function P(τ, n), i.e., the frequency of the cluster lengths
τ, can be obtained by counting the number of clusters Nj(τj, n) with length τj, j ∈ {1, N − n − 1}.
The probability distribution function P(τ, n) results:

P(τ, n) ∼ τ−DF (τ, n) , (4)

where the exponent D indicates the fractal dimension and can be expressed as

D = 2 − H (5)

with H the Hurst exponent of the sequence. Hence, the fractal dimension ranges between 1 < D < 2,
as the Hurst exponent varies between 0 < H < 1. In this framework long-range correlation implies
that the clusters are organized in a similar way along the time series (self-organized), even for clusters
far away in time from each other. The term F (τ, n) in Equation (4) takes the form:

F (τ, n) ≡ e−τ/n , (6)

to account for the drop-off of the power-law behavior for τ < n and the onset of the exponential decay
when τ ≥ n due to the finiteness of n. When n → 1 the lengths τ of clusters tend to be centered around
a single value. When n → N, that is when n tends to the length of the whole sequence, only one cluster
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with τ = N is generated. For middle values of n however a broader range of lengths is obtained
and therefore the probability distribution spreads all values. When the probability distribution in
Equation (4) is fed into the Shannon functional in Equation (1) the result is the following:

S(τ, n) = S0 + log τD − logF (τ, n), (7)

which, after substituting Equation (6), becomes:

S(τ, n) = S0 + log τD +
τ

n
, (8)

where S0 is a constant, log τD accounts for power-law correlated clusters related to τ−D and τ/n
accounts for exponentially correlated clusters related to the term F (τ, n). The term S0 can be evaluated
in the limit τ ∼ n → 1, which results in S0 → −1 and S(τ, n) → 0, that corresponds to the fully
deterministic case, where each cluster has size equal to 1. On the other hand, when τ ∼ n → N,
the maximum value for the entropy is obtained with S(τ, n) = log ND, which corresponds to the case
of maximum randomness, where there is one cluster coinciding with the whole series. Equation (8)
shows that power-law correlated clusters, characterized by having length τ < n, are described by
a logarithmic term as log τD, and their entropy do not depend on the moving average window n.
However, for values of τ ≥ n, which represent exponentially correlated clusters, the term τ/n becomes
predominant. Cluster entropy increases linearly as τ/n, with slope decreasing as 1/n. Hence, due to
the finite size effects introduced by the partitioning method, in τ = n the behavior of entropy changes
and its values exceeds the curve log τD. In other words, clusters that are power-law correlated does
not depend on n, are said to be ordered and represent deterministic information. Clusters that are
exponentially correlated does depend on n, are said to be disordered and represent random clusters.

The meaning of entropy in information theory can be related to the corresponding concepts in
thermodynamics. In an isolated system, the entropy increase dS refers to the irreversible processes
spontaneously occurring within the system. In an open system, an additional entropy increase dSext

should be taken into account due to the interaction with the external environment.
The term log τD should be interpreted as the entropy of the isolated system. It is independent on n,

that is it is independent on the partitioning method. It takes the form of the Boltzmann entropy, that can
be written as S = log Ω, with Ω the volume of the system. Therefore the quantity τD corresponds to
the volume occupied by the fractional random walker.

The term τ/n represents the excess entropy caused by the external process of partitioning the
sequence. The excess entropy depends on the moving average window n. If same size boxes were
chosen, the excess entropy term τ/n would vanish and entropy would reduce to the logarithmic
term. When a moving average partition is used, the term τ/n emerges to account for the additional
heterogeneity introduced by the randomness of the process. Thence, for exponentially correlated
clusters entropy exceeds the logarithmic asymptotic.

In order to increase the sensitivity of the method, the integral of the entropy function over the
clusters length τ can be considered:

I(n) =
∫

S(τ, n)dτ , (9)

which for discrete sets reduces to I(n) = ∑τ S(τ, n). The function I(n) is a cumulative entropy measure
able to embed all the information in a single figure.

Equation (9) can be written as:

I(n) =
∫ τ(n)

1
S(τ, n)dτ +

∫ ∞

τ(n)
S(τ, n)dτ . (10)
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The first integration is referred to the power law regime of the cluster entropy, the second
integration is referred to the linear regime of the cluster entropy (i.e., the excess entropy term).

2.2. Financial Data

The objective of this work is to investigate and shed light on the characteristic features exhibited
by cluster entropy of financial markets. In particular here our focus is on the systematic dependence of
the cluster entropy of the price series over time horizon M.

In [23] the cluster entropy is applied to a large set of tick-by-tick data of the USA’s indexes
(S&P500, NASDAQ and DJIA). NASDAQ is an index resulting from all the public firms quoted on the
market, DJIA and S&P500 indexes are representative of a selected number of public firms. For each
index, investigated data include tick-by-tick prices from January 2018 to December 2018. As the main
goal of the paper is to quantify the intrinsic dynamics of prices and to capture the endogenous sources
of risk over different temporal horizons, a year of data with no external shocks or crisis have been
chosen. More information about the markets can be found at the Bloomberg terminal.

To study the dynamics of financial series different time horizons need to be compared.
As explained in the Introduction, entropy is sample-size dependent by definition, thus in order to
rule out spurious results the length of the investigated sequences must be the same. Therefore, cluster
entropy analysis requires the comparison to be implemented on series with same length. Raw data
have been downloaded from the Bloomberg terminal in the form of tick-by-tick data. The lengths
of the raw series vary due to different number of trading days and transactions per time unit. It is
therefore necessary, as first computational step, to implement a sampling of the raw data to make the
length of the series exactly the same. The first raw series ranges from the first transaction of January
2018 to the last one of January 2018; the second ranges from the first transaction in January 2018 to
the last of February 2018, . . ., the twelfth ranges from the first transaction in January 2018 to the last
of December 2018, a period equivalent to the whole year. Because each raw series ranges from the
first tick of 2018 to the last tick of the relative month, the twelve series have very different lengths.
The series are sampled to obtain twelve series with same length as described in the following.

Twelve sampling time intervals and corresponding frequencies must be defined, i.e., twelve
integers indicating for each series the interval of skipped data. Sampling intervals are obtained by
dividing the length of each raw series by the length of the shortest raw one and then rounding to
the inferior integer. Thence, each raw series is sampled with the relative sampling interval to yield a
sampled series: for each sample in the sampled series, a number of samples equal to the sampling frequency
has been discarded in the raw series. The sampled series obtained are approximately of equal lengths.
To obtain twelve series of exactly equal length, a few observations are cut off, when exceeding the length
of the shortest series. The result consists in twelve sampled series that are equal in length and refer to
time horizons varying from one month (M = 1) to twelve months (M = 12). In more details, NM is the
length of the series corresponding to the horizon M (where M ranges from 1 to 12 for one year of data).
The shortest monthly series is used to evaluate the minimum value N∗

M and the corresponding sampling
frequency. Then, the sampling intervals for the multiple periods is derived by dividing the multiple
period lengths (i.e., the sum of multiple consecutive NM) by the value N∗

M. In Table 1 a few examples
of sampling intervals and lengths NM are shown to clarify the procedure. It is worth noting that the
length of sampled series should be at least 105 to ensure enough accuracy of the results.
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Table 1. Example of lengths and time horizon M for NASDAQ data (2018). The 2nd column
corresponds to the number of transactions over the horizon M. These lengths are used as a reference to
generate artificial series to allow a direct comparison between results obtained on real and artificial
data. The 3rd column corresponds to the sampled lengths used in the calculation of the cluster entropy.
The 4th and 5th columns correspond respectively to the raw and rounded time intervals obtained
dividing NM by the series of shortest length N∗

M.

M NM N∗
M tS t∗S

1 586,866 586,866 1.0000 1
2 1,117,840 586,866 1.9048 1
3 1,704,706 586,866 2.9048 2
4 2,291,572 586,866 3.9048 3
5 2,906,384 586,866 4.9524 4
6 3,493,250 586,866 5.9524 5
7 4,069,315 586,866 6.9340 6
8 4,712,062 586,866 8.0292 8
9 5,243,029 586,866 8.9339 8
10 5,885,781 586,866 10.0292 10
11 6,461,845 586,866 11.0108 11
12 6,982,017 586,866 11.8971 11

2.3. Artificial Data

Artificial series have been generated by using Geometric Brownian Motion, Generalized
Autoregressive Conditional Heteroskedastic, Fractional Brownian Motion and Autoregressive
Fractionally Integrated Moving Average processes with same temporal structure corresponding to the
different horizons of the financial market data reported in [23]. Then the sampling method proceeds
analogously from the calculation of the sampling frequency. Such sampling method was applied to
series generated by artificial financial models to make sure that the information content would be
comparable to that of real-world financial series. In the remainder of this section, we recall the main
definitions for the afore mentioned processes.

2.3.1. Geometric Brownian Motion

The Geometric Brownian Motion is the basis of the Black-Scholes-Merton model used to price
options and is defined by the following difference equation:

dXt = μ(t)Xtdt + D(t, Xt)σ(t)dBt, (11)

where μ(t) indicates the level of return, σ(t) the volatility and dBt is a simple Brownian motion.
Volatility is deterministic and constant and there are no jumps. Increments are independent on
previous states.

2.3.2. Autoregressive Conditional Heteroskedasticity Models

We perform simulations by using GARCH(1,1) of the broad family of the autoregressive
conditional heteroscedasticity (ARCH) models. It describes the variance of the current error term
or innovation as a function of previous values. The GARCH(1,1) model is defined by the following
relationships:

μ(t)− Et−1μ(t) =
√

σtεt

σt = ω + αε2
t−1 + βσt−1

where μ(t) represents the return of an asset at time t, Et−1 (μt) is the expected return at t − 1, σt

characterises the conditional volatility at time t, and εt is the innovation term at time t.
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2.3.3. Fractional Brownian Motion

The Fractional Brownian Motion is a long memory process introduced in [34]:

BH(t) = BH(0) +
1

Γ(H + 1/2)

( ∫ 0

−∞

(
(t − s)H−1/2

− (−s)H−1/2)dB(s) +
∫ t

0
(t − s)H−1/2dB(s)

)
.

(12)

It is also referred to as a self-similar process. A stochastic process Xt, with t ∈ R, is said to be
self-similar if there exist H > 0 such that for any scaling factor c > 0,

Xct
L
= cHXt, (13)

with H the Hurst exponent and (L=) equivalence in distribution. Self-similar processes are stochastic
models where a scaling in time is equivalent, in term of distribution, to an appropriate scaling in space.
Moreover, if, for any k, the distribution of (Xt1+c − Xt1+c−1, ..., Xtk+c − Xtk+c−1) does not depend on
c, Xt is said to be self-similar with stationary increments. So, a Gaussian process BH(t) is called a
Fractional Brownian Motion, if it satisfies: 1. BH(t) is self-similar with 0 < H < 1; 2. BH(t) has stationary
increments. When H = 0.5 a simple Brownian Motion with independent increments is recovered.
When 0 < H < 0.5 the Fractional Brownian Motion is said to be anti-persistent, which means that
increments tend to be opposite signed. Conversely, when 0.5 < H < 1 it is said to be persistent, which
means that increments tend to be equally signed.

2.3.4. Autoregressive Fractionally Integrated Moving Average

The Autoregressive Fractionally Integrated Moving Average (ARFIMA) is one of the most common
processes to model long-range correlated asset prices. The Autoregressive Fractionally Integrated
Moving Average process of order (p, d, q) with mean μ, may be written, using the lag operator L, as:

Φ(L)(1 − L)d(yt − μ) = Θ(L)εt, (14)

with εt i.i.d. and ∼ (0, σ2
ε ). The autoregressive component of the process is represented by the factor:

Φ(L) = 1 − φ1L − ... − φpLp, (15)

where the lag operator of order p shifts the value of yt back to p observations, so that one obtains:

Φ(L)yt = (1 − φ1L − ... − φpLp)yt = yt − φ1yt−1 − ... − φpyt−p. (16)

The moving average component of the process is represented by the factor:

Θ(L)εt = (1 + θ1L + ... + θqLq)εt = εt + θ1εt−1 + ... + θqεt−q . (17)

The fractionally differencing operator (1 − L)d is defined as:

(1 − L)d =
∞

∑
n=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
. (18)

Note that the process is stationary only for −0.5 < d < 0.5 . For d < |0.5| the ARFIMA process is
said to exhibit long memory.
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The power spectral representation f (λ) of Fractional Brownian Motions and Autoregressive
Fractionally Integrated Moving Average Processes provides further details regarding their power law
behavior and the relation between the characteristic exponents. It is :

f (λ) ∼ |λ|−2d (ARFIMA)

f (λ) ∼ |λ|1−2H (FBM)
(19)

yielding:
H = d + 1/2. (20)

3. Results

In this section, the results of the application of the cluster entropy method to several FBM and
ARFIMA series are presented. The moving average cluster entropy can be implemented via the
MATLAB codes available at [35].

First, a set of benchmark values for the cluster entropy are obtained by implementing the algorithm
on Geometric Brownian Motion (GBM) and Generalized Autoregressive Conditional Heteroskedastic
(GARCH) series. Geometric Brownian Motion series are generated by means of the MATLAB tool
available at [36]. GBM series are analysed with parameters varying in the range 0 ≤ μ ≤ 1 × 10−7 and
5 × 10−4 ≤ σ ≤ 5 × 10−6. GARCH series are generated by using the computational tool provided in
MATLAB [37]. Figure 1 reports cluster entropy and market dynamic index results obtained on GBM
and GARCH series. The GBM series are generated with the following parameters: μ = 1 × 10−7 and
σ = 5 × 10−4; the GARCH series are generated with the following parameters: α = 0.475, β = 0.1
and ω = 0.1. Left and middle panels show cluster entropy curves for time horizons M = 1 and
M = 12, i.e., corresponding respectively to one period (one month) and twelve periods (one year) of
data. Right panels show Market Dynamic Index I(M, n) for different horizons M and moving average
windows n. I(M, n) does not depend on the temporal horizon M both in GBM and GARCH series.

Figure 1. Cluster entropy results for Geometric Brownian Motion (GBM) and Generalized
Autoregressive Conditional Heteroskedastic (GARCH) series are reported respectively in the first
and in the second row. GBM series are generated with following parameters: μ = 1 × 10−7 and
σ = 5 × 10−4. GARCH series are generated with the following parameters: α = 0.475, β = 0.1 and
ω = 0.1. Left and middle panels show cluster entropy curves for time horizons M = 1 and M = 12.
Right panels show Market Dynamic Index I(M, n) for different horizons M and moving average
windows n. I(M, n) is independent on M.
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Results of the cluster entropy approach applied to Fractional Brownian Motion (FBM) are reported
in Figure 2. The Fractional Brownian Motion series were generated by means of the FRACLAB tool
available at [38]. Several Fractional Brownian Motion series with Hurst exponent varying in the range
0.1 ≤ H ≤ 0.9 are analysed. Figure 2 shows the cluster entropy for time horizon M = 1 and M = 12
for FBM series with H = 0.3, H = 0.5 and H = 0.8.

Figure 2. Cluster entropy results for Fractional Brownian Motion (FBM) series with H = 0.3, H = 0.5,
H = 0.8. First row shows results for time horizon M = 1 (approximately equivalent to the first month
(January 2018) of raw data for NASDAQ, S&P500, DIJA). The second row shows results for time
horizon M = 12 (approximately equivalent to twelve months of data in NASDAQ, S&P500, DIJA, i.e,
the whole 2018 year).

In general, cluster entropy calculated at different time horizons M presents a similar behavior.
On account of Equation (8), power-law correlated clusters with a smooth logarithmic increase of the
entropy for τ < n can be expected. Conversely, for τ ≥ n, the exponentially correlated decay sets the
entropy to increase linearly with the term τ/n dominating. However, a quite different behavior is
observed for different H. For H = 0.3 (anti-correlated FBM series), cluster entropy curves exhibit a very
limited dependence on the moving average window n over the range of investigated τ. For H = 0.5,
cluster entropy curves vary more significantly as the moving average window n changes. For H = 0.8,
cluster entropy curves vary even more remarkably by taking higher values for increasing n.

The dependence of the cluster entropy on temporal horizon M is reflected in the results of the
Market Dynamic Index I(M, n) plotted in Figure 3. The Market Dynamic Index I(M, n) is estimated
over several FBM series with different Hurst exponents H. For anticorrelated series 0 ≤ H ≤ 0.5,
I(M, n) curves overlap for all the moving average windows n and time horizons M. For positively
correlated series 0.5 ≤ H ≤ 0.9, I(M, n) exhibits slightly different values as a function of time horizons
M. It is worth-noting that the magnitude of the marginal increments in I(M, n) at large n increases
as H increases for 0 ≤ H ≤ 0.5 , reaches a maximum for H = 0.5 and then decreases again for
0.5 ≤ H ≤ 0.9. This effect is evident in the insets of Figure 3.
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Figure 3. Market Dynamic Index I(M, n) for Fractional Brownian Motion series with Hurst exponent
ranging from H = 0.2 to H = 0.9 respectively from (a) to (l).

The cluster entropy analysis is implemented on Autoregressive Fractionally Integrated Moving
Average (ARFIMA) series obtained by means of simulations for several combination of parameters [39].
The extent of investigated parameters are marked by alphabet labels in Table 2 for ARFIMA (1,d,1)
and in Table 3 for ARFIMA (3,d,2) and ARFIMA(1,d,3).
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Table 2. Full set of parameter range for the ARFIMA (1,d,1) processes simulated in this work.
Specifically, D is the fractal dimension, H is the Hurst exponent and d is the differencing parameter
(1st, 2nd and 3rd columns) which are related by Equation (20), φ is the autoregressive parameter (4th
column), and θ is the moving average parameter (5th column). Label refers to each parameter set (6th
column). Specifically, cluster entropy results for the parameter sets: [a1], [b1], [e1], [f1], [i1], [l1] are plotted
in Figure 4 (M = 1) and Figure 5 (M = 12), while the Market Dynamic Index is plotted in Figure 6.

D H d φ θ Label

1.45 0.55 0.05 0.20 0.90 a1
0.90 0.20 b1

1.40 0.60 0.10 0.20 0.90 c1
0.90 0.20 d1

1.35 0.65 0.15 0.20 0.90 e1
0.90 0.20 f1

1.30 0.70 0.20 0.20 0.90 g1
0.90 0.20 h1

1.25 0.75 0.25

0.20 0.90 i1

0.30 0.40 j1
0.85 k1

0.90
0.20 l1
0.40 m1
0.85 n1

1.20 0.80 0.30 0.20 0.90 o1
0.90 0.20 p1

1.02 0.98 0.48

0.30 0.40 q1
0.85 r1

0.90 0.40 s1
0.85 t1

Figure 4. Cluster entropy results for horizon M = 1 for ARFIMA series with different combinations
of the differencing parameter d, autoregressive parameter φ and moving average parameter θ.
The differencing parameter takes values d = 0.05, d = 0.15, d = 0.25 with a different combinations of
autoregressive and moving average parameter. The full set of analysed values of d, φ and θ is reported
in Table 2.
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Figure 5. Cluster entropy results for horizon M = 12 on ARFIMA series with different combinations
of the differencing parameter d, autoregressive parameter φ and moving average parameter θ.
The differencing parameter takes values d = 0.05, d = 0.15 and d = 0.25 with a different combination
of autoregressive and moving average parameters. The full set of analysed values of d, φ and θ is
reported in Table 2.

Figure 6. Market Dynamic Index I(M, n) for ARFIMA series with different combinations of
the differencing parameter d, autoregressive parameter φ, and moving average parameter θ.
The differencing parameter takes values d = 0.05, d = 0.15, d = 0.25, with a different combination of
autoregressive and moving average parameters. The full set of analysed values of d, φ and θ is reported
in Table 2.
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Table 3. Full set of parameter range for ARFIMA (3,d,2) and ARFIMA(1,d,3) processes simulated in
this work. Specifically H is the Hurst exponent and d is the differencing parameter which are related
by Equation (20) (1st and 2nd columns); φ1, φ2 and φ3 are the autoregressive parameters (3rd, 4th and
5th columns); θ1, θ2 and θ3 are the moving average parameters (6th, 7th and 8th columns). Label refers
to each parameter set (10th column). Specifically, cluster entropy results for the parameter sets: [a2],
[b2], [e2], [f2], [i2], [j2] are plotted in Figure 7 (M = 1) and Figure 8 (M = 12), while the Market Dynamic
Index is plotted in Figure 9.

D H d φ1 φ2 φ3 θ1 θ2 θ3 Label

1.45 0.55 0.05 0.20 - - 0.90 0.90 0.90 a2
0.90 0.90 0.90 0.20 0.20 - b2

1.40 0.60 0.10 0.20 - - 0.90 0.90 0.90 c2
0.90 0.90 0.90 0.20 0.20 - d2

1.35 0.65 0.15 0.20 - - 0.90 0.90 0.90 e2
0.90 0.90 0.90 0.20 0.20 - f2

1.30 0.70 0.20 0.20 - - 0.90 0.90 0.90 g2
0.90 0.90 0.90 0.20 0.20 - h2

1.25 0.75 0.25 0.20 - - 0.90 0.90 0.90 i2
0.90 0.90 0.90 0.20 0.20 - j2

1.20 0.80 0.30
0.20 - - 0.90 0.90 0.90 k2
0.40 0.16 - 0.90 0.81 0.73 l2
0.90 0.90 0.90 0.20 0.20 - m2

1.15 0.85 0.35 0.20 - - 0.90 0.90 0.90 n2

1.02 0.98 0.48 0.40 0.16 - 0.90 0.81 0.73 o2

Figure 7. Cluster entropy results for horizon M = 1 on ARFIMA series with different combinations of
the differencing parameter d, autoregressive parameter φ1, φ2, and φ3 and moving average parameter
θ1, θ2 and θ3. The differencing parameter takes values d = 0.05, d = 0.15, d = 0.25, with a different
combination of autoregressive and moving average parameters. The full set of analysed values of d, φ

and θ is reported in Table 3.
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Figure 8. Cluster entropy results for horizon M = 12 on ARFIMA series with different combinations of
the differencing parameter d, autoregressive parameter φ1, φ2, and φ3 and moving average parameter
θ1, θ2 and θ3. The differencing parameter takes values d = 0.05, d = 0.15 and d = 0.25, with a different
combination of autoregressive and moving average parameters. The full set of analysed values of d, φ

and θ is reported in Table 3.

Figure 9. Market Dynamic Index I(M, n) for ARFIMA series with different combinations of the
differencing parameter d, autoregressive parameter φ1, φ2, and φ3 and moving average parameter θ1,
θ2 and θ3. The differencing parameter takes values d = 0.05, d = 0.15 and d = 0.25, with a different
combination of autoregressive and moving average parameters as reported in Table 3.

Cluster entropy results for ARFIMA (1,d,1), corresponding to parameters marked by alphabet
labels in Table 2, are shown in Figures 4 and 5. The corresponding market dynamic indexes I(M, n)
calculated by using the data of the cluster entropy results on ARFIMA (1,d,1) are shown in Figure 6.
Cluster entropy results on ARFIMA (3,d,2) and ARFIMA(1,d,3), corresponding to parameters marked
by alphabet labels in Table 3, are shown in Figures 7 and 8. Market Dynamic Index for series generated
by ARFIMA (3,d,2) and ARFIMA(1,d,3) processes are reported in Figure 9. With differencing parameter
0 < d < 0.2, Market Dynamic Index curves are n-invariant for small values of n, but horizon
dependence emerges at larger n. When 0.2 < d < 0.5, Market Dynamic Index curves show a significant
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horizon dependence even at small n. Therefore, according to the choice of the differencing parameter
d, series generated by ARFIMA processes can reproduce the effect shown by the cluster entropy in
real-world financial markets.

4. Discussion and Conclusions

The cluster entropy behavior described by Equation (8) has been replicated by simulations
performed on artificially generated series, with results reported in Section 3. Figures show cluster
entropy results for the following processes: Geometric Brownian Motion (Figure 1); Generalized
Autoregressive Conditional Heteroskedastic processes (Figure 1); Fractional Brownian Motion
(Figure 2); Autoregressive Fractionally Integrated Processes (Figures 4, 5, 7 and 8). The focus here
is limited to the results shown in Figures 2, 4, 5, 7 and 8 related to FBM and ARFIMA because they
are long-range dependent models relevant to the present analysis. The behavior of cluster entropy
curves is well represented by Equation (8), while deviations occur in extreme cases, as in the case of
ARFIMA(5,d,0) models generated by autoregressive parameters θi � 0.9, that are far away from those
observed in real markets. In general, power-law correlated clusters, characterized by length τ < n,
determine the logarithmic behavior and the entropy term log τD, regardless of the moving average
window value n. On the other hand, exponentially correlated clusters, characterized by length τ > n,
are related to the linear behavior prescribed by the excess entropy term τ/n, which depends on the
moving average window n.

Cumulative measures are useful to summarize key information in a single figure. Thus, the Market
Dynamic Index I(M, n) is deduced from the cluster entropy results by means of Equation (10). I(M, n)
gathers the information present in the FBM series at different time horizons M and moving average
windows n as shown in Figure 3. The Market Dynamic Index I(M, n) replicates the characteristic
behaviour observed in real world financial markets [23] when estimated in long-range positively
correlated sequences. Conversely, one can note that the Market Dynamic Index I(M, n) for Fractional
Brownian processes with Hurst exponent 0 < H < 0.5 (anticorrelated FBMs) does not present any
horizon dependence. Conversely, Fractional Brownian Motion series with 0.5 < H < 1 (positively
correlated FBMs) do show horizon dependence. However, as it will be discussed below, Fractional
Brownian Motion series fail to fully reproduce the financial markets behavior.

In the case of the ARFIMA processes, a significant horizon dependence emerges, as observed
in the Market Dynamic Index curves plotted in Figures 6 and 9. Thus, cluster entropy for ARFIMA
processes exhibits horizon dependence as observed in real world financial markets. The extent of long
range dependence and its microscopic origin are consistent with findings of previous studies [27,28].

To further validate the findings, statistical significance has been checked by using the T-paired test
of the null hypothesis h0 that the cluster entropy values obtained by ARFIMA simulations come from
distributions with equal mean, variance and probability p as the simple Brownian Motion (H = 0.5),
assumed as benchmark. The results of T-paired test are reported in Table 4 (for the sake of comparison
the results of the T-paired test performed on NASDAQ, DJIA and S&P500 markets in Table 5 [23] are
also included here).

A qualitative comparison between Tables 4 and 5 suggests an overall similarity between ARFIMA
and real world markets behaviour. In particular, p values in column [f1] are quite close to those of the
S&P500 suggesting a correlation degree with Hurst exponent H � 0.65 and differencing parameter
d � 0.15 for S&P500. Probability values p in column [e2] are also close to S&P500, confirming the value
H � 0.65 and d � 0.15. The probability values for DJIA are better approximated by the set of ARFIMA
parameters in column [b1] and column [a2] suggesting lower values of the correlation exponents: H � 0.55
and d � 0.05. The lower values of the probability p indicate a more complex behavior of the NASDAQ
with stronger deviation from the fully uncorrelated Brownian motion. By looking at Table 4, one can
relate the NASDAQ behaviour to higher values of the long-range parameters of the ARFIMA model.
In particular, the NASDAQ probability values become closer to parameter sets [i2] and [n2] corresponding
to higher correlation degrees and correlation exponents around H � 0.75 and d � 0.25. The different
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horizon dependence of NASDAQ and DJIA, where the former is a diversified stock market with a high
degree of heterogeneity and the latter is an index representative of a chosen set of industrial stocks,
is consistent with the ability of the cluster entropy index to quantify market heterogeneity.

Table 4. Probability p to reject the null hypothesis that the cluster entropy values for the ARFIMA
processes at varying horizons M, have same mean and variance of the Fractional Brownian Motion
with H = 0.5. The probability p has been estimated by standard T-paired test. First column reports the
temporal horizon M. The other columns refers to parameter sets [b1], [f1], [l1], [a2], [e2], [i2], [n2], [o2]
of Tables 2 and 3.

M [b1] [f1] [l1] [a2] [e2] [i2] [n2] [o2]

1 0.9597 0.7938 0.6013 0.8519 0.6779 0.4956 0.3542 0.2314
2 0.9863 0.8429 0.6985 0.9293 0.7883 0.6566 0.5414 0.4304
3 0.9820 0.8789 0.7743 0.938 0.8346 0.7362 0.6468 0.5576
4 0.9848 0.8922 0.8031 0.956 0.8689 0.7827 0.7147 0.6380
5 0.9878 0.9062 0.8325 0.9608 0.8809 0.8102 0.7528 0.6911
6 0.9940 0.9197 0.8517 0.9724 0.9043 0.8417 0.7840 0.7322
7 0.9785 0.9186 0.8633 0.9617 0.9038 0.8521 0.8036 0.7614
8 0.9930 0.9321 0.8775 0.9762 0.9229 0.8710 0.8333 0.7931
9 0.9867 0.9370 0.8890 0.9737 0.9273 0.8809 0.8438 0.8100
10 0.9813 0.9333 0.8952 0.9710 0.9261 0.8880 0.8533 0.8195
11 0.9816 0.9436 0.9011 0.9749 0.9326 0.8965 0.8643 0.8342
12 0.9853 0.9451 0.9072 0.9741 0.9353 0.9019 0.8764 0.8508

Table 5. Probability p to reject the null hypothesis that the cluster entropy values for the NASDAQ,
DJIA and S&P500 at varying horizons M have same mean and variance of the Fractional Brownian
Motion with H = 0.5. First column reports the temporal horizon M. The probability p has been
estimated by standard T-paired test [23].

M NASDAQ S&P500 DJIA

1 0.5154 0.7399 0.8892
2 0.6026 0.8335 0.9257
3 0.6470 0.8588 0.9332
4 0.6631 0.8814 0.9283
5 0.6823 0.9018 0.9417
6 0.7124 0.9246 0.9534
7 0.7162 0.9224 0.9461
8 0.7288 0.9309 0.9618
9 0.7370 0.9479 0.9645

The cluster entropy behavior appears deeply related to positive persistence and long-range
correlation. In real-world financial series, horizon dependence deviates from the behaviour of fully
uncorrelated series. The Market Dynamic Index, obtained via the integration of the cluster entropy
curves, provides this feature in a cumulative, thus more robust, form. In conclusion, contrary to
the assumptions of the traditional financial market theories, the hypothesis of efficient markets and
rational investor behavior do not hold on account of the horizon dependence of the cluster entropy.
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Abstract: We investigate the effects of the recent financial turbulence of 2020 on the market of
cryptocurrencies taking into account the hourly price and volume of transactions from December
2019 to April 2020. The data were subdivided into time frames and analyzed the directed network
generated by the estimation of the multivariate transfer entropy. The approach followed here is based
on a greedy algorithm and multiple hypothesis testing. Then, we explored the clustering coefficient
and the degree distributions of nodes for each subperiod. It is found the clustering coefficient
increases dramatically in March and coincides with the most severe fall of the recent worldwide stock
markets crash. Further, the log-likelihood in all cases bent over a power law distribution, with a
higher estimated power during the period of major financial contraction. Our results suggest the
financial turbulence induce a higher flow of information on the cryptocurrency market in the sense of
a higher clustering coefficient and complexity of the network. Hence, the complex properties of the
multivariate transfer entropy network may provide early warning signals of increasing systematic
risk in turbulence times of the cryptocurrency markets.

Keywords: cryptocurrencies; multivariate transfer entropy; complex networks

1. Introduction

Cryptocurrencies are new financial instruments based on the technology of blockchains. A coin is
defined as a chain of digital signatures. In Bitcoin, each owner transfers the coin by digitally signing
a hash of the previous transaction and the public key of the next owner, adding them to the end of
the coin [1]. A cryptocurrency exchange platform is a website on which we can buy and sell coins
for other digital currency or trust money. Depending on the exchange, they can operate as a stock
exchange or as a currency exchange house, which is very effective and safe for users. The easy access
of this market through more than 22,000 projects operating within the industry, exchanges with low
fees of transactions, more than 5000 virtual coins worldwide, and a daily trade volume of nearly
174 billion dollars have done cryptocurrencies a very attractive instrument of investment for the
general population [2].

The interactions of cryptocurrencies are not always identical among all variables, in other
words, the variables influence each other with different magnitude. Thus, it is necessary to study
the asymmetric dependence structure to understand such interactions. The common measures
to estimate dependencies, i.e., linear cross-correlation, cross-spectra, and mutual information;
share the characteristic to be symmetric in nature. The usual approach to understanding asymmetric
dependencies is through the parametric approach of copulas [3]. Nevertheless, we are interested in
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an approach from the point of view of information theory in order to take into account the concept
of causality. Even though there exist also attempts to model causality via copula-based methods [4],
the information approach works on the broadest sense of free modeling.

The most popular measures of asymmetric dependencies in information theory are related
to conditional information or Transfer entropy (TE) based on the concept of Shannon entropy [5].
This quantity was introduced originally with the purpose to quantify the statistical coherence between
systems evolving in time [6]. Since then transfer entropy has been used to solve problems of different
nature. It has been effective in the study of the neuronal cortex of the brain [7], statistical physics [8],
dynamical systems [9], given a thermodynamic interpretation in [10].

In applications to econometrics, transfer entropy can be regarded as a nonlinear generalization of
the Granger causality test [11]. There exists a series of results [11–13] that state an exact equivalence
between the Granger causality and TE statistics for various approaches and assumptions on the
data generating processes, which make it possible to construct TE as a non-parametric test of pure
Granger causality. In a previous study [14], we compared a synthetic linear and non-linear models,
and an empirical data set of cryptocurrencies, where is highlighted the advantage of the symbolic
estimation of TE over traditional Granger causality test. Moreover, in [15] the multivariate version of
symbolic transfer entropy has been tested, the authors show that it can be applicable to non-stationary
time series in mean and variance and is even unaffected by the existence of outliers and vector
autoregressive filtering.

Despite this characteristic, the main deficiency of the general TE as a measure of causality is the
possibility of spurious causalities due to indirect influences or common drivers. To explain this point
consider the processes X, Y, and Z; if a causal interaction is given by X → Y → Z, a bivariate analysis
would give a significant link between X and Z that is detected as being only indirect in a multivariate
analysis [16]. An approach to overcome this issue is proposed in [17] by inferring an effective network
structure given multivariate interactions using a greedy algorithm. The authors of [18] improved the
methodology by adding a preliminary step to prune the set of sources and implementing a series
of rigorous statistical tests to decrease the type I and II errors emerged in the multiple comparisons
involved on the computations of multivariate transfer entropy. The approach of these studies employs
conditional and collective forms of multivariate transfer entropy [19,20].

On the other hand, complex system theory has a long tradition between physicists. The emergence
of regularities have been observed in different systems and theories, such as convection, turbulence,
phase transition, nonlinear dynamics, renormalization theory, among other fields of physics [21].
However, there is no strict mathematical definition of what complexity is, rather it is characterized
according to the properties presented in the particular system. These properties are commonly referred
as scale invariance, self-organized criticality, hierarchical structure, coexistence of collective effects and
noise, variability and adaptability, and highly optimized tolerance [22].

Network representation has become a common approach to represent interactions between
elements in complex systems. This tool allows characterizing the properties of different phenomenan
in a common framework. Graph theory has become an essential piece to the understanding of
the structure and behavior of these systems. Based on it has been possible to discover emerging
properties having fundamental implications on different areas of knowledge [23]. The representation
of the financial markets through networks and the study of their complex structure draw attention in
physics since the seminal work [24]. There, it is introduced the ultrametric distance and the Minimum
Spanning Tree (MST) to characterize the correlations between the stocks used to compute the Dow
Jones Industrial Average (DJIA) index, and the portfolio of stocks used to compute the Standard and
Poor’s 500 (S&P 500). Also, in [25] it is extended the methodology to study a portfolio of equities at
different time horizons, as well as the MST structure of volatilities comparing the network’s topological
properties of real and artificial markets.

Subsequently, a series of works have emerged that describes an analogy between the foreign
exchange market (or Forex) and the cryptocurrency market, using as a framework the tools that
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characterize complex networks. To begin with, the work done on [26] studied a large collection of daily
time series for world currencies’ exchange rates through MST methodology. They find an autoscaling
behavior in the degree distribution of the network, and demonstrate the existence of a hierarchical
structure in the currency markets by developing an analytical model. In the simultaneous works [27,28]
the authors show that the structure of the Forex network depends on the base currency. In addition,
they found the network is not stable in time, noting the USD node gradually loses its centrality,
while the EUR node starts turning more central during the study period. In relation to cryptocurrencies,
the study [29] analyzes the return distribution, volatility autocorrelation, Hurst exponents, and the
effects of multiscaling for the Bitcoin market. There, the authors find that this market show signs of
maturity during the last months of the analysis, whose characteristics resemble the complex properties
of the Forex market. The analysis done in [30], found further evidence of the shared features of Forex
and Cryptocurrency markets at high-frequency rate. Besides, it is pointing out the BTC/ETH and
EUR/USD exchange rates do not show any significant relationships. Thus, they hypothesize both
markets start decoupling. The same authors extend their study to 100 cryptocurrencies, introducing the
collective analysis of random matrices [31]. They found that the level of collectivity depends on which
cryptocurrency is used as the exchange rate. Moreover, it is detected that the USD begins to disconnect
from the network and resemble a fictitious currency, which may imply the cryptocurrencies’ autonomy.
Last, the work of [32] studies the relationship between both markets from a more econometric
perspective, where it is explained the importance of diversifying between them.

The previous results pave the way to carry out extensive studies on cryptocurrencies without
having to link them to the forex markets, despite the fact both markets share several similarities. In this
spirit we are interested to study the complexity properties that emerge in the induced network by
multivariate entropy transfer when considering the price and volume of transaction. In this sense,
we are seeking to characterize their asymmetric interactions by applying a series of statistical tests with
the intention of considering only significant connections. To the aim of bias reduction, we are looking
for multivariate rather than bivariate approach. Likewise, it is desired to describe the turbulence
observed during March 2020 by interpreting the temporal behavior of the directed interactions via
the complex network’s artifacts. In this regard, the turmoil of cryptocurrencies has been analyzed
in [33] from the concept of bull and bear market. The authors study the three largest cryptocurrencies
of Bitcoin, Ethereum, and Litecoin through the technique of Detrended Fluctuation Analysis (DFA)
analyzing the Hurst exponent over a different time windows. They find that during the bull period the
market is efficient, whereas in bear times it is inefficient.

Furthermore, there exist literature discussing the spillover effect and systematic risk among the
cryptocurrency markets. In [34] it is found that the structural breaks are universally present in seven of
the largest cryptocurrencies, whereas it is spreads from the smallest to the largest currencies, in order
of capitalization. This finding is done by implementing the Granger causality test, as well as a test for
the ARCH and the Dynamic Conditional Correlation MGARCH to the selected coins. Furthermore,
the work [35] show evidence that Ethereum is likely to be the independent coin in the cryptocurrency
markets, while Bitcoin tends to be the spillover effect recipient. There, the author modeled the system
by variants of the Vector Autoregressive Model (VAR), and using jointly distributed Student’s-t copulas
to measure the risk contagion among cryptocurrencies. Moreover, the study [36] found a risk contagion
effect between cryptocurrencies when applying a copula approach. There, it is suggested to perform
portfolio diversification to avoid this phenomenon.

On the perspective of transfer entropy, the study of Sandoval [37] uses the information measure to
characterize the contagion of institutions in times of crisis. He identifies the companies most vulnerable
to be contagious on countries that have suffered sovereign default. A recent study in similar direction
is [38], where transfer entropy is estimated by discretizing the return time series into positive and
negative values and validated by resampling. The researchers constructed an indicator to measure the
systematic risk on the stock market and real state data. They observed the networks manifest strongly
connectivity around periods of high volatility around the crash of 2008. Further, the authors of [39]
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apply the Rényi Transfer Entropy to investigate the interactions between the crude oil markets and the
cryptocurrency markets. Their results suggest that the macroscopic economic value of the US crude oil
has an contagion effect on the cryptocurrency markets.

In this study, we analyze the cryptocurrency network induced by the estimation of the multivariate
transfer entropy as proposed in [18]. We are especially interested to understand the effects of the
financial turbulence of 2020 on the market of cryptocurrencies taking into account the price and
volume of transactions as a variable of interest. To obtain deeper insights about the structure of the
induced network we quantify the clustering coefficient and estimate the degree distributions of nodes,
which are two standard tools from complex networks [40]. Our work follows the line of thought of
the literature discussed above, specifically in the sense of studying the systematic risk and contagion
between the currencies through the transfer entropy when the cryptocurrency market is in a turbulent
situation. Likewise, the March 2020 turmoil is explored with network theory’s tools, which have had a
fundamental role in the econophysics interpretation of the complex systems that emerge in finance.

However, our work is distinguished in combining a series of elements that give rise to ask
and exploring the following questions, which as far as we know have not yet been discussed in the
literature: Do the directed networks associated to the multivariate transfer entropy of volume and
price of cryptocurrencies present complex properties? Is it possible to characterize and in some sense to
anticipate the turmoils on the cryptocurrency markets through the properties of the network induced
by the multivariate transfer entropy? Can the clustering coefficients of these networks play the role
of an early indicator of turbulence in these markets? Is there self-similarity in the induced networks,
and if so, how do we interpret this characteristic in turbulent times?

We hypothesize the complex properties of the multivariate transfer entropy network may provide
early warning signals of increasing systematic risk. This is inferring through evidence found during the
turbulence of March 2020 for the induced directed networks by the multivariate information measure
of the hourly volume and price of 146 coins from December 2019 to April 2020. We hope, these results
may help the practitioners who venture to invest in this risky class of financial instruments to have
further quantitative tools to assess systematic risk during times of turbulence.

The next Section 2 describes the data under study. Section 3 presents the greedy algorithm and
the series of statistical tests involved in the computation of multivariate transfer entropy, as well as
preliminary results. In Section 4 the network dynamics characterized by the clustering coefficient and
power law fitness are analyzed in the context of the generated network of cryptocurrencies. Finally,
Section 5 highlights the implications of the results and future work is proposed.

2. Data

We consider the price and volume in dollars of p = 146 cryptocurrencies, which are obtained
using the API of CoinMarketCap [2] for the period from 00:00 2019-12-01 to 00:00 2020-04-05, at an
hourly frequency, resulting in a total of n = 3025 observations (see Supplementary Material). The data
acquisition and preprocessing strategy consisted in creating a database on a remote Linux server and
automatically make calls to the CoinMarketCap API (in UTC time) to request the price and volume of
the first 200 coins in order of capitalization on the day the database was built, i.e., on the 9th November
2019. The frequency and number of currencies were chosen in such a way that it did not exceed the
number of requests or credits allowed by the API. The intention was to fulfill the commitment to have
the maximum number of coins at the highest possible frequency. The cryptocurrencies are selected
under the condition of having each less of 1% of missing values in volume and price during the
trading period. In case of no record, a spline interpolation of order three was used to fill the time series
gaps. Thus, our set of variables dropped to the reduced variables stated above (p = 146). In addition,
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we transformed the 2p time series into price-returns r(price)
k (t), and volume-returns r(volume)

k (t) by
computing the logarithmic difference of consecutive observations

r(price)
k (t) = log(sk(t))− log(sk(t − 1)) (1)

r(volume)
k (t) = log(vk(t))− log(vk(t − 1)) (2)

where k = 1, . . . , p; t = 1, . . . , n; and sk(t), vk(t) stands for the price and volume of cryptocurrency k at
time t, respectively. In this way, we deal only with the stochastic part of the time series.

Even though the general approximation of the transfer entropy is non-parametric, we are going to
use a Gaussian estimator for the conditional distributions as will be explained in the next section. Then,
it is necessary to ensure that the data is stationary. For this purpose, it is a usual practice to take as an
input the logarithmic returns to satisfy this requirement. Another approach is not to use excessively
long time series, even though it may create a compromise between the bias of the transfer entropy
estimator and stationarity. In this study, in addition to using moderately long log-returns time series,
we have verified stationarity using the augmented Dickey-Fuller test [41] and the Phillips-Perron
test [42]. In both tests it has been obtained a p-value less than 0.001 for all the 2p time series considered.
Therefore, it is confirmed no evidence of a unit root in any variable.

Further, it is known that the distribution of financial and cryptocurrency data change according
to the resolution that we observe them [43–45]. In this sense, it is important to keep in mind the
implications of our results are only valid for hourly observations. Our interest in this frequency
lies in the high volume of transactions that take place intra-day on the market of cryptocurrencies.
However, we did not want to go to higher frequencies (minutes) due to two situations. The first is
that volatility increases and it is more difficult to justify stationarity. Second, the justification for using
a Gaussian estimator to calculate the entropy transfer would be invalided because the distribution
of the logarithmic returns increases its kurtosis and their distribution start resembles one of the Levy
family [45]. On the other hand, we are interested to delimit our work for the period of time just before
the pandemic effects take place. Consequently, we have the limitation of having not too many days
of transactions around this event, so the sample would not be large enough to obtain an unbiased
estimation of multivariate transfer entropy if used daily time series.

Finally, it is important to mention that we are working with non-traded prices. Coinmarketcap
is known as a coin-ranking service because they rank both coins and exchanges by trading volume
and market capitalization to weight their cryptocurrencies data. The specific strategy followed by
CoinMarketCap can be found in [46]. This type of information would represent a problem if we
were interested in proposing an optimal portfolio, hedging strategies, or trading applications, as is
properly warned in [47]. Nonetheless, it is not the goal of this study, we are interested in the weighted
information provided by CoinMarketCap, since it estimates the formation of prices considering
important features of the cryptocurrency data and selected exchanges. The last is more in tune with
the vision of complex systems. In other words, the objective of our study is in essence explanatory
rather than predictive. Notwithstanding, it should be kept in mind the results are conditioned to the
way in which CoinMarketCap weighted the information.

3. Multivariate Transfer Entropy

The Transfer Entropy (TE) from a process X to a process Y measures the amount of uncertainty
reduced in future values of X by knowing the past states of Y and X itself. In other words,
transfer Entropy (TE) quantifies the amount of information that the past of a source process X
provides about the current value of a target process Y = yt, considering the context of Y’s own
past. In a multivariate setting, a set of sources Xi, i = 1, . . . , M is provided. The multivariate Transfer
Entropy (mTE) from Xi to Y can be defined as the information that the past of Xi provides about Y = yt,
in the context of both Y’s past and all the other relevant sources in X. The main challenge is to define
and identify the relevant sources. In principle, the mTE from Xi to Y is computed by conditioning on

101



Entropy 2020, 22, 760

all the other sources in the network, i.e., X \ Xi. However, in practice, the sizes of the conditioning set
must be reduced in order to avoid the curse of dimensionality. The idea is to restrict the conditioning
set by finding and including the sources that participate with Xi in reducing the uncertainty about
Y = yt, in the context of Y’s own past. The set of relevant sources will be denoted as Z [48].

In order to infer Z from X it is followed the greedy algorithm approach suggested by [17,18],
where Z is built iteratively by maximizing the conditional mutual information (CMI) criterion. As a first
step, a set of candidate variables c ∈ C is defined from the past values of X; then, Z is built including
iteratively the candidate variables c that provides statistically significant maximum information
about the current value Y = yt, conditioned on all the variables that have already been selected.
More formally, at each iteration, the algorithm selects the past variable c ∈ C that maximizes the
conditional mutual information I(c, yt|Z) at significance level α of a maximum information test. The set
of selected variables forms a multivariate, non-uniform embedding of X [49] (See Appendix A).

The implemented greedy algorithm operates in several steps. First, Z is initialized as an empty
set and is considered the candidate sets for Y’s past CY and X’s past CX. Second, variables from CY
are selected. To this end, for each candidate, c ∈ CY, it is estimated the information contribution to
Y = yt as I(c, yt|Z). Next, it is found the candidate with maximum information contribution, c∗, and is
performed a significance test; if it is found significant, must be added c∗ to Z and remove it from CY.
In addition, the maximum statistic (see Appendix B.1) is used to test for significance while controlling
the Family-Wise Error Rate (FWER). Then, the algorithm stops if I(c∗, yt|Z) is not significant or CY is
empty. Third, variables are selected from X’s past states, i.e., iteratively candidates in CX are tested
following the procedure described before. Fourth, redundant variables in Z are tested and removed
using the minimum statistic (see Appendix B.2). The minimum statistic computes the conditional
mutual information between every selected variable in Z and the current value, conditional on all
the remaining variables in Z. This test is performed to ensure that the variables included in the
early steps of the iteration still provide a significant information contribution in the context of the
final parent set Z [17]. Fifth, the omnibus test is performed (see Appendix B.3) to test the collective
information transfer from all the relevant source variables to the target I(ZX, yt|ZY). The resulting
omnibus p-value is later used for the correction of the FWER at the network level. If the omnibus test
is significant, a sequential maximum statistic is performed on each selected variable z ∈ Z to obtain
the final information contribution and p-value for each variable.

The mTE between a single source Xi and target Y can be computed from the inferred non-uniform
embedding Z. To this end, it is collected from Z all of Xi’s selected past variables, Xi, and calculated the
mTE as I(Xi; yt|Z \ Xi). Note that time lag between Xi’s selected past variables and the current value
at time t indicates the information-transfer delay [50]. The delay can be estimated as the lag of the
past variable which provides the maximum individual information contribution, where the maximum
contribution is indicated either by the maximum raw TE estimate or by the minimum p-value over all
variables from the source. Finally, the algorithm must be repeated for every node (or variable) in the
network (see [18] for an extensive description of the mTE algorithm and hypothesis testing).

mTE Network of Cryptocurrencies

We consider each time series of price-returns and volume-returns of cryptocurrencies to be a
stochastic process in order to detect the causal relations between the variables. The procedure is to fix
the target variable Y = Xi, the source set as X \ Xi, and apply the mTE algorithm [48] described above
for each time series i = 1, . . . , 2p, where the first p variables represent the price-returns and the last p
variables the volume-returns, where p = 146 as described in the data section. The intention is to detect
if the causal relations of price-returns and volume-returns bring clues to understand the dynamic of
cryptocurrency market in times of turbulence. Hence, we design a temporal analysis of time windows
of 21 days, sliding by seven days, and using an overlapping of 14 days. Under this procedure, it is
obtained k = 16 time windows, the first from the 01:00 of 2019-12-01 to 00:00 of 2019-12-22, and the last
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from 01:00 of 2020-03-15 to 00:00 of 2020-04-05. Thus, each data frame contain q = 504 observations of
hourly price-returns and volume-returns, i.e., having dimensions q × 2p.

It is of primary importance to estimate the CMI, represented above as I(Xi, yt|Z \ Xi), in order
to quantify mTE, where i = 1, . . . , 2p. We estimate CMI under the assumption that price-returns and
volume-returns follow a jointly Gaussian continuous distribution, which is equivalent to assume a
linear causal dependency as proposed by Granger [51]. The value added to the original Granger
causality test is the use of a multivariate framework to test statistically significant causal relations
conditioned to other variables, while the original test only measures bivariate dependencies. We chose
Gaussian estimator over a more realistic distribution approach due to the dimension settings as well
as the sliding windows turn the computational complexity excessively time demanding. Nevertheless,
the results assuming linear dependencies are worthwhile to mention due to the capacity of mTE to
detect conditional interactions.

Figure 1 shows the resulting networks for the mTE analysis of cryptocurrencies described above
using the Gaussian estimator. Here we set the number of permutations for the surrogate distribution
used in the statistical tests (maximum, minimum, and omnibus) to 500, and a significance level of
0.05. The alphabetic order of the subfigures represents the temporal order of the time window
of each experiment. Thus, for example, the subfigure (a) shows the results for the time frame
2019-12-01–2019-12-22, the subfigure (b) for 2019-12-08–2019-12-29, and so on. The graph visualization
is made using the Kamada-Kawai algorithm [52], where each variable is represented as a node. We
have discriminated the price and volume variables separating their corresponding nodes by a fixed
distance to the upper right if it corresponds to a price-return node, and to the lower left if it corresponds
to a volume-return node. In addition, the price nodes are colored in green, while the volume ones in
red. The directed edges represent true causal relations under the mTE methodology, where we have
tested for one to three lags, and as a result, it is obtained a binary adjacency matrix A. This matrix has
elements Aij = 1 if there exit a statistically significant causal relation in this range of lags, and Aij = 0
on the contrary, where i, j = 1, . . . , 2p. Finally, the size of each node is drawn according to its clustering
coefficient, which is described in the next section. However, here it is already noting the increasing
size of the green nodes for the cases (m)–(o), which correspond to the subnetwork of price-returns for
the time windows ending at 2020-03-15, 2020-03-22, and 2020-03-29, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 1. Network representation of mTE results for cryptocurrency variables. The green nodes
represent price-return variables, while the red nodes represent volume-return variables. The subfigures
(a–p) show the directed network results for the time window under study. The subfigures are arranged
in temporal order from top-left to right-bottom.

4. Complexity Behavior

In this section, we describe and quantify for the data sets under study two essential quantities
in complex network theory: clustering coefficient and degree distribution. The former in order to
measure cliques or connectivity and the latter to estimate the scale-free property of the network.

4.1. Clustering Coefficient

The tendency of a network to form tightly connected neighborhoods, more than in the random
uncorrelated case, can be measured by the clustering coefficient (CC) [53]. Consider a network
described by the graph G = (V, A), where V is the number of nodes, and A = {aij} is the V × V
adjacency matrix. The orientation of edges or arrows in directed networks turn the adjacency matrix to
be non-symmetrical in general. In a binary directed networks, as are the induced networks by mTE,
the node out-degree kout

i is the number of edges pointing out from the node i, while the node in-degree
kin

i is the number of edges pointing towards the node i. Formally

kout
i = ∑j 
=i aij = (A)i1 (3)

kin
i = ∑j 
=i aji = (A′)i1, (4)
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where A′ is the transpose of A, (A)i is the ith row of A, and 1 represents the column vector (1, 1, . . . , 1)′

of dimension V. Similarly, the total degree ktot
i of node i is the sum of its in-degree and out-degree

ktot
i = kin

i + kout
i = (A′ + A)i1. (5)

Further, assuming that no self-interactions are present, the bilateral edges k↔i between i and its
neighbors are counted as

k↔i = ∑
j 
=i

aijaji = A2
ii. (6)

The usual approach to quantify the clustering coefficient of node i is by measuring the ratio of the
number of triangles in the graph G with i as one vertex over the number of all possible triangles
that i could form. In the directed graph case, the clustering coefficient Ci for node i can be explicitly
computed by the expression [54]

Ci =
(A + A′)3

ii
2[ktot

i (ktot
i − 1)− 2k↔i ]

, (7)

and the overall clustering coefficient C for the directed graph G is obtained by C = V−1 ∑V
i=1 Ci,

where C ∈ [0, 1].
Figure 2a shows the overall clustering coefficient as a function of time for the networks

associated with each time window of the data set. The black dotted line are the results for the
whole networks (i.e., volume-return and price-return nodes), whereas the blue and green dotted lines
represent the results for the price-return and volume-return nodes, respectively. It is remarkable
the peak in the clustering coefficient for the time window ending at 2020-03-15, especially in the
price-return subnetwork and in less amount for the whole network.

In order to gain insight that leads us to a better understanding of this behavior, it is superposed
the market capitalization at the end of the time window of each experiment. Thus, Figure 2b shows the
average market capitalization in dollars, taking into account the observed values of each cryptocurrency
of the data set. It is worth noting the coincidence of the fall in the average of market capitalization
with the increase of the overall clustering coefficient for the whole and price-returns networks at date
2020-03-15. This abrupt change in both behaviors is situated at the period of most severe contraction
of the global stock markets due to the recent COVID-19 worldwide pandemic. These results suggest
that the financial turbulence induce a higher flow of information to the cryptocurrency market on
its price-returns features and as a consequence the overall clustering coefficient increase. In the next
subsection is analyzed the degree distribution of the networks with the intention to sustain this
hypothesis from another angle.
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(a)

(b)

Figure 2. (a) Overall clustering coefficient as a function of time. Black dotted lines show the results for
the whole networks, blue and green dotted lines show results for the price-return and volume-return
nodes, respectively. (b) Market capitalization averaged over the cryptocurrencies under study at the
end of the time window. The units in the y-axis are measured in hundred million dollars.

4.2. Power Law

Power laws are probability distributions with the form p(x) ∝ x−α, which have the characteristic
of being heavy-tailed. This feature may be so extreme that standard deviation only can be defined if
α < 3, or the mean if α < 2. Phenomena following a power law distribution are known as scale-free
systems because all values are expected to occur, without a characteristic size or scale. These kinds of
distributions have been identified throughout nature, including physics and finance [44,55–57] to cite
some relevant examples in the context of this work.

We use the powerlaw library [58] to fit a power law to a degree, in-degree, and out-degree
distributions for the induced graph by the mTE flow of information of each time window under study.
The results are shown in Figure 3 for the whole network, as well as the price-returns and volume-returns
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subgraphs, where the vertical lines represent the standard deviation of the adjustments. Also, it is
plotted the p-value of fitness using the log-likelihood ratio test, wherein all cases the null hypothesis
assumes the distributions are characterized by an exponential function. Tables 1–3 show the numerical
results associated to Figure 3.

(a) (b)

(c) (d)

(e) (f)

Figure 3. The Behavior of the mTE network structure through time. (a,b) show the dynamic of the
estimated power α and corresponding p-value for the degree distribution. (c,d) show the dynamic
of the estimated power α and corresponding p-value for the in-degree distribution. (e,f) show the
dynamic of the estimated power α and corresponding p-value for the out-degree distribution. In all
cases, the black line represents the results for the whole network, the blue line for the price-returns
subgraph, and the green line for the volume-returns subgraph. The red straight line is the significance
threshold of 0.05 and the vertical lines centered at each point represents the standard deviations.
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Table 1. Degree distribution estimation.

Date α (Whole) p-Value α (Price) p-Value α (Volume) p-Value

2019-12-22 3.738 0.5464 5.9778 0.0006 3.3814 0.1268
2019-12-29 6.8615 0.0314 5.1602 0.0006 4.7913 0.5496
2020-01-05 3.7785 0.0011 8.9531 0.1303 3.8275 0.026
2020-01-12 4.9396 0.0085 4.9325 0.0057 6.619 0.0423
2020-01-19 3.6251 0.0057 3.0092 0.2377 5.603 0.3073
2020-01-26 3.4424 0.0081 4.031 0.1531 4.4695 0.0732
2020-02-02 4.4084 0.424 3.3453 0.075 4.0688 0.0401
2020-02-09 5.5648 0.2106 4.6502 0.2502 6.0909 0.0094
2020-02-16 3.8022 0.0759 3.9331 0.1972 4.5331 0.0938
2020-02-23 4.4157 0.0128 7.455 0.1146 7.3266 0.0924
2020-03-01 3.8864 0.3795 13.5086 0.052 5.9385 0.0754
2020-03-08 4.1438 0.0036 3.9098 0.0005 3.3258 0.0334
2020-03-15 2.9365 0.0096 2.6145 0.2548 5.7256 0.0212
2020-03-22 3.1472 0 2.8274 0.0004 4.9333 0.0764
2020-03-29 3.0356 0.0267 2.9792 0.0006 5.0786 0.0313
2020-04-05 3.9247 0.0041 4.1092 0.0255 5.2757 0.0193

Table 2. In-degree distribution estimation.

Date α (Whole) p-Value α (Price) p-Value α (Volume) p-Value

2019-12-22 4.5806 0.0002 23.1967 0.0001 4.8769 0
2019-12-29 5.2993 0.1479 11.592 0.0001 5.076 0.0002
2020-01-05 5.4633 0.0009 6.4081 0 7.1131 0.0132
2020-01-12 4.9525 0.0029 8.9783 0.0203 6.1964 0.0015
2020-01-19 28.4241 0.0029 3.4932 0 9.3489 0.0117
2020-01-26 18.3479 0.0222 14.7033 0.0042 10.2065 0.0141
2020-02-02 33.9089 0.025 11.0187 0.0498 14.9042 0.0068
2020-02-09 28.4241 0.0855 7.5029 0 9.7462 0.0251
2020-02-16 10.5242 0.0002 10.6918 0.0003 5.3289 0.0042
2020-02-23 6.695 0.0025 7.1155 0.003 27.8885 0.0243
2020-03-01 6.9885 0.0015 8.0237 0.0018 6.5015 0.0014
2020-03-08 8.0302 0.0981 7.1173 0.1321 32.3699 0.0056
2020-03-15 8.135 0.2385 7.4099 0.0083 10.02 0.0182
2020-03-22 12.3518 0.0001 9.7665 0.0045 20.6977 0.0003
2020-03-29 68.3999 0.0002 10.1634 0.0035 16.028 0.0014
2020-04-05 14.6396 0.0042 8.732 0.007 14.9042 0.0155

Table 3. Out-degree distribution estimation.

Date α (Whole) p-Value α (Price) p-Value α (Volume) p-Value

2019-12-22 4.7432 0.2594 4.1039 0.0001 5.208 0.4752
2019-12-29 4.698 0.1075 3.6869 0.0229 4.1616 0.4543
2020-01-05 3.4208 0.2542 5.1354 0.0276 3.3738 0.0002
2020-01-12 4.3711 0.0037 6.265 0.009 4.979 0.004
2020-01-19 2.8673 0.0064 2.6074 0.009 3.5196 0.0464
2020-01-26 3.0402 0 2.7225 0.0011 3.2296 0.0955
2020-02-02 4.2886 0.2173 2.6393 0.0657 3.0792 0.0057
2020-02-09 5.9639 0.1216 4.6401 0.2623 4.2951 0.1614
2020-02-16 3.3214 0.0411 2.7803 0.0019 4.3985 0.0263
2020-02-23 3.6758 0.0011 6.5573 0.089 5.0874 0.0921
2020-03-01 5.6642 0.1289 8.3496 0.1186 5.2096 0
2020-03-08 4.6742 0.0873 3.5777 0.0019 6.6722 0.1489
2020-03-15 2.3148 0.0437 2.1134 0.4035 3.8052 0.0488
2020-03-22 2.542 0 2.1833 0.0486 4.5843 0.2916
2020-03-29 2.5827 0.0003 2.2731 0.3013 5.127 0.0152
2020-04-05 3.3965 0.0045 4.6771 0.0022 3.6785 0.0392
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Let analyze first the degree distribution case. As can be seen from Figure 3a there is a peak
at 2020-03-01 for the price-returns subgraph, where the estimated fit of the degree distribution is
α = 13.5086, whereas the whole and volume-returns degree distribution is adjusted with a power
oscillating below eight. Figure 3b tells us that the adjustment is not significant most of the time,
where we can see p-values over the threshold of 0.05 (red line). Nevertheless, the peak at 2020-03-01 for
the price-returns is at the border of significant fitness. In a similar way, Figure 3c shows the estimated
power behavior for the in-degree distribution, where now there exists an abrupt change at 2020-03-29
for the whole network with an estimated α = 68.3999. In this scenario, the adjustment is significant
most of the time as can be seen in Figure 3d. Finally, Figure 3e,f shows the corresponding results for the
out-degree distribution, being all the estimated power below nine, but without a significant pattern.

In short, these results confirm what was found in the previous subsection, in the sense that the
change in the estimated power of the degree distribution of the price-returns anticipates the fall of the
average market capitalization of cryptocurrencies occurring at 2020-03-15. Particularly, the in-degree
distribution shows the most robust results in the sense of statistically significant evidence of a peak
at end of March for the whole network. Then, it is a better indicator of the complex properties of
the mTE network. It is important to keep in mind that during March the global markets become
extremely turbulent because of the COVID-19 pandemic and the subsequent crash of oil prices around
the world. As a matter of fact, during the period of time under study the All Country World Index
(ACWI) fell around 10% on a single day, which is its largest decline since 2008. This index published
by Morgan Stanley Capital International or MSCI inc. is a market capitalization-weighted index
designed to provide a broad measure of equity-market performance throughout the world taking
into account stocks from 23 developed countries and 24 emerging markets [59]. As such it is an
adequate thermometer of the world financial situation. In Figure 4 it is shown the daily log-returns
for the time window from 2019-12-02 to 2020-04-06 (data are taken from [60]). There can be seen
the financial turbulence start at the end of February and reach its highest volatility at the middle of
March, which coincide with the lowest point of the market capitalization of Figure 2b Hence, based on
the evidence found in this study, it is argued that periods of economic contractions are preceded
by a high power law distribution of node degrees for price-returns. Nevertheless, it is necessary to
develop extensive studies between global financial indices and cryptocurrencies to properly justify
this hypothesis.

Figure 4. Daily log-returns of ACWI for the trading dates from 2019-12-02 to 2020-04-06.

109



Entropy 2020, 22, 760

5. Discussion

The multivariate approach of transfer entropy followed here is an efficient greedy methodology
based on multiple hypothesis testing able to detect true causal interactions. Even though the
Gaussian specification for the conditional distributions involved in the computations of mTE do not
capture non-linear structures in the data, the induced networks of cryptocurrencies exhibit interesting
characteristics. Actually, the graph visualization of the interactions of price-returns and volume-returns
using the Kamada-Kawai algorithm already displays an informative picture. Under this descriptive
representation has been possible to distinguish three time windows where the strength of the attractive
forces between nodes stand out to be stronger than the other scenarios. Interestingly, these periods
coincide with the most severe fall of the recent worldwide stock markets crash on March 2020.

The clustering coefficient version for directed graphs was also measured. In this case,
we first notice that the individual coefficient also increases during the times mentioned above,
which motivated us to analyze the temporal behavior of the clustering coefficient for the whole
network. Here, our greatest contribution arose finding that the clustering coefficient of the whole
network, as well as the price-returns subnetwork, increases dramatically during the same periods of
major financial contraction, where we use as an indicator of turbulence the market capitalization of the
cryptocurrencies under study.

In addition, we explored deeper the structure of the network through the analysis of the degree
distribution of nodes as well as in-nodes and out-nodes. Our intention was to characterize the
complexity of the network estimating the power of the associated distributions. Although several of
the estimations were not significant, the log-likelihood in all cases bent over a power law distribution,
giving evidence of the complex nature of the network. Most importantly, it was found that the power
of the distribution has higher estimated values during March 2020, which provides further support to
our hypothesis: the structure of the induced cryptocurrency network by mTE changes during times of
turbulence in the sense of higher clustering coefficient and complexity.

Future work involves the use of an extensive data set to include the market capitalization,
financial indices, sentiment indicators of textual data, as well as volume in a cleaver way in order
to verify if the same phenomena are presented in the induced graphs by a more complete data
set. The last because what is found here volume does not play a role as relevant as the price is to
early-warning signals for future markets turbulence. A forthcoming work is analyzing the same data
set from data mining techniques as is the point of view of association rules and the apriori algorithm,
where preliminary results already show a rich network structure.

Finally, it is important to clarify that despite the statistical results found here in relation to the
power fitness of degree distributions, no economical theory behind power laws has been properly
developed yet. At most, we can say the power law degree distributions as well as the clustering
coefficient of mTE networks may serve an early warning signal of an increasing systematic risk of the
cryptocurrency markets in times of crash. The econophysics community has been put a lot of effort to
unravel stylized facts of the network structure of financial markets in general, but it is still necessary to
build epistemologically the blocks of the theory jointly with the financial economists to have a common
playground to discuss and construct new ideas. As stated in [61]: “the time is ripe for economists to use
those power laws to investigate old and new regularities with renewed models and data”. In this sense, this
work only tries to contribute with new evidence in the networks induced by mTE, hoping to soon have
an interpretable theory in the same sense as phase transitions, critical points, and scale invariance of
turbulent dynamics are in physical statistics.
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Appendix A. Non-Uniform Embedding

In order to describe the dynamics of the processes, it is necessary to define composite processes
consisting of embedding vectors. Let denote as xi,t the state visited by Xi at time t, where Xi can be
characterized by the k past states of the processes Xk

i,t = (xi,t−1, . . . , xi,t−k). In the classical uniform
embedding framework, the embedding vectors are

X(Kj) =

(
X
(k1)
1,t , . . . , X

(kj−1)

j−1,t , X
(kj+1)

j+1,t , . . . , X
(kM)
M,t

)
(A1)

X(K) =
(

X
(k1)
1,t , . . . , X

(kM)
M,t

)
. (A2)

These vectors are used to calculate the conditional entropies involved in the estimation of transfer
entropy. The basis of a non-uniform embedding relies on not imposing a priori the form of
the embedding vectors. Thus, its shape is determined sequentially by selecting in a progressive
manner the terms that contribute most to the explanation of the observed dynamics. These
terms are taken from a candidate set, which includes the past states of the processes, X1, . . . , XM.
To quantify the causality from Xj to Xi it is necessary to contrast the entropy of Xi measured after
conditioning on the past of all processes, and after conditioning on the past of all processes except
Xj. To accomplish this, it is defined two different sets of initial candidate terms. The first include
the past states of Xj : Ω = {xi,t−l |i = 1, . . . , M; l = 1, . . . , L}; and the second exclude the past states
of Xj : Ω−j = {xi,t−l |i = 1, . . . , M, i 
= j; l = 1 . . . , L}, where L is the maximum lag at which the past of
each process is investigated [49].

Appendix B. Statistical Tests

Appendix B.1. Maximum Statistics

Assume that has been chosen the candidate variable C∗ from the candidate target past set
YC
<t = {yt−1, . . . , yt−L}, which maximizes the CMI contribution. The maximum statistic test reflects

this selection process by choosing the maximum value among the surrogates time series. Explicitly,
let I∗ := I(C∗, yt|YS

<t) be the maximum contribution. To test I∗ for statistical significance the next
algorithm is used t [18]:

1. Generate S surrogates time series C′
j,1, . . . , C′

j,S for each Cj ∈ YC
<t, and calculate the corresponding

surrogate CMI values I′j,1 = I(C′
j,1, yt|YS

<t), . . . , I′j,S = I(C′
j,S, yt|YS

<t). The number of surrogates S
are chosen in line to the desired significance level αmax.

2. For each surrogate s = 1, . . . , S, calculate the maximum CMI value over the candidates
I∗s := max(I′1,s, . . . , I′n,s), where n denotes the number of candidates (the number of comparisons).
The values I∗1 , . . . , I∗S form the empirical null distribution of the maximum statistic.

3. Compute the p-value for I∗ as the proportion of values from the surrogate maximum statistic that
are larger than I∗.

4. Finally, I∗ is considered significant if the p-value is smaller than αmax.

111



Entropy 2020, 22, 760

Appendix B.2. Minimum Statistics

The minimum statistic test is used to remove the selected variables that have become redundant
in the context of the final set of selected source past variables XS

<t. Also, it controls the FWER due to
the multiple comparisons involved in the pruning procedure. If we replace maximum with minimum in
the algorithm described above, then it is obtained the algorithm for the minimum statistic test [18].

Appendix B.3. Omnibus Test

Let T∗ := I(XS
<t, yt|YS

<t) be the collective transfer entropy from the selected sources past variables
XS
<t to the target variable yt. It is necessary to test T∗ for statistical significance against the null

hypothesis of zero transfer entropy. Thus, using a similar procedure as described in the section of
maximum statistic test, the null distribution is obtained via shuffling the realizations of the selected
sources. The idea behind is to find the set of relevant sources for each node testing all the selected
sources collectively [18].
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26. Górski, A.Z.; Drożdż, S.; Kwapień, J. Scale free effects in world currency exchange network. Eur. Phys. J. B

2008, 66, 91–96. [CrossRef]
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Abstract: Social systems are characterized by an enormous network of connections and factors that
can influence the structure and dynamics of these systems. Among them the whole economical sphere
of human activity seems to be the most interrelated and complex. All financial markets, including the
youngest one, the cryptocurrency market, belong to this sphere. The complexity of the cryptocurrency
market can be studied from different perspectives. First, the dynamics of the cryptocurrency
exchange rates to other cryptocurrencies and fiat currencies can be studied and quantified by
means of multifractal formalism. Second, coupling and decoupling of the cryptocurrencies and
the conventional assets can be investigated with the advanced cross-correlation analyses based on
fractal analysis. Third, an internal structure of the cryptocurrency market can also be a subject of
analysis that exploits, for example, a network representation of the market. In this work, we approach
the subject from all three perspectives based on data from a recent time interval between January 2019
and June 2020. This period includes the peculiar time of the Covid-19 pandemic; therefore, we pay
particular attention to this event and investigate how strong its impact on the structure and dynamics
of the market was. Besides, the studied data covers a few other significant events like double bull
and bear phases in 2019. We show that, throughout the considered interval, the exchange rate returns
were multifractal with intermittent signatures of bifractality that can be associated with the most
volatile periods of the market dynamics like a bull market onset in April 2019 and the Covid-19
outburst in March 2020. The topology of a minimal spanning tree representation of the market also
used to alter during these events from a distributed type without any dominant node to a highly
centralized type with a dominating hub of USDT. However, the MST topology during the pandemic
differs in some details from other volatile periods.

Keywords: complex systems; cryptocurrencies; multifractal analysis; detrended cross-correlations;
minimal spanning tree

1. Introduction

Whether complexity of a system is viewed in the purely intuitive sense of a nontrivial order that
emerges spontaneously from an overall disorder or it is grasped more formally using one of several
dozen mathematical, physical, and information-theoretic measures, we are surrounded by its signatures
and face its manifestations almost everywhere. We are complex ourselves: We live in a society that
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is complex and we interact with others in a complex way. There is no exaggeration in a statement
that our society is the most complex structure known to us in the universe. Social phenomena
like the emergence of communication and cooperation, build-up of hierarchies and organizations,
opinion formation, the emergence of political systems, and the structure and dynamics of financial
markets are all among the iconic examples of the real-world complexity [1–3].

Specialists from such disciplines like mathematics, physics, information theory, and data science
working together with econometrists, sociologists, quantitative linguists, and psychologists for more
than a quarter century have already been dealing with such phenomena trying to describe them in a
language of exact science, and to model and explain them using methods and tools that had earlier
been applied successfully to natural systems. while much has already been done and much has been
achieved, the complexity of the social and economic systems is still far from being properly understood.
This is why every possible effort and every meaningful contribution is welcome as it can bring us
closer to the ultimate goal of understanding complexity both in reference to these systems in particular
and as a physical phenomenon in general. It is also important to approach the problem from different
angles by collecting many interdisciplinary works and views in one place like this Special Issue as
human society eludes any narrow-scope, single-discipline analysis.

1.1. Money, Fiat Currencies, and Cryptocurrencies

Among a variety of emergent phenomena that we observe in human society, one of the most
important is money. It appeared spontaneously and independently in many cultures and, although it
used to have different material forms in different regions, it always served the same purpose:
To facilitate trade by avoiding a problem of double coincidence of needs that restricts barter trading
severely and inherently. According to economical models, a status of money is acquired in a process of
the spontaneous symmetry breaking by a commodity that is the most easily marketable or, in other
words, that is the most liquid one [4,5]. After receiving such a status by some commodity, its liquidity
is amplified by a kind of self-propelling mechanism, because everybody desires to have an asset that is
considered as the most desirable by others. However, there is another condition for a commodity to be
used as money: Its value expressed in other assets has to be viewed as stable. Sometimes it happens
that current money loses its value which causes people to withdraw themselves from using it and to
replace it with some other, more stable asset. Thus, for a given asset its status of money may either be
durable or temporary. This is an important issue in contemporary economy based on fiat money that
does not have any intrinsic value unlike the assets that used to play a role of money earlier in history.
Value of the fiat currencies depends crucially on policies of the central banks, which can be subject
to change. Moreover, the central banks may increase money supply at any time, which can lead to
inflation rate increase. This undermines confidence in the official currencies and became the ignition to
introduce cryptocurrencies over a decade ago.

The first cryptocurrency was proposed in 2008—Bitcoin (BTC) [6]. The idea behind it was to
decouple a currency from any institution or government, while preserving its status of a universal
means of exchange, and to base a trust in this currency solely on a technology that supports it.
Such a currency had to combine the advantages of both cash and electronic money: Anonymity
of use (like cash) and capability of being transferred immediately to any place in the world
(like electronic money). The already-existing technologies of asymmetric cryptography and distributed
database (with a new consensus mechanism—“proof of work”) were linked into a decentralized secure
register—blockchain [7] that forms a staple of BTC. Unlike traditional currencies, Bitcoin has inherently
limited supply to prevent any loss of its value due to inflation.

The first widely recognized exchange enabling bitcoin to be exchanged for traditional currencies,
Mt. Gox, was launched in July 2010 followed by the first online (black) market—Silk Road. The latter
was a place where one could anonymously buy anything and pay with bitcoins, which was the first
practical application of a cryptocurrency. It significantly increased the demand and contributed to
the first speculative bubble on BTC [8]. A subsequent crash occurred after closing Silk Road and
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suspending trade on Mt. Gox between October 2013 and February 2014. As Bitcoin’s recognition
increased, the use of blockchain technology became more popular and it turned out that it can also
be used for trustful processing of computer codes in a decentralized way. In 2015 the Ethereum
distributed computing network was launched [9], which allows one to issue private tokens through
a so-called Initial Coin Offer (ICO) and to raise capital in a simplified way for various projects.
An ICO boom that contributed to next speculative bubble on cryptocurrencies that occurred in 2017
(the ICO-mania [10]). At that time the number of issued cryptocurrencies doubled from 700 to 1400
and the market capitalization reached 800 billion USD. A crash in January 2018, in which BTC lost over
80% of its value and other cryptocurrencies lost even 99%, may be compared with the dot-com bubble
crash in 2000 that ended the most euphoric phase of investor attitude towards the Internet-related
companies. At present the market is more consolidated and shows signatures of maturity [11].

1.2. Basic Information on the Blockchain Technology

In order to create an electronic “currency” that can easily be exchanged for goods and operated
without any central authority, while at the same time that cannot be multiplied indefinitely like
electronic files, it is required that all transactions involving that “currency” have to be registered
publicly, which ensures that no registry can be modified afterwards. The Bitcoin network register
consists of a sequence of block files built one upon another (a blockchain) containing information about
past transactions and the instances of new Bitcoin unit creation. A new network participant has to
enter the network directly via a network client or via an external wallet and must send information
about the client’s address and a specified Bitcoin sum it owns. This information is then distributed
to all other network nodes but, in return, the new participant is granted access to the complete
information about other network node addresses and how many BTC units belong to these addresses.
Thus, credibility of the system is provided by the technology itself by imposing certain set of rules
each network participant must obey and by allowing the network participants to control each other.
However, since the Bitcoin blockchain is public, one can trace the transaction history of each unit,
which in theory might compromise transaction anonymity.

The transaction correctness is guaranteed with the help of the asymmetric cryptography.
Private keys of a sender and a receiver are used to encode and to decode a transaction (i.e., to send
and to receive coins), while their public keys are used as their public addresses allowing for their
network identity verification. while such a transaction is visible to any other network participant,
nobody can effectively alter and re-encode it as they do not know the private keys of the involved
parties. For the network, in order to function correctly, the key implemented feature is a consensus
mechanism that ensures that all participants agree upon ownership of the cryptocurrency units and
how many units total circulate. while collecting information from many transactions taking place on
the Bitcoin network, the consensus mechanism has to overcome a problem that some information
sources can be unreliable. It is done by the so-called proof-of-work (PoW) protocol used by miners,
i.e., the network nodes with dedicated software that collect transactions, verify their correctness,
and integrate them into blocks. This is a resource-consuming task so the miners are got to perform it
by receiving new coins in exchange for sharing their resources with the network. The new Bitcoin unit
is generated only after majority of the miners agree upon correctness of the new block and it has been
distributed over the network. The block has to meet relevant criteria expressed by a specific form of
the hash function to be considered as a valid one and included in the blockchain. Each miner decides
to include a given block into its own blockchain copy individually and the consensus is settled in a
kind of game with a Nash equilibrium state. One has to believe that majority of other miners agrees on
the specific block’s validity and adds it to its own blockchain or will not receive the profit otherwise.

Mining a new Bitcoin unit requires much energy to be spent so the very process demands
optimization of the resources used and discourage padding the blocks with fictitious information as
a rejection probability for such a block by other miners is too large. Therefore it serves as a proof of
work that a participant made the effort of maintaining the network, indeed. The employed solution
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that each new block contains a header of the previous one practically eliminates a problem of potential
modifying the past transactions—it is not viable economically since it would require rebuilding of
the entire chain. The Bitcoin protocol was designed in such a way that new blocks are formed with
constant frequency, which is achieved by adjusting the amount of the corresponding calculations
needed to the network’s actual computing power. Moreover, the reward for forming a new block is
halved every 210,000 blocks in order to approach quasi-asymptotically an impassable limit of 21 million
Bitcoin units.

The Bitcoin protocol is not static and undergoes constant modifications. A reason for this is that
the protocol in its original design has some drawbacks that can challenge its security and lower comfort
of its use. Among the pivotal issues is low performance (the network can handle only 5 transactions
per second on average, compared to 1700 transactions per second in the Visa network), high operating
costs that equal the amount of electric energy consumed by small industrialized countries (like Ireland
or Denmark [12]), and formidable computer facility. Moreover, one of the blockchain technology
advantages—the inability of making changes—may sometimes be viewed as its disadvantage if one
considers the protocol correcting since it requires cloning of the entire network and abandoning the
original blockchain. Up to now a mechanism of reducing transaction size and allowing to pack more
transactions in a single block (called “segregated witness”, SegWit) has already been implemented
and work on another mechanism—“Lightning Network”—that allows for micropayments outside the
main blockchain and increasing the bandwidth, is currently underway.

However, such changes are viewed by inefficient by many who prefer building alternative
networks from scratch or by using only certain features of the Bitcoin protocol, while replacing other
with better solutions. Thus, over the last decade, a multitude of different protocols were proposed
and implemented, which led to introduction of new cryptocurrencies. Most of them still exploit the
PoW protocol, but its the most popular alternative is the proof-of-stake (PoS) [13]. In this algorithm
miners do not exist and the block validation process is granted to some randomly chosen network
nodes. Consistently, the block formation is not rewarded with new units but rather the validator nodes
are rewarded with transaction fees. Fraud is discouraged by excluding the fraudulent participants
from the network and securing that, in such a case, the reward for forming a new block is smaller
than possible loss in already owned units. The main advantage of PoS is efficiency: Because of a lack
of the complicated and long calculations, no specialized user group is needed to confirm blocks
and everything can be done faster than in the case of PoW. There are various versions of the PoS
protocol, like the “delegated proof of stake” (DPoS) based on voting system engaging trustful delegated
network nodes or the “proof-of-authority” (PoA) based on granting reputation to the validator nodes
instead of cryptocurrency units and abandoning the decentralization paradigm. Main advantage of
both protocols (together with their hybrid versions) is scalability—more participants mean larger
transaction capacity of the related network.

1.3. Other Applications of the Blockchain Technology

The first Bitcoin alternative that was introduced in 2011 and managed to survive until today was
Litecoin (LTC). Basically, this is a Bitcoin’s clone that differs from its parent in that it has a higher
average creation frequency (4 min) and a higher prospected total number of units (84 million) as well as
it uses different hash function (script instead of dSHA-256 used by Bitcoin). These changes allowed LTC
for much smaller resource demand than BTC and made LTC be computable on standard CPUs. The first
cryptocurrency that was not based on the Bitcoin’s PoW protocol was Ripple (XRP) [14] introduced
in 2012. It was intended to be used as a method of transferring money between banks and stock
markets in real time even outside national borders. In August 2020 XRP was the third cryptocurrency
in terms of capitalization. A related cryptocurrency, Stellar (XLM), also offers transactions between
financial institutions, but unlike Ripple based on a proprietary code its code is open source. Both XRP
and XLM do not have a fixed supply limit and, thus, they are subject to inflation.
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A separate group of cryptocurrency protocols was designed to ensure user anonymity.
The corresponding cryptocurrencies are called “private coins”: Dash (DASH), Monero (XMR), Zcash (ZEC),
and many others. Dash uses a two-layer network with PoW and miners in the first layer and PoS and
“masternodes” in the second one. Monero, being considered as the most secure private coin and often
used by the criminal world [15], provides anonymity thanks to a Ring Confidential Transactions (RingCT)
where the public keys (addresses) are hidden in the blockchain [16]. Zcash is based on a solution that
allows one to confirm information without having to disclose it. Zcash allows for perfect anonymity
of both the sender and the recipient as well as transaction size. Since the anonymous addresses are
compatible with the public ones, transactions can be made between public and hidden wallets and vice
versa. DASH and ZEC have a maximum supply set in advance, while XMR does not.

Apart from the cryptocurrencies, another important category of blockchain applications is
cryptocommodities (together with the former called cryptoassets). They are automatically executed
computer codes that perform certain actions if certain conditions are met. Cryptocommodities
enable payments for using a decentralized computing network. The first such cryptoasset was
Ethereum—an open-source computing platform designed for programming decentralized applications
and smart contracts that was launched in 2015 [9]. This platform has its own programming language
and its own cryptocurrency, Ethereum (ETH), that serves as a payment unit for carrying out
computational operations on the platform. Ethereum is based on PoW consensus mechanism, but it
uses another hash function (Ethash) supporting use of GPUs in the mining process and there is no
upper limit on mining. Instead of fixed block size, here each block requires a specific number of “Gas”
units related to the computing power needed to complete the transactions it contains. The average
block-completion frequency is 15 s and the maximum transaction number per second is around
25. The Ethereum concept gained quickly high popularity among the cryptocurrency community
and, currently, ETH is the second crytocurrency in terms of capitalization. The success of smart
contracts (i.e., computer codes allowing for automatic execution and control of transaction agreement
actions) and possibility of collecting funds under Initial Coin Offers on the Ethereum platform,
gave a boost to the emergence of similar platforms offering possibility of creating applications in
a decentralized environment. Major projects of this type include EOS and Cardano; both have their
own cryptocurrencies and both allow for collecting funds under ICOs.

Yet another group of cryptoassets are tokens, which are means of payment in decentralized
applications built on platforms like Ethereum or contracts that are issued within ICOs for development
of blockchain ventures. They usually don’t have their own blockchain. In general, the blockchain
technology, thanks to elimination of the need to trust individual participants of a given system and
ensuring security, can satisfactorily be used wherever there is a central intermediary connecting sellers
and buyers who earns on commissions (for example, Uber and Airbnb). Some of the already introduced
applications in the token form are Augur (a platform enabling creation and participation in plants from
any thematic range), Filecoin (a decentralized file storage system based on the PoW system that rewards
users for sharing their computer storage devices), and IOTA (a project of a partially decentralized,
open settlement platform for the needs of the so-called “Internet of things”), Basic Attention Token
(a project designed to connect advertisers and content creators with users that rewards the creators for
attracting users with the content they provide). Finally, the so-called “stable coins”—a combination of
the token and cryptocurrency assets—allow one to relate their value to some other, more conventional
asset like US dollar (e.g., USDT, USDC, TUSD, or PAX).

1.4. Cryptocurrency Market

Cryptocurrency trading is possible, because they are easily convertible to traditional currencies
like USD or EUR and to other cryptocurrencies. This possibility is provided by 330 trading platforms
(August 2020) open 24 h a day, seven days a week. This, together with a fact that the most investors
are individuals, distinguishes the cryptocurrency market from Forex, where trading takes place
from Monday to Friday essentially on the OTC market where mainly banks and other financial
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institutions participate in. Another peculiarity of the cryptocurrency market is that there is no reference
exchange rate unlike Forex, where such reference rates are provided by Reuters. The sole exception is
Bitcoin, whose exchange rate to USD is given by futures quoted on Chicago Mercantile Exchange [17].
Decentralization of the market means that the same cryptocurrency pairs are traded on different
platforms, which—if accompanied by limited liquidity—can lead to sizeable valuation differences
between platforms that produce arbitrage opportunities, both the dual and triangluar ones [11,18,19].

The entire cryptocurrency market capitalization is around 350 billion USD, which is close to the
capitalization of a middle-size stock exchange and also comparable with the capitalization of the largest
American companies. There are 6500 different cryptocurrencies on the market right now, which gives
a total of nearly 26,500 cryptocurrency pairs [20]. Founded in 2017, Binance [21] is currently one of
the largest cryptocurrency exchange in terms of volume. Binance offers trading on approximately
650 cryptocurrency pairs including pairs with its own cryptocurrency called binance (BNB), used to
pay commissions on this exchange.

The spectacular development of a cryptocurrency market has attracted much interest of the
scientific community. The first Bitcoin-related papers were published already in 2013–2015 [22,23],
but a real boom on cryptocurrency-related publications occurred after 2017. Initially, only bitcoin was
of significant interest [24–26], but soon also other cryptocurrencies went under investigation [27–29].
Then there appeared studies reporting on correlations within the market [30–38], and its relationship
with regular markets [39–43]. Recently, some researchers focused their attention on possible use of BTC
as a hedging instrument for Forex [44], for gold and other commodities [45], as well as for the stock
markets [46,47]. There is also a few review papers devoted to the cryptocurrency markets:[11,48,49].

The cryptocurrency market has already gone through a long route from a mere curiosity and a
playground for the technology enthusiasts, via an emerging-market stage characterized by a relatively
small capitalization, poor liquidity, large price fluctuations, short-term memory, frequent arbitrage
opportunities, and weak complexity, to a more mature form characterized by medium capitalization,
improved liquidity, inverse-cubic power-law fluctuations [50,51], long-term memory, sparse arbitrage
opportunities, and increasing complexity. This is the most interesting aspect of the cryptocurrency
market route to maturity: The signatures of complexity that are best quantified in terms of the
multifractal analysis. See Ref. [11] for a comprehensive study of this transition started in 2012 and
ended essentially in 2018, as viewed from the multifractality perspective. Here we shall consider a more
recent period of 2019–2020, which comprises, among others, two significant events, i.e., the bull market
between April and July 2019 and the Covid-19 pandemics (from March 2020). Based on high-frequency
data covering a large number of cryptocurrency pairs and a few principal traditional-market assets,
we investigate a potential impact of these events on the cryptocurrency market structure and its
relation to the traditional markets.

2. Methods and Results

2.1. Data

For this study we collected high-frequency recordings of X/BTC and BTC/USDT exchange rates,
where X is one of 128 cryptocurrencies traded on Binance platform [21] and USDT is related to USD by
a 1:1 peg [52]. The exchange rates P(t) were sampled every 1 min. We calculated their normalized
logarithmic returns rΔt defined by

rΔt = (RΔt − μR)/σR, RΔt(t) = log(P(t + Δt))− log(P(t)), (1)

where μR and σR are mean and standard deviation of RΔt(t), respectively, and Δt is sampling interval.
We also collected 1-min quotes of several conventional assets expressed in US dollar—13 currencies:
AUD, EUR, GBP, NZD, CAD, CHF, CNH, JPY, MXN, NOK, PLN, TRY, ZAR, three stock market
indices: Dow Jones Industrial Average (DJI), Nasdaq100, S&P500, and four commodities: XAU
(gold), CL (crude oil), XAG (silver), and HG (copper). They all come from Dukascopy platform [53],
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so do the BTC/USD and ETH/USD exchange rates. These quotes were also transformed into time
series of returns.

2.2. Multifractal Formalism

Multifractal analysis is one of the most promising methods of studying empirical data representing
natural and social systems as it is able to quantify complexity of such systems and express it in
a relatively simple way with a small set of associated quantities. It has already been applied in many
works to univariate and multivariate data sets from a number of different systems: Physics [54],
biology [55], chemistry [56], geophysics [57], hydrology [58], atmospheric physics [59], quantitative
linguistics [60], behavioral sciences [61], cognitive structures [62], music [63], songbird rhythms [64],
physiology [65], human behaviour [66], social psychology [67] and even ecological sciences [68],
but especially financial markets [69–77].

Let us consider two time series of the same length: xi, yi, where i = 1, ..., T (T has to be large
enough to overcome statistical uncertainties). Signal profiles are created from these time series by
integrating and subtracting their mean:

X(j) =
j

∑
i=1

[xi − 〈x〉], Y(j) =
j

∑
i=1

[yi − 〈y〉]. (2)

These signal profiles are then divided into segments ν of length s. They may be separate or partially
overlapping; if they are separate, their number is Ms = �T/s�. A local trend is then removed from
each segment by fitting the data with polynomials P(m)

X,ν , P(m)
Y,ν of degree m (typically, it is m = 2 [78–80]).

Now covariance F2
xy is determined from the residual signals for each segment [81,82]:

F2
xy(ν, s) =

1
s

s

∑
k=1

{
[

X((ν − 1)s + k)− P(m)
X,ν (k)

] [
Y((ν − 1)s + k)− P(m)

Y,ν (k)
]
} (3)

and then it is used to calculate the q-th order fluctuation function [83]:

Fq
xy(s) =

1
Ms

Ms

∑
ν=1

sign(F2
xy(ν, s))|F2

xy(ν, s)|q/2, (4)

where sign(F2
xy(ν, s)) means a sign function. If F2

xy(ν, s) is considered as a value of a random variable,
the parameter q resembles an exponent specifying the order of the moment: Its large positive values
favour segments characterized by large variance by increasing their relative magnitude with respect
to small-variance segments, while negative values of q do the opposite. Thus, by applying different
values of q, one can construct effective filters that select the segments of a certain variance range.

The fluctuation function (4) has to be calculated for different segment lengths s. If Fq
xy(s) is of

a power-law form, i.e.,
Fq

xy(s)1/q = Fxy(q, s) ∼ sλ(q), (5)

where q 
= 0, the original time series xi and yi are fractally cross-correlated. If λ(q) = const, this is
monofractal cross-correlation, otherwise it is multifractal one.

A special case is xi ≡ yi for all i (one signal). In this case we have

F(q, s) =
[ 1

Ms

Ms

∑
ν=1

[F2(ν, s)]
q
2

] 1
q

(6)

and the fractal case corresponds to
F(q, s) ∼ sh(q), (7)
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where h(q) is the generalized Hurst exponent. For h(q) = const the signal is monofractal, otherwise it
is multifractal [80]. A useful measure of fractal properties is singularity spectrum f (α) defined by

α = h(q) + qh′(q), f (α) = q[α − h(q)] + 1, (8)

where α is the Hölder exponent. f (α) can be interpreted as a fractal dimension of the singularities
characterized by a given α. In the monofractal case it consists of a single point, while in the multifractal
case it can have a shape of inverted parabola or some asymmetric concave function.

Width of f (α) can be interpreted as a measure of a signal’s complexity, because the wider it is,
the more singularity types can be identified in this signal. This width depends on a range of q and it is
quantified by

Δα = αmax − αmin, (9)

where αmin = α(qmax) and αmax = α(qmin) are the minimum and maximum value of α that have been
calculated for different values of q. Another important feature of the f (α) its left-right asymmetry [84].
A left-hand-side asymmetry corresponds to more diverse multifractality (stronger correlations) at
the large amplitude level, while a right-hand-side asymmetry indicates that signal parts with small
amplitude are a dominant source of multifractality.

As Fq
xy(s) denotes the qth-order detrended covariance, one can define the qth-order detrended

correlation coefficient [85,86]:

ρ(q, s) =
Fq

xy(s)√
Fq

xx(s)Fq
yy(s)

, (10)

in analogy to the qth-order Pearson correlation coefficient. Here Fxx and Fyy are calculated from
Equation (6). The coefficient ρ(q, s) can assume values in a range [−1, 1] provided q > 0. For q ≤ 0 a
situation becomes more complicated as ρ(q, s) may fall outside that range, which requires more delicate
interpretation [85]. Therefore, many studies in which ρ(q, s) is used are carried out with a restriction
q > 0. The coefficient ρ(q, s) describes detrended cross-correlations between two signals on different
scales s after amplifying data points within a given amplitude range. This filtering ability of ρ(q, s) is
its advantage over more standard correlation measures, because the cross-correlation strength among
empirical time series can be size-dependent [87]. The coefficient ρ(q, s) may be used for any two signals
without a requirement that they have to be fractal.

2.3. Multifractal Properties of the Cryptocurrency Market

We start our analysis by taking a look at the BTC/USDT exchange rate from 01/2019 to 06/2020.
This period shown in Figure 1 (top panel) starts near the lowest point of the bear market (∼3200 USDT)
that begun in 12/2017 and deprived BTC over 80% of its maximum value. During the subsequent
one a half year BTC/USDT rate experienced a growth to a local maximum of 12,800 USDT in 07/2019
(+300%), a local minimum in 03/2020 at 4400 USDT (over 60% loss) related to a Covid-19 pandemic
onset, and a recent growth to a present price of 12,200 USDT (+170%). The BTC price expressed in
USDT was highly unstable over the considered period. This observation is supported by Figure 1
(bottom panel) that shows BTC/USDT 1 min returns.
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Figure 1. Time evolution of the BTC/USDT exchange rate (top) together with the corresponding
logarithmic returns (bottom). Several interesting events can be distinguished like start of a bull market
in April 2019 and its end in July 2019, a sudden decrease and then an equally sudden increase in
October and November 2019, the Covid-19 pandemic outbreak and related panic in March 2020 and
the pandemic’s 2 wave in June 2020. Local extrema of P(t) are indicated by the vertical (time) and
horizontal (price) dotted lines.

Despite of the fact that BTC/USDT rate is the most important observable on the cryptocurrency
market since BTC has the largest capitalization, it cannot be used as a proxy allowing one to describe
dynamics of the whole market, which is in fact much richer. Thus, in order to express the evolution
of a significant part of the market in terms of a single quantity, a market index was created from
the exchange rates X/USDT (with X standing for a cryptocurrency) for 8 the most capitalized
cryptocurrencies: BTC, ETH, XRP, BCH, LTC, ADA, BNB, and EOS. In 2020, these assets stand
for 88% of the market capitalization. In order to create the index, the exchange rates were summed
with the same weight despite the difference in capitalization. A parallel, weighted index would
predominantly reflect the dynamics of BTC, ETH, and XRP, so we prefer the unweighted version as
more a diversified one.

Figure 2 shows results of the multifractal analysis of the cryptocurrency index returns and the
BTC/USDT returns performed by using a moving window of 30 days with a 5-day step. Instead of
presenting the singularity spectra f (α) for each window position, temporal evolution of the key
quantities describing shape of these spectra is shown: αmin(t), α0(t), and αmax(t) (see right panel
of Figure 3 for the examples). These quantities allow for inferring about the singularity spectrum
localization, width, and possible asymmetry of its shoulders [88]. We restricted the applied values
of q to [−3, 3] for a reason that will be explained later. By looking at the spectra for BTC/USDT
(the second topmost panel in Figure 2), one sees that a difference Δα = αmax − αmin describing the
spectrum width is sufficient to infer about multifractality of the data under study. This agrees with
results of our previous study [11].
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Figure 2. (Top) Characteristic values of the Hölder exponent: αmin (green line, bottom), α0 (red line,
middle), and αmax (blue line, top)—see Equation (9) in Section 2.2 and Figure 3—describing the
singularity spectra f (α) for the index returns representing 8 the most capitalized cryptocurrencies,
calculated in a 30-day-long moving window with a step of five days and for −3 ≤ q ≤ 3. Each date
represent a window that ends on that day. (Upper middle) The same quantities as in the top panel,
but here calculated for the BTC/USDT exchange rate returns. Three interesting cases of small αmin

are indicated by dashed circles. (Lower middle) Scaling exponent γ of the cumulative distribution
function fitted to tails of the empirical cdf in each moving window position. Values equal or below
γ = 2 correspond to Lévy-stable distributions. (Bottom) Total cryptocurrency market capitalization
and new Covid-19 cases in the world as function of time. Characteristic events are indicated by vertical
dashed lines and Roman numerals: Start of a bull market in April 2019 (event I), its end in July 2019
(event II), the Covid-19 panic in March 2020 (event III), and start of the 2nd wave of the pandemic in
May-June 2020 (event IV).

Except for July-August 2019, when f (α) is left-right symmetric (αmax − α0 ≈ α0 − αmin),
throughout the remaining part of the analyzed period there is significant asymmetry with the left-hand
shoulder (q > 0) being much longer than the right-hand one (q < 0). In a few instances, i.e., in April
2019, January 2020, March 2020, and May-June 2020, this asymmetry of f (α) became extreme and
revealed a bifractal-like shape (see also [89]). Mathematical bifractals are characterized by the existence
of only 2 singularity types with α1 = 0 and 0 < α2 < 1. However, in practical situations, the finite-size
effects smear the spectra so that in such a case there is a continuous transition between both singularity
types and a spectrum consists of a long left shoulder reaching a vicinity of α1 = 0 and a residual right
shoulder near α2 [84,90]. Two characteristic cases of f (α) (symmetry and bifractal-like asymmetry)
are shown in Figure 3 (right panel).

124



Entropy 2020, 22, 1043

10 |r
Δt |

10
-4

10
-3

10
-2

P(
X

>
|r Δ

t|)

30 days window ending on 03.08.2019
30 days window ending on 13.03.2020

0 0.2 0.4 0.6
α

0

0.2

0.4

0.6

0.8

1

f(
α

)

γ≈3.2

γ≈1.8

α
min

α
min

α
max

α
max

α
0

Figure 3. (Left) Cumulative distribution function P(X > |rΔt|) calculated in 30-day windows.
Two extreme cases of power-law tail are shown with the scaling exponent γ ≈ 1.8 (mid February–mid
March 2020) and γ ≈ 3.2 (July 2019) representing stable and unstable distributions, respectively.
(Right) Singularity spectra f (α) calculated in the same windows as above. An example of asymmetric,
bifractal-like spectrum (mid February - mid March 2020) and an example of symmetric spectrum
(July 2019) are shown together with characteristic values of the Hölder exponent: αmin, α0, and αmax

(see Equation (9) in Section 2.2).

On the probability distribution function level, the actual bifractal spectra occur if a signal
under study has a heavy-tailed pdf in the Lévy-stable regime (p(|rΔt|) ∼ 1/|rΔt|γ+1, where γ ≤ 2),
but empirically one can sometimes obtain a strong left-hand-side asymmetry even for a signal with an
unstable pdf provided it is substantially leptokurtic [90]. Figure 3 illustrates this connection between
a cumulative distribution function (cdf) P(X > |rΔt|) ∼ 1/|rΔt|γ (left panel) and f (α) (right panel)
for two time windows that show clearly different properties of both cdf and f (α)—a symmetric
f (α) corresponding to a steep cdf with γ ≈ 3.2 (a window covering July and August 2019) and an
asymmetric f (α) corresponding to a heavy-tail cdf with γ ≈ 1.8 (a window covering February and
March 2020). These values of γ point to the aforementioned restriction −3 ≤ q ≤ 3 applied to the
calculation of Fq

xy and Δα: For |q| > 3 the moments of the distribution p(|rΔt|) can diverge, so can
Fq

xy(s) especially for small scales s.
The BTC/USDT return distribution function reflects a combination of two factors: (1) How

fast the information spreads over the market—the heavier tails are, the slower this spreading
proceeds, and (2) how volatile is the market—periods that cover turmoils with high volatility also
result in heavier tails of pdf/cdf. It was documented in Ref. [11] that along with a process of the
cryptocurrency market maturation the scaling exponent γ increases with time. This happens because
as recognition of the market and its capitalization increase, more and more transactions take place,
which decreases the average inter-transaction waiting time and allows the market participants to react
faster. Faster reactions are crucial for the market to become efficient, which means more Gaussian-like
fluctuations (larger γ). On the other hand, extremely large fluctuations and amplified volatility are
characteristic for the periods with negative events, which decrease γ. Figure 2 (the 3rd panel from top)
shows a scaling exponent γ obtained by fitting a power-law function to the BTC/USDT returns cdf in
each position of the 30-day moving window. Indeed, such events like a bear market after July 2019
and the Covid-19 outbreak in March 2020 resulted in relatively small values of γ, while a bull market
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between April and July 2019 and an escape from conventional assets to alternative ones observed
between January and February 2020 led to larger values of γ.

Even if BTC is only one of many actively traded cryptocurrencies on the Binance platform,
its strongest position due to the largest capitalization (between 50% and 70% of total market
capitalization in the considered period) causes other cryptocurrencies to evolve accordingly.
This‘observation comes from the topmost panel of Figure 2 presenting αmin, α0, and αmax for the
8-cryptocurrency index. Qualitatively, the temporal course of these quantities does not differ much
from the temporal course of their counterparts for BTC/USDT (the 2nd panel from top). The only
significant difference is that for the index a transition to a bifractal-like f (α) spectrum in March 2020
was sharp and it was not preceded by its gradual change starting from January 2020 as it was the case
with BTC/USDT.

By looking at the bottom panel of Figure 2, where total market capitalization is plotted as a
function of time together with the Covid-19 pandemic severity parametrized by the number of daily
new cases, and by comparing this plot with the remaining three, one can infer about how various
market events and the pandemic influenced complexity of the market dynamics. The main events
are denoted by Roman numerals: The beginning of the bull market in April 2019 (event I), its end in
July 2019 (event II), the Covid-19 panic in March 2020 (event III), and the second pandemic wave that
started in May 2020 (event IV). These events could be distinguished because they were associated
with particularly large fluctuations (Figure 1). Among them, the events I, III, and IV had a significant
impact on the multifractal properties of the exchange rate fluctuations by sizeable decreasing of αmin

(visible both for the cryptocurrency index and the BTC/USDT exchange rate). However, the event II
did not have such an impact. In contrast, the pdf/cdf tails reflected overall market phase more than
specific events except for the Covid-19 panic in March 2020.

2.4. Cryptocurrency Market Versus Standard Markets

From a practical point of view, among the most interesting issues related to any asset and any
market is how much it is related to other assets or markets, and, in other words, whether it can be
exploited for portfolio diversification and hedging [91–93]. As the investors may be interested in
different time horizons and may want to hedge against events of different magnitude, the q-dependent
detrended cross-correlation coefficient ρ(q, s) defined by Equation (10) is a measure that is particularly
useful in this context since it is sensitive to both scale and amplitude of the asset price returns.
We choose the BTC/USD exchange rate as a representative of the whole cryptocurrency market—it is
the most frequently traded asset, the most capitalized asset, and the most mature one (based on our
previous results [11]). We calculate ρ(q, s) for this rate and each of the remaining conventional assets
listed in Section 2.1. However, we observe that this measure behaves similar for S&P500, Nasdaq100,
and DJI, so we abandon the latter two indices and show only the results for S&P500. In parallel,
we neglect AUD, NZD, ZAR, CHN, MXN, EUR, GBP, NOK, TRY, and PLN as their correlations with
BTC were close to zero throughout the period under consideration. We consider two temporal scales
that correspond to different horizons: s = 10 min, which is the shortest scale available provided we use
1-min returns, and s = 360 min that represents approximately a trading day in the US stock market.
The latter value means that in a moving widow there was only 10 segments over which the averaging
was carried out in Fq

xy(s) (see Equation (4)), so we could not look at longer scales. As regards the
parameter q, we focused on q > 0 in order to avoid the interpretation subtleties that could occur
otherwise (see Section 2.2). We carried out our analysis for different values of q, but here we shall
report only the results for q = 1 and q = 4. The former choice did not favour any value range of the
fluctuation function F2

xy since, for each segment ν in Equation (4), it was counted with the same weight.
Therefore q = 1 allowed us for considering all time periods in the same way irrespective of whether
the market was quiet or turbulent. On the other hand, q = 4 corresponds to favouring the segments
with the largest return covariance and degrading the other segments. Thus, this case is interesting
from a perspective of the investors that want to hedge against the largest price movements and the
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largest-impact events. The intermediate values of q were also investigated, but the related results fell
between these two cases and, thus, they are not presented here. Moreover, the calculations for q > 4
were progressively less interesting with increasing q as the event statistics became poor.

Figure 4 displays temporal course of ρ(q, s) for a combination of the above-described cases of
s and q. In each panel the cross-correlation coefficients for BTC and each of the 8 other assets are shown.
Curiously, we do not observe any statistically significant values of ρ(q, s) during the whole year 2019
even though there were then important events on the cryptocurrency market, like the bull and the
subsequent bear market. However, these events were not related to any of the conventional assets
considered here. We see that even the periods of high volatility in April and July-August 2019 did not
cause any action that could potentially be sensed by the regular markets. We can explain this lack of
reaction by a relatively small capitalization of the cryptocurrency market—far too low for the other
markets to detect a possible influx of a capital withdrawn from cryptocurrencies (if such an influx
actually took place). In 2019 there was no turmoil in the conventional markets, thus nothing could
correlate the cryptocurrencies with the conventional assets from this direction, too.
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Figure 4. Temporal evolution of the detrended cross-correlation coefficient ρ(q, s) calculated for the
BTC/USD exchange rate and the conventional assets expressed in US dollar: Japanese yen (JPY),
Canadian dollar (CAD), Swiss franc (CHF), crude oil (CL), silver (XAG), gold (XAU), copper (HG),
and the S&P500 index. The ρ(q, s) coefficient was calculated in a moving 10-day-long window with a
step of 1 day and its s and q parameters are represented by s = 10 min (the shortest scale), s = 360 min
(approximately a trading day in the US stock market), q = 1 (all data points are considered), and q = 4
(only the data points with large amplitude are considered). In each panel events with the statistically
significant, genuine cross-correlations are marked with dashed ellipses. The daily number of new
Covid-19 cases in the United States is also shown for a comparison (bottom). The particular market
events are indicated: (1) A sharp drop of the US stock market indices after the first case of Covid-19
had been identified in the United States; (2) a Covid-19 outburst related panic on the financial markets;
(3) a bear market return on risky assets that was related to the 2nd wave of the pandemic.
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In contrast, there were 1 to 3 periods of significant inter-market cross-correlations in the first half of
2020, dependent on s and q. The first important period in the end of January and the begin of February
was associated with a sharp drop of S&P500 and other US stock market indices triggered by the first
identified local case of Covid-19. The cryptocurrency market reacted rather moderately with only a
short period of large and delayed fluctuations. This is why there are no significant elevation of |ρ(q, s)|
for short scales for any return size. The cryptocurrency market must have been calm enough to delay
reaction so long that it is identifiable only on large scales (like s = 360 min). The cross-correlation is
positive with the fiat currencies, while negative with the US stock markets. As all the considered assets
are expressed in USD, the positive correlations of BTC with the fiat currencies in January/February
2020 mean that there was a global flee from US dollar to other major currencies that increased the
corresponding exchange rates as well as a flee from the US stock markets to the cryptocurrency market.

Opposite situation took place during the pandemic’s 2nd wave in June 2020 (and, possibly,
beyond that month): The cross-correlations are stronger for q = 1 than for q = 4. On the one hand,
for s = 10 min moderate values of ρ(q, s), mainly positive ones, are seen for q = 1, but they are not seen
for q = 4. On the other hand, for s = 360 min large values of ρ(q, s) are observed for q = 1 and slightly
smaller, but also significant, for q = 4. Therefore we still see that the correlations cannot be built in
their full magnitude on short scales and they need some time to develop completely. However, a larger
ρ(q, s) for q = 1 indicates that the cross-correlations affect all the returns irrespective of their amplitude
(small and moderate returns dominate in number, thus more segments in Fq

xy(s) are correlated in this
case than in the case of q = 4). Majority of assets are correlated positively with an exception for JPY
that is anticorrelated with BTC.

The third and the most important interval of the inter-market cross-correlations happened between
the two above discussed events and it covers the pandemic outbreak and a financial market panic in
March 2020. The mutual coupling of the different markets (including the BTC/USD exchange rate for
the first time) was especially evident in this case. We observe the same rule here as in the two previous
cases that the cross-correlations need time to build up, thus they are stronger for s = 360 min than
for s = 10 min. However, they are clearly evident even for s = 10 min. Interestingly, if we look at the
largest returns (q = 4), we see that BTC is (positively) correlated mainly with S&P500, while it is more
independent as regards other assets. If we take a look at the results for q = 1, the cross-correlations
appear strong between BTC and all other assets except for CHF (only small negative correlation) and
gold (XAU). The corresponding values of ρ(q, s) are positive for S&P500, CAD, copper (HG), crude oil
(CL), and silver (XAG), while they are negative for JPY. This cannot be viewed as a surprise since the
Swiss franc and Japanese yen are considered safe assets together with gold and their pricing in USD
behave differently than the remaining assets’ pricing did.

For a comparison, Figure 5 shows ρ(q, s) calculated for the ETH/USDT exchange rate and the
same conventional assets as in the BTC/USDT case above. We see that the only qualitative difference
between Figures 4 and 5 is a much smaller detrended cross-correlation coefficient value for q = 4 in
the case of ETH/USDT and Event 1 (the first US Covid-19 case). In fact, the principal interest was then
directed towards BTC and not the other cryptocurrencies. We did not analyze other cryptocurrencies,
because only BTC and ETH are traded on the Dukascopy platform, which all the conventional asset
quotes used here came from. If other cryptocurrencies were taken into consideration, they must have
been taken from Binance and synchronized additionally, which might have introduced some spurious
correlations. This is why we restricted this analysis to BTC and ETH only.
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Figure 5. Temporal evolution of ρ(q, s) calculated for the ETH/USDT exchange rate and the conventional
assets expressed in US dollar: Japanese yen (JPY), Canadian dollar (CAD), Swiss franc (CHF), crude oil
(CL), silver (XAG), gold (XAU), copper (HG), and the S&P500 index. For more description see caption
to Figure 4.

2.5. Cryptocurrency Market Structure

We have already discussed the fractal autocorrelations of the cryptocurrency exchange rates with
respect to US dollar and the cross-correlations between bitcoin and the assets representing conventional
markets. Now its time to look at the inner correlation structure of the cryptocurrency market itself.
Our data set consists of 128 cryptocurrencies expressed in BTC. This effectively removes the impact
of BTC on any other coin, so we have some insight into the market’s finer, secondary correlation
structure (the primary structure is such that all the cryptocurrencies are correlated with BTC and
form the market as a connected whole [11]). In our earlier work we identified that throughout
short history of the market, there were only two cryptocurrencies that played the role of the
market’s center (in terms of the network centrality): BTC for the most time and ETH in the first
half of 2018. ETH, sometimes together with USDT, was also identified as the most frequent secondary
hub of the market, after BTC [11]. Here we study the market’s structure between January 2019
and June 2020—a period that was not a subject of the previous study.

Minimal spanning tree is an acyclic spanning subset of a complete weighted network that
is minimal in terms of the total length of its edges. In a typical MST construction, the Pearson
correlation coefficient [94] is used to form a correlation matrix that defines a complete network.
Here we follow Refs. [11,87] and define the network based on the ρ(q, s) matrix. This matrix has
entries equal to ρ(q, s) calculated for all possible pairs of the exchange rates X/BTC and Y/BTC,
where X,Y denote any cryptocurrency from our N = 128 element set. By doing this, we obtain
N(N − 1)/2 = 128 ∗ 127/2 = 8128 coefficients ρ(q, s) for each choice of q and s (as before, here we
restrict our discussion to q = 1, q = 4, s = 10 min, and s = 360 min). In order to move to a metric
space, we recalculate the coefficients in a form of a distance:

dXY(q, s) =
√

2
(

1 − ρXY(q, s)
)

. (11)
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Since −1 ≤ ρ(q, s) ≤ 1 for q > 0, we obtain limiting values for distance: 0 ≤ dXY(q, s) ≤ 2,
where dXY = 0 means perfect cross-correlation between X and Y, dXY = 2 means perfect anticorrelation,
and dXY =

√
2 means perfect statistical independence. Based on all values of dXY(q, s) we construct

MST by using the Prim’s algorithm [95].
Figure 6 shows qMSTs calculated for q = 1 for three specific periods (from top to bottom):

January 2019, July 2019, and March 2020. The first one was distinguished because it overlaps with
a period when ETH was a hub with the highest network centrality (the largest number of connections or
the largest degree) for all scales. For both other periods, a role of the central hub was played by another
cryptocurrency: USDT—in July 2019 (all scales) and in March 2020 for short scales (represented
by s = 10 min in Figure 6). However, no overwhelmingly dominant node was observed in MST
corresponding to March 2020 and s = 360 min. In fact, the structure of the latter MST differs
substantially from the structure of the remaining 5 trees in Figure 6: It can be categorized as a
distributed network in contrast to the generally centralized form of the rest, where there is a clearly
identifiable center (ETH or USDT) and the peripheries. There is a possible explanation why USDT
becomes a central hub in turbulent periods, especially the sudden dropdowns: Investors that want
to close the cryptocurrency positions change them primarily to USDT, which is a stable coin pegged
to USD [52] and only then to the proper US dollar. This manoeuvre can mutually correlate most
cryptocurrencies via USDT.

Figure 6. Minimal spanning trees (MSTs) calculated based on the q-dependent detrended correlation
coefficient ρ(q, s) for the exchange rates of a form X/BTC, where X stands for one of 128 cryptocurrencies
traded on Binance [21]. Each node is labeled by the corresponding cryptocurrency ticker. All trees
correspond to q = 1. On the left there are MSTs obtained for s = 10 min, while on the right there MSTs
obtained for s = 360 min. Each row shows MSTs calculated in a different period (a 7-day-long moving
window with a step of 1 day): January 2019 (top), July 2019 (middle), and March 2020 (bottom).

130



Entropy 2020, 22, 1043

Now let us consider MSTs constructed from the filtered signals, in which the largest returns were
amplified by taking q = 4 (see Figure 7). In this case MSTs show a richer pool of forms. Only one tree
shows a centralized topology: For s = 10 min and March 2020, though its central hub (USDT) does not
dominate the networks unlike it was for q = 1 (Figure 6). Moreover, there is only one tree that can be
categorized as distributed: For s = 360 min and March 2020. All the remaining trees reveal intermediate
form between the centralized and distributed ones: There are several nodes that can be called local
hubs. This is the case of the hierarchical networks that sometimes are scale-free. For s = 10 min,
such a situation was present in January 2019 (ETH and USDT) and July 2019 (USDT, ONT, XLM,
THETA, BCPT, and RVN), while for s = 360 min similar situations also occurred in January 2019
(ETH, EOS, and LTC) and in July 2019 (XLM, THETA, LOOM, USDT, ADA, AION, and DAX).

Figure 7. Minimal spanning trees (MSTs) calculated based on the q-dependent detrended correlation
coefficient ρ(q, s) for the exchange rates of a form X/BTC, where X stands for one of 128 cryptocurrencies
traded on Binance [21]. Each node is labeled by the corresponding cryptocurrency ticker. All trees
correspond to q = 4. On the left there are MSTs obtained for s = 10 min, while on the right there MSTs
obtained for s = 360 min. Each row shows MSTs calculated in a different period (a 7-day-long moving
window with a step of 1 day): January 2019 (top), July 2019 (middle), and March 2020 (bottom).

The trees shown in Figures 6 and 7 represent only a few periods, but in order to look at the market
structure evolution over the whole considered interval of time, it is not convenient to look at the
trees for individual windows. Therefore, we calculated a few network characteristics that grasp the
essential properties of the MST topology in each window. These are the mean path length 〈L(q, s)〉
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between a pair of the MST nodes (the averaging is carried out over all possible pairs) describing how
distributed (large 〈L(q, s)〉) or concentrated (small 〈L(q, s)〉) is a tree, the mean q-dependent detrended
cross-correlation coefficient 〈ρ(q, s)〉 (the averaging is carried out over all possible cryptocurrency
pairs), describing how strong are typical network edges, and the maximum node degree kmax(q, s),
describing how central is the main hub. Time evolution of these quantities is shown in Figure 8 for
q = 1 and in Figure 9 for q = 4. Apart from two scales considered in Figures 6 and 7, i.e., s = 10 min
and s = 360 min, we added a medium scale of s = 60 min.
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Figure 8. Network characteristics describing minimal spanning trees (MSTs) calculated for q = 1 and
for the following scales: s = 10 min, s = 60 min, and s = 360 min. The average path length 〈L(q, s)〉
between a pair of MST nodes (top), the average q-dependent detrended cross-correlation coefficient
〈ρ(q, s)〉 (upper middle), the maximum node degree kmax(q, s) (lower middle), together with the total
market capitalization in US dollars and the daily number of new Covid-19 cases in the world (bottom).
Several events related to a relatively strong cross-correlations are marked with vertical dashed lines,
Roman numerals, and dashed ellipses: Start of a bull market in April 2019 (event I) and its continuation
in May 2019 (event Ia), a peak of the bull market in July 2019 (event II), a local peak followed by a sharp
drop of the market capitalization in November 2019 (event III), the Covid-19 panic in mid March 2020
(events IV-V), and the 2nd Covid-19 wave from May 2020 (event VI).

While 〈ρ(q, s)〉 is largely a different measure than the two other ones, 〈L(q, s)〉 and kmax(q, s) can
be related to each other: If kmax(q, s) is large, a majority of the nodes is connected to it and 〈L(q, s)〉 can
be small; the opposite relation is also true. Figure 8 confirms these observations for q = 1: Typically,
the elevated values of 〈L(1, s)〉 (top panel) are associated with the suppressed values of kmax(1, s) (lower
middle panel) no matter what was a particular cause of such a change of the MST structure. The most
important topological changes detectable by 〈L(1, s)〉 and kmax(1, s) occurred after the end of ETH
domination in the market in January–February 2019 (topolgy changed from a highly centralized one
with ETH being the hub to a rather distributed one), after the end of the bull phase in July–August 2019
(topology returned temporarily to a centralized form but with USDT as the central hub), during a local
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peak and the subsequent decline of the market in November 2019 (another short period of a centralized
topology with USDT domination), and during and after the Covid-19 outbreak March–May 2020
(another phase of USDT domination, but longer than the preceding ones). On the level of 〈ρ(1, s)〉,
there can be 7 interesting periods pointed out (upper middle panel of Figure 8). As one might expect,
the longer scale, the stronger are the mean cross-correlations; this is a systematical relation throughout
the whole analyzed time interval. This is a typical effect observed on many financial markets, which is
related to the liquidity and capitalization differences among the assets. Since the cryptocurrencies with
small capitalization are traded less frequently than those with large capitalization, it takes more time
for a piece of market information to spread over such cryptocurrencies. Thus, the cross-correlations
among them can only be built and detected on longer scales.
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Figure 9. The same network characteristics describing MSTs as in Figure 8, but here calculated for
q = 4.

A more interesting situation as regards the different scales s can be found if one compares, on the
one hand, kmax(1, s) between these scales and, on the other hand, 〈L(1, s)〉. Let us look at two events:
A peak and decline of the bull market in July 2019 (event II) and the Covid-19 pandemic (events IV–VI).
During the former, kmax(1, s) shows a standard behaviour, i.e., for s = 10 min and s = 60 min it is
significantly larger than for s = 360 min; the same can be said for the events IV-VI. According with
what it has been said above, we might expect that in both cases 〈L(1, 360 min)〉 should be larger than
〈L(1, 10 min)〉 and 〈L(1, 60 min)〉. while this was the case, indeed, during the pandemic outbreak in
March 2020, nothing like this happened during the bull market peak in July 2019, when 〈L(1, s)〉 was
comparable for all the scales. Such a deviation from the overall rule that a longer scale is associated
with a better-developed hierarchical or a more distributed MST topology (smaller kmax(q, s)) and
a shorter scale is associated with either a more centralized network topology (larger kmax(q, s)) was
rather unusual as for the whole studied period.

Figure 9 differs from Figure 8 only in that it shows the same quantities but for q = 4 (mainly the
cross-correlations for the large-amplitude returns are considered now). The above-discussed relation
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between kmax(q, s) for different scales s is less clear for q = 4 than it is for q = 1. Only in July 2019
and in March-April 2020 there can be distinguished some characteristic structures in time evolution of
kmax(4, s) and 〈L(4, s)〉. For the events that took place in July 2019, a relation between values of the
maximum node degree for different scales and a relation between values of the mean path length also
for different scales resemble those identified for q = 1. For the Covid-19 outbreak period, the small
difference is that now kmax(4, 60 min) is comparable to its counterpart for s = 360 min instead of
s = 10 min as for q = 1. There is no difference between q = 1 and q = 4 as regards 〈ρ(4, s)〉: The longer
the scale is, the stronger are the cross-correlations.

To summarize observations related to the MST topology, in the analyzed period from January
2019 to June 2020 this topology used to change substantially during periods of large volatility in such
a way that from a hierarchical or distributed network structure that was typical outside these periods
it used to transform itself to a more centralized structure with a dominating hub and much stronger
cross-correlations between the nodes (see also [38]). The most interesting period was the Covid-19
pandemic, during which on short and moderate scales for q = 1 one observed first a significant increase
of the MST centralization (large kmax(q, s)) and a subsequent slow return to a more distributed form
(moderate kmax(q, s)) but still with a distinguished central hub. However, on the longest scale this
effect was not observed and kmax(1, 360 min) was elevated only once in May 2020. This suggests that
the most sudden and nervous movements that correlate the market and centralize its topology on
short time scales tend to be blurred as time passes and we go from short to long scales, where topology
becomes much more of a distributed or hierarchical type. Such a behaviour observed recently during
the pandemic, which can be considered as an external perturbation to the market, differs from the
behaviour observed during the peak and collapse of the bull market in July 2019, which was no doubt
a result of the internal evolution of the market. Whether this internal/external events may be source of
the observed peculiarities of the Covid-19 period, one cannot state for sure as both events were unique
during the analyzed time interval and cannot be confirmed by other events of similar type.

3. Summary

In our work we focused on dynamical and structural properties of the cryptocurrency market.
We analyzed empirical data representing the exchange rates of 129 cryptocurrencies traded on the
Binance platform, including BTC. The analysis comprised three parts, each of which was intended for
investigating a different aspect of the market structure. We started from a multifractal analysis of the
BTC/USDT exchange rate as the most important one together with a similar analysis of an artificial
cryptocurrency index based on 8 the most capitalized coins. This analysis may be considered as an
extension of the analysis reported in Ref. [11] on the most recent time interval from January 2019 to
June 2020. The results showed that throughout this interval the cryptocurrency dynamics produces
multifractal fluctuations (returns) with some intermittent signatures of bifractality that can be assigned
to specific volatile periods like the Covid-19 outburst in March 2020 or a bull market start in April 2019.
Moreover, on a level of the return distributions such bifractal-like singularity spectra can be accounted
for by the pdf/cdf power-law tails that fall into the Lévy-stable regime [90]. Outside these volatile
periods spectra are wide but with much smaller left-right asymmetry.

The analysis of the cross-correlations between the cryptocurrency market represented by
BTC/USD or ETH/USD and the conventional markets represented by the major fiat currencies,
the most important commodities (e.g., crude oil and gold), and the US stock market indices brought
us to an observation that the cryptocurrency market was decoupled from the remaining markets
throughout the whole year 2019, but it used to couple temporarily to those markets during some events
in the first half of 2020, like in January when the first Covid-19 case was reported in the United States,
in March during the pandemic outbreak, and in May-July during the pandemic’s 2nd wave. In the
first case, BTC was anticorrelated with the major stock market indices like S&P500 and Nasdaq100,
but in the second and the third cases the analogous cross-correlations were positive. Positive were
then also the cross-correlations between BTC and several fiat currencies and commodities. A lack
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of the statistically valid cross-correlations in 2019, when the conventional assets did not experience
anything turbulent, was supposedly caused by the asymmetry in market capitalization between the
cryptocurrency market and the conventional markets to the disadvantage of the cryptocurrency market,
which was too small to have any sizeable impact on the other markets. However, the conventional
markets can easily influence the cryptocurrency market if they are turbulent. This is exactly what was
observed in March 2020 and June 2020. Except for January 2020, when, unlike BTC/USD, ETH/USD
was not correlated with the conventional assets, both the exchange rates reveal a similar relation with
these assets.

A network representation of the cryptocurrency market can shed light on the market’s inner
cross-correlation structure. Our analysis based on the exchange rates of 128 coins with respect to
BTC revealed that turbulent periods on the market result in a sudden transition between different
network topology types. During the periods of normal dynamics, the market has a distributed-network
topology or a hierarchical-network topology, in which no node dominates the network and there
is a hierarchy of hubs with decreasing centrality (e.g., node degree). Typically, for long scales the
hierarchical-network topology is more pronounced than for short scales, where a centralized-network
topology prevails. This is because the cryptocurrencies of small capitalization are less liquid, so a piece
of information needs more time to be fully processed by them and the cross-correlations, especially
those more subtle, sector-like, and related to less prominent cryptocurrencies, can only build up on
sufficiently long time scales. This picture is altered if there comes a volatile period. During such periods
the network becomes highly centralized with one dominating hub for all the scales. The most often the
role of such a hub is played by USDT, because it is pegged to the US dollar and, thus, considered as
more stable than other cryptocurrencies. If investors flee the cryptocurrency market, they first change
their assets to USDT, and only then to USD, which can correlate a majority of the cryptocurrencies
together via USDT. However, a compact, star-like topological form exists shortly and soon it returns to
a more distributed, more branched form.

We also noticed that the most significant events as regards their impact on the market
topology—the transition from a bull market to a bear market in July 2019 and the Covid-19 pandemics
that started in March 2020—differ in some details of that impact. During the pandemics, a transition
from a centralized form to a distributed form occurred predominantly on short and medium scales,
while on long scales it was less pronounced. Contrary to that, in July 2019 the topology shift was
visible on all the scales. It is a matter of future analyses to address a question whether this difference
can be related to endogenous (a trend reversal) vs. exogenous (the pandemic) origin of both events.
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Abstract: Information diffusion within financial markets plays a crucial role in the process of
price formation and the propagation of sentiment and risk. We perform a comparative analysis
of information transfer between industry sectors of the Chinese and the USA stock markets, using
daily sector indices for the period from 2000 to 2017. The information flow from one sector to another
is measured by the transfer entropy of the daily returns of the two sector indices. We find that the
most active sector in information exchange (i.e., the largest total information inflow and outflow)
is the non-bank financial sector in the Chinese market and the technology sector in the USA market.
This is consistent with the role of the non-bank sector in corporate financing in China and the impact
of technological innovation in the USA. In each market, the most active sector is also the largest
information sink that has the largest information inflow (i.e., inflow minus outflow). In contrast, we
identify that the main information source is the bank sector in the Chinese market and the energy
sector in the USA market. In the case of China, this is due to the importance of net bank lending
as a signal of corporate activity and the role of energy pricing in affecting corporate profitability.
There are sectors such as the real estate sector that could be an information sink in one market but an
information source in the other, showing the complex behavior of different markets. Overall, these
findings show that stock markets are more synchronized, or ordered, during periods of turmoil than
during periods of stability.

Keywords: information transfer; transfer entropy; stock markets; econophysics

1. Introduction

Complex systems, such as financial markets, are usually composed of many subsystems; in the
case of financial markets, information flows and interactions within the market itself are rarely
investigated even though they are critical to driving the complex dynamics of the complex system as a
whole. Many methods have been proposed to unveil these different relationships among subsystems,
such as correlations including simple correlation analysis [1,2], Granger causality [3], nonparametric
approaches such as the thermal optimal path method [4–6], and mutual information analysis [7–9].
These different approaches have their own advantages and limitations. Importantly, while Granger
causality is commonly used to identify time-varying single or bidirectional causality in economics, it is
sensitive to sample period selection and complexity in the underlying time series, as well as having
other issues [10,11].
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In this paper, we use an alternative approach termed transfer entropy to identify the information
transfers between industrial sectors in the world’s two largest economies: the USA and China. Transfer
entropy, as a kind of log-likelihood ratio [12], is a measure that quantifies information flow based on
the probability density function (PDF). Better than correlations or Granger causality, transfer entropy
not only identifies the direction of the information flow but also quantifies the flows between different
subsystems. In other words, it is capable of quantifying the strength and direction of the interaction
between different subsystems at the same time. This approach has found wide application [13–21].
Furthermore, variation and extensions of transfer entropy have been developed that are suitable for
different situations [22], such as symbolic transfer entropy [23].

There are many studies adopting the concept of transfer entropy to economic systems such as
financial time series [18,24,25], stock market indices [26,27], composite index and the constituent
stocks [28,29], and indices of industry sectors of a stock market [30].

Stock price fluctuations reflect both global and local news as well as news within a subsystem.
There are also well-known calendar anomalies related to business cycle and market participants sector
rotations [31]. In a related work, Oh et al. investigated the information flows among different sectors
of the Korean stock market [30]. They measured the amount of information flow and the degree of
information flow asymmetry between industry sectors around the subprime crisis and identified the
insurance sector as the key information source after the crisis. Although the authors do not attribute a
economic basis for this finding, it is likely linked to the insurance sector acting as a leading indicator of
risk in the economy. In this work, their analysis is extended and a comparative study is performed on
the information transfer among different industry sectors of the Chinese and the USA stock markets.
These two markets are respectively the largest emerging and developed stock markets associated with
the two largest economies in the world.

The rest of this paper is organized as follows. Section 2 describes the method for calculating
symbolic transfer entropy and the sector indices time series for the Chinese and the USA stock markets.
Section 3 presents the empirical results about the information flows between stock market sectors and
its relationship with market states. Section 4 concludes this work.

2. Method and Data

2.1. Symbolic Transfer Entropy

Schreiber was the first to use transfer entropy to measure information transfer and detect
asymmetry in the interactions among subsystems [13]. He treated a sleeping human’s breath rate time
series and heart rate time series as two subsystems and found that the information flow from the heart
to the breath signal is dominant. To explore the transfer entropy between two time series, there are
various approaches in the literature. We need to briefly summarize what the other approaches are and
why the symbolic transfer method is used. We use the symbolic transfer entropy introduced by Staniek
and Lehnertz [23]. Consider two different daily closing prices time series {Xt} and {Yt}, t = 1, 2, . . . , L,
which have the same length L. Closing prices are used to ensure that prices factor in local market
news as well as intramarket news from the various sectors. Transfer entropy TS

y→x assumes that Xt

is influenced by the previous l states of the same variable and by the m previous states of variable Y,
for financial markets, only the day before is important [32]. Hence, we use l = m = 1 in this study.
The procedure to calculate the symbolic transfer entropy TS

y→x from time series {yt} to {xt} is briefly
described in the following five steps:

First, we adopt the log returns {xt} instead of the original price time series {Xt} by

xt ≡ ln(Xt)− ln(Xt−1) (1)

where Xt is the closing price of the index on the tth trading day.
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Second, the returns are discretized into q nonoverlapping windows of equal length Δ. If there
are too many windows, the chance of having particular combinations drops very quickly, making
the calculation of probabilities slower and less informative [32]. Hence, it is irrational if q is too large
or too small. Marschinski and Kantz consider q = 2 and q = 3 in their research [24]; Sandoval uses
q = 24 and q = 6 [32]. We aim at finding the optimal q to maximize the transfer entropy difference
between two time series meanwhile minimizing the calculation cost. In our comparative investigations,
the parameter q varies from 2 to 22 with a moving step of 1. We find that when q ≥ 15, the difference
becomes significantly nonzero. Considering the calculation cost and the strength of transfer entropy,
in this work, we use q = 15. We obtain the maximum value xmax and minimum value xmin of the time
series xt under investigation. The length of each interval is Δx = [xmax − xmin]/q and the kth interval
is [xmin + (k − 1)Δx, xmin + kΔx). Similarly, we repeat the procedure for yt and its Δ = Δy is usually
different from Δx.

Third, the log return time series x̂ and ŷ are described as

x̂t = f (xt) = kx and ŷt = f (yt) = ky, kx, ky = 1, 2, · · · , q, (2)

where xt ∈ [xmin + (kx − 1)Δx, xmin + kxΔx) and yt ∈ [ymin + (ky − 1)Δy, ymin + kyΔy).
Fourth, the number of elements in the qth interval are denoted by x̂q

t and ŷq
t , respectively, and

then calculate the probabilities p(x̂t) = x̂q
t /(L − 1) and p(ŷt) = ŷq

t /(L − 1) and the joint probabilities
p(x̂t, ŷt), p(x̂t, x̂t+1) and p(x̂t+1, x̂t, ŷt).

Fifth, in information theory, different bases of entropy lead to different units of entropy. Base 2 is
the most widely applied in transfer entropy for most of empirical works. Therefore, in our study, we
use Base 2 to calculate transfer entropy. The symbolic transfer entropy from time series {yt} to time
series {xt} is calculated as

TS
y→x = ∑

x̂t+1,x̂t ,ŷt

p(x̂t+1, x̂t, ŷt) log2
p(x̂t+1|x̂t, ŷt)

p(x̂t+1|x̂t)
, (3)

where the joint probability p(x̂t+1, x̂t, ŷt) means the probability that the combination of x̂t+1, x̂t and ŷt

occurs, while p(x̂t+1|x̂t, ŷt) and p(x̂t+1|x̂t) are the conditional probabilities that x̂t+1 has a particular
value when the values of previous samples x̂t and ŷt are known and x̂t is known, respectively. Since

p(x̂t+1|x̂t, ŷt) =
p(x̂t+1, x̂t, ŷt)

p(x̂t, ŷt)
and p(x̂t+1|x̂t) =

p(x̂t+1, x̂t)

p(x̂t)
, (4)

we can simplify Equation (3) and obtain

TS
y→x = ∑

x̂t+1,x̂t ,ŷt

p(x̂t+1, x̂t, ŷt) log2
p(x̂t+1, x̂t, ŷt)p(x̂t)

p(x̂t+1, x̂t)p(x̂t, ŷt)
. (5)

This expression is used for the estimation of the symbolic transfer entropy.

2.2. Data Description

To conduct our analysis, we selected two sets of data from two major stock markets: the Chinese
and the USA stock market. The Chinese stock market is the largest emerging market, while the US
stock market is the worlds largest developed stock market.

For the Chinese stock market, we retrieved and analyzed the SWS sector indices issued by Shenyin
& Wanguo Securities Co., Ltd. (http://www.swsresearch.com). In total, this gave 28 sector indices
of the Chinese stock market, and covered 3508 individual stocks. For each sector index series, there
were 4359 daily prices from 4 January 2000 to 29 December 2017. The various sectors with their
corresponding six-digit codes include: agriculture and forestry (801010), mining (801020), chemical
(801030), steel (801040), non-ferrous metals (801050), electronic (801080), household appliances (801110),
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food and drink (801120), textile and apparel (801130), light manufacturing (801140), biotechnology
(801150), utilities (801160), transportation (801170), real estate (801180), commercial trade (801200),
leisure and services (801210), composite (801230), building materials (801710), building and decoration
(801720), electrical equipment (801730), national defense (801740), computer (801750), media (801760),
communications (801770), bank (801780), non-bank financial (801790), automobile (801880), and
mechanical equipment (801890).

For the US stock market, we chose 16 sector indices composed by Thompson Reuters Co., Ltd.
(http://www.thomsonreuters.cn). For each sector index time series, there were 4695 daily prices from 3
January 2000 to 29 December 2017. The differences in day count in the two series are due to differences
in holidays in the two countries. The stock sectors are appliances resources (M3L), banking/investment
services (BIL), cyclical construction producers (YPL), cyclical consumer services (CRL), energy (E2L),
food/beverages (FBL), healthcare services (HSL), industrial and commercial services (IVL), industrial
goods (IGL), mineral resources (MRL), pharmaceuticals/MD research (PHL), real estate (REL), retailers
(RTL), technology (TEL), transportation (TRL), and utilities (U2$). We use the concept of symbolic
transfer entropy to detect and measure the information flows among the return time series of the 28
sector indices of the Chinese stock market and the 16 sector indices of the USA stock market.

3. Results and Discussion

3.1. Symbolic Transfer Entropy and Degree of Asymmetric Information Flow of the Whole Samples

As mentioned in Section 1, symbolic transfer entropy can proxy for the strength and direction
of the information flow between two time series. Following Oh et al. [30], we used the degree of
asymmetric information flow to measure the information effect between two stock sectors, which is
defined as

ΔTS
i→j = TS

i→j − TS
j→i. (6)

It follows that ΔTS
j→i = −ΔTS

i→j. We show the calculation results of our datasets in four heat maps

(top row for the Chinese sectors and bottom row for the US sectors) of TS
i,j and ΔTS

i,j in Figure 1, in which

each cell shows the value of TS (left plot) or ΔTS (right plot) from sector i to sector j. We observe that
the values in the diagonal matrices TS

i,j and ΔTS
i,j are zeros, which is trivial and can be understood

from the concept of symbolic transfer entropy. We find that the non-bank financial sector (code 790)
has roughly the highest TS values for both inflows and outflows among the Chinese sectors, and the
technology sector (code TEL) has roughly the highest TS values for both inflows and outflows among
the US sectors; the non-bank financial sector comprises three Level 2 sectors in the SWS index system
which are security, insurance, and multivariate financial. This suggests that during the sample period
from 2000 to 2017, the non-bank financial sector and the technology sector were respectively the most
active in the two stock markets. That is, there was more information exchange between these sectors
with the other sectors in their own stock markets than between other sectors in the same stock market.
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Figure 1. Heat maps of the symbolic transfer entropy matrix TS
i,j (left matrices) and the degree of

asymmetric information flow ΔTS
i,j (right matrices) between the 28 Chinese stock market sectors

(2000-2017, top matrices) and the 16 USA stock market sectors (2000-2017, bottom matrices). To simplify
the label, we use the last three digits of each 6-digit code to represent the corresponding Chinese stock
market sector.

3.2. Average Inflow and Outflow

For each sector i, the average outflow Fout,i and inflow Fin,i of information can be calculated as
follows [30]:

Fout,i =
1

n − 1 ∑
p 
=i

TS
i→p (7a)

and
Fin,i =

1
n − 1 ∑

p 
=i
TS

p→i, (7b)

where the points with i = j are not included. Figure 2a,c show the bar charts of the average information
inflows and outflows for all the sectors. This figure confirms that the non-bank financial sector (code 790)
and the technology sector (code TEL) were the most active sectors in information exchange, respectively.
We also find that the more information a sector sends out to other sectors, the more information it
receives from others generally. Therefore, the outflow and inflow are positively related to each other.
We present in Figure 2b,d the scatter plot of Fout,i against Fin,i, which confirms a significant positive
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correlation. The least-squares regression results in the following linear relationship for the Chinese
market are as follows:

Fout,i = 0.724Fin,i + 0.037, (8a)

where the p-values of the two coefficients are respectively 3 × 10−15 and 2 × 10−6 and the adjusted R2

is 0.908. Similarly, for the USA market we have

Fout,i = 0.291Fin,i + 0.046, (8b)

where the p-values of the two coefficients are 6 × 10−4 and 5 × 10−8, respectively, and the adjusted
R2 is 0.548. It is clear from this simple estimation that the linear relationship is more significant for
the Chinese stock market. We argue that the linearity reflects the degree of traders’ actions on the
idiosyncratic traits of market sectors. The higher linearity of the Chinese stock market implies that
the traders in the Chinese market are more irrational, such that their behavior is less reflected in the
idiosyncratic traits of market sectors in their decision-making process.
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Figure 2. Average outflow Fout,i and inflow Fin,i of information for stock market sectors. (a) Bar chart
for the Chinese stock market. (b) Scatter plot for the Chinese stock market. (c) Bar chart for the USA
stock market. (d) Scatter plot for the USA stock market.

We also use the average degree of asymmetric information flow ΔFi to measure the net information
of sector i being sent to other sectors, which is defined as follows [30]:

ΔFi = Fout,i − Fin,i. (9)

We illustrate in Figure 3 the average degree of asymmetric information flow ΔF of the sectors in
descending order for the two stock markets.
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Figure 3. Degree of asymmetric information flow ΔF in descending order of industry sectors.
(a) Chinese stock market sectors. (b) USA stock market sectors.

Among all the 28 Chinese sectors, the bank sector (code 780) has the highest ΔF value, while
the ΔF value of the non-bank financial sector is the lowest. This finding suggests that the bank sector
has the highest net outflow of information and is thus the most influential sector, while the non-bank
financial sector is the most influenced sector. If we regard the Chinese stock market as an information
transfer system, the bank sector is a big information source, influencing other sectors, while the non-bank
financial sector is a big information sink, influenced by other sectors. Concerning the absolute ΔF
value, we find that the biotechnology (code 150) is the closest one to zero, which indicates that the
strength of information outflows and inflows are approximately equal and there is little net information
transferred between the biotechnology sector and the whole market.

Among all the 16 US sectors, the energy sector (code E2L) has the highest ΔF value, while the ΔF
value of the technology sector (code TEL) is the lowest. This suggests that the energy sector has the
highest net outflow of information and is thus the most influential sector, while the technology sector is
the most influenced sector. Therefore, the energy sector is a big information source, influencing other
sectors, while the technology sector is a big information sink, influenced by other sectors. When we
consider the absolute ΔF value, we find that the appliances sector (code M3L) is the closest one to zero,
which indicates that the strength of information outflows and inflows are approximately equal and
there is little net information transferred between the appliances sector and the whole market.

Although the sectors in both markets are similar, they play different roles in the two information
transfer processes. For instance, the real estate sector is an information sink in the Chinese market but
an information source in the US market. These results highlight the importance of the real estate sector
in driving economic output in China and its less significant role in the US.

3.3. Yearly Evolution of Symbolic Transfer Entropy and Degree of Asymmetric Information Flow

Economic sectoral relationships are known to be unstable and change over time. For example,
Bernanke (2016) highlighted the changing correlation between the energy and industrial sectors in the
US over the last decade. To qualify the evolution of information flows over time, we calculated the
symbolic transfer entropy matrix TS(t) and the asymmetric average information flow ΔTS(t) for each
year t. The four TS(t) heat maps of the Chinese stock market for years 2000, 2003, 2007, and 2011 are
illustrated in Figure 4 , and the four TS(t) heat maps of the US stock market for years 2000, 2003, 2007,
and 2011 are illustrated in Figure 5, respectively. For the Chinese stock market, it is found that the
heat maps share some pattern of similarity. For instance, some relative bright lines emerge vertically
and horizontally, echoing the pattern in Figure 4. However, these heat maps also exhibit remarkable
differences. The most significant feature is that the heat maps become brighter over time, indicating
that there are more information transfers among different sectors with the development of the stock
market. The corresponding four heat maps of the asymmetric information flow ΔTS(t) are shown
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in Figure 6. A similar evolution of patterns is observed in the US stock markets, which is shown in
Figures 5 and 7. However, we do not observe a monotonic increase in information flows among the
US sectors, in which the information flows among sectors were smaller in 2011.
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Figure 4. Heat maps of the symbolic transfer entropy matrix TS
i,j for four years (2000, 2003, 2007, and

2011) of the Chinese stock market.
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Figure 5. Heat maps of the symbolic transfer entropy matrix TS
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Figure 6. Heat maps of the symbolic transfer entropy matrix ΔTS
i,j for four years (2000, 2003, 2007, and

2011) of the Chinese stock market.
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Figure 7. Heat maps of the symbolic transfer entropy matrix ΔTS
i,j for four years (2000, 2003, 2007, and

2011) of the USA stock market.
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To further quantify the evolution of information flows, we calculated the average of the symbolic
transfer entropy matrix TS(t) for each year t as follows:〈

TS(t)
〉
=

1
n(n − 1) ∑

i 
=j
TS

i→j(t), (10a)

where the diagonal with i = j is not included, and the average asymmetric information flow ΔTS(t)
for each year t is measured as follows:

〈
ΔTS(t)

〉
=

2
n(n − 1)

n

∑
i=1

i

∑
j=1

∣∣ΔTS
i→j(t)

∣∣, (10b)

where the lower triangle (i.e., the part with i ≤ j) is not included. We note that there are no objective
criteria to determine the window size. Too long windows will result in too few data points and vague
evolution paths, while too short windows lead to less statistics and more noise [33]. The choice of one
year is a trade-off.

The evolutionary trajectories of the average symbolic transfer entropy 〈TS(t)〉 and the average
asymmetric information flow 〈ΔTS(t)〉 from 2000 to 2017 of the Chinese stock market are presented in
Figure 8a,b, respectively, while the results for the US stock market are presented in Figure 8c,d. For the
Chinese stock market, we observe two local minima around 2001 and 2016 for 〈TS(t)〉 and three local
minima around 2001, 2008, and 2016 for 〈ΔTS(t)〉. This observation is of particular interest, because
the three periods correspond to key periods of market volatility associated with the market crashes
in June 2001 [34], December 2007 [35], June 2009 [35], June 2015 [36], and January 2006 [37]. For the
US stock market, we observe four local minima around 2001, 2008, 2011, and 2016 for 〈TS(t)〉 and
three local minima around 2001, 2011, and 2015 for 〈ΔTS(t)〉, which correspond to the 9/11 terrorist
attack in 2001 [38], the subprime mortgage crisis in 2007 [39], the July–August 2011 stock market crash
[40], and the 2015–16 stock market selloff beginning in the United States on 18 August 2015. It is
documented for other types of networks that the structure of networks usually changes around large
market movements (see [41] and the references therein).
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Figure 8. (a) Evolution of the average symbolic transfer entropy 〈TS(t)〉 from 2000 to 2017 of the
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We conclude that, during market turmoil periods, both the average information transfer and
the average asymmetric information flow are lower than in stable states. This conclusion is not
surprising. During bubbles and antibubbles, investors exhibit stronger convergence in decision
making. The majority of investors buy stocks during bubbles and sell stocks during antibubbles.
Although stock markets have higher volatility during periods of turmoil, investors’ actions are more
synchronized. In other words, stock markets are more integrated during periods of turmoil than
during periods of stability.

4. Conclusions

In this work, we compared the information transfer between industry sectors in the Chinese and
US stock markets based on their symbolic transfer entropy. We used daily returns of key sector indices
from 2000 to 2017. The results of this work offer several important insights into information flows
between industry sectors. First, we find that the most active sector in information exchange is the
non-bank financial sector in the Chinese market and the technology sector in the US market. Second,
concerning the net information flow of individual sectors, we find that the main information source is
the bank sector in the Chinese market and the energy sector in the US market, while the information
sink is the non-bank financial in the Chinese market and the technology sector in the US market. The two
information sinks with the largest net information inflow in the two markets are exactly the two most
active sectors with the largest information transfer. Third, the same sector may play different roles in
the two markets. For example, the real estate sector is an information sink in the Chinese market but an
information source in the US market. Thus, the US stock market is expected to react to demand related
to news originating from the housing sector, such as building approvals, whereas in China this is not
the case since the markets are driven by supply side factors such as changes in bank lending.

We also investigated the evolution of the yearly information transfer for both markets. It is found
that the local minima of the average symbolic transfer entropy 〈TS(t)〉 and the average asymmetric
information flow 〈ΔTS(t)〉 correspond to periods of market turmoil. We argue that stock markets are
more integrated during periods of turmoil than in stable periods, which results in smaller entropy.

Note that while there have been several studies that use entropy-based techniques to predict
market fluctuations and crashes [42–47] or measures [48–50], in this study we argue that the average
symbolic transfer entropy 〈TS(t)〉 and the average asymmetric information flow 〈ΔTS(t)〉 do not
have a direct predictive power for market crashes. Further research is required to better understand
the dynamics of market crashes, which are likely not driven by historical correlations but rather by
behavioral factors.
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Abstract: This paper employs the Baidu Index as the novel proxy for unexpected information
demand and shows that this novel proxy can explain the volatility clustering of Chinese stock returns.
Generally speaking, these findings suggest that investors in China could take advantage of the Baidu
Index to obtain information and then improve their investment decision.
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1. Introduction

Recently, scholars have begun to employ Internet news as the proxy for information flow to
explain the volatility clustering of stock returns. For example, Zhang et al. firstly employed the number
of news which appeared in Baidu News as the novel proxy for information arrival and showed that
this proxy could explain the volatility clustering of the SME PRICE INDEX [1]. Based on the Mixture of
Distribution Hypothesis (MDH), Shen et.al. [2] further showed that this novel proxy could also explain
the volatility clustering for individual stocks. This Internet news-based proxy has gained increasing
popularity and is used in various empirical studies, such as in [3–6], among others. However, the
key drawback of this Internet news-based proxy is that media outlets may not play a role in diffusing
information, and the observed phenomenon, such as reduced volatility clustering, is driven by investor
sentiment or psychological biases [4,7,8]. In this paper, we construct a novel proxy for unexpected
information demand based on the search frequency of the Baidu Index, and show that this novel proxy
could explain the volatility clustering of stock returns in the Chinese stock market.

In that sense, the contribution of this paper is twofold. Firstly, unlike prevailing studies employing
trading volume as the proxy for information flow [9–13], we advocate a novel proxy by calculating the
unexpected information demand with the Baidu Index. The rationale to employ the Baidu Index is that:
Zhang et al. [14] claims that compared with Google Trends, the Baidu Index provides more scientific,
authentic, and objective data, and the search results are given at daily frequency. In particular, our
results show that the Baidu Index explains more volatility clustering compared to the studies relying
on trading volume as the proxy for information flow, such as those by [10] and [12]. Secondly, we
provide stock-level evidence that Internet information could explain volatility clustering by focusing
on 40 stocks in the Chinese stock market. To the best of our knowledge, we are the first to employ the
Baidu Index to explain the volatility clustering at stock level.

The remainder of this paper is structured as follows: Section 2 describes the data and variables
construction; Section 3 gives the research methodology; Section 4 gives the empirical results; and
Section 5 presents the conclusions.

Entropy 2020, 22, 44; doi:10.3390/e22010044 www.mdpi.com/journal/entropy155
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2. Data and Variables Construction

We used the daily stock closing price over the whole period of 1 January 2015 to 31 December
2018 from the China Stock Market & Accounting Research Database (CSMAR). The following model
was used to calculate the daily return of stocks:

Returni,t =
(ClosingPricei,t −ClosingPricei,t−1)

ClosingPricei,t−1
(1)

where the Returni,t represents the return of stock i on day t, and the ClosingPricei,t represents the closing
price of stock i on day t.

In this paper, we used keyword search volume data from the Baidu Index instead of Google
Trend. The Baidu search engine is the biggest search engine in China, and we collected the search
volume time series data from the website (https://index.baidu.com). The abnormal change of the
Baidu search volume represents the unexpected information demand. We followed Drake, Roulstone,
and Thornock [15] to define the abnormal search volume:

BSVIi,t =
1
10

10∑
k=1

BSVIi,t−7 × k (2)

AbSearchi,t =
BSVIi,t − BSVIi,t

BSVIi,t
(3)

where, BSVIi,t represents the Baidu search volume of stock i on day t. AbSearchi,t represents the
abnormal search volume of stock i on day t. We defined AbSearchi,t as that Baidu search volume (BSVI)
on day t for stock i less the average BSVI for the same stock and weekday over the previous 10 weeks,
and divided it by the average BSVI for the same stock and weekday over the previous 10 weeks.

We randomly selected 40 stocks from the whole stock market which have a significant
autoregressive conditional heteroscedasticity model (ARCH) effect. Figure 1 illustrates the daily
return, the autocorrelation coefficient, and the partial correlation coefficient of SHENZHEN ZHENYE
(GROUP) CO., LTD (Shenzhen, China) (000006.SZ). We found that the autocorrelation coefficient and
the partial correlation coefficient are significantly different from zero (the value exceeds the confidence
level), which show that the return time-series of stock 000006.SZ has a significant correlation.

To examine the ARCH effect in residuals, we used two different tests—The Ljung-Box-Pierce
Q squared residual correlation diagram and the ARCH Lagrange Multiplier (LM) test. We used
Ljung-Box-Pierce Q to investigate the autocorrelation and partial correlation for the squared residuals
of the mean equation. Table 1 reports that the Ljung-Box-Pierce Q test is statistically significant at
the 5% level in 5-order, 10-order, 15-order, and 20-order lags for the 40 stocks. It denotes that there is
significant autocorrelation for all 40 stocks and indicates a significant ARCH effect in the residuals of
the mean equation.
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Figure 1. This figure shows the daily return, the autocorrelation coefficient, and the partial correlation
coefficient of SHENZHEN ZHENYE(GROUP) CO., LTD (000006.SZ).

Table 1. The results of Ljung-Box-Pierce Q.

Stock Code 5-Lags 10-Lags 15-Lags 20-Lags

000006.SZ 21.6051 *** 38.4482 *** 42.4545 *** 48.2823 ***
000009.SZ 8.0681 20.2608 ** 50.1010 *** 57.5135 ***
000012.SZ 5.9939 *** 22.6637 ** 30.2325 ** 39.3211 ***
000014.SZ 24.7229 *** 39.5542 *** 60.2213 *** 68.8523 ***
000032.SZ 18.5736 *** 35.9589 *** 41.3653 *** 55.0598 ***
000055.SZ 16.1696 *** 25.1449 *** 35.4292 *** 43.4041 ***
000058.SZ 20.4609 *** 31.4845 *** 36.7648 *** 42.5812 ***
000060.SZ 13.4690 ** 14.2572 32.2536 *** 33.5518 **
000062.SZ 24.7848 *** 28.1216 *** 36.2232 *** 50.3635 ***
000063.SZ 15.2538 *** 25.4355 *** 28.4957 ** 33.0139 **
000070.SZ 30.8077 *** 46.3809 *** 49.2339 *** 52.8709 ***
000088.SZ 22.7924 *** 52.1273 *** 56.3863 *** 65.1081 ***
000417.SZ 5.0400 26.7173 *** 40.2973 *** 43.4603 ***
000151.SZ 18.5001 *** 43.9111 *** 61.21 *** 63.2111 ***
000428.SZ 18.8814 *** 39.0454 *** 54.2291 *** 58.0627 ***
000488.SZ 10.6168 * 21.6755 ** 31.5148 ** 42.4101 ***
000501.SZ 10.5518 * 43.9884 *** 59.9645 *** 72.0285 ***
000506.SZ 83.1071 *** 96.4226 *** 109.1136 *** 110.5655 ***
000572.SZ 2.5366 25.0778 *** 28.9072 ** 38.4491 ***
000544.SZ 16.2461 *** 28.9105 *** 39.0724 *** 52.2869 ***
000545.SZ 15.6275 *** 20.2738 ** 30.3052 ** 49.6051 ***
000548.SZ 7.1463 28.3473 *** 42.6825 *** 49.8242 ***
000551.SZ 10.6251 * 22.0099 ** 29.1647 ** 31.4479 **
000552.SZ 9.4039 * 11.0429 39.3816 ** 42.3156 ***
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Table 1. Cont.

Stock Code 5-Lags 10-Lags 15-Lags 20-Lags

000554.SZ 10.2074 * 14.6459 19.2328 21.6216
000559.SZ 11.7471 ** 35.2579 *** 40.7503 *** 42.0554 ***
000561.SZ 13.8186 ** 18.5989 ** 29.6349 39.4647 ***
000565.SZ 16.7915 *** 19.1473 ** 30.4736 ** 37.2379 **
000570.SZ 16.6161 *** 33.7508 *** 52.1117 *** 58.3116 ***
000576.SZ 61.1017 *** 68.8473 *** 72.7982 *** 89.2181 ***
000597.SZ 6.4010 21.4204 ** 31.0142 ** 34.1832 **
000600.SZ 9.1283 * 28.6727 *** 37.5731 *** 48.2757 ***
000603.SZ 24.6331 *** 36.1251 *** 47.0366 *** 68.8977 ***
000619.SZ 23.0051 *** 34.4507 *** 47.1044 *** 49.5425 ***
000628.SZ 18.5710 *** 23.5099 *** 27.5565 ** 35.9639 ***
000629.SZ 12.6282 ** 17.6407 ** 20.1427 30.2449 *
000631.SZ 5.3062 21.3837 ** 31.8666 ** 39.0597 ***
000635.SZ 12.1342 ** 22.4461 *** 35.1346 *** 38.7178 ***
000639.SZ 21.8042 *** 41.4061 *** 49.9885 *** 62.4539 ***
000652.SZ 10.0423 * 22.7582 *** 24.5094 * 35.6892 **

Notes: *, ** and *** denotes statistical significance at the 10%, 5%, and 1% levels, respectively.

The ARCH Lagrange Multiplier LM test was calculated by an auxiliary test regression and used
to test the heteroscedasticity of the time-series. Table 2 reports that the LM values are statistically
significant at the 5% level in 5-order, 10-order, 15-order, and 20-order lags for the 40 stocks. It indicates
the existence of an ARCH effect in the residuals sequence. Hence, the Generalized ARCH (GARCH)
model is appropriate to use for all the 40 stocks.

Table 2. The results of the GARCH test.

Stock Code 5-Lags 10-Lags 15-Lags 20-lags

000006.SZ 127.3155 *** 149.9881 *** 169.4464 *** 178.2135 ***
000009.SZ 206.7346 *** 219.8304 *** 221.5407 *** 224.5281 ***
000012.SZ 161.4745 *** 179.4592 *** 193.8611 *** 199.8437 ***
000014.SZ 231.9872 *** 238.4752 *** 243.2365 *** 250.4378 ***
000032.SZ 228.9215 *** 239.2971 *** 244.2169 *** 248.8801 ***
000055.SZ 163.0790 *** 183.5448 *** 186.8118 *** 189.9978 ***
000058.SZ 185.5711 *** 209.1581 *** 231.3122 *** 237.3947 ***
000060.SZ 181.5004 *** 189.1091 *** 221.4234 *** 226.1046 ***
000062.SZ 293.3655 *** 318.0177 *** 330.9509 *** 341.3959 ***
000063.SZ 144.8571 *** 156.4018 *** 163.2234 *** 170.6981 ***
000070.SZ 261.1783 *** 248.7214 *** 262.1619 *** 267.1721 ***
000088.SZ 199.2880 *** 219.7765 *** 234.2186 *** 241.0107 ***
000151.SZ 236.1484 *** 254.6980 *** 259.5269 *** 268.1101 ***
000417.SZ 254.2967 *** 275.6469 *** 285.6959 *** 309.9711 ***
000428.SZ 289.8030 *** 297.0388 *** 300.2933 *** 304.8884 ***
000488.SZ 209.8855 *** 227.1245 *** 234.4095 *** 239.7541 ***
000501.SZ 166.3387 *** 208.5034 *** 213.3474 *** 216.3341 ***
000506.SZ 178.4966 *** 186.1122 *** 189.4991 *** 194.8627 ***
000544.SZ 245.3693 *** 253.3165 *** 267.4441 *** 271.1274 ***
000545.SZ 118.8800 *** 131.7289 *** 149.6220 *** 168.4821 ***
000548.SZ 272.6703 *** 296.1373 *** 303.4039 *** 310.8151 ***
000551.SZ 232.2056 *** 241.4726 *** 245.8694 *** 245.7574 ***
000552.SZ 231.5626 *** 241.2432 *** 274.7245 *** 285.2567 ***
000554.SZ 208.7359 *** 223.8271 *** 231.5750 *** 233.5482 ***
000559.SZ 311.8441 *** 321.3317 *** 334.5868 *** 351.0071 ***
000561.SZ 268.0727 *** 277.8340 *** 286.8747 *** 292.8237 ***
000565.SZ 229.6917 *** 242.0975 *** 263.9275 *** 265.7864 ***
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Table 2. Cont.

Stock Code 5-Lags 10-Lags 15-Lags 20-lags

000572.SZ 179.4836 *** 195.8057 *** 200.9513 *** 205.6801 ***
000570.SZ 272.4294 *** 303.6636 *** 320.8354 *** 323.7563 ***
000576.SZ 254.1562 *** 264.0926 *** 279.6719 *** 281.7115 ***
000597.SZ 248.8782 *** 255.9566 *** 263.5923 *** 271.2491 ***
000600.SZ 214.9866 *** 218.9253 *** 239.0820 *** 242.9311 ***
000603.SZ 221.6153 *** 247.1927 *** 251.0414 *** 260.9005 ***
000619.SZ 338.7260 *** 345.4322 *** 369.5048 *** 369.2384 ***
000628.SZ 239.2112 *** 252.4262 *** 255.7817 *** 258.4453 ***
000629.SZ 51.1104 *** 51.9229 *** 57.4383 *** 65.2544 ***
000631.SZ 206.7708 *** 225.3945 *** 241.8617 *** 250.3248 ***
000635.SZ 135.8456 *** 139.1217 *** 142.8570 *** 142.3168 ***
000639.SZ 182.9437 *** 187.7796 *** 196.4492 *** 206.4381 ***
000652.SZ 176.4028 *** 206.0478 *** 214.2256 *** 213.9942 ***

Notes: *** denotes statistical significance at the 1% level.

The results of the Ljung-Box-Pierce Q and ARCH Lagrange Multiplier (LM) tests show that there
is serious heteroscedasticity and autocorrelation on returns of the stock, and the GARCH(1,1) model
fits the data well. We used GARCH(1,1) to calculate the daily return volatility. The GARCH(1,1) model
is as follows:

εt =
√

htνt (4)

ht = α0 + β1ht−1 + α1ε
2
t−1 (5)

Table 3 reports the Pearson and Spearman correlation coefficients between daily return volatility
and the Baidu search volume. This table suggests that there is positive significant contemporaneous
correlation between daily return volatility and Baidu search volume in all 40 stocks. Furthermore, the
mean of the Pearson correlation coefficients is 0.6428, and the mean of the Spearman correlation is
0.6398, which denote that these two variables are highly correlated.

Table 3. Contemporaneous correlations between daily return volatility and the logarithm value of Baidu
search volume index (BSVI). This table represents the contemporaneous correlation coefficients between
daily return volatility and the logBSVI. The daily return volatility was evaluated by GARCH(1,1),
and the BSVI was downloaded from Baidu website (http://index.baidu.com/). “Pearson” denotes the
Pearson correlation coefficients and “Spearman” denotes the Spearman correlation coefficients.

Stock Code Pearson Spearman Stock Code Pearson Spearman

000006.SZ 0.6350 *** 0.6116 *** 000548.SZ 0.6844 *** 0.6774 ***
000009.SZ 0.5438 *** 0.5759 *** 000551.SZ 0.5720 *** 0.5755 ***
000012.SZ 0.5695 *** 0.6016 *** 000552.SZ 0.4721 *** 0.5402 ***
000014.SZ 0.7483 *** 0.7943 *** 000554.SZ 0.6373 *** 0.6269 ***
000032.SZ 0.6620 *** 0.5754 *** 000559.SZ 0.7577 *** 0.6282 ***
000055.SZ 0.5939 *** 0.6426 *** 000561.SZ 0.6496 *** 0.6368 ***
000058.SZ 0.6933 *** 0.6983 *** 000565.SZ 0.7033 *** 0.5856 ***
000060.SZ 0.7179 *** 0.7161 *** 000572.SZ 0.2658 *** 0.2312 ***
000062.SZ 0.7943 *** 0.7083 *** 000570.SZ 0.6686 *** 0.6296 ***
000063.SZ 0.7191 *** 0.7783 *** 000576.SZ 0.8218 *** 0.9019 ***
000070.SZ 0.7676 *** 0.6209 *** 000597.SZ 0.6126 *** 0.6302 ***
000088.SZ 0.5323 *** 0.5504 *** 000600.SZ 0.6494 *** 0.7218 ***
000151.SZ 0.7625 *** 0.6843 *** 000603.SZ 0.6619 *** 0.6735 ***
000417.SZ 0.6989 *** 0.7001 *** 000619.SZ 0.7267 *** 0.7798 ***
000428.SZ 0.6507 *** 0.5203 *** 000628.SZ 0.6563 *** 0.6311 ***
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Table 3. Cont.

Stock Code Pearson Spearman Stock Code Pearson Spearman

000488.SZ 0.5604 *** 0.5268 *** 000629.SZ 0.5891 *** 0.7649 ***
000501.SZ 0.5668 *** 0.5873 *** 000631.SZ 0.7011 *** 0.6506 ***
000506.SZ 0.7013 *** 0.7260 *** 000635.SZ 0.4228 *** 0.3719 ***
000544.SZ 0.6417 *** 0.6558 *** 000639.SZ 0.6920 *** 0.7639 ***
000545.SZ 0.6415 *** 0.6238 *** 000652.SZ 0.5663 *** 0.6709 ***

Notes: *** denotes statistical significance at the 1% levels.

To further consider the relation between the daily return volatility and Baidu search volume,
we introduced another direct measure, namely, mutual information. Mutual information is a useful
indicator in information theory to measure relative information, and it is widely used to measure the
correlation between two different variables. To measure the correlation between two equal length time
series {xt} and

{
yt

}
, t = 1, 2, 3, . . . , N, we computed the mutual information between these two time

series, as follows:

MI(X, Y) =
∫

Y

∫
X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy (6)

where p(x, y) is the joint probability density distribution function of X and Y; p(x) is the marginal
probability density distribution function of X, and p(y) is the marginal probability density distribution
function of Y.

Table 4 represents the mutual information between the daily return volatility and abnormal Baidu
search volume. All 40 stocks showed a positive value of mutual information, and the mean of mutual
information is 0.7106, which denotes that these two variables are highly correlated. The empirical results
clearly support that there is a significant correlation between the Baidu index and daily return volatility.

Table 4. The mutual information between the daily return volatility and abnormal Baidu search volume.
This table reports the mutual information between the daily return volatility and abnormal Baidu
search volume. The daily return volatility is the GARCH(1,1) volatility of Bollerslev [16], and the
abnormal Baidu search volume (AbSearch) is calculated by Model 3.

Stock Code Mutual Information Stock Code Mutual Information

000006.SZ 0.7427 000548.SZ 0.6864
000009.SZ 0.7552 000551.SZ 0.6625
000012.SZ 0.5988 000552.SZ 0.7403
000014.SZ 0.6822 000554.SZ 0.7728
000032.SZ 0.7541 000559.SZ 0.7279
000055.SZ 0.6711 000561.SZ 0.6869
000058.SZ 0.7179 000565.SZ 0.6817
000060.SZ 0.7687 000572.SZ 0.8038
000062.SZ 0.7136 000570.SZ 0.7769
000063.SZ 0.7878 000576.SZ 0.6755
000070.SZ 0.6836 000597.SZ 0.6933
000088.SZ 0.6865 000600.SZ 0.6991
000151.SZ 0.7326 000603.SZ 0.7440
000417.SZ 0.7225 000619.SZ 0.7093
000428.SZ 0.7077 000628.SZ 0.6846
000488.SZ 0.7558 000629.SZ 0.6222
000501.SZ 0.7073 000631.SZ 0.7017
000506.SZ 0.7357 000635.SZ 0.7117
000544.SZ 0.6833 000639.SZ 0.6755
000545.SZ 0.6853 000652.SZ 0.6752
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3. Methodology

In the time series financial model, the disturbance variance is often found to be less stable.
The conditional variance of the error term usually varies with time and relies on the magnitude
of the previous errors. In order to solve the heteroscedasticity issue, Bollerslev [16] proposed the
generalized autoregressive conditional heteroscedasticity model (GARCH), which is designed to deal
with the volatility persistence and describe how the amplitude of return varies over time. In this paper,
the GARCH(1,1) model was adopted due to the fact that it has been shown to be suitable to deal with
conditional variance that fits many financial time series quite well [16,17]. The GARCH model can be
described by the following models:

Rt = μ+ εt, where εt
∣∣∣Ω t−1 ∼

(
0, h2

t

)
(7)

h2
t = ω+ αε2

t−1 + βh
2
t−1 (8)

where Rt represents the stock return at day t. μ is a constant, εt represents the serially uncorrelated
errors, and h2

t represents the conditional variance of the εt. The sum of the coefficients α and β indicates
the degree of volatility persistence.

The Baidu search volume index (SVI) is an ideal proxy for information demand because this
variable reflects effort by the investor to obtain firm-specific financial information. The abnormal
search volume (AbSearch) represents investors’ demand to search for information. Clark [18] proposed
the Mixture of Distributions Hypothesis (MDH), and believes that the price time varying conditional
volatility is associated with the information flow. According to the MDH, we made a rational
assumption that introducing a proxy of information arrival into the variance model will decrease the
observed volatility clustering. Therefore, we proposed an extended model that contains an abnormal
Baidu search volume, which can be written as follows:

h2
t = ω+ αε2

t−1 + βh
2
t−1 + λAbSearcht (9)

If the assumption is correct, the volatility persistence, represented by α+ β, should be significantly
reduced in comparison with the benchmark model, that is, the original GARCH(1,1) model.

4. Empirical Results

We firstly focus on the estimation results of the benchmark GARCH(1,1) model. In an unreported
table, both the coefficients α and β are statistically significant at the 1% level. The sum of the coefficients
α + β range from 0.998455 to 0.769458 with a mean value of 0.904028. Figure 2 illustrates the residuals,
standardized conditional variance, and standardized residuals of SHENZHEN ZHENYE (GROUP)
CO., LTD (000006.SZ). We find that the benchmark model fits the volatility dynamic quite well. Table 5
presents the estimation results of the extended model that contains AbSearch. All the coefficients α,
β, and γ of the extended GARCH(1,1) model are statistically significant at the 1% level. The sum of
the coefficients α + β range from 0.87521 to 0.489454 with a mean value of 0.698305. Table 6 reports
the summarized results for the degree of volatility clustering, indicating that α + β is significantly
decreased. In particular, we found that after incorporating the proxy for the unexpected information
demand, the sum of the coefficients α + β dropped significantly with an average of 0.205723. All these
findings suggest that the GARCH(1,1) model captures the volatility clustering well, and the unexpected
information demand was able to explain the volatility clustering.
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Figure 2. This figure shows the residuals, standardized conditional variance, and standardized residuals
of SHENZHEN ZHENYE(GROUP) CO., LTD (000006.SZ).

Table 5. Estimates of extended GARCH (1,1) model.

Stock Code α t-Value β t-Value λ t-Value α + β

000006.SZ 0.3275 *** 6.76 0.4355 *** 8.58 1.4196 *** 7.08 0.7630
000009.SZ 0.2766 *** 7.31 0.4708 *** 11.45 2.5797 *** 8.77 0.7474
000012.SZ 0.4678 *** 9.39 0.1253 *** 2.81 0.6176 *** 9.51 0.5931
000014.SZ 0.4026 *** 7.23 0.1878 *** 3.93 1.1363 *** 11.29 0.5904
000032.SZ 0.4138 *** 6.00 0.3026 *** 3.98 1.4328 *** 6.77 0.7164
000055.SZ 0.5191 *** 9.01 0.0861 * 1.68 1.4104 *** 10.15 0.6052
000058.SZ 0.3105 *** 5.85 0.1790 *** 3.64 1.1872 *** 11.96 0.4895
000060.SZ 0.3959 *** 7.21 0.3349 *** 5.33 1.6069 *** 6.91 0.7308
000062.SZ 0.4127 *** 6.84 0.2809 *** 4.84 1.6888 *** 9.97 0.6936
000063.SZ 0.2923 *** 6.17 0.4882 *** 8.99 1.6272 *** 6.45 0.7805
000070.SZ 0.3485 *** 5.9 0.2478 *** 3.78 1.0664 *** 7.99 0.5963
000088.SZ 0.3229 *** 6.94 0.4895 *** 8.71 1.3952 *** 7.88 0.8124
000151.SZ 0.3279 *** 5.66 0.2568 *** 3.70 1.3112 *** 9.61 0.5847
000417.SZ 0.5668 *** 10.32 0.2694 *** 7.34 1.8860 *** 8.27 0.8362
000428.SZ 0.6182 *** 9.23 0.2467 *** 11.19 2.2509 *** 7.32 0.8649
000488.SZ 0.3507 *** 6.10 0.2504 *** 3.42 1.5869 *** 6.08 0.6011
000501.SZ 0.2791 *** 6.56 0.4980 *** 10.03 2.5483 *** 5.70 0.7771
000506.SZ 0.4896 *** 6.46 0.3344 *** 7.39 0.9747 *** 7.12 0.8240
000544.SZ 0.5815 *** 10.42 0.2937 *** 7.42 1.5176 *** 8.42 0.8752
000545.SZ 0.2750 *** 5.24 0.3463 *** 4.28 0.7839 *** 7.54 0.6213
000548.SZ 0.4858 *** 8.63 0.2981 *** 5.91 1.0613 *** 9.50 0.7839
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Table 5. Cont.

Stock Code α t-Value β t-Value λ t-Value α + β

000551.SZ 0.3274 *** 6.91 0.5260 *** 6.87 0.8253 *** 4.12 0.8534
000552.SZ 0.4378 *** 9.33 0.2068 *** 4.04 1.9028 *** 8.63 0.6446
000554.SZ 0.3346 *** 6.32 0.3040 *** 4.55 1.9121 *** 8.52 0.6386
000559.SZ 0.4647 *** 9.44 0.3338 *** 10.7 2.7574 *** 11.15 0.7985
000561.SZ 0.4894 *** 8.23 0.1391 ** 2.72 1.2136 *** 8.36 0.6285
000565.SZ 0.4156 *** 6.23 0.2874 *** 4.69 1.0779 *** 8.71 0.7030
000572.SZ 0.2432 *** 5.88 0.2796 *** 3.71 1.0002 *** 10.64 0.5228
000570.SZ 0.4308 *** 8.62 0.4063 *** 8.92 3.4746 *** 7.05 0.8371
000576.SZ 0.7076 *** 10.99 0.1333 *** 5.40 1.1049 *** 16.31 0.8409
000597.SZ 0.4523 *** 7.68 0.1750 ** 2.97 1.2753 *** 6.96 0.6273
000600.SZ 0.4189 *** 7.20 0.2645 *** 5.81 1.6152 *** 12.89 0.6834
000603.SZ 0.3137 *** 5.42 0.4218 *** 6.8 1.6865 *** 6.40 0.7355
000619.SZ 0.5090 *** 8.75 0.2387 *** 5.44 2.0084 *** 7.01 0.7477
000628.SZ 0.3317 *** 5.99 0.1746 ** 2.72 1.1340 *** 8.64 0.5063
000629.SZ 0.3255 *** 4.43 0.3858 *** 4.42 0.6925 *** 5.59 0.7113
000631.SZ 0.4233 *** 8.51 0.2695 *** 5.93 1.6231 *** 11.47 0.6928
000635.SZ 0.3423 *** 5.70 0.1835 ** 2.63 1.1718 *** 9.39 0.5258
000639.SZ 0.3883 *** 6.74 0.2836 *** 5.46 0.8062 *** 6.57 0.6719
000652.SZ 0.4641 *** 8.29 0.2115 *** 4.58 1.0943 *** 10.74 0.6756

Notes: *and *** denotes statistical significance at the 10% and 1% level, respectively.

Table 6. Improvement by the extended model.

α + β Min Max Mean SD

Basic GARCH (1,1) 0.7695 0.9985 0.9040 0.06697
Extended GARCH (1,1) 0.4895 0.8752 0.6983 0.1051

Basic GARCH (1,1)-Extended GARCH (1,1) 0.06535 *** 0.4309 *** 0.2057 *** 0.08369 ***

Notes: *** denotes statistical significance at the 1% level.

5. Conclusions

This paper employed the Baidu search volume index (BSVI) as the novel proxy for unexpected
information demand and validates the MDH. BSVI represents investors’ searching behavior through
the channel of Baidu, which is the largest search engine in China. In that sense, BSVI is a suitable proxy
for the information demand. To test the contemporaneous correlation, we employed the Pearson and
Spearman correlation coefficients, as well as the mutual information between BSVI and returns and
volatiles. The empirical results based on the GARCH(1,1) model reveal a positive and significant impact
of the abnormal Baidu Search volume on the conditional volatility of stock return. Generally speaking,
these findings suggest that investors in China could take advantage of the Baidu Index to gather
information about the stock market and then improve their financial decision-making. For example,
investors could employ the high-frequency news to “nowcast” the return volatility, and thus make the
optimal investment decision.
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Abstract: The timing of an initial public offering (IPO) is a complex dynamic game in the stock
market. Based on a dynamic game model with the real option, this paper investigates the relationship
between pricing constraint and the complexity of IPO timing in the stock market, and further
discusses its mechanism. The model shows that the IPO pricing constraint reduced the exercise
value of the real option of IPO timing, thus restricting the enterprise’s independent timing and
promoting an earlier listing. The IPO price limit has a stronger effect on high-trait enterprises, such as
technology enterprises. Lowering the upper limit of the pricing constraint increases the probability
that enterprises are bound by this restriction during IPO. A high discount cost and stock-market
volatility are also reasons for early listing. This paper suggests a theoretical explanation for the
mechanism of the pricing constraint on IPO timing in the complex market environment, which is an
extension of IPO timing theory, itself an interpretation of the IPO behavior of Chinese enterprises.
These findings provide new insights in understanding the complexity of IPOs in relation to the
Chinese stock market.

Keywords: pricing constraint; IPO timing; dynamic game model; real option; complexity of IPOs

1. Introduction

The discussion of the initial public offering (IPO) timing mechanism is one of the current hot
topics in the field of corporate finance and financial market. Existing discussions on the IPO timing of
enterprises are mostly derived from the research on IPO anomalies [1], which explained the internal
logic of IPO timing from the perspective of enterprises themselves and market volatility [2]. The
financial markets are complex systems [3]; however, the timing of an IPO is a complex game, which is
influenced by many factors, both at the market level and macro level, and the game in IPO timing
constitutes one part of the complexity in the stock market. When discussing the factors of IPO timing
at the market level, the existing literature often talks about the role of information asymmetry and
investor sentiment. There is little literature on the possible market regulation of IPOs, especially on the
effect of price constraints on IPO timing.

Unlike overseas IPO markets, the issuance of new shares in the Chinese stock market is still at
an emerging stage, and the corresponding issuance system is being gradually built and improved.
In order to maintain the order of the issuing market and alleviate the “three highs” phenomenon (high
issue price, high price-to-earnings (P/E) ratio, and high issue financing quota) in the actual issuance of
new shares, the China Securities Regulatory Commission launched a series of reforms on the pricing of
new shares, including setting the P/E ratio control on the pricing of new shares. In view of this, we
studied the pricing constraint in IPO timing, which is a valuable expansion of the IPO timing theory,
and complements the lack of attention given to market regulation in the previous literature.
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On the other hand, the financing for technology companies is also a hot topic in the field of
corporate finance. With the establishment of the China STAR Market (the Sci-Tech innovation board
of the Shanghai Stock Exchange (SSESTAR), was established in the Shanghai Stock Market on the
November 5, 2018. It is a new board independent of the existing main board market. Its main purpose
is to pilot IPO registration reform and provide support for technological innovation of enterprises),
many Chinese enterprises will choose to make an IPO in this market in future. Compared with the
past, the SSESTAR Market has abolished the regulation of the P/E ratio and relieved the IPO price
limit. This paper provides a theoretical foundation for that policy design. Specifically, compared
with other enterprises, the pricing constraint has a stronger constraint on the independent IPO timing
of technology IPOs. The pricing constraint will encourage them to go public earlier, which may
further lead to insufficient financing, and thus weaken the IPO’s attraction of the domestic market for
enterprises in the long term. Therefore, this research suggested that the release of restrictions on the
IPO pricing may help to encourage companies to make an IPO in the Chinese stock market, enhancing
the positive impact of capital market financing on the development of China’s innovation economy.

In this paper, we studied the influence of the pricing constraint on IPO timing based on a dynamic
game model with the real option. The timing of an IPO is a complex multi-factor dynamic game, which
is not only influenced by the enterprises themselves and the stock market fluctuations but also market
regulation policy. The innovations of this research are as follows: first, it is research on the pricing
constraint in IPO timing. The previous literature focused on the analysis of enterprise and market
factors but overlooked the regulatory facts. This paper analyzes the influence of market regulation,
especially for technology enterprises, and this is an expansion of the IPO timing theory. Second, our
model incorporates market control factors into the dynamic mechanism of IPO timing, making the
modeling more complex. By the introduction of multiple influencing factors and the real option, the
model is much closer to the actual situation of IPO timing in the Chinese market. Third, we investigate
the impact of the pricing constraint on technology enterprises in IPO timing. Our results prove that the
price constraint can significantly advance the IPO timing of technology enterprises, and the resulting
insufficiency of financing may be one of the reasons why Chinese enterprises seek to make an IPO in
the overseas market, which provides new insights for understanding the complexity of the IPOs in
relation to the Chinese stock market.

A breakdown of the paper is structured as follows: Section 2 is the literature review, where we
review those studies related to IPO timing and the modeling of IPOs. Section 3 illustrates the parameters,
settings, and important mechanisms of our model. Section 4 contains the derivation of the IPO timing
dynamic game model. We first studied the IPO market timing equilibrium with no constraints, and
then extended to an analysis of price limit constraints. Section 5 is the conclusion, in which we review
the conclusions of this paper and indicate possible research directions for future study.

2. Literature Review

2.1. IPO Timing

The previous literature focused on the following two aspects to explore the motivation and results
of IPO timing. On the one hand, the existence of information asymmetry in the stock market may lead
to the distortion of IPO pricing, thus leading enterprises to choose the time of high financing to go
public, “in light of the time conditions”. To increase the amount of listed capital, the enterprises to
be listed tend to raise capital by listing when the market values the new shares highly, and delay the
execution when the market values the new shares poorly. This theoretical hypothesis is supported by
the empirical data.

Ibbotson et al. [4] and Korajczyk [5] found through empirical studies on the data of IPO enterprises
in the market that enterprises would choose to go public when they could provide more accurate
pricing of new shares, and that there was a positive correlation between IPO earnings and the number of
new shares issued in subsequent markets. Lucas and McDonald [6] further believed that the existence
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of information asymmetry would result in the IPO price of enterprises being overestimated by the
market. Then, the issuing of new shares when the IPO price was overestimated and suspension of the
issuance when the IPO price was underestimated, verifying the motivation of enterprises in actively
choosing the listing time.

On the other hand, some researchers believed that investor sentiment in the stock market is also a
potential factor influencing the IPO timing of enterprises. The discussion in this respect comes from
the expansion of the theory of investor sentiment. When the investor sentiment in the stock market
keeps rising, it is accompanied by a general overvaluation of stock prices. At this point, the enterprises
to be listed will issue IPO shares at a high price by virtue of high investor sentiment [7–9]. In addition,
in the new issue, a large number of optimistic investors tend to gather in the primary market, and the
pursuit of optimistic investors for a new issue will lead to a herd effect in the market. Therefore, when
there are a large number of optimistic investors in the market, the overall optimistic market sentiment
will push up the IPO price and underpricing rate of the IPO companies, stimulate the issuance of new
shares, and then induce an IPO wave in the industry.

2.2. IPO Game Modeling

For the modeling of the IPO timing mechanism, the theoretical modeling of information asymmetry
is the first step. Chemmanur and Fulghieri [10] proposed a two-phase IPO game decision-making
model. They suggested that enterprises would waver between an external IPO financing or selling
part of the equity. Their model concluded that the longer an enterprise has been operating, the
more information it has publicly disclosed to the stock market, and the more likely it is to IPO.
Therefore, the subsequent literatures discussed the information asymmetry in IPO from the information
spillover effect.

Hoffmann-Burchardi [11] introduced the information spillover effect into the IPO timing model,
believing that the existing IPO events can provide market investors with information about the
industry and macro economy of the enterprise, thus affecting the IPO pricing of those subsequent IPO
enterprises. The model shows that enterprises will choose to delay the IPO timing until the market
obtains information from the IPOs of enterprises so as to price the enterprises that are about to go
public more accurately. Alti [12], whose model is similar to Hoffmann-Burchardi [11], analyzed the
information spillover effect of IPO events from the perspective of cost and benefit. The model analysis
suggested that the cost of listing is caused by the existence of informed traders, which leads to adverse
pricing in the market. However, the occurrence of IPO events in the past will reduce the degree of
information asymmetry in the market and reduce the listing cost of subsequent listed companies.

Colak and Gunay [13] analyzed the macroeconomic factors in the spillover of IPO information. They
got two Bayesian–Nash equilibriums for IPO timing. The first hypothesis is that the decision-making is
independent, the quality of the enterprises listed in the early stage is often poor, and the enterprises with
good quality will wait strategically and go public only after receiving the signal of the improvement
of the macro economy. The second is that enterprises’ market timing will affect each other, and thus
the probability of high-quality enterprises listing after the IPO of low-quality enterprises is higher in
this situation.

In the theoretical modeling of IPO timing of investor sentiment, the model of Pastor and
Veronesi [14] emphasizes the close relationship between IPO timing and investor sentiment.
By introducing changes in investor sentiment towards the market as a whole, they assumed that
companies had US-style call options because they could flexibly choose the timing of their listings and
could obtain excess returns by exercising the options, at the cost of forgoing the cost of investment if
the market sentiment continued to deteriorate. The model indicates that, when the expected market
return rate falls and the future profit margin and operational risk of enterprises rise, the probability of
enterprises choosing to make an IPO increases.

After the extension of the modeling terms to the multi-period game model, scholars represented by
Spielgel and Tookes [15] built more complex multi-period game models of IPO timing and incorporated
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the influences of technological innovation and product market competition into the IPO timing of
enterprises. The results of the model analysis demonstrate that the time an enterprise chooses to
go public is related to the degree of technological innovation, and the market share owned by the
enterprise also affects the timing of the IPO.

Compared with the above model research, Aghamollay and Guttmanz [16] attempted to evaluate
an enterprise’s internal value (that is, the enterprise characteristics), information asymmetry, and
investor sentiment, to consider the main body of the enterprise in different periods of the IPO timing
dynamic game. Their model provided a relatively complete framework for describing the intrinsic
mechanism of IPO timing.

2.3. Literature Comment

There are many studies on the mechanism of IPO timing; however, the mechanism of IPO timing
discussed in those literatures is incomplete. Between January 2005 and December 2008, the China
Securities Regulatory Commission (CSRC) imposed a P/E ratio of 30 times on domestic IPOs to maintain
market stability. Since the resumption of IPO issuance in June 2014, the CSRC has introduced a series
of reforms on IPO pricing, including setting the most critical constraint on IPO pricing—the P/E ratio
of 23 times. However, there are not many studies on the IPO pricing constraints, and the analysis of
IPO pricing constraints and the IPO timing mechanism are relatively rarely discussed. This paper adds
to the growing literature on the complexity in the stock market by including the investigation of IPO
pricing constraints in the study of the IPO timing mechanism.

3. Model Specification

3.1. Parameters

The trait factor ψi, which reflects the business behavior, financial characteristics, technology
research, and development of the enterprise, represents the intrinsic value of the enterprise. Before
t = 1, each company can only observe their own trait factors, which are independent of each other.
Companies are risk-neutral individuals and are bound to go public at some point in the period
mentioned above. The enterprise discloses its idiosyncratic trait factor ψi when it goes public, and this
information is true without cost.

The market factor ct represents the information asymmetry, investor sentiment, and rational
expectation adjustment in the stock market. We set the factor ct to follow the random first order
autoregressive process of mean reversion, the AR (1) process [17,18]. This process is not only related to
the adjustment of investors to rational expectations [19,20], but also related to investor sentiment and
market information asymmetry. The specific settings of the AR (1) process are shown in Equation (1).

ct = λct−1 + εt (1)

where ct is the value of the common factor in the period. c1 is unknown in t = 1, unless there is at least
one IPO in the market, then the rest can observe c1 at the end of this period.

The discounted cost r represents a series of potential costs, such as market share, revenue decline,
and debt increase, that would be lost if the company delayed the IPO under other conditions.

Last, enterprises are advance homogeneous; that is, the trait factors of enterprises have the same
idiosyncratic distribution. They also face the same discount rate r, and common factor ct effects in the
same way.

All parameters included in this model are described as shown in Table 1.
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Table 1. Description of the parameters in the model.

Parameter Definition of the Parameters

ψi The trait factors of enterprise i,ψiε(0,+∞), i ∈ (1, N), N ≥ 2.
ψ∗t The critical condition of whether the enterprise delays the IPO in period t. t = 1,2.

ct
The common market factor in period t. ctε(−∞,+∞), c0 = 0, c1 = ε̃1. εt is the
stochastic error term, εt ∼ N

(
0, σ2

)
.

ωt
The market environment variable at period t, which is closely related to the common
market factor ct in the same period.

λ The mean reversion rate of the common market factors, λ ∈ (0, 1).

r A collection of the discounted costs considered in an IPO. The discount rate stays the
same for each period.

t The decision time point of IPO timing in dynamic game model, t = 0, 1, 2, 3.

ui,t
The expected utility of enterprises listing in period t, which reflects the market
valuation of those enterprises.

F(·), f (·) The cumulative distribution function and density function of the common market
factor ct.

G(·) The cumulative distribution function of the trait factor ψi.

Pr
(
NIt

i� j

)
The probability of no IPO in the market at t period.

Pr
(
It
)
/Pr

(
NIt

) The probability of an IPO for enterprise i at period t, the probability that enterprise i
will not IPO.

NS(ψi) The non-strategic enterprises. The expected utility of an IPO in a fixed period.
S(ψi) The strategic enterprise. The expected utility of strategic IPO.

Vt(ψi)
The real option of IPO timing. The expected utility difference of an IPO between
strategic and non-strategic enterprises.

3.2. Assumptions

There are N (N ≥ 2) companies to be listed. The timing of the IPO is a three-period decision (t ∈
{0,1,2,3}). The valuation of the IPO depends on the combined effect of three factors: enterprise trait
factor ψi, the factor representing the characteristics of the industry and even the market volatility ct

and the discounted cost r.
When an enterprise conducts an IPO at any time t, the expected utility obtained from its listing

(that is, the valuation level) is determined by Equation (2).

ui,η =
E
(
ψi + cη

∣∣∣ωη)
(1 + r)η−1

(2)

The IPO timing process in this model is shown below.
t = 0, enterprises can only observe their own characteristics.
t = 1, all the companies decide whether to make an IPO at the same time. If at least one company

is listed in t = 1, then the IPO company will obtain its market valuation, and common factor c1 is
known for all companies.

t = 2, all the enterprises not listed in phase t = 1 will decide whether to make an IPO at this time.
If at least one company is listed in phase t = 2, the enterprises carrying out the IPO will also obtain
their market valuation, and the common factor c2 will be observed by all enterprises.

t = 3, all companies not listed in t = 1 and t = 2 will be listed in t = 3.
The IPO behavior of enterprises will affect each other, and the IPO events of the previous period

in the market will affect the IPO decisions of the next period.

3.3. The Real Option Method

Referring to the research of Myers [21] and Busaba et al. [22] on the real option method in valuation,
this paper introduces the options for enterprises to choose IPO timing. The IPO timing option is defined
as the right of enterprises to choose IPO by observing the common factors of the previous period.
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The model defines the expected utility of an enterprise (hereinafter referred to as a non-strategic
enterprise) that does not execute the above strategic IPO timing and always chooses to list in t = 2
(hereinafter referred to as a non-strategic enterprise) as NS(ϕi). The expected utility of an enterprise
(hereinafter referred to as a strategic enterprise) that is not listed at t = 1 but at the time of a strategic IPO
at t = 2 is defined as S(ϕi). Therefore, the IPO timing real option Vt(ϕi) is the difference between the
expected utility of an IPO of strategic enterprises and non-strategic enterprises, as shown in Equations
(3)–(5).

NS(ψi) = E
[
ψi

1 + r

]
=
ψi

1 + r
(3)

S(ψi) = Pr
(
c2 < c∗2(ψi)

)
E

⎡⎢⎢⎢⎢⎣ ψi + c3

(1 + r)2

⎤⎥⎥⎥⎥⎦+ (
1− Pr

(
c2 < c∗2(ψi)

))
E
[
ψi + c2

1 + r

]
(4)

Vt(ψi) ≡ S(ψi) −NS(ψi) =

∫ c∗2(ψi)

−∞

⎛⎜⎜⎜⎜⎝ψi + λ
2c1

(1 + r)2 −
ψi + λc1

1 + r

⎞⎟⎟⎟⎟⎠ f (ct)dct (5)

4. The IPO Timing Model

Compared with the discussion of market factors in the previous literature, this model places
emphasis on the analysis of the regulatory factors of the stock market. Specifically, on the basis of
Aghamollay and Guttmanz [16], this paper introduces the setting of IPO pricing constraints to explore
the impact mechanism of pricing control measures on the enterprise’s IPO decision.

Enterprises maximize the expected utility of IPO (valuation). For any enterprise i, the IPO will
be conducted at t = 1 only when its trait factors ψi are higher than the critical trait factors ψ∗i and the
expected utility of the current IPO is higher. Similarly, at t = 2, if an existing enterprise j is listed at
t = 1, the enterprise i � j will make an IPO at the stage if, and only if, its characteristic factors are above
the critical value ψ∗2. At the same time, when there is at least one IPO in t = 1, the enterprise i may
delay the IPO to observe the specific information of the common factors c1 at the end of t = 1. If the
common factor is low enough at this time, considering that the volatility of the common factor follows
the mean reversion process AR (1), its value at t = 3 will be greater than that at t = 2. In that case, the
enterprise can delay its IPO to obtain the real option income generated by it.

Therefore, enterprise i will weigh the real option obtained by delaying the IPO at t = 1 against the
discounted costs it faces, to finally determine the IPO period. After this section, the critical equilibrium
of the dynamic game of IPO market timing will be solved. First, the equilibrium of the IPO market
timing of the enterprise i in t = 2 will be discussed, and then the convergence in t = 1 will be discussed.

4.1. The Unconstrained Model

According to the setting, if there is no IPO in t = 1, the dominant choice of any enterprise i at this
time is to make an IPO in t = 2.

If there is at least one IPO in stage t = 1, for the enterprises i that have not yet had an IPO in stage
t = 1, if, and only if, their expected utility in a stage t = 3 and stage t = 2 IPO is equal, the enterprises
will remain neutral to IPO in t = 2 (strategic delaying); otherwise, the enterprise should make an IPO
in the current period of t = 2, as shown in Equation (6).

ψi + E(c2|ω1)

1 + r
=
ψi + E(c3|ω1)

(1 + r)2 (6)

The critical condition of IPO timing at t = 2 is shown in Equation (7).

ψi ≥ ψ∗2(c1) = −c1(1 + r− λ)
(
λ
r

)
(7)
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Furthermore, if the enterprise i makes an IPO in t = 1, its expected benefits are fixed asψi +E(c1) =

ψi. If the enterprise delays the IPO at t = 1, its expected utility is related to the IPO situation in the
stock market during the same period.

To be specific: (1) when there is no IPO in the stock market of t = 1, the enterprise will be listed in

t = 2, the expected utility is E(ψi+c2)
1+r =

ψi
1+r . (2) If there is at least one IPO in the stock market of t = 1 and

the characteristics of the enterprise are higher than the critical condition, ψi > ψ
∗
i (c2), the enterprise will

make an IPO in t = 2, and the expected utility is
E(ψi+c2|ψi>ψ

∗
i (c2))

1+r . (3) IPOs happened at t = 3 to obtain

the real option proceeds from delay; in this case, the IPO expected utility is
E(ψi+c3

∣∣∣ψi<ψ
∗
i (c2))

(1+r)2 . Thus, the

expected utility of enterprise i obtained from the delay of the IPO at t = 1 is shown in Equation (8).

Pr
(
NI1

i� j

)( ψi

1 + r

)
+

(
1− Pr

(
NI1

i� j

))⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Pr

(
I1
i� j

)
E
[
payo f f at t = 2

∣∣∣ψi, I2
i

]
+Pr

(
NI1

i� j

)
E
[
payo f f at t = 3

∣∣∣ψi, NI2
i

]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

Because the trait factor ψi is independent of each enterprise, the probability of an IPO is the same
for any enterprise i. By introducing the cumulative density function correlation of the above variable,
the critical condition of IPO in t = 1 is shown in Equation (9), the derivation is shown in Appendix A.

ψ∗1
=

[
G
(
ψ∗1

)]N−1
(
ψ∗1

1+r

)
+(1

−
[
G
(
ψ∗1

)]N−1
)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
F
(

ψ∗1
(1+r−λ)( λr )

)
ψ∗1

1+r +
1

1+rλσ
2 f

(
− ψ∗1

(1+r−λ)( λr )

)
+

(
1− F

(
ψ∗1

(1+r−λ)( λr )

))
ψ∗1

1+r − 1
(1+r)2λ

2σ2 f
(
− ψ∗1

(1+r−λ)( λr )

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

Comparing the critical conditions of the IPO timing in t = 2 and t = 1 without pricing constraints,
we can give Proposition 1 as below.

Proposition 1. The higher the characteristics of an enterprise, the earlier the optimal listing time.

4.2. IPO Timing with a Pricing Constraint

In order to limit the three high issues in the process of new issues, the CSRC has introduced
a variety of measures to limit the IPO issue price of enterprises, and then to restrict the amount of
financing obtained by enterprises. When there is an issue pricing constraint in new issue pricing,
this paper sets the expected utility of enterprises to make a new issue at the upper limit of pricing.
For any enterprise making an IPO, the expected utility function for the enterprises’ IPO is shown in
Equation (10).

ui,η =
min

{
E
(
ψi + cη

∣∣∣ωη), P∗
}

(1 + r)η−1
(10)

When enterprise i is unable to observe the information of market common factors, its decision is
similar to that of unconstrained pricing. On the contrary, the utility of enterprises in delaying an IPO
to t = 2 is reduced, so all enterprises will choose to go public at t = 1.

If enterprise i can observe the market common factors of the period and the market common
factors of the period is greater than zero or equals to zero (c1 ≥ 0), due to the mean recovery feature of
the market common factors, the enterprise cannot obtain the real option by delaying. Therefore, all
unlisted companies in t = 1 will be listed as soon as possible in t = 2.
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If the common factor, observed in t = 1, is c1 ≤ 0, for all companies not making an IPO on t = 1 but
at t = 2, the expected utility for the IPO is shown in Equation (11).

min
{
E(ψi + c2

∣∣∣c1), P∗
}

1 + r
=

min
{
ψi + λc1, P∗}

1 + r
(11)

When the IPO is postponed to t = 3, the expected utility for the IPO is shown in Equation (12).

min
{
E(ψi + c3

∣∣∣c1), P∗
}

1 + r2 =
min

{
ψi + λc1, P∗}
1 + r2 (12)

where P∗ is the ceiling of the IPO’s expected utility. Due to the existence of the maximum price ceiling
in IPO pricing, enterprises will face the following three situations: (1) in t = 2 and t = 3, they will be
subject to the issue pricing constraints, and all of them will be priced according to the price ceiling to
obtain the expected utility. (2) They are not subject to the issue pricing constraint in term t = 2, whereas
they are subject to the issue pricing constraint in term t = 3, and this is issued according to the upper
limit of the pricing. (3) The IPO in t = 2 and t = 3 will not be subject to the issue pricing.

4.2.1. Critical Conditions

Referring to the paradigm of this basic model, this section first analyzes the IPO timing equilibrium
of t = 2, and then discusses the IPO timing equilibrium of t = 1. In addition, the common market factors
of t = 1 in this part should be c1 ≤ 0 (according to the above analysis, if c1 ≥ 0, the enterprise i, should
choose to go public in t = 2 as early as possible).

The critical equilibrium of IPO timing at t = 2 is shown below.

(1) Pricing constrained in both t = 2 and t = 3

In this case, the trait factor ψi of enterprise i is in the range shown in Equation (13).

ψi + λ
2c1 > ψi + λc1 > P∗ (13)

The trait factor ψi > P∗ − λc1, the expected utility of IPOs in t = 2 is P∗
(1+r)2 , and the probability of

an IPO is F
(
ψi−P∗
λ

)
. Due to the pricing constraint, enterprise i could not obtain the proceeds from the

exercise of IPO timing; therefore, it must make an IPO as soon as possible in t = 2.

(2) Pricing unconstrained in t = 2 but pricing constrained in t = 3

In this case, the trait factor ψi of the enterprise is in the range shown in Equation (14).

ψi + λ
2c1 > P∗ > ψi + λc1 (14)

The trait factor P∗ − λc1 > ψi > P∗ − λ2c1, the expected utility of IPOs in t = 2 is ψi+λc1
1+r , and the

probability of an IPO is F
(

P∗−ψi
λ2

)
+ F

(
P∗−ψi
λ

)
− 1. After delay to t = 3, the IPO’s expected utility is P∗

(1+r)2 .

The critical condition of IPO in t = 2 is shown in Equation (15).

ψi = ψ
∗
2(c1) =

P∗ − λ(1 + r)c1

1 + r
(15)

Thus, only if the trait-factor ψi ≥ ψ∗2(c1), the enterprise i chooses to make an IPO in t = 2.

(3) Pricing unconstrained in both t = 2 and t = 3
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In this case, the trait factor ψi of the enterprise is in the range shown in Equation (16).

P∗ > ψi + λ
2c1 > ψi + λc1 (16)

The trait factor follows ψi < P∗ − λ2c1, and the probability is F
(

P∗−ψi
λ2

)
. We skip the analysis here,

as it is consistent with the unconstrained IPO timing.
The critical equilibrium of IPO timing at t = 1 is shown below.

(1) Pricing constrained in both t = 2 and t = 3

Whether there is an IPO in t = 1 or not, the IPO’s expected utility obtained by enterprise i in t = 2
is P∗

1+r , lower than the expected utility P∗ at t = 1. As a result, the enterprise i will choose to make an
IPO at t = 1 rather than delaying.

(2) Pricing unconstrained in t = 2 but pricing constrained in t = 3

If there is no IPO in the market of t = 1, then the enterprise i will be listed at t = 2, and the expected
utility is P∗

1+r ; if there is at least one IPO in t = 1, when the trait factor is higher than the critical condition

of t = 2, the expected utility of the IPO in t = 2 is
E(ψi+c2|ψi>ψ

∗
i (c2))

1+r ; otherwise, the IPO will be postponed
to t = 3 and the expected utility is P∗

(1+r)2 .

The expected utility obtained by the enterprise in the IPO of t = 1 is P∗. The critical condition
for the IPO at t = 1 is the trait factor of ψ∗1, which equals the expected utility P∗ at t = 1, as shown in
Equation (17), the derivation is shown in Appendix A.

P∗

=
[
G
(
ψ∗1

)]N−1( P∗
1+r

)
+

(
1−

[
G
(
ψ∗1

)]N−1
)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
(
(1+r)ψ∗1−P∗
λ(1+r)

)
ψ∗1

1+r +
λ

1+rσ
2 f

(
P∗−(1+r)ψ∗1
λ(1+r)

)
+

(
1− F

(
(1+r)ψ∗1−P∗
λ(1+r)

))
P∗

(1+r)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

4.2.2. Comparative Static Analysis

(1) Pricing constraint in both t = 2 and t = 3

In this case, all enterprises will choose to make an IPO as soon as possible in phase t = 1, so there
is no comparative static analysis of critical conditions in t = 2.

(2) Pricing unconstrained in t = 2 but pricing constrained in t = 3

The critical condition of the IPO in t = 2 is shown in Equation (18).

ψ∗2(c1) ≡ P∗ − λ(1 + r)c1

1 + r
(18)

With the other conditions unchanged, in this section, we discuss the influence of the changes of
the following three factors on the critical conditions of t = 2 IP: (a) the discount rate r; (b) the common
factors recovery rate λ; (c) the upper limit P∗ of IPO utility with a pricing constraint, as shown in
Equations (19)–(21).

∂
∂λ
ψ∗2(c1) = − P∗

1 + r2 < 0 (19)

∂
∂λ
ψ∗2(c1) = −c1 > 0 (20)

∂
∂P∗ψ

∗
2(c1) =

1
1 + r

> 0 (21)
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These calculated results show that with the increase in discount cost, the critical condition of an
IPO will decrease, which is consistent with the conclusion when there is no pricing constraint, and this
also reflects the early listing tendency of the enterprise itself. There is only one path for the influence
of the common factor mean recovery rate λ on the critical condition of an IPO in t = 2. The increase
in λ indicates that the accuracy of predicting the future stock market conditions will be improved,
which will increase the extra profit that companies can obtain from delaying their IPO. The raising of
the upper limit of pricing constraint P∗ will raise the critical condition of the IPO decision, if the IPO
pricing limit is set in the market, the increase in the IPO pricing limit can relax the restrictions on the
IPO timing, and the enterprises may gain additional expected utility from this IPO delay.

On the influence on the critical condition of an IPO decision in t = 1, the discount rate is negative.
As for the recovery speed of common factors, in this section, we deduce its influence by analyzing the
real option and the critical condition of the timing of t = 2 IPOs. According to the model, the IPO real
option is shown in Equation (22), the derivation is shown in Appendix B.

V2(ψi) =

∫ c∗2(ψi)

−∞

⎛⎜⎜⎜⎜⎝ P∗

(1 + r)2 −
ψi + λc1

1 + r

⎞⎟⎟⎟⎟⎠ f (c1)dc1 (22)

Then, we solve for the partial derivatives, as shown in Equation (23).

∂V2(ψi)

∂λ
=

∫ c∗2(ψi)

−∞

( 1
1 + r

)
f (c1)dc1 > 0 (23)

As the common factor mean recovery rate λ grows, enterprises can take advantage of the real
option by delaying their IPOs. Thus, the higher the recovery speed λ, the higher the critical condition
of an IPO in t = 1, for the partial differential of pricing upper limit P∗, as shown in Equation (24).

∂
∂P∗V2(ψi) =

1

(1 + r)2 F
( P∗

1 + r
−ψi

)
+

(
(1− λ)P∗

1 + r
− (1− λ)ψi

)
f
( P∗

1 + r
−ψi

)
(24)

The calculations suggest that, although there may be a critical value of P∗, the further derivation
shows that the reduction in the upper limit of IPO pricing P∗ will reduce the value of the IPO timing
option, and reduce the critical condition of IPO timing of both t = 1 and t = 2, thus leading to the early
listing of enterprises.

4.3. The Effects of the Pricing Constraint

Facing the IPO pricing constraint and regulation in the stock market, if the expected price of an
enterprise exceeds that ceiling, it has to re-price according to the ceiling and obtain the corresponding
expected utility P∗. Enterprises will face different situations of the pricing constraints according to their
own trait factors. This section will expand in two aspects: the restricted probability and IPO timing
critical condition.

4.3.1. Restricted IPO Probability

Keeping the trait factors of enterprises unchanged, when the IPO price ceiling P∗ is lowered,

the probability of IPO F
(
ψi−P∗
λ

)
grows, the IPO probability

[
F
(

P∗−ψi
λ2

)
+ F

(
P∗−ψi
λ

)
− 1

]
goes down, and

the probability F
(

P∗−ψi
λ2

)
declines. On the other hand, if the price ceiling P∗ is fixed, our research

shows that the higher the trait factors ψi, the higher the probability F
(
ψi−P∗
λ

)
; however, probability[

F
(

P∗−ψi
λ2

)
+ F

(
P∗−ψi
λ

)
− 1

]
and probability F

(
P∗−ψi
λ2

)
decline.
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4.3.2. IPO Timing Critical Condition

After the implementation of price control on the new issue pricing, the enterprises are faced with
different pricing constraints due to differences in the trait factors. Our model analysis showed that
pricing constraint reduces the critical condition of IPO timing when t = 2. At this time, the pricing
constraints lead to those enterprises with high trait factor can only price according to the price ceiling at
t = 3, thus reducing the value of the real option obtained in the delayed IPO, so they are more inclined
to go public at t = 2 in advance.

The above analysis leads to Propositions 2–4, as below.

Proposition 2. Lowering the ceiling on prices increases the probability that enterprises will be affected by IPO
pricing constraints.

Proposition 3. The price constraint has a higher probability of influencing the IPO of high trait factor enterprises.

Proposition 4. The existence of a pricing constraint will reduce the critical condition of the IPO, which promotes
enterprises going public in advance.

4.4. Discussion

In this section, we discuss the conclusions with the previous studies. In previous literatures,
the studies of enterprises’ IPO decision focused on the factor of enterprises’ intrinsic value [2,23],
information asymmetry [11], and market investor sentiment [7–9] individually, but they failed to
explain the complexity of IPOs. This paper integrates the three factors of enterprises’ intrinsic value,
information asymmetry and market investor sentiment into the united theoretical model of enterprises’
IPO decision, and studies the complexity of the mechanisms.

The price behavior in the stock market is complex [24,25]. Our model provided new insights
in understanding the relationship between IPOs and market trend. If the enterprise expects that the
future stock market trend will be negative (meaning the common factor ct is negative in the future),
whether there is IPO price control in the market or not, the dominant decision of the company is to go
public as soon as possible at t = 1, which avoids delaying the listing and reduces the expected utility
obtained by the IPO. The real option on this IPO timing will not be exercised yet.

If the enterprise expects the future stock market to be positive (the common factor ct will rise),
then enterprises can exercise the real option of IPO timing to delay their IPO period to get a higher
expected utility (valuation). However, when there is a pricing constraint, the value of the real option
will decrease or even disappear, and the expected utility of IPOs is reduced and the IPO time has to be
brought forward.

This paper can explain the complexity of IPOs [26–28]. First, it is expected that IPOs with a large
financing scale will not happen in the Chinese stock market, as the issuance price constraint directly
limits the financing quota of companies, and if the companies go public, they cannot obtain sufficient
financing. Secondly, the valuation of technological innovation is also included in the trait factors. Due
to the IPO pricing constraints, enterprises with high valuations of technological innovation will be
restricted and listed earlier, which could further limit the amount of IPO capital and prompt them to
stay private or change their IPO location.

The core point of this paper is that pricing constraints will reduce the value of IPO real options,
which can theoretically explain the Chinese companies’ IPO behavioral characteristics. Obviously,
when an enterprise faces current IPO price constraints or future pricing constraints, listing as soon as
possible to maximize its utility for the IPO should be the dominant choice for the enterprise. Figure 1
shows that the higher the characteristics of an enterprise (ψ), the greater the negative effect of pricing
constraints (P∗) on the value of IPO real options (∂V2

∂P∗ ).
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Figure 1. The effect of pricing constraints on the value of IPO real options. Note: The other parameters
in the simulation are set as follows: r = 0.05, λ = 0.5, F(X) is the CDF of X ~ N (0,2). The result is robust
when other values of the parameters are selected.

5. Conclusions

Based on the characteristics of the IPO limit in the Chinese stock market, this paper discussed the
influence of pricing constraints on IPO timing, which is an extension of the IPO timing theory. In the
process of IPO timing, enterprises not only need to comprehensively consider their own characteristics,
the market fluctuations, and macroeconomic factors, but also must consider how the market regulation
of the IPO will have a significant and different impact on their timing decision, which significantly
increases the complexity of IPO decision modeling.

The IPO pricing constraint will short the waiting period of enterprises, that is, promote the
enterprises going public in advance. This restriction has a more significant impact on those enterprises
with high trait factors, such as technology enterprises. The early IPO of companies may hamper their
ability to raise sufficient capital in the stock market and reduce their incentive to make an IPO on the
Chinese stock market. Generally speaking, these findings provide new insights into understanding the
complexity of IPOs in relation to the Chinese stock market.

However, this paper has the limitation that requires future study. The model assumes that the
information disclosure of IPO enterprises is true and cost-free, whereas in the actual stock market, the
cost of information disclosure, which is caused by information asymmetry and selective disclosure,
exists. Therefore, clarifying the mechanism of information disclosure cost in the IPO market timing
game should be the future development direction for the model.
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Appendix A.

Derivation: The critical condition of IPO timing in t = 1 is shown in Equation (A1)
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(A1)

At any point in time, the enterprise knows its own trait factors, as shown in Equation (A2).
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We can derive the Equation (A3).

E
[ψi+c2

1+r

∣∣∣ψi >c1(1 + r− λ)
(
λ
r

)]
= E

[
ψi+c2
1+r |c1 >

ψi

(1+r−λ)( λr )

]
= 1

F

⎛⎜⎜⎜⎜⎝ ψi
(1+r−λ)( λr )

⎞⎟⎟⎟⎟⎠
∫ ∞
− ψi

(1+r−λ)( λr )

ψi+E(c2 |c1)
1+r f (c1)dc1

=
ψi

1+r +
1

1+r
1

F

⎛⎜⎜⎜⎜⎝ ψi
(1+r−λ)( λr )

⎞⎟⎟⎟⎟⎠
∫ ∞
− ψi

(1+r−λ)( λr )

E(c2 |c1)
1+r f (c1)dc1

=
ψi

1+r

+ 1
1+r

1

F

⎛⎜⎜⎜⎜⎝ ψi
(1+r−λ)( λr )

⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎣∫ ∞− ψi

(1+r−λ)( λr )

(λc1 + ε2) f (c2)dc2

⎤⎥⎥⎥⎥⎦ f (c1)dc1

=
ψi

1+r +
1

1+r
1

F

⎛⎜⎜⎜⎜⎝ ψi
(1+r−λ)( λr )

⎞⎟⎟⎟⎟⎠
∫ ∞
− ψi

(1+r−λ)( λr )

λc1 f (c1)dc1

=
ψi

1+r +
λ

1+r E
[
c1|c1 >

ψi

(1+r−λ)( λr )

]

(A3)

As X ∼ N
(
μX, σ2

)
, its expectation of truncated normal distribution is shown in Equation (A4).

E[X
∣∣∣X ∈ [a, b]] = μX − σ2 f (a) − f (b)

F(a) − F(b)
(A4)

If a ≈ −∞, E[X|X < b] = μX − σ2 f (b)
F(b) and if b ≈ ∞, E[X|X >a] = μX + σ2 f (a)

1−F(a) .
Thus, we have Equation (A5).
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Similarly, we have Equation (A6).
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The expected utility of enterprises in delaying their IPO at t = 1 is shown in Equation (A7).
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Therefore, the critical condition of IPO timing in t= 1 without the pricing constraint can be achieved.
If the pricing constraint exists, as shown in Equation (A8),
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and as shown in Equation (A9),
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thus, the expected utility of enterprises in postponing the IPO at t = 1 is shown in Equation (A10).
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Appendix B. Derivation: The Real Option of IPO Timing

If c2 < c∗2(ψi), the strategic enterprises will choose to delay their IPO until t = 3, and we get
Equation (A11).
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The value of the IPO timing real option is shown in Equation (A12).
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and as shown in Equations (A13) and (A14).

E[c2|c1] =

∫ ∞

−∞
(λc1 + ε2) f (ε2)dε2 = λc1 (A13)

E[c3|c1] =

∫ ∞

−∞

(
λ

(∫ ∞

−∞
(λc1 + ε2) f (ε2)dε2

)
+ ε2

)
f (ε2)dε2 = λ2c1 (A14)

thus, we have Equation (A15).

V2(ψi) =

∫ c∗2(ψi)

−∞

⎛⎜⎜⎜⎜⎝ψi + λ
2c1

(1 + r)2 −
ψi + λc1

1 + r

⎞⎟⎟⎟⎟⎠ f (c1)dc1 (A15)

This derivation does not consider the pricing constraint, when the IPO is faced with the issue
pricing constraint, the IPO timing real option is shown in Equation (A16).

V2(ψi) ≡ S(ψi) −NS(ψi)

= Pr
(
c2 < c∗2(ψi)

)
P∗

(1+r)2 +
(
1− Pr

(
c2 < c∗2(ψi)

))
E
[ψi+c2

1+r

]
−E

[ψi+c2
1+r

]
= Pr

(
c2 < c∗2(ψi)

)
P∗

(1+r)2 − Pr
(
c2 < c∗2(ψi)

)
E
[ψi+c2

1+r

]
= Pr

(
c2 < c∗2(ψi)

)
E
[

P∗
(1+r)2 − ψi+c2

1+r |c2 < c∗2(ψi)
]

= F
(
c∗2(ψi)

)
1

F(c∗2(ψi))

∫ c∗2(ψi)

−∞
(

P∗
(1+r)2 − ψi+E[c2 |c1]

1+r

)
f (c1)dc1

=
∫ c∗2(ψi)

−∞
(

P∗
(1+r)2 − ψi+λc1

1+r

)
f (c1)dc1

(A16)
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Abstract: The presence of chaos in the financial markets has been the subject of a great number of
studies, but the results have been contradictory and inconclusive. This research tests for the existence
of nonlinear patterns and chaotic nature in four major stock market indices: namely Dow Jones
Industrial Average, Ibex 35, Nasdaq-100 and Nikkei 225. To this end, a comprehensive framework
has been adopted encompassing a wide range of techniques and the most suitable methods for the
analysis of noisy time series. By using daily closing values from January 1992 to July 2013, this study
employs twelve techniques and tools of which five are specific to detecting chaos. The findings
show no clear evidence of chaos, suggesting that the behavior of financial markets is nonlinear
and stochastic.

Keywords: nonlinear dynamics; chaos; time series analysis; stock exchange market; Lyapunov;
recurrence plots; BDS; correlation dimension; GARCH model

1. Introduction

Research on modeling financial time series has traditionally assumed linear patterns. Unfortunately,
these models are incapable of explaining specific phenomena or market events, such as bubbles and
recessions. Therefore, there is interest in and a need to introduce alternative methods, most of which
come from other scientific disciplines such as mathematics, physics and engineering [1], to model
the dynamics of financial series, and to detect a possible nonlinear and determinist chaotic behavior.
This opens up the range of alternatives for analyzing and predicting financial series and particularly
stock market price series, traditionally anchored in methods such as technical and fundamental analysis
or in assumptions like the efficient market, defined by Fama [2] and based on the fact that asset prices
reflect all available information, causing asset returns to be unpredictable [3].

Many scholars have empirically studied the existence of nonlinear dynamics in financial series [4],
meanwhile several theoretical models consistent with the presence of nonlinearity in asset prices have
arisen [5]. The nonlinear approach can capture the characteristics of the financial series and their
sudden fluctuations, and, therefore, plays an important role in economic modeling [6,7]. The initial
interest in the application of nonlinear models has been extended to solve the question of whether the
nonlinear dynamics have a stochastic or deterministic behavior. This issue constitutes a key point in the
process of modeling and forecasting financial time series. The emergence of new models that deal with
the volatility present in financial time series, such as the autoregressive conditional heteroskedasticity
ARCH [8], generalized (GARCH) [9] and exponential GARCH (EGARCH) [10] models, in consonance
with the development of the chaos theory that can explain the effect of shocks on the stock markets as
part of the endogenous dynamics of the series itself, constitute a fundamental contribution to solving
this issue.
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Although the literature on the evidence of chaos in economic and financial time series is extensive,
there are no incontrovertible results [11]. There are two divergent positions concerning the underlying
dynamics of financial markets. Whilst several studies have found evidence of chaotic patterns in
financial markets e.g., [12,13], the most recent studies support a non-chaotic but rather stochastic
behavior. This is due to the use of an incorrect specification and to the approach applied [14,15].
Indeed, the former studies applied a methodology, such as the correlation dimension method, that is
not sensitive to noise, an intrinsic feature of financial series. However, studies that have used new and
more robust methods, such as the test proposed by Matilla-Garcia and Ruiz Marin (MGRM test) [6] and
the Lyapunov test based on BenSaïda and Litimi [14], do not find evidence for chaos. In fact, to ensure
that conclusions are sound and reliable, traditional tests should be applied to time series that consist of
many observations and are noise-free.

The existence of chaos in the stock market remains a relevant issue. Its importance lies in the fact
that finding the chaos of low dimension could allow a reliable forecast in the short term, but not in
the medium and long term, since a chaotic system is unstable [16]. However, there is no standard
methodology for the analysis of the presence of nonlinearity and the existence of a chaotic pattern.
Therefore, it is mandatory to explore the existence of a chaotic deterministic structure considering
different approaches [17].

The main goal of this research is to shed light on the behavior of stock markets by examining
their dynamics and volatility. Through a comprehensive methodological approach, using a wide
range of procedures, this study investigates the existence of deterministic chaos and nonlinearity in a
series of daily stock indexes of four major stock markets: namely the Dow Jones Industrial Average,
the Nasdaq-100, the Ibex 35 and the Nikkei 225. In addition, the paper examines other issues such
as the existence of volatility clustering. By using daily closing values from January 1992 to July 2013,
this study employs twelve techniques and tools of which five are specific to detecting chaos.

Overall, this work contributes to filling the gap in the international literature on nonlinear and
chaotic behavior in stock markets as it uses a variety of tools including the most powerful methods
to uncover the underlying dynamics of these markets. Even more so, a review of the international
literature (see following section) shows that there are numerous works that aim to detect the existence
of nonlinear and chaotic behavior in stock markets, but to the best of our knowledge none of them
apply such a high number of techniques as this research.

The methodology applied consisted of the following steps. First, all linear dependencies were
removed from the data by applying autoregressive integrated moving average (ARIMA) filters. A wide
range of procedures were then applied to the residuals obtained to detect the existence of nonlinearity.
If nonlinear dependence was detected, since linear structures had already been removed using the
best fit ARIMA model, it was indicative of some type of nonlinear dependence in the returns series
resulting from a nonlinear stochastic system or a nonlinear chaotic system. Then it might be caused by
the existence of a volatility cluster. In this case, the appropriate generalized autoregressive conditional
heteroskedasticity (GARCH) and exponential GARCH models (EGARCH) were applied. Afterwards,
the existence of chaotic motion was explored by means of five techniques i.e., 0/1 test, the correlation
dimension, Lyapunov exponent, MGRM test [6] and recurrence plots, including those that are ideally
suitable for noisy time series analysis.

Empirical findings suggested that although there has been found a dominant nonlinear structure
in financial markets, determinism cannot be assumed and hence chaos cannot be inferred.

The rest of the paper is organized as follows: in the second section, a review of the international
literature on stock market modelling is carried out, with special emphasis on those works that contrast
the possible existence of nonlinear and chaotic behavior. The third section describes the methodological
process adopted in this research. In the fourth section, the data sources used as well as the main results
obtained for the four stock market index series considered are presented and commented on, and the
existing evidence for and against the hypotheses of nonlinearity and a chaotic regime is analyzed
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and discussed. Finally, the last section draws a series of conclusions on the research carried out and
indicates possible future lines of research.

2. Literature Review

When studying the existing literature on research aimed at analyzing and contrasting the existence
of nonlinear and chaotic dynamics in the stock markets, a first conclusion is that the results obtained
depend on the data and methods used in each study. As shown in Table 1, most studies, especially since
the appearance of the BDS test [18], suggest the existence of nonlinear dependencies in stock markets.

Table 1. Results of research on nonlinearity and chaos in the stock market.

Authors (Year) Series Considered Tools Used Results

Scheinkman and LeBaron
(1989) [12]

They study several weekly
and daily series of the US

stock market.

BDS statistics.
Correlation Dimension.

Evidence of nonlinearity.
Evidence of chaos.

Hsieh (1991) [19]
He studies the weekly series
of returns for a stock market

portfolio.

BDS test.
Correlation Dimension.

No evidence of IID.
No evidence of chaos.

Blank (1991) [20] He analyzes the behavior of
the S&P 500 stock index

Correlation Dimension.
Lyapunov exponents test.

Evidence of chaos (presence of
deterministic nonlinearity).
This is a necessary but not

sufficient condition for chaos,
as there are no tests of

statistical significance of
the estimates.

Mayfield and Mizrach (1992) [21]
They analyze the time series
of the high frequency returns

in the S&P 500 index.

Correlation Dimension.
Lyapunov test. Evidence of chaos.

Yang and Brorsen (1993) [22]
They study several futures
markets, including the S&P

500 stock index.

BDS.
Brock’s residual test.

Evidence of nonlinearity.
Evidence of chaos in about
half of the cases studied.

Abhyankar et al. (1995) [23]
They study the presence of

nonlinearity and chaos in the
FTSE-100 index yield series.

Hinich test.
BDS test. Lyapunov

exponent test.

Evidence of nonlinearity.
No evidence of chaos.

Sewell et al. (1996) [24]

They investigate the weekly
changes in six major stock

indices (the US, Korea,
Taiwan, Japan, Singapore
and Hong Kong) and the

World Index.

Spectral analysis.
Nonlinear dynamics

techniques.

Evidence of nonlinearity in
some of the time series.
No evidence of chaos.

Abhyankar et al. (1997) [25]

They examine nonlinear
dependence and chaos in the
returns of the stock market
indices: FTSE 100, S&P 500,

NIKKE 225 and DAX.

BDS.
Lee, White and Granger

neural-network-based tests.
Lyapunov exponent.

Evidence of nonlinearity.
No evidence of chaos.

Barkoulas and Travlos (1998) [3]
They study the presence of a

chaotic behavior in the
Athens stock market.

BDS test.
Correlation Dimension.
Kolmogorov Entropy.

Evidence of nonlinearity.
No evidence of chaos.

Pandey et al. (1998) [26]

They investigate the
presence of chaos in five

major European stock
markets and the
United States.

BDS.
Rescaled Range
(R/S) analysis.

Evidence of nonlinearity.
No IID.

No evidence of chaos.

Gao and Wang (1999) [27]
They study among others
the daily futures series of

the S&P 500.

BDS statistic.
TAR-F Statistic.

Q2 Test.

Evidence of nonlinearity.
No evidence of chaos.

McKenzie (2001) [15]
He tests for the presence of
chaos in 12 national stock

market indices.

BDS test.
Close returns test.

Evidence of nonlinearity.
No evidence of chaos.

Kyrtsou and Terraza (2002) [28]
They examine the dynamics
of the French stock market

(CAC 40 Index).

Fractional integration test.
Correlation dimension.
Lyapunov exponents.

Evidence of nonlinearity.
Evidence of chaos.
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Table 1. Cont.

Authors (Year) Series Considered Tools Used Results

Antoniou and Vorlow (2005) [29]
They examine the noise-free
versions of a set of FTSE 100

stock returns time series.

BDS statistic.
Surrogate data analysis.

Evidence of nonlinearity.
Inconclusive evidence

of chaos.

Yousefpoor et al. (2008) [30]

They study the possible
chaotic behavior of some
selective stocks from the

Tehran stock market.

BDS test.
Lyapunov exponent test.

Close returns test.

Evidence of nonlinearity.
No evidence of chaos.

Matilla-Garcia and
Ruiz Marin (2010) [6]

They study the chaotic
behavior of the daily series
of the Dow Jones Industrial
Average stock market index.

0–1 test based on
permutation entropy. No evidence of chaos.

Mishra et al. (2011) [31]

This study tests for the
presence of nonlinear

dependence and
deterministic chaos in the

rate of returns series for six
Indian stock market indices.

Test of independence.
Variance ratio test.

Hurst exponent.
BDS test.

Lyapunov exponent test.

Evidence of nonlinearity.
Evidence of chaos in two out

of six cases.

BenSaïda (2012) [32]

He investigates the existence
of chaotic dynamics in the
S&P 500, Nikkei 225 and

CAC 40 stock index during
the period 1999–2008.

A new methodology to
apply Lyapunov’s
exponent method.

No evidence of chaos.

Webel (2012) [33]
He analyzes chaotic behavior

daily log returns of the
30 DAX members.

0–1 test. Evidence of chaos.

BenSaïda and Litimi (2013) [14]

They examine nonlinearity
and chaotic behavior in the
following indices S&P 500,

NASDAQ composite,
Nikkei 225, CAC 40,
FTSE 100 and DAX.

Lyapunov exponent
(Neural network architecture

is used in this test).

Evidence of nonlinearity.
No evidence of chaos.

BenSaïda (2014) [34]

He investigates the existence
of chaotic dynamics in the
Standard and Poor’s 500

index returns over 4 different
frequencies: weekly, daily,

30 min and 5 min basis.

Lyapunov exponent test. No evidence of chaos.

Tiwari and Gupta (2019) [35]

They test for chaos in the
historical daily and monthly
datasets spanning over one
century of stock returns for

G7 countries.

0–1 test.
Lyapunov exponent. Evidence of chaos.

IId stands for independent and identically distributed. Source: Own work.

Whether this nonlinear dependence is from chaotic deterministic origin, a sample of the most
representative publications on this issue (Table 1) leads to conclude that it is not possible to give a
single answer to this question, although there is a clear tendency in the most recent research towards
the alternative of no chaotic behavior in the stock market series. Thus, in the first stage, initiated by the
work of Scheinkman and LeBaron [12], who, using daily and weekly data of returns, found evidence
of chaotic dynamics in the US stock markets, works that obtained a chaotic behavior were frequent.
However, more recently, once new methods and more powerful tests on the detection of chaotic
dynamics were incorporated, it can be observed that most research suggests that the data are not
chaotic, that is, they present stochastic behavior.

In this regard, many of the studies carried out do not reach a categorical conclusion on the presence
of chaos in financial markets due to an erroneous specification of the methods and tests used [14,15].
In fact, the traditional tests used should be applied to time series with a high number of observations
and free of noise in order to obtain unambiguous conclusions, but the latter is not usually the case in
financial time series, and in particular in stock markets [14,15].

In relation to the development of new tests to detect chaotic behavior, among others, BenSaïda and
Litimi [14] incorporated a new test that has been shown to be more powerful in detecting chaos
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than the method based on the Lyapunov exponent sign, very frequently used in previous studies.
Using this test, they analyzed the behavior of ten financial series of returns and concluded that there is
nonlinearity in the examined series but in none of them is there a chaotic behavior, suggesting that
the chosen financial series are stochastic. Matilla-Garcia and Ruiz Marin [6] proposed a new test to
determine whether the dynamics of a series is deterministic (including low dimensional chaos) rather
than stochastic and applied it to the daily series of the Dow Jones index.

3. Methodology

3.1. Methodological Framework

For the study of the existence of nonlinearity and chaotic behavior, a comprehensive methodological
framework has been adopted. Table 2 presents all the techniques used in this research. Their main
characteristics are described below, with special emphasis on the tools for detecting chaotic dynamics
in a time series.

Table 2. Tools used.

Tool Reference Feature Tested

Augmented Dickey Fuller (ADF) [36] Stationarity (unit roots)
Phillips–Perron (PP) [37] Stationarity (unit roots)

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [38] Stationarity (unit roots)
Runs [39] Randomness

Keenan [40] Nonlinearity
Tsay [41] Nonlinearity

Teräsvirta [42] Nonlinearity
White [43] Nonlinearity

BDS
[18] Independence; Randomness
[44] IID; Nonlinearity

Kaplan [45] Nonlinearity
0/1 [46] Chaos

Correlation Dimension [47] Chaos
Lyapunov Exponent [14] Chaos

MGRM [6] Chaos
Recurrence Plots [48] Chaos

Before proceeding with the description of the methodological process, it is appropriate to define
the concepts of linear and nonlinear series. A stochastic process (Xt, t ∈ Z) is said to be a linear
process if for every t ∈ Z Xt =

∑∞
j=0 β jεt− j where a0 = 1, εt, t ∈ Z is a process of independent

and identically-distributed random variables (iid) with E[Xt] = 0, E
[
X2

t

]
= σ2 and

∑∞
j=0

∣∣∣β j
∣∣∣ < ∞.

Any process that does not satisfy this condition is said to be nonlinear. Nonlinear models display
features that cannot be modelled by linear processes: e.g., higher-moment structures, time-changing
variance, volatility clustering, breaks, thresholds, and asymmetric cycles. These traits are very often
present in the study of financial time series.

MGRM stands for the test proposed by Matilla-Garcia and Ruiz Marin ([6] Source: Own work)

The methodological framework includes the following steps.
(i) Stationarity testing
Stationarity was studied by means of the following tests:

• Augmented Dickey Fuller Test (ADF)
• Phillips–Perron Test (PP)
• Kwiatkowski–Phillips–Schmidt–Shin Test (KPSS)
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After testing that each series under study was not stationary, the log-returns (from now on returns)
from each series were obtained by means of the expression: Ln(Rt−1) = ln(Pt) − ln(Pt−1) such that Pt

is the time series data at time t.
This new series called “return” has important properties such as stationarity. This property is

essential, since it is a prerequisite in a large percentage of both the modelling techniques and the
analysis of nonlinearity or chaotic behavior that will be used in this research.

(ii) Linearity modelling
Subsequently, all linear dependence is removed from the return series by applying autoregressive

moving average (ARMA) filters. The choice of the model was made as previously described [10],
which basically consists of choosing the ARMA (p,q) model which presents the lowest value according
to the Schwarz Information Criterion [49].

Following the process described by Barkoulas et al. [50], the residuals have been studied. In the
case that the residuals were correlated, the order of the ARMA model has been increased, increasing
the magnitude of p and q. Once the optimal linear model has been determined, the residuals are
extracted from it. The new residuals are called the ARMA series.

(iii) Nonlinearity testing
The presence of nonlinearity is a necessary but not sufficient condition for the existence of a

chaotic deterministic component in the system. Moreover, it is an inherent characteristic of complex
systems. To test the existence of nonlinearity and randomness, a wide range of methods has been used,
thus managing to supplement the possible limitations of each of them. The following techniques were
applied (Table 2).

• The Runs test [39] to evaluate the randomness of the series.
• Keenan’s test [40], a Portmanteau’s test that contrasts the hypothesis of a linear model versus a

nonlinear one.
• Tsay’s test [41], which assumes a generalization of the previous test.
• The test of Teräsvirta [42], which is based on the methodology of neural networks.
• White’s test [43], which is also based on the neural network methodology.
• BDS [18,44], one of the most powerful tests for nonlinearity and other types of data dependence.
• Kaplan’s test [5] that has also demonstrated statistical power in determining whether data

are linear.

The properties of the tests used in this research are well known in the literature so only the main
differences between them are described below.

Keenan’s test [40] examines the hypothesis of a linear model versus a nonlinear one. It is a
particular case of the RESET test. The starting hypothesis for the RESET test is that data correspond to
a linear model versus the alternative hypothesis that the model is nonlinear. It is based on the idea
that if the residuals from the linear model are independent, they should not be correlated with the
regressors used in the estimated equation or with the adjusted values and therefore, the regression in
the residuals of these values should not be statistically significant. The null hypothesis of linearity
is rejected if the value of the F-statistic for the chosen sample exceeds the theoretical value of the
F-standard. The RESET test is easy to implement and does not require fitting many parameters and
also has a reasonable power to detect some types of nonlinearity.

Keenan [40] proposes a nonlinearity test changing the RESET test to avoid multi-collinearity.
Specifically, Keenan assumes that every stationary time series {Yt} can be approximated (Volterra
expansion) as follows:

Yt = μ+
∑∞

u=−∞ θuεt−u +
∑∞

u=−∞
∑∞

v=−∞ θuvεt−uεt−v (1)

such that μ is the mean of Yt and {εt} is a stationary, independent and identically distributed
sequence with a mean of zero. The process is linear, if the term containing the double sum
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∑∞
u=−∞

∑∞
v=−∞ θuvεt−uεt−v is null, that is if all the coefficients θ are zero. The method consists

of testing whether the coefficient of the double-sum term is zero, to affirm whether the process is linear
or not. The test statistic has as a null hypothesis that the time series is linear, and is asymptotically
distributed as F(1, n− 2p− 2) distribution, where n is the sample size, and p is the order of linear
AR(p) model, that is the number of lags involved in the regression.

The Tsay’s test [41] is a generalization of the previous test. Tsay’s test improved on the power of
the Keenan’s test by allowing for disaggregated nonlinear variables, thus generalizing Keenan’s test by
explicitly looking for quadratic serial dependence in the data. Tsay [41] showed that corresponding
test statistic is asymptotically distributed as Snedecor’s F distribution with the following degrees of
freedom: F(m, n− p−m− 1) where n is the sample size, m = p(p − 1)/2, and p is the order of AR fitted
model, that is the number of lags involved in the regression.

The Teräsvirta test [42] is constructed using neural network models. This test models the original
series by means of a Taylor series. It assumes a model of the shape:

yt = ytβ+
∑q

j=1

∑q

j=1
δ jyt−iyt− j +

∑q

j=1

∑q

j=1

∑q

j=1
δi, j,kyt−iyt− jyt−k + εt (2)

The null hypothesis is the following: H0 = δ j = δi jk = 0.
The contrast, and therefore the choice of the optimal model, is made by means of a statistic similar

to that used in the previous tests and which attends to an F(p2 − p1, n− p2) distribution, where p1,
p2 and n are the number of parameters of the first model, the number of parameters of the second
model and the sum of both, respectively.

White’s test [43] also uses neural net methods to test for nonlinearity. In this test, the time series
is fitted by a single hidden-layer feed-forward neural network, which is used to determine whether
any nonlinear structure remains in the residuals of an AR(p) process fitted to the same time series.
White’s test has power to test against various types of nonlinearity in the mean, thus it can be used
to distinguish among those nonlinear processes that are nonlinear in the mean and those that are
not (such as ARCH and GARCH) [51]. The null hypothesis for the test is linearity in the mean.
This methodology has the advantage that a pre-filtering of the conditional variance is unnecessary.
A fitted neural net is used to produce the measurable function of the process’s history and an AR(p)
process as the linear filter. The hypothesis that the fitted function does not correlate with the residuals of
the AR(p) process is then tested. The resulting test statistic has an asymptotic chi squared distribution
under the null of linearity in the mean.

BDS [18,44] is one of the most powerful tests for nonlinearity and other types of data dependence.
The test uses the correlation integral, a measure of the number of times that temporal patterns are
repeated in the data as the test statistic. It was originally formulated to study independence and
nonlinear structure (iid) in a time series. However, the test also has statistical power to detect a large
number of linear and nonlinear processes. In particular, the authors of the method showed that when
applying the test to the residuals of a linear model, if the test rejects the initial hypothesis (i.e., they are
iid) it will indicate the existence of linear dependence in the data. Consider a time series

{
yt

}T
t=1 and

define its m-history as ym
t =

(
yt, yt−1, . . . , yt−(m−1)

)
. The BDS tests the null hypothesis that the variable

of interest is independently and identically distributed (iid). Under the null hypothesis, the BDS
statistic is obtained by

V(T, m, ε) =
√

T
C(T, m, ε) −C(T, 1, ε)m

σ̂(T, m, ε)
(3)

The correlation integral asymptotically follows standard normal distribution. σ̂(T, m, ε) is the
standard sample deviation of C(T, m, ε) −C(T, 1, ε)m. Moving from the hypothesis that a time series
is IID, the BDS tests the null hypothesis that C(T, m, ε) = C(T, 1, ε)m, which is equivalent to the null
hypothesis of iid against an unspecified alternative [11].

Kaplan’s test [51] has demonstrated statistical power in determining whether data are linear. This
test is based on the concept of continuity in deterministic systems, which establishes that after an
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iteration, two points that are initially close will remain close, while if the underlying model is stochastic
two points initially close, they may have images that are very distant from each other. The null
hypothesis of the test is the linearity of the system versus the nonlinearity. Kaplan’s test can be used
to test either for nonlinearity or for more focused special cases of nonlinearity [51]. In a general and
summarized way, given a vector yt ≡

(
yt, yt−τ, . . . , yt−(m−1)τ

)
embedded in an m-dimensional phase

space and obtained from the set of observed data
{
yt

}T
t=1 and be the image of the point yt for an fixed

positive integer named delay τ, yt+τ = f (yt).
Kaplan’s technique examines for an embedding dimension m and a delay τ all the distances

between two pairs of points δi, j =
∣∣∣yj − yk

∣∣∣ and their respective images, εi, j =
∣∣∣yj+τ − yk+τ

∣∣∣ to later
calculate the average of the values of ε j,k, conditioned to the corresponding value of δi, j, that is
E(r) ≡ ε j,k for j and k such that δ j,k < r.

E(r) is therefore an average of all the images, whose initial points are very close. For every
deterministic system it is obvious that lim

r→0
E(r)→ 0 , but for chaotic systems this convergence is not so

clear. It is defined then the so-called Kaplan’s (K) statistic as: K = lim
r→0

E(r).

The value of K is expected to be higher in non-deterministic systems, compared to deterministic
systems. As mentioned, the null hypothesis of the test is that the underlying model of the data is a
linear dynamic system. To perform the test, it needs to work with a K statistic that is calculated for the
original series (K test) and a stochastic linear generating model with the same properties (with the
same histogram and autocorrelation function) as the original system (KS). If the value of the statistic of
the original series exceeds that of the series under the alternative hypothesis of stochastic linearity,
the null hypothesis of linearity is accepted. The distribution of the statistic is not tabulated, but Kaplan
proposes two maximum levels for testing the null hypothesis of linearity. The first is the minimum
KS estimated from the subrogated series, and the second is the mean minus two or three times the
standard deviation of all the estimated KS. The null hypothesis of linearity is rejected when the K
value calculated for the original reconstructed series is greater than at least one of the two dimensions
(called, for simplicity, KS and KSmin respectively).

Despite its simplicity, Kaplan’s test has shown to be able to detect a wide spectrum of nonlinearity
classes and has also demonstrated statistical power in determining whether data are linear [51].

(iv) Volatility modelling
A wide range of procedures are then applied to the residuals of the selected ARMA model obtained

to detect the existence of nonlinearity. If nonlinear dependence is detected, then it might be caused by
the existence of a volatility cluster. This being the case, the conditional variance is modeled by fitting
ARCH family models (GARCH and EGARCH), using the same method as above to select the best
model. After the estimation of both models, the residuals obtained were standardized by means of
their conditional standard deviations (from now on GARCH and EGARCH series).

(v) Study of chaotic behavior
Finally, the existence of the chaotic component in each series was studied. To do this, the following

methods were applied (Table 2).

• The Correlation Dimension, a measure of the complexity of a dynamic system that allows a
deterministic system to be distinguished from a stochastic one [47].

• Lyapunov’s Exponent, which analyzes in the system the property of sensitivity to initial
conditions [14].

• The 0/1 test [46] that provides a value close to zero or one, indicating the latter value existence of
chaos in the series.

• MGRM test [6], which has the main advantage of not needing to build the attractor to assess the
existence of chaos.

• The Recurrence Plots, which is a visual tool that allows to analyze the existence of periodic
patterns, among other aspects of the time series [48].
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3.2. Tools to Detect Chaotic Regime

To carry out many of the techniques used in this research it is necessary to reconstruct the attractor.
Following Barkoulas et al. [50], given a discrete dynamic system of the form

xt = F(xt−1), x ∈ Rn (4)

such that F : U→ Rn is a function and U an open subset of Rn [52], a closed invariant set A ⊂ U is an
attracting limit set of U if there is an open neighborhood V of A, such that the limit set of iterates is A,
∀xεV when t→∞ .

Empirically, it is often observed as a series of scalar observations y, which represent
the multidimensional system in Equation (4). In order to recover the dynamics of the system
(i.e., original trajectory) by analyzing the observed time series yt, the Takens [53] embedding theorem
is used, which is presented below.

An m-dimensional vector is defined and constructed from the observed time series.

ym
t = (yt, . . . , yt+m−1) =

(
g(xt), . . . , g

(
Fm−1(xt)

))
≡ Im (5)

where Fm−1 is the composition of F with itself m−1 times. The idea is to reconstruct the state dimension
space by expanding the one dimensional signal yt into an m-dimensional phase space, where each
observation in the signal yt is replaced by the vector ym

t in Equation (5).
Takens’ embedding theorem states that for each pair (F, g) the map Im : Rn → Rm will be an

embedding for m ≥ 2n + 1. This guarantees the existence of difeomorphisms between the original and
the reconstructed attractor as long as the embedding dimension m is sufficiently large with respect to
the dimension of the attractor. In short, Takens’ theorem assures that both attractors can be considered
to represent the same dynamical system in different coordinate systems when m ≥ 2n + 1.

The main characteristics of the tools for detecting a chaotic regime used in this research are
described below.

3.2.1. Correlation Dimension

The Correlation Dimension arises as a response to the problem of estimating the dimensions
to characterize a chaotic phenomenon. When reconstructing, it is necessary to know the number of
dimensions, m, or the embedding dimension, both to make its representation in the phase diagram
and to estimate a simple model of the phenomenon. An important characteristic of chaotic attractors
is their dimension, which is defined as the lower limit of the number of state variables (degrees of
freedom) needed to describe steady-state behavior. The correlation dimension test is a topologic one
which measures a quantity called correlation dimension. It distinguishes chaotic series from random
series by investigating the correlation dimension behavior of the data [30].

Let us consider the series
{
yt

}n
t=1 and, from this, the sequence of N = n−m + 1 m-dimensional

vectors, ym
t = (yt, . . . , yt+m−1) that gives the reconstructed series.

To estimate the dimension of the reconstructed attractor, the algorithm of Grassberger and
Procaccia [47] is used, which is based on the correlation integral given by the following expression:

C(ε) =
2

N(N − 1)

∑
t<s

H
{
ε−

∣∣∣∣∣∣Xm
t −Xm

s

∣∣∣∣∣∣} (6)

where ||.||, m and H represent respectively a norm operator, the embedding dimension and the Heaviside
function. There are several norms that can be used to measure the distance between two different state
vectors, such as the Euclidean norm or the maximum norm.

To determine the correlation dimension, it is needed to determine how C (ε) changes as ε

changes. As ε grows, the value of C (ε) grows because the number of near points to be included
increases. Grassberger and Procaccia [47] showed that for sufficiently small ε, C (ε) can be well
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approximated by C (ε) ∼ εv
). In other words, when ε→0, C (ε) grows at rate v where v is the value of

the correlation dimension (CD). The estimate of v when m→∞ , provides the correlation dimension
(CD). The dimension of a dynamic system is determined by estimating the slope of the regression of
ln C (ε) versus log ε and an intercept for small values of ε and depends on the chosen embedding
dimension. If the data are purely stochastic, the correlation dimension will equal m for all m. If the
data are deterministic, the estimated slope will stabilize at one point, not increasing as m increases.
This “saturation” of the slope is the estimated correlation dimension for the unobserved process,
which underlies the process that generated the data. That is, if the dynamic system is chaotic, C (ε) will
stabilize at some point D, as m grows.

3.2.2. Lyapunov

Lyapunov’s exponents measure the average rate of divergence or convergence between two
adjacent orbits, i.e., they quantify the sensitivity to initial conditions in the phase space, identifying
the basic attribute of deterministic chaos. It is approached through an exponential function, in which
the exponent determines the rate of divergence of adjacent orbits that start from close points in
an infinitesimal way. Chaotic systems exhibit a positive coefficient λ and systems that are stable,
a negative coefficient.

The Lyapunov exponent is one of the most employed techniques to assess the presence of chaotic
behavior in time series [16]. Specifically, the largest Lyapunov exponent can be used to measure the rate
of separation of closed trajectories and estimate the overall degree of chaos of a nonlinear dynamical
system [54].

There are many algorithms in the literature for the estimation of this coefficient. The algorithm
proposed by BenSaïda and Litimi [14] is followed in this research. Specifically, it has been empirically
proven that the methodology adopted in this article to determine the Lyapunov exponent (λ) is the one
that behaves best for noisy series [55]. Indeed, to estimate λ from experimental or observational data,
there are two main classes of methods, both of which are based on reconstructing the space state by
the delay coordinates methods. The direct methods are based on the calculation of the growth rate of
the difference between two trajectories with an infinitesimal difference in their initial conditions [56].
Among the limitations of this method is that it cannot accept measurement errors or noise [57]. On the
contrary, the Jacobian-based approach can give consistent estimates of the Lyapunov exponents even in
the presence of noise [58,59]. The Jacobian method is based on nonparametric regression to estimate the
Jacobians and λ. It consists of computing the Jacobian matrix of the chaotic map. However, for a scalar
time series, the map generating the process is usually unknown; as a result, the Jacobian matrix could
not be estimated, and the Lyapunov exponent cannot be computed. For that purpose, it is needed to
approximate the unknown chaotic map with a known function. McCaffrey et al. [58] compared several
alternatives: thin-plate splines, neural nets, radial basis functions and projection pursuit. Based on the
simulations performed by them, neural net was the best regression method for chaotic systems with
noise. In this line, Bailey et al. [59] proposed a regression method which involves the use of neural
networks. Simulation results for a noisy Henon system suggest that the neural net regression method
yields accurate estimates values of the Lyapunov exponent.

In order to shrink the noise in a dynamical system, a wavelet-based denoising method to filter the
data has been employed by several researchers. In particular, the theory of signal denoising using
wavelets has been developed by Donoho and Johnstone [60]. Garcin and Guégan [61] adapted the
theory for signals in which the noise influence is nonlinear and the wavelet transform-based detection
of chaos has been proposed by Rubežić et al. [62]. While this approach could be appropriate for
physical systems where noise is an intruder of the real pure signal, for financial data, where noise
is an inherent property to markets, denoising the data could modify some of the stylized financial
facts that have been discussed earlier in the paper and alter the true dynamics that underlie the time
series to be tested [63]. Hence, following this reasoning, a neural network approach has been chosen in
this research.
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Briefly, the methodology consists in the following steps: let us consider a time series
{
yt

}T
t=1

represented as follows:
yt = f (yt−L, yt−2L, . . . , yt−mL) + εt (7)

where L, m, ε and f stand for the time delay, the embedding dimension, noise added to the series and an
unknown chaotic map, respectively and t is the time script. The Lyapunov exponent (LE) is defined as:

λ̂ =
1

2M
ln(v1) (8)

where the “block length” M is the number of evaluation points used for estimating the Lyapunov
exponent which stands for an arbitrarily selected number of observations and v1 is the largest eigenvalue
of the matrix (TMU0)

′(TMU0), with TM =
∏M−1

t=1 JM−t Jt, the Jacobian matrix of the chaotic map and
U0 = (1, 0, . . . , 0)′.

Because f is usually unknown, it is needed to approximate the Jacobian matrix. The authors
employ a single-layer feed-forward neural network using nonlinear least squares for different values
of m = 1 . . . 8 and later calculate the LE spectrum. Hence, the chaotic system is estimated by the
following equation:

yt ≈ α0 +

q∑
j=1

α j tan h

⎛⎜⎜⎜⎜⎜⎝βo, j +
m∑

i=1

βi, jyt−iL

⎞⎟⎟⎟⎟⎟⎠+ εt (9)

(L, m q) are selected as the triplet that provides the highest value for λ and are associated with the
complexity of the system. The test for chaos is then constructed based on the asymptotic distribution
of λ [56].

3.2.3. 0/1 Method

The 0/1 method for chaos was developed to distinguish between regular and chaotic dynamics in
deterministic dynamical systems. This tool for chaos was proposed by Gottwald and Melbourne [46]
and has a series of advantages over other tests, such as the fact that it is not necessary to reconstruct
the phase space or that the result, which is 0–1, is very easy to interpret. Also, rather than requiring
phase space reconstruction which is necessary to apply standard Lyapunov exponent methods to the
analysis of discretely sampled data, the technique works directly with the time series and does not
involve any preprocessing of the data.

The input of the test is a one-dimensional time series y(t) for t = 1, 2, 3, . . . The data y(t) is used
to drive the following two-dimensional system:

p(t) =
∑t

j=1
y( j) cos(y( j)) t = 1, 2, 3, . . . (10)

q(t) =
∑nt

j=1
y( j) sin(y( j)) t = 1, 2, 3, . . . (11)

Define the (time-averaged) mean square displacement (MSD)

M(t) = lim
1
N
[p( j + t) − p( j)]2 t = 1, 2, 3, . . . (12)

If the system is chaotic, then M(t) will grow linearly over time. If the system is not chaotic,
M(t) will be bounded. The asymptotic growth rate of MSD is defined as:

K = lim
t→∞

log M(t)
log (t)

(13)
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K can be determined numerically by a linear regression of log (M(t)) versus log (t). Under general
conditions, the limits M(t) and K can be shown to exist, and K takes either the value K = 0 signifying
regular dynamic or the value K = 1 signifying chaotic dynamic.

3.2.4. MGRM Test

The MGRM Test is explained in detail in [6]. As the authors of the method argue, it is a test
for the deterministic process as opposed to the stochastic one which is based on symbolic dynamics
and entropy. The MGRM test is based on the concept of permutation entropy, which has its roots in
symbolic dynamics. The basic idea behind symbolic dynamics consists of dividing the phase space into
a finite number of regions and labeling each region with an alphabetical symbol. A relevant property
of symbolic dynamics is that essential features of the underlying dynamics, such as its deterministic or
stochastic nature or its complexity, are preserved. Likewise, entropy accounts for the unpredictability
of the system under study, which is a crucial feature of complex systems.

In the first instance the notation is introduced: let
{
yt

}
t∈T be a stationary time series,

{
yt

}
t∈I an

observation with I = {1, . . . , T} and m the embedding dimension with m ≥ 2. Ordinal patterns
will be defined for “m”. To that end, the scalar time series is embedded to an m-dimensional space:
Ym(t) =

(
yt, yt+1, . . . , yt+(m−1)

)
f or t ∈ T. The ordinal pattern of embedding dimension m, at a given

time t is defined as the unique permutation πm(t) ≡ (r0 r1 . . . rm−1) of the set {0, 1, . . . , m− 1}
satisfying:

yt+r0 ≤ yt+r1 ≤ · · · ≤ yt+rm−1 (14)

rs−1 < rs if yt+rs−1 = yt+rs (15)

By means of (15) it is guaranteed the uniqueness of the permutation defined by (14). So, the vector
or m-history Ym(t) is converted into a unique symbol πm(t). In fact, πm(t) describes how the order of
the dates: t+ 0 < t+ 1 < . . . < t+ (m− 1) is turned into the order of the corresponding analyzed values.
The basic idea is to divide naturally the state space in which the dynamics takes place into a finite
number of partitions using the time-dependent information contained in the m-history Ym(t) ∈ Rm.
According to the previous definition, partitions depend on the ordinal structure of the m-history.
In particular, πm(t) = πm(s), s � t, if and only if for all k, I ε {0, 1, . . . , m− 1} with k � I it holds that
yt+1 ≤ yt+k ↔ ys+1 ≤ ys+k.

In general, given a time series
{
yt

}
t∈T, all m! permutations of order m are considered here as

possible order types of m different numbers. Then the relative frequency or unconditional success
probability p(π) of each symbol or permutation π for a given time series and an embedding dimension
parameter m exists and it can be defined as:

p(π) =
card

{
t
∣∣∣ 0 ≤ t ≤ T − (m− 1), Ym(t) has type π

}
T −m + 1

(16)

Given an embedding dimension m ≥ 2, modified Shannon entropy that stands for the m! distinct
symbols is defined as follows:

h(m) = −
∑m!

i=1
p(πi) log p(πi) (17)

The test is constructed as follows: Let m be embedding dimension and T be the number of
observations and fix w, k ∈ N such that w = m!

k . Next, the subsets Wj that must verify W1 ⊆ W2 ⊆
· · · ⊆Wn in the following way Wj = Wj−1 ∪

{
w symbols chosen at random in Sm \Wj−1

}
for j = 2, . . . ,k.

are constructed.
Subsequently the next modified permutation entropy’s function is calculated as:

hWj(m) = −
∑
π j∈wj

p(π) log p(π) (18)
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The authors of the method showed that by analyzing the modified permutation entropy’s
function values it is possible to distinguish and identify deterministic systems. In this process no
more information is gained by increasing the number of symbols under consideration. In contrast,
in non-deterministic process, this information or complexity is increased.

This latter property is tested in the following way: Let dhWj(m) be the hWj(m) slope:

dhWj(m) =
hWj+1(m) − hWj(m)

log
( j+1

j

) (19)

When considering random process, the numerical slope of permutation entropy will increase with
(log(jw)), while this will not hold for chaotic or regular processes.

The property described above that identifies deterministic systems hWj(m) is checked by carrying
out the following regression:

dhWj(m) = α0 + α1 j + ε j f or j = 1, 2, . . . , k− 1 (20)

where ε j is white noise. As a result, the estimated parameter α̂1 can be used to evaluate dhWj(m)

increases with j. In mathematic notation, the test is the following one:

H0 ≡ α1 = 0
H1 ≡ α1 > 0

(21)

Indeed, regression (20) can be considered as a simple symbol-trend model. As in the simple
time-trend model, the ordinary least squares (OLS) estimate α̂1 is so that asymptotically the usual t-test
of H0: α̂1 = 0 is valid. If the coefficient obtained is null, then the series is deterministic; otherwise
(greater than 0), it is stochastic [6].

3.2.5. Recurrence Plots

In addition to the analytical methods described above, there are other methods for detecting chaos
and other patterns of a more visual nature, the so-called recurrence plot (RP) being one of the most
widely used.

The Recurrence Plot (RP) is an analysis tool that reveals the existence of recurrent and intermittent
patterns in time series. First proposed by Ekmann et al. [64], it has been widely applied in the
characterization of dynamic systems. This topological method shows the hidden structures of time
series from a qualitative point of view. The plots are constructed by assuming mutual distances that
belong to the same path in the reconstructed phase space [17].

The construction is done as follows:
Let m be the embedding dimension and ym

t the vector m-dimensional in the reconstructed phase
space in time t = 1, 2, . . . , k

The recurrence matrix is generated by comparing each embedded vector ym
i with the other ym

j .
A point is drawn if this comparison is less than a value ε for a specific distance. That is, if the condition

is met:
∣∣∣∣∣∣∣∣ym

i − ym
j

∣∣∣∣∣∣∣∣< ε .
Recurrence of a moment of state i at a different time j occurs when ym

j is close enough to ym
i .

The RP can therefore show which vectors are close together and which are far apart.
The diagonal structures of the RP identify the range in which a fraction of the path is relatively

close to another at a different time. For a deterministic chaos system, small lines are observed parallel
to the main diagonal. However, in random systems, small line segments are absent, and evenly
distributed points are shown.

This technique is independent of some constraints such as sample size, noise and stationarity [11].
It also provides additional information about the structure of the attractor, since the plot preserves the
temporal order of the series, allowing the place and periodicity of the periodic orbits to be known.
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4. Empirical Results

Applying the methodological framework described above, the main results obtained are
shown below.

4.1. Data

Four different daily time series are analyzed, using the closing prices of the following major
stock market indices: the Dow Jones Industrial Average (Dow Jones), the Ibex 35 (Ibex), the Nasdaq
100 (Nasdaq) and the Nikkei 225 (Nikkei). All the data were obtained from Yahoo Finance and covers
the period from 1 January 1992 until 31 July 2013. Figure 1 shows the evolution of the series over the
sample period.

 
Figure 1. Plot of stock indices series. Time points (year) are on x-axis and observations are on y-axis.
Source: Yahoo finance.

Table 3 presents the main descriptive statistics of the series studied. Both the series of the main
stock market index of the U.S. Stock Exchange and that of the Spanish Stock Exchange show a negative
asymmetry coefficient (−0.51 and −0.05, respectively), unlike the other financial series considered
in the study. Moreover, it can be concluded that the data do not come from a normal distribution,
as reflected by the Jarque–Bera test (p-value < 0.05).
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Table 3. Descriptive statistics.

Original Series Returns ARMA GARCH EGARCH

DOW JONES

Mean 9108.07 0.0003 −5.8 × 10−7 −0.0356 0.0028
Standard Deviation 3147.61 0.0112 0.0112 0.9994 0.9999

Median 10,080.3 0.0005 0.0004 0.0017 0.0350
Minimum 3136.58 −0.0821 −0.0790 −6.5989 −6.0801
Maximum 15,567.7 0.1051 0.0993 3.4852 3.7538

Skewness Coefficient −0.5103 −0.1364 −0.2810 −0.4213 −0.3715
Kurtosis Coefficient 2.2721 11.4338 10.7387 4.4806 4.2585

Jarque–Bera Test 354.59 * 16,062.4 * 13,575.8 * 654.4 * 481.64 *
N 5415 5414 5412 5412 5412

IBEX

Mean 8124.38 0.0002 4.86 × 10−8 −0.0407 −0.0063
Standard Deviation 3354.74 0.0146 0.0145 0.9989 1.0001

Median 8362.9 0.0007 0.0005 −0.0158 0.0166
Minimum 1873.58 −0.0959 −0.0965 −6.5618 −7.7301
Maximum 15,945.7 −0.1348 0.1335 5.9752 5.2568

Skewness Coefficient −0.0526 −0.0054 −0.0428 −0.2057 −0.1960
Kurtosis Coefficient 2.3074 7.8791 7.7376 4.4174 4.4775

Jarque–Bera Test 110.96 * 5382.03 * 5076.16 * 492.48 * 528.23 *
N 5427 5426 5426 5426 5426

NASDAQ

Mean 1950.235 −7.1910−5 −2.30 × 10−7 −0.0316 0.0043
Standard Deviation 842.569 0.0149 0.0156 0.0351 0.9999

Median 1989.22 −9.3410-5 0.0009 −6.1386 0.0706
Minimum 547.84 −0.1195 −0.1018 4.1826 −6.1143
Maximum 5048.62 0.1366 0.1265 0.9994 3.5622

Skewness Coefficient 0.3527 −0.0584 −0.0979 −0.3825 −0.4038
Kurtosis Coefficient 3.0323 12.7954 8.4806 4.0381 4.0070

Jarque–Bera Test 112.519 * 22,759.76 * 6782.03 * 374.96 * 375.74 *
N 5415 5414 5412 5412 5412

NIKKEI

Mean 14,304.3 −9.122 × 10−5 −5.22 × 10−8 −0.0357 −0.0045
Standard Deviation 4073.77 0.0154 0.0154 0.9997 1.0001

Median 14,416.6 6.3110-5 0.0002 −0.0160 0.0129
Minimum 7054.98 −0.1211 −0.1204 −6.4953 −6.7925
Maximum 22,667 −0.1323 0.1282 5.6944 5.7235

Skewness Coefficient 0.1026 −0.2147 −0.2397 −0.1943 −0.1597
Kurtosis Coefficient 1.7032 8.2470 8.2517 4.4910 4.5000

Jarque–Bera Test 379.75 * 6104.3 * 6125.1 * 522.85 * 518.01 *
N 5287 5286 5286 5286 5286

Notes: Statistics for the time series considered in this study: original series, return series, and residuals of
autoregressive moving average (ARMA), generalized autoregressive conditional heteroskedasticity (GARCH) and
exponential GARCH (EGARCH) models. Skewness and kurtosis coefficient corresponds to the Fisher asymmetry
coefficient and the kurtosis coefficient, respectively. *: The asterisk denotes significance at 5% level. Source:
Own work.

4.2. Returns

After testing that the series are not stationary (see Table 4), the returns from each series were
obtained, by considering the logarithms of the ratio of two consecutives prices. Figure 2 shows the time
development of the returns. They show an excess of kurtosis, a negative skewness coefficient (Table 3)
and more fat-tails in comparison with those from a normal distribution. These characteristics are typical
of financial returns [2]. Excessive kurtosis means that returns far from the average are more common
than in a normal distribution and therefore the investor is subject to greater risk. The Jarque–Bera test
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indicates departure from the normal distributions for all the cases. According to the results from the
Augmented Dickey–Fuller, Philips–Perron and KPSS tests, all the returns series are stationary (Table 4).

Table 4. Stationarity analysis.

Index Returns

DOW JONES

1. Augmented Dickey Fuller Test
Constant −1.0288 (0.7451) −56.0490 (0.0001)

Constant and Linear Trend −2.2115 (0.4825) −56.0525 (0.0000)
2. Phillips–Perron Test

Constant −0.9623 (0.7685) −78.6723 (0.0001)
Constant and Linear Trend −2.1111 (0.5389) −78.6832 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 7.1098 0.1793

Constant and Linear Trend 1.1008 0.0832

IBEX

1. Augmented Dickey Fuller Test
Constant −1.8643 (0.3496) −53.5682 (0.0001)

Constant and Linear Trend −1.6676 (0.7655) −53.5897 (0.0000)
2. Phillips–Perron Test

Constant −1.8167 (0.3727) −71.1395 (0.0001)
Constant and Linear Trend −1.5767 (0.8023) −71.1609 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 5.1229 0.2791

Constant and Linear Trend 1.0088 0.0543

NASDAQ

1. Augmented Dickey Fuller Test
Constant −1.3869 (0.5904) −54.9507 (0.0001)

Constant and Linear Trend −2.0781 (0.5574) −54.9485 (0.0000)
2. Phillips–Perron Test

Constant −1.3869 (0.5904) −74.6870 (0.0001)
Constant and Linear Trend −2.0781 (0.5574) −74.6836 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 0.0860 0.1198

Constant and Linear Trend 0.6694 0.0861

NIKKEI

1. Augmented Dickey Fuller Test
Constant −2.3032 (0.1710) −75.6134 (0.0001)

Constant and Linear Trend −2.5121 (0.3222) −75.6142 (0.0001)
2. Phillips–Perron Test

Constant −2.3485 (0.1568) −75.7549 (0.0001)
Constant and Linear Trend −2.5440 (0.3066) −75.7590 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 5.5059 0.0950

Constant and Linear Trend 0.4156 0.0491

Augmented Dickey–Fuller p-values correspond to MacKinnon [65] one-sided p-values. For the Phillips–Perron test,
lags were based on bandwidth Newey–West using Bartlett kernel. Critical values for the Kwiatkowski, Phillips,
Schmidt and Shin test are 0.463 and 0.146 respectively for the constant and linear plus linear trend model. Significant
values at the 95% confidence level are in bold.
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Figure 2. Plot of stock indices returns series. Time points (year) are on x-axis and observations are on
y-axis. Source: Own work.

4.3. Linear Dependence

As some methodology (for example the BDS test) is not robust to the presence of linear relationships,
the linear dependence was removed using ARMA models. Following the criterion described by
Barkoulas et al. [51], the best ARMA model was selected for each series (Table 5). The selected fitted
models for each of the series (ARMA (2,5); ARMA (0,3); ARMA (2,2) and ARMA (0,1), for the series
Dow Jones, Ibex, Nasdaq and Nikkei respectively) are shown in Table 5 that shows all the models
fitted in this research. Details of each model are presented in Supplementary Materials A (Tables SA1,
SA4, SA7 and SA10). According to the results from the Augmented Dickey–Fuller, Philips–Perron and
KPSS tests, applied on the residuals of the selected model and shown in Table 4, all the residuals series
(ARMA) are stationary.

Table 5. Models.

Index
Linear Model Nonlinear Model

[ARMA] [GARCH] [EGARCH]

Dow Jones ARMA (2,5) GARCH (2,1) EGARCH (2,1)
Ibex ARMA (0,3) GARCH (2,1) EGARCH (2,1)

Nasdaq ARMA (2,2) GARCH (2,1) EGARCH (2,3)
Nikkei ARMA (0,1) GARCH (1,1) EGARCH (1,1)

4.4. Nonlinear Dependence

Next, Keenan, Tsay, Teräsvirta, White, BDS and Kaplan methods were used to study nonlinearity.
The principal advantage of using a broad set of instruments is to obtain the most information possible
about the nature of the series, since to date none of the methods has proved successful in detecting all
types of dependence. Nevertheless, some tests, such as the BDS, White or Kaplan, are more efficient in
detecting dependency [51].

The BDS test was applied once the linear dependence was eliminated, as previously suggested by
Brock et al. [51]. In this way the BDS test served as an indirect method of analyzing nonlinearity: if it
rejected the null hypothesis, then the series was proven to be nonlinear. This procedure is theoretically
feasible, since the calculations on the residuals of an autoregressive model do not lose the relevant
information derived from the original series if the latter comes from a nonlinear chaotic system [51].
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The BDS test is applied taking into account the different embedding dimensions (range: 2–9). The results
are presented in Supplementary Materials B (Tables SB3–SB14).

Kaplan’s method is applied to a series in which the functional form that generated the series is
unknown. The method’s aim is to determine whether there is evidence of an underlying deterministic
mechanism, i.e., that the hypothesis that is tested is the stochastic linearity of the process. It is considered
that the null hypothesis is verified if the value of the statistic K, calculated for the original series (K test),
is smaller than the values obtained for the surrogates of each series, defined as the smallest value
(Kmin) between the minimum and the mean, minus two standard deviations (KS). Several different
values for both the delay and the embedding dimension parameters were taken into account, and the
conclusions did not differ (see Supplementary Materials B).

Table 6 presents a summary of results for the nonlinear analysis. All the procedures used, except for
Kaplan, suggest the existence of nonlinearity in the Dow Jones Index ARMA series. A similar pattern
is observed for the Nasdaq Index. Further, as all the tests indicate some nonlinear dependence in the
Ibex and Nikkei indexes, the data seems to present some type of dependence, since the BDS test shows
significant results for the different embedding dimensions and the epsilons considered. For the latter,
the White and Teräsvirta tests confirm the existence of dependence.

Table 6. Summary of results for the nonlinear analysis.

Dow Jones

Test Ho Returns ARMA (2,5) GARCH (2,1) EGARCH (2,1)

Runs Randomness R NR R R
Keenan La NR R NR NR

Tsay La R R NR NR
White La R R NR NR

Teräsvirta La R R R R
BDS Lb - R NR Mixture

Kaplan L NR Mixture Mixture NR

Ibex

Test Ho Returns ARMA (0,3) GARCH (2,1) EGARCH (2,1)

Runs Randomness NR NR NR NR
Keenan La NR NR NR NR

Tsay La R NR R NR
White La NR NR NR NR

Teräsvirta La R R NR NR
BDS Lb - R NR Mixture

Kaplan L Mixture Mixture NR Mixture

Nasdaq

Test Ho Returns ARMA (2,2) GARCH (2,1) EGARCH (2,3)

Runs Randomness R R R R
Keenan La R NR NR NR

Tsay La R R R R
White La R R R R

Teräsvirta La R R R R
BDS Lb R R Mixture Mixture

Kaplan L R Mixture NR NR

Nikkei

Test Ho Returns ARMA (0,1) GARCH (1,1) EGARCH (1,1)

Runs Randomness R NR R R
Keenan La NR NR R NR

Tsay La R R NR NR
White La R R NR NR

Teräsvirta La R R NR NR
BDS Lb - R Mixture Mixture

Kaplan L NR NR Mixture Mixture

Ho: Null hypothesis. La: Linear in mean. Lb: This test can be applied as a linear test once the linear dependence
has been eliminated. R represents that the null hypothesis is rejected; NR represents that the null hypothesis is not
rejected. Mixture represents that the test reported no clear results. For the Kaplan method a total of 30 surrogates
were generated from the original series, considering the same embedding dimensions and delay parameters.
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4.5. Volatility Clustering

The next step consists of modelling the conditional variance by fitting ARCH family models
(GARCH and EGARCH). In first instance, the best GARCH (p,q) model was selected so as to adhere to
the previously described criterion [51]. The selected models were GARCH (2,1) for the Dow Jones,
Ibex and Nasdaq indexes and the GARCH (1,1) for the Nikkei Index (Table 5). After fitting each model,
standardized residuals were obtained (from now on GARCH and EGARCH series). Unlike GARCH
models, EGARCH models can be used to estimate the conditional variance, taking into consideration
the sign of the innovation of the previous period. These types of models successfully capture the
asymmetric response in the conditional variance and, hence, are suitable candidates for modeling
financial processes. The chosen models were EGARCH (2,1), EGARCH (2,3), and EGARCH (1,1) for
the Dow Jones and Ibex indexes, the Nasdaq Index and the Nikkei series, respectively (Table 5 and
Supplementary Materials A). The standardized residuals of all the series are less leptokurtic (with an
average value of 4) than those obtained from the ARMA models (Table 3).

Since nonlinearity is a necessary, but not sufficient, condition for chaotic behavior, its existence was
first analyzed in residuals of the volatility models (Table 6 and Supplementary Materials B). In general,
linear hypothesis is not rejected, but nonlinearity was found in some cases. Indeed, the BDS test shows
some remaining dependence in the Dow Jones Index, which is compatible with the existence of chaos in
the EGARCH model residuals. The Tsay and BDS tests reject linearity for the Ibex Index in the GARCH
and EGARCH models, respectively. Likewise, some procedures show evidence of nonlinearity in the
case of the GARCH and EGARCH models for the Nasdaq series. Finally, for the Nikkei Index, the BDS
rejects the hypothesis of independence for all the cases considered.

4.6. Chaotic Behavior Analysis

The following methods were used to test the existence of chaotic dynamics. Results are presented
in Supplementary Materials C.

Correlation Dimension
The correlation dimension (CD) [48] quantifies the degree of complexity of a system and

distinguishes a deterministic system from a stochastic one. The results suggest that, in all cases
except for the EGARCH model in the Dow Jones Index, the CD increases as the embedding dimension
increases, however, the CD is below the expected value for a random process (Supplementary Materials
Table SC1). Moreover, except in the latter series, the saturation of the slope as the embedding dimension
increases is not observed. Thus, it is not possible to assure that the series are chaotic. Overall, there is
sufficient evidence against the existence of a strange attractor; and if this is the case, it might be of a
high dimension.
Lyapunov Test

The Lyapunov exponent reflects the average rate of convergence or divergence of two paths that
are, initially, points that are very close in the phase space. Positive values indicate the existence of
chaotic dynamics. Here, the algorithm described by BenSaïda and Litimi [14] was used. Negative
significant Lyapunov exponents were obtained in all cases (Supplementary Materials C, Table SC2).
Thus, the assumption of chaotic behavior was rejected in all cases.

0/1 method
Following the procedure described by the authors of the method, which consists of using several

frequencies to increase the degree of robustness of the test, the test was carried out a total of 6000
times and the median of all realizations was taken [46]. The results of the 0/1 method are shown
in Supplementary Materials Table SC3. The test provides a value close to 0 or 1. If the value is 0 it
is concluded that the series is clearly stochastic, however if the result is 1, it cannot be stated with
certainty that the series has a chaotic component, since the result may be due to noise. All the results
obtained are close to value 1 (Supplementary Materials Table SC3), so it is concluded that the series
may have a lot of noise or may have a significant chaotic component.
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MGRM Test
This test is constructed as follows. First the Shannon modified entropy values are calculated.

Then, the information or complexity is estimated by a linear regression that used the entropies as the
explanatory variable. The coefficient of the entropies is then analyzed as in deterministic series the
complexity derived from the entropy of permutation does not increase when the number of symbols
increases, once the saturation point is reached. To conduct the test, the parameters were fixed such that
m = 4, k = 2, and w = 12. The results were positive in all the cases (Supplementary Materials Table
SC4). Thus, the hypothesis of determinism is rejected.

Recurrence plots
Visual Recurrence Analysis is based on Eckmann’s [48] definition of a recurrence graph. The degree

of complexity and the existence of chaos is analyzed by generating the recurrence plots. This kind
of analysis can capture the recurrence property of states, one of the essential properties observed in
chaotic systems. The points above the main diagonal, representing the distance between the same
vector and each embedded vector in the phase space and therefore segments parallel to the diagonal,
would indicate a chaotic behavior [50].

Figures 3–6 show the recurrence plots for the four series considered. For their elaboration,
the optimal values of the two parameters, m—the embedding dimension and τ—the considered delay,
as previously described, have been considered. Likewise, the Euclidean distance has been chosen and
the radius cut-off point (ε) is defined as 10% of the maximum distance between all the points of the
reconstructed phase space. This value is adopted in several works, for example in Barkoulas et al. [50].

The recurrence plots can present different patterns, among them the presence of short segments
parallel to the main diagonal are related with the existence of chaos. Except the one corresponding to
the EGARCH model of the Nikkei stock, none of these patterns is observed in the series evaluated,
concluding that the underlying system that generated the series apparently does not have a significant
chaotic component.

 
(A) 

Figure 3. Cont.
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(B) 

Figure 3. (A) Recurrence plot for the returns and ARMA series from the Dow Jones index; (B) Recurrence
plot for the GARCH and EGARCH series from the Dow Jones index.

(A) 

(B) 

Figure 4. (A) Recurrence plot for the returns and ARMA series from the Ibex index; (B) Recurrence
plot for the GARCH and EGARCH series from the Ibex index.
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(A) 

(B) 

Figure 5. (A) Recurrence plot for the returns and ARMA series from the Nasdaq index; (B) Recurrence
plot for the GARCH and EGARCH series from the Nasdaq Index.

(A) 

Figure 6. Cont.
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(B) 

Figure 6. (A) Recurrence plot for the returns and ARMA series from the Nikkei index; (B) Recurrence
plot for the GARCH and EGARCH series from the Nikkei Index.

5. Conclusions

This study examines the underlying dynamics of four of the principal stock exchange indexes and
the asset markets that they represent. To determine the existence of a nonlinear and chaotic regime in
the analyzed time series, a comprehensive methodological framework has been adopted that integrates
a great number of tools. Thus, seven techniques have been used for nonlinear analysis and five for the
analysis of chaotic behavior, including those most suitable for noisy time series. Results support the
existence of nonlinearity, which is not consistent with chaos. In addition, GARCH/EGARCH models
explain a significant part of the nonlinear structure that is found in the four stock markets analyzed.

The findings are in concordance with the conclusions of other researchers who use suitable
procedures for noisy series to detect chaos in stock markets (e.g., [14]). On the other hand, our conclusion
contradicts the findings of previous studies that found evidence of low dimensional chaos but used
several techniques that do not account for noise (e.g., [66]).

The analysis of the stock exchange indexes carried out in this research is of great interest because
the markets they represent are currently a faithful barometer of the evolution of activity in the
most developed economies. Likewise, the modelling and study of the existence of nonlinearity and
the chaotic dynamics of stock markets is particularly useful for agents involved in capital markets:
investors, financial intermediaries, credit institutions, regulators, etc. Knowledge of their dynamics
is essential for making accurate predictions of their future evolution and of crucial importance for
properly managing the level of risk in the capital market and correctly and efficiently applying prices
in the derivatives and futures markets.

Further research is needed to examine other types of both parametric and nonparametric nonlinear
models, as well the relationships between the different stock market indices, using a multivariate
GARCH model (MGARCH). Also, a new research would consist of the study of the effects of the
collapse of stock prices caused by the COVID-19 outbreak on the dynamics of the series analyzed and
see how this phenomenon would have affected the results obtained. Other further work could be to
carry out the study dividing the total sample into several periods.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1435/s1,
A: Details of the Models Applied to the Series; B: Results of the Randomness and NonLinearity tests and C: Chaotic
Component Study.
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Abstract: This paper examines whether liquidity proxies based on different daily prices and
quotes approximate latent liquidity. We compare percent-cost daily liquidity proxies with
liquidity benchmarks as well as with realized variance estimates. Both benchmarks and volatility
measures are obtained from high-frequency data. Our results show that liquidity proxies based
on high-low-open-close prices are more correlated and display higher mutual information with
volatility estimates than with liquidity benchmarks. The only percent-cost proxy that indicates higher
dependency with liquidity benchmarks than with volatility estimates is the Closing Quoted Spread
based on the last bid and ask quotes within a day. We consider different sampling frequencies for
calculating realized variance and liquidity benchmarks, and find that our results are robust to it.

Keywords: liquidity proxy; liquidity benchmark; volatility estimate; correlation coefficient; partial
determination; mutual information

1. Introduction

Liquidity is unobservable and elusive concept, which encompasses many transaction properties
observed on the markets [1]. Various definitions of liquidity are proposed in the literature related
to the bid-ask spreads [2], focused on the price impact of trading volumes [3], or referring to the
market depth and dynamics of the order book [4,5]. Liquidity studies are performed on the basis of
different information sets with different data frequency and on different markets. In order to maintain
a uniform approach we focus on the bid-ask spread as a measure of transaction costs and follow the
definition of liquidity as the ability to trade in a reasonable time and at a low cost [6].

Two types of liquidity measures are widely recognized: benchmarks and proxies [7]. In a
calculation of benchmarks high-frequency data are required. These data are gathered in big datasets.
Dealing with them is highly challenging and time-consuming. In the past decade a number of
researchers have sought to determine which liquidity proxy based on low-frequency (daily) data is
the best one to represent unobserved liquidity. The competition for the best liquidity proxy relies on
the examination of the strength of dependency between proxies and benchmarks [2,7–9]. There is
no single answer, which measure is the best approximation for the unobserved liquidity and thus its
proper measurement is a very demanding process [9–11].

Proxies for bid-ask spreads, the so-called percent-cost proxies, are based either on bid and
ask quotes (the closing quoted spread of Chung and Zhang [12]) or on high-low-open-close HLOC
prices (the effective spread of Corwin and Schultz [8], Abdi and Ranaldo measure [13], or high-low
range [14]). The application of the high and low prices is justified by the fact that high prices are usually
buyer-initiated prices, while low prices are usually the seller-initiated [8]. However, these prices are
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also commonly used for non-parametric volatility estimators as e.g., Garman and Klass estimators [15].
Moreover, there is the evidence in the literature that liquidity is related to volatility [16].

To our best knowledge it has not been verified yet, whether daily proxies based on the range of
prices and quotes measure unobserved liquidity or volatility. In order to address this gap we examine
to what extent liquidity proxies measure liquidity and/or volatility. We employ four benchmarks based
on high-frequency data as well as four percent-cost proxies based on daily data [7,17]. Volatility is
approximated by two realized variance measures [18] as well as downside and upside realized
semivariance [19].

Three approaches are applied: firstly, we investigate the correlation coefficients for proxies and
either benchmarks or volatility estimates. Secondly, through the partial determination analysis we
examine which of these two, liquidity benchmark or volatility estimate, explains variability of liquidity
proxies [20]. Thirdly, we apply mutual information to measure inherent dependencies between any
proxy and either liquidity benchmark or volatility estimate [21]. All approaches are conducted within
the cross-section and the portfolio time-series settings.

This paper makes a unique contribution to the literature. We find that proxies proposed in the
literature based on high-low-open-close prices measure volatility rather than liquidity. The closing
quoted spread proposed by Chung and Zhang [12] is the only daily proxy which shows higher
dependence with liquidity benchmark than with any volatility estimate. This measure uses the bid
and ask quotes observed at the end of the day. Other percent-cost liquidity proxies based on four
prices (applied in [8,13,14]) approximate volatility, not liquidity. These conclusions are robust to the
changes of an approach undertaken, the cross-section or the portfolio time-series, a method of the
dependency measurement and the aggregation of liquidity measures, daily or monthly. They also
remain unchanged when high liquidity or low liquidity periods are considered.

Liquidity and volatility are the key factors in price formation process, which are as important in
the case of emerging markets as in the case of developed ones. Our study is conducted on the biggest
emerging market in the Central and East European countries, on the Warsaw Stock Exchange (WSE).
Thus this study extends the understanding of the nature of those relations also on relatively less liquid
markets. Our findings are important for both practitioners who seeks for the best liquidity proxies as
for academics who deliberate on such measures.

The rest of the paper is organized as follows: Section 2 presents the literature review on volatility
and liquidity relation, Section 3 shows the research methodology, Section 4 presents empirical results,
Section 5 investigates the robustness of the results in sub-periods and Section 6 concludes.

2. Volatility and Liquidity—The Literature Review

Discussion on the relationship between volatility and liquidity has a long history [22,23].
Obviously, these two are of the highest importance to regulators and practitioners. As both volatility
and liquidity are latent and both are closely related to the process governing prices, the task of complete
distinction of these two is challenging. Karpoff [24] shows the evidence that the large volume and price
changes have common sources in the information flow process. Thus the dissemination of information
among market participants seems to play crucial role in shaping these two. However, Karpoff did not
use a notion of “liquidity”. His seminal paper is on volume, but volume itself might be perceived as a
liquidity measure.

The relation between liquidity and volatility in the microstructure theory is not unambiguously
defined. In the inventory models this relation is negative [25,26]: higher liquidity implies lower
volatility and vice versa. In the information-based models this relation could be also positive [27]:
higher liquidity might be accompanied by higher volatility.

The empirical studies show different results in this area. On the one hand Chung and Zhang find
that a market uncertainty represented by the Volatility Index, VIX, is a crucial determinant for stock
liquidity in the US [12]. Also Ma et al. [28] show that liquidity on the stock markets is lower when
investor risk perception reflected by VIX is higher. On the emerging markets Girard et al. [29] find that
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the relationship between expected volume and volatility is negative and relate it to market inefficiencies.
There is the evidence that the transaction costs are higher on the emerging markets [9,30,31]. Also,
liquidity tends to decrease when volatility on a domestic market or the market uncertainty measured
by VIX increase [32]. On the other hand, Chordia et al. [33] indicate that market volatility induces
lower spreads, which means that there is a positive relationship between liquidity and volatility.
The evidence from the Chinese stock market is that although market volatility reduces trading activity,
it has mixed effects on market liquidity [34] .

The difference between the best buy and sell prices, the bid-ask spread, has been historically
the most popular measure of liquidity [35]. Domowitz et al. [30] differentiate between liquidity
(approximated by trading volume), transaction costs (spreads) and volatility, and consider the
relationship between these three variables. They show that higher volatility tends to reduce turnover.
In their approach liquidity is separated from transaction costs, while in majority of studies the
transaction costs (namely bid-ask spreads) are used to measure liquidity (e.g., [2,25,36,37]).

Summing up, there is a clear distinction between liquidity and volatility in the literature, even if
the exact definitions of both concepts vary from one study to another [38,39]. It seems that the
liquidity estimates from different dimensions should be interrelated, and they should express stronger
dependency with each other than with any volatility estimate.

3. Data and Methodology

A vast number of papers is driven by the need of obtaining the best proxy of liquidity at the
possible lowest cost. The liquidity measures usually require the access to databases with intraday
quotations. The existence of the simple, easy-to-calculate and widely available measure would be
appreciated by the market participants. Thus many attempts of creating such a measure on the basis
of daily data are made (e.g., [2,7,8,13,36]). We focus on measures based on daily prices or quotations,
and examine how strongly are these liquidity proxies related to liquidity benchmarks as well as to
well-known volatility estimates.

We consider one market, the Warsaw Stock Exchange (WSE), which is an order-driven market
without market makers. This market has been considered as the emerging one [40–43]. We use
long sample of 11 years (2737 days or 133 months); the sample period starts from January 2006 and
ends up in December 2016. This 11-year period is long enough to capture different market regimes.
Although within this time the WSE was considered as an emerging market, previous studies show
that the coherence of liquidity measures is similar to one observed on the developed markets [14].
We take into account quotations of 73 stocks that have been constantly listed within this period and
are considered as either big or medium in terms of capitalization. In the case of the WSE it means that
they have market value over 50 mln euro. Stocks which experienced splits within sample period were
removed from the study. The list of stocks is available upon request. Our primary data come from
tick-by-tick database and are cleared from the errors such as multiple records, entries with negative
spread, entries for which the spread is more than 50 times the median spread on that day etc. [44].
Finally they are aggregated into equally sampled intraday data.

The empirical framework is conducted on the basis of methodology presented in [7]. Both the
cross-section approach for the levels, as well as the portfolio time-series for differences of liquidity
measures are applied. The novelty of our approach lies in the examination of interdependence of
proxies with benchmarks and with volatility estimates at the same time. Additionally to the calculation
of correlation coefficients, we also conduct regression analysis and calculate partial determination
coefficients—it allows us to decompose the impact of both benchmarks and volatility measures
on variation of proxies. Finally, we examine the dependence between variables using the mutual
information measure.

Since the aim of the paper is to examine the relationship between proxies and both benchmarks
and volatility estimates, we employ different measures for each of these categories. Starting with
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proxies we use only percent-cost proxies that are based on the daily values, either HLOC prices, or bid
and ask quotes. The following proxies are considered:

• effective spread estimator of Corwin and Schultz [8], which rely on the empirical observation,
that the highest price within the day t, Ht, is the buyer-initiated price, whereas the lowest price,
Lt, is the seller-initiated price:

CSAt =
2(eαt − 1)

1 + eαt
, (1)

where αt =

√
2βt−

√
βt

3−2
√

2
−
√

γt
3−2

√
2
, βt = (log(Ht

Lt
))2 + (log(Ht+1

Lt+1
))2, and γt = log max(Ht ,Ht+1)

min(Lt ,Lt+1)
.

We adjusted the high-low ratio spread estimator for overnight returns [8];
• the closing percent quoted spread proposed by Chung and Zhang [12]:

CQSt = 2(PAt − PBt)/(PAt + PBt), (2)

where PAt and PBt are ask and bid quotes, respectively, observed at the end of the day t. It is the
only one among our proxies that is based on quotes instead of prices;

• the high-low range which is a reformulation of the closing percent quoted spread of Chung and
Zhang where the bid and ask quotes are replaced with the high and low prices:

HLRt = 2(Ht − Lt)/(Ht + Lt); (3)

• the measure of Abdi and Ranaldo [13] defined as follows:

ARt = 2
√
(Ct − 0.5(Ht + Lt))(Ct − 0.5(Ht+1 + Lt+1)), (4)

where Ct is the closing price on day t.

All daily proxies are interpreted in the same way—the higher the value, the less liquidity
is provided.

We also consider different benchmarks, which control for several aspects of the transaction costs.
Assume the following notation: there are K equally sampled observations within a day, k = 0, 1, . . . , K.
The benchmarks are defined as follows:

• proportional effective spread
PESk = ESk/MPk, (5)

and ES is an effective spread, obtained as

ESk = 2Dk(Pk − MPk), (6)

where Pk is price of the last transaction in an equally spaced time interval (e.g., 5-min), while MPk
is the mid price of the best ask quote, PA, and the best bid quote, PB, within specified interval;
MPk = 0.5(PAk + PBk ). Dk is a variable indicating the direction of the k-th trade with 1 and −1
for buy and sell orders, respectively. In order to indicate the direction of a trade, Lee and Ready
algorithm is applied [45].

• proportional quoted spread

PQSk = 2(PAk − PBk )/(PAk + PBk ). (7)

This spread is based on the quotes only and does not take into account the direction of orders
measure [46]. Next two measures are based on the transaction (trade) prices or quotes:

212



Entropy 2020, 22, 783

• squared log return on trade prices

SRTPk = (log(Pk)− log(Pk−1))
2, k 
= 0, (8)

• midquote squared return

MSRk = (log(MPk)− log(MPk−1))
2, k 
= 0. (9)

When aggregating over period (day or month) a stock’s liquidity benchmark is calculated as
volume-weighted average of its values computed over all k observations in the period.

Volatility is approximated by estimates which are based on the logarithmic high-frequency returns:

• realized variance [47]

RVt =
K

∑
k=1

r2
t,k, (10)

where k represents an interval and t is for a given day. It is assumed that at a sufficiently high frequency
and in the absence of jumps, the realized variance can be a good approximation of the unobservable
volatility. Thus we also consider minimum RV as a measure that is known to be robust to jumps:

• minRV [18]

minRVt =
π

π − 2
K

K − 1

K−1

∑
k=1

min(|rt,k|; |rt,k+1|)2. (11)

Additionally, we also consider two realized semivariances that allow to focus on the particular
risk of long or short position [19]:

• downside realized semivariance

sRVdt =
K

∑
k=1

r2
k × I(rt,k < 0), (12)

where I is an indicator variable conditioning calculation of the variance only on the basis of
negative returns.

• upside realized semivariance

sRVut =
K

∑
k=1

r2
k × I(rt,k > 0), (13)

where I is an indicator of positive returns.

All benchmarks and volatility estimates are calculated with the highfrequency R package [48].

4. Empirical Research

The empirical research is divided into three parts. Firstly, we apply cross-section analysis for
the levels of liquidity and volatility measures as well as portfolio time-series analysis for the first
difference of time-series. Secondly, we provide results for the partial determination coefficient analysis,
which enables us to differentiate between the relation of a proxy with a liquidity benchmark and
volatility estimate. In the last step we calculate mutual information which quantifies the amount of
information about a proxy obtained through observing the benchmarks or volatility estimates.

Before examining the dependency between considered variables, we present averages of our
proxies, benchmarks and volatility estimates aggregated into a monthly frequency. Figure 1 shows
that the dynamics of the four proxies based on daily prices and quotes are similar. The average values
of proxies are increasing (and liquidity is decreasing) in the time of global financial crisis in 2008 as
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well as in mid 2011 as a result of the sovereign debt crisis in Europe. This pattern is common across all
daily proxies.

Figure 1. Monthly proxies calculated in the cross-section approach. Note: The following liquidity
proxies based on the daily data aggregated to monthly frequency are presented: HLR stands for the
high-low range [14], CSA is spread estimator of [8], CQS is the closing quoted spread of [12], while AR
is the spread estimator of [13]. All graphs are prepared in OxMetrics [49].

Figure 2 presents liquidity benchmarks considered in the study. We find that the overall trends
and comovements of measures are quite similar. The higher the benchmarks’ values, the less liquidity
is provided. Finally, the dynamics of four volatility estimates in the cross-section approach is presented
in Figure 3. There are no substantial visual differences in behaviour of the series, besides the fact
that realized variance, RV, displays the highest values. Both realized semivariances measure risk of
either positive returns (upside realized semivariance sRVu) or negative returns (downside realized
semivariance sRVd), while minRV is robust to jumps measure of volatility.
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Figure 2. Monthly liquidity benchmarks in the cross-section approach. Note: This graphs shows
liquidity benchmarks obtained on the basis of 5-min data and aggregated to monthly values in a
cross-section approach. SRTP is squared log return on trade prices [48], PES is the proportional
effective spread [35], PQS is the proportional quoted spread [50], and MSR is the midquote squared
return [48]. For the sake of comparison, SRTP and MSR are multiplied by 100.

Figure 3. Monthly volatility estimates in the cross-section approach. Note: The following estimators
of volatility calculated in 5-min frequency and aggregated to monthly values are considered: RV is
realized variance [18], minRV is minimum realized variance [18], sRVd and sRVu are downside and
upside realized semivariances, respectively [19].
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4.1. Cross-Section Analysis

The average cross-sectional correlations between liquidity proxies and liquidity benchmarks or
volatility estimates are computed according to the research methodology presented in [7]: for each day
(and each month) we calculate the cross-sectional correlations across all firms in the sample, and then
the average correlation is calculated over all days (or months). Spearman rank correlations are applied.
This analysis is provided in four different frequencies and with the respect to all considered measures
of either liquidity or volatility, for daily and monthly measures separately. We check if the correlations
are different between each proxy-benchmark and proxy-volatility pairs using t-test on the time-series
of correlations in the spirit of Fama-MacBeth. Following Fong et al. [7], we calculate the cross-sectional
correlations and then regress the correlations of one pair on the correlations of another pair. We assume
that the time series of correlations of each proxy is IID over time, and examine if the regression
intercept is zero and the slope is one. The Newey-West standard errors are applied in order to adjust
for autocorrelation [51].

Table 1 presents the Spearman rank ρ coefficients for proxies and liquidity benchmarks calculated
on the basis of four frequencies: 5-, 10-, 30-, and 60-minute data, and volatility estimates calculated in
the same frequencies. Benchmarks and volatility estimates are presented in pairs for each sampling
frequency. Columns 2–5 present the correlations obtained for the series aggregated into daily data,
while columns 6–9 display the correlations for series aggregated into monthly data.

For estimates calculated on the basis of 5-min data, we find the evidence that for HLR, CSA and
AR correlations with benchmarks are rather low (in absolute values) and definitely weaker than these
observed with volatility estimates. It means that proxies based on daily prices (HLOC), are closer to
volatility estimates than to any benchmark. The mostly striking example is HLR, which is characterized
by strong correlations (higher than 55%) with any estimate of volatility, and simultaneously is weakly
correlated with benchmarks as PES or PQS. The only opposite case is observed for CQS, for which
the correlations with liquidity benchmarks are stronger than with volatility estimates. This finding
holds true also when other frequencies are examined.

When focusing on the monthly aggregates, the main result holds: correlations with volatility
estimates are stronger than with benchmarks for all proxies, and the only exception is CQS.
Our findings show that correlations of CQS with PES and PQS are around 79% and thus are very
close to correlation coefficients reported in [7]—79.9% and 91.5%, respectively. For the remaining
sampling frequencies similar results are observed. For CQS the lower the frequency of calculating
benchmarks or volatility estimates is, the higher the correlation with volatility, but still the correlations
with benchmarks remain high.

4.2. Portfolio Time-Series Approach

The portfolio time-series approach is based on equally-weighted portfolios across all stocks for
a day or a month. We compute a benchmark or volatility estimate in a specified interval by taking
the average of detrended benchmarks and volatility estimates over all stocks in a day or a month.
The detrending is done by calculating first differences of the time-series. As detrended series are
stationary Pearson correlations are calculated. Table 2 shows that independently of the sampling
frequency for HLR, CSA and AR the correlations with any estimate of volatility are higher than with
any liquidity benchmark. The same situation applies to monthly portfolios.

The remarkable exception among proxies is CQS again, for which in daily portfolios the
correlations with both spreads PES and PQS are 47% and 50%, respectively, while the correlations
with volatility estimates ranges from 12% to 29% (these numbers apply to the case in which both
benchmarks and volatility estimates are based on 5-min data). In monthly portfolios there is no clear
answer, which of these two, liquidity benchmarks or volatility estimates, are highly correlated with
CQS. As we examine two overlapping correlations with a common variable (proxy), first with a
benchmark and second with a volatility estimate, we apply Zou’s test [52]. This test calculates the
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confidence interval of differences between two correlations. If the confidence interval includes zero
the null hypothesis that these correlations are equal cannot be rejected.

Table 1. The Spearman rank correlations between liquidity proxies and liquidity benchmarks or
volatility estimates—the cross-section analysis.

Daily Monthly

Proxies HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark: 5 min

PES 9.13 3.57 66.75 * 10.68 −1.63 −1.45 79.82 * 28.42
PQS 12.15 4.62 68.35 * 10.85 2.92 2.66 78.47 * 29.45
SRTP 40.66 13.53 46.29 * 15.81 • 18.39 10.87 72.49 * 35.82
MSR 36.62 8.02 37.80 * 9.84 23.70 11.36 66.60 * 34.36

Volatility estimate: 5 min

RV 73.11 24.38 29.82 19.01 65.90 49.69 52.42 56.19
sRVu 68.07 23.19 25.00 17.17 68.49 52.08 47.27 55.02
sRVd 68.79 25.20 25.93 18.64 66.47 51.53 49.80 55.37
minRV 55.55 19.01 −18.83 6.27 77.69 58.96 −23.75 25.57

Liquidity benchmark: 10 min

PES 8.30 3.07 66.72 * 10.50 −6.31 −5.05 84.38 * 28.76
PQS 12.26 4.53 68.75 * 8.75 −0.63 0.10 83.70 * 30.48
SRTP 45.53 14.59 42.09 * 15.90 23.03 13.20 67.04 * 36.77
MSR 42.35 9.29 32.01 * 9.83 30.07 14.58 58.15 • 34.52

Volatility estimate: 10 min

RV 71.35 23.32 31.09 19.05 60.77 44.70 58.84 56.88
sRVu 65.14 22.00 25.67 17.08 62.48 46.27 55.71 56.34
sRVd 66.04 24.37 27.04 18.83 59.62 45.24 58.81 56.59
minRV 57.49 20.04 −13.60 7.63 78.53 58.52 −9.60 31.27

Liquidity benchmark: 30 min

PES 8.52 2.92 66.19 * 10.57 −10.22 −8.40 87.67 * 29.18
PQS 13.04 4.89 69.02 * 11.08 −2.94 −1.53 87.33 * 31.32
SRTP 52.85 14.94 34.49 * 15.05 34.85 18.68 54.92 36.19
MSR 50.44 10.22 22.75 9.03 42.66 21.09 41.56 32.33

Volatility estimate: 30 min

RV 69.17 21.24 30.11 18.52 57.27 38.95 60.69 57.01
sRVu 59.17 19.45 23.47 16.09 57.42 39.34 58.37 56.08
sRVd 60.57 22.79 25.26 18.23 54.28 38.16 61.49 29.18
minRV 58.50 20.34 −6.21 9.88 75.26 55.43 12.56 41.84

Liquidity benchmark: 60 min

PES 9.25 2.91 64.37 * 10.35 −10.63 −8.93 87.26 * 29.05
PQS 13.21 5.14 68.37 * 11.18 −2.95 −1.16 87.26 * 31.27
SRTP 55.96 14.65 29.53 * 29.53 * 40.89 21.44 48.29 36.59
MSR 54.14 10.61 17.80 8.61 48.79 24.25 34.93 32.79

Volatility estimate: 60 min

RV 67.93 19.43 27.17 17.45 58.44 36.79 56.43 55.48
sRVu 53.56 17.05 19.76 14.32 57.51 36.59 53.80 53.95
sRVd 55.71 21.32 21.62 17.06 54.52 35.44 56.40 54.03
minRV 55.99 19.37 −4.58 10.67 70.03 50.06 21.26 44.66

Note: The Spearman rank correlations (presented in percentage) are calculated for levels of liquidity proxies
and liquidity benchmarks or volatility estimates. The following liquidity proxies are considered: HLR stands for
the high-low range [14], CSA is spread estimator of [8], CQS is the closing quoted spread of [12], while AR is the
spread estimator of [13]. Among liquidity benchmarks PES is the proportional effective spread [35], PQS is the
proportional quoted spread [50], SRTP and MSR are squared return on trade prices and the midquote squared
return, respectively [48]. For volatility estimates RV is realized variance, [18], sRVu and sRVd are upside and
downside realized semivariances, respectively [19], while midRV is minimum realized variance [18]. * signifies
that the correlation is statistically significantly higher at the 5% level than the correlation between the same
proxy and RV, • signifies that the correlation is insignificantly different from the correlation between the same
proxy and RV at the 5% level.

We find that considered proxies based on HLOC prices are much more related to volatility
estimates than to liquidity benchmarks. The only measure which in daily frequency pronounces higher
correlation coefficient with two liquidity benchmarks, PES and PQS, is the closing quoted spread,
CQS. These results are consistent for all frequencies in which calculation of benchmarks or volatility
estimates has been done.
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Table 2. The Pearson correlation coefficients between liquidity proxies and liquidity benchmarks or
volatility estimates—the portfolio time-series approach.

Daily Monthly

HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark: 5 min

PES 17.53 6.34 47.11 * 3.81 38.25 37.26 63.21 • 45.23
PQS 20.52 8.87 50.39 * 5.88 51.92 51.92 43.38 44.93
SRTP 18.66 10.32 13.64 5.79 56.65 54.43 70.32 • 64.88
MSR 6.61 4.60 4.81 1.74 55.62 48.43 62.12 • 59.38

Volatility estimate: 5 min

RV 81.42 43.11 24.26 26.51 94.86 84.54 69.40 79.65
sRVu 63.16 27.13 12.10 19.11 94.16 82.52 65.68 76.00
sRVd 78.42 44.45 29.00 25.42 93.97 85.13 69.72 80.46
minRV 73.97 39.41 17.69 24.80 94.28 83.58 62.63 76.33

Liquidity benchmark: 10 min

PES 18.74 5.34 44.00 * 46.62 * 41.90 40.49 65.24 • 48.32
PQS 22.10 8.60 49.98 * 6.35 48.24 47.52 75.34 • 56.27
SRTP 29.55 15.39 14.18 9.65 64.25 59.42 67.27 • 61.45
MSR 7.80 5.18 3.59 2.30 69.96 61.18 66.27 • 71.16

Volatility estimate: 10 min

RV 79.79 42.29 23.56 26.49 94.92 84.08 70.20 79.74
sRVu 53.29 20.67 9.16 15.77 94.22 81.75 66.71 75.56
sRVd 76.29 44.00 28.44 25.23 93.81 84.81 71.43 81.11
minRV 75.46 38.49 20.99 25.55 93.88 83.36 61.45 75.62

Liquidity benchmark: 30 min

PES 17.64 5.13 48.17 * 2.96 41.75 40.35 69.44 • 48.39
PQS 21.88 8.31 52.37 * 6.97 47.11 46.73 77.69 • 54.88
SRTP 29.24 15.99 9.43 8.65 72.02 63.45 58.69 71.57
MSR 17.52 11.89 6.17 6.63 70.95 58.82 57.21 68.03

Volatility estimate: 30 min

RV 77.23 43.84 21.71 26.91 94.46 82.25 70.08 79.81
sRVu 38.84 13.71 2.81 11.36 93.14 78.39 65.68 73.70
sRVd 72.32 44.42 26.91 24.93 92.91 83.26 71.95 81.78
minRV 74.60 34.40 21.79 24.29 94.43 82.87 64.27 76.83

Liquidity benchmark: 60 min

PES 17.37 4.72 47.87 * 2.56 40.46 37.54 69.88 • 45.85
PQS 20.96 8.24 52.59 * 6.63 44.41 44.56 76.86 • 51.96
SRTP 33.67 17.27 9.37 9.88 68.37 55.49 47.97 63.67
MSR 24.05 13.47 8.20 7.46 67.38 53.70 44.44 62.58

Volatility estimate: 60 min

RV 76.04 43.39 20.86 26.77 93.99 80.80 69.08 78.43
sRVu 30.77 8.45 −0.87 7.84 91.20 74.61 62.62 69.52
sRVd 69.95 44.39 26.50 25.15 91.97 81.89 71.45 80.95
minRV 72.50 29.13 26.03 20.74 92.99 81.10 64.23 73.32

Note: The Pearson correlation coefficients (presented in percentage) are calculated for differences of liquidity
proxies and liquidity benchmarks or volatility estimates. The following liquidity proxies are considered: HLR
stands for the high-low range [14], CSA is spread estimator of [8], CQS is the closing quoted spread of [12], while
AR is the spread estimator of [13]. Among liquidity benchmarks PES is the proportional effective spread [35],
PQS is the proportional quoted spread [50], SRTP and MSR are squared return on trade prices and the midquote
squared return, respectively [48]. For volatility estimates RV is realized variance, [18], sRVu and sRVd are
upside and downside realized semivariances, respectively [19], while midRV is minimum realized variance [18].
* signifies that the correlation is statistically significantly higher at the 5% level than the correlation between the
same proxy and RV, • signifies that the correlation is insignificantly different from the correlation between the
same proxy and RV at the 5% level.
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4.3. Partial Determination Coefficients

The previous sub-sections are devoted to the correlations between proxies and benchmarks or
volatility estimates separately. Here we propose to apply the regression analysis and investigate
partial determination coefficients. The idea is the following: we consider linear regression for liquidity
and volatility measures, that have been used in the cross-section (in Section 4.1) and the portfolio
time-series analysis (in Section 4.2). For the former the equation has a following form:

Proxyi = α0 + α1 · Benchi + α2 · RVi + εi, (14)

where Proxyi denotes liquidity proxy for stock i, Benchi denotes liquidity benchmark, RVi stays for
volatility estimate.

For the latter, the portfolio time-series analysis, the equation is following:

ΔProxyt = β0 + β1 · ΔBencht + β2 · ΔRVt + εt, (15)

where Δ is the first difference, and t is a time index. The regressions are estimated for both daily and
monthly portfolios.

The coefficient of partial determination is the proportion of variation, that can be described by the
predictors used in the full model, but cannot be explained in a reduced model [53]. The formula to
compute the coefficient of partial determination, PR2, is as follows:

PR2 =
SSreduced − SS f ull

SSreduced
, (16)

where SSreduced is the sum of squares of residuals from the model with only one independent variable,
and SS f ull is the sum of squares of residuals from the full model. In our case the reduced model is
a model with either a liquidity benchmark or a volatility estimate, while the full model takes into
account both variables simultaneously. Since RV among all volatility estimates displays the highest
correlation coefficient with proxies, we further show the results for this estimate. As the changes in
frequency have no impact on the correlation coefficients and 5-min frequency of observation is usually
used as a rule of thumb [54–56], henceforth we present results for benchmarks and volatility estimates
based on 5-min frequency only (the calculations for remaining proxies and frequencies are available
upon request). In calculations rsq R package [57] is applied.

Firstly, we provide results for the cross-section approach. Table 3 presents the determination
coefficients, R2, as well as partial determination coefficients for both variables, the liquidity benchmark
PR2

Bench and the volatility estimate PR2
RV . We find that both for daily and monthly proxies the value

of determination coefficient R2 varies from 5% to 62%. The comparison of partial determination
coefficients, PR2

Bench and PR2
RV , shows that for HLR, CSA and AR both in daily and monthly data

partial determination coefficients are much higher for the volatility estimate than for the liquidity
benchmark. The only proxy for which we obtain higher partial determination coefficient for liquidity
benchmarks than for volatility proxy is CQS. Here in the case of proportional effective spread, PES,
in daily data the partial determination coefficient for liquidity is 40% versus 2% for volatility. For PQS
the impact of benchmark is 42%, while for volatility it is less than 2% (1.6%). In the case of monthly
data, the conclusions are nearly the same.

Secondly, we repeat the procedure for the portfolio time-series approach. Table 4 shows the
determination and partial determination coefficients. As in the previous case in daily data CQS is the
only proxy for which the partial determination coefficients for liquidity benchmarks, namely PES,
PQS and MSR, are higher than for volatility estimates. For monthly data the partial determination
coefficients are more balanced: for PES we obtain 30% for liquidity benchmark versus 40% for volatility
estimate, while for PQS we get 39% versus 36%. Still CQS seems to represent liquidity, while the other
proxies measure volatility.
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Table 3. Partial determination coefficients—The cross-section approach.

Daily Monthly

R2 PR2
Bench PR2

RV R2 PR2
Bench PR2

RV

HLR

PES 0.586 0.099 0.573 0.620 0.082 0.613
PQS 0.582 0.091 0.566 0.612 0.063 0.596
SRTP 0.569 0.062 0.474 0.602 0.040 0.496
MSR 0.549 0.019 0.466 0.594 0.020 0.485

CSA

PES 0.096 0.023 0.077 0.082 0.024 0.061
PQS 0.095 0.022 0.076 0.077 0.019 0.057
SRTP 0.093 0.020 0.061 0.076 0.018 0.049
MSR 0.091 0.017 0.070 0.074 0.016 0.053

CQS

PES 0.465 0.403 0.020 0.393 0.338 0.029
PQS 0.485 0.424 0.016 0.409 0.355 0.016
SRTP 0.241 0.153 0.019 0.202 0.130 0.018
MSR 0.186 0.091 0.035 0.153 0.075 0.025

AR

PES 0.070 0.020 0.042 0.052 0.020 0.027
PQS 0.070 0.019 0.042 0.051 0.019 0.026
SRTP 0.068 0.017 0.029 0.049 0.017 0.019
MSR 0.065 0.014 0.042 0.048 0.016 0.025

Note: The partial determination coefficients are from linear regression in a form: Proxy = α0 + α1 · Bench + α2 ·
RV + ε estimated both for daily data (columns 2-4) and monthly data (columns 5-7). Volatility is proxied by the
realized variance calculated from the 5-min data. The same frequency is applied to the calculation of different
liquidity benchmarks. Among liquidity proxies HLR stands for the high-low range [14], CSA is spread estimator
of [8], CQS is the closing quoted spread of [12], while AR is the spread estimator of [13]. Among liquidity
benchmarks PES is the proportional effective spread [35], PQS is the proportional quoted spread [50], SRTP and
MSR are squared return on trade prices and the midquote squared return, respectively [48].

4.4. Mutual Information

So far we have used dependency measures which assume linearity of the relation. As a robustness
check we also apply a mutual information which could be considered as a nonparametric dependency
measure. Mutual information is an estimate of inherent dependence between two random variables.
It specifies the “amount of information” that is shared by two variables and is expressed in terms of
the joint probability distribution. The MI concept comes from the Information Theory and is closely
related to that of entropy [58–60]. The entropy of random variable X, H(X), is expressed in the
following way:

H(X) = E[− log2(p(X))] = −
L

∑
i=1

p(xi) log2(p(xi)), (17)

where p(X) is a probability mass function, while L is the length of the time series.
The joint entropy for two random variables, X and Y, is defined as:

H(X, Y) = −
L

∑
i=1

p(xi, yi) log2(p(xi, yi)), (18)

where p(xi, yi) is the joint probability that X = (xi) and Y = (yi). The mutual information between X
and Y is then defined:

MI(X, Y) = H(X) + H(Y)− H(X, Y). (19)
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MI can be then normalized:

MI∗ = MI(X, Y)/
√

H(X)H(Y). (20)

The normalized values of MI∗ are within [0, 1] interval, with 0 denoting that both random
variables are independent, and 1 denoting they share the same information.

Table 4. Partial determination coefficients—The portfolio time-series approach.

Daily Monthly

R2 PR2
Bench PR2

RV R2 PR2
Bench PR2

RV

HLR

PES 0.663 0.000 0.652 0.900 0.003 0.883
PQS 0.663 0.001 0.648 0.901 0.007 0.875
SRTP 0.665 0.006 0.653 0.902 0.016 0.855
MSR 0.663 0.001 0.662 0.903 0.027 0.859

CSA

PES 0.186 0.001 0.183 0.717 0.009 0.672
PQS 0.186 0.000 0.179 0.718 0.013 0.653
SRTP 0.186 0.000 0.177 0.722 0.024 0.604
MSR 0.186 0.000 0.184 0.716 0.004 0.629

CQS

PES 0.350 0.320 0.014 0.637 0.301 0.396
PQS 0.372 0.343 0.008 0.684 0.390 0.356
SRTP 0.047 0.003 0.036 0.625 0.276 0.258
MSR 0.159 0.120 0.035 0.567 0.165 0.295

AR

PES 0.071 0.000 0.069 0.659 0.067 0.571
PQS 0.070 0.000 0.067 0.667 0.090 0.544
SRTP 0.071 0.000 0.067 0.693 0.161 0.471
MSR 0.070 0.000 0.070 0.672 0.103 0.494

Note: The partial determination coefficients are from linear regression in a form: ΔProxy = α0 + α1 · ΔBench +
α2 · ΔRV + ε estimated both for daily data (columns 2–4) and monthly data (columns 5–7). Volatility is proxied by
the realized variance calculated from the 5-min data. The same frequency is applied to the calculation of different
liquidity benchmarks. Among liquidity proxies HLR stands for the high-low range [14], CSA is spread estimator
of [8], CQS is the closing quoted spread of [12], while AR is the spread estimator of [13]. Among liquidity
benchmarks PES is the proportional effective spread [35], PQS is the proportional quoted spread [50], SRTP and
MSR are squared return on trade prices and the midquote squared return, respectively [48].

In the study the mutual information measures are calculated both for the cross-section approach
and the portfolio time-series approach (we applied the infotheo R package [61]). Table 5 shows the
results for the cross-section on daily and monthly data. For proxies versus benchmarks relation in
daily data the highest values are obtained for CQS and either PES or PQS. In monthly data all
benchmarks have the highest mutual information with CQS. For proxy versus volatility relation, HLR
is characterized by the highest mutual information with all volatility estimates both for daily and for
monthly data.

Table 6 presents the average mutual information for the portfolio time-series approach. For proxies
versus benchmarks the highest mutual information is observed between CQS and PES or PQS.
These dependencies are even more pronounced in the case of monthly data.

For volatility versus proxies relation, HLR is featured by the highest amount of mutual
information with any volatility estimate, while CQS shows the lowest mutual information with
volatility measures. These results hold for both daily and monthly data. Summing up, the results
obtained in this Section do not differ significantly from the previous findings.

221



Entropy 2020, 22, 783

Table 5. The mutual information—The cross-section approach.

Daily Monthly

HLR CSA CQS AR HLR CSA CQS AR

Benchmarks

PES 5.96 5.51 22.96 5.68 6.76 6.95 35.57 8.21
PQS 6.25 5.55 24.21 5.65 6.71 6.99 35.32 8.49
SRTP 10.82 6.06 13.31 6.33 8.56 7.46 28.27 10.07
MSR 11.28 5.74 10.17 5.82 9.54 7.19 23.27 9.32

Volatility estimates

RV 26.59 8.14 8.51 7.06 21.78 14.04 16.60 16.27
sRVu 23.52 7.88 8.43 6.61 23.77 14.89 15.03 15.66
sRVd 24.10 8.19 8.63 6.74 22.10 14.34 15.76 16.16
minRV 17.79 7.31 9.25 5.35 30.70 17.33 10.58 7.57

Note: The numbers in table denotes the averages of normalized mutual information (in percentage) between
proxies and benchmarks or volatility estimates. The latter two are calculated on the basis of 5-min frequency.
The following liquidity proxies are considered: HLR stands for the high-low range [14], CSA is spread estimator
of [8], CQS is the closing quoted spread of [12], while AR is the spread estimator of [13]. Among liquidity
benchmarks PES is the proportional effective spread [35], PQS is the proportional quoted spread [50], SRTP
and MSR are squared return on trade prices and the midquote squared return, respectively [48]. For volatility
estimates RV is realized variance, [18], sRVu and sRVd are upside and downside realized semivariances,
respectively [19], while midRV is minimum realized variance [18].

Table 6. The mutual information—the portfolio time-series approach.

Daily Monthly

HLR CSA CQS AR HLR CSA CQS AR

Benchmarks

PES 1.63 1.35 7.48 1.16 6.58 7.14 17.78 10.15
PQS 1.99 1.08 8.54 1.39 8.03 7.47 21.23 11.42
SRTP 2.30 1.49 1.90 1.48 9.20 9.64 18.13 16.25
MSR 2.40 1.70 1.79 1.67 10.79 9.41 17.10 14.16

Volatility estimates

RV 15.34 3.73 1.99 2.23 31.51 21.95 14.13 20.12
sRVu 8.71 2.48 1.53 1.89 27.70 18.07 12.33 16.62
sRVd 12.21 4.31 2.60 2.75 30.20 25.48 16.15 22.56
minRV 10.00 3.33 1.49 2.21 29.79 22.48 15.12 15.41

Note: The numbers in table denotes normalized mutual information (in percentage) between proxies
and benchmarks or volatility estimates. The latter two are calculated on the basis of 5-min frequency.
Mutual information is obtained for daily and monthly data separately. The following liquidity proxies are
considered: HLR stands for the high-low range [14], CSA is spread estimator of [8], CQS is the closing quoted
spread of [12], while AR is the spread estimator of [13]. Among liquidity benchmarks PES is the proportional
effective spread [35], PQS is the proportional quoted spread [50], SRTP and MSR are squared return on trade
prices and the midquote squared return, respectively [48]. For volatility estimates RV is realized variance [18],
sRVu and sRVd are upside and downside realized semivariances, respectively [19], while midRV is minimum
realized variance [18].

5. Sub-Period Analysis

A potential drawback in our approach is that empirical results may be sensitive to the number
of observations taken into considerations. Moreover, some statistical properties may depend on the
specifics of the time-series and may be sensitive to the choice of the sample period. This section
is devoted to validate the results and assess their consistency. Instead of the whole 11-year period
we have chosen two specific two-year sub-periods (484 days) that are closely related to the market
liquidity level. The sub-periods are 2007.07.02–2009.06.08. and 2013.01.02–2014.12.30 and relate to the
low liquidity and high liquidity regimes, respectively (see Figures 1 and 2). Following previous results
we conduct an analysis using all three approaches, the calculation of correlation coefficients, partial
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determination coefficients and the mutual information for both cross-section and portfolio time-series
analyses. Since in the chosen sub-periods there are only 24 months we carry out these computations
for the daily aggregation and 5-minute frequency only. The results are shown in the Appendix A in
Tables A1–A6.

Generally in sub-periods we find the same relations as in the whole sample. In both periods
volatility estimates show higher correlations with proxies than with liquidity benchmarks. The only
exception is CQS which demonstrates much higher correlation with benchmarks than with volatility
estimates in the cross-section analysis. In the portfolio time-series approach we find high dependence
only between CQS and PES or PQS benchmarks. The regression analysis highlights very weak impact
of any intraday measures on CSA and AR (low determination coefficient). However, HLR seems to
be entirely explained by volatility measures. The mutual information results confirm those obtained
in two previous approaches. The highest mutual information is observed for CQS and both PES
and PQS. Also we find high mutual information for HLR in association with volatility estimates.
These results hold for both sub-periods.

When the comparison between two sub-periods is performed, CQS as the best proxy for liquidity
indicates higher correlation with PES and PQS in high liquidity subperiod than in low liquidity
time. Hovewer, according to Zou’s test [52] this difference in correlations between high and low
liquidity periods are significant only for CQS-PQS pair. The regression analysis confirms this finding,
i.e., the determination coefficient as a goodness of fit measure is higher in the high liquidity period
when the impact of benchmarks in the bivariate relationship is stronger. The mutual information
allows to formulate the same conclusions but only in the cross-section approach. In the portfolio
time-series the results are ambiguous.

6. Conclusions

This paper investigates whether liquidity proxies based on daily data commonly used in the
literature indeed approximate latent liquidity. The relations between stock market volatility and
liquidity have been the subject of much recent investigation both from the academics’ and practitioners’
point of view. Our research question is driven by the fact that some liquidity proxies, similarly to some
volatility measures, apply four prices, that is high-low-open-close prices [15]. In such circumstances,
there arises a question, what exactly is measured by a given liquidity proxy. This is an important issue,
as there is a need for easy-to-obtain and calculate liquidity measure and many horse races for finding
the best proxy are run. The proxies based on range of prices are often examined in such races.

Our results show that measures based on high and low prices capture rather unobserved volatility
than liquidity. Both the effective spread estimator of Corwin and Schultz [8] and the spread of
Abdi and Ranaldo [13] that have been proposed recently are closer related to different volatility
estimates than to any liquidity benchmarks used in the study. Also the high-low range used as a
reformulation of the closing quoted spread of Chung and Zhang is less correlated with benchmarks
than with volatility estimates. These findings are confirmed by partial determination coefficients
from the regression analysis as well as the non-parametric approach based on the mutual information
calculation. They hold for the cross-section approach as well as the portfolio time-series.

The only measure based on closing bid and ask quotes, the closing quoted spread of Chung and
Zhang [12], has higher dependency with liquidity benchmarks than with volatility estimates. This is
confirmed within the correlation analysis, the partial determination coefficients’ analysis and through
application of mutual information as a measure of non-linear dependency. All these approaches
unanimously indicate that among daily proxies CQS is mostly related to liquidity benchmarks.
This proxy is also indicated as the best one in Fong et al. [7].

The answer to the question in the title, “do liquidity proxies based on daily prices and quotes
really measure liquidity?” is ‘yes’ for proxies based on daily quotes and ‘no’ for proxies based on daily
prices as the latter approximate volatility rather than liquidity. According to our results the proper
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measurement of liquidity based on daily data requires knowledge of bid and ask prices at the end of
the day. Unfortunately this information is not offered in the widely available databases.

Author Contributions: Conceptualization, B.B.-S. and K.E.; methodology, B.B.-S. and K.E.; software, B.B.-S. and
K.E.; formal analysis, K.E.; resources, B.B.-S. and K.E.; data curation, K.E.; supervision, B.B.-S., writing—original
draft preparation, B.B.-S. and K.E.; writing—review and editing B.B.-S. and K.E.; funding acquisition, B.B.-S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Centre in Poland under the grant no.UMO-2017/
25/B/HS4/01546.

Acknowledgments: We are grateful for the fruitful discussion during 4th International Workshop on “Financial
Markets and Nonlinear Dynamics” (FMND) in Paris, Vietnam Symposium in Banking and Finance in Ha Noi, and
10th Annual Financial Market Liquidity Conference in Budapest. We would like to thank anonymous Reviewers
for outlining very detailed list of remarks. It was a great help in improving our paper. All remaining errors
are ours.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The Spearman rank correlations between liquidity proxies and liquidity benchmarks or
volatility estimates—The cross-section approach in two subperiods.

Low Liquidity Period High Liquidity Period

HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark

PES 6.72 2.96 64.42 * 9.06 12.71 3.41 68.84 * 11.10 •
PQS 8.39 3.27 65.12 * 8.84 15.64 4.56 71.48 * 11.84 •
SRTP 37.44 11.28 43.39 * 12.64 42.34 13.78 50.38 * 16.73
MSR 32.44 6.51 37.99 * 7.80 39.45 7.85 41.15 * 10.39

Volatility estimate

RV 73.00 22.16 26.37 15.88 72.25 24.50 34.77 20.18
sRVu 67.77 21.79 22.50 14.71 67.58 23.43 28.78 18.43
sRVd 69.80 22.08 23.21 14.93 67.71 25.76 29.37 19.58
minRV 59.31 17.69 −16.22 5.03 52.83 19.57 −19.47 7.04

Note: The Spearman rank correlations (presented in percentage) are calculated for levels of liquidity proxies
and liquidity benchmarks or volatility estimates. Two periods are taken into account: low liquidity period
(2007.07.02–2009.06.08) and high liquidity period (2013.01.02–2014.12.30). For the remaining abbreviations
please refer to the notes below Table 1.

Table A2. The Pearson correlation coefficients between liquidity proxies and liquidity benchmarks or
volatility estimates—The portfolio time-series approach in two subperiods.

Low Liquidity Period High Liquidity Period

HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark

PES 13.84 4.46 40.68 • 1.60 12.53 6.89 44.04 * 8.55
PQS 15.63 7.43 42.94 * 4.02 18.26 12.40 54.76 * 11.67 •
SRTP 18.18 10.87 7.20 5.95 5.66 4.23 10.33 −2.01
MSR 1.97 2.08 2.87 −1.06 14.17 4.34 8.43 −4.67

Volatility estimate

RV 81.76 44.57 31.74 25.65 79.51 40.41 26.55 20.74
sRVu 62.54 24.49 19.23 14.07 59.31 16.78 10.97 6.99
sRVd 77.03 46.59 33.48 27.46 77.68 47.40 31.67 25.80
minRV 78.55 40.50 28.34 24.27 68.01 36.20 19.29 21.89

Note: The Pearson rank correlations (presented in percentage) are calculated for levels of liquidity proxies
and liquidity benchmarks or volatility estimates. Two periods are taken into account: low liquidity period
(2007.07.02–2009.06.08) and high liquidity period (2013.01.02–2014.12.30). For the remaining abbreviations
please refer to the notes below Table 2.
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Table A3. Partial determination coefficients—The cross section approach in subperiods.

Low Liquidity Period High Liquidity Period

R2 PR2
Bench PR2

RV R2 PR2
Bench PR2

RV

HLR

PES 0.590 0.110 0.578 0.574 0.096 0.558
PQS 0.586 0.102 0.574 0.570 0.088 0.550
SRTP 0.571 0.070 0.492 0.555 0.056 0.449
MSR 0.548 0.021 0.483 0.536 0.017 0.440

CSA

PES 0.090 0.024 0.071 0.095 0.023 0.077
PQS 0.090 0.023 0.071 0.093 0.022 0.075
SRTP 0.088 0.022 0.059 0.092 0.020 0.060
MSR 0.086 0.019 0.066 0.089 0.017 0.070

CQS

PES 0.433 0.381 0.016 0.492 0.411 0.023
PQS 0.441 0.390 0.014 0.525 0.449 0.017
SRTP 0.214 0.143 0.018 0.276 0.164 0.016
MSR 0.176 0.101 0.023 0.220 0.099 0.045

AR

PES 0.062 0.022 0.035 0.070 0.017 0.044
PQS 0.062 0.022 0.035 0.070 0.016 0.042
SRTP 0.060 0.020 0.027 0.069 0.016 0.029
MSR 0.057 0.017 0.034 0.067 0.013 0.043

Note: Two periods are taken into account: low liquidity period (2007.07.02–2009.06.08) and high liquidity
period (2013.01.02–2014.12.30). The partial determination coefficients are from linear regression in a form:
Proxy = α0 + α1 · Bench + α2 · RV + ε estimated both for low liquidity period (columns 2–4) and high liquidity
period (columns 5–7). Volatility is proxied by the realized variance calculated from the 5-min data. The same
frequency is applied to the calculation of different liquidity benchmarks. For the remaining abbreviations please
refer to the notes below Table 3.

Table A4. Partial determination coefficients—The portfolio time-series approach in subperiods.

Low Liquidity Period High Liquidity Period

R2 PR2
Bench PR2

RV R2 PR2
Bench PR2

RV

HLR

PES 0.669 0.002 0.662 0.637 0.012 0.631
PQS 0.669 0.002 0.661 0.634 0.004 0.621
SRTP 0.673 0.013 0.662 0.633 0.001 0.631
MSR 0.669 0.003 0.669 0.633 0.001 0.625

CSA

PES 0.199 0.000 0.197 0.164 0.001 0.160
PQS 0.199 0.000 0.194 0.164 0.000 0.150
SRTP 0.199 0.001 0.190 0.163 0.000 0.162
MSR 0.199 0.000 0.198 0.164 0.000 0.162

CQS

PES 0.235 0.149 0.083 0.221 0.162 0.034
PQS 0.247 0.163 0.077 0.314 0.262 0.021
SRTP 0.101 0.001 0.097 0.077 0.006 0.067
MSR 0.101 0.000 0.100 0.072 0.002 0.066

AR

PES 0.066 0.000 0.066 0.044 0.001 0.037
PQS 0.066 0.000 0.064 0.047 0.004 0.034
SRTP 0.066 0.000 0.063 0.045 0.002 0.044
MSR 0.066 0.001 0.066 0.049 0.007 0.047

Note: Two periods are taken into account: low liquidity period (2007.07.02–2009.06.08) and high liquidity
period (2013.01.02–2014.12.30). The partial determination coefficients are from linear regression in a form:
Proxy = α0 + α1 · Bench + α2 · RV + ε estimated both low liquidity period (columns 2–4) and high liquidity
period (columns 5–7). Volatility is proxied by the realized variance calculated from the 5-min data. The same
frequency is applied to the calculation of different liquidity benchmarks. For the remaining abbreviations please
refer to the notes below Table 4.
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Table A5. The mutual information—The cross-section approach in two subperiods.

Low Liquidity Period High Liquidity Period

HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark

PES 6.17 5.33 21.53 5.29 6.38 5.41 24.17 5.90
PQS 6.25 5.36 21.62 5.26 6.84 5.57 26.41 5.81
SRTP 10.37 5.81 12.17 5.83 11.37 6.01 14.83 6.52
MSR 10.54 5.43 10.18 5.51 12.23 5.60 11.13 6.06

Volatility estimate

RV 26.05 7.61 7.60 6.43 26.38 8.03 9.89 7.28
sRVu 22.98 7.65 7.72 6.37 23.37 7.60 9.68 6.63
sRVd 24.45 7.67 7.68 6.16 23.51 8.22 9.73 6.88
minRV 19.25 7.32 8.72 5.29 16.81 7.16 9.89 5.32

Note: The numbers in table denotes normalized mutual information (in percentage) between proxies
and benchmarks or volatility estimates. The latter two are calculated on the basis of 5-min frequency.
Two periods are taken into account: low liquidity period (2007.07.02–2009.06.08) and high liquidity period
(2013.01.02–2014.12.30). For the remaining abbreviations please refer to the notes below Table 5.

Table A6. The mutual information—The portfolio time-series approach in two subperiods.

Low Liquidity Period High Liquidity PerioCQSd

HLR CSA CQS AR HLR CSA CQS AR

Liquidity benchmark

PES 1.95 1.75 11.97 1.02 2.78 2.26 6.21 2.38
PQS 2.77 1.18 12.68 1.75 2.07 3.47 8.13 2.37
SRTP 4.00 1.81 1.80 2.37 2.33 1.86 2.51 2.24
MSR 3.33 2.19 2.64 2.22 3.40 1.65 3.05 2.40

Volatility estimate

RV 17.50 5.50 2.84 3.38 17.00 3.75 3.84 1.99
sRVu 9.34 3.26 1.77 3.48 11.09 1.61 2.59 1.97
sRVd 12.62 5.72 3.23 3.44 16.27 3.38 4.18 2.26
minRV 14.29 5.23 4.21 3.95 10.77 2.08 3.38 1.89

Note: The numbers in table denotes normalized mutual information (in percentage) between proxies
and benchmarks or volatility estimates. The latter two are calculated on the basis of 5-min frequency.
Two periods are taken into account: low liquidity period (2007.07.02–2009.06.08) and high liquidity period
(2013.01.02–2014.12.30). For the remaining abbreviations please refer to the notes below Table 6.
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Abstract: The stock market is a complex system with unpredictable stock price fluctuations. When
the positive feedback in the market amplifies, the systemic risk will increase rapidly. During the last
30 years of development, the mechanism and governance system of China’s stock market have been
constantly improving, but irrational shocks have still appeared suddenly in the last decade, making
investment decisions risky. Therefore, based on the daily return of all a-shares in China, this paper
constructs a dynamic complex network of individual stocks, and represents the systemic risk of the
market using the average weighting degree, as well as the adjusted structural entropy, of the network.
In order to eliminate the influence of disturbance factors, empirical mode decomposition (EMD) and
grey relational analysis (GRA) are used to decompose and reconstruct the sequences to obtain the
evolution trend and periodic fluctuation of systemic risk. The results show that the systemic risk of
China’s stock market as a whole shows a downward trend, and the periodic fluctuation of systemic risk
has a long-term equilibrium relationship with the abnormal fluctuation of the stock market. Further,
each rise of systemic risk corresponds to external factor shocks and internal structural problems.

Keywords: complex network; systemic risk; structural entropy; stock market; EMD

1. Introduction

The stock market is a typical complex system with multiple stock prices fluctuating from
equilibrium to deviation and to equilibrium again. A large number of heterogeneous investors buy
and sell stocks frequently, making the relationships between different stocks unpredictable. In most
scenarios, owing to some factors like herd effect, investors’ investment strategies converge [1,2]; when
some investors buy a stock, other investors tend to buy the same one, and furthermore, when the vast
majority of investors buy or sell stocks, other investors usually follow this action. At the same time,
different listed companies are another heterogeneous agent in the stock market. On the one hand, the
economic exchanges between listed companies will lead to the linkage of their stock prices. On the
other hand, similar actions by investors on similar stocks can cause herd behavior between different
stock prices. When the prices of a large number of stocks in the market tend to be consistent, it means
that the herd effect in the market is higher, and the stock market is more likely to fluctuate excessively
and consistently, leading to higher market systemic risks [3,4].
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In former studies, the capital asset pricing model (CAPM) framework was usually used to analyze
financial systematic risks as a basic theory [5–8]. According to CAPM, risks can be divided into
systematic risk (or market risk) and non-systematic risk, while the latter can be diminished through
investment portfolios. The systematic risk often refers to pervasive, far-reaching, perpetual market
risk, which can be measured by the variance of the portfolio (Beta) altogether. Therefore, most studies
on systematic risk are based on Beta values. Although this theory is widely adopted, it usually comes
with a number of hypotheses, such as homogenous investors in capital markets. However, in modern
financial markets, different investors generally have different degrees of rationality, ability to obtain
information, and sensitivity to prices, that is, investors are usually heterogenous. Hence, CAPM may
not be a reasonable model in the real complex world [9,10]. More importantly, this paper focuses on
the systemic risk, which reflects the stability of the system and the characteristics of risk transmission
among individuals in a certain complex system.

A complex network, which is based on physics and mathematics theory, can tackle complicated
practical problems [11]. It is especially suitable for modeling, analysis, and calculation in complex
finance systems [12]. Nowadays, the literature on applying complex networks to finance is growing
in size, and complex networks have become important tools in the finance field [13]. After 30 years
of development, China’s stock market is growing in scale and vitality, while the market operation
mechanism and management system are constantly improving. Nevertheless, there have been several
typical bear and bull markets in recent years, and systemic risk in the stock market has risen periodically.
Therefore, a dynamic complex network of individual stocks in China’s stock market is constructed in
this paper to measure the dynamic systemic risk of China’s stock market. Then, the tendency evolution
and cycle change characteristics of systemic risk are explored.

The structure of this paper is as follows. Section 2 summarizes the applications of complex
networks in the field of economy and finance; Section 3 introduces the data and methodology used
in this paper; Section 4 proposes the empirical results and analysis; and the conclusions and some
discussion are given in Section 5.

2. Related Works

Construction of the network consists of two important steps, defining nodes and defining edges.
In previous studies, nodes are usually represented by different agents in the financial market, that
is, stocks or bonds, and edges are symbolized by the relationship between such agents. Pearson’s
correlation coefficient is the most common and easiest way to measure the correlation between two
entities in the financial market [14–20]. For example, McDonald et al. used Pearson correlation
coefficient to construct a currency-related network in the global foreign exchange market and obtained
temporary dominant or dependent currency information [16]. In addition, other correlation coefficients,
such as Spearman rank-order correlation coefficient [21], multifractal detrended cross-correlation
analysis (MFCCA) [22,23], multifractal detrended fluctuation analysis (MFDCA) [24], and cophenetic
correlation coefficient (CCC) [25], have also been put forward. Furthermore, correlation can also be
defined by some econometric methods, such as the Granger causality test [26,27], cointegration test [28],
dynamic correlation coefficient with GARCH (DCC-GARCH) [29], and so on.

After the definition of edges, some filter methods for choosing the important edges should be
applied. Otherwise, the complex network will be very large and complicated, which is not conducive
to subsequent analysis. Minimum spanning tree (MST) can be used for this purpose. After MST
operation, the complex network will retain only N − 1 edges, where N is the number of the nodes,
which greatly facilitates the study of the network topology. At present, MST is most commonly used to
simplify the financial complex network [14,15,18–20,22,29–31]. For example, in 1999, Mantegna first
proposed that MST could be used to search for important edges in the stock market network, and
a stock market topology with economic significance could be obtained [14]. Except for MST, other
greedy algorithms similar to MST, such as planar maximally filtered graph (PMFG) [28], can also be
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used as filter methods. Furthermore, setting thresholds and only retaining edges with a correlation
coefficient greater than the threshold can work as a filter too [17].

After construction of the financial network with the above methods, some structural characteristic
information can be obtained by analyzing the network indicators. Previous scholars have found that
stock markets in different countries have similar topologies. Zhuang et al. used stock data from the
Shanghai stock market from 2002 to 2004 to build an undirected and unweighted network. It was
found that China’s stock networks had the typical statistical features of complex networks, that is,
small world and scale-free property [17]. Tu also selected Chinese stock data and built a stock market
complex network. The author calculated some network indicators like degree centrality, PageRank,
hyperlink induced topic search (HITS), local clustering coefficient, K-shell, and so on, finding the
driving forces of China’s financial market [28]. Chi et al. selected the U.S. stock market data to build
several weighted networks (using price, price returns, and trading volumes as edges separately),
finding that the U.S. stock price networks are scale-free networks, which means the variation of stock
prices is strongly influenced by a relatively small number of stocks [29]. Caraiani used the complex
network to study the returns of major European emerging countries’ stock markets, which also had the
characteristic of being scale-free [24]. Furthermore, complex network studies were also conducted on
the Japanese stock market [32], Korean stock market [33], Hong Kong stock market [34], and so on.

On the basis of the topological structure of the financial network, the systemic risk in the financial
market can be measured and the impact of crisis on the financial system can be analyzed. In general,
crisis will change the topology of the financial network, and a more complex topology (or a larger
value of structural entropy) often comes with a greater systemic risk [35]. Onnela et al., for example,
built a U.S. stock market network with MST and conducted a tree structure analysis on it, finding
that the financial crisis caused the tree length to shrink, which means the topological structure of the
stock market experienced a downfall when facing systemic risk [15]. Long et al. selected CSI 300
data in China, established a dynamically correlated stock industry network with MST, and studied
its connection characteristics and topological structure. The results reveal that industries with large
betweenness centrality, closeness centrality, clustering coefficient, and small node occupancy layer are
associated with greater systemic risk contribution [29]. He and Deem found that the systemic risk and
recession will lead to a more hierarchical structure of global trade networks [25]. Bardoscia et al. also
found that when the connectedness in bank networks increases, the financial system’s ability to deal
with systemic risk will deteriorate [36].

To sum up, according to various distance definitions and filter methods, different financial complex
networks can be constructed, thus obtaining different measures of systemic risk. Pearson’s correlation
coefficients are simple and intuitive, and can effectively measure the correlation between different
stocks in the Chinese stock market. Since its establishment in 1990, China’s stock market has been
rapidly developing for nearly 30 years. While the internal operating mechanism adjusts constantly,
China’s stock market is also subject to external impacts, so the systemic risk of the market is dynamic.
This paper constructs a dynamic complex network based on the stocks daily return data; symbolizes
the systemic risk of China’s stock market by complex network indicators; decomposes and reconstructs
the sequence into three components including trend, cycle, and high frequency disturbance; and,
finally, examines the evolution of China’s stock market systemic risk.

3. Data and Methodology

This paper establishes a dynamic complex network model utilizing the daily data of all a-shares
in Shanghai and Shenzhen stock markets. Because of the small number of stocks at the beginning of
the establishment of the Chinese stock market, we selected 90 trading days before the first trading day
in 1997 as the starting point, and 29 February 2020 as the end point.

The methodology is shown in Figure 1. First, the correlation coefficients between return rates
of stocks were used as edge weights to build dynamic complex networks with a window period of
90 days and 1 day for step. Then, the average weight and structural entropy of the network in each

233



Entropy 2020, 22, 614

day can be obtained. The ratio of the stocks with weight in the top 10% to the average weight in
each window period can also be calculated and defined as the concentration ratio of important stock.
Therefore, four network indexes could be derived. Next, these four network indexes were combined
with the stock market index and 0–1 standardization before empirical mode decomposition (EMD) was
performed. Through the above process, the original sequences were divided into a number of intrinsic
mode functions (IMFs). Then, the results were reconstructed with grey relational analysis (GRA),
making each sequence have three items, that is, tendency, cycle, and disturbance. Finally, the statistical
analysis of the three components was conducted in order to explore the development of China’s stock
market and the evolution characteristics of systemic risk. Modeling of the complex network, EMD,
and GRA is introduced as follows.

Figure 1. Methodology. EMD, empirical mode decomposition.

3.1. Construction of the Complex Network

A complex network consists of several nodes and edges linking them. The node is the basic
element of a complex network, which is the abstract expression of an “individual” in the real world.
The edge is an expression of the relationship between the elements and can be given weight according
to the extent of the relationships. Here, wij represents the weight of the edge linking node i and node j,
where i, j = 1, 2, 3, . . . , n and n is the number of nodes in a certain network. For an undirected network,

wij = wji (1)

We can also use the weighted degree to represent the importance of nodes, which is defined as

dwi =
∑

j∈v(i)
wij (2)

where v(i) is the set of nodes linking to node i. The larger the weighted degree, the stronger the degree
of correlation with other nodes and the more important the node.
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We use the return rates of a-share stocks on China’s stock market as the network nodes and
construct the network using correlation coefficient ρi j as the edge weight.

wij = ρi j = < Xit·Xjt > (3)

Here, {Xit, i = 1, 2, · · · , n; t = 1, 2, · · · , T} is the original stock return rates data and< · · · > indicates
a time-average over the T data points for each time series.

After we get wij, we calculate the average weight, top 10 nodes weight, and concentration
ratio below:

average weight =
1
n

n∑
i=1

dwi (4)

top 10 nodes =
1
10

∑
i∈top(i)

dwi (5)

concentration ratio =
top 10 nodes

average weight
(6)

where top(i) means the nodes i with the top 10 weights (dwi).
Furthermore, we calculate the network’s structural entropy, which is often used to measure the

complexity of the complex network system [37]. However, as the structural entropy of the all-connected
network is constant, it is meaningless for our analysis, so we need to remove the edge of weak
correlation to get a non-all-connected network for calculating the structural entropy.

The threshold value of the correlation coefficient is set at 0.4. If the absolute value of the correlation
coefficient ρi j, that is, wij, is less than 0.4, this edge will be cut off, and we will get a non-fully connected
network to calculate the structural entropy Edeg under each window [37]:

Edeg = −k
N∑

i=1

pi log pi (7)

where N is the total number of nodes in the network; k is Boltzmann’s constant; and pi can be calculated
by the number of edges connecting to node i, namely, the degree of node i:

pi =
degree(i)∑N

i=1 degree(i)
(8)

3.2. Empirical Mode Decomposition

Combining the three network indexes with China’s stock market index gives four input data,
named as {Ykt, k = 1, 2, 3, 4; t = 1, 2, · · · , T}. Ykt have to be 0–1 standardized, owing to significant
differences at the numerical level, that is,

Zkt =
Ykt −Yk

std(Yk)
(9)

For the signal Z(t), the upper and lower envelopes are determined by local maximum and
minimum values of the cubic spline interpolation. m1 is the mean of envelopes. Subtracting m1 from
Z(t) yields a new sequence h1. If h1 is steady (does not have a negative local maximum or positive
local minimum), it is denoted as the intrinsic mode function (im f1). If h1 is not steady, it is decomposed
again, until steady series is attained, which is denoted as im f1. Then, m1 replaces the original Z(t) and
m2 is the mean of the envelopes of m1, and m1 is similarly decomposed. Repeating these processes K
times gives im fk, that is,

im fk = im f(k−1) −mk (10)

235



Entropy 2020, 22, 614

Finally, let res denote the residual of Z(t) and all im f s:

res = X(t) − im f1 − im f2 − · · · − im fK (11)

where im f s and res could be extracted for the GRA process.

3.3. Grey Relational Analysis

The grey relational analysis was first put forward by Deng J L in 1989 [38]. His grey relational
degree model, which is usually called the grey relative correlation degree, mainly focused on the
influence of distance between points in the system.

The grey relative correlation degree formula is given by Equation (12).

r1
i j =

1
N

N∑
t=1

min
j

min
t

∣∣∣di(t) − dj(t)
∣∣∣+ ρ max

j
max

t

∣∣∣di(t) − dj(t)
∣∣∣

∣∣∣di(t) − dj(t)
∣∣∣+ ρ max

j
max

t

∣∣∣di(t) − dj(t)
∣∣∣ (12)

where di(t) is the reference series; dj(t) is the compared series; and ρ is the distinguishing coefficient,
which is usually equal to 0.5.

In order to overcome the weakness of the grey relative correlation degree, the absolute correlation
degree was proposed by Mei (1992) [39]. The formula is given by Equation (13).

r2
i j =

1
N − 1

N−1∑
t=1

1

1 +
∣∣∣di(t + 1) − di(t) + dj(t + 1) − dj(t)

∣∣∣ (13)

Considering the weakness and strength, we used the grey comprehensive relational degree to
classify the noise terms and market fluctuation terms. The formula of the grey comprehensive relational
degree is given by Equation (14):

rij = βr1
i j + (1− β)r2

i j (14)

where β is the weight of the grey relative relational degree, which is valued as 0.5.

4. Empirical Analysis

4.1. Dynamic Characteristics of Complex Networks

Figure 2a compares the three average weight related indicator of the dynamic complex network
with the dynamic evolution of the Shanghai composite index standardized by setting it as 1000 on the
first trading day of 1997. It can be seen that the average weight of the complex network and the average
weight of the top 10 stocks have strong synchronization, with a high correlation of 0.9896. Therefore,
both of them can be used as proxy indicators of systemic risk. However, the concentration ratio is not
consistent with the overall systemic risk. The concentration of risk is relatively low when the systemic
risk is high, which means the risk is relatively decentralized. Furthermore, the concentration ratio and
the average weight are significantly negatively correlated with a correlation coefficient of −0.91329.
In this way, we will focus on using the index of the average weight to measure the systemic risk of the
Chinese stock market.

It can also be seen from Figure 2a that, although there is a correlation between two average weight
indexes (all and top 10) and the stock index, the coefficients, −0.1370 and −0.0829, are relatively small.
This proved that the level of systemic risk is not determined by the move of overall price trend.
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In order to further investigate the relationship between the systemic risk represented by the
average weight, the Beta value (β) obtained by the CAPM model, and the stock average variance (V),
we estimated βt and Vt as follows:

Xkt = r f + βkt(Yt − r f ) + ekt (15)

βt =
1
N

N∑
k=1

βkt (16)

Vt =
1
N

N∑
k=1

[
1
T

T∑
m=1

(Xkm −Xkt)
2
] (17)

where N is the total number of stocks; T is the length of the sliding window; r f is the risk-free interest
rate, which was set to 3%; Xkt is the return of the kth stock in the sliding window t; Yt is the return
of the stock index, which is symbolized for market return and is represented by 000001.SH; βkt is
calculated by MLS with Yt and Xkt; ekt is the error term; βt is the average of all individual stocks’ Beta;
and Vt is the average variance of all stocks in sliding window t.

In Figure 2b, we compare the systemic risk with Beta and stock variance, finding that these three
have different moving trends, which shows that our systemic risk index can catch unique market
fluctuations. Furthermore, the systemic risk index was ahead of Beta in several stages, such as from
June 2006 to July 2008 or from July 2015 to August 2017, which shows that our systemic risk index has
a certain risk pre-warning ability.

(a) Dynamic average weight of complex networks. 

(b) Comparing average weight with stock variance and Beta. 

Figure 2. Comparison of complexity measures of systemic risk with other measures.
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We further compared the systemic risk represented by average weight with the volatility index
(VIX) of China and the U.S. stock market. Considering the Chinese VIX cannot cover the above research
range, the U.S. VIX was selected for comparison purposes. The correlation coefficient between the two
VIX in this range is significantly positive, but the coefficient is only 0.5626.

Figure 3a presents the great differences in the trend of VIX between China and the United States.
It can be seen that the correlation coefficient between average weight and Chinese VIX is 0.4763 during
the interval since the Chinese VIX launched. It is noteworthy that the volatility index leads the systemic
risk index to a certain extent. This is confirmed by the results obtained from the cross-correlation
analysis with the maximum coefficient of 0.7469, corresponding to lags of 55 days (which means
current systemic risk is highly related to the VIX from 55 days prior). However, this is mainly because
the systemic risk index constructed in this paper was compiled using the sliding window method,
with the window length of 90 days, so the systemic risk index of a certain time, t actually represents
the systemic risk of the previous 90 days.

(a) Volatility index (VIX) and systemic risk. 

(b) Ninety-day average for VIX and systemic risk. 

Figure 3. Comparison of systemic risk with VIX.
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In fact, the complex network characteristics of individual stocks are effective at reflecting the
systemic risk of the market. To verify this, we calculated the 90-day averages for VIX, which are shown
in Figure 3b. It can be seen that the systemic risk index constructed in this paper is consistent with
the 90-day average trend for China’s VIX, and the systemic risk is ahead of China’s VIX after 2017
and is more sensitive, which proves the effectiveness of the systemic risk index derived from the
complex network.

Figure 4 shows the comparison between the structural entropy and the number of nodes in a
complex network. It can be seen that the structural entropy is highly correlated with the number
of nodes, and the correlation coefficient reaches 0.9302. In other words, the increase in system
complexity of China’s stock market is mainly caused by the increase in the number of listed companies.
Nevertheless, we can also find that, in addition to the overall upward trend, structural entropy also
has periodic fluctuations. Therefore, multi-scale analysis is required to determine whether the system
complexity represented by structural entropy is related to systemic risk.

Figure 4. Dynamic structural entropy of complex networks.

4.2. Decomposition and Reconstructione

Figure 5 presents the EMD results of the standardized systemic risk index, structural entropy, and
stock price index, respectively. It can be seen that the two original sequences are divided into seven
IMFs and one residual term, among which the residual term can represent the overall trend of indexes’
evolution to a certain extent, while the IMF of lower frequency can describe the periodic fluctuation of
indexes in different time scales, and the IMF of highest frequency represents the stochastic perturbation.

Through EMD, it can be found that the residual term, also known as the trend term, decomposed
by structural entropy, represents the growth in the number of network nodes, and the correlation
coefficient between this residual term and the number of network nodes can be further improved to
0.9428. When removing the trend term from the original sequence and comparing it to the systemic
risk series represented by the average weight, as shown in Figure 6, the highly consistent fluctuations
between the two series can be seen, and the correlation coefficient of the two reaches 0.7572. Therefore,
adjusted structural entropy, that is, removing the trend term of the network size, can also measure the
systemic risk. Nevertheless, owing to the high correlation between these two series, the following
analysis only focuses on the systemic risk represented by average weight.
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(a) EMD decomposition of systemic risk. 

(b) EMD decomposition of structural entropy. 

(c) EMD decomposition of stock price index. 

Figure 5. Results of EMD decomposition. IMF, intrinsic mode function.
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Figure 6. Adjusted structure entropy and average weight.

In order to further observe the systemic risk evolution of the Chinese stock market, several IMFs
and residual terms obtained from EMD decomposition were combined using the method of grey
correlation degree. Figures 7 and 8 present the trend term, cycle term, and random term of systemic
risk (average weight) and the stock price index. Then, we focused on the overall trend change and
cycle fluctuation of systemic risk in China’s stock market.

Figure 7. IMFs reconstruction of systemic risk.

For the long-term tendency, we found that the overall trend of the stock price rose steadily, while
the systemic risk has been declining slowly throughout the evolution of the Chinese stock market
since 1997. This means that, although there is still phased systemic risk in the Chinese stock market,
the overall level of systemic risk is declining as the operating mechanism and related regulations are
constantly improving.
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Figure 8. IMFs reconstruction of stock price index.

For the cycle fluctuation, the rise of systemic risk is usually caused by the joint action of external
shocks and internal operations, which is manifested in the excessive rise and fall in the stock market.
Therefore, the cyclical characteristics of systemic risk have no direct relationship with the fluctuations
of the stock market. Thus, we converted the cycle fluctuation of the stock market into the difference
from the price mean using (18).

cycle_abs_stock = abs[cyclestock − average(cyclestock)] (18)

Considering that cycle_abs_stock and cycle_risk are both non-stationary, we calculated their
first-order differences. The results of Augmented Dickey–Fuller (ADF) tests show that both variables
are an integrated of order one. Therefore, cointegration tests can be proposed on the original sequences.
The results of Johnson Trace tests show that there are at least two cointegration relationships between
the two variables, which confirms that there is a long-term equilibrium relationship between stock
price volatility and systemic risk. The equilibrium equation is

cyclel_abs_stock = 0.0660cycle_risk + 0.0625. (19)

All the coefficients are significant at the 5% significance level, so the volatility of the stock market
is positively related to systemic risk from the perspective of long-term equilibrium, which means that,
while the stock price deviates from the theoretical value of equilibrium, the systemic risk will be at a
high level.

In Figure 9, when the blue line is above 0, the systemic risk is large, while when the blue line is
below 0, the systemic risk is small. The red line represents the absolute value of stock price movements,
and the red line is clearly ahead of the above-zero parts of the blue line.
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Figure 9. Cycle evolution of systemic risk.

Figure 9 shows the cycle evolution of systemic risk, the lead-lag relationship between systemic
risk and stock volatility is dynamic owing to the sliding window processing. From the perspective
of the whole cycle evolution, we found that there were several periods of high systemic risk in the
Chinese stock market since 1997, as described below.

1997–1998: The stock market was in a shock stage during this period. On the one hand, the
Chinese stock market was impacted by external factors such as the Asian financial crisis; on the other
hand, the operating mechanism at that time was not perfect enough, with frequent insider trading
and market manipulation. The systemic risk was at a high level during this period and, therefore, the
stock market began to comprehensively reform its trading mechanism in 1998. Although the market
fluctuation was not violent from the current perspective, it actually contained many factors causing
systemic risk.

2001–2002: The stock market was in a declining bear stage during this period. Owing to the poor
performance of high-tech companies, resulting from the burst of the global Internet bubble and the
launch of the policy reducing the state-owned shares holding of listed companies, the stock market
had a big crash in China. Related departments issued a series of favorable strategies such as reducing
interest rates and trading commissions; however, the imperfection of the market led to a number of
“black markets”, which brought a high systemic risk.

2007–2008: This period includes both excessive rise and fall of the market. The reform of
non-tradable shares in 2005, together with a series of positive policies such as the entry of insurance
funds and the appreciation of renminbi (RMB), promoted the rise of the Chinese stock market. However,
a lot of speculation by inexperienced individual investors caused a more and more serious herding
effect, and the systemic risk was maintained at a high level for a long time. Followed by the global
financial crisis brought by the U.S. subprime crisis, with the launch of stock index futures, the Chinese
stock market began to reverse to a bear stage, and the systemic risk in this stage also remained at a
high level.

2011–2012: This stage was another volatile bear market; the fluctuation of stock price was much
smaller than that of the previous stage, but the systemic risk still remained at a similar level. Even
though the Chinese economy maintained a high growth rate during this period, the stock market was
influenced by the global financial markets, as well as the European debt crisis. The low volatility of the
stock market still contained large systemic risks, which were reinforced by the frequent occurrence of
black swan events such as a rear-end collision of bullet trains, clenbuterol, and so on.
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2015–2016: The market price was rising rapidly in 2015 and the systemic risk was also in a
climbing stage. However, a high level of risk still appeared in 2016, which was a stage of rapid and
frequent fluctuations. The issuing scale of new stocks increased significantly, driving frequent market
shocks such as thousands of shares rising or falling together, two triggering circuit breaker events in a
day, and so on. Thus, the overall capital presents a large-scale net outflow, and the investor sentiment
fluctuates abnormally.

To summarize, the systemic risk of the stock market will significantly increase in the irrational
stages of rise, fall, and frequent shocks. However, extremely high systemic risk is more likely in the
cases of collapse and frequent shocks.

5. Discussion

Complex networks have been widely used in the field of socio-economic analysis. Most of them
focus on the risk contagion of banks and international economic or trade exchanges; however, studies
on the stock market are limited. In fact, a complex network provides an important tool for the study of
the stock market, which is a self-organizing complex system with multi-agent interactions. The average
weight of the complex network can be used to measure the aggregation of positive feedback in the
market, so as to measure the overall systemic risk.

On the basis of the data of all a-shares in China, this paper constructs a dynamic complex network
of stock correlation, and the change of average weight as well as adjusted structural entropy of the
network are used to measure the evolution of systemic risk in China’s stock market. Although, owing
to the use of a sliding window, the average weight or structural entropy in fact presents the average
systemic risk level in the past 90 days, it also reflects the evolution of systemic risk in China’s stock
market for more than 20 years as a whole. The results show that the systemic risk of China’s stock
market shows a downward trend on the whole, which is closely related to the continuous improvement
of the management system and operation mechanism of the financial market. In addition, there is a
long-term equilibrium relationship between the cycle fluctuation of systemic risk and the excessive
fluctuation of the stock market. Since 1997, the stages with high systemic risk have appeared with
excessive increases, excessive falls, and frequent fluctuations of the stock market. Meanwhile, it can
also be seen from Figure 1 that the global stock market began to fluctuate significantly under the
influence of the novel coronavirus pneumonia. The Chinese stock market is relatively stable at present,
but the systemic risk has been climbing rapidly since the beginning of February. Therefore, we must be
alert to the further expansion of the systemic risk of the Chinese stock market under the double impact
of internal and external factors.
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Abstract: The stock price crash constitutes one part of the complexity in the stock market. We aim to
verify the threshold effect of leveraged trading on the stock price crash risk from the perspective of
feedback trading. We empirically demonstrate that leveraged trading has a threshold effect on the
stock price crash risk on the basis of monthly data on leveraged trading in the Chinese stock market
from January 2014 to December 2016. At a low leverage ratio, leveraged trading reduces the stock
price crash risk; however, as the leverage ratio increases and exceeds a certain threshold, leveraged
trading asymmetrically increases the stock price crash risk. These findings provide new insights in
understanding the complexity in the Chinese stock market.

Keywords: leveraged trading; stock price crash risk; threshold effect; complexity in stock market

1. Introduction

The financial markets are very complex systems; factors of both the internal and the external origin
are strongly interrelated by a largely unknown network of connections and feedbacks (positive and
negative) [1]. Behavioral finance theory thinks that the abnormal volatility (according to the Efficient
Market Hypothesis [2], changes in asset prices should be driven entirely by fundamental information,
and the volatility of asset prices should equal the volatility of fundamental factors. Therefore, abnormal
volatility is defined as the portion of the volatility of asset prices that exceeds the boundary of the
volatility of fundamental factors [3]) is closely related to investors’ feedback trading [3]. In addition,
Feedback trading is a very common phenomenon in the financial markets and it can have a significant
impact on the complexity of asset prices behavior [4].

The stock price crash constitutes one part of the complexity in the stock market [1]. Controversy
surrounding the role of leveraged trading in the stock price crash is ongoing. Some scholars think
that leveraged trading will mitigate the impact of arbitrage restrictions and reduce stock price crashes
in the stock market [5–7]. However, other scholars assert that leveraged trading might expand the
influence of private information in the stock market, thus inducing price speculation and increasing
stock price crashes [8]. With the establishment of a leveraged trading system in the Chinese stock
market in 2010, the Chinese academic community has begun to examine this issue. Some scholars
provided evidence that the introduction of short selling can eliminate stock price bubbles and improve
market pricing efficiency [9,10]; others reported that leveraged trading will cause the stock price to be
overvalued during a bull market and increase the stock price crash risk [11,12].

The severe asymmetry of leveraged trading in the Chinese stock market is an important factor
affecting the stock price crash risk. Being constrained by insufficient securities, the high cost of short
selling, and the over-optimism of investors during the bull market, the volume of short selling is
vastly inferior to the volume of margin trading in the Chinese stock market. The severe asymmetry
between margin trading and short selling has weakened the effect of short selling on suppressing
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price overvaluing [13]. “Strong margin trading and weak short selling” thus characterize leveraged
trading. However, leveraged trading plays a role in eliminating arbitrage restrictions and asymmetry
also causes more restrictions, thereby forming a complex positive feedback loop, resulting in drastic
price volatility, and possibly causing stock prices to crash.

We aim to study the effects of leveraged trading on the stock price crash risk from the perspective
of feedback trading. Sentiment feedback trading, changes in asset prices affect investor sentiment, and
investor sentiment in turn affects asset prices, is the most representative and well-known in all the
types of feedback trading. The premise of sentiment feedback trading is that investor sentiment has
a systematic effect on asset prices [14]. Sentiment feedback trading is characterized by the fact that
the fundamental factors in the feedback are exogenous variables, and investor sentiment and asset
prices have no direct impact on the fundamental factors. Lots of psychological experimental evidence
verifies the sentiment feedback trading [15,16].

The motivation of the research is focused on testing whether the leverage ratio has a threshold
effect on the stock price crash risk. We empirically demonstrate that leveraged trading has a threshold
effect on the stock price crash risk on the basis of monthly data on leveraged trading in the Chinese
stock market from January 2014 to December 2016. Specifically, changes in the leverage ratio are closely
positively correlated with the stock price crash risk. Under a low leverage ratio, leveraged trading
reduces price volatility and the stock price crash risk. However, leveraged trading asymmetrically
increases the stock price crash risk, as the leverage ratio increases and exceeds a certain threshold.

This paper adds to the growing literature on the complexity in the stock market by testing whether
leveraged trading has a threshold effect on the stock price crash risk, which will provide new insights
in understanding the complexity in the Chinese stock market.

A breakdown of the paper is structured, as follows: Section 2 gives the introduction for hypothesis
and methodology, Section 3 shows data preprocessing and descriptive statistics, Section 4 gives results
presentation and discussion, Section 5 performs some robustness checks, and Section 6 provides
the conclusions.

2. Hypothesis and Methodology

2.1. Hypothesis

The following relationship between the leverage ratio and investors’ feedback trading is proposed
on the basis of the sentiment mechanisms of the preferences and beliefs of investors, such as “myopic
loss aversion” [17], “mental accounting” [18], “gambling preferences” [19], “realization utility” [20],
“herd behavior” [21], “regret aversion bias” [22], and “heterogeneous beliefs” [7,23]: at low leverage
ratios, investors tend to exhibit the positive feedback trading behavior of “chasing up and down” to
gain higher returns, and at high leverage ratios, investors are more inclined to show the negative
feedback trading behavior of “selling high and buying low” to “lock in” profits and avoid losses [24].
Therefore, after the introduction of leveraged trading, the feedback trading pattern of investors is no
longer completely random, but somewhat certain. In the model of Hu and Peng [25], it showed that
leveraged trading could affect investor sentiment and investors’ feedback trading behavior. When
the leverage ratio exceeds a certain threshold, the strong shift of feedback trading from positive to
negative will cause stock price crashes. Therefore, we propose the hypothesis, as follows.

Hypothesis 1. The leverage ratio has a threshold effect on the stock price crash risk.

2.2. Sample Data

July 2014 is generally thought to be the starting point for the abnormal volatility in the Chinese
stock market, after which the market entered a bull market and the prices rose rapidly [13]. The prices
began to crash in mid-June 2015. Notably, from 12 June to 9 July 2015, the Shanghai Composite Index
fell by nearly 35%. At the beginning of January 2016, the Shanghai Composite Index continued to fall.
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We selected monthly sample data from January 2014 to December 2016 to comprehensively study the
mechanism of the leverage ratio on the stock price crash risk under abnormal volatility. The stocks that
were eligible for leveraged trading during this period were then selected (the initial sample size is
950 stocks). These data used in this paper were all obtained from the CSMAR (China Stock Market &
Accounting Research) database and the Wind database in China.

The sample period of 36 months from January 2014 to December 2016 includes the whole period of
abnormal volatility in the recent Chinese stock market, including the phase of stock prices skyrocketing
and the phase of stock prices crash. We cannot only study the relationship between leveraged trading
and investor sentiment based on this sample, but also the relationship between leveraged trading and
abnormal volatility. This is also the main objective of this work. What is more, after 2016, leveraged
trading in the Chinese stock market was, to some extent, restricted by the regulations, and was not a
completely spontaneous market behavior.

2.3. Definition of Core Variables

2.3.1. Leverage Ratio

In this work, market-level data on leveraged trading were used to measure the leverage ratio. The
leverage ratio is defined, as shown in Equation (1):

tradingleveraget =
f inancingt − shortingt

marketvaluet
(1)

where tradingleverage represents the leverage ratio, financing represents the total margin trading balance,
shorting represents the total short selling balance, and marketvalue represents the total market value.
The time horizon is monthly. Equation (1) reflects the proportion of the net margin trading in the
market at month t to its total tradable market value. The larger the ratio, the higher the proportion of
margin trading in the market, which results in a higher leverage ratio.

2.3.2. Stock Price Crash Risk

At present, many types of indicators are used to measure the stock price crash risk. The first
is a volatility indicator, which includes volatility, amplitude, and cumulative volatility. The more
severe the price volatility, the greater the possibility of a price crash. The second is the distribution of a
stock return; if the distribution of stock return is extremely negative (leftward), then the stock return
has a large tail risk and it is likely to crash. We measured the stock price crash risk in terms of the
skewness of the distribution of a stock return, specifically DUVOL (down-to-up volatility) [26,27]. We
also used other indicators, such as NCSKEW (negative coefficient of skewness) [26,27] and volatility, for
the empirical test. However, DUVOL is consistent with the reality of the stock price crash risks in the
Chinese stock market.

We use the model that is shown in Equation (2) to estimate the return of an individual stock after
market risk adjustment:

ri,k = α+ β1,i × rm,k−2 + β2,i × rm,k−1 + β3,i × rm,k + β4,i × rm,k+1 + β5,i × rm,k+2 + εi,k (2)

where ri,k is the return of stock i on day k and rm,k is the average return of all stocks on day k while
using the weighted market value. In Equation (2), in addition to adding rm,k, we add two lagged
terms (rm,k−1 and rm,k−2) of market return and two leading terms (rm,k+1 and rm,k+2) of market return
to eliminate the effects of asynchronous stock trading. εi,k represents the residual after regression.
Wi,k = ln

(
1 + εi,k

)
determines the idiosyncratic return of stock i on day k after market risk adjustment.

Subsequently, used the regression result of Equation (2) to construct DUVOL. The daily return
data of stock i was divided into the up phase (where Wi,k was more than W) and the down phase
(where Wi,k is less than W), depending on whether Wi,k is greater than the monthly average return
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W. Subsequently, we calculated the standard deviation of the returns in these two phases. DUVOL is
defined, as shown in Equation (3):

DUVOLi,k = ln{[(nu − 1)
∑

down
W2

i,s]/(nd − 1)
∑

up
W2

i,s] (3)

where nu(nd) represents the days, in which is Wi,k more or less than Wi. The larger the value of
DUVOL, the more serious the negative bias (leftward) of the stock’s idiosyncratic return, which also
indicates a higher risk of a stock price crash.

A price crash across the entire market is unavoidable when the risk of a price crash for the main
stocks in the market is high. We first calculated the monthly DUVOL at the individual stock level and
then used the average trend of all stocks’ monthly DUVOL values to represent the stock price crash
risk at the market level.

2.4. Empirical Model

We studied the threshold effect of leverage on the stock price crash risk at the market level. The
regression model is defined, as shown in Equation (4):

CrashRiskt = α+ β1 × tradingleveraget−1 + β2 × dummies× tradingleveraget−1

+ϕ×ControlVariablest−1 +
∑

timevariables + εt
(4)

where the explained variable CrashRisk represents the stock price crash risk at the market level (the
average value of all stocks’ monthly DUVOL). The explanatory variable tradingleverage represents
the market leverage ratio and dummies represents the dummy variables that are used for setting the
time threshold and leverage ratio threshold in this work. dummies examine whether the impact of the
leverage ratio on the stock price crash risk varies with different time thresholds and different leverage
ratio thresholds of the Chinese stock market.

In this study, the following control variables were added to the regression model: (1) retn represents
the stock index return; (2) lnsize represents a natural logarithm of the total market value; (3) turnover
represents the stock turnover rate, which reflects investor sentiment [28]; and, (4) illiquidity represents
market illiquidity. The ratio of the absolute value of the market return to trading volume is expressed

as illiquidityt =
∣∣∣∣ retnt
tradingvolumet

∣∣∣∣ [29]. Per common practice, we used a first-order lag of all the explanatory
variables on the right side of the model [11]. Time dummy variables are also included as controls for
the time trend, which could eliminate the risk of spurious regression caused by non-stationarity with
time series. Including the robust standard error in the regression controls heteroscedasticity. The time
horizon is monthly.

3. Data Preprocessing and Descriptive Statistics

3.1. Data Preprocessing

We screened the sample stocks and removed the following sample stocks: (1) financial stocks;
(2) stocks with abnormal trading status, including ST, * ST, and delisted stocks; (3) stocks in their IPO
month; (4) stocks with a long-term suspension (less than 220 trading days in one year); and, (5) stocks
that have been disqualified from leveraged trading by the stock exchanges in China. In the Chinese
stock market, ST denotes a stock that is specially treated due to bad financial issues; * ST denotes a
stock that is specially treated to warn of the risk of the listing being terminated. 815 stocks remained in
the sample after the above screening. All continuous variables were subjected to winsorizing according
to the 1% and 99% quantiles to control for the influence of extreme values. The missing values in the
data were filled while using the linear interpolation method. We then calculated the average of all
continuous variables to obtain the average of all sample stocks, which represented the variables at the
market level.
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3.2. Descriptive Statistics

Since the launch of leveraged trading in the Chinese stock market on 31 March 2010, the leveraged
trading business has developed rapidly. The balance of margin trading and short selling in the Chinese
stock market increased from 12,772 billion RMB in 2010 to 967,961 billion RMB at the end of 2016
and it has continued to grow very rapidly, as shown in Table 1. However, the structural imbalance is
serious in China’s margin trading and short selling business. In Table 1, generally speaking, a notable
feature is that the size of margin trading accounts for more than 99% of the total balance of leveraged
trading, whereas short selling always accounts for less than 1%. Margin trading occupies most of
leveraged trading, and the function of short selling is seriously limited. Leveraged trading exhibits
are characterized by strong margin trading and weak short selling, which strengthens the arbitrage
restrictions in the Chinese stock market. Table 1 shows that the size of margin trading has increased
rapidly since 2010; margin trading peaked during the peak of the bull market in 2015 and then began
to decline.

Table 1. Annual changes in the balance of Chinese leveraged trading.

Year

Total Balance
of Leveraged

Trading
(Billion RMB)

Balance of
Margin
Trading

(Billion RMB)

The Balance of
Short Selling
(Billion RMB)

Proportion of
Margin Trading in

Total Leveraged
Trading

Proportion of
Short-Selling in
Total Leveraged

Trading

2010 12.7720 12.7610 0.0110 0.999 0.001
2011 38.2070 37.5480 0.0650 0.983 0.002
2012 89.5160 85.6940 3.8210 0.957 0.043
2013 346.5270 343.700 3.0570 0.991 0.009
2014 1025.6560 1017.3730 8.2830 0.992 0.008
2015 1174.2670 1171.3070 2.9600 0.997 0.003
2016 967.9610 963.6710 4.2900 0.996 0.004

Data source: The Wind database in China.

Table 2 lists the descriptive statistical results of the variables. The stock price crash risk and
leverage ratio show a significantly high volatility at the market level.

Table 2. Descriptive statistics of variables.

Variable Sample Size Mean Standard Deviation Min Max

Explained variable: Stock price crash risk
CrashRisk 36 −10.4478 1.6882 −13.4223 −6.4126

Core explanatory variable: Leverage ratio
tradingleverage 36 10.4236 1.5542 6.6421 14.2860

Control variables
retn 36 2.2086 9.5035 −27.7085 19.6621

lnsize 36 5.0406 0.2104 4.6640 5.5149
turnover 36 84.0669 36.5198 34.1426 162.0876
illiquidity 36 0.2606 0.1470 0.1097 0.8251

3.3. Time Trend Fitness of Variables

In Section 3.3, we analyze the time trend fitness of variables, and empirically demonstrate the
potential threshold effects of leveraged trading on the stock price crash risk. Although the non-linear
effects of the stock price crash risk may vary [30,31]; however, the quadratic effect of leveraged trading
on the stock price crash risk has been confirmed by many studies [23,24,32]. Therefore, we compare
the linear trend and quadratic trend fitness of variables based on the literatures mentioned above.

Figure 1a,b show the time trend of the market leverage ratio in terms of linear function fitness
and quadratic function fitness. The effect of the quadratic function fitness is better than that of linear
fitness because the adjusted R2 of the quadratic function fitness is higher than the adjusted R2 of linear
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fitness. tradingleverage shows an inverted U-shape distribution over time, increasing during the bull
market (July 2014–May 2015), but decreasing during a bear market (July 2014–December 2016). The
demarcation point (around June 2014) is in line with the period when the China Securities Regulatory
Commission implemented strong measures to deleverage.

  
(a) (b) 

Figure 1. (a) Linear function fitness for tradingleverage (adj R2 = 0.21) and (b) quadratic function fitness
for tradingleverage (adj R2 = 0.69).

Figure 2a,b show the time trend for the market price crash risk. The effect of quadratic function
fitness is also better than that of linear fitness, because the adjusted R2 of quadratic function fitness is
higher than that of linear fitness. CrashRisk has an inverted U-shape distribution over time, similar to
the distribution of the leverage ratio. CrashRisk is relatively low before the start of the bull market,
but it increases during the bull market and decreases during the bear market. The demarcation point
(around June 2014) is also in line with the date of the Chinese stock market price crash.

 
(a) (b) 

Figure 2. (a) Linear function fitness for CrashRisk (adj R2 = 0.0101) and (b) quadratic function fitness
for CrashRisk (adj R2 = 0.5452).

3.4. Correlation Fitness of Tradingleverage and CrashRisk

Figure 3a,b show the fitness of tradingleverage and CrashRisk. Here, the effect of the quadratic
function fitness is also better than that for linear fitness because the adjusted R2 of quadratic function
fitness is higher than that of linear fitness.

Figure 3b shows that the leverage ratio has a non-linear effect on the stock price crash risk, and
the leverage ratio threshold point is about 10%. When tradingleverage is less than 10%, an increase in
tradingleverage does not significantly increase CrashRisk and it might have reduced CrashRisk. When
tradingleverage exceeds 10%, an increase in tradingleverage significantly increases CrashRisk. When
comparing Figures 1b and 3b, the time point corresponding to the leverage ratio threshold is around
October 2014. When tradingleverage reaches its maximum value (about 14%), CrashRisk also reaches
its maximum (about −6), as shown in Figure 3b. Comparing Figures 1b and 2b shows that June 2015
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has the highest tradingleverage and highest CrashRisk, which is the date of the Chinese stock market
price crash.

  
(a) (b) 

Figure 3. (a) Linear function fitness for tradingleverage and CrashRisk (adj R2 = 0.4063) and (b) quadratic
function fitness for tradingleverage and CrashRisk (adj R2 = 0.5708).

Figure 4 shows the relationship between tradingleverage, month, and CrashRisk to further depict
the relationship of the leverage ratio and the stock price crash risk. The lighter the color, the greater
the CrashRisk. As per Figure 4, as leverage ratio increases, the color becomes lighter, and the stock
price crash risk increases; over time, the color lightens and then turns dark, which means that the stock
price crash risk initially increases but decreases after a period of time. Figure 4 confirms the correlation
between the leverage ratio and the stock price crash risk.

Figure 4. The relationship among tradingleverage, month, and CrashRisk. The lighter the color, the greater
the CrashRisk.

The time dummy variables are set, as follows: dummyt1 (take a value of 1 if the time is after
September 2014; otherwise, take 0); dummyt2 (take a value of 1 if the time is after May 2015; otherwise,
take 0). A dummy variable of the leverage ratio is then set: dummylev (take a value of 1 when the
leverage ratio is greater than 10%; otherwise, take 0). The second leverage ratio threshold (potential
threshold) could only be artificially set to 14% for June 2015, which is the date of the Chinese stock
market price crash, since the maximum leverage ratio in the sample is about 14%.
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4. Results Presentation and Discussion

We examined the threshold effect of leveraged trading on the stock price crash risk according to
Equation (4). Table 3 shows the results.

Table 3. Regression results of the leverage ratio to the stock price crash risk.

Model 1 Model 2 Model 3 Model 4

Variable CrashRiskt

tradingleveraget−1 0.181 ** −0.112 *** 0.254 *** −0.0897 ***
(0.00858) (0.00655) (0.00706) (0.00576)

dummyt1 × tradingleveraget−1 0.223 ***
(0.00345)

dummyt2 × tradingleveraget−1 0.148 ***
(0.00166)

dummylev × tradingleveraget−1 0.289 ***
(0.00204)

retnt−1 −0.0530 *** −0.0552 *** −0.0196 −0.0564 ***
(0.0154) (0.0152) (0.0150) (0.0151)

turnovert−1 0.0213 *** 0.0200 *** 0.0148 ** 0.0194 **
(0.00704) (0.00717) (0.00678) (0.00739)

illiquidityt−1 0.196 *** 0.202 *** 0.259 *** −0.513 ***
(0.0365) (0.0340) (0.0205) (0.0323)

lnsizet−1 3.462 3.662 3.237 3.490
(2.391) (2.473) (1.947) (2.502)

constant −30.33 *** −29.44 *** −29.37 *** −28.32 **
(9.528) (10.09) (8.157) (10.60)

Time trend control control control control
N 35 35 35 35

Adj R2 0.731 0.735 0.779 0.739
F statistic 49.55 *** 47.78 *** 26.54 *** 54.49 ***

Portmanteau (Q) statistic 14.16 15.88 23.91 12.67

Note: The standard error in brackets is a robust standard error. **, and *** denote significance at 10%, 5%, and
1% significance levels, respectively. Adj R2 measures the goodness of fit of the model. F statistic is used to test
significance of the model. The F statistics are significant at the 10% significance level in Model 1 to Model 4.
Therefore, we can accept the hypothesis of significance of the model. The Portmanteau (Q) statistic is used to test
time series autocorrelation. The Portmanteau (Q) statistics are not significant at the 10% significance level in Model
1 to Model 4. Therefore, we can accept the null hypothesis of no autocorrelation.

The endogeneity issue deserves attention in the regression model. It is necessary to control the
variables related to tradingleverage that also affect CrashRisk in the regression model, so as to reduce
the impact of the endogeneity issue as much as possible in order to ensure that the thresholds of
leveraged trading on the stock price crash risk are unbiased in the empirical results. In the recent
studies, the variables related to tradingleverage that also affect CrashRisk are the following four categories:
(1) the stock index return (retn) [26,33]; (2) investor sentiment (turnover) [24,28]; (3) market liquidity
(illiquidity) [29,32]; and, (4) the total market value (lnsize) [33]. In Table 3, we controlled the above
variables, which can effectively reduce the interference of the endogeneity issue on the results.

Table 3 shows the regression result of the leverage ratio to the stock price crash risk. This result is
subdivided into four models. Model 1 tested whether a linear relationship existed between the leverage
ratio to the stock price crash risk; Model 2–Model 4 further examined whether a threshold effect of
the leverage ratio to the stock price crash risk existed. Model 2 tested whether October 2014 was a
time threshold and if exceeding this time threshold increased the stock price crash risk. Model 3 tested
whether June 2015 was another time threshold and whether exceeding this time threshold caused the
stock price to crash. Model 4 tested whether 10% of the leverage ratio was the leverage ratio threshold
and whether exceeding this leverage ratio threshold increased the stock price crash risk.

Model 1 shows that tradingleverage is significantly positive, and an increase in tradingleverage
significantly increases CrashRisk; turnover is also significantly positive, which means that high investor
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sentiment promotes the stock price crash risk. illiquidity is significantly positive, which indicates that a
deterioration in market liquidity significantly increases the stock price crash risk, which is consistent
with Wei et al. [34].

Model 2 shows that dummyt1 × tradingleverage is significantly positive, and the magnitude of the
effect is relatively large, thus further verifying that October 2014 is one of time thresholds. Before
October 2014, the increase in the leverage ratio reduces the stock price crash risk and maintains stock
market stability during this period. However, after October 2014, the leverage ratio asymmetrically
increases the stock price crash risk. A high investor sentiment and deterioration of market liquidity
will significantly increase the stock price crash risk.

Model 3 shows that dummyt2 × tradingleverage is significantly positive, and the magnitude of the
effect is relatively large, thus further verifying that June 2015 is another time threshold. After June
2015, the increase in the leverage ratio boosts price volatility and eventually asymmetrically increases
the stock price crash risk.

Model 4 shows that dummylev × tradingleverage is significantly positive, and the magnitude of the
effect is relatively large, thus indicating that the threshold effect of leveraged trading on the stock price
crash risk occurs at around the 10% of leverage ratio. 10% of the leverage ratio is a significant threshold.
When the leverage ratio is less than 10%, an increase in the leverage ratio reduces the stock price crash
risk and maintains the stock market stability. However, the leverage ratio asymmetrically increases
the stock price crash risk when the leverage ratio exceeds 10%. The leverage ratio threshold reveals
that leveraged trading has an asymmetric effect on stock market stability. High investor sentiment
will significantly increase the stock price crash risk, but the deterioration of market liquidity will
significantly decrease the stock price crash risk. Of the leverage ratio, 10%, is also the turning point of
feedback trading pattern of investors shift from the positive feedback trading behavior of “chasing
up and down” to the negative feedback trading behavior of “selling high and buying low” [24]. The
strong shift of feedback trading from positive to negative will indeed cause stock price crashes when
the leverage ratio exceeds a certain threshold [25].

We discuss the conclusions with the previous studies. First, the empirical results verify the
threshold effect of leveraged trading on the stock price crash risk. We verified that October 2014 and
June 2015 are two significant time thresholds, and 10% of the leverage ratio is a significant leverage
ratio threshold, which is consistent with the models [7,23,25] and the empirical results [24,34]. The
important roles of investor behavior and market liquidity on the stock price crash risk have been
confirmed. Second, the conclusions are different from the rational financial theory. The rational
financial theory asserts that leveraged trading is a rational behavior of arbitrage, and leveraged trading
maintains the stock market as being sustainable [6–8]. However, we find that leveraged trading plays
a positive role in mitigating arbitrage restrictions and maintaining market stability in the stage with a
low leverage ratio, but it has a negative role in exacerbating sentiment feedback trading, and increasing
stock price crashes under a high leverage ratio. The effect of leveraged trading on the stock price crash
risk is two-edged.

Thus far, the hypothesis is verified.

5. Robustness Test

The discussions in this work have limitations. Before examination of the threshold effect, the
possible threshold values are pre-judged based on the fitness of the variables’ correlation, which is
somewhat subjective. We re-collected the market level data and used the threshold regression model
for an in-depth analysis to test the robustness of the results [35].

5.1. Methodology

Threshold regression rolls the sample to test all potential thresholds and, therefore, requires
a sufficient sample size. We re-collected the daily data of the stock index from 1 January 2014 to
31 December 2016. The threshold effect regression model was constructed, as shown in Equation (5).
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CrashRiskt = α+ β1 × tradingleveraget−1 × I(qi ≤ γ)
+β2 × tradingleveraget−1 × I(qi ≥ γ)

+ϕ×ControlVariablest−1 +
∑

timevariables + εt

(5)

where qi represents a series of potential thresholds (including time thresholds and leverage ratio
thresholds). Iqi ≤ γ is an illustrative function, which takes 1 if the expression in the parentheses is true;
otherwise, it takes 0. The time horizon is daily.

5.2. Threshold Regression Results and Discussion

We used a threshold regression model to re-examine the thresholds (including the time thresholds
and leverage ratio thresholds). Table 4 shows the regression results of the time thresholds and Table 5
provides the results of the leverage ratio thresholds.

Table 4. The regression results of the time thresholds.

Variables Coefficient
Robust

Standard Error
Z Statistic p Value 95% Confidence Interval

Explained Variable: CrashRisk

retnt−1 0.023 *** 0.006 4.1 0.000 0.012 0.035
turnovert−1 0.002 *** 0.0003 6.380 0.000 0.001 0.002
illiquidityt−1 −0.059 0.084 −0.710 0.479 −0.22 0.105

lnsizet−1 0.007 ** 0.003 2.040 0.041 0.000 0.013
Regime 1 Before 20 October 2014

tradingleveraget−1 0.006 *** 0.0008 7.010 0.000 0.004 0.008
constant −0.066 * 0.037 −1.790 0.074 −0.138 0.006
Regime 2 Between 20 October 2014 and 28 May 2015

tradingleveraget−1 0.003 *** 0.001 4.970 0.000 0.018 0.004
constant −0.040 0.040 −1.010 0.311 −0.118 0.038
Regime 3 After 28 May 2015

tradingleveraget−1 0.018 *** 0.001 26.150 0.000 0.017 0.020
constant −0.089 ** 0.039 −2.270 0.023 −0.166 −0.012

time thresholds
(1) 20 October 2014 SSE 0.009
(2) 28 May 2015 SSE 0.006

Note: The standard error in brackets is a robust standard error. *, **, and *** denote significance at 10%, 5%, and 1%
significance levels, respectively. SSE represents sum squared residual.

Table 4 verifies that 20 October 2014 and 28 May 2015 are the two significant time thresholds,
which is consistent with the results presented in Section 4. Table 5 also verifies that 10.2% and 13.6%
are the two significant leverage ratio thresholds. The magnitudes of the threshold effect are relatively
large. When compared with Figure 1a, 10.2% of the leverage ratio corresponds to around 4 September
2014, and 13.6% of the leverage ratio corresponds to around 3 July 2015. These time points are slightly
later than the results that are presented in Section 4.
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Table 5. The regression results of the leverage ratio thresholds.

Variables Coefficient
Robust

Standard Error
Z Statistic p Value

95% Confidence
Interval

Explained Variable: CrashRisk

retnt−1 0.003 0.010 0.310 0.76 −0.016 0.022
turnovert−1 0.002 *** 0.0004 4.820 0.00 0.001 0.002
illiquidityt−1 0.149 0.123 1.210 0.23 −0.093 0.391

lnsizet−1 0.041 *** 0.002 17.270 0.00 0.036 0.045
Regime 1 Leverage ratio is below 10.2%

tradingleveraget−1 −0.02 *** 0.002 −12.98 0.00 −0.027 −0.020
constant −0.43 *** 0.026 −16.65 0.00 −0.475 −0.375
Regime 2 Leverage ratio is between 10.2% and 13.6%

tradingleveraget−1 0.005 *** 0.0007 6.110 0.00 0.003 0.006
constant −0.48 *** 0.028 −17.06 0.00 −0.539 −0.428
Regime 3 Leverage ratio is higher than 13.6%

tradingleveraget−1 0.010 *** 0.002 4.46 0.00 0.006 0.015
constant −0.51 *** 0.028 −18.47 0.00 −0.567 −0.458

leverage ratio
thresholds

(1) 10.2% SSE 0.0124
(2) 13.6% SSE 0.0112

Note: The standard error in brackets is a robust standard error. *, **, and *** denote significance at 10%, 5%, and 1%
significance levels, respectively. SSE represents sum squared residual.

6. Conclusions

The stock price crash constitutes one part of the complexity in the stock market, and we studied
the effect of leveraged trading on the stock price crash risk from the perspective of feedback trading.
The findings that are presented here confirm that leveraged trading has the threshold effects (both in the
time dimension and the leverage ratio dimension) on the stock price crash risk. We found that leveraged
trading not only plays a positive role in mitigating arbitrage restrictions and maintaining market
stability in the stage with a low leverage ratio, but it also has a negative role in exacerbating sentiment
feedback trading and increasing stock price crashes under a high leverage ratio. Generally speaking,
these findings provide new insights in understanding the complexity in the Chinese stock market.

However, this paper has several limitations that require future study. First, we only consider
“the whole period of abnormal volatility”, and this leads to a risk of data snooping. Therefore, high
frequency data and more recent data should be applied for further robustness test and sensitivity
analysis of the results. Second, conducting country comparisons and analyzing the differences between
the stock markets in different countries will make sense. For example, developed financial markets
and emerging markets significantly differ in terms of investor structure and transaction institution. By
country comparisons, we can analyze the impact of the factors mentioned above on leveraged trading
and the stock price crash risk. Third, the method of computational finance can be applied in order
to analyze the micro mechanism of leveraged trading affecting investors’ behavior. For example, we
can use the method of computational finance to build an artificial stock market where investors use
leveraged trading to conduct behavioral gaming, which helps to search for more complex dynamic
patterns in the relationship between leveraged trading and the stock price crash risk. Therefore, more
investigations should be conducted for enhancing the reliability and applicability of the research results.
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Abstract: Forecasting market risk lies at the core of modern empirical finance. We propose a new
self-exciting probability peaks-over-threshold (SEP-POT) model for forecasting the extreme loss
probability and the value at risk. The model draws from the point-process approach to the POT
methodology but is built under a discrete-time framework. Thus, time is treated as an integer value
and the days of extreme loss could occur upon a sequence of indivisible time units. The SEP-POT
model can capture the self-exciting nature of extreme event arrival, and hence, the strong clustering
of large drops in financial prices. The triggering effect of recent events on the probability of extreme
losses is specified using a discrete weighting function based on the at-zero-truncated Negative
Binomial (NegBin) distribution. The serial correlation in the magnitudes of extreme losses is also
taken into consideration using the generalized Pareto distribution enriched with the time-varying
scale parameter. In this way, recent events affect the size of extreme losses more than distant events.
The accuracy of SEP-POT value at risk (VaR) forecasts is backtested on seven stock indexes and
three currency pairs and is compared with existing well-recognized methods. The results remain in
favor of our model, showing that it constitutes a real alternative for forecasting extreme quantiles of
financial returns.

Keywords: forecasting market risk; value at risk; extreme returns; peaks over threshold; self-exciting
point process; discrete-time models; generalized Pareto distribution

1. Introduction

Forecasting extreme losses is at the forefront of quantitative management of market risk. More and
more statistical methods are being released with the objective of adequately monitoring and predicting
large downturns in financial markets, which is a safeguard against severe price swings and helps to
manage regulatory capital requirements. We aim to contribute to this strand of research by proposing
a new self-exciting probability peaks-over-threshold (SEP-POT) model with the prerogative of being
adequately tailored to the dynamics of real-world extreme events in financial markets. Our model
can capture the strong clustering phenomenon and the discreteness of times between the days of
extreme events.

Market risk models that account for catastrophic movements in security prices are the focal point
in the practice of risk management, which can clearly be demonstrated by repetitive downturns in
financial markets. The truth of this statement cannot be more convincing nowadays as global equity
markets have very recently reacted to the COVID-19 pandemic with a plunge in prices and extreme
volatility. The coronavirus fear resulted in panic sell-outs of equities and the U.S. S&P 500 index
plummeted 9.5% on 12 March 2020, experiencing its worst loss since the famous Black Monday crash
in 1987. Directly 2, 4, 6, and 7 business days later, the S&P 500 index registered additional huge price
drops amounting to, correspondingly, 12%, 5.2%, 4.3%, and 2.9%, respectively. At the same time,
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the toll that the COVID-19 pandemic took on European markets was also unprecedented. For example,
the German bluechip index DAX 30 plunged 12.2% on 12 March 2020, which was followed by a further
5.3%, 5.6%, 2.1% losses, correspondingly, 2, 4, and 7 business days later. The COVID-19 aftermath is a
real example that highlights the strong clustering property of extreme losses.

One of the most well-recognized and widely used measures of exposure to market risk is the
value at risk (VaR). VaR summarizes the quantile of the gains and losses distribution and can be
intuitively understood as the worst expected loss over a given investment horizon at a given level
of confidence [1]. VaR can be derived as a quantile of an unconditional distribution of financial
returns, but it is much more advisable to model VaR as the conditional quantile, so that it can
capture the strongly time-varying nature of volatility inherent to financial markets. The volatility
clustering phenomenon provides the reason for using the generalized autoregressive conditional
heteroskedasticity (GARCH) models to derive the conditional VaR measure [2]. However, over the
last decade, the conventional VaR models have been subject to massive criticism, as they failed to
predict huge repetitive losses that devastated financial institutions during the global crisis of 2007–2008.
Therefore, special focus and emphasis is now placed on adequate modeling of extreme quantiles for
the conditional distribution of financial returns rather than the distribution itself.

One of the relatively recent and intensively explored approaches to modeling extreme price
movements is a dynamic version of the POT model which relies on the concept of the marked
self-exciting point process. Unlike the GARCH-family models, POT-family models do not act on
the entire conditional distribution of financial returns. Instead, their focus moves to the distribution
tails where—in order to account for their heaviness—the probability mass is usually approximated
with the generalized Pareto distribution. Early POT models described the occurrence of extreme
returns as realizations of an independent and identically distributed (i.i.d.) variable, which led to
VaR estimates in the form of unconditional quantiles. One of the first dynamic specifications of
POT models that took into account the volatility clustering phenomenon and allowed economists
to perceive VaR as a conditional quantile was a two-stage method developed in [3]. This method
required estimating an appropriately specified GARCH-family model in the first stage and fitting
the POT model to GARCH residuals. A new avenue for forecasting VaR was opened up when the
point-process approach to POT models was released in [4]. This methodology was later extended in
several publications [5–14]. The benefit of this model is that it does not require prefiltering returns using
GARCH-family estimates while at the same time it can capture the clustering effects of extreme losses
and maintain the merits of the extreme value theory. The point-process POT model approximates the
time-varying conditional probability of an extreme loss over a given day with the help of a conditional
intensity function that characterizes the arrival rate of such extreme events. The intensity function can
either be formulated in the spirit of the self-exciting Hawkes process [4,5,10–12] (which is extensively
used in geophysics and seismology), in the form of the observation-driven autoregressive conditional
intensity (ACI) model [13], or using the autoregressive conditional duration (ACD) models [6–8]
(the last two methodologies were very popular in the area of market microstructure and the modeling
of financial ultra-high-frequency data [15–17]). In all cases, the timing of extreme losses depends on
the timing of extreme losses observed in the past.

This study does not strictly rely on the above mentioned point process approach to POT models.
The discrete-time framework of our SEP-POT model is motivated by observation of real-world financial
data measured daily, which is the most common frequency used in POT models of risk. The empirical
analysis put forward in this paper is based on the daily log returns of seven international stock indexes
(i.e., CAC 40 (France), DAX 30 (Germany), FTSE 100 (United Kingdom), Hang Seng (Hong Kong),
KOSPI (Korea), NIKKEI (Japan), and S&P 500 (U.S.)) as well as the daily log returns of three currency
pairs (JPY/USD, USD/GBP, USD/NZD). The daily log returns for the equity market were calculated
from the adjusted daily closing prices downloaded from the Refinitiv Datastream database. The foreign
exchange (FX) rates were obtained from the Federal Reserve Economic Data repository and are
measured in following units: Japanese Yen to one U.S. Dollar (JPY/USD), U.S. Dollars to one British
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Pound (USD/GBP), U.S. Dollars to one New Zealand Dollar (USD/NZD). Extreme losses are defined
as the daily negated log returns (log returns pre-multiplied by −1) whose magnitudes (in absolute
terms) are larger than a sufficiently large threshold, u. Figure 1 shows that for u corresponding to
the 0.95-quantile of the unconditional distribution of negated log returns, the daily measurement
frequency, and the broad set of financial instruments, the relative frequency mass of the time interval
between subsequent extreme losses is concentrated on small integer values. Indeed, about 45% of all
such durations is distributed on distinct discrete values of 1–5 days, and the most frequent time span
between subsequent extreme losses is one day (about 12–13% of cases).

Figure 1. Frequency histogram for the time intervals (in number of days) between subsequent extreme
losses for seven equity indexes and three FX rates between January 1981 and March 2020.

The SEP-POT model relates to the published work on the point-process approach to POT models
but is consistent with the observed discreteness of threshold exceedance durations. Thus, in our
model, the values of the time variable are treated as indivisible time units upon which extreme
losses can be observed. As a result that the extreme losses are clustered, the model incorporates
the self-exciting component. Accordingly, the extreme loss probability is affected by the series of
time spans (in number of days) that have elapsed since all past extreme loss events. We apply the
weighting function in the form of the at-zero-truncated Negative Binomial (NegBin) distribution
that allows the influence of previous extreme losses to decay over time. The functional form of the
extreme loss probability in our SEP-POT model is drawn from [18], where a very similar specification
was proposed to depict the self-exciting nature of terrorist attacks in Indonesia and forecasted the
probability of future terrorist attacks as a function of attacks observed in the past. Inspired by this
work, we check the adequacy of such a discrete-time approach in the framework of POT models of
risk. To this end, we perform an extensive validation of the SEP-POT model both in and out of sample
and compare it with three widely-recognized VaR measures: one based on the self-exciting intensity
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(Hawkes) POT model, one derived from the exponential GARCH model with skewed Student’s t
distribution (skewed-t-EGARCH) model, and the last one was delivered by the Gaussian GARCH
model. The results for VaR at high confidence levels (>99%) remain in favor of the SEP-POT model,
and hence, the model constitutes a real alternative for measuring the risk of large losses.

Section 2 outlines the point process approach to POT models, introduces the SEP-POT model,
and outlines the backtesting methods used for model validation. Section 3 presents the empirical
findings and discusses the extensive backtesting results. Finally, Section 4 concludes the paper and
proposes areas for future research.

2. Methods

2.1. Self-Exciting Intensity POT Model

Consider {Yt} (Yt ∈ R) denoting the stochastic process that characterizes the evolution of negated
daily log returns on a financial asset, being the daily log returns pre-multiplied by −1. The convention
of using negated log returns legitimizes treating extreme losses as observations that fall into the right
tail of distribution. More precisely, the extreme losses are defined as such positive realizations of Yt

that are larger than a sufficiently large threshold u. The magnitudes of extreme losses over a threshold
u, (i.e., Ȳt = Yt − u) will be referred to as the threshold exceedances. The time intervals between
subsequent threshold exceedances will be referred to as threshold exceedance durations.

Let {ti, Yti}i∈{1,2,...,n} denote an observed sample path of (1) the times when extreme losses are
observed (i.e., 0 < ti < ti+1) and (2) the corresponding magnitudes of such losses (i.e., Yti ). If one
pursued a continuous-time approach (i.e., assuming t ∈ R+), the realized sequence {ti, Yti}i∈{1,2,...,n}
of extreme returns with their locations in time can be treated as an observed trajectory of the marked
point process. Treating these instances of threshold exceedance as realizations of a random variable
allows us to model the occurrence rate of extreme losses Yti at different time points {ti}, for example,
days. An excellent introduction to the theory and statistical properties of point processes can be found
in [19].

The crucial concept in the point process theory is the conditional intensity function that
characterizes the time structure of event locations, and hence, the evolution of the point process.
The conditional intensity function is defined as follows:

λ(t|Ft) = lim
Δ↓0

Pr
[(

N(t, t + Δ]
)
> 0|Ft

]
Δ

, (1)

where N(t, s] denotes a number of events in (t, s]. Note that the conditional intensity function can
intuitively be treated as the instantaneous conditional probability of an event (per unit of time)
immediately after time t. To account for the clustering of extreme losses, λ(t|Ft) depends on Ft being
an information set available at t, consisting of the complete history of event time locations and their
marks, (i.e., Ft ≡ σ{(ti, Yti ), ∀i : ti ≤ t}). If λ(t|Ft) was constant over time (i.e., λ(t|Ft) = λ) then
for ti ∈ [0, ∞) the point process would correspond to a homogeneous Poisson point process with an
arrival rate λ.

The notion of the conditional intensity facilitates the derivation of the conditional VaR measure.
The VaR at a confidence level 1 − q, (i.e., q ∈ (0, 1) denotes a VaR coverage level), represents a qth
quantile in the conditional distribution of financial returns. After taking advantage of working with
the negated log returns and based on the notation introduced so far, the VaR (for a coverage level q)
estimated for a day t + 1 can be derived from the following equation:

Pr(Yt+1 > yq,t+1|Ft) = q. (2)

Hence, the VaR for a coverage rate q is equal to yq,t+1, because the probability that a (negated) return
exceeds the threshold value yq,t+1 over a day t + 1 is equal to q. This probability can be further
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rewritten as a product of: (1) the probability of an extreme loss arrival (i.e., a threshold exceedance)
over day t + 1 (given Ft), and (2) the conditional probability that the size of this extreme loss is larger
than yq,t+1 (given that an extreme loss was observed over day t + 1):

Pr(Yt+1 > u|Ft)Pr(Yt+1 > yq,t+1
∣∣Yt+1 > u;Ft) = q. (3)

The early, classical POT model of the extreme value theory (EVT) (The EVT offers two major
classes of models for extreme events in finance: (1) the block maxima method, which uses the largest
observations from samples of i.i.d. data, and (2) the POT method, which is more efficient for practical
application because it uses all large realizations of variables, provided that they exceed a sufficiently
high threshold. A detailed exposition of these methods can be found in [20].) assumes that the financial
return data is i.i.d. Hence, threshold exceedances are also i.i.d homogeneous Poisson distributed in
time. Accordingly, the probability of observing a threshold exceedance over given day t is constant
and can be estimated as a proportion of threshold exceedances in the sample (i.e., n/T, where n is the
number of threshold exceedances and T denotes the length of time series of financial returns). By this
logic, the standard POT model neglects repeated episodes of increased volatility and therefore also
ignores the clustering property of extreme losses. As noted in [20], the standard POT model is not
directly applicable to financial return data.

The more recent dynamic versions of the classical POT model found in several studies (i.e., [4–14]),
are directly motivated by the behavior of the non-homogeneous Poisson point process, where the
intensity rate of threshold exceedances, λ(t|Ft), can vary over time due to the temporal bursts in
volatility. According to such a point process approach to POT models, the first factor on the left-hand
side of Equation (3) (i.e., the conditional probability of a threshold exceedance over day t + 1) can be
derived based on the (time varying) conditional intensity function as follows:

Pr(Yt+1 > u|Ft) = Pr [N(t, t + 1] > 0|Ft]

= 1 − Pr [N(t, t + 1] = 0|Ft]

= 1 − exp
(
−
∫ t+1

t
λ(v|Fv) dv

)
, (4)

because the probability of no events in (t, s] (i.e., N(t, s] = 0) can be given as Pr(N(t, s] = 0|Ft) =

exp
(− ∫ s

t λ(v|Fv) dv
)

[21].
The POT models use the Pickands–Balkema–de Haan’s theorem of EVT, which allows us to

approximate the second factor on the left-hand side of Equation (3) (i.e., the conditional probability that
Yt+1 exceeds yq,t+1, given that it surpassed the threshold u) using the generalized Pareto distribution,
as follows:

Pr(Yt+1 − u > yq,t+1 − u|Yt+1 > u;Ft) = 1 − Pr(Yt+1 − u ≤ yq,t+1 − u|Yt+1 > u;Ft)

≈ 1 − FGP(yq,t+1 − u|Yt+1 > u;Ft)

=

(
1 + ξ

yq,t+1 − u
σ

)−1/ξ

+
, (5)

where FGP(·) denotes the cumulative distribution function of the generalized Pareto (GP) distribution
with the scale parameter σ ∈ R>0 and the shape parameter ξ ∈ R 
=0. If ξ → 0, FGP(·) tends to the
cumulative distribution function of an exponential distribution.

Equations (3)–(5) provide the grounds for the derivation of VaRq,t+1, as follows:

VaRq,t+1 =

⎡⎢⎣
⎛⎝ q

1 − exp
(
− ∫ t+1

t λ(v|Fv)dv
)
⎞⎠−ξ

− 1

⎤⎥⎦ · σ

ξ
+ u. (6)
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The dynamic versions of the POT models benefit from both (1) the point process theory,
which allows for the time-varying intensity rate of threshold exceedances, and hence, the clustering of
extreme losses, and (2) the EVT, which allows us to account for the tail risk of financial instruments.
Thus, the forecasts of daily VaR can be time-varying and react to the new information. (The early,
classical POT models of EVT assume a constant intensity, λ, and a constant scale parameter of the
GP distribution for threshold exceedances, σ. Accordingly, the VaR level is constant over time:

VaRq =

[(
qT
n

)−ξ − 1
]
· σ

ξ + u.) In empirical applications, appropriate dynamic specifications of

selected components in Equation (6) are needed. One possible way of specifying the time-varying
conditional intensity function λ(t|Ft) is provided by the Hawkes process [19]. The Hawkes process
belongs to the class of so called self-exciting processes where past events can accelerate the occurrence
of future events. Accordingly, the conditional intensity function is defined as follows:

λ(t|Ft−) = μ +
∫ t

−∞
w(t − v) dN(v)

= μ + ∑
ti<t

w(t − ti), (7)

where μ ∈ R>0 denotes a constant and w(·) refers to a non-negative weighting function that captures
the impact of past events, (i.e., extreme-loss days). Accordingly, each threshold exceedance at ti < t
contributes an amount w(t − ti) to the risk of an extreme loss at t. This is necessary to provide a
convenient parametric functional form for w(·). The well-recognized weighting function that we apply
in the empirical portion of this paper is an exponential kernel function, given as follows:

w(x) = α exp(−β x), (8)

where α ∈ R≥0, β ∈ R≥0 are the parameters to be estimated. Accordingly, λ(t|Ft−) is based on the
summation of exponential kernel functions evaluated at the time intervals that start at the times of
previous extreme losses (i.e., ti) and last up to time t. The parameters α and β capture, correspondingly,
the scale (i.e., the amplitude) and the rate of decay characterizing an influence of past events on
the current intensity. The point process features the self-excitation property because the conditional
intensity function rises instantaneously after an extreme loss is registered, which, in the aftermath,
triggers the arrival of next events. This mechanism results in the clustering effect, characterizing the
location of extreme losses in time. The time-varying nature of the conditional intensity function results
in the fluctuations of VaR (see Equation (6)). On top of the clustering feature, the self-exciting intensity
POT (i.e., SEI-POT) model for VaR (c.f., Equation (6)) can be further extended to account for the serial
correlation in the magnitudes of the threshold exceedances. This can be achieved by providing an
appropriate dynamic model for the scale parameter of the GP distribution in Equation (5). In the
empirical portion of this paper we use the following specification:

σt = σ(Ȳt|Ft−) = μs + ∑
ti<t

αsȲti exp(−βs(t − ti)), (9)

where μs ∈ R>0, αs ∈ R≥0, βs ∈ R≥0 denote the parameters to be estimated. Accordingly, the threshold
exceedance magnitude is affected by the sizes and times of past threshold exceedances.

Unlike standard POT models, where the times of threshold exceedances are assumed to be
i.i.d distributed according to the homogeneous Poisson process and the magnitudes of threshold
exceedances are assumed to be i.i.d. GP distributed, the dynamic point-process-based variants of
the POT models allow for a time-varying intensity rate of threshold exceedances and a time-varying
expected magnitude of these threshold exceedances. Accordingly, the VaR is also time-varying.
The interplay of fluctuations in λ(t|Ft) and in the scale parameter of the GP distribution for the
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threshold exceedances, σt, elevates VaR in turbulent periods of financial turmoil and decreases its level
during calm periods. Hence, the VaR adjusts to observed market conditions.

2.2. Self-Exciting Probability POT Model

In this section we introduce the self-exciting probability POT model that obeys the natural
distinction between the processes defined in discrete and continuous time. The structure of our model
still draws from Equation (3), but we treat time as if it was composed of indivisible distinct units
(days). Therefore, we refrain from approximating the conditional extreme loss probability using
the conditional intensity function that characterizes the evolution of point process in continuous
time. As a result that we formulate our model in discrete time, we directly describe the conditional
probability of an extreme loss over day t, as follows:

pt = Pr(Yt > u|Ft−1) = g(λ̃t), (10)

where g(·) ∈ (0, 1) denotes a link function. One possible choice of specifying g(·) (cf., [18]) is:

pt = 1 − exp(−λ̃t), (11)

where pt ∈ (0, 1) if λ̃t > 0.
Based on [18], the conditional probability of an extreme loss arrival over day t can be described in

a dynamic fashion that exposes the self-exciting nature of the SEP-POT model as follows:

λ̃t = μ + α ∑
ti<t

g(t − ti), (12)

where μ ∈ R>0 denotes a constant determining a baseline probability, α ∈ R≥0 determines the
scale (amplitude) of the impact that the time location of the ith past extreme-loss event exerts on
pt, and g(·) ≥ 0 denotes the weighting function (i.e., discrete kernel function) that makes the past
extreme-loss events less impactful than the more recent events. We specify g(·) as the probability
function of the at-zero-truncated negative binomial (NegBin) distribution.

A probability function of a NegBin distribution is:

f (x; ω, κ) =
Γ(κ + x)

Γ(κ)Γ(x + 1)

(
κ

κ + ω

)κ ( ω

ω + κ

)x
, x = 0, 1, 2, · · · , (13)

where ω ∈ R>0 and κ ∈ R>0 are the parameters of the distribution and E(u) = ω and Var(u) =

ω + ω2/κ. For κ → ∞, the NegBin distribution converges to a Poisson distribution. For κ = 1,
the geometric distribution is obtained.

The at-zero-truncated NegBin distribution was formerly used in high-frequency-finance for
modeling the non-zero price changes of financial instruments [22,23]. The probability function of
at-zero-truncated NegBin distribution is given as g(x; ω, κ) = f (x; ω, κ)/(1 − f (0; ω, κ)) (for x =

1, 2, ...), where f (0; ω, κ) = (κ/(κ + ω))κ :

g(x; ω, κ) =
Γ(κ + x)

Γ(κ)Γ(x + 1)

[(
κ + ω

κ

)κ

− 1
]−1 (

ω

ω + κ

)x
, x = 1, 2, · · · , (14)

Figure 2 illustrates the self-exciting property of the SEP-POT model. The plots shown in the upper
row depict the at-zero-truncated NegBin kernel functions evaluated at the time distances to previously
observed events (i.e., g(t − ti) ∀i : ti < t). The impact of past events on pt diminishes with time and
the shape of decay is determined by parameters ω and κ. The scale of this impact is determined by
α. The resulting conditional probability function of an extreme loss arrival is therefore based on the
summation of the weighted kernel functions based on all the backward recurrence times. The choice
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of an at-zero-truncated NegBin distribution guarantees flexibility in feasible shapes of the weighting
function to properly reflect the dynamic properties of the data.
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Figure 2. Illustration of the self-exciting probability model for eight events. Upper rows: Feasible
shapes of the weighting functions g(t − ti), ∀i ti < t, at μ = 0.01, α = 0.5 (red lines indicate times of
events). Lower row: The resulting probability pt.

Like in existing dynamic extensions of the POT methodology, the threshold exceedance
magnitudes in the SEP-POT model are described using the generalized Pareto distribution with
the time-varying scale parameter. We specify this parameter as follows:

σt = σ(Ȳt|Ft−1) = μs + αs ∑
ti<t

Ȳti gs(t − ti; ωs), (15)

where μs ∈ R>0 is a constant, αs ∈ R≥0 is a scale parameter, and gs(x; ωs) (for x = 1, 2, ...,)
denotes the nonnegative discrete weighting (kernel) function. For this purpose, we use a PDF
of a geometric distribution with parameter ωs ∈ R>0, because it constitutes a natural discrete
counterpart to an exponential distribution used in the continuous-time framework of the SEI-POT
model (see Equation (9)). Hence, the magnitude of the threshold exceedance awaited at t is affected by
the times and sizes of all previously observed threshold exceedances. The monotonically decaying
weighting function allows distant events to affect the magnitudes of losses less than the recent
events do.

The SEP-POT model assumes that the density function f u
Yt
(yt|Ft−1), depicting the right tail of the

distribution of the negated financial returns, has the following form:

f u
Yt
(yt|Ft−1) = p

1{t=ti}
t · (1 − pt)

(1−1{t=ti}) (16)

·
(

1
σt

(
1 + ξ

yt − u
σt

)−1/ξ−1

+

)1{t=ti}
,

which means that Yt either surpasses the threshold u, i.e., belongs to the right tail of distribution
(1{t=ti} = 1), and hence, is drawn from the generalized Pareto distribution with probability pt, or does
not belong to the distribution tail (1{t=ti} = 0) with probability 1 − pt.
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This reasoning allows us to formulate the log-likelihood function of the SEP-POT model as the
sum of two log-likelihoods as follows:

lnL = lnL1 + lnL2, (17)

where:

lnL1 =
T

∑
t=1

[
1{t=ti} ln(pt) + (1 − 1{t=ti}) ln(1 − pt)

]
(18)

=
T

∑
t=1

[
1{t=ti} ln(exp(λ̃t)− 1)− λ̃t

]
,

and

lnL2 = −(1/ξ + 1)
n

∑
i=1

ln
(

1 + ξ
yti − u

σt

)
−

n

∑
i=1

ln(σt). (19)

The VaR for a coverage rate q forecasted for day t (based on the information up to and including day
t − 1) can be derived from the SEP-POT model as follows:

q = Pr(Yt > u|Ft−1)Pr(Yt > yq,t
∣∣Yt > u;Ft−1) (20)

= pt

(
1 + ξ

yq,t − u
σt

)−1/ξ

.

Hence:

VaRq,t =

[(
q

1 − exp(−λ̃t)

)−ξ

− 1

]
· σt

ξ
+ u. (21)

The SEP-POT model provides the grounds not only to derive the VaR, but also the expected
shortfall (ES). Unlike the VaR, the ES is a coherent risk measure. It represents the conditional expectation
of loss given that the loss lies beyond the VaR [24]. Accordingly, the ES corresponding to a coverage
rate q, forecasted for a day t based on the information set up to and including day t − 1 is defined
as following:

ESq,t = E(Yt
∣∣Yt > VaRq,t;Ft−1). (22)

Equation (22) can be also rewritten as follows:

ESq,t = VaRq,t + E(Yt − VaRq,t
∣∣Yt > VaRq,t;Ft−1). (23)

The ES can be derived based on the standard definition of the mean excess function for the GP
distribution. For u′ > u, the mean excess function e(u′) corresponding to the GP distribution (where
σ > 0, 0 < ξ < 1) is defined as:

e(u′) = E(Yt − u′∣∣Yt > u′) = σ + ξ(u′ − u)
1 − ξ

. (24)

Hence, the expected size of losses exceeding the threshold u′ is a linear function of u′ − u. The ES
forecasts from the SEP-POT model can be derived by applying the definition of e(u′) to Equation (23)
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and by specifying the scale parameter of the GP distribution, σ, according to Equation (15). This leads
to the formula for ES as follows:

ESq,t = VaRq,t +
σt + ξ(VaRq,t − u)

1 − ξ
(25)

=
VaRq,t + σt − ξu

1 − ξ
.

2.3. Backtesting Methods

We use four backtesting procedures to assess the accuracy of the VaR delivered by the SEP-POT
model. Each of these methods refer to the notion of a VaR exceedance or a VaR violation, being a
binary indicator function, It, defined as follows:

It =

{
1, for Yt > VaRq,t

0, for Yt ≤ VaRq,t.

The backtesting is based on the comparison of forecasted daily VaR numbers with observed
daily returns over a given period. A VaR exceedance occurs when an actual loss is larger than
the VaR predicted for that day. If the SEP-POT model were a true data generating process,
than, ∀t Pr(It = 1|Ft−1) = q, which implies that the VaR violations would be i.i.d.

2.3.1. Unconditional Coverage Test

The first test that we consider is a widely used unconditional coverage (UC) test [25] where
the null hypothesis states that the proportion of VaR exceedances according to a risk model (i.e., π)
matches with the assumed coverage level for VaR (i.e., q): H0 : π = q. The UC test is formulated as a
likelihood ratio test which compares two Bernoulli likelihood functions. Asymptotically, as the number
of observations T goes to infinity, the test statistic is distributed as χ2 with one degree of freedom:

LRUC = −2 ln
{

qT1(1 − q)1−T1 /
[
(T1/T)T1(1 − T1/T)1−T1

]}
∼ χ2

1, (26)

where T1 denotes the number of VaR violations in the sample of T returns.

2.3.2. Conditional Coverage Test

The second test is the conditional coverage (CC) that not only verifies the correct coverage but
also sheds light on the independence of VaR violations over time [26]. This test was established in such
a way that it aims to reject the VaR models when a risk model produces either the incorrect proportions
or the clusters of exceedances. To this end, the process of VaR violations is described by a first-order
Markov model and the CC test is based on the estimated transition matrix, as follows:[

π̂00 π̂01

π̂10 π̂11

]
=

[
T00/(T00 + T01) T01/(T00 + T01)

T10/(T10 + T11) T11/(T10 + T11),

]
(27)

where π00 and π01 denote, correspondingly, the conditional probability of no VaR violation and a
VaR violation (today), given that yesterday there was no VaR violation. Analogously, π11 and π10

denote, correspondingly, the conditional probability of a VaR violation and no VaR violation (today)
directly after a VaR violation yesterday. As given in Equation (27), the elements of the transition matrix
are estimated with the actual proportions of VaR violations, where Tij, for i ∈ {0, 1}, j ∈ {0, 1} is the
number of (negated) returns with the indicator function It equal to j directly following an indicator’s
value i. The CC null hypothesis states that the conditional probability of a VaR violation directly after
another VaR violation is the same as the conditional probability of a VaR violation after no violation
and, at the same time, it is equal to the assumed coverage level for VaR (i.e., H0 : π01 = π11 = q).
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Asymptotically, as the number of observations T goes to infinity, the test statistic LRCC is distributed
as a χ2 with two degrees of freedom:

LRCC = −2 ln
{

qT1(1 − q)1−T1 /
[
(1 − π̂01)

T00 π̂
T01
01 (1 − π̂11)

T10 π̂T11
11

]}
∼ χ2

2 (28)

However, because the CC test is established on the Markov property of the violation process, it is
sensitive to the dependence of order one only. Therefore, the CC test cannot be used to verify whether
the current VaR exceedance depends on the sequence of states that preceded the last one.

2.3.3. Dynamic Quantile Conditional Coverage Test

The next two backtesting methods shed more light on the higher-order autocorrelation in the
process of VaR violations. They also allow us to conclude whether the violations are affected by some
previously observed explanatory variables. The first test is a dynamic quantile (DQ) test [27] that is
based on a hit function, as follows:

Hitt = It − q. (29)

The correctly specified VaR model should form the Hitt sequence with a mean value insignificantly
different from 0, because Hitt equals 1 − q, each time Yt is larger than the daily VaR and −q, otherwise.
Moreover, there should be no correlation between the current and the lagged values of the Hitt

sequence or between the current values of the Hitt sequence and the current VaR. If the risk model
corresponds to the true data generating process, the conditional expectation of Hitt should be 0 given
any information known at t − 1. The DQ test that we use in the empirical section of our paper can be
derived as the Wald statistic from an auxiliary regression, as follows:

Hitt = φ0 +
4

∑
j=1

φj Hitt−j + φ5VaRq,t + εt. (30)

The null hypothesis states that the current value of a hit function (i.e., Hitt) is not correlated with
its four lags and the forecasted VaR (i.e., VaRq,t which is based on information known at t − 1).
Thus H0 : φj = 0 ∀j ∈ {0, ..., 5}. Hence, the null hypothesis states that the coverage probability
produced by a risk model is correct (i.e., φ0 = 0) and none of the five explanatory variables affects Hitt.
Hence, the DQ test statistic is asymptotically χ2 distributed with six degrees of freedom:

DQ =
Hit′X(X′X)−1X′Hit

q(1 − q)
∼ χ2

6, (31)

where Hit denotes a T × 1 vector with observations of Hitt variable and X denotes the standard
T × 6 matrix containing a column of ones and observations on the five explanatory variables at times
t = 1, ..., T, according to the regression given in Equation (30).

2.3.4. Dynamic Logit Conditional Coverage Test

The dynamic logit test of conditional coverage might be treated as an extension of the DQ
conditional coverage test [28]. This method considers the dichotomous nature of VaR violations.
Accordingly, instead of the linear regression given by Equation (30), this test is established based on
the dynamic logit model for It: E[It|Ft−1] = Pr(It|Ft−1) = F(at), where F(·) denotes the cumulative
distribution function of a logistic distribution and at is specified as follows:

at = φ0 + φ1at−1 + φ2 It−1 + φ3VaRq,t, (32)

The autoregressive structure of Equation (32) allows us to better capture the dependence of a VaR
violation probability upon possible explanatory factors. The null hypothesis is H0 : φ0 = F−1(q),
φ1 = φ2 = φ3 = 0. Thus, the null states that the coverage probability delivered by a risk model
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corresponds to the assumed coverage rate for VaR (i.e., φ0 = F−1(q)) and none of regressors used in
Equation (32) causes an incidence of VaR violation. The test statistic can be established as a likelihood
ratio test statistic. Accordingly, it requires estimating the model given by Equation (32) and comparing
its empirical log likelihood, lnLF, with the restricted log likelihood under the null lnLR. Under the
null, the LR test statistic is χ2 distributed with four degrees of freedom:

LRDL = −2 {lnLR − lnLF} ∼ χ2
4. (33)

3. Results and Discussion

In our empirical study we use daily log-returns from seven major stock indexes worldwide
(CAC 40, DAX 30, FTSE 100, Hang Seng, KOSPI, NIKKEI, and S&P 500) and three currency pairs
(JPY/USD, USD/GBP, USD/NZD). The CAC 40, DAX 30, and FTSE 100 are the major equity
indexes in France, Germany, and U.K., respectively, and they are often perceived as the proxies
or the real-time indicators for a much broader European stock market. The Hang Seng, KOSPI,
and NIKKEI demonstrate the investment opportunity on the largest Asian equity markets in Hong
Kong, South Korea, and Japan, respectively. S&P 500 constitutes a widely-investigated benchmark
stock index reflecting the state of the overall U.S. economy. These seven indices monitor the state of
the international equity market in its three global financial centers—western Europe, eastern Asia,
and the U.S. As far as selection of the FX rates is concerned, according to [29], the JPY/USD and
USD/GBP are the second and third most traded currency pair in the world, after EUR/USD (We did
not investigate the EUR/USD currency pair due to a much smaller number of observations when
comparing to the other time series; the euro was launched on 1 January 1999). The NZD/USD, often
nicknamed as the Kiwi by FX traders, is a classical example of the commodity currency pair that
co-fluctuates with the world prices of primary commodities (i.e., New Zealand exports oil, metals,
dairy, and meat products). The New Zealand Dollar is also treated by international investors as a
carry trade currency—therefore, it is very sensitive to interest rate risk. For each of these financial
instruments we split the data spanning over a four-decades-long period into: (1) the in-sample data
(i.e., 2 January 1981–31 December 2014) dedicated to the estimation and evaluation of our models and
(2) the out-of-sample data (i.e., 2 January 2015–31 March 2020) which is reserved for VaR backtesting
purposes. For each of the time series, the initial threshold u was set as the 95%-quantile of the in-sample
unconditional distribution of negated log returns. Hence, the 5% largest negated returns were defined
as extreme losses, which means that, on average, an extreme loss can be observed with probability
0.05. The selection of the threshold value u was a compromise between (1) the desired number of
observations in the tail of the distribution to reduce noise and to ensure stability in parameter estimates
(i.e., the lower the u, the more observations used for estimation) and (2) the goodness-of-approximation
of the threshold exceedance distribution with the GP distribution (i.e., the higher the u, the better
the approximation with the GP distribution). The latter issue was solved using two diagnostic tools,
that confirmed the adequate goodness-of-fit of the conditional GP distribution. We used the D-test
proposed in Ref. [30] and the χ2 test for uniformity of probability integral transforms (PIT) based
on the GP density estimates. Figure 3 illustrates extreme losses corresponding to the German DAX
30 index between January 1981 and March 2020. The examination of panels [a] and [b] allows us to
conclude that the periodic volatility bursts are paralleled with the strong clustering effects for both (1)
the magnitudes of extreme losses and (2) the days that they occur. Indeed, the quantile-quantile (QQ)
plot (panel [c]) comparing empirical quantiles of the time intervals between subsequent extreme-loss
days against the quantiles of an exponential distribution proves that the times of extreme losses are
not distributed according to the homogeneous Poisson point process. Clustering of extreme events is
also demonstrated by the shape of the autocorrelation function (ACF), indicating significant positive
autocorrelations in both time intervals between successive threshold exceedances and the observed
magnitudes of such exceedances.
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Figure 3. Panel (a) presents the daily log returns for the DAX index between Jan. 1981 and March 2020,
panel (b) shows the corresponding ground-up threshold exceedances (i.e., the magnitudes of losses
over the threshold u), panel (c) illustrates the quantile-quantile plot of inter-exceedance durations
(in number of days) against the exponential distributions, and panels (d,e) present the autocorrelation
functions for the inter-exceedance durations and the threshold exceedances, respectively.

The descriptive statistics of the CAC 40, DAX 30, and FTSE 100 data are summarized in Table 1
(analogical results for the remaining time series can be obtained from the author upon request).
We see that for the CAC 40, DAX 30, and FTSE 100, the threshold exceedances were obtained as the
losses surpassing u that is equal to 0.021, 0.021, and 0.017, respectively. Out of 8574 (CAC 40), 8563
(DAX 30), and 7826 (FTSE 100) daily log returns in-sample, these threshold values allow us to expose,
correspondingly, 429, 428, and 391 extreme losses that were used for the model estimation purposes.
For the FTSE 100 index, we have less observations (corresponding to three years: 1981–1983), because
the in-sample period starts on 3 January 1984, when the FTSE 100 index was established. Although the
official base date for the DAX 30 index is 31 December 1987, the DAX 30 index was linked with the
former DAX index which dates back to 1959. The official base date for the CAC 40 also begins on
31 December 1987, but between 2 January 1981 and 30 December 1987 it could be measured as the
“Insee de la Bourse de Paris.” The threshold-exceedance durations cover a very wide range of observed
values. For example, for the FTSE 100 index, the range spans from one day (with the relative frequency
equal to 12.8% in-sample and 11.3% out-of-sample) up to 304 days in-sample or 205 days out-of-sample.
In-sample, the largest threshold exceedance, equal to 0.114, was observed on the Black Monday of
20 October 1987 and it corresponded to a 12.22% decrease of the index. Out-of-sample, the maximum
threshold exceedance is equal to 0.099 (a 10.87% plunge in the index) and was observed on the Black
Thursday of 12 March 2020, being a single day in a chain of stock market crashes induced by the
COVID-19 pandemic.

Realized gains and losses are measured over distinct days, and hence, the time spans between
extreme losses are comprised of discrete time units (i.e., days). The scale of this phenomenon can be
seen by looking at the considerable proportion of threshold exceedance durations equal to one, two,
or three (business) days. Moreover, about 45% of such durations is less than or equal to five days and
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over 60% are less than or equal to ten days. Another striking observation from Table 1 is the clustering
of extreme losses. Large losses tend to occur in waves, which is seen from the Ljung-Box test statistics
Q(k) (where k ∈ {5, 10, 15}) for the lack of up to kth-order serial correlation. These test statistics are
significantly different from zero, and hence, the null hypothesis of no autocorrelation in threshold
exceedance durations must be rejected. Indeed, due to the COVID-19 outbreak, between 24 Februry
and 31 March 2020 (i.e., over 27 business days) the CAC 40, DAX 30, and FTSE 100 suffered from as
many as 10 (CAC40 and DAX 30) or 11 (FTSE 100) extreme losses (with the shortest and the longest
threshold exceedance durations equal to one and five business days only, respectively). Extreme loss
days tended to occur very close to each other, but this phenomenon is paralleled by the significant
autocorrelation in the magnitudes of observed threshold exceedances. Based on the Ljung-Box test
results, the null hypothesis of no autocorrelation in the threshold exceedance sizes needs to be rejected.
The observed threshold exceedance durations are by their very nature discrete and feature strong
positive autocorrelation. Therefore, our SEP-POT model is suitably tailored to this data.

Table 1. Descriptive statistics for the threshold exceedance durations and the threshold exceedance
magnitudes for the CAC 40, DAX 30, and FTSE 100 indexes. (Q(k) denotes the Ljung-Box test statistics
for the lack of autocorrelation up to k-th order; Q(k) ***, Q(k) **, and Q(k) * denote the statistics
significant at the 1%, 5%, and 10% levels).

CAC 40 DAX 30 FTSE 100

In-Sample Out-of-Sample In-Sample Out-of-Sample In-Sample Out-of-Sample

no. of
daily returns 8574 1342 8563 1326 7826 1327
threshold value 0.021 0.021 0.021 0.021 0.017 0.017

no. of
exceedances (n) 429 48 428 59 391 53

threshold exceedance durations

Min 1 1 1 1 1 1
Max 397 414 378 345 304 205
#1{ti−ti−1=1}

n 0.121 0.104 0.135 0.119 0.128 0.113
#1{ti−ti−1=2}

n 0.128 0.104 0.138 0.085 0.110 0.132
#1{ti−ti−1=3}

n 0.086 0.145 0.096 0.153 0.087 0.132
#1{ti−ti−1<=5}

n 0.441 0.438 0.486 0.424 0.455 0.453
#1{ti−ti−1<=10}

n 0.629 0.625 0.645 0.610 0.652 0.566
Mean 19.965 27.917 19.988 22.441 19.992 25
SD 40.002 66.572 41.786 49.212 40.245 42.287
Q(5) 83.307 *** 10.304 * 101.787 *** 5.688 69.617 *** 15.757 ***
Q(10) 91.822 *** 11.844 125.821 *** 9.206 108.4010 *** 20.790 **
Q(15) 95.692 *** 15.182 131.185 *** 11.796 134.1770 *** 31.453 ***

threshold exceedance magnitudes

Min <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Max 0.130 0.110 0.116 0.109 0.114 0.099
Mean 0.011 0.015 0.012 0.012 0.010 0.012
SD 0.014 0.020 0.014 0.017 0.012 0.016
Q(5) 92.293 *** 14.309 ** 51.668 *** 16.47251 *** 174.289 *** 27.924 ***
Q(10) 95.931 *** 16.093 * 61.467 *** 17.225 * 198.963 *** 28.375 ***
Q(15) 97.429 *** 17.579 66.683 *** 18.845 200.149 *** 28.954 **

The SEP-POT model was estimated by maximizing the log likelihood function given in
Equations (17)–(19). To this end, we used the constrained maximum likelihood (CML) library of
the Gauss mathematical and statistical system. The standard errors of the parameter estimates were
derived from the asymptotic covariance matrix based on the (inverse) of a computed Hessian. Table 2
presents the estimation results for the CAC 40, DAX 30, and FTSE 100 (analogical results for the
remaining time series can be obtained from the author upon request). The parameter estimates
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responsible for the self-excitement mechanism, both in the probability of threshold exceedances (i.e.,
α̂, ω̂, κ̂) and the magnitudes of these exceedances (i.e., α̂s, ω̂s) are highly statistically significant.
The parameter estimates for DAX 30 and CAC 40 indices look very much alike, especially for the
conditional probability of threshold exceedances, which means that these two stock markets are closely
related to each other.

Table 2. Maximum likelihood (ML) parameter estimates of the self-exciting probability peaks-over-
threshold (SEP-POT) for the CAC 40 and DAX 30 indices. Standard errors given in brackets.

Parameter CAC 40 DAX 30 FTSE 100

model for the probability of threshold exceedances

μ 0.017 (0.002) 0.014 (0.002) 0.012 (0.002)
α 0.710 (0.052) 0.776 (0.053) 0.823 (0.063)
ω 13.452 (1.583) 13.919 (1.531) 20.923 (4.831)
κ 0.719 (0.086) 0.751 (2.806) 1.655 (0.490)

model for the sizes of threshold exceedances

μs 0.006 (0.000) 0.006 (0.001) 0.005 (0.001)
αs 2.225 (0.389) 2.242 (0.388) 2.583 (0.457)
ωs 7.161 (2.272) 10.439 (3.793) 12.624 (4.075)
ξ 0.122 (0.044) 0.110 (0.042) 0.070 (0.038)
AIC 16.001 15.997 15.978
BIC 72.454 72.439 71.701

Obtained series for p̂t, σ̂t, and ˆVaR0.01,t are illustrated in Figure 4. The extreme loss probability
(i.e., p̂t) features a strong self-excitation property because it reacts to extreme-loss days with abrupt
increases and, if there are no further intervening events, it slowly wanders in the downward direction.
In calm and prosperous periods of the stock market history, the path of p̂t rests on very low levels.
However, in turbulent periods, when the location of extreme-loss days is very dense, p̂t tends to
involve very high numbers. More specifically, persistently elevated p̂t levels can be seen during
the market downturn of 2002–2003 and the global crisis of 2008–2009. For the CAC 40 and FTSE
100, the highest in-sample p̂t level, equal to 0.2834 (CAC 40) and 0.3082 (FTSE 100), was reached on
Monday, 24 November 2008. Both maximum values were triggered by a self-excitation mechanism
during the prevailing stock market turmoil. Directly before 24 November 2008 the market suffered
three consecutive extreme-loss days–November 19. (Wednesday), 20. (Thursday) and 21. (Friday).
For the DAX 30 index, the in-sample p̂t peaked to its highest level (0.3126) on 11 November 1987,
in the aftermath of 10 steep losses that started on the Black Monday of 19 October. The last three
were observed on three business days, 6–10 November 1987. Out-of-sample, the highest p̂t levels of
0.2298 (CAC 40), 0.2416 (DAX 30), and 0.2339 (FTSE 100) corresponded to 24 March 2020 (CAC 40 and
DAX 30) and 19 March 2020 (FTSE 100). COVID-19-induced anxiety before 24 March, resulted in the
concentration of six threshold exceedances for CAC 40 and DAX 30 in March 2020 alone, where the
last of these threshold exceedances took place just one day before the highest p̂t level was reached on
23 March 2020.

Observed fluctuations of p̂t are accompanied with the strongly time-varying behavior of σ̂t (i.e.,
the estimate of the dispersion parameter in the conditional distribution of threshold exceedances).
The losses exceeding u trigger upward jumps in both numbers, boosting the awaited probability
and the size of a threshold exceedance. For the CAC 40 index, σ̂t peaked to its highest level (0.059)
on 15 May 1981, due to enormous panic and sell-offs on the Paris Bourse just days before Francois
Mitterand announced hostile reforms for the stocks quoted at the Bourse. Indeed, the preceding days
saw the CAC 30 index plunge by over 30%. The UK and German markets were mostly untouched by
these French policy-oriented events, and the highest σ̂t was registered on 27 October 1987 (FTSE 100)
and 29 October 1987 (DAX 30) at the levels of 0.051 (FTSE 100) and 0.042 (DAX 30), just after a few
huge price drops were observed including the famous Black Monday on 19 October 1987. Note, that
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the maximum σ̂t levels do not have to coincide with those of p̂t. This is because σ̂t is also affected by
the magnitude of past threshold exceedances. For all data in this study, the highest out-of-sample σ̂t

levels were registered in the second half of March 2020.
The self-triggering nature of p̂t and σ̂t give rise to variations in daily VaR, as shown in the panel

[c] of Figure 4. What catches special attention is that the obtained path of VaR estimates tends to adjust
to both periods of calm and turmoil in the history of equity markets—it quickly reacts to price jumps
and bursts in volatility and accounts for persistent swings in stock prices.
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Figure 4. Estimation results from the SEP-POT models: the conditional probability of a threshold
exceedance (i.e., pt, panel (a)); the time-varying scale parameter of the generalized Pareto (GP)
distribution for the magnitudes of threshold exceedances (i.e., st panel (b)); the daily value at risk (VaR)
at the confidence level 99 % (in blue color) that overlays the (negated) log returns (panel (c)). The days
of extreme losses were marked in red. The shadowed area corresponds to the out-of-sample period.

We verified whether the SEP-POT model is appropriate for forecasting the daily VaR. To ensure a
big-picture perspective over its usefulness in diverse practical applications, we derived the daily VaR
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levels for six assumed theoretical coverage rates (i.e., for q ∈ {0.05, 0.025, 0.01, 0.005, 0.0025, 0.001}),
and compared them with corresponding VaR numbers from three competing risk models (i.e.,
the self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model with the skewed-t
distributed innovations and the standard GARCH(1,1) model with normally-distributed innovations).
For the sake of fair comparison between the four risk models under study, the accuracy of VaR forecasts
was validated with four backtesting procedures. Moreover, each of these statistical routines was
distinctly applied to examine the following: (1) the in-sample goodness-of-fit and (2) the out-of-sample
accuracy. Considering ten financial instruments under study, six coverage levels for VaR (q) and
four models (SEP-POT VaR, SEI-POT VaR, skewed-t-EGARCH VaR, and Gaussian GARCH VaR),
we ended up with 240 VaR series in-sample and 240 series out-of-sample. Therefore, for clarity of
exposition, the backtesting results were summarized in the form of heatmap graphs (cf., Figures 5–8).
Heatmaps use a grid of colored rectangles across two axes where the horizontal axis corresponds to
the assumed VaR coverage level and the vertical axis corresponds to the financial instrument under
study. The color of each little rectangle (in shades of red and green) reflects the p-value of a backtesting
procedure. The white colour corresponds to a p-value equal to 0.05. The darker the red color indicates
an increasingly smaller p-value, one that it is less than 0.05. The darker the tone of green indicates
an increasingly higher p-value, one that it is larger than 0.05. For example, panel [a] of Figure 5
presents the p-values corresponding to the UC test statistics. Each of the four heatmaps in panel [a]
refers to the VaR delivered from a different model: the SEP-POT, SEI-POT, skewed-t-EGARCH, and
Gaussian GARCH.

According to the UC test results, the VaR based on the SEP-POT, SEI-POT, and skewed-t-EGARCH
models produce, in-sample, a rather accurate proportion of violations. The best in-sample results were
delivered by the skewed-t-EGARCH model; however, its superiority diminishes out-of-sample, where
the skewed-t-EGARCH model failed in 13 out of 60 instances. Out-of-sample, the SEP-POT VaR and
SEI-POT VaR models rejected the null of correct coverage only three times. The EGARCH model seems
to produce good VaR forecasts for high coverage levels (i.e., q = 0.05). For q < 0.05, the EGARCH VaR
model is left behind the SEI-POT VaR model and SEP-POT VaR model. As expected, the advantage
of VaR models based on POT methodology is most visible for the extreme quantiles. As far as the
Gaussian GARCH VaR model is concerned, its performance is dramatically worse than other risk
models both in-sample and out-of-sample. The model produces incorrect VaR forecasts for small q (i.e.,
q ≤ 0.025), which can be explained by insufficient probability mass in the tails of Gaussian distribution.

The results of the CC test checking both the correct coverage and the lack of dependence of
order one in VaR violations seem to support the SEP-POT VaR model (cf., Figure 6). The poorest
fit corresponds to the highest q levels (i.e., q = 0.05) because in such cases, the null of proper
specification had to be rejected both in-sample and out-of-sample for FTSE 100, KOSPI, NIKKIEI, and
S&P 500. However, the SEP-POT VaR model seems to be slightly superior than the SEI-POT VaR model.
In sample, only in six instances out of 60 did the SEP-POT VaR model fail. For the SEI-POT VaR model,
the number of failures was 10 and for the skewed-t-EGARCH VaR model it was nine. As in the case
of the UC test, the CC test results indicate that the Gaussian GARCH VaR model rendered the worst
fit—the null was not rejected in only seven cases, mainly for the lowest quantiles (i.e., for q = 0.05).
Out-of-sample, the SEP-POT and the SEI-POT models deliver the similar quality of daily VaR forecasts
and both win over GARCH-family models.
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(a)

(b)

Figure 5. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for unconditional coverage (UC) tests. VaR series was calculated from the self-exciting probability POT
model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The squares of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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(a)

(b)

Figure 6. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for conditional coverage (CC) tests. VaR series was calculated from the self-exciting probability POT
model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The squares of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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(a)

(b)

Figure 7. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for dynamic quantile (DQ) conditional coverage tests. VaR series was calculated from the self-exciting
probability POT model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the
EGARCH(1,1) model with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model
with normally-distributed innovations (GARCH). The rectangles of the heatmaps in the shades of red
correspond to p-value < 0.05. The rectangles in turquoise color correspond to no VaR exceedances.
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(a)

(b)

Figure 8. Heatmap charts showing p-value for the in-sample (panel (a)) and out-of-sample (panel (b))
for dynamic logit conditional coverage tests. VaR series was calculated from the self-exciting probability
POT model (SEP-POT), self-exciting intensity (Hawkes) POT model (SEI-POT), the EGARCH(1,1) model
with the skewed-t distribution (EGARCH), and standard GARCH(1,1) model with normally-distributed
innovations (GARCH). The rectangles of the heatmaps in the shades of red correspond to p-value < 0.05.
The rectangles in turquoise color correspond to no VaR exceedances.
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Turning our attention to Figure 7, which illustrates the results of the DQ test, the first striking
observation is that a much larger area of all heatmaps is marked with shades of red when compared to
the results of the CC tests. Indeed, the DQ test is more demanding than the CC test because checks
not only whether a VaR violation today is uncorrelated with the fact of a VaR violation yesterday but
it also checks whether VaR violations are affected by some covariates from a wider information set,
where we used the current VaR and the Hit variable observations from one to four days ago (as in
original work [27]). The superiority of the SEP-POT VaR model over its competitors is clearly visible.
Although the SEP-POT VaR model has a clear tendency to mis-specify VaR at the highest q levels
(i.e., q = 0.05), the DQ test results for the SEI-POT VaR and the VaR based on the GARCH family
models are inferior. In-sample, the DQ test rejected 14 SEP-POT VaR models, 21 SEI-POT VaR models,
26 skewed-t-EGARCH VaR and 57 (i.e., nearly all) Gaussian GARCH VaR models. Out-of-sample,
the advantage of the SEP-POT VaR model over the SEI-POT VaR model is less vivid—the first model
failed in 12 instances and the latter failed in 14.

Figure 8 illustrates the results of the dynamic logit CC test. We can observe a systematic pattern as
far as the SEP-POT VaR and SEI-POT VaR models are concerned. The area marked in red concentrates
on the left-hand side of the heatmaps both in and out-of-sample, which means that VaR is mis-specified
if derived for high coverage rates (i.e., q = 0.05). This deficit of POT VaR models is recouped by their
accuracy at low q levels. Indeed, for q ≤ 0.005 in-sample and for q ≤ 0.01 out-of-sample, both POT
models are not able to reject the null. The SEP-POT VaR model was still slightly more successful
than the remaining risk models. In-sample, it failed only 10 times (mainly for q = 0.05), whereas the
SEI-POT VaR model failed 18 times, the skewed-t-GARCH model failed ten times, yet the Gaussian
GARCH VaR model managed to pass this test only two times. Out-of-sample, both POT VaR models
were equally correct. For the SEP-POT and SEI-POT VaR model, the null of correct conditional coverage
was rejected nine times. The dynamic logit CC test rejected the skewed-t-EGARCH model in 16 and
the Gaussian GARCH in majority of cases.

The practical implications of the SEP-POT model stem from its suitability to provide adequate
VaR and ES predictions. The VaR forecasts can be used by financial institutions as internal control
measures of market risk. The adequacy of risk models used by financial institutions is of utmost
importance for the market regulator. Commercial banks have used VaR models for several years to
calculate regulatory capital charges using the internal model-based approach of the Basel II regulatory
framework. According to the more recent recommendations of the Basel Committee on Banking
Supervision (BCBS), banks should use ES to ensure a more prudent capture of “tail risk” and capital
adequacy during periods of significant stress in the financial markets [31]. This attitude remains in line
with the core objective of the dynamic POT models (including the SEP-POT model), as they focus on
the quantification of both the forecasted probability and the awaited size of huge losses, also producing
the time-varying ES forecasts. The recent Basel III accord, comprising a set of regulations developed by
the BCBS, further reinforces the role of bank units responsible for internal model validations. For more
about the current regulatory framework of market risk management see [32]. Despite the recent shift
from VaR to ES models in the calculation of capital requirements, ES forecasts remain highly sensitive
to the quality of VaR predictions.

All in all, our findings pinpoint that the SEP-POT model constitutes a reasonable promising
alternative for forecasting extreme quantiles of financial returns and the daily VaR, especially for very
small coverage rates. Undoubtedly, further examination of the theoretical properties of the SEP-POT
model and its forecasting accuracy is needed. The model should be backtested using other classes of
financial instruments and compared against other extreme risk models. However, there is a plethora of
VaR models in the literature—therefore, there are no two or three candidate specifications against which
the SEP-POT model should be benchmarked and compared. Only among the point process-based POT
models there have been variants put forward, including the ACD-POT model (which is based on the
dynamic specifications of time, i.e., duration, that elapses between consecutive extreme losses [6–8])
or the ACI-POT model (with its multivariate extensions) that provides an explicit autoregressive
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specification for the intensity function [13]. All these dynamic versions of POT models exploit both
strands of the literature: the point process theory and the EVT, accounting for the clustering of extreme
losses and the heavy-tailness of the loss distribution. The SEP-POT model is also suitable tailored
to these features but also explicitly accounts for the discreteness of times between extreme losses.
The empirical findings in this paper provide much support for our SEP-POT model. However, further
efforts should be focused on benchmarking and comparison with a broader range of methods under
the same settings (i.e., the same data and the same period).

4. Conclusions

We proposed a new self-exciting probability POT model for forecasting the risk of extreme
losses. Existing methods within the point process approach to POT models pursue a continuous-time
framework and therefore involve specification of an intensity function. Our model is inspired by
leading research in this area but is based on observation of the real-world data as we built our model
for discrete time. Hence, our model is a dynamic version of a POT model where extreme losses might
occur upon a sequence of indivisible time units (i.e., days). Instead of delivering a new functional form
for a conditional intensity of the point process, we propose its natural discrete counterpart being the
conditional probability of experiencing an extreme event on a given day. This conditional probability is
described in a dynamic fashion, allowing the recent events to have a greater effect than the distant ones.
Thus, extreme losses arrive according to a self-exciting process, which allows for a realistic capturing
of their clustering properties. The functional form of the conditional probability in the SEP-POT model
resembles the conditional intensity function used in ETAS models. However, we rely on discrete
weighting functions based on at-zero-truncated negative binomial (NegBin) distribution to provide a
weight for the influence of past events.

Our move toward the discrete-time setup is backed up by the descriptive analysis of the data.
On average, the probability mass for nearly 45% of the time intervals between extreme-loss days is
distributed upon a set of discrete values ranging from one up to five days, and the shortest one-day-long
duration has a relative frequency of 12% (for the threshold u set equal to the 95%-quantile of the
unconditional distribution for negated returns). Accordingly, the motivation of the SEP-POT model lies
in allowing the data to speak for itself. Using the at-zero-truncated NegBin distribution as a weighting
function in the equation for the conditional probability of extreme loss, we try to tailor the method
to the data specificity. The conditional distribution for the magnitudes of threshold exceedances also
remain in line with this approach. We specify the evolution of the threshold exceedance magnitudes
in a self-exciting fashion utilizing the weighting scheme based on the geometric probability density
function. Accordingly, the sizes of more distant threshold exceedances have less effect on the current
magnitudes of extreme losses than the more recent events do.

The backtesting results stay in favour of the SEP-POT VaR model. We used four backtesting
procedures to check the practical utility of our approach for seven major stock indexes and three
currency pairs both in- and out-of-sample. The out-of-sample period covered as much as over
five years involving the series of catastrophic downswings in equity prices due to the COVID-19
pandemic in March 2020. We compared VaR forecasts delivered by the SEP-POT model with three
widely recognized alternatives: self-exciting intensity (Hawkes) POT-VaR, skewed-t-GARCH VaR and
Gaussian GARCH VaR model. Outcomes of backtesting procedures pinpoint that the SEP-POT model
for VaR is a good alternative to existing methods.

The standard structure of the SEP-POT model offers several interesting generalizations.
For example, it is possible to explain the conditional probability of an extreme loss with some covariates.
Some potential candidate explanatory variables include price volatility measures such as high-low
price ranges and measures of realized volatility. For stock indexes, some valuable information can
be found in volatility indexes such as the CBOE volatility (VIX) index for the U.S. equity market.
Unlike existing point process-based POT models, the merits of the SEP-POT model seem to lie in its
discrete-time nature. Indeed, the Bernoulli log-likelihood function given in Equation (18) makes it easy
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to update an information set in the SEP-POT model on a regular, day-by-day basis. Another interesting
generalization of the SEP-POT model could be to add the multi-excitation effect caused by different
types of events. For example, the conditional probability of an extreme loss on one market could
be additionally co-triggered by crashes observed in another market. Finally, the contemporaneous
spillover effect between different markets can be captured using multivariate extensions of the SEP-POT
model, for example based on extreme copula functions. These issues are left for further research.
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Abstract: The investigation of the systemic importance of financial institutions (SIFIs) has become
a hot topic in the field of financial risk management. By making full use of 5-min high-frequency data,
and with the help of the method of entropy weight technique for order preference by similarities
to ideal solution (TOPSIS), this paper builds jump volatility spillover network of China’s financial
institutions to measure the SIFIs. We find that: (i) state-owned depositories and large insurers
display SIFIs according to the score of entropy weight TOPSIS; (ii) total connectedness of financial
institution networks reveal that Industrial Bank, Ping An Bank and Pacific Securities play an important
role when financial market is under pressure, especially during the subprime crisis, the European
sovereign debt crisis and China’s stock market disaster; (iii) an interesting finding shows that some
small financial institutions are also SIFIs during the financial crisis and cannot be ignored.

Keywords: financial institution; complex network; jump volatility; entropy weight TOPSIS

1. Introduction

With the development of economic globalization, the financial system has become more and more
closely interconnected by investment networks, debtor–creditor and trade contacts [1–4]. Financial
institutions such as depositories, broker-dealers and insurance companies permeate each other by
related business and display significant complex network properties [5–7]. The failure of several
financial institutions may lead to a severe economic crisis [8–10]. One of the typical examples
is the global financial crisis triggered by the collapse of Lehman Brothers in 2008 [11–13]. Therefore,
how to accurately evaluate the systemic importance of financial institutions (SIFIs) so as to provide
early warning and deal with the crisis effectively has become an emergent work [14–16].

Usually, there are three ways to measure the SIFIs. The first way is to employ Pearson correlation
coefficient to calculate the financial institutions’ default probabilities [17–19]. Pearson correlation
coefficient ignores the heterogeneity of financial data at different times [20]. Adopting a tail-dependence
method to measure the systemic risk contributions between financial institutions is the second method.
Girardi and Ergün (2013) [21] used the conditional value-at-risk (CoVaR) method to estimate systemic
risk of each financial institution. Acharya et al. (2017) [22] employed the systemic expected shortfall
(SES) model to calculate financial institution’s losses by considering its leverage. Wang et al. (2019) [23]
proposed CSRISK model to investigate financial institutions’ capital shortfall under the market
crash. The above two methods are based on the local correlation and disregard the interlinked
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among the financial institutions, which may underrate systemic risk contribution [24]. The latest
financial crisis manifests that intricate connections among financial markets can spread risk [25–29].
Using the complex network theory to research SIFIs comes up to the third method. Billio et al. (2012)
and Gong et al. (2019) [30,31] applied Granger causality model to build financial institution network
and utilized the out degree to compute the total connectedness. Hautsch et al. (2014) [24] proposed
VaR model to set up financial institution network and adopted systemic risk betas to investigate
the systemic risk contribution. Härdle et al. (2016) and Wang et al. (2018) [32,33] adopted CoVaR
model to construct financial institution network and used the index of out degree to measure the system
risk contribution.

Most of the literature evaluates the SIFIs by out degree [31–33], which can reveal the range of risk
contagion but restrict to the local information of the network [34,35]. Recently, considering financial
institutions have the characteristics of deeper risk contagion extent, higher risk contagion efficiency
and greater risk contagion degree after the outbreak of financial risk, some other indicators such
as, clustering coefficient [36], closeness centrality [37] and Leaderrank value [38] are also applied
to measure the SIFIs. Although most of the above indicators have been investigated extensively
and many findings on SIFIs have been reported recently, which only reflect one characteristic of
the network [36–38]. A comprehensive evaluation with respect to the entire network appears to
be very few. Such studies are however essential to accurately evaluate SIFIs in practice. To deal
with this issue, combining four indicators (out degree [32], clustering coefficient [36], closeness
centrality [37] and Leaderrank value [38]) and assigning different weights to each indicator may
give a better evaluation. However, the selection of weight is often based on the subjective experience
of researchers, rather than sufficient scientific support, which may lead to inaccurate evaluation results.
As we all known, entropy weight technique for ioder preference by similarities to ideal solution
(TOPSIS) is a multiple criteria decision making method, and it bases on the conception that the selected
alternative should have the shortest distance from the positive ideal solution and the farthest distance
from the negative ideal solution. Entropy weight TOPSIS has been proved to be a good method
in strategic decision making and successfully applied in some fields, such as coal mine safety [39],
multinational consumer electronics company [40] and transport [41]. Therefore, it seems that adopting
entropy weight TOPSIS to comprehensively assess the SIFIs might be a better choice.

It should be pointed out that the all above mentioned literatures on measuring SIFIs have been
greatly limited to low-frequency data. The low-frequency data with daily, weekly, monthly, quarterly
or annual sampling frequency can not accurately measure the whole-day volatility information [42].
Nowadays, more and more scholars have realized that the high-frequency data with the frequency of
hours, minutes or even shorter includes the rich information of asset price, and it has been intensively
studied in applied finance risk management [43–46]. On the other hand, with the unexpected changes
of macroeconomic conditions, international events and economic policy in recent years, financial
markets are increasingly volatile [47]. Some researches detected jump volatility in the volatile process
of financial assets based on high-frequency data [48]. For example, Wright and Zhou (2007) [49]
found that jump volatility can explain much of the countercyclical movements in bond risk premium.
Zhang et al. (2016) [50] found that jump volatility is an important component of Dow Jones Industrial
Average stocks’ volatility. Audrino and Hu (2016) [51] found that jump volatility can improve
the forecast of S&P 500’s volatility.

The jump volatility depicts an infrequent but a sharp change of asset price, and it can better
describe violent volatility of financial market than continuous volatility [52]. Measuring SIFIs
associated with jump volatility spillover network and high-frequency data has not been reported yet
and it still remains a challenging problem. Motivated by the above discussions, in this paper, we aim
to employ high-frequency data of China’s financial institutions to construct jump volatility spillover
network, and then utilize entropy weight TOPSIS to comprehensively assess the SIFIs. The innovations
of this paper are as follows:
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(1) Many scholars investigated the jump volatility of a single financial asset on its price fluctuation
from the perspective of prediction. We first propose Granger-causality test to identify the jump
volatility spillover among financial institutions.

(2) Financial markets are extremely volatile, and the low-frequency data might lose a lot of important
information. By employing 5-min high-frequency data, we establish the jump volatility spillover
network, which can capture the jump volatility spillover among financial institutions.

(3) We use entropy weight TOPSIS rather than a single indicator to comprehensively assess the SIFIs.

The reminder of this paper is arranged as follows. In Section 2, we introduce the methodology.
In Section 3, we present the data. In Section 4, we give an empirical analysis. Finally, we make
conclusions and discuss our findings in Section 5.

2. Methodology

In this section, we introduce the method of network construction and the indicator for assessing
the SIFIs. Specifically, in Section 2.1, we use Granger causality test to build the network, which reflects
statistically significant relations between jump volatility spillover of financial institutions. In Section 2.2,
out degree, clustering coefficient, closeness centrality and leaderrank algorithm are employed to
evaluate the SIFIs, respectively. In Section 2.3, by the method of entropy weight TOPSIS, we integrate
the above four indicators into a comprehensive indicator to measure the SIFIs.

2.1. Network Construction

We establish jump volatility spillover network of financial institution according to the following
three steps, where each financial institution represents a network node, and each pair of the financial
institution is connected with an edge calculated by Granger-causality test.

In the first step, we employ Andersen et al. (2007, 2012) tests to extract jump volatility of financial
institutions. We suppose that the logarithmic price of a financial institution (pt = ln Pt) within
the trading day obeys a standard jump diffusion process:

dpt = μtdt + σtdWt + κtdqt, 0 � t � T, (1)

where μt denotes the drift term, which includes a continuous volatility sample path; σt represents
a strictly positive stochastic volatility process; Wt stands for a standard Brownian motion; κtdqt is
the pure jump component.

Meanwhile, the logarithmic return volatility can be expressed as quadratic volatility,
which contains jump volatility rather than unbiased estimator of integrated volatility:

QVt =
∫ t

t−1
σ2

s ds + ∑
t−1<s≤t

k2
s (2)

where
∫ t

t−1 σ2
s represents the continuous volatility, and ∑

t−1<s≤t
k2

s stands for intra-day jump volatility.

Since the quadratic volatility can not be gained directly, this paper employs the estimated realized
volatility RVt to replace it based on Andersen et al. (2012) [53]:

RVt =
M

∑
i=1

r2
t,i, (3)

where rt,i = (ln Pt,i − ln Pt−1,i)× 100, Pt,i denotes the closing price of financial institution i at time t,
and M = 48 represents the daily trading frequency.
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In addition, when M → ∞,
∫ t

t−1 σ2
s ds can be calculated by the realized bipower volatility MedRVt

based on Barndorff-Nielse et al. (2004) [54,55].

MedRVt =
π

6 − 4
√

3 − π

(
M

M − 2

) M−1

∑
i=2

Med
(∣∣∣rt,i−1|

∣∣∣ rt,i||rr,i+1|
)2

, (4)

If there is no jump in the price of financial institutions, the difference between realized volatility
and bipower volatility is 0. Otherwise, Z-statistic is adopted to identify jump volatility [54]:

Zt =
(RVt − MedRVt) RV−1

t√(
μ−4

1 + 2μ−2
1 − 5

)
1
M max

(
1, medRTQt

medRV2
t

) → N(0, 1), (5)

where μ1 =
√

2/π, and med RTQt = 3πM
9π+72−52

√
3

(
M

M−2

)
∑M−1

i=2 Med
(∣∣∣rt,i−1|

∣∣∣ rt,i||rr,i+1|
)4

, which
stands for realized tri-power quarticity.

Based on Z statistics, we can obtain realized jump volatility:

Jd
t = I {Zt > Φt} (RVt − MedRVt) , (6)

where I(·) is an indicator function, and α chooses as 0.95 (see Andersen et al., 2007 [56]).
In the second step, after extracting the jump volatility of a single financial institution, we

investigate whether there is jump volatility spillover between financial institutions according to
Granger-causality test [57]. If the p values of Granger-causality test are smaller than the critical values
under the 5% significance level [58], there exists causality relationships between financial institutions.

In the last step, we construct a Granger-causality jump volatility spillover network of financial
institutions. And the network can be represented by an adjacency matrix AD:

AD = (V, E) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · AD1j · · · AD1n
...

. . . . . .
...

. . .
...

ADi1
. . . . . . ADij

. . . ADin
...

. . . . . .
...

. . .
...

...
. . . . . .

...
. . .

...
ADn1 · · · · · · ADnj · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where V is nodes set and E is the edge set. n is the number of financial institutions. ADij is defined
as follow:

ADij =

{
1 i Granger causes j signi f icantly
0 i doesn′t Granger causes j

(8)

2.2. Indicator for Assessing the Systemic Importance of Financial Institutions

There are a growing number of indicators to evaluate SIFIs. Taking into account financial
institutions have the characteristics of wider risk contagion range, deeper risk contagion extent,
higher risk contagion efficiency and greater risk contagion degree, we choose out degree, clustering
coefficient, closeness centrality and leaderrank value to assess the SIFIs, respectively. And more and
more scholars use these four indicators to study the SIFIs [33,36–38].
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2.2.1. Out Degree

Out degree (OD) calculates the number of edges that node i point to other nodes. It is used
to measure the risk contagion range [36]. When the risk occurs, it will directly transfer the risk to
the connected nodes. The higher the out degree of nodes, the wider the range of risk transmission.
The expression of out degree is as follows:

ODout(i) =
n

∑
j=1

ADij, (9)

where ADij stands for the adjacency matrix of financial institution network.

2.2.2. Clustering Coefficient

The clustering coefficient (C) measures the degree of interconnection between the neighbors of
a node in the graph. If one node owes high clustering coefficient, the risk may spread to their neighbor
nodes when one financial institution fluctuates. Furthermore, the interconnectedness of neighbor
nodes will cause risk contagion again and aggravate the risk contagion extent of the whole financial
institutions [36]. Therefore, we employ clustering coefficient as the risk contagion extent of each
financial institution, and it is computed as follows:

Ci = mi/αi(αi − 1), (10)

where αi(αi − 1) represents the maximum number of possible edges of financial institution i, and mi
stands for the actual number of existing edges.

2.2.3. Closeness Centrality

Closeness centrality (CC) quantifies how close a node is to all other nodes in the financial
institution network. The closeness centrality of a node is inversely proportional to the average shortest
path distance from one node to any other nodes in the network. The larger value of the closeness
centrality of a node, the faster the risk will be transferred from one node to any other nodes. Hence,
the closeness centrality can depict how efficiently each node transmits risk to all other nodes [37],
and it is expressed as follows:

CCout(i) =
N

∑
j=1,j 
=i

2−dij , (11)

where dij is the shortest distance i to j.

2.2.4. Leaderrank Algorithm

LeaderRank (LR) algorithm is a method to identify key nodes in a complex network. The basic
idea of the algorithm is as follows. We add a new node (called ground node) and connect it to all others
by bidirectional edges for a directed network with M nodes and N edges. The new network is strongly
linked, which owes M + 1 nodes and N + 2M edges. Matrix A = (aij) depicts the connectivity of
the network. If ADij = 1, which means that node i can pass financial risk to node j. The LR gives a
score to each node, where score denotes the SIFIs. Scores are assign by LRg(0) = 0 for ground node
and LRi(0) = 1 for other nodes. Thus, scores are updated by

LRi(t) =
M+1

∑
j=1

aji

ODout(j)
LRi(t − 1), (12)

where ODout(j) is out degree.
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After t iterations, the LR values of all nodes are stable. At this time, the ground node score
is averagely distributed to each network node. Consequently, the final score of the network node
reflects its cumulative risk ability. The higher the score, the stronger the cumulative risk degree of
the node [38].

2.3. Entropy Weight TOPSIS

Measuring risk contagion of financial institutions from different indicators may lead to
inconsistent results. Therefore, the construction of risk contagion composite index of financial
institutions is an essential step in this paper. We adopt entropy weight TOPSIS to evaluate SIFIs.
It can avoid the subjectivity of weight selection and make full use of the sample data [39–41].

The entropy of each indicator is calculated as below:

ej = − 1
ln N

N

∑
i=1

pij ln pij, pij =
xij

∑N
i=1 x2

ij
, (13)

where j = 1, . . . N; i = 1, . . . n; N = 24; n = 4, xij denotes the jth indicator value of the ith financial
institution of the initial matrix X; pij stands for the jth normalized indicator value of the ith normalized
matrix P.

The weight (wj) can be calculated as follows:

wj =
1 − ej

N − ∑n
i=1 ej

, j = 1, 2, · · · , N. (14)

Then, the TOPSIS method ranks financial institutions based on their relative proximities, and the
positive ideal solution and the negative ideal solution. The distance of each indicator from D+

i and D−
i

can be calculated as the following:

D+
i =

√√√√ N

∑
j=1

(
Sij − S+

i
)2, j = 1, 2, · · · , N, (15)

D−
i =

√√√√ N

∑
j=1

(
Sij − S−

j

)2
, j = 1, 2, · · · , N, (16)

where Sij = wj pij, S+
i = max

1≤j≤n

(
Sij
)
, and S−

i = min
1≤j≤n

(
Sij
)
.

The relative proximity Ki, which is regarded as score of each financial institution, can be computed
as follows:

Ki = D−
i /
(

D−
i + D+

i
)

, j = 1, 2, · · · , N. (17)

Finally, in order to measure ability of risk contagion, we use Ki to rank the SIFIs.

3. Data

We select 24 listed financial institutions from 2008 to 2018 in China, similar sample selection can
be found in Wang et al. (2018) [33]. We choose 2008 as the starting date due to several important
financial institutions do not go public until 2007, such as the China Construction Bank. We divide
listed financial institutions into three sectors: (1) depositories, (2) insurance companies and (3) broker
dealers. The data are available from Wind Financial dataset, and the descriptive statistics of 5-min
high-frequency closing price data of financial institutions are shown in Table 1.
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4. Empirical Analysis

4.1. Jump Volatility Spillover Network Construction of Financial Institution

The sampling frequency selection of intraday high-frequency data is very important for jump
volatility measurement. The low sampling frequency may not fully express the jump volatility
information, while high sampling frequency can cause micro structural noise. According to
Haugom et al. (2014) [59], Gong and Lin (2018) [46] and Wen et al. (2019) [55], this paper first
adopts 5-min high-frequency closing price data of financial institutions to compute jump volatility
based on Equations (1)–(9). Then, using Granger causality test to investigate jump volatility spillover
relations among financial institutions, we can obtain the p value of a 24 × 24 matrix. This paper chooses
a threshold of 0.05 according to Jiang et al. (2017) [58]. Finally, the financial institution network gets a
total of 24 nodes and 137 edges, and the results are illustrated by Figure 1.

Figure 1. Jump volatility spillover network of financial institution. Note: Nodes (financial institutions)
from the same sector are signed as the same shape and color. Depositories, broker dealer, and insurances
are labelled as red circle, blue square, and green triangle, respectively.

4.2. Assessing the Systemic Importance of Financial Institutions

The research on the systemic importance of financial institutions (SIFIs) has become a hot topic
in financial risk management. In this section, we choose out degree, clustering coefficient, closeness
centrality and leaderrank value to measure the SIFIs. The results are shown in Table 2.

Table 2 displays four dimensions of risk contagion measurement. (1) In terms of risk contagion
range, the larger the out degree value, the wider risk contagion range of financial institution. We can
find that CMB, BOC and CNCB are all from depository sector, with the highest out degree value of
10. One possible reason is that China’s financial system is a depository-led system. As claimed by
the annual reports of CBRC, CSRC, and CIRC in 2019, the total assets of depository, broke-dealer
and insurance sectors were 261.4 trillion Yuan, 6.2 trillion Yuan and 18.3 trillion Yuan, respectively.
This indicates that the depository sector size is 42 times larger than the broke-dealer sector, or 14 times
larger than the insurance sector. (2) In terms of risk contagion extent, the larger the clustering
coefficient value, the greater risk contagion extent of financial institution. We can see that SLSC
and HTSEC, which are all from broke-dealer sector, have the highest clustering coefficient value.
The results show that broke-dealer sector’s risk contagion ability can not be neglected in China’s
financial system. (3) In terms of risk contagion efficiency, the larger the closeness centrality value,
the faster the risk will be transferred from one financial institution to any other financial institutions.
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We can discover that CJSC and PAI have the highest closeness centrality value, indicating that some
broke-dealers and insurances have gradually become important departments in China’s banking-led
financial system. (4) In terms of risk contagion degree, the larger the leaderrank value, the higher
the risk contagion degree. The risk contagion degree of financial institutions manifests a hierarchical
feature, i.e., the greatest degree of risk contagion is insurance sector, followed by broke-dealer sector,
and depository sector have the lowest risk contagion degree.

Table 2. Indicators score of 24 financial institutions.

Symbol OD C CC LR

PAB 2 1.0000 0.2602 0.0200
NBCB 8 0.8393 0.1667 0.0120
SPDB 8 0.5600 0.1684 0.0389
HXB 9 0.6889 0.1633 0.0151

CMBC 8 0.7632 0.1739 0.0645
CMB 10 0.6574 0.1509 0.0157
NJBK 1 0.0000 0.2883 0.0120
CIB 1 1.0000 0.2909 0.0129
BOB 9 0.5688 0.1739 0.0806

BOCOM 8 0.6081 0.1928 0.0747
ICBC 9 0.5854 0.1633 0.0786
CCB 8 0.5112 0.1882 0.0930
BOC 10 0.6136 0.1538 0.0403

CNCB 10 0.6667 0.1495 0.0120
NESC 1 1.5000 0.2991 0.0157
GYSC 6 0.8429 0.1975 0.0302
CJSC 1 0.0000 0.3107 0.0271

CITICS 3 0.8333 0.2222 0.0157
SLSC 2 2.0000 0.2520 0.0120

HTSEC 2 2.0000 0.2520 0.0120
PSC 4 1.0833 0.2133 0.0120
PAI 1 0.5278 0.3107 0.0764

CPIC 7 0.6685 0.1975 0.0720
CLI 9 0.3382 0.1684 0.1563

The results of the above four dimensions are inconsistent in measuring the SIFIs. In order to
comprehensively assess the SIFIs, this paper proposes entropy weight TOPSIS (EWTOPSIS) to obtain
the weight of each indicator. As a result, we gain the weight of out degree, clustering coefficient,
closeness centrality and leaderrank algorithm by 0.2807, 0.2499, 0.0401 and 0.4293, respectively.

Table 3 shows the score of SIFIs computed by EWTOPSIS in the whole period. We can find that:
(1) CLI is the most SIFIs. This may be related to the deregulation reform of the China’s insurance sector
in 2014. China’s state council issue that the insurance depth will reach 5% and the insurance density
will reach 3500 yuan/person by 2020. (2) CCB, BOB, ICBC and BOCOM are deem as more systemically
important financial institutions. Because most of them come from state-owned depositories, which
dominate China’s depository sector about 45% of the lending business in 2018. (3) CJSC and NJBK have
a relatively low score, which imply that the impact of some small financial institutions on the financial
system can be neglected.
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Table 3. The score of systematic importance of financial institutions.

Rank Symbol Score Rank Symbol Score

1 CLI 0.7489 13 GYSC 0.2846
2 CCB 0.5160 14 CMB 0.2829
3 BOB 0.4962 15 CNCB 0.2703
4 ICBC 0.4898 16 HXB 0.2658
5 BOCOM 0.4605 17 NBCB 0.2539
6 CPIC 0.4385 18 NESC 0.2239
7 CMBC 0.4409 19 PSC 0.2088
8 BOC 0.3697 20 PAB 0.1914
9 PAI 0.3244 21 CITICS 0.1701
10 SPDB 0.3179 22 CIB 0.1472
11 SLSC 0.2920 23 CJSC 0.0705
11 HTSEC 0.2920 24 NJBK 0.0123

Compared with the traditional evaluation SIFIs methods such as Equal weight [38], principal
component analysis (PCA) and TOPSIS method [60], we will show our proposed EWTOPSIS method
has obvious advantages. Just as reported by Sandoval (2014) [61], Wang et al. (2018) [33] and
Wang et al. (2019) [62], market capitalization as a financial indicator could reflect the market influence
of financial institutions. We calculate the correlation between each index (depending on different
methods) and market capitalization, and the results can be presented as Table 4. It is easy to see
that the EWTOPSIS is most effective method to measure the SIFIs because of the correlation between
EWTOPSIS and market capitalization is the largest at a significant level of 1%.

Table 4. The correlation between the market capitalization and four indicators.

Index Equal Weight PCA TOPSIS EWTOPSIS

Correlation coefficients 0.3355 0.5193 *** 0.4871 *** 0.5647 ***

Note: *** denotes significant at 1%.

4.3. Assessing the Dynamic Systemic Importance of Financial Institutions

As we all know, the financial markets are complex dynamic systems. The jump volatility spillover
between financial institutions is time-varying. Thus, we employ time-varying Granger causality test to
build dynamic jump volatility spillover of financial institution networks [63]. 2677 financial institution
networks are obtained.

Figure 2 exhibits the evolution of the number of total linkages as a percentage of all possible
linkages (TP). We can discover that it has three prominent cycles based on high TP values. The first
cycle started at January 2008 and ended until April 2008, which was in the period of the subprime
crisis. During this time, the CSI 300 Index decreased by 661 points (almost 17%) from 4620 to 3959.
Then, TP value followed by a quickly descending trend until June 2008. The second cycle started at
June 2008 and ended at October 2008, which was in the later period of the subprime crisis, and in the
initial period of the European sovereign debt crisis. During this period, the CSI 300 Index dropped to
1948 points (almost 54%) from 3611 to 1663. Thereafter, the TP value entered a stationary period from
October 2009 to June 2015. The Third cycle began at May 2015 and ended at August 2015, which was
in the period of China’s stock market disaster. At this stage, the CSI 300 Index declined by 1474 points
(nearly 31%) from 4840 to 3366. Henceforth, the TP value entered another stationary period.
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Figure 2. The number of total linkages of the jump volatility spillover network as a percentage of all
possible linkages over time.

Furthermore, we employ the index of out degree, clustering coefficient, closeness centrality
and leaderrank algorithm to measure the risk contagion range, risk contagion extent, risk contagion
efficiency and risk contagion degree in each period, respectively. Then, entropy weight TOPSIS method
is adopted to compute the score of SIFIs. We list the top 10 of financial institutions with systematically
important score and market capitalization (MC) corresponding to the highest TP in three cycles, and the
results are shown in Tables 5–7.

Table 5. Top 10 financial institutions ranked by the score of SIFIs on
25 April 2008.

Rank Symbol Score Rank of MC

1 PSC 0.9087 18 (46,722,978,887)
2 CIB 0.8685 11 (199,800,000,000)
3 NBCB 0.8603 20 (36,175,000,000)
4 NESC 0.8553 24 (18,917,836,544)
5 HTSEC 0.8381 12 (176,610,181,629)
6 ICBC 0.8361 1 (2,167,782,336,669)
7 BOCOM 0.8336 5 (522,280,130,274)
8 PAB 0.8219 16 (64,100,729,703)
9 GYSC 0.7977 19 (42,005,029,000)
10 SLSC 0.7787 23 (22,425,428,420)

Note: This table lists the market capitalization (MC) and its corresponding rank of top 10 financial institutions.

Table 6. Top 10 financial institutions ranked by the score of SIFIs on 23 September 2008.

Rank Symbol Score Rank of MC

1 CIB 0.9579 14 (79,900,000,000)
2 CMB 0.9230 7 (251,933,891,562)
3 PSC 0.9229 18 (27,435,468,619)
4 NBCB 0.9100 21 (18,750,000,000)
5 PAB 0.8718 16 (36,046,919,598)
6 ICBC 0.8123 1 (1,452,981,997,613)
7 CCB 0.8122 2 (1,088,991,131,440)
8 CITICS 0.8014 10 (133,603,922,140)
9 PAI 0.7996 6 (261,557,349,223)
10 BOCOM 0.7904 5 (292,496,470,707)
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Table 7. Top 10 financial institutions ranked by the score of SIFIs on 10 July 2015.

Rank Symbol Score Rank of MC

1 HTSEC 0.9081 14 (256,372,893,000)
2 PAB 0.8741 15 (212,626,927,426)
3 CJSC 0.8731 19 (62,553,148,673)
4 CIB 0.8451 10 (336,845,313,758)
5 PSC 0.8150 23 (40,635,675,469)
6 HXB 0.7961 16 (143,827,801,960)
7 CMB 0.7886 7 (478,924,867,963)
8 SPDB 0.7878 12 (322,331,986,051)
9 CITICS 0.7845 11 (335,880,700,848)
10 CLI 0.7522 4 (1,019,790,556,400)

Tables 5–7 display the top 10 financial institutions ranked by the systematically important score on
25 April 2008, 23 September 2008 and 10 July 2015. We can find that CIB, PAB and PSC are included in
the three periods, indicating that large commercial banks and insurances play an important role during
the financial crisis. Moreover, the top five largest financial institutions ranked by market capitalization
are not all included in the table, and some small financial institutions are also systemically important.
It means that the SIFIs in network may be “too big to fail” or “too interconnected to fail”.

5. Conclusions and Discussion

This paper adopts 5-min high-frequency data of China’s financial institutions to extract realized
jump volatility. Then, we employ Granger-casuality test to construct the jump volatility spillover
network. Furthermore, out degree, clustering coefficient, closeness centrality and leaderrank value
are used to evaluate the SIFIs, respectively. In addition, we utilize entropy weight TOPSIS to
comprehensively evaluate the SIFIs.

Some basic results of our research can be summed up as follows: (1) The highest frequency of
jump volatility is 44.30% in 2008. This may be related to the outbreak of the subprime mortgage crisis in
2008. (2) We measure the SIFIs from four dimensions. In terms of risk contagion range, we can find that
CMB, BOC and CNCB, which are all from depository sector, possess the highest out degree value of 10.
One possible explanation is that China’s financial system is a depository-led system. In terms of risk
contagion extent, one can see that SLSC and HTSEC, which are all from broke-dealer sector, have the
highest clustering coefficient value. This indicates that broke-dealer sector’s risk contagion ability can
not be neglected in China’s financial system. In terms of risk contagion efficiency, we discover that CJSC
and PAI have the highest closeness centrality value, which means that some insurances have gradually
become important departments. In terms of risk contagion degree, the results reveal that the greatest
degree of risk contagion is insurance sector, followed by broke-dealer sector, and depository sector
have the worst risk contagion degree. (3) Based on the comprehensive evaluation of the SIFIs, by the
method of entropy weight TOPSIS, the obtained results show that CLI, CCB, BOB, ICBC and BOCOM
are identified as the influential nodes. (4) According to highest values of total linkages in each period,
we can find three prominent cycles. The first cycle started at January 2008 and ended at April 2008,
which was in the period of the subprime crisis. The second cycle started at June 2008 and ended at
October 2008, which was in the later period of the subprime crisis, and in the initial period of the
European sovereign debt crisis. The third cycle began at May 2015 and ended at August 2015, which
was in the period of China’s stock market disaster. (5) Total connectedness of financial institution
networks reveal that large commercial banks and insurances play an important role when financial
market is under pressure, especially during the subprime crisis, the European sovereign debt crisis
and China’s stock market disaster. Meanwhile, some small financial institutions are also systemic
importance, which may be related to their too much interconnection with other financial institutions.

By the way, the work presented in this article does not consider the following points: (1) The data
do not contain all publicly listed financial institutions in China because we have deleted those for
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which we have experienced long suspension periods. Therefore, developing new tools that have
limited sample for investigating SIFIs is a worthy target. (2) We just select 24 top financial institutions.
Non-financial institutions may also play an important role as a result of their interactions with these
financial ones. It would be interesting to research some financial institutions and non-financial
institutions at the same time. We will leave this challenging yet interesting problem as future
research. (3) It is important to measure SIFIs based on the network. This paper employs linear
Granger-casuality test to construct the jump volatility spillover network. There is a nonlinear
relationship between financial markets. The method of network construction could be extended
by employing the Granger-casuality test. We have to leave these challenging yet interesting problems
as future research.
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Abstract: We study mechanisms leading to wealth condensation. As a natural starting point,
our model adopts a neoclassical point of view, i.e., we completely ignore work, production,
and productive relations, and focus only on bilateral link between two randomly selected agents.
We propose a simple matching process with deterministic trading rules and random selection of
trading agents. Furthermore, we also neglect the internal characteristic of traded goods and analyse
only the relative wealth changes of each agent. This is often the case in financial markets, where a
traded good is money itself in various forms and various maturities. We assume that agents trade
according to the rules of utility and decision theories. Agents possess incomplete knowledge about
market conditions, but the market is in equilibrium. We show that these relatively frugal assumptions
naturally lead to a wealth condensation. Moreover, we discuss the role of wealth redistribution in
such a model.

Keywords: wealth condensation; agent-based computational economics; bargaining; gain function

1. Introduction

Study of wealth distribution among the population has been labelled as one of the key problems
in modern economic theory and is often described by a power-law function known as Pareto
distribution [1]. In this sense, research related to wealth distribution and wealth inequalities is
two-fold. The well-studied macro-perspective focuses on the issue of poverty arising from wealth
inequalities, its social and economic consequences, where it is typical that a small fraction of the
population owns most of the total wealth. This approach stems from macroeconomic theory and
general equilibrium (c.f. [2]) like the infinite-lived dynasty model [3] and overlapping generations
model [4]. Other concepts refer to asymmetric knowledge [5], a different number of connections or
opportunities to exchange or increase wealth [6] or only to luck or different competencies [7]. Most of
these models usually rely on representative agent paradigm, while completely ignoring immanent
aspects of human nature and psychological biases or even microstructural characteristics of trade
mechanism [8]. On the other hand, micro-foundations of wealth concentration arise from bilateral
trade or exchange of goods among two economic agents, where wealth typically is highly related
to the individual investment decision process. This observation led to several mathematical models
attempting to explain this phenomenon, i.e., so-called kinetic wealth exchange models that are based
on microeconomic interactions between economic actors who exchange wealth between them over
the trade cycle [9]. These include models introduced by Angle [10], Bennati [11], Chakraborti and
Chakrabarti [12], Dragulescu and Yakovenko [13] and recently also the approaches by Vallejos et al. [14]
and Lim and Min [15], which share some common features with our approach.

Entropy 2020, 22, 1148; doi:10.3390/e22101148 www.mdpi.com/journal/entropy303
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1.1. Some Stylised Facts Related to Empirical Wealth Distribution

A well-known fact about wealth distribution in developed-economy states is that wealth is
highly concentrated and very unequally distributed. Data sets gathered over 30 years by Census
Survey of Consumer Finances confirm via, e.g., observation of historical trends that a degree of wealth
concentration in the United States is high, i.e., almost one-third of total wealth is kept by only 1%
of households, while the top 5% of the population holds more than one half of total wealth. At the
other edge, there is a large fraction of the community, who has pretty little wealth or no wealth at
all. These results are quite persistent over time, and substantial changes in net wealth are subject
to a boom-bust cycle of financial and economic crises [16]. Little work has, however, been done in
the area of understanding mechanisms leading to wealth concentration during economic upturns
and equalisation effects during recessions. We contribute to this field by introducing new kinetic
wealth exchange model with simplified assumptions, that can reproduce stylised facts observed in
the empirical distribution of wealth in the crisis and post-crisis times. As a starting point, we use a
real-life example of wealth distributions in the U.S. in the years 2010 (crisis) and 2018 (post-crisis).
We believe that our model can shed light into better recognition of patterns leading to changes in
wealth inequalities during the real business cycle.

Although in economics income is typically defined as the amount of money an economic agent
or household receives on regular basis and wealth is related to the length of time that a family could
maintain their current lifestyle without receiving compensation for performing additional work,
we treat these two categories as a whole. The primary source of our data on wealth in the U.S. for our
empirical examples is the U.S. Bureau of Census and Bureau of Labour Statistics Current Population
Survey for Household Income from the years 2010 and 2018. The survey has been conducted monthly
for over 50 years, with over 54,000 households selected based on an area of residence to represent the
nation as a whole, individual states, and other specified areas. Each family is interviewed once a month
for 4 consecutive months one year, and again for the corresponding period a year later. These data
are however available only in a binned or aggregated form, so the only available data include the
number of households in each bin, mean income, standard error and income limits assigned to each
bin. To estimate income or wealth probability density function, we use the entropy-based divergence
method and seek a probability density function, that is as close to the uniform distribution as the
data sample will permit [17,18] (see the Appendix A). Results of estimation are presented in Figure 1.
In Table 1, we have also gathered Gini coefficients and information criteria, for various distributions
from the Creesse and Read (C.R) family [19].
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Income distribution in US in 2018
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Figure 1. The empirical distribution of wealth in the U.S. based on Census Data. The blue line
represents one of fitted generalised gamma distribution of the second kind.
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Table 1. Information criteria for fitted distributions.

Distribution
2010 2018

Gini Aic Bic Gini Aic Bic

Generalised Beta of the Second Kind 0.4504 825,368.9827 825,407.7613 0.4656 914,590.8355 914,629.8928
Generalised Gamma 0.4485 825,598.8432 825,627.9271 0.4526 915,341.0957 915,370.3886

Beta of the Second Kind 0.4545 825,501.8130 825,530.8969 0.4636 915,233.3365 915,262.6295
Dagum 1,258,915.0143 1,258,944.0982 0.4693 914,642.1348 914,671.4277

Singmad 0.4531 827,239.3961 827,268.4800 0.4600 914,833.1633 914,862.4562
Lognormal 0.5013 832,408.2444 832,427.6337 0.5206 924,094.3485 924,113.8772

Weibull 0.4432 827,065.1604 827,084.5496 0.4462 916,179.0877 916,198.6163
Gamma 0.4409 826,112.8345 826,132.2238 0.4467 915,559.4152 915,578.9439

Doubly lognormal 1,375,275.6949 1,375,295.0841 920,090.4281 920,109.9568
Pareto 0.5047 832,191.8408 832,211.2301 0.5061 920,845.1144 920,864.6431

Results presented in Tables 1 and 2 confirm that empirical distributions of wealth exhibit a Pareto
power-law tail

f (x) ∼ 1
x1+α

1 < α < 2, (1)

and the actual shape of distribution at intermediate values of wealth is well fitted by a generalised
gamma distribution of the second kind. So they can be reproduced by a simple kinetic wealth exchange
model with either homogeneous or heterogeneous agents [9]. Furthermore, as seen in Figure 1,
the post-crisis inequalities are larger than the crisis ones.

Table 2. Estimated distribution parameters: location μ, scale σ, skewness ν and kurtosis τ.

Distribution
2010 2018

μ σ ν τ μ σ ν τ

Generalised Beta of the Second Kind 108,564.1708 1.7786 0.7034 2.0083 113,253.3847 2.1917 0.5323 1.2229
Generalised Gamma 60,663.6500 0.9001 0.7612 81,899.1321 0.9057 0.8421

Beta of the Second Kind 283,044.3149 1.5608 7.5992 372,137.5280 1.4877 7.2873
Dagum 1,012,451,669.9591 0.9721 0.1021 105,486.1708 2.4436 0.4689

Singmad 1,012,451,669.9591 1.1348 53,697.3940 190,335.2758 1.3413 3.3841
Lognormal 10.6958 0.9900 10.9507 1.0373

Weibull 69,527.7650 1.1699 89,843.3170 1.1589
Gamma 6,5806.3882 0.8652 85,510.9515 0.8789

Doubly lognormal 1,012,451,669.9591 0.1514 60,235.5085 1.7064
Pareto 1,549,526.7678 24.2996

1.2. The General Structure of Kinetic Exchange Models

In this section, we will briefly review the basic features of kinetic wealth exchange models
following [9,14,15]. As usual, the economy is assumed to consist of N agents with wealth {ak ≥ 0}
(k = 1, 2, . . . , N). At each cycle, an agent i exchanges a quantity Δa of wealth with another agent j.
Both agents are chosen randomly. The total wealth X = ∑i ai and the average wealth 〈a〉 = X/N are
constant. After the wealth exchange, ai and aj are updated according to the rule:

a′i = ai − Δa ,

a′j = aj + Δa , (2)

under the condition (a′i, a′j ≥ 0). The signs have been chosen without the loss of generality and
the function Δa = Δa(ai, aj) is responsible for the dynamics of the underlying wealth concentration
mechanism. Furthermore, agents can be parametrised by a maximum fraction of wealth ω ∈ (0, 1] that
enters each cycle or exchange process, which determine the time scale of the relaxation process and the
mean value 〈a〉 at equilibrium [9]. If the value of ω is identical for all agents, then models belong to a
homogeneous class that can reproduce the shape of the gamma wealth distribution. For ω < 1, models
converge toward a stable state with a wealth distribution with non-zero median, and for diversified
agents, a power-law tail behaviour can be recovered. If ωk is different for every agent, then models are
called heterogeneous.
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In the Angle model [10], changes of wealth between agents are determined by

Δa = r ω [ηij ai − (1 − ηij) aj] , (3)

where random variable r ∈ (0, 1) is distributed uniformly or with a certain probability distribution
g(r), and ηij is a random dichotomous variable responsible for the direction of the changes. The value
ηij = 1 produces a wealth transfer |Δa| = r ω ai from agent i to j, while the value ηij = 0 corresponds
to a wealth transfer |Δa| = r ω aj from j to i.

Another model is a One-Parameter Inequality Process model [20]

Δa = −ηijωai + (1 − ηij)ωaj , (4)

where ηij = 0 or ηij = 1 are chosen randomly in each cycle. In these models, wealth distribution is best
described by a gamma distribution.

Bennati [11] proposed a model, where agent exchange constant amount of wealth Δa0 and
transaction between agent i and j take place if and only if a′i, a′j ≥ 0, which leads to an exponential
distribution of wealth.

Chakraborti and Chakrabarti [12] introduced a model, where new wealth a′i (a′j) is expressed
as a sum of the saved fraction λa′i (λa′j) of the initial wealth and a random fraction r (r̄) of the total
remaining wealth, obtained summing the respective contributions of agents i and j.

Δa = ω(r̄ ai − r aj) = (1 − λ)(r̄ ai − r aj) . (5)

Dragulescu and Yakovenko introduced another model [13] with dynamics described as:

Δa = r̄ ai − r aj , (6)

leading to an exponential model for wealth distribution.
Lim and Min [15] consider various kinetic exchange models in search for solidarity effects consider

multiple variants of the model introducing heterogeneous savings parameter λk and wealth dependent
trading rules

Δa = r min(ai, aj) (7)

with r being random variable uniformly distributed over [0, 1] and updated every transaction.
The common factor of all these models is the wealth conservation: ai + aj = a′i + a′j, which means

that while one agent gains money from a transaction, the other one has to lose some wealth. Therefore,
without any preference of richer agents over the poorer ones and due to random character of
interactions between agents, these kinetic exchange models can be characterised by a stationary wealth
distributions, which exhibit exponential tails. After reaching this distribution wealth, inequalities
do not increase anymore. It should be noted that there are also kinetics exchange models that
exhibit power-law wealth distribution as a stationary state [21,22]. These models often assume
some preferences of richer individuals; for example, individuals’ wealth is repeatedly multiplied by a
random factor, different for each individual.

Another type of agent model is one with a growing economy, where wealth is continuously
added to the system and divided among the agents. One such model has been used recently by
Vallejos et al. to study the growth of wealth inequalities in the U.S. [14]. There the assumption is,
however, that individuals with greater wealth get significantly more of this added wealth than poorer
agents. Namely, this wealth is divided into several equal parts, and each part is given to the agent i
with probability proportional to aβ

i . In this setup, Authors studied how the initial Pareto like wealth
distribution changes depending on β. For 0 < β < 1, the power of wealthier individuals is diminished
much more than the power of poorer individuals and wealth inequalities lowered over time. For β = 1,
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the model gives all individuals a proportional amount of power, and thus initial wealth distribution
does not change. For β > 1, the model provides a disproportionate amount of power to the wealthier
individuals in the market, and the wealth inequalities grew.

To sum up, the discussed agent models reaches a stationary state when wealth inequalities do not
increase any more or exhibit constant grow of wealth concentration under the assumption that richer
agents are disproportionately better treated than the poorer ones. In this study, we propose a model of
trading agents where inequalities grow incessantly, but the gain of each agent is at average proportional
to its wealth, which corresponds to the case of β = 1 in Vallejos et al. model [14], where inequalities do
not change.

2. Model

In our model, an agent is a participant of a market game. An agent can be a company, an institution
as well as a single person. Agents can trade with themselves using their assets. It is worth noting that
for our study “assets” are not only goods or money that an agent has, but also widely understood
services he can make or even its skills that allows him to be more effective in a market. Agents can
interact with themselves, which affects their assets. In general, such interaction covers all possible
activities like, for example, buying or selling products, services, financial market instruments, etc.,
as well as making money at work or employee hiring. From our perspective, all activities mentioned
above are indistinguishable, so we will call each of them using the same word—a trade. As mentioned,
a simple example of trade is the buying of a product in a shop. Another example is hiring an employee
by a company. Trade is also when one agent exchanges his knowledge with another one.

In a further study, we have considered two assumptions:

(i) agents are equal in the sense that each of them has the same access to the market and the same
knowledge about it.

(ii) agent trade only when it is profitable from their perspective.

These assumptions are quite general. The first one reflects capabilities given by a modern
technology where at least virtual access to goods, financial markets and stock-exchanges is common.
Therefore the number of transaction that agent can make is limited only by the number of his assets.
The second assumption corresponds to decision and utility theories, which tell us that action will be
undertaken by the individual only when it causes maximisation of the individual utility [23,24]. It is
worth noting that typically utility and assets are not the same quantities. They are not even measured in
the same units. However, we think that they can be somehow compared to the money, which measures
assets, spent to increase utility. Therefore there is a relation between these two concepts, and in further
considerations, we will treat the utility as an asset.

The society consists of N = 105 individuals (agents). Each of them possesses some assets. Let ai
denotes a share of i-th agent assets in the whole population wealth. Thus

N

∑
i=1

ai = 1. (8)

Agents interact with themselves, which affects their wealth. As stated before a trade is a win-win
situation, i.e., both trading agents gain a profit from it. Because a market is in equilibrium and all agents
have comparable information about it, their profits from a single trade should also be comparable.
Here, we assume that profits from trade are equal for both agents and are given by a deterministic
gain function g(i, j) = g(j, i), where i and j are the trading agents. Thus, the trade changes the trading
agent’s assets as follows:

ai → ai + g(i, j)
aj → aj + g(j, i)

(9)

The above, fully deterministic, rules reflect the second condition made in the Introduction section.
The first condition about equal access to the market is fulfilled by a specific matching process between

307



Entropy 2020, 22, 1148

two bargaining agents. They are selected according to their wealth. Thus the probability that i-th
agent will be chosen for trading is equal to ai. It reflects the fact that wealthier agents have more
opportunities to trade, but on the other hand, it does not exclude poorer ones from the market.

Trades are grouped into cycles. A single cycle contains N/2 trades. The protocol used for choosing
agents involving in trade is as follows

1. The first agent i is chosen randomly with the probability equal to its wealth ai.
2. The second agent j is chosen randomly with the probability equal to its wealth aj.
3. If i = j or agent i has traded with agent j in this cycle, go to point 1. Otherwise, make the trade.

Each pair of agents can trade at most once during a single cycle. This prevents a situation that all
the trades are only between the richest individuals, and thus, increase the chance of gaining profits by
poorer agents. (Without this assumption, two richest agents may perform all the trades. However even
with this restriction, it may occur that

√
N number of agents will concentrate all the wealth and they

will trade with themselves only, but it is not possible to limit further the number of trading agents.)
After each cycle, individuals portfolios of assets are normalised to fulfil condition (8)

ai →
ai + ∑j g(i, j)
1 + ∑i,j g(i, j)

, (10)

where ∑j sums all profits made by the i-th agent, and ∑i,j sums all profits from all transactions within a
cycle. To fully specify the model, a particular gain function g(i, j) is needed. The simplest, symmetrical
functions of two variables is a constant function: g(i, j) = r/N, i.e., each agent receives a lump sum
of money during a single trade. Note that the number of trades depends on agents wealth—richer
individuals trades more because they split their wealth into a larger number of transaction. Thus,
each transaction in the model involves the same amount of assets, and therefore, a constant payoff is
justified. Although it might seem that such a mechanism is similar to preferential treatment of some
agents as in other models e.g., [25], we will show in the following section that it is not in the case of
this model. The payoff r was typically set to 0.1. Note that r is equal to the global income from all
trades within a cycle when the global wealth is equal to 1. Therefore the specific value of r determines
the speed of wealth distribution changes between cycles.

3. Results and Discussion

3.1. Wealth Condensation

The model was tested numerically. The evolution of wealth distribution is presented in Figure 2
(See the software used for simulations and data analysis in Supplementary).

The plots differ in initial wealth distribution among agents. Here, we used the following
distributions.

(a) delta distribution—all agents started with the same amount of money;
(b) uniform distribution—the initial wealth of each agent was uniformly distributed on the interval

[0, 2/N);
(c) exponential distribution—the initial wealth was drawn according to the exponential distribution

of the unit mean and variance;
(d) Gaussian distribution—the initial wealth of each agent was an absolute value of a number drawn

according to the normal distribution of the zero mean value and unit variance;
(e) Cauchy distribution—the initial wealth of each agent was an absolute value of a number drawn

according to the following probability distribution function

p(x) =
1

π(x2 + 1)
; (11)

(f) 1% of richest agents possessed 100 times more money than the remaining 99% of poorer agents.
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After choosing initial wealth distribution, the assets of each agent were normalised to fulfil
condition (8).
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Figure 2. Histograms of agents assets after 0, 10, 100, and 1000 cycles. Different plots correspond
to the different initial distribution of wealth among the agents: ai is (a) equal to 1/N, (b) uniformly
distributed in the interval [0, 2/N), (c) exponentially distributed, (d) normally distributed, (e) Cauchy
distributed, (f) 1% of richest agents possess 100 times more than the rest 99% of agents.

In most of these cases, the final wealth distribution (after 1000 cycles) was almost the same.
Only in the last case we did not obtain purely exponential distribution after 1000 cycles, but here,
the wealth distribution also should converge to an exponential distribution with a growing number of
cycles. These results suggest that the wealth condensation was a feature of the model and not of the
specific initial wealth distribution among agents. The effect of wealth condensation was confirmed by
analysis of the Gini coefficient:

G =
2 ∑N

i=1 iai

N ∑N
i=1 ai

− N + 1
N

, (12)

as well as the wealth of the richest and the middle agent (see Figure 3).
For most of the studied cases, the Gini index grew monotonically with the evolution of the system.

The only exception was when initial wealth was drawn according to Cauchy distribution, which is
an example of power-law, long-tail distribution. Here, the Gini index started from a relatively high
value, as the condensation was an intrinsic property of power-laws. However, after the initial decrease
corresponding to recombination to exponential distribution preferred by the model, it started to grow
again. It is worth noting that the richest agent in this scenario lost most of its initial assets, but a rapid
decrease of the median asset in the population (see Figure 3 inset) shows that wealth condensation
occurred anyway. It should be stressed that the final state of these simulations was not stable in either
case. The wealth inequalities seemed to grow endlessly. After 1000 cycles the Gini coefficient was
above 0.89, and the richest agent owned approximately 5.3 × 10−4 of the total wealth and the median
wealth several orders of magnitude smaller.

Next, we check if the population size affected condensation. It was done by studying systems
consisting of N = 104 up to 107 agents—see Figure 4.
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Figure 3. Gini index evolution for all studied agents initial wealth distributions. Inset shows the
evolution of the maximal and median wealth in the population of agents. Black line corresponds to
equal initial wealth of all agents, red—the uniform distribution of wealth on the interval [0, 2/N),
blue—the exponential wealth distribution, brown—Gaussian distribution, violet—Cauchy distribution,
green—1% of richest agents have 100 bigger assets than the rest 99% of the population.
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Figure 4. Histograms of agents assets after 1000 cycles for different size of the population. Because the
total wealth changes with population size, we rescaled agents wealth by multiplying it by the number
of agents N.

After 1000 cycles all populations exhibited a similar, exponential distribution of wealth.
At last we checked if the appearance of wealth condensation does not depend on model details.

Therefore, instead the g(i, j) = r/N we studied numerically other examples of payoff functions.
In particular we performed independent analysis of the model using the following different utility
functions, namely:

(i) linear preferences utility function: g(i, j) = r
ai+aj

2 —gains from individual transaction depend on
assets of both sides of trade process.

(ii) Cobb–Douglas utility function: g(i, j) = r√aiaj—similar as in the above case but gains were
much lower when agents assets differed significantly.

(iii) Koopmans and Leontieff utility function: g(i, j) = r min(ai, aj)—gains are determined by a
poorer trader.

Results are presented in Figure 5.
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Figure 5. Gini index evolution for different payoff function used in the model. The black line
corresponds to constant payoffs while the other ones correspond to payoffs depending on trading
agents assets: red—payoff proportional to average assets of trading agents, blue—payoff proportional
to geometrical mean of trading agents assets, brown—payoff proportional to poorer agent asset.
The parameter r = 0.01 and population size N = 105.

In all studied cases, we observed wealth condensation. It occurred even faster than for the constant
gain, as the above functions give additional profits from transactions between richer agents, which are
more probable within the studied model. Moreover, for Cobb–Douglas and Koopmans–Leontieff
functions, a small group of agents took all the assets, and thus, further evolution, according to model
rules, became impossible. The model rules assume that in a single cycle there were N/2 trades between
different pairs of agents. However, these agents were chosen with probability given by their assets,
and thus there was practically no opportunity to draw randomly one of the poor agents as their wealth
was negligibly small. Even if such trade occurred the assets of the poorer did not change significantly
due to properties of these utility functions.

Because the wealth condensation occurred for all studied cases of the initial wealth distribution,
we further focused on the case where all agents had an equal lump of money initially, and the
population size was 105. To get some insight into obtained results, we analysed a simpler model,
where an agent could trade with himself, and there was no restriction that each pair could trade at most
once during a cycle. Note that these rules were more generous for a richer agent than the ones used in
numerical simulations. We checked numerically that these restrictions had no qualitative influence on
the phenomenon of wealth concentration as well as the type of wealth distribution. In such a case,
each agent had N independent opportunities to trade, and each option was used with probability
equal to the agent’s wealth. Thus, the number k of i-th agent transactions during the cycle is given by
the binomial distribution:

pi(k) =

(
N
k

)
ak

i (1 − ai)
N−k. (13)

The gain of i-th agent after the cycle is kr/N, and the total gain of all agents is r. Thus,
after normalisation (see Equation (10)) the wealth of the i-th agent will be

ai → ai + Δai, (14)

where

Δai(k) =
r

1 + r

(
k
N

− ai

)
. (15)

The mean value of such binomial distribution is 〈k〉 = Nai, and the variance var(k) = Nai(1 − ai).
Because Δai is a linear function of k, its mean value equals to

311



Entropy 2020, 22, 1148

〈Δai〉 = r
1 + r

(
Nai
N

− ai

)
≡ 0. (16)

This result depended neither on a particular value of ai or distribution of wealth among agents. It means
that in this model, share of wealth of each agent, at average, remained constant. It corresponds to the case
β = 1 in the Vallejos et al. model [14], where the initial wealth distribution was stable. Remembering that
the presented here model had additional restrictions limiting the number of transactions mainly for the
richest individuals, the observed concentration of wealth is therefore highly unexpected. To give some
explanation of this phenomenon, we studied the variance of Δai, which is equal to

var(Δai) = 〈(Δai)
2〉 =

(
r

1 + r

)2 ai(1 − ai)

N
. (17)

The variance is a square function of the agent’s wealth ai and has a maximum for ai = 0.5. In our
model, the initial value of ai was typically much smaller than 0.5 due to a large number of agents,
so in that case, it was safe to assume that for poorer individuals the wealth would change slower
than for richer ones. In other words, if someone became poor, it would be tough for him to regain his
wealth. However, if a relatively small group of agents accumulated wealth that made the probability
significantly higher (for the whole group) than 0.5, that the wealth of this group, as a whole, would be
conserved due to decreasing variance for ai > 0.5. This may be the mechanism which stabilises
inequalities caused initially by random fluctuations.

3.2. Income and Wealth Tax Influence on the Model

Other important aspects of wealth concentration are the redistribution effect and optimal taxation
problem [26,27]. To check how taxes influence the results of our exchange game model we analysed
two different approaches to trade taxation. One was based on a linear income tax, i.e., where tax was
collected within a single trade cycle, and the other on wealth tax, and affected total holdings of each
agent collected over multiple trading cycles. In both cases, the tax was collected from all the agents
and then was distributed equally among them. Thus the Equation (10) becomes:

ai →
(1 − tW)ai + (1 − tI)∑j

r
N + tW+tI r

N
1 + r

, (18)

where Δai = ∑j
r
N is an income of i-th agent during one cycle, and tI and tW are income and wealth

tax rates, respectively. Note that in the above relation we took into account that the global income was
equal to r while the total wealth was normalised to 1. Due to the latest opinions that only wealth tax
can lower wealth inequalities [27–29], we are particularly interested in comparing these taxes within
our model. Therefore we studied two different situations—pure income tax with tax rate set at 10%
(tI = 0.1 and tW = 0), and pure wealth tax with rate set at 1% (tI = 0 and tW = 0.01). For r = 0.1
such choice of rates causes redistribution of 1% of the global wealth per cycle in both cases. In general,
to get the same global income from the wealth tax and the income tax, the ratio of their rates should be
r. The comparison of both cases is presented in Figure 6.

In fact there was no significant difference between these two kinds of taxation. The detailed
analysis of the Gini coefficient (see Figure 7) suggests that the wealth tax followed to slightly larger
inequalities than the income tax. It is in contradiction with above-mentioned, well-established
opinions [27–29]. On the other hand, this effect is quite easy to explain. Existence of wealth
condensation meant that the relation of income to the wealth was effectively higher for richer
individuals. Thus, the linear income tax hit the rich more than the wealth tax. However, in a real
economy, it is easier to hide or reduce declared income than wealth. Therefore, in general, the wealth
tax can be more effective as easier to enforce.

Until now we have shown that within our model there were no significant differences between
income and wealth based redistribution when initially wealth was equally distributed among agents.
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However, in a real society, we never have equally distributed goods. Therefore, it is particularly
interesting how these two taxes affects the evolution of wealth in the case of high inequalities, such as,
for example, one presented in Figure 2 obtained after 1000 cycles. The evolution of wealth in this case
is presented in Figure 8.
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Figure 6. Histograms of agents assets after 0, 10, 100, and 1000 cycles. In both plots, the wealth of
agents was initially equal (ai = 10−5). The left plot corresponds to income tax (tI = 0.1 and tW = 0),
and the right one corresponds to wealth tax (tI = 0 and tW = 0.01).
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Figure 7. Gini index evolution for pure wealth (solid black line) and income (dashed red line)
tax applied to the model. Initially, the wealth was distributed equally among agents (ai = 10−5).
Inset shows the evolution of the maximal and median wealth in the population of agents.
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Figure 8. Histograms of agents assets after 0, 10, 100, and 1000 cycles. In both plots the initial wealth of
agents was taken from the final state of simulation (1000 cycles) presented in a Figure 2. The left plot
corresponds to income tax (tI = 0.1 and tW = 0), and the right one corresponds to wealth tax (tI = 0
and tW = 0.01).
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Note that, in contrast to previous cases the wealth distribution shrank with time (growing number
of cycles). Again however, there was no significant difference between income and wealth based
redistribution. All these observations were confirmed by Gini coefficient evolution presented in
Figure 9.
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Figure 9. Gini index evolution for pure wealth (solid black line) and income (dashed red line) tax
applied to the model. The initial wealth of agents was taken from the final state of simulation
(1000 cycles) presented in Figure 2a. Inset shows the evolution of the maximal and median wealth in
the population of agents.

In the beginning, wealth inequalities and the Gini coefficient was high, but wealth redistribution
quickly tamed them. As previously, the income tax was slightly more effective. What is also important,
the final state reached after 1000 cycles was similar to one with obtained for equal wealth distribution
at the beginning of simulations—note the horizontal scale difference between Figure 2 and Figure 8.
It allows trusting, that this final state was universal and did not depend on initial conditions. In both
cases, the median wealth increased by several orders of magnitude. For example, for income tax based
redistribution, the median raised from 2.1 × 10−33 to 8.7 × 10−6 at the cost of richest agent wealth,
which decreased from 5.9 × 10−4 down to 6.2 × 10−5, and the 90% of total wealth was owned by 74%
of richest agents. What is even more spectacular, only 10 cycles were needed to raise the median to
6.1 × 10−7 at a cost of the richest agents wealth decreasing down to 4.7 × 10−4.

To ultimately prove that within presented model redistribution based on the income and wealth
taxes gives similar effects we analysed the dependence of Gini coefficient after 1000 cycles on
redistributed amount of wealth, for high wealth inequalities at the beginning of simulations. Results
are presented in Figure 10.

As expected, inequalities dropped down with growing redistribution. Moreover, the final value of
Gini coefficient, the richest agent wealth and median of wealth in the society depended on the amount
of redistributed wealth but they almost did not depend on a type of applied tax.
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Figure 10. Gini index after 1000 cycles for wealth (solid black line) and income (dashed red line) tax
based redistribution. The initial wealth of agents was taken from the final state of simulation (1000 cycles)
presented in Figure 2. Inset shows final maximal and median wealth in the population of agents.

4. Conclusions

We proposed a simple mechanism owing utility theory, in which an individual with more assets
has more opportunities to interact with others, but, at average, the gain from these interactions is
proportional to individual’s wealth. Despite this, using agent-based modelling, we showed that this
mechanism causes wealth condensation independently on details of the studied model as well as
its initial condition. The observation has been also supported by analytic arguments. In contrast to
kinetic exchange models e.g., [10–13,15], here, the wealth inequalities grow for a large range of initial
conditions and this growth is not limited by a specific distribution with exponential tails. In contrast to
other models with growing economy [14], no disproportionately better treatment of wealthier agents
is required to fuel the growth of wealth inequalities.

It suggests that the phenomenon of wealth condensation can be much more fundamental than
expected, as it may appear even in the absence of any form of disproportionately preferential treatment
of some groups of individuals.

We also studied the influence of wealth redistribution based on income and wealth taxes within
the model. It occurs that while the level of inequalities depends on the amount of redistributed wealth,
it almost does not depend on the type of applied tax.
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Appendix A

To find estimation and inference measures that will enable linking the model to a family of
possible likelihood functions related to income data, we use a single parameter family of entropic
function-power divergence measures given by [17]:

I(p, q, γ) =
1

γ(γ + 1)

n

∑
i=1

pi

[(
pi
qi

)γ

− 1
]

, (A1)

with γ being a parameter indexing Creesse and Read (C.R.)-entropy family of divergence
measures-distributions, pi are probabilities that need to be estimated, and qi are reference probabilities
from a uniform distribution.

Estimation of income distribution from a sample of real data is then equivalent to the solution of
the optimisation problem [18]:

p̂ = arg min
p

[
I(p, q, γ)

n

∑
j=1

pjdj

]
;

n

∑
j=1

pj = 1; pj ≥ 0 , (A2)

where dj is a discrete random income variable, representing mean income with j-th bin. In the limit
criterion γ → 0, the problem further converges to:

max
p

[
−

K

∑
j=1

pj log pj

K

∑
j=1

pjdj

]
, (A3)

which can be solved by via Lagrange multiplier λ̂ leading to

p̂j =
exp(−djλ̂)

∑K
j=1 exp(−djλ̂)

. (A4)

This procedure is part of a statistical generalised additive model for location, scale and shape.
In principle, a parametric distribution, which might be heavy-tailed and positively skewed, is assumed
for target variable and distribution can vary according to explanatory variables using smooth functions.
This distribution is characterised by location μ, scale σ and remaining parameters are shape parameters,
i.e., skewness ν and kurtosis τ [19]. To select a proper parametrisation M for wealth distribution,
we apply Akaike (aic) and Bayes (bic) information criteria.

bic(M) = k log(n)− 2logL aic(M) = 2k − 2logL (A5)

with k equal to the number of model parameters, n being a sample size, and L being the maximised
likelihood function and look for a distribution model M with minimal values of either bic or aic.
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Abstract: Assessment of welfare effects of macroprudential policy seems the most important
application of the Dynamic Stochastic General Equilibrium (DSGE) framework of macro-modelling.
In particular, the DSGE-3D model, with three layers of default (3D), was developed and used by
the European Systemic Risk Board and European Central Bank as a reference tool to formally model
the financial cycle as well as to analyze effects of macroprudential policies. Despite the extreme
importance of incorporating financial constraints in Real Business Cycle (RBC) models, the resulting
DSGE-3D construct still embraces the representative agent idea, making serious analyses of diversity
of economic entities impossible. In this paper, we present an alternative to DSGE modelling that
seriously departs from the assumption of the representativeness of agents. Within an Agent Based
Modelling (ABM) framework, we build an environment suitable for performing counterfactual
simulations of the impact of macroprudential policy on the economy, financial system and society. We
contribute to the existing literature by presenting an ABM model with broad insight into heterogeneity
of agents. We show the stabilizing effects of macroprudential policies in the case of economic or
financial distress.

Keywords: systemic risk; macroprudential policy; agent-based modelling; inequality; central-banking

1. Introduction

The new setting of financial supervision tailored after the global financial crisis of 2008–2009
has highlighted the need for research on the nature and measurement of risk in the financial
system, also called systemic risk [1–4]. In response to the problems that occurred during the global
financial crisis, the Basel III regulatory framework for financial institutions was adopted in 2010–2011.
In the updated version of the Basel document the capital and liquidity requirements were established.
In addition, the methods of conducting stress tests in the financial system have been subject to
revision. Basel III was designed to strengthen the effects of banks’ capital requirements by increasing
the liquidity of the banking sector and reducing leverage undertaken by banks. In the European Union
(EU), the implementing act of the Basel Agreements has been issued in the form of a new legislative
package covering CRD IV/CRR (i.e., CRD IV Directive No. 2013/36/EU on access to the activity of
credit institutions and the prudential supervision of credit institutions and investment firms and CRR
Regulation No. 575/2013 on prudential requirements for credit institutions and investment firms).

The literature on selected macroprudential policy tools [5,6] presented in Basel II and III has been
mainly focused on theoretical and empirical research on linkages between real sector and the financial
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system. According to International Monetary Fund, Financial Stability Board and Bank for International
Settlements (IMF-FSB-BIS) [7], the assessment of the effectiveness of macroprudential policies includes:
the assessment of the extent to which the macroprudential instrument increases the resilience of
the macro-financial system; and the assessment of the extent to which the macroprudential instrument
has impact on credit dynamics and asset prices (the impact on the cycle). The adoption of the new
institutional framework for macroprudential supervision in the EU Member States took place in most
countries during last three years. Therefore, the results of empirical studies on the effectiveness of
macroprudential instruments are biased by substantial uncertainty. Alternatively one may carry out
counterfactual analyses on the impact of a combination of macroprudential instruments on a stylised
economy using the following simulation methods: dynamic stochastic general equilibrium models
(DSGE) or non-equilibrium models (e.g., ABMs) [8]. Although from the presentation of ABM models
in opposition to DSGE models, the conclusion can be drawn that the DSGE models are always less
useful, it is important to remember that DSGE models are an extremely important tool used mainly in
central banking. A defence of the legitimacy of using DSGE models even after the financial crisis can
be found in Christiano et al. [9].

Analyses of the impact of macroprudential policies on the financial system and the real part of
the economy have been primarily focused on capital requirements [10–13], countercyclical capital
buffer [14–17] and leverage [18]. In the literature, we can also observe successive attempts to
incorporate stylised macroeconomic and macroprudential policies in the form of financial frictions
into Dynamic Stochastic General Equilibrium (DSGE) models [19–25]. The main goal of these attempts
was to examine the effects of monetary policy or the general equilibrium welfare effects of capital
requirements and leverage. Despite the role these studies played in formulating theoretical background
to design of macroprudential policy, the assumptions of DSGE models are subject to critique [26,27].
DSGE models share the assumption of a perfectly rational representative agent that dynamically
optimizes the use of resources. Failure to take into account the heterogeneity of agents in most DSGE
models is particularly acute from the perspective of social welfare analysis performed within an
equilibrium environment [28].

Both empirical and theoretical studies on the effects of the Basel III have led to the formulation of
criticisms of the adopted regulatory framework. In particular, some researchers highlighted insufficient
risk and uncertainty sensitivity of macroprudential tools, over-reliance on external rating regulations,
improper tool calibration and lack of synchronization of adopted rules at institutional and national
level. EU expert groups are still working to incorporate changes within these areas into the Basel
IV framework. New research tools are required to examine the impact of regulatory changes on
the economy, financial sector and society. The new setting should allow greater flexibility in modelling
of risk-taking, risk aversion and decision-making under uncertainty. Consequently assumptions of
macromodels should be more realistic to allow for a study of changes in welfare in heterogeneous
economy beyond the social planner framework.

The aim of this paper is to analyse the impact of selected macroprudential policy tools on
the economic and financial system using agent-based modelling (ABM). Modelling of interactions
between agents within the ABM approach was confronted with the DSGE model with three layers of
default (‘3D’) [21], which is currently used by experts within the European Systemic Risk Board (ESRB)
and European Central Bank (ECB).

This paper contributes to the existing literature of agent-based modelling through detailed and
relatively broad insight into heterogeneity of agents. In the approach taken, decision-making rules,
preferences and behaviours may vary across units. In our model, all agents, ie banks, individuals,
households, consumers, firms, establishments, industries, suppliers, properties, are heterogenous.

We conducted extended simulation experiments that were based on an ABM model that had been
calibrated to reflect the features of a small open economy. Our choice was Poland as an exemplar case.
The reason for calibrating the model relying on Polish data is that among the EU countries, the Polish
economy is relatively small, open and strongly connected to the rest of the European Union countries.
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Moreover, the Polish banking system still remains strongly influenced by investors from the European
Union, who treat Poland as a host country. Generally, the smaller Central and Eastern European
(CEE) countries that host foreign financial institutions are exposed to various dimensions of systemic
risks more strongly. At the same time, the degree of the development of financial intermediation is
relatively low, which results in a rather weak credit channel, especially in the case of investments.
Although the financial system in Poland generates limited systemic risk, it is more vulnerable to
regulatory arbitrage and the propagation of the shocks that are caused by the activity of international
financial groups.

Consequently, the CEE economies and other emerging economies may need to conduct a more
active macroprudential policy because of the higher risks that stem from volatile capital flows or
credit booms and so forth. These issues also relate to the Polish economy and its financial system.
Hence, both the ABM model and the simulations presented in our paper are valuable for gaining
a detailed insight into the effects of macroprudential policy, especially in the case of small emerging
open economies.

In order to study the macroeconomic effects of macroprudential instruments and their interaction
with monetary policy in the case of a hypothetical small open economy, Aoki et al. [29] applied a DSGE
framework. The analysed model captured some critical features of the emerging market economies
with macroprudential instruments that were defined as the capital requirements that were imposed
on banks and a tax on foreign currency (FX) lending. However, there are some relevant aspects
that were not taken into consideration in the Aoki et al. [29] model. For example, the possibility of
the government or central bank intervening in the foreign exchange markets through the use of official
foreign reserves is not discussed. Moreover, what is missing in the model is a more flexible specification
of international capital flows (no equity flows or foreign direct investment) and the role of cross border
gross flows, which could play a destabilizing role for financial stability. The ABM construct that is
presented in our paper and the simulation study seem to be a step forward in addressing some of
these issues but in particular in relaxing the assumption of the homogeneity of the economic units that
interact in a system.

2. Comparison of the ABM and DSGE-3D Model

The use of DSGE models historically has been primarily focused on the analysis of technological
changes and their impact on the real economy [30,31] as well as the impact of monetary policy on
the business cycle [32,33]. The first DSGE models with financial frictions were not used for impact
studies of macroprudential policies on the macro-financial system and social welfare. The research
has been mainly focused on the formal explanation of the financial accelerator hypothesis [34,35] and
the role of the net worth channel in credit supply [23,36]. In a few models, the impact of LTV changes
and capital requirements on the economy was analysed explicitly [25].

After the global financial crisis, interest in systemic risk assessment and macroprudential policies
increased [37–39]. Currently, one of the most important examples showing the use of DSGE models
in research on macroprudential policies is the DSGE model with 3 layers of default (‘3D’ model) [21]
developed in ECB. The main goal of the ‘3D’ model was to create a framework for analysing
positive and normative macroprudential policies. This model enables to set the optimal levels of
capital requirements as well as to analyse welfare within the social planner framework. However,
heterogeneity of agents within the model which seems more realistic would change the optimal values
for capital requirements and would make the welfare analyses more meaningful.

The paper includes a comment on the ‘3D’ model, due to its similarity to the prepared
heterogeneous agent-based simulation. In both cases, the behaviour and decisions of major market
players are taken into account. The insolvency of individuals (households), companies and banks
describe formally sources of systemic risk. In the ‘3D’ model and in the ABM model, stability of
the financial sector is related to the default of agents. Nonetheless, the method of modelling agent’s
decisions differs between both approaches. More importantly definition of the insolvency also differs.
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In the ‘3D’ model, individuals can deposit funds in banks and take loans for the purchase of real
estate; entrepreneurs borrow from banks to accumulate capital. Business insolvency is associated with
the occurrence of idiosyncratic and aggregate shocks. In the ABM model, the insolvency of agents
is tied to internal market dynamics, driven by business and financial factors mainly the supply and
investment finance policies of the banks and the demographic factors. The external shocks can be
taken into account in the analyses but their significance is smaller than in the DSGE approach.

The ‘3D’ model has been a novelty in the DSGE literature. Traditionally, in the DSGE models,
due to appropriately formulated contracts, insolvency at steady state was impossible. Risk of
insolvency itself was fully hedged in the model [35]. In a ‘3D’ model, a borrower’s insolvency implies
changes in the lender’s balance, which in turn affects his or her optimal behaviour in the market.
Moreover, the bank’s insolvency also entails costs to individuals and businesses, in spite of deposit
insurance, which in turn strengthens the impact of bank insolvency.

In both approaches, the entire chain of interconnections between agents is formally modelled.
Households save and deposit their funds in banks, while other households and companies borrow
funds from the same banks. The ABM model departs from the stylised division into two dynasties:
savers and borrowers. In an agent-based simulation, each household is made up of individuals
with their own heterogeneous profiles in terms of savings, income, spending or additional financing.
The way households make decisions depends on the interaction of an individual with family members
and other agents in the model. In this way it is possible to trace the way of transferring the risk of
insolvency between sectors. However, the transmission of default risk between sectors in DSGE models
is accomplished by further optimisation of resources by a representative agent assuming appropriate
restrictions and rational expectations. In the ABM model, insolvency transmission is accomplished
not only through actual economic and balance-sheet relations and constraints but also the perception
of risk and uncertainty of heterogeneous agents in the system [40–42]. DelliGatti [41] binds DSGE
models with the financial accelerator hypothesis, while ABM models utilise the instability hypothesis
of H. Minsky, which take into account not only the financial accelerator hypothesis but also Knightian
uncertainty [43]. Additionally, the ABM model presented includes not only the transmission of risk of
insolvency between the agents but also between industries.

In the ‘3D’ model the attention is drawn to two types of distortions, which drive banks to excessive
use of leverage and significant exposure to risk. They also explain the need for macroprudential policy.
The first is related to the existence of deposit insurance agency. Banks run increased risk at the expense
of an external agency, leading to higher credit supply and increased demand for deposits. The second
distortion is related to the fact that the insolvency is expensive, not only for the lender but also for
the borrowers. Occurrence of costly state verification [19] leads to lower demand for credit. The net
effect of the two market distortions may be different for each sector. Consequently, the supply of credit
for each sector may be lower or greater than the level that maximises the welfare of society.

According to the logic of the ‘3D’ model, in a steady state, when the probability of bank insolvency
is high, the risk premium is raised. We assume in the ‘3D’ model that the risk premium is for the whole
system and not for a given bank; therefore, banks are willing to take a higher risk because their
funding cost is the result of decisions made by all participants within the market. These results seem
obvious and a natural conclusion of homogeneity of individuals particularly banks. In the ‘3D’ model,
we assume a certain probability of bank default, which is characteristic of the state of equilibrium that
we analyse. In financial markets, the decisions of a bank depend on its perception of counterparty
risk and estimation of the way a bank is assessed by other units (the »perception of perception«
of uncertainty). One of the dimensions of the heterogeneity of agents is related to differences in
perception of reality, inter alia the perception of counterparty risk, overall uncertainty in the market
and the state of the economy. Those elements are clearly omitted in the aforementioned DSGE ‘3D’
model. General frameworks built upon an idea of equilibrium make it impossible to generalise existing
DSGE models regarding the aforementioned issues. Also, assumption that a particular individual’s
decision may or may not lead to achieving equilibrium seems more realistic. The ABM approach
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helps overcome these drawbacks. Analyses conducted only within the state of general equilibrium
are departed from and the field of interest of non-equilibrium theories and the instability hypothesis
is entered [44,45]. The ABM approach is therefore a step towards overcoming the DSGE modelling
imperfections indicated by many authors [46,47]. According to empirical literature, the response
of systems to the occurrence of shocks may be nonlinear and the financial system itself may be
unstable. In addition, shock effects exhibit asymmetric nature. By design, mainly due to the use of
log-linearisation, DSGE models are not able to accommodate non-linearity.

DSGE models with financial frictions [19,48], including the ‘3D’ model, refer to the hypothesis
of the financial accelerator system. At the same time, the system is characterised by market failures,
including the asymmetric information and externalities. A number of researchers highlight the presence
of pecuniary externalities [49–51]. Pecuniary externalities complement technological externalities and
aggregate demand externalities [52]. After the recent financial crisis, one may observe an increased
interest in explaining the impact of pecuniary externalities on the system and social welfare. Pecuniary
externalities are incorporated mainly into the models by means of credit restrictions. An example of
pecuniary externality may be the lack of internalisation of effects of investment decisions in housing
and capital prices, which in turn affects the required collateral. In the ‘3D’ model the level of leverage
of households and firms is affected endogenously by prices, including real estate prices. At the same
time, the direction and size of the impact of pecuniary externalities on allocation of resources are
difficult to estimate using the ‘3D’ model.

In agent-based models, it is possible to go one step further to include the premises of instability
hypothesis in the analysis. The instability hypothesis is closely tied to financial accelerator hypothesis
and it can assume existence of pecuniary externalities. Nonetheless, it goes far beyond it. DelliGatti [41]
distinguishes two ways of presenting Minsky’s hypothesis. The first does not refer explicitly to
the heterogeneity of agents, and the second assumes the existence of three types of agents; hedging,
speculative and Ponzi agents. According to the first explanation, the level of investment in the economy
depends on the volume of internal finance and the difference between the market price of assets and
the price of the final good. The market price of assets depends on long-term profit expectations.
Final good price depends on the expected demand for that good. In the absence of heterogeneity of
agents, the representative agent’s investment level decisions are a function of internal financing, which
in principle is consistent with the financial accelerator hypothesis. In practice, investment decisions
are also made according to how the agents perceive risk. Hence, according to Delli Gatti, in order to
fully understand the Minsky’s hypothesis, we need to distinguish between three types of agents that
have different attitudes towards external financing.

During the economic boom period, both the borrower and lender expect future cash flows to
increase at a pace that will allow the borrower to repay their obligations. As the expectations develop,
asset and product prices increase, stimulating investment growth. As a result, production, profits
and employment in the economy increase. Banks increase the supply of credit, often requiring lower
collateral. Companies are less cautious when they borrow money. Consequently, the proportion of
speculative and Ponzi agents increase and the financial system resilience decreases. If the level of debt
in relation to its service is perceived as too high on aggregate, the number of insolvency announcements
in the system increases, leading to an eventual financial crisis.

Both the ‘3D’ model and the ABM simulation are examples of stochastic dynamic systems that
describe the evolution of basic components of the economy. However, while in the ‘3D’ model
the economic agents are homogeneous, fully rational and dynamically optimising, in the ABM
simulation model, the agents are fully heterogeneous, bounded rational and they perform heuristic
optimisation [53–56].

In order to include the conclusions of the Minsky’s hypothesis in analyses, heterogeneity of agents
was included in the agent-based simulation. The heterogeneity of the economy is understood here,
however, more broadly than the differentiation of attitudes towards external financing. It is understood
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as a differentiation of states, behaviour rules and expectations; this implies heterogeneous distributions
of variables ex ante and ex post.

Both groups of researchers, working on the DSGE models and ABM models respectively have
recognised the need to consider heterogeneity of the economy in order to analyse the optimality of
policies as well as welfare implications. The heterogeneity of agents in the ABM approach is, however,
understood differently than in DSGE models with heterogeneous agents [57–59]. In the DSGE models
with heterogeneous agents, the discontinuation of the assumption of a representative agent is made
primarily by allowing for idiosyncratic shocks and by removing the assumption of completeness
of asset markets. In particular, such a definition of heterogeneity requires the redefinition of basic
model and analyses elements, including the definition of steady state and equilibrium [58]. States
of the economy are generally considered to be the realisation of a complex stochastic process with
approximate properties to the Markov processes. Therefore, in such models, stationary equilibrium is
considered, within which the stationary (ergodic) distribution exists. Within these model types,
decision functions and price process realisations are approximated numerically. Some of these
techniques were also adopted in the ABM approach [60–62].

The heterogeneity of agents in ABM is understood differently. This could be due to
differentiation of attributes and states, differentiation of decision rules [63,64], attitudes towards
risks or expectations [65–67]. In most ABM models with heterogeneous expectations, agents typically
have adaptive expectations, as opposed to the rational expectations of representative agent within
the DSGE approach. All these dimensions of heterogeneity appear in the simulation presented in
the next section. Among others, the empirical distributions of basic economic categories such as
income, expenses or credits were used to calibrate the states and the decision functions and procedures
were selected after conducting the empirical research on the patterns of consumption and production
on the market. The adaptive expectations were imposed as well on simulation design. A key difference
between the presented simulation and other agent-based models is inclusion of varied attitudes
towards risk and uncertainty in Knight’s sense and the risk sensitivities.

The final distinguishing element of the ABM approach is the possibility to introduce more realistic
assumptions in the model than in the DSGE approach. Good examples are the assumption of visibility
and satiation. This visibility means that agent decisions take into account not only purely economic
conditions and factors, such as the price of the product but also the proximity of the supplier in a spatial
sense. In the case of analysis of financial system, the idea of visibility has an additional dimension.
It does not come down to visibility in a geographic or spatial sense but rather to the perception of
banks as relatively safe institutions. The perception of banks does not have to be reflected in economic
foundations or stances [42]. Adopting the saturation principle leads to a departure from the global
optimisation of underlying criteria with restrictions on the choice of local maxima.

The presented ABM model is based on the traditions of the EURACE [68,69], FP7 MOSIPS and
the population dynamics model in the EU regions models [70] as well as FP7 CRISIS models. Our ABM
model is also consistent with the stock-flow approach [71,72]. Impact studies of macroprudential
policies on the economy within the ABM approach is relatively new. However, the topic refers to
the tradition of agent-based models within financial markets [73–77] as well as literature on credit and
financial markets from the agent-based perspective [72,78–97]. In the broader sense, the study also
refers to the coevolution models successfully applied in [98,99] to explain the stylized fact of persistency
in a time series. For more general reviews on complex network theory refer to References [100,101],
while spatial interactions in agent-based modeling were discussed in Reference [102,103].

The purpose of the model is to bridge the gap in the literature on the role of macroprudential
policies in systemic risk mitigation. In the following section, details of the ABM model, simulation
results and an explanation of the logic behind robustness checks is provided. Comments on welfare
analysis within the DSGE and ABM approach are also provided; hence a critical perspective on ‘3D’
modelling results is presented.
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3. Model Description

Presented within this section is an ABM model suitable for performing simulations that provide
detailed insight into the nature of the relationship between the financial system and the real part
of the economy. Due to the specifics of agent-based modelling, initially presented is the software
environment in which simulations were developed. Next, attributes and activities of agents are
presented. Also discussed is the method of sequential updating of the states within simulation
modules. The form used to present the model and simulation is consistent with ‘A Common Protocol
for Agent-Based Social Simulations’ [104].

3.1. The Software

The simulation was developed using object-oriented programming in Java-NetBeans and Eclipse
environments. Statistical data to determine the attributes of system agents were grouped in a relational
database (PostGreSQL-pgAdmin III). The simulation was linked to the database using Hibernate
and SQL queries. According to the logic of object-oriented programming, initially agents and their
attributes are described, and then the simulation workings from the perspective of individual agents
and their activities are discussed. In the next subsection, a sequential update of agents’ attributes in
simulation modules is presented.

3.2. Agents and Attributes

In the macro-finance model, 9 agents are distinguished: Banks, Individuals, Households, Consumers,
Firms, Establishments, Suppliers, Properties and Industries. All Parameters in a separate object are also
defined. The relations between agents in the model are presented in the Figure 1. The attributes of
the agents can be found in the Tables A1–A10 in the Appendix A.

Figure 1. Relations between agents in the model.

3.2.1. Individuals, Households, Consumers & Properties

Individuals do not determine the behaviour of the system in the initial Initialisation, Production,
Supply chain and Public contracts modules. Their significance is enhanced only in the Households
consumption, Households mobility and Individuals’ records updating modules. Nonetheless, individuals
play a special role in the model because they determine the functioning of the program and the way
data that describe agents’ attributes is mapped in the relational database.

In the Households consumption module, the sum of the income of individual entities forming
the given household is initially calculated. Total household income is not only equal to the sum
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of family member income but also includes additional income from rental property and alimony
payments. After calculating total household income, resources are divided between consumption and
savings. The program counts the number of household consumers and their total disposable income.
Depending on the level of disposable income, household savings are determined to update household
members’ deposits. If a household consists of a couple (with or without children), then savings
are distributed between them. Otherwise, if the household consists of a single adult or single
parent, the savings are given to that adult. If the disposable income is exceptionally low, the scheme
works similarly, with the common deposits used primarily to cover the basic needs. Decisions on
the distribution of income between consumption and savings and the distribution of savings between
household members are dynamic. For example, if the household changes as a result of divorce or
death of the spouse, the states are updated.

Households represent different types of consumers in the model that determine the purchase of
goods and services from a given industry. Households purchase products from suppliers according to
the price offered by the supplier relative to the average industry price, quality of goods or services
relative to average industry quality and depending on supplier’s spatial location. Households of
a certain consumer type seek suppliers sequentially further from their location. Ultimately, they seek
suppliers globally, taking into account only the price and quality of the product or service.

Purchases of goods and services do not need to be financed solely by funds deposited in a bank
account. Households with creditworthiness are eligible for consumer credit. In the model, loan
maturity depends on the amount of the loan.

In the Households mobility module, households decide the place of residence and purchase or
lease the property. If the household already owns the property, the model verifies whether the cost of
repaying the mortgaged loan relative to the household income is too high. If repayment cost is too
high, the property is designated for sale. If the property in the previous iteration has already been
marked for sale, the price is reduced.

If a household leases a property, rent is equal to the sum of the property owners bank loan
repayment obligations; rent is calculated as the ratio of property price to the number of families renting
the property. If the rental cost is too high, the household seeks a new rental property. Preference
is given to properties near the current place of residence. If household members are not working,
further conditions are laid down for disposable income and burdens on household loans. If income
after deductions is relatively low and the person is over 25 and not working, then the individual
defaults. The banks which have granted the loans to this individual update the non-performing loans
value. In this module, income from renting real estate property to other households is also updated.
If the property is not leased, it is marked for sale. If it is not purchased, subsequent iterations reduce
the desired property sale value.

One of the most important elements of this module is the ability to purchase real estate.
Households with high savings buy property in cash with a given probability. Nonetheless, some
households, despite their resources, decide to apply for a mortgage loan. Households that do not have
sufficient savings, but meet the requirements, also take a loan. If the household is already the owner of
one of the properties, it may additionally take a non-residential loan on the pledge of the first property.
In practice, either the household takes a residential or non-residential loan, taking into account whether
it is already a property owner. Probabilities of taking a residential and non-residential loan were
estimated based on empirical data.

Attributes of individual entities change their values in the Individuals’ records updating module.
Depending on age and sex, the program determines the probability of death of an individual.
If the probability is high, the person dies and the assets capital and deposits go to the heir.
If the deceased person was the owner of a business, the heir can continue the business or forgo,
depending on their previous income as an employee in one of the firms. Simultaneously, the division
of capital in the economy changes. If the probability of individual’s death is low, the program directs
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the individual to the Education and Pairing modules. In the selected modules the consumer type of
households is updated and in the final modules the remaining individuals’ records are updated.

3.2.2. Firms & Establishments

The role of Firms is highlighted primarily in the modules: Firm demography, Mergers & Acquisitions
and Firm growth. An entrepreneur can open a new business according to a certain probability that
depends on the experience of running the company, the age and level of education completed
by the individual. When deciding to set up a new business, the entrepreneur takes into account
the average profitability of individual industries in the economy, the ease of obtaining licenses for
running a business in a given industry and the ability to raise additional funds for opening and
running a business. In the case of small and medium-sized enterprises, these funds can be obtained
from banks, while in the case of large companies, capital is obtained from many individuals, who are
henceforth shareholders of this company. Obtaining funding from a bank requires a number of formal
requirements to be met, including leverage, investment and industry risk, investment risk mitigation
and a good credit history of the applicant. Implicitly, banks also take into account the cost of labour,
equity and size of the enterprise relative to the average enterprise size in the industry.

As a result of the acquisition of another company or as a result of the company’s strategic
development, firms can increase the number of establishments they own. In the model, it is possible to
obtain additional funds from banks for expansion. Firms can also cease their business activity.

In the simulation, companies announce insolvency when the level of indebtedness and the risk of
business exceed the acceptable level. A low percentage of business that has been run in the low-profit
sector at high operating costs defaults as well. In the event of a company’s inactivity on the market
for six quarters, the program automatically removes the company from the database and program.
The adoption of such assumptions ensures adequate market dynamics in the simulation. Firms and
establishments are auxiliary objects for the remaining agents in the model. In the final modules,
other attributes of firms and establishments are updated.

3.2.3. Establishments & Suppliers

Establishments in the simulation allow for the spatial location of businesses. In the Initialisation
module, the maximum potential production of goods and services of the establishment is computed.
The price of the goods produced by the establishments changes depending on the demand. In each
period, the optimal number of products to be stored for future sales is calculated. In the next period,
the facility will only produce the number of goods equal to the number of goods demanded minus
the number of goods stored. In addition, the production process takes into account the manufacturing
risk and the overall level of corporate debt, which should not exceed the level specified by prudential
regulation and policies. For the production of final goods, the establishments purchase inputs from
others acting as suppliers. The choice of supplier is designed in such a way as to take into account
economic categories such as price or product quality but also supplier availability in a geographical or
spatial sense.

The demand from the private sector is supplemented by the need for goods from the public
sector. It was assumed that the ability to sign a contract in a public sector depends on the size of
the establishments producing the given good and the price and quality of the product offered compared
to the average values in the industry. The establishments then decide on the destination of the final
goods. Establishments may allocate all products for sale in a given sector or export some of their
products to another sector and other spatial units.

In addition, the establishments play an auxiliary role in other modules. Individuals seek
buildings near the workplace, that is, in the territorial unit within which the establishments are
located. At the time of setting up a new company, new establishments are also created. Similarly,
when a new company is created as a result of an acquisition or merger, the affiliation of the company
and the owner of the establishments change. The owners of establishments decide to increase or
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decrease the workforce and firms with a strong market position increase the number of establishments.
In addition, depending on the demand for work, the number of employees to be hired and fired in
each establishment is calculated. In the final modules, firms pay salaries to establishments’ employees
and the remaining attributes of establishments are updated.

3.2.4. Industries

The existence of major branches of the economy is assumed. The role of industries is crucial
when calculating large exposures (LE) of banks to particular industries. Industries is an auxiliary object
as well. Firms and establishments operate within the industries. The establishments may import
and export goods between industries as part of the purchase of inputs for production. When firms
apply for a loan, the total exposure to the industry is checked, which should not exceed the regulatory
thresholds. The average values of variables for the industries are treated as a benchmark for business
operations of firms and establishments. The main values calculated by the program are the number
of units operating in the sector, average product price in the sector, average good quality, average
firm size in the sector, average import and export, average industry earnings and average industry
workforce. When entrepreneurs decide to run a business, first they attempt it in the relatively most
profitable sector, and then in the next sectors.

3.2.5. Banks & Macroprudential Policies

Banks provide loans to individuals, households and companies. In the case of individuals and
households, we distinguish between consumer loans and mortgages for residential and non-residential
purposes. Companies can apply for a loan to purchase inputs and increase sales and business
development (investment loans). Banks analyse loans granted to each of the industries and examine
the risks associated with high exposures to the industry. According to regulatory requirements, banks
are not allowed to lend to specific industries above certain thresholds.

Individuals and establishments accumulate funds in a bank account. To each individual and
establishment at least one bank is matched based on survey data. The model assumes the existence
of network and reputation effects. According to the results of empirical research, individuals and
households are not guided solely by price in the decision to allocate funds. With relatively high
probability, the entity will decide to remain with the bank assigned to them. On the other hand, if they
decide to change bank, they will take into account interest rates and additional transaction costs.
In the case of consumer credit and the purchase of inputs, agents are more driven by the reputation of
the bank than the interest rate. On the other hand, in the case of residential and non-residential loans
as well as investment loans, households and firms are primarily guided by the long-term interest rates
of banks.

In the module Banks Supply side & regulatory requirements, banks set the supply of different types of
loans. Banks compete with each other in terms of price, offering different interest rates on deposits and
loans, as well as in terms of creditworthiness criteria. Risk-taking banks provide loans to individuals,
households or companies with a lower credit history or lower creditworthiness (income or equity
respectively). In the absence of macroprudential policy solutions, banks could be willing to lend to
more risk-prone entities, which would jeopardise the stability of the financial sector. Thus, the model
takes into account the examples of macroprudential policy tools. Firstly, the existence of capital
requirements (CAR) and recommendations of the financial supervision authority regarding the capital
maintained by banks were taken into account. The model then included the large exposures (LE) and
exposures of risk to the industries. Banks cannot lend to a given industry over a specified amount
and will not choose to lend to a company that runs risk-prone business without sufficient collateral.
By providing housing and non-residential loans, banks pay attention to the following indicators: debt
to assets (DTA), debt service to income (DSTI) and loan to value ratios (LTV). Moreover, the liquidity
ratio (LCR) and leverage ratio (LR) have been taken into account as well.
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From the supervisor’s point of view, it is extremely important to analyse the value of these
indicators on aggregate for the economy. The survey data allows only for a static description of
the level of these ratios for a given period. The simulation allows for the investigation of changes that
occur in the indicator values as a result of dynamic interactions between fully heterogeneous agents.
Similarly, for companies and premises leverage requirements (LR) are analysed.

Individuals, households, firms and establishments make decisions about depositing funds and
obtaining a loan based on interest rates. In the system it is possible to introduce interest rates offered
by banks. In this case, after taking into account the network and reputation effects, banks compete
on interest rates. It is possible to take into account counterparty risk indicators and indicators of
»perception of perception« in the analysis. It is then possible to integrate a macro-financial model into
a financial model that simulates the role of risk perception and uncertainty in generating systemic risk
in the interbank market [42].

4. Sequential Updating of States in the Model

The graphical representation of sequential updating of states in the model is presented
in Appendix B.

Module 0: Initialisation Sector Profitability (M.1)

In the Initialisation module, we calculate the average profit (that is πs
t ) of the N f irms

t firms doing
business in the S industries (s, where s ∈ {1, 2 . . . S} , S ∈ N) at time t. The procedure classifies sectors
according to their average profitability. Information on average profitability is used by individuals
when they decide to establish a new firm in a given industry. Each firm in the sector s generates
profits (Π f irms

t ).

πs
t =

N

∑
f irms=1

Π f irms
t

N f irms
t

. (1)

In this module, the model also stores the initial supply of different credit types (for each bank b):
consumer loans Sl.Cind

t , residential Sl.Hind

t and non-residential loans (SNHind

t ), firm investment loans

(Sl.Iest
t ) and short-term loans for firms (Sl.SHest

t ) as temporal variables. This information is used later in
module (M.55) to determine how much supply was used during this iteration by different agents.

Module 1: Production Price Updating (M.2)

In the Price updating submodule, the price (Pest
t ) is updated according to the demand

(
Qdest

t

)
for

a given good or service in relation to the expected demand (E
(

Qdest
t

)
) and the level of production(

Yest
t
)

relative to the maximum potential production of each establishment (Yt
s
max). In this sub-module,

the values of variables determining the number of employees to be hired
(

LHIest

t

)
and fired

(
LFIest

t

)
in

the current period in each establishment are set to zero.
The maximum production of premises in a given sector is then calculated according to the Cobb

and Douglas production function:

Yt
s
max = α1.s(Lest

t + 1)α2.s(Kest
t )

α3.s

(
(Ql)est

t
(Ql)s

t

)α4.s

(Aest
t )

α5.s , (2)

where Lest
t is the labour force, Kest

t is the capital, Aest
t is technology and (Ql)est

t /(Ql)s
t represents

the relative quality of the establishment’s product (or service) with respect to the average quality
of product and services in the sector (industry). The value of parameters α1.s α2.s α3.s α4.s α5.s are
specific to each industry. When initialising the system, the price is defined based on the initial
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conditions in the database. In subsequent iterations, the price of the previous period is assumed
to be the initial value of the good (Pest

t = Pest
t−1). This price may change depending on the demand

relative to expected demand and production in comparison to the maximum capacity, that is to say
the maximum potential production. If the demand for good produced by a given facility is greater than
the expected demand for that good and production is greater than the specified part α6 of maximum
production, then the price increases in proportion to the given parameter α7.s. The α7.s. parameter is
industry-specific. If the demand for a good is less than the part α 8 of expected demand for this good
and output is less than the specified α9 part of maximum output, the price drops by the percentage
given by the parameter α10.s. The α10.s parameter is industry-specific. This procedure is consistent
with the adoption of adaptive expectations in the model.

Module 1: Production Expected Demand Updating (M.3)

In this sub-module, we update the expected demand for the next iteration (E(Qdest
t )). The formula

of the expected demand for a good depends on the production experience of the establishment.
If the premises have been operating on the market for at least a quarter, the expected demand for its
good is calculated according to the following formula:

E
(

Qdest
t

)
=

[
α11.s

(
Pest

t
Ps

t

)
+ α12.s

(
Pest

t−1
Ps

t−1

)
+ α13.s

(
(Ql)est

t
(Ql)s

t

)
+ α14.s

(
(Ql)est

t−1

(Ql)s
t−1

)]
× Qdest

t−1. (3)

The expected demand depends on the price of the product relative to the average price in the industry
within the periods t and t − 1, product quality relative to the average quality in the industry within
the periods t and t − 1, given parameter values, and demand for the goods up to date. The parameters
α11.s, α12.s α13.s and α14.s are industry-specific.

However, if the establishment is new, then the expected demand is calculated to take into account
the workforce in the newly-created establishment and the average sales per worker in the industry
(Sl)s

t within which it operates.

E
(

Qdest
t

)
=

[
α 11.s

(
Pest

t
Ps

t

)
+ α12.s

(
Pest

t−1
Ps

t−1

)
+ α13.s

(
(Ql)est

t
(Ql)s

t

)
+ α14.s
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)× (Sl)s

t . (4)

Module 1: Production Expected Stock Updating (M.4)

If the establishment is new ((New)est
t = 1), we calculate the optimal level of stock (Invest

optt
) as part

of the expected demand, specified by the parameter α15. If the establishment is already established,
the optimum stock level is calculated to take into account the expected demand for the good, the ratio
of expected revenue from the sale of goods (Pest

t × E
(

Qdest
t

)
) to the costs of producing that good

in the current period (TCest
t ), and the ratio of sales revenue in the current period (Pest

t × (Sl)est
t ) to

the total costs incurred in the previous period (TCest
t−1).

Invest
optt

= α15 × E
(

Qdest
t

)
+ α16 ×

⎛⎝Pest
t × E

(
Qdest

t

)
TCest

t

⎞⎠+ α17 ×
(

Pest
t × (Sl)est

t

TCest
t−1

)
. (5)

Module 1: Production Production Decision Making (M.5)

If the optimum stock of products (Invest
optt

) is less than or equal to the actual stock (Invest
t ),

the establishment will not produce goods in the current period. However, if the optimal stock is
greater than the stored number of goods, the establishment should produce the difference between
the optimum level and the current stock.

Yest
t = min(Yt

est
max; Invest

optt
− Invest

t ). (6)
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Nonetheless, these establishments will produce goods only when the level of leverage and financial risk
associated with the debt of the establishments does not exceed the levels specified by the parameters
α18 and α19. If the establishment meets the conditions to produce goods, the production is equal
to the lower value of either maximum production of the establishment or the difference between
the optimum stock and the actual stock (inventory) of goods.

Module 2: Supply Chain Quantity of Inputs, Import & Export (M.6)

In this module, establishments buy inputs and decide on the import and export of goods between
industries. In order to minimise costs, they choose a supplier from the nearest spatially located area,
thus limiting the cost of transport. In addition, the adopted mechanism allows the modelling of
continuation of transaction relationships between suppliers and recipients of goods. Each company
is located spatially in the form of establishments. Each establishment is a supplier for another
establishment. For each establishment in all sectors, the initial value of inputs ((Inp)est

t ), profits from

sales ((Sl)est
t ) and demand for goods (Qdest

t ) are set to zero. Next, the amount of inputs (qest.buy.(sup)(.s)
t )

(provided by suppliers from sectors s) necessary to ensure continuity of production, taking into
account import and export of inputs between industries is calculated. If the facility imports or exports
semi-finished products, the amount of inputs that the establishment is going to purchase is obtained
using the following formula:

qest.buy.(sup)(.s)
t = α20.s−buy.s × Yest

t × α21.s−buy.s. (7)

In the model there are 2 × s values for parameters α20.s−buy.s and α21.s−buy.s (Cf. Calibration
for the explanation how the values of parameters were obtained). For each establishment in
the industry, the value of the parameter is the same but the values vary between sectors (industries).
If the establishment does not import goods then the quantity of purchased goods is equal to the part of
production specified by parameter α20.s−buy.s:

qest.buy.(sup)(.s)
t = α20.s−buy.s × Yest

t . (8)

The total quantity of inputs is the sum of inputs purchased from all suppliers in all sectors (qest.buy
t ).

Module 2: Supply Chain Supplier Selection (M.7)

When searching for a supplier, the establishment takes into account the amount of goods stored

by the supplier (Invest(.sup)
t > qest.buy(.s)

t ), and compares the ratio of quality to price of a supplier
(establishment in the sector s) with the average ratio within the industry (sector):

α22.s−est × (Ql)est(.s)
t

α23.s−est × Pest(.s)
t

>
α24.s−est × (Ql)s

t
α25.s−est × Ps

t
. (9)

In addition, it also takes into account supplier location (i.e., compares the spatial codes at NUTS 1-4
levels: ϑ est1

t , ϑ est2

t , ϑ est3

t , ϑ est4

t ). If the current supplier has a sufficient number of inputs for sale,
and the quality and price of the good are acceptable in relation to the average price and quality in
the sector, then the establishment can buy inputs from the supplier. The model consolidates the network
effects developed during the cooperation of businesses. If the supplier does not meet the requirements,
the establishments seek a new supplier locally in increasingly distant locations and then globally.
The parameter values from α22.s−est at time t to α25.s−est are specific to the supplier’s sector.

Module 2: Supply Chain Inputs Purchase (M.8)

After selecting a supplier, the establishment purchases inputs. To purchase inputs,
the establishment must have sufficient liquid assets to cover the wages and the cost of buying the inputs:
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(LA)
est.buy
t − West.buy

t ≥ (1 + α26.s−sup × �)× Pest(.sup)(.s)
t × qest.buy(.s)

t , where � is the binary variable
expressing whether the cost of transportation should be added. If it has sufficient liquid assets, it can
finance the purchase of inputs from accumulated funds. Therefore, in the model, with the probability
pr1 the establishment will not apply for a loan. In that case, for the establishment-buyer inputs
((Inp)est.buy

t ) and liquid assets ((LA)
est.buy
t ) are updated to. The signs “+=” shall be interpreted as the

incrementation of the value of the variable by the amount quantified by the formula given on the
right-hand side. Respectively, “-=”, shall be interpreted as a decrease in the value.

(Inp)est.buy
t + = (1 + α26.s−sup × �)× Pest(.sup)(.s)

t × qest.buy(.s)
t (10)

(LA)
est.buy
t − = (1 + α26.s−sup × �)× Pest(.sup)(.s)

t × qest.buy(.s)
t . (11)

While for all establishments-suppliers from each sector, the sales expressed in monetary

terms ((Sl)est.(sup)(.s)
t ), demand for goods (Q

dest(.sup).(s)
t ), liquid assets ((LA)

est.(sup)(.s)
t ) and stock

((Inv)est.(sup)(.s)
t ) are updated.

(Sl)est.(sup)(.s)
t + = Pest(.sup).(s)

t × qest.buy(.s)
t (12)

(LA)
est.(sup)(.s)
t + = Pest(.sup).(s)

t × qest.buy(.s)
t (13)

Q
dest.(sup).(s)
t + = qest.buy(.s)

t (14)

(Inv)est.(sup)(.s)
t − = qest.buy(.s)

t . (15)

In particular cases, with the probability of 1 − pr1, despite sufficient liquid assets, the establishment
may apply for a loan to purchase additional inputs that will allow the facility to increase its production
capacity and sales. If the establishment applies for a loan, the applicant’s creditworthiness is
checked even if its accumulated funds are sufficient to cover the purchase. In the submodule Bank
credit admissibility 1 (M.9), conditions in addition to liquidity funds are checked. In accordance
to the market dynamics of short-term loans, some of the applicants will not obtain a loan
from the bank due to lack of creditworthiness. The possibility of establishments applying for
a short-term loan in the case of temporary liquidity problems has also been included in the model
(i.e., (LA)

est.buy
t <(1+ α26.s−sup × �)×Pest(.sup)(.s)

t ×qest.buy(.s)
t ). If, in spite of short-term liquidity

problems, the establishment has not completely lost its creditworthiness, the bank may grant him
credit for the purchase of inputs in the submodule Bank credit admissibility 2 (M.10). If the establishment
has no creditworthiness, it has to adjust the quantity to buy (q̃est.buy

t ):

q̃est.buy(.s)
t = round

⎛⎝ ((LA)
est.buy
t − West.buy

t )× α20.s−buy.s

Pest.(sup)(.s)
t × (1 + α26.s−sup × �)

⎞⎠ . (16)

After the purchase, the value of inputs ((Inp)est
t ) and liquid assets of establishment-buyer ((LA)

est.buy
t )

are updated.

(Inp)est.buy
t + = q̃est.buy.(s)

t × Pest.sup(.s)
t × (1 + α26.s−sup × �) (17)

(LA)
est.buy
t − = q̃est.buy.(s)

t × Pest.sup(.s)
t × (1 + α26.s−sup × �) (18)
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At the same time, we update the values of sales ((Sl)est.(sup)
t ), demand for a good (Q

dest.(sup)
t ), liquid

assets ((LA)
est.buy
t ) and stock of suppliers from all sectors that provided inputs to establishments

(Invest.sup
t ) are updated:

(Sl)est1.(sup)
t + = Pest.sup(.s)

t × Invest1.sup
t (19)

(Sl)est2.(sup)
t + = Pest.sup(.s)

t × (q̃est.buy.(s)
t − Invest1.sup

t ) (20)

Q
dest1.(sup)
t + = Invest1.sup

t (21)

Q
dest2.(sup)
t + = q̃est.buy.(s)

t − Invest1.sup
t (22)

(LA)
est1.buy
t + = Pest.sup.(s)

t × Invest1.sup
t (23)

(LA)
est2.(sup)
t + = Pest.sup.(s)

t × (q̃est.buy.(s)
t − Invest1.sup

t ) (24)

Invest2.sup
t − = (q̃est.buy.(s)

t − Invest1.sup
t ) (25)

Invest1.sup
t = 0 (26)

where q̃est.buy.(s)
t is the quantity of inputs that has been selected according to the adaptive algorithm.

Module 2: Supply Chain Short Term Credit Admissibility 1 (M.9)

In this submodule we analyse the case of an establishment without liquidity problems.
The requested amount is given by the formula:

lSHest

t + = α27 × ((LA)
est.buy
t − West.buy

t − Pest(.sup)(.s)
t × qest.buy(.s)

t ) (27)

In the future, the model could also recognize different business types, similarly to the consumer types
in the model, however at this stage, access to such disaggregated data was unavailable. Firstly, it
is checked whether the matched bank in the database is able to loan this quantity (Sl.SHest

t ≥ lSHest

t ),
as is the creditworthiness of the applicant. The values of ROA, ROE and leverage ratios as well as
the value of average financial risk associated with the establishment operating in a given sector and its
default history are checked. If the loan is granted, then the values of loans (lSHest

t ), quarterly payments

(l
SHest

q
t ), interest to be paid (in total) (RSHind

t ) and quarterly (R
SHind

q
t ), inputs ((Inp)est

t ) and liquidity
assets ((LA)est

t ) are updated (for the establishment-buyer).

RSHind

t + =
1
κ

× [α27 × ((LA)
est.buy
t − West.buy

t − Pest(.sup)(.s)
t × qest.buy(.s)

t )× (1 + 0.25 × ilSH )
MSHest

+

− α27 × ((LA)
est.buy
t − West.buy

t − Pest(.sup)(.s)
t × qest.buy(.s)

t ))]

(28)

R
SHest

q
t =

RSHest

t

MSHest (29)

l
SHest

q
t =

lSHest

t

MSHest (30)

(Inp)est.buy
t + = Pest(.sup)(.s)

t × qest.buy(.s)
t (31)

(LA)
est.buy
t − = Pest(.sup)(.s)

t × qest.buy(.s)
t − α27 × ((LA)

est.buy
t − West.buy

t − Pest(.sup)(.s)
t × qest.buy(.s)

t ) (32)
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At the same time, the revenue of banks ((RevlSH )
b
t ) and supply of short-term credit for firms (Sl.SHest

t )

are updates as well as sales ((Sl)est
t ), demand (Qdest

t ), liquidity assets ((LA)est
t ) and stock of all

establishments from sectors ((Inv)est
t ) that provided inputs to establishments (buyers).

(RevlSH )
b
t+ = R

SHest
q

t (33)

Sl.SHest

t − = α27 × ((LA)
est.buy
t − West.buy

t − Pest(.sup)(.s)
t × qest.buy(.s)

t ) (34)

(Sl)est(.sup)
t + = Pest(.sup)(.s)

t × qest.buy(.s)
t (35)

Qdest
t + = qest.buy(.s)

t (36)

(LA)
est(.sup)
t + = Pest(.sup)(.s)

t × qest.buy(.s)
t (37)

(Inv)est(.sup)
t − = qest.buy(.s)

t . (38)

Short-term loans make it possible to guarantee the solvency of establishments in everyday business
transactions. Restrictions to funding provision could result in an establishment’s loss of liquidity
and production capacity. If the matched bank does not agree to grant credit, the same conditions are
checked with other banks in the market. Firstly, the conditions are checked in the bank that offers
the lowest interest rate. If none will grant the loan, the establishment needs to adjust the quantity of
inputs to be purchased (q̃est.buy

t ).

Module 2: Supply Chain Short Term Credit Admissibility 2 (M.10)

The requested amount is given by the formula:

lSHest

t = qest.buy(.s)
t × Pest(.sup)(.s)

t × (1 + α26.s−sup × �)− ((LA)
est.buy
t − West.buy

t ). (39)

Similar to the submodule 9, the supply conditions and creditworthiness are checked. In this case,
the conditions for granting credit are also tightened, hence the differences in the parameters in
the sub-modules Bank credit admissibility 1 (M.9) and Bank credit admissibility 2 (M.10). If a loan is not
granted by a given bank, the establishment tries to obtain a loan from another bank. If there is no bank
that is willing to supply a loan, the establishment is only able to purchase a portion of the planned
amount of inputs. The logic of adaptive algorithms is used here. The values of variables are updated
in the similar way as in the previous module (M.9). Purchases by establishments from the suppliers
are supplemented by the purchases of consumers and the governmental sector.

Module 3: Household consumption - Individuals & households income (M.11) & (M.12)

Firstly, in the module, the individuals’ and households’ incomes (respectively yind
t and yHH

t )

are computed. Individual income includes income from various sources: wages, business activity,
dividends, public pensions, pension benefits, pre-retirement benefits and training allowances.
The model distinguishes three main categories: wage (wind

t ), subsidy ((sub)ind
t ) and interest from

bank savings (deposits) (id × dind
t ). An individual’s income is expressed by the following formula:

yind
t = wind

t + (sub)ind
t + id × dind

t . (40)

Household income includes the sum of individual incomes, supplemental security income, alimony,
donations, property rental income, interest and dividends from savings accounts, bonds, investment
funds and income earned from participation in companies in which family members were investors or
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inactive partners. All items have been grouped into categories at the database level. The total income
of the household (composed of Nind.HH individuals) is given by:

yHH
t =

Nind.HH

∑
i=1

yind
it + (Don)HH

t + (Rent)HH
REt

, (41)

where (Don)HH
t are donations and (Rent)HH

REt
is an additional income from renting apartments.

At the beginning of the cycle, at least two banks are assigned to each individual; the bank to
which the individual entrusted their savings (Idbank.(ind)

dt
) and the bank that may grant consumer

loans to the individual (Idbank.(ind)
lC
t

). In the model, it is assumed that individuals are less prone to

change the bank to which they entrusted their saving and current account funds than to change
the ‘bank-lender.’ If they decide to change bank, when looking for a new bank, they take into account
the offered interest rates on deposits and transaction costs, that is, the costs of changing the bank
and opening a new bank account. The likelihood of a bank changing in the case of a consumer loan
is higher than in the case of deposits. In the case of deposits, psychological factors such as habit
formation or the perception of a bank as a reputable institution, which reinforce network effects, play
a greater role. In the case of mortgages, households primarily rely on the interest rate on the loan.

Module 3: Households Consumption Net Savings (M.13)

After calculating household income, savings (sHH
t ) are calculated. Disposable income is

the household income after deducting the cost of living (hHH
t ), which includes the cost of renting

or repaying the mortgage. If the disposable income is higher than the specified income per person
in the household, where the per person income is given by the parameter α41, then the savings are
computed according to the following formula:

sHH
t = max

⎧⎨⎩0;

√
(Age)eldest.ind

t

α42
×
(

yHH
t − hHH

t − α41 × Nind.HH
t

)⎫⎬⎭ , (42)

where α41 is the minimum cost of food per person in the household according to Central Statistical
Office statistics, Nind.HH

t counts the number of individuals in the household.
However, if disposable income is lower than the specified parameter α38 (income per

capita) multiplied by the number of consumers in the household (Nind.HH
t ), two possibilities are

considered. First, when the disposable income is positive, the savings are calculated according to the
following formula:

sHH
t = max

⎧⎨⎩0;

√
(Age)eldest.ind

t

3 × α42
×
(

yHH
t − hHH

t − α41 × Nind.HH
t

)⎫⎬⎭ . (43)

Household savings are redistributed between the accounts of adult household members. If the
household is a single person, then all savings are transferred to his or her account. If the household
is a couple or an extended one (more than two adults in the family), then the corresponding parts of
the savings are transferred to the adults’ bank accounts.

dHH
t + =

1
Nind.HH

t
×sHH

t . (44)
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Second, if the disposable income is negative, household members spend their savings and current
deposits on consumption and try to sell the properties on the real estate market. The algorithm looks
for households which have sufficient funds after deducting the debt burden to pay for the property:

Nind

∑
i=1

dind
it −

Nind

∑
i=1

(
l
Cind

q
it + R

Cind
q

it + l
Hind

q
it + R

Hind
q

it + l
NHind

q
it + R

NHind
q

it

)
≥ Pprop

t . (45)

If this kind of household is found, then the values of deposits of buyers and sellers are updated as well
as the status of the ownership of buyers ((Own)HH

t = 1).

dind.seller
it + =

1
Nind Pprop

t (46)

dind.buy
it − =

1
Nind Pprop

t . (47)

If the household does not receive additional resources, this can eventually lead to default (PDind
t + + )

and the household is removed from the database. The program updates the value of non-performing
loans ((NPLlI )

b
t , (NPLlC )

b
t , (NPLlH )

b
t , (NPLlNH )

b
t ). The probability of default of the bank increases.

(NPLlI )
b
t+ = (pl)Iind

t (48)

(NPLlC )
b
t+ = (pl)Cind

t (49)

(NPLlH )
b
t+ = (pl)Hind

t (50)

(NPLlNH )
b
t+ = (pl)NHind

t , (51)

where (pl)Iind

t is the sum of liabilities to the bank for outstanding investment loans that have to be

repaid in the given iteration, (pl)Cind

t is the sum of liabilities to the bank for outstanding consumer

loans, (pl)Hind

t is the sum of liabilities to the bank for outstanding housing loans and (pl)NHind

t is
the sum of liabilities to the bank for outstanding non-housing loans.

The bank may become a new temporary owner of the property if the household was removed
from the database after the default. The property is marked for sale. After selling, we update the value
of bank’s revenues:

(RevlH )
b
t+ = Pprop

t . (52)

Module 3: Households Consumption Consumer Loans Update (M.14)

In this submodule, the desired consumption of goods in the current period in a particular
industry by the household is determined. Households can finance their consumption entirely by their
own means or apply for consumer credit. The basic amount of good purchased from the industry
(QHH.(cons)

basic ) is given by:

QHH.(cons)
basic = α43.tc.s × ∑Nind.HH

i=1 dind
it − ∑Nind.HH

i=1 (l
Cind

q
it + R

Cind
q

it + l
Hind

q
it + R

Hind
q

it + l
NHind

q
it + R

NHind
q

it )

Ps
t ×
(
1 + ts

VAT
) , (53)

where parameter value α43.tc.s is specific to industry and customer type. The parameter expresses
the percentage of total consumption that is, household purchases from all industries. When
buying from several industries, we assume ∑S

s=1 α43.tc.s = 1, where S is the number of industries.

If the household consume only the quantity QHH.(cons)
t = QHH.(cons)basic we proceed to the Supplier

searching module.
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In the case of taking a loan, consumption funds are increased by the amount of the loan less debt
burden and service. The loan can only be granted if the following basic condition is met:{

yHH
t − hHH

t −
Nind.HH

∑
i=1

(l
Cind

q
it + R

Cind
q

it + l
Hind

q
it + R

Hind
q

it + l
NHind

q
it + R

NHind
q

it )

}
≥ α44 × Nind.HH

t . (54)

In this case the quantity of loans is given by the formula:

lCind

temp = α45.tc.s ×
{

yHH
t − hHH

t −
Nind.HH

∑
i=1

(l
Cind

q
it + R

Cind
q

it + l
Hind

q
it + R

Hind
q

it + l
NHind

q
it + R

NHind
q

it )

}
+ α46.s. (55)

The parameter value α45.tc.s is specific to industry and customer type, while α46.s is industry-specific.
With a certain probability (pr2), an individual tries to obtain the quantity in the matched bank in

the database (Idbank.(ind)
lC
t

). In this case, the supply from the bank and creditworthiness are checked in

the Supply side checking 1 (M.15) and Consumer credit admissibility 1 (M.17). The individual can also try
to obtain the loan from other banks. In such cases, interest rates are compared, and Supply side checking
2 (M.16) and Consumer credit admissibility 2 (M.18) are proceeded to.

Module 3: Households Consumption Supply Side Checking 1 & 2 (M.15) & (M.16)

In the Supply side checking 1 (M.15) submodule it is checked whether the bank assigned to
the household has sufficient funds to grant the loan (Sl.Cind

t ≥ lCind

t ), whether the bank’s policy will
allow another loan to be granted, and whether the regulatory requirement for sectoral exposures is
met (lCind

t < α47). In the Supply side checking 2 (M.16) submodule, we check whether any bank selected
from the list of banks offering consumer loans at a specified interest rate has sufficient credit supply
and that the regulatory requirements for sectoral exposures are met. If none is able to give this amount,
the amount of loan is adjusted using adaptive algorithm (l̃Cind

t ).

Module 3: Households Consumption Consumer Credit Admissibility 1 & 2 (M.17) & (M.18)

In submodules M.17 & M.18, household creditworthiness is checked with the bank assigned
to the household or other bank (from the list of banks) selected in the Supply side checking 2 (M.18)
submodule. The first condition relates to the level of income per person after deduction of repayments
of other loans. This level is specific to each bank:{

yHH
t − hHH

t t − (
Nind.HH

∑
i=1

(
l
Cind

q
it + R

Cind
q

it + l
Hind

q
it + R

Hind
q

it + l
NHind

q
it + R

NHind
q

it

)
)

}
≥ α50.b × Nind.HH

t . (56)

The next conditions relate to credit history of the household (the probability of default of members
of the family) ((PD)ind.HH

t ≤ α49.b), and the maximum number of loans that can be granted to one
household. If all conditions are met, the loan can be granted. For all loans granted to individuals and
households, the applicant age ((Age)ind

t ≥ 18) and status of the labour market (Ξind
t = {3||5}) are also

checked. It is also possible to include a variable which counts the elapsed time since the last change in
status on the labour market. If the individual works less than 4 quarters and is under 30, it is assumed
that they have a fixed-term contract and no creditworthiness.
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Module 3: Households Consumption Consumer Credit and Purchase After Passing Supply Side Conditions and
Credit Admissibility (M.19)

In this submodule, maturity is assigned to the loan (MCind
) depending on the amount of loan

granted. Next, the value of debt service is updated, taking into account the civil status of the
household members.

lCind

t =
1

Nadults.HH
t

× lCind

temp (57)

l
Cind

q
t =

1
Nadults.HH

t
× lCind

temp

MCind (58)

RCind

t + =
1

Nadults.HH
t

× lCind

temp × (1 + ilC )
MCind

− lCind

temp (59)

R
Cind

q
t =

RCind

t

MCind . (60)

The amount of credit granted by the bank, the supply of the credit and the revenues of the bank in
the given period are also increased.

Sl.Cind

t − = lCind

temp (61)

(RevlC )
b
t+ = R

Cind
q

t . (62)

Finally, the amount of consumer goods to be purchased from different industries is computed.

QHH.(cons)
t = QHH.(cons)

basic +
α43.tc.s × lCind

t

MCind × {Ps
t × (1 + tVAT)}

. (63)

Module 3: Households Consumption Supplier Searching & Purchase.hh (M.20)

The household next chooses the supplier. If the current supplier has sufficient stock of good
(Invest.(sup)

t ) and the ratio of quality to price is higher than average ratio in the sector, then the household

purchases the goods (QHH.(cons)
t ) from this supplier.

Invest.(sup)
t ≥ QHH.(cons)

t &&
α22.s−sup × (Ql)est.(sup)

t

α23.s−sup × Pest(.sup)
t

>
α24.s−sup × (Ql)s

t
α25.s−sup × Ps

t
. (64)

Otherwise, the household seeks a new supplier from incrementally more distant spatial locations.
The requirements for the same spatial codes are loosened sequentially. Later, in the Purchase.hhs

submodule, the profits from sales ((Sl)est.(sup)
t ), demand (Q

dest.(sup)
t ), stock (Invest.(sup)

t ), liquid assets

((LA)
est.(sup)
t ) of suppliers are updated. In addition, deposits of consumers are updated.

(Sl)est.(sup)
t + = Pest(.sup)

t × QHH.(cons)
t (65)

Q
dest.(sup)
t + = QHH.(cons)

t (66)

Invest.(sup)
t − = QHH.(cons)

t (67)

(LA)
est.(sup)
t + = Pest(.sup)

t × QHH.(cons)
t (68)

dind
it − =

1
Nadults.HH

t
Pest(.sup)

t × QHH.(cons)
t . (69)
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Module 4: Public Contracts (M.21)

In this module, we complement the demand of the private sector with demand from the public
sector. Public contracts are usually signed by large companies. A public contract is awarded when
the product price is lower than the average price of the product in the sector (Pest

t ≤ Ps
t ). In addition,

the probability of signing contracts increases with the size of the business and the quality of the product.
If the terms of the contract are met, the value of the stored goods (Invest

t ), the demand for good

(Q
dest.(sup)
t ), liquid assets of the supplier (LA)est

t and the value of sales (Sl)est
t are updated. The stock

cannot be lower than the minimum fraction of production (Yest
t ) given by the parameter α57.

Invest.(sup)
t − = max{0; min

(
Invest.(sup)

t , α57 × Yest.(sup)
t

)
} (70)

Q
dest.(sup)
t + = min

(
Invest.(sup)

t , α57 × Yest.(sup)
t

)
(71)

(LA)
est.(sup)
t + = α58 × min

(
Invest.(sup)

t , α 57 × Yest.(sup)
t

)
(72)

(Sl)est.(sup)
t + = α58 × min

(
Invest.(sup)

t , α 57 × Yest.(sup)
t

)
. (73)

Module 5: Households Mobility Accommodation Cost and Housing Stress (M.22)

The term property refers to the value of apartment or houses, with or without land. Households
live in properties they own ((Own)HH

t = 1) or rent property from other households ((Own)HH
t = 0).

The household may own more than one property. Real estate may be subject to residential
(

lHind
t

)
and

non-residential loans (lNHind

t ). If the household lives in their own property, then the cost of living is
equal to the sum of the financial obligations of the owners of the building, that is, the adult individuals
forming the household who bought the property:

hHH
t =β0+ β1×{

Nind.HH

∑
i=1

(l
Hind.HH

q
t + R

Hind
q

t )}, (74)

where parameters β0 and β1 adjust the fixed and the variable parts of accommodation cost.
The cost of renting is calculated as a part β1 of the sum of liabilities to the bank (loans) and the part

β4 of the cost of rent, calculated as the ratio of the price of the property to the number of households
that rent this property.

hHH
t =β1×{

Nind.HH

∑
i=1

(l
Hind.HH

q
t + R

Hind
q

t )}+β4 × Pprop
t

(#Rent)prop
t

(75)

In the first case of ownership, if the rental cost is greater than the specified parameter β2 (part of
the income yHH

t ), the household decides to sell the property. If the property was already marked for
sale ((ForSale)prop

t = 1), then the price (Pprop
t ) has to be decreased by a percentage β3. In practice,

the parameter β3 reflects how much the price has to be lowered in order to sell the property in next
iteration. In the second case, if a household rents a property and the cost of rent is too high, it will
start looking for a new home. The household looks for another building considering the status
on the labour market (Ξint

t = {3||5}) and the age of the household members ((Age)ind
t ≥ 18).

If two adults in the household are working, the program randomly selects one of them and searches
for a building near the person’s workplace (the algorithm checks and compares the spatial codes:

ϑ
prop1

t , ϑ
prop2

t , ϑ
prop3

t , ϑ
prop4

t , ϑ est1

t , ϑ est2

t , ϑ est3

t , ϑ est4

t ). In addition to property locations, households
take into account the price of the property from the appropriate price range and whether the building
is for sale. If more than one property meets the criteria, one is selected at random and the spatial codes
attributing the individual to the respective spatial units are updated.
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If two adults are not working (Ξint
t = {1||2}) and the difference between the sum of individual

deposits and the sum of the individual liabilities of family members is less than the subsistence level
expressed by the parameter β7, then the individuals are removed from the database, the household
is removed from the database, and the corresponding records from the object Consumers are deleted
as well.

Nind.HH

∑
i=1

dind.HH
it −

Nind.HH

∑
i=1

(l
Hind

q
t + R

Hind
q

t )}+β4× Pprop
t

(#Rent)prop
t

< β7 (76)

The exception is a situation in which an adult is under 25. Then the assumption applies that they
are still living with their parents. If individuals and households are removed from the database, all
records related to insolvency are updated. Consequently, the non-performing loans for a given bank
and sectors are increased. The probability of bank’s default increases as well. Especially,

(NPLlI )
b
t+ = (pl)Iind

t (77)

(NPLlC )
b
t+ = (pl)Cind

t (78)

(NPLlH )
b
t+ = (pl)Hind

t (79)

(NPLlNH )
b
t+ = (pl)NHind

t (80)

where (pl)t is the sum of liabilities to the bank for outstanding (respectively investment, consumer,
housing and non-housing) loans that have to be repaid in the given iteration.

Module 5: Households Mobility Profits from Rent (Accommodation & Housing Stress) (M.23)

In this module, property attributes are updated if the household obtains profits from renting
the property. The algorithm checks all household properties. The primary property ((PH)

prop
t = 1)

cannot be sublet to another household. If the household has a second property ((PH)
prop
t = 0),

the number of households that live in the house is checked. If none live there, it is marked for sale
((ForSale)prop

t = 1). If it was previously marked for sale ((ForSale)prop
t−1 = 1), its price is reduced by

a certain percentage of the value that is specified by the parameter β3.

Pprop
t = β3 × Pprop

t−1 . (81)

Revenues from renting second property ((Rent)HH
REt

) are updated according to:

(Rent)HH
REt

+ = β4 × Pprop
t . (82)

Module 5: Households Mobility - Decisions About Funding Housing and Non-Housing Purchase (M.24)

In this sub-module the household decides how to finance the purchase of houses and other non-housing
purchases. If the current funds and savings in the bank account are greater than the price of the cheapest
property on the market that has already been marked for sale ((ForSale)prop

t−1 = 1), it can potentially
buy a property in cash.

Nind.HH

∑
i=1

dind.HH
it −

Nind.HH

∑
i=1

(l
Hind

q
t + R

Hind
q

t )} > Pprop
mint

. (83)

In practice, we assume that a household buys a property in cash, only with a given probability (pr3)
in the model. If a member of the household is an individual who owns the firm ((Entr)ind

t = 1) or
is unemployed (Ξind

t = 2) with a high entrepreneurial spirit ((EntrS)ind
t > 0.5), then the funds will

be first invested in the firm rather than housing or non-housing purchases. We update the status of
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individual as an entrepreneur ((Entr)ind
t = 1). If a household does not have enough resources to buy

a property in cash, it will apply for a loan and the sub-module Macroprudential ratios is moved to.

Module 5: Households Mobility Macroprudential Ratios (M.25)

In this submodule, macroprudential ratios are computed. In addition, the total indebtedness, debt
servicing and total assets held by the household are computed as a temporal variables. The following
macroprudential ratios were included in the system for residential and non-residential loans: total
debt to assets ratio, debt to income ratio, debt service to income ratio, loan-to-value ratio.

(IndebtQ)HH
temp =

Nind.HH

∑
i=1

(l
Cind

q
it + l

Hind
q

it + l
NHind

q
it + l

Iind
q

it ) (84)

(DServiceQ)HH
temp =

Nind.HH

∑
i=1

(R
Cind

q
it + R

Hind
q

it + R
NHind

q
it + R

Iind
q

it ) (85)

(AssetsQ)HH
temp =

Nind.HH

∑
i=1

dind.HH
it (86)

(DTA)HH
t =

(IndebtQ)HH
temp

(AssetsQ)HH
temp

(87)

(DTI)HH
t =

(IndebtQ)HH
temp

yHH
t

(88)

(DSTI)HH
t =

(DServiceQ)HH
temp

yHH
t

(89)

(LTV)HH
t =

∑Nind.HH

i=1 lHind

it

Pprop
t

. (90)

Module 5: Households Mobility Housing and Non-Housing Loans (M.26)

In this sub-module, the household’s creditworthiness and supply side conditions are checked.
Firstly, basic requirements are checked. If the household debt ratios exceed regulatory requirements,
the household lacks creditworthiness ((DSTI)HH

t > β8.b|| (DTI)HH
t > β9.b|| (DTA)HH

t > β10.b).
Likewise, if all household members study, they are inactive on the labour market or are living
on social benefits (Ξind

t = {1| |2| |4}). The model also takes into account the situation of people
under the age of 30 who work less than 1 year in a company that also do not have creditworthiness
((Ξind

t = 3 && (Age)ind
t < 30 && Ψind

t ≤ 4) || (Λ ind
t = 2 && Ξind

t = (1 ||2|| 4) && Ξind
t =

3 && (Age)ind
t < 30 && Ψind

t ≤ 4 )). Then the value of collateral is estimated. For the all properties
that the household owns, the property prices are summed up ((Collat)max

temp+ = Pprop
t ). Households

may apply for a residential or non-residential loan under a pledge of real estate. If the household
owns at least one property, it will apply for a residential loan with a given probability, and for
a non-residential loan with one minus that probability. On the other hand, if a household has rented
a property (i.e., is not an owner), it will first apply for a residential loan. In most cases, the first
property is bought in cash. The value of the mortgage loan is equal to the difference between the price
of the cheapest real estate on the market, and the savings (less the charges for other loans); this is
according to the following equation:

lHHH

temp = Pprop
mint

− β15 × (
Nind.HH

∑
i=1

dind.HH
it − (Debt)HH

temp − (DebtServ)HH
temp) (91)
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where (Debt)HH
temp, (DebtServ)HH

temp are given by the expressions:

(Debt)HH
temp =

Nind.HH

∑
i=1

(
(pl)

Cind
q

it + (pl)
Hind

q
it + (pl)

NHind
q

it + (pl)
Iind
q

it

)
(92)

(DebtServ)HH
temp =

Nind.HH

∑
i=1

(
R

Cind
q

it + R
Hind

q
it + R

NHind
q

it + R
Iind
q

it

)
(93)

Households choose a bank with which to apply for a loan, taking into account the interest rate.
At the same time, the bank must have sufficient funds and be willing to accept the LTV ratio of
applicant (LTVHH

temp = ((lHind
t + lNHind

t )/Pprop
t )). If the household does not obtain credit in the bank

that offers the lowest interest rate, it resubmits the request to another bank on the list that requires
a higher interest rate. After receiving the loan, the household buys the property. The value of housing
loans granted by the bank is also updated. The value of the household loans obtained is then updated.
If the household consists of a marriage, the value of granted loans is halved. If the property is the main
residence, the cost of accommodation is also updated. In the case of non-residential loans, the scheme
works in an analogous way, with the value of the residential loan being equal to:

lNHHH

temp = β13.tc × {Pprop
mint

− β15 × (
Nind.HH

∑
i=1

dind.HH
it − (Debt)HH

temp − (DebtServ)HH
temp)}. (94)

After checking the creditworthiness and credit supply of the selected bank, the value of non-residential
loans obtained are updated, taking into account the civil status of household members.

Module 6: Individuals’ Records Updating

Individuals’ records updating module ensures the maintenance of demographic trends observed
empirically in the simulation. The heterogeneity of individuals has been taken into account, as has
population dynamics.

Module 6: Individuals’ Records Updating Inheritor or Life (M.27)

In the first sub-module the individuals may die with probabilities (ρage.gender) depending on

age ((Age)ind
t ) and gender (Gind = {0||1}). If a person dies, after the submodules Inheritor (M.28)

and Inheritance (M.29 & M.30) have been applied, the individual is deleted from the database. This
insolvency has a direct impact on the banks in the form of an increase in non-performing loans.
In the case of survival of an individual, the program increases the age of the person ((Age)ind

t ++)
and the period since the last change of status on the labour market (Ψind

t + +) and continues in
the sub-module Updating consumer type (M.31).

Module 6: Individuals’ Records Updating Inheritor (M.28)

In this submodule, the heir in the event of death of an individual is determined. First, the age
of the deceased person is checked. If the deceased person was an adult ((Age)ind

t ≥ 18), inheritance
may be considered. Then, all members of the households and adults in the households are counted.
If an adult over the age of 18 has died, who does not have family, the labor status of this individual is
checked (Ξind

t ). If this individual was an entrepreneur (Ξind
t = 5), the number of employees (L f irm

t ),
in the company is checked. If it was a sole proprietorship, then the firm is for sale ((ForSale) f irm

t = 1).
Otherwise, one of workers in their company who earned the highest wage in the previous period is
selected. If the deceased person was not an entrepreneur, then the algorithm selects an inheritor at
random from the group of working adults (Ξind

t 
= 1 && (Age)ind
t ≥ 18). If a child dies ((Age)ind

t ≤
18), they do not leave material property, rather the consumer type of the child’s parents changes.
If the parents have no more children and if all household members are over 67 years old then we update
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the consumer type ((ConsT)cons
t = 3). If both parents were under 67, they are also updated to another

consumer type ((ConsT)cons
t = 4). If the family consists of more than two adults then the consumer

type is also updated ((ConsT)cons
t = 6). If the deceased adult person has a family, then two cases

must be differentiated. If they had children, the eldest person in the family is the inheritor and
the consumer type does not change ((ConsT)cons

t = {5||6}). If there were no children, then the spouse
is the inheritor and the consumer type changes depending on the age of the spouse ((ConsT)cons

t =

{1||2}). If the deceased adult was a single parent, then the adoption of a child is considered in
the model in the module Adoption. The algorithm looks for a new couple or a single individual to
be a parent and sum up deposits, ownership of properties and firms. If they own more than two
properties, they are designated for sale ((ForSale) f irm

t = 1). We remove the deceased person from
the database. We continue to the Inheritance modules (M.29 & M.30).

Module 6: Individuals’ Records Updating Inheritance: Deposits & Firms (M.29)

In this submodule, we pass the deposits and firms to the inheritor. Firstly, savings after deductions
of housing loans pending to be paid are given to the inheritor. If these savings are greater than zero

(ddec.ind
t −

(
(pl)Hind

t + (pl)NHind

t

)
> 0), then the deposits of the heir are updated.

dheir.ind
t + = (1 − tinh)×

(
ddec.ind

t − (pl)Hind

t − (pl)NHind

t

)
(95)

The parameter tinh stands for taxes that must be paid. In the model we assumed that consumer loans
are not inherited and hence the inflow of non-performing loans of banks ((NPLlC )

b
t ) and the probability

of default of bank ((PD)b
t ) are updated.

(NPLlC )
b
t+ = (pl)Cind

t (96)

If individual debts are greater than savings, then the variables are updated separately. In this way it is
possible for the heir to inherit the debt from the loan taken in the past.

dheir.ind
t + = (1 − tinh)× ddec.ind

t (97)

lHheir.ind

t + = (pl)Hdec.ind

t (98)

(pl)Hheir.ind

t + = (pl)Hdec.ind

t (99)

l
Hheir.ind

q
t + = l

Hdec.ind
q

t (100)

RHheir.ind

t + = RHdec.ind

t (101)

R
Hheir.ind

q
t + = R

Hdec.ind
q

t (102)

lNHheir.ind

t + = (pl)NHdec.ind

t (103)

(pl)NHheir.ind

t + = (pl)NHdec.ind

t (104)

l
NHheir.ind

q
t + = l

NHdec.ind
q

t (105)

RNHheir.ind

t + = RNHdec.ind

t (106)

R
NHheir.ind

q
t + = R

NHdec.ind
q

t (107)

(NPLlC )
b
t+ = (pl)Cind

t . (108)

As the non-performing consumer loans increase, the probability of default of bank ((PD)b
t ) increases

as well. If the deceased person was not the owner of the firm, then we update savings (deposits) only.
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Otherwise, the inheritor may or may not run the business in the future. The decision on running
a business depends on their previous earnings relative to the potential income from business activity.

winh.ind
t + (sub)inh.ind

t < rndm(0, 1)× wdec.ind
t (109)

If the inheritor decides to run the business, the status of entrepreneur ((Entr)ind
t = 1), the labor

status (Ξind
t = 5) and the number of periods since the last change in labor status (Ψind

t = 0) are
updated. The public assistance is ceased ((sub)ind

t = 0). The inheritor is responsible for paying back
the investment loans.

l Iheir.ind

t + = (pl)Idec.ind

t (110)

(pl)Iheir.ind

t + = (pl)Idec.ind

t (111)

l
Iheir.ind
q

t + = l
Idec.ind
q

t (112)

RIheir.ind

t + = RIdec.ind

t (113)

R
Iheir.ind
q

t + = R
Idec.ind
q

t (114)

If the inheritor decides to sell, the company is marked for sale ((ForSale) f irm
t = 1). The inflow

of non-performing loans is increased by the amount of investment loans that will not be paid.
The probability of default of bank ((PD)b

t ) is also increased in that case.

(NPLlI )
b
t+ = (pl)Iind

t . (115)

Module 6: Individuals’ Records Updating Inheritance: Properties (M.30)

In this module, the number of adults who were in the household of deceased person is checked,
as is whether the deceased person rented ((Own)HH

t = 0) or owned their residence ((Own)HH
t = 1).

If the the deceased individual rented his residence, then the number of households that rents this
property needs to decrease ((#Rent)prop

t −−). If the deceased person owned their residence and had
no mortgage, then the property is marked for sale ((ForSale) f irm

t = 1). However, if the deceased
person had a housing loan to buy the property, the bank receives the property and attempts to sell it
((ForSale) f irm

t = 1). The bank looks for any household which sum of deposits (∑Nind.HH

i=1 dind.HH
it )

is greater than the property price (Pprop
t ). If it is found, then the bank updates the inflow of

non-performing loans ((NPLlH )
b
t , (NPLlNH )

b
t ) and the revenue from selling the property ((RevlH )

b
t ).

(NPLlH )
b
t+ = (pl)Hdec.ind

t (116)

(NPLlNH )
b
t+ = (pl)NHdec.ind

t (117)

(RevlH )
b
t+ = (1 − β22)× Pprop

t (118)

where β22 expresses the transaction costs.
The new owners of the property proportionally update the deposits (dind.HH

t ) after the purchase.

dind.HH
t − =

1
Nind.HH × (1 − β22)× Pprop

t (119)

If the bank is not able to sell the property, the price (Pprop
t ) is lowered gradually:

Pprop
t = 0.95 × Pprop

t−1 . (120)

344



Entropy 2020, 22, 129

Module 6: Individuals’ Records Updating Updating Consumer Type (M.31)

In this module the consumer type of the household is updated. If the individual reaches the age
of 67, then the consumer type of the household the individual belongs to is updated (ie. (ConsT)cons

t =1
if the individual was single, while (ConsT)cons

t = 3 if was married). If the individual become an
adult ((Age)ind

t = 18), then a new household is created. The individual continues to live in the same
property. The accommodation cost and the income are computed according to the formulas expressed
in the previous modules (M.11, M.12 & M.22).

Module 6: Individuals’ Records Updating Education Level (M.32)

In this submodule the level of education is updated. If an individual continues to study
((EducP)ind

t + +) and exceeds the number of periods that is needed to complete a particular level
of education (i.e., primary school, secondary school, college, university degree, doctoral school),
then a variable describing their education level ((Educ)ind

t ++) is updated.

Module 6: Individuals’ Records Updating Continue Education (M.33)

The individuals continue education with a probability depending on age and gender (prage.gender).

According to this probability, the completed level of education ((Educ)ind
t ), labour market status (Ξind

t )
of an individual and the number of periods that have passed since the last change of status in the labour
market (Ψind

t ++) are updated. In this module the labor status of individuals that continue education
is set to one (Ξind

t =1).

Module 6: Individuals’ Records Updating Divorces (M.34)

In this submodule, individuals may divorce. The algorithm checks the civil status of individuals
(Λ ind

t ). The probability of divorce depends on the age of the spouses (pr40.age). After the divorce, a new
household is created for ex-husband and the consumer types ((ConsT)cons

t ) are adjusted. In the case

of divorce, children always stay with the mother. The ex-husband pays the alimony ((Don)(husb).HH
t )

which depends on his earnings (wind
t ) and the number of children ((#child)temp).

(Don)(wi f e).HH
t + = β39 × wind

t × (#child)temp (121)

(Don)(husb).HH
t − = β39 × wind

t × (#child)temp (122)

Both adults remain in the same property hence they both contribute to rent to cover the accommodation
cost. The ex-wife is the owner, while the ex-husband lives there temporary. If the marriage had more
than two properties, then each of them stays in one of them and the rest is for sale ((ForSale)prop

t = 1).
Their status of the owner ((Own)HH

t = 1), the variable principal housing ((PH)
prop
t = 1) and the number

of families that rent the property ((#Rent)prop
t −−) are updated. If the property was purchased by

credit, then the amount of loans pending to be paid by ex-wife has to be updated as well.
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q
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Module 6: Individuals’ Records Updating Marriages (M.35) & Births (M.36)

Each single adult can get married in the model. The probability of getting married
depends on civil status, age and gender (prciv.st.age.gend). In the model, the age difference

between partners should not exceed 10 years (|(Age)ind1
t − (Age)ind2

t | < 10 && Gind1 
=
Gind2 && (Age)ind1

t , (Age)ind2
t > 18, Λ ind

t 
= 2). In the case of marriage, the marital status
of individuals (Λ ind

t = 2) as well as the codes identifying the households ((Id)HH) are updated.
In addition, the total number of properties and their ownership ((Own)HH

t ) are updated. One of
properties is marked as the principal residence ((PH)

prop
t = 1). If the marriage owns more than two

properties, they are marked for sale ((ForSale)prop
t = 1). The algorithm looks for a household-buyer

who has sufficient deposits to pay for the property.

Nind.HH

∑
i=1

dind.HH
it −

Nind.HH

∑
i=1

(l
Hind.HH

q
t + R

Hind
q

t ) > Pprop
t . (134)

When the buyer is found, then deposits are reduced by the amount equal to the sum of prices of
J properties.

dbuy.ind.HH
it − =

1
Nind.HH ×

J

∑
j=1

Pprop
jt (135)

If the buyer is not found, the price is decreased by 10%. After selling the properties, the marriage can
pay back the housing and non-housing loans. If housing loans pending to be paid are greater than
the revenue from selling the properties, then the algorithm decrease the amount of housing loans to
be paid.

(pl)Hseller.ind

t − =
1

Nind.HH ×
J

∑
j=1

Pprop
jt . (136)
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Otherwise, we check whether the individual could also pay back the non-housing loans. In that case,
if the non-housing loans pending to be paid are greater than the difference between the revenue from
selling the properties and housing loans pending to be paid, then the non-housing loans are decreased.

(pl)NHseller.ind

t − =
1

Nind.HH ×
J

∑
j=1

Pprop
jt −(pl)Hseller.ind

t . (137)

Then, housing loans pending to be paid are set to zero. If the price for which the properties were sold
was greater than the sum of all liabilities then, deposits are updated.

dseller.ind.HH
it + =

1
Nind.HH ×

J

∑
j=1

Pprop
jt − (pl)Hseller.ind

t − (pl)NHseller.ind

t . (138)

If the wife had children from a previous marriage, then the consumer type does not change. Otherwise,
the model checks the age of the individuals. If at least one member of the household is over 67,
the consumer type is updated ((ConsT)cons

t = 3). In the Births sub-module, children are born with
the probability depending on age and civil status of the mother (prage.st.civil). All necessary records are
created for a newborn in submodule (M.36).

Module 6: Individuals’ Records Updating Updating Entrepreneurs (M.37)

In this module, decisions are made on whether an adult individual ((Age)ind
t > 18) becomes

an entrepreneur. If the individual is already an entrepreneur ((Entr)ind
t = 1), then the program skips

this module and continues in the Probability of opening a new firm module (M.38). For the individuals
unemployed (Ξind

t = 2), employed in private sector (Ξind
t = 3), inactive (Ξind

t = 4), or employed in
the public sector (Ξind

t = 5), the probability of becoming an entrepreneur is computed. The probability
depends on the experience in running a business ((EntrP)ind

t = 1), gender (Gind), age ((Age)ind
t ), level

of education ((Educ)ind
t ) and the period that has passed since the last change of status on the labour

market (Ψind
t )

(EntrS)ind
t =[(max{ min(1, (EntrS)ind

t−1×
×
(

βGGind + βEduc(Educ)ind
t + βEntrP

(
EntrP)ind

t + βAge(Age)ind
t + βΨΨind

t

))
, βEntrSmax}].

(139)

If the entrepreneur spirit is high enough, the individual becomes an entrepreneur ((Entr)ind
t = 1).

Otherwise, the program moves to module Updating individual labour status (M.47).

Module 7: Firm Demography Probability of Opening a New Firm (M.38)

In the Firm demography module, we analyse the possibility of entrepreneurs opening new
companies in the system. As a part of the first Probability of opening a new firm submodule, the probability
of opening a firm in a given industry is determined. This probability depends on previous experience
in the industry ((EntrP)ind

t ), level of education ((Educ)ind
t ) and age of the entrepreneur ((Age)ind

t ).
Firstly, temporary variables are calculated that are required to calculate the probability of creating
a new company in a given sector.

temp1 = γ 2 + γ 3 × (EntrP)ind
t + γ 4 × (Educ)ind

t + γ 5 × ((Age)ind
t + γ 6) (140)

temp2 = γ 7 + γ 8 × (EntrP)ind
t + γ 9 × (Educ)ind

t + γ 10 × ((Age)ind
t + γ 11) (141)

According to a given probability, the entrepreneur will open a new company in the most profitable
sector (if pr < temp1) and then in the second most profitable sector (if pr < temp2). In this module we
use information from the Initialisation module (M.1). If the entrepreneur cannot open up activity in
these two sectors, they will start operating in a randomly selected industry.
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Module 7: Firm Demography New License (M.39)

A number of criteria must be met to create a new business. First and foremost, it is necessary to
obtain a license. The likelihood of obtaining a license depends on the size of the company compared
to the average firm size in the industry and industry-specific parameters. The company’s initial size
(Size)temp is drawn from the normal distribution with the expected value ((AL)s

t) and the standard
deviation of the size of firms (empirically determined) ((SD)s

t).

(Size)temp was drawn f rom N((AL)s
t , (SD)s

t) (142)

(InitSize) f irm
temp = max{min

(
γ 12 × (AL)s

t , (Size)temp

)
, 0}. (143)

Module 7: Firm Demography Funding New Firm Creation (M.40)

This module analyses the possibility of opening a company from funds held by the entrepreneur
or co-financing the opening of the company from external sources. Large companies can be co-financed
by various individuals. In this case, the initial capital of the company is equal to the sum of
the contributions of the individuals. The amount depends on the type of household to which
the individual belongs. These individuals hold shares in the company. According to the algorithm,
the cost of setting up a company depends on the size of the company measured by the number
of employees ((InitSize) f irm

temp), average salaries in the industry Ws
t , and industry-specific fixed costs

specified by the parameter γ 17.s:

(CostNew)
f irm
temp = (InitSize) f irm

temp × Ws
t × γ 16 + γ 17.s. (144)

The value of the individual’s savings after deducting the charges for other repayments of loans is then
calculated. If these funds are greater than the cost of establishing a business, the entrepreneur will
allocate funds to set up a business. Consequently, the amount of savings in the entrepreneur’s account
is updated. Otherwise, depending on the size of the business, the entrepreneur can apply for bank
credit (Bank firm creation funding (M.41.1.) & New firm creation (M.41.1.1)) or look for co-shareholders
(Shares (M.41.2)).

Module 7: Firm Demography Bank Firm Creation Funding (M.41.1)

The entrepreneur seeks a bank which is both willing to lend funds and that offers a lower
interest rate than other banks (il I ). In addition, the sectoral exposure requirements are checked

(CostNew)
f irm
temp ≤ γ sect.exp). If the selected bank has the requested funds (Sl.Iest

t ≥ (CostNew)
f irm
temp),

creditworthiness is checked. In order to obtain the loan, the following criteria are to be fulfilled:

(1) the leverage ratio needs to be acceptable:

(CostNew)
f irm
temp

K f irm
init

< γ LR.b, (145)

where K f irm
init is a sum of funds (deposits) that the owners or shareholders provided to fund

the capital of the company.
(2) the financial risk of the business has to be relatively low in comparison to the sectorial risk

((Risk) f irm
t < γ Risk.b && (Risk) f irm

t < (Risk)
s
t), (146)

(3) the size of the company has to be at least average for the industry (L f irm
t /Ls

t ) and credit history
has to be good ((PD)

f irm
t < γ cred.h.b).
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Banks may set their own thresholds for the proposed criteria. In this way banks compete not only
on interest rates but also creditworthiness criteria. Thresholds are an expression of their degree of
risk aversion and the adopted strategy of a bank’s activity. If the trader does not get the requested
amount in a given bank, they try again to apply for a loan in another bank, starting with the bank
that offers the lowest interest rate. In extreme cases, the amount of funding obtained from the bank is
reduced, gradually up to the limit below which it would not be possible to open a business in the sector.
In the New firm creation (41.1.1) sub-module, records are created for the new firm, and the firm loans
of the individual are updated. Maturity of the loan (MIind

) is assigned depending on the amount of
loan taken.

l Iind

t + = (CostNew)
f irm
temp (147)

(pl)Iind

t + = (CostNew)
f irm
temp (148)

l
Iind
q

t + =
(CostNew)

f irm
temp

MIind (149)

RIind

t + =
1

κ 4
×((CostNew)

f irm
temp × (1 + 0.25 × il I )

MIind

− (CostNew)
f irm
temp) (150)

R
Iind
q

t + =
RIind

t

MIind (151)

The bank’s revenues are updated as well.

(RevlI )
b
t+ = R

Iind
q

t . (152)

Module 7: Firm Demography Shares (M.41.2)

For large companies, their initial capital is the sum of the contributions of the individuals.
The share of each individual is determined by the consumer type of the household to which this
individual belongs and the deposits. The algorithm looks for M individuals which shares will fund
the cost of setting up the firm ((CostNew)

f irm
temp). For all individuals we update the values of shares

(ψind
t ) and deposits (dind

t ). Large companies can apply for short-term loans but are funded by their
shares. In the case of short-term loans, mechanisms are analogous to the one presented for small and
medium-sized businesses but different credit ratings are adopted.

Module 8: Mergers & Acquisitions Updating Firm Market Value (M.42)

The Mergers & Acquisitions module analyses the possibility of one company buying another. First,
the value of the company on the market ((MV)

f irm
t ) is updated, depending on the company’s generated

profits relative to average firm profits in the sector ((RelPro f ) f irm
temp = Π f irm

t /(π)s
t) and the company’s

financial risk relative to the average risk in the industry ((RelRisk) f irm
tem = (Risk) f irm

t /(Risk)
s
t ).

The market value of a company is correlated with the likelihood of bankruptcy of a particular
company. By default, the maximum value of this variable is 1. The closer this value is to 1, the higher
the probability of bankruptcy. If the variable is close to 1, then the probability of the business declaring
insolvency increases.

Module 8: Mergers & Acquisitions Mergers (M.43)

If the business debt ((Debt) f irm
t ) is lower than that specified by the parameter γ π part of the firm’s

profits (Π f irm
t ), the firm was not marked as for sale ((ForSale) f irm

t = 0), the firm debt is lower than
that determined by the parameter γ LA_K part of liquid assets ((LA)

f irm
t ) and capital (K f irm

t ), the firm

value ((MV)
f irm
t ) is greater than that specified by the parameter γ MV , a percentage γ merg1 of firms
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in the sector is searched for. The company will merge with one of these firms. The company to be
merged with must meet several requirements. First, the sum of liquid assets of the firm and the fixed
capital of this firm need to be lower than that of the second company.

((LA)
merged. f irm
t + Kmerged. f irm

t ) < ((LA)
f irm
t + K f irm

t ). (153)

Secondly, it should be a smaller company, in a sense that the work force of this firm is smaller than
the work force of the second company (Lmerged. f irm

t < L f irm
t ). Next, the market value of the firm

should be acceptable ((MV)
merged. f irm
t > γ MV × (MV)

f irm
t ) and this firm should not be marked for

sale ((ForSale) f irm
t = 0). If the merger occurs, then the attributes of the firm and the entrepreneur

are updated.

(Debt) f irm
t + = (Debt)merged. f irm

t + (MV)
merged. f irm
t × ((LA)

merged. f irm
t + Kmerged. f irm

t ) (154)

(Nest)
f irm
t + = (Nest)

merged. f irm
t (155)

((LA)
f irm
t + = ((LA)

f irm
t (156)

K f irm
t + = K f irm

t . (157)

The owner of the firm changes and the corresponding variables such as labor status ( Ξind
t = 5),

entrepreneurship ((Entr)ind
t = 1), entrepreneurship in the past ((EducP)ind

t = 1), periods since the last
change on the labor market (Ψind

t = 0) and the deposits are updated as well.

downer.ind
t = γ 53 × (MV)

merged. f irm
t × ((LA)

merged. f irm
t + Kmerged. f irm

t ). (158)

If the firm wants to merge but there is no company to merge within the set γ merg1 of firms,
the procedure is repeated in the broader set specified by γ merg2.

Module 8: Mergers & Acquisitions Acquisitions (M.44)

If a company is successful and its financial risk is below average risk in the industry
((Risk) f irm

t ≤ (Risk)
s
t ) and the firm is not marked for sale ((ForSale) f irm

t = 0), then it seeks to
acquire another firm. In practice, this company should be relatively small (Lest

t < γ 55 × Lest
t ),

debt should be lower than the one expressed by debt percentage of the firm before acquisition
((Debt) f irm

t < γ 56 × (Debt) f irm
t ), and this company should be marked for sale ((ForSale) f irm

t = 1).
If a company to acquire is found, then the attributes of the firms and the entrepreneur are updated.
The entrepreneur is now the co-owner of the firm.

(Debt) f irm
t + = (Debt)acq. f irm

t + (MV)
acq. f irm
t × ((LA)

acq. f irm
t + Kacq. f irm

t +

− (Debt)acq. f irm
t )×

√
rndm(0, 1)

(159)

K f irm
t + = Kacq. f irm

t (160)

(Nest)
f irm
t + = (Nest)

acq. f irm
t (161)

(LA)
f irm
t + = (LA)

acq. f irm
t (162)

L f irm
t + = Lacq. f irm

t . (163)

Module 9: Firm Growth Individuals Records Updating When Firm Closes (M.45)

This module deals with the opening and closure of companies. If the company was registered
more than 1.5 years ago ((#Oper) f irm

t > 6) and the number of employees is 0, then the company
is removed from the system. If the entrepreneur does not own other firms, the value of variables
which describe the experience of being an entrepreneur ((Entr)ind

t = 0, (EntrP)ind
t = 1), status on
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the labour market (Ξind
t 
= 5) and the period since the last change of status on the labour market

(Ψind
t = 0) are updated. If the company qualifies for closure, all employees will be first fired, and then

the establishments will be closed.

Module 9: Firm Growth New Establishment Creation (M.46)

In this sub-module, firms with a strong position can also increase the number of establishments
they own. If the company’s financial risk is lower than the average risk in the sector ((Risk) f irm

t <

(Risk)
s
t ) and the profit per employee Π f irm

t

(L f irm
t +1)

is higher than the percentage of the average profit per

employee in the sector υ2 × πs
t

(N f irms
t ×(Ls

t+1))
, then the company can create new establishments.

Module 10: Labour Market Updating Individual Labour Status (M.47)

Within the framework of the model, a stylized labour market has been designed. In the model
the parameters α57.age.gender−62.age.gender depend on age and gender. In the module the status on
the labour market of all individuals (Ξind

t ) and the time since the last change of status on the labor
market (Ψind

t ) are updated. If the individual is a woman over the age of 55, employed in the private
or public sector, she is likely to be unemployed with the probability α57.age. If the individual is a man
over the age of 55, employed in the private or public sector, he is likely to be unemployed with
the probability α58.age. If the individual is a woman, who is unemployed for more than 2 years, then she
becomes inactive with probability α59.age. If the individual is a man who is unemployed for more than
2 years, then he becomes inactive with probability α62.age. If a person is inactive on the labour market
and is under the age of 55 and their total family income is less than the established threshold, then this
person will be registered as an active job seeker, even if only for the purpose of receiving social benefits.

Module 10: Labour Market Workers Skills (M.48)

This sub-module updates the variable describing employee skills. These skills depend on age,
gender, time elapsed since the last change of status on the labour market and completed education.

Θind
t = max{0; γ Ψ × Ψind

t + γ Educ × (Educ)ind
t + γ G × Gind+γ Ξ × Ξind

t +γ Age × (Age)ind
t }. (164)

Module 10: Labour Market Hiring & Firing in Establishments (M.49)

This sub-module carries one from the Firm growth module. In this sub-module a decision is
made to reduce or increase the number of employees. First, the number of employees to be fired
(LFIest

t ) and hired in the establishment (LHIest

t ) is compared. Employees with the lowest working
skills are fired. If the number of employees to be hired is greater than the number of employees
to be fired, then employees are searched for according to their location (using NUTS1-4 codes:

ϑ ind1

t , ϑ ind2

t , ϑ ind3

t , ϑ ind4

t ). The model assumes that employees living closer to the firm are beneficial
to the company.

Module 11: Cycle Ends

The final module updates the remaining agent records that have not been updated in previous
modules. Loans and deposits of individuals, households, companies and, above all, banks are settled.
Non-performing loans in the period are also counted.

Module 11: Cycle Ends Labor Status & Wage & Subsidy Updating (M.50)

Individuals from the Labor market modules (M.47–M.49) are carried on into this sub-module.
If individuals have just become unemployed (Ξind

t = 2 && Ψind
t = 0), they receive unemployment

benefits ((sub)ind
t = δ 1) and their earnings from previous employment (wind

t = 0) are equal to zero.
If individuals have become unemployed more than one quarter ago (Ξind

t = 2 && Ψind
t > 1), then they
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receive lower benefits ((sub)ind
t = δ 2, δ 2 < δ 1). If a person is employed in the private sector (Ξind

t = 3),
then no social benefits are to be paid ((sub)ind

t = 0) and the earnings are calculated according to
the formula that depends on age ((Age)ind

t ), gender (Gind), average wage per employee in the sector
Ws

t
Ls

t
and a random factor.

wind
t =

Ws
t

Ls
t
× (δ 6+δ 7×Gind)×(δ 8+δ 9×(Age)ind

t )×(rndm(0.04, 0.06)). (165)

If the person is 67 years old and the subsidy was equal to 0, then the subsidy depending on
average wage in the sector, gender and values of parameters is computed. If the person is
inactive, then the gender and age of the individual are checked. If individuals are older than
55 (Gind = 1 && (Age)ind

t > 55), and had positive wage (wind
t > 0), they may retire early.

The subsidy depending on gender and previous wage is computed, and the wage is set to zero
(wind

t = 0, (sub)ind
t = δ 2 ×wind

t for women and (sub)ind
t = δ 2 ×wind

t for man). If the person in question

runs a business and the profits of the firm are positive (Π f irm
t > 0), then for each of the companies

they run, the portion of the profit paid to dividends is calculated; this is equal to the remuneration of
the owner(s).

(Divid)temp+ = Π f irm
t × δ 14 × rndm(0, 0.02) (166)

wind
t + = (Divid)temp (167)

(sub)ind
t = 0 (168)

(Debt) f irm
t + = (Divid)temp. (169)

If the total family income is below the subsistence level (below δ 3), the public assistance is provided
((sub)ind

t = δ 4)

Module 11: Cycle Ends Establishments & Firms Records Updating (M.51) & (M.52)

The submodules Updating establishment & firm records first change the status of new establishments
to experienced ones ((New)est

t −−) and wages of these establishments are rested from the liquidity
assets ((LA)est

t − = West
t ) and then set to zero (West

t = 0). Then we compute the cost of wages
(West

t +=wind
t ) and the total costs of the establishments.

(TC)est
t + = δ 16 × (Inp)est

t + δ 16 × ((Debt) f irm
t /(#Oper) f irm

t ) + tpr + δ 18.s × Yest
t + δ 19.s × Lest

t + δ 20 × West
t (170)

Then the costs are paid from the liquid assets. If the liquid assets of the firm are negative ((LA)est
t < 0),

the establishment has liquidity shortage. We first check whether the firm is able to move sources from
one establishment to the other one. If the firm owns more than one establishment and the liquidity
of the firm and establishment are positive ((Nest)

f irm
t > 1 && ((LA)est

t + (LA)
f irm
t ) > 0), one of

the establishments is closed ((Nest)
f irm
t − −) and liquidity debts of this establishment are paid

((LA)
f irm
t − = (LA)est

t ), and the value of default is updated ((PD)est
t + + ). The firm is at risk of

default, but still has not defaulted ((PD)
f irm
t increases). Otherwise, if the firm consists of only one

establishment that has serious liquidity shortage, the firm defaults ((PD)
f irm
t = 1). The non-performing

loans are updated ((NPLlI )
b
t+ = (pl)Iind

t ). If the owner of this firm does not own any other firm,
then the status on the labor market (Ξind

t = 2), the periods since the last change of the status
on the labor market (Ψind

t = 0) and the variable expressing experience in being an entrepreneur
((Entr)ind

t = 0, (EntrP)ind
t = 1) are updated. In this sub-module, the sales per employee are computed

((SE)est
t =

(SE)est
t

Lest
t

) and the liquidity assets and fixed capital are updated according to generated profits

352



Entropy 2020, 22, 129

(or loses). If the profits per employee are sufficiently high (i.e., if Π f irm
t

(L f irm
t +1)

> δ 21), then the liquid assets

and the fixed capital are updated.

(LA)
f irm
t + = (δ 22 + δ 23)× K f irm

t (171)

K f irm
t = (1 + δ 22−δ 23)× K f irm

t (172)

Otherwise, only fixed capital is updated.

K f irm
t = (1−δ 23)× K f irm

t (173)

If the liquid assets per employee are sufficiently high (i.e., if (LA)
f irm
t

(L f irm
t +1)>δ 25

), then part of liquid assets

can be used to pay back the debts. If the firm’s debt is higher than the liquid assets, then the firm’s
debt and liquid assets are updated.

(Debt) f irm
t − = (LA)

f irm
t − (L f irm

t + 1)× δ 25 (174)

(LA)
f irm
t = (L f irm

t + 1)× δ 25 (175)

Otherwise, the debt is paid in full.

(LA)
f irm
t − = (Debt) f irm

t (176)

(Debt) f irm
t = 0. (177)

In the worst case scenario, the firm is accumulating debt and the corresponding variables are updated.

(Debt) f irm
t + =

(
L f irm

t + 1
)
× δ 26 − (LA)

f irm
t (178)

(LA)
f irm
t = (L f irm

t + 1)× δ 26. (179)

At the end of this sub-module, lump sum property tax is updated (tpr). In the Updating firm records

sub-module, the age of the firm ((#Oper) f irm
t ++) and the financial risk are updated.

(Risk) f irm
t = δ 29.s + δ 30 ×

(
1

L f irm
t + 1

)
+ δ 30 ×

(
L f irm

t

(Debt) f irm
t

)
. (180)

The values of a firm’s fixed capital, liquidity assets, work force, firm profit and tax to be paid are
the sum of respective values of variables of firms’ establishments.

Module 11: Cycle Ends Updating Industries (Sectors) (M.53)

This module recalculates average values for sectors that become benchmarks for agents’ decisions.
The values of the quality and average price of each sector are updated ((Ql)s

t−1 = (Ql)s
t , Ps

t−1 = Ps
t ).

Then, the profit in the sector and number of firms in the sector are computed as a sum of firms’ profits
and the sum of firms. The average financial risk is computed as well. Then, the values of average
sales in the sector, price in the sector, quality, average work force of the establishments in the sector,
percentage of establishments that import and export as well as average wage in the sector are updated.

Module 11: Cycle Ends Paying Back of Loans (M.54)

This submodule computes how much has already been paid back from the loan, how much
is due and how much interest was paid and is due. This is performed for all types of credit:

consumer loans (lCind

t − = l
Cind

q
t , (pl)Cind

t − = l
Cind

q
t , RCind

t − = R
Cind

q
t ), real estate housing (lHind

t − = l
Hind

q
t ,
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(pl)Hind

t − = l
Hind

q
t , RHind

t − = R
Hind

q
t ) and non-housing loans (lNHind

t − = l
NHind

q
t , (pl)NHind

t − = l
NHind

q
t ,

RNHind

t − = R
NHind

q
t ), and firm investment loans (l Iind

t − = l
Iind
q

t , (pl)Iind

t − = l
Iind
q

t , RIind
t − = R

Iind
q

t ).

The same is computed for establishments paying back short-term loans (lSHest

t − = l
SHest

q
t , (pl)SHest

t − =

l
SHest

q
t , RSHest

t − = R
SHest

q
t ).

Module 11: Cycle Ends Bank’s Balance Sheet Positions With Non-Financial Sector Updating (M.55)

This submodule computes how much supply was used to give new credits in this iteration.
For this purpose, the value of supply from the Initialisation module (M.1) and the value of supply
after all updates (module M.55) is used. The amount of loans of each type which have been granted
is computed.

lC.granted.b
temp = Sl.Cind

temp − Sl.Cind

t (181)

lH.granted.b
temp = Sl.Hind

temp − Sl.Hind

t (182)

lNH.granted.b
temp = Sl.NHind

temp − SNHind

t (183)

l I.granted.b
temp = Sl.Iind

temp − Sl.Iest

t (184)

lSH.granted.b
temp = Sl.SHind

temp − Sl.SHest

t (185)

lsum.granted.b
temp = lC.granted.b

temp + lH.granted.b
temp + lNH.granted.b

temp + l I.granted.b
temp + lSH.granted.b

temp (186)

(pl)C.granted
temp + = (pl)Cind

t (187)

(pl)H.granted
temp + = (pl)Hind

t (188)

(pl)NH.granted
temp + = (pl)NHind

t (189)

(pl)I.granted
temp + = (pl)Iind

t (190)

(pl)I.granted
temp + = (pl)SHest

t (191)

(pl)sum.granted
temp = (pl)C.granted

temp + (pl)H.granted
temp + (pl)NH.granted

temp + (pl)I.granted
temp + (pl)SH.granted

temp (192)

(NPL)sum
temp = (NPLlC )

b
t + (NPLlH )

b
t + (NPLlNH )

b
t + (NPLlI )

b
t + (NPLlSH )

b
t (193)

(NPL)ratio
temp =

(NPL)sum
temp

(pl)sum.granted
temp

(194)

(NPL)ratio.lC

temp =
(NPLlC )

b
t

(pl)sum.granted
temp

(195)

(NPL)ratio.lNH

temp =
((NPLlH )

b
t

(pl)sum.granted
temp

(196)

(NPL)ratio.lNH

temp =
(NPLlNH )

b
t

(pl)sum.granted
temp

(197)

(NPL)ratio.l I

temp =
(NPLlI )

b
t

(pl)sum.granted
temp

(198)

(NPL)ratio.lSH

temp =
(NPLlSH )

b
t

(pl)sum.granted
temp

(199)

dind
temp+ = dind

t (200)
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d f irm
temp+ = (LA)est

t (201)

db
t = dind

temp + d f irm
temp. (202)

Equity is updated in the next module, after computing the profits and costs of banks’ activity.

Module 11: Cycle Ends Updating Banks’ Profits & Costs & Equity (M.56)

This submodule updates the equity by adding the profits generated in this period and subtracting
costs associated with the banks’ activity.

(Revb)
sum
temp = (RevlC )

b
t + (RevlH )

b
t + (RevlNH )

b
t + (RevlI )

b
t + (RevlSH )

b
t (203)

(Cost)b
temp draw f rom N((AvC)b

t , (SdC)b
t ) (204)

Eb
t + = (Revb)

sum
temp − (Cost)b

temp − id × db
t (205)

Also considered is the possibility of the banks’ default. If the following value of temporal variable is
below zero, the bank defaults. In practice, the bank can default when it has not enough equity or in
the case of withdrawal of deposits or accumulation of non-performing loans.

(De f ault)b
temp = Eb

t + db
t + (Revb)

sum
temp − id × db

t − (NPL)sum
temp. (206)

Module 11: Cycle Ends Supply Side Decisions for T+1 and Regulatory Requirements (M.57)

This submodule analyses the regulatory requirements and the supply side decisions. Definitions
of macroprudential ratios have been adapted from Popoyan et al. (2017). Firstly, the value of most
liquid assets held by the bank (cash) as a percentage of all loans granted to the entities in the model
is approximated.

(Appr.Cash)b
temp = ϕ1 × lsum.granted.b

temp (207)

We also compute the quantity of loans less the most liquid assets held.

Θ b
temp = lsum.granted.b

temp − (Appr.Cash)
b

temp
(208)

Next, the quantity of liquid assets demanded from the central bank is approximated.

(LiqDemCB)temp = ϕLCR.min × db
t − Bb

t − (Res)b
t − ϕ3 × (Appr.Cash)b

temp (209)

The liquid assets from the central bank are only demanded when LCR is lower than ϕLCR.min.
The computation of risk weighted assets and the approximation of TIER 1 equity allows the value of
capital adequacy ratio according to Basel III to be obtained.

(RWA)temp = (pl)sum.granted
temp × δ RW (210)

(Eb
T1)temp = Eb

t × δ T1 (211)

(CARb)temp =
(Eb

T1)temp

(RWA)temp
(212)

The model also computes the value of bank leverage ratio, as a ratio of equity TIER 1 and total assets, as
well as high quality liquid assets, expected cash inflow and outflow to be able to compute the liquidity
coverage ratio.
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(LRb)temp =
(Eb

T1)temp

(lsum.granted.b
temp + Bb

t + (Res)b
t + ϕ3 × (Appr.Cash)b

temp)
(213)

(HQLAb)temp = (Res)b
t + (Appr.Cash)b

temp + min{0.85; 0.75 × ((Res)b
t + (Appr.Cash)b

temp)} (214)

(E(CashOut f low)b)temp = ϕ4 + ϕ5 × db
t + ϕ6 × (LiqDemCB)temp (215)

(E(CashIn f low)b)temp = ϕ7 − ϕ8 + ϕ9 × (Appr.Cash)b
temp + ϕ10 × Bb

t + ϕ11 × (Res)b
t (216)

(NCOFb)temp = (E(CashOut f low)b)temp − (E(CashIn f low)b)temp (217)

(LCRb)temp =
(HQLAb)temp

(NCOFb)temp
(218)

Then, the decisions about the supply of credit are made:

(Sb)temp =
Ebt

ϕmin.c.req
− (pl)sum.granted

temp (219)

If the capital requirements are not met, the supply is set to zero ((Sb)temp = 0) and the value of

variable ((PD)b
t = 0.5) is updated to emphasise that this bank is at threat of default and the riskiness

of the bank’s activity increases. Next, it is checked if the liquidity requirement is met. If so, the bank

does not have to recur to the central bank. Otherwise
((

LCRb
)

temp
< ϕmin.LCR × db

t

)
, bank deposits

are increased by the resources obtained from the central bank.

db
t+ = (LiqDemCB)temp (220)

Finally, the leverage ratio requirement is checked. If the leverage ratio is lower than the value specified
by the parameter ((LRb)temp ≤ ϕ13), the supply is set to zero ((Sb)temp = 0) and the value of the variable

expressing the probability of default ((PD)b
t = 0.5) is updated to emphasise that this bank is at threat

of default and the riskiness of the bank’s activity increases.
Next, each bank needs to compute the supply of each type of loan to the market, taking into

account the profitability of each and the non-performing loans ratios. There are two procedures that
can be initiated in the system. The first one is initiated if the values of parameters μ1, μ2, μ3, μ4, μ5, are
not equal to zero. It is implicitly assumed that the banks are committed to providing a supply of credit
of each type and all banks are universal. In the consequence of application of the first strategy, groups
of banks that pursue similar strategies on the market are obtained.
At the beginning, the following auxiliary variables are computed:

(SumForRatio)l.Cind

temp = Sl.Cind

temp + (RevlC )
b
t − (NPLlC )

b
t (221)

(SumForRatio)l.Hind

temp = Sl.Hind

temp + (RevlH )
b
t − (NPLlH )

b
t (222)

(SumForRatio)l.NHind

temp = Sl.NHind

temp + (RevlNH )
b
t − (NPLlNH )

b
t (223)

(SumForRatio)l.Iind

temp = Sl.Iind

temp + (RevlI )
b
t − (NPLlI )

b
t (224)

(SumForRatio)l.SHest

temp = Sl.SHest

temp + (RevlSH )
b
t − (NPLlSH )

b
t (225)

These auxiliary variables help us to understand how much has been earned and lost from the granted
loans of each type. Then, the following ratios are computed:
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(230)

The ratios are ordered from highest to the lowest. According to the ratios, it is possible to indicate
the most profitable and less profitable types of loans. In the first procedure, it is assumed that
the regulator introduced the maximum sectorial exposures, that is, μ1, μ2, μ3, μ4, μ5, are fixed by
the regulator. In practice, banks invest the maximum allowed by the regulator in the most profitable
type of loans according to them. In the second procedure, it is assumed that the regulator introduced
only one recommendation; that the exposure to any loan cannot be higher than 35%, that is μi ≤ 0.35
for i ∈ {1, 2, 3, 4, 5}. The auxiliary assumption needed states that all weights have to sum up to 1:
μ1+ μ2+ μ3+ μ4+ μ5 = 1.

In this method, μ1 corresponds always to the first ratio, μ2 corresponds always to the second
ratio, μ3 corresponds always to the third ratio, μ4 corresponds always to the fourth ratio and, μ5

corresponds always to the fifth ratio. The highest ratio is checked, and then the value of μi, is drawn
from the corresponding interval of the highest allowed values, μi ∈ (0:30; 0:35]. Then, the second best,
μj is drawn from the interval μj ∈ (μi − 0.06; μi). Analogically, the third and the fourth best, ie. μk is
drawn from the interval μk ∈ (

μj − 0.06; μj
)

, μl ∈ (μk − 0.06; μk) . The fifth one is computed from
the restriction that states that all weights have to sum up to one. In this procedure, each bank has
a different ordering of ratios and in addition weights are obtained in a stochastic procedure.

Module 11: Cycle Ends Interest Rates (M.58)

This sub-module computes the value of interest rates for next iteration. If the values of perception
indicators are equal to zero then the same empirical interest rates from the database in the cycle
can be used. Otherwise, the indicators of perception to change the values of interest rates in
the first iteration are used and then random values of perception indicators from the distribution
are used. The perception of risk is different on the ON (ς ind1

) and longer-maturity markets (SW,
1M, 3M) (respectively ς ind2

, ς ind3
,ς ind4

). The parameter ζ ind
t expresses the value of perception of

uncertainty indicator.

ς ind1

t = 0 && ς ind2

t = 0 && ς ind3

t = 0 && ς ind4

t = 0 && ζ t
ind= 0. (231)

5. Inequality Measures and Distributional Effects

5.1. Income Distribution, Inequality and Concentration Measures

At t = 0, the simulation uses empirical data. In Figure 2 the household income according to
the percentile has been presented as well as the approximation of wealth has been shown.
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Figure 2. Household income by percentile (on the left) & Household wealth by percentile (on the right).

Based on empirical data, it is possible to calculate the approximation of the degree of income
and wealth inequality in the sample at t = 0, which has been compared with results of simulations of
wealth and income distributions in counterfactual scenarios (at t > 0).

5.2. Gini Coefficient and Measures of Asymmetry

Typically, the degree of inequality is calculated based on the Gini coefficient [105,106],
and the Lorenz curve [107]. This section presents the results of the calculation of the basic
Gini coefficient and the further studies on income and wealth inequality. Based on the sample,
both the Lorenz curve and the income Gini coefficient were determined from the data on a quarterly
and annual basis. The Gini coefficient for income distribution calculated on the basis of the quarterly
sample data is equal to 0.3943179 (39.43%). In the case of calculations on annual figures, the coefficient
value is slightly different, 0.3945987 (39.46%). If we include the corrections for unbiasedness, the value
is 0.3947129 (39.37%).

These values differ slightly from the Gini coefficient for income distributions reported in the 2008
Report on Household Wealth and Debt, 39.4% versus 38.4%. This is due to the adoption of a different
procedure of over-sampling of most affluent households. In addition, Grejcz and Żołkiewski [108]
present the coefficient as 39.2%. At the same time, the authors emphasise that the procedure of
oversampling of the most affluent households makes the value of Gini coefficient higher in comparison
to the ones published by OECD, 35.5% or World Bank in 2014, 32.08%. In literature, other values of
Gini coefficients for income distributions, computed using different samples, have been presented:
32.6% [109], 30.7% [110], 28.5% [111]. Accordingly, the Gini coefficient for wealth is equal to 0.6004731
(60.04%). The obtained results are relatively similar to the ones presented in the NBP [112] report
57.9%, and Grejcz and Żołkiewski [108] 58.7%.

According to Eurostat, Gini coefficient for income distribution in Poland in 2014 and 2015, were
respectively 30.8% and 30.6%. The average Gini coefficient in the European Union for 28 countries was
30.9% in 2014 and 31% in 2015. A similar Gini coefficient for income distribution, suggesting a similar
level of inequality, was reported in countries such as Croatia, 30.2% in 2014 and 2015, Ireland, 31.1%
in 2014 and 29.8% in 2015, Germany, 30.7% in 2014 and 30.1% in 2015, and Great Britain, 31.6% in
2014 and 32.4% in 2015. The reported value of Gini coefficient of wealth for euro area by Grejcz and
Żołkiewski [108] was 68.6%. In the case of the Gini coefficient for wealth distribution, similar results to
the one for Poland were obtained in countries such as Malta, Belgium and Italy [113,114]. Interestingly,
Gini coefficients for income and wealth of countries geographically and socially closer to Poland differ
significantly from values reported for Poland.

However, as Chen [105] notes, “not all inequality curves yielding the same Gini coefficient are
unequal in the same way”. This observation is important not only for comparisons between countries
but also for monitoring changes in inequalities in a given country when applying or analysing
policies in a particular counterfactual scenario. Using agent-based simulation, we can analyse how
the Gini coefficients change between iterations as a consequence of the introduction of specific policies.
Furthermore, we can also describe changes in inequalities using more accurate measures of asymmetry
and measures of spatial inequality.
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Among the most useful measures in identifying patterns of inequality are the Lorenz asymmetry
coefficient [115–117], and radial triangular measures derived from the Lorenz asymmetry coefficient
expressed in polar coordinates. The Lorenz asymmetry coefficient (LAC; abbrev. S) is defined as:

S = F(μ) + L(μ) (232)

where the functions F and L are defined as for the Lorenz curve, and μ is the mean. Based on an
ordered set of data (x1, x2, ...xm, xm+1, ..., xn), we can compute statistics S in the following way

δ =
μ − xm

xm+1 − xm
(233)

F(μ) =
m + δ

n
(234)

L(μ) =
Lm + δ xm+1

Ln
. (235)

Damgaard and Weiner [115] show that Lorenz’s asymmetry coefficient allows us to notice that although
two Lorenz curves allow in practice the same Gini coefficient to be obtained, their shapes are different,
which translates into other patterns of inequality. If the LAC is less than one, the inequality is related
to the presence of relatively much poorer units. If the LAC is greater than one then the inequality is
related to the existence of extremely rich individual entities. For the purposes of further discussion,
the point at which the first derivative of the Lorenz curve is equal to 1 in the interval (0, 1), it can be
denoted, similarly to Chen [105], [μ, f (μ)].

When calculating Lorenz’s asymmetry coefficient for income distribution based on quarterly data,
a result of 0.9790896 is obtained. For annual data, this is 0.9788734. Similarly, for wealth distribution
it is 0.942073944. Intuitively, if the value of the Lorenz coefficient is less than 1, the point [μ, f (μ)] is
below and to the left of the symmetry axis. In fact, this case describes the situation in Poland, although
the value does not differ significantly from the value of 1 corresponding to the point on the axis of
symmetry. For the income distribution, the point [μ, f (μ)] = (0.63; 0.35). This deals with the first of
the two discussed situations. The income inequality in Poland is related to the relatively large number
of poor agents. For wealth distribution, the point is equal (0.68; 0.26) which is for the first case. Indeed,
the wealth inequality is Poland is related to the relatively much poorer units.

The lack of access to disaggregated income and wealth data for countries such as Croatia, Ireland,
Germany or Great Britain makes it impossible to compare patterns of inequality in these countries.
However, it is still possible to compute Gini coefficients for Poland in different counterfactual scenarios.
In the case of subtle changes in inequality in one country, it may be helpful not only to calculate the LAC
but also to describe Lorenz’s asymmetry with polar coordinates and to calculate the additional measure
of adjusted azimuthal asymmetry (AAA) (cf. Chen [105]).

In this new approach the location of a point [μ, f (μ)] relative to the point ( 1
2 , 1

2 ), a point dividing
the line of equality in half can be described. In fact, [μ, f (μ)] can be designated according to its radial
distance from ( 1

2 , 1
2 ) and according to the azimuthal angle formed by that radius, relative to the line

of symmetry. According to convention, they can be denoted accordingly ρ and θ. For the graphical
explanation of ρ and θ based on Chen [105], see: Figure 3. Both enhance the interpretation of Lorenz
asymmetry coefficient. The maximum radial distance of [μ, f (μ)] from ( 1

2 , 1
2 ) is 1√

2
and the azimuthal

angle formed by the axis of symmetry and the line segment connecting ( 1
2 , 1

2 ) to [μ, f (μ)] falls within
the range of +/−π

2 .
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Figure 3. Lorenz curve (on the left) and the radial interpretation of ρ and θ (in the middle and on the
right).

The radial distance ρ measures the concavity of the Lorenz curve and it is expressed by
the formula:

ρ =

√
(μ − 1

2
)2 + ( f (μ)− 1

2
)2. (236)

Azimuthal angle θ measures the distance of [μ, f (μ)] from the axis of symmetry in precise angular
terms. It is expressed by the formula:

θ = arcsin(
S − 1
ρ
√

2
). (237)

It adds precision and intuitive geometric appreciation to the Lorenz asymmetry coefficient. “Whereas
the primary use of S has been binary negative values lie to the left of the axis of symmetry, while
positive uses lie to the right θ locates [μ, f (μ)] with precision within the unit triangle” [105] Note that
S, ρ and θ are constrained by the Gini coefficient. In practice, for a given value G, we have specified
boundaries on the values S, ρ and θ . For any Gini coefficient G, the minimum value of S is G itself.
The maximum value is 2 − G.

For t = 0 during the simulation, the following results are obtained for income distribution:

ρ = 0.19908, θ = −0.07434, t =
θ

π/2
= −0.04733. (238)

The distance from ( 1
2 , 1

2 ) to the orthogonal intercept along the line of symmetry is 0.19886.
The maximum θ given the value of Gini coefficient for quarterly data is equal to 0.99369. The adjusted
azimuthal asymmetry coefficient for t = 0 is equal to:

AAA =
θ

θmax
= −0.07481. (239)

Accordingly, for the wealth distribution, the following is obtained:

ρ = 0.30767, θ = −0.13353, t =
θ

π/2
= −0.08500. (240)

360



Entropy 2020, 22, 129

The distance from ( 1
2 , 1

2 ) to the orthogonal intercept along the line of symmetry is 0.3049. The maximum
θ given the value of Gini coefficient for quarterly data is equal to 0.5880. The adjusted azimuthal
asymmetry coefficient for t = 0 is equal to:

AAA =
θ

θmax
= −0.22783. (241)

As Chen [105] states, “adjusted azimuthal asymmetry promises a two-fold advantage over
the unadorned Lorenz asymmetry coefficient. First, the asymmetry is more intuitively and more
accurately expressed in angular terms than as the sum of two Cartesian coordinates. Second, because
adjusted azimuthal asymmetry accounts for the maximum angular distance from the axis of symmetry
for a particular value of G, it expresses a sense of proportionality that raw θ, to say nothing of S, cannot”.

5.3. Spatial Dimensions of Inequality and Inequality Aversion

Although the spatial analysis is based on basic Theil index (TI), the generalised entropy index
(that the Theil index is a special case of) can be started at. The generalised entropy index is defined as:

GE(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
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1
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N
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yi
y

ln
yi
y

α = 1

− 1
N

N
∑

i=1
ln

yi
y

α = 0

(242)

where N is the number of individuals or households, yi is the income of entity i, α is the weight given
to distances between incomes at different parts of the income distribution. The generalised entropy
index has been proposed as a better measure of income inequality with regard to Gini coefficient due
to the fact that it is an additively decomposable inequality measure [118].

If it is assumed that α = 1, that is GE(1), the TI is obtained. One of the advantages of the TI is that
it is a weighted average of inequality within subgroups, plus inequality between those subgroups. For
example, inequality within Poland is the average inequality within each region, weighted by region’s
income, plus inequality between regions. We can express the decomposition formally. If for the TI
the population is divided into k subgroups and si is the income share of group i, TTi is the Theil index
for that subgroup, and xi is the average income in group i, then then the TI is expressed by the formula:

TT =
k

∑
i=1

siTTi +
k

∑
i=1

si ln
xi
x

. (243)

The TI allows us to analyse the relative importance of spatial dimension of inequality, that is,
the regional inequality [119].

For time t = 0 during the simulation, based on empirical data of income and wealth, the entropy
measure (EM) and TI for Poland is computed. We obtain respectively EM = 0.2721004 and TI =

0.2836961 for income, and EM = 0.7599967 and TI = 0.6753153 for wealth. The decomposition of TI
allows us to analyse the spatial inequality in Poland. The results of measures of spatial inequality are
not reported for confidentiality reasons. The authors cannot present which spatial codes 1-4 represent
which region and districts in Central Statistical Office but it is feasible to present the data and visualise
changes in spatial inequality in each counterfactual simulation using maps.
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The generalised entropy index can also be transformed into a subclass of the Atkinson index (AI)
with ε = 1 − α for 0 ≤ α < 1, defined as:

Aε(y1, ..., yN) =

⎧⎪⎪⎨⎪⎪⎩
1 − 1

μ (
1
N

N
∑

i=1
y1−ε

i )
1

1−ε for 0 ≤ ε 
= 1

1 − 1
μ (

N
∏
i=1

yi)
1
N for ε = 1

, (244)

where ε is an inequality aversion parameter. When ε approaches 0, it becomes more sensitive to
changes in the upper end of the income distribution. Then, there is no aversion to inequality; no social
utility is gained by complete redistribution. The higher ε, the more AI becomes sensitive to changes
at the lower end of the income distribution. At the same time, more social utility can be gained from
the redistribution as aversion to inequality is higher. Relatively low values of AI indicate a more
equal distribution than higher values, given a particular degree of risk aversion. The computation
of AI for the empirical distribution of income for Poland allows us to obtain the result of 0.1314228.
The AI for the empirical distribution of wealth is equal to 0.3438987. A number of other measures of
concentration and inequality have also been calculated to investigate the sources of income inequality
in Poland. The Herfindahl concentration index (HHI) is equal 0.0005451883, while the Rosenbluth
concentration index (RI) is 0.0004778672. The values of additional measures of wealth inequality are
equal to 0.001255462 in the case of HHI and 0.4313275 in the case of RI.

5.4. Indebtedness of Households & Macroprudential Ratios

The distributions of debt service to income (DSTI), debt to income (DTI), loan to value for housing
loans (LTVH) and debt to income (DTA) at t = 0 are analysed, and then the changes in the empirical
distribution of these ratios at t > 0 are presented in Appendix D. The percentage of households that
have DSTI ≥ 30% (6%) and 40% (3.5%), as well as DTI ≥ 3 (3.6%) and 4.5 (1.7%) is computed. In
the sample, 101 504 individuals have a total of 137 216 consumer loans. None of the individuals have
more than 5 consumer loans. On average, individual customers have been charged statistically with
1.4 of consumer loans. In the sample, 43 008 housing loans were still to be repaid.

6. Results of Simulations

Using this agent-based simulation, it is possible to analyse the behaviour of a heterogeneous
economy within certain counterfactual scenarios and the effects of public policies, especially stabilising
and distributional effects of macroprudential policies. Firstly, the scenario is analysed in which
the main mechanisms described by H. Minsky in ‘Stabilizing unstable economy’ (1986) [44] and in
‘Financial Instability Hypothesis’ (1992) [45] are simulated. Under the second scenario, the behaviour of
the system is investigated, assuming the use of macroprudential policies to mitigate financial risk and
stabilise an unstable economy. Then, the macroprudential policy stance which would best allow for
the stabilization of heterogeneous economy is analysed, as is the distributional effects of these policies.

6.1. Minsky Moment

According to Reference [44], ‘capitalist economies exhibit inflations and debt deflations which
seem to have the potential to spin out of control’. The economies are unstable by nature (this instability,
in the most general terms, was mostly related to industrial structure and finance). In this statement
Minsky refereed to the Kindleberger’s definition of self-sustaining disequilibrium from the 1970s.
The capitalist economy is conditionally coherent. Instead of accepting the state of equilibrium, the focus
should rather be on periods of tranquillity, apparent stability, which, in essence, are destabilising.

The neoclassical synthesis tries to explain how a decentralized economy achieves coherence
and coordination in production and distribution (in other words, how market mechanisms lead to
a sustained, stable-price, full-employment equilibrium). In opposition, the Minsky theory focuses on
capital development of an economy and the impact of financial institutions’ activity on production and
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distribution. The optimum that is derived from the neoclassical decentralized market processes ‘rules
out interpersonal comparisons of well-being and ignores the inequity of the initial distribution of
resources and thus of income’. As Minsky stated, ‘inasmuch as our aim is to indicate how we can do
better than we have, and as the best is often the enemy of the good, we can forget about the optimum
[in neoclassical terms]. Even though a tendency toward coherence exists because of the processes that
determine production and consumption in market economics, the processes of a market economy can
set off interactions that disrupt coherence’ [44].

Minsky’s theory can be interpreted in two ways. In Keynesian terms, it should be understood in
terms of accumulation of capital in the economy. In Knightian terms, it should rather be interpreted as
a problem of allocating resources under risk and uncertainty. The paper refers to the first interpretation.
In Extensions, the second interpretation is referred to. Hence, the role of risk perception and uncertainty
in generation and amplification of risk within the system is analysed [42].

We begin with interpretations of the instability hypothesis in Keynesian terms. Minsky’s theory
refers to the general theory of Keynes from the 1930s. Nonetheless, in ‘Stabilizing an unstable economy’,
the process of capital accumulation described by Keynes is accompanied by an exchange of current
money for the future. At the heart of this theory are not only capital stock and investment but primarily
cash flows. Any attempt to model the instability hypothesis must therefore be stock-flow consistent.
In reference to the Minsky theory, in the simulation, three types of stylized cash flows are developed:
income, balance sheet and portfolio. The income cash flow refers to all payments in the production
and sale of inputs and final goods, thus also the one in the supplier searching and purchase modules.
The balance sheet cash flow refers to repayment of debts. The third type of cash flow occurs due to
transactions in which capital and financial assets are acquired by a new agent. Money in cash form is
not analysed explicitly in the model, but the general idea of money and settlements has been taken
into account in the model. As Minsky noted, ‘money is created in the process of financing investment
and positions in capital assets. An increase in the quantity of money first finances either an increase in
the demand for investment output or an increase in the demand for items in the stock of capital or
financial assets. As money is created, borrowers from banks enter upon commitments to repay money
to the lending banks. In its origins in the banking process, money is part of a network of cash-flow
commitments, a network that for the business side of the economy ultimately rests upon the gross
profits, appropriately defined, that firms earn’ [44].

The current money is used to purchase inputs that are used in the production of investment and
consumption goods. The purchase of inputs can be funded by the firm from the liquid assets and
capital. Otherwise, external funding can be obtained. Financial institutions on the market generate
profits from lending funds. ‘The financing terms affect the prices of capital assets, the effective demand
for investment, and the supply price of investment outputs’ [44]. Firms, establishments and individuals
are obliged to repay debt, that is, principal and interest rates, within designated deadlines. In Minsky’s
basic theory, the focus was on investment. The government budget, the behaviour of consumption and
the path of wages were secondary. To make the model more realistic and ensure it can be applied in
modern policy making, all the above-mentioned elements were included. Similarly, the flow of money
described by Minsky included only loans to firms, while in the simulation, loans to individuals and
households were also added. The flow of money in Minsky’s theory, similarly to the simulation, has
the following two directions. Individuals make deposits to banks and banks lend money to firms and
individuals. In a later period, firms and individuals return funds to banks and banks to depositories.

In this theory the cash flows are influenced by the expected future profits; the flow of money from
companies to banks takes place after the realisation of real profits. These expectations need not be
always consistent with the final realisation of profits.

Funds can be obtained through negotiation, in which risk perception and uncertainty as well
as expectations play an important role. Firms willing to obtain money for carrying out their activity
interpret financial results and the economic situation in an enthusiastic way, and in fact often create
overly optimistic expectations. While bankers are inherently conservative, though profit-seeking, they
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are more restrictive in assessing potential gains from a deal. Despite being more restrictive, bankers
are also aware that investment in innovation and new products, services and industries is the most
profitable. Consequently, their propensity to finance projects from the most dynamic and profitable
sectors is usually greater than the projects from other industries, even if the riskiness of the project is
higher than average.

Minsky’s theory incorporates elements of Kalecki-Levy theory, according to which the structure
of aggregate demand determines profits. The profit expectations depend on the expected level of
investment in the future and actual returns on investment. Investments continue on the assumption of
both entrepreneurs and bankers that investment will also take place in the future. In order to increase
investment, the agents borrow additional funds, frequently assuming unrealistic returns in the future.

According to Minsky, there are three types of agents that are characterised by their relation
between income and debt. ‘Hedge financing units are those which can fulfil all of their contractual
payment obligations by their cash flows. (...) Speculative finance units need to roll over their liabilities,
[that is,] issue new debt to meet commitments on maturing debt. (...) For Ponzi units, the cash flows
from operations are not sufficient to fulfil either the repayment of principle or the interest due on
outstanding debts by their cash flows from operations. Such units can sell assets or borrow. Borrowing
to pay interest or selling assets to pay interest on common stock lowers the equity of a unit, even
as it increases liabilities and the prior commitment of future incomes. A unit that Ponzi finances
lowers the margin of safety that it offers the holders of its debts’ [44]. The higher the leverage ratio of
firms, the higher the probability of defaulting on debt. Therefore, the reduction of collateral required
and credit rating requirements in this scenario leads to an increase in the percentage of speculative
and Ponzi agents. Changes in creditworthiness requirements also affect the percentage of hedging,
speculative and Ponzi-type agents in the economy. The higher the level of speculators and Ponzi-type
agents, the greater the probability of a crisis.

Investment boom increases aggregate demand and spending through a multiplier effect and
sales increase. Profits increase with increasing investment, encouraging further investment. In this
way, the instability of the system is strengthened until the percentage of speculative investors
increases significantly. In the case of prolonged prosperity, assuming that no prudential policies
have been applied, the economy becomes unstable, due to the increasing number of speculative and
Ponzi-type agents.

Minsky’s instability hypothesis is a study about the extent to which debt affects the behaviour of
the system and how the level of debt is considered to be adequate in terms of dynamics of the system.
According to this theory, there is no need for external shock for the crisis to occur. The crisis is generated
endogenously by agents taking too much risk and by the desire by entrepreneurs and bankers to obtain
ever-increasing profits. At the same time, this situation also has consequences for individuals and
households. In the event of an increase in insolvencies, banks may default and thus depositors would
lose the funds (the case in which by increasing uncertainty individuals decide to withdraw deposits is
analysed in Extensions, see: [8]). In addition, the situation on the labour market determines changes in
the income and wealth of households.

According to Minsky’s theory, increase in investment ‘would never trickle down to the poor
and would tend to increase inequality by favouring the workers with the highest skills working in
industries with the greatest pricing power’ [44]. In the simulation, this mechanism was modelled.
Firms hire individuals according to their work skills and in industries with the greatest pricing power.
Consequently, it leads to inequality. The changes in inequality can be measured using the Gini
coefficient as well as other measures of asymmetry and spatial inequalities.

The dynamics of the real estate market is also changing. The increased percentage of job seekers
is influencing their shift to cheaper properties and partly ineligible mortgage loan repayment, which
again puts banks in a difficult position. Banks are in possession of properties for which there is no
demand, and their prices are gradually lowered in order to find a buyer.
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Two main components of the theory are the two-price system and the lender’s and borrower’s
risk, both derived from theories of Kalecki and Keynes.

The first price system concerns current output prices, that is, costs and mark-ups, that need to
be set at a level that will generate profits for the firm from the sale of consumer goods, investment
goods, and goods and services purchased by the government in public contracts. If, in the analysis,
the external fund increase is also taken into account, the supply price of capital plus the interest rate
and lender’s risk must also be considered.

The second pricing system refers to assets. Assets are expected to generate cash flow in the future.
These flows are not known and their estimation depends on subjective expectations. How much is able
to be paid for such a financial asset depends on the amount of external finance required. The more
the borrower becomes indebted, the greater the risk of insolvency; in this sense the price of the asset
includes the borrower’s risk. Investments occur when demand price exceeds the supply price of assets.
Prices include collateral. After the crisis, usually larger collateral are required, in the expansion period,
they are lowered significantly.

As Minsky [44] states, ‘the costs of financing the production of investment is a cost that enters
the supply price of output like the costs of labour and purchased inputs. The fact that a firm
has to borrow to pay wages raises the effective costs by the interest payments on the borrowings’.
‘The decision to invest therefore involves a supply function of investment, which depends upon labour
costs and short-term interest rates, a demand function for investment, which is derived from the price
of capital assets, and the anticipated structure and conditions of financing. Whereas the structure of
balance sheets reflects the mix of internal funds (gross retained earnings) and the external funds (bonds
and equity issues) actually used, the investment decision is based upon expected flows of internal and
external funds’ [44].

6.2. Simulating an Unstable Economy

In the first scenario, the role and impact of financial institutions on production and distribution of
income and wealth in the economy is simulated. As Minsky pointed out, according to neoclassical
assumptions, the initial distribution of income and wealth did not matter. Neoclassical models
ignore the impact of policies on income and wealth distributions ex post. The inclusion of ex ante
heterogeneity was not relevant to the analysis of outcome ex post. In contrast, in the simulated scenario,
we show that the processes of a market economy do ‘set off interactions that disrupt coherence’,
and that incorporation of heterogeneity ex ante into the model makes it possible to observe changes in
distributions ex post, including income and wealth distributions.

In accordance with Minsky’s hypothesis, in the database and model design, the focus was put not
solely on heterogeneity in capital stock and on different investment decisions but also on balance sheet
changes and cash flows.

In the scenario, firms operate in eight different sectors through establishments. In the first iteration,
the most profitable sector is the first sector, thus it attracts the highest percentage of new investors.
Other sectors attract a smaller percentage of new businesses. During first iterations we observe
fluctuations in the relative profitability of sectors, related to business fluctuations, that is, the effect
of the business cycle. In the initial iterations, only stock fluctuations related to intrinsic dynamics of
the economy are observed, while in further iterations, it is observed that increased stock fluctuations
and a cease in production is experienced by a higher percentage of establishments. The number of
firms in each of sectors decreased over a year due to both higher rate of bankruptcies and higher
concentration on the market, see: Figure A6 (on the right) in Appendix D. At t = 0 there are 18727
establishments in the database. At t = 1, 14112 establishments from the database at t = 0 continue
operating on the market. 4615 establishments ceased to produce, while 9887 new establishments
were attracted by the market due to higher relative profitability of selected sectors. At t = 2, 15727
establishments from t = 1 operate on the market, while 2773 new establishments are created. In total,
18500 establishments are in operation. At t = 3, 15357 establishments from t = 2 operate on the market
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but only 1546 new establishments are established due to deterioration of market conditions. In total,
a lower number of establishments (16,903) with respect to t = 0 operate on the market. Some firms
go bankrupt, while others cease their activity in selected establishments that are operating in less
profitable sectors. At t = 4, 15,357 establishments stay on the market and 1491 new establishments are
created. In total, 16848 establishments continue operation.

In next iterations, there are higher levels of debt and leverage and increased financial risk in
the sectors that were the most profitable in the previous periods. The risk spreading between sectors
was visualised in Figure A5 (on the left and on the right side) and Figure A6 (on the left). Over a year,
the higher number of firms’ bankruptcy with respect to the previous periods was observed, indicating
the gradual endogenous generation of the crisis. Occasionally, though gradually more frequently,
firms had problems finding a supplier, which is related to the cessation of business activity by
selected establishments, and thus the interruption of network of transactions established between
establishments and suppliers. The data could be analysed for further iterations than four (one year)
but the goal was to show that a crisis can emerge endogenously in a relatively short period of time,
such as 1–4 quarters, as it was the case during the financial crisis (Q2 2008–Q2 2009).

The problem of searching and matching the suppliers in the supply chain module gains
importance. The time required to searching for supplier is increased due to the fact that new transaction
relations are established with suppliers in further territorial units than previously.

When the uncertainty on the market increases and indicators of profitability and riskiness
deteriorate, a lower percentage of firms is eligible for a loan. Establishments lose creditworthiness
and are forced to restrict production, which in turn worsens economic conditions. At t = 1, 62.5% of
establishments were checked for creditworthiness in the module Consumer credit admissibility 1, while
37.5% in Consumer credit admissibility 2. In the following iterations, these values were respectively:
48.61% and 51.39% at t = 2, 55% and 45% at t = 3, and 57.5% and 42.5% at t = 4. The firms and
establishments’ conditions are also closely related to the problems of specific industries and fluctuations
in the economy.

Expectations of lower profits lead to a reduction in the flow of money from companies to banks
and from banks to companies, worsening the state of the economy. Banks are on the one hand aware of
the higher risk related to granting loans to companies that qualify for the liquidity problem procedure,
on the other hand it allows them to earn a premium. Overall, however, they provide loans for shorter
periods, which is related to the general uncertainty in the market.

In the simulation cycle under first scenario, the number of companies with higher debt and higher
leverage gradually increases. Using the simulation, changes can be observed in the distribution of
the firms’ debt and leverage, rather than just analysing growth of the overall average debt and leverage.
However, as the crisis becomes more severe, more firms with excessive debt and leverage go bankrupt
or cease their activities in selected establishments; see: Table A11 in Appendix D.

The initial boom also encourages households to increase consumption, which in turn increases
their overall debt, also affecting the value of debt service to income (DSTI), debt to income (DTI),
debt to assets (DTA) and loan to value (LTV) ratios, see: Figures A12–A16. After the first iteration,
the percentages of households that have DSTI ≥ 30% equal to 4.7%, and DSTI ≥ 40% equal to 2.7%,
while the percentage of households with DTI ≥ 3 equal to 3% and DTI ≥ 4.5 equal to 1.3%. After
the second iteration, the percentage of households with DSTI ≥ 30% was equal to 3.6%, and DSTI ≥
40% equal to 2.2%, while the percentage of households with DTI ≥ 3 equal to 2.1% and with DTI ≥
4.5 equal to 0.9%. After the third iteration, the percentage of households with DSTI ≥ 30% is equal to
4.6%, and with DSTI 40% ≥ 3.2%, while those with DTI ≥ 3 is equal to 1.9% and with DTI ≥ 4.5 equal
to 0.9%. After one year, the percentage of households with DSTI ≥ 30% was equal to 5.04%, and with
DSTI ≥ 40% was equal to 3.5%, while with DTI ≥ 3 this percentage was equal to 2.2% and with DTI ≥
4.5 the percentage was equal to 1.1%. The percentage of households with respective values of DSTI and
DTI at t > 0 are lower than at t = 0. There are two reasons that explain this pattern. Firstly, households
with very excessive debt default are removed by the system. Secondly, highly indebted households
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will not apply for any new loans and they pay back part of the debt. Nonetheless, as soon as their
creditworthiness improves due to loan repayment, they are attracted by the market via mechanisms
described by Minsky and the ratios start to deteriorate. Changes in investment and external financing
directly affect the market imbalances. Individuals with lower qualifications and level of education
experience a gradually deteriorating situation on average.

After a year the Gini coefficient for income distribution is equal to 39.9% and for wealth
distribution is 60.8%. After two years, the values are 41.1% and 61.3%, respectively. The LAC is
equal to 0.96901 and 0.93896 after four quarters. The point [μ, f (μ)] = (0.63; 0.33) for income, while it
is equal (0.66; 0.26) the case of wealth. The adjusted azimuthal asymmetry (AAA) is equal to −0.07541
for income and −0.21341 for wealth.

Due to endogenous changes in the decisions of agents and their interactions, the dynamics of
the markets and economy also changes. In particular, the dynamics of the labour and real estate markets
change. Higher mortgages and a difficult situation on the labour market affect the dynamics of the real
estate market. More properties are marked for sale and their price is reduced accordingly. On average,
the prices of properties decreased by 2% in one year. It is possible to analyse a decrease in prices in
each spatial unit, for example, region, however the results are not reported for confidentiality reasons.

With the deterioration of a favourable economic situation, the number of insolvencies and
the NPLs ratios of banks increased; see: Appendix D (Figure A7 (on the right) and Figures A9 and A10
(on the left and right). Higher non-performing loans affect the supply of credit in subsequent
iterations. In the model it is possible to use two methods of determining the supply. If the first
one is used, banks adopt similar strategies in groups. If the second is used, there may be a greater
degree in the heterogeneity of strategies. In both cases, these patterns were observed. The model
allows the analysis of differences in non-performing loans according to the loan type which thus
reflects another aspect of heterogeneity. Using simulation, we can also analyse the changes in profits
(Figure A8 (on the left)), equity (Figure A8 (on the right)) or the fulfilment with the capital and liquidity
requirements which were set on too low levels (Figure A11 (on the left) and Figure A11 (on the right)).

Stabilizing Unstable Economy via Macroprudential Tools

In the second scenario, the behaviour of the economy is simulated, assuming the implementation
of macroprudential policy aimed at stabilising the unstable economy. All banks set the capital
requirements set by the regulator as well as apply the recommendations with respect to debt to
income (DTI), debt service to income (DSTI), debt to assets (DTA), loan to value (LTV) ratios and
leverage ratio (LR). In the economy, the activity of companies is conducted in the eight sectors grouping
NACE industries. Among the analysed sectors, the most attractive for potential entities is the third
sector, while the relatively least profitable for investors is the eight sector. In the case of any industry,
there is no significant decrease in relative profitability. In first scenario, it was observed that the role of
some of the sectors, that is, real estate sector, increased sharply, and then was significantly reduced.
In the second scenario, no sudden discontinuity of production or increasing number of bankruptcies
were observed. There are were no significant changes in product prices.

The expectations are relatively much more consistent in time than in the case of the first scenario.
In this scenario, these expectations are only slightly different than those formed in the previous period
and adapt to the fluctuations of the economy. Stock fluctuations are consistent with the dynamics of
the economy. There is no stock accumulation or stop to production and sales of stored goods. In this
scenario, the leverage level is moderate. Only in the case of a small percentage of establishments was
production stopped completely.

In this scenario there are no searching-matching problems between the establishments in the search
for suppliers. Quality-to-price ratio of establishment in relation to quality-to-price ratio in a given
sector is the appropriate determinant of the supplier’s search decision. In most cases, it is possible
to find a supplier in a given spatial unit that has a sufficient quantity of produced and stored goods.
The search for a supplier in the unit that exceeded the basic spatial unit is moderate and corresponds
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to normal time market dynamics. The additional costs generated by transportation of inputs for
establishments’ production of goods were also moderate.

Most firms have adequate liquid assets and adequate creditworthiness. Additional funds
will be used for further investment. A very low percentage of establishments were eligible for
the creditworthiness check in connection with transitional liquidity problems. Transient problems of
establishments on the market are related to temporary economic fluctuations in industries, as well as
market dynamics. In this scenario, banks have adopted similar credit requirements for less risk-prone
companies. However, banks differ in credit requirements for more risk-prone businesses, especially
firms with temporary liquidity or financial problems. The tightening of the criteria has countered
the financial crisis. Of particular importance was the observation of return on assets (ROA), return on
equity (ROE), financial risk and credit history of companies.

In the case of a low number of establishments, a readjustment of quantity was required,
and the final purchase of the inputs was lower than the intended one. Banks providing loans for
the purchase of inputs were characterised by different risk aversion and strategies on the market.
In some cases, the network effects have been maintained. The establishments applied for a loan in
a matched bank, thus maintaining a transaction link (edges in the network). For other transactions,
there was a change of the loan-granting bank. When searching for a bank that will grant short-term
credit for the purchase of inputs, the companies were mainly driven by the interest rate and the supply
of credit.

In the model it is possible to use two methods of determining the supply. If the first one is used,
banks adopt similar strategies in groups. If the second one is used, a greater degree of heterogeneity of
strategies is observed. In the first case, network effects associated with transaction relationships in
the market have been maintained. Individuals choose banks to apply for a loan according to the interest
rates on consumer loans offered by banks. Granting a loan also depended on credit supply and sectoral
exposure requirements. Some banks have exhausted the supply of consumer loans, which means
that according to the strategy defined for a given period, the funds were spent on other activities
such as granting short-term and long-term (investment) loans to companies, and residential and
non-residential loans to individuals.

Within the second method, during the year the same number of individuals applied for a loan
at the matched banks; a very high percentage of these applications were successful. In this case,
network effects associated with transaction relationships in the market were maintained. The supply
of consumer loans and sectoral requirements limited the number of loans granted.

In both cases there were also no searching-matching problems between consumers and suppliers
of goods. Also, the quality-to-price ratio in relation to quality-to-price ratio in a given sector is
the appropriate determinant of the supplier’s search decision. In most cases, it has been possible to
find a supplier in a given spatial unit that had a sufficient quantity of produced and stored goods.
In some cases, the search for suppliers exceeded the basic spatial unit, generating a modest cost of
goods transportation. It did not generate an excessive burden on households.

Demand of establishments and households was complemented by demand from the government,
through public procurement. The establishments that signed the public contracts produce high-quality
products. These establishments were also part of the largest companies on the market.

In the case of households within ‘Housing stress!’, the cost of accommodation, whether in the case
of servicing a housing loan or renting, proved to be excessive. These households changed their
residence to a cheaper property. The dynamics of the housing market was not excessive and was
consistent with household income fluctuations. In the case of a very low percentage of households,
their insolvency was observed, as was an increase of NPLs in the banks by the value of their loans.
The prices of properties fluctuate on the market as a whole but the prices remain relatively stable
within a determined region.

Using the simulation, it is also possible to compute which percentage of households purchased
a new property in cash and which have applied for a residential or non-residential loan. Demographic
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trends were fully preserved in the scenario. The probability of survival or death has been specified
according to Central Statistical Office data. As a consequence of the death of individuals, inheritors
gained additional deposits. Most companies were taken over by the heirs, while in cases of negligible
value the inheritance was rejected. In some cases, the deceased was the owner of the property charged
with the loan. These properties were taken over by the bank and were resold at a lower value.
In the case of survivors, the tendencies of completed education by individuals were also maintained.

Some companies were not created despite starting the company opening process. Some did
not obtain a business license, and in some cases, funds were not sufficient to run a business. Credit
applications are a special case in which the entrepreneurs compared the interest charged by the banks.
The banks also checked whether the supply side restriction was fulfilled and whether the sectoral
exposure did not exceed the requirements. Sectoral exposures have made it possible to limit potentially
excessive credit growth in the most profitable sectors at any given moment, including in the real
estate sector, which normally expands dynamically during prosperity. The larger companies were
funded with contributions from entrepreneurs. There was an increase in average goodwill points
during an expansive phase of a business cycle. At the same time, the structure on the market changed,
with some activities ceasing and other new activities being created. New establishments were mostly
opened in sectors with high or moderate risk. Changes in the number and structure of firms on
the market corresponded to the usual dynamics of the economy. There was no increased concentration
of capital, business clustering, excessive bankruptcies or escalation of reductions of labour force in
already operating establishments.

An analysis of the distributions describing the attributes of firms and establishments does
not allow the identification of situations typical of financial or economic crises and symptoms of
overheating of the economy. In this scenario, a significant increase in the risk of activity of firms
and establishments on the market was not observed, nor was the strong growth of the economy
and the increased financial risk of a particular industry. The average risk to the business activity in
the market was moderate.

The lack of concentration of financial risk in a given industry is largely due to the introduction of
regulations for maximum exposure to a given industry. The situation of banks is stable. For the first and
the second procedure of supply determination, the NPL ratios were moderate. Liquidity requirements
are met in the case of most banks. Capital requirements were fulfilled at the level of 8%, introduced by
bank regulator. None of the banks declared insolvency. A very low percentage of individuals declared
insolvency as a result of net savings at a negative level. The NPL ratios and the growth (inflow) of
NPLs of banks was modest.

The stabilising effects of macroprudential policies for the economy and the financial system is
significant, however the effect on reducing inequality is ambiguous. The richest agents on the market
seem to remain unaffected by the introduction of the policies. In extreme cases, the rich get richer.
After one year, the Gini coefficient for income distributions was equal to 39.7% and 60.6% for wealth.
After two years, the values were 40.1% and 60.9%, respectively. The Lorenz Asymmetry Coefficient
(LAC) was equal to 0.97672 and 94782 respectively. The point [μ, f (μ)] = (0.62; 0.36) for income, while
it is equal (0.67; 0.26) for wealth. The adjusted azimuthal asymmetry (AAA) is equal to −0.07541 in
the case of income and −0.21341 in the case of wealth. The results do not differ significantly in the next
four iterations.

6.3. Optimality of Macroprudential Policy Stance

Thus far, the possibility of stabilising an unstable economy using macroprudential policy has been
analysed. Simulation has allowed analysis of the degree to which macroprudential policies influence
the distribution of variables, including the distribution of income or the distribution of wealth, allowing
a fuller welfare analysis. However, the main question is which policy combination to choose from,
utilising possible combinations of tools to stabilise the economy and financial system, as well as to
ensure a more homogeneous distribution of wealth and income. Optimal choice is understood here to
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mean the method of choosing the most advantageous combination of macroprudential tools (from
the point of view of social well-being). In contrast to the social planner approach, the abstract concept
of Bentham’s social utility is not focused on; rather there is focus on the stability of the economic and
financial system and the measures of welfare that quantify changes in income and wealth distributions.

Based on the scenarios, it can be concluded that the use of a combination of macroprudential
tools (appropriately calibrated) may lead to stabilisation of the system. Nonetheless, this combination
of policies was not optimal in a sense that the statistical equilibrium was achieved at a level which
does not guarantee a sufficient reduction of inequality in the system. The optimal policies would be
the ones which enable a decrease in inequality in the system (to an acceptable level). The results were
shown to be robust by carrying out the Monte Carlo procedure. The exact results for the Polish system
(including optimal combination of macroprudential tools) are not reported here due to confidentiality
of individual banks’ and firms’ data. The simulation can, however, be performed using data available
from the National Bank of Poland, which would allow plausible results to be obtained. The results in
the scenarios are mostly illustrative to the new methodology developed.

7. Final Remarks

The paper has analysed the stabilising effects of macroprudential policies on a heterogeneous
economy using an agent-based approach. The presented simulation is a novel application of
agent-based approach in systemic risk modelling. The model constitutes an alternative to the ‘3D’
model with three layers of default that is widely-used by experts of the European Systemic Risk
Board and the European Central Bank. The main advantage of the ABM model with respect to
the ‘3D’ model is the possibility to carry out counterfactual simulations within the framework of fully
heterogeneous agents.

The simulation results show the stabilising effects of binding macroprudential policies on
the unstable heterogeneous economy. However, in opposition to mainstream literature, the use
of macroprudential policies as an alternative to redistribution policies does not always lead to
the same results if heterogeneity is assumed in the model. Even if the shape of the income and
wealth distributions could be smoothed for most percentiles, the macroprudential policies do not
affect the richest individuals in the desired way; the richest get even richer with respect to the rest
of society. In general, the macroprudential policies and regulation should counteract the negative
effects of the crisis, including the impact of the crisis on society (distributional effects). Nonetheless,
this paper shows that suboptimal or non-binding macroprudential policies in the economy with
heterogeneous agents ex ante and ex post do not remove the all negative distributional effects. Poor
calibration of macroprudential policies would not only counteract the endogenous generation of
the crisis in Minsky’s sense but would also lead to higher inequality. This finding is consistent with
the ECB studies of P. Hartmann [120] on the distibutional effects of macroprudential policies and
the possible interactions between social policies and macroprudential policies. This view was also
supported by van der Heuvel [13] and Claessens [121]. Moreover, the policy recommendations and
results of welfare analysis obtained from the DSGE models with homogeneous agents may be in
practice very misleading for central bankers.
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Appendix A. Notation and List of Variables (Agent’s Attributes)

Table A1. Individuals (−.ind).

Variable Explanation Type Restr.

(Id)ind Individual ID (code identifying individuals) Int. ≥0

(Id)HH.(ind) Identification code of household to which the individual
belongs to Int. ≥0

(Id)est.(ind) Identification code of establishment in which
the individual works Int. ≥0

(Age)ind
t Age of individual at time t Double ≥0

(Educ)ind
t Level of education completed by the individual at time t Int ∈ {1, 2, 3, 4, 5, 6, 7, 8}

(EducP)ind
t Periods of education Int.

(Entr)ind
t

The variable determining whether an individual is an
entrepreneur at time t Boolean ∈ {0, 1}

(EntrP)ind
t

The variable determining whether an individual was an
entrepreneur in the past Boolean ∈ {0, 1}

(EntrS)ind
t

The probability of becoming an entrepreneur in the future
(expectations) Double ∈ 〈0, 1〉

Gind Gender of an individual Boolean ∈ {0, 1}

Idbank.(ind)
dt

Bank matched to the individual in which deposits
(savings) are hold at time t Int. ≥0

dind
t

Deposits (savings and current account funds) on bank
account of individual at time t Double ≥0

Idbank.(ind)
lC
t

Bank matched to the individual in which wants to take
a consumer loan at first at time t Int. ≥0

lCind

t The amount of consumer loan taken at time t Double ≥0

(pl)Cind

t

The sum of liabilities to the bank for outstanding
consumer loans that have to be repaid in the given
iteration

Double ≥0

MCind The maturity of consumer loan in quarters Double ≥0

l
Cind

q
t

Consumer loans taken by an individual (quarterly
payments at time t) Double ≥0

RCind

t
Interest to be paid from the total amount of consumer
loans Double ≥0

R
Cind

q
t

Interest to be paid from the total amount of consumer
loans in a quarter Double ≥0

Idbank.(ind)
lH
t

Bank matched to the individual in which wants to take
a housing loan at first at time t Int. ≥0

lHind

t The amount of housing loan taken at time t Double ≥0

(pl)Hind

t
The sum of liabilities to the bank for outstanding housing
loans that have to be repaid in the given iteration Double ≥0

MHind The maturity of housing loan in quarters Double ≥0

l
Hind

q
t

Housing loans taken by an individual (quarterly
payments at time t) Double ≥0
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Table A2. Individuals (−.ind) (continuation).

Variable Explanation Type Restr.

RHind

t Interest to be paid from the total amount of housing loans Double ≥0

R
Hind

q
t

Interest to be paid from the total amount of housing loans in a quarter Double ≥0

Idbank.(ind)
lNH
t

Bank matched to the individual in which wants to take a non-housing
loan at first at time t Int. ≥0

lNHind

t The amount of non-housing loan taken at time t Double ≥0

(pl)NHind

t
The sum of liabilities to the bank for outstanding non-housing loans that
have to be repaid in the given iteration Double ≥0

MNHind The maturity of non-housing loan in quarters Double ≥0

l
NHind

q
t

Non-housing loans taken by an individual (quarterly payments at time t) Double ≥0

RNHind

t Interest to be paid from the total amount of non-housing loans (at time t) Double ≥0

R
NHind

q
t

Interest to be paid from the total amount of non-housing loans in
a quarter (at time t) Double ≥0

Idbank.(ind)
l I
t

Bank matched to the individual in which wants to take an investment
loan at first at time t Int. ≥0

l Iind

t
Investment loans taken by an individual to invest in a firm that he owns
or co-owns (at time t) Double ≥0

(pl)Iind

t
The sum of liabilities to the bank for outstanding investment loans that
have to be repaid in the given iteration Double ≥0

MIind Maturity of investment loan Int. ≥0

l
Iind
q

t
Investment loans taken by an individual (quarterly payments at time t) Double ≥0

RIind

t Interest to be paid from the total amount of investment loans (at time t) Double ≥0

R
Iind
q

t
Interest to be paid from the total amount of investment loans in a quarter
(at time t) Double ≥0

PDind
t Probability of default of individual at time t Double ∈ 〈0, 1〉

yind
t Income of an individual at time t Double ≥0

wind
t Wage of an individual at time t Double ≥0

(sub)ind
t Public assistance for an individual at time t Double ≥0

ψind
t Shares of an individual in large and medium-sized companies at time t Double ≥0

Ξind
t Status on the labour market of individual at time t Int. ∈ {1, 2, 3, 4, 5}

Ψind
t

Number of periods since the last change of status on the labor market in
quarters (at time t) Int. ≥0

Θind
t Variable determining the skills of workers Double ∈ 〈0, 1〉

Λind
t Status civil Int. ∈ {1, 2, 3, 4}

ϑ ind1

t Spatial code 1 (NUTS1) Int. ≥0

ϑ ind2

t Spatial code 2 (NUTS2) Int. ≥0

ϑ ind3

t Spatial code 3 (NUTS3) Int. ≥0

ϑ ind4

t Spatial code 4 (NUTS4) Int. ≥0

ς ind1

t Perception of risk indicator (ON market) Double ∈ 〈0, 1〉
ς ind2

t Perception of risk indicator (SW) Double ∈ 〈0, 1〉
ς ind3

t Perception of risk indicator (1M) Double ∈ 〈0, 1〉
ς ind4

t Perception of risk indicator (3M) Double ∈ 〈0, 1〉
ζ t

ind Perception of uncertainty indicator Double ∈ 〈0, 1〉
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Table A3. Households (−.HH).

Variable Explanation Type Restr.

(Id)HH Household ID Int. ≥0

hHH
t

The cost of living in own property or renting a property by
the household at time t Double ≥0

sHH
t The net savings of households (temporal variable) at time t Double ≥0

(Don)HH
t Donations at time t Double ≥0

(DSTI)HH
t Debt service to income at time t Double ≥0

(DTA)HH
t Debt to assets at time t Double ≥0

(DTI)HH
t Debt to income at time t Double ≥0

(LTV)HH
t Loan to value (for housing loans) at time t Double ≥0

IDprop1.(HH)
t

Property id (the property in which the household lives) at
time t Double ≥0

IDprop2.(HH)
t

Property id (this second property can be rented by other
households or can be for sale) Double ≥0

(Rent)HH
REt

Household income from renting property at time t Double ≥0

(Own)HH
t Status of the owner at time t Boolean ∈ {0, 1}

yHH
t Total household income at time t Double ≥0

Table A4. Firm (−. f irm).

Variable Explanation Type Restr.

(Id) f irm Firm ID Int. ≥0

(Id)s Sector ID in which the establishments of the firm operate Int. ≥0

(PD)
f irm
t The probability of default of a firm based on credit history Double ∈ 〈0, 1〉

(Risk) f irm
t The financial risk of the company Double ∈ 〈0, 1〉

(#Oper) f irm
t Number of periods that a firm operates on the market Int. ≥0

(Debt) f irm
t Debt of the company Double ≥0

(MV)
f irm
t The value of the firm in monetary terms Double ≥0

Π f irm
t Profits generated by the firm Double ≥0

(ForSale) f irm
t Variable determining whether a firm has been marked for sale Boolean ∈ {0, 1}

K f irm
t Fixed capital of a firm Double ≥0

(Id)ind.( f irm) Codes identifying business owner Int. ≥0

(LA)
f irm
t Liquid assets of a firm Double ≥0

(Nest)
f irm
t Number of establishments of a firm in all sectors Int. ≥0

tpro f it Taxes on profits Double ≥0

L f irm
t Number of employees of a firm Int. ≥0
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Table A5. Establishments (−.est, −.est.buy).

Variable Explanation Type Restr.

(Id)est Establishment ID Int. ≥0

(IdlSH )
b ID of bank that granted short-term loan to establishment Int. ≥0

(TC)est
t Costs of the establishment at time t Double ≥0

(TC)est
t−1 Cost of the establishment at time t − 1 Double ≥0

(PD)est
t Probability of default of establishment at time t Double ∈ 〈0, 1〉

Qdest
t Demand for a good or service provided by the establishment at time t Double ≥0

(New)est
t Variable determining whether the establishment has been recently created Boolean ∈ {0, 1}

E
(

Qdest
t

)
Expected demand for a good or service Double ≥0

(ExpImp)est
t Variable determining whether the establishment exports, imports or both Double ∈ {0, 1, 2, 3}

(Id) f irm(.est) The code identifying the business which premises belongs to Int. ≥0

Kest
t Fixed capital Double ≥0

(Inp)est
t

Quantity of inputs required in the production of final goods expressed in
monetary terms Double ≥0

RSHest

t Interest on short-term firm loans to be paid Double ≥0

R
SHest

q
t

Interest on short-term firm loans to be paid quarterly Double ≥0

Aest
t Know-how (technology) Double ≥0

(LA)est
t Liquid assets of an establishment Double

ς est
t Perception indicator of establishment Double ∈ 〈0, 1〉

ζ t
est Indicator of perception of uncertainty on the market Double ∈ 〈0, 1〉

Pest
t Price of goods produced by the establishment at time t Double ≥0

Pest
t−1 Price of goods produced by the establishment in the previous period (t − 1) Double ≥0

Yest
t Production Double ≥0

qest.buy.(s)
t The quantity of goods purchased from the supplier from sector s Double ≥0

lSHest

t Loans taken by establishment to purchase inputs Double ≥0

MSHest Maturity of short-term loans Int. ≥0

l
SHest

q
t

Loans taken by establishments to purchase inputs (quarterly) Double ≥0

(Ql)est
t Quality of products at time t Double ∈ 〈0, 1〉

(Ql)est
t−1 Quality of products at time t − 1 Double ∈ 〈0, 1〉

(SE)est
t Sales per employee (expressed in monetary terms) Double ≥0

(Sl)est
t Sales expressed in monetary terms Double ≥0

(Id)s.(est) Sector ID Int. ≥0

ϑ est1

t Spatial code – level 1 (NUTS1) Int. ≥0

ϑ est2

t Spatial code – level 2 (NUTS2) Int. ≥0

ϑ est3

t Spatial code – level 3 (NUTS3) Int. ≥0

ϑ est4

t Spatial code – level 4 (NUTS4) Int. ≥0

Invest
t Inventories (stock) Double ≥0

Invest
optt

Optimal stock of goods stored in the current period Double ≥0

tpr Property tax Double ≥0

West
t The cost associated with the payment of wages by the premises Double ≥0

Lest
t Total labor force (number of employees) of the premises Double ≥0

LFIest

t Number of employees (labor force) to be fired in the current period Double ≥0

LHIest

t Number of employees (labor force) to be hired in the current period Double ≥0
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Table A6. Bank (−.bank, −.b).

Variable Explanation Type Restr.

(Id)b Bank ID Int. ≥0

Bb
t Bonds Double ≥0

(CT)b
t Operating costs Double ≥0

(PD)b
t The probability of default of the bank Double ∈ {0, 0.5, 1}

db
t Deposits of the bank Double ≥0

(Rev)b
t Revenues of the bank Double ≥0

(AvC)b
t Average costs of banking operating in the sample Double ≥0

(SdC)b
t Standard deviation of costs of banks operating in the sample Double ≥0

Eb
t Capital Double ≥0

ilC Interest rate on consumer loans Double ≥0

id Interest rate on deposits Double ≥0

il I Interest rate on loans for investment purposes Double ≥0

ilSH Interest rate on loans for the purchase of inputs Double ≥0

ilH Interest rate on mortgages Double ≥0

ilNH Interest rate on non-housing loans (on the pledge of real estate) Double ≥0

(#pd)b
t Number of insolvencies of agents that had loans in this bank Double ≥0

(NPLlSH )
b
t Net inflow of non-performing loans (for short term loans) Double ∈ 〈0, 1〉

(NPLlI )
b
t Net inflow of non-performing loans (for investment loans) Double ∈ 〈0, 1〉

(NPLlC )
b
t Net inflow of non-performing loans (for consumer loans) Double ∈ 〈0, 1〉

(NPLlH )
b
t Net inflow of non-performing loans (for mortgages) Double ∈ 〈0, 1〉

(NPLlNH )
b
t Net inflow of non-performing loans (for non-housing loans) Double ∈ 〈0, 1〉

(RevlC )
b
t Revenues from granting consumer loans Double ≥0

(RevlSH )
b
t Revenues from granting short term loans for firms Double ≥0

(RevlI )
b
t Revenues from granting investment loans Double ≥0

(RevlH )
b
t Revenues from granting mortgages Double ≥0

(RevlNH )
b
t Revenues from granting non-housing loans Double ≥0

Sl.Cind

t Supply for consumer loans Double ≥0

Sl.Iest

t Supply for firm investment loans Double ≥0

Sl.SHest

t Supply for short term loans for firms Double ≥0

Sl.Hind

t Supply for mortgages Double ≥0

SNHind

t Supply for non-housing loans Double ≥0

iBid3M Interest rate WIBID3M Double ≥0

iOR3M Interest rate WIBOR3M Double ≥0
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Table A7. Sector (industry) (−.s) .

Variable Explanation Type Restr.

(Id)s Sector ID Int. ≥0

πs
t Average profitability of firms in the sector s Double ≥0

(Risk)
s
t Average financial risk of the industry (sector) Double ∈ 〈0, 1〉

(Sl)s
t The average sales of goods in firms in a given industry Double ≥0

Ls
t Average work force of establishments in the industry Double ≥0

Ws
t Average wage in industry (sector) Double ≥0

(%Exp)s
t Percentage of establishments that import to other industries Double ≥0

(%Imp)s
t Percentage of establishments that exports from other industries Double ≥0

Ps
t Average price of good or service in a given industry at time t Double ≥0

Ps
t−1 Average price of goods or services in a given industry at time t − 1 Double ≥0

Πs
t Total profit from the business of establishments in a given industry Double ≥0

(Ql)s
t

The average quality of a good or service in a sector in the current
period Double ≥0

(Ql)s
t−1

The average quality of a good or service in a sector in the previous
period Double ≥0

(AL)s
t Average size of a firm in a given industry (sector) Double ≥0

(SD)s
t Standard deviation of the size of firms in the sector Double ≥0

N f irms
t Number of firms operating in the industry Int. ≥0

tVAT Value added tax Double ≥0

Table A8. Properties (−.prop).

Variable Explanation Type Restr.

(Id)prop Property ID Int. ≥0

(Id)HH.(prop) Household ID Int. ≥0

(#Rent)prop
t Number of households that rent the property at time t Int. ≥0

(PH)
prop
t Principal housing Boolean ∈ {0, 1}

Pprop
t Property price Double ≥0

(ForSale)prop
t Property for sale Boolean ∈ {0, 1}

ϑ
prop1

t
Spatial code level 1 (NUTS1) Int. ≥0

ϑ
prop2

t
Spatial code level 2 (NUTS2) Int. ≥0

ϑ
prop3

t
Spatial code level 3 (NUTS3) Int. ≥0

ϑ
prop4

t
Spatial code level 4 (NUTS4) Int. ≥0
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Table A9. Consumers (−.cons).

Variable Explanation Type Restr.

(Id)HH.(cons) Household ID Int. ≥0

(ConsT)(cons)
t Consumer type Int. ∈ {1, 2, 3, 4, 5, 6}

(Id)(cons) Consumer ID Int. ≥0

(Id)s.(cons) Sector ID Int. ≥0

(Id)sup.(cons) Supplier ID Int. ≥0

QHH.(cons)
t

The quantity of goods that a household will buy from
suppliers in all sectors at time t Double ≥0

Table A10. Suppliers (−.sup).

Variable Explanation Type Restr.

(Id)est.(sup) Establishment ID Int. ≥0

Qbuy.est
t Quantity of inputs to be purchased by establishment at time t Double ≥0

(Id)s.(sup) Sector ID Int. ≥0

(Id)sup Supplier ID Int. ≥0

Appendix B. Sequential Updating of States in the Model

Figure A1. Sequential updating of states in the model (modules 1–12).
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Figure A2. Sequential updating of states in the model (modules 13–23).

Figure A3. Sequential updating of states in the model (modules 24–36).
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Figure A4. Sequential updating of states in the model (modules 37–47).

Figure A5. Sequential updating of states in the model (48–58).
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Appendix C. Calibration

At the start of the simulation, the attributes of individuals, households, and consumers, as well
as some attributes of properties were calibrated on the basis of data from the Household Wealth and
Debt Survey from 2014 [112]. This first study on household wealth and indebtedness in Poland was
conducted between January, 20 and February 28, 2014, on a sample of 7000 households residing in
the country. The study was conducted through direct interviews. The test sample was generated by
a two-stage random sampling scheme, where the first stage of sampling was stratified; the census units
were randomly selected from the layers, and the second stage of household sampling was randomised.
The stratification was based on the following criteria: province, size of the spatial unit (6 categories)
and wealth (on a scale of 1–4). In the applied scheme, procedures of over-sampling of the most affluent
households and imputation of missing observations were applied [122]. The completion ratio of
the surveys was approximately 49.4%.

Appendix C.1. Individuals, Households & Consumers at t = 0

Based on the information from the Household Wealth and Debt Survey sample, the distributions
of agent’s attributes were approximated. In the model 971 520 individuals were distinguished at
t = 0. There are 509 056 (0.52%) women and 462 464 (0.48%) men in the database. The distributions
of sex and age were compared with the data from ‘Population. Size and structure of population
and vital statistics in Poland by territorial division as of 31 December 2014’ [123], and ‘Size and
structure of population by age groups in 1989–2016’ [124], provided by the Central Statistical Office
(GUS). To ensure the proper dynamics of the model, data from ‘Marriages contracted and dissolved in
1970–2015’ [125], ‘Births in 1970–2015’ (GUS) [126] and ‘Demographic Yearbook of Poland 2015’ [127]
were also used. In addition, data from life expectancy tables of 2014 provided by GUS were used [128].
Data was supplemented by ‘Education in the school year 2014/2015’ (GUS) [129]. Supplementary
data on labour market and wages was used from ‘Yearbook of Labour Statistics, 2015’ (GUS) [130].
In addition, information from ‘Social assistance. Child and Family services’ (GUS) [131] was used.
In the model, at t = 0, 442,240 households were distinguished. Each household is described by a joint
distribution of attributes. BZDG data was supplemented by the data from ‘Household budget survey
in 2014’ (GUS) [109] in order to obtain distributions. To each household a specific type of consumer
has been assigned, which determines expenditures. There are therefore 442,240 × 8 (industries) × 6
(consumer types) = 21,227,520 data-points (records) in the Table Consumers database.

Appendix C.2. Firms & Establishments at t = 0

The values of variables of firms and establishments were approximated on the basis of GUS
reporting forms of enterprises for 2014 [132]. In order to approximate inputs from different sectors and
demand for final goods as well as direct product input coefficients and direct import input coefficients,
information from input-output tables for 2010, provided by the Central Statistical Office [133], was used.
The distributions of variables have not been reported for confidentiality reasons.

Appendix C.3. Industries & Suppliers at t = 0

The sectors in the model correspond to the branches of economy used in the input-output table
at basic prices for domestic output for 2010, provided by GUS (2014) [133]. The classification used in
the table corresponds to products and intermediate consumption (CPA 2008). Data from input-output
tables was used to approximate the flows between sectors in the model. Each industry is described by
the average values of variables that were approximated using the data from Central Statistical Office
forms. The classification of industries (PKD (NACE) 2007) was matched with the classification of
sectors used in the input-output tables. PKD 2007 is more disaggregated than the classification used in
the published input-output tables. PKD-2007 is fully methodologically, conceptually, in the scope and
coding system (up to fourth digit) coherent and compatible with the classification NACE Revision 2.
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In the input-output tables the Classification of Products by Activity (CPA) was used. Some of PKD
sectors were aggregated into one group in input-output tables for confidentiality reasons. A total
number of 73 sectors were analysed, excluding sectors 04 (Coal and lignite), 08 (Tobacco products),
66 (Public administration and defence services; compulsory social security services) and 77 (Services
of households as employers of domestic personnel & Undifferentiated goods and services produced
by private households for own use). The suppliers for establishments have been matched based on
input-output tables. The model expresses the network structure of relations between companies in
the economy. For confidentiality reasons, the system was simulated with eight sectors, grouping
certain industries.

Appendix C.4. Banks at t = 0

The model included 14 major banks in the market. The interest rates for these representative
banks came from new MIR interest rate statistics [134]. Different interest rates were used for deposits,
consumer credit, housing loans and non-residential loans. The distinction between flows and stocks
was also taken into account. The interest rates for each bank were not reported for confidentiality
reasons. The behavioural aspects of banking decisions while checking the creditworthiness, such as
levels of LTV or DTI, and sectoral exposures and concentration limits, have been approximated using
the PFSA Recommendations S, T and C, as well the Banking Code. In the future, it will be possible to
use the PFSA surveys. The data from the surveys has not yet been accessible for confidentiality reasons.

Appendix C.5. Parameters and Decision Rules

All decision rules are obtained as a result of prior econometric analyses. In addition, expert
knowledge about the functioning of markets and economic agents on the Polish markets were used.
Parameter values were obtained after a thorough analysis of statistical data obtained from the National
Bank of Poland and the Central Statistical Office and partly correspond to the values adopted in
macro-models in the literature (e.g., labour elasticity, capital elasticity, relative quality elasticity and,
know-how elasticity in the production function). The most important added value of the analysis is
the linking of information obtained from the Central Statistical Office database on firms and the publicly
available input-output table at basic prices for domestic output. All parameters assumed in modules
6–8, selected parameters in 14 & 19–20 were obtained directly using the procedure developed by
Santos & Kaszowska (in the MOSIPS FP7 project), based on input-output table data. In order to obtain
the parameters in demographic, education and labour market modules, Central Statistical Office and
Household Wealth and Debt Survey data were used (especially, modules 27–36, 47–50). The parameters
in modules 38–40, 42–46, 50–52 were calibrated based on Central Statistical Office data on enterprises.

The group of ‘parameters’ in the model includes not only the values of estimated or calibrated
parameters of a functional form of decision rules, but also parameters that can be adjusted by the user to
develop scenarios and to carry out a counterfactual simulation on the state of the economy and financial
sector as well as macroprudential policies. For instance, in module 3 it was assumed that the level of
leverage and financial risk that is acceptable by the companies in each of the industries to produce
goods and services. Similarly, the levels of screening ratios of banks (e.g., ROA, ROE, acceptable
financial risk of the applicant or the industry etc.) and macroprudential ratios can be assumed.
Alternatively, the experts of the National Bank of Poland can use confidential data from the surveys
about the banks’ policies and stance, and/or the calibration based on the ESRB recommendations.
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Appendix D. Figures & Tables

Figure A6. Risk spreading between industries over 1 year horizon (two visualisations on the left and
on the right).

Figure A7. Risk spreading between industries (on the left) & Number of firms in the sectors over
1 year horizon (on the right).

Figure A8. Profits of banks (on the left) & (b) Equity of banks over 1 year horizon (on the right).
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Figure A9. Total NPL ratio of banks (on the left) & NPL ratio of consumers loans of banks over
1 year horizon (on the right).

Figure A10. NPL ratio of housing loans of banks (on the left) & (b) NPL ratio of firm loans of banks
over 1 year horizon (on the right).

Figure A11. CAR of banks (on the left) & (b) LCR of banks over 1 year horizon (on the right).
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Figure A12. Households’ income over 1 year horizon. (*) t = 0 BZGD. From t = 1 to t = 4
simulation results.

Figure A13. DSTI over 1 year horizon *. (*) t = 0 BZGD. From t = 1 to t = 4 simulation results.

Figure A14. DTI over 1 year horizon *. (*) t = 0 BZGD. From t = 1 to t = 4 simulation results.
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Figure A15. DTA over 1 year horizon *. (*) t = 0 BZGD. From t = 1 to t = 4 simulation results.

Figure A16. LTV over 1 year horizon *. (*) t = 0 BZGD. From t = 1 to t = 4 simulation results.

Table A11. Leverage of companies.

Value t = 0 t = 3

Less than 0.1 0.1099 0.0081
0.1–0.2 0.0994 0.7886
0.2–0.4 0.3740 0.0946
0.4–0.6 0.2149 0.0469
0.6–0.8 0.0713 0.0174

More than 0.8 0.1305 0.0444

1 1
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Abstract: Singulation of components determining the innovative activity of enterprises is a complex
issue as it depends on both microeconomic and macroeconomic factors. The purpose of this article
is to present the results of research on the impact of the mutual interactions between ownership
and the size of companies on the achievement of the objectives of innovative activity by Polish
industrial processing enterprises in changing cyclical conditions. The importance of innovation
barriers was also assessed. Empirical data came from three periods that covered different phases of
the business cycle: prosperity 2004–2006, global financial crisis 2008–2010, and recovery 2012–2014.
The research used a cybernetic approach based on feedback loops presenting interactions between
variables. In addition, two statistical methods were used: the Pearson’s χ2 independence test and
correspondence analysis. The following discoveries were made during the research: (1) consideration
of the combined impact of ownership and the size of companies on their innovation activities makes
it possible to study phenomena that may be overlooked if the impact of these factors is considered
separately; (2) public enterprises achieve significantly worse results in terms of innovation than
companies from other ownership sectors; (3) the Red Queen effect, which assumes that the best
innovative enterprises exert selection pressure on all other companies, applies to industrial processing
companies, and in particular public enterprises; (4) the industrial processing section is more sensitive
to secular trends than to cyclical fluctuations; (5) confirmation of occurrence of the Polish Green
Island effect, which assumes that companies achieve good results in terms of innovation, irrespective
of the phases of the business cycle; and (6) statistical evidence is provided that the global financial
crisis may be associated with the turn of the Fifth and Sixth Kondratieffwaves. Most likely, the role of
the communication channel between the world economy and the Polish manufacturing section is
fulfilled by foreign ownership, whose percentage of share capital of this section is estimated at 50%.

Keywords: macroeconomics; innovative activity; manufacturing industry; conjunctural movements;
cybernetics; feedback loops; correspondence analysis; Polish Green Island effect; Red Queen effect;
Kondratieffwaves

1. Introduction

The explanation of the relationship between innovation and conjunctural phenomena is one of
the most important problems of modern economics. By their very nature, the processes that should
be taken into account during such studies are long-term. Therefore, they should be considered
not only within the time frame appropriate for traditionally understood business cycles, but also
from the perspective of secular changes. At the heart of conjuncture theory (as well as of business
cycle theory) is the division of the stunning complexity of economic interactions into a number
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of heterogeneous forms of movement according to the criterion of their duration. According to
the guidelines of the Harvard Business School, we can distinguish the following forms of movements:
(1) the fundamental course of movement (or secular trend), (2) seasonal fluctuations, (3) cyclical
fluctuations (conjuncture in the narrower sense), and (4) miscellaneous random fluctuations. With this
approach to the problem, business cycle theory tackles the cyclical movements in a narrower sense, and
thus variations of economic phenomena that are recurring in free rhythm [1]. Conjunctural movements
refer to the entire wavelike evolution of economic life, so by definition, they include secular changes,
which is well documented in the literature [2–6]. This is the justification for the use of the mentioned
term in the title of the article, as we believe that it is advisable to extend the time frame of studies on
innovation beyond those that are appropriate for traditionally understood business cycles.

It is difficult to imagine an increase in the innovative activity of enterprises without prior changes
in production techniques, which usually occur over long periods. This implies the need to study
interdependencies between innovation and traditional business cycles and secular cycles. Technological
revolutions belong to the secular factors of economic growth and development and are the cause of
supercycles or Kondratieff waves (K-waves), which last from 48 to 60 years. Changes occurring over
several decades, as opposed to business cycles, are usually caused by extra-economic circumstances
and events. According to Kondratieff, secular factors can be divided into the following four groups [7]:
(1) changes in technology, (2) wars and revolutions, (3) the assimilation of new countries into the world
economy, and (4) fluctuations in gold production. In the case of the Polish industrial processing section,
at least two factors should be taken into account, the first and third, and maybe even all of them.

The modification of the Kondratieff long-waves theory was made by Šmihula, according to whom
the global financial crisis is a phenomenon typical of the breakthrough associated with the end of
one and the beginning of the next K-wave [8]. In this case, it would be a transition from the Fifth to
Sixth K-Wave, which would mean the end of the information and telecommunications revolution and
the initiation of the biomedical-hydrogen revolution. According to Šmihula, this breakthrough dates
to 2015. The technological innovations underlying the secular cycles are usually the result of earlier
technological revolutions. In addition, all long-waves have common features that are the cause of certain
patterns of economic development. Each of them consists of two phases: the innovation phase in which
the inventions find practical applications, and the application phase in which the existing innovative
solutions are improved and integrated into everyday economic life. The end of a given wave of
innovations is determined by the decreasing rate of profit from a new innovation to the level appropriate
for traditional branches of industry. Thereby, a given technology achieves its proper development limit.
In order to cross the limit, a new innovative technology is required. Thus, the end of the application
phase of each K-wave signifies a period of stagnation caused by the economic crisis, which can be
overcome by increased demand for new inventions and revolutionary technological innovations.
In addition, Šmihula made an interesting observation regarding the shortening of the length of
successive K-waves [8]. This implies the constant acceleration of technological development, which—if
this trend continues—may lead in the years 2080–2090 to blurring of the differences between K-waves
and classical business cycles.

Schumpeter’s theory of innovation, which has been elaborated in the first half of the 20th century
is the milestone of the study of interdependencies between innovation and economic growth and
development. Schumpeter perceived innovation as the driving force of the economy, which on one
hand ensures its development, but on the other hand, is the source of the business cycle because it brings
the economy out of balance. In his opinion, innovations are at the center of almost all socio-economic
phenomena, and the length of the two basic phases of the business cycle, prosperity and recession,
depend on the essential features of the innovation that underlie the cycle [9]. The main figure in his
theory is the entrepreneur, whose basic task is to search for new combinations of productive means,
therefore, such that were not created as a result of improving existing combinations. These include
the following five cases [10]: (1) placement of new products on the market, (2) implementation of new
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production methods, (3) opening of new markets, (4) acquisition of a new source of raw materials or
semi-manufactured goods, and (5) introduction of a new organization of any industry.

Schumpeter’s interests also included issues related to the impact of ownership and size of
enterprises on their innovation activity. The essence of ownership is the ability to freely dispose of
means of production, which can be used directly to create a new combination of forces and materials
or can be exchanged for the necessary goods and services. In his opinion, during the capitalist
process, dematerialization of property occurs, as a result of which property ceases to perform its basic
functions in business. Elimination of the material substance of property, which is done by exchanging
factory walls and machinery for a mere parcel of shares, deprives ownership of its most important
feature, which is moral allegiance. In this way, the holders of the title cannot freely dispose of their
property. With respect to the size of the company, it is very important for innovation. In a competitive
economy, new enterprises are the carriers of innovation, and these companies are not necessarily
large. The situation is changed by the emergence of huge concerns that reduce the competitiveness of
the economy and gain an advantage in the field of innovation over smaller companies due to their
size [10,11]. The theory of innovation presented here shows that ownership and size are the basic
factors determining the innovativeness of enterprises, therefore their impact must be considered
together. Thus, innovations and related economic phenomena should be viewed from the point of
view of cybernetics, where the importance of feedback loops is emphasized.

The aim of the article is to complete the gap in research on innovation, which consists of the failure
to define the interrelationships between the innovative activity of enterprises at the microeconomic level
and long waves occurring at the macroeconomic level. Most studies have focused on the separate impact
of variables such as the type of enterprise and ownership sector on innovation activity and barriers to
innovation, however, it is very important to capture the combined impact of these variables. The article
proves that consideration of the combined impact of the type and ownership sector of enterprises
on their innovative activity allows for the discovery of previously unknown economic phenomena.
It should be emphasized that the adopted research methodology is characteristic of the complexity
economics and therefore the macroeconomic and microeconomic levels are not distinguished [12]
(pp. 97, 161–185). This allowed for the following discoveries: (1) consideration of the combined
impact of ownership and the size of companies on their innovation activities makes it possible to study
phenomena that may be overlooked if the impact of these factors is examined separately; (2) public
enterprises achieve significantly worse results in terms of innovation than companies from other
ownership sectors; (3) the Red Queen effect, which assumes that the best innovative enterprises exert
selection pressure on all other companies, applies to industrial processing companies, and in particular
public enterprises; (4) the manufacturing sector is more sensitive to secular trends than to cyclical
fluctuations; (5) confirmation of occurrence of the Polish Green Island effect, which assumes that
companies achieve good results in terms of innovation, irrespective of the phases of the business cycle;
and (6) statistical evidence is provided that the global financial crisis may be associated with the turn
of the Fifth and Sixth Kondratieffwaves.

As noted by W. Brian Arthur [13] (pp. 16–17), the source of the complexity of economic systems is
the presence of both negative and positive feedbacks, the effects of which overlap. The feedbacks from
the manufacturing sector are presented below in cybernetic diagrams (2)–(8), which are used to study
the mutual interactions between: ownership sector and enterprise type, ownership sector + enterprise
type and innovative activity, ownership sector + enterprise type and barriers to innovation, barriers
to innovation and innovative activity, and innovative activities in different periods. In many cases,
the strength of the feedbacks is examined on a four-point scale: high, medium, low, and irrelevant.
It is observed that—depending on specific conditions—all these feedbacks can be both positive and
negative, and their effects overlap, which creates a complex pattern of industrial processing in Poland.
The innovative activity of enterprises also depends on many other factors such as the national and
international environment [14–16], management system [17], business support organizations [18,19],
intellectual assets [20], sectoral patterns of cooperation and technology level [21], for which the ceteris
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paribus assumption was made. It can also affect other economic variables such as total factor
productivity [22], the level of firm productivity [23], and anti-crisis reputational sustainability [24].
These dependencies create additional feedback loops that spread throughout the economy and increase
its complexity.

In the manufacturing sector in Poland, there are also at least four other sources of complex
dynamics, apart from the positive and negative feedbacks discussed above. First, the innovative
activity of enterprises is more dependent on secular factors than on the phases of the business cycle.
Another big surprise was the steady decline in the significance of innovation barriers in successive
periods prosperity (2004–2006), global financial crisis (2008–2010), and recovery (2012–2014). This brings
to mind the fractal market hypothesis, which applies to capital markets, and highlights the importance
of time scales in which investors operate [25]. Second, the industrial processing sector can be considered
as a complex adaptive system in the meaning of Gell-Mann [26], because the operation of its companies
is based on the creation and improvement of schemas or models describing the regularities observed
in the environment. These schemas are then used by companies to operate in the real world. Third,
the sector under study can be viewed from the point of view of thermoeconomics and trends analyzed
as a result of changes in thermodynamic entropy and money entropy [27]. Fourth, entropy and
information are closely related, leading to the conclusion that entropy can be used in economics to
measure ignorance or uncertainty. Information and ignorance are opposites, but the measurement of
one quantity can determine the other [28]. Ignorance related to thermodynamic entropy applies to
both innovative strategies of industrial processing enterprises and the government’s pro-innovation
policy, therefore it is both microeconomic and macroeconomic in nature. Ignorance related to money
entropy concerns the disorder of monetary policy, so it is only macroeconomic in nature.

2. Materials and Methods

2.1. General Characteristics of the Cybernetic Research Approach

Contemporary studies on innovation are dominated by the concept that ownership and the type
of enterprise are treated as one of the most important variables determining the innovative activity
of enterprises [29–32]. However, the impact of these factors is relatively often considered separately.
This reasoning can be represented using mathematical formalism in the form of the following logical
dependence:

 (1)

Negation symbol preceding two opposite arrows in brackets ¬ (↑↓) signifies bypassing
the interactions between the ownership and size of the company, so each of these variables affects
the innovation of companies separately. Furthermore, relationships between independent variables and
the dependent variable are unidirectional. Feedbacks between innovation activities and the cumulative
interaction of ownership and company size are therefore not included. Elimination of interactions
between the ownership sector and the type of enterprise may critically affect the obtained results. Some
publications recognize this problem [33,34].

This study used a cybernetic approach to the problem, which emphasizes the importance of
feedback loops. After considering them, the logical relationship (1) is transformed into the following
form:

 (2)
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Such formulation of the problem allows for the examination of the impact of mutual interactions
between ownership and type of enterprises on the innovation activity of enterprises. It also recognizes
another, no less important feedback loop between variables containing a response record in the form of
the impact of innovation activity on ownership and size of the enterprise. Therefore, the cybernetic
scheme (2) is consistent with Schumpeter’s theory of innovation.

The cybernetic approach was aimed at simultaneous examination of the following phenomena: (1)
determination of the mutual influence of ownership sectors and types of enterprises on the innovative
activity of companies, (2) determination of the mutual impact of ownership sectors and types of
enterprises on innovation barriers, and (3) registration of the impact of barriers to innovation on
the innovative activity of enterprises. In addition, other feedback loops were included depending on
the information contained in individual databases. Innovations implemented in a given period may
contribute to the growth of innovations in subsequent years by affecting independent variables [35–37].

The research used three databases on Polish industrial processing enterprises, each of which
covered one of the following periods: prosperity from 2004–2006, global financial crisis from 2008–2010,
and recovery from 2012–2014. The first database contained 10,149 enterprises, the second included
20,655, and the third 10,244 (Table 1) [36]. The data were collected by the Statistical Office in Szczecin
based on the PNT-02 questionnaires, which were subject to some modifications in the above-mentioned
periods, but these changes were not significant enough to polarize observations in a way that could
hinder the comparability of the research results. Nevertheless, there were some differences in the design
of questionnaires in each of the periods, which as a consequence necessitated the development and
adaptation of the relationship (2) to each of the three-year periods of analysis [35–37].

Three ownership sectors, public, private, and mixed (50% public, 50% private), and three types
of enterprises distinguished on the basis of the size criterion (i.e., small, medium and large were
considered in this study). The typology of enterprises is based on European Union standards, where
certain thresholds are considered in the form of the number of employees and the volume of annual
turnover or the annual balance sheet total (Table 2) [38].

The research adopted the following method for encoding variables. Small, medium, and
large enterprises were indicated by symbols FR_1, FR_2, and FR_3, respectively, while ownership
sectors—public, private, and mixed—were represented by the symbols S1, S2, and S3, respectively.
The analyses concerning the combined impact of ownership sectors and types of enterprises on
the objectives of innovative activity or barriers to innovation, which are presented in logical relationships
(3)–(8), used two-part designations that first identified the ownership sector, and second, the type of
enterprise. In this convention, medium-sized private sector enterprises were represented by the symbol
S2FR_2.

Tables 3–5 contain the percentage data referring to types and ownership sectors of enterprises in
the three periods under examination (i.e., 2004–2006, 2008–2010, and 2012–2014) [37]. Each of these
tables shows both the share of particular types of enterprises in the ownership sectors and the share of
particular ownership sectors in the types of enterprises. Tables 3–5 are to be read as follows. The Type
column provides the percentage share of a given type of enterprise in individual ownership sectors.
Table 3 shows that in the first period, medium-sized enterprises (FR_2) accounted for 4.14% of the public
sector (S1), 83.64% of the private sector (S2), and 12.22% of the mixed sector (S3). The Subtotal (FR) row
contains the percentage shares of each type of enterprise in the total number of enterprises. It indicates
that in the prosperity period (2004–2006), small enterprises accounted for 30.06%, medium enterprises
for 55.66%, and large enterprises for 14.28% of the total number of enterprises. With regard to the Sector
column, it represents the share of a given ownership sector in each type of enterprise, which is read
horizontally, taking into account every second cell of a given row. To clarify this, the Mixed (S3) row
can be examined here. It demonstrates that the mixed sector comprised 44.84% of small enterprises,
41.87% of medium-sized enterprises, and 13.29% of large enterprises. The Subtotal (S) column shows
the percentage of enterprises from the given ownership sector in the total number of enterprises. As
can be inferred from Table 3, in 2004–2006, the public sector (S1) included 4.37%, the private sector (S2)
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was 79.39%, and the mixed sector (S3) was 16.24% of the total number of the investigated enterprises.
Tables 4 and 5 should be read in the same way. The data provided in Tables 3–5 relate to the role and
importance of individual types and ownership sectors of enterprises in the whole section of industrial
processing. They enable precise interpretation of correspondence maps showing the co-occurrence
of points representing the types and ownership sectors of enterprises, points indicating the effects
(objectives) of innovative activity, and points responsible for innovation barriers.

In this study, ownership sectors and types of enterprises are grouping variables. This results from
the adoption of the Schumpeterian point of view, according to which these variables and the interactions
between them exert a crucial influence on the effects and objectives of innovative activities undertaken
by companies. In this way, the data were sorted into categories and groups with clear economic sense.

2.2. Feedback Loops in the Years of Prosperity

In the period of prosperity from 2004–2006, the impact of the mutual interactions of ownership
sectors and types of enterprises on the effects of innovation activities and the degrees of influence of
each of them on the activities of enterprises at the end of 2006 were determined. This problem can be
illustrated by the following logical dependence:

 (3)

Relationship (3) contains an additional feedback loop between the effects of innovation activities
in 2004–2006 and the activities of companies at the end of 2006. Four degrees of impact are possible:
high, medium, low, and irrelevant. In addition, during the prosperity period, it was necessary to
recognize the impact of interactions between ownership sectors and business types on barriers to
innovation, as illustrated by another relationship:

. (4)

Innovation barriers may hinder enterprises from conducting innovative activities and even
influence the decision not to conduct such activities. In this case, there are four degrees of the impact
of innovation barriers on innovation activities: high, medium, low, and irrelevant. Undoubtedly,
the considered feedbacks between innovation activities conducted at different times, as illustrated
by relationship (3), and feedbacks between innovation activities and innovation barriers, as shown
by relationship (4), are mediated by independent variables (i.e., ownership sectors and types of
enterprises).

Nine effects of innovative activity and eleven barriers to innovation were taken into account
during the period under study. Each of these variables can occur in four states, which, in conjunction
with the nine states that ownership sectors and types of enterprises can collectively adopt, indicates
the need to consider the simultaneous relationships between eighty-nine variable states.
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Table 2. Typology of enterprises in the light of European Union standards and the method of coding.

Types of
Enterprise/Code

Number of Employees
(NE, in Persons)

Annual Turnover
(AT, in EUR Million)

Annual Balance
Sheet Total

(ABS, in EUR Million)

Micro NE < 10 AT ≤ 2 ABS ≤ 2
Small (FR_1) 10 ≤ NE < 50 2 < AT ≤ 10 2 < ABS ≤ 10

Medium (FR_2) 50 ≤ NE < 250 10 < AT ≤ 50 10 < ABS ≤ 43
Large (FR_3) NE ≥ 250 AT > 50 ABS > 43

Table 3. Percentage share of enterprise types (FR) in ownership sectors (S) and percentage share of
ownership sectors in enterprise types in the period 2004–2006.

Database 2004–2006 (%)

Type/Ownership
Sector (Codes)

Small (FR_1) Medium (FR_2) Large (FR_3) Subtotal
(S)Type Sector Type Sector Type Sector

Public (S1) 2.95 20.27 4.14 52.70 8.28 27.03 4.37
Private (S2) 72.83 27.58 83.64 58.64 76.61 13.78 79.39
Mixed (S3) 24.22 44.84 12.22 41.87 15.11 13.29 16.24

Subtotal (FR) 30.06 55.66 14.28 Total = 100

Table 4. Percentage share of enterprise types (FR) in ownership sectors (S) and percentage share of
ownership sectors in enterprise types in the period 2008–2010.

Database 2008–2010 (%)

Type/Ownership
Sector (Codes)

Small (FR_1) Medium (FR_2) Large (FR_3) Subtotal
(S)Type Sector Type Sector Type Sector

Public (S1) 0.38 21.31 2.17 48.77 5.33 29.92 1.18
Private (S2) 73.82 65.61 78.89 27.87 73.81 6.52 75.17
Mixed (S3) 25.80 72.88 18.94 21.27 20.86 5.85 23.65

Subtotal (FR) 66.81 26.55 6.64 Total = 100

Table 5. Percentage share of enterprise types (FR) in ownership sectors (S) and percentage share of
ownership sectors in enterprise types in the period 2012–2014.

Database 2012–2014 (%)

Type/Ownership
Sector (Codes)

Small (FR_1) Medium (FR_2) Large (FR_3) Subtotal
(S)Type Sector Type Sector Type Sector

Public (S1) 0.56 17.70 1.04 47.79 2.68 34.51 1.10
Private (S2) 57.09 44.27 32.26 36.18 62.40 19.55 45.25
Mixed (S3) 42.35 27.69 66.70 63.08 34.92 9.23 53.65

Subtotal (FR) 35.09 50.74 14.17 Total = 100

2.3. Feedback Loops in the Years of the Global Financial Crisis

During the global financial crisis, there were slight changes in the statistical form PNT-02, which
consisted of replacing effects with the goals of innovative activity and degrees of influence with degrees
of importance. This time, the impact of the achieved goals on innovative activity in the field of product
and process innovations in the years 2008–2010 was taken into account. The scale of impact included
four degrees of importance: high, medium, low, and irrelevant. The overall cumulative impact of
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ownership sectors and types of enterprises on the goals of innovative activities and the degrees of their
impact on the activities in the field of product and process innovation is presented in the cause and
effect loops in the form of:

 (5)

During this period, the impact of mutual interactions of ownership and enterprise type on
innovation barriers and the four-level significance of these barriers for the innovative activity of
companies were examined. Barriers to innovation may have impeded the conducting of innovation
activities or influenced the decision not to conduct such activities. It is important to consider the impact
of innovative activity on innovation barriers through the cumulative impact of ownership and types of
enterprises. Therefore, the following logical relationship is addressed below:

 (6)

During the crisis years, the goals of innovative activities are described by ten variables and
the barriers to innovation by eleven variables. All these variables can be in four states, which, together
with nine states of ownership sectors and types of enterprises, indicates the necessity to examine
interdependencies between ninety-three states of variables.

2.4. Feedback Loops during the Recovery Period 2012–2014

During the recovery period 2012–2014, the goals of the innovative activity of enterprises included
four types of traditional innovations (product, process, organizational, and marketing innovations)
and eco-innovations. During this period, the determination of the degrees of influence (importance) of
these objectives on the further innovation activities of companies was abandoned. The feedback loops
used in the research have the following form:

 (7)

In the years of prosperity, as in the previous two periods, the joint impact of ownership sectors and
types of enterprises on innovation barriers was also examined. The barriers to innovations included
eleven variables, and their importance to the innovation activities of companies were on a four level
scale. The barriers may have contributed to the lack of innovations to a high, medium, and low degree
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or be irrelevant. The study of the importance of innovation barriers for the innovative activities of
enterprises was based on the following feedback loops:

 (8)

During this period, twenty-two goals of innovative activities were one-state variables, while
eleven barriers to innovation were described by four-state variables. Considering nine ownership
states and types of enterprises, it is needed to determine the interdependencies between seventy-five
variable states.

2.5. Statistical Methods

Two statistical methods were used in the study: Pearson’sχ2 independence test and correspondence
analysis. These methods were selected in such a way that the results obtained complement each
other. The starting point for the calculations according to both methods is the summary of the data
in the contingency tables. The first method tests the existence of significant relationships between
variables, while the second provides information about the structure of the relationships between rows
and columns of a contingency table.

The independence test is used to determine the relationship between two categorical variables [39].
The test relies on the comparison of the values resulting from (empirical) research with the expected
values, which assume no relationship between variables. The options considered must be mutually
exclusive and have a total probability of 1. The χ2 statistic is used to evaluate the test value. The choice
between the null hypothesis on the independence of variables and its opposite (i.e., the alternative
hypothesis) is made on the basis of a comparison of the p-value with the significance level.

Correspondence analysis is a multidimensional statistical method for studying co-occurrence
of phenomena [40,41]. It has an exploratory character, which differs from traditional methods of
testing statistical hypotheses. Classic methods rely on a priori verification of hypotheses regarding
relationships between variables, while correspondence analysis enables the discovery of systematic
relations between variables without formulating expectations a priori about the nature of these
relationships. Therefore, correspondence analysis is not a confirmation technique, but a method
of discovering relationships and structures in empirical data. It is especially useful in economics
because it allows the study of multidimensional phenomena such as irrationality [42]. The essence of
correspondence analysis is to reduce the dimension of the studied problem, which consists of recreating
the distance between points representing rows and columns of the contingency table in a space with
fewer dimensions. Calculations are performed in such a way that the loss of information about
the diversity of rows and columns of the contingency table is as small as possible. Contingency tables
contain appropriate measures to describe the relationships between rows and columns. The final results
of the correspondence analysis are two or three-dimensional charts called biplots, which graphically
present the relations of co-occurrence between the studied variables. In this study, row and column
profile standardization was chosen to simultaneously analyze points representing row profiles and
column profiles. The evaluation of points representing the individual variables, the χ2 metric is used,
which is the weighted Euclidean distance. In the correspondence analysis, there is a total inertia that
signifies the ratio of the χ2 statistic to the grand total of quantity. This is a measure of the dispersion of
row profiles and column profiles around average profiles. Inertia that is close to zero signifies a small
dispersion of profiles around the average profile. For example, this situation occurs when all students
have received the same exam grade.
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On some correspondence maps (Figure 3, Figure 4 and Figure 5) [37], the analysis is conducted
both from the perspective of enterprise types and ownership sectors, which indicates the need to
introduce a method to increase the clarity of these two variables and their states. The easiest way
was to combine the points representing the different types and sectors of business ownership so that
they formed triangles. Ownership sectors are indicated by hatched triangles, while full-color triangles
represent types of enterprises. The vertices of the triangles have two-part names, with the first segment
representing the ownership sector and the second segment representing the type of enterprise. In this
way, the mixed sector (S3) forms a hatched triangle with vertices S3FR_1, S3FR_2, and S3FR_3, since it
includes all three types of enterprises (i.e., small FR_1, medium FR_2, and large FR_3). Since the same
principle applies to the other two ownership sectors, in total, there are nine names for the vertices of
these triangles. Following this convention, types of enterprises are identified by the second part of
their name. Thus, medium-sized enterprises (FR_2) are represented by a triangle with vertices S1FR_2,
S2FR_2, and S3FR_2, as this type includes enterprises belonging to public (S1), private (S2), and mixed
(S3) sectors. The same principle applies to the other two types of enterprise. The small enterprise type
FR_1 is represented by a yellow triangle, the medium-sized enterprise type FR_2 by a pink triangle,
and the large enterprise type FR_3 is represented by a light blue triangle.

3. Results

Studies on the innovativeness of Polish industrial processing enterprises in three periods, prosperity
(2004–2006), global financial crisis (2008–2010), and recovery (2012–2014) led to many interesting
discoveries [35–37]. The most important of them include:

(1) demonstration of the significant impact of interactions between the ownership sectors and types
of enterprises on research results;

(2) detection of a low level of innovativeness of public enterprises compared to other enterprises
from different ownership sectors (i.e., private and mixed);

(3) exemplification of Schumpeter’s creative destruction theory by showing that innovative
enterprises are developing in accordance with the Red Queen dynamics;

(4) demonstration of the insensitivity of the effects and goals of innovative activity of companies to
cyclical factors (business cycle phases);

(5) confirmation of the occurrence of the Polish Green Island effect as a fact and not government
propaganda; and

(6) validation of the hypothesis that the global financial crisis is associated with the turn of the Fifth
and Sixth Kondratieffwaves.

3.1. Significant Impact of Interactions between Ownership Sectors and Types of Enterprises on Research Results

The importance of the interrelationships between ownership sectors and types of enterprises
for the innovation activity of enterprises, and thus what cybernetic diagrams (3)–(8) show can be
demonstrated empirically. During the 2012–2014 survey, it became apparent that the χ2 independence
test demonstrates a statistically significant relationship only between the types of enterprises and
the twenty-two objectives of innovation, which include both the four basic types of innovation
(product, process, organizational, and marketing) as well as eco-innovations (Tables 6–8 and
Figures 1 and 2) [35,37]. When three ownership sectors are included (public, private, and mixed)
in the analysis, this relationship disappears (Table 9 and Figure 3) [37]. In other words, during
the recovery period, the goals of innovation activities are independent of the interaction between
ownership sectors and types of enterprises. Compared to other periods, the correspondence maps
(Figures 1–3) showed a significant decrease in average distances between points representing ownership
sectors and types of enterprises, and points corresponding to the objectives of innovative activity
(Table 10 and Figure 4, Table 11 and Figure 5) [35,37]. The total inertia of the entire industrial processing
section has become close to zero (Table 12) [37]. This leads to the conclusion that, in principle, 98.9%
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of companies achieve their goals of innovative activities, which is all but public sector enterprises
(Table 5) [37]. In addition, the result is identical when the goals are limited to four basic types of
innovations, and eco-innovations will be considered as supplementary points (Table 13) [37]. The χ2

independence test confirms the cumulative impact of ownership sectors and enterprise types on
eco-innovation alone (Table 14) [37].

 

Figure 1. Correspondence map showing the co-occurrence of the types of innovation and the sizes of
enterprises in the period 2012–2014 (dimensions 1–2; 100% of total inertia).

To draw binding conclusions regarding the calculations made for the years 2012–2014, it is
required to compare them with the results obtained for the previous two periods. In the years of
prosperity in 2004–2006 and during the global financial crisis in 2008–2010, there was a statistically
significant relationship between the combined impact of ownership sectors and types of enterprises,
and the effects or objectives of innovative activities (Tables 15 and 16) [36]. In addition, during
the crisis, compared to the previous period of prosperity, the innovative activities of most enterprises
increased (Figures 4 and 5) [37], which seems to be a peculiarity, but this can be explained by referring
to the impact of secular factors. However, in the third period 2012–2014, this trend continued
(Figure 3) [37]. Each company tried to be innovative. Only eco-innovations alone proved to be
dependent on the combined impact of ownership and types of enterprises (Table 14) [37], but it should
be noted that this was a relatively new type of activity for companies at the time. Generally, it should
be noted that the last period was special and ground breaking. Almost all enterprises approached
a certain development threshold, some more and some a little less [35–37]. The significance of these
changes will be explained later.
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Table 6. Variables describing the types of innovation, the goals of innovative activity in the years
2012–2014, and coding method.

Types of Innovation Goals of Innovative Activity Codes

Product innovations
New or significantly improved manufactured goods PRC1

New or significantly improved services PRC2

Process innovations

New or significantly improved methods of
producing goods and services PRS1

New logistic processes PRS2
New management processes PRS3

Organizational innovations

New methods under the principles of
operation adopted ORG1

New methods of distribution of tasks and
decision-making powers among employees ORG2

New organizational methods in terms of relations
with the environment ORG3

Marketing innovations

Significant changes in the design/construction
and/or packaging of goods and/or services MAR1

New media or product promotion methods MAR2
New methods in terms of product distribution or

sales channels MAR3

New methods of pricing goods and services MAR4

E
co
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Environmental benefits
obtained during

the production of
products or services

Reduction of material consumption or water
consumption per unit of product ECO1

Reduction of energy intensity or carbon
dioxide emissions ECO2

Reduction of soil, water, air or noise pollutions ECO3
Use of materials that are less polluting or less

dangerous to the environment ECO4

Reduction of the fossil fuels, higher use of energy
obtained from renewable sources ECO5

Re-use (recycling) of waste, water or materials for
personal use or sale ECO6

Environmental benefits
obtained during

the period of use of
the purchased product
or use of the service by

end users

Reducing energy consumption or carbon
dioxide emissions ECO7

Reduction of air, water, soil or noise pollutions ECO8
Facilitating the re-use (recycling) of the product

after use ECO9

Extending the life of products thanks to increased
durability and strength ECO10

Table 7. Results of the verification of the null hypothesis regarding the independence of innovation
types from enterprise size (2012–2014).

Pearson’s χ2 Test of Independence

Null hypothesis (H0)
Types of innovation implemented do not depend on

the enterprise size

Alternative hypothesis (H1)
Types of innovation implemented depend on

the enterprise size

χ2 statistics value 117.36
Critical region right-tailed

Level of Significance (α) α = 0.05
p-value (p) p = 0.0000
Decision Since p < α, H0 needs to be rejected in favour of H1
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Table 8. Results of the verification of the null hypothesis regarding the independence of eco-innovation
form choice from enterprise types (2012–2014).

Pearson’s χ2 Test of Independence

Null hypothesis (H0)
Forms of eco-innovation do not depend on the type of

enterprise

Alternative hypothesis (H1)
Forms of eco-innovation depend on the type of

enterprise

χ2 statistics value 55.228
Critical region right-tailed

Level of Significance (α) α = 0.05
p-value (p) p = 0.0001
Decision Since p < α, H0 needs to be rejected in favour of H1

Table 9. List of assumptions and calculations necessary to verify the hypothesis regarding
the relationship between the type and ownership sector of an enterprise and the goals of its innovative
activity (2012–2014).

Pearson’s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of enterprises have

no effect on the goals of innovative activity

Alternative hypothesis (H1)
The type and ownership sector of enterprises have

an effect on the goals of innovative activity
χ2 statistics value 120.85

Critical region right-tailed
Level of significance (α) α = 0.05

p-value (p) p = 0.99759
Decision Since p > α, there are no grounds for rejecting H0

Table 10. Variables describing the effects of innovative activity of enterprises in 2004–2006, the degrees
of influence of innovations introduced by enterprises in 2004–2006 on the activity of enterprises at
the end of 2006, and the method of coding.

Effect Type
Effects of Innovative Activity
Scale: 1—High; 2—Medium;

3—Low; 4—Irrelevant
Codes Degree of Influence

Product effects

Increase of the product assortment E1 1, 2, 3, 4
Entering into new markets or

increasing the existing market share E2 1, 2, 3, 4

Product quality increase E3 1, 2, 3, 4

Process effects

Improvement in production flexibility E4 1, 2, 3, 4
Increase of production capacity E5 1, 2, 3, 4

Reduction of labor costs per unit
of product E6 1, 2, 3, 4

Reduction of consumption of
materials and energy per unit

of product
E7 1, 2, 3, 4

Other effects

Reduction of harmfulness to
the environment and improvement of

work safety
E8 1, 2, 3, 4

Compliance with regulations, norms
or standards E9 1, 2, 3, 4
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Figure 2. Correspondence map showing the co-occurrence of eco-innovation forms and types of
enterprises in the period 2012–2014 (dimensions 1–2; 100% of total inertia).

Table 11. Variables describing the goals of innovative activity in the years 2008–2010, their degrees
of importance for innovative activity of enterprises with regard to product or process innovation in
2008–2010, and the method of coding.

Goals of Innovative Activity
Scale: 1—High; 2—Medium; 3—Low; 4—Irrelevant

Codes Degree of Importance

Increase of the product or service assortment G1 1, 2, 3, 4
Replacement of obsolete products or processes G2 1, 2, 3, 4

Entering into new markets or increasing the existing
market share G3 1, 2, 3, 4

Improvement of the quality of products or services G4 1, 2, 3, 4
Improvement in production flexibility G5 1, 2, 3, 4

Increase of production capacity G6 1, 2, 3, 4
Reduction of labor costs per unit of product G7 1, 2, 3, 4

Reduction of consumption of materials and energy
per unit of product G8 1, 2, 3, 4

Reduction of harmfulness to the environment G9 1, 2, 3, 4
Improvement of work safety G10 1, 2, 3, 4
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Figure 3. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the types of innovation, and the environmental benefits in the period 2012–2014
(dimensions 1–2; 61.08% of total inertia).

Table 12. Total inertia of the Polish industrial processing section.

Total Inertia

2004–2006 2008–2010 2012–2014

0.0126 0.01801 0.00593

Table 13. List of assumptions and calculations necessary to verify the hypothesis regarding
the relationship between the type and ownership sector of an enterprise and the goals of its innovative
activity with the eco-innovations as supplementary points (2012–2014).

Pearson’s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of enterprises have no
effect on the goals of innovative activity, taking into

account eco-innovations as supplementary points

Alternative hypothesis (H1)
The type and ownership sector of enterprises have

an effect on the goals of innovative activity, taking into
account eco-innovations as supplementary points

χ2 statistics value 65.248
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.96687
Decision Since p > α, there are no grounds for rejecting H0
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Figure 4. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the effects of innovative activity, and degrees of their influence on enterprises in
period 2004–2006 (dimensions 1–2; 69.92% of total inertia).

Table 14. List of assumptions and calculations necessary to verify the hypothesis regarding
the relationship between the type and ownership sector of an enterprise and the eco-innovations
(2012–2014).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of enterprises have no

effect on the activity of a firm concerning eco-innovation

Alternative hypothesis (H1)
The type and ownership sector of enterprises have

an effect on the activity of a firm concerning
eco-innovation

χ2 statistics value 311.44
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.0000
Decision H0 hypothesis should be rejected in favour of H1

3.2. Low Level of Innovativeness of Public Enterprises

In the three periods examined, public enterprises (S1FR_1, S1FR_2, and S1FR_3) showed
significantly less innovative activities than enterprises from other ownership sectors. In the first
period (2004–2006), the effects of their innovative activities were weak (Figure 4) [37], and in the next
two periods (2008–2010 and 2012–2014), the objectives of innovative activities were not substantially
achieved (Figures 3 and 5) [37]. If any effects or goals were achieved, then degrees of influence or
importance were low or irrelevant. This means that the innovations introduced by enterprises in
the first period had virtually no impact on the activities of companies at the end of 2006 and that
the goals achieved in the second period had little effect on innovation activities in the field of product
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and process innovations. Therefore, if we consider the relationships (3), (5), and (7), then it can be
stated that in the case of public enterprises, there were no positive feedbacks. Although there were
some differences in individual periods, they did not affect the trend described above. After adopting
the prosperity period as a benchmark, it can only be said that in the years of the global financial
crisis, the situation of small (S1FR_1) and medium-sized (S1FR_2) public enterprises deteriorated
and the situation of large public enterprises (S1FR_3) improved (Figures 4 and 5) [37]. However,
during the recovery period, there were no significant changes except that the innovation activity of
medium-sized enterprises (S1FR_2) improved, and the innovation activity of the large enterprises
(S1FR_3) deteriorated (Figure 3) [37].

 

Figure 5. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the goals of innovative activity, and their degrees of importance for enterprises
in period 2008–2010 (dimensions 1–2; 79.18% of total inertia).

Table 15. List of assumptions and calculations necessary to verify the hypothesis about the relationship
between the type and sector of enterprise ownership and the effects of its innovative activities
(2004–2006).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of the enterprise have

no impact on the effects of innovative activity

Alternative hypothesis (H1)
The type and ownership sector of the enterprise

have an impact on the effects of innovative activity

χ2 statistics value 426.05
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.0000
Decision H0 hypothesis should be rejected in favour of H1
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Table 16. List of assumptions and calculations necessary to verify the hypothesis about the relationship
between the type and sector of enterprise ownership and the goals of its innovative activities (2008–2010).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of the enterprise have

no impact on the goals of innovative activity

Alternative hypothesis (H1)
The type and ownership sector of the enterprise

have an impact on the goals of innovative activity

χ2 statistics value 668.581
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.0000
Decision H0 hypothesis should be rejected in favour of H1

In general, the low innovativeness of public enterprises does not seem to be a big economic
problem, since the share of the public sector in the entire manufacturing sector was small in the first
period, and in the following ones, it showed a decreasing trend. In periods of prosperity, crisis, and
recovery, this share was 4.37%, 1.18%, and 1.10%, respectively (Tables 3–5) [37]. However, when
considering the interactions between ownership sectors and types of enterprises, it cannot be excluded
that the public sector may have an adverse effect on enterprises belonging to other ownership sectors.
On the other hand, one should also take into account the positive impact of companies from the private
and mixed sectors on the public sector. It seems that in the manufacturing sector, there may be some
kind of a dynamic balance between ownership and the type (size) of enterprises, which changes in
particular phases of the business cycle. Perhaps in this way, the adverse effects of cyclical fluctuations
on the innovation activities of enterprises are somewhat neutralized. There may also be impacts from
factors operating for even longer periods. Nevertheless, this issue requires further in-depth research,
and some related proposals are presented in the next two parts of the article.

3.3. The Red Queen Effect

The Red Queen effect is a metaphor derived from Alice’s adventures in Wonderland where this
Queen reigned [43]. In the Queen’s land, one would have to run as fast as one could in order to keep in
the same place. However, if one would wish to get somewhere else, one would have to run at least
twice as fast as that. Indeed, after a long and exhausting run, Alice noticed with amazement that
she was in the same place as before. Initially, this hypothesis was used in biology to explain the law
of extinction, which states that organisms in any adaptive zone die with a stochastically constant
rate [44]. The justification for this principle is that adaptation to certain living conditions of one species
may change the selection pressure to other species and lead to positive feedback between species.
The properties of communities will then change in a directional manner. This is similar to an arms
race, which takes place both between species and within them. Organisms must be in constant motion
and adapt to change in order to survive. Thus, existence and survival (i.e., being in the same place)
requires constant running. It soon became apparent that the Red Queen hypothesis could also explain
many economic phenomena [37].

Schumpeter’s creative destruction theory includes the Red Queen effect. According to Schumpeter,
economic development is associated with the growth and collapse of companies and entire branches
of industry [9,11]. Enterprises cannot last forever, and the reason for their collapse is almost always
the lack of adequate capacity to implement innovation. Each innovation success is rewarded with
a bonus in the form of profit, which is inherently temporary and tends to decrease during competition
and adaptation processes. Therefore, no enterprise is safe against bankruptcy.

The Red Queen effect applies to public sector enterprises (S1FR_1, S1FR_2, and S1FR_3) as their
share in the manufacturing section is constantly decreasing (Tables 3–5) [37]. Therefore, they cannot
cope with competition from private and mixed sector companies. If proper preventive action is not
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taken, public enterprises may permanently disappear from the manufacturing section. This can entail
not only economic, but also political consequences.

3.4. Insensitivity of the Effects and Goals of Innovative Activities of Enterprises to the Business Cycle Phases

The conducted research shows that in each of the examined periods, the vast majority of enterprises
achieved the assumed effects and goals of innovative activities, which contributed to increasing their
subsequent activities in this field to a high or medium degree. In the years 2004–2006, the innovations
introduced by enterprises had a great impact on the activities of enterprises at the end of 2006, and in
the years 2008–2010, most of the achieved goals contributed significantly to increasing the activity of
enterprises in the field of product and process innovations. Therefore, there were positive feedback
loops that show relationships (3) and (5). These phenomena are visible on correspondence maps
(Figures 4 and 5) in the form of short distances between points representing ownership sectors and
types of enterprises, and points responsible for the effects or objectives of innovative activities and
the degrees of their influence or importance [37]. A similar phenomenon could not be found in
2012–2014, but only because the statistical form PNT-02 did not contain such information. There
is, however, other indirect evidence that, in the third period, there was indeed positive feedback,
illustrated by the relationship (7), between innovations undertaken at different times. This is evidenced
by the near zero inertia of the entire industrial processing section (Table 12), which signifies that almost
all enterprises achieved the assumed goals of innovative activities (Figure 3) [37].

In general, the innovation activity of enterprises varies depending on the phases of the business
cycle, but this is not always as expected. In the first period, points representing ownership sectors and
types of enterprises as well as points responsible for the effects of innovative activities and high or
medium degrees of their influence formed a joint cluster on the correspondence map (Figure 4) [37].
This signifies that most enterprises achieve the intended effects and that positive feedback occurs in
accordance with relationship (3). When the period of prosperity is taken as the basis for comparative
analysis, it should be noted that during the global financial crisis, there were changes that consisted
in the formation of two separate clusters of points on the biplot (Figure 5) corresponding to this
period [37]. In the first cluster, which covered the vast majority of enterprises, the average distances
between points representing types and ownership sectors of enterprises and points corresponding to
the objectives of innovative activity and high or medium degrees of their importance for innovative
activity in the field of product and process innovation during this period decreased noticeably. Thus,
during the crisis, there was a positive feedback presented by the relationship (5). The second cluster
was very small and was relatively far away from the first. The enterprises in this cluster showed very
little innovative activity, and if they were already achieving some goals, their degrees of importance
were low or irrelevant. The cluster contained a yellow triangle, so it mainly represented small
businesses (S1FR_1, S2FR_1, and S3FR_1). It seems that the crisis has sifted companies, and thus
separated companies with high innovation activity from those that were not very innovative. This is
paradoxical, as the position of more innovative enterprises improved during the crisis, and the position
of less innovative companies deteriorated. This observation can be justified by referring again to
the Red Queen effect (i.e., an explanation indicating the selection pressure created during the crisis
that the best companies exerted on all others). In the third period, ownership sectors and types of
enterprises had no impact on the objectives of their innovation activities, which included both four
basic types of innovation (i.e., process, product, organizational, and marketing innovations) as well as
eco-innovations (Table 9 and Figure 3) [37]. There was a further decrease in average distances between
points representing ownership sectors and types of enterprises and points related to the objectives of
innovative activity. This demonstrates that almost all companies achieved their objectives and proves
the existence of positive feedback assumed by dependence (7). A large increase in the innovative activity
of enterprises in this period indicates that they considered introducing innovations as a necessary
condition for their development [37].
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The observations indicate the existence of a certain trend, which consists in a steady increase in
the innovative activity of most enterprises and appears to be largely independent of the phases of
the business cycle. The global financial crisis proved to be only a selection mechanism that separated
the group of the best companies from the weakest and at the same time improved the situation of
the former and worsened the situation of the latter. The first group includes the vast majority of
enterprises from the industrial processing section. This leads to the conclusion that this trend may
have more to do with secular factors than with cyclical factors.

Interestingly, the bad situation of public sector enterprises also does not seem to be connected
with cyclical factors. In addition, political factors do not seem to be responsible for this state of affairs
as political changes can be faster than cyclical changes. The indication of the Red Queen effect as
a reason therefore has an additional justification in the form of long-term selection pressure exerted on
public sector companies by more innovative enterprises from other ownership sectors. This would
prove that selection pressure is not cyclical, but secular, which seems reasonable.

3.5. The Effect of the Polish Green Island

The next stage of research was to consider the impact of interactions between ownership sectors
and types of companies on innovation barriers and the ability of these barriers to inhibit the innovative
activity of enterprises (degrees of their influence in the first period or degrees of importance in the second
and third period). The aim was to determine the impact of innovation barriers on the innovation
activities of enterprises. In each of the three examined periods, the combined effect of two feedback
loops was considered, one of which examined the interdependencies between (a) the interaction of
ownership sectors and types of enterprises and (b) the effects or objectives of innovative activities
and the degrees of their influence or importance, while the other concerned the interdependencies
between (c) cooperation of ownership sectors and types of enterprises and (d) barriers to innovation
and the degree of their influence or importance. In other words, a total of two cybernetic schemes were
examined in each period: (3) and (4) in the years of prosperity 2004–2006, (5) and (6) during the period
of the global financial crisis 2008–2010 as well as (7) and (8) in the years of recovery 2012–2014 [36].

The results will be presented chronologically from the first period, which will be the benchmark
of comparative analysis. In the years of prosperity, the results of the χ2 independence test confirmed
the existence of statistically significant relationships, which concerned both the impact of mutual
interactions of ownership sectors and types of enterprises on the effects of innovative activities (Table 15)
as well as the impact of mutual interactions of ownership sectors and types of enterprises on barriers
to innovation (Table 17) [36]. As a result of using correspondence analysis, a correspondence map
(Figure 6) was obtained that captured the co-occurrence of phenomena in more detail [36]. It contained
eighty-nine points representing the states of individual variables: nine of them represented ownership
sectors and types of enterprises, thirty-six were responsible for the effects of innovative activities of
enterprises and degrees of their influence (Table 10), while forty-four were for barriers to innovation and
degrees of their influence (Table 18) [36,37]. Points representing barriers to innovation and the degrees
of their influence were located at a relatively large distance from a cluster of points consisting of both
points representing ownership sectors and types of enterprises as well as points describing the effects of
innovation activities and the degree of their influence. Innovation barriers were not overly troublesome
for enterprises.

During the global financial crisis, the results of applying the χ2 independence test were identical
because they showed the dependence of goals of innovation activity and innovation barriers
on the combined impact of ownership sectors and types of enterprises (Tables 16 and 19) [36].
The correspondence map (Figure 7) showed the co-occurrence between ninety-three points representing
the states of individual variables, nine of which represented ownership and size of companies, forty for
the goals of innovation activities and their degrees of importance (Table 11), and forty-four barriers to
innovation and their degrees of importance (Table 18) [36,37]. In comparison to the previous period, it
can be observed that the distance between the two clusters of points representing (1) ownership sectors
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and types of enterprises as well as the objectives of innovation activities and (2) barriers to innovation
and their significance levels increased. This demonstrates that during the crisis, the importance of all
innovation barriers decreased quite significantly.

Table 17. List of assumptions and calculations necessary to verify the hypothesis about the relationship
between the type and sector of enterprise ownership and innovation barriers (2004–2006).

Pearson’s χ2 Test of Independence

Null hypothesis(H0)
The type and ownership sector of the enterprise have

no impact on innovation barriers

Alternative hypothesis (H1)
The type and ownership sector of the enterprise

have an impact on innovation barriers

χ2 statistics value 1519.68
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.0000
Decision H0 hypothesis should be rejected in favour of H1

 

Figure 6. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the effects of innovative activity, and the barriers to innovation in the period
2004–2006 (dimensions 1–2; 69.92% of total inertia).

In the years of recovery from 2012 to 2014, some stronger alterations could be observed as the χ2

independence test indicated the dependence of the goals of innovative activity on the combined impact
of ownership and size of enterprises (Table 20), but did not confirm the existence of the relationship
between innovation barriers and the combined impact of ownership and size (Table 21) [36]. The goals of
innovative activity (fifteen in total) included product and process innovations as well as eco-innovations
(PRC1, PRC2, PRS1–PRS3, ECO1–ECO10). A similarity to the previously obtained result (Table 14) was
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observed here, which confirmed the importance of eco-innovations for the examined enterprises [37].
Furthermore, it has been found that eco-innovations in Poland are more related to product and process
innovations than to organizational and marketing innovations. During this period, the significance
of the goals of innovation activities was not considered. Sixty-eight points were included on
the correspondence map (Figure 8) depicting the co-occurrence of phenomena, nine of which represented
ownership and size, fifteen the objectives of innovative activity (Table 6), and forty-four the barriers to
innovation and their degrees of importance (Table 22) [36,37]. Compared to the crisis period, the cluster
of points containing ownership and size as well as the objectives of innovative activity is further away
from the cluster of points representing barriers to innovation and their degrees of importance. It can be
concluded that during the recovery period, nothing prevented the innovative activity of enterprises.

Table 18. Variables describing innovation barriers in the years 2004–2006 and 2008–2010, degrees of
their influence on enterprises and coding.

Type of Barrier

Factors Impeding
Innovative Activity

Scale: 1—High; 2—Medium;
3—Low; 4—Irrelevant

Codes Degree of Influence

Economic factors

Lack of financial resources in your
company or in your group

of enterprises
BR1 1, 2, 3, 4

Lack of financial resources from
external sources BR2 1, 2, 3, 4

Too high costs of innovation BR3 1, 2, 3, 4

Knowledge factors

Lack of qualified staff BR4 1, 2, 3, 4
No information about technology BR5 1, 2, 3, 4

No information on markets BR6 1, 2, 3, 4
Difficulties in finding partners for

cooperation in the field of
innovative activity

BR7 1, 2, 3, 4

Market factors

Market split by
dominant enterprises BR8 1, 2, 3, 4

Uncertain demand for innovative
(new) products BR9 1, 2, 3, 4

Other factors

No need to run innovative activity
due to the introduction of

innovations in previous years
BR10 1, 2, 3, 4

No demand for innovation BR11 1, 2, 3, 4

Table 19. List of assumptions and calculations necessary to verify the hypothesis about the relationship
between the type and sector of enterprise ownership and innovation barriers (2008–2010).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of the enterprise have

no impact on innovation barriers

Alternative hypothesis (H1)
The type and ownership sector of the enterprise

have an impact on innovation barriers

χ2 statistics value 3174.84
Critical region right-tailed

Level of significance (α) α = 0.05
p-value (p) p = 0.0000
Decision H0 hypothesis should be rejected in favour of H1
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Figure 7. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the goals of innovative activity, and the barriers to innovation in the period
2008–2010 (dimensions 1–2; 79.18% of total inertia).

Summing up the research, it can be stated that in the three studied periods, there was a constant
tendency to shorten the distance between the points in the two clusters: (1) representing ownership
sectors and types of enterprises as well as effects or goals of innovative activity along with degrees
of influence or degrees of importance and (2) corresponding only to innovation barriers and degrees
their importance. These changes were accompanied by a gradual increase in the distance between
these two clusters. It can be observed that these two clusters gradually thickened and at the same time
moved away from each other. The trend emerging from these processes showed two simultaneously
occurring phenomena: (1) an increase in the innovative activity of enterprises, which is reflected
in the implementation of their goals of innovative activities and the appearance of related positive
feedback and (2) a gradual decrease in the importance of innovation barriers and the emergence of
positive feedbacks related to this process, which led to the almost complete lack of significance of
these barriers for enterprises. This long-term trend is independent of the business cycle phases. This
signifies that we are dealing with phenomena shaped by pro-developmental secular factors. Most
likely, their impact is not limited to the industrial processing section, but applies to the entire economy,
which must therefore have a solid, strong foundation for economic growth and development. In order
to justify this claim, it is necessary to study the latest economic history of the country.

In 2010, the Polish government presented to the public a map of Europe on which individual
countries were attributed the actual economic growth rates they achieved in 2009. Poland had a positive
growth rate and was marked in green, while in all surrounding countries, the growth rates were
negative, which is why those countries were marked in red. In this way, Poland was presented as
the Green Island of economic growth against the background of Europe in crisis [45,46]. In the critical
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year 2009 for the Polish economy, the growth rate decreased to 1.7%, while the EU average at that
time was negative and amounted to –4.2% [47] (p. 91). According to the latest data presented at
the Economic Forum in Krynica-Zdrój in 2019, Poland has been recording uninterrupted economic
growth since 1992 with an average annual growth rate of over 4%. Over the past 27 years, only
Australia has achieved a similar result among the OECD (Organisation for Economic Co-operation and
Development) countries. In the years 1990–2018, GNP tripled, and the Polish economy is currently
the seventh largest economy in the European Union and the twenty-third in the world [48]. In addition,
forecasts show that by 2025, the Polish economy may become one of the strongest engines of growth in
Europe and a significant force in the global market [49]. For these reasons, we have called the long-term
trend discussed above as the Polish Green Island effect. The map from 2010 was therefore not associated
with the government’s propaganda, as was often presented, but showed an actual economic success.

Table 20. List of assumptions and calculations necessary to verify the hypothesis regarding
the relationship between the type and ownership sector of an enterprise and the goals of its innovative
activity in the years 2012–2014 (PRC1, PRC2, PRS1–PRS3, ECO1–ECO10).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The type and ownership sector of the enterprise have

no impact on the goals of innovative activity

Alternative hypothesis (H1)
The type and ownership sector of the enterprise

have an impact on the goals of innovative activity

χ2 statistics value 2361.7
Critical region right-tailed

Level of significance (α) α = 0.05
p (p) p = 0.0000

Decision H0 hypothesis should be rejected in favour of H1

3.6. The Global Financial Crisis as the Turn of the Fifth and Sixth KondratieffWaves

The long-term trends described above apparently lead to some culmination in the period 2012–2014.
We observed a decreasing inertia of the industrial processing section, which during the recovery period
2012–2014 became close to zero (Table 12) [37]. This is tantamount to achieving the assumed goals of
innovative activity by most enterprises. Moreover, there is a constant decrease in the importance of
innovation barriers, until their almost complete disappearance in the third period (Figures 6–8) [36].
The second of these phenomena affects the first, which is why they undoubtedly form a certain
systematic integrity. It should also be noted that as part of the observed trend, the total impact of
ownership sectors and types of enterprises on the innovation activity of companies is significantly
reduced (Table 9, Table 15, and Table 16) [36,37]. Therefore, it seems that ownership and size are
the factors determining the innovativeness of companies only in relatively short periods appropriate
for traditional business cycles. The emergence of this trend can only be explained by secular factors,
which indicates the need to interpret the results presented here as part of Kondratieff long-wave
theory. Therefore, at least changes in technology and adaptation processes of the Polish economy to
the conditions of the world economy should be taken into account. When it comes to technological
innovations, it should be emphasized that they are almost always the result of technological revolutions.
In this context, it is justified to refer to the modern interpretation of K-waves.

The theory of the Kondratieff cycle was developed and adapted to modern conditions by Šmihula.
In the modern age, counted from 1600, he distinguished the following six K-waves [8]:

(1) financial-agricultural revolution (1600–1780; 180);
(2) industrial revolution (1780–1880; 100);
(3) technological revolution (1880–1940; 60);
(4) scientific-technological revolution (1940–1985; 45);
(5) information and telecommunications revolution (1985–2015; 30); and
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(6) post-information technological revolution, in other words, the biomedical-hydrogen revolution
(2015–2035; 20).

 

Figure 8. Correspondence map showing the co-occurrence of the types of enterprises including
the ownership sectors, the goals of innovative activity, and the barriers to innovation in the period
2012–2014 (dimensions 1–2; 69.52% of total inertia).

Table 21. List of assumptions and calculations necessary to verify the hypothesis regarding
the relationship between the type and ownership sector of an enterprise and the reasons for the lack of
innovation and barriers to innovation (2012–2014).

Pearson′s χ2 Test of Independence

Null hypothesis (H0)
The enterprise type and ownership sector have no
impact on the reasons for the lack of innovation

and barriers to innovation

Alternative hypothesis (H1)
The type and ownership sector of the enterprise have
an impact on the reasons for the lack of innovation

and barriers to innovation
χ2 statistics value 251.602

Critical region right-tailed
Level of significance (α) α = 0.05

p (p) p = 0.9999
Decision Since p > α, there are no grounds for rejecting H0

The duration and length of each wave are given in brackets. A characteristic feature of the presented
concept is the shortening of the length of each subsequent wave, which is explained by the acceleration
of scientific and technological progress. Obviously, the latest wave is predictive, however, it should
be noted that its beginning was dated to 2015, so it almost coincided with the period of significant
structural changes in the Polish manufacturing industry.
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Table 22. Variables describing the reasons for the lack of innovation and barriers to innovation in
the years 2012–2014, their degrees of importance for enterprises, and the method of coding.

Reasons for a Lack
of Innovation

Factors Impeding
Innovative Activity

Scale: 1—High; 2—Medium;
3—Low; 4—Irrelevant

Codes Degree of Importance

No compelling
reason for introducing

innovation

Low demand for innovation
on market BR_1 1, 2, 3, 4

No need to implement innovation
due to earlier innovations BR_2 1, 2, 3, 4

No need to implement innovation
due to low competition on

the market
BR_3 1, 2, 3, 4

Lack of good ideas for innovation BR_4 1, 2, 3, 4

The implementation
of innovations was

considered, but
the barriers proved to

be too high

Lack of financing opportunities for
innovation from the company’s

internal sources
BR_5 1, 2, 3, 4

Lack of financing for innovation
from external sources – loans or

funds under private equity
financing (including

venture capital)

BR_6 1, 2, 3, 4

No staffwith the right skills in
your company BR_7 1, 2, 3, 4

Difficulties in obtaining public
grants or subsidies for innovation BR_8 1, 2, 3, 4

No partners to cooperate with BR_9 1, 2, 3, 4
Uncertain market demand for

your ideas for innovation BR_10 1, 2, 3, 4

Too much competition on
the market BR_11 1, 2, 3, 4

According to Šmihula, the typical end of every K-wave is the economic crisis, which is characterized
by stagnation caused by technological stalemate and increased demand for new inventions and
innovations [8]. The crisis ending the application phase creates good conditions for the emergence of
new inventions, but it takes some time for a new technological revolution to start and technological
innovations capable of stimulating investment growth to appear. In his opinion, these changes are
practically impossible to be proven by statistical methods due to strong relativism in the assessment of
inventions and innovations.

The results presented in this article seem to coincide with the concept of modern K-waves that end
and begin with an economic crisis. Considering the two factors mentioned by Kondratieff [7], namely
changes in technology and the assimilation of new countries into the world economy, it can be assumed
that the transitions occurring in the Polish manufacturing sector are part of a larger whole. If we
consider the Fifth Kondratieffwave (i.e., information and telecommunications revolution), it seems that
many signs of the end of its application phase can be observed. As a result of continuous improvement
of the related innovations, it can be observed that information technology has long become a part of
everyday economic life. It is likely that greater profits and revolutionary inventions may appear soon
in other industries. There are also many indications that the Sixth Kondratieff wave will be associated
with the biomedical-hydrogen revolution. With this approach to the problem, the discovered trend is
a fragment of a global phenomenon that is associated with the breakthrough between the Fifth and
Sixth Kondratieffwaves [37]. The Polish economy is already so integrated with the global economy and
included in international supply chains that it can reflect global trends. Therefore, the breakthrough
can be determined by statistical methods, however, secular factors have to be considered.
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4. Discussion

This paper is a summary of the research carried out so far in the area of innovation in Polish
manufacturing enterprises [35–37]. The obtained results prove that the cybernetic approach is of great
importance in researching the innovative activity of enterprises. The ownership sector and the type of
enterprise are among the most important factors of innovative activity, however, considering their
impact separately may cause that some phenomena remain unrecognized. Examining the mutual
influence of these variables has a significant impact on results, as demonstrated by the example
of the third period. Focusing only on the types of enterprises, their statistical significant impact
on the goals of innovative activity was confirmed, however, after including ownership sectors in
the considerations and after taking into account the interactions between ownership and the size of
the enterprises, the situation changed radically. This means that the long-term trend referred to in
the article could remain undiscovered.

Regarding the poor performance of public enterprises in the field of innovation, it was assumed
that one of the reasons may be the political criteria for the selection of managerial staff in these
enterprises. Another explanation points to significant pay disparities between employees in the public
and private sectors that are working to the disadvantage of the public sector. However, research
shows that in terms of innovation, public sector enterprises do not have to perform worse than private
ones. An example is Chinese state-owned enterprises, which have gained an advantage over private
companies in the field of process innovation. It should not be forgotten, however, that in China
after 2000, over 90% of government-owned corporations adopted the Modern Enterprise System,
which consisted of implementing corporate or shareholding reforms and adopting a sound corporate
structure, as a result of which the boards of shareholders, directors, supervisors, and managers were
created in them [34]. Perhaps similar reforms are required by Polish industrial processing enterprises
operating in the public sector.

The Red Queen hypothesis indicates that the source public enterprises’ problems may be the strong
selection pressure exerted on them by a more innovative environment. The gradual decline in the share
of public enterprises in the manufacturing section is worrying, as it may be a source of some political
and economic perturbations and have a negative impact on the entire economy. Some enterprises
should certainly remain public due to the need to achieve certain social goals.

The insensitivity of the effects and goals of the innovative activity of enterprises to the business
cycle phases most likely means that in the total span of the three studied periods, the importance of
secular factors was greater than that of business cycles. From this point of view, the global financial crisis
should be treated as a phenomenon that strengthened and accelerated the operation of the selection
mechanism, as a result of which most innovative enterprises improved their market position. Some
less innovative enterprises could also benefit as the Red Queen effect could have forced them to have
a reverse reaction in the form of increased innovation efforts. The appearance of positive feedback
would mean that the crisis probably accelerated the innovation race, thus improving the situation of
most companies in the third period, as evidenced by the near zero inertia of the system under study.

The effect of the Polish Green Island signifies that very good results of the majority of industrial
processing enterprises in the field of innovation depend to a small extent on the phases of the business
cycle. In the three examined periods, the majority of enterprises did not have problems with
achieving the assumed effects or goals of innovative activity, and barriers to innovation gradually
disappeared [35–37]. This is demonstrated by Poland’s economic successes in the last thirty years,
which would not have been possible without the great innovation activity of enterprises. In addition to
the strong and sustained economic growth mentioned earlier, there are other important achievements
to be mentioned including economic opening to the world, reduction of inflation, and increase in
welfare [48]. When the studied periods are examined in a comprehensive way, it can be observed that
the Polish economy is more affected by secular trends than by cyclical fluctuations. Entrepreneurs
have a good understanding of these phenomena, which indicates the appropriate use of information
sources for innovative activities.
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Research on innovation has provided convincing statistical evidence to support the claim that
the global financial crisis heralded a breakthrough that was the end of the Fifth and the beginning
of the Sixth Kondratieff wave. The following two discoveries should be mentioned here: the trend
associated with the decreasing inertia of the industrial processing section, which has recently been
close to zero, and the essential importance of ownership, as its inclusion in the analysis has completely
changed the results. The implementation of the goals set by most enterprises in 2012–2014 may indicate
that the application phase of the Fifth K-wave, associated with the information and telecommunications
revolution, is slowly coming to an end. The level of competition in the manufacturing industry
gradually increased, so in the third period, it could already be close to the maximum. The deadlock can
be broken only due to new, breakthrough technological innovations that will open new opportunities
for economic growth, profit increase, and competition. Information technology has already become
an integral part of everyday economic life and will certainly be further used and refined, but it has
apparently already used its potential as a driving force for economic growth and development. Many
new inventions have appeared on the horizon that are related to biotechnology, nanotechnology,
biomedicine, and hydrogen as the fuel of the future. Soon, they can become the basis of a new
technological revolution that will initiate the Sixth K-wave. The results presented in this article are
consistent with the forecast of Šmihula [8], which dated the beginning of the biomedical-hydrogen
revolution for 2015. Therefore, it is quite possible that we are already living in the Sixth K-wave
without knowing anything about it. We are reminded in this respect of Monsieur Jourdain, the hero
of a five-act comédie-ballet The Middle Class Gentleman written by Molière, who said to the Master of
Philosophy [50]: By my faith! For more than forty years I have been speaking prose without knowing anything
about it, and I am much obliged to you for having taught me that.

5. Conclusions

The presented research focused on the impact of ownership sectors and types of enterprises on
the innovation activities of companies, considering changes in the economic environment in which
these activities happen. In the three examined periods, a gradual increase in innovation activity was
found and it was not disturbed by cyclical fluctuations [35–37]. All enterprises, apart from public ones,
achieved the assumed effects and goals of innovation activities, which contributed to the creation of
positive feedback loops leading to further growth of innovation. There was also another phenomenon
that is strongly associated with the first, consisting of a gradual decrease in the importance of innovation
barriers, until they became practically imperceptible to enterprises in the last of the examined periods.
The Red Queen effect indicates strong competition between enterprises in the field of innovation, and
data show that most of them have met this challenge. The long-term growth of innovative activity
was not even slowed down by the global financial crisis, which became a selection mechanism for
enterprises and mobilized them to increase their efforts in the field of innovation. This contributed
to even better corporate performance during the recovery period of 2012–2014. These discoveries
are irrefutable evidence that the Polish Green Island effect is a real phenomenon, not a government
propaganda trick. They also explain the reasons for Poland’s incredible economic success over the past
twenty-seven years, which include strong and uninterrupted economic growth, opening of the economy
to the world, controlled inflation, and reduction in unemployment.

The cybernetic approach, consisting of considering the combined impact of ownership sectors
and types of enterprises on innovation activities, has contributed to the discovery of a long-term trend
of a steady decrease in the inertia of the entire industrial processing section. In the last of the examined
periods, the inertia was already close to zero. This means that the activity of enterprises was more
influenced by secular changes than by cyclical fluctuations. This effect was discovered after including
the ownership sectors in the considerations, and it did not occur when only the impact of the size of
enterprises on their innovativeness was examined. The secular changes determining the innovative
activity of companies were rather external to the Polish economy and were the result of the impact of
global trends. It is hard to imagine that the source of these changes might lie in internal conditions
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because endogenous changes would be too weak compared to exogenous influences. The industrial
processing sector simply reflected global trends due to the fact that the Polish economy was already
an integral part of the world economy.

Identification of the carriers of impulses from the global economy to the Polish manufacturing
sector is a very important issue. This role was undoubtedly played by the ownership because its
inclusion in the considerations revealed the trend of decreasing inertia of the examined system. In
order to justify this view, it is necessary to establish the ownership structure in the private and mixed
sectors, and in particular, to separate the share of foreign ownership in these sectors. Available data
show that in 2010, the percentage of foreign capital in basic (share) capital in the Polish processing
industry was 47.9%, while in banking, it exceeded as much as 75% [51] (p. 16). This confirms not
only that foreign ownership plays the role of a communication channel transferring knowledge from
the world economy to the Polish industrial processing section, but also gives an idea of the channel’s
high capacity.

The long-term trend of decreasing inertia can serve as evidence that the global financial crisis was
associated with the turn of the Fifth and Sixth K-waves (i.e., the transition from the information and
telecommunications revolution to the biomedical-hydrogen revolution). Such crisis is a typical
phenomenon because it results from the technological deadlock related to the exhaustion of
the investment potential of the technology used so far. The technical progress that has taken
place in recent years has resulted in many inventions, and these may, in a relatively short time, turn into
technological innovations and usher in a new technological revolution. The rate of profit associated
with new innovations can be much higher than the one currently provided by information technologies.
It is natural, therefore, that during such a crisis, investments decrease and enterprises are looking for
new opportunities to develop and overcome competition. When applying this reasoning to the Polish
economy, it should be noted that despite its stunning successes as discussed above, the investment
rate is decreasing, which is interpreted as a threat to the economic growth in the following years. Of
particular concern are the investments of enterprises in machines and devices [48,52]. However, it
is possible to look at this problem differently. It cannot be ruled out that entrepreneurs in Poland,
knowing about global trends, are refraining from investing in information technologies to take
a good position in the upcoming Sixth K-wave. A typical phenomenon is that at the beginning
of each wave of technological innovations, there are a lot of relatively small enterprises that use
many different technological methods. After some time, as a result of concentration processes, only
a few semi-monopolistic enterprises remain on the market, and the number of technological methods
decreases to the few most efficient. The current investment problem may therefore be whether to invest
in old technologies or new ones.
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21. Świadek, A.; Dzikowski, P.; Tomaszewski, M.; Gorączkowska, J. Sectoral patterns of innovation cooperation
in Polish industry. Equilibrium 2019, 14, 183–200. [CrossRef]

22. Kijek, T.; Matras-Bolibok, A. The relationship between TFP and innovation performance: Evidence from EU
regions. Equilibrium 2019, 14, 695–709. [CrossRef]
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Abstract: Complexity and information theory are two very valuable but distinct fields of research,
yet sharing the same roots. Here, we develop a complexity framework inspired by the allometric
scaling laws of living biological systems in order to evaluate the structural features of networks. This
is done by aligning the fundamental building blocks of information theory (entropy and mutual
information) with the core concepts in network science such as the preferential attachment and degree
correlations. In doing so, we are able to articulate the meaning and significance of mutual information
as a comparative analysis tool for network activity. When adapting and applying the framework
to the specific context of the business ecosystem of Japanese firms, we are able to highlight the key
structural differences and efficiency levels of the economic activities within each prefecture in Japan.
Moreover, we propose a method to quantify the distance of an economic system to its efficient free
market configuration by distinguishing and quantifying two particular types of mutual information,
total and structural.

Keywords: complexity science, information theory, economic complexity, evolutionary dynamics,
network theory

1. Introduction

One can argue that statistical physics and theoretical computing are the common roots feeding
the science branches of complexity and information theory, as attested by the early exchanges of ideas
between von Neumann and Shannon. Whereas the latter was more preoccupied in quantitatively
measuring the encoding and transmission of information [1], the former (as articulated by the automata
theory) had its focus on information replication with mutation but without generating tendencies [2]
(i.e., self replication, or ‘evolution’) as well as the processing functions at an individual and aggregated
level [3] (i.e., general automata and basic organs, or ‘emerging scaling properties of a network
structure’). Since then, these aforementioned fields of science have progressed significantly, and
developed to an extent that they seem to bear little in common. Yet, significant insight can be obtained
if one were to recombine these fields and develop a framework articulating the link between the
emerging structural properties of a network and the flow, or encoding, of information within [4,5].
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Given the importance of evolution and scaling to such framework, useful mathematical methods can
be applied by borrowing concepts from the biological, natural world, in particular the diversity of
species and allometric scaling [6–8].

In precis, this is the core motivation and aim of our research. Here, we create a method within
the context of a network flow of resources to measure two fundamental quantities underpinning
information theory, namely entropy and mutual information. This method is then wrapped into a
framework that draws parallels to the biological context of body growth and allometric scaling so that
the meaning and significance of mutual information within this construction can be better understood
and intuitively rationalised.

1.1. The Context

From an empirical perspective, we make use of the real ‘Interfirm Business Transaction Network’
within Japan, consisting of detailed granular level transaction data among over 600,000 firms during a
25-year period, 1994 to 2018, provided by Teikoku Databank. This rich dataset allows the breakdown
of an extensive network into smaller subgraphs, at a prefecture level, so that a dynamic comparison
between different segments of the network can be carried out. Previous works on the real trade Japanese
network [9–11] are centred on the system dynamics surrounding the formation of the network, as
well as the structural analysis [12] including studies on allometric scaling [13] of quantities such as
sales and income. Our research, however, adopted a fundamentally distinct approach as it seeks to
answer different questions. Here, we are less preoccupied with the dynamics of network formation.
Instead, our focus is mostly on constructing a framework based on mutual information and resource
usage efficiency, akin to metabolism, that allows for a direct comparison of different regional economic
activities, in this case of 47 Japanese prefectures. We emphasise that we have in mind that mutual
information represents effective cash flow (i.e., the movement of resources) between companies, since
the scaling properties of the real trade network, referred above, allow us to make use of the degree of a
company as a proxy that can be measured directly from the data, so that we avoid issues surrounding
cash flow estimation.

Furthermore, we note that our work bears some similarity to existing ecological network
analysis for economic systems, where resources defined as currency cash flows are used as the
basis for calculating entropy and mutual information [14]. However, data, methods, and objectives
fundamentally differ. Importantly, we are not preoccupied with measuring economic development.
Instead, our focus is on the understanding of structural evolution of trade networks as described
above.

Since our work is applied to a real countrywide economic system and financial network, it is a
requirement for the conceptual framework to be adapted in order to incorporate key fundamental
economic principles. This is to ensure that the concept of mutual information is aligned not only to
biological metabolic rates but to the specifics and concrete elements of the network studied as well.
Essentially, this means that the analogy to metabolic rate is further extended to define the average
resources used by a company to generate new trades (and the related cashflows and income). In very
simplified terms, since the focus here is not on detailed finance and economics, the metabolic rate can
be generically equated to a cost to acquire new trades [15].

1.2. The Complexity Framework: Allometric Nature of Mutual Information

From a conceptual perspective, our framework can be regarded as a triangulation between
concepts arising from three different fields of study: Network science, information theory, and
economics.

Firstly, from a network science perspective, previous academic works show that the distribution
of nodes and edges for the Japanese inter-firm trade network follows a power law distribution
governed by mechanisms associated with a cumulative advantage [16] and preferential attachment [17].
Essentially, these mechanisms tend to lead, but not inevitably, to the formation of a disassortative
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network, essentially meaning that the average number of nodes connected to a specific selected node
tends to decrease as the degree of the latter gets larger. Regardless of the specific mechanisms of a
network, the power law structure will always tend to lead to a level of disassortativeness [18].

From an information theory perspective, it follows that an amount of mutual information will
always be different from zero if the network is disassortative, simply as a result of the functional
forms of entropy and mutual information. Therefore, within our framework, it is possible to break
the computation of the mutual information into two separate but related components: The structural
mutual information, SMI, and the total mutual information, I. The former solely relates to the degree
distribution of the nodes within a given network, whereas the latter encompasses both the node degree
distribution as well as the disassortativeness of the network.

Such distinction also fits well within the economics and finance perspective since SMI can be
related to a theoretical ’free-market’, stock market-type configuration, whereas I is not only naturally
associated with, but reflects, the real world situation.

Once the above is addressed, we overlay the biological dimension of our framework.

1.2.1. Structural Mutual Information: SMI

The structural mutual information SMI is intended to capture the basic quantities held by the
network simply as a result of the power law like degree distribution of companies, and their related
sizes, within a given network. Essentially, we make use of the term ‘structural’ to refer to the basic
existence of the nodes without taking into account the dynamics of the preferential attachment and
cumulative advantage mechanism. The method is inspired by the allometric scaling and power laws
in ecological systems. In particular, we make use here of the allometric scaling equation leading to an
analogy whereby SMI and I for each prefecture can be related to the metabolic rates B of an individual
which is known to scale with body size M as:

B = Q1RMb (1)

where the exponent b = 3/4 has been suggested to describe a range of biological cases [6,8]. The two
other elements, Q1R capture, essentially, the variability in resource supply rates as well as variables
affecting body size and density.

1.2.2. Total Mutual Information, I

Further extending our analogy, SMI is akin to the resting, or basal, metabolic rate. In contrast,
the total mutual information I contains the additional thermal food and physical effects. Within our
framework, these two additional effects represent activities comparable to the way that companies
express trading preferences among themselves (i.e., the dynamics of preferential attachment and
cumulative advantage). Therefore, these dynamics act as a multiplier to the core, structural mutual
information.

1.3. The Economic Dimension

Given that companies always aim to increase profits by maximising income and minimising costs,
it is only natural to reason that the dynamics of preferential attachment and cumulative advantage
become a natural feature of general business dynamics [19]. Specifically, small companies with very
limited resources would tend to be most efficient when selling all their output to a single (or at least
very few) company in order to reduce costs. In contrast, larger companies with additional resources
will be driven by income expansion and therefore are willing to trade across as many agents as possible.

Here, without making any judgement about merits and disadvantages of distinct economic
systems, we note that a centralised style communist system can be regarded as an extreme case of
preferential attachment since virtually almost all market agents will almost solely trade with the
largest entities (i.e., governments and large public companies). Yet, the current Western ‘capitalist’
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system also tends to lead to a virtual monopoly by the largest companies [9,20]. Therefore, one can
reasonably argue that Western-style developed economies are no longer structurally capitalist, typically
underpinned by a free market configuration. It is important to recognise, however, the fact that there
is no single, or commonly accepted, definition of a ‘free market economy’ [21,22] within the field of
economics. Therefore, an element of constrained licentia poetica will inevitably be required when
attempting to define a theoretical free efficient market within the economic context. To mitigate the
effects of such an issue, we specifically, and narrowly, interpret ‘free market economies’ to be those
that structurally resemble the dynamics of organised markets, such as the stock markets. Within these
markets, each unit traded, such as a single quantity stock or the minimum denomination of a bond is
not dependent on any trait of the buyer or sell, or any other trade activity. Therefore, the preferential
attachment mechanism is virtually absent, since the identity of the buyer is unlikely to be known by
the seller and vice versa. Yet, a higher probability that a small agent will trade with larger agents, such
as pension and investment funds, are still likely to exist simply due to sheer size. It is a fact that a large
entity will have a higher number of trades, but will also be subject to some scaling of costs due to a
higher activity.

Adapting the analogy for metabolic rates to the economic dimension, the structural mutual
information SMI captures the mutual information solely arising as a result of the size of companies as
if these companies were theoretically trading on a configuration similar, or akin, to stock markets, or
’free markets’. In order to measure this component, we randomised the real network, preserving the
structure of the nodes (i.e., to total degree distributions) while minimising the effects of preferential
attachment (i.e., degree correlations). In contrast, the mutual information I is directly derived from
the real network configuration, which includes both the effect captured by the structural mutual
information as well as the additional quantities arising from the dynamics of preferential attachment
and cumulative advantage. By making this distinction, we are able to compare the efficiency of
different Japanese prefectures and better understand the structure and activities of these prefectures.

2. Results

Our results are presented in three sections. Firstly, under the Data Analysis section, we present an
analysis of the evolution of the entropies and mutual information for the Japanese prefectures over
a 25-year period. This analysis is then enhanced and further analysed by layering the geographical
dimension of the prefectures across Japan. The second section covers the results of applying the
framework based on the allometric scaling of mutual information and related analogies to metabolism
and biological systems to real world data. Thirdly, we zoom into a more microscopic level, specifically
local interaction, analysing the formation and contribution to mutual information at a pointwise level,
where the effects of the preferential attachment and cumulative advantage mechanisms can be clearly
observed.

2.1. Data Analysis

By applying the grouping and coarse graining process as described in the Methods section, the
values for entropy H, joint entropy J, and mutual information I for each prefecture were directly
measured from real Japanese interfirm trade network data by making use of Equations (5), (6), and (7),
respectively.

2.1.1. Macro Features of Entropy and Mutual Information

Consistently with established literature [18], the entropy, and the joint entropy, of the Japanese
trade network in its totality or within each subgraph, i.e., the prefecture level, will tend to be higher
as the system grows in size (i.e., increasing the number of nodes) as H ∼ α log N. Moreover, the rate
of growth α tends to be similar for all prefectures. Such a fact can clearly be observed in the left and
centre plots within Figure 1a,b, where five representative prefectures are highlighted, from largest to
smallest in terms of GDP (gross domestic product) size and selected on similar ranking intervals.
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Figure 1. Entropy and mutual information prefectures in Japan between 1994 and 2018. Plot (a) shows
the evolution of the total entropy H as a function of the total number of companies (nodes) |C| during
the period 1994–2018. Similarly, plots (b,c) show the equivalent joint entropy J and mutual information
I as a function of total number of edges E. Each grey line represents the path taken single prefecture in
Japan during the period 1994–2018. The coloured lines highlighting representative prefectures, selected
from the largest (i.e., Tokyo) to smallest (i.e., Tottori) in terms of GDP (gross domestic product) and
maintaining similar ranking intervals in between (Fukuoka, Kagoshima, and Wakayama). The circles
point to the year 1994 whereas the x-cross relates to 2018.

In contrast, the mutual information I exhibits a more complex, non linear, behaviour as shown in
plot (c). One can note that I tends to decrease for the very large prefectures (i.e., Tokyo, Fukuoka) as
the number of companies, (i.e., nodes) and trades (i.e., edges) increase. However, similar behaviour
is not fully replicated in smaller prefectures (i.e., Kagoshima, Wakayama, and Tottori), where I may
be increasing, stable, or decreasing. Moreover, and distinctly from H or J, the specific and numerical
value of I bear a much weaker, albeit yet existing, relation to the system size as will be demonstrated
further on, within the subsection allometric nature of the mutual information.

2.1.2. The Geographical Perspective of Mutual Information

As described above, comparison among prefectures of the numerical value of the total mutual
information I at a given time gives little way of immediate insight, and their relative significances can
only be appreciated once the association with metabolism as described by the framework within the
next subsection, the allometric nature of the mutual information, is in place. However, a clear picture
also emerges once a geospatial perspective is combined with a time series vector analysis for I, where
the average rate of decline for each prefecture is linearly obtained by fitting It = a + b(t − t0).

The heatmap of Japan within Figure 2 shows the geographical distribution of the average rate of
decline (b < 0) or increase (b > 0) to the mutual information I over the period in study, 1994–2018. It is
easy to visualise that the highest rates of declines (i.e., red areas) are almost totally associated with the
prefectures and urban conurbations of Japan’s largest cities, with the sole exceptions of (a) Sapporo, a
large city in a very large rural prefecture (Hokkaido) and (b) Oita where no immediate explanation
can be found. In a consistent manner, the lowest rates of decline (or slight increase) are associated
with the smallest prefectures, in economic terms as measured by the GDP, such as Tottori and Ehime.
These results suggest that a time series analysis of the evolution of the mutual information provides
a measure (the linear slope ‘b’ or the average changes to I), which reflects the level of the economic
activity, or urbanism, for a given region. Essentially this approach can be feasibly used to potentially
define economic clusters and conurbations in a quantitative manner through a single unit measure.
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Figure 2. Average decline/increase rate of the mutual information within prefectures in Japan, 1994
to 2018. The map on the left consists of a geographical heatmap for the average yearly rate of decline
(red) or increase (light green) of the mutual information for each of the 47 prefectures as approximated
by a linear fitting It = a + b(t − t0). Each graph on the side corresponds to the evolution of the total
mutual information I (y-axis) over the period 1994–2018 (x-axis) for (a) Tokyo, (b) Wakayama and (c)
Tottori prefectures.

3. The Allometric Nature of Mutual Information

The results shown by each of the panels within Figure 3 lend important weight to the validation
of a framework to quantify and evaluate mutual information within networks through the prism of
biological metabolism and allometric scaling.

Firstly the distinction between structural mutual information SMI (or Ĩ as explained within the
Methods section) and total mutual information I and an analogy to basal metabolism and physical
metabolism provide a useful description of the important differences between information (a) arising
simply as a result of the existence of a node or company type and (b) that results from the dynamics
and interaction between agents.

Within this context, it is to a certain extent remarkable to note the emergence of the 3/4 allometric
scaling coefficient, as indicated (see Methods) by the results within Figure 3, and that by applying the
same coefficients to both types of mutual information, SMI and I, one can observe that the distribution
of variance is larger for the ‘total metabolism’ and are relatively small for the ‘resting metabolism’.
Moreover, such distributions of variance fit reasonably well to normally distributed curves (albeit
with some differences towards the tail values) which indicate that such a variance is consistent with a
generic random stochastic process. Here, we note that the number of datapoints are relatively limited,
around 280, which can exaggerate the effects towards the tail.

Secondly, the framework and scaling of mutual information provide us with a valuable insight
in terms of the economic structure of the prefectures: The ‘structural efficiency’ of a prefecture is
not determined by size in isolation (as measured by the entropy) but by the diversity of the agent
types within the system (which can be captured by SMI). Here it is important to pause and explain
‘structural efficiency’.
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Figure 3. Observed and estimated values for the structural mutual information SMI and total mutual
information I for the years 2013–2018. The top left panel shows the comparative results between the
values observed for structural mutual information SMI (or Ĩ as described within Methods) on the
y-axis against those estimated by making use of Equation (11) on the x-axis. Each dot consists of a
single prefecture within Japan at a specific year, with years colour mapped from lighter to darker
shades, older to the most recent. The diagonal line represents the point where y = x. Similarly, the
bottom left panel shows the observed mutual information I on the y-axis, calculated in accordance
with Equation (7), against those estimated by the model by making use of Equation (12) on the x-axis.
On the right side, the differences between the estimates to the actual values (x-axes) are ranked and
plotted against the cumulative function of a normally distributed curve as shown by the red lines.

Within any business environment, a company would ideally like to sell products to every other
company as it would increase sales and profits. However, resource limitation and costs of trading
with various parties lead to a selection of business partners or ‘preference to trade’. Therefore, from
a narrow perspective, the more a company sells to a single partner, the lower the acquisition costs.
However, one can argue that such an approach also leads to significant inefficiency within an economic
system since opportunities for better and innovative trading and new links are reduced. Therefore,
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SMI and I can be effectively viewed as an indicator as to the distance of a prefecture to a theoretical
free market configuration.

Entropy and Mutual Information Micro Features

Whereas analysing the evolution of the mutual information from a macro level provides an insight
with regards to the structural economic activity of prefectures, by zooming into the local, micro level,
structures of interactions it is possible to better understand the impact of the essential mechanisms
underpinning the network in study.

The effect of the preferential attachment and cumulative advantage mechanisms as catalysers to
the generation of mutual information can be clearly observed by analysing Figure 4. The pointwise
contribution to the mutual information heatmaps for the real networks (left side), within Osaka and
Kagoshima prefectures, show the larger absolute values to be concentrated at the left and top borders of the
panels. In contrast, the equivalent maps (maintaining the same colour coding scales) for the randomised
network show a much more homogenous distribution of values across the heatmaps, with contributions to
the mutual information and pointwise values tending towards zero. Moreover, the zoomed maps for the
real network (central panels) provide a neat illustration of the core relationship between the cumulative
advantage and preferential attachment mechanisms and mutual information: By ’preferring’ to attach to
larger companies, smaller entities tend to ’repel’ its own kind. As a result, the pointwise mutual information
turns negative within the small to small region. In a consistent manner, higher levels of pointwise values
tend to be stronger at the preference region (i.e., smaller to larger companies).

Figure 4. Pointwise contribution to the mutual information, I(i,j), for real and randomised networks. Each
panel represents a heatmap of the pointwise contribution to mutual information for the directional
edge combination ‘i’ (vertical axis) to ‘j’ (horizontal axis), calculated in accordance with Equation (8).
Both axes are equal in value, consisting of the ranked sequence of the total degree distribution of
companies for the relevant representative prefectures, Osaka in the top row and Kagoshima in the
bottom row. The left (all degrees) and centre (zoomed degrees up to 20) panels show the contribution
to the mutual information for the real network, whereas the right panels show contribution related to
the randomised network. The colour maps on the right show the intensity of the contribution, with
different scales by prefecture, but the same for all panels for the selected prefecture. Darker colours are
associated with higher numbers with blue being negative values, red being positive, and totally white
being zero.
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However, it is important to note at this stage that by preserving the degree distribution of the
nodes and at the same time maintaining the same number of edges, the randomisation process
significantly reduces, but does not fully eliminate, the disassortative structure of the network, as
shown in (a.2) and (c.2) within Figure 5. This is due to the fact that the neutral degree correlation under
a power law degree distribution can only be achieved if the condition described in Equation (9) is
satisfied. Therefore, the remaining level of disassortativeness can be regarded as ‘structural’, being
the consequence of the power law distribution, since it is simply a fact that such a distribution of
companies and company types do not allow for the probabilities of selection of all source and target
nodes to be equal.

Figure 5. Average degree, population distribution, and cumulative mutual information values for selected
Japanese prefectures in 2018. Panels (a,b) show the average degree of the neighbouring nodes [23] ‘knn(k)’
(y-axis) of companies with total degree ‘k’ (x-axis, on a lognormal scale) for three selected prefectures:
Osaka (magenta), Kagoshima (turquoise), and Saitama (red). Each dot represents the aggregate of
companies of total degree ’k’ and the average of their neighbours ‘knn(k)’ generated through a binning
process with a minimum of 1000 edges (i.e., datapoints) per bin. Whereas (a) relates to data extracted
directly from the real network, (b) shows the average values for 1000 randomised realisations. Panel (c)
consists of the total degree distribution of companies for the selected prefectures plotted on a log-log scale.
The bottom panels (d,e and f) show the cumulative of the total mutual information I within the y-axis as a
function of the degree distributions of companies, within the x-axis, on a lognormal scale. The left panel
(d) relates to data from the real network, whereas the centre panels (e) consists of the average value of the
mutual information I for each of the 1000 realisations adopting Pij = wij as calculated by Equations (3)
and (7). In contrast, the right panel (f) consists of the calculation of a single value for mutual information
Irth for all aggregated realisations of Pij as described in Equation (10).

4. Conclusions and Discussion

The results of this research indicated that the allometric scaling of the mutual information within
the Japanese interfirm business networks to be akin and analogous to the metabolic rates of biological
systems, providing further substance to the metaphor proposed by West [24] when researching the
scaling of phenomena of cities and economies. Moreover, the 3/4 scaling exponent found in biological
systems [6], as well some of the dynamics within cities and economies [7], fitted very well within
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our complexity framework when applied to the Japanese economy at a national as well as regional
prefecture level.

By measuring the mutual information at a national and regional prefecture, levels under our
framework and method, and evaluating over an extensive time series, it is possible to appreciate the
relationship between mutual information and the level of economic activity and urbanism of these
prefecture, and therefore to place them into a comparative scale.

Moreover, we identified the structural mutual information SMI as the contribution arising as a
result of the structure of the nodes, and segregated from the total mutual information I, which also
includes the dynamics of interaction between agents. In doing so, we were able to clearly articulate
that these quantities essentially represent the distance of a given economic structure from a theoretical
free market configuration.

Such a finding helps to articulate a paradox which is essentially a core to today’s economic
analysis [25]. Whereas markets are most efficient when all agents are equally informed and have
equal competitive chances (essentially there is no existence of preferential attachment and cumulative
advantage mechanisms), these dynamics embedded within a capitalist system lead to a monopolistic
configuration. Therefore, one could reason that in order to promote and protect free markets,
governments and related agencies must actually intervene to mitigate the impact of the above
mechanisms, and therefore be compelled to negate the more extreme interpretations of ‘invisible
hand’ and ‘laissez faire economics’.

From a micro level perspective, the analysis of the pointwise contribution to the mutual
information showed that small companies tended to ‘repeal’ each other and be dependent on large
entities. Again, one could argue that such a configuration is contrary to the efficient, free market
configuration, and therefore has a potential focus to enhanced economic policy.

5. Materials and Methods

5.1. Measuring Entropy and Mutual Information

Individual companies c within the set of companies C are aggregated into groups Sk of companies
with same total degree k:

Sk = {c|kc = k, c ∈ C} (2)

where kc is the total degree of company c.
By making an analogy to the real biological ecosystems, one may regard these groups as

representing the average body size or mass of the individuals within that given group, since the
total degree of companies scale in accordance with their sizes [11,13] within the business context, as
measured by the number of employees, income, or total assets.

The expectation of edges between two groups Si and Sk, or body sizes, is:

wij =
Eij

E
(3)

where Eij is the total number of edges within the network from the source group i to the target group
to j. The sum of these edges represents a proxy for the direct flow of resources between different
groups. E is the total number of edges within the network. Within this configuration, the expectation
w is taken as Pij ≈ wij. Therefore, in a similar manner, the probability of encountering an edge starting
from a node of degree i within the distribution of the total population of E edges is:

P(out)
i ≈ Wi =

∑kmax
x=1 Eix

E
, P(in)

i ≈ Wi =
∑kmax

x=1 Exi

E
. (4)
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The source H(out), target H(in), and total H entropies for both real and randomised networks in
Japan and each of its 47 prefectures in isolation, are calculated in accordance with the classic Shannon
construct:

H(out) = −∑
i

P(out)
i log2P(out)

i , H(in) = −∑
i

P(in)
j log2P(in)

j , H = H(out) + H(in) . (5)

The logarithm base of two intends to represent the discrete and binary nature of undirected and
unweighted edges, i.e., either two selected companies transact to each other or not.

In a similar manner, the joint entropy for two groups i trading with j, is given by:

J = −∑
i,j

Pijlog2Pij (6)

with the corresponding mutual information is given by:

I = −∑
i,j

Pijlog2
Pij

P(out)
i P(in)

j

(7)

and each pointwise contribution to the mutual information being:

I(i,j) = −Pijlog2
Pij

P(out)
i P(in)

j

. (8)

5.2. Network Randomisation and Rewiring Process

Here, we make use of the symbol ( ˜ ) to denote quantities and corresponding outputs from
Equations (2)–(8) associated with the randomised and rewired network. The process consists in
generating a directional edge between two companies, namely the source and target nodes, for each
step until the total number of edges Ẽ = E is achieved. A constraint is placed whereby the total
degree of each node within the population is maintained so that k̃c = kc and S̃k = Sk. In this manner,
the degree distribution is preserved but the degree correlation of nodes is effectively and mostly
randomised. We note, however, that the process as a whole is not totally random (i.e., without any
form of correlations) since the node population constraint leads to slight distortions on the probability
of edge selections, since the condition:

NPαα = NPββ = ... = NPωω, where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N is the total number of nodes

{α, β, ..., ω} is the set of the total degree of the nodes

within the population

{Pα, Pβ, ..., Pω}, the related set of the probability of

nodes for a given total degree

(9)

is not satisfied for every and any power law distribution represented by Pk ∼ k−γ, where γ 
= 1.
Therefore, we define the observed structural mutual information SMI as being the mutual

information for the rewired network Ĩ (i.e., SMI = Ĩ) computed in accordance with Equations (3)–(8)
above with the equivalent quantities of the rewired network.
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Furthermore, we also estimate the probabilities from the outcomes of ρ = 1000 realisations in the
following way:

Pij =
∑R

r=1 Er
ij

E ∗ ρ
, where Er

ij is the value of Eij in the ρth realisation. (10)

As shown in (c.3) within Figure 5, the degree correlation and related mutual information Irth in this
circumstance tends to zero as expected. The comparison between finite statistic and continuum
realisation methods illustrates the effect of applying the analysis of a single realisation only to a real
world network.

5.3. Methods Underpinning the Complexity Framework

As previously described within the Introduction section, the framework draws parallels between
the allometric scaling of metabolic rates and the mutual information obtained from the method applied
to the network. This is done in context of a dataset underpinning a real financial and economic system.

5.3.1. Structural Mutual Information, SMI

As described within the Introduction, the structural mutual information SMI is intended to
capture the basic quantities held by the network simply as a result of the power law like degree
distribution of companies, and their related sizes, through a method inspired by the allometric scaling
in ecological systems.

Therefore, our method adapts the allometric scaling Equation (1) to the context of our research,
specifically a trade network between companies in different territories. We regard the average degree
of each network, namely the total number of trade links E (i.e., the total money flows) divided by
the total number of companies |C| to be equivalent to the supply rate, and therefore R ∝ E/|C|. In a
similar manner, the variability affecting body size can be represented respectively by the ratio between
the diversity of species (i.e., total number of groups) and the number of links within the network, and
therefore Q1 ∝ S/E. Lastly, we take the equivalent of the body size quantity of a prefecture to be
proportional to the largest total degree (i.e., the sum of a node’s in and out degrees) in which in turn it
is proportional to the number of groups, and therefore M ∝ kmax ∝ S. By substituting these elements
into Equation (1), using a single proportional constant λ, and adding a minimum floor parameter, we
obtain:

ŜMI =
λ

|C|S
7/4 + τ (11)

where λ ∼ 0.6 and τ ∼ 0.0275 are empirically derived from the data, and b ∼ 3/4 is also corroborated
by the data.

5.3.2. Total Mutual Information I

As described within the Introduction, the total mutual information I can be regarded a multiplier
to the core, structural mutual information SMI. Therefore, it can be mathematically represented as:

Î = κŜMI + (1 − κ)τ =
κλ

|C|S
7/4 + τ (12)

where it is empirically found that κ ∼ 7/4.
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Abstract: The location quotient is one of the basic quantitative tools for identifying the regional poles
and the turnpikes of economic growth in spatial economy. The disadvantage of this traditional measure
is the limited scope of economic information contained in it. The new measure of economic development
proposed in the article encompasses a complex spectrum of phenomena in one number, as it takes into
account the influence of the public administration sector, as well as top technology in the form of ICT
and its practical business models. It also takes into account the digital prosumption and the platforms
for participation. The participation platforms in the public administration sector are the websites of
municipal public administration offices. A cluster analysis was used to distinguish four quality classes
of these websites. These classes were assigned four different colours, which were then used to draw
up a map of the selected province. Each municipality is marked with a colour that corresponds to the
quality class of the website of the state administration office operating on its territory. The colour system
resulting from the four-colour theorem and the corresponding dual graph play the role of a reference
system in relation to each empirical colour distribution and another dual graph related to it. The measure
of the economic development of a region is the degree of reduction of the dual graph corresponding to
the empirical distribution of colours, which identifies the actual growth poles and determines the routes
of growth. The presented indicator better and more precisely identifies poles and routes of economic
growth than the traditional location quotient.

Keywords: measure of economic development; websites; public administration sector; municipality;
four-colour theorem; prosumption; platforms for participation; location quotient; dual graph;
Euler characteristic

1. Introduction

Development of new technologies has an enormous impact on economic growth. John Hicks in the
classic work Capital and Growth notes that each production technique has a corresponding rate of return,
which is fully determined only by this technique [1]. If it is possible to choose a production technique,
then there should be a technique with the highest rate of return, achievable along a growth equilibrium
path, within the technology. Such a technique is labelled as top technique. It corresponds to the maximum
rate of sustainable growth in the known John von Neumann model [2]. Contemporarily, this role is played
by the digital technique, which transformed the traditional economy into the digital economy. Therefore,
its inclusion is necessary in all studies on economic growth and development.
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The impact of digital computing technologies on the economy is at the centre of the dynamically
developing research trend called wikinomics [3,4]. It was established that there was a significant change
in business rules, which led to the creation of completely new business models. The most important of
them include prosumption and participation platforms. The first implies active involvement of consumers
(recipients) who are a non-standard source of innovation and creativity, in the design and manufacture
of new products (services) [5,6]. Participation platforms include products and technology infrastructure
made available to large communities of partners. Access to these products and technologies enables the
creation of new values and initiates innovative ventures. Prosumption is increasingly becoming digital
and participation platforms are a medium for the flow of economic information.

Participation platforms take the form of websites that help enterprises collaborate with business
partners, clients and the wider economic environment. They enable practical implementation of such
principles of wikonomics as openness, peering, sharing, and acting globally. Participation platforms in the
private sector have become the engine of economic development, as they have contributed to the increase
in production capacity without the need of incurring additional fixed costs. In addition, the creation of
open participation platforms greatly facilitates innovation activities. Web services mashups are becoming
increasingly popular, as they combine various ready-made services or applications, made available by
other websites, into a new whole which has improved quality and functionality.

The possibilities of using participation platforms are virtually limitless, they can be the basis for
development for many different products or services, literally everything that can be controlled by software.
Therefore, participation platforms are not limited to commercial applications, but can also perform many
useful functions in the public administration sector. There are large databases in this sector that are hardly
used. They could become a source of many new services stimulating economic growth and development.
Thus, societies do not make full use of all the opportunities resulting from technical progress to improve
their standard of living. Websites in public administration should take the form of platforms for grassroots
action and include platforms for public disclosure and platforms for neighbourhood knowledge [3] (pp.
199–205).

The purpose of the article is to develop a new, synthetic measure of economic growth in the regional
perspective, which would include in one number abundant information relevant from the point of view
of local entrepreneurship. The object of research is the Warmia and Mazury Province, consisting of 116
municipalities, located in north-eastern Poland. This province is one of the least developed in Poland [7,8],
but in recent years many economic initiatives have been undertaken in order to accelerate the development
and reduce the distance to the rest of the country [9,10]. The proposed measure meets Hicks’s condition
for top technique because it is based on wikinomics business models in the form of prosumption and
participation platforms which are characteristic for digital economy. In addition, this measure considers
the spatial diversity of municipalities, the barriers they encounter in mutual economic cooperation, and it
is also useful for locating regional poles and turnpikes of growth. As it is based on digital technologies, it
is not limited to one industry, effectively covers all types of economic activities that can be controlled by
software. This is an advantage over classic measures of local growth and development like the location
quotient.

Currently, websites of municipal public administration offices—basic units of the local government
in Poland—are much less developed than platforms for commerce, which means that not all factors of
regional economic growth are available to municipal communities. From the point of view of wikinomics,
these websites should be treated as the basic sources of entrepreneurship, as their role should be to initiate
and develop business activities in municipalities. Empirical research confirms the impact of the size of
local government administration at a municipal level on entrepreneurship, but this impact is not clear. It
has been observed that the increase in the size of administration affects entrepreneurship in a negative
way [11]. This justifies the need to observe this issue from the digital technique point of view. Therefore, the
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starting point of the study was to assess the functionality of websites of municipal public administration
offices. The evaluation criterion was the degree of their fulfilment of the role of wikinomics platforms
for participation. By means of cluster analysis, these websites were grouped into four distinct quality
classes: low, medium, high and very high. Four different colours were assigned to these classes, which
were used to map the evaluated province. Each municipality was marked with a colour corresponding to
the quality class of its website. As the map of the studied region is a normal map, it meets the conditions
of the four-colour theorem. In this way, two types of colour systems can be distinguished. The first
results from the application of the theorem itself, while the second includes empirical colour distributions
reflecting the quality classes of websites in specific periods. Based on each map, a corresponding dual
graph was prepared. Capitals of all municipalities were marked on the map of the province, and then the
capitals of the neighbouring municipalities were connected by roads crossing their common borders. The
dual graph meeting the conditions of the four-colour theorem is a reference frame for the research. On
empirical maps, the edges of the graph, indicate barriers to cooperation between individual municipalities.
The new measure of economic growth is determined by comparing the number of edges of empirical
graphs with the reference graph. For this purpose, the generalisation of the Euler characteristic made
by Augustin-Louis Cauchy was used. In addition, the article discusses the problem of dividing websites
into four quality classes in the light of René Thom’s classification theorem. The impact of the complexity
of geographical lines forming boundaries between municipalities on possibilities of application of the
four-colour theorem is also being studied. It can be observed that municipalities in the Warmia and Mazury
Province are fractals, similar to natural structures such as coastlines or clouds and the four-colour theorem
can be used to describe infinitely complex fractal structures.

This paper precisely defines all the methods used in the research to accurately identify the sources of
complexity emerging in the examined system and to facilitate their economic description. The research
belongs to complexity economics, which implies that it is also an element of a wider discipline—the science
of complexity. Advances in information technology have contributed to significant changes in economic
life and have resulted in the need to modify classic economic laws and to discover new ones. This study
combines several mathematical, physical and economic methods applied to obtain an overall measure of
the economic performance of any region consisting of sub-units, which would allow determining growth
and development based on the rules of wikinomics and, in the same time, take into account top technology
as understood by Hicks. The four-colour theorem plays an essential role in the measure of development
proposed in the paper. Number four is not a random number, but an attractor of the economic system, as
indicated by the catastrophe theory formulated by René Thom. The subject of the research is the dynamics
of objects in three-dimensional physical space–time, which consists of two spatial dimensions and one
temporal dimension. These objects are dual graphs based on five maps of the examined province, one of
which was coloured according to the four-colour theorem principles and provides a system of reference,
while the other four are of an empirical nature and present the distribution of website quality classes
of all municipalities in the four periods under consideration. All events taking place in this space–time
continuum consist of the transformations of two-dimensional empirical dual graphs over time. What does
not change is only the dual graph corresponding to the map of the province, coloured according to the
four-colour theorem principles. Following the classification theorem, which underlies catastrophe theory,
in three-dimensional physical space–time there are only five elementary catastrophes, which represent all
possible manifestations of dynamic phenomena. Therefore, all empirical distributions of the municipality
websites quality classes must coincide with four elementary catastrophes, while the fifth catastrophe
represents the dynamics of the environment, i.e., the rest of the national economy since the examined
province is an open system. Consequently, the empirical division of municipality websites into four quality
classes, resulting from the use of the k-means algorithm, is correct in a topological sense. In addition, the
province of Warmia and Mazury—comprising one hundred and sixteen municipalities—is a system so
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diverse that it provides an excellent research subject ensuring an unbiased test verifying the correctness
of the presented method for economic growth measurement. In other words, this province is complex
enough to allow empirical demonstration of the attractor in the form of the number four. It is also possible
to note significant mathematical links between the catastrophe theory and the four-colour theorem. They
lead to the conclusion that the classification theorem provides topological proof of the four-colour theorem.
This fact has not been recognised in science so far and we are probably the first researchers to discover it.

If two adjacent municipalities have websites marked with different colours, i.e., belonging to different
quality classes, then the edge crossing the common border and connecting their capitals symbolises the
absence of significant economic cooperation between them. The existence of cooperation would mean
the unification of websites and their transfer to high or very high quality classes. On the other hand, if
neighbouring municipalities have websites marked with the same colours and therefore belong to the
same quality class, the absence of edges represents economic cooperation between them. The four-colour
theorem is the reference system for the research since the resulting dual graph represents the total absence
of growth poles and cooperation between municipalities. In this case, every two adjacent municipalities are
connected by edges. For Warmia and Mazury, the number of these edges determined based on Cauchy’s
theorem is 277. This value always appears in the denominator of Equation (16), which defines the proposed
measure of economic development, while the numerator contains the changing numbers of the edges of
the empirical dual graphs determined for each year, i.e., 63, 49, 106 and 58. Thus, the defined measure is
an absolute measure, which makes it more objective compared to relative measures commonly used in
economics (e.g., the method for calculating real national income based on price deflators).

The methodological procedure used to develop a new measure of economic development is complex
as it is based on a combination of many different approaches. Its individual stages can be summarised in
the following points:

1. Selection of the province for which the measure is to be designated. Such a region should be
sufficiently diversified economically and it should consist of a large number of municipalities.

2. Development of qualitative criteria for the evaluation of municipal websites on the basis of
wikinomics guidelines.

3. Binary evaluation of websites, which consists in assigning each website the value of one for meeting
a given criterion. If the specified criterion is not met, the assigned value is zero.

4. Calculation of the quality indicator for each evaluated website according to the sum of the values
received for the fulfilled criteria. The maximum number of points signifies that all qualitative criteria
are met.

5. Division of websites into homogeneous subsets called quality classes with the use of the k-means
clustering method. According to the classification theorem by René Thom, the attractor of this
division is the number four, provided the region is sufficiently differentiated.

6. Assignment of colour to each quality class and preparation of an empirical map of the province
with the inclusion of the colour coding of the municipalities according to the quality classes of their
websites.

7. Preparation of an absolute reference system in the form of a map of the province coloured according
to the four-colour theorem.

8. Preparation of the dual graphs for the empirical maps and reference map. Comparison of the number
of edges of the empirical dual graph with the number of edges of the reference dual graph is the
essence of the proposed measure of economic development. The edges of the graphs represent the
lack of economic cooperation between neighbouring municipalities.

The evaluation of municipalities on the basis of the quality of the websites is not the only way to
determine the proposed measure of economic development. This measure may be of a more general
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nature. It could be based on a different socio–geographic–economic indicator that would apply to all
municipalities in a given province and would have four elements in the internal structure.

2. The Location Quotient

The location quotient is one of the basic quantitative tools used to identify regional poles and turnpikes
of growth in spatial economy. It is used to compare two spatial units described by percentage indicators,
one of which refers to the characteristics of a given region (municipality, province), while the other refers
to a higher spatial unit (province or country). The location quotient measures the region’s industrial
specialisation in relation to a larger geographic unit [12–14]. Any base that is significant for the problem
and region under study can be used. For this reason, the location quotient can find application even in
sciences such as criminology [15]. Sometimes bases such as earnings or GDP by metropolitan area are
used, however employment is most often accepted as the most relevant base. Employment in various
sectors of industry is distinguished, moreover trade and services are also included. The location quotient
(LQin) is given by [16,17]:

LQin =
Ein
ETn

/ ∑N
n=1 Ein

∑N
n=1 ETn

, (1)

where: n—small area under study, N—total number of areas, Ei—employment in industry i, and ET—total
employment in all industries.

The location quotient is used in economic research as in [18] (pp. 173–176):

(1) a measure of relative concentration or location advantage/disadvantage of specific industries in the
regional economy;

(2) a proxy for input–output coefficients used to assess regional or subregional multiplier effects.

As a measure of relative concentration, it demonstrates the strengths and weaknesses of various
industries in the region. If the location quotient for the i-th industry is greater than one, then the region is
assumed to be exporting the products or services of that industry. Then, in a given area, relatively more
employees are employed in a specified sector of industry compared to a larger area which implies that
the given area produces more goods or services than are consumed by the area’s residents. The excess
can therefore be exported. When the location quotient is less than or equal to unity, the industry does not
export outside the region, because it is not self-sustainable. In other words, Equation (1) shows whether
the region is an exporter or importer of goods produced by the i-th industry. For LQin > 1 the export
activity (Xin) of regional employment in i-th industry (Ein) is calculated as follows [16]:

Xin = [1 − (1/LQin)] Ein . (2)

Multiplier effects appear due to the fact that a change in regional export activity leads to a total
change in the regional economy. The economic base multiplier is greater than one by the proportion of
local to export activity. It is a special case of the traditional Keynesian multipliers [19]. A total change in
the regional economy is a product of the multiplier and the export change. The economic base multiplier
can be determined from the location quotient as follows [16]:

Xin =

(
Ein
ETn

− ∑N
n=1 Ein

∑N
n=1 ETn

)
ETn . (3)

Typically, the economic base multiplier is calculated by determining the export employment on the basis
of Equation (2) for all industries for which LQin > 1, by summing the export employment of all those
industries, and dividing the sum by total employment. Formula (3) shows that this traditional calculation
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process can be simplified. The calculation of export employment involves subtracting the share of the
nation’s economy accounted for by i-th industry from the share of the region’s economy accounted for by
i-th industry, and the resulting difference is multiplied by the region’s total employment.

This article examines municipalities as the basic spatial units. The superior unit is a province and,
therefore, interpretation of the Formula (1) is affected. If we understand small areas as municipalities
in the Warmia and Mazury Province and tourism (i) is assumed to be a given branch of the economy,
then the individual symbols should be understood as: Ein —employment in tourism in n-th municipality,
ETn —total employment in n-th municipality, ∑ N

n=1Ein —employment in tourism in the entire province,
∑ N

n=1ETn —total employment in a given province. According to the above approach, the measure
expressed by Formula (1) can be used to compare relative concentrations of employment in tourism
of two municipalities.

The main disadvantage of the location quotient is the limited amount of economic information it
conveys. It is designated only for one economic base and does not match modern wikinomics business
models, such as digital prosumption and participation platforms. Nowadays, a new, synthetic measure of
economic activity is needed, which would be appropriate for the digital economy. Such a measure should
be based on teleinformatics and it needs to consider the regional diversity of municipalities, their mutual
cooperation and it ought to allow the identification of regional poles and turnpikes of economic growth.
It is also advisable that it not be limited to one branch of industry but includes all branches if possible.
It is also necessary to consider municipal public administration offices, which—as the smallest units of
the local government—are the initiators of economic activity in their subordinate areas. In this article we
propose a measure that brings together all these key issues into one number.

3. The Four-Colour Theorem

Usually, the four-colour theorem is presented as follows: regions on each map drawn on the plane
can be marked with only four colours in such a way that each two adjacent regions have different
colours [20–22]. Adjacency signifies that the areas are bordering each other along a line. Cases of bordering
in one point or even at a finite number of points are omitted. Region is understood as a fragment of the
plane that is connected, and therefore consisting of only one area.

For normal maps, there is an upper limit on the number of neighbours that regions can border with.
As Alfred Bray Kempe noted, any normal map plotted on a plane meets the following equation [23]:

4p2 + 3p3 + 2p4 + p5 − p7 − 2p8 − 3p9 − · · · − (N − 6) pN = 12, (4)

where pn represents the number of regions on the map that have exactly n neighbours, and N represents
the largest number of neighbours any region can have. The formula starts with p2, because cases when
n = 0 i n = 1 are omitted. Normal maps do not have enclaves or islands. Each pn is either zero or positive,
which is true for n < 6. Equation (4) demonstrates that, at least one of the numbers p2, p3, p4 or p5 has to
be positive, so that the left side of the equation is positive and corresponds to the right side. Therefore, one
of the regions must have either two or three or four or five neighbours. There cannot be a normal map on
a plane where each region would have six or more neighbours.

Each non-normal map can be assigned a normal map that can be drawn with at least the same number
of colours. The truthfulness of the four-colour theorem for normal maps entails its truthfulness for all
maps. The map of the United States is a good example as it is not a normal map because it contains the
quadripoint, i.e., a single point at which the boundaries of the four states meet: Colorado, Utah, Arizona,
and New Mexico. Yet, four colours are enough to colour it [21] (p. 5).

Two concepts appear in the context of the four-colour theorem: the unavoidable set and the reducible
configurations. A set is called unavoidable if it contains a configuration set consisting of a region with
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two neighbours, a region with three neighbours, a region with four neighbours, or a region with five
neighbours. The name of the unavoidable set results from the fact that each normal map must contain at
least one of the four configurations listed. The reducible configuration occurs when it cannot appear on the
minimal five-chromatic normal map, and thus the smallest normal map requiring the use of five colours.
It is enough to find the unavoidable set of reducible configurations to prove the four-colour theorem.

The problem of four colours was formulated in 1852 by Francis Guthrie, who was then a student of
mathematics at University College in London. During the colouring of the map of England, he noticed that
four colours are sufficient to meet the condition that each two neighbouring counties have different colours.
However, proving the four-color theorem turned out to be very difficult and, despite many attempts, it
took mathematicians 125 years. The correct proof was announced in 1976 by Kenneth Appel and Wolfgang
Haken, who based it on the construction of the unavoidable set of 1936 reducible configurations. Later it
occurred that the number of these configurations was higher and finally amounted to 1482 [24]. The most
interesting fact was that the proof was obtained on the basis of computer calculations. In the following
years the proof was improved, but always required the use of a computer [25–29]. Validation of this
proof requires a new type of reasoning, quite different from the one previously used in mathematics,
which, perhaps, goes beyond the capabilities of the human mind. It sparked a discussion about the nature
of a mathematical proof [30]. This problem even initiated some philosophical discussions around the
four-colour theorem, which indicated that it was not an a priori truth, as required by classical mathematical
tradition, but an a posteriori truth [31–33]. The map colouring problem seems to be a task worth a quantum
computer [34].

In recent years, simpler proofs of the four-colour theorem have emerged, as exemplified by the
proposals of the Polish mathematician Antoni Smoluk or John W. Oller, Jr. [35,36], but—so far—these
works have not been the subject of wider scientific discussion. It has even been suggested that some of these
proofs do not require the use of a computer as they can be fully verified by human mathematicians [37]. It
is worth noting in this context that the complexity of the four-colour theorem corresponds to that of the
Riemann hypothesis and is almost four times greater than the complexity of Fermat’s last theorem [38].

4. The Dual Graph

In this part, we will discuss the basic concepts of graph theory that will be needed in further research.
A planar graph is understood as such a graph that can be drawn on the plane in such a way that no two
edges intersect geometrically, except for the vertex, where they combine. As such a graph is represented
on a plane, it is often called a plane graph. A connected graph is a graph in one piece, so any two vertices
are connected by a path. For a planar graph G located on a plane, another graph G∗, called the (geometric)
dual of G can be specified. Its construction takes place in two stages [39,40]:

(1) inside each face F of graph G we choose the point V∗; all these points will create the vertices of the
new G∗ graph;

(2) corresponding to each edge E of the graph G we draw the line E∗ which intersects only the edge E
(and no other edge of the graph G) and connects the vertices V∗ located on the faces F adjoining to E;
these lines form the edges of the dual graph G∗.

The concept of duality has been known for a long time, it was noticed in antiquity that the dual of a
cube is an octahedron, and that the dual of a dodecahedron is an icosahedron. The fact that the graph G
is both plane and connected demonstrates, that a dual graph G∗ has the same properties. Moreover if a
plane connected graph G has N vertices, E edges and F faces, and its geometric dual G∗ has N∗ vertices,
E∗ edges and F∗ faces, then between the numbers of vertices, edges and faces of G and G∗ we observe the
following relations: N∗ = F, E∗ = E, and F∗ = N.
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A map on a plane is a type of planar graph, so such a map also has a corresponding dual graph. The
political map of South America was selected in order to present the idea of constructing a dual graph.
The map was coloured according to the conditions of the four-colour theorem. The map includes 13
countries, within which there are 13 capitals. This map is a type of planar graph, in which the faces
represent individual countries, the edges are inter-state borders, and the vertices form the points where
the borders meet. If we connect the capitals of neighbouring countries with roads passing through their
common borders, then we receive a dual graph of the original map. Capitals of the countries denote the
vertices of the dual graph, the roads connecting the capitals of neighbouring countries are its edges, and
the triangles resulting from the connection of capitals are faces. Figure 1 presents both the political map
of South America and the corresponding dual graph. It should be emphasised that the edges of the dual
graph are not real routes connecting national capitals, but conventional connections in the form of straight
line segments.

 

Figure 1. The political map of South America and the corresponding dual graph.

5. The Model Graph Being the Reference System for Research

In spite of appearances the four-colour theorem does not have significant applications in cartography
and geography. In fact, it can be stated that its role in science is twofold. First of all, it is an extremely
important and unique mathematical achievement, especially with regard to the proof of the theorem,
which initiated a philosophical discussion concerning cognitive capabilities of the human mind. So far,
there is no chance that a human being could personally check the reducibility of all of the configurations
in the unavoidable set. Secondly, from the point of view of other sciences, this theorem is still only a
mathematical curiosity, because non-mathematical sciences lack its significant applications, i.e., those
that would solve a major problem. So far, only a few attempts have been made to apply this theorem in
various fields of science, but these endeavours have not led to significant progress [41–46]. We decided to
break this deadlock. In 2018, we were able to prove that the four-colour theorem can be a useful tool for
identifying spatial regional poles and turnpikes of economic growth [47]. Presently, we wish to proceed a
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step further and present that the theorem can be used to develop tools for measuring regional growth in
the digital economy.

Dual graphs play a major role in the proposed method for identifying spatial regional poles and
turnpikes of economic growth. The conversion of the map into a dual graph allows the study of a very
significant economic problem, which is the cooperation of municipalities. Wikinomics participation
platforms, i.e., websites of municipal public administration offices, are the basis of cooperation. On
one hand, these websites allow municipalities, as the basic units of the local government, to support
entrepreneurship in their subordinate areas, while on the other they enable the manifestation of creativity
and innovation of the inhabitants of these municipalities in the form of digital prosumption. That is why
the quality of websites plays a key role in the modern digital economy.

Two reference systems are used to assess economic growth in the Warmia and Mazury Province. The
first is the dual graph, called the model graph, which corresponds to the map coloured according to the
conditions of the four-colour theorem and is synonymous with a complete lack of growth poles. The
second occurs when the websites of all municipalities belong to the highest quality class. In such a case, the
dual graph is reduced to one vertex, and the whole province becomes one big growth pole and dominates
the national economy. These two reference systems, although they have little chance of occurring in the
real world, form a natural framework defining the scope of research. Everything that occurs in reality
must be between these two cases. However, they point to the essence of the presented method used to
identify spatial regional poles and turnpikes of economic growth. The method involves the reduction
in dual graphs corresponding to real maps and comparing them with the dual graph corresponding to
the reference map. Municipalities on real maps merge into clusters, which denote the quality classes of
websites run by these basic local government units.

According to these guidelines, at the beginning the map of the province was coloured in such a way
that each two neighbouring municipalities were marked with different colours. This allowed the plotting
of the corresponding dual graph. Subsequently, the capitals of all municipalities were marked on the map
of the province, and then the capitals of adjacent municipalities were connected by roads passing through
their common borders. Figure 2 presents the map of the province coloured according to the conditions of
the theorem and the corresponding dual graph. The capitals of municipalities form the vertices of this
graph, while the roads are its edges. The dual graph is plotted in such a way that all its edges are sections
of straight lines. These edges divide the plane into areas called faces. The original map—after eliminating
cases of complete surrounding of one municipality by another municipality—is a normal map on which
each vertex joins precisely three edges. All dual graph faces are triangles because the faces are connected
to the vertices of the original map. Consequently, such a dual graph is called triangulation.
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Legend: m.—urban municipality 

Figure 2. Map of the municipalities of the Warmia and Mazury Province coloured in accordance with the
four-colour theorem and a corresponding dual graph. It is a frame of reference without growth poles.

In the dual graph, the number of edges ending in a given vertex is called the degree of the vertex
and is equal to the number of country borders that on the original map correspond to that vertex. The
circuit of the graph is called a path of edges, which has a beginning and an end in the same vertex, does
not cross itself and divides the graph into two parts: its interior and its exterior. In the vocabulary of
dual graphs, a configuration is understood as a part of triangulation, which consists of a set of vertices
and all edges connecting them. The boundary circuit is called the ring of the configuration [48] (p. 166).
Figure 2 shows that on the original map of the Warmia and Mazury Province there are thirty-nine external
municipalities surrounding its internal part. After plotting the dual graph, they were replaced with the
ring of the configuration, i.e., the boundary circuit, consisting of thirty-nine vertices and thirty-nine edges.
The vertices of first degree, such as the municipality of Dubeninki, were omitted for obvious reasons. The
configuration presented in Figure 2 in dual form is called the thirty-nine ring configuration, since its ring
has thirty-nine vertices. It corresponds to the ring of thirty-nine municipalities that circle the original
configuration.

6. Evaluation of Websites of Municipal Public Administration Offices

The main point of research was the assessment of websites of municipal public administration offices
in the Warmia and Mazury Province in terms of their role as wikinomics participation platforms. The
assessment consisted of sixteen points, which are presented in Table 1 [49,50]. The points were coded with
symbols from A01 to A16. In order to obtain information about the quality of websites, a binary method
was used, which consisted in assigning the value one to the website when the given criterion was met,
or zero otherwise. Afterwards, all values assigned to individual websites were added together. Thus,
the webpage functionality index included a number from the closed interval from 0 to 16.
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Table 1. Criteria for the functionality of the municipal websites in 2009, 2012, 2015 and 2019.

Code Website Functionality Criteria

A01 Website is updated on a regular basis
A02 The postal address of the office is included, directions are provided
A03 The office publishes chat lines and/or discussion lists for the citizens
A04 The structure of the office has been posted
A05 Current information is published on a regular basis
A06 There is a possibility to search for necessary information
A07 A calendar of posts is published
A08 The user can fill and send a form online
A09 Other than Polish language versions are available
A10 Website provides icons that help the user to use the website
A11 The website address of the office is intuitive
A12 Archive exists
A13 A map of the municipality is published
A14 Tourist attractions are indicated
A15 Link to “digital office” provided
A16 Link to ePUAP (Electronic Platform of Public Administration Services) provided

The next stage of research involved the use of the k-means algorithm to divide websites into
homogeneous subsets representing their quality classes [51]. The term cluster analysis was first used in
1939 by Robert Tryon, who was a pioneer in the study of various data classification algorithms [52]. James
B. MacQueen started fundamental studies on the k-means clustering method [53], although the idea itself
came from the Polish–Jewish mathematician Hugo Steinhaus [54], who dealt with this problem in 1956. In
the 1970s, John A. Hartigan and M.A. Wong made a significant contribution to the improvement of the
k-means clustering method [55,56], by proposing a suitable algorithm, finding recognition even today [57].
The well-known standard algorithm was developed by Stuart P. Lloyd in 1957, but the article on this topic
was not published in the scientific journal until 1982 [58]. The problem consists of the division of the data
set X = (x1, x2, · · · , xn) into a predetermined number of k clusters of greatest possible distinction. As
a result of calculations, we obtain a set of k cluster centroids and an assignment of each point X to one
cluster in such a way that the distances of all points belonging to a given cluster from the corresponding
centroid are smaller than their distances from any other centroid. From the mathematical perspective, it is
presented as follows:

argmin
k

∑
i=1

∑
xn∈Ck

‖xn − μk‖2, (5)

where Ck and μk denote clusters and centroids, respectively. The division of the set of observations into
k ≤ n cluster is based upon the minimisation of the within-cluster sum of squares, and thus variance.

It should be noted here that k-means clustering belongs to NP-hard problems [59–63]. In
computational complexity theory NP (non-deterministic, polynomial time) it is the complexity class
containing the set of decision problems that can be solved by a non-deterministic Turing machine in
polynomial time [64] (p. 56). Most of the difficulties arising from the fact that k-means clustering belongs
to the class NP-hard problems can be overcome by using an iterative method known as Lloyd’s algorithm.
It consists of an alternate performance of two operations: (1) when a set of centroids μk is determined,
the clusters Ck are actualised by reducing—inside each cluster—the distance of points from the centroid;
(2) based on the set of clusters, centroids which are the means of all points belonging to individual clusters
are recalculated. These operations take the following form:

Ck = {xn : ‖xn − μk‖ ≤ all ‖xn − μl‖} , (6)
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μk =
1

Ck
∑

xn∈Ck

xn. (7)

This procedure is continued until the assignments of clusters and centroids no longer change. The algorithm
shows the convergence in few steps, but the solution can be in the form of a local minimum. In the worst
case, Lloyd’s algorithm needs i = 2Ω(

√
n) iterations, and thus its running time is superpolynomial [65].

The used big-Ω notation regards the asymptotic lower bounds, and thus the limit of the growth of the
running time of the algorithms from below for large enough input sizes [66]. For the Lloyd algorithm, the
time complexity varies from Ω (n) to 2Ω(

√
n).

Table 2 presents the results of using the Lloyd’s algorithm to divide the websites of municipal
public administration offices into wikinomics quality classes. Four clusters representing websites of low
quality, average quality, high quality and very high quality were naturally separated. On the basis of this
division, it is possible to determine not only empirical dual graphs, the edges of which represent barriers
to inter-municipal cooperation, but also complementary graphs, the vertices and edges of which define,
respectively, digital growth poles and development axes [67]. The study was conducted four times, i.e., in
2009, 2012, 2015 and 2019 [47,50]. Table 2 shows that most municipalities have high and very high quality
websites, which demonstrates that these websites should be treated as the seeds of wikinomics platforms
for participation. After some transformations these websites could perform the role of platforms for
grassroots action, which would include platforms for public disclosure and platforms for neighbourhood
knowledge. In this way, information held by public administrations would contribute to the creation of
new values and services that would benefit both residents and entrepreneurs. Such actions would certainly
lead to the development of entrepreneurship and an increase in the regional economic growth rate and
the level of prosperity. In addition, the high quality of websites would contribute to the development of
digital prosumption, which would enable the use of the natural innovation and creativity of people. In the
processes of prosumption, the difference between the producer and the consumer, the service provider
and the recipient disappears, which allows the passive party, the consumer or the recipient, to participate
in the design, creation and production of goods or services. However, new business models in the form of
prosumption and participation platforms can only function well if the four basic principles of wikinomics
are met: openness, peering, sharing, and acting globally. Under these conditions, it is necessary to give
prosumer communities some control over the product or service. In this case, it involves co-creating some
public administration services by the local government, residents and entrepreneurs.
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Table 2. Four clusters representing the wikinomics categories of quality of the websites of the municipal
administrative authorities in 2009, 2012, 2015, and 2019.

Characteristics Low Quality Average Quality High Quality Very High Quality

Year 2009

Points (min–max) 0–4 5–9 10–11 12–16
Centroid 0 7.72 10.45 13.35

Number of municipalities 17 22 37 40

Year 2012

Points (min–max) 0–6 7–10 11–13 14–16
Centroid 0 9 11.75 14.45

Number of municipalities 6 11 49 50

Year 2015

Points (min–max) 0–6 7–11 12–13 14–16
Centroid 0.47 8.69 11.75 14.65

Number of municipalities 10 32 35 39

Year 2019

Points (min–max) 0–1 8–11 12 13–15
Centroid 1 10.46 12.00 13.87

Number of municipalities 3 30 17 66

7. Determination of Growth Poles and Development Axes According to the Dual Graph Reduction
Method

Empirical maps and the resulting dual graphs were created in a similar way to the reference map and
the reference dual graph. The only difference is that each municipality received a colour corresponding
to the quality class of its website run by the administration office operating in its area. After the map
of the examined province was coloured in accordance with the quality classes of websites, it occurred
that some neighbouring municipalities have the same colours. If these colours correspond to classes of
high or very high quality, then it is assumed that the given municipalities form spatial poles or even
regional axes of growth and development when there are more municipalities. Generally speaking, the
same colour of neighbouring municipalities, i.e., having websites of the same quality, is interpreted as
a form of cooperation between the municipalities. The empirical dual graphs of the studied province
were created on the assumption that a set of neighbouring municipalities, marked with the same colour, is
treated as one region. In this case, the contractual capitals of all regions or even individual municipalities
are marked with points, provided that they are separated from the surrounding, and then connected with
sections of straight lines passing through the common borders of these regions or municipalities. In this
way a dual graph corresponding to the real map is created. It is reduced in comparison to the model dual
graph corresponding to the map coloured according to the four-colour theorem. The reduction in the
edges of empirical dual graphs indicates inter-municipal economic cooperation. However, the existence of
edges connecting neighbouring municipalities indicates the existence of certain growth barriers, because
the websites belong to different quality classes.

Enterprises and sectors of the economy which initiate economic activity in a given area and contribute
to better economic results of enterprises and industries operating in their environment are propulsion
units that form regional poles of growth. The growth pole theory was developed in the 1950s by the French
economist François Perroux [68], who included in his research many innovative elements that are the basis
of today’s complexity economics [69]. According to wikinomics, a characteristic feature of a growth pole is
the initiation of economic activity with use of advanced ICT tools. A website of the municipal office of
public administration, which acts as a participation platform and integrates and strengthens the economic
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forces operating in the territory of a given municipality can be such a pole. The higher the quality of a
website, the greater the chance that it will become a local growth pole.

The theory of development axes elaborated in 1963 by Pierre Pottier is closely connected with the
theory of growth poles, according to which economic development is spreading along trade routes and
transport networks connecting major industrial centres [70,71]. Territories located between growth poles
and providing transport communication receive additional growth impulses due to the increased flow of
goods, the spread of innovation and the development of infrastructure. Therefore, they transform into
development axes (corridors), which together with the growth poles define the spatial framework for
economic growth of a large region or country. The axis concept helps to connect the transport network with
the urban hierarchy theories and growth centres into a single unit. These concepts can be easily adapted
to the research regarding the Warmia and Mazury Province. Currently, the role of the development axes
is played not only by transport networks, but also by computer networks. In the digital economy, the
role of ICT is at least as important as traditional trade routes. The spatial distribution of municipalities
that have high or very high quality websites form wikinomics poles of growth, indicates through which
paths the economic growth spreads in space and where barriers to growth appear. In this way, digital
growth turnpikes or development axes can be identified in the economic space. The lack of edges between
neighbouring municipalities means that the municipalities have websites belonging to the same quality
class. The high or very high quality of these websites means that development axes are created between
these municipalities. However, if there are edges between neighbouring municipalities, it can be said that
there are growth barriers between them.

Figure 3 presents a map of the Warmia and Mazury Province, where municipalities are marked with
colours representing the quality classes of websites maintained by municipal public administration offices
in 2009 [50]. A comparison of dual graphs corresponding to the reference map based on the four-colour
theorem and the empirical map from 2009 indicates that the impact of local growth poles on the area is
associated with a reduction in the number of vertices and the number of edges of the graph formed on the
basis of the actual map. The dual graph shown in Figure 3 has significantly fewer vertices and edges than
the dual graph associated with the reference map with no growth poles. In this way essential information
regarding regional economic growth is presented. The dual graph associated with the empirical map from
2009 indicates a particular feature of the province in question. Overall, it is dominated by historically
and politically conditioned infrastructural growth poles, that are closely related to road, rail and inland
waterway infrastructure existing in the Warmia and Mazury Province [47]. Historical considerations result
from the fact that this infrastructure is the effect of the work of many previous generations that have built
it over the last several hundred years.

The infrastructure currently existing in the studied province is also the result of political history,
which dates back to at least the 13th century. In the years 1226–1466 the area was ruled by the Teutonic
Order (Monastic State of the Teutonic Knights). The order contributed to the economic development of
these lands by introducing technical progress in the form wind milling improving the process of grinding
and replacing the previously used hand-mills [72]. As a result of the Second Peace of Thorn, which was
signed in 1466, the State of the Teutonic Order was split into Royal Prussia and Teutonic Prussia (since
1525 Ducal Prussia). Both parts of Prussia were actually attached to Poland, but the latter was dependent
on fiefs [73,74]. The period from the 15th to the 18th century (and also a little later) was a golden period of
development of windmills in Warmia and Mazury. At that time, these areas were formally or informally
part of the Polish economy. The location of windmills in this area was consistent with records from the
turn of the 19th and 20th centuries, and closely correlated with the existing transport infrastructure. Thus,
windmills have marked the basic, existing to this day, trade and communication routes. To conclude
these historical remarks, it should be noted that a significant part of the Warmia and Mazury Province
later belonged to East Prussia and it was only in 1945 that it was incorporated into Poland as part of the
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Recovered Territories. The studied province currently borders on the north with the Kaliningrad Region
belonging to Russia. To sum up, the infrastructure currently existing in this area is not only the result of a
specific economic history, but also of political history.

Legend: m.—urban municipality 

Figure 3. The map of the municipalities of the Warmia and Mazury Province divided into categories of the
quality of the websites maintained by municipal public administration offices in 2009 and a corresponding
dual graph.

As noted above, high and very high quality municipal websites are closely linked to the transport
infrastructure created in previous years. A cluster of municipalities with very high quality websites is in
the western part of the province and it creates a development axis located on the north–south line. The
transport infrastructure in this area comprises of four elements:

(1) the Ostróda–Elbląg Canal, which was built in the 19th century;
(2) Elbląg port, serving cargo barges floating on the Vistula Lagoon, improving trade exchange between

Poland and Russia;
(3) road connections Nidzica–Olsztynek–Ostróda–Pasłęk–Elbląg–Braniewo–Królewiec with two road

border crossings Gronowo–Mamonowo and Grzechotki–Mamonowo II;
(4) Malbork–Elbląg–Bogaczewo–Braniewo–Królewiec railway line with the Braniewo–Mamonowo

railway border crossing.

The second cluster of municipalities with the highest quality of websites is located in the eastern
part of the province and creates a development axis also running along the north–south line. There are
two national roads in that part of the province. The first of them (No. 63) runs through Pisz, Orzysz,
Giżycko, Węgorzewo and before 1945 led to today’s Kryłów in the Kaliningrad Region (on the Russian
side). Currently there is no border crossing there. The second road (No. 65) runs through the cities of
Ełk, Olecko, Gołdap and ends with the Polish–Russian road border crossing Gołdap–Gusiew. On the
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map presented in Figure 3 it is possible to notice the third cluster in the form of a strip of municipalities
with high and very high quality sites located in the central part of the province, which is located on
the southwest–northeast line. The national road No. 16, which connects towns such as Iława, Ostróda,
Olsztyn, Mrągowo, Orzysz and Ełk, and then crosses the Podlasie Province and runs up to the border
with Lithuania in Ogrodniki forms the main communication route in this region. This cluster has a
railway line No. 353 connecting the towns of Iława–Ostróda–Olsztyn–Czerwonka–Korsze, which ends
with the Skandawa–Żeleznodorożnyj railway border crossing. The fourth cluster, slightly less visible, is
connected with the national road No. 51, which connects the towns of Olsztynek, Olsztyn, Dobre Miasto,
Lidzbark Warmiński, Bartoszyce and ends with the Bezledy–Bagrationowsk border crossing. To sum up,
the empirical map from 2009 together with the corresponding dual graph (Figure 3) allows the location of
four clusters of municipalities with regional growth poles connected by a transport network. The Warmia
and Mazury Province is therefore one of the best examples of the correctness of the development axes
concept proposed by Pierre Pottier. It is also worth noting that the barriers to growth and development,
represented by the edges of the dual graph, are located near the northern and southern borders of the
province.

Figure 4 presents a map of the Warmia and Mazury Province, in which municipalities are marked with
colours representing the quality classes of websites operated by municipal public administration offices in
2012 [50]. It can be observed that in comparison to 2009, the number of municipalities with high and very
high quality websites has increased significantly. The dual graph from 2012 has significantly fewer edges
than the dual graph from 2009. This demonstrates the emergence of new growth poles and development
axes that have contributed to the elimination of many barriers to inter-municipal cooperation. Barriers
located near the northern border of the province could not be removed, so investment and innovation
should be continued in this area.

Legend: m.—urban municipality 

Figure 4. The map of the municipalities of the Warmia and Mazury Province divided into categories of the
quality of the websites maintained by municipal public administration offices in 2012 and a corresponding
dual graph.
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The investment in the construction of fibre-optic backbone distribution network with a length of
2292 km along with the appropriate infrastructure significantly contributed to the rapid progress in the
development of municipal websites in 2012 [75,76]. The network consists of 216 distribution nodes, 10
backbone nodes, 2 contact points to a higher-level fibre-optic network and two network management
centres. In the distribution layer, the network provides access with a bandwidth of at least 30 Mbit/s,
and in the backbone layer at least 100 Gbit/s, thus meeting the requirements of next generation access
(NGA) networks. The purpose of this project was to provide access to broadband internet to residents,
enterprises and government institutions in the Warmia and Mazury Province. This investment was carried
out in the years 2008–2015 and its value amounted to PLN 327,041,042.07 (approx. EUR 71,559,490.65).
It was financed by the European Regional Development Fund, the state budget and the province’s own
contribution. The project was implemented on the basis of public–private partnerships as part of the
design, build, operate, transfer (DBOT) model. The Warmia and Mazury Province is the owner of the
created infrastructure, while the private partner was obliged to design, build, manage and operate the
telecommunications infrastructure until the end of 2025. After this time, all generated assets will be
transferred to the public partner.

Investment in the development of telecommunications infrastructure is crucial for the region’s
economy, as it will accelerate its development and facilitate the introduction of innovative technologies.
Computer networks form the basis of digital economy, contribute to the intensification of modernisation
processes of existing enterprises and stimulate the development of new products and services provided
with use of the Internet. This type of growth refers to the well-known economic turnpike theory [77,78].
This name comes from an American English word meaning highway. Let us assume that we want to put
the economy on the sustainable growth path, which is the maximum rate of growth in the sense of von
Neumann. This path is associated with the top technique, which gives the highest rate of return. The
solution resembles a dilemma of a driver who wants to reach his destination as soon as possible and has a
choice between using the turnpike and the minor roads. Most often, the best choice turns out to be the use
of a turnpike, even if it involves incurring costs at intermediate stages. This development method was
chosen in the studied province, because according to wikinomics, the information and communication
technique is now the top technology. Thus turnpikes can appear both in economic spaces, described by
mathematical growth models, and in physical spaces, creating development axes defined by Pierre Pottier.

Figure 5 presents a map of the Warmia and Mazury Province, in which municipalities are marked with
colours representing the quality classes of websites maintained by municipal public administration offices
in 2015. It can be observed that the number of municipalities with high and very high website classes has
heavily decreased. Thus, the number of municipalities with websites belonging to low or medium quality
class has increased. At the same time, in comparison to 2012, the number of vertices and dual graph edges
associated with the empirical map of 2015 increased, which can be interpreted as the emergence of new
development barriers hampering the region’s economic growth. The reasons for this state of affairs should
be sought in the sphere of economic policy. The deterioration in the quality of websites may result from
the fact that on 15 September 2015 all construction works related to the broadband network discussed
above were completed. The network is backbone-distribution; therefore, its implementation does not
signify an immediate improvement in internet access for residents, institutions and enterprises. It is also
necessary to build the last mile networks, i.e., access networks, which will connect individual end users to
the main network. This task was entrusted to local telecommunications operators, who on an equal basis
can provide internet access services to interested entities from the Warmia and Mazury Province.

The decrease in the quality of many websites of municipal public administration offices can be
explained by the fact that delays related with the construction of the last mile network were not taken
into account and existing internet connections, such as radio networks, were too lightly abandoned.
To prevent delays, the Digital Plan 2025 for Warmia and Mazury was implemented, which aims to
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eliminate or reduce economic barriers that would hinder the construction of the last mile networks in
the studied region [79,80]. This plan is a unique agreement in nationwide scale signed between the
Province Board and the authorities of districts and municipalities from the region. As part of it, fees for
placing telecommunications infrastructure along public roads have been reduced and unified, and this
infrastructure has been exempted from property tax, in order to reduce the price of internet access for the
end user. This programme is treated as a flywheel for the socio–economic development of the region, as it
is intended to support the development of an innovative, low-carbon economy and direct entrepreneurship
to services and products offered through a global network. It is worth noting that the internet network
in the Warmia and Mazury Province is strongly correlated with the locations of windmills in the past
centuries, most of which are gone today. As mentioned, windmills had a decisive impact on the formation
of the transport network in the region. Over time, old trade and merchant routes were transformed into
today’s public roads. The development of modern road infrastructure was based on historical trade routes,
which proved to be an economically advantageous solution. This is due to the geographical diversity of the
land surface in Warmia and Mazury, where there are many rivers, streams, forests and thousands of lakes.
Construction of new roads overcoming these obstacles would be too expensive, although such projects
are undertaken in special cases, such as bypasses of major cities. The fact that the telecommunications
infrastructure runs along ancient roads shows that the development axes in the region under review are
extremely durable. In other words, not only growth poles, but also development axes are the result of
historical and political considerations.

 
Legend: m.—urban municipality 

Figure 5. The map of the municipalities of the Warmia and Mazury Province divided into categories of the
quality of the websites maintained by municipal public administration offices in 2015 and a corresponding
dual graph.

Figure 6 presents a map of the Warmia and Mazury Province, in which municipalities are marked
with colours representing the quality classes of websites maintained by municipal public administration
offices in 2019. As is easy to see, the number of municipalities with websites included in the classes of
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high and very high quality has significantly increased. Some barriers that prevented inter-municipal
cooperation in previous years have also disappeared. This signifies that new digital growth poles and
development axes have emerged in the surveyed province. These changes prove that the Digital Plan 2025
for Warmia and Mazury is being implemented gradually. Nevertheless, the empirical dual graph from
2019 demonstrates that there are still many barriers to development, especially in the northern and eastern
parts of the region.

 
Legend: m.—urban municipality 

Figure 6. The map of the municipalities of the Warmia and Mazury Province divided into categories of the
quality of the websites maintained by municipal public administration offices in 2019 and a corresponding
dual graph.

8. Descartes’ Theorem, Euler Characteristic, and Cauchy Modification

The determination of the measure of economic growth of the Warmia and Mazury Province requires
designating the relationship between the numbers of vertices, edges and faces in the dual graph. René
Descartes (1596–1650) was the first to study the general properties of polyhedra. He presented the
basic theorem regarding the problem in the work Progymnasmata de Solidorum Elementis (Exercises on the
Elements of Solids) [81]. It reads as follows:

Theorem 1. The sum of the deficiencies of the solid angles in a polyhedron is always eight right angles.

The deficiency of a solid angle is the amount by which the sum of its face angles is smaller than
360◦. The size of deficiency determines the sharpness of the solid angle in such a way that the greater
the deficiency the more acute the angle. In a cube, the deficiency of each solid angle is 90◦, whereas in a
dodecahedron the deficiency of each solid angle is 36◦. It is worth noting that in both cases the deficiencies
of all solid angles amount to 720◦, which equals eight right angles (the whole sphere) [82] (pp. 187–189).
Based on this theorem, Descartes formulated two statements:
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1. There are always twice as many plane angles as sides [E] on the surface of a solid body, for one side
is always common to two faces.

2. I always take α [V] for the number of solid angles and φ [F] for the number of faces. The actual
number of plane angles is 2F + 2V − 4.

Symbols V, E, and F in square brackets are abbreviations of modern equivalents of terms used by
Descartes: numbers of vertices, edges, and faces of a polyhedron accordingly. The following relationship
results from the above:

Number o f plane angles = 2F + 2V − 4 = 2E, (8)

which gives the basic result:
F + V − E = 2. (9)

Perhaps Descartes was unaware of the existence of such a relationship in a polyhedron [83] (p. 515), but it
is not certain. There is no proof of this theorem in his work. However, Descartes did not publish the work
Progymnasmata, its content survived as a result of several unusual events. The history of this manuscript is
described by Peter Cromwell in his book Polyhedra [82] (pp. 181–182):

In the autumn of 1649, Descartes went to Stockholm at the invitation of Queen Christina of Sweden, but
the severity of the climate was too much for him and he died six months later. His belongings were shipped
back to France but suffered accident on route, the box carrying his manuscripts ending up in the Seine at
Paris. The papers were rescued from the river, separated and dried. Later, some were published and the
remainder were made available for consultation. In 1676 Gottfried Wilhelm Leibniz (one of the founders of
the calculus) made copies of several of the latter manuscripts including the work on polyhedra. Descartes’
original manuscript has vanished and it is only through the copy that the work is preserved. Even so,
it remained unknown until 1860 when the copy was discovered by Comte Foucher de Careil among a
collection of uncatalogued Leibniz papers.

Leonhard Euler (1707–1783)—Swiss mathematician and physicist—was another researcher who began
studying the general properties of polyhedra. At the time mathematicians used to describe their findings
in letters to friends. This was due to the long waiting time for publication of results. Euler corresponded
for many years with the German mathematician Christian Goldbach (1690–1764). In a letter dated 14
November 1750 Euler wrote to Christian Goldbach that he had begun studying polyhedra. The Swiss
scholar aimed to categorise the properties of various and seemingly unrelated solids. Below is an excerpt
from his letter [84] (p. 76):

Recently it occurred to me to determine the general properties of solids bounded by plane faces, because
there is no doubt that general theorems should be found for them, just as for plane rectilinear figures,
whose properties are:

(1) that in every plane figure the number of sides is equal to the number of angles, and
(2) that the sum of all the angles is equal to twice as many right angles as there are sides, less four.

Whereas for plane figures only sides and angles need to be considered, for the case of solids more parts
must be taken into account . . .

Euler wrote two papers on the polyhedral formula that were published in 1758. The first contains the
statement of the theorem [85], while the second contains the poof [86]. The theorem given by Euler has the
form:

Theorem 2. In every solid enclosed by plane faces, the number of faces along with the number of solid angles exceeds
the number of edges by two.
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Using previously proposed symbols the relation can be presented as follows:

F + V = E + 2, (10)

hence
χ = V − E + F = 2, (11)

where χ stands for the Euler characteristic. The number χ is a topological invariant, as it describes a
topological space’s shape or structure. Euler aimed to classify all polyhedra, by developing the theory of
stereometry (solid geometry) in the image of existing planimetry (planar geometry). However, in the above
theorem, he indicates that the considered polyhedra are enclosed by planes, therefore convex polyhedra,
which is a sufficient condition for the truthfulness of his formula. Euler, however, was not able to provide
a rigorous proof of the theorem [87–89].

In 1813, French mathematician Augustin-Louis Cauchy (1789–1857) generalised the Euler
characteristic by projecting the polyhedron onto a plane. One of the faces of the polyhedron is assumed as
the basis, and then all the other vertices are transferred to it without changing their number, which gives
a set of polygons within this chosen face. In other words, the result of flattening of the polyhedron is a
plane network of polygons. In this way Euler’s formula can be presented in the form of planar graphs or
equivalently as maps on the plane. Cauchy’s theorem has the following form [90] (p. 77):

Theorem 3. If a polyhedron is decomposed into as many others as we choose, by taking at will new vertices in the
interior, and if the number of new polyhedra so formed is denoted by P, the total number of vertices including those of
the original polyhedron by S [V] the total number of faces by F, and the total number of edges by A [E], then

V + F = E + P + 1, (12)

that is, the sum of the number of vertices and that of the faces exceeds by one unit the sum of the number of edges and
that of the polyhedra.

Euler’s theorem is a special case of Cauchy’s theorem. After assuming that all the polyhedra are
reduced to a single one, which is equivalent to P = 1, the Equation (10) is obtained. Another theorem that
applies to plane geometry can also be derived from Cauchy’s theorem. Let all polyhedra be reduced to one.
Let us assume that the last polyhedron will be transformed so that all the other vertices will be projected
onto the selected face, without changing their number. This means substitution P = 0 in Equation (12),
which gives

V + F = E + 1. (13)

This leads to the conclusion that the sum of the number of vertices and the number of faces exceeds by one
unit the number of edges. Theorem (13) in plane geometry is the equivalent of the general theorem (12) in
the geometry of polyhedra. Both theorems have been proved by Cauchy [84] (pp. 79–83).

9. Measurement of Economic Development in the Province of Warmia and Mazury

The proposed method of economic growth measurement is based on dual graphs, one of
which—corresponding to the model map—plays the role of a reference system, while the others contain
information about growth poles and development axes in individual years. The essence of economic
growth measurement consists in comparing information contained in empirical graphs with the model
graph. The latter is an absolute reference system, which makes our measure resistant to relative
comparisons. It is something like absolute time in the sense of Isaac Newton. This situation in science
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is extremely rare, because all reality is constantly changing. The four-colour theorem gives us a kind of
anchor that establishes dynamic and lasting links between an objective mathematical being—which is
the four-colour theorem—and the changing economic situation. Usually in science we are constricted to
relative comparisons. Calculation of real amounts of national income when we have nominal amounts of
this income in individual years is a good example of this problem. The only way to solve this dilemma
is to adopt the national income from a given year as the base value, and then determine the income in
the remaining years at prices from the base year. This is an assumption that must be made and on which
the calculation result depends. In the measure of economic growth presented here, this assumption is
unnecessary.

The next step of the proposed method is the reduction of the dual graph. It happens when two
bordering municipalities have web pages belonging to the same quality class. The removal of the edge
means that the barrier of local growth has been overcome, which allows both municipalities to grow
together which in turn may allow them to become the seed of a new growth pole. The edges of the dual
graph correspond to the growth barriers, so they should be calculated precisely. For this purpose, the
Euler characteristics χ (S) for convex polyhedra can be used as follows:

χ (S) = V − E + F = 2, (14)

Due to the need for economical interpretation of the dual graph it is better to apply the Cauchy
interpretation of the above formula, which is applicable in plane geometry:

χ (G) = V − E + F = 1. (15)

In this way, we focus only on the dual graph itself, which is a representative of the contribution of the
public administration sector to the economy of the Warmia and Mazury Province. In this case, we are not
interested in the environment, and thus in the calculation of χ (G), the infinite (unbounded) face outside
the dual graph, which contains a point in infinity, is not counted. Table 3 presents the results of calculating
the number of vertices, faces and edges of all the dual graphs discussed above with the use of the Cauchy
formula.

Table 3. Characteristics of dual graphs corresponding to the political map of South America, the reference
map and four empirical maps of the Warmia and Mazury Province.

Type of Dual Graph
Number of Vertices

(V)
Number of Faces

(F)

Cauchy’s Formula Interpretation

Number of Edges
(E=V+F−1)

Euler Characteristic
(χ(G)=V−E+F)

Political map of South America 13 13 25

1

The reference graph
(four-colour theorem) 116 162 277

The empirical graph 2009 36 28 63
The empirical graph 2012 28 22 49
The empirical graph 2015 55 52 106
The empirical graph 2019 36 23 58

The definition of a new measure of the region’s economic development (MD) based on the four-colour
theorem is as follows:

MYear
D = 1 − Sum o f edges o f the dual graph on the real map

Sum o f edges o f the dual graph on the re f erence map
. (16)
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The limit values of the fraction in the above formula are as follows:
0—(no edges) dual graph has only one vertex ⇒ all municipalities cooperate with each other ⇒

MYear
D = 1.

1—(all edges) no municipality cooperates with any other ⇒ empirical map = reference map ⇒
MYear

D = 0.
This measure, apart from being economic in nature and referring to the equipment of the public

administration sector in the latest telecommunications technologies, also takes into account the spatial
aspects of economic development. It can be applied to any region that consists of smaller and
simultaneously autonomous spatial units.

The proposed measure in one number contains a complex set of information, and at the same time
it is simple to use. It can therefore be used in interregional research, and it also allows intertemporal
analyses. It has both a static and dynamic character. It can be used to identify spatial growth poles and
development axes in the public administration sector, and thus also in the entire regional economy, in
this case the province economy. However, it is required that there are public administration offices in the
smallest surveyed units (municipalities) belonging to a higher-order unit (province).

The calculation method of spatial economic growth measures in individual years in accordance with
the Formula (16) and the data contained in Table 3 is as follows:

M2009
D = 1 − 63

277
= 0.7726, (17)

M2012
D = 1 − 49

277
= 0.8231, (18)

M2015
D = 1 − 106

277
= 0.6173, (19)

M2019
D = 1 − 58

277
= 0.7906. (20)

The result can be rounded to four decimal places. Establishing certain thresholds defining the development
phases of the region requires similar research to be carried out in all provinces, i.e., on the scale of the
entire national economy.

Interpretation of the indicators points to a conclusion that that despite the increased financial outlays,
public administration in the Warmia and Mazury Province is a weak factor of economic growth. Taking as
a basis the assessment of the starting situation from 2009, we can see a great progress in 2012, intensified
inter-municipal cooperation, as evidenced by the fact that many edges of the dual graph are reduced.
New local growth poles appear and new ways of spreading economic growth are formed. However, in
2015 regress occurs and the situation becomes worse than in 2009. This should be connected with the
completion of the construction of a fibre-optic network, which allowed access to broadband internet for
businesses in almost the entire region. This means that public administration is a very sensitive sector
for changes in financing. The source of this financing is mainly government spending. It is true that the
network was built, but apparently it was forgotten that it is not a one-time investment and that it requires
further government spending to properly use it. However, a remedy in the form of the Digital Plan 2025
for Warmia and Mazury was found relatively quickly [79]. The situation improved significantly in 2019,
which is a sign of clear progress in the construction of the last mile networks.

There are interconnections between the growth poles and development axes in the form of the
municipal digital platforms and the transport infrastructure. One is a mirror image of the other. Strictly
speaking, there are feedbacks between them, which can be both positive and negative. Certainly, the
construction of the fibre-optic backbone distribution network will have a great impact on the expansion of
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the transport infrastructure and thus contribute to the economic development of the region. However,
infrastructural changes are slow, so the economic development measure expressed by the Equation (16)
may be a leading indicator. According to the latest research, in Warmia and Mazury the synthetic index
of regional innovation development has shown a steady decline since 2009. In 2009, this index was 0.27,
in 2014 it was 0.24, and in 2019 it decreased to 0.22 [91]. After comparing it with the new measure of
economic development introduced in this article, it is clear that digital growth poles and development axes
precede investments in the expansion of transport networks, which form the main routes to prosperity
and welfare in the region. As infrastructure-based economic growth is slow, the time gap between the two
indicators can range from several months to even several years.

10. Discussion

The application of k-means clustering led to the creation of four quality classes for websites of
municipal public administration offices in the four examined years. As presented below, this classification
of websites is natural in a topological sense. Moreover, the diversification of the examined objects from
a static point of view (one point in time, i.e., a specific year) and dynamic point of view (four points
in time or more) allows the drawing of more far-reaching conclusions. Changes taking place in quality
classes—represented by the transformation of dual graphs—prove that the Warmia and Mazury Province is
a complex adaptive system. A complex adaptive system should be understood as an object that exchanges
energy, matter and information with the environment; furthermore it functions based on cognitive schemas
and has the ability to tune to the edge of chaos [92]. It is therefore an open system showing emergence.
This conclusion can be justified on the basis of the catastrophe theory, which is a method of classifying
stable forms [93–101].

Catastrophe theory is based on Thom’s classification theorem [102–104]. It indicates that any
singularity of the catastrophe map is equivalent with one type of singularity belonging to a finite family
of types, which are called elementary catastrophes. In addition, the catastrophe map is locally stable at
all manifold points due to small perturbations. The number of elementary catastrophes depends only on
the codimension (the number of control variables). Elementary catastrophes describe all possible ways of
manifesting discontinuities in dynamical systems. Considering the examined problem of the division of
websites into four quality classes, the case of codimension = 3 is essential. Then the control space can be
interpreted as physical space–time, which consists of two spatial dimensions and one time dimension. All
events that occur in this space–time rely on the transformations of the dual graph on the plane, which occur
over time. The catastrophe map then has five types of singularities. Four elementary catastrophes can be
attributed to four quality classes of websites of municipal public administration offices, while the fifth
catastrophe is related to the environment, and thus to what is located outside of the province under study.
This interpretation of reality seems to be confirmed by life itself. The division of a three-dimensional entity,
consisting of a two-dimensional object located on a plane and changing in time, into four quality classes
is therefore natural. In other words, the compliance of the division of websites into four quality classes
with Thom’s classification theorem proves that this division was made correctly. The fifth catastrophe,
representing the space located outside of the examined province, emphasises the fact that the examined
province is an open system that exchanges matter, energy and information with the environment, i.e., with
the rest of the national economy or even the world economy. It is worth noting that monetary flows that
enable the functioning of municipal public administration offices and initiate the economic development
of the province originate from the space outside of the province.

The studied province is a complex adaptive system because it can be described by a measure called
total information, which is the sum of effective complexity and an entropy term [105]. Effective complexity
is the length of a compact description of the regularities identified in the examined system, and thus
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describes the object’s rule-based features. The effective complexity of the studied province is represented by
dual graphs. Whereas the entropy term measures the information necessary to describe the random aspects
of the entity. Entropy can also be understood as an ignorance measure based on Shannon informational
entropy [106,107]. In this case, ignorance should be understood as the degree of unawareness of the
national economic centre regarding the investment needs of the region.

One of the issues that need clarification is the impact of the geographical line complexity on results
obtained through the four-colour theorem. Borders between countries, provinces and municipalities are
not always smooth lines, sometimes they can have a very complex shape, depending on the terrain. The
Warmia and Mazury Province is very diverse in terms of nature, has over 3000 lakes, many rivers and
streams, and more than a third of its surface is covered by forests. The topography is mostly lowland,
but hills and valleys occur in many places. In such conditions, it is often the case that the geographical
lines separating individual municipalities are complex. It seems logical that the longer the common
border between the two municipalities, the greater the likelihood that they will undertake economic
cooperation and thus transform into one pole of growth. However, there may be exceptions to this rule
when neighbouring municipalities compete for some common resources.

English researcher Lewis F. Richardson was the first to apply a topological approach to study armed
conflicts between states [108,109]. He considered various causes of wars, and one of them was spatial
relations. In particular, he studied the impact of common borders between the two countries on the
emergence of conflicts. Richardson used the Euler characteristic for this purpose, which presents the
relationship between the numbers of vertices, edges and faces in the polyhedron. It is established that
during the period he studied, i.e., the years 1820–1950, there were about 60 stable nations and empires in
the world. This allowed him to demonstrate that for any plausible arrangement of nations, the average
number of neighbours for each of these countries should be around six. So, if countries seeking war would
select their enemies entirely at random, there would be a ten percent chance that every pair at war would
have a common border. Richardson’s research, however, showed that in the period under review, out of
94 international wars, which had only two participants, only 12 cases concerned combatants that had no
common borders. This leads to the conclusion that close neighbourhood can be one of the main causes of
conflicts.

Richardson found that the result of measuring the length of complex geographic lines, such as sea
coasts or borders between countries, depends on the unit of measurement [110] (p. 26). The measured
length is the greater the smaller the yardstick. This is because a shorter ruler measures more accurately
the sinuosity of coastlines or land borders than a longer ruler because it takes greater account of the
roughness. According to intuition, one would expect that taking smaller and smaller units of measurement
will cause the total of the measurements to tend to a certain finite number representing the true length of
the geographical line. However, it has been established to be otherwise. If the length of the meter decreases
to zero, then the length of the shoreline or boundary tends to infinity. This phenomenon is now known as
the Richardson effect. In this context, the coastline paradox is also discussed. It can be concluded that the
length is not an adequate feature to describe a geographical line, because its length is simply undefinable.
Geographical lines are actually fractals that can be described by the fractal dimension which is determined
by the slope of a straight line obtained by plotting the length of the ruler versus the measured length of
the geographical line on a log–log plot [111,112]. This is how Richardson discovered fractals [113] (p. 260).

There are similarities between the measure of economic development of a separate spatial object
(province) based on the four-colour theorem proposed in this article and Richardson’s research on the
causes of armed conflicts. Richardson focused on the study of spatial relations, which prompted him
to use dual graphs to analyse the data collected on international wars. Modern reconstructions show
that these graphs were very complicated [114]. War was marked on the map with an edge connecting
the countries involved. In addition, the thickness of the edge reflected the magnitude of the conflict.
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Richardson classified wars and other quarrels on the basis of a method borrowed from astronomy, which
involved the use of common logarithms, i.e., the base-10 logarithms. Hence a terror campaign, during
which 1000 people die has a magnitude of 3

(
log 103 = 3

)
, and a war with 10 million casualties has a

magnitude of 7
(
log 107 = 7

)
.

In Richardson’s research, the edges of dual graphs denote armed conflicts and their magnitudes, and
thus—generally speaking—the lack of peace, while in our research the edges signify a lack of cooperation.
Thus, Richardson’s conclusions can be at least partially extrapolated to municipalities. The main difference
lies in the fact that people die during wars, while the lack of cooperation between municipalities slows
down regional economic development. However, it may be concluded that logical homologies identified
with use of the above method indicate a relatively new and interesting direction of regional research.
Inter-municipal cooperation does not have to be treated as either there or not, but it can be gradable.

Richardson noted that administratively designated internal borders usually look very different from
the natural external borders that separate countries. Usually, internal borders take the form of straight
lines that are clearly and directly drawn on the maps, typically regardless of the natural terrain. In contrast,
external borders often use natural features such as rivers or mountain ranges. His conclusions regarding
the internal and external borders do not match the Warmia and Mazury Province. Very often municipal
boundary lines use the natural terrain and run along rivers, lakes, forests and arable fields. Probably such
a division was intended to avoid competition for the share of the same resources. On the other hand,
the international border, which separates the examined province from the Kaliningrad Region, which
belongs to Russia, has a much simpler course. Since the administrative lines separating the municipalities
have such a complicated track, it means that the municipalities are fractals, i.e., objects showing statistical
self-similarity. This is because they contain reduced copies of themselves. Therefore, the fractal dimension
should be used to describe the boundaries between municipalities, not the usual length. In this way,
complexity is manifested in the four-colour theorem. Therefore, this theorem can be used to colour each
map, including the infinitely complex fractal patterns drawn on the complex plane [36].

11. Conclusions

Changes in growth poles and development axes in the studied province are represented by empirical
dual graphs, which were determined for 2009, 2012, 2015 and 2019. The measure of development consists
in comparing information contained in empirical graphs with the model dual graph, which was created
on the basis of a map corresponding to the conditions of the four-colour theorem. Graph edges are
interpreted as barriers to cooperation between neighbouring municipalities. The reference graph has the
maximum number of edges, and therefore represents the case of a complete absence of growth poles and
development axes. It plays the role of the absolute reference system in the research. As demonstrated,
the public administration sector at the local level is very sensitive to changes in financing, which can be
seen especially in the example of the implementation of telecommunications technologies. Most projects
in this sector depend on the level of government spending. In the thermoeconomics terms, changes in
empirical dual graphs can be treated as a result of the flow of monetary entropy through the Warmia
and Mazury Province [115]. The studied region is a dissipative system that intakes low entropy from the
environment, which increases the level of organisation of municipal public administration offices. This
is reflected in the transition of websites to higher quality classes. Money allocated for the development
of telecommunication infrastructure is the medium of low entropy. Lack of money is associated with a
decrease in the quality of websites and their stabilisation in the lower classes. In this way entropy increases
in the whole system. The inflow of money reduces the internal entropy of the system, which is associated
with the formation of new growth poles and development axes. Maintenance of existing infrastructure
at the 2012 level is therefore conditioned by the inflow of additional funds. Province authorities are well

466



Entropy 2021, 23, 61

aware of this, which is why they launched the Digital Plan 2025 for Warmia and Mazury. The goal of the
programme is the proper operation of the fibre-optic backbone distribution network, and thus providing
access to the network to the end subscribers.

The proposed measure of economic growth contains in one number a rich collection of economic and
spatial information. It includes Hicks’ condition for top technique because it incorporates wikinomics
business models such as participation platforms and prosumption that could not exist without computer
networks. Additionally, this measure enables the location of regional growth poles and development
axes and considers the spatial diversity of municipalities and barriers in their mutual cooperation. It is
based on digital technologies, so it is not limited to one industry, but covers all those industries that are
controllable by software. Therefore, this measure has an advantage over the location quotient and all
other classic measures of regional growth and development. Furthermore, it should be emphasised that
the new measure applies to the developing economy, in which the share of high and very high quality
municipal websites is significant. The four-colour theorem can be used as a reference system for empirical
studies only if it corresponds to the Thom classification theorem. This signifies adequate representation
of elementary catastrophes by the quality classes of the municipal websites. The proposed measure also
takes into account the spatial complexity of municipalities, because in the Warmia and Mazury Province,
most of them are fractals. It follows that both the management of the entire province and individual
municipalities is a complex problem and only fractal organisations can cope with it [116–118]. Therefore,
all public administration reforms should aim at giving the administration fractal features, which applies in
particular to municipal public administration offices as basic units of the local government.
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72. Chodkowska, W.; Sabljak-Olędzka, M. O Wiatrakach Warmii i Mazur i Młynarzu z Daleka...; Muzeum Budownictwa

Ludowego—Park Etnograficzny w Olsztynku: Olsztynek, Poland, 2016; ISBN 978-83-943479-4-9.
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Abstract: Land speculation that occurs on the urban border can be very problematic to the healthy
development of cities—critical to economic growth. Speculative land investors, concerned with
profits from trading in landed property, can especially affect developing countries where regulation is
often poorly controlled and overly bureaucratic. An investigation into the factors motivating land
speculators operating in the urban fringe of the city of Shashemene, Ethiopia is examined. The paper,
in addition to contributing to the literature, is the second-known attempt and extension of the authors’
pilot research to study the behavior of land speculators in the urban fringe of a growing Ethiopian city.
A theoretical framework and conceptual breakdown are put together with historical reference to early
land speculation examples. Two questionnaires were separately administered with a representative
random sample of 159 members from the local land developer association (i.e., investors) and 24
senior officials from the study area. A principal component analysis categorized the most significant
dynamics in controlling land speculation procurements. Results indicated motivational reasoning
as the prime cause for speculative activities. Evidence indicated that land speculation is a critical
dynamic for self-worth especially with business-oriented persons. Entropy, the disorder of the
communicative data, suggests a possible rethinking of the way government should intervene in the
urban property market. As such, developmental smart cities in Ethiopia must thoroughly consider the
dynamisms of speculative activities and its effects on local housing as it moves forward–in the 2020s.

Keywords: speculation; land acquisition; motivation; real estate; development; Ethiopia

1. Introduction

Land speculation is regarded as a critical issue in Ethiopia; thus, it is most welcome to enact the
1993 Land Use Act to address the land speculation problem and curb the incidence of growing land
prices that are largely due to speculator activity. Nonetheless, this issue is far from being completely
resolved as the issue of major acquisitions and land scarcity is still prevalent in many of the country’s
urban and urban fringe areas [1,2]. Land management is essential in retrospect of city planning, land
use development, and land speculation to create a successful cyclic system. Speculative land investors
are those concerned with income from landed property trading, rather than with its use or earning
capacity after growth, particularly in regard to housing which appears to be the highest and best use of
the urban border [3–5]. This clearly implies that almost any investment aimed at a rapid accumulation
of assets may be regarded as speculative [6]. Non-speculative investors, on the other hand, are those
concerned with deriving profits from either property development or cash flow earnings received as a
long-term investment from holding land [7,8]. Siegel [7] has stated that speculative investment can
lead to an overvaluation of assets (i.e., securities or real estate) within a given area, which can often
lead to an effect of property bubble-and-burst. Mohamed [9] described speculative activities as a form
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of fulfillment, a set of sub-optimal targets for which the desire of investors among developers has been
widely observed. This occurrence tends to become a continuum as the policy responses needed to turn
aside or alleviate a tightened situation are not as readily effective as anticipated. The main outcome of
satisfying manners, as argued by Mohamed [9], are that many developers prefer projects located on
green field sites (i.e., amenity-based or agricultural land) that take a relatively short time to dispose of
in order to recoup the invested capital at a practical level of profit. This type of economic resolve can
be more readily seen as urban building encroaches outwardly onto the urban border [10,11].

According to Gemeda, et al. [12], Shashemene’s much-acclaimed deficit of over 1000 housing
units is projected to intensify the need for urgent land acquisition and growth to meet the current
deficit. Nevertheless, some researchers (e.g., Golland and Boelhouwer [13] and Wang and Hua [14])
proclaim that developers’ land acquisition is not a specific response to demand; rather, developers
take advantage of the general level of housing market activity and, in particular, “data signals” [13].
The State’s position in controlling land acquisition appears to affect the motivation of acquisitions by
speculators, either due to the fact that land can provide a source of profit through land banking or
land trading or as a development factor. Recently, from observation, investment activities tend to have
increased in frequency due to rising urban populations and anticipation and hype surrounding urban
fringe areas (i.e., mostly as a result of new road infrastructure). Other drivers of speculative activities
include close proximity of bare land to an urban center, excitement and hype surrounding the location’s
commercial viability, overestimation of land demand, and the notion that the location is a viable growth
investment area within the development plan of the city. Eventually, speculators may buy the land and
use it immediately for a completely different purpose, which defies logic in order to lay claim to it, such
as establishing a mechanical factory, operating a vegetable farm, erecting a perimeter fence, or building
on-site quarters for servants (e.g., security guards). These are some provisional activities frequently
carried out by land speculators after valid purchase in order to “legitimize” their proprietorship of the
land in line with Ethiopia’s jurisdictional definition of development.

Dealings in the land market can be an indication of the idiosyncrasy of the environment as well as
the area where it is situated. Two market types exist as both central and peri-urban [15,16]—classified
as sale and rental markets. According to the World Bank [16], a sales market is when freehold interest
can be sold while a rental market refers to when “usage rights” are temporarily reassigned for a limited
period. While land speculators are inclined towards the sales market for transferability of freehold
interest, it should be noted that many societies also allow for both partial and total disposal of property
leasehold interest. This study, in an umbrella-like effect, oversees such dynamics motivating land
speculators operating in Shashemene’s urban fringe. As such, Ethiopia’s Proclamation No. 721/2011
of its Land Use Act allows a lessee to assign their unexpired interest in land with consent from
the State; thus, allowing the market to be either formal and structured or informal and operating
extra-legally [17–19]. A formal land market follows a set structured rules and regulations while
participation in the market abides by legal procedures both for acquisition and disposal. On the other
hand, the informal market often outweighs land nationalization since it is not always fixated with
strict pertinent rules commonly found in many developing countries where property rights are often
constricted [20–22].

In the city of Shashemene, the legal occupier of any land will not only have lawful title to it (i.e., a
freehold, leasehold, or license from the actual landowner), but also need formal planning approval
for any buildings or other erected structures permanently affixed to the land, including land use of
which those structures pertain to. As defined by the Business Dictionary [23], development is “the
carrying out of the building, engineering, mining, or other operations in, on, over, or under land, or the
making of any material change in the use of any buildings or other land.” According to the statutory
definition, building operations refer to the demolition of buildings, rebuilding, structural alterations
of, or additions to buildings and other operations such as “excavation or other works carried out on
the land, including fencing” [17]. Thus, in accordance with Ethiopia’s Land Use Act, it is important
to note that, since a land speculator can effectively prevent their land from being repossessed by the
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original seller (i.e., for failing to develop within two years), they “employ somewhat deceptive-like
activity” [17]. Experience indicates that unprincipled speculators can ensue and process a genuine (i.e.,
legal) land title and acquire planning permission for a structure or improvement (i.e., even an ordinary
fence) all in an attempt to retain legal ownership and procure capital appreciation.

The motivation of the research is focused on property market dynamism. It increasingly has
become intertwined with speculative financial flows and has shaped (and reshaped) urban land under
the stimulus of capital over accumulation with the intention of absorbing surplus (i.e., a process
that ironically can be a source of economic macro crises as well as a share of the property market
as gross domestic product increases). In this context, Ethiopia is certainly not excluded from urban
development and speculation despite its ever-increasing level of urbanization—especially since the
1960s. In light of this, land speculators are harvesting huge revenue from urban and peri-urban areas
by keeping land vacant. Land speculation in this regard is seen as a critical issue in Ethiopia; hence, it
is appropriate to enact the Land Use Act to address the problem and curb the incidence of rising land
prices that by in large spike due to speculative activity. However, this issue is far from being fully
resolved as the problem of large acquisitions and land deprivation is still endemic in throughout the
country’s urban fringes [12]. To resolve this problem and increase the benefit to society, this study
aimed at looking into the motivational factors behind land speculators using Ethiopia as a case study.
We look at the motives that motivate land speculators in the urban fringe with the position of making
policy recommendations in line with speculation-based best practices. A breakdown of the paper is
structured as follows: Section 2 explores the theoretical frame and conceptual clarification of land
speculation, Section 3 contains the methodology, Section 4 elucidates the results and discussion, and
Section 5 provides the conclusions.

2. Theoretical Frame and Conceptual Clarification

The theoretical frame is provided by insights gleaned from the classical concentric zone model [24],
sector or axial development model [25], and Alonso’s [26] bid rent model—all which seek to clarify
why detailed land use is situated where they are in the cityscape. Burgess’ [24,27] model portrays
residential land use structures by examining how one might plan the layout of a city [28]; out-of-date,
it overlooks the importance of transport routes, site, and physical uniqueness in shaping a city’s
evolution and urban border zones. In terms of the concentric model, weaknesses are remedied by
land use zones that focalize on key urban areas associated along central arterial transportation lines.
From this theoretical aspect, and as already identified in the analysis part by principal component
analysis, land speculators are motivated by regulatory lapses, location preference, informality of land
title, and inexpensive land. Those variables vary depending on the model. For instance, within the
context of transportation routes, where infrastructure is usually found, speculators are motivated to
hoard more land. Moreover, as described by Hoyt [25,29] in which the major land use zones in the
urban area is “aligned along the major arterial transportation routes” [29], land speculators in parallel
follow infrastructure (i.e., transportation, roads, etc.) when modeling city advancement. Likewise,
with axial theory, current major transport facilities also control urban development via two factors:
speed and pattern. This has meant that, while an area may be remote, once it has direct access to major
roads (i.e., in terms of time taken to and from the central business district), a transition zone is likely
to materialize which, potentially, can act as a target for land speculators. In practice, however, the
impacts of externalities such as rising urban population, rising demand for land, and the desire for
business profit can oblige land speculators to consider holding the land for a block of time in order
to ensure its appreciation—that is, introducing the notion of “mastering the silent game” [30] of a
risk-return trade-off in order to break-even (Figure 1).
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Figure 1. A cognitive model of speculative investors’ operations in property sectors, adapted from
Valliere and Peterson [31].

Conceptually, land speculation may be defined as a function of the ineptitude of land policies
and the low believability of land transactions taking place in an urban tassel. For instance, land
policies and their efficacy rely on urban and regional planning procedures and interrelated policies and
strategies that regulate and control the economic and social practices on property and land assignment.
This is achieved through proper enforcement of “building regulations, planning standards, and the
zoning bylaw guiding [specific land uses and] infrastructure provision” [32], the lack of which may
result in confounded and poor development patterns along the urban border. Accordingly, best
practices would make certain that planning tools are judiciously practical as both precautionary and
counteractive measures for ensuring proper and effective land use deter sub-standard, natural, and
chaotic development and pointless delays in project development completion. As a result, the physical,
spatio-temporal and social uniqueness of a community are vital criteria for thoughtfulness in reforming
the urban border [32]. A follow-up notion, within this framing, is land transactions (i.e., mortgage
transactions that use property as collateral for bank loans). Specifically, land transactions experiencing
changes regarding their arbitrative status, beginning from “an intention to acquire and proceed to the
procurement and certification of land title” [33]. Urban fringe land is often perceived as marginal land,
available but “uncultivated” [34] and “suitable for investments” [35] other than agriculture [36,37]. As a
result, its availability in an uncultivated, large-scale form—outside the scope of agriculture—prompted
the conceptual framing of Figure 2. As such, the real cause of speculation is the specified expectation
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of the augmentation of land value, which occurs in all advancing countries from the stable increase of
rent, which leads to speculation, or the “holding of land for a higher price than it would then otherwise
bring” [38]. In contrast, the consequences of land speculation are “tenantry and debt to farms, and
slums to luxury in cities” [39].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Land acquisition and legalization procedures in Shashemene.
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Large-scale land hoarding, throughout the developing world, stresses competition for land and
results in land disputes due to escalating food prices and the necessity to cultivate more land for
agriculture, “uncontrolled rural-urban immigration leading to higher population densities” [40], and
increasing demand for shelter and other forms of accommodation [3,33,40,41]. According to Colin [42],
numerous large land acquisitions along the urban border involve prolonged negotiation processes
which revolve around hoarding of long-term rights of ownership. In Ethiopia, long leaseholds of 99
years or other agreeable titles are only decided by the State, in observance with the provisions of the
Land Use Act No. 4 of 1993. The Act, as observed by Hurni, et al. [43], was promulgated following a
report submitted to the Federal Government by which a land use panel examined the current system
of land occupancy and advocated measures for curbing the activities of land speculators, “by making
it easier for the government to acquire land” [43] for development projects nationwide, including
the capital. Typical large land acquisition involves identification, negotiation, procurement, title, and
distribution or subdivision. Suitable privately-owned land is first recognized through consultation
with local intermediaries (i.e., traditional authorities), in which mostly local agents act as intercessors.
In Shashemene’s urban fringe, some developers with the support of local go-betweens (i.e., partners)
instigate direct communication with local traditional chiefs (i.e., including heads of families) when
they wish to acquire land which usually instigated via a back-and-forth. It should be noted that many
land deals in Ethiopia’s urban tassel are classified as “semi-formal and customary” [42] rather than
formal tenure arrangements—prevalent in many African countries [44,45].

After settling the contracted purchase agreement, the owner is directed to submit it to the Lands
Bureau for registration of title. Additional documents that must be succumbed including a survey
plan indicating the beacons and boundaries of the land, copy of the approved building plan, and,
if necessary, an environmental impact assessment report on the proposed project for the site. Once
the submission process is ratified, land and building certification can be issued. Recently published
research by Gemeda, et al. [12] is a first attempt to piece together some of the roles land speculators
pose within the country. This paper acts as an expansion to those findings by furthering the research
and nature of land speculation in Ethiopia’s major cities (i.e., in respect to urban and urban fringe areas).
A core focus is to make policy recommendations in the interest of city livability and sustainability.

Speculators, according to Andreasson, et al. [46], are likened to “high-risk traders almost of the
same kind to gamblers” [46], whereas lower risk investments grounded on core research and analysis
fall into the category of desirable investments. Subject to an in-depth analysis, a good investment
should “swear the safety of the capital invested in addition to ample income and yield return” [46].
On the other hand, investment processes not up to scratch with these requirements are termed as
speculative in nature. In terms of systemic risk, the possibility of an event triggering severe instability
or collapse of an economy, in retrospect, plays with the speculative idea of “too big to fail”. Often
systemic risk can be used as a justification for government to intervene in the economy. The basis
for this intervention is the belief that government can reduce or minimize the ripple effect during
turbulent economic times [47,48]. As such, an important framing of variable risk in relation the number
of properties owned (i.e., held) is correlative to total risk which starts off as non-systemic risk and
augments to systemic risk as owned properties numbers increase (Figure 3). Sometimes, however,
it has been found that non-intervention in the economy can be beneficial solely based upon the fact
that if variable risk is too volatile, not doing anything (i.e., leaving the land market to sort itself) is
best. This is more often the exception than the rule since it can destabilize the land market, more than
projected, due to speculator sentiment [47–50].

Investor characteristics differ from those of a speculator, in so that, an investor “acquires land as a
factor of production” [51], whereas a speculator attains land in the hope of profiting from an upsurge
in its market value (i.e., capital appreciation at the end of a holding period). Speculation is not caused
by a shift in demand due to change in taste, fashion, consumer need, or supply. As argued by Knittel
and Pindyck [51], a shift in fundamentals can frequently trigger a transformation in price, an outcome
not necessarily a determinant of land market speculation. As such, speculative demand and pressure

478



Entropy 2020, 22, 59

can force changes in the property market due unavoidable external influences that simultaneously
structure urban fringe areas regardless of government policy.

 

Figure 3. Variable risk versus number of properties owned as a measure of non-systemic and systemic
risk (i.e., total risk).

Participants involved in speculative practices are grouped into three classified levels by
Triantafyllopoulos [52]. First, there are those who are “informed speculators” [52] in the sense
that they have access to both public and private information. They are otherwise known as public
officials in charge of land allocation (i.e., plots and buildings). Second, there are those who are
“un-informed speculators” [52]—these are persons who only have access to public information and are
otherwise known as either investors or developers. Third, there are “private purchasers” [52] who
are individuals that are not information-driven. In practice, the different functions played by each of
the actors can particularly alter the cityscape and overall layout of how cities interact. For example,
developers may be regarded as investors who initiate and carry out land development projects which
can play an active and leading role in the development of the urban fringe, perceived as the prime
“sculptors of spatial structures” [53] of any open space. Jonas and Wilson [54], Logan and Molotch [55],
and Molotch [6] refer to these developers as “growth machines” and directly link speculative practices
with the conditions for how cities grow.

Generally, land speculation depends on endogenous and exogenous factors. Endogenous factors
can be related to the institutional framework of any given country (i.e., property rights protect by law,
enterprises dealing in land markets, and types of land markets—e.g., regulated or free). Exogenous
factors are much more complex. They reflect the international position of any given country, situation,
and perspective of its economy, political stabilization, social and human capital (i.e., its approach and
control of nationally-owned land), and foreign investment [56–58]. These influences forecast concerns
and potential land and building prices as well as project an overall perception on the type of land
speculation at the city-level. As such, popular and scholarly housing debates, for example in London,
are concentrated on the super-rich as stated by Atkinson [59], Hay [60], and Hay and Muller [61] in
terms of patterns of consumption, economic power, and political control [62,63]. Moreover, parks
are considered safe havens for park property [64] and produce rental income that often outgrows
inflation compared to lower interest rates on savings accounts and weaker returns on investment
of financial products [65]. There is evidence that, since the early 1990s, middle-class buyers from
Hong Kong have been investing in London’s main property market as noted by Ho and Atkinson [65].
Although Hong Kong’s first wave of investors primarily focused on property for their own use, second
and third wave investors emerging between 2000 and 2009 were interested in financial returns (i.e.,
short-term investment or long-term rentals). The scale of this investment activity has become somewhat
significant since Hong Kong shareholders, by 2012, have already purchased about one in six new
residential properties sold in central London [66]. Significantly, an estimated 514,000 Hong Kongers
invested in property outside Hong Kong in 2016 [67], representing 7% of Hong Kong’s population at
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around 7.4 million [68], a trending figure that continues to increase. Similar issues (e.g., in regards
to housing affordability in Sydney, Australia [69–71] and Vancouver, Canada [56,72,73]) parallel the
global crisis of urban land speculation practices in which “accelerated (re)urbanization of capital
and people [has led to] the provision of cheap credit and the rise of intra-society inequality” [56].
Nonetheless, global real estate is considered a class of capital for which investors “diversify their
investment portfolios” [74] often at the expense of local community housing affordability interrelated
via political and economic spheres.

3. Methodology

There are six main urban fringes in the greater city area of Shashemene (Figure 4). Of these areas,
a number of peri-urban villages (i.e., Awasho, Arada, Abosto, and Bulchana) exist. These peri-urban
areas stretch adjacently along the Awasho asphalt road in the east, Bulchana in the southeast, and
Alelu, Dida-Boke, and Arada in the neighboring areas of the northwest. The Awasho urban fringe in
the southeast was selected as the study site due to its fast-growing hub-like industrial and residential
activities. Awasho is also a major transportation route currently coping with the impact of rapid
urbanization where investors and foreign industrialists are favoring to locate. Pressure and demand
for residential land, even though it is unaffordable due to unnecessary land withholding and price
increase (i.e., created by land speculators), is seen to be physically available.

Figure 4. Map of the study area.

Primary data were collected through a combination of methods including self-administered
questionnaires, direct observations, and in-depth interviews, using two types of questionnaires. The first
set of questionnaires was randomly given out to the local land developer association (i.e., investors) in
which the sampling frame was 159 investors—confirming the sample size determination was free of bias
or error of misclassification [75,76]. The structure focused on the motivational dynamics for large-scale
land purchases, reasons for their holdings (i.e., after procurement), period of time between procurement
and actual development (i.e., if any), land status (i.e., procured by developers), legal title, and period
between procurement and further subdivision (i.e., for onward sale without further development).

The second set of questionnaires was directed at 24 senior officials of the Shashemene City
Land Agency who reported upon whether any effective policies were put in place for limiting (i.e.,
controlling) developer activities with a tendency towards speculative activity. Further inquiry looked
at what approaches and policies had been used as well as their success rate. The samples represented
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the target population and not the total population. To regulate the average mean of the developers, we
employed a five-point Likert-type rating scale that considered cause and control of land speculation
city-wide. Reliability of the questionnaire included a Guttman Split-half test to control for internal
consistency. To end, principal components analysis (PCA) was exercised on vital factors germane to
large land procurements. Specifically, the PCA method used orthogonal transformation to convert the
set of land acquisition variables into a set of values of principal components.

4. Results and Discussion

4.1. Factors Motivating Land Speculators

Essentially, land speculation is holding land primarily to meet future demand and not present
need. The aim of the speculator is to create a synthetic value that in itself is unacceptable. Recent
activities leading to large-scale land acquisitions and withholding in many urban fringes have triggered
price rises in the market, intensified the inelasticity of supply of developable land, and complicated
the already disorganized housing issue (i.e., affordability for low-income earners). The provision of
affordable housing cannot be left exclusively to private developers as government has a major role in
ensuring equity and effectiveness in the allocation of land resources by way of externalities [75]. In
analyzing the motive behind speculative activities and land use control in the urban and urban fringe
of Shashemene, the following dimensions were discussed as a means of contributing to knowledge:
prominent characteristics of land acquisition, range of time between actual land acquisition and
development by speculators, and factors responsible for speculative land acquisition.

4.2. Prominent Characteristics of Land Acquisition

Respondents to the land developer questionnaire were predominately private developers (i.e.,
85%). The status of land bought by developers on the average shown to be left vacant and underutilized
(i.e., undeveloped) was more than seventeen years. Moreover, only four of the lands bought have
adequate legal title in the form of the governor’s consent. Others either have an illegal receipt of
purchase or have been registered in the State gazette as evidence of government approval, while others
do not even have any certification. Some of the developers indicated that they usually subdivide their
land immediately after purchase (i.e., 25.2%), while 65.6% subdivide within a two-year period. This
suggests most of the respondents did not have an aim in commencing concrete development at the
time of purchasing land. The location of acquired land is spread over the whole of the study area with
respect to individual developers’ needs and requirements, usually dependent on accessibility and
proximity to infrastructural services.

The oldest land was 400 m2 purchased in 1991 that has remained vacant for 29 years since its
purchase. The most recent and largest purchase of 6900 m2 was done in 2015 with government consent,
but has remained vacant ever since. The cheapest acquisition was secured from a family by private
treaty (i.e., negotiation) for 875 Ethiopian Birr (i.e., US$ 30.13) per m2, while the costliest acquisitions
closed at 5000 Ethiopian Birr (i.e., US$ 172.18), backed by government consent. Only four of the
acquired lands are either fully or partially developed for housing (Table 1). As such, it can be inferred
that developers (i.e., local speculators) hoarding land and taking it off market for long periods of
time also have a relational connection to housing rental income and the overall housing market. As
it is commonly portrayed in urban economics, the demand for land is driven by the demand for
housing [56,63]. As the price of land increases, the price of housing follows and vice versa, which was
commonly seen in Ethiopia’s land market. Moreover, land markets would thus have a positive impact
on improving land access by land-poor households. As long as imperfections affect only one market,
all relevant actors still have the opportunity to cultivate the same amount of land per capita. However,
credit market imperfections can offset or even eliminate supervision cost advantages of family farmers.
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4.3. Range of Time between Actual Land Acquisition and Development by Speculators

In reference to Table 1, the range of time between actual land acquisition and development by
speculators shows a revealing reality that the four developed properties bought in 1995, 1997, 1998,
and 2000 were developed a whopping 19, 9, 19, and 15 years later, respectively. These numbers
correlate with the average, to date, mean status of land bought by developers that has been left
vacant and underutilized (i.e., seventeen years). This confirms our earlier misgiving that most of the
land speculators in the study area do not seriously intend on undertaking development within the
short-term following their acquisition. This ability to hold on to land for long periods of time points at
the low risk presented suggests that land speculators tend to delay development in the expectation that
a buyer will show up eventually. As such, it has been noted that, when speculators’ hope of finding a
buyer is reduced, they resort to the legitimization of their ownership by spurious or unscrupulous
land enhancements, including the erection of just an ordinary perimeter fence.

4.4. Factors Responsible for Speculative Land Acquisition

Speculators were asked to indicate the factors motivating large land acquisition in which more
than 20 reasons were ranked using a Likert scale. Responses obtained were analyzed using PCA
to signal reasons for significant factors relevant to large land acquisitions. As such, seven principal
components were identified during this process (Table 2). As a widely used statistical technique, PCA
is useful for determining the latent variables of the obvious variables [75]. The results of the principal
components are sensitive to the relative scaling of the original variables.

Table 2. Principal components matrix of reasons for large-scale land acquisitions ‡.

† Variable Comp1 Comp2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Unexplained

Q1 −0.2115 0.6684 −0.1562 0.1136 −0.1684 −0.6653 0.0144 0
Q2 −0.3811 0.0490 0.4494 −0.1927 0.7660 −0.1616 0.0190 0
Q3 −0.1903 0.1367 0.7892 0.2840 −0.4580 0.1774 0.0201 0
Q4 −0.2884 0.5696 −0.2687 0.0696 0.1431 0.7032 0.0192 0
Q5 0.2873 −0.0128 −0.0217 0.8822 0.3697 −0.0423 −0.0089 0
Q6 0.5470 0.3424 0.2116 −0.2120 0.0973 0.0461 −0.6984 0
Q7 0.5607 0.3004 0.1827 −0.2032 0.0918 0.0383 0.7147 0
† Q1: good profiteering business and high possibility of rising price, Q2: good investment to buy land and keep it
(i.e., as long as the value keeps increasing) before selling it, Q3: bought land due to ease of access of obtaining land
title, Q4: privilege information on zoning and planning of a new development scheme, Q5: excess demand not met
by government allocation, Q6: bought land due to its close proximity to a developed area, Q7: regulatory lapses
makes it possible to buy land cheaply; ‡ data displayed factorability potential based on Bartlett’s test of sphericity,
employing a chi-square value of 192.773 at 21 degrees of freedom, significant at 0.01 showing correlations among
the chosen variables, hence a supportive criterion for factorability.

From the PCA, two types of findings can be noted. First, anti-image diagonals illustrated sampling
adequacy via the Kaiser–Meyer–Olkin measure (i.e., with a value of 0.60 for each variable), while
Bartlett’s test of sphericity indicated a significance p-value of 0.000—both demonstrating a significant
level of sample tolerability for this analysis (Table 3). Second, a total of seven principal components
were recognized with a collective variance of 69.59% in which specific high impact findings originate
from the first, second, and third components (Table 4). Out of the three factors studied, the first
two together explained 54.42% of variation compared to 69.59 % explained by unrotated factors, as
indicated in the Scree plot in Figure 5.

Table 3. Two calculations: Kaiser–Meyer–Olkin measure and Bartlett’s test.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.60

Bartlett’s test of sphericity approx. chi-square 192.773
- df 21
- sig 0.000
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Table 4. Total variance explained for the initial eigenvalues.

Component
Initial Eigenvalues

Cumulative Percentage of Variance
Total Percent of Variance

1 2.48345 35.48 35.48
2 1.32565 18.94 54.42
3 1.0619 15.17 69.59
4 0.907426 12.96 82.55
5 0.636939 9.10 91.65
6 0.544361 7.78 99.42
7 0.0402671 0.58 100.00

 
Figure 5. Scree plot of land speculation in the Shashemene urban fringe.

Correlating the Scree plot of land with Table 2 shows the rotated component factors. The rotated
component matrix specifies sufficient loading on all seven components. There are two dominant
variables on the first component (i.e., PCA 1) due to speculators who bought land in close proximity to
a developed area as well as regulatory lapses make it possible to buy land cheaply. The dominant
variables on the second component (i.e., PCA 2) were good profiteering business efforts and the high
possibility of rising prices for profit maximization. In the third component (i.e., PCA 3), the dominant
variable was spectators’ ability to buy land due to ease of access of obtaining a land title. Next, privilege
information on zoning and planning of a new development scheme best denoted the fourth component
(i.e., PCA 4). Good investment for buying land and being able to keep it (i.e., as long as the value
keeps increasing) before selling it as well as privilege information on zoning and planning of a new
development scheme were the dominant variables in PCA 5 and PCA 6, respectively. Lastly, regulatory
lapses making it possible to buy land cheaply was dominant in PCA 7. The common variables that
constantly occur among the components were: (1) privilege information on zoning and planning
of a new development scheme and (2) regulatory lapses that made it possible to buy land cheaply.
However, it is unusual that, of all the rated factors, 88% of the responses did not feel that the demand
was being met by government allocation. In other words, the usual acclaimed motivational reason
for land acquisition of excess demand not met by government allocation rated very low (i.e., low
probability) and did not even feature more than once (i.e., except in PCA 4). This entropy, disorder
of communicative data, suggests disparity between the hidden intention of speculators [77,78] and
what really exists physically on the ground. According to Zhang [79], surprisal information on “price
histories can be used to predict near future returns with a probability better than [that of] random
chance”. As such, since market participants are separated between producers and speculators—the
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former postulates “negative entropy into the price, upon which the latter feed” [79]. Residual negative
entropy suggests an urgent need for more effective government intervention in allocating land in the
urban land market, particularly due to land scarcity and relating price mechanism ill-equipped in
maintaining a standard.

In reference to Mercer’s [80] definition of livability (i.e., “a concept that assesses which locations
around the world provide the best or the worst living conditions” [80]), livability combines a range of
benefits that include benchmarking perceptions of development to assigning hardship allowance as
part of expatriate relocation packages. Critics of this view have argued that “no city in the world is really
excellent and that livability is only a relative term” [80]. In the context of this paper, it is contended that
land speculation is detrimental to a city’s livability (i.e., sustainability) in several ways as proclaimed by
Swierenga’s [81] research on land speculation and impact on American economic growth and welfare.
He states that land speculation gives rise to green pockets that are easily transformed into high crime
areas fostering slum development by way of rural-urban migration and accentuating a lack of housing
as a result of holding developable land. At length, Swierenga’s [81] findings parallel, to some degree,
Shashemene’s reduced property tax base since a number of American municipality’s often do not tax
vacant land or are not subject to property tax (i.e., they are subject to a tenement rate), which can result
in a loss of potential sources of revenue.

5. Conclusions

We conclude that, for the city of Shashemene, the government is fully aware of speculative
practices occurring along its border areas. Government policy put in place for regulating excessive
land acquisition is still limited to the Land Use Act of 1993. It is not clear how this legislation will
deal with restricting or ridding speculative activities throughout the city’s limits. As of now, over the
past few decades, legislative implementation or political clout has failed to decrease this phenomenon.
Government has not effectively controlled or penalized excessive land acquisitions that are not for
immediate use. Our results verify a relatively low level of property rights formalization, mainly due
to bureaucratic practices and corruption that encourage large acquisitions of land with impunity.
This problem demonstrates a disturbing trend in the dynamic of the city’s fringe areas mostly due to
repeated failures of government in regulating land use activities. As a result, there is an urgent need for
more effective government intervention in allocating land in the urban land market, particularly due to
land scarcity and relating price mechanism ill-equipped in maintaining a standard. In addition, there
is the need for strategic measures, such as the institutionalization of public–private joint ventures that
will not only work in partnership with landowners and developers, but also work to develop a “speedy,
efficient, and sustainable management” [46] and development of the fringes in terms of provision
of cost-effective infrastructure and increased public information on land market opportunities in the
fringe areas. Toward this end, the creation of a government holding division to procure vacant lands is
believed to be a needed priority.

To minimize land speculation seen in urban and peri-urban areas, the following two points
are recommended: (1) policy implementation of “one-man-on plot” rule, which implies that the
number of plots given to residents must be restricted and (2) there should be imposition of a land
value tax (LVT). These two points would significantly curb excessive land speculation and allow for
controlled development to occur. As a result, a number of benefits on enforcing a high LVT, include:
high annual overhead cost to the land speculator that would either lower present values or provide
encouragement for quick disposal, especially if landowners could not meet the overhead costs and
pessimistic future appreciation of land value. Moreover, Clawson [82] argues that sprawl supplemented
by land speculation is fruitless in that it absorbs “capital, manpower, and entrepreneurial skills without
proportionate public gains” [82]. Based on our findings, it is contended that the need for strict
regular site inspections and a corruption-free regulatory regime are clearly critical in monitoring land
speculative activities in Shashemene. Underlying these suggestions is the idea that the government, at
some level, retains significant powers for influencing, if not controlling, the future form of the outer
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edges. To achieve positive goals, speculation on urban fringe lands must be significantly decreased
or eliminated. The net effect of these various instruments would be to greatly alter the general
probability (i.e., prospect) of land actors on speculation. Entropy theory suggests disparity between
the hidden intention of speculators [52,53] in which the historicity of price can be used to predict
near future earnings with a probability that is better than random chance [54]. As a result, the timely
implementation of an LVT policy could lead to more predictable land prices, extemporaneous housing,
or other land use advances. In this process, some of the private validations for land speculation would
be overcome. Additionally, since the eventual purpose of speculation is short-term capital gains,
one way to stop speculation could be through effective government’s association with land-based
“pressure groups” [82] or non-profit organizations regularly monitoring the border areas located in the
city’s domain. Furthermore, support for landowners to initiate direct development within a sensible
period after the purchase could be a secondary approach. Finally, lending institutions (i.e., banks and
insurance companies) should be vigorously involved in the push towards easing conditions placed on
mortgage applicants.
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Abstract: Inspired by the Daley-Kendall and Goffman-Newill models, we propose an Ignorant-
Believer-Unbeliever rumor (or fake news) spreading model with the following characteristics: (i) a
network contact between individuals that determines the spread of rumors; (ii) the value (cost versus
benefit) for individuals who search for truthful information (learning); (iii) an impact measure that
assesses the risk of believing the rumor; (iv) an individual search strategy based on the probability
that an individual searches for truthful information; (v) the population search strategy based on the
proportion of individuals of the population who decide to search for truthful information; (vi) a payoff
for the individuals that depends on the parameters of the model and the strategies of the individuals.
Furthermore, we introduce evolutionary information search dynamics and study the dynamics of
population search strategies. For each value of searching for information, we compute evolutionarily
stable information (ESI) search strategies (occurring in non-cooperative environments), which are
the attractors of the information search dynamics, and the optimal information (OI) search strategy
(occurring in (eventually forced) cooperative environments) that maximizes the expected information
payoff for the population. For rumors that are advantageous or harmful to the population (positive
or negative impact), we show the existence of distinct scenarios that depend on the value of searching
for truthful information. We fully discuss which evolutionarily stable information (ESI) search
strategies and which optimal information (OI) search strategies eradicate (or not) the rumor and the
corresponding expected payoffs. As a corollary of our results, a recommendation for legislators and
policymakers who aim to eradicate harmful rumors is to make the search for truthful information
free or rewarding.

Keywords: fake news; rumor spreading; Nash equilibrium; evolutionarily stable strategies;
evolutionary information search dynamics

1. Introduction

The theory of rumor (or fake news) spreading proposed by Daley and Kendall [1,2] became known
as the DK model, in which a population is divided into three different groups: ignorants—people
who are ignorant concerning the rumor; spreaders—people who actively spread the rumor;
and stiflers—people who have heard the rumor but are no longer interested in spreading it. Goffman
and Newill [3] also published a paper in 1964 that generalized epidemic theory and provided a clear
analogy between the spreading of infectious disease and the transmission of ideas. In the subsequent
years, several authors developed the theory of rumor spreading, proposing new models using
complex networks [4], transitions capable of describing different issues in the transmission process [5],
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and Lévy noise [6]. In this paper, we develop a game-theoretical approach for a network-extended
version of the rumor spreading models proposed in [1,3], using the ideas developed by Bauch and
Earn [7] for the well-known Susceptible-Infected-Recovered (SIR) epidemiological model. Furthermore,
the topic of fake news is quantified in terms of the value of searching for truthful information (learning),
the impact of believing the fake rumor, and the individual’s payoff, which is of paramount importance
in academia.

Rumors and fake news can be considered a form of cheating. Individuals might be pushed toward
risk-seeking or loss aversion on the basis of their feelings (see [8]). Political news can have a strong
effect on stock prices (see [9]). In terms of the outbreak of COVID-19, information on social media can
lead to numerous negative behaviors that can reduce vaccination coverage and the use of COVID alert
applications (see [10]). On the other hand, rumors and fake news do not necessarily have negative
impacts. An extreme example occurred during the Cold War: the propaganda machines from the
American and Soviet sides spread numerous rumors about (i) the intentions of their rivals and (ii) the
achievements of their countries in several areas (e.g., science, business, and industry). These rumors
served the purpose of contributing to improvements in the well-being of both populations. If we see
a rumor as an exaggerated piece of information with an essence of truth, then it can have a positive
impact on the population. Another example occurred during World War II, when many rumors were
spread concerning Nazi Germany. Although some news was fake, it served the purpose of boosting
the morale of the Allied population and the troops. Hence, fake news can have either a negative or a
positive impact on an individual’s behavior.

In the Ignorant-Believer-Unbeliever (IBU) rumor (or fake news) spreading dynamical model,
individuals are spatially distributed in a network and can be either ignorants, believers, or unbelievers
regarding a certain rumor. When a rumor appears in a population, individuals will act differently
depending on their beliefs about the rumor. If an individual believes the rumor, then he/she will
spread the rumor to his/her neighbors. On the other hand, individuals who do not believe the
rumor will not act as active spreaders. This spreading dynamical model is fully inspired by the SIR
epidemiological model. The impact measure y of the rumor evaluates the gains and losses resulting
from individuals’ decisions, provoked by their beliefs in the rumor. The value v of searching for
truthful information (learning), instead of just believing the rumor, has natural benefits and costs to the
individual. Each ignorant individual has his/her own information search strategy S based on his/her
probability of searching for truthful information per unit of time. The population’s information search
strategy s is the proportion of ignorant individuals who will choose to search for truthful information
per unit of time. For instance, if all ignorant individuals follow the same strategy S (homogeneous
strategy), then s = S. For an ignorant individual, we introduce the expected information search payoff,
which depends on (i) his/her information search strategy S; (ii) the population information search
strategy s; (iii) the value v of searching for truthful information; (iv) the impact measure y of the rumor;
and (v) the spread dynamics of the rumor.

A population information search strategy S is a Nash equilibrium if not a single individual has
an incentive to change his/her information search strategy to any other strategy S′ 
= S (see [11]).
A population information search strategy S is an evolutionarily stable information search strategy if
any small group of individuals that tries to adopt a different strategy S′ obtains a lower payoff than
those adopting the original strategy S (see [11]). Evolutionarily stable information search strategies
are Nash strategies that are practiced by individuals in non-cooperative environments. A population
information search strategy S is an optimal information search strategy if it maximizes the payoffs
of individuals. Optimal information search strategies are practiced by individuals in (eventually
forced) cooperative environments. Here, we fully characterize the triples (v, y, S), where S is (i) a Nash
strategy, (ii) an evolutionarily stable information search strategy, or (iii) an optimal information search
strategy; v is the value of searching for information; and y is the impact measure of believing a false
rumor (fake news). Finally, we introduce evolutionary information searching dynamics following the
replicator dynamics theory [11–13], where the search strategies evolve over time to increase the payoffs
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of individuals. Evolutionarily stable information search strategies are the attractors of the dynamics;
i.e., over time, the population search strategy tends toward the evolutionarily stable information search
strategy (and not necessarily to the optimal information search strategies).

For rumors that are advantageous to the population (positive impact y > 0), three distinct
scenarios occur, depending on the value of searching for truthful information: (i) for high positive
values of searching, both evolutionarily stable information (ESI) and optimal information (OI)
search strategies coincide, and all individuals search for truthful information, eradicating the rumor;
(ii) (bi-stability) for small positive values of searching, there are two ESI search strategies: either all
individuals search for truthful information (eradicating the rumor in non-cooperative environments),
or no one searches for truthful information (persistence of the rumor in non-cooperative environments),
and the OI search strategy jumps (at the right-boundary of this bi-stability region) from no one
searching (persistence of the rumor in cooperative environments) to all individuals searching
(eradicating the rumor in cooperative environments); (iii) for negative values of searching, we show
that both ESI and OI search strategies coincide, and no individuals search for truthful information,
and thus, the rumor persists.

For rumors that are harmful to the population (negative impact y < 0), we show the existence
of three distinct scenarios that occur, depending on the value of searching for truthful information:
(i) for positive values of searching, both ESI and OI search strategies coincide, and all individuals
search for truthful information, eradicating the rumor; (ii) for small negative values of searching, the OI
search strategy coincides with the critical probability that is necessary to eradicate the rumor, and thus,
the rumor is eradicated in cooperative environments, but the ESI search strategy is less successful than
the OI search strategy, so, unfortunately, the rumor persists in non-cooperative environments; (iii) for
highly negative values of searching, both ESI and OI search strategies coincide, and no individuals
search for truthful information, and thus, the rumor persists. Hence, a recommendation for legislators
and policymakers who aim to eradicate harmful rumors is to make the search for truthful information
free or rewarding, i.e., information search value v ≥ 0. For instance, truthful public social media
campaigns can help by making the information easily available.

This paper is organized as follows. In Section 2, we introduce the IBU rumor spreading model for
networks. In Section 3, we introduce a utility for individuals that depends on the value of information
and the impact of believing the rumor. Nash and evolutionarily stable information search strategies are
completely characterized. In Section 4, optimal information search strategies are deduced for different
values of information. In Section 5, we introduce evolutionary information search dynamics and study
its attractors. Section 6 provides the conclusions of the paper and directions for future research work.

2. The IBU Spreading Model on Regular Networks

Inspired by the work in [1,3], we propose the Ignorant-Believer-Unbeliever (IBU) dynamic model
for rumor spreading based on the classical Susceptible-Infected-Recovered (SIR) epidemic model
(see also [14,15]). Individuals can be either Ignorants, Believers, or Unbelievers of a certain rumor.
The IBU model is directly analogous to the SIR model:

S—Susceptibles correspond to I—Ignorants,
I—Infected individuals correspond to B—Believers of the rumor,
R—Recovered individuals correspond to U—Unbelievers of the rumor.

Individuals who believe the rumor are the active spreaders: i.e., they are the individuals who
transmit the rumor to ignorant individuals. Once a believer stops believing the rumor and becomes an
unbeliever, he/she will stop transmitting the rumor. Hence, unbelievers are not active spreaders. As in
epidemiology [10], a transition corresponding to vaccination is introduced in the model. This transition
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is due to information search activities that can be voluntarily adopted by an ignorant individual. State
transitions in the IBU model are illustrated in Figure 1 and defined by the following reaction scheme:

Ii +Bj
β−→ Bi +Bj

Bi
γ−→ Ui

Ii
ν−→ Ui

Ii,Bi,Ui
μ−→ Ii.

Figure 1. The compartmental Ignorant-Believer-Unbeliever (IBU) rumor spreading model.

The individual state variables Ii, Bi, and Ui ∈ {0, 1} identify the state of individual i, restricted to
the condition that the individual belongs to one of the three classes. Hence,

Ii +Bi +Ui = 1.

The parameters of the model have the following interpretation: β is the rate at which one believer
individual spreads the rumor; μ is the mean birth and death rates, and thus, 1/μ is the mean life
expectancy at birth; γ is the rate at which a believer stops believing the rumor and stops spreading
it, and thus, 1/(γ + μ) is the mean believing/spreading period; ν is the information search rate,
i.e., the rate at which an ignorant individual searches for real information and become an unbeliever.

Let us assume that a population is fixed in size with N individuals; hence,

N

∑
i=1

(Ii +Bi +Ui) = N.

To describe the neighbor structure of individuals in the population, we consider the N × N
adjacency matrix J with elements Ji,j ∈ {0, 1} such that: if individual i is a neighbor of j, then
Ji,j = 1, and if individual i is not a neighbor of j, then Ji,j = 0. The matrix J is symmetric with zero
elements in the diagonal. Let {I1,B1,U1, ..., Ii,Bi,Ui, ...,UN} denote a certain state of the population,
and let p(I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t) be the probability of that state occurring at time t. The time
evolution of p(I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t) is described by a master equation [16] given by an
ordinary differential equation (ODE) system that models the probabilistic combination of states and the
switching between those states depending on the transition rates of the mathematical model and the
spatial structure of the population. Following Glauber’s Ising spin dynamics [17] or Stollenwerk et al.’s
reinfection SIRI model [18,19], the master equation for the IBU spreading model is given by
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d
dt

p (I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t)

=
N

∑
i=1

β

(
N

∑
j=1

JijBj

)
(1 − Ii) p(I1,B1,U1, ..., 1 − Ii, 1 −Bi,Ui...,UN , t)

+
N

∑
i=1

γ (1 −Bi) p(I1,B1,U1, ..., Ii, 1 −Bi, 1 −Ui...,UN , t)

+
N

∑
i=1

ν(1 − Ii) p(I1,B1,U1, ..., 1 − Ii,Bi, 1 −Ui...,UN , t)

(1)

+
N

∑
i=1

μ

[
(1 − Ii) p(I1,B1,U1, ..., 1 − Ii,Bi,Ui...,UN , t)

+ (1 −Bi) p(I1,B1,U1, ..., 1 − Ii, 1 −Bi,Ui...,UN , t)

+ (1 −Ui) p(I1,B1,U1, ..., 1 − Ii,Bi, 1 −Ui...,UN , t)

]

−
N

∑
i=1

[
β

(
N

∑
j=1

JijBj

)
Ii + γ Bi + νIi + μ (Ii +Bi +Ui)

]
p(...Ii,Bi,Ui...).

The expectation value for the total number of ignorant individuals in the population at a given
time t is defined by

〈I〉 =
1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

Ii

)
· p(I1,B1,U1, I2, ..., UN , t), (2)

and its time evolution is given by

d
dt
〈I〉 =

1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

Ii

)
· d

dt
p(I1,B1,U1, I2, ..., UN , t). (3)

Inserting the master equation into Equation (3), after some computations, we obtain the dynamic
equation for the mean quantity of ignorant individuals in the population:

d
dt
〈I〉 = −β 〈IB〉1 − ν〈I〉 − μ〈I〉+ μ(〈I〉+ 〈B〉+ 〈U〉). (4)

Similarly, for the expectation value of the total number of believers and unbelievers, we obtain
the following dynamic equations:

d
dt
〈B〉 = β 〈IB〉1 − γ〈B〉 − μ〈B〉 (5)

d
dt
〈U〉 = γ〈B〉+ ν〈I〉 − μ〈U〉. (6)

The dynamics of the first moments depend on the second moment:

〈IB〉1 =
1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

N

∑
j=1

(J1)ijIiBj

)
· p(I1,B1,U1, I2, ..., UN , t)
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which is the mean number of ignorant and believer neighbors. We can now proceed by computing
the dynamic equation for the second moment 〈IB〉1, or we can close the ODE system (4)–(6) by
approximating 〈IB〉1 by a mathematical formula involving only the first moments 〈I〉, 〈B〉, and 〈U〉.
Here, we close the ODE system (4)–(6) using the mean-field approximation.

Let us assume that the individuals in the population are distributed in a regular network, where all
individuals have the same number of neighbors Q, and hence,

N

∑
j=1

Jij = Q .

In the mean-field approximation, the exact number of believers who are neighbors of a certain
individual i is approximated by the average of the number of believers in the entire population:

N

∑
j=1

JijBj ≈ Q
〈B〉
N

, ∀ i = 1, ..., N.

Hence, the second moment 〈IB〉1 is approximated by

〈IB〉1 ≈ Q
N
〈I〉〈B〉,

and the ODE system (4)–(6) transforms into the closed system

d
dt
〈I〉 = −β

Q
N
〈I〉〈B〉 − ν〈I〉 − μ〈I〉+ μ(〈I〉+ 〈B〉+ 〈U〉) (7)

d
dt
〈B〉 = β

Q
N
〈I〉〈B〉 − γ〈B〉 − μ〈B〉 (8)

d
dt
〈U〉 = γ〈B〉+ ν〈I〉 − μ〈U〉. (9)

We observe that more complex ODEs can be obtained by using higher-order moment closures
(see [18,20]).

Next, let the normalized state variables I(t) = 〈I〉/N, B(t) = 〈B〉/N and U(t) = 〈U〉/N
denote the mean densities of ignorant, believer, and unbeliever individuals in the population; then,
we normalize the time scale τ = (γ + μ)t by the mean believing/spreading period 1/(γ + μ). Hence,
I(τ) + B(τ) + U(τ) = 1 and Equations (7)–(9) are rescaled to the following ODE system:

dI
dτ

= −R0BI − (s + f )I + f (10)

dB
dτ

= R0BI − B (11)

dU
dτ

= (1 − f )B + sI − f U ; (12)

where

(a) f = μ/(γ + μ) > 0, typically very small, is the mean birth and death rates in the time unit given
by the mean believing/spreading period (τ);

(b) s = ν/(γ + μ) is the information search rate in the time unit (τ); and
(c) R0 = βQ/(γ + μ) is the so-called basic reproductive number R0 (see [21]) in epidemiological

models: i.e., R0 is the rate at which the expected number of ignorant individuals become believers
through the influence of the expected number of believer/spreader individuals in the time unit (τ).
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Stable Stationary States

Let the stationary values of ignorants, believers, and unbelievers of the rumor be denoted by I∗,
B∗, and U∗, respectively.

The stationary states of the ODE system (10)–(12) are given by

I∗0 =
f

s + f
, B∗

0 = 0 and U∗
0 =

s
s + f

, (13)

and by

I∗ =
1

R0
(14)

B∗ = f
(

1 − 1
R0

)
− s

R0
≥ 0 (15)

U∗ = (1 − f )
(

1 − 1
R0

)
+

s
R0

. (16)

From Equation (15), we observe that the believers’ stationary state decreases linearly with the
information search rate s (see also Figure 2), and the critical information search rate, which is the rate
at which the believers’ stationary state vanishes, is

sC = f (R0 − 1). (17)

Since f is a small number, we assume in this paper that 0 < sC = f (R0 − 1) < 1. We observe that
the stationary states (I∗, B∗, U∗) only hold for s ≤ sC because of the natural restriction that B∗ ≥ 0.
If s = sC, then there is a single equilibrium (I∗0 , B∗

0 , U∗
0 ) = (I∗, B∗, U∗).
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Figure 2. (left) The stationary value of believers B∗(s) and (right) the probability that an ignorant
individual does not search for real information to become believer P(s), which depends on the
information search rate s. The other parameter is f = 0.01.

Lemma 1. For s < sC, the stationary states (I∗0 , B∗
0 , U∗

0 ) are unstable, and the stationary states (I∗, B∗, U∗)
are stable. Furthermore, for s > sC, the stationary states (I∗0 , B∗

0 , U∗
0 ) are stable.
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Proof. The Jacobean matrix of the ODE system (10)–(12) is given by

J(I, B, U) =

⎡⎢⎢⎣
−R0 B − s − f −R0 I 0

R0 B R0 I − 1 0

s 1 − f − f

⎤⎥⎥⎦
The eigenvalues of the Jacobean matrix J(I∗0 , B∗

0 , U∗
0 ) are

λ1 = − f , λ2 = −s − f and λ3 =
f (R0 − 1)− s

s + f
.

Hence, all eigenvalues have a negative real part if and only if s > f (R0 − 1) = sC. The eigenvalues
of the Jacobean matrix J(I∗, B∗, U∗) are

λ1 = − f , λ2 = −1/2 f R0 − 1/2
√

f 2R0
2 + 4 s + 4 f − 4 f R0 and

λ3 = −1/2 f R0 + 1/2
√

f 2R0
2 + 4 s + 4 f − 4 f R0 .

Hence, all eigenvalues have a negative real part if and only if

f 2R2
0 > f 2R0

2 + 4 s + 4 f − 4 f R0.

This is equivalent to s < f (R0 − 1) = sC.

3. Nash and Evolutionarily Stable Information Search Strategies

In this section, we consider a game in which individuals have to decide between searching
and not searching for real information to avoid believing the false rumor. Here, we define the Nash
and evolutionarily stable information search strategies (see [7,10,11]).

S denotes the probability that an ignorant individual will choose to search for information.
This probability S is the individual’s information search strategy in the game. The uptake level of
searching for information in the population is the proportion of individuals who will choose to search
for real information, i.e., the mean of all information search strategies. We denote the uptake level of
searching for information by s, i.e., the population information search strategy.

Let bL and cL denote the benefits and the costs of searching for information, respectively,
and let v = bL − cL denote the value of the information search. We define the payoff of an ignorant
individual who searches for real information and does not believe in the false rumor by v.

Let bB and cB denote the benefits and the costs of believing the rumor, respectively,
and let y = bB − cB denote the impact measure that assesses the risk of believing the rumor.

Let P(s) denote the probability that an ignorant individual, who does not search for real
information, becomes a believer for a proportion s of individuals in the population who search for
information. The probability P(s) uses the stable stationary states of ignorant and believer individuals
computed in Lemma 1:

P(s) =
R0B∗ I∗

R0B∗ I∗ + f I∗ =
f (R0 − 1)− s

f R0 − s
, i f s < sC. (18)

If s ≥ sC, then B∗ = 0, and thus, P(s) = 0 (see Figure 2). In particular, P(0) = (R0 − 1)/R0.
We define the payoff of an ignorant individual who does not search for real information and believes
the rumor by

yP(s).
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The expected information search payoff E(S, s) of an individual with an information search strategy
S in a population with an information search strategy s is

E(S, s) = vS + yP(s)(1 − S)

= yP(s) + S(v − yP(s)). (19)

Nash and evolutionarily stable information search strategies are the typical strategies studied in
game theory (see [10,12]).

A population information search strategy s = S∗ is an information search Nash equilibrium if

ΔS∗→S′ = E(S′, S∗)− E(S∗, S∗) ≤ 0 , (20)

for every strategy S′ ∈ [0, 1]. By Equation (19), an information search strategy S∗ is a Nash equilibrium
if and only if

(S′ − S∗)(v − yP(S∗)) ≤ 0.

Let W ≡ y(R0 − 1)/R0 be the threshold for believing a rumor, where (R0 − 1)/R0 = P(0).
The remark below follows, for instance, from Lemma 1 in [10].

Remark 1. An information strategy S∗ is a Nash equilibrium if and only if S∗ satisfies one of the
following conditions:

(a) S∗ = 0 and v ≤ W, with
E(0, 0) = W; or

(b) S∗ ∈ (0, 1) and v = yP(S∗), with P(S∗) < P(0) and

E(S∗, S∗) = yP(S∗) = v; or

(c) S∗ = 1 and v ≥ 0, with
E(1, 1) = v.

Hence, for every S∗ > 0, E(S∗, S∗) = v is constant, with |v| < |W|. We observe that (i) for every
S∗ ∈ (0, sC), P(S∗) > 0, and (ii) for every S∗ ∈ [sC, 1), P(S∗) = 0, and thus, E(S∗, S∗) = 0 = v.
In Figure 3, we plot the Nash information search strategies s = S∗ for each mixed Nash strategy with
the value of information v = yP(s) and for pure Nash strategies S∗ = 0 and S∗ = 1.

To define an evolutionarily stable information search strategy, we start by assuming that all
individuals in the population opt for an individual information search strategy S. If a group of size ε

chooses a different individual information search strategy S′, then the population information search
strategy becomes

s(ε) = (1 − ε)S + εS′.

A population information search strategy S∗ is a left evolutionarily stable information search strategy
if there is a ε0 > 0 such that for every ε ∈ (0, ε0) and for every S′ < S∗,

ΔES∗→S′(s(ε)) = E(S′, s(ε))− E(S∗, s(ε)) = (S′ − S∗) (v − yP(s(ε))) < 0 .

The definition of a right evolutionarily stable information search strategy is similar. A population
information search strategy S∗ is an evolutionarily stable information search strategy if it is a left and right
evolutionarily stable strategy.
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Figure 3. Nash and evolutionarily stable information search strategies s, depending on the information
search values v. On the (left), a negative impact measure y = −1 is considered, and on the (right),
a positive impact measure y = 1 is considered. The blue line corresponds to Nash equilibria (that are
not ESI strategies), and the black line corresponds to evolutionarily stable information (ESI) search
strategies. Other parameter values: R0 = 20, f = 0.01, and sC = 0.19.

Theorem 1. A Nash search strategy S∗ is an evolutionarily stable information (ESI) search strategy if and only
if S∗ satisfies one of the following conditions:

(i) For positive impact measures y ≥ 0,

(a) S∗ = 0 and v < yP(0); or
(b) S∗ = 1 and v > 0.

(ii) For negative impact measures y ≤ 0,

(a) S∗ = 0 and v ≤ yP(0); or
(b) S∗ ∈ (0, sC) and v = yP(S∗); or
(c) S∗ = 1 and v > 0.

Moreover, S∗ is a Nash equilibrium and a left (and not a right) evolutionarily stable information search
strategy if and only if S∗ = sC, v = 0, and y > 0.

Hence, S∗ is a Nash equilibrium and not an evolutionarily stable information search strategy if
S∗ ∈ [0, 1] and v = yP(S∗) and y > 0.

In Figure 3, we plot the evolutionarily stable information search strategies s = S∗ for each value v
of searching for information.

Proof. The proof follows from Lemma 2 in [10], noting that v is negative and P(S∗) is strictly decreasing
for S∗ ∈ (0, sC).

4. Optimal Strategies

In this section, we compute the optimal information (OI) search strategy for every value of
searching for information and every value of the rumor impact measure, under the assumption
that all individuals adopt the same information search strategy s = S (homogeneous strategy).
Let sC = f (R0 − 1) be the critical information search strategy. Let

Ẽ(s) ≡ Ẽ(s; v) = vs + yP(s)(1 − s),

for 0 ≤ s ≤ sC.
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Lemma 2. Assume that f is sufficiently small, where f < 1/R0.

(i) Ẽ′′(s) < 0 for positive impact measure values y > 0;
(ii) Ẽ′′(s) = 0 for null impact measure values y = 0; and
(iii) Ẽ′′(s) > 0 for negative impact measure values y < 0.

Proof. We have

Ẽ′′(s) = y
(
P′′(s)(1 − s)− 2P′(s)

)
.

We observe that Ẽ′′(s)/y < 0 is equivalent to 2P′(s) > P′′(s)(1 − s). By Equation (18), we have
P′(s) = − f /( f R0 − s)2 and P′′(s) = −2 f /( f R0 − s)3. Thus, 2P′(s) > P′′(s)(1 − s) is equivalent to

−2 f /( f R0 − s)2 > −2 f /( f R0 − s)3.

Hence, we conclude that Ẽ′′(s)/y < 0 is equivalent to f R0 < 1.

By Equation (19), the expected information search payoff is given by

E(s; v) ≡ E(s, s; v) =

{
Ẽ(s; v) i f s ≤ sC
vs i f s > sC

. (21)

Since P(sC) = 0, we note that Ẽ(sC; v) = v sC, and thus, E is a continuous function (see also
Figure 4). The optimal information (OI) search strategy (or strategies, eventually) is

sO ≡ sO(v) = arg max
0≤s≤1

E(s; v).

The expected payoff of the optimal information search strategy is EO(v) = E(sO(v); v). Let sESI(v)
denote the evolutionarily stable information search strategy (or strategies, eventually). The expected
payoff of the evolutionarily stable information search strategy is EESI(v) = E(sESI(v); v). Let sNash(v)
denote the Nash search strategy (or strategies, eventually) that are not evolutionarily stable information
search strategies. The Nash expected payoff is ENash(v) = E(sNash(v); v).
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Figure 4. The expected information search payoff, depending on the information search strategy s,
for different information search values v. On the (left), a negative impact measure y = −1 is considered,
and on the (right), a positive impact measure y = 1 is considered. Other parameter values: f = 0.01,
R0 = 20, and sC = 0.19.

4.1. The OI Search Strategy for a Positive Impact Measure

Throughout this section, let us assume that the impact measure is positive y > 0. Hence,
by Lemma 2 (see also Figure 4), for v 
= 0, Ẽ is strictly concave, and thus, the optimal information

501



Entropy 2020, 22, 1368

search strategy is a pure strategy (0 or 1) or a mixed strategy sC or sM(v), where sM(v) is the interior
maximum point of Ẽ(s; v) (when it exists).

Let U = y( f R0(R0 − 1) + 1)/( f R2
0) be the positive information search threshold. Note that

0 < W < U.

Lemma 3. Assume that f is small, where f < 1/R0. For a positive impact measure y > 0, the optimal
information (OI) search strategy is

(a) for v < W, sO(v) = 0, with E(sO(v)) = W;
(b) sO(W) ∈ {0, 1}, with E(sO(W)) = W; and
(c) for v > W, sO(v) = 1, with E(sO(W)) = v.

For a null impact measure y = 0, optimal information (OI) search strategies are similar to those
described above, observing that sO(0) ∈ [0, 1] (note that W = 0).

Proof. Since Ẽ is strictly concave, if E′(0) ≤ 0, then 0 or 1 is the maximum of E. Hence, let us compute
the following for E′(0) ≤ 0. The first derivative of the expected payoff is

E′(s) = v − y(P(s) + (s − 1)P′(s)).

Since P(0) = (R0 − 1)/R0 and P′(0) = −1/( f R2
0), we have E′(0) = v − U. Hence, E′(0) ≤ 0 if

and only if v ≤ U. Therefore, for v ≤ U, 0 is the maximum point of E when E(0) ≥ E(1), and 1 is the
maximum point of E when E(0) ≤ E(1). Recall that E(0) = W and E(1) = v. Hence, E(0) ≥ E(1) if
and only if v ≤ W.

Finally, for v > U > 0, let us prove that 1 is the maximum of E. This follows from the confirmation
that E(s) < E(1) for every s ≤ sC. We observe that E(s) < E(1) if and only if

s < f R0 +
y f

v − y
.

Since sC = f (R0 − 1), we confirm that the equivalence between

sC = f (R0 − 1) < f R0 +
y f

v − y

and −y(1 − f ) < f v holds because of −y(1 − f ) < 0 < f v. Hence,

s ≤ sC < f R0 +
y f

v − y
,

which concludes the proof.

Remark 2. Assume that f is small, where f < 1/R0, and the impact measure is positive y > 0.

(a) sESI(v) = sO(v) = 0, for v < 0;
(b) 0 = sO(0) < sNash(0) ∈ [sC, 1];
(c) 0 = sO(v) < sNash(v) < 1 and sESI(v) ∈ {0, 1}, for 0 < v < W;
(d) 0 = sNash(W) < sESI(W) = 1 and sO(W) ∈ {0, 1}; and
(e) sESI(v) = sO(v) = 1, for v > W.

For the null impact measure y = 0, the comparison is similar to that described above, observing
that sO(0), sNash(0) ∈ [0, 1] (note that W = 0).

By Lemma 3 and Remark 2, (i) for small values of the information search v ≤ W, the optimal
strategy sO = 0 coincides with the evolutionarily stable information search strategy sESI = 0, in which
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individuals never search for truthful information; (ii) for positive values of the information search
v ≥ W, the optimal strategy sO = 1 coincides with the evolutionarily stable information search strategy
sESI = 1, in which individuals always search for truthful information. In Figure 5, we compare
the expected payoff of the evolutionarily stable information search EESI(v) with that of the optimal
information search, denoted by EO(v).
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Figure 5. The expected information search payoff E(s; v), depending on the value of the information
search v for different search strategies s: critical search strategy sC, OI search strategy sO, ESI search
strategy sESI , and Nash strategy sNash. On the (left), a negative impact measure y = −1 is considered,
and on the (right), a positive impact measure y = 1 is considered. The other parameter values are
f = 0.01 and R0 = 20. Hence, V = −5 and W = −0.95 (left) or W = 0.95 (right).

4.2. The OI Search Strategy for a Negative Impact Measure

Throughout this section, let us assume that the impact measure is negative y < 0. Hence,
by Lemma 2 (see also Figure 4), Ẽ is strictly convex, and thus, the optimal information search strategy
is a pure strategy (0 or 1) or a mixed strategy sC for v 
= 0. Let V = y/( f R0) < 0 be the negative
information search threshold.

Lemma 4. Assume that f is small, where f < 1/R0. For a negative impact measure y < 0, the optimal
information (OI) search strategy is

(a) for v < V, sO(v) = 0, with E(sO(v)) = W;
(b) sO(V) ∈ {0, sC}, with E(sO(V)) = W;
(c) for V < v < 0, sO(v) = sC, with

E(sO(v)) = vsC = v f (R0 − 1) = vW/V;

(d) sO(0) ∈ [sC, 1], with E(sO(0)) = 0; and
(e) for v > 0, sO(v) = 1, with E(sO(v)) = v;

Proof. Since Ẽ(s; v) is a linear function in v, there is only one value V = y/( f R0) < 0 such that
Ẽ(0; V) = Ẽ(sC; V). Furthermore, E(0; v) > E(sC; v) if and only if v < V. (a) If v < V < 0,
E(0; v) > E(sC; v) and, by linearity, E(sC; v) > E(1; v). Hence, sO(v) = 0. (b) If v = V < 0,
E(0; V) = E(sC; V) and, by linearity, E(sC; V) > E(1; V). Hence, sO(V) = 0 or sO(V) = sC.
(c) If V < v < 0, E(sC; v) > E(0; v) and, by linearity, E(sC; v) > E(1; v). Hence, sO(v) = sC. (d) If v = 0,
E(sC; v) > E(0; v) and, by linearity, E(s; 0) = E(sC; 0) for all s ∈ [sC, 1]. Hence, sO(0) ∈ [sC, 1].
(e) If v > 0, E(sC; v) > E(0; v) and, by linearity, E(1; v) > E(sC; v). Hence, sO(v) = 1.

Since V = y/( f R0) < y(R0 − 1)/R0 = yP(0) ≡ W, we state the following remark.
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Remark 3. Assume that f is small, where f < 1/R0 and the impact measure is negative y < 0.

(a) sESI(v) = sO(v) = 0, for v < V;
(b) sESI(V) = 0, sO(V) ∈ {0, sC};
(c) sESI(v) = 0 < sC = sO(v), for V < v < W;
(d) 0 < sESI(v) = P−1(v) < sC = sO(v), for W < v < 0;
(e) sNash(0), sO(0) ∈ [sC, 1]; and
(f) sESI(v) = sO(v) = 1, for v > 0;

By Lemma 4 and Remark 3, (i) for small values of searching for information v ≤ V, the optimal
strategy sO = 0 coincides with the evolutionarily stable information search strategy sESI = 0, in which
individuals never search for truthful information; (ii) for positive values of searching for information
v > 0, the optimal strategy sO = 1 coincides with the evolutionarily stable information search strategy
sESI = 1, in which individuals always search for truthful information; (iii) for intermediate values of
searching for information V < v < 0, the optimal strategy coincides with the critical information search
rate sC, which eradicates the rumor. This value is above the value given by the evolutionarily stable
information search strategy sESI that is not able to eradicate the rumor and yields a lower expected
information search payoff EESI(v) < EO(v) (see Figure 5).

5. Evolutionary Information Search Dynamics

Evolutionary information search dynamics is introduced here (see [11–13]), under the assumption
that all individuals adopt the same information search strategy s = S (homogeneous strategy).

Consider a case in which a small group of individuals of size ε modify their search strategy from
the population information search strategy S to S + ΔS. The change in the expected information search
payoff satisfies

ΔES→(S+ΔS)

ΔS
=

E(S + ΔS, s(ε))− E(S, s(ε))
ΔS

= v − yP(s(ε)) , (22)

where s(ε) = (1 − ε)S + ε(S + ΔS) = S + εΔS defines the new population search strategy.
Let s(τ) be the population information search strategy adopted at time τ. Hence, we define the

evolutionary information search dynamics by

d s
dτ

= η(s) lim
ΔS→0

ΔES→(S+ΔS)

ΔS
= η(s)(v − yP(s)), (23)

where η(s) ≥ 0 is a smooth map that measures the information search strategy adaptation speed of
the population.

A point s is a dynamic equilibrium of the evolutionary information search dynamics if and only if
ds/dτ = 0. Hence, a point s is a dynamic equilibrium if and only if

(i) η(s) = 0 or (ii) v = yP(s).

Recall that f is assumed to be small, and thus, sC = f (R0 − 1) < 1; P(1) = 0, and W = yP(0)
is the rumor belief threshold. As usual (see [10]), we assume the following for η: (i) η(s) > 0, for all
0 < s < 1; (ii) if v < W, then η(0) = 0 and η′(0) > 0; (iii) if v > W, then η(0) > 0; (iv) if v > 0,
then η(1) = 0 and η′(1) < 0; and (v) if v < 0, then η(1) > 0.

We use the standard definition of left, right, and global attractors for a dynamic equilibrium p
(see [10]).
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Theorem 2. Assume that f is small, where f (R0 − 1) < 1.

(i) For negative impact measures y ≤ 0, the dynamic equilibria of the evolutionary information search
dynamics are as follows:

(a) for v < 0, the evolutionarily stable information search strategy sESI(v) is a global attractor;
(b) for v = 0, the Nash information search strategies sNash(v) ∈ [sC, 1] are equilibria points, and sC is

a left (and not right) attractor;
(c) for v > 0, the evolutionarily stable information search strategy sESI(v) = 1 is a global attractor.

(ii) For positive impact measures y ≥ 0, the dynamic equilibria of the evolutionary information search
dynamics are as follows:

(a) for v < W, the evolutionarily stable information search strategy sESI(v) = 0 is an attractor
(also global for v < 0);

(b) for 0 ≤ v ≤ W, the Nash information search strategies sNash(v) are dynamical equilibria, but not
attractors; and

(c) for v > 0, the evolutionarily stable information search strategy sESI(v) = 1 is an attractor
(also global for v > W).

In Figure 6, we show the dynamics described above. For advantageous rumors, we observe
the existence of a bi-stability region, where the evolutionarily stable information search strategies
in which no one searches (persistence of the rumor) or everyone searches (eradication of the rumor)
are the attractors, and the Nash equilibria form the boundary of the basins of attraction of the two
attractors. Hence, the Nash equilibria are unstable equilibria and are thus not observed (at least
for large periods), but have the interesting property of determining the basin of attraction of the
attractors. For harmful rumors, we observe that for negative values of the information search
v < 0, the evolutionary information search dynamic drives the population search strategy to an
evolutionarily stable information search strategy that is lower than the critical information search rate
sESI < sC. Hence, to eradicate the rumor, a forcing mechanism must be implemented to increase the
population search strategy to (or above) the critical information search rate sC. For positive values
of the information search v > 0, the evolutionary information search dynamic drives the population
search strategy to the evolutionarily stable information search strategy, in which individuals always
search for truthful information sESI = 1, and thus, the rumor is eradicated. Hence, a recommendation
for legislators and policymakers who aim to eradicate harmful rumors is to make the search for
truthful information free or rewarding, i.e., information search value v ≥ 0. Truthful public social
media campaigns can help by facilitating access to information.

-1.5 -1 -0.5 0 0.5 1
v

0

0.2

0.4

0.6

0.8

1

s

-1 -0.5 0 0.5 1 1.5
v

0

0.2

0.4

0.6

0.8

1

s

Figure 6. The stable (solid line) and the unstable (dashed line) equilibria of the evolutionary information
search dynamics. On the (left), a negative impact measure y = −1 is considered, and on the (right),
a positive impact measure y = 1 is considered. Parameter values: f = 0.01 and R0 = 20.
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The proof of the above theorem follows similarly to the proofs of Theorems 6–8 in [10].

Proof. Let y < 0 (the proof follows similarly for y > 0). To simplify the presentation of the proof,
let us introduce the function

F(s) = η(s)(v − yP(s))

such that ds/dτ = F(s).
(a) If v ≤ yP(0), then η(0) = 0, and thus, F(0) = 0. Hence, s = 0 is an equilibrium point.

Since P(s) is decreasing, for every s′ ∈ (0, 1], P(s′) < P(0), and thus, F(s′) < 0. Hence,

lim
τ→∞

s(τ; s′) = 0 ,

and therefore, s = 0 is a global attractor.
(b) If yP(0) < v < 0 and s∗ is such that v = yP(s∗), then F(s∗) = 0, and s∗ is an equilibrium

point. Since P(s) is decreasing, for every s′ ∈ [0, s∗), P(s′) > P(s∗), and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = s∗ ,

and therefore, s∗ is a left attractor in [0, s∗). For every s′ ∈ (s∗, 1], P(s′) < P(s∗), and thus, F(s′) < 0.
Hence,

lim
τ→∞

s(τ; s′) = s∗ ,

and therefore, s∗ is a right attractor in (s∗, 1]. Hence, s∗ is a global attractor.
(c) For every s∗ ∈ [sC, 1], P(s∗) = 0, and thus, F(s∗) = 0 if v = 0. Hence, s∗ ∈ [sC, 1] are equilibria

points. Since P(s) is decreasing, for every s′ ∈ [0, sC), P(s′) > P(sC) = 0, and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = sC ,

and therefore, sC is a left attractor in [0, sC).
(d) If v > 0, then η(1) = 0, and thus, F(1) = 0. Hence, s = 1 is an equilibrium point. Since P(s) is

decreasing, for every s′ ∈ [0, 1), P(s′) > P(1), and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = 1 ,

and therefore, s = 1 is a global attractor.

6. Conclusions

In this paper, we present a rumor spreading model with potential information searching in a
population where individuals can be ignorants, believers, or unbelievers of the rumor. Depending on
whether the impact measure, which assesses the risk of believing the rumor (fake news), is positive
or negative and on the value of searching for information, we introduce an expected payoff or utility
for the individuals. We derive all of the Nash and all of the evolutionarily stable information search
strategies. Furthermore, we introduce evolutionary information search dynamics, whose attractors are
evolutionarily stable information search strategies.

For advantageous rumors, we observe the existence of a bi-stability region, where the
evolutionarily stable information search strategies are either to fully search for truthful information
or not search at all. For harmful rumors, we observe that there is a single evolutionarily stable
information search strategy by which individuals decide, or not, to search for information. When the
benefits of searching for information outweigh the costs, i.e., the value of information search is positive,
the evolutionarily stable information search strategy is to search for information with a probability of 1.
However, when the value of the information search is negative, the evolutionarily stable information
search strategy is smaller than the optimal information search strategy that eradicates the rumor.
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In this case, unfortunately, the rumor persists. The persistence of false rumors may be quite dangerous
and lead to extensive damage to the individual, as well as to all of society. For example, when a
disease is spreading, some cases of vaccination with moderate side-effects can be inflated by social
media, provoking fear in the population and leading to a large proportion of individuals deciding
against vaccination. In an outbreak with a large transmission rate, such as COVID-19, decisions
against vaccination are a major contributor to the spread of the disease and so are quite harmful to all.
A recommendation for legislators and policymakers who aim to eradicate harmful rumors is to make
the search for truthful information free or rewarding.

The population is assumed to be distributed in a regular spatial network, where all individuals
have the same number of neighbors, and thus, all of them can equally spread the rumor. This model will
be the basis for future works that involve different and more complex spatial networks, heterogeneous
strategies, and higher moment closure approximations and encompass the routes of modern social
media transmission.
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Abstract: How much different genders contribute to citations and whether we see different gender
patterns between STEM and non-STEM researchers are questions that have long been studied in
academia. Here we analyze the research output in terms of citations collected from the Web of
Science of males and females from the largest Croatian university, University of Zagreb. Applying the
Mann–Whitney statistical test, for most faculties, we demonstrate no gender difference in research
output except for seven faculties, where males are significantly better than females on six faculties.
We find that female STEM full professors are significantly more cited than male colleagues, while male
non-STEM assistant professors are significantly more cited than their female colleagues. There are ten
faculties where females have the larger average citations than their male colleagues and eleven faculties
where the most cited researcher is woman. For the most cited researchers, our Zipf plot analyses
demonstrate that both genders follow power laws, where the exponent calculated for male researchers
is moderately larger than the exponent for females. The exponent for STEM citations is slightly
larger than the exponent obtained for non-STEM citations, implying that compared to non-STEM,
STEM research output leads to fatter tails and so larger citations inequality than non-STEM.

Keywords: power law; Zipf law; gender productivity gap

1. Introduction

The gender productivity gap in academia, well known as the ‘productivity puzzle’—that on
average men publish more papers than women—still persists across the countries, but the trend is
ramping down over time and the gap considerably varies between different subfields of science [1,2].
Many theories explain the gender productivity difference ranging from family responsibilities [3,4] to
career absences [5], to mention a few.

In contrast to the OECD finding that there are more female than male undergraduate and graduate
students in most countries [6], there are relatively few female than male full professors in many
countries. According to the US National Science Foundation, female scientists earn almost half the
PhDs in science and engineering (STEM fields) in the US, but comprise only 21% of full science
professors and surprisingly only 5% of full professors in engineering [7]. There is persisting gender
inequality in hiring [8], female scientists continue to face discrimination in earnings [7], funding [9],
patenting [10], prizes and awards [11], and grant applications [12]. Moreover, female scientists publish
significantly fewer papers in areas in which research is expensive, and it is much less likely that
females are listed as either first or last author on a paper [2]. Holman, Stuart-Fox, and Hauser estimate
that men are invited by journals to submit papers at approximately double the rate of women [13].
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Analyses accomplished in the Quebec region reported that after women have passed the age of about
38, they receive less funding for research than men, and are at a slight disadvantage in terms of the
scientific impact (measured by citations) of their publications [14]. However, a few papers reported
that the gender gap is diminishing [1,15], e.g., Xie and Shauman reported that the gender differences in
research productivity declined overtime with the female-to-male ratio increasing from about 60 percent
in the late 1960s to 75 to 80 percent in the late 1980s and early 1990s [15]. Le Moine shows that the
concentration of women among researchers who publish a single article is greater than for men, while
their representation among ‘star’ scientists is less [16].

How children and marriage affect men and women is not conclusive. Most studies report the
positive effect of marriage on scientific productivity, but Prpic [17] shows that men more than women
experience benefitsdue to the presence of a spouse. Fox [3] reports that unmarried men are the least
productive of all. Married women, particularly those married for the second or third time, exhibit a
higher level of productivity. Stack shows that women with preschool-aged children publish less than
other women [18] . For example, the divorce rate among tenured females is 50% higher than that of
tenured men [19]. Tenured female scientists are almost three times more likely than male colleagues to
be single without children [20]. Obviously, the time, energy, and money devoted to raising children
can reduce time devoted to science. Due to thinking that raising kids is more a female responsibility,
men with children make them more productive than women with children [17]. Moreover, female
postdocs who plan or become parents decide to abandon research careers up to twice as often as
men [21], confirming that children and marriages do affect carriers in science, but not equally males
and females.

In terms of citations, it was revealed that the smaller number of citations received by females is
first because on average, men like to cite their own papers 56% more than women [22]. Second, females
generally publish less [1]. However, on average, papers written by females receive more citations
than papers written by males [23], implying that women often have a higher impact (citations) per
publication [24–26]. Duch et al. hypothesized and confirmed that the higher the resource requirements
on research, the greater is the difference in the publication rates between females and males in favor of
males. However, the gender differences in publication rate and citations are discipline-specific [26].

To stress gender differences across different research areas, for the Italian academia the authors
showed that females are more productive than male colleagues in medical sciences, agriculture,
veterinary sciences, and earth sciences, while men dominate in industrial and information engineering,
chemical sciences, physical sciences, and mathematics and information sciences [27]. Abramo et al.
concluded that there is a significant number of scientific fields where women’s performance cannot be
considered to be inferior compared to men’s.

2. Materials and Methods

To test whether the male and female researchers comprise two distinct subgroups and not a unique,
in our paper we apply the Mann–Whitney U test that is intended to measure the difference between two
populations, in our analyses the difference in ranks of male and female citations. Generally, when the
test is applied in practice, the total citations data (males and females collected together) must be first
sorted in ascending order. Combining all citations values in a single array, but keeping information
of which sample each observation comes from, the U test first ranks all scientists according to their
citations from smallest to largest and then separately sums up all female and male ranks, thus, taking
the gender into account. We denote these sums by R1 and R2, whereby N1 and N2 we denote the
respective sample sizes, in our case representing the numbers of male and female researchers. Since the
the test is conceived to incorporate both citations and the sample size which is the number of professors
of a particular gender, the test is actually designed to evaluate citations per capita of a given gender.
The test statistic quantifying the difference between the rank sums is defined as:

U1 = N1N2 +
N1(N1 + 1)

2
− R1. (1)
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or

U2 = N1N2 +
N2(N2 + 1)

2
− R2. (2)

When the two-tail test is applied, the two-tail test statistic U is taken to be the smaller of U1 and U2.
The distribution of U test is symmetrical where a mean and variance equal

μU =
N1N2

2
, (3)

σU =
N1N2(N1 + N2 + 1)

12
. (4)

If N1 and N2 are at least equal to 8, the distribution of U is approximately Gaussian so that

z = (U − μU)/σU (5)

is standardized Gaussian distributed with mean zero and variance 1.
Here, the null hypothesis is that the distributions of citations per capita of the two subgroups

(men and women) are the same. The null hypothesis is rejected for values of the test statistic falling
into either tail of its sampling distribution. If a one-tailed test is performed, the alternative hypothesis
suggests that the variable of one group is larger than the other group.

3. Results

3.1. Empirical Evidence

Here, we analyze the publishing career of 3331 active scientists from their publication record in
theWeb of Science (WoS) database who have the affiliation of University of Zagreb, which is the largest
Croatian university. As a proxy for research excellence, we take the the number of citations according
to WoS. With the criterion that only affiliation matters, we exclude the total number of citations the
researchers may have collected being on other institutions. The data had been collected between 5th
and 10th November 2019. This choice may serve as a proxy for the real contribution of scientists in their
university rankings. Due to the importance of physics, biology, and chemistry in science in general,
we analyze these subfields of natural sciences individually even though they all belong to a single
institution, the Faculty of Natural Sciences. For each scientist we identify the gender, the number of
publications, citations, and whether he/she belongs to a STEM field (science, technology, engineering
and mathematics) or not. We put particular focus on STEM field (science, technology, engineering,
and mathematics) or not. We put particular focus on STEM fields because the recent studies indicate
the prominence of STEM for the country’s growth. Specifically, the World Economic Forum [28] and
National Academies [29,30] studies indicate that STEM fields are key in economic development.

Among the researchers, we first find 1837 male and 1485 female scientists among the full, associate,
and assistant professors. However the gender contribution in different subgroups clearly reveal that
academia is becoming more open to females. Specifically, while male full professors substantially
outnumber female colleagues (≈50%), i.e., 778 vs. 518, the gender number gap is not only diminishing
at the level of associate professor, where there are 415 males and 343 females (≈20% more males),
but even brings more females than males at the lowest professor rank, where there are 587 male
assistant professors and 613 female assistant professors.

Our focus on bibliometric data limits our analysis to only publishing careers that are easier to analyze
than teaching careers. Nevertheless, our efforts constitute an attempt to quantify gender inequality in
STEM/non-STEM publications and citations at the largest Croatian university in a former socialist country.

The total numbers of male and female scientists hide an underlying disciplinary differences, as the
fraction of women, is as low as 9% in physics, 30% mathematics, and 16% computer science (Faculty
of Electrical Engineering and Computing), but female scientists constitute the majority in biology and
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chemistry with 65% and 56%, respectively (see Table 1). The Faculty of Natural Sciences comprising
all-natural sciences, physics, biology, chemistry, including mathematics have 49.49% of male professors.

Table 1. Men vs. Women—citation comparison across different University constituents. Shown are
z-scores of Equation (5) and corresponding p-values for both one- and two-tailed statistics where in
brackets we indicate if there is dominance of males or females.

% of Females z-Value p-Value

Catholic Fac of Theology 34.4 0.022 0.982
Fac Agriculture 48.4 −1.95 0.05 (0.025) (M)

Fac. Architecture 31.3 0.872 0.383
Fac Chem Eng & Tech 56.3 0.255 0.799

Fac Civil Eng 44.2 0.344 0.730
Fac Econ & Business 51.6 0.128 0.896

Fac Education & Rehabilitation Sci 87.3 1.069 0.285
Fac Electri Eng & Comp 16.2 0.359 0.720
Fac Food Tech & Biotech 69.4 0.202 0.840

Fac Forestry 18.5 0.065 0.948
Fac Geodesy 14.3 2.268 0.023 (0.11) (M)

Fac Geotechnical Engineering 26.1 1.330 0.182
Fac Graphic Arts 63.3 0.367 0.714

Fac Humanities & Social Sciences 51.9 0.297 0.766
Fac Kinesiology 44.3 0.951 0.341

Fac Law 54.1 −2.259 0.023 (0.12) (F)
Fac Mech Eng & Naval Arch 14.2 0.567 0.571

Fac Metallurgy 47.8 −1.848 0.064
Mining, Geology & Petroleum Eng 36.3 1.874 0.061

Fac Organization & Informatics 41.1 0.226 0.821
Fac of Pharmacy & Biochemistry 81.3 0.791 0.429

Fac Political Science 38.7 1.376 0.169
Fac Science—Physics 9.1
Fac Science—Biology 65.4 0.987 0.322

Fac Science—Chemistry 56.1 0.631 0.529
Fac Science—Geography 38.5 0.847 0.397

Fac Science—Geology 54.5 2.078 0.038 (0.19) (M)
Fac Science—Geophysics 50 1.123 0.317

Fac Science—Mathematics 29.6 0.786 0.432
Fac Teacher Education 63.5 2.108 0.035 (0.17) (M)
Fac Textile Technology 60.9 1.150 0.250

Fac Transport & Traffic Sciences 25.4 2.321 0.020 (0.01) (M)
Fac Veterinary Medicine 43.5 0.822 0.411

Fac Dental Medicine 53.6 0.910 0.362
Fac Medicine 46 −2.711 0.006 (0.003) (M)

Specifically, in the US, male scientists are the majority in all STEM fields, in Croatia at the largest
university we find that females scientists outnumber their male colleagues in biology and chemistry
and this gender equality seems to be a general trend in former socialist countries. For example,
Huang, Gates, Sinatra, and Barabasi [31] reports recently a finding that the the proportion of female
scientists worldwide can be as low as 28% in Germany and reaches almost 50% in Russia. In support
that socialism was helpful in reaching the gender equality in academia, note that according to Shen,
in Lithuania, female PhDs recipients in science make 63% of all recipients [7]. Similarly, as on the
West, female scientists at the Croatian the largest university has a much larger proportion in social
than natural sciences, whereas in some disciplines in social sciences females constitute even the
majority in contrast to the US where females’ fraction in social sciences are larger than in STEM fields,
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but males still substantially dominate. For example, while in the US, females reach 33% in psychology
at University of Zagreb female psychologists constitute 71%. Similarly, an interesting result is that at
the Faculty of economics females constitute the majority, i.e., 52% (see Table 1).

3.2. Empirical Evidence: Males vs. Females at Faculty Level

For each faculty, we apply the Mann–Whitney U test and for most of them, we accept the null
hypothesis, thus confirming that at a 5% confidence level there is no gender difference in citations.
However, the gender difference in research productivity measured through citations per capita is
confirmed for the following faculties (see Table 1): Faculty of Medicine, Faculty of Transport and
Traffic Sciences, Faculty of Geodesy, Faculty of Teacher Education, and Faculty of Science-Geology,
and Faculty of Law. With a single exception of Faculty of Law, male researchers on these faculties
are significantly better than the female. In agreement with Duch et al. our results also reveal that the
gender differences in citations are discipline-specific [26].

3.3. Empirical Evidence: Males vs. Females at University Level at Different Professor’s Rank

Although women have made significant progress in catching up males concerning the gender
productivity gap, on average, female scientists around the world continue to face discrimination.
However, a situation on gender equality today is supposed to be much better than a few decades
ago. Therefore, next, we test the hypothesis that the gender productivity gap in Croatian academy
is diminishing over time. Gender inequality can be nicely captured analyzing the productivity and
impact differences quantified by citations between the genders. As a good dynamic proxy for females’
catching up males in the following analyses, we make gender comparison separately for the assistant,
associate, and full professors. In Table 2 for the top 500 researchers we find that while on average,
male full professors publish 23 papers during their active career, female full professors publish almost
the same number of publications, 20, resulting in a small gender gap in total productivity. At a rank
of associate professor, we find no difference in total productivity between the genders, but as an
interesting result, we find that females have on average more citations than the male colleagues
(see Table 3), an outcome to our knowledge not reported for any other country. Again, a difference
between the genders appears between the male and female assistant professors, but this is most likely
since raising a family is still more female than male responsibility.

Table 2. Men vs. Women—Publications comparison. Both STEM and non-STEM.

Average No. Pubs (M) Average No. Pubs (F)

Assistant Prof 12 8.9
Associate Prof 15 14.7

Full Prof 23.4 19.8

Table 3. Men vs. Women—Citation comparison. Both STEM and non-STEM.

Average Citations (M) Average Citations (F)

Assistant Prof 97.7 64.9
Associate Prof 127 144.7

Full Prof 258.2 207

3.4. Empirical Evidence: STEM Males vs. Females at University Level at Different Professor’s Rank

Hence, as humans’ societies are developing the difference in science performance between males
and females is diminishing. However, it is not clear whether females are approaching males in their
scientific results equally in STEM and non-STEM fields. Holman, Stuart-Fox and Hauser estimate that
the gender gap appears likely to persist for generations, particularly in surgery, computer science,
physics, and maths [13] .
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Making comparison first for STEM fields, we obtain that male colleague exhibit significantly
better results than their female colleagues only for a rank of full professors, while the gender difference
is fading away for the associate and assistant professors. Please note that in the Mann–Whitney test,
the larger the difference between the two populations, the larger the difference between the U values.
To test whether STEM female and male researchers comprise two different subgroups, we apply the
Mann–Whitney U test that quantifies the difference between two populations based on the difference
between the ranks of their citations. Here the null hypothesis is that the distributions of the two
subgroups are the same. We find that for full professors the test statistics produce z score = −3.79
(Table 4), rejecting the null hypothesis and confirming that at a 5% confidence level female STEM full
professors are significantly more cited than their male colleagues. However, the gender gap we do not
find for the other two ranks of a professorship, implying that STEM fields presently are more popular
among females than a few decades ago.

Table 4. STEM: Men vs. Women—citation comparison.

No. (M) No. (F) U (M) U (F) z Score p-Value

Assistant Prof 331 248 40,284 41,804 0.38 0.704
Associate Prof 214 174 19,980 17,256 −1.24 0.215

Full Prof 511 266 79,219 56,706 −3.79 0.00

3.5. Empirical Evidence: Non-STEM Males vs. Females at University Level at Different Professor’s Rank

The similar comparison between males and females we perform in non-STEM fields. We find
no gender differences at the levels of full and associate professorship. However, we obtain that for
the youngest level of the professorship, males exhibit significantly better results than their female
colleagues. From Table 5 we find that for assistant professors the z score = 2.54, rejecting the
null hypothesis that the distributions of the two subgroups for males and female are the same and
confirming that at a 5% confidence level non-STEM male assistant professors are significantly more
cited than their female colleagues. The result is not surprising because female assistant professors are
at the age when as young women they spend a considerable amount of time with their kids. This result
is in agreement with the conclusions by Stack, who found that women with preschool-aged children
publish less than others [18].

Table 5. Non-STEM: Men vs. Women—citation comparison.

No. (M) No. (F) U (M) U (F) z Score p-Value

Assistant Prof 256 365 41,286 52,156 2.54 0.01
Associate Prof 201 169 16,739 17,230 0.24 0.808

Full Prof 267 252 33,256 34,027 0.22 0.819

3.6. Empirical Evidence: Pareto Inequality, STEM vs. Non-STEM

Since the work of Pareto on the application of power law to income inequality, we know that the
tail part of an income distribution follows a power law [32]. Since that discovery, a huge literature has
been published to demonstrating how distributions in economics and generally social science follow
power-law tails and contribute to inequality [33–37]. As Stiglitz realized [36], the small fraction of
superstar firms that dominate entire sectors of the economy (e.g., Amazon, Apple, Google, Microsoft)
are the main drivers of wealth disparity. Indeed, it seems they are outliers, driven by STEM. Here we
can hypothesize that STEM fields generate the fatter tails than non-STEM fields even in academia,
when citations are considered. Motivated by Redner’s finding that citations follow power law [38],
here we apply the power-law formalism to test the research inequality between male and female
scientists at the University of Zagreb, with particular focus on the difference between STEM and
non-STEM fields.
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Figure 1 shows the log-log Zip plots of citations versus rank [39,40], which is an alternative
representation of the Pareto distribution [39,40]. When a probability distribution is asymptotically
represented by a Pareto (power-law) distribution with exponent 1 + α, then a Zipf plot of size s versus
rank R asymptotically follows a power law with exponent ξ relating the Pareto exponent α as [41]

ξ = 1/α. (6)

Generally, the smaller the α value, the fatter the tail of the power-law distribution.

Figure 1. No substantial difference in research output measured by citations between males and
females. However, the Zipf plot of citations for males exhibit a slightly fatter tail than the females’.

Here we apply the Gabaix-Ibragimov R − 1/2 method of fitting Zipf plots [40]. For year 2020,
we perform a Zipf plot to both female and male researchers, no matter whether they are in STEM and
non-STEM fields, and find the Zipf exponent for females ξ = 0.62 ± 0.01 corresponding to α = 1.61,
whereas for males ξ = 0.67 ± 0.01 corresponding to α = 1.49. Here we note that both α values are
within a range α ∈ (0, 2) characteristic for Levy distributions [41], which are characterized by infinite
variance for which is known that the famous Central Limit Theorem does not hold.

Next we extend our analysis on research output, measured by citations, to separate STEM and
non-STEM fields. Figure 2 shows a small difference between the slopes of the Zipf plot of STEM
citations and non-STEM citations, ξS = 0.66 > ξnS = 0.61, thus STEM researchers generate fatter tails
than non-STEM researchers (see Equation (6)).

Figure 2. STEM researchers contribute to a slightly fatter tails thansdcc non-STEM researchers.

515



Entropy 2020, 22, 1217

Statistics of citations for all male and female researchers we show in Table 6, while in Tables 7 and 8
we show statistics for STEM and non-STEM, respectively. In STEM, female associate professors have
larger mean and kurtosis than their male colleagues. Kurtosis is generally larger for STEM than for
non-STEM fields.

Table 6. Men vs. Women—Statistics. Both STEM and non-STEM.

Mean Median Skewness Kurtosis

All 161.6 31 21.5 687.8
All male 180.5 35 19.4 508.9

All female 138.2 26 6.7 117.9
Assistant Prof (M) 97.7 20 21.4 494.9
Assistant Prof (F) 64.9 10 7.6 89.5

Associate Prof (M) 126.9 33 4.3 24.2
Associate Prof (F) 144.7 35 9.3 11.9

Full Prof (M) 258.2 59 16.3 341.9
Full Prof (F) 207.0 61.5 4.04 124.0

Table 7. Men vs. Women—Statistics. STEM.

Mean Median Skewness Kurtosis

All male 208.7 51 17.9 395.9
All female 197.9 68.5 6.3 160.5

Assistant Prof (M) 122.7 30 16.8 297.6
Assistant Prof (F) 94.9 30 7.5 78.1

Associate Prof (M) 141.7 44.5 3.7 116.9
Associate Prof (F) 181.8 70 9.2 101.7

Full Prof (M) 281.4 73 15.4 280.6
Full Prof (F) 278.7 142 3.5 120.8

The Pareto principle has been found in large number of datasets. This principle, accomplished for
citations, states that roughly 80% of consequences come from 20% of the causes [32,42]. However this
principle does not hold for any power law, but for α = 1.16 for which 80% of effects come from 20%
of causes.

From Table 9 for male STEM researchers we find that 20% of males bring 80% of citations in well
agreement with Pareto principle. However, 27.2% of STEM females bring 80% citations. In case of
non-STEM researchers we find substantial difference from the Pareto principle.

Shannon’s entropy of information is a foundational concept in information theory quantifying
the amount of information embedded in the variable or the amount of storage expressed by the
number of bits required to store the variable [43]. The larger the entropy, the larger the amount of
surprise comprised in the data. When all values of discrete variable (R in total) are equally probable,
each probability equals 1/R and then it is easy to show that the Shannon entropy equals ln(R). If the
probability of a particular variable value approaches 1, the Shannon entropy tends to zero.

Here we apply Shannon’s entropy for a randomly chosen citation where it can be assigned to
either males or females. In Table 10 the last column reports the entropy values which are close to the
entropy (equal to 1) which one would obtain for a regular coin with two equally likely outcomes for
which there is no way to predict the outcome of the coin toss. The entropy equal to 0 would represent
a case when one of the probabilities equals 1 and any foredooming outcome can be predicted perfectly.
We demonstrate no gender difference except small differences at the level of full professors, both STEM
and non-STEM, and at the level of STEM Assistant Professors.
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Table 8. Men vs. Women—Statistics. non-STEM.

Mean Median Skewness Kurtosis

All male 138.6 9 6.8 62.8
All female 85.4 6 6.2 51.8

Assistant Prof (M) 65.4 6 4.3 23.9
Assistant Prof (F) 44.5 3 5.4 35.9

Associate Prof (M) 111.3 19 4.9 28.6
Associate Prof (F) 106.5 9 4.5 25.8

Full Prof (M) 213.7 11 5.2 37.0
Full Prof (F) 131.2 12.5 5.3 34.6

Table 9. Men vs. Women—Pareto principle. Both STEM and non-STEM.

STEM (M) STEM (F) Non-STEM (M) Non-STEM (F)

20.5 27.2 14.13 15.2

Table 10. Men vs. Women—Shannon’s Entropy. Both STEM and non-STEM.

Probability (M) Prob (F) Shannon’s Entropy

STEM Assist Prof 0.6331 0.3668 0.9482
STEM Associate Prof 0.4892 0.5107 0.9996

STEM Full Prof 0.6594 0.3401 0.9249
Non-STEM Assist Prof 0.5076 0.4923 0.9998

Non-STEM Associate Prof 0.5540 0.4459 0.9915
Non-STEM Full Prof 0.6330 0.3669 0.9482

Assistant Prof 0.5904 0.4095 0.9762
Associate Prof 0.5148 0.4851 0.9993

Full Prof 0.6520 0.3479 0.9322

4. Discussion and Conclusions

At the largest Croatian University, applying the Mann–Whitney test, we demonstrate no gender
difference in number of citations except for seven faculties, where males are significantly better than
females on six faculties. We report that female STEM full professors are significantly more cited than
their male colleagues, while male non-STEM assistant professors are significantly more cited than
their female colleagues. In Table 11 as a comparison between male and female researchers, we report
the average citations across different University members. In contrast to the US and many Western
nations, at the largest Croatian University there are several faculties where the most cited researcher
is woman and these faculties are the following, both STEM and non-STEM: Faculty of Chemical
Engineering and Technology, Faculty of Economics and Business, Faculty of Food Technology and
Biotechnology, Faculty of Geotechnical Engineering, Faculty of Graphic Arts, Faculty of Kinesiology,
Faculty of Organization and Informatics, Faculty of Political science, Faculty of Science-Biology,
Faculty of Science-Geography, and Faculty of Teacher Education. Thus, at individual level, at some
particular faculties and scientific fields, the most cited female is better off than the most cited male.
Moreover, at collective level, there are ten faculties where females have the larger average citations
than their male colleagues: Faculty of Chemical Engineering, Faculty of Economics, Faculty of Food
Technology, Faculty of Forestry, Faculty of Geotechnical Engineering, Faculty of Graphical Arts, Faculty
of Organization and Informatics, Faculty of Political science, Faculty of Science-Physics, and Faculty of
Dental Medicine.
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Table 11. Men vs. Women—average citation across different University constituents.

Average Citations for Males Females

Catholic Fac of Theology 18 1.0
Fac Agriculture 146.1 89.8

Fac. Architecture 4.5 3.3
Fac Chem Eng & Tech 411.7 528.9

Fac Civil Eng 46.2 31.4
Fac Econ & Business 13.6 19.2

Fac Education & Rehabilitation Sci 23.1 7.7
Fac Electri Eng & Comp 129.9 111.0
Fac Food Tech & Biotech 259.0 320.8

Fac Forestry 75.4 77.4
Fac Geodesy 23.9 3.6

Fac Geotechnical Engineering 16.8 82.5
Fac Graphic Arts 23.6 49.9

Fac Humanities & Social Sciences 24.4 11.7
Fac Kinesiology 186.6 160.6

Fac Law 18.5 11.8
Fac Mech Eng & Naval Arch 116.3 91.2

Fac Metallurgy 129.1 33.5
Mining, Geology & Petroleum Eng 89.5 44.4

Fac Organization & Informatics 14.2 21.4
Fac of Pharmacy & Biochemistry 640.3 387.8

Fac Political Science 6.2 13.3
Fac Science—Physics 1931 2365
Fac Science—Biology 372.8 361.6

Fac Science—Chemistry 488.2 390.4
Fac Science—Geography 22.3 21.4

Fac Science—Geology 206.1 83.3
Fac Science—Geophysics 611.7 215.7

Fac Science—Mathematics 167.4 87.6
Fac Teacher Education 16.4 7.6
Fac Textile Technology 254.7 74.9

Fac Transport & Traffic Sciences 17.5 4.4
Fac Veterinary Medicine 203.0 149.2

Fac Dental Medicine 140.2 150.7
Fac Medicine 442.3 285.5

Wealthy countries such as Japan, Germany, and Switzerland has fewer women authors than
poorer ones [13]. Besides this asymmetry, there is a significant difference in gender productivity
between the US and the poorer countries. However, would it not be reasonable to assume that the
more developed a country, the smaller the gender differences in their performance? Partially the
gender difference in the US academia appears because in the US, in contrast to the EU, the large
majority of universities are private and the private educational system recognizes only quality and
does not care much about gender or even racial equality. Comparing the US and developing countries,
due to globalization where the US is the attractor of best students all over the world, the level of
competition in the US academia is much higher than in any other country. Therefore, females to
compete with males in the US academia must compete not only with the best US males, but with the
most brilliant world candidates. Since raising a family is even in the US still considered to be more
female than male responsibility, being a female makes their position much harder. Clearly, if a female
is a genius like Nobel Prize Laureate Marie Curie, she can achieve excellent academic results in parallel
with being an excellent mother and even raise her daughter to become another Nobel Prize Laureate.
However, there are not so many geniuses of that kind. In large educational systems such as the US,
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fluctuations are substantially smaller than in small countries such as Croatia, and so events much
different than expectations are more likely.

Briefly, we expect that in a limit where children are equally educated regardless of gender and
where family obligations are equally distributed among both parents, it is meaningful that men and
women should perform equal results, not only in science. The closer a society to this limit, the larger
the similarity in their performance. It is a challenge to test this obvious hypothesis. To this end,
in academia, the gender research productivity gap will not diminish without substantial reforms in
education, mentoring, and academic publishing.

For a country to be competitive in both science and business, in agreement with Cobb-Douglas
production function extended for human capital, maximization of its intellectual capital particularly
its females’ part is a top country’s priority. In the short run, policymakers should launch new
programs required to stimulate international collaboration for female researchers, because international
collaboration is one of the pillars for excellence in science. We suggest that the best female researchers
should generally receive more grants and funding than their best male colleagues as compensation
for spending more time in raising a family. The pay gap in science should become an illegal practice.
In the grant review process, gender equality among reviewers should be always respected, and if
not, the call should be canceled. We even suggest that kindergartens should be open at least within
large Universities and institutes. In long run, we need to rapidly boost the interest in science and
particularly STEM disciplines among the girls.

Author Contributions: Conceptualization, B.P.; Data curation, D.W. and M.J.; Formal analysis, D.W. and M.J.;
Funding acquisition, B.P.; Investigation, B.P., M.J. and D.W.; Resources, M.J.; Software, D.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received external funding. B.P. acknowledged support of this work by the Croatian
Research Agency (KK.01.1.1.01.0009, DATACROSS), ZSEM, and the University of Rijeka. M.J. received funding
from ZSEM. D.W. received funding from ZSEM and LSB.

Acknowledgments: B.P. acknowledge the gracious support of this work by ZSEM and the University of Rijeka.

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Cole, J.R.; Zuckerman, H. The productivity puzzle: Persistence and changes in patterns of publication of
men and women scientists. Adv. Motiv. Achiev. 1984, 2, 217–258.

2. Lariviere, V.; Ni, C.; Gingras, Y.; Cronin, B.; Sugimoto, C.R. Global gender disparities in science. Nature
2013, 504, 211–213. [CrossRef] [PubMed]

3. Fox, M.F. Gender, family characteristics, and publication productivity among scientists. Soc. Stud. Sci.
2005, 35, 131–150. [CrossRef]

4. Carr, P.L. Relation of family responsibilities and gender to the productivity and career satisfaction of medical
faculty. Ann. Intern. Med. 1998, 129, 532–538. [CrossRef] [PubMed]

5. Cameron, E.Z.; White, A.M.; Gray, M.E. Solving the productivity and impact puzzle: Do men outperform
women, or are metrics biased? BioScience 2016, 66, 245–252. [CrossRef]

6. Organisation for Economic Co-Operation and Development. Education at a Glance 2012; OECD: Paris,
France, 2012.

7. Shen, H. Inequality quantified: Mind the gender gap. Nat. News 2013, 495, 22–24. [CrossRef]
8. Moss-Racusin, C.A.; Dovidio, J.F.; Brescoll, V.L.; Graham, M.J.; Handelsman, J. Science faculty’s subtle gender

biases favor male students. Proc. Natl. Acad. Sci. USA 2012, 109, 16474–16479. [CrossRef]
9. Holden, C. General Contentment Masks Gender Gap in First AAAS Salary and Job Survey. Science 2001, 294,

396–411. [CrossRef]
10. Ding, W.W.; Murray, F.; Stuart, T.E. Gender Differences in Patenting in the Academic Life Sciences. Science

2006, 313, 665–667. [CrossRef]
11. Lincoln, A.E.; Pincus, S.; Koster, J.B.; Leboy, P.S. The Matilda effect in science: Awards and prizes in the US,

1990s and 2000s. Soc. Stud. Sci. 2012, 42, 307–320. [CrossRef]

519



Entropy 2020, 22, 1217

12. Ley, T.J.; Hamilton, B.H. The gender gap in NIH grant applications. Science 2008, 322, 1472–1474. [CrossRef]
[PubMed]

13. Holman, L.; Stuart-Fox, D.; Hauser, C.E. The gender gap in science: How long until women are equally
represented? PLoS Biol. 2018, 16, e2004956. [CrossRef] [PubMed]

14. Lariviere, V.; Vignola-Gagne, E.; Villeneuve, C.; Gelinas, P.; Gingras, Y. Sex differences in research funding,
productivity and impact: An analysis of Quebec university professors. Scientometrics 2011, 87, 483–498.
[CrossRef]

15. Xie, Y.; Shauman, K.A. Sex differences in research productivity: New evidence about an old puzzle.
Am. Socio. Rev. 1998, 63, 847–870. [CrossRef]

16. Lemoine, W. Productivity patterns of men and women scientists in Venezuela. Scientometrics 1992, 24,
281–295. [CrossRef]

17. Pripic, K. Gender and productivity differentials in science. Scientometrics 2002, 55, 27–58. [CrossRef]
18. Stack, S. Gender, Children and research Productivity. Res. High. Educ. 2004, 45, 891–920. [CrossRef]
19. Mason, M.A.; Goulden, M. Do Babies Matter? The Effect of Family Formation on the Lifelong Career of

Academic Men and Women. Academe 2002, 88, 21. [CrossRef]
20. National Science Foundation. 2010 Survey of Doctorate Recepients; NSF: Arlington, TX, USA, 2010.
21. Goulden, M.; Frasch, K.; Mason, M.A. Staying Competitive; Center for American Progress: Washington,

DC, USA, 2009.
22. Chawla, D.S. Self-citation rates higher for men. Nature 2016, 535, 212. [PubMed]
23. Long, J.S. Measures of sex differences in scientific productivity. Soc. Forces 1992, 71, 159–178. [CrossRef]
24. Goulden, M.; Mason, M.A.; Frasch, K. Keeping women in the science pipeline. Ann. Am. Acad. Polit. Soc. Sci.

2011, 638, 141–162 [CrossRef]
25. Symonds, M.R.E.; Gemmell, N.J.; Braisher, T.L.; Gorringe, K.L.; Elgar, M.A. Gender differences in publication

output: Towards an unbiased metric of research performance. PLoS ONE 2006, 1, e127. [CrossRef] [PubMed]
26. Duch, J.; Zeng, X.H.T.; Sales-Pardo, M.; Radicchi, F.; Otis, S.; Woodruff, T.K.; Nunes, A.L.A. The possible

role of resource requirements and academic career-choice risk in gender differences in publication rate and
impact. PLoS ONE 2012, 7, e51332. [CrossRef] [PubMed]

27. Abramo, G.; D’Angelo, C.A.; Caprasecca, A. Gender differences in research productivity: A bibliometric
analysis of the Italian academic system. Scientometrics 2009, 79, 517–539. [CrossRef]

28. World Economic Forum. The Human Capital Report 2016; World Economic Forum: Colony, Switzerland, 2016.
29. Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future

(2007), Chapter: Front Matter. Available online: https://www.nap.edu/read/11463/chapter/1 (accessed on
22 October 2020).

30. National Academy of Sciences; National Academy of Engineering and Institute of Medicine. Beyond Bias and
Barriers: Fulfilling the Potential of Women in Academic Science and Engineering; The National Academies Press:
Washington, DC, USA, 2007.

31. Huang, J.; Gatesa, A.J.; Sinatrad, R.; Barabasi, A.L. Historical comparison of gender inequality in scientific
careers across countries and disciplines. Proc. Natl. Acad. Sci. USA 2019, 117, 4609–4616. [CrossRef]
[PubMed]

32. Pareto, V. Cours D’conomie Politique; Librairie Droz: Geneva, Switzerland, 1896.
33. Piketty, T.; Saez, E. Income Inequality in The United States, 1913–1998. Q. J. Econ. 2003, 118, 1–41. [CrossRef]
34. Acemoglu, D.; Robinson, J.A. The Rise and Decline of General Laws of Capitalism. J. Econ. Perspect. 2015, 29,

3–28. [CrossRef]
35. Gabaix, X.; Lasry, J.M.l.; Lions, P.L.; Moll, B. The Dynamics of Inequality. Econometrica 2016, 84, 2071–2111.

[CrossRef]
36. Stieglitz, J.E. People, Power, and Profits; W. W. Norton & Company: New York, NY, USA, 2019.
37. Dragulescu, A.; Yakovenko, V.M. Exponential and power-law probability distributions of wealth and income

in the UK and the USA. Phys. A 2001, 299, 213–221. [CrossRef]
38. Redner, S. How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 1998, 4,

131–134. [CrossRef]
39. Zipf, G.K. Human Behavior and the Principle of Least Effort; Addison-Wesley Press: Cambridge, MA, USA, 1949.
40. Gabaix, X.; Ibragimov, R. Rank—1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents. J. Bus.

Econ. Stat. 2011, 29, 24–39. [CrossRef]

520



Entropy 2020, 22, 1217

41. Podobnik, B.; Valentincic, A.; Horvatic, D.; Stanley, H.E. Asymmetric Levy Flight in Financial Ratios.
Proc. Natl. Acad. Sci. USA 2011, 108, 17883–17888. [CrossRef] [PubMed]

42. Pareto, V. Manual of Political Economy, Variorum ed.; Montesano, A., Zanni, A., Bruni, L., Chipman, J.S.,
McLure, M., Eds.; Oxford University Press: Oxford, UK, 2014.

43. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

521





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-0795-8 


	Blank Page



