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of Informatics, Eötvös Loránd University (Hungary). He obtained his engineering degree from

the Szent István University (SZIE) in Budapest in 2001. In 2004, he completed his second degree

at the Budapest University of Technology and Economics (BME) in Geodesy and Geoinformatics.

In 2006 he earned his PhD from Corvinus University of Budapest in the field of hyperspectral remote

sensing and plant examination methods. He had longer stays at the Humboldt University of Berlin,

at the University of Agricultural Sciences (Vienna) and at the University of Halle. Since 2006 he

has been researching and teaching at universities in Germany (2006-2010, 2019-2020: Martin Luther

University Halle-Wittenberg, University of Ulm, and University of Leipzig). He also acts as one of

the co-chairs heading the “Multi- and Hyperspectral: Methodology” working group of the German

Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF). His research focuses on

field spectroscopy and hyperspectral remote sensing, with special regard to scientific and industrial

development of spectral imaging sensors.

vii





remote sensing 

Editorial

Hyperspectral Imaging for Fine to Medium Scale
Applications in Environmental Sciences

Michael Vohland 1,2,* and András Jung 3

1 Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a,
04103 Leipzig, Germany

2 Remote Sensing Centre for Earth System Research, Leipzig University, Talstr. 35, 04103 Leipzig, Germany
3 Institute for Cartography and Geoinformatics, Eötvös Lorand University, Pázmány P. Sétány 1/C.,

1117 Budapest, Hungary; jung@inf.elte.hu
* Correspondence: michael.vohland@uni-leipzig.de; Tel.: +49-341-97-32798

Received: 2 September 2020; Accepted: 6 September 2020; Published: 11 September 2020

Hyperspectral imaging (HSI) combines conventional imaging and spectroscopic techniques in a
way of spatially organized spectroscopy. Technical developments in the last three decades have brought
the capacity of HSI to provide spectrally, spatially and temporally detailed data. The latter crucially
relates to rapid data acquisition, favoured by hyperspectral snapshot technologies, i.e., no scanning as,
e.g., push broom scanning as one conventionally remote sensing technique is needed for obtaining 3D
image cubes. Furthermore, the development of miniaturized hyperspectral sensors has fostered their
application with lightweight unmanned aerial vehicle (UAV) platforms [1–3]. HSI sensor technology
with 3D reconstruction capacities is currently available [4]. Among HSI, hyperspectral microscopy
imaging is another emerging field facilitating new applications [5–7].

Beyond this background, the aim of this Special Issue (SI) is to present a selection of innovative
applications of HSI in the environmental and earth sciences, with a focus on the fine- to the medium-scale
ranging from the microscale to field- and airborne data acquisition and analysis. The SI comprises a
total of nine papers in various thematic fields, which can be organized into the following categories:
geology/mineral exploration (one published paper), digital soil mapping (one), the mapping and
characterization of vegetation (two) and the sensing of water bodies (including under-ice and
underwater applications) (three); two rather methodically/technically oriented contributions focus
on the optimized processing of UAV data and on the design and test of a receiver for simultaneous
hyperspectral and differential laser absorption spectrometry (LAS) measurements.

In geological field studies, almost vertical-oriented outcrops may be mapped and characterised
most properly by tripod-mounted close-range imaging instruments [8]. In this context, the study of
Lorenz et al. [9] presents an adapted workflow for outcrop sensing by including atmospheric and
topographic corrections, which are markedly beneficial for close- to long-range observations covering
different sensing distances and viewing perspectives. For two different datasets, both acquired with
an AisaFENIX push broom scanner (SPECIM, Spectral Imagig Ltd., Oulu, Finland), HSI mapping
products were integrated with 3D photogrammetric data to create “hyperclouds”, i.e., geometrically
correct representations of the hyperspectral data cube.

Airborne hyperspectral imaging has been used in many studies to quantify soil variables, but soil
studies with UAV data are still rare (see, for example, the recent review in [10]). The SI contribution
of Hu et al. [11] aims at filling one gap in the UAV-based mapping of soil salinity. For this purpose,
data were acquired from a UAV platform with a hyperspectral camera (Rikola Ltd., Oulu, Finland),
providing data at a spatial resolution of 0.1 m and covering the 0.50–0.89 μm wavelength region
with 62 spectral bands. With these data, random forest regression was used to estimate the electrical
conductivity (EC) values and to generate EC maps for fields with different vegetation cover conditions,
located in the region of Aksu, Western Xinjiang, China.

Remote Sens. 2020, 12, 2962; doi:10.3390/rs12182962 www.mdpi.com/journal/remotesensing1
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Different soil types were selected by Salazar et al. [12] for hyperspectral measurements from
different distances to test a newly developed multichannel receiver. The configuration of this receiver
allows the range-resolved collection of hyperspectral data in the 350–2500 nm range, combined with
LAS measurements in the 820–850 nm wavelength region. Acquired test data indicated consistent
hyperspectral measurements, independent of the range to the target. Envisioned applications include
the rapid classification of soils, rocks, minerals and vegetation for ecological or agronomic research or
the monitoring of earth construction sites as, for example, mine tailings.

Two SI papers focus on the forest ecosystems of different ecofloristic zones. Issues such as forest
health, productivity and ecosystem services are often discussed in the context of forest diversity [13,14]
and motivate researchers to seek out new inventory methods with the required spatial details.
Recent developments in remote sensing technologies and image processing techniques thus extend the
toolbox of forest researchers and managers [15].

Based on airborne HSI data, acquired with NEO Hyspex VNIR 1600 and NEO Hyspex SWIR
320m-e (Norsk Elektro Optikk AS, Skedsmokorset, Norway), Knauer et al. [16] evaluated the
benefits of combining state-of-the-art classification techniques by turning them into an ensemble
classifier, implemented for the discrimination of, in total, 15 forest tree species. The study was
performed for forests of the temperate zone of the Northern hemisphere, located in Saxony Anhalt
and Thuringia (Germany). The obtained results indicated that even the best available classifiers could
be further improved by incorporating them into a multiple classifier system and using a specific
(precision-weighted) voting strategy. Furthermore, MCLDA (multiclass linear discriminant analysis)
was proposed for the image data analysis, as it performed best among different spectral dimensionality
reduction methods.

The second forest-related contribution of Cao et al. [17] dealt with salt-tolerant mangroves,
distributed to intertidal regions along tropical and subtropical coastlines. Over the past 50 years, global
mangrove resources have rapidly decreased due to human interference and natural causes; for their
monitoring and management, remote sensing techniques have been widely used [17,18].

Cao et al. [17] used a snapshot hyperspectral imager (UHD 185, Cubert GmbH, Ulm, Germany)
to capture field reflectance data covering the spectral range of 450–998 nm with 138 spectral bands.
They tested different hyperspectral information extraction methods to investigate the applicability of
field snapshot HSI for the identification of mangrove species and to determine the spectral wavebands
relevant for an effective classification. As an outcome, the authors underlined the potential of
close-range HSI as a tool in monitoring mangrove forests at the species level.

Three SI contributions dealt with applications in water bodies, each with a different focus.
In polar marine ecosystems, sea ice-associated algae are an essential feature characterised by a high
spatiotemporal variability. The algal biomass is typically concentrated in the bottom ice layers and
at the ice-water interfaces, thus not detectable with classical airborne and/or satellite remote sensing
techniques [19]. Cimoli et al. have given an extensive overview about adapted capturing techniques,
including spectral under-ice measurements and the use of unmanned underwater vehicles as sensing
platforms [20]. In the current SI contribution [19], they coupled an AISA Kestrel 10 push broom sensor
(SPECIM, Specim Spectral Imaging Ltd., Oulu, Finland) with a standard digital RGB camera and
trialled this system at Cape Evans, Antarctica. For a ~20-m-long transect, ultra-high-resolution HSI data
were used to quantify per-pixel algal biomass and pigments at the ice-water interface; RGB imagery
was processed with digital photogrammetry to capture the under-ice structure and topography.

The use of aboveground remote sensing data of inland waters suffers from some marked limitations.
The water-leaving radiation is largely affected by refraction at the water surface and atmospheric
absorption and scattering. Therefore, an accurate atmospheric correction is a critical issue for the
precise quantification of optically active substances (OAS) in the water column, especially from
space [21,22]. For airborne hyperspectral image data with a pixel size of 2 m (AISA DUAL imaging
system; SPECIM, Spectral Imaging Ltd., Oulu, Finland), Pyo et al. [23] tested different atmospheric
correction approaches for their influence on the retrieval of phycocyanin (PC) and chlorophyll-a (Chl-a)
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for the water body of the Baekje Reservoir (Geum River, South Korea). Based on different bio-optical
retrieval algorithms, the distribution maps of PC and Chl-a were generated to indicate risk regions for
cyanobacterial blooms.

A different approach was followed by Seidel et al. [24] to quantify OAS (Chl-a and coloured
dissolved organic matter) for a suite of freshwater lakes with different trophic levels, all located
in Central Germany. Hyperspectral data for the OAS retrieval were acquired at various depths of
each water column by means of a submersible hyperspectral camera (UHD 285, Cubert GmbH, Ulm,
Germany), incorporated in a waterproof casing and equipped with a portable halogen lamp. Different
from aboveground remote sensing methods, these measurements allowed for the monitoring of the
vertical distribution of OAS in the water column; hence, they potentially bridge the gap between
point sensors that provide continuous measurements at and below the water surface and spatially
continuous remote sensing observations, e.g., from satellites or UAV platforms.

For the latter, the fast retrieval of high-quality and geometrically accurate mosaics of image data
is still a challenge. Angel et al. [25] reviewed that existing techniques of mosaicking UAV images
are often time-consuming and complex, so that there is a general need to accelerate and automate
this procedure. Following this paradigm, they implemented a fully automated workflow to produce
geo-rectified and mosaicked hyperspectral UAV images with an optimized co-registration strategy
based on a small number of ground control points. The performance of the automated approach
was evaluated by comparing its computational effort with that of other available approaches and by
determining the standard metrics of spatial accuracy.
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Abstract: Recently, ground-based hyperspectral imaging has come to the fore, supporting the arduous
task of mapping near-vertical, difficult-to-access geological outcrops. The application of outcrop
sensing within a range of one to several hundred metres, including geometric corrections and
integration with accurate terrestrial laser scanning models, is already developing rapidly. However,
there are few studies dealing with ground-based imaging of distant targets (i.e., in the range of
several kilometres) such as mountain ridges, cliffs, and pit walls. In particular, the extreme influence
of atmospheric effects and topography-induced illumination differences have remained an unmet
challenge on the spectral data. These effects cannot be corrected by means of common correction tools
for nadir satellite or airborne data. Thus, this article presents an adapted workflow to overcome the
challenges of long-range outcrop sensing, including straightforward atmospheric and topographic
corrections. Using two datasets with different characteristics, we demonstrate the application of
the workflow and highlight the importance of the presented corrections for a reliable geological
interpretation. The achieved spectral mapping products are integrated with 3D photogrammetric
data to create large-scale now-called “hyperclouds”, i.e., geometrically correct representations of the
hyperspectral datacube. The presented workflow opens up a new range of application possibilities of
hyperspectral imagery by significantly enlarging the scale of ground-based measurements.

Keywords: hyperspectral; topographic correction; atmospheric correction; radiometric correction;
long-range; long-distance; Structure from Motion (SfM); photogrammetry; mineral mapping;
minimum wavelength mapping; Maarmorilik; Riotinto

1. Introduction

Hyperspectral imaging has been increasingly used to support mineral exploration and geological
mapping campaigns. The obtained spectral signatures provide detailed information about the
composition of rocks and the occurrence of economic minerals. The hyperspectral instruments are
conventionally operated with a nadir viewing angle, comprising different scales of area coverage
and spatial resolution by operation on satellite [1,2], airplane [3–6] or drone [7]. Depending
on the acquisition altitude, a varying influence of the atmosphere between sensor and target,
as well as illumination differences due to topography, can be observed in the acquired spectral

Remote Sens. 2018, 10, 176; doi:10.3390/rs10020176 www.mdpi.com/journal/remotesensing5
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imagery. Numerous approaches have been introduced in an attempt to overcome these effects:
Atmospheric influences are either corrected by atmospheric modelling using radiative transfer models
(e.g., [8–10]), the use of ground targets with known or assumed spectra (empirical line calibration [11],
flat field correction [12], dark object subtraction [13]), or a combination of both [14]. Whereas radiative
transfer models rely on the correct input of a set of external parameters and are mainly used for
satellite and airborne data, the use of ground targets, dark objects, or flat fields provides a much more
straightforward approach. However, these methods require a spatial resolution high enough to resolve
spectrally uniform reference target(s) and/or a reasonable knowledge on the spectra of those materials
present, and are therefore mainly used for drone- or airborne data with low acquisition altitudes
(e.g., [7,15]).

In the last few years, a ground-based approach of using hyperspectral sensors for geological
applications has emerged. A tripod-mounted device can be used to rapidly acquire spectrally and
spatially highly resolved data of near-vertical geological outcrops, i.e., spatial orientations that are
not (or hardly) observable by nadir-faced instruments. Near-vertical outcrops may comprise steep
mountain slopes, water-faced cliffs, open pit mine walls, and road cuts. Particularly in arctic or humid
regions, where snow and ice, lichens, or dense vegetation cover the Earth’s surface, the investigation of
such natural or artificial cuts through the strata might be the only possibility to obtain spectral
information of the local geology. Currently, ground-based hyperspectral sensors for geological
applications are nearly exclusively used for targets at distances between one to several hundred
metres (e.g., [16–18]). Within this range, the spatial resolution varies between centimetre and decimetre
scale, enough to resolve even small-scale mineral compounds and fault systems. Another significant
benefit of close-distance measurements is the negligible influence of the atmosphere, which potentially
voids the need for an elaborate radiometric correction. Instead, an empirical line approach using
reference targets with the same orientation, distance, and illumination conditions as the geological
target is sufficient for the conversion to reflectance. However, observing a geological target at close
range is not always feasible or reasonable. In particular, larger and vertically oriented targets such
as steep mountain slopes, sea- or lake-faced cliffs, and walls of large open pit mines are often only
fully visible from an opposing location such as a neighbouring mountain [19], pit level, shore, or even
a boat [20]. The distance between the sensor and the target of interest can then easily exceed the
close-range and extend to several kilometres. These distances not only lead to major atmospheric
distortions, but also prevent the logistical setup of visible reference targets for radiometric correction as
well as ground control points for image georeferencing. Additionally, owing to the much larger scale of
the observed surface and the ground-based viewing perspective, pixels within one scene can represent
a range of different distances and orientations, leading to highly variable radiometric distortions.
For those reasons, correction methods established for nadir acquisitions are not applicable or need to
be intensely modified to account for the special conditions of long-range ground-based sensing.

In this paper, we meet these additional challenges and present a novel workflow that allows
the creation of fully corrected long-range ground-based hyperspectral image data for geological
applications. In addition to sensor-induced geometric distortion corrections, the workflow now
includes a new approach for the radiometric correction of long-range ground-based data as well as a
topographic correction algorithm based on integration with 3D surface data using automatic matching
algorithms. We also describe a detailed methodology for producing 3D hyperclouds, i.e., geometrically
correct representations of the hyperspectral datacube, for the display of generated spectral mapping
products. The methods presented will be included in the open source Mineral Exploration Python
Hyperspectral Toolbox MEPHySTo [7]. We demonstrate the methodology in two areas that differ in
geology, climate, and scientific objectives. The first area is located in an arctic environment, where two
hyperspectral scans acquired from different points of view are used to detect and map mineralogical
variations in the composition of the Mârmorilik Formation marbles in West Greenland. The single
result map is integrated with photogrammetry data to provide spatial context and a 3D view that can
be integrated into 3D modelling. The second dataset was acquired at the now-abandoned open pit
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mine Corta Atalaya near Minas de Riotinto, Spain. The Spanish dataset demonstrates the applicability
of the corrected dataset for alteration zone mapping of a massive sulphide deposit under hot and
dusty conditions as well as the integratability of datasets acquired at different times.

2. Areas of Investigation

2.1. Nunngarut Peninsula, Maarmorilik, Greenland

The first study area is located in central West Greenland, within the regions of Uummannaq Fjord
and Karrat Isfjord (Figure 1). The investigated area covers large parts of the Nunngarut Peninsula
at the Qaamarujuk fjord, where the former mining town of Maarmorilik is located. The nearby
Black Angle Pb–Zn deposit is separated from the Nunngarut Peninsula by the smaller Affarlikassaa
fjord. The study area belongs to the Mârmorilik Formation, a 1600 m thick carbonate-dominated rock
sequence representing the southernmost stratigraphy of the Paleoproterozoic Karrat Group [21]. It was
deposited between 2.1 and 1.9 Ga in an epicontinental marginal basin as platform carbonates [21],
nonconformably overlies a suite of strong deformed Archean orthogneisses, and is overlain by
flysch-type metasedimentary rocks of the Nûkavsak Formation [22].

The Mârmorilik Formation is dominated by dolomite-rich marbles in the lower part and calcite-rich
marbles in the upper part. Locally, interbedded horizons of quartzites, tremolite-rich marbles
and possible metamorphosed evaporites in the form of anhydrite occur [21,23]. The Black Angel
Mississippi-Valley-Type (MVT) Pb–Zn deposit is emplaced within the Mârmorilik Formation [22,24],
causing an overprint of the marbles by basal brines. The whole succession of Archean basement and the
Karrat Group was strongly folded and thrusted by the Nagssugtoqidian–Rinkian orogenesis. During this
orogenesis, the Mârmorilik Formation underwent at least three phases of deformation [19], leading to
recrystallisation and metamorphism under high greenschist to amphibolite facies conditions [25].
The Mârmorilik Formation is interpreted to be the lateral equivalent to the Qaarsukassak Formation [26],
and together they form a several hundred square kilometre large prospective region for zinc
mineralisation [19,27].

2.2. Corta Atalaya, Riotinto, Spain

Corta Atalaya, near Minas de Riotinto in the province of Huelva (southern Spain), is, with a size
of 1200 × 900 m and a maximal depth of 365 m, one of the most famous open pits of the Riotinto
mining district (Figure 1). The Volcanogenic Massive Sulphide (VMS) mineralisation of Riotinto is
associated with the Iberian Pyrite Belt (IPB), which is considered to host the largest concentration
of massive sulphides in the Earth’s crust [28]. The IPB is located in a north-vergent fold and thrust
belt of late Variscan age [29] extending from east of Setubal, Portugal, to north of Seville, Spain, and
has been extensively mined for copper, manganese, iron, and gold since the Bronze Age. At Riotinto,
the lithostratigraphic succession can be divided into three units (from bottom to top): (i) phyllites
and quartzites; (ii) slates, basalt sills, felsic volcanics (rhyolites and dacites); and (iii) the so-called
Culm series (greywackes and slates). The stratabound, VMS lenses are located within felsic volcanics
of Upper Devonian to Lower Carboniferous ages [28]. Zones of chloritic and argillitic alteration are
associated with the massive sulphide mineralisation. Stockwork zones occur underneath the lenses in
the vicinity of faults [28]. A gossan usually forms in the cap-rock above. The deposit of Riotinto itself
is situated in the hinge of an E–W-trending anticline with an east-plunging fold axis. Corta Atalaya is
located on the southern flank of this so-called Riotinto anticline. Stockwork and massive ore bodies
are associated with E–W-striking thrusts. A set of later NW–SE-oriented transverse faults offsets
the Riotinto anticline. The most prominent of these faults, the Falla Eduardo, displaces the massive
sulphide body San Dionisio about 150 m to the south and finds its continuation in the Filón Sur ore
body east of Corta Atalaya [28]. The massive sulphide body San Dionisio, which was exploited in
Corta Atalaya, originally had reserves of 100 million tonnes. Originally, the mine was dedicated to
the extraction of iron and copper sulphides (mainly pyrite with smaller amounts of chalcopyrite).
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The initial objective was to extract copper from copper sulphides, but, subsequently, the sulphur
contained in pyrite was used for the manufacturing of sulphuric acid until final closure of the open pit
in 1991 [28].

Figure 1. Location of the two investigated sites and schematic coverage of the acquired AisaFENIX
hyperspectral imagery at: (a) Nunngarut Peninsula, Maarmorilik, Greenland; and (b) Corta Atalaya
open pit, Minas de Rio Tinto, Spain.

3. Data Acquisition

3.1. Hyperspectral Imagery

The hyperspectral image (HSI) data was acquired using a SPECIM AisaFENIX push-broom
scanner. The scanner has 384 swath pixels with 624 spectral bands each, covering the visible and
near-infrared (VNIR) to short-wave infrared (SWIR) range between 380 and 2500 nm. The spectral
resolution (Full Width at Half Maximum—FWHM) varies between 3.5 nm for the VNIR and 12 nm
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in the SWIR at a spectral sampling distance of about 1.5 nm (VNIR) and 5 nm (SWIR), respectively.
By mounting the instrument on a rotary stage, a continuous hyperspectral image with a vertical field
of view (FOV) of 32.3◦ and a maximum scanning angle of 130◦ could be acquired in one measurement.
During the measurements, the GPS position of the camera, acquisition time, and general viewing
direction (from here on referred to as ‘camera angle’) of the scan were recorded. A Spectralon SRS-99
white panel was set up near the camera within the FOV and with a similar general orientation as the
imaged outcrop.

3.2. Photogrammetry Data/3D Data

Images for reconstruction of surface geometry were recorded using precalibrated RGB and
hyperspectral cameras. In the case of Maarmorilik, a Nikon D800E with a 35 mm 1.4 Zeiss lens was
used from a helicopter. The 3D pointcloud of Corta Atalaya was based on fusion of drone-borne
images from a Rikola Hyperspectral Imager (red band) and a Canon EOS M with EF-M 22 mm f/2 STM
lens (as grey-scale image). Camera positions were obtained from an attached GPS device, whereas
the imaging geometry was reconstructed using a Structure from Motion (SfM) and MultiView Stereo
(MVS) workflow. Prior to the photogrammetry workflow, image distortions were removed.

3.3. Validation Sampling

Samples of the main lithologies were taken for a validation of the correction workflow and of the
mineral mapping results. Sample locations were recorded using a handheld GPS device. Spectra of
representative fresh and altered rock surfaces were acquired in situ using a portable Spectral Evolution
PSR-3500 spectro-radiometer using a contact probe (8 mm spot size) with an internal, artificial light
source. Its spectral resolution is 3.5 nm (1.5 nm sampling interval) in VNIR and 7 nm (2.5 nm
sampling interval) in the SWIR, resulting in 1024 channels in the spectral range from 350 to 2500 nm.
Radiance values were converted to reflectance using a calibrated PTFE panel with >99% reflectance in
VNIR and >95% in SWIR (either Spectralon SRS-99 or Zenith Polymer). Each spectral record consisted
of 10 individual measurements, which were taken consecutively and then averaged.

4. Processing Workflow

4.1. Preprocessing of Hyperspectral Raw Data

The acquired raw hyperspectral datasets are first converted to At-Sensor-Radiance using
dark-current subtraction followed by image normalisation and multiplication of sensor- and
band-specific radiometric calibration data (Figure 2). In a second step, two geometric corrections of
sensor-specific optical distortions need to be applied. The first effect is a distortion along the FOV
comparable to the distortion of fish-eye lenses. This leads to an increasing shortening of the image
from the centre to the upper and lower image boundaries. The second effect can be described as slit
bending and refers to a curved recording of the currently scanned (straight) line. Both effects can
be removed by applying correction values for each pixel in the FOV. The required parameters are
included in a lookup table provided by the manufacturer of the sensor. In the case that several scans of
the same scene have been acquired with the same settings, a stacking and averaging of those scenes
can be performed at this point. By image stacking, the signal-to-noise ratio can be increased, reducing
possible temporal illumination variations due to changing cloud cover.
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Figure 2. Schematic workflow for the correction, processing, and 3D integration of long-range
ground-based hyperspectral imagery.

4.2. Radiometric Correction of Hyperspectral Radiance Data

Subsequent to the transformation of the raw hyperspectral data into radiance, a conversion to
at-sensor reflectance needs to be applied, which can be achieved using a white reference panel placed
near the sensor. This Spectralon (SRS-99) reference target is close to an ideal Lambertian reflector with
>99% reflectance in the VNIR and >95% in the SWIR. Its exact reflectance spectrum is known and can
be used for an empirical line correction of the radiance data. Hereby, a linear regression between the
image radiance values and the reference reflectance values is calculated and applied for each band.

Depending on the imaging distance and the climatic conditions, the resulting at-sensor reflectance
image may still feature atmospheric distortions (see Figure 3). In contrast to air- or spaceborne data,
the scene-specific intermediate atmospheric layer can be assumed to have a uniform composition with
only negligible variations. Nevertheless, the amount of atmospheric influence varies for each pixel
and depends mainly on the distance between sensor and target, but can be also influenced by local
variations, e.g., differing intensities of upwelling water vapour.
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Figure 3. Atmospheric correction workflow on the example of the Maarmorilik marble cliffs
(Nunngarut, Scan 2). Hyperspectral images are displayed using spectral true colour representative
bands (R: 640 nm G: 550 nm B: 470 nm). See text for a detailed description. (a) Control spectra set;
(b) continuum removal; (c) adjusted control spectra set; (d) final control spectrum and selection of the
control feature.

Given these circumstances, we attempt to perform a radiometric correction to remove atmospheric
distortions using a single atmospheric correction spectrum for each scene. The intensity of correction
needs to be varied according to the amount of atmospheric distortion. For the correction approach
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to be robust and independent from additional parameters or knowledge about the composition
of the influencing atmospheric layer, the atmospheric correction spectrum is derived directly
and automatically from the hyperspectral image itself. Hereby, the correction spectrum is a
comprehensive representation of all scene-abundant spectrally influencing atmospheric components,
which may encompass atmospheric dust, water vapour, and other atmospheric gases. The correction
spectrum is neither selective nor restricted to defined components and is thus applicable for any
atmospheric setting.

Owing to the assumed constant composition of the atmosphere over the scene, the depths
of all atmosphere-related features should change equally if the atmospheric influence is altered.
This approach allows us to evaluate the amount of atmospheric influence for each pixel by the depth of
only one atmospheric absorption feature and eliminates the need for atmospheric models, additional
calibration targets, and distance measurements. The now-called control feature must necessarily be
both common in all possibly occurring atmospheric compositions and strong enough to be detectable
even for low atmospheric influence. Additionally, it should not overlap with any characteristic
mineralogy-related features to avoid interference and miscorrections. The absorption band we found
to fulfill these conditions best is situated at 1126 nm (Figure 3d) and is related to atmospheric water
vapour [14].

The atmospheric correction workflow consists of several steps, which can also be retraced in
Figure 3:

1. Masking of sky-related pixels: All image pixels representing sky and sky reflected by mirroring
surfaces such as water are masked out automatically from the reflectance image using a ratio
between the image bands located at 410 and 890 nm. These wavelength positions are set to
encompass two ends of the extreme decline in VNIR reflectance that is specific for sky-related
spectra. This characteristic shape leads to a usually very distinct ratio difference between sky
and non-sky pixels. In our examples, the masking threshold was most successful in a ratio range
between 1.0 and 2.0.

2. Determination and processing of possible correction spectra: The depth of the control feature
at 1126 nm is calculated for all remaining pixels. All pixel spectra with a control feature depth
within 80–100% of the maximum are extracted as a control spectrum set (Figure 3a), which will
be used to determine the final atmospheric correction spectrum. A continuum removal and an
equalisation of the control feature depth are applied on each spectrum of the control set separately.
The respective continuum hull is calculated using a linear interpolation of stepwise acquired
maxima all over the respective spectrum (Figure 3b). The moving window for the continuum
hull calculation can either be set to a fixed step size or restricted to specific stored wavelength
ranges that are located outside or at the edge of known atmospheric absorption windows.

3. Exclusion of nonatmospheric features: Some spectra of the resulting equalised control spectra set
may still contain additional nonatmospheric absorptions. These features should be excluded from
the correction spectrum to avoid a weakening or deletion of important mineralogical features
during the atmospheric correction process. In contrast to atmospheric features, nonatmospheric
absorptions occur with differing intensities and only in a spectral subset of the control spectra
(Figure 3c,d). They can be excluded from the control spectrum set by maintaining only the highest
of all spectral values for each wavelength. The used threshold can be varied manually if needed.

4. Calculation and application of the final control spectrum: The remaining spectral information
is averaged for each wavelength to reduce possible noise. The outcome of the whole procedure
provides a single continuum-removed correction spectrum containing solely the characteristic
atmospheric contribution of the analysed hyperspectral image (Figure 3d). The atmospheric
correction itself is performed pixelwise. For each pixel, the intensity of the correction spectrum
needs to be adjusted to both depth and reflectance value of the control feature in the pixel
spectrum. The correction itself is then achieved by a simple division of the pixel spectrum by the
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adjusted correction spectrum. The original reflectance intensities are maintained in the corrected
image spectra during that process.

The processing time for the automatic correction of a hyperspectral scan with the spatial and
spectral dimensions as in our examples is less than one minute. Thus, the method is extremely time-
and effort-saving and can be easily integrated into a batch-processing workflow.

Depending on the Signal-to-Noise ratio (SNR) of the processed dataset, a subsequent Minimum
Noise Fraction (MNF) smoothing can be advantageous. MNF smoothing entails a transformation of the
image into MNF space, a rejection of bands with low SNR, and a subsequent back-transformation into
the original image space [30]. The number of MNF bands to be rejected can be determined by looking
at the eigenvalue function of the calculated MNF bands, which reaches a plateau after a sharp increase
and suggests a rejection if the asymptotic eigenvalue function approaches a linear function [31].

4.3. SfM-MVS Photogrammetry

The Digital Surface Model is derived from aerial and ground-based images using the
Structure-from-Motion MultiView Stereo (SfM-MVS) algorithms in Agisoft Photoscan Professional 1.2.5.
SfM-MVS is a low-cost, user-friendly workflow combining photogrammetric techniques, 3D computer
vision, and conventional surveying techniques. It solves the equations for camera pose and scene
geometry automatically using a highly redundant bundle adjustment [32,33]. A typical SfM-MVS
workflow towards a final surface model consists of the following eight steps [33,34]:

1. Detection of characteristic image points;
2. Automatic point matching using a homologous transformation;
3. Keypoint filtering—this step is crucial for model accuracy and validation of later results [35];
4. Iterative bundle adjustment to reconstruct the image acquisition geometry and internal

camera parameters;
5. Scaling and georeferencing of the intrinsic coordinate system to available reference points (GCPs)

or camera coordinates and optimisation of the resulting sparse cloud;
6. Applying MultiView Stereo algorithms (dense matching) to compute the dense cloud—the

resulting dense cloud is the basis for the geometric correction of the hyperspectral data;
7. Interpolation of the dense cloud by, e.g., Meshing or Inverse Distance Weighting (IDW), to retrieve

a Digital Surface Model (DSM);
8. Texturising of the 3D model.

4.4. Calculation of Sun Incidence Angles for Topographic Correction

Knowledge of the sun incidence angle for each pixel of the hyperspectral image is crucial for its
topographic correction. In contrast to nadir data, vertical outcrop scans can have multiple pixels located
at any given latitude/longitude coordinate position, which can be only spatially differentiated by their
elevation values. Therefore, common tools for the calculation of slope, aspect, and sun incidence angle
of Digital Elevation Models (DEM) cannot be applied here. Instead, we calculate the sun incidence
angle for each individual point of the point cloud generated in Section 4.3 as the angle between the
point normal and the sun vector (Figure 4a). The point normals were either calculated during the
point cloud construction or can be computed retroactively using a triangulation of neighboring points.
The sun vector is characterised by

sunvec =

⎛
⎜⎝ cos(SE) ∗ sin(AZ)

cos(SE) ∗ cos(AZ)
sin(AZ)

⎞
⎟⎠ (1)
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with SE being the sun elevation angle and AZ the sun azimuth at the given date, time, and position of
the acquisition. The calculated sun incidence angles are stored as additional point properties in the
point cloud file and retained in all following processing steps.

Figure 4. Topographic correction of vertical hyperspectral image (HSI) (Nunngarut, Scan 1).
(a) Schematic illustration of the calculation of sun incidence angles i and required parameters; (b) cosine
of the calculated incidence angles for each point of the dense point cloud projected on respective HSI
view plane; (c) correction of overlying hyperspectral image scan for topography-induced illumination
changes: (1) before, (2) after topographic correction (method: c-factor).

4.5. Projection of Pointcloud and HSI Matching

An integration of 2D hyperspectral data and 3D point cloud data is needed for topographic
correction and final creation of the 3D hypercloud. In order to facilitate automatic matching and reduce
distortion in the subsequent wrapping process, the point cloud is projected onto a 2D surface in a way
that resembles the view of the hyperspectral camera during image acquisition. It is crucial here that
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through the entire process of ensuing transformations the original coordinates of each point of the
cloud are stored as additional parameters. Due to the push-broom character of the sensor, a simple
orthographic projection of the point cloud onto a plane is not suitable. Instead, the point cloud is first
transformed so that the camera position is set as the new origin and the camera viewing angle is set
along the y-axis of the coordinate system by

Trans f ormed points = Original points − Camera Position ∗ (−Camera Angle). (2)

The spatial relation between point cloud, camera angle, and camera position in the transformed
coordinate system is displayed in Figure 5.

Figure 5. Schematic workflow of the point cloud transformation and projection to create a 2D image
resembling the panoramic view of a push-broom hyperspectral imager (Nunngarut, Scan 2).

Each point coordinate of the transformed point cloud now corresponds to the vector
→
v between

the transformed camera position at (0,0,0) and the point at (x3D, y3D, z3D). If we assume that the
camera FOV is a subset of a virtual surrounding view sphere with the center at the camera position,
the point cloud can be projected onto that sphere by normalizing each point vector by

(xn, yn, zn) =
→
v
|→v |

with
→
v =

⎛
⎜⎝ x3D

y3D
z3D

⎞
⎟⎠;

(3)

see also Figure 5b.
The projected point cloud is now unfolded onto a 2D plane using a cylindrical projection with

x2D = ρ with ρ = tan−1(yn/xn),
y2D = 1,

z2D = tan ϕ with ϕ = π/2 − tan−1
(√

xn2 + yn2/zn

)
,

(4)

with x2D and y2D being the Cartesian coordinates of the created 2D image, and with xn, yn, and
zn or ρ and ϕ being the Cartesian or spherical coordinates of the normalised 3D point cloud,
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respectively (Figure 5c). The angle at which the cylinder is cut for the projection can be set by
an additional parameter.

The projection into 2D space considers all of the points in the true line of sight of the hyperspectral
camera, which includes points hidden behind points in the foreground (front points), such as the
backside of a mountain (back points). This leads to artefacts within the created 2D image (see Figure 6a)
and would adversely affect subsequent processing steps. Using a maximum threshold for the original
spatial distance between neighbouring points, the adverse back points can be removed. To ensure a
fast processing even for huge point clouds, a moving window is used to process several points at once.
For each applied window, the contained point with the closest distance to the camera position is found.
This distance can be calculated from the original coordination of the point cloud, which is still saved
as additional point parameters. Hereby, it is advantageous to use only the original coordination axis
that was closest to the original camera angle. While neighbouring front points show a similar location
with generally from decimetres to a few metres difference (depending on the spatial accuracy of the
data), back points mostly feature locations far off, with distances of several tens to hundreds of metres
from the camera-closest front point. According to this, the threshold is set and all resulting back points
are deleted (Figure 6b). Due to the nature of this workflow, a smaller window size guarantees a higher
accuracy, but also a higher computation time.

Figure 6. Effect of the overlapping point removal on the quality of the 2D point cloud projection image
on the example of Nunngarut, Scan 2. The original x-coordination of the points is illustrated by a colour
gradient. (a) Point cloud projection without overlapping point removal; (b) point cloud projection with
overlapping point removal.

After the deletion of the interfering back points, the remaining front points are interpolated
into a raster with a spatial resolution similar to or slightly higher than the spatial resolution of the
hyperspectral data. Apart from RGB colour information, this ortho-image has four additional bands
containing the original point cloud coordinates and the calculated sun incidence angles. The created
RGB raster can now be used for an automatic co-registration of the hyperspectral image. The matching
workflow used for the co-registration will be part of the MEPHySTo toolbox presented in Jakob et al. [7]
and is also successfully adapted and used for the integration of vessel-based hyperspectral data and
3D point clouds in an accompanying paper [20]. The workflow is based on the SIFT (Scale-invariant
feature transform) algorithm [36], which, from both images, extracts local features or keypoints that
are invariant to translation, rotation, and scale and partly invariant to affine or 3D projection and
illumination changes. Using the FLANN (Fast Library for Approximate Nearest Neighbors) matching
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algorithm library [37], correlating point pairs between both keypoint sets are found. The best-matching
point pairs are used as control points for a polynomial warping of the hyperspectral image to fit on the
RGB raster. After the co-registration, each overlapping point of both datasets features high-resolution
spectral data, geographic position, and elevation, as well as the sun incidence angle at the time of
the acquisition.

4.6. Topographic Correction of Referenced HSI

The topographic correction is similar to the approach described in Jakob et al. [7]. The main
difference is the calculation of pixel-specific sun incidence angles, which is described above in
Section 4.4. The calculated angles can now be used to apply a topographic correction algorithm.
The c-factor method returned the best correction results of all the methods implemented in the
toolbox and achieved a very smooth and accurate correction even for high illumination differences
(see Figure 4c). The topographically corrected image is calculated by

re fc = re fo ∗ cos(z) + c
IL + c

(5)

where c is a/m from the linear regression of re fo = a + m ∗ IL and IL = cos(i) [38]. The c-factor
approach is applied separately for each spectral band. The correction of a common hyperspectral scan
usually takes less than a minute. For very dark and deeply shaded regions of the image, pixels can
be heavily overcorrected. These pixels are characterised by extreme, up to infinite values, which
exceed the common value range of reflectance data distinctly. The affected pixels are detected and
masked using appropriate thresholds, which are set according to the spectral reflectance minimum
and maximum of the topographically uncorrected image (e.g., 0 and 1).

4.7. Minimum Wavelength Mapping

The finally corrected HSI can now be used for subsequent mapping and interpretation. In the
present paper, a Minimum Wavelength (MWL) mapping approach is exemplarily used to test the
quality and applicability of the data for mineral mapping.

MWL mapping using the Wavelength Mapper [39,40] aims to estimate the position of the deepest
absorption feature in a given wavelength range. The position of the absorption minimum is a key to
link surface mineralogy to subtle variations in mineral composition (e.g., shift of the Al–OH feature
depending on the coordination of the Al). First, a hull curve is calculated and divided from the spectra.
Second, position and depth of the most prominent absorption are computed using a second-order
polynomial function. These two parameters can be used to create MWL position maps, where the
position of the investigated feature is displayed by a colour change, while the colour intensity is
controlled by the absorption depth.

The success of the MWL mapping approach depends crucially on the analysis of subtle changes
of position and depth of mostly small mineralogical absorption features. Therefore, it is an excellent
possibility to evaluate image correction methods, which affect both the intensity ratio between single
pixels of the image (topographic correction) and the shape of the spectrum itself (radiometric and
atmospheric correction). In this context, the successful removal of distortions is as important as
maintaining existing and real intensity relations and spectral features.

4.8. Generation of Hyperclouds

At the end of the workflow described above, each pixel of the HSI (and any HSI mapping
product) has an assigned geographic position and elevation through the corresponding pixel in the
projected and rasterised 2D point cloud. By deriving this information for each pixel of the spectral
raster, we can create a so-called “hypercloud”, which visualises the spectral data as a 3D point
cloud. The displayed data can comprise any spectral data or result, such as simple reflectance data,
results from decorrelation, and endmember mapping methods, or MWL mapping results as presented
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here. The hypercloud can be displayed and processed further with respective 3D software such as
CloudCompare (open-source GPL software, retrievable from http://www.cloudcompare.org/) or
SKUA-GOCAD (Emerson/Paradigm, Houston, United States). If the hyperspectral survey consisted
of several scans covering different parts of the observed area, the creation of hyperclouds can be an
excellent option to set the single mapping results into a spatial context by simultaneously displaying
or merging multiple hyperclouds. The 3D hypercloud also allows for integration with other spatial
datasets such as boreholes or structural observations.

5. Results

5.1. Nunngarut Peninsula, Maarmorillik, Greenland

Two hyperspectral scans were acquired from two different scanning locations, covering the
largest part of the south and east coast of the Nunngarut Peninsula (Figure 1a). The approximate
distance between sensor and observed target ranged between 2 and 5 km for the majority of all
outcrop-related image pixels. Despite overall dry and sunny conditions during acquisition, numerous
sharp atmospheric absorption features within the spectral data (see Figures 3 and 7) suggested a
high influence of the atmospheric layer between the sensor and the target. Figure 7 displays the
known major atmospheric contributions (in this case water vapour, CO2, O2, and O3) to the overall
observed atmospheric perturbances and the resulting calculated spectrum used for the corrections.
We showcase that the radiometric correction approach presented here allows us to remove the
influence of the atmosphere almost completely, whereas typical mineral-related spectral features
of the Mârmorilik Formation remain. In the resulting atmospherically corrected target spectrum,
the remaining absorption features are indubitably attributable to characteristic mineral features.
Besides the distinct carbonate feature of the Mârmorilik marbles, the characteristic AlOH and OH/H2O
features are clearly represented. These characteristic absorptions are related either to abundant
evaporitic gypsum and/or clay minerals originating from inclusions or nearby pelite horizons known
to be present in this lithological unit.

Scan 1, imaging the south facing cliff of the Nunngarut Peninsula, was directly opposed to the
sun during the measurements and is therefore evenly illuminated. In contrast, Scan 2, acquired in the
morning and facing the eastern coast of the peninsula, featured high illumination differences, which
made a topographic correction crucial for the subsequent mapping process (Figure 4c).

With atmospheric and topographic corrections successfully applied to the hyperspectral datacubes,
the datacubes provide the basis for a characterisation of the mineralogical composition of the
Mârmorilik Formation carbonates, with relevance for exploration mapping. The identification
of different carbonates from hyperspectral data is possible using the position and depth of the
carbonate-related vibrational overtone absorption band between 2310 and 2340 nm [41]. Whereas pure
calcite features an absorption around 2340 nm, the absorption band of pure dolomite occurs at 2320 nm.
Carbonate-related absorptions at even shorter wavelengths can indicate an occurrence of tremolite
together with dolomite. This relationship is confirmed by spectroscopic analysis of representative
rock samples from the Mârmorilik Formation (Figure 8a). Elemental and mineralogical composition
of the samples are further validated by pXRF (portable X-ray fluorescence) and thin section analysis,
respectively (see Rosa et al. [19]; pers. commun. C.A. Partin). From the pXRF results, the respective
Ca/Mg ratios of four to six measurement spots on each sample were calculated and compared to the
classification of limestones and dolomites of Chilingar [42]. Sample #SLA15 featured high Ca/Mg
ratios between 31.2 ± 0.7 and 619.3 ± 13.7 and would be therefore classified as calcitic limestone.
The ratio of sample #562032 ranged between 2.0 ± 0.5 and 5.9 ± 0.9, indicating a highly dolomitic
limestone or calcareous dolomite. Sample #562048 ranges between a dolomite and magnesian dolomite
with a low Ca/Mg ratio between 1.0 ± 0.1 and 2.0 ± 0.1 [42]. A simple MWL mapping approach hence
provides a good means of distiguishing these different carbonate phases in the outcrop (Figure 9).
Pelite horizons and noncarbonatitic rocks, which are spectrally characterised by a very weak or
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nonexistent carbonate features, were masked out using a threshold based on the MWL depth of the
mapped carbonate feature.

The contact between the upper and lower Mârmorilik Formation is clearly visible on the
east-facing slope of Nunngarut, as the lower Mârmorilik Formation is dominated by dolomite
interbedded with tremolite-rich horizons [43], whereas the upper Mârmorilik Formation is
calcite-dominated. Also, a dolomitisation along faults can be traced.

Figure 7. Contribution of geological target and atmosphere to an exemplaric observed reflectance
spectrum (Nunngarut study area, Mârmorilik Formation). At this, the target contribution equals the
reflectance spectrum after atmospheric correction.

Figure 8. Spectral validation of the Minimum-Wavelength-Position-based mapping of the carbonate
composition at Nunngarut test site. (a) Lab point spectra of three carbonate samples of the Maarmorilik
formation, representing typical calcitic, dolomitic, and tremolite-rich dolomitic end members; (b) HSI
spectral plot of the sampling positions marked in Figure 9, representing calcite-, dolomite-, and
tremolite-rich dolomitic end members of the scene. A continuum removal was applied on all spectra.
Elemental and mineralogical composition is further validated by portable XRF (pXRF) and thin section
analysis, respectively (see Rosa et al. [19]).
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Figure 9. 3D hypercloud of two individual HSI image scenes overlain on photogrammetric RGB point
cloud of the Maarmorillik marble cliffs. Minimum Wavelength Position Mapping was applied to both
HSI datacubes to highlight variations in carbonate composition. HSI 1, 2, and 3 mark the sampling
points of Figure 8.

5.2. Corta Atalaya, Riotinto, Spain

For the Corta Atalaya, three overlapping hyperspectral scans are used to demonstrate the
described workflow (Figure 1b). The scans were acquired from the same panorama viewpoint of
Corta Atalaya, but at different times: Scan 1 was acquired in March 2016, and Scans 2 and 3 were
acquired in October 2016. The distance between sensor and target ranges broadly between 400 and
1100 m. The conditions on both acquisition days were dry and sunny, with a very good and constant
illumination of the imaged pit wall. Despite the shorter distance to the target compared with that at
Nunngarut test site and the Mediterranean climate conditions, i.e., with hot and dry summers, distinct
atmospheric absorption features were observed in the image data.

All scans were atmospherically corrected and geometrically rectified using the photogrammetric
pointcloud. A topographic correction was attempted but deemed unnecessary in the end, because the
geologically most interesting northern and eastern part of the outcrop are evenly illuminated, and the
shaded southern wall of the pit does not contain sufficient spectral information. After preprocessing
and correction of the scenes, a Minimum Wavelength Position Mapping of the AlOH feature between
2190 and 2215 nm was conducted on all three scenes, to exemplarily show the capability of the corrected
datasets for alteration mapping. The subsequently created hyperclouds show a great coincidence in the
mapped alteration zones and could be easily merged into one final Hypercloud AlOH map (Figure 10).

The spectral validation of the mapping result was conducted using a set of field spectrometer data
acquired in situ. Due to the restricted accessibility of the mine pit, the spectral readings are limited to a
few pit levels. However, a wide range of lithologies could be covered and compared to the respective
HSI pixel spectrum. A selection is shown in Figure 11a and proves the similarity of spectral shape and
the occurrence of spectral features between image and field spectra. The given field sample density
allows also us to validate the AlOH MWL position distribution. In Figure 11b, the AlOH feature
position of each field spectrometer measurement within the main region of interest is displayed as
coloured squares using the same colour scale as the underlying HSI mapping result.
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Figure 10. 3D hypercloud display of three individual HSI image scenes overlain on photogrammetric
RGB point cloud of the Corta Atalaya open pit. All three scenes were used for Minimum Wavelength
Position Mapping to highlight lithological variations associated with differences in the abundance of
AlOH-bearing minerals. The white rectangle marks the area shown in Figure 11. The colour differences
in the MWL hypercloud show excellent correlation with the known main lithologies and alteration
zones [28]. Zones not described in [28] are indicated with question marks. Sample locations for
Figure 11b are marked with white circles and numbers.
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Figure 11. Validation of HSI data of the Corta Atalaya open pit. (a) Left: Spectral signature
improvement of Sample Point 1 within different processing stages. Right: Comparison of spectral
shape between field spectra and image spectra of the approximate same location. Sample locations
are marked with white circles and numbers in Figures 10 and 11b; (b) Comparison of feature position:
minimum wavelength map for AlOH (see map extent in Figure 10) and feature position of field spectra
(coloured squares; same colouring scheme).

6. Discussion

6.1. Radiometric and Atmospheric Correction

Both test scenarios contain spectral distortions due to atmospheric absorption features. At Corta
Atalaya/Spain, most of the observed atmospheric absorption features could originate both from
upwelling water vapour of the pit lake and from dust and particles caused by the nearby mining
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activities in the adjacent Cerro Colorado open pit. This assumption is supported by the distribution
of the atmospherically disturbed image pixels, which are not directly related to the distance of target
and sensor, but mainly occur in areas where the signal needed to pass over the water surface in
the mining pit. In contrast, for the Greenland site, the intensity of the atmospheric absorptions was
roughly proportional to the distance between sensor and target. Here, contributions both from general
air humidity and from upwelling water vapour from the fjords separating Nunngarut Peninsula
and the respective observation positions on adjacent cliffs can be assumed. The overall atmospheric
influence on the signal was much higher than that at Corta Atalaya, which may be related to both
the distinctly increased distance to the target and the generally higher air humidity of the arctic
climate. The described novel atmospheric correction workflow takes into account this variability in
the composition of the atmospheric layer between sensor and target by extracting the shape of the
correction curve directly from the scene and determining the correction intensity according to the
pixel-specific atmospheric absorption depth and not the distance to the target.

For all five processed datasets, the atmospheric correction approach was fast and robust.
Atmospheric absorptions were removed, whereas the general spectral shape and smaller
mineral-related features were maintained. It was shown that the correction approach respects all
abundant atmospheric components that contribute to the extracted pervasive signal and which we
attribute to atmospheric perturbations. Besides water vapour, this may comprise any abundant
atmospheric gases (such as CO2 or O3) and minor or pervasive amounts of atmospheric dust that show
significant spectral absorption features in the VNIR and SWIR. Only in the rare case of an extreme
amount of locally concentrated atmospheric dust or gas, e.g., due to blasting or the exhaust of waste
gases within a mine, may the atmospheric correction fail for the affected image region. In this case, the
local atmospheric perturbations will deviate distinctly from the used correction spectrum and cause an
unsatisfactory spectral result. However, such scenarios can be avoided easily by the respective timing
of the image acquisition, e.g., ahead of scheduled blasting operations.

It should be noted that for highly distorted pixels, spectral noise can remain at the former
atmospheric absorption positions. The affected pixels mostly originate from extremely distant targets.
Here, the proportion of the target signal on the spectral signal received at the sensor is so low that a
removal of the atmospheric influence leads to an extremely low signal-to-noise ratio of the returned
spectrum, which therefore appears noisy and featureless. This may suggest an upper distance limit for
long-range HSI. However, this limit would be at an up to ten or more kilometre distance, depending
on the atmospheric conditions of the scene. At this distance, the resulting pixel footprint on the ground
would be in the range of several hundred square meters, questioning the informative value of the
measurement. In conclusion, we were able to prove the successful application of the introduced
atmospheric correction approach within a reasonable imaging distance.

6.2. Topographic Correction

As shown in the example of Nunngarut Peninsula in Figure 4, topographic correction is necessary
under certain circumstances, as it ensures the comparability of absorption intensities between
differently illuminated parts of the image. However, whereas the correction is effective for the
adjustment of intensity changes, it cannot reconstruct spectral features in poorly illuminated areas of
the image with associated low signal intensity, SNR, and feature detail. Therefore, we recommend a
masking or at least careful interpretation of extremely poorly illuminated or deeply shadowed image
parts. We further suggest evaluating the usefulness of a topographic correction for each imaged scene.
From our general experience and the specific performance of the shown examples, natural targets
such as mountain slopes or cliffs often have a smoother topography and therefore more consistent
illumination than manmade outcrops like quarries and open pit mines. In natural targets, with
the resulting smoother transitions between image parts with maximum and minimum illumination,
respectively, the topographic correction usually performs well. Artificial targets often feature a terraced
geometry and/or rough edges due to blasting and excavation, which generates large illumination
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differences. A topographic correction will not necessarily give an improvement of the image, as the
applied corrections in the well-illuminated parts are minor, while the correction of the dark parts may
be futile due to the mentioned reasons.

The c-factor method, despite its good performance for topographic correction, needs to be applied
carefully. Due to the bandwise calculation of the correction factor using a linear regression, extreme
or infinite values in one or several bands can cause an exaggeration of the correction factor for those
bands and, finally, a change in the spectral shape. These peak values can be caused by bad pixels
in the HSI sensor, which, due to the push-broom character of the camera, form bad pixel lines that
are restricted to few adjacent bands. If a topographic correction needs to be applied, a correction or
masking of those bad lines is inevitably required for a reliable image result.

6.3. Validation

The spectral validation using field spectrometer data demonstrated a great accuracy of both
spectral shape and feature position of the corrected image spectra. In general, the difference between
the interpolated minimum wavelength of field spectra and the corresponding library spectra for a
certain absorption feature was below 5 nm in both areas of investigation. This value represents the
band sampling distance of the SWIR data and lies below the achievable spectral resolution of 12 nm
(FWHM). Locally, higher errors between some image and validation spectra points were observed,
but these may be related to the large difference in spatial footprints of the different instruments.
The field spectrometer data were retrieved from one or several 8 mm spots of a single lithologically
representative sample, whereas the respective HSI pixel can easily represent a mixture of an area of
some square meters of outcrop, depending on the distance to the sensor. Local variability in alteration
can affect the representability of the spectrometer reading and lead to deviations from the recorded
image spectrum at the same location. Additional to the spectral variations, slight mislocation of the
spectrometer readings, which can be caused by the limited accuracy of the sample GPS position that
can reach up to 5 m, needs to be taken into account.

6.4. 3D Integration

The potential, the spatial accuracy, and a possible application of the HSI integration with
photogrammetric point clouds is discussed in more detail in Salehi et al. [20]. The current paper
confirms not only the successful 3D integration for two additional examples, but further proves
the capability of the workflow to integrate and merge hyperspectral datasets from different camera
locations and viewing angles as well as different acquisition dates and times by eliminating the effects
of topography, different illumination conditions, and atmospheric absorptions. This allows the use
of hyperspectral data in a new way, as it facilitates the evaluation of spatial relationships between
hyperspectral results that are not visible from one observation point or displayable in one dataset, such
as opposing faces of a mountain or a mining pit.

7. Conclusions

With this paper, we present a novel approach for the atmospheric and topographic correction of
long-range ground-based hyperspectral imagery. Such corrections are essential for obtaining reliable
information on mineral composition in geological applications. The general workflow is partly based
on the algorithms developed for drone-borne and vessel-based HSI data, which were presented and
used in our previous papers [7,20], but is adapted and extended by adding radiometric and topographic
correction approaches to meet the particular challenges of long-range, ground-based HSI.

The most important outcomes of this paper are the following:

1. The correction spectrum for the atmospheric correction is derived directly from the scene, and
the correction intensity is determined according to the pixel-specific atmospheric absorption
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depth. As a result, the workflow is independent from knowledge about the composition of the
atmospheric layer or the distance to the target.

2. The incidence angles for the topographic corrections are calculated using the point normals of
the photogrammetric 3D outcrop model. This allows us, for the first time, to utilise common
topographic correction algorithms, such as the used c-factor method, for vertical outcrops.

3. The generation of a hypercloud, i.e., a geometrically and spectrally accurate combination of
a photogrammetric point cloud and the HSI datacube, is achieved through the projective
transformations of a photogrammetric 3D outcrop model. The removal of the effects of
atmosphere and topography allows the integration of hyperspectral mapping results originating
from different camera positions, dates, and, therefore, varying illumination conditions.

4. Two study areas with five HSI datasets in total proved the applicability and robustness of
the workflow in differently challenging measuring conditions regarding climate, distance,
atmospheric composition, geological diversity, and mapping objectives. A successful MWL
mapping demonstrated both the geological applicability and the accuracy of spectral absorption
positions and depths.

5. The accuracy and reliability of the created data and mapping results is validated by field spectra
and the mineralogical analysis of geological samples.

6. The presented workflow is fast and simple and requires only a minimum of input parameters.
Most of the processing steps are automatised and need no or extremely few manual actions.

7. The workflow enables (i) reliable spectral mapping of vertical and completely inaccessible
outcrops; (ii) three-dimensional integration of multiple scans and other data sources; and (iii) a
higher spectral resolution, range, and SNR than most drone- or air-borne HSI data.

On account of the promising quality of the presented datasets, we highly encourage the use of
carefully processed and corrected long-range ground-based HSI data for geological applications and
suggest a further development of highly adapted topographic and atmospheric correction algorithms.
In several upcoming application-based papers, we will further present and discuss the geological
interpretation of data corrected with the presented workflow and their integration with other data
types such as structural data and long-wave infrared (LWIR) hyperspectral data.
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Abstract: Soil salinization is a global issue resulting in soil degradation, arable land loss and ecological
environmental deterioration. Over the decades, multispectral and hyperspectral remote sensing
have enabled efficient and cost-effective monitoring of salt-affected soils. However, the potential
of hyperspectral sensors installed on an unmanned aerial vehicle (UAV) to estimate and map soil
salinity has not been thoroughly explored. This study quantitatively characterized and estimated
field-scale soil salinity using an electromagnetic induction (EMI) equipment and a hyperspectral
camera installed on a UAV platform. In addition, 30 soil samples (0~20 cm) were collected in each
field for the lab measurements of electrical conductivity. First, the apparent electrical conductivity
(ECa) values measured by EMI were calibrated using the lab measured electrical conductivity derived
from soil samples based on empirical line method. Second, the soil salinity was quantitatively
estimated using the random forest (RF) regression method based on the reflectance factors of UAV
hyperspectral images and satellite multispectral data. The performance of models was assessed by
Lin’s concordance coefficient (CC), ratio of performance to deviation (RPD), and root mean square
error (RMSE). Finally, the soil salinity of three study fields with different land cover were mapped.
The results showed that bare land (field A) exhibited the most severe salinity, followed by dense
vegetation area (field C) and sparse vegetation area (field B). The predictive models using UAV data
outperformed those derived from GF-2 data with lower RMSE, higher CC and RPD values, and the
most accurate UAV-derived model was developed using 62 hyperspectral bands of the image of the
field A with the RMSE, CC, and RPD values of 1.40 dS m−1, 0.94, and 2.98, respectively. Our results
indicated that UAV-borne hyperspectral imager is a useful tool for field-scale soil salinity monitoring
and mapping. With the help of the EMI technique, quantitative estimation of surface soil salinity is
critical to decision-making in arid land management and saline soil reclamation.
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1. Introduction

Salt-affected soils are widespread across the world, especially in arid and semi-arid regions [1].
Approximately 20% of irrigated agriculture land worldwide is affected by salinization [2], which
results in soil degradation, arable lands loss and ecological environmental deterioration. Thus, it is of
great significance to regularly monitor and map salt-affected areas to provide sufficient information
for land informed management and salinized soil reclamation.

Conventional methods to quantitatively determine soil salinity were conducted through the
measurement of the electrical conductivity (EC) of soil solution extracts or extracts at higher than
normal water contents [3–5]. Because it was impractical to extract soil water from samples at typical
field water contents, EC of the saturation extract made at 1:1, 1:2, and 1:5 soil:water ratios, noted as
EC1:1, EC1:2, and EC1:5 , respectively, were generally used to estimate soil salinity. However, the use of
such a traditional approach required a great deal of time and funding, usually leading to low efficiency
and high cost for soil salinity characterization.

In the late 1970s, researchers in the U.S. first applied the theory of EMI technique to measure the
apparent electrical conductivity (ECa) for field-scale soil salinity mapping [6]. Soil properties such
as soil salinity, soil moisture, clay content, and temperature are the dominant factors that influence
ECa [7]. By assuming relative homogeneity in other soil properties or having prior knowledge of them,
the measurement of ECa using EMI has been used extensively to noninvasively characterize and map
soil salinity [8]. In order to develop relationship between ECa with EC of the saturation extract, various
conversion methods have been proposed [9]. Although much research has investigated and compared
non-linear transformations, linear calibration methods were proved to be sufficiently accurate [10].
With the advantage of rapidly acquiring abundant ECa data, the EMI technique was available to aid
the spatial prediction of soil salinity with limited soil samples.

Remote sensing has gained popularity for delineating saline soils over the last two decades
as a rapid, non-destructive and cost-effective method [11–13]. Researchers have found that saline
soils present distinctive morphological features at the soil surface and spectral characteristics from
non-saline soils, with an overall higher reflectance in the visible and near-infrared parts of the
spectrum [14,15]. Previously, researchers used various multispectral data acquired from satellite-borne
sensors in combination with field measurement to differentiate saline and non-saline soils before
mapping salt-affected regions [16–18]. In 1994, Verma et al. [19] conducted an integrated approach
of visual interpretation method to map salt-affected soils using Landsat TM satellite images. In 2002,
Dehaan and Taylor [20] developed spectral unmixing techniques to derive indicators for characterizing
and mapping soil salinity in the Murray-Darling Basin, Australia. With the occurrence of hyperspectral
technique, remote sensing enabled detailed analysis of the spectral characteristics of the land surface
with a large amount of narrow and contiguous wavelength bands. Soil salinity research has progressed
from qualitative classification to quantitative estimation [21–23]. For example, various absorption
bands have been used for quantifying salt minerals [24–27]. Farifteh et al. [28] in 2007 estimated salt
concentrations in soils based on laboratory data, field measured spectral reflectance and hyperspectral
images, and recommended that the useful spectral bands for salinity estimation were in the near
infrared (NIR) and SWIR regions. In 2014, Pang et al. [29] improved the prediction accuracy for soil
salt content based on the genetic algorithm method, using hyperspectral remote sensing data acquired
in Minqin County, China.

However, the quality of satellite-borne and air-borne remote sensing images can easily be confined
to bad weather and unfavorable revisit times. Also, the lack of imagery with optimum spatial and
spectral resolutions was a critical limitation for real-time crop management using current satellite
sensors [30]. The introduction of UAV provided an easy and cost-efficient approach for soil salinity
monitoring, as UAV-borne hyperspectral sensors not only acquired images with ultra-high spatial
resolution but were also convenient to operate freely in proper conditions. The sensors on board
included digital camera, multispectral camera, hyperspectral imager and Light Detection and Ranging
equipment (LiDAR) [31]. Although UAV has been widely used, applications were mainly focused
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on crops or forest mapping and vegetation feature extraction [32–34]. Studies using UAV images for
soil salinity detection and mapping were still rare. Ivushkin et al. [35] have tried combining a WIRIS
thermal camera, a Rikola hyperspectral camera and a Riegl VUX-SYS LiDAR scanner to measure salt
stress in quinoa plants, and they found UAV-borne remote sensing to be a useful technique for salt
stress measurements. Romero-Trigueros et al. [36] concluded that the red and near-infrared bands
were critical to assess the saline stress Citrus suffered from. However, no existing literature has
discussed the potential of synthesizing UAV-borne hyperspectral data and EMI measurements for soil
salinity estimation.

Our research aimed to (i) evaluate the potential for quantitative estimation of soil salinity and
its spatial distribution at field-scale, using a UAV-borne hyperspectral imager (0.50–0.89 μm) and (ii)
compare these to the predictions of soil salinity from GF-2, a multispectral satellite remote sensor
(0.45–0.89 μm). In both cases, random forest (RF) regression was used to relate spectral information
to soil salinity contents. Meanwhile, a fairly large number of soil samples and spatially dense EMI
measurements were available to provide the electrical conductivity data taken as the dependent
variable of the RF models for quantitative estimation of field-scale soil salinity.

2. Materials and Methods

2.1. Study Area

The study site was located in the center of Aksu (79◦39′~82◦01′E, 39◦30′~41◦27′N), western
Xinjiang, China. It included three fields with variable vegetation cover (A: bare land with no vegetation
cover; B: sparse vegetation cover; C: dense vegetation cover); each covered about 1 ha (100 × 100 m) in
area (Figure 1). The region was close to Taklimakan, the biggest desert in China, with a low average
annual rainfall of 67 mm and a high average annual evaporation of 2110 mm. The average annual
temperature varied from 9.9 ◦C to 11.5 ◦C. The soil type was Typic Aridi-Orthic Halosols in Chinese
soil taxonomy. The average pH values of soil samples collected in the study areas were 8.7, 8.4 and
9.1 for fields A, B, and C, respectively. The dominant species in the study areas were halophytes,
belonging to the family of Chenopodiaceae and Tamaricaceae. To be specific, the typical halophytes
presented in the field B was Tamarix ramosissima, and the ones presented in the field C were Halostachys
belangeriana and Halocnemum strobilaceum [37].

Due to the extremely arid local climate, intense evapotranspiration and relatively high ground
water level, salt in the profile tends to accumulate on the surface soil, resulting in visible salt crust and
salt crystals in UAV images (Figure 1a–c). The salts were mainly of sulphates in chemical composition.

2.2. EMI Measurements

The field measurement of EMI was carried out in late October of 2017. In each field, the ECa data
were measured along crisscrossed grid lines with an interval size of 20 m using an EM38-MK2 (Geonics
Ltd., Mississauga, Ontario, Canada) instrument in both vertical (ECav, mS m−1) and horizontal (ECah,
mS m−1) dipole modes with measuring depths of approximately 1.5 m and 0.75 m [7]. A built-in Global
Positioning System (GPS) was used to record spatial information. The EM38-MK2 had a measuring
range of 0~1000 mS m−1, its measurement accuracy was ±0.1%, the working frequency was 14.5 KHz,
and the working temperature ranged from −30 to 50 ◦C. It weighed approximately 5.4 kg, containing
two receiver coils spaced at 0.5 m and 1 m from the transmitter coil.
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Figure 1. Location of study area and electromagnetic induction (EMI) measurements in fields A (a), B
(b), and C (c) within the Xinjiang Autonomous Region.

The EM38-MK2 measured ECa by first inducing an electrical current in the soil. Then, a fraction of
the secondary induced electromagnetic field from each loop was intercepted by the receiver. Finally, the
sum of these signals was formed into an output voltage which is linearly related to a depth-weighted
soil ECa [7]. In this case, the EM38-MK2 sensor was carried out in auto-collecting mode through
the fields by an operator on foot. It took about an hour to survey a field with the EMI, there was
no significant temperature change during the surveys. Compared with other EM38 devices, the
EM38-MK2 we used implemented the temperature-compensation circuitry to avoid thermal drift as a
consequence of internal temperature influence [38], hence temperature correction on the EMI sensor
signal could be waived. For each site more than 2000 points have been collected via EMI, however,
when the EMI measurements were conducted in auto-collecting mode, inevitably there were some
densely clustered points within a very small region when the operator stopped to avoid the road
bumps or stones. After removing those densely clustered points, there were 1500 points for each site.
We later converted their ECa values to EC1:5 using empirical line method.

2.3. Soil Sampling and Laboratory Measurement

In the same days as the EMI data were obtained in auto-collecting mode, 30 sample points were
chosen on the EMI measurement lines in each field. When selecting sample points, we tried to cover
the different values of ECa measurements, including high, medium, and low values in each field [5].
First, the ECa of every sample point was measured via handheld EM38-MK2. Then, a total of 90 soil
samples of the chosen points were collected to the depths of 0~0.20 m. Soil sampling for each site was
conducted within one day. After that, soil samples were transferred to laboratory, air-dried, crushed
and sieved to 1 mm size. Finally, the leachate was extracted from the suspension to measure the EC1:5

using a LeiCi DDS-307 (ShengKe, Shanghai, China) conductivity meter [39].
The EC values of the EM38-MK2 measurement points were predicted from linear regression

relationship [39]. Empirical linear regression was established between the ECa and EC1:5 of the
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30 sampling points for each field. Such method derived the coefficients needed to fit original EMI
measurements and then converted all the 1500 ECa values to EC1:5.

2.4. Remote Sensing Data Processing

A frame-based hyperspectral camera (Rikola Ltd., Oulu, Finland) was loaded on the UAV platform.
The camera had 62 spectral bands in the visible-near infrared (Vis-NIR) region with a spectral resolution
of approximately 10 nm. The narrow bands could provide sufficient data for salinity prediction, but
the camera we used did not capture data in the shortwave wavelength region less than 0.50 μm. The
UAV-borne hyperspectral images of fields B, C, and A were collected on 27, 29, and 30 October, 2017.
The ground pixel size was 0.1 m with the flying height of approximately 154 m. The camera weighed
approximately 720 g and had a maximum image size of 1010 × 1010 pixels. The image field of view
(FOV) was 36.5◦, which was suitable for field-scale to regional-scale investigations.

Hyperspectral Imager 2.0 software (Rikola Ltd., Oulu, Finland) could help users of the UAV-borne
Rikola hyperspectral sensor carry out sensor parameter settings, real-time imaging, image quality
evaluation, and image preprocessing such as dark current correction. The dark current correction was
carried out using a dark current measurement taken before the flight by covering the lens, and the raw
images were converted to at-sensor-radiance images after the dark current correction [35]. The radiance
images were then transformed into reflectance factor images through empirical line method using the
measurement of the reference panel taken before each UAV flight [40]. Due to intrinsic characteristics
of the Fabry–Pérot interferometer (FPI) technology, the UAV images on different wavelengths were
captured at different times, thus band-to-band alignment was performed to correct the difference
between the extents of each wavelength. Thereafter, the reflectance factor images were coordinated
after orthorectification and georeferencing.

In addition, the GF-2 images were acquired on 27 October, 2017. The Chinese GF-2 environmental
satellite was launched on 19 August, 2014. Each image consists of 5 spectral bands, and the spatial
resolution is relatively high among environmental satellite data. Radiometric calibrations were applied,
and the raw GF-2 images were converted to radiance images using the absolute calibration coefficients
provided by the China Centre for Resources Satellite Data and Application (CRESDA). The atmospheric
correction was carried out using the Fast Lin-of-Site Atmospheric Analysis of Spectral Hypercubes
(FLAASH) [41] algorithm and the GF-2 spectral response function provided by CRESDA. Details on
the remote sensing sensors and platforms were given in Table 1.

Table 1. Remote sensing sensors used for detection and mapping of soil salinity. UAV: unmanned
aerial vehicle; NIR: near infrared.

Sensor No. of Bands Spectral Range (μm) Spatial Resolution Platform

Hyperspectral Imager 62 Visible and NIR 0.1 m UAV
B1~62: 0.50–0.89 (flight height: 154 m)

GF-2 5 Visible and NIR 1 m (Panchromatic)/
4 m (Multispectral) Satellite

Band1: 0.45–0.52 (Blue)
Band2: 0.52–0.59 (Green)
Band3: 0.63–0.69 (Red)
Band4: 0.77–0.89 (NIR)

Panchromatic: 0.45–0.90

The ultra-high spatial resolution of UAV images may bring noises such as shadows into
quantitative estimation of soil properties. Additionally, the scale differences between the EMI sampling
interval and the spatial resolution of UAV data attributed to the poor prediction results of the
models derived from original UAV data. In our case, the spatial distance between two adjacent
EMI measurements was approximately 1 m, while the spatial resolution of the original UAV data was
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0.1 m. We have tried a series of grid sizes, and the model got relatively more accurate predictions
when using spatial resampled UAV data with resampling size of 1 m.

To make comparison between UAV-borne and satellite-borne data, this research used three
data sets for building RF regression models; 1) the hyperspectral UAV data set which was spatially
resampled to 1 m spatial resolution from the original images, 2) the multispectral GF-2 data set and 3)
the multispectral UAV data set produced from spectral resampling of the hyperspectral UAV data set.
The spectral resampling was undertaken by turning narrow bands into broad bands similar to that of
the GF-2 data, the GF-2’s spectral response function was used in the process.

Matrices of the input variables of the RF method was made by combining the EC1:5 data (n = 1500)
with the reflectance factors of spectral data. For each point of the EC1:5 samples, the reflectance factors of
hyperspectral or multispectral bands were extracted according to their spatial location. The data rows
of each matrices were later split into a training set and a validation set following the ratio of 2:1 [42].
The training set was used to build the prediction model of each field by tuning model parameters
(in this case, the number of trees in the forest and the number of randomly selected independent
variables at each mode), and the validation set was used to evaluate the model’s robustness and
prediction accuracy.

2.5. Soil Salinity Prediction Using RF

Random forest (RF) was an ensemble learning method proposed by Ho in 1998, then developed
by Breiman and Cutler [43–45]. Due to its high accuracy, the novel method of determining variable
importance and the ability to model complex interactions among predictor variables, RF has been
increasingly used for classification and regression in recent years [46–48]. In this study, the RF
regression method was used to develop the soil salinity prediction models due to its proved robustness
and efficiency when dealing with abundant variables.

RF regression was operated by constructing a multitude of single regression trees and outputting
the mean prediction of the individual trees, it predicted the dependent variable (the soil salinity) from
a set of independent variables (the reflectance factors of 62 UAV-derived hyperspectral bands or 4
satellite-derived multispectral bands). Each regression tree was independently constructed using a
bootstrap sample of the training data set (the 1000 EC1:5 samples which were used to build the model).
Then, for each independent variable, the data were split at several split points. The sum of squared
error (SSE) at each split point between the predicted EC1:5 and the actual EC1:5 was calculated, and the
variable resulting in the minimum SSE was selected for the node splitting. This process was recursively
continued until the entire data set was covered. In our case, RF regression was operated using the
package ‘randomForest’ [49] within R environment software [50].

RF required no assumption of the probability distribution of the target predictors as with linear
regression [51]. Moreover, the variable importance analysis of RF was a useful tool to describe the
significance of any variable in the model. In carrying out the procedure, first, the mean square error
(MSE) on the out-of-bag (OOB) portion of the data (the EC1:5 samples which were left out when
constructing a regression tree using the bootstrap sampling) was calculated in the whole regression
model, then the values of a variable were randomly shuffled to compute the MSE again on the
perturbed data, and finally the normalized difference between these two MSE was taken as the
importance score for this variable [49]. The statistical definition can be found in Zhu et al. [52].

After training the models using the training datasets, the validation datasets were taken as the
input of these models. Several prediction accuracy indicators, including CC [53], RPD, and RMSE
were adopted to compare and evaluate the prediction results. CC quantified the agreement between
the EC1:5 samples and the predicted EC1:5 of a RF model, it ranged from -1 to 1, also represented how
well the measured versus predicted data follows the 1:1 line. RPD calculated the ratio of the standard
error of prediction to the standard deviation of the samples. RMSE explained the difference between
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the samples and the model predictions. Generally, a model that performed well would have high CC
and RPD values, and a low RMSE value [28,54].

CC =
2rsŷsy

s2
ŷ + s2

y +
(
ŷ − y

)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

RPD =
sy

RMSE
(3)

where r is the usual Pearson product-moment correlation coefficient between the observed and
predicted values, sy and sŷ are the standard deviation of the observed and predicted values, s2

y and
s2

ŷ are the variances of the observed and predicted values, y and ŷ are the mean of the observed and
predicted values, n is the number of the observation samples used, and yi and ŷi are the observed and
predicted values of sample point i, respectively.

3. Results

3.1. Soil Salinity Content and Variation

The descriptive summary of the ECa and the EC1:5 value of each point measured by hand-hold
EM38-MK2 and chemical analysis were presented in Table 2.

Table 2. Descriptive summary of electrical conductivity ECa and EC1:5 measured on the samples in
fields A, B, and C.

Field Conductivity
Descriptive Statistics (ECa, mS m−1; EC1:5, dS m−1)

N Min Max Mean Median Std.Dev. CV

A
ECah 30 571.15 955.72 765.05 766.72 119.02 16%
ECav 30 598.15 1065.57 846.74 865.22 144.53 17%
EC1:5 30 20.25 54.90 37.64 35.80 9.21 25%

B
ECah 30 450.20 1092.15 830.47 903.09 200.58 24%
ECav 30 585.67 1035.90 824.51 779.02 154.27 19%
EC1:5 30 7.20 14.68 11.73 11.91 2.38 20%

C
ECah 30 695.86 1126.99 890.15 861.09 136.54 15%
ECav 30 560.17 955.56 778.00 782.09 118.92 15%
EC1:5 30 9.64 19.64 14.11 14.50 2.94 21%

As shown in Table 2, the minimum ECah value was 450.20 mS m−1, which was measured in the
field B. The maximum ECah value was 1126.99 mS m−1 and was found in the field C. The minimum
and the maximum ECav values were measured in the field C and the field A, with the values of 560.17
mS m−1 and 1065.57 mS m−1, respectively. When it comes to EC1:5, the highest and the lowest values
were 54.90 mS m−1 and 7.20 mS m−1, which could be found in the field A and the field B, respectively.

Taking the mean values of ECa into consideration, the field A had the lowest average ECah value
of 765.05 mS m−1, and the highest average ECah value was 890.15 mS m−1, which was measured in
the field C. The field C had the lowest average ECav value of 778.00 mS m−1, and the average ECav

value of the field A was the highest among three fields, which was 846.74 mS m−1. As for the mean
values of EC1:5, the field A had the biggest EC1:5 value of 37.64 dS m−1, and the smallest average EC1:5

was found in the field B with the value of 11.73 dS m−1.
For fields A, B, and C, the relationships between EM38-MK2-measured ECah, ECav, and

laboratory-analyzed EC1:5 of the samples (n = 30) were given as Equations (4–6):

EC1:5

(
dS m−1

)
= 0.0278ECav + 0.0234ECah − 5.52532

(
R2 = 0.85, adjusted R2 = 0.84, RMSE = 3.00 dS m−1

)
(4)
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EC1:5

(
dS m−1

)
= −0.0119ECav + 0.0177ECah + 6.85742

(
R2 = 0.75, adjusted R2 = 0.73, RMSE = 1.14 dS m−1

)
(5)

EC1:5

(
dS m−1

)
= 0.0275ECav − 0.0042ECah + 0.28139

(
R2 = 0.95, adjusted R2 = 0.95, RMSE = 0.73 dS m−1

)
(6)

Combining Table 2 and Equations 4–6, it was clear that the fitted linear relationship of field C
produced the most accurate prediction of EC1:5 using ECah and ECav, and the prediction accuracies of
all three fields were satisfying with R2 and adjusted R2 values no less than 0.7.

For each field, the corresponding equation was used to calibrate the ECa values (n = 1500) of the
EMI survey and convert them to EC1:5 values. The descriptive summary of calibrated EC1:5 in study
fields were presented in Table 3.

Table 3. Descriptive summary of EC1:5 in fields A, B, and C.

Field
Descriptive Statistics (EC1:5, dS m−1)

N Min Max Mean Median Std.Dev. CV

A 1500 18.81 47.14 31.54 31.22 4.17 13%
B 1500 5.04 15.20 9.89 10.00 1.64 17%
C 1500 11.98 25.94 18.13 18.37 2.10 12%

Ranging from 5.04 dS m−1 to 47.14 dS m−1, the EC1:5 measured in the study area had a broad
value domain. As shown in Table 3, the average EC1:5 value of the field A, B and C was 31.54 dS
m−1, 9.89 dS m−1 and 18.13 dS m−1, respectively, showing considerable difference between fields with
variable vegetation cover. The maximum EC1:5 value was measured in the field A, which was bare land
with no vegetation cover and with a large area of visible salt crust, and the minimum was measured in
the field B, which had relatively moderate vegetation cover of clustered halophyte, Tamarix ramosissima.
The coefficients of variation in the three fields were all greater than 10%, indicating moderate variation
of soil salinity within the study areas. The EC1:5 was directly taken as the proxy of soil salinity [55,56],
and was denoted as EC hereafter.

3.2. Prediction Accuracy of RF Regression Models

Table 4 showed the soil salinity prediction accuracy (training and validation) of RF regression
models using UAV, GF-2 and spectral resampled UAV data. Although the prediction accuracies of
training and validation were quite similar, showing robustness in each of the RF prediction models,
the training statistics were generally better than the validation stats as expected.

Table 4. Training and validation statistics of random forest (RF) regression models. CC: concordance
coefficient; RPD: ratio of performance to deviation; RMSE: root mean square error.

Data Set Source

A B C

CC RPD RMSE CC RPD RMSE CC RPD RMSE

(dS m−1) (dS m−1) (dS m−1)

Training
(n = 1000)

UAV 0.96 3.92 1.05 0.94 3.29 0.49 0.81 1.91 1.07
GF-2 0.93 2.93 1.40 0.92 2.75 0.58 0.74 1.67 1.22

Resampled UAV 0.95 3.22 1.28 0.92 2.72 0.59 0.70 1.55 1.31

Validation
(n = 500)

UAV 0.94 2.98 1.40 0.86 2.15 0.74 0.56 1.29 1.59
GF-2 0.88 2.23 1.87 0.84 2.00 0.80 0.44 1.20 1.71

Resampled UAV 0.89 2.35 1.78 0.81 1.85 0.86 0.40 1.12 1.83

In each field, it was true both for training and validation sets that the CC and RPD values of UAV
model were generally greater, and the RMSE values smaller than that of GF-2 and resampled UAV
models. It indicated that the prediction performance of the UAV model was the best among three types
of models. Comparing the validation results of three different fields, the models constructed from the
UAV hyperspectral data of bare land (A) showed the best prediction performances with the highest CC
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and RPD values of 0.94 and 2.98, whereas the resampled UAV model of the area with dense vegetation
cover (C) produced the worst prediction performance with the lowest CC and RPD values of 0.40 and
1.12. It suggested that dense vegetation cover might deteriorate the predicting capability of soil salinity
through covering soil surface and blurring the spectral information of surface soil. In addition, the
prediction accuracy was sharply higher (lower RMSE) for the field B with moderate vegetation cover.

The fitted lines of the field A (Figure 2a,d) were the closest to the 1:1 lines, showing the best
prediction performance of the UAV models among all three fields, while the measured versus predicted
points using the validation data set were dispersed in the scatter plot of the field C (Figure 2f). Moreover,
the field B exhibited the lowest RMSE values of the prediction models.

Figure 2. Scatter plots of measured versus predicted electrical conductivity (EC)-derived from RF
regression models using UAV data for the field A (a,d), B (b,e), and C (c,f); the upper three (a–c) are the
training results; the lower three (d–f) are the validation results; the blue lines are the fitted lines and
the red lines are the 1:1 lines.

3.3. Soil Salinity Maps Derived from UAV and GF-2 Data

Figure 3 showed the soil salinity maps of the study areas developed using RF regression models.
Since the resampled UAV data didn’t produce better prediction accuracy than the original UAV data
did (Table 4), only the salinity maps derived from the original UAV and GF-2 data were shown to make
comparisons. For both the UAV and GF-2 prediction models, the predicted EC values of fields A, B and
C covered the range of around 20.0~44.0 dS m−1, 6.0~14.0 dS m−1, and 13.0~22.0 dS m−1, respectively.
In general, the maps of the field A (Figure 3a,b) and B (Figure 3c,d) showed distinct spatial variation
pattern of soil salinity, whereas the GF-2 map of field C (Figure 3f) was too fragmented and scattered
to recognize any salinity spatial pattern due to its dense vegetation cover.
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Figure 3. EC maps derived from RF regression models using UAV (the left three: a,c,e) and GF-2 (the
right three: b,d,f) data for the field A (a,b), B (c,d), and C (e,f).

The field A had the most extreme soil salinity. High salts (>35.0 dS m−1) were mostly located
in the northwest area (Figure 3a). An obvious difference was visible between the UAV and GF-2
models of the field A. For example, a large area with high salt content (>35.0 dS m−1) using the UAV
model (Figure 3a) exhibited with relatively lower salt contents (32~35 dS m−1) using the GF-2 model
(Figure 3b). In the UAV prediction map of the field B (Figure 3c), relatively high EC values (>10.4 dS
m−1) were mostly found in the north and the west part of the study area, and EC values less than
9.0 dS m−1 were mainly distributed in the southern region and places with clustered populations of
halophytes (Tamarix ramosissima). However, the GF-2 prediction map of the field B (Figure 3d) showed
fewer areas of moderate EC values (9.8~10.4 dS m−1) and more areas of relatively high EC values
(>11.0 dS m−1). In the soil salinity map of the field C derived from UAV data (Figure 3e), high salt
content (>19.0 dS m−1) soils were located in the northeast part of the area. Compared with the UAV
prediction map (Figure 3e), there was a greater area with EC values higher than 18.5 dS m−1 in the
GF-2 prediction map of the field C.
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4. Discussion

4.1. Comparison of RF Regression Models Based on UAV and GF-2

Accurate atmospheric correction was critical to remote sensing-based soil properties estimation
as mainly atmospheric scattering distorted the real surface reflectance especially for the blue
bands. However, conventional atmospheric correction methods for satellite images were not directly
applicable for UAV-borne hyperspectral images. Although the lack of atmospheric correction may
lead to inaccurate retrieval of soil salinity because of atmospheric perturbations, the Rikola camera we
used did not capture data in the shortwave wavelength region less than 0.50 μm. The reflectance of the
UAV-borne hyperspectral data was more detailed and intense than the reflectance of the satellite-borne
multispectral data. Thus, the fully empirical approach with the RF can be applied without atmospheric
correction. Even so, many researchers have tried to develop different radiometric correction methods
especially for UAV-borne hyperspectral data. Honkavaara et al. [57] constructed a physically-based
method which includes a radiometric block adjustment utilizing radiometric tie points and utilized
in situ irradiance measurements. Lorenz et al. [58] performed a radiometric correction using a single
atmospheric correction spectrum for each scene.

The RF regression modelling permitted reliable estimations and mapping of soil salinity at the
field-scale (Table 4). The RF regression models using the UAV data source had higher CC and RPD
values and lower RMSE values than the models using the GF-2 data source. This indicated that the
62-band hyperspectral images provided better prediction results than the multispectral GF-2 data in all
three fields, despite lacking spectral information in the wavelength range from 0.45 to 0.50 μm. After
spectral resampling, the accuracy of the UAV prediction models reduced, revealing that narrow bands,
compared with broad bands, provide more detailed spectral information which could contribute to
improving model performance. The RF regression models of field A were accurate with RPD values of
2.98 and 2.23, and the predictions of RF regression models of field B were good with RPD values of
2.15 and 2.00, but both the UAV and GF-2 prediction models of field C were ineffective as the RPD
values were below 1.80 [59].

Because EMI measurements were conducted densely at field-scale, OOB and validation samples
were often almost identical to samples used in the training of the models. It inevitably resulted in
overestimation of the model’s prediction accuracy [60,61]. Even so, this study developed a novel
approach of combining EMI and remote sensing techniques to map field-scale soil salinity. Our results
presented relatively reliable spectral inversion of salinity in three fields with variable vegetation cover.
In future research, spatial independence selection methods such as spatial blocking will be employed
to conduct cross-validation in order to address the overoptimism of the prediction models.

4.2. Soil Salinity under Various Vegetation Cover Conditions

In this study, the highest surface soil EC value (47.14 dS m−1) was measured in the field A where
no vegetation existed. However, although the field C had the densest vegetation cover, the soil salinity
was generally higher than that of the field B where vegetation cover was sparse. It suggested that
soil salinity was not simply negatively correlated with vegetation cover. As given in Table 2, the
average soil salinity in the field C was above 15 dS m−1, which was much greater than the soil salinity
in the field B. One possible reason is that halophytes, unlike other plants or crops, were adapted to
moderate and even high contents of salt in soils. For the phreatophyte Tamarix ramosissima in the
field B, their root could reach deep down in the soil, and the physiological activity and biomass
accumulation majorly rely on the stable groundwater [62]. Moreover, for halophytes in the field C,
their physiological characteristic enabled them to not only survive but also flourish with optimal
growth in saline conditions that would kill other species [63].

With the increase of vegetation cover, the prediction performance of spectral retrieval models
presented a decreasing trend with higher RMSE and lower CC and RPD values. It was reasonable
because reflectance of the canopy rather than surface soil was collected via UAV. Although the canopy
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spectra did not directly depict the salt content in soils, it could be an indirect indicator of salinity.
Under salt stress, the spectral reflectance and morphology of plant or crops on the ground would
change due to insufficient water uptake and specific ion toxicity. Existing literatures have proposed
methods to assess soil salinity using environmental indicators, including spectral vegetation indices
such as normalized difference vegetation index (NDVI). Peng et al. [42] used a variety of environmental
and ecological covariates, including NDVI, to quantitatively characterize the salinity of arid-area soils,
the prediction accuracy of the cubist model was good with the R2, RMSE, MAE and RPD values of
0.91, 5.18 dS m−1, 3.76 dS m−1, and 3.15, respectively. In the Yellow River Delta of China, Zhang et
al. [64] assessed the applicability of monitoring soil salinization utilizing vegetation indices derived
from the MODIS time series data. Additionally, Allbed et al. [65] analyzed NDVI values and salinity
index properties to monitor changes in soil salinity and vegetation cover from multispectral images.
Further study about delineating soil salinity using salinity indices will be carried out to overcome the
low prediction accuracy of models derived from a dense vegetation area.

4.3. Evaluation of the Variable Importance for Hyperspectral Soil Salinity Modeling

To understand which variables were the most significant among the 62 hyperspectral bands,
variable importance analysis of RF regression models was utilized and the result was shown in
Figure 4.

Figure 4. Variable importance measured by percentage increase in mean squared error (MSE) for the
UAV-derived prediction models of field A (a), B (b), and C (c).

As shown in Figure 4, B18 (0.61 μm), B23 (0.65 μm), and B60 (0.87μm) were the most important
bands for the UAV-derived prediction models of fields A, B, and C, respectively. They provided
approximately 42%, 36%, and 34% increase in MSE for the regression models of the study area. It
indicated that the red bands of fields A and B were of great significance, and the bands in the NIR
spectral range were more important for field C when estimating soil salinity using UAV-derived
hyperspectral data. As shown in Figure 4a, six of the top ten important bands for the prediction model
of field A were NIR bands. The accumulated variable importance of NIR bands in Figure 4a reached up
to 156%, suggesting that those bands are also critical to the modeling of soil salinity in the field A. The
results were in accordance with the results of existing research. Sidike et al. [66] selected soil salinity
sensitive bands using PLSR method, and the results indicated that the near-infrared band had the most
contribution to the estimation of soil salinity. The statistical analysis of Fan et al. [67] demonstrated
that soil salinity was more correlated with NIR and SWIR bands with larger negative correlation
coefficients. Resulting from raw reflectance correlogram, first derivative reflectance correlogram, and
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PLSR carried out by Zhang et al. [68], wavelengths at 395~410, 483~507, 632~697, 731~762, 812~868,
884~909, and 918~930 nm were found to be the most sensitive wavebands. In the spectral range of
500~890 nm, wavelengths at 632~697, 731~762, and 812~868 nm covered B22~B31, B40~B47, and
B53~B60 of the hyperspectral data in this research, respectively. Regarding to Figure 4, it was worth
noticing that B23, B24, and B46 were among the top five most important hyperspectral bands for RF
models in all three fields. Meanwhile, some NIR bands, including B53, B55, B56, B57, and B59, were all
presented as important variables for RF model of the field A, as shown in Figure 4a.

5. Conclusions

This paper examined unmanned aerial vehicle-borne hyperspectral data and Chinese GF-2
satellite data for RF modeling to quantitatively estimate soil salinity in fields with various vegetation
cover conditions. The strongest linear relationships between EM38-MK2-measured ECah, ECav, and
laboratory-analyzed EC1:5 of the samples was found in the field C with R2 values 0.95. The bare land
(field A) had the most saline soil, and its average EC1:5 of the soil samples was 37.64 dS m−1. The
results showed that bare land with high salt content in soil had the most accurate estimation result
among three fields. In addition, resampling UAV data to 1 m was necessary to get a reasonable relation
to EMI measurements. For UAV-derived prediction models, the most important spectral band for
salinity prediction was B18, B23, and B60 for the fields A, B, and C, respectively. Whereas B23, B24,
and B46 were all significant to RF models of three fields. While the UAV platform was satisfactory
for collecting spectral information to establishing regression models between EC and soil surface
reflectance, soil salinity estimation achieved more accurate results for bare land and sparse vegetation
area than dense vegetation area. As the acquired ultra-high-resolution images can capture details of
ground objects, the UAV-borne hyperspectral imager was recommended for very accurate soil salinity
mapping, monitoring and assessment in order to assist decision making in precision agriculture.
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Abstract: Receiver design is integral to the development of a new remote sensor. An effective
receiver delivers backscattered light to the detector while optimizing the signal-to-noise ratio at the
desired wavelengths. Towards the goal of effective receiver design, a multi-channel optical receiver
was developed to collect range-resolved, backscattered energy for simultaneous hyperspectral and
differential absorption spectrometry (LAS) measurements. The receiver is part of a new, ground-based,
multi-mode lidar instrument for remote characterization of soil properties. The instrument, referred
to as the soil observation laser absorption spectrometer (SOLAS), was described previously in
the literature. A detailed description of the multi-channel receiver of the SOLAS is presented
herein. The hyperspectral channel receives light across the visible near-infrared (VNIR) to shortwave
infrared (SWIR) spectrum (350–2500 nm), while the LAS channel was optimized for detection in
a narrower portion of the near-infrared range (820–850 nm). The range-dependent field of view
for each channel is presented and compared with the beam evolution of the SOLAS instrument
transmitter. Laboratory-based testing of each of the receiver channels was performed to determine
the effectiveness of the receiver. Based on reflectance spectra collected for four soil types, at distances
of 20, 35, and 60 m from the receiver, reliable hyperspectral measurements were gathered, independent
of the range to the target. Increased levels of noise were observed at the edges of the VNIR and
SWIR detector ranges, which were attributed to the lack of sensitivity of the instrument in these
regions. The suitability of the receiver design, for the collection of both hyperspectral and LAS
measurements at close-ranges, is documented herein. Future development of the instrument will
enable the combination of long-range, ground-based hyperspectral measurements with the LAS
measurements to correct for absorption, due to atmospheric water vapor. The envisioned application
for the instrument includes the rapid characterization of bare or vegetated soils and minerals, such as
are present in mine faces and tailings, or unstable slopes.

Keywords: instrument development; hyperspectral; spectroradiometry; telescope; receiver; soil

1. Introduction

All remote sensors, including various types of lidar instruments, employ receivers to collect
backscattered energy. The receiver design is commonly dependent on the sensor type and the
instrument application. While some lidar receivers use one or more lenses to focus and collimate
incoming light, others utilize custom, large-aperture optical arrays to maximize, split, or otherwise
manipulate the received energy. Ground-based, atmosphere-focused laser absorption spectrometry
(LAS) instruments, commonly identified as differential absorption lidars (DIAL), have often employed
a telescope as the primary aperture of the receiver [1–4]. Compact, large-diameter telescopes have
been favored because the relative light grasp of a telescope is directly proportional to the square of the
aperture area, aiding in long-range atmospheric measurements.
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While most examples in the literature utilize simple, single-channel, configurations to receive
light, some researchers have designed multi-channel optical receivers, placed between the primary
aperture (telescope) and the data acquisition system. For example, Moore et al. [5] split light into
separate channels to allow for simultaneous low-gain/high-gain detection and laser-to-telescope
alignment. Likewise, Repasky [6] and Moen [7] split light into near-field and far-field receiver channels
to provide atmospheric measurements over short (1 km) and long (up to 12 km) ranges, respectively.
In another iteration of the Moen [7] two-channel DIAL receiver, a shared telescope for transmission
and receiving enabled stable alignment and eye-safe beam expansion [4].

As DIAL instruments have historically been developed to collect atmospheric backscatter from
water vapor and aerosols in the troposphere, there are limited examples of DIAL instruments operating
in horizontal orientations to collect backscatter from a topographic (hard) target [1,8–10]. In the
aforementioned instances, the topographic targets served as a test for bias, due to differential spectral
reflectance [8,10], or as a measurement of spectral purity [9]. Typical DIAL configurations provide
information for two wavelengths (one wavelength centered on a molecular species absorption line,
λon, while the second, nearby wavelength, λoff, serves as a reference).

In this paper, a multi-channel optical receiver is described. The receiver was developed to
enable simultaneous range-resolved hyperspectral measurements of hard targets and differential
laser absorption measurements for atmospheric corrections of the hyperspectral measurements.
The receiver is part of a new ground-based remote sensing instrument, called the soil observation
laser absorption spectrometer (SOLAS), previously described in the literature by Salazar et al. [11].
The instrument was developed for rapid characterization of bare soil, rock surfaces, and/or vegetation.
There is also potential for cross-platform calibration and validation (ground-truth) of airborne or
upcoming spaceborne hyperspectral missions, such as PRISMA, EnMAP, HISUI, and HyspIRI [12–15].
The SOLAS instrument transmits two amplitude-modulated continuous-wave (AM-CW) near-infrared
(NIR) lasers with wavelengths of 823.20 nm and 847.00 nm. The SOLAS receives backscattered light
with a hyperspectral sensor and a pair of near-infrared photodetectors. The hyperspectral receiver
detects light continuously across the visible to shortwave infrared (SWIR) range (350–2500 nm).
A balanced photodetector is used to determine the range to the target using a frequency-modulated
continuous-wave (FMCW) lidar, while an avalanche photodetector is used to determine the horizontal
concentration of atmospheric water vapor en route to the target via a differential laser absorption
measurement technique. The atmospheric measurements will be used in the future to correct the
hyperspectral reflectance from long-range targets. Although the SOLAS instrument was described
previously [11], a more detailed discussion of the development and testing of the multi-channel
receiver portion of the instrument, as used to collect the backscattered energy, is discussed in the
following sections.

2. Materials and Methods

The primary aperture of the SOLAS instrument receiver consists of a Meade LX200-ACF
Schmidt-Cassegrain catadioptric telescope (Meade Instruments; Irvine, California, USA). The surfaces of
the telescope optics are coated with a proprietary Ultra High Transmission Coating (UHTC). The UHTC
is designed to reduce reflections while maximizing light transmission. Various compounds are used in
the coating (aluminum and titanium oxides on the front and back of the corrector lens; titanium and
silicon dioxides on the reflecting surface of the primary and secondary mirrors). The telescope has a
diameter of 203 mm and an effective focal length of 2032 mm that focuses light into a multi-channel,
polarization insensitive, optical relay mounted to the rear port of the telescope. An uncoated Thorlabs
LB1471 field lens (Thorlabs Inc.; Newton, NJ, USA), positioned at the focal plane of the telescope, gathers
the received light from the rear port. Positioned behind the field lens is a 0.8–25.0 mm diameter adjustable
Thorlabs SM1D25 iris and an uncoated Thorlabs LBF254-050 spherical singlet collimator lens. A Thorlabs
BPD254-G Polka-Dot 50:50 beamsplitter positioned at 45◦ splits the collimated light evenly into two
separate channels; one hyperspectral channel and one LAS channel.
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The hyperspectral channel, referred to in this paper as Channel 1, is reserved for hyperspectral
backscatter measurements. For this channel, light is focused with two uncoated aspheric lenses
(Thorlabs AL1512 and AL108) and coupled into a high radiometric-resolution spectroradiometer
(Analytical Spectral Devices (ASD) FieldSpec 4 Hi-Res; Malvern Panalytical, Longmont, CO, USA)
via a multimode fiber bundle. The ASD FieldSpec 4 instrument detects light continuously over the
visible to SWIR wavelengths using 2151 bands. The visible near-infrared (VNIR) bands, ranging
in wavelength from 350 to 1000 nm, use a silicon detector to provide a spectral resolution of 3 nm
and a sampling interval of 1.4 nm. Two sets of SWIR bands, ranging in wavelength from 1001 to
1800 nm and 1801 to 2500 nm, each using a thermoelectric-cooled indium gallium arsenide (InGaAs)
detector, provide a spectral resolution of 8 nm and a sampling interval of 1.1 nm. The wavelength
reproducibility is 0.1 nm and the wavelength accuracy is 0.5 nm.

The LAS channel, referred to in this paper as Channel 2, focuses light via two, coated, positive
achromatic doublet lenses (Thorlabs AC127-050-B and AC080-10-B) and optionally filters the light
using one of two interchangeable narrow bandpass filters, centered at 820 nm or 850 nm (Thorlabs
FB820-10 and FB850-10, respectively), each with full-width at half-maximum (FWHM) filtering of
10 ± 2 nm. After focusing and filtering, the light in Channel 2 is collimated into a 50-μm core diameter,
anti-reflective-coated, step-index multimode, fiber optic cable (Thorlabs M50L02S-B) via a Thorlabs
PAF-SMA-5-B aspheric lens fiber-coupling stage. The aforementioned light on Channel 2 is delivered
to a pair of near-infrared photodetectors as part of a topographic LAS measurement system. The LAS
measurement system is described in further detail in Salazar et al. [11]. A labeled photograph of the
receiver is presented in Figure 1 and a schematic of the receiver is presented in Figure 2.

 
Figure 1. Labeled photograph of the multi-channel optical receiver for the soil observation laser
absorption spectrometer (SOLAS).
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Figure 2. Schematic of the multi-channel optical receiver for the soil observation laser absorption
spectrometer (SOLAS) instrument (not to scale). Key: 1 Primary aperture (Meade Instruments
LX200-ACF telescope), Ø 203 mm, feff = 2032 mm, f/10; 2 Uncoated biconvex lens (Thorlabs (TL)
LB1471), f = 50 mm; 3 Adjustable iris diaphragm (TL SM1D25), Ø 0.8–25 mm; 4 Uncoated spherical
singlet lens (TL LBF254-050), f = 50 mm; 5 Uncoated broad transmission 50:50 polka-dot beamsplitter
(TL BPD254-G); 6 Narrow bandpass filters (NBF): 820 nm (TL FB820-10) or 850 nm (TL FB850-10);
7 Near-infrared anti-reflective (NIR-AR) coated aspheric lens fiber-coupling stage (TL PAF-SMA-5-B),
4.9 mm clear aperture, f = 4.6 mm; 8 AR coated multi-mode (MM) fiber optic cable (TL M50L02S-B),
Ø 50 μm, numerical aperture = 0.22; 9 NIR-AR coated achromatic doublet lenses, f = 25 mm
(TL AC127-050-B), f = 10 mm (TL AC080-10-B); 10 Uncoated aspheric lenses, f = 12 mm (TL AL1512),
f = 8 mm (TL AL108); 11 MM fiber optic bundle to ASD FieldSpec 4 Hi-Res spectroradiometer.

The field of view (FOV) for each of the receiver channels was determined using Equation (1) [16].
The diameter of the fiber core, Df, and the focal length, f, of the primary mirror of the telescope were
used to determine the FOV.

FOV =
Df
f

(1)

The placement of the optical components (focusing and collimating lenses) between the telescope
and the fiber for each channel of the receiver magnifies the image onto the core of the fiber, thereby
increasing the FOV of the channel [9]. Thus, the image is magnified by factors of 50/12 and 12/8
for Channel 1 (hyperspectral channel), where light is focused onto the bare end of the fiber bundle.
The 105 μm core diameter for the VNIR bands and 200 μm core for the SWIR bands resulted in a FOV of
0.321 mrad and 0.612 mrad for the VNIR and SWIR bands, respectively. For Channel 2 (LAS channel),
where light is focused into 50μm fiber using a fiber-coupling stage, the image is magnified by factors
of 50/25, 25/10, and 10/4.6, resulting in a FOV of 0.267 mrad. As part of the LAS functionality of
the SOLAS instrument, the actively transmitted laser has a variable beam diameter of 2.0 mm up
to a maximum of 8.0 mm and a beam divergence of 0.285 mrad. A plot of the FOV diameter as a
function of range, for each of the receiver channels, is presented in Figure 3. For comparison, the laser
beam evolution is included, though the relationship between the FOV and the laser beam diameter is
only important for the LAS measurements, which are not presented in this paper. For completeness,
the specifications for each of the receiver channels are summarized in Table 1.
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Figure 3. Diameter of the field of view as a function of range for each of the soil observation laser
absorption spectrometer (SOLAS) receiver channels including graphical representation of the field of
view cross-sections for the three range distances (20, 35, and 60 m) tested in this paper (transmitted
laser beam evolution as a function of range shown for reference). Key: SWIR = Shortwave Infrared
(1001–2500 nm); VNIR = Visible Near-Infrared (350–1000 nm); LAS = Laser Absorption Spectrometry;
R = Range; FOV = Field of View.

Table 1. Specifications for the SOLAS instrument multi-channel receiver.

Primary aperture Unit Specification

Telescope - Schmidt-Cassegrain
Diameter (D) (mm) 203

Focal length (f ) (mm) 2032
N (f /D) - 10

Common channel Unit Specification

Field lens (uncoated) - Thorlabs LB1471
Iris (adjustable) - Thorlabs SM1D25

Diaphraghm diameter (mm) 0.8–25.0
Collimating lens (uncoated) Thorlabs LBF254-050

f (at λ = 835 nm) (mm) 50.4
Beamsplitter - Thorlabs BPD254-G

Type - 50:50 Polka-Dot, B270 glass

Hyperspectral channel (Channel 1) Unit Specification

Field of view (FOV) (mrad) 0.32 (VNIR); 0.61 (SWIR)
Focusing lenses (uncoated) - Thorlabs AL1512 and AL108

f (at λ = 1425 nm) (mm) 12.2 and 8.2
Fiber optic cable - Multimode bundle (57 fibers)

Core diameter (Df) (μm) 105 (VNIR); 200 (SWIR)
Acceptance angle (θa) (rad) 0.22
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Table 1. Cont.

LAS channel (Channel 2) Unit Specification

FOV (mrad) 0.27
Focusing lenses (NIR-AR coated) - Thorlabs AC127-025-B and AC080-010-B

f (at λ = 835 nm) (mm) 25.0 and 10.0
Narrow bandpass filters - Thorlabs FB820-10 and FB850-10

CWL (nm) 820 and 852 (tested)
FWHM (nm) 11.0 and 10.7 (tested)

Fiber-coupling stage (NIR-AR coated) - Thorlabs PAF-SMA-5-B
f (at λ = 835 nm) (mm) 4.6
Fiber optic cable - Thorlabs M50L02S-B

Type - Step-index multimode (AR-coated)
Core diameter (Df) (μm) 50

Acceptance angle (θa) (rad) 0.22

Key: N = F-number; VNIR = Visible Near-Infrared (350–1000 nm); SWIR = Shortwave Infrared (1001–2500 nm);
ASD = Analytical Spectral Devices; InGaAs = Indium Gallium Arsenide; LAS = Laser Absorption Spectrometry;
NIR = Near-Infrared; AR = Anti-Reflective; CWL = Center Wavelength; FWHM = Full-Width at Half-Maximum.

Receiver Testing

The receiver was tested, in a laboratory setting, to verify the transmission of the wavelengths of
interest through each channel. A 25 by 25 cm, calibrated Spectralon® (Labsphere Inc., North Sutton,
NH, USA) diffuse reflectance reference panel was positioned with an incidence angle of 32◦ relative to
the receiver and the receiver was focused on the center of the panel at a range of 5 m. To achieve focus,
the primary mirror of the telescope was adjusted until the focal plane aligned with the receiver optics.
The correct alignment was verified by observing the maximum amplitude response, as measured
with the ASD FieldSpec 4 instrument. An ASD “Illuminator” direct-current powered tungsten quartz
halogen lamp provided full-spectrum illumination across the reference panel. The ASD FieldSpec
4 instrument collected 10 reflectance spectra of the panel through each of the receiver channels.
The reflectance measurement from the panel, as observed through Channel 1, provided a reference
(baseline) for the measurements observed through Channel 2.

Four specimens, consisting of different types of soil, were prepared for observation with the
receiver. The soil types included: (i) KaoWhite-S, a commercial kaolinite soil (Thiele Kaolin Co.,
Sandersville, Georgia, USA); (ii) Ottawa sand, a pure silica (O2Si) sand (Humboldt Mfg. Co., Elgin,
Illinois, USA); (iii) coarse, quartzitic, Arkansas River sand (Arkhola, Van Buren, Arkansas, USA); and
(iv) Donna Fill, a synthetic nepheline synetite material (Donna Fill Co., Little Rock, Arkansas, USA).
Each specimen was 25 cm in diameter and 0.5 cm thick. The aforementioned Spectralon® reference
panel was placed in view of the receiver at a distance of 20 m, with an effective incidence angle of
32◦, and the panel was illuminated with the full-spectrum halogen lamp shining perpendicular to
the surface of the panel. Baseline reflectance values were recorded for the panel, followed by the
collection of reflectance spectra for each of the soil specimens placed in view of the receiver at the same
range and incidence angle as the reference panel. Ten spectra were gathered for each specimen via
Channel 1. This procedure was repeated for distances of 35 and 60 m (maximum distance available
within the laboratory).

For the data that were collected for the Spectralon® panel and the soil specimens, each set of
spectra were averaged, normalized with respect to the reference panel, and plotted as a function of
wavelength. A splice correction procedure [17] was applied to the reflectance values for λ > 1000 nm
to eliminate offsets that occurred at the transition wavelengths (1000 nm, 1800 nm) between the VNIR
and two SWIR channel bands. A Savitzky-Golay [18] filter was also applied to smooth the spectra.
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3. Results and Discussion

The spectral reflectance of the reference panel, as acquired via each of the receiver channels, is
presented as a function of wavelength in Figure 4. The reflectance spectrum collected via Channel 1
was characteristic of a Lambertian reflector across the range of wavelengths (reflectance values close
to 1.0). Although Channel 2 was designed to deliver light to a pair of near-infrared photodetectors
used for the LAS measurements, as discussed previously in this paper and in [11], the specifications
of the ASD FieldSpec 4 instrument were well suited for also assessing the functionality of the
Channel 2 optical design across the near-infrared wavelength range. This also enabled direct
comparison between receiver channels. Analysis of the spectrum collected via Channel 2 revealed that
transmission was significantly reduced outside of the VNIR range. These findings were explained by
the inclusion of the broadband NIR-AR coatings, optimized for the 650–1050 nm range, that exist on
the optical elements within Channel 2; Channel 1 delivers light without any additional optical coatings.
The spectra collected via Channel 2, with the addition of each of the interchangeable narrow bandpass
filter (820 or 850 nm), indicated the effectiveness of the filters, allowing only collection around the
wavelengths of interest (λon = 823.20 nm or λoff = 847.00 nm) for the LAS measurements. The filters
may be employed to isolate the λon or λoff backscatter in cases where sunlight saturates the returns.

 
Figure 4. Spectral reflectance as a function of wavelength for Spectralon® white reference panel,
as acquired with the ASD FieldSpec 4 spectroradiometer through (1) receiver Channel 1 (uncoated,
full-spectrum optics), and (2) receiver Channel 2 (NIR-optimized optics) without additional filtering,
and (3) receiver Channel 2 with interchangeable narrowband filters (measured transmission peaks of
820 nm and 852 nm and full-width at half-maximum (FWHM) of 11 nm).

For each of the spectra, increased levels of noise were observed for the wavelengths near the edges
of each detector range. The noise was primarily attributed to the lack of sensitivity of the silicon and
InGaAs detectors at the edges of the ranges [19,20]. The statistical metrics for each of the three detector
ranges of a typical baseline spectrum, as observed via Channel 1 (presented previously in Figure 4), are
summarized in Table 2. The SWIR 1 range (1001–1800 nm) was the most stable, followed by the VNIR
range (350–1000 nm), and then the SWIR 2 range (1801–2500 nm). The measured signal-to-noise ratio
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(SNR) was greatest for the VNIR range. These findings matched other findings in the literature [19,20].
Furthermore, it is hypothesized that the mismatch in the FOV between the VNIR and SWIR bands, as
illustrated previously in Figure 3, may be a factor in the spectral noise, due to inconsistent specimen
uniformity (surface roughness) between different FOV. Although the maximum range tested was 60 m
(Figure 5), the effect that the difference in the FOV between the VNIR and SWIR bands has on the SNR
is hypothesized to increase at longer distances. This hypothesis will continue to be tested in future
work, especially when performing field measurements at long ranges.

Table 2. Statistical metrics for the baseline spectrum (Spectralon® panel) observed via Channel 1.

Statistical Metric VNIR Range * SWIR 1 Range SWIR 2 Range *
(Reflectance Units) (350–1000 nm) (1001–1800 nm) (1801–2500 nm)

Mean 1.00 1.01 0.976
Variance 1.11 × 10−3 2.00 × 10−4 4.10 × 10−3

Sum of Squares of Deviations 7.07 × 10−1 1.60 × 10−1 2.83
Standard Deviation 3.34 × 10−2 1.41 × 10−2 6.40 × 10−2

Noise Equivalent Radiance (W·cm−2·nm−1·sr−1) † 9.2 × 10−10 1.7 × 10−9 7.5 × 10−10

Signal-to-Noise Ratio (Radiance Units) † 42 25 26

* Erroneous reflectance values greater than 1.2 at the near (350 nm) and far (2500 nm) edges of the wavelength range
were excluded from the statistical summary (approximately 1% of the 2151 individual wavelength bands). † Typical
values for the midpoint of each wavelength range (measured at 700, 1400, and 2100 nm).

Both receiver channels shared common optical elements (“coated” and “uncoated”), namely the
UHTC-coated telescope, and the uncoated field lens, collimating lens, and beamsplitter (see Table 1 for
specifications). Although the UHTC was optimized by the telescope manufacturer for wavelengths
in the visible range (450–700 nm) for astronomic observations, there was no evidence that the UHTC
adversely affected transmission of light outside of this range. To maximize the transmission of
full-spectrum light through the hyperspectral channel (Channel 1), the remaining optical elements
(common field lens, common collimating lens, common beamsplitter, and the focusing lenses within
Channel 1) were uncoated. However, the lens substrates reduced transmission efficiency at longer
wavelengths. For example, according to data provided by Thorlabs, transmission of light at 2200 nm
was reduced by 10.7% and 9.7% from maximum for the common lenses and the Channel 1 lenses,
respectively. Furthermore, due to the wavelength-dependent focal length of the lenses, defocusing of
the light most likely occurred at the shortest and longest wavelengths in the spectrum. To optimize
detection of the λon and λoff backscattered signals for the LAS measurements, the design wavelength
of the common lenses, after the light was collected by the telescope, was 835 nm (mean wavelength
between absorption lines). Similarly, the focal lengths of the lens pair within Channel 2 were
optimized for 835 nm. However, the design wavelength of the hyperspectral channel was 1425 nm
(mean wavelength of receiver bandwidth). According to data provided by Thorlabs, the sum of
the focal length shifts for the pair of uncoated lenses in the hyperspectral channel was +0.79 mm at
2200 nm and −0.52 mm at 500 nm. The effects of transmission losses and defocusing were noted for
completeness, but were considered to have an insignificant impact on the measurements, based on the
observed SNR.

The relative reflectance spectra of the four tested soil specimens, as acquired via the uncoated
optical elements on Channel 1 (hyperspectral channel), are presented as a function of wavelength
in Figure 5. The kaolinite soil was the most reflective, followed by the Ottawa sand, while the
coarse river sand was less reflective than the Donna Fill at wavelengths below 1000 nm and more
reflective than the Donna Fill at wavelengths above 1000 nm. The kaolinite soil spectra exhibited water
absorption features around the 970 nm, 1400 nm and 1900 nm wavelength bands with characteristic
doublets in the 1400 nm and 2200 nm regions. The Ottawa sand, coarse river sand, and the Donna Fill
spectra exhibited absorption features around the 1900 nm wavelength band, with otherwise milder or
non-distinguishable features. Although the specimens tested in this study were dry, the hygroscopic
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moisture content likely affected the fine-grained kaolinite soil more than the other specimens. Typical
hygroscopic moisture contents (gravimetric) were determined to be ~1% for the kaolinite soil, <0.2%
for the Donna Fill, ~0.1% for the Ottawa sand, and <0.1% for the coarse river sand.

 
Figure 5. Relative spectral reflectance as a function of wavelength for four soil types (kaolinite, Ottawa
sand, Donna Fill, and coarse river sand), as acquired with the ASD FieldSpec 4 spectrometer through
receiver Channel 1, in a laboratory setting, for distances of 20, 35, and 60 m and an incidence angle of 32◦.

As the observation distance increased, the magnitude of the reflectance for each of the tested
specimens generally decreased across the range of wavelengths. However, the shape of each of
the spectra was consistent, regardless of distance from the receiver, indicating collection of reliable
measurements, independent of the range to target, was possible. The relatively large drop in reflectance,
observed for the Ottawa sand specimen at a distance of 60 m, was attributed to the specimen
sliding gently due to gravity (resulting in a slightly shallower incidence angle for this measurement).
As the specimens were tested in an indoor laboratory environment and under direct illumination of
an artificial full-spectrum lamp, no long-path atmospheric absorption or solar absorption features
were observed [19]. Thus, the presence of absorption features indicated that even under laboratory
conditions (low relative humidity), the measurements were sensitive to absorption and scattering en
route to the receiver. The general decrease in reflectance with an increase in range is believed to be
attributed to the absorption and scattering, while the increase in the FOV diameter may also be a factor.
Future experimental verification is required to verify these hypotheses.

The stable environmental conditions of the laboratory setting minimized the temperature-induced
radiometric errors [20] that are typical of the spectroradiometer instrument. A 1-hour warm-up period,
before measurements were collected, further minimized these errors. Although frequent referencing of
the Spectralon® standard to establish a baseline for subsequent measurements is recommended by the
manufacturer, only one reference was collected for each range (20, 35, and 60 m). Future measurements
performed in an outdoor field setting will be more sensitive to changes in temperature and illumination
conditions (solar irradiation) and may require more frequent referencing of the Spectralon® panel or
a companion spectrometer to measure a reference simultaneously. Atmospheric attenuation, due to
absorption and scattering by water vapor and other aerosols along the receiver path, will necessitate
corrections to derive exact reflectance measurements. These corrections will be achieved using the LAS
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measurement system of the SOLAS instrument, as described previously [11], and will be addressed in
future work.

4. Conclusions

A multi-channel optical receiver was designed and tested for inclusion within a new ground-based,
topographic, hyperspectral lidar instrument, called the soil observation laser absorption spectrometer
(SOLAS). The primary aperture of the receiver is a 203-mm diameter telescope that focuses
backscattered light into an optical beamsplitting array to enable simultaneous data collection via
two channels. One of the channels collects hyperspectral radiometric measurements across the
visible near-infrared (VNIR) and shortwave infrared (SWIR) ranges (350–2500 nm), while the other
channel directs light into a pair of near-infrared photodetectors for range-resolved, laser absorption
spectrometry (LAS) measurements in the 820–850 nm region. Testing of each of the channels, in
a laboratory setting, demonstrated the suitability of the receiver design for measurements of the
wavelengths of interest. Specifically, the hyperspectral channel was optimized to collect light from
350 nm to 2500 nm, while the LAS channel was optimized to detect backscattered energy from
transmitted laser absorption lines of 823.20 nm and 847.00 nm.

Testing of four different soil specimens (kaolinite, Ottawa sand, Donna Fill, and coarse river
sand), at various distances from the receiver (20, 35, and 60 m), indicated that reliable hyperspectral
measurements could be collected, independent of the range to target. Increased noise was observed
in the VNIR and SWIR bands, particularly for the wavelengths near the edges of each detector
measurement range (350, 1000, 1800, and 2500 nm), which was attributed to lack of instrument
sensitivity in these bands. Some of the observed noise was also attributed to diverging fields of view
for the VNIR and SWIR bands and wavelength-dependent transmission losses and defocusing of
the received light. Future development of the LAS channel will enable atmospheric corrections for
long-range hyperspectral measurements (up to 1 km or greater) and has the potential to improve
ground-based optical remote sensing practices. Envisioned applications for the receiver, as part of
the SOLAS instrument, include rapid classification of soils, rocks and minerals, and vegetation for
ecological or agronomic research, forensic investigations of natural hazards (e.g., wildfire-induced
erosion and debris flows), or monitoring of earth construction sites (e.g., mine tailings). Future
measurements from the terrestrial platform of the SOLAS may provide ground-truth data for airborne
or forthcoming spaceborne missions, such as PRISMA, EnMAP, HISUI, and HyspIRI [12–15]. More
information on the complete SOLAS instrument is available in Salazar et al. [11].
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Abbreviations

The following abbreviations are used in this manuscript:

AM Amplitude Modulation
AR Anti-Reflective
ASD Analytical Spectral Devices Inc. (a Malvern Panalytical Company, Longmont, CO, USA)
CW Continuous-Wave
CWL Center Wavelength
D Diameter of Primary Mirror (Telescope)
Df Diameter of the Fiber (Core)
Dfov Diameter of the Field of View
DIAL Differential Absorption Lidar
EnMAP Environmental Mapping and Analysis Program (Germany)
f Focal Length
feff Effective Focal Length
FMCW Frequency-Modulated Continuous-Wave
FWHM Full-Width at Half-Maximum
FOV Field of View (Angular)
HISUI Hyperspectral Imager SUIte (Japan)
HyspIRI Hyperspectral Infrared Imager (USA)
θa Acceptance Angle
InGaAs Indium Gallium Arsenide
λ Wavelength (Light)
λon On-Line Wavelength
λoff Off-Line Wavelength
LAS Laser Absorption Spectrometry
LIDAR Light Detection and Ranging (commonly Lidar)
MM Multimode (Fiber)
N F-Number
NIR Near-Infrared
PRISMA PRecursore IperSpettrale della Missione Applicativa (Italy)
R Range to Target
R Reflectance
RREF Reference (Reflectance)
SNR Signal-to-Noise Ratio
SOLAS Soil Observation Laser Absorption Spectrometer
SWIR Shortwave Infrared
TL Thorlabs Inc. (Newton, NJ, USA)
UHTC Ultra-High Transmission Coating (Meade Instruments Corporation, Irvine, California, USA)
VNIR Visible Near-Infrared
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Abstract: In this paper, we evaluate different popular voting strategies for fusion of classifier results.
A convolutional neural network (CNN) and different variants of random forest (RF) classifiers
were trained to discriminate between 15 tree species based on airborne hyperspectral imaging data.
The spectral data was preprocessed with a multi-class linear discriminant analysis (MCLDA) as a
means to reduce dimensionality and to obtain spatial–spectral features. The best individual classifier
was a CNN with a classification accuracy of 0.73 +/− 0.086. The classification performance increased
to an accuracy of 0.78 +/− 0.053 by using precision weighted voting for a hybrid ensemble of the CNN
and two RF classifiers. This voting strategy clearly outperformed majority voting (0.74), accuracy
weighted voting (0.75), and presidential voting (0.75).

Keywords: hyperspectral imaging; tree species; multiple classifier fusion; convolutional neural
network; random forest; rotation forest

1. Introduction

Tree species classification is a challenging and important task for large-area monitoring and
managing of forests. For many applications, it is an important step to first retrieve the tree species in
order to enable the detection of specific traits such as nutrition state, water content, various stresses,
diseases, and other relevant parameters in a species-specific context.

In 2015, Fraunhofer IFF conducted measurement flights over forests in Saxony Anhalt and
Thuringia, Germany for two reasons: (1) to develop new methods for detection of biotic stresses related
to oak feeding society (green oak-leaf roller, Tortrix viridana), mottled umber (Erannis defoliaria), and
winter moth (Operophthera brumata); and (2) to support ground-based forest inventory by airborne
assessment of tree species and tree vitality. Both require reliable detection of oak trees as well as
other tree species in mixed forests. Hyperspectral imaging was chosen as a means to address these
challenging tasks. It is an emerging measurement technique frequently used for optical non-invasive
characterization of surfaces and materials. In contrast to the analysis of conventional digital images,
multiple image channels that correspond to reflected or transmitted light of a certain small wavelength
range, must be taken into account. A typical hyperspectral image consists of hundreds of image
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bands. A good introduction to hyperspectral image classification was provided by Bioucas-Dias et
al. [1]. Challenges mentioned are the limited number of labeled samples and the need to combine
spectral and spatial information to obtain good results. Typically, the high-dimensional nature of the
data and strong correlations among spectral bands require the extraction of suitable features prior to
training of a classifier. The authors also highlight the importance of high spatial image resolution, as
most classification techniques assume a single predominant spectral signature per pixel. In contrast,
a low image resolution leads to mixed pixels, which requires spectral unmixing as an additional
preprocessing step [2].

Wang et al. [3] dedicated a chapter of their book “Remote Sensing of Natural Resources” to
the classification of tree species. They listed principal component analysis (PCA), minimum noisef
fraction (MNF), canonical discriminant analysis, partial least squares regression (PLS), and wavelet
transform as common feature extraction methods. They also provide references where these techniques
have been applied. Moreover, an overview on the application of classifiers containing support vector
machines (SVM), classification and regression trees (CART), and artificial neural networks (ANN)
is given. Fassnacht et al. [4] published a recent survey on tree species classification. The authors
considered different types of discriminant analysis (linear, quadratic, canonical, stepwise, regularized,
and penalized), SVM, random forest, and maximum likelihood classifiers. With reference to experiences
from previous work (e.g., [5]), the authors draw the conclusion that the choice of the classifier is less
important than adequate data preprocessing to obtain good results.

Féret et al. [6] investigated the discrimination of 17 tree species in tropical forests. A comparison of
different parametric and non-parametric methods showed that SVM with linear or radial basis function
kernels outperformed other classifiers given a large number of training samples. For smaller training
sets, the authors recommend regularized discriminant analysis. Richter et al. [7] introduced a modified
version of discriminant analysis based on PLS. The authors compared their approach to random forests
and SVMs on an airborne hyperspectral dataset recorded over a German forest area and obtained
better results compared to these classifiers. In this study, random forests performed notably worse
than SVMs. To a smaller extent, this is also the result of studies in the Southern Alps conducted by
Dalponte et al. [8]. The authors show that the overall accuracy of tree species identification increased
by the integration of LiDAR data in addition to hyperspectral measurements.

Xia et al. [9] have demonstrated successful usage of an ensemble classifier on hyperspectral
benchmark datasets. In addition, the concept of rotation forests, originally introduced by Rodriguez et
al. [10], was successfully applied using CARTs as base classifiers. Compared to MNF, independent
component analysis (ICA), and local Fisher discriminant analysis (LFDA) as transformation approaches,
the choice of PCA yields the highest accuracy in their studies.

Instead of searching for a favorable transformation of the feature space, certain spectral bands
can be selected based on close correspondence to biochemical traits and physical properties of the
observed plants. This concept led to a variety of general or trait-specific vegetation indices. Lausch
et al. [11] list spectral indices related to greenness and other vitality parameters, mainly using bands
in the spectral range of 450–890 nm. A similar overview can be found in a disease detection report
published by Sankaran et al. [12]. Mutanga et al. [13] investigated the relationship between water
content and spectral variables. Besides known water absorption features located at three different
bands, related spectral indices (NDWI [14], WI [15]) and continuum-removed features were included
in their correlation analysis.

Airborne hyperspectral imaging generates a large amount of data of which usually only a small
fraction is labeled with reference data. Therefore, semi-supervised approaches for classifier training
aim to make use of unlabeled data for hyperspectral image classification as well. Here, the term
semi-supervised is used for all approaches that includes both labeled and unlabeled data in the training
of classifiers to enhance the classification performance. It emphasizes the fact that reference data is still
required, but a much larger dataset contributes to the final classifier.

58



Remote Sens. 2019, 11, 2788

Ayerdi et al. [16] describe a data augmentation method as a means to use the information of
unlabeled data. After performing a clustering in the spectral domain, labeled pixels propagate their
label to neighboring unlabeled pixels in the spatial domain if they belong to the same cluster.

Wenzhi et al. [17] introduce a semi-supervised feature extraction algorithm named semi-supervised
local discriminant analysis (SELD). The combination of an unsupervised local linear feature extraction
method with linear discriminant analysis (LDA) results in a projection that separates the different
classes while preserving local neighborhoods. In their evaluation, SELD is compared to different
feature extraction methods such as PCA and LDA and obtained the best results on several datasets
with different classifiers.

Since SVMs are reported to perform well on hyperspectral datasets, an extension to the
semi-supervised case is desirable. Vapnik et al. [18] proposed the idea of transductive SVMs,
which was applied to hyperspectral data later on (e.g., by Bruzzone et al. [19]).

It is common practice to use both spectral and spatial information for classification. For the
problem of tree species classification, a popular approach is to identify individual tree crowns (ITCs),
before starting the classification process. Féret et al. [6] used mean shift clustering to segment ITCs
and evaluated two different classification methods: object-based classification of the mean spectrum
per ITC and majority class assignment based on the decisions per pixel within the ITC. The authors
report an increased accuracy for both approaches compared to pixelwise classification without prior
tree crown segmentation. Dalponte et al. [20] incorporated the assumption that all pixels belonging
to an ITC should have the same label within the training process of a semi-supervised SVM. An
improvement over conventional SVMs was observed, especially if the number of training samples is
small. The problems related to small numbers of training samples can also be effectively addressed by
tensor-based linear and non-linear models as proposed by Makantasis et al. in [21].

Ghamisi et al. [22] proposed a spectral-spatial classifier based on hidden Markov random fields
and SVMs. This fully automatic approach performed better than SVMs on widely used datasets. Li et
al. [23] integrate spectral and spatial information in a robust Bayesian framework, addressing problems
related to noise, the presence of mixed pixels, and small number of training samples. The authors
evaluated their algorithm along with several state-of-the-art methods and achieved notably better
results in terms of accuracy. Zhang et al. [24] introduced a sparse ensemble learning method, which
allows for information sharing between neighboring pixels during the optimization process. While
any classifier can potentially be used, the experiments in this study used CARTs. The authors report
not only better accuracy, but also a lower runtime of the trained ensemble compared to traditional
ensemble methods.

Since the extraction of handcrafted features is time consuming and complex, Makantasis et
al. [25] suggest a convolutional neural network (CNN) to automatically construct high-level features.
The dimensionality of the input data is reduced by a PCA first and then three convolutional layers
hierarchically detect features, which are classified by two fully connected layers in the end. The CNN
outperformed different types of SVMs on benchmark datasets.

Ayerdi et al. [16] suggested a regularization step after classification: each pixel adapts its label to
the majority class in its neighborhood. If rather homogeneous tree species distributions in the area
under consideration can be assumed, this technique leads to more plausible results.

The review of the literature shows a number of promising approaches to classify tree species from
hyperspectral imaging data. It was especially shown that recent advances in image classification with
CNNs are transferable to hyperspectral image classification. However, for any new application and
dataset, several state-of-the-art classifiers and different feature spaces in question must be tested to
prove the suitability and superiority of an approach [26]. Given this requirement, the question arises:
what benefits the combination of the best available classification techniques and turns them into an
ensemble classifier capable of providing for the problem of tree species classification? To answer this
question, we focus on popular voting strategies, which are easy to apply to any group of classifiers.
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2. Materials and Methods

2.1. Datasets

Figure 1 illustrates the acquisition of the datasets. Hyperspectral imaging data has been recorded
during two measurement flights over forests in Saxony Anhalt and Thuringia (Germany) to determine
tree species and investigate oak tree specific biotic stresses. Used cameras were NEO Hyspex VNIR
1600 and NEO Hyspex SWIR 320m-e. Cameras and inertial measurement unit (IMU) Novatel SPAN
CPT were fixed on a stabilized mount (see Figure 1). The recording of the flight path and orientation
of the line scanning camera systems by the IMU is crucial for later alignment of the scanlines into
an image. Experiments reported here are based on Hyspex VNIR 1600 images recorded during the
second flight. The reasons are to minimize potential errors from alignment and interpolation of the
low resolution Hyspex SWIR 320m-e camera to match the grid of the VNIR camera, better weather
conditions during the second flight (no cloud cover), and the recovery of diseased oak trees after
secondary ‘lammas’ shoots [27], which is expected to ease tree species classification.

Figure 1. Left: Calendar depicts the dates and scopes of the measurement flights. Middle: Measurement
setup for hyperspectral imaging data: (A) Hyspex VNIR 1600, (B) Hyspex SWIR 320m-e, and (C)
Novatel SPAN CPT inertial measurement unit (IMU) mounted on stabilized platform (not depicted).
Images have been recorded at an altitude of ~1000 m above ground level with FOV of 17◦ (VNIR) and
14◦ (SWIR). Right: Trajectory of the flight on 3 August.

Orthorectification of the line scanning data was done with parametric geocoding using the
software PARGE [28]. Radiometric corrections were performed with the software ATCOR-4 [29].

One of the major challenges while classifying tree species is the availability of training data that
represents differences between individual trees of one species, differences between development stages
of individual trees as well as the differences between tree species. In order to account for the variability
and to minimize the necessary fieldwork, existing databases and high-resolution aerial images were
used to determine areas with a single dominant tree species. Figure 2 illustrates the results of the
selection process. As shown, potential error sources such as boundary regions with a mix of tree
species, individual trees and clearings were excluded to compensate for potential minor misalignment
of hyperspectral images as well as discrepancies due to changes between the available historical images
and the current state of the forest cover. Given the locations and shapes of the reference sites, the
training data can be derived directly from the hyperspectral images. From 23 known tree species at the
study sites, a subset of 15 species is represented by sufficiently large reference sites and was therefore
selected to develop and evaluate classifiers. In Table 1, these tree species are listed.
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Figure 2. Identification of reference sites with a dominant tree species using existing information
systems (forest inventory) and validation with existing aerial images. Left image shows a spruce
reference site (1) surrounded by a mix of tree species (2). The right image shows another spruce
reference site (1) with a group of birch and maple (2), large (3) as well as small clearings (4), and other
isolated trees (5). The blue-bordered regions are the finally derived reference sites.

Table 1. List of 23 tree species from existing databases (forest inventory). For 15 tree species (excluded
species marked with *) references sites for the classifier training have been provided forest authorities.
The number of available reference sites and the total area are listed for each species.

Tree Species Pedunculate oak 9 26,046 m2 Littleleaf lime 1 2295 m2

European aspen * Norway spruce 10 20,340 m2 Black pine *
Sycamore maple * Scotch pine 13 37,637 m2 Sessile oak 1 1203 m2

Birch * European white birch 1 1117 m2 Weymouth pine 1 969 m2

Douglas fir 1 1102 m2 Japanese larch * Serbian spruce 1 1630 m2

Oak 10 32,808 m2 European beech 4 15,720 m2 Poplar 2 17,649 m2

European larch 4 8128 m2 Red oak 3 5732 m2 Robinia 1 2439 m2

Ash * Red alder * Sitka spruce*

2.2. Features

As emphasized in the introduction, the selection of an appropriate feature space is crucial for
successful classification. By operating in different feature spaces, diversity among the classifiers should
increase in many cases. This is a crucial concept in the design of ensemble classifiers [30]. In this study,
15 different feature spaces have been selected to investigate these dependencies between feature spaces
and classifiers in terms of improvements in the classification performance. Our choice of feature spaces
is explained below.

The measured and preprocessed spectral data itself is a powerful data source for separation of
image pixels into classes. Hence, the first feature space is the raw 160-dimensional reflectance data
vector per image pixel.

A vector containing a number of spectral indices (calculated based on the reflectance spectra) is
used as a second feature space. As presented in the introduction, these indices have been developed
to correlate with selected physiological parameters of vegetation, vegetation health, and vegetation
nutrition. The following indices have been chosen and are used as features: DI1, GNDVI, MCARI,
NDVI, PRI, and WI (see Table 2 for definitions and references).

Classification based on raw spectral data, where individual image bands are simply treated as
features as well as using spectral indices as features, represent the most common approaches to the
analysis of hyperspectral imaging data. Here, both approaches serve just as a baseline reference for the
performance of tree species classification.

61



Remote Sens. 2019, 11, 2788

Table 2. Selected spectral indices. The values of the indices are combined into a six-dimensional feature
vector and used for classification of tree species. The abbreviation R800 denotes reflectance value in
band with central wavelength of 800 nm.

Spectral Indices Formulas References

DI1 R800 − R550 Lausch et al. (2013)
GNDVI (R780 − R550)/(R780 + R550) Gitelson et al. (1996)
MCARI [(R700 − R670) − 0.2*(R700 − R550)]*R700/R670 Haboudane et al. (2004)
NDVI (R800 − R670)/(R800 + R670) Rouse et al. (1974)

PRI (R531 − R570)/(R531 + R570) Gamon et al. (1992)
WI R900/R970 Penuelas et al. (1997)

The high dimensionality of hyperspectral data imposes a number of problems, which are
summarized as the curse of dimensionality in the literature [31]. Therefore, we included approaches
for reduction of dimensionality prior to classifier training. Principal component analysis (PCA) is
performed to calculate a projection into an orthogonal low dimensional subspace, which covers most
of the variation of the original high dimensional spectral dataset. We chose 5 and 14 as the numbers of
dimensions in the low dimensional representation. This choice is motivated by the number of most
prominent tree species in the observed area. Using reference sites with 15 different tree species, 14 is the
number of required dimensions for LDA. On the other hand, the choice of five dimensions is motivated
by PCA, where the five largest Eigenvalues explain 99.5% of the variation within the spectral dataset.

Multi-class linear discriminant analysis (MCLDA) aims to generate a low dimensional
representation, where a single dimension is a projection allowing a good discrimination between
elements of one class and all the others. As mentioned above, 5 and 14 dimensions are used again.

SELD was included as a semi-supervised feature extraction technique. SELD combines the
supervised method of LDA with the unsupervised method of local linear embedding (LLE). LLE
represents the instances in a graph structure and computes a projection that preserves the local
neighborhood of instances in the feature space. The combination of supervised and unsupervised
feature extraction enables SELD to find features that maximize the class separation and preserve local
neighborhoods in the feature space. Therefore, SELD depends on two parameters: the number of
instances to consider for local neighborhoods and the number of extracted features.

Table 3 gives an overview of the above listed feature spaces. In addition to the pixelwise
transformation of the spectral data into these representations, so-called spatial-spectral features are
derived. Within the predefined square image blocks with a side length of s = 2r + 1, the statistical
measures mean, standard deviation and homogeneity are calculated for each feature and used as new
features, instead. This approach combines the information from the low dimensional representations
of the spectral data with its local spatial distribution. We set r = 5 which corresponds to a side length
4.4 m given the campaigns ground sampling distance of 0.4 m per pixel. This size matches the area of
typical tree crowns of boreal trees within the recorded hyperspectral images.

Table 3. Overview of the 15 selected feature spaces. First row: pixel-based feature spaces, Second
row: spatial-spectral feature spaces. Due to the high number of channels of the hyperspectral
images, the calculation of spatial features was performed for images of reduced dimensionality. PCA:
principal component analysis; MCLDA: multi-class linear discriminant analysis; SELD: supervised
local discriminant analysis.

Reflectance
Spectra

Indices
PCA

5-dim
PCA

14-dim
MCLDA

5-dim
MCLDA
14-dim

SELD
5-dim

SELD
14-dim

Pixel · · · · · · · ·
Spatial · · · · · · ·
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2.3. Classifiers

In addition to the different feature spaces, a number of classifiers were selected to find the best
classifier/feature space combination for the task of tree species classification.

Differently parameterized random forests, rotation forests, SVMs, and a CNN provide
state-of-the-art classification results as well as a potentially diverse pool of classifiers for integration
into an ensemble classifier.

Random forests are a realization of the concept of bootstrap-aggregation (bagging) with decision
trees [32]. As single decision trees tend to overfit, the bagging method creates several bootstrapped
sample sets from the original data and trains one tree on each sample set. The resulting ensemble of
trees can classify a new instance via majority voting. An important parameter here is the number of
trees to be trained. This classifier was chosen because it is a standard approach in literature, when
dealing with the classification of tree species from hyperspectral data.

Rotation forests are an advanced form of random forests and were proposed by Rodriguez et al.
in 2006 [10]. We decided to test this classifier because of the good results for hyperspectral data as
previously reported [9]. As in random forests, the trees are trained on bootstrapped sample sets of the
original data. The difference is that the bootstrapping is not performed on a subset of the original data,
but on the whole data set with only a subset of features. The feature space is divided into k subsets.
For each subset, all instances of randomly drawn classes are deleted from the training data and a
bootstrapped sample set with a size of 75% of the original data is created. PCA is performed on each
sample set and the resulting coefficient matrices are merged into a single one. This is equivalent to k
axis rotations. A decision tree is then trained on the whole PCA-transformed data set. This procedure
is repeated for each tree in the ensemble. The two parameters this classifier provides are the number of
trees in the ensemble and the number of subsets the feature space is divided into.

SVMs are another standard classification and regression approach. We therefore chose to include
them in our experiments. An SVM tries to fit a hyperplane that separates two classes while maximizing
the margin between the instances and the plane. The plane can then be described by the instances
nearest to it. These instances are called support vectors. To classify more than two classes, one can
either train an SVM for each pair of classes (1 versus 1) or each class against the rest (1 versus All).
The final decision is then found by majority voting (1 versus 1) or by taking the result of the classifier
with the highest confidence (1 versus All). In order to classify not linearly separable classes, the
data can be transformed into a higher dimensional space where it is linearly separable. To make this
method computable in appropriate time one can use the so-called kernel trick, where the kernel is a
type of nonlinear transformation. As the number of adjustable parameters for an SVM is very large,
we only chose to vary the kernel (linear or polynomial) and whether to use 1 versus 1 or 1 versus
All. We tested several SVM implementations ranging from standard MATLAB classes to native C
libraries connected to MATLAB via the MEX interface. We settled for the LibLinear library [33] from
the National University of Taiwan for 1 versus All and SVMlin [34] by Vikas Sindhwani for 1 versus 1,
both specializing in linear SVM solving. Preliminary tests revealed that polynomial SVMs did not
converge in appropriate time and we therefore abandoned this kernel from further investigation.

Deep neural networks are a recent hot topic in machine learning. As Makantasis et al. [25] were
able to produce good results on hyperspectral data with convolutional deep neural networks, we
added this classification method to our experimental setup. Neural networks are inspired by the
structure of the human brain to learn classification and regression tasks. A neural network consists
of several layers of perceptron units that are interconnected. Via backpropagation, this network
can learn from examples. A deep neural network has significantly more layers than a conventional
network. Deep convolutional networks use filters that are shifted over the input image to generate
new and more high-level features in each layer. It is not possible to test or even enumerate all possible
network structures and parameter configurations. We therefore employed the network structure
shown in Figure 3, which is based on the one used in the original paper [25]. The network starts with a
convolutional layer containing C1 = 3F trainable filters (block size 5 × 5 pixels), where F denotes the
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number of features. The second convolutional layer then contains C2 = 3C1 trainable filters (block size
5 × 5). The output of this layer is then fed to a fully connected network with a hidden layer of size
C3 = 6F. Additionally, we added the option to use a max-pooling layer in between the convolution
layers and an option to apply a specified dropout rate to the fully connected network part. A pooling
layer applies a filter mask for each pixel incorporating its surroundings. Common filters are mean
or maximum filter. A dropout layer randomly omits a perceptron for the next training instance with
a certain probability to avoid early convergence and to improve generalization. The deep learning
library MatConvNet [35] provided all functions needed to build our networks.

Figure 3. Structure of convolutional neural network (CNN) for classification of tree species. The
variable F denotes the dimension of the input feature space.

2.4. Fusion Algorithms

Equations (1) and (2) describe the applied framework for fusion of different base classifier results.
Given a feature vector xi, its label l = ỹ(xi) is calculated as follows.

Using Equation (1), a score sl is calculated for each class label from the results of the N base
classifiers. For each label in question, the score is a sum of weights ω for the corresponding base
classifiers. The indicator function I equals one, if its argument is true and zero, if not. Hence, only the
weights of base classifiers with output label L are included.

sl(xi) =
N∑

j=1

ω jI(yj(xi) = l) (1)

ỹ(xi) = argmax
l

sl(xi) (2)

Equation (2) simply denotes the selection of the label with the highest score. Different voting
strategies are implemented by variation of the weights ω.

Majority voting is defined by setting ∀i, j : ωi = ω j. If a majority of the N base classifiers assigns
the same label, the corresponding score sL is maximized. In our study, majority voting serves as a
baseline for the performance of classifier fusion as it is a commonly used method.

Presidential voting is defined by setting ωi = N − 1.5 and ∀ j�i : ω j = 1, where the index i denotes
a prior chosen classifier, e.g., the one with the best overall accuracy. Due to this constraint, the label
assigned by the chosen classifier determines the ensemble result in most cases. Only if all other
classifiers agree on the same divergent result, a different label is assigned.

Accuracy weighted voting uses a classification accuracy estimate to weight the different classifiers.
According to the definitions in [35], the average accuracy is calculated from the elements of the
confusion matrix C of each classifier. A subset of the reference data is used to determine C and to
estimate the weights ω.
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Hence, for the j-th classifier the weight ω j is defined with Equation (3) as the average accuracy [36]
which measures the average per-class effectiveness of a classifier.

ω j =

∑L
i=1

tpi+tni
tpi+tni+ f pi+ f ni

L
(3)

The L× L confusion matrix C is transformed into L 2× 2 confusion matrices to obtain the required
true positive tpi, true negative tni, false positive f pi, and false negative f ni values.

For precision weighted voting, a similar approach to calculate the weights is used. The precision
measure is calculated with Equation (4) as follows

ω j =

∑L
i=1 tpi∑L

i=1(tpi + f pi)
(4)

This fusion framework is a means to investigate how different popular approaches to weight a
classifier influence the quality of the joint decision-making of an ensemble classifier.

3. Results

Tables 4–7 summarize the results of SVM, random forest, rotation forest, and CNN classifiers.
Each table contains the mean accuracy values and standard deviations obtained with multiple runs of
holdout testing. In the tables, for each feature space the best results per table row are emphasized as
bold text. In addition, the feature space with the best overall classification accuracy is emphasized
and the corresponding accuracy has been underlined. In each run, a complete reference site with a
single dominant tree species was only used for testing the classifier, which was trained with data from
the remaining reference sites. See Table 1 for the total number of reference sites and areas. If only a
single reference site is available it is divided into non-overlapping sites for training and validation of
equal size. Each row corresponds to one of the selected feature spaces. We discriminate between the
results of pixelwise and spatial classification, where statistical measures (mean, standard deviation,
homogeneity) of the original features are used as features instead.

Table 4. Overall accuracies and standard deviations for Multi-Class-SVM classifier with linear kernel
using a 1-vs.-all strategy depending on the choice of feature space (1st column), pixelwise (2nd column)
or with inclusion of spatial information from surrounding pixels (3rd column). The best performance
within each row and the best method are emphasized with bold font to highlight the better performance
of the spatial approaches.

Feature Space Pixelwise Spatial

Reflectances (160 dim) 0.227 ± 0.075 -
Indices (7 dim) 0.097 ± 0.061 0.098 ± 0.04

PCA (5 dim) 0.231 ± 0.062 0.195 ± 0.082
PCA (14 dim) 0.26 ± 0.114 0.273 ± 0.113

MCLDA (5 dim) 0.428 ± 0.049 0.616 ± 0.064
MCLDA (14 dim) 0.459 ± 0.033 0.651 ± 0.08

SELD (5 dim) 0.398 ± 0.1 0.421 ± 0.071
SELD (14 dim) 0.415 ± 0.097 0.571 ± 0.053

We report results for different ensemble sizes of random forest (Table 5) and rotation forest (Table 6)
classifiers separately to assess the impact of this parameter and the trade-off for using a compact
ensemble of 20 decision trees instead of a large ensemble of 100 decision trees.
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Table 5. Overall accuracies and standard deviations for the random forest classifier with different choices
of feature space (1st column) and varying complexity of models (# trees) for pixelwise classification
and with consideration of spatial information from surrounding pixels. The best performance within
each row and the best method are emphasized with bold font to highlight the better performance of the
spatial approaches.

Pixelwise Spatial Pixelwise Spatial

# trees 20 20 100 100

Reflectances 0.435 ± 0.055 - 0.447 ± 0.057 -
Indices 0.352 ± 0.032 0.622 ± 0.039 0.361 ± 0.034 0.633 ± 0.040

PCA (5 dim) 0.357 ± 0.029 0.582 ± 0.056 0.366 ± 0.031 0.594 ± 0.085
PCA (14 dim) 0.441 ± 0.05 0.553 ± 0.088 0.452 ± 0.05 0.572 ± 0.053

MCLDA (5 dim) 0.487 ± 0.04 0.642 ± 0.055 0.495 ± 0.042 0.653 ± 0.055
MCLDA (14 dim) 0.522 ± 0.038 0.663 ± 0.052 0.533 ± 0.039 0.684 ± 0.049

SELD (5 dim) 0.367 ± 0.027 0.621 ± 0.03 0.377 ± 0.029 0.63 ± 0.03
SELD (14 dim) 0.486 ± 0.041 0.622 ± 0.06 0.499 ± 0.042 0.639 ± 0.059

Table 6. Overall accuracies and standard deviations for the Rotation Forest classifier with different
choices of feature space (first column) and varying complexity of models (number of trees) for pixelwise
classification and with consideration of spatial information from surrounding pixels (neighborhood).
The best performance within each row and the best method are emphasized with bold font to highlight
the better performance of the spatial approaches.

Pixelwise Spatial Pixelwise Spatial

# trees 20 20 100 100

Reflectances 0.501 ± 0.043 - 0.517 ± 0.043 -
Indices 0.33 ± 0.025 0.609 ± 0.039 0.331 ± 0.028 0.619 ± 0.038

PCA (5 dim) 0.342 ± 0.031 0.561 ± 0.053 0.347 ± 0.032 0.575 ± 0.055
PCA (14 dim) 0.442 ± 0.05 0.525 ± 0.078 0.45 ± 0.052 0.548 ± 0.081

MCLDA (5 dim) 0.467 ± 0.042 0.658 ± 0.048 0.472 ± 0.042 0.665 ± 0.047
MCLDA (14 dim) 0.522 ± 0.038 0.683 ± 0.044 0.539 ± 0.04 0.705 ± 0.044

SELD (5 dim) 0.345 ± 0.031 0.615 ± 0.033 0.351 ± 0.03 0.624 ± 0.033
SELD (14 dim) 0.487 ± 0.041 0.615 ± 0.059 0.498 ± 0.042 0.634 ± 0.058

Transformation of the reflectance data with MCLDA into a low dimensional representation yields
the best results for all tested classifiers in separating between the 15 tree species. Moreover, inclusion
of the spectral-spatial features significantly improves classification accuracy compared to pixelwise
classification of spectral features in most cases. The best individual classifier was the CNN (see Table 7)
with an overall accuracy of 0.732 ± 0.086, followed by a rotation forest of 100 decision trees with an
overall accuracy of 0.705 ± 0.044. The CNN intrinsically combines spectral and spatial information.
Hence, the CNN operating on raw or preprocessed hyperspectral image data achieved a similar
performance to fandom rorests and SVMs, which make use of handcrafted spectral and spatial-spectral
features. However, even the CNN the initial transformation with MCLDA was crucial to achieve the
gain in overall accuracy.

The results of combining a small number of base classifiers into a hybrid ensemble are summarized
in Figure 4. The diagram shows the accuracies and standard deviations of individual base classifiers
together with results of different voting strategies. An accuracy gain of 5.1% was achieved by precision
weighted voting compared to the best individual classifier. It significantly outperformed the three
other tested voting methods.

To better understand these improvements, Figure 5 shows net diagrams of class-wise performance
measures precision and recall. The subplots A–C show the performances of the included base classifiers,
while subplot D represents the performance of the fusion framework with precision weighted voting
using Equation (4) to calculate the weights.
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Table 7. Overall accuracies and standard deviations for the CNN classifier. The gaps in the table reflect
the stepwise approach to identify the best CNN configuration. First, we identified a best performing
image transformation, second we evaluated different promising modifications of the chosen CNN. Bold
setting and underlining highlight the parameter combination with best overall accuracy.

Pixelwise
Dropout = 0
no Pooling

Pixelwise
Dropout = 0
with Pooling

Pixelwise
Dropout = 0.5

no Pooling

Pixelwise
Dropout = 0.5
with Pooling

Spatial
Dropout = 0
no Pooling

Indices 0.485 ± 0.054 - - - -
PCA (5 dim) 0.443 ± 0.072 - - - -

PCA (14 dim) 0.439 ± 0.086 - - - -
MCLDA (5 dim) 0.589 ± 0.074 - - - -

MCLDA (14 dim) 0.665 ± 0.072 0.656 ± 0.077 0.675 ± 0.08 0.664 ± 0.087 0.732 ± 0.086

SELD (5 dim) 0.47 ± 0.058 - - - -
SELD (14 dim) 0.412 ± 0.058 - - - -

Figure 4. Classification accuracies for best base classifiers and ensembles of classifiers.

Figure 5. Performance measures of base classifiers (A–C) and hybrid ensemble based upon precision
weighted fusion (D) per class. Net diagrams show precision and recall values of the following base
classifiers: Random forest classifier for spectral indices (A), CNN classifier for MCLDA-transformed
images (B), and random forest classifier for MCLDA-transformed images (C).
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The expected general improvement of class-wise precision values is shown by the more convex
shape and the much larger area within the precision curve in subplot D. The recall value of the hybrid
ensemble is still dominated by the best base classifier, the CNN (compare subplots B and D, dotted
curves). However, a class0wise direct comparison reveals a few minor differences. For some tree
species the recall values increase (e.g., poplar, robinia, oak), while for a few others (e.g., larch, Douglas
dir) they decrease slightly.

4. Discussion

The need for a reliable tree species classification motivated our investigation of several
state-of-the-art classifiers as well as their combination into an ensemble classifier. This demand
has led to the development of a processing pipeline, where the positions of suitable training sites with
one dominant tree species are obtained from existing databases of the forest authorities. Hence, it was
possible to create a large training dataset covering 15 tree species without additional groundwork. The
alternative, the assessment of tree species of individual trees in mixed forests by experts to create a
reference database, either from ground or from aerial stereo imagery is expensive, time-consuming,
and error-prone.

Although, we developed a promising framework for classifier fusion and did careful validation,
the method was not validated against ground truth data from real mixed forests. This is due to the fact
that a large-scale validation would require the same efforts to obtain the reference data as mentioned
above for the classifier training. However, the method was successfully applied to classify the complete
forest in our hyperspectral dataset. This tree species map can then be used to select a number of
individual trees and to validate the assigned class label in the field.

The performance of classification models based on this kind of training data was extensively tested
with a combination of cross-validation and hold-out-testing. Compared to standard cross-validation
not only a subset of randomly chosen pixels or patches were excluded from training for testing, but
complete areas. This allowed us to study the performances on independent data. However, the
spectral data belongs to a single measurement flight and has undergone the same preprocessing (e.g.,
radiometric and atmospheric corrections). Hence, the trained classifiers are adapted to the development
stages of the trees and the conditions on the day of flight. To our best knowledge, the proposed method
to acquire training data directly from the hyperspectral images at predefined locations with dominant
tree species is the best way to learn classification models for future flights. Otherwise, many test flights
and expenses are required to acquire training data that cover all possible appearances of leaves and
needles beforehand. Locations with a single dominant tree species can be determined by an expert
using existing databases and aerial images. For any region, this could be done once stored in a database
and then be used for future measurement flights.

The per-class assessment of the classification performance of the fusion approach shows differences
depending on the tree species. The net diagram in Figure 5 reveals that the precision of the class
assignment was improved to large extends, but for some tree species the fraction of successfully
detected trees remains low. However, compared to the state-of-the-art CNN a significant loss is only
observed for Douglas firs. On the other hand, the rate of true Douglas firs among the reported ones
increased significantly. There are different reasons, which possibly explain this behavior. First, the
dataset contains a number of tree species with only subtle differences like oaks, sessile oaks, red oaks,
and pedunculate oaks. While this information is of interest for the forest authorities and motivates
the use of hyperspectral imaging to detect subtle differences, it might be better to take a hierarchical
approach, which first detects all oaks and then tries to discriminate between oak species. Second, some
of the tree species are more common than others. We account for this by balancing the dataset to have
an equal number of samples for all tree species. However, the number of reference sites for rare species
is also low and the natural variation between trees is better covered for frequent tree species. Here, our
strict validation with holding back complete reference sites for testing may penalize the rare species.
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With Scotch pines, Norway spruces, oaks, and beeches being the most frequent tree species
in Saxony-Anhalt as well as Thuringia the results show, that our approach for analysis of airborne
hyperspectral images already provides a useful tool to support forest inventory and to detect oak trees
for subsequent analysis of vitality parameters. Moreover, the proposed fusion framework allows to
easily add any other classifier.

5. Conclusions

In this paper, we applied a general and easy-to-use fusion framework based on voting to the
problem of tree species classification from hyperspectral aerial images. The proposed hybrid multiple
classifier system enhances the results of a state-of-the-art CNN with two random forest classifiers
of different size and operating in different feature spaces. It was shown that this approach yields a
significant gain in overall classification accuracy. This improvement results from a gain in precision of
the class assignments by weighted fusion of the CNN and random forest results by an estimate of their
individual precisions. The comparison to other popular voting techniques showed the superiority
of the approach. The results provide evidence that even the best available classifiers for image data
analysis can be further improved by incorporating their decisions into a multiple classifier system.
MCLDA performs best among the different dimensionality reduction methods for hyperspectral
imaging data. Even the CNN performance is enhanced by using MCLDA transformed images instead
of the hyperspectral images as input data.
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Abstract: Investigating mangrove species composition is a basic and important topic in wetland
management and conservation. This study aims to explore the potential of close-range hyperspectral
imaging with a snapshot hyperspectral sensor for identifying mangrove species under field conditions.
Specifically, we assessed the data pre-processing and transformation, waveband selection and
machine-learning techniques to develop an optimal classification scheme for eight mangrove species in
Qi’ao Island of Zhuhai, Guangdong, China. After data pre-processing and transformation, five spectral
datasets, which included the reflectance spectra R and its first-order derivative d(R), the logarithm
of the reflectance spectra log(R) and its first-order derivative d[log(R)], and hyperspectral vegetation
indices (VIs), were used as the input data for each classifier. Consequently, three waveband selection
methods, including the stepwise discriminant analysis (SDA), correlation-based feature selection
(CFS), and successive projections algorithm (SPA) were used to reduce dimensionality and select the
effective wavebands for identifying mangrove species. Furthermore, we evaluated the performance of
mangrove species classification using four classifiers, including linear discriminant analysis (LDA),
k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). Application of the
four considered classifiers on the reflectance spectra of all wavebands yielded overall classification
accuracies of the eight mangrove species higher than 80%, with SVM having the highest accuracy
of 93.54% (Kappa = 0.9256). Using the selected wavebands derived from SPA, the accuracy of SVM
reached 93.13% (Kappa = 0.9208). The addition of hyperspectral VIs and d[log(R)] spectral datasets
further improves the accuracies to 93.54% (Kappa = 0.9253) and 96.46% (Kappa = 0.9591), respectively.
These results suggest that it is highly effective to apply field close-range snapshot hyperspectral images
and machine-learning classifiers to classify mangrove species.

Keywords: mangrove species classification; close-range hyperspectral imaging; field hyperspectral
measurement; waveband selection; machine learning

1. Introduction

Mangroves are salt-tolerant evergreen woody trees and shrubs that are distributed in intertidal
regions along tropical and subtropical coastlines [1,2]. As an important part of the wetland ecosystem,
mangroves provide plenty of economic benefits and ecological value. They not only play a key role
in filtering polluted seawater, providing wave prevention and embankment protection, maintaining
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biodiversity, and contributing to the global carbon balance, but also provide important forest products
and socio-economic services [3]. Over the past 50 years, global mangrove resources have rapidly
decreased due to human interference and natural causes [4,5]. Research on mangrove species
composition is of great significance for mangrove ecosystem conservation, which provides basic
information on wetland inventory and vegetation community changes.

Remote sensing techniques, including multispectral and hyperspectral, synthetic aperture radar
(SAR) remote sensing [6–9], unmanned aerial vehicle (UAV)-based remote sensing [10,11], and light
detection and ranging (LiDAR) [12], have been widely using in mangrove monitoring and management.
Hyperspectral imaging can provide plenty of continuous narrow wavebands which increase the
chance of distinguishing between different ground objects via their detailed spectral information [13].
It has proven to be effective for the classification of forest species and vegetation [14]. Various
hyperspectral sensors, both imaging and non-imaging, have been applied to investigations related
to the spectral analysis, classification and mapping of mangroves in the past 20 years, which can be
divided into four categories: (1) space-borne hyperspectral sensors (e.g., Earth Observing-1 (EO-1)
Hyperion sensor [9,15,16]); (2) airborne hyperspectral sensors (e.g., Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) [17], Compact Airborne Spectrographic Imager (CASI) [18] and Airborne
Imaging Spectrometer for Applications (AISA) [19]); (3) unmanned aircraft-mounted hyperspectral
sensors (e.g., the Cubert UHD 185 hyperspectral imaging sensor [10]); (4) and hand-held hyperspectral
sensors (e.g., the Analytical Spectral Device (ASD) spectrometer [20,21]). These studies mainly focused
on a regional scale or large-scale mangrove classification and mapping based on onboard hyperspectral
sensors, and the spectral characteristics analysis of mangrove plants based on fiber optic spectrometer
under laboratory and field conditions. Generally, prior to the application of onboard hyperspectral
sensors in mapping and classifying mangroves, it is necessary to conduct researches on the laboratory
and ground-based measurements, which is one of the most important prerequisites for the future
application of onboard hyperspectral sensors [22].

Recently, several studies on spectral analysis and species discrimination of mangroves have
been carried out using laboratory and field hyperspectral data. Under laboratory conditions,
the spectral reflectance of mangrove leaves measured with the ASD spectrometer has been used
to classify 16 mangrove species, and identify healthy and stressed mangrove plants with 90% and 80%
accuracy [22,23]. With ground-based measurements, the hyperspectral data of mangrove canopies
obtained by the ASD spectroradiometer, VF921B (Anhui Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences (CAS), China) portable spectrometer, and Spectra Vista Corporation
(SVC) GER-1500 portable transient spectrometer, has been employed to analyze mangrove reflectance
spectral characteristics [24–26]. Most of these studies have reported using non-imaging spectrometers
to measure laboratory or ground-based leaf spectral reflectance. For non-imaging spectrometers,
they are generally difficult to control the range of ground objects covered by the sensor, and the
obtained spectra are often mixed spectra of various ground objects. In comparison to the non-imaging
spectrometer, the hyperspectral imaging sensor has the unique characteristic of acquiring image and
spectral information of target simultaneously, it can extract pure pixel spectra of each ground object
at the time of hyperspectral image capture [27]. Recent studies based on the hyperspectral imaging
sensors, including line-scanning and snapshot, were mostly concerned with precision agriculture,
such as crop classification and weed recognition. Shang et al. [28] used China’s first field imaging
spectrometer system (FISS) to obtain hyperspectral images for sophisticated classification of crop and
weed. Xiao et al. [29] used the acousto-optic tunable filter (AOTF) hyperspectral imaging device to
collect hyperspectral images of the leaves of Kentucky bluegrass, and realized the rapid identification
of the different Kentucky bluegrass varieties. Gao et al. [30] presented the application of near-infrared
hyperspectral images acquired with a snapshot mosaic hyperspectral camera in the laboratory for
weed species recognition in a maize crop using a random forest machine-learning algorithm. However,
the use of close-range snapshot hyperspectral imaging sensor for the classification of mangrove plants
under field conditions has not been reported.
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For the hyperspectral remote sensing of vegetation, selecting hyperspectral metrics, such as
derivative spectra, hyperspectral vegetation indices (VIs) and the effective wavebands, is a key
issue for specific analysis [13]. Derivative analysis can reflect the waveform changes and reveal
the peak characteristics of spectra, which can improve the capability of using the spectral data to
identify tree species [31]. Hyperspectral VIs are based on the mathematical transformations of spectral
reflectance, which can be used to enhance spectral differences [32]. Furthermore, choosing the most
useful wavebands is also necessary for dimensionality reduction and accurate species separation.
Currently, the most widely used waveband selection techniques, such as the stepwise discriminant
analysis (SDA) [20,23] and correlation-based feature selection (CFS) [10], have been employed to select
informative wavebands for mangrove species classification. Moreover, scholars have explored different
parametric and non-parametric methods in classifying tree species including mangroves [17,33].
Among them, several machine-learning techniques, such as random forest (RF) [17], support vector
machine (SVM), rotation forest (RoF) [6], and logistic model tree (LMT) [7], can be used to construct
effective classification models, which are non-parametric and do not rely on any assumption about the
data distribution [34].

The aim of this study is to evaluate the use of close-range snapshot hyperspectral imaging for
mangrove species identification under field conditions. The specific objectives were: (1) to investigate
the applicability of field snapshot hyperspectral imaging sensor in identifying mangrove species;
and (2) to determine the optimal spectral modes, relevant spectral wavebands, and effective classifiers
for mangrove species identification. First, we collected the field hyperspectral data of eight mangrove
species with a snapshot hyperspectral imaging sensor. Second, we performed data pre-processing
and spectral transformations, and selected hyperspectral datasets in five spectral modes: (a) the
reflectance spectra R, (b) the first-order derivative of the reflectance spectra d(R), (c) the logarithm
of the reflectance spectra log(R), and (d) its first-order derivative d[log(R)], and (e) hyperspectral
VIs. Third, we employed the SDA, CFS, and successive projections algorithm (SPA) to identify
the optimal wavebands for mangrove species classification. Finally, we constructed classification
models and compared the results obtained from four machine-learning classifiers, including the linear
discriminant analysis (LDA), k-nearest neighbor (KNN), RF, and SVM. A detailed flowchart of this
study is illustrated in Figure 1.

2. Materials and Methods

2.1. Study Area Description

Field hyperspectral measurements of this study were conducted at the Qi’ao Island Mangrove
Nature Reserve, which has an area of 700 ha and is located on Qi’ao Island (22◦23′40′′–22◦27′38′′N,
113◦36′40′′–113◦39′15′′E), Zhuhai City, Guangdong Province, China [35,36] (Figure 2). Qi’ao Island is
situated in Lingding Bay of the Pearl River Estuary, which has a typical tropical-subtropical transitional
coastal-inland wetland ecosystem. Qi’ao Island belongs to the southern subtropical maritime monsoon
climate zone, with sufficient sunshine and abundant rainfall [37,38]. The tidal pattern of Qi’ao Island is
an irregular semidiurnal tide [8], which is characterized by the tidal height inequality of two adjacent
high or low tides, the tide duration inequality between flood and ebb tides, and that the average tidal
range varies with the flood and dry season, spring and neap tides [39]. The Mangrove Nature Reserve
is the largest mangrove forest in the Pearl River Delta, it is the largest area of artificially planted
mangrove forests in China and it has a rich variety of mangrove plants [8,36].
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Figure 1. Flowchart of mangrove species identification using field close-range snapshot hyperspectral
imaging and machine-learning classifiers.

Figure 2. Location of Qi’ao Island, showing the WorldView-2 image (false color composite composed
of R, band 7; G, band 5; B, band 3). The map of field survey site was an UAV image (true color
composition) acquired on 11 September 2015. The right panel shows a distribution map of 33 ground
survey points, where the symbols in the legend indicate the sample locations along the boardwalks.
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As shown in Figure 2, the field sampling route was along the boardwalks, in which the artificially
planted mangrove forests were the dominant plant types. According to an existing research [37]
and previous field surveys, there are eight common mangrove species in this study site, including
Kandelia candel (K. candel), Acrostichum aureum (A. aureum), Acanthus ilicifolius (A. ilicifolius), Aegiceras
corniculatum (A. corniculatum), Sonneratia apetala (S. apetala), Heritiera littoralis (H. littoralis), Cerbera
manghas (C. manghas) and Therspesia populnea (T. populnea), as shown in Table 1. Among them, the
K. candel stands were arbor or frutex, the A. aureum stands were herbage, the A. ilicifolius stands
were frutex, and the other five stands were arbor. The C. manghas and T. populnea stands were
semi-mangroves, and the other six stands were true mangroves.

Table 1. List of mangrove species used in this study.

Mangrove Species Name Species Code Functional Group
Ground

Survey Points
Samples

Acrostichum aureum (A. aureum) AA Herbage 4 60
Acanthus ilicifolius (A. ilicifolius) AI Frutex 4 60

Aegiceras corniculatum (A. corniculatum) AC Arbor 4 60
Sonneratia apetala (S. apetala) SA Arbor 4 60

Heritiera littoralis (H. littoralis) HL Arbor 4 60
Cerbera manghas (C. manghas) CM Arbor 4 60

Therspesia populnea (T. populnea) TP Arbor 6 60
Kandelia candel (K. candel) KC Arbor/Frutex 3 60

2.2. Data Acquisition and Sample Collection

2.2.1. Field Hyperspectral Measurement

For this study, the hyperspectral imaging system (Figure 3) was set up to acquire hyperspectral
images of mangrove leaves. The main component of the experimental set-up was a commercial UHD
185 hyperspectral snapshot sensor (Figure 3a) manufactured by Cubert GmbH (http://cubert-gmbh.
de/), Germany. The UHD 185 hyperspectral image consisted of a hyperspectral cube of 50 × 50 pixels
and a panchromatic image with a resolution of 1000 × 1000 pixels. This sensor could capture
138 spectral bands within the spectral range of 450–998 nm with a 4-nm interval. According to
previous studies [10,40], the spectral bands between 454 and 950 nm were used for analysis and
classification. The UHD 185 sensor is currently applied onboard the UAV platform and can also be
used for laboratory and ground-based spectrometry. This sensor was compact and lightweight with a
total mass of about 470 g, which makes it highly portable and suitable for field applications, and it had
a fast imaging speed of 5 cubes per second.

The main field hyperspectral measurements were performed on 3 January 2017. Due to the
limitations on the accessibility of data collection site, data acquisition time, and illumination conditions
on the day, several mangrove plants did not collect enough hyperspectral images. Therefore, part of
the hyperspectral images of T. populnea and K. candel stands was collected as the supplementary data
on 26 May 2018. Considering the influence of external illumination, the leaf spectra were collected
on a cloud-free day at around solar noontime between 10:30 and 14:00. The UHD 185 hyperspectral
imaging sensor could be hand-held and controlled by a notebook computer (Figure 3b). During the
experiment, the spectral measurements were conducted above the mangrove canopy at approximately
20 cm height with the sensor facing and being at a near-vertical viewing direction to the canopy.
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Figure 3. Field hyperspectral measurements above the mangrove canopies and the set-up used
to acquire the hyperspectral images. (a) The UHD 185 hyperspectral imaging sensor, and (b) a
notebook computer.

2.2.2. Data Pre-Processing

The field-collected spectra were radiometrically corrected with a standard white reference
and dark measurements according to the pre-processing procedure used in a previous study [10].
Field-collected spectra are susceptible to variable illumination, contamination from the background
environment and instrumental noise. To avoid noise associated with specific bands, the Savitzky–Golay
algorithm [41,42] was introduced to smooth the raw hyperspectral data by eliminating glitch noise
existing in the spectral curves. Based on least-squares fitting, this algorithm could remove high
frequency noise and smooth the original data sequence by replacing the original values with fitted
values [43], thereby preserving the original features of the spectrum. In this study, the Savitzky–Golay
algorithm was implemented using the MATLAB R2014b software (MathWorks Inc., Natick, MA, USA).

2.2.3. Sample Spectra Preparation

Hyperspectral images of the eight mangrove plants of ground survey points were acquired with
the UHD 185 hyperspectral imaging sensor. Representative images with true color composition of
each mangrove species were shown in Figure 4. The sample collection strategy is as follows: (a) for
each mangrove species, there are several ground survey points (Figure 1 and Table 1); (b) for each
ground survey point, a preliminary manual screening was performed to select the hyperspectral images
(Figure 4); and (c) for each hyperspectral image, there are five sample spectra were chosen. Considering
that the illumination and background environment were the main factors related to the high spectral
variability of the plant leaves [44], we selected spectral samples from the hyperspectral images of
healthy and sun-lit mangrove leaves for each species with the Cube-Pilot software (Cubert GmbH, Ulm,
Germany; http://cubert-gmbh.de/). For each type of mangrove species, 60 sample patches on the
corresponding hyperspectral image were randomly selected (Table 1). A sample patch corresponded
to 20 × 20 pixels in the selected cube which can be considered as a region of interest, and the spectral
reflectance of the sample patch was calculated as the average value of pixels within the selected cube.
A total of 480 sample spectra were selected. With these sample spectra, the 10-fold cross-validation
was employed for the classification training and validation.
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(a) A. aureum (b) A. ilicifolius (c) A. corniculatum (d) S. apetala

(e) H. littoralis (f) C. manghas (g) T. populnea (h) K. candel

Figure 4. UHD 185 hyperspectral images of the eight mangrove species at the study site.

2.3. Hyperspectral Metrics Extraction

2.3.1. Data Transformation

Reflectance spectra from leaves in close-range imaging are often influenced by the illumination and
background environment. Derivative spectra are commonly employed in hyperspectral investigations
of vegetation [45], which can effectively reduce the influence of illumination variations, and eliminate
the background signal and systematic errors. Previous studies have reported that the derivative
analysis can further enhance the ability of the spectral data to identify tree species [46], and has
been developed for mangrove species classification [47]. First-order derivative spectra can reflect
the waveform changes caused by the absorption of the light by chlorophyll and other substances in
plants, and reveal the peak characteristics of the spectrum [48]. Furthermore, because logarithmic
transformation can enhance the spectral differences in the visible region and reduce the influence of
multiplicative factors caused by changes in illumination conditions, we also performed the logarithmic
transformation on spectral data. Following Pu and Gong [31], three transformations of R, including
the first-order derivative of the reflectance spectra d(R), the logarithm of the reflectance spectra log(R)
and its first-order derivative d[log(R)], were computed as

d(R) =
(

r3−r1

Δλ
,

r4−r2

Δλ
, · · · ,

rn−rn−2

Δλ

)
(1)

log(R) = [log(r1), log(r2), · · · , log(rn)] (2)

where ri denotes the i-th wavelength, n denotes the number of wavebands, and Δλ denotes the double
waveband intervals (nm).

2.3.2. Vegetation Index Calculation

Vegetation indices (VIs) are generally defined as mathematical transformations of the spectral
reflectance of the original wavebands. One of the advantages of VIs is their ease of use. According
to the definitions of VIs, they can enhance the differences between plant species and reveal
the hidden vegetation information using various combinations of ratios, differences, and linear
combinations [49,50]. Moreover, VIs can eliminate the influence of the multiplicative factor associated
with illumination variations and background environments [31,51]. As shown in Table 2, we calculated
25 hyperspectral VIs, which were commonly used in previous studies [14,32,50] to identify and map
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plant species composition. These hyperspectral VIs were selected to represent spectral variations
associated with pigments including chlorophylls, the leaf area index (LAI), biomass and red edge
optical parameters, and so on.

Table 2. Hyperspectral vegetation indices derived from the UHD 185 hyperspectral wavebands selected
in this study.

Vegetation Indices Definition Commonly Related to References

Blue Green Pigment
Index 2 (BGI 2)

R454
R550

Chlorophylls,
Carotenoids [52]

Normalized Difference
Vegetation Index (NDVI)

R798−R670
R798+R670

LAI, biomass, vegetation
cover [53]

Reformed Difference
Vegetation Index (RDVI)

R798−R670√
R798+R670

LAI [54,55]

Soil-Adjusted Vegetation
Index(SAVI)

(R798−R670)×(1+0.5)
R798+R670+0.5

Biomass [56]

Adjusted Transformed
Soil-Adjusted VI

(ATSAVI)

a(R798−aR670−b)
aR798+R670−ab+X(1+a2)

where X = 0.08, a = 1.22, b = 0.03

LAI, biomass, soil
variation [57]

Modified SAVI (MSAVI) R798+0.5 −
√
(R798+0.5)2−2(R798−R670) Biomass, soil variation [58]

Transformed
Chlorophyll Absorption

in Reflectance Index
(TCARI)

3
[
(R702−R670)−0.2(R702−R550)×

(
R702
R670

)]
Chlorophylls [59]

Optimized Soil-Adjusted
Vegetation Index

(OSAVI)
(1 + 0.16)× R798−R670

R798+R670+0.16 Biomass, soil variation [60]

TCARI/OSAVI TCARI
OSAVI Chlorophylls [59]

Modified Chlorophyll
Absorption in

Reflectance Index
(MCARI)

[(R702−R670)−0.2(R702−R550)]×
(

R702
R670

)
Chlorophylls [61]

Modified Chlorophyll
Absorption Ratio Index 1

(MCARI1)
1.2[2.5(R798−R670)−1.3(R798−R550)] LAI [55]

Modified Chlorophyll
Absorption Ratio Index 2

(MCARI 2)

1.5[2.5(R798−R670)−1.3(R798−R550)]√
(2R798+1)2−(6R798−5

√
R670)−0.5

Chlorophylls [55]

Photochemical
Reflectance Index (PRI)

R514−R530
R514+R530

Water content [40,62]

Triangular Vegetation
Index (TVI) 0.5[120(R750−R550)−200(R670−R550)] LAI [63]

Modified Triangular VI 1
(MTVI 1) 1.2[1.2(R798−R550)−2.5(R670−R550)] LAI [55]

Modified Triangular VI 2
(MTVI 2)

1.5[1.2(R798−R550)−2.5(R670−R550)]√
(2R798+1)2−(6R798−5

√
R670)−0.5

LAI [55]

Simple Ratio (SR) R798
R670

Chlorophylls [51,64]

Modified Simple Ratio
(MSR)

(
R798
R670

−1
)

/
√

R798
R670

+1 LAI [55,65]

Zarco Tejada and Miller
(ZTM)

R750
R710

Red edge [66]

Vogelmann Red Edge
Index 1 (VOG1)

R742
R722

Red edge [67]
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Table 2. Cont.

Vegetation Indices Definition Commonly Related to References

Vogelmann Red Edge
Index 2 (VOG2)

R734−R750
R718+R726

Red edge [66]

Vogelmann Red Edge
Index 3 (VOG3)

R734−R750
R718+R722

Red edge [66]

Red Edge NDVI
(RENDVI)

R754−R702
R754+R702

Red edge [68]

Vogelmann’s Index
(VOI)

DR718
DR706

Red edge [67,69]

Modified Simple Ratio of
Derivatives (DMSR)

DR722−DR502
DR722+DR502

Chlorophylls [70]

Note: R denotes the reflectance spectra, DRi denotes the first-order derivative of the reflectance spectra.

2.4. Waveband Selection

Feature selection is an important pre-processing step for hyperspectral data, which can increase
the efficiency of the classification model by removing irrelevant and redundant information [71].
Selecting the specific wavebands that are most important for developing more robust classification
models is desirable [72,73]. In this study, three waveband selection methods, SDA, CFS and SPA,
based on information entropy, correlation, and projection, respectively, were used to find out which
wavebands can optimally differentiate mangrove species.

2.4.1. Stepwise Discriminant Analysis

The SDA is a multivariate statistical method, which has been used to discriminate variables.
Based on the discriminant analysis, for each step, the variable with the strongest discriminative ability
was introduced into the discriminant function, and the variable with the poorest discriminative ability
was eliminated. In this manner, the SDA can be used to select a subset of wavebands that had the
maximum discriminative ability [74]. In this study, the SDA was used to select the optimal wavebands
according to the Wilks’ Lambda statistic [51], and implemented by the IBM SPSS Statistics 19 (IBM Inc.,
Armonk, NY, USA).

2.4.2. Correlation-Based Feature Selection

The CFS is a classic filter method for feature selection [75]. It has proven to be useful for
selecting suitable features and facilitating computation. The idea of this algorithm is to calculate
the “feature-class” and “feature-feature” correlation matrices from a training set. This algorithm
assumes that these features are conditionally independent given the class. In this paper, the best first
search algorithm [76] was applied for CFS to select the feature subset with the highest correlation
between features and categories, and the lowest correlation between features and features. The CFS
and best first search algorithms from the Weka 3.8 attribute selection package were used.

2.4.3. Successive Projections Algorithm

The SPA is a forward variable selection method, which has been used for waveband selection
in previous studies [77]. The SPA randomly selects a starting waveband, calculates the maximum
projection vector of an unselected waveband, and uses the corresponding waveband as the introduced
waveband. After multiple iterations, the characteristic waveband is obtained by a cost function
evaluation. This algorithm can effectively eliminate the influence of the collinearity that may exist
among wavebands. In this study, the SPA selects the characteristic wavelengths that contain the
least redundant information, which are determined by the minimum root mean square error of the
prediction [78]. The SPA algorithm was implemented with MATLAB.
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2.5. Mangrove Species Classification

We explored four mangrove species classification schemes using the LDA, KNN, RF, and SVM
machine-learning classifiers based on the different datasets. These classification models were all
executed in MATLAB.

2.5.1. Linear Discriminant Analysis

The LDA is a classic parametric algorithm in the field of data mining and machine learning,
which has been widely used in previous classification researches to identify wetland plants, including
mangroves [79–81]. The LDA determines the linear discriminant function based on the principle
that the distance between classes is the largest and the distance within a class is the smallest, that is,
to maximize the ratio of the dispersion between sample classes and minimize the dispersion within
a sample class. The LDA makes two assumptions about the normal distribution of the data and
the homoscedasticity for which two classes have equal covariance matrices. Finally, the category of
unknown samples is determined by the established linear discriminant model.

2.5.2. K-Nearest Neighbor

The KNN is a non-parametric instance-based learning algorithm which has been extensively
used for classification and regression [82]. The KNN is based on the assumption that ground objects
close in distance are more likely to belong to the same category. The principle of KNN is that the
instances within a dataset will generally exist in close proximity to other instances that have similar
properties [83]. The distance between the feature vector to be classified and each feature vector in the
feature space are calculated. The k nearest neighbor features are then selected. The categories of the
testing sample are predicted by the majority vote of its neighbors using the Euclidean distance.

2.5.3. Random Forest

The RF is a non-parametric ensemble-based machine-learning method [84,85], which constructs a
multitude of decision trees for learning and predicts the categories of the testing samples based on the
average of the predicted values of each decision tree. The RF requires assumptions about independent
variables and normality, and it does not need to check the variable interactions and nonlinear effects.
The classification model of RF is mainly influenced by two parameters, including the number of
decision trees (ntree) and the number of variables participating in the classification at the node (mtry).
It distinguishes classes by individually building decision spaces for each explanatory variable at each
node level, and the final classification ultimately depends on the decision spaces at higher nodes.

2.5.4. Support Vector Machine

The SVM is a well-known supervised kernel-based machine-learning method, and has proven
to be one of the most widely used and efficient classifiers [86,87]. The SVM aims to find an optimal
separating classification hyperplane which assumes that all groups are separable, to maximize
the interval between the support planes of each type of data. It has powerful nonlinear and
high-dimensional processing capabilities, which can avoid the “dimensionality disaster” caused
by high-dimensional sample space and can be applied to small-sample learning. The LIBSVM package
developed by Chang and Lin [88] has been widely used to implement the SVM classification model.
Considering the nonlinear hyperplane, the radial basis function (RBF) kernel was chosen and two
parameters, the cost of constraints (C) and sigma (σ), were determined by a grid search strategy.

2.6. Accuracy Assessment

For each of the classification results, we used a confusion matrix to provide the specific metrics,
including the user’s accuracy (UA), the producer’s accuracy (PA), the overall accuracy (OA) and kappa
coefficient (Kappa). The confusion matrix is an effective tool to evaluate the classification performance.
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It gives a full description of errors for each category, including the errors of inclusion and errors of
exclusion made by the classifiers [89]. The PA denotes the probability of a certain category being
correctly recognized. The UA denotes the probability that a sample belongs to a specific category, and
the classifier can accurately sort it into this category. The main difference between PA and UA is the
cardinality of the accuracy calculation [90]. For PA, the cardinality is the total number of categories
by the reference samples. For UA, the cardinality is the total number of categories by the classified
samples. PA is concerned with the quality of the method used to produce the classification result,
while UA focuses on the credibility of each category in the classification result. The OA is the ratio (%)
between the number of correctly classified samples and the number of testing samples [91]. The kappa
coefficient is generally used to measure the agreement between the predicted and actual values [92,93].

3. Results

3.1. Spectral Properties of Mangrove Species

The average reflectance curves for the eight mangrove species (Figure 5a) showed typical patterns
of vegetation. The trends in these spectral curves were generally similar, which increased continuously
from 680 nm and reached a maximum peak around 780 nm, around the red edge region. The differences
in the spectral response in the visible light region were indicative of leaf pigments. The mangrove
leaves of C. manghas, T. populnea, and S. apetala stands had brighter green colors and consequently
higher reflectance within the green reflectance spectral region. The near-infrared signal revealed the
multiple scattering within the leaf structure. After the derivative and logarithmic transformations,
the spectral variations within the species were reduced, while differences between species were
enlarged. Figure 5b–d present the spectral curves of the first-order derivative of the reflectance spectra,
the logarithm of the reflectance spectra and its first-order derivative of the leaves from the eight
mangrove species, respectively.

(a) R (b) d(R)

Figure 5. Cont.
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(c) log(R) (d) d[log(R)]

Figure 5. The average reflectance curves, the spectral curves of derivative and logarithmic transformations
of the eight mangrove species. (a) R: the average reflectance curves, (b) d(R): the average first-order
derivative spectral curves, (c) log(R): the average log-transformed spectral curves, and (d) d[log(R)]:
the average first-order derivative of the log-transformed spectral curves.

3.2. Classification Results of the Transformed Datasets

Five hyperspectral datasets were used to identify mangrove species with the four
machine-learning classifiers: (a) the reflectance spectra of all 125 wavebands R; (b) the first-order
derivative of the reflectance spectra d(R); (c) the logarithm of the reflectance spectra log(R) and (d) its
first-order derivative d[log(R)]; and (e) 25 hyperspectral VIs. Table 3 summarizes the classification
accuracy assessment results. Based on hyperspectral VIs, the classification accuracies of the four
classifiers were all more than 80%. Compared with the other three classifiers, SVM yielded a better
overall classification accuracy of 93.54% (Kappa = 0.9253). Both the derivative and logarithmic
transformations could improve the mangrove species classification accuracy. The discrimination
capabilities of d(R) and log(R) spectral datasets were better than that from the reflectance spectra
(Table 4). The d[log(R)]-classification using SVM gave the highest OA of 96.46% (Kappa = 0.9591).
The producer’s and user’s accuracies of the eight mangrove species using SVM were all higher than
90%, especially for the A. aureum and S. apetala stands. This was mainly because the derivative and
logarithmic transformations of reflectance spectra could reduce the multiplicative factors caused by
changeable illumination conditions.

Table 3. Classification results in terms of OA (overall accuracy), kappa coefficient, and standard
deviation (in bracket) for the eight mangrove species using different spectral datasets and classifiers of
the 10-fold cross-validation data.

Spectral Datasets
Performance

Metrics

Classifiers

LDA KNN RF SVM

Reflectance spectra
R

OA(%) 84.17
(5.22)

87.50
(5.29)

87.92
(4.03)

93.54
(2.68)

Kappa 0.8179
(0.0595)

0.8562
(0.0607)

0.8609
(0.0460)

0.9256
(0.0308)

Hyperspectral VIs
OA(%) 85.00

(4.79)
84.58
(5.12)

85.83
(5.62)

93.54
(2.07)

Kappa 0.8270
(0.0544)

0.8223
(0.0585)

0.8366
(0.0652)

0.9253
(0.0244)

First-order derivative
spectra d(R)

OA(%) 84.58
(6.45)

90.63
(3.84)

92.71
(3.57)

95.83
(2.20)

Kappa 0.8218
(0.0736)

0.8917
(0.0437)

0.9156
(0.0410)

0.9518
(0.0252)
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Table 3. Cont.

Spectral Datasets
Performance

Metrics

Classifiers

LDA KNN RF SVM

Log-transformed spectra
log(R)

OA(%) 89.79
(3.73)

88.54
(4.20)

86.04
(4.40)

93.75
(4.39)

Kappa 0.8823
(0.0431)

0.8681
(0.0478)

0.8396
(0.0505)

0.9281
(0.0505)

First-order derivative of
log(R) d[log(R)]

OA(%) 85.83
(7.07)

95.00
(3.43)

92.29
(3.55)

96.46
(2.42)

Kappa 0.8367
(0.0812)

0.9421
(0.0398)

0.9112
(0.0408)

0.9591
(0.0280)

Table 4. Summary of classification accuracies and standard deviation (in bracket) of the d[log(R)]
spectral dataset using different classifiers of the 10-fold cross-validation data.

Mangrove Species

Classifiers

LDA KNN RF SVM

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(/%) UA(%)

A. aureum (AA) 81.86
(20.30)

92.46
(10.59)

93.65
(8.40)

94.31
(10.89)

93.15
(9.40)

90.06
(11.67)

98.75
(3.95)

100.00
(0.00)

A. ilicifolius (AI) 90.25
(14.26)

88.65
(15.81)

94.67
(11.67)

93.89
(11.25)

93.83
(10.12)

89.08
(8.20)

96.33
(7.77)

95.76
(10.61)

A. corniculatum (AC) 85.33
(17.26)

86.11
(16.47)

93.00
(16.36)

88.99
(8.19)

84.71
(14.72)

85.50
(13.83)

95.89
(9.45)

93.00
(12.01)

S. apetala (SA) 98.33
(5.27)

92.00
(9.76)

98.57
(4.52)

94.72
(9.11)

97.50
(5.27)

97.50
(5.27)

98.57
(4.52)

98.89
(3.51)

H. littoralis (HL) 82.88
(15.53)

93.99
(7.85)

89.40
(16.61)

97.32
(5.66)

87.64
(9.06)

92.05
(10.88)

90.24
(17.83)

97.14
(6.02)

C. manghas (CM) 69.30
(21.82)

67.90
(21.61)

91.65
(9.08)

98.00
(6.32)

89.23
(12.82)

95.00
(8.05)

93.24
(8.83)

96.07
(8.66)

T. populnea (TP) 97.32
(5.66)

90.74
(11.40)

100.00
(0.00)

98.75
(3.95)

98.75
(3.95)

92.08
(13.95)

100.00
(0.00)

97.50
(5.27)

K. candel (KC) 83.17
(19.44)

87.64
(14.97)

96.00
(8.43)

96.67
(10.54)

94.75
(8.70)

98.33
(5.27)

98.00
(6.32)

96.33
(7.77)

OA(%) 85.83 (7.07) 95.00 (3.43) 92.29 (3.55) 96.46 (2.42)

Kappa 0.8367 (0.0812) 0.9421 (0.0398) 0.9112 (0.0408) 0.9591 (0.0280)

3.3. Optimal Waveband Selection

Considering the high dimensionality of the hyperspectral data and the spectral correlations
among different mangrove species, it was necessary to select a few wavebands with lower correlation.
For this study, three waveband selection methods, SDA, CFS and SPA, were used to determine the
optimal wavebands, and their classification performances were compared. Table 5 shows the results of
the effective wavebands selected by the three methods.

Table 5. The selected wavebands, based on the reflectance spectra, using the SDA, CFS and SPA methods.

Methods Selected Wavebands (nm)

SDA 14 bands: 478–482, 486, 526, 562, 578, 678, 690, 762, 782, 806, 862, 902, 950

CFS 23 bands: 454, 462–466, 474, 502, 554, 578, 598–602, 610, 638, 666, 674,
686, 694–698, 718–722, 734, 870, 902, 946–950

SPA 23 bands: 506–514, 522–534, 542–546, 582, 590, 614, 630, 638, 670,
682–686, 718, 726, 734, 778, 806, 914
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To examine the spectral separability of all the wavebands selected by the three methods,
the one-way analysis of variance (ANOVA) and multiple significant comparative tests at the 99%
confidence level (p < 0.01) were performed. As shown in Figure 6, most of the frequencies of
occurrence of these selected wavebands were greater than 15 (half of C2

8) [94,95], which showed
their high discriminative capacity for mangrove species. The higher the frequency of occurrence,
the more important the waveband, and the stronger the distinguishing ability of the mangrove species.
The wavebands with higher frequencies of occurrence at 526 nm, 578 nm, 638 nm, 686 nm, 718 nm,
734 nm, 806 nm, 902 nm and 950 nm, which were selected by two or more waveband selection methods,
showed their importance of classifying mangrove species.

 
Figure 6. Frequencies of occurrence of the selected wavebands using the SDA, CFS and SPA methods.

3.4. Classification Results with the Selected Wavebands

The selected wavebands were then used as the input data for the LDA, KNN, RF and SVM
classifications. Based on the reflectance spectra, the selected wavebands by using the three waveband
selection methods (Table 5) and all 125 wavebands were used to identify mangrove species. Table 6
gives the classification results in terms of OA and kappa coefficient for the eight mangrove species
identified by the four classifiers. The classification accuracies of these selected wavebands by using the
SDA, CFS and SPA methods, were close to, or in some cases, higher than the accuracies when using all
125 wavebands. Among three waveband selection methods, the classification accuracy of the SPA was
the highest. Hence, this report only presented the classification results of the wavebands selected by
the SPA and the four classifiers (Table 7). Excepted for the LDA, the overall accuracies when using the
other three classifiers all reach 80%, where the SVM was more than satisfactory in classifying mangrove
species. The classification results indicated that the four classifiers could be easily used to identify
the T. populnea stands, whose producer’s and user’s accuracies were more than 90%. For C. manghas,
the classification accuracy of LDA was the lowest, while SVM could better separate C. manghas from
other species, with a higher accuracy of 90%.

Table 6. Classification results in terms of OA, kappa coefficient, and standard deviation (in bracket) for
the eight mangrove species obtained using different selected wavebands and classifiers of the 10-fold
cross-validation data.

Selected
Wavebands

Performance
Metrics

Classifiers

LDA KNN RF SVM

125 wavebands
OA(%) 84.17

(5.22)
87.50
(5.29)

87.92
(4.03)

93.54
(2.68)

Kappa 0.8179
(0.0595)

0.8562
(0.0607)

0.8609
(0.0460)

0.9256
(0.0308)
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Table 6. Cont.

Selected
Wavebands

Performance
Metrics

Classifiers

LDA KNN RF SVM

14 wavebands
(SDA)

OA(%) 74.79
(7.04)

86.46
(5.31)

86.04
(5.38)

91.46
(4.10)

Kappa 0.7104
(0.0812)

0.8442
(0.0609)

0.8394
(0.0617)

0.9017
(0.0471)

23 wavebands
(CFS)

OA(%) 81.67
(7.47)

87.92
(4.59)

87.71
(4.33)

92.29
(2.79)

Kappa 0.7896
(0.0852)

0.8608
(0.0527)

0.8586
(0.0498)

0.9112
(0.0321)

23 wavebands
(SPA)

OA(%) 83.75
(3.51)

86.88
(4.29)

84.58
(4.93)

93.13
(1.98)

Kappa 0.8133
(0.0400)

0.8490
(0.0489)

0.8226
(0.0565)

0.9208
(0.0227)

Table 7. Summary of classification accuracies and standard deviation (in bracket) using different
classifiers of the 10-fold cross-validation data with the 23 wavebands selected by the SPA.

Mangrove Species

Classifiers

LDA KNN RF SVM

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%)

A. aureum (AA) 84.88
(12.70)

77.84
(15.44)

93.99
(7.85)

76.31
(16.02)

86.37
(11.50)

77.55
(14.20)

93.89
(8.11)

84.43
(13.84)

A. ilicifolius (AI) 87.75
(14.55)

92.14
(15.95)

84.57
(15.14)

82.17
(15.95)

75.81
(16.34)

77.89
(11.32)

90.40
(14.09)

89.87
(9.47)

A. corniculatum (AC) 96.67
(10.54)

69.55
(15.29)

72.08
(16.43)

90.50
(12.96)

71.33
(20.25)

80.75
(18.93)

80.71
(15.02)

96.57
(7.35)

S. apetala (SA) 76.62
(21.44)

98.33
(5.27)

98.33
(5.27)

93.57
(8.33)

97.08
(6.23)

96.90
(6.55)

100.00
(0.00)

98.57
(4.52)

H. littoralis (HL) 83.68
(17.68)

80.25
(14.68)

90.07
(14.31)

87.57
(13.23)

84.95
(17.91)

79.92
(13.45)

94.57
(12.95)

88.50
(10.64)

C. manghas (CM) 59.79
(31.60)

73.40
(28.72)

80.90
(22.09)

90.07
(14.31)

83.57
(22.23)

87.64
(12.49)

91.67
(21.15)

96.14
(9.23)

T. populnea (TP) 98.57
(4.52)

98.57
(4.52)

96.67
(7.03)

90.05
(11.09)

95.42
(7.47)

93.17
(9.90)

100.00
(0.00)

98.33
(5.27)

K. candel (KC) 83.99
(15.28)

90.07
(14.31)

75.92
(13.46)

94.25
(9.72)

82.32
(16.24)

92.98
(9.53)

89.17
(14.72)

97.50
(7.91)

OA(%) 83.75 (3.51) 86.88 (4.29) 84.58 (4.93) 93.13 (1.98)

Kappa 0.8133 (0.0400) 0.8490 (0.0489) 0.8226 (0.0565) 0.9208 (0.0227)

4. Discussion

4.1. Effect of the Optimal Waveband Selection Methods

The selection of effective wavebands can simplify the classification models and reduce the
computational cost. By using a fewer number of effective wavebands is possible to achieve or exceed
the classification accuracy of the entire waveband dataset [13]. The frequencies of occurrence of
the selected wavebands demonstrated their high discriminative capacities for mangrove species
(Figure 6), which were further verified by the classification results based on the wavebands selected
by the three methods. The SDA method has been widely used for choosing effective wavebands
in related research of mangroves [23], while the CFS and SPA methods have been mostly applied
to machine-learning-based classifications [10,96]. In this study, the wavebands selected by the SPA
showed better performance. There were few overlaps among the wavebands selected by the three

87



Remote Sens. 2018, 10, 2047

methods (Table 5), while neighboring wavebands that had comparable discriminative capacities were
selected. The wavebands at 526 nm, 578 nm, 638 nm, 686 nm, 718 nm, 734 nm, 806 nm, 902 nm and
950 nm were frequently selected. The selection results of this study differ from several studies with
regards to the selected wavebands for classifying mangrove species [23,97]. This may be expected
given the studied species and the specific sensor used in this study.

4.2. Impact of Spectral Datasets With Different Transformations

Spectral transformations and VIs can normally minimize the influence of brightness variations
on ground-based spectral measurements. In this study, the classification performance of the selected
hyperspectral VIs demonstrated that they were effective for the discrimination of vegetation species.
This was consistent with the conclusion of a previous study [32]. Moreover, the derivative and
log-transformed datasets manifested better classification results with the overall accuracies of all above
85%, when we employed the four machine-learning classifiers. When the classifications were performed
based on the derivative spectra, the classification accuracy of LDA showed a slight improvement
from 84.17% to 84.58% (Table 3). The LDA classifier generally requires the assumption of a normal
distribution, while the derivative transformation will destroy this distribution [31]. Conversely,
the logarithmic transformations can be generally used to normalize the distribution of a dataset.
Based on the log-transformed dataset, the classification accuracy increment of LDA was 6.68%.

4.3. Performance of the Machine-Learning Classifiers

The classification performances of four machine-learning classifiers in identifying mangrove
species were manifested, where most of the accuracies reached 80%. Compared to the other three
non-parametric classifiers, the LDA gave the worst classification performance, especially when using
fewer input parameters and the derivative spectra. This may be because the LDA is theoretically
limited to parametric datasets and requires the assumption of normal distribution. As shown in
Table 7, the lowest PA of 59.79% indicates that the LDA classifier has poor discrimination power for
C. manghas class, and this class is easy to be mistakenly classified as another class. Conversely, the UA
of 73.40% for C. manghas class shows that parts of the other classes were misclassified as this class.
Previously, the non-parametric classifiers, such as RF and SVM, have proven to be effective for meeting
the assumption of normal distribution when used for machine-learning classifications [34,98]. Overall,
the SVM outperformed the KNN and RF classifiers, especially when using the selected wavebands
and the derivative and log-transformed datasets. However, it should be noted that the classification
performances of these machine-learning classifiers may generally depend on the number of features,
number of samples, data types and the specific research purposes.

4.4. Applicability of Field Close-range Snapshot Hyperspectral Imaging

Hyperspectral imaging has been widely used to provide excellent detection capabilities for
vegetation classification. The use of close-range snapshot hyperspectral imaging provides a new
semi-automatic investigation method for hyperspectral measurements with proximal sensing in the
field, which enables field surveys more convenient and rapid. The results of this study provided
compelling evidence for the application of field close-range snapshot hyperspectral imaging in
identifying mangrove species, which also provide a theoretical and practical guidance for monitoring
mangrove forests. Compared to previous studies [22–26], which used non-imaging spectrometers,
push-broom or staring imaging sensors, this hand-held close-range snapshot hyperspectral imaging,
acquiring the spectral and image information at the time of one capture, bridges the gap between
point and image data. It also can be considered as the transition from laboratory to field, and further
close to realistic application. Furthermore, the snapshot hyperspectral imaging sensor can also be
mounted on a UAV platform for use in precision agriculture, such as winter wheat above-ground
biomass estimation [99], and vegetation classification [10,100]. The close-range hyperspectral imaging
has potential to support the identifying of mangroves at the individual species level, but for field
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operational applications, there are still several limitations that need to be considered. Many captures
need spend much time on preparations (e.g., multiple calibrations with white and dark references) and
post-processing (e.g., the selection of samples), and the imaging effects are susceptible to the weather
and illumination conditions.

5. Conclusions

In this study, we assessed the feasibility and usefulness of close-range snapshot hyperspectral
imaging for mangrove species identification with field hyperspectral measurements. We classified
mangrove species using different spectrum-transformed datasets, waveband selection methods,
and machine-learning classifiers, and compared the classification results. Our main conclusions
include: (1) The SVM proved to be more reliable for identifying mangrove species, when compared
with the other three machine-learning classifiers. (2) The classification accuracies of the selected
wavebands obtained by the three waveband selection methods, SDA, CFS and SPA, were competitive or
comparable to the classification accuracies obtained when using all the wavebands. (3) The derivative
and logarithmic transformations and hyperspectral VIs further improve the classification accuracies of
mangrove species, especially those susceptible to background contamination and irregular illumination.
The results of this study displayed the potential of close-range hyperspectral imaging as a tool in
monitoring mangrove forests at the individual species level. The hyperspectral spectra of mangrove
canopies acquired by using the snapshot hyperspectral imaging sensor under field conditions can
be used to effectively identify mangrove species. The findings of this study can potentially provide
further guidance for the application of space-borne and airborne hyperspectral sensors for mangrove
forest management and conservation.
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Abstract: Sea-ice biophysical properties are characterized by high spatio-temporal variability ranging
from the meso- to the millimeter scale. Ice coring is a common yet coarse point sampling technique
that struggles to capture such variability in a non-invasive manner. This hinders quantification and
understanding of ice algae biomass patchiness and its complex interaction with some of its sea ice
physical drivers. In response to these limitations, a novel under-ice sled system was designed to
capture proxies of biomass together with 3D models of bottom topography of land-fast sea-ice. This
system couples a pushbroom hyperspectral imaging (HI) sensor with a standard digital RGB camera
and was trialed at Cape Evans, Antarctica. HI aims to quantify per-pixel chlorophyll-a content and
other ice algae biological properties at the ice-water interface based on light transmitted through the
ice. RGB imagery processed with digital photogrammetry aims to capture under-ice structure and
topography. Results from a 20 m transect capturing a 0.61 m wide swath at sub-mm spatial resolution
are presented. We outline the technical and logistical approach taken and provide recommendations
for future deployments and developments of similar systems. A preliminary transect subsample was
processed using both established and novel under-ice bio-optical indices (e.g., normalized difference
indexes and the area normalized by the maximal band depth) and explorative analyses (e.g., principal
component analyses) to establish proxies of algal biomass. This first deployment of HI and digital
photogrammetry under-ice provides a proof-of-concept of a novel methodology capable of delivering
non-invasive and highly resolved estimates of ice algal biomass in-situ, together with some of its
environmental drivers. Nonetheless, various challenges and limitations remain before our method
can be adopted across a range of sea-ice conditions. Our work concludes with suggested solutions to
these challenges and proposes further method and system developments for future research.

Keywords: sea ice; ice algae; biomass; hyperspectral imaging; fine-scale; photogrammetry; under-ice;
underwater; antarctica; structure from motion

1. Introduction

Sea-ice biophysical properties play a central role in controlling primary production and ecosystem
function within the polar oceans [1–3]. Primary physical properties of the sea-ice environment include
snow depth, ice thickness, sea-ice texture/structure, and under-ice topography. Biological properties
often refer to ice algal biomass and include ice algal community composition and physiological
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condition. Ice algal biomass is strongly dependent on sea-ice physical properties, and both show
variability at multiple spatial and temporal scales [4–6].

Ice algal biomass has been observed to display patchiness ranging from the mesoscale to
the millimeter-scale and can undergo changes on a daily, weekly, and monthly basis [4,7,8].
The spatio-temporal variability of ice biological properties is determined by some of the sea ice
physical properties such as snow depth and ice thickness, governing light availability for the organisms.
In addition, ice algal biomass has been linked to sea-ice structure, under-ice roughness, and their
complex interplay with the biogeochemical properties of the water column controlled by currents and
boundary layer exchange processes [9–13].

A standard proxy for algal biomass in land-fast sea-ice is bottom chlorophyll-a (chl-a) (mg m−2).
This has traditionally been derived from melted ice core bottom sections. Typically bottom ice is
sampled in 0.03 to 0.1 m long sections, i.e., where most of the biomass is typically found [14].

Capturing and quantifying variability in algal biomass together with some of its associated
physical drivers over the full range of spatial scales is extremely challenging. Data for both polar
oceans remain sparse in space and time [14–16]. Challenges are in part attributed to the difficulties
in conducting fieldwork in polar regions, but also to the spatially limited and invasive nature of
traditional point sampling methods such as ice coring. Due to ice algae residing on the underside of sea
ice, satellite or airborne remote sensing techniques cannot be used, thereby limiting data collection to
field sampling. This has had implications on our capability to properly estimate polar marine primary
production, to identify complex under-ice food web dynamics, and assess sea-ice ecosystem responses
to environmental change [6,15].

In response to this limitation in sampling methods, under-ice bio-optical methods have emerged
as a non-invasive alternative to capture ice algal biomass variability at different spatial scales. These
methods are based on the formulation of relationships between spectral radiance or irradiance
measurements in the photosynthetically active radiation (PAR, from 400 to 700 nm) range from
underneath the ice, and the amount of integrated ice-core chl-a (e.g., [17] or see [4] for a thorough
review). Upward looking hyperspectral radiometers mounted on L-shaped deployment arms (or
L-arms) have provided means to produce spectra-chl-a relationships by sampling over different spots
within an area or non-invasive monitoring of change through time [17–19]. Derived bio-optical
relationships can then be applied to datasets obtained from mapping platforms such as remotely
operated vehicles (ROVs) [8,20] or instrumented under-ice trawls [7,21]. ROVs permit sampling at the
floe-scale area of hundreds of square meters while under-ice trawls are able to cover transects up to two
kilometers in length [5]. While these approaches have pushed the spatial boundaries of the surveying,
their ability to capture the fine-scale variability of sea bio-physical properties remains limited due to
their point sampling nature [22]. Wide solid angles or cosine corrected sensors necessarily integrate
over wide surface footprints, particularly when vehicle movements exceed sensor integration times.
Large footprints also hinder the effective coupling with the high spatial resolutions achieved by acoustic
methods to capture under-ice topography [23], or with photogrammetric methods to capture fine-scale
snow depth variability, and sea-ice surface properties [24–26]. Importantly, the obtained resolutions
are not always compatible with some of the scales of spatial variability observed for under-ice habitats.

Hyperspectral imaging (HI) has been experimentally tested and proposed as an additional method
to look at under-ice biomass variability from cm to sub-mm pixel scales over square-meter areas [27].
Preliminary results suggest that there is potential for HI to be extended to survey tenths of meters
transects swaths although until now no in-situ application has been trialed.

From a biogeoscience perspective, HI aims to identify, quantify (measure), and map—chemical,
physical, and biological properties—in each of the highly spectrally resolved pixels of the target image.
As the technology becomes more portable and accessible, it has found a wide range of applications.
A relevant analogous example is HI cameras equipped onto unmanned aerial systems (UAS) which
are filling an essential gap between classical ground, full-size aircraft, and satellite sensing systems
allowing more mapping at increased resolutions with ease of repeatability [28–31].
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Underwater applications of HI are still in a development phase but are presenting opportunities to
monitor and map shallow benthic habitats [32,33] and intertidal microphytobenthic environments [34].
HI cameras have also been mounted onto deep-sea ROVs and shown to be a useful taxonomic tool for
macrofauna [35] and mapping of manganese nodules [36].

Using HI to investigate processes at the sea ice-water interface presents a new level of technical
and logistical challenges. The low temperatures and the difficulty of deploying instruments (and
divers) under polar sea-ice are the most obvious. Measuring transmitted light rather than reflected
light, however, poses the most constraints. Also, pushbroom HI sensors need to be carefully configured
so that the integration time and imaging frequency match the required spatial resolution [28]. Acquired
images then typically require a series of radiometric and geometric corrections which are far from
trivial for dynamic under-water platforms. Challenges are accentuated in an environment where low,
yet variable, downwelling transmitted light availability pushes sensors to their limits. The translucent
nature of sea ice would also render the utilization of active light sources, commonly employed in
underwater HI applications, as a highly arguable approach. The under-ice realm can be a highly
dynamic environment, and where the utilization of common geo-positioning and communication
methods employed in typical aerial HI surveys is much more challenging due to the ice cover and
viewing geometry [28,37].

This study aims to develop and test the feasibility of the first version of an under-ice sliding
hyperspectral imaging system developed to produce in-situ transects several meters long at
sub-millimeter spatial resolution. Along with the HI camera, a professional consumer-grade RGB
camera was included in the payload for structure from motion (SfM) digital photogrammetry. SfM
digital photogrammetry has revolutionized surface topographic mapping by providing a relatively
low-cost solution that can provide accurate, high-resolution 3D structures of surfaces of interest through
a set of highly overlapping pictures. Particularly relevant is the example of consumer-grade cameras
being equipped on UAS to considerably increase the spatial extent of these surveys. For underwater
applications, the methodology presents additional challenges which are still a subject of research,
but present an equal amount of opportunities [38–41]. Under-ice, few studies have presented the
potential of orthomosaic composition from RGB imagery retrieved from underwater vehicles (e.g., [42]),
although SfM potential to generate quantitative topography has not been explored before.

Our HI system was tested between November–December 2018 under land fast-sea ice off Cape
Evans, Antarctica. The relatively smooth and accessible under-ice surface of land-fast sea ice makes it
an appealing first target for testing the technology. The site allows deployment of the system which
can slide at a fixed distance underneath the ice. Fast ice also hosts some of the most productive (per
volume) microalgal habitats in marine systems [1,43], making it a highly relevant first test target. To
the author’s knowledge, no published study has applied HI or photogrammetry to the under-ice
environment before, nor have HI technologies been tested in polar marine waters.

Overall our study has the following four objectives:
1) To develop and present a novel system capable of capturing fine-scale under-ice biophysical

properties based on underwater HI and RGB imagery and photogrammetry.
2) To illustrate the logistical and technical approaches taken for this first in-situ trial.
3) To provide a sample of the primary data outputs of the system and an exploration of the

potential data processing workflows aimed to estimate biomass variability and under-ice 3D structure.
4) To present an outlook for the potential of the method, address future system development

needs, and highlight the method caveats that require further research.
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2. Materials and Methods

2.1. System Design and Sensors

A detailed discussion on the theoretical principles for underwater HI applications can be found
in [44] and an extension of such theory from an under-ice perspective can be found in [4]. Here we
only discuss the aspects that have driven the design of the under-ice system.

Depending on the camera settings and the desired aims, HI sensors can capture features at different
scales ranging from millimeter close-range imagery to continuous swaths of data at the mesoscale.
The mapping scale is determined by the sensor distance from the target and the mounting platform.
Hyperspectral images are required to be orthorectified to enable extraction of meaningful and accurate
metric information of the feature of interest (e.g., distances, shapes, and areas). This is ultimately
necessary to compute the biochemical properties of the target [28], and to allow for accurate repeat
surveys and co-registration with other datasets.

The modality in which the frame is acquired can be in either pushbroom or as 2D snap-shot
imagers. Pushbroom HI line scanners are optimal when it comes to cover large surfaces under dynamic
conditions as spectral and spatial information are acquired at the same instance. Pushbroom HI also
comes at the best compromise with respect to fundamental sensor properties such as image quality,
sensitivity, spectral coverage, and spectral, spatial, and radiometric resolutions [28,45]. However, in
order to compose a rectified pushbroom orthoimage, sensors are required to be moving relative to the
imaged surface at precisely matched speeds, imaging frequencies (or frame rates), all whilst acquiring
a highly stable attitude (pitch, roll, and heading) and distance from the target [28,37,46]. Consequently,
pushbroom HI is particularly sensitive when integrated onto dynamic platforms surveying under real
environmental conditions and requires the full set of six-position (X, Y, Z) and orientation (pitch, roll,
and heading) parameters (pose) assigned for every scan-line. An additional suite of sensors is therefore
required to be integrated, and/or additional data products need to be included post-processing for
robust HI geometric correction. These include highly precise Global Navigation Satellite Systems
(GNSS)/inertial measurements units (IMUs), digital elevation models (DEMs), and orthomosaics of the
imaged surface and/or a series of ground control points (GCPs) [28].

Considering that light levels beneath sea-ice are typically very low, ranging from 0.1 to 10% of the
incoming solar radiation, HI scans are forced to move at reasonably low speeds so that the signal to
noise ratio (SNR) is maximized, requiring integration times and imaging frequency to be optimized
(resulting in relatively long integration times and slow imaging frequency required for low-light
levels). This makes HI imaging of transmitted under-ice radiance challenging for dynamic underwater
conditions and future deployment onto platforms (e.g., ROVs) that are susceptible to continuous
buoyancy, speed, drag, and currents adjustments. Also, under-ice navigation and positioning is far
from trivial and/or comes at high costs.

The developed approach here aims instead to scan relatively smooth under-ice surfaces by sliding
or “skiing” at a predefined fixed distance from the ice at precisely controllable speeds (Figure 1). This
enables the scanning movement to remain considerably stable, reducing some of the requirements
aforementioned. The transect is prepared to be a pre-defined straight-line between 10 to 40 meters in
length, limited in this prototype by the length of tether (Figure 2). Ideally, the set-up is expected to
permit stable scanning speeds matched to the low-light levels experienced and the need of pushbroom
HI orthorectification to be suppressed (or minimized). To achieve a steady, slow, and controllable
movement, two WG1500 manual worm gear winches (Dutton Lainson, NE, USA) were established
at each end-point of the surveyed transects (Figure 2). Stainless steel wires were attached from each
winch to the respective end of the aluminum frame legs of the payload rig, which allowed the system
to precisely slide back and forth through controlled winch rotations (Figure 2).

Such a sliding concept is only possible on under-ice surfaces which are relatively flat—a common
feature of land-fast sea ice in both the Arctic [20,47] and in Antarctica [48]. Fast-ice is not only a
relevant target for first tests of the technology, but also provides a relatively simpler optical set-up
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where algae are mostly residing at the bottom of the ice, at least during spring [14]. Under rougher
under-ice surfaces (e.g., pack ice, platelet ice, ice fissures, and cracks caused by pressure ridges or
medium to large brinicles) the scanning advancement of the system result could be impeded with such
a skies-based concept.

Figure 3 displays the core components of the internal payload that were fitted in the system
enclosure. An overview of all sensors, equipment specifications, and their purpose for this first test can
be found in Table 1. Detailed information of technical design and software employed to operate the
payload can be found Appendix A. The appendix also includes a schematization of power supply and
data transmission paths from the surface elements to the enclosure interior and the external payload
(Figure A1).

Figure 1. Concept design of the under-ice hyperspectral and RGB imaging system to capture fine-scale
biophysical properties of sea ice. The system is designed to retrieve bio-optical relationship from
downwelling sea-ice transmitted radiance. The sliding system aims to smoothly scan transects tenths
of meters. It has a variable ski span of 0.82 to 1.2 m, a ski length of 1.48 m and a height of approximately
2 m. Its modular buoyancy system allows adjustment of the upward push against the ice and stabilizes
the structure under different payload set-ups. The figure also shows the payload attitude reference
system relative to the sensors orientation (heading, roll, and pitch). HI refers to Hyperspectral Imaging
and FOV to Field of View.

To select an appropriate distance between the imaging sensors and the ice, we considered the
trade-off between HI and RGB imaging specifications together with a series of environmental and
logistical constraints (see [4] for a trade-offs overview). For example, spatial resolution and image
footprint are inversely correlated since increased distances from the ice yields a larger footprint at the
cost of pixel size. Increasing the distance from the ice also enlarges the depth of field (DOF), which is
an important factor to consider for close-range optical HI and RGB imaging applications. The DOF
should be large enough to cover at least the sea-ice skeletal layer where most of the algal biomass is
concentrated. Nonetheless, while gaining distance from the ice seems appealing to increase survey area,
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it increases logistical and technical problems which are relevant to the deployment of a large sliding
platform beneath thick ice cover. Such problematics add up to the known effects of the water column on
measured light intensity and spectral composition in the visible range [49]. Overall, the increased costs
of deploying optical sensors underwater need to be considered together with the additional challenges
of geometric and chromatic correction of underwater images associated to the diverse refractive indices
across the seawater-glass-air interface [50–52]. Such aberrations are not trivial to correct and depend on
multiple factors such as the sensors optical parameters and settings, deployment mode (e.g., distance
from the ice and field of view (FOV) inclinations), water optical properties and the underwater housing
lens design (e.g., flat versus dome), and material (e.g., thickness of the acrylic window).

 
Figure 2. Field deployment and operation concept for the under-ice hyperspectral imaging and RGB
scanning system. Two worm gear winches provide highly controllable slow movement back and forth
along predefined transect. Movement commands are provided via radio communication and manual
winching. The support remotely operated vehicle (ROV) is used to establish a tow-line between the
deployment hole and the opposite transect endpoint. The deployment and operation require at least
three people. Figure is not to scale.

For this prototype test, we found that an enclosure with a flat-port fitted with sensors separated
approximately one meter from the ice would be a good compromise considering our equipment,
deployment capabilities, and the spatial variability of the target (sea-ice algae) that we were surveying
(Figure 3). The custom-built and low-cost aluminum frame that set the distance from the sensor to the
ice was approximately 1.20 ± 0.10 m in length (variable by changing the angle of the legs and steel
clamps position). It also allowed the legs to be modified to any desired length if required (Figures 1
and 2). The span between the 1.48-m-long skies ranged from 0.82 to 1.2 meters. It was confirmed that
no components of the frame or skis interfered with the sensors FOVs and that FOVs of both sensors
largely overlapped for coherent HI and 3D data interpretation.

Since the system travels at a fixed distance from the target, the horizontal and vertical footprint of the
sensors can be estimated for the entire transect using standard imaging formulas (e.g., see Appendix B
in [24]). Nonetheless, a flat-port causes magnification of images due to the multiple refractions at
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the air-acrylic-water interfaces, thus reducing the apparent FOV [51]. The amount of magnification
is generally ≤1.33 and can be theoretically obtained using Snell’s law. However, such calculations
are not straightforward and require a series of sensor optical parameters and sensor specifications,
not always easily retrievable. Some include entrance pupil distance relative to the port and imaging
object, underwater focus distance and port thickness, among others. To precisely calculate the sensor
footprint on the ice, a simpler way is to image objects of known length from which we can retrieve
pixel size and derive horizontal and vertical footprint thereafter.

Finally, it is important to consider that miniaturization of remote sensing payloads is always
preferable but is inevitably associated with increased cost and/or complexity [28,29]. We must then
consider logistical and technical constraints as significant factors that could impede the deployment
of a cost-effective solution. It was also preferable to use commercially available and off-the-shelf
components when possible, to foster ease of replicability. For example, it was considered mandatory
for the system to be surface powered and to be able to stream data to operator and change sensors
acquisition parameters based on observed circumstances in real-time. The latter is not straightforward,
considering a large amount of data is generated over the multiple high-frequency imaging processes.
Costly underwater fiber optic connectors and tethers were avoided by allocating an internal digital
processing unit (DPU) within the enclosure, which directly interfaced with the multiple sensors and
allowed for on-board data storage (Figure 3). Power and communication with the surface was enabled
through an ethernet/power cable permitting for virtual network computing (VNC). Altogether, these
design features come at the cost of payload volume, and the entire payload was fitted into a cylindrical
enclosure with an internal diameter of 0.23 m and a length of 0.6 m (Figure 3).

Figure 3. An overview of the payload main internal components, their allocation within the enclosure
and volume required to host the payload. AK10 stands for AISA Kestrel 10. The figure also includes
the payload attitude reference system relative to the sensors orientation (heading, roll and pitch).
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Table 1. Summary of all optical sensors utilized in the internal and external components of the
developed system together with their specifications (top part). The table also includes specifications of
other components required to run the system (bottom part). Field of view (FOV)h and FOVv stand for
the vertical and horizontal field of view. Underwater FOV is only an ≤ estimate approximation based
on simplified theoretical formulas. FWHM refers to full width to half maximum.

Sensor Fore-Optics/Lens
Field of View
(FOVh/FOVv)

Number of Spatial
Pixels

Spectral Range
Spectral Resolution

and FWHM

Specim AISA
Kestrel 10

pushbroom
sensor

aperture: F/2.4 40◦/0.0388◦
in air 2048 × 1 or

1024 × 1 (binned) 400–1000 nm
1.75 / 3.5 / 7 nm/pixel

(depending on binning)
focal length: 35.375 ∼29.88◦/0.029◦

underwater

Sony a6300
with Samyang
AF 35 mm FE

max aperture F/2.8 37.2◦/25.12◦ in
air 6000 × 4000 Visible RGB

focal length: 35 mm ∼27.5◦/18.7◦
underwater

Low Light USB
HD cam

focal length: 2.97 mm 80◦/64◦ in air
1920 × 1080 Visible RGB∼57.3◦/46.6◦

underwater
TriOS Ramses

ACC cosine corrected diffuser Cosine
response Point sampling 320–950 nm 3.3 nm/pixel

STS-VIS CC-3-DA cosine
corrected diffuser

Cosine
response Point sampling 350–800 nm 3.0 nm/pixel (50 μm slit

version)
Other components

Digital
Processing Unit

(DPU)

Used to interface and operate all internal sensors/cameras with the surface PC using VNC and has custom
electronics from Specim (see Appendix A). Specifications are: Windows 7 Pro, Intel Core i5, 64 bit, 8GB RAM,

PIXCI EB1 frame grabber, CameraLink converter, 500 GB HyperX SATA SSD.

VN-100 IMU

Measures system attitude used for future geo-rectification of HI imagery (see Appendix A). Operated through the
DPU via a Python script. Specifications: 0.5◦ Static Pitch/Roll, 1.0◦ Dynamic Pitch/Roll, 5◦/hr Gyro In-Run Bias

(typ.), 800 Hz IMU Data, ±16 g Accelerometer Range, ±2000◦/sec Gyroscope Range, no GPS unit is included in this
model.

Garmin GPS
18x LVC

Used for above surface GPS lock and time-stamp synchronization (see Appendix A). Specifications: 12-channel
GPS receiver tracks, up to 12 satellites, one-pulse-per-second logic-level output with a rising edge aligned to

within 1 microsecond of UTC. 1 Hz, output data in NMEA 0183 format.

Lumen Subsea
Lights (LEDs)

Four units attached as external payload. Intensity manipulated from above surface using a custom build-control.
Specifications: Max brightness of 1500 lumens dimmable, beam angle of 135 deg in water and color temperature

of 6200 Kelvin.

The overall height of the system (including the frame legs and skis—Figure 1) was approximately
2 m which required a well-regulated buoyancy to keep the system vertical and pushing against the ice
with moderate upward pressure to allow for smooth scanning. This was achieved through modular
buoyancy and ballast units that regulated the system’s vertical buoyancy and stability based on local
conditions as displayed in Figure 1.

One benefit of the system’s frame size was that it allowed the incorporation of external sensors in
the future. For example, for our first tests, we included an upward-looking TriOS Ramses ACC-VIS
spectrally resolved irradiance sensor near the ice-water interface to measure light directly exiting the
sea-ice matrix (seen in Figure 2 and specified in Table 1).

2.2. Field Site and Transect Preparation

First trials of the system occurred during November–December 2018 under highly productive
Antarctic land-fast sea ice off Cape Evans (77.6371733◦S, 166.4018691◦E) [13,14,48]. As seen in Figure 4c,
we did not experience any platelet ice during the period of our surveys, contrary to what was
experienced over the same site during other studies [23,48]. The area was characterized by a relatively
homogenous sea-ice thickness of approximately 1.8 ± 0.01 m, except for ridged or cracked areas,
and this was confirmed by our sampling. The area was also largely snow-free due to wind-induced
snowdrift and displacement. An ice hole site was selected from which three transects with variable
surface conditions could be surveyed. Transect directions pointed towards northwest (NW), west
(W), and southwest (SW). In this study, we provide only a data sample from the western transect as
this paper aims to describe the technical performance of the payload and its potential for research
applications (see objectives). The analysis of the remaining transects and biophysical investigation of
the under-ice habitat at Cape Evans will be presented in a later study.
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Figure 4. Field pictures of the first deployment at Cape Evans, Antarctica. a) The system control station
together with the removable payload tray. b) The system deployed in the water prior to under-ice
immersion. Visible is the external payload composed of the TriOS Ramses ACC and a set of four Lumen
Subsea LEDs, and the prop maneuvering cradles. c) The system scanning over the selected transect
underneath the highly productive fast-ice of Cape Evans. d) One of the worm gear winches at the
opposite side of the transect in speed-up mode using a drill adapter.

The 2 m by 1.8 m ice-hole was made through a combination of 6” Jiffy auger holes and hot-water
drilling. A polar haven tent was erected on top of the hole to maintain a safe and constant-temperature
working environment for the equipment. To create a tow-line for the winch system, a 6” Jiffy auger
hole was drilled at the end-side of each targeted transect. From this hole, a rope with a deadweight
was immersed and rendered visible from the under-ice. A Seabotix LBV-300 ROV (Teledyne Marine,
Seabotix, California, USA) equipped with a grabber arm was deployed from the central hole to grab
and retrieve the tow-line from the smaller hole at the end of the transect (Figure 2). Following the
installation of the winches, the rope was replaced with the winch wire and this was attached to the
under-ice sled.

2.3. Deployment and Data Acquisition

The AK10 only allows for manual focus, and the system does not currently have the capability for
remote focusing. The focus distance was required to be set to the predefined scanning distance of the
system of approximately 1.2 m. Nonetheless, we need to consider that the focal distance and DOF
have the potential to change underwater under a flat port set-up to ultimately affect image sharpness.
We, therefore, used an underwater focusing target immerged in the ice hole together with a dummy
acrylic glass port to focus the camera under dry conditions while mimicking the underwater optical
set-up. The Sony a6300 interface allowed for remote autofocus.

We selected sunny and completely cloud-free days for our deployments to maximize under-ice
transmitted light (and thus HI SNR). Before deployment, the enclosure was vacuumed using a standard
vacuum pump and PREVCO vacuum kit manifold assembly to an internal pressure of −15 in.-Hg in
gauge for leak testing and to reduce internal condensation risks. Although the air in Antarctica is
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typically very dry, this process is important to avoid any condensation within the enclosure due to the
considerable heat produced by sensors and equipment compared to the exterior temperature.

Due to its voluminous shape and weight, the system required two to three people to be manually
deployed into the ice hole. The system was then manually pushed below the 1.8 m thick sea ice by two
people using rods inserted into the incorporated cradles (see Figures 1 and 4b). The system can then be
rotated into the desired transect direction (e.g., western).

Once under-ice, the system was winched three to four meters away from the hole and the tent
to avoid interference in the light conditions beneath the ice. We were able to speed up the worm
gear winches (designed to be slow for data acquisition) using a winch adapted electric drill as seen in
Figure 4d to move the system into the right position for data collection. An initial assessment of the HI
signal intensity from directly under-ice was then performed. The optimal traveling speed and HI and
RGB imaging settings were then maximized for both SNR and image quality.

The AK10 data storing and imaging settings, including integration time, imaging frequency, spatial,
and spectral binning were controlled in real-time using the Lumo Recorder software (Specim Spectral
Imaging, Oulu Finland). For HI, the spatial and spectral dimensions were binned to 1024 spatial
pixels across track, and a spectral resolution of 3.5 nm (178 bands), respectively. Whilst the spectral
dimension could have been further binned to 7.5 nm for increasing the signal; this was avoided as too
coarse spectral resolutions are known to hamper the application of some of the HI processing methods
for ice algae [27]. The HI frequency was set to 10 Hz and an exposure time of 99 ms (maximum
setting available). The ideal sled system speed for these settings was found to be around 0.008 ms-1
corresponding roughly to one rotation of our worm gear winch per second. The read-out frequency
of the IMU was also set to 10 Hz aiming for HI and IMU data time-stamp synchronization at the
decisecond (ds) level. The survey distance of 1.18 m between the HI sensor and the ice resulted in a HI
footprint width on the ice of approximately 0.61 m and a pixel size of 0.00625 m. The Lumo Recorder
software was programmed to acquire 100 samples of a dark frame image with the shutter closed at
the end of each acquired hyperspectral image. Dark frame images were taken for the subsequent
radiometric correction of the imagery through the removal of dark current noise.

The Sony a6300 is operated through the Sony Imaging Edge software “Remote” feature. The
software allows live streaming the camera view and permits exposure control, ISO, time-lapse shooting
interval, and AF settings to be modified. We found that at the selected winch speed, an imaging
interval of 0.1 Hz was sufficient to guarantee abundant forward overlap (>90%). This relatively large
sampling interval, together with the slow movement allowed the camera to be set to AF, which resulted
in sharp and focused images. The ISO was set to 250; aperture maximized to f/2.8 and shutter speed
set to 1/250 sec for most of the circumstances. The altitude of the camera was around 1.2 m, which
yielded an estimated footprint width of 0.586 m in water and a resolution of 0.0001 m. All images were
captured in the Sony RAW format (.ARW) to allow for any eventual image pre-processing approaches
(e.g., see appendix in [24]).

The radiometrically calibrated Ramses ACC-VIS was synchronized to acquire an under-ice
irradiance sample at the same time as each Sony a6300 RGB image (0.1 Hz) was taken. In this
way, it is possible to link every image to a Ramses ACC-VIS radiometric irradiance sample and
locate images spatially across the transect through the retrieved camera positions following SfM
digital photogrammetry.

The STS-VIS radiometer was set-up to acquire a measurement of incoming downwelling solar
irradiance every minute considering the highly stable conditions during the surveys and the relatively
low variability in sun angle.

Following system retrieval, HI, RGB imagery, and IMU navigation data files were downloaded
directly from the SATA SSD within the DPU. VNC allows for direct data transfer from the payload to
the surface, but the operation is time-consuming for large files such as the HI imagery data files.
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2.4. Data Processing

Both hyperspectral image analysis and SfM photogrammetry are active research topics for many
land-based applications. The adaptation of established terrestrial procedures to novel under-ice
applications requires targeted studies aiming to identify, test, and evaluate their performance in an
under-ice context. Here we present only preliminary data outputs of the developed system and assess
their quality and potentials from a biophysical perspective. We do this by looking exclusively at the
western transect and selecting a successful subsample for hyperspectral image analysis and processing
(Figure 5), namely block B. For the RGB imagery and photogrammetry, we retrieve for the first time a
high-resolution orthomosaic and DEM of the under-ice using commercially available software. For HI,
we adapt some of the known methods in under-ice bio-optical literature to the hyperspectral images
and illustrate potential new ones.

 

Figure 5. Overview of the surveyed western transect produced with structure from motion (SfM) digital
photogrammetry using the RGB imagery. Camera positions and Ramses ACC irradiance samples
were synchronized to the same sampling frequency, so they match in space. Blocks A and B within
the transect were selected for further image analysis. On top is a photograph of the transect direction
viewed from above the surface. Displaying the typical survey conditions (little to zero snow) of the
study area.

2.4.1. RGB Imagery and SfM Digital Photogrammetry

It is well known that image quality and poor camera network geometries can considerably
affect SfM model’s reconstruction and the extraction of accurate metric information. Image quality
in non-metric cameras is influenced by the camera sensor, lens quality, mechanical stability, and the
overall image acquisition process under dynamic conditions. Poor camera network geometry refers to
the lack of forward or side overlap in the imagery and/or lack of oblique imagery. Underwater, SfM
photogrammetry is further challenged when using flat-ports due to the multiple refraction processes
that magnify FOV, affect the focal length and produce a series of geometrical (e.g., radial distortion)
and chromatic aberrations in the images directly affecting camera calibration algorithms in SfM,
which ultimately affect the reconstructed model.
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While image quality, per se, was not considered problematic in our transect dataset, the flat port
did cause non-negligible effects on the imagery (e.g., noticeable pincushion distortion). To solve such
aberrations and obtain an accurate camera calibration one can formulate the complex mathematical
models of the imaging process in water [53,54] or perform a rigorous camera calibration using
underwater targets with precisely known geometry [55]. Another option is to rely on camera
self-calibration, which refers to the calibration process using only image point correspondences for
large and well-composed datasets [56,57]. However, self-calibration is challenging in our dataset as
camera network geometry is particularly weak when dealing with elongated strips with only nadir
images and no side overlap and/or oblique imagery [57]. Systematic errors produced in such datasets
can cause bending and non-linear deformations in the photogrammetric models as confirmed by our
tests [57,58]. Here we apply a simple preliminary solution to the camera calibration problem using a
constrained self-calibration approach by taking advantage of the flat under-ice surface, the known
transect lengths and a series of identifiable reference points that were also measured from above
the surface.

Prior to photogrammetric processing, 733 Sony RAW images acquired for the western transect were
first imported into Adobe Lightroom where an initial lens correction and manual batch compensation
for pincushion distortion was performed. Lightroom considers camera lens profiles into its corrections,
and this empirical “trial-and-error” approach is simply to partially reduce bending of the model to a
near straight level. Duplicate images were discarded as labeled repetitions during sled idle times, and
the remaining images were exported from Lightroom as .JPG files for further SfM processing.

The 3D reconstruction of the under-ice surface was created using Agisoft Metashape (previously
Photoscan), is a software package which has been extensively used for 3D modeling and
photogrammetry over a wide range of geoscience applications [59,60]. The workflows for under-ice
DEM and orthomosaic generation are described here. Photo alignment accuracy was selected as
medium (for computational reasons) and provided a first estimate of camera calibration parameters
and the reconstructed scene. The produced sparse point cloud model at this stage was noticeably bent
and deformed. We proceeded to filter outlier’s and low accuracy points using the gradual selection
tools. Due to the smooth nature of the surface (Figure 4c), we assumed that all the surface areas with
little algal cover were level with a reference height of 0.0 m, and created a dense and well-distributed
network of reference level markers with a Z position (altitude) 0.0 m. We also added the known
transect length as a scale bar length reference together with a series of points that were identifiable
and could be referenced to above surface positions whose relative position could be measured with
a measuring tape. For our entire western transect, we allocated 32 of these reference points, termed
ground control points (GCPs) [61,62].

All these level reference GCPs are assigned with a high marker accuracy of 0.002 m in Metashape
reference settings options. The model is then processed using the optimization of camera alignment
feature where non-linear deformations can be removed by optimizing the estimated point cloud and
camera calibration parameters based on these known reference marker coordinates [59]. During this
optimization, Metashape adjusts estimated point coordinates and camera parameters minimizing the
sum of reprojection error and reference coordinate misalignment error.

The Metashape workflow is then followed by dense cloud reconstruction (medium quality and
aggressive depth filtering), 3D mesh from the dense cloud (Arbitrary surface type, medium quality,
enabled interpolation, and aggressive depth filtering), texture mapping (orthophoto mapping mode
and mosaic blending mode), and finally DEM and Orthophoto production. The scaled orthomosaic
and DEM were exported in .TIF format to QGIS and the DEM was processed with a hillshade function
for visualization purposes.

2.4.2. Hyperspectral Imaging and Radiometer Data

The retrieved HI images of block A and B consisted of a three-dimensional (x, y, λ) data cube
where x and y represent the spatial dimensions, and λ the spectral dimension. The first two steps of
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the HI processing workflow include radiance conversion of digital numbers (DN) and pushbroom
image rectification. The system was designed so that little to no geometric rectification and IMU data
integration is required. This was the case for block A and B of the analyzed transect (Figure 5).

Per-pixel radiance conversion was done using Specim Caligeo PRO software (Spectral Imaging,
Specim Ltd., Finland) which addresses noise and geometric aberrations inherent to the sensor and
performs the conversion of DN into downwelling spectral radiance Ld (λ, mW m2 sr−1 nm−1) using the
in-situ acquired dark current frames and the associated calibration files. For the present study, spectral
bands <400 nm and >700 nm were considerably noisy and outside the range of interest, therefore
spectral subsetting was applied reducing the data to a total of 89 bands.

The block B HI subsamples are then smoothed using a Savitzy-Golay low-pass filter with a
polynomial order of three and frame length of nine aiming to reduce noise in the transmitted signals
without hindering the retrieval of fine spectral features [63,64].

Following this procedure, we adapted methodologies previously applied to track biomass
variability from under-ice spectra such as normalized difference indices (NDIs) and principal
component analysis (PCA) (also known as EOF) [5,17,19,27]. Every pixel within the HI subsample
was integral-normalized to reduce the amplitude component of spectral variability and to focus on
differences in spectral shape, a pre-processing standardization method previously applied in sea-ice
bio-optical literature [8,19,48].

PCA for hyperspectral remote sensing is typically employed for dimensionality reduction, to
reveal complex relationships among spectral features or for the identification of prevalent spectral
characteristics. PCA has been widely used in optical oceanography for extracting information about
seawater constituents from spectral data (e.g., [65,66]). In our case, PCA was applied to the spectral
dimension of block B data cube to explore and highlight the most variable features and relationships
across all pixels in the block B image [27,67].

Spectral indices, such as NDIs, have been linearly correlated to the logarithm of sampled chl-a in
multiple sea-ice studies [5,19,48]. Since we have not developed a specific spectra-biomass relationship
for our site that applies to the developed HI payload yet, a couple of identified optimal NDIs from the
land-fast sea-ice of Davis Station and McMurdo Sound, Antarctica by [48] were selected and utilized as
a proxy of biomass. Before index implementation, block B was spatially binned to two by two pixels,
reducing the spatial resolution from 0.624 mm to 1.2 mm, but boosting per pixel signal. The following
NDI equation was then applied to every pixel in the image:

NDI(λ1, λ2) =
Ld(λ1) − Ld(λ2)

Ld(λ1) + Ld(λ2)
(1)

where λ1 and λ2 are wavelength bands selected across the sensor spectral range and Ld (λ, mW m2

sr−1 nm−1) is the solar downwelling radiance transmitted through the ice. From [48], we selected
441:426 nm and 648:567 nm as two different NDIs in different areas of the spectrum and applied
the NDI equation to every pixel in the block B image. In this study, we used radiance to compute
the indexes rather than under-ice radiance normalized to surface irradiance (or transflectance [68]).
Changes in above surface illumination conditions (e.g., solar geometry and atmospheric effects) within
the block A and B image subsample were considered negligible.

In addition to adapting PCA and NDIs to under-ice HI, we also tested for the use of an index
called Area under curve Normalized to Maximal Band depth between 650–700 nm (ANMB650–700) of
the continuum removed spectrum [69]. ANMB650-700 has been successfully applied for chl-a and chl-b
mapping using HI of Norwegian spruce trees [69] and Antarctic moss beds [70], and here we use it as a
proxy of chl-a or ice algal biomass.

For this index, we applied the same Savitzky-Golay low-pass filter and the two by two spatial
binning factor, but no integral normalization is performed. Instead, the entire image is normalized by
the highest spectrum intensity within the block, which corresponds to an algal free cavity in the ice
visible in the image (shown later in the results section). This provides a proxy of light transmittance
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over roughly the last 5 to 15 cm of ice bottom and enhances visibility of the absorption peak of
chl-a at 670 nm of each pixel spectrum. The continuum removal transformation on the spectrum is
a fundamental pre-processing step to enhance and standardize the specific absorption features of
biochemical constituents [71]. It allows for the normalization of the transmittance spectra so that
individual absorption features can be compared from a common baseline. Following a localized
continuum removal, we can calculate the Area Under Curve in the range between 650 and 700 nm
(AUC650–700) where chl-a attains one of its absorption peaks:

AUC650–700 =
1
2

n−1∑
j=1

(
λj+1 − λj

)(
ρj+1 + ρj

)
(2)

where ρ j and ρ j+1 are values of the continuum-removed transmitted spectra at the j and j+1 bands, λ j
and λ j+1 are wavelengths of the j and j+1 bands, and n is the number of the used spectral bands. We
can then calculate the ANMB650-700 index as:

ANMB650−700 =
AUC650−700

MBD650−700
(3)

where MBD650–700 is a Maximal Band Depth of the continuum-removed reflectance, generally at one of
the spectrally stable wavelengths of strongest chl-a absorption around 670–680 nm. Normalization of
AUC650–700 by MBD650–700 is a crucial step for strengthening the relationship between ANMB650–700

and the chl-a content for higher chl-a concentrations. The logic behind this spectral index is exploiting
well-known changes of the transmittance signature shapes produced within these wavelengths mainly
by the changes in algal chl-a content.

In order to validate the robustness of the HI data compared to traditional means of acquiring
under-ice spectra, hyperspectral irradiance variability measured with the Ramses ACC-VIS across the
entire transect (samples shown as black dots in Figure 5) was computed and compared with spectra of
every pixel in block B. The Ramses ACC-VIS data further allow us to gain an estimate of downwelling
irradiance intensity exiting the ice-water interface and was used to gain an insight of the light levels
experienced under-ice. These can then be used to baseline the signal quality of the data achieved
using our HI system under those specific conditions. The TriOS Ramses ACC-VIS was radiometrically
calibrated using the factory provided calibration files (traceable within international standards) during
the data acquisition process.

3. Results

3.1. Deployment and Operation Performance

The system was successfully deployed and retrieved for the three targeted transects (NW, W,
and SW). For the western transect analyzed here, a total of 736 RGB images and Ramses ACC-VIS
irradiance samples were acquired, in both forward and backward directions (Figure 5). The overall
scanning operation lasted approximately 2.5 hours, not including system set-up. Considering the air
(–5 to 5 °C) and water (–1.8 °C) temperatures experienced, the electronics in the housing functioned
well under the challenging environmental conditions and were kept above freezing point by heat
produced from the multiple electronics. HI-sensor temperature sensors indicated that temperature
was maintained at around 17 °C over the entire western transect.

As shown in Figure 6, the system was able to produce natively well-composed pushbroom
hyperspectral images without the need for any rectification methods and/or additional attitude and
navigation data (e.g., see block A in Figure 6c).

However, occasional lagging instances in the sled-motion during scanning of some sections of the
transect hampered smooth pushbroom HI data acquisition. Sometimes these lags were long enough
(0.5–3 seconds instances) that data collection had to be interrupted and the sled system to be forwarded

108



Remote Sens. 2019, 11, 2860

until the movement was smooth again. In other cases, they were acceptable and could eventually be
corrected through the integration of the IMU data algorithms and image correction filters (e.g., Figure 6
lagging instance). Transect blocks requiring rigorous geometric rectification and post-processing are
out of the scope of this study and will be investigated in the future through the development of targeted
geometric HI correction algorithms.

Figure 6. Display of the main data products of the developed under-ice payload. Block A and
block B refer to two different subsections within the western transect that were selected for further
analyses. a) Under-ice orthomosaic produced from the RGB imagery. b) Hillshade of the SfM derived
digital elevation model (DEM) illustrating relief structure produced by the large cavities. c) Visual
representation of the hyperspectral data cube for block A including block B as an RGB composite. Panel
d) and e) display the high variability of radiance spectra for a selected variety of spots within block B
(both unprocessed and smoothed with a Savitzky-Golay filter respectively). Panel f) display four of the
darkest pixels within the image associated to extremely dense algal clumps. For all plots, spectrum
shows a × 4 pixels spectral average which corresponds to approx. 1.2 mm pixel size. Native pixel size
is 0.624 mm.
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Transects also did not always followed a straight line, but instead, the trajectory displayed a slight
bend as can be seen from Figure 5. This means that the system showed changes in heading according
to its attitude reference system (heading, roll, and pitch) shown in Figures 1 and 3. Transect bending is
only noticeable when considering long distances rather than over the shorter accomplished HI scans.
However, this track deviation did have an impact on the imaged transect as forward, and backward
travels did not perfectly overlap in some instances producing unnatural invasive marks such as the
visible ski tracks in Figure 5.

3.2. RGB Imagery and Photogrammetry

For the western transect, 615 camera positions were aligned successfully, and optimization
produced an overall flat 3D model of the under-ice surface (Figures 5 and 6a). Dense reconstruction
of the model resulted in a rich and well-composed dense point cloud (100,199,561 points). The first
estimation of the total area covered was 13 m2 for the western transect. The final resolution of the
displayed orthomosaic was 0.0994 mm/pixel and for the DEM 0.821 mm/pixel with a point density of
1.48 points mm−2. The total RMSE of the Euclidean distance between the generated reference level
markers and the corresponding estimated points in the reconstructed 3D model was 0.0762 m (0.0623 m
X error, 0.0322 m Y error, and 0.0297 m Z error). While this error does not reflect a rigorous accuracy
assessment of the absolute geometric accuracy of the model, our interest in these first trials was in
the ability to retrieve complex topographic features. The relative (within model) accuracy and point
density are sufficiently high for this purpose.

The RGB orthomosaic illustrates the high level of algal biomass under the land-fast sea ice of Cape
Evans. This encompasses both gentle changes in illumination and also different shades of brown and
green coloration over the full 20.1 m transect (Figure 5). Zooming into block A, Figure 6a displays
complex networks of ice algal aggregations and patches together with the presence of large bright
cavities embodying large secondary brine channels [72]. The DEM hillshade in Figure 6b shows that
while at first sight, the under-ice at Cape Evans seems like a featureless surface, it has high levels of
relief complexity attributed mainly to an extensive network of secondary pore spaces [72]. Looking
at Figure 5, they appear to occur in specific areas of the western transect. These pore cavities range
widely in size and depth and are believed to be a result of a series of sea ice thermodynamic processes
of brine flushing and merging of channels during the advancement of the summer season (e.g., [72,73]).
An ice core footprint of 0.14 m in diameter is provided as a reference scale for these large brine pores in
Figure 6a,c. However, the total depth of the cavities is difficult to capture with digital photogrammetry,
and we could only image and reconstruct up to a certain depth depending on their width. Smaller
subtle relief and undulations of the under-ice surface are also observable from the DEM hillshade
(Figure 6b). Since these are not recognizable as white spots from the imagery itself, they are perhaps not
strictly related to brine release processes but rather ice undulations of yet unknown origin. The DEM
hillshade also captures micro-rugosity in the 3D model attributed to protrusion of dense algal clumps
mostly formed by the diatom species Berkeleya adeliensis (F. Kennedy pers. communication). The
hillshade map also displays a specific orientation pattern assumed to be driven by the underlying water
currents. Berkeleya adeliensis was found to be the predominant species together with the interstitial
diatom Nitzschia stellata from microscopic observations.

Current-driven orientation of algae strands and the biophysical complexity of the under-ice
habitat were also observed in the high-resolution Sony a6300 RGB images shown in Figure 7. These
images not only display the native quality of the RGB imagery but also show additional important
biophysical properties of the under-ice habitat such as the sea-ice skeletal layer and its crystal orientation
(Figure 7a) [72,74]. Figure 7a was taken nearby the ice hole, and the difference between what appears
to be the hanging Berkeleya adeliensis and interstitial diatom species is clearly visible. Later into the
transect in Figure 7b, a certain degree of algal orientation can also be observed together with some of
the large secondary brine channels. Zooming in on Figure 7b, we also observed high concentrations
of oxygen bubbles produced by the photosynthesizing algae. Also, several types of under-ice fauna
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were visible along the high-resolution imagery dataset such as ctenophores (Figure 7a) and amphipods
(Figure 7b).

Figure 7. Two upward looking RGB image samples taken from the Sony a6300 camera dataset shown
at full resolution. Both images display some examples of spotted under-ice feeders (circled). Left image
shows a ctenophore (comb jelly) and right image shows a couple of circled amphipods. a) Image taken
nearby the visible deployment ice hole. The image zooms into a large brine channel and further on the
highly detailed under-ice skeletal layer. b) Image taken midway on the transect displaying the high
concentration of oxygen bubbles produced by the photosynthesizing ice algae.

3.3. Hyperspectral Imaging and Radiometric Data

A visual representation of the block A hyperspectral data cube within the western transect is
shown in Figure 6c. The quality of the image composition shows minimal geometric noise and a robust
geometrical resemblance with the RGB orthomosaic for the entire block A subsample. The cube also
shows an example of one of the lagging instances in the sliding sled system as previously noted.

The right-hand plots in Figure 6 display the quality of the measured spectral signatures in terms
of overall intensity for the under-ice downwelling radiance Ld (λ, mW m2 sr−1 nm−1) unprocessed
(Figure 6d) and smoothed (Figure 6e). It is clear that high variability of light intensity and spectral
shape can be found across a series of features within the <1 m2 area of block B. Such variability can
change up to one order of magnitude and is mostly ruled by the presence of the secondary brine
channels together with the drastic differences in algal concentrations and aggregations, but also due to
the different algal species/morphotypes (e.g., hanging versus interstitial) among other factors. Despite
the highly contrasting under-ice light regime induced by the large brine features, the camera dynamic
range allowed to optimize settings to the lower light areas (e.g., algal patches) without saturating the
pixels over the secondary brine pores.

Absorption by algal associated chl-a is easily observable over almost all pixels in the image as a
reduction in intensity over the 440 ± 20 nm and 680 ± 10 nm bands. Higher ice algal biomass reduces
transmitted radiance in the blue part of the spectrum and produces a compressed curve in the green
part of the spectrum [75]. Absorption features by ice algae tend to drastically decrease nearby and
within the secondary brine channels (e.g., red spectrum in Figure 6d–e) except in circumstances where
we find dense algal webs hanging in the middle of these cavities (e.g., celeste spectrum in Figure 6d) or
highly concentrated algal clumps scattered around these cavities. From the entire block A image, we
also selected some of the lowest light pixels we could find, and their spectrum can be seen in Figure 6f.
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The SNR noticeably decreases for such targets, and the blue region (400 to 500 nm) seems to be noise
dominated. Nonetheless, the spectrum still displays strong chl-a signatures in the 680 ± 10 nm band
curve and an overall meaningful signal.

The mean irradiance spectrum ± standard deviation (sd) measured with the Ramses ACC-VIS
for the length of the whole 20.1 meters transect is shown in Figure 8a. The total irradiance energy
integrated over the PAR range (400–700 nm), Ed,PAR (λ, W m2) averaged 0.35 (λ, W m2), with a 0.20 sd,
and a total range of 0.07–1.5 (λ, W m2). Figure 8a also helps to characterize the spectrum variability
across the entire transect. Interestingly, a similar degree of variability (although in terms of radiance) is
experienced within the <1 m2 block B subsample as seen in Figure 8b showing the mean spectrum ±
sd of all pixels of block B. Figure 8c displays the integral-normalized mean spectrum of all the pixels
of the block B hyperspectral data cube overlaid by the integral-normalized mean spectrum of the
entire western transect using the Ramses-ACC-VIS. Figure 8d displays all pixels of the block B image
normalized by the highest light intensity pixel in the images which is attributed to the light exiting one
of the secondary large brine channels or cavities (seen Figure 6). This plot indicates properties of the
transmitted light over the bottom layer of the ice where >98% of the biomass thrives. The normalized
spectra were used to compute the ANMB650—700 index. The normalization greatly accentuates the
absorption features of chl-a in the blue area centered at 450 nm and the red peak centered around
670 nm.

 

Figure 8. a) Mean ± one standard deviation of downwelling under-ice irradiance (Ed) spectra from the
TriOS RAMESES ACC-VIS located near the ice water interface for the full 20.1 m transect. b) Mean ±
one standard deviation of under-ice downwelling radiance spectra (Ld) from all the pixels of block
B hyperspectral image subsample from the AK10. c) Mean ± one standard deviation of under-ice
irradiance and radiance spectra normalized by area under curve for the Ramses ACC-VIS over all the
transect and for all pixels of block B AK10 hyperspectral image. d) Mean ± one standard deviation of
under-ice downwelling radiance (Ld) normalized by the maximum radiance pixel of all block B and
corresponding to one of the cavities or secondary brine channels seen in the image (Ld-cavity).
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PCA results are shown in Figure 9. The loadings of the first nine principal components explaining
>99.54 % of spectral variability within the image are shown for completeness. Figure 8 also displays
the loading scores applied to each pixel of block B for the first three principal components (PC1, PC2,
and PC3) together with an RGB composite of block B. PCA results show well resolved and coherent
principal components similar to what was reported previously in the literature employing PCA (or
EOF) using under-ice radiance and irradiance sensors in-situ [5,19], or for HI in artificial sea-ice
simulation tanks [27]. The PC1 loadings account mainly for variability in light intensity attributed to a
mixture of factors and embody the general trend of the under-ice light spectrum. PC2 seems to be
more influenced by the two contrasting dip areas around 440 ± 20 nm and 680 ± 10 nm suggesting a
possible correlation with algal chl-a pigments. Nonetheless, PCA at this stage serves as an exploratory
tool and it remains difficult to assess the nature of PC3 and the remaining PCs without further analyses
of pigment composition e.g., through high-performance liquid chromatography (HPLC) (e.g., [43,48]).
The PCA score images also evidence some subtle line artifact features across the scanning direction of
the hyperspectral image (Figure 9). These are attributed to small vibrations or micro-lagging instances
whose visibility is enhanced following integral-normalization and PCA processing.

The results of the NDI (648:567 nm) and ANMB650–700 indices applied as relative proxies of
biomass variability to block B are presented in Figure 10a,b, respectively. Interestingly, Figure 10
suggests that both indices provide a similar result in terms of biomass distribution patterns and capture
spatial scales previously unprecedented. However, NDIs seems to produce nosier images compared
to ANMB650–700. It might be argued that the ANMB650–700 is based on the curve shape information
of the light transmitted through the algal layer and such normalization was not applied to compute
NDIs. However, both methods were tested and showed that using quantitative changes of transmitted
radiance intensity produced less noisy images in case of NDIs.

NDIs applied to block B over the blue/violet area (441:426 nm) were also tested and provided
similar results although with slightly noisier imagery (not shown). A final interesting observation is
the anisotropic noise pattern observed in both NDIs (648:567 nm) (Figure 10a) and PCA across the
scanning direction of the image (Figure 9). This is observable as noisier zones at the top and bottom of
the image.
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Figure 9. Results of principal component analysis (PCA, also known as EOF), applied to the spectral
dimension of block B (hyperspectral image subsample of the western transect). Top images display
the first three PC scores applied to every pixel of the image using corresponding loadings for each
component. Bottom plots display the loadings for each wavelength for each principal component. Plot
display as well the proportion of variance explained by each corresponding component. Light grey
areas highlight the maximum chl-a absorption regions at 440 and 670 nm. Spatial resolution for PCA
was maintained to a native 0.625 mm.
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Figure 10. Application of spectral indexes as proxies of chl-a distribution over block b HI subsample.
a) Results from the application of a commonly used index in sea-ice bio-optical literature, the normalized
difference index (NDI), applied for wavelengths 648:567 nm on block B hyperspectral image subsample.
b) Application of a novel index to sea-ice bio-optical literature, the area under curve normalized to
maximal band depth (ANMB) between wavelengths 650 to 700, applied to the same block B. c) Plot of
continuum removed spectrum of three random pixels within block B to help visualizing the ANMB
650–700 concept and its association with chl-a absorption. For the color bars, higher values (towards
red) correspond to higher expected biomass. Spatial resolution for the indices was binned to 1.2 mm.

4. Discussion

4.1. Under-Ice Hyperspectral Imaging Data Quality and Processing

The present study outlines a novel platform incorporating two emerging underwater optical
methods for capturing fine-scale biophysical properties of the under-ice habitat non-invasively. Passive
HI and digital photogrammetry were tested for the first time to observe the ice-water interface and
were deployed using a relatively simple under-ice sled. The sliding concept took advantage of the fixed
and smooth surface of land-fast sea ice to minimize costly set-ups and yielded geometrically coherent
hyperspectral imagery without the need of georectification. To the authors knowledge, only three
underwater HI payload designs have been documented before. The Ecotone UHI (Ecotone, Trondheim,
Norway) is a commercial solution designed for deep or shallow ROV-based seafloor observations
and utilizes active light sources [36,76]. The Ecotone UHI has also been equipped onto unmanned
seafloor vehicles (USV) for shallow seafloor mapping [33]. The other two are documented in [32,34]
and comprise of stationary time-lapse observations and a diver-operated set-up.

In terms of data processing, the aim was to provide a preliminary outlook of the system’s data
outputs and its potentials. The preliminary results presented here indicates that it is possible to apply
simple, yet effective, algorithms to retrieve chl-a per surface area on a sub-mm per pixel basis over
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tenths-of-meters-long transects. Figure 8 shows that the under-ice spectral signatures of traditional
and novel sensors are comparable. They are also comparable with studies over similar Antarctic
land-fast sea-ice areas (e.g., [48]). Established under-ice bio-optical methods for retrieving sea-ice
biomass proxies in-situ (e.g., NDIs or PCA models) were also successfully adapted to the acquired
hyperspectral imagery (Figures 9 and 10). NDIs values outputted are observed to match the range of
values over the same or similar sea-ice areas [48] and PCA loadings shown strong similarities in shape
if compared with results from other studies both in real sea ice and in artificial ice tanks [7,27]; the
difference being that in this study they were retrieved on a sub-mm per-pixel basis.

PCA results retrieved chl-a signatures over its PC2 component and reaffirm the utility of PCA
for explorative analyses. For example, the pronounced “shoulder” deviation towards 470 nm in
PC2 loadings is likely associated with a higher concentration of accessory algal pigments such as
fucoxanthin [77,78]. PCA analyses also suggest the possibility to retrieve PC/EOF based regression
models to develop chl-a-spectra relationships, algorithms that have been proven successful for a wide
range of sea-ice conditions [5,19,27].

The use of the NDIs positioned at wavelengths 648:567 and 441:426 nm was also tested with
meaningful per-pixel biomass proxy representations although images were characterized by consistent
pixel noise, particularly for the blue region of the spectrum (Figure 10). This is probably attributed to
the lower SNR inherent to mm-scale hyperspectral resolution image pixels compared to wide-footprint
radiometric sensors. SNR changes due to variations in intensity and shape of the retrieved spectra,
which varies as the target constituent concentrations change and as the noise changes depending on
sensor settings and specifications. The high ice algal biomass typically found at Cape Evans (see [1] for
biomass ranges), favors algal associated spectral shapes, but heavily reduced light availability and
consequently per pixel SNR on the overall spectrum, particularly in the blue region where chl-a attains
one of its major absorption ranges (e.g., for the NDI 441:426, see Figure 8b,d). In fact, from Figure 10a,
we can observe how noise is drastically reduced over the high light intensity brine channel areas.
Studies [48] and [22] also highlighted how in general NDIs were producing poor relationships at the
Cape Evans site. However, this might be because of different reasons such as the presence of platelet
ice (which we did not experience during our study), the consequent poor spatial variability in biomass
at the measured scale, or perhaps the difficulty in ice-coring and sampling chl-a from sloughing platelet
ice [22].

The ANMB650-700 index explored here is directly linked to the absorption properties of chl-a
in the red region of the spectrum. It takes the advantage of hyperspectral data to finely integrate
over the narrow absorption peak of chl-a in the 650 to 700 nm range. While it is not guaranteed that
a meaningful quantitative relationship with sampled chl-a will be retrieved, the index performed
better than NDIs for our case by providing less noisy and coherent images (Figure 10b,c). Increases
in chl-a concentration (with absorption maximum around 665 to 680 nm) causes chl-a absorption
feature to deepen at the 680 ± 10 nm dip. While the spectrum of the transmitted radiance in this
range can show signs of saturation, the adjacent wavebands at longer wavelengths remain sensible to
changes as the peak broadens and thus extending the area under curve (Figure 10c) [69]. The index
was also designed to reduce the impact of other confounding factors of the imaged target within its
complex 3D environment [69], and this might also supported the index performance in our case. A
continuum-removed integrative index could also have worked better than a band ratio (e.g., NDIs)
under this high biomass case (and therefore less light and SNR) as it integrates a larger area (AUC)
hence providing a stronger signal per-pixel (Figure 10c). In fact, the performance of ANMB and similar
indices is expected to deteriorate under low chlorophylls (chl-a and chl-b) amounts [69,79].

Future work in this area will explore the performance and comparison of these indices for the Cape
Evans site, and to work on the retrieval of quantitative correlations tailored to our encountered sea-ice
conditions that are suitable to be applied to HI data. It was also noticed how different pre-processing,
normalization, and standardization techniques (not all shown here) affected the visualization of indexes
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applied to the images and the performance of exploration methods such as PCA. Such observations
prompt for the investigation of optimal workflows to process and analyze under-ice HI data.

4.2. System Performance and Future Developments

While most of the transect could be scanned as planned, some issues were experienced during the
scanning process such as invasive ski marks and occasional lagging which hampered pushbroom image
composition (Figures 6 and 8). Nonetheless, the low gear winch system was capable of delivering
extremely slow speeds in a stable manner as observed in the imagery. The observed angular deviations
are comparable to data for professional gimbal stabilization systems for UAV applications [80]. They
had negligible effects on the HI image composition and RGB imagery in our case due to the close-range
set-up and the extremely slow speeds. The only trade-off of the system is that the winches had
to be manually rotated which is a time-consuming and personnel demanding process. For future
deployments, we plan to automate and motorize the winch system. The changes in transect heading
are likely attributed to a combination of small-scale ice irregularities, inhomogeneous surface drag
and/or the effect of intermittent currents observed from our underwater footage. There is also the
possibility of a loosened ski frame support which went unnoticed. The cause of the lagging could
be attributed to these roll changes but could not be precisely identified either. Investigation of the
RGB imagery did not point to a particular ice condition that could have induced the lagging. A too
strong buoyancy force against the ice (−9 kg in water, Figure 1) might have increased surface drag to a
counterproductive level.

These aspects can firstly be improved by developing an improved sliding system and refining
its technical design. However, greater advantage is envisaged in exploring manual or automatic
pushbroom HI rectification techniques through the incorporation of overlapping RGB orthomosaics,
also known as co-registration [81–83]. This approach co-registers the hyperspectral imagery based
on a reference RGB orthomosaic through image matching procedures (e.g., feature matching and
transformation based on matching points [28]). The only requirements for co-registration are
spatially similar and overlapping HI and RGB imagery and good accuracy for the RGB orthomosaic
reference. Advances in camera calibration and triangulation procedures permit the generation of RGB
orthomosaics with high geometric fidelity using a limited amount of GCPs and/or consumer-grade
navigation data [60,61,84]. Although a more accurate assessment is still required, the western transect
RGB orthomosaic resulted in a highly resolved and metrically scaled photogrammetric model which
could be used for co-registration for example (Figures 5 and 6a,b). This was possible as our camera
calibration and model reconstruction heavily benefitted from a constant sea-ice thickness and imaging
altitude which allowed to impose an artificial network of GCPs of precisely known positions in the 3D
space. The same approach would not be possible under highly heterogeneous topographies or would
not be as effective for highly dynamic imaging conditions. Under these sub-optimal circumstances, the
options could be to retrieve an accurate camera model using underwater calibration targets [39,55],
to estimate it through its mathematical formulation and/or to implement the use of dome ports [51].
Another option remains the addition of physical GCPs. Compared to the seafloor, the sea-ice can be
used as an opportunistic reference surface where ground control points visible below and above the ice
can be allocated (e.g., Nicolaus and Katlein, 2013). GCP positioning can then be accomplished using
conventional GNSS devices and manual measuring or by referencing them in a local reference system.
This is advantageous as positioning underwater typically requires the acquisition of acoustic data,
which may depend on information from the under-ice vehicle/platform to a research vessel through
a network of deployed transponders [8,85–87]. This process requires considerably more effort and
resources and would arguably suit the precision required by line scanning orthorectification methods.

By taking advantage of the referenceable sea-ice surface and co-registration methods we could
then theoretically develop algorithms analogous to aerial HI algorithms based on the scaled RGB
orthomosaics, the partially rectified HI scans and the acquired consumer-grade IMU data [37,81,82].
These future developments will aim to support the geometric correction of distortions caused by the
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dynamics of the HI frame, such as the lagging instances (Figure 6c). In addition, robust geometric
correction will pave the way for a more independent system that can operate under rougher under-ice
topographies and at increased distances from the ice. The system needs to strive towards increased
distance from the ice, and ease of operability under diverse under-ice conditions. As the technology
develops, there is also potential to drastically reduce the weight and volume of the payload. Eventually,
this may allow the development of HI payloads for ROVs or unmanned underwater vehicles (AUVs)
to drastically increase the spatial extent of the surveys, although there are physical and technical
challenges associated which are briefly discussed in the last sub-section.

4.3. Potential Applications of Under-Ice Hyperspectral and RGB Imaging Payloads

Compared to standard imagery or multispectral imagery, HI provides narrow spectral resolutions,
high bit depths, and actual radiometric and referenceable units. Higher spectral fidelity sensors with
reasonable spectral resolution would not only be beneficial to produce quantitative estimates of fine
scale sea-ice biophysical properties, but also to develop tailored relationships for each study area and
move towards more universal approaches and algorithms [4]. The complex under-ice perspective will
undoubtedly pose new challenges and constraints. However, several additional indices or machine
learning approaches coupled with radiative transfer modelling efforts could be tested and adapted
to produce more robust and universal relationships to retrieve diverse biophysical properties. Some
examples can be found in forestry and agriculture [29,79,88], ocean color [89,90], chemometrics [67],
and other environments [34,91].

Low-cost imagery sensors—such as RGB, near-infrared (NIR) or multispectral—have also served
well in multiple close-range remote sensing applications to retrieve qualitative and quantitative
information from biological targets [92–94]. For the under-ice environment, RGB imagery has been
used to qualitatively assess the spatial distribution of algae [9,95,96]. Therefore, RGB or multispectral
imagery should be considered from a cost-benefit analysis perspective based on desired research aims
and available resources.

In theory, hyperspectral resolution data has the potential to resolve beyond pure biomass estimates
towards more sophisticated biological traits such as ice algal photophysiology [91,97,98], species
composition [97,99,100], pigment detection [101–103], and feature classification and mapping [35,76,104].
An interesting field is also being explored in the retrieval of primary production estimates from spectral
data in combination with in-vitro photosynthetic parameters for ice algae [7,105] or with PAM
fluorometry for microphytobenthic communities [106].

Compared to point sampling radiometers, the main advantage of imaging payloads is the
possibility to capture the information at ultra-high spatial resolutions (in this case sub-mm scales) in a
non-invasive manner (e.g., [34]). Under sea ice, this will allow future studies to investigate multi-scale
ice-algal dynamics and how they covary with environmental drivers over space and time [4,11,47,107].
With little additional effort, the RGB imagery and close-range digital photogrammetry provided an
accessible tool to producing ultra-high resolution orthomosaic and 3D models of the under-ice surface.

Surface topography is a well-known factor driving spatial distributions in many marine ecosystems
(e.g., [108]). Under-ice, the potential of high-resolution HI and 3D data fusion could contribute to new
opportunities to monitor some of the sea-ice biophysical interactions which were previously difficult
to capture. The effects of under-ice topography on sea-ice algal biomass distributions has long been
queried and investigated [10,109,110]. Recent studies have further observed and inquired about the
role of under-ice topography and underlying currents on algal biomass distribution at multiple spatial
scales [11,96,111]. Hydrodynamic shadows can foster the accumulation of diatoms, algal aggregates,
and may also provide shelter for under-ice fauna [9,112,113]. The RGB imagery not only can provide
under-ice roughness but it could also serve to gain further insight into grazing dynamics by sympagic
fauna (Figure 7).

The effects of sea-ice structure and physical properties also go beyond effects on biomass
distribution and are known to influence algal photophysiology, species composition, and
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production [1,3,9,114]. Although intrinsically different from some of the Arctic examples cited
above, the dataset presented here clearly illustrates a complex biophysical scene for Antarctic land-fast
sea ice even within a square meter area (Figures 8 and 9). For example, we found large secondary brine
channels to characterize specific areas of the scanned transect (see Figure 5). These cavities augmented
transmitted light conditions that showed localized maxima of up to one order of magnitude (Figure 6).
The question arises whether these under-ice features have an impact on algal distribution, species
composition, and/or photophysiology, or if they play any role in hydrodynamic regimes and under-ice
grazing dynamics. The presented methodology may contribute to a better understanding of some of
these complex biophysical interactions.

4.4. Caveats and Future Challenges

Our sliding system has been designed for deployments over relatively smooth under-ice bottoms.
Nonetheless, the principles of operation of HI and digital photogrammetry remain applicable to any
ice type, provided that under-ice light levels are sufficient. In cases where the sliding concept is not
applicable (e.g., rough pack ice), platforms will need to be equipped with sensors to accurately trace
HI sensor attitude and dynamics.

In this study, the HI payload was operated under thick (1.8 m) and almost snow free fast ice
(Figure 5). To account for low under-ice irradiance levels (0.35 ± 0.20 W m−2) the system was operated
at extremely slow scanning speeds (0.008 ms−1). These irradiance values are comparable to under-ice
light levels and variability for Arctic fast-ice during spring [68], and help to provide a baseline for
the range of under-ice irradiances intensities for which our payload could acquire meaningful HI
signals. However, many other sea-ice conditions remain to be explored (e.g., with deep snow packs)
and which may pose significant technical challenges. Low light levels will push sensors to their
sensitivity limits, necessarily affect SNR and hinder the integration of pushbroom HI payloads onto
more efficient and dynamic underwater platforms, such as ROVs and AUVs. A series of studies
have already employed pushbroom HI sensors for seafloor mapping using ROVs [35,36,76], diver
operated systems [32], or unmanned surface systems [33]. A first study has also discussed HI feasibility
onto AUVs [115]. However, these applications positively benefitted from artificial light sources that
illuminate the imaged scan line, or were performed in shallow, clear tropical waters. For mapping
under-ice environments, there is a trade-off between sensor integrations times, imaging frequencies,
and platform dynamicity under low light conditions that will need further investigation [4].

The inclusion of underwater IMUs, relative positioning systems, and implementation of targeted
under-ice pushbroom HI orthorectification methods will open up new avenues for this type of research.
While active lights sources could be eventually considered for under-ice mapping, the resulting mixture
between reflected and transmitted light through a complex and translucent medium would render data
processing and interpretation extremely challenging. In fact, our system features a set of artificial light
sources as shown in Figure 4b and schematized in Figure A1. Using a custom-built control (Figure A1),
the LEDs were tested and observed to provide a slight increase in the measured signal. However, it
was preferred for the scans here presented to avoid their use to avoid complicated data interpretations.
The effect of strong LEDs on relatively low-light adapted algal communities could also question the
invasiveness of the methodology.

Additional challenges arise due to the complex nature of sea-ice optical properties and the resulting
anisotropic under-ice light field [116,117]. The anisotropic light field is shaped by the lamellar sea-ice
features funneling light in the downwards direction creating a forward peaked light field. Lamellar
structures associated with columnar ice were clearly observed in our site (e.g., Figure 7). Analogous
above surface HI applications (e.g., equipped onto UASs) have acknowledged the impact of an
anisotropic leaving reflectance on the retrieval of biochemical parameters using spectral data [118–120].
In this study, we experienced noise artefacts over block B sample processed images as an increase in
noise patterns at the upper and bottom edges of the image. This is most likely inherent to camera optical
design and sensitivity heterogeneity across the spatial dimension, but it could also be in part attributed
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to light-field anisotropy. A forward peaked light field could mean a stronger signal at the center of the
line scan and a decreasing signal towards the edges of our ~30 FOV. However, other possible causes
should be taken into consideration (e.g., data processing artifacts) or the dense oxygen bubble layer
causing multiple refraction effects (Figure 7). Eventually, the impact of an anisotropic under-ice light
field, or other particular environmental conditions (e.g., oxygen bubbles), on HI data will need to be
further assessed, and corrections developed towards improved estimates and interpretations.

We did not apply any corrections for the water column effects to either the RGB imagery or to
the HI data processing workflow. This is acceptable as the water column in between the ice and the
enclosure was <1.1 m and our site was characterized by exceptionally clear waters (see Figure 4c).
Antarctic surface waters are generally considered to have low particle loads with low backscattering
(e.g., [121]). Nonetheless, as we increase sensor distance from the target, or in case of consistent
under-ice phytoplankton abundance (e.g., [122]), the impact of the water column should be addressed
with standard color correction approaches for RGB imagery [44,123,124] and for the water column
correction of hyperspectral radiometric data if possible [44,125].

Our sea-ice site also benefitted from optically “favorable” conditions where biomass was high
and resided mostly in the bottom 3 cm of the ice. Due to the scattering properties of sea ice, the bottom
3 cm algal layer can be considered as an evenly illuminated “thin” sheet that was scanned with our
payload. While ice algal biomass is known to be generally concentrated at the ice bottom, where
organisms enjoy more favorable living conditions [1,16], there are many circumstances of vertically
variable distributions [16]. Future applications of HI for sea ice with a certain degree of vertical biomass
variability (e.g., in Antarctic pack ice) will need to consider these effects. Due to the scattering nature
of sea ice, biomass in the sea-ice interior will probably have a negative impact on discernible spatial
resolutions and image interpretation. Larger protruding algal filaments that are only loosely attached
to the subsurface of the ice could also be a problem under dynamic currents for both HI and RGB
imagery. In our case, filaments did not represent a significant problem as they were relatively short
and under-ice currents during scanning seemed monodirectional, thus providing a relatively still
scene (Figure 7). Finally, the feasibility and performance of HI to capture biomass variability under
the extremely different biomass ranges found in the sea ice need to be assessed. A compilation of
biomass ranges found in sea ice can be found in Arrigo (2017). A previous experimental study has
shown HI to be able to discern biomass ranges as low as 0.036–2.72 mg m-2 [27], but much more
work is required to investigate the impact of different concentrations on per-pixel SNR and regression
algorithms performance.

5. Conclusions and Outlook

Sea-ice biophysical properties can exhibit high spatio-temporal variability at very fine scales (e.g.,
<1 m2) which are difficult to capture and quantify using traditional methodologies. In response to some
of these limitations, this study has presented a proof-of-concept for using hyperspectral imaging and
digital photogrammetry for under-ice habitat mapping using a modular, low-speed sliding platform.
The particular “inverted” under-ice perspective poses new challenges and limitations to HI which
were thoroughly discussed in this study. We demonstrate that the new system was able to map a
~20 m-long transect with geometrically consistent pushbroom hyperspectral imagery, together with
overlapping digital elevation models of the under-ice surface, at sub-mm spatial resolution.

Despite the low light irradiance levels experienced (Ed,PAR = 0.35 ± 0.20 (λ, W m−2)), our HI
payload attained suitable per-pixel under-ice signals for employing established bio-optical approaches
without the need of active light sources. Minor issues with the sliding system where experienced (e.g.,
occasional lagging and ski marks), but these seem to be addressable with feasible system modifications
and/or data processing techniques.

Future work will aim to address system performance and technological capabilities to increase
the spatial extent of the surveys, data acquisition under rougher ice types and investigate pushbroom
image rectification approaches based on RGB imagery. RGB imagery and digital photogrammetry were
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shown to provide ultra-high-resolution DEMs and orthomosaics of the under-ice habitat. RGB imagery
presents diverse opportunities to qualitatively and quantitatively map and investigate under-ice objects
of interest together with highly detailed under-ice roughness.

For under-ice HI, several aspects remain to be investigated prior to method standardization.
We think light limitation, the complex under-ice light field, and vertically variable biomass distributions
should be further investigated and their impacts on HI methods assessed. For digital photogrammetry,
efficient camera calibration approaches should be tested in an under-ice context to assess and improve
DEMs accuracy.

Finally, we need to move from relative indices proxies to actual quantitative per-pixel biomass
estimates. In this study we only underlined the potential of applying spectral indexes and
dimensionality reduction methods to retrieve biomass proxies. We then validated them by comparison
with values documented in other studies. The next step is to develop a targeted biomass-spectra
calibration suitable and tailored for our sensor payload and study area. This will be eventually applied
to the full set of images transect imagery so that we can gain a better understanding of the under-ice
habitat characteristics at Cape Evans, Antarctica. We expect that HI systems will contribute to fill a
niche gap in the mechanistic understanding of some of the complex under-ice biophysical interactions.
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Appendix A Technical Design and Specifications

The core equipment of the developed system consisted of an AISA Kestrel 10 pushbroom HI
camera (AK10) (Specim Spectral Imaging Ltd., Oulu, Finland), a DPU (Specim Spectral Imaging Ltd.,
Oulu, Finland) and a Sony a6300 mirrorless digital camera together with a Samyang 35 mm prime
lens. Accessories include a Low-Light HD USB camera (Blue Robotics Inc., California, USA) a VN-100
Inertial Measurement Unit (IMU) (VectorNav Technologies, LLC, Dallas, USA) and a Garmin 18x
LVC GPS (Garmin, USA). In our independent external payload, we included a TriOS Ramses ACC
hyperspectral cosine corrected spectroradiometer (TriOS Mess- und Datentechnik GmbH, Rastede,
Germany) and a set of four daisy-chained Subsea Lumen Lights (Blue Robotics Inc., California, USA).

Figure A1 illustrates the power supply and data transmission paths from the surface elements to
the enclosure interior and the external payloads. The internal payload is fitted inside an off-the-shelf
black anodized cylindrical aluminum enclosure manufactured by PREVCO (PREVCO Subsea, Fountain
Hills, USA) that seals via two nitrile O-rings for each end plate and is rated to a depth of 100 m
(Figure 3). The end-cap is fitted with a single underwater connector and a pressure release/vacuum
hole. The connector used for external communication and power supply with the surface was a
13 contacts circular SubConn power/Ethernet.
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Figure A1. Schematics of the electronic power and communication streams for the internal and the
additional external under-ice payloads.

All components of the payload were mounted around a custom-made vertical aluminum tray
(20.32 by 60.96 cm) that hangs from the enclosure end cap for full swift removal and insertion of
the payload (Figures 3 and 4a). The umbilical used is a 13 contacts SubConn power/ethernet (Type:
D-P-P4TP24#/4C18#, 50 m long) and is received on the surface by another circular 13 contacts connector.
Data and power streams were then divided within the enclosure and above the surface from the
connectors by unregulated breakout PCBs (Figure 4). The ethernet stream within the enclosure
connects directly to the DPU, allowing for VNC from the above surface PC. In our set-up, we used
the freely available TightVNC software (https://www.tightvnc.com/) for this purpose. Most sensors
were interfaced and powered through the DPU using their respective data/power cables, as shown in
Figure 4 and operated through their own software. Only the Sony a6300 was powered using a different
route. The power stream within the enclosure went through a power regulator PCB that fed the DPU
directly and the Sony a6300 camera via Tether Tools Case Relay (Tether Tools, Phoenix, USA), and a
Relay camera coupler for the Sony a6300.

An alternative low-cost solution was designed to synchronize and time stamp pushbroom frames
with attitude (roll, pitch, and heading) data from the IMU. The IMU PCB in Figure 4 collected
NMEA strings from the GPS and sent them through USB serial connection to the DPU for local time
synchronization. The VN-100 IMU uses a 1 PPS sync input from the GPS as a trigger and reference
to start its internal timer and to synchronize it to the GPS clock. This means that for each packet of
data that the IMU outputs, it stamps the packet with an accurate GPS timestamp. Within the DPU the
data is recorded using a Python script (run through Eclipse IDE and PyDev). The script takes the IMU
packet producing a file with the IMU data (heading, pitch, and roll) and the NMEA string (position
and GPS time) from the GPS and then correlates the IMU’s internal “stopwatch time” to GPS time.
The script also adds local PC time for reference with other sensors. GPS lock was performed before
deployment (above the surface). Once underwater, the Garmin 18x LVC transmitted NMEA and 1PPS
signals even when it could not see satellites. The NMEA times continued to update, but according to
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the internal real-time clock on the GPS. This, however, means that a short drift may happen in the GPS
clock reference time over long iterations.

The AK10, DPU, IMU, and GPS together have a power consumption of <42 W. The Sony a6300
power consumption was estimated to be<7.5 W. The Low-Light USB camera was only used as additional
visual support and was run through iSPY open-source software (https://www.ispyconnect.com/) for
live-stream footage and video recording and had a power consumption of <1 W. The total power
requirement of the internal payload is estimated to be < 50 W which can be easily powered by
conventional generators. The total VNC data rate oscillates well below 1 Gbit/s (up to 75 m) supported
by the SubConn cable, which leaves enough space for additional sensor streaming and data transfer.

The external payload components were operated separately using their respective cables by
standard means. The TriOS Ramses ACC VIS was set-up with a connecting cable (50 m) and a TriOS
PS101 power supply operated through the TriOS MSDA_XE software. The four Lumen Lights LEDs
location were powered and dimmed through their separate 50 m lumen cables.
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Abstract: Hyperspectral imagery (HSI) provides substantial information on optical features of water
bodies that is usually applicable to water quality monitoring. However, it generates considerable
uncertainties in assessments of spatial and temporal variation in water quality. Thus, this study
explored the influence of different optical methods on the spatial distribution and concentration
of phycocyanin (PC), chlorophyll-a (Chl-a), and total suspended solids (TSSs) and evaluated the
dependence of algal distribution on flow velocity. Four ground-based and airborne monitoring
campaigns were conducted to measure water surface reflectance. The actual concentrations of
PC, Chl-a, and TSSs were also determined, while four bio-optical algorithms were calibrated
to estimate the PC and Chl-a concentrations. Artificial neural network atmospheric correction
achieved Nash-Sutcliffe Efficiency (NSE) values of 0.80 and 0.76 for the training and validation steps,
respectively. Moderate resolution atmospheric transmission 6 (MODTRAN 6) showed an NSE value
>0.8; whereas, atmospheric and topographic correction 4 (ATCOR 4) yielded a negative NSE value.
The MODTRAN 6 correction led to the highest R2 values and lowest root mean square error values
for all algorithms in terms of PC and Chl-a. The PC:Chl-a distribution generated using HSI proved to
be negatively dependent on flow velocity (p-value = 0.003) and successfully indicated cyanobacteria
risk regions in the study area.

Keywords: Hyperspectral image; atmospheric correction; bio-optical algorithm; phycocyanin;
chlorophyll-a

Remote Sens. 2018, 10, 1180; doi:10.3390/rs10081180 www.mdpi.com/journal/remotesensing131



Remote Sens. 2018, 10, 1180

1. Introduction

Severe algal blooms, mainly caused by anthropogenic effects, are an ongoing cause of water quality
problems in inland waters globally [1–6]. Massive nutrient loads from both point and non-point
sources accelerate the growth and biomass production of algae [7]. In Korea, increases in water
retention times because of the construction of multi-functional weirs contributes to the frequent
formation of cyanobacterial blooms [8–10]. Baekje Weir along the Geum River, for example, has
recently received increased attention because of water quality issues caused by frequent outbreaks of
severe cyanobacterial blooms [11,12]. These have caused water quality degradation in the weir, which
can lead to adverse effects on human health [13,14].

Remote-sensing techniques are useful in the detection of algal blooms because they can detect
algae over large areas at a high time resolution [15–27]. Specifically, many bio-optical algorithms
that use remotely sensed data have been developed to estimate the concentrations of algal pigments
such as chlorophyll-a (Chl-a) and phycocyanin (PC) [28–32]. PC and Chl-a concentrations have been
estimated using various apparent optical property (AOP) algorithms [33–36] and inherent optical
property (IOP) algorithms [30,31,37–39]. AOP algorithms utilize water surface reflectance to estimate
the algal concentration using multiple reflectance bands. The authors of [17] and [28] introduced a
two-band ratio algorithm and three-band ratio algorithm for Chl-a and PC estimation, respectively.
IOP algorithms use absorption and the back scattering coefficient for estimation of algal pigments. The
authors of [29,30] estimated Chl-a and PC concentration using the ratio of the absorption coefficient
and specific absorption coefficient.

Hyperspectral imagery (HSI) provides a spatially detailed information map of high spectral
resolution. This high resolution allows hyperspectral images to be used for the identification
and analysis of sophisticated spatial and spectral information [40–44]. Accurate retrieval of algal
biomass from a hyperspectral image requires an atmospheric correction to remove atmospheric
interference. Commercial atmospheric software packages such as atmospheric and topographic
correction (ATCOR) [45] are often used to correct the images. Thiemann and Kaufmann [46]
implemented atmospheric correction of hyperspectral images using ATCOR to generate maps of
Secchi disk transparency and Chl-a concentration. Alternatively, users can perform the atmospheric
correction themselves using the Moderate resolution atmospheric transmission (MODTRAN) software,
which provides atmospheric correction parameters [47]. Giardino et al. [48] used MODTRAN to
perform atmospheric correction of HSI to retrieve the Chl-a of an inland water. Furthermore, machine
learning techniques have been introduced to correct atmospheric effects using observed atmospheric
parameters [49–51].

Previous studies have used various atmospheric correction methods either to achieve good
correction performance [22,52–56] or simply to estimate the target [44,57–60]. However, few studies
have quantitatively analyzed the dependence of the atmospheric correction performance on the
correction method [61]. In particular, algal detection studies, which consider the effect of atmospheric
correction on PC and Chl-a concentration estimates, have been rarely completed. Moreover, when
preprocessed hyperspectral images provide an algal distribution map, the concentration level and
spatial distribution of algae are influenced by environmental factors such as water temperature,
nutrients, and water retention time. The authors of [9,62,63] showed the distribution of algae is mainly
affected by influencing factors such as hydrodynamic patterns. Thus, identifying the cause of an algal
bloom is important after producing an algal distribution map.

Therefore, the objectives of this study were to (1) implement atmospheric correction of
hyperspectral images using MODTRAN 6, ATCOR 4, and Artificial Neural Network (ANN);
(2) develop bio-optical algorithms to estimate PC and Chl-a concentration using the corrected
hyperspectral images; (3) identify the influence of the atmospheric correction on PC and Chl-a
quantification; and (4) evaluate the algal distribution with hydrodynamic patterns.
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2. Materials and Methods

2.1. Study Area

The Baekje Reservoir (36◦32′N 126◦94′E) is an artificial weir in the Geum River in South Korea
(Figure 1). The Geum River has a total length of 395 km. It has three man-made weirs (the Baekje,
Gongju, and Saejong reservoirs) and one dam (the Daechung dam). The distance between the Baekje
and Gongju weirs along the river is 23 km, over which the width is 50 m and the average water depth
is 4 m. The Baekje Weir has a length of 331 m and height of 5.3 m, and a total storage capacity of
24 × 106 m3. The stored water is used for both domestic and agricultural purposes.

Figure 1. Study site in the Baekje Reservoir region.

2.2. Remote Sensing of PC and Chl-a Pigment

Figure 2 shows the research scheme employed in this study. The diagram is divided into four
parts: (a) data collection from field and laboratory measurements were conducted; (b) atmospheric
correction of hyperspectral images was performed using MODTRAN 6 and ATCOR 4 software; (c)
atmospheric correction parameters generated by MODTRAN 6 were used in an ANN-simulated
atmospheric correction; and (d) the corrected reflectance values from MODTRAN 6, ATCOR 4, and
ANN were applied to build bio-optical algorithms for the estimation of PC and Chl-a concentrations.
Finally, the bio-optical algorithms were used to generate the spatial and temporal distribution of the
PC and Chl-a concentrations and identify the influence of the atmospheric correction on the PC and
Chl-a quantification.

2.2.1. Water Sampling and Experimental Work

Field campaigns were conducted on 12 August, 24 August, 20 September, and 14 October
2016 (Table 1). During the sampling period, optical data and water samples were collected at 74
monitoring stations.

The measured radiance and irradiance data were used to calculate the remote-sensing reflectance
while the PC and Chl-a were quantified in the water samples. Cyanobacteria contain the PC pigment,
which harvests light through photosynthesis [64]. The representative absorption band for PC is around
620 nm [65]. For PC extraction, water samples were concentrated using a phytoplankton net with a
20-μm mesh size. The pre-concentration water volume varied from 10 L to 45 L. The concentrated
water was stored in a 100-mL wide-necked bottle and kept cool in a box with ice. The water samples
were analyzed within 24 h in the laboratory. PC was extracted by applying the freezing and thawing
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method [66]. The detailed experimental procedures of PC extraction are described in [38]. Two liters
of water samples were collected for Chl-a analysis and analyzed within 24 h. The extraction of Chl-a
followed a standard method [67]. Specific information regarding Chl-a analysis is presented in [38].
A standard method was used for the analysis of total suspended solid (TSS) concentration. A glass
microfiber filter (GF/C, WHATMAN Inc., Piscataway, NJ, USA) was preferentially washed with
deionized water and dried in a desiccator. Before filtration, the weight of the filter was measured
using an analytical balance (EX224, OHAUS Inc., Parsippany, NJ, USA). After the filtration of the water
samples, the used filter papers were placed in a drying oven (DO-150, HYSC Inc., Seoul, Korea) for
2 h. Finally, the dried filters were weighed using the analytical balance. The TSS concentration was
calculated using the following equation:

Total Suspended Solid (mg L−1) =
(Fa − Fb)× 1000

V
(1)

where, Fa is the weight of the filter after filtration (mg), Fb is the weight of the filter before filtration
(mg), and V is the volume (mL) of the sample.

The absorption coefficient of phytoplankton was measured using light transmission measurement.
This measurement was able to obtain the phytoplankton absorption coefficient without the signal
of a non-algal particle by performing bleaching processing. A more detailed method of absorption
coefficient measurement was followed by [38].

 

Figure 2. Schematic diagram for identifying the influence of the atmospheric correction and
hydrodynamic pattern on algal quantification. (A) shows the field and airborne monitoring and
experimental analysis, (B,C) show the atmospheric correction with commercial models and the
Artificial Neural Network (ANN) model, and (D) shows the bio-optical algorithm calibration
and application. PC = phycocyanin; AOP = apparent optical property; IOP = inherent optical
property; MODTRAN = moderate resolution atmospheric transmission; ATCOR = atmospheric and
topographic correction
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2.2.2. Field Optical and Hyperspectral Reflectance Data

A FieldSpec HandHeld2 hand-held spectroradiometer (ASD, Inc., Longmont, CO, USA) was used
to collect radiance and irradiance data. The spectroradiometer has a band range of 325 nm to 1075
nm and a 3-nm spectral resolution. The device has a 25-degree field-of-view. This spectroradiometer
collects sky irradiance (Er) using a cosine detector fore-optic, and water surface radiance (Lw) and
sky radiance (Ls) using a bare fiber fore-optic. Optical sampling requires a specific position of
the spectroradiometer with 130–135 degrees of azimuth angle and 40–45 degrees of zenith angle.
This position minimizes ambient interferences such as the sun glint and shading effects [29]. The
remote-sensing reflectance uses the ratio of irradiance to radiance as follows:

Rrs(λ, 0+) =
Lw(λ, 0+)− 0.025Ls(λ)

Er(λ)
(2)

where Lw(λ, 0+) is the water leaving radiance, Ls(λ) is the downwelling sky radiance, Er(λ) is the
downwelling sky irradiance, Rrs(λ, 0+) is the remote-sensing reflectance, and 0+ denotes the water
surface. Detailed information on the remote-sensing spectra is presented in [38].

Table 1 presents a summary of the field campaigns. Four airborne monitoring campaigns along
the Geum River were implemented simultaneously with the ground-based monitoring. The airborne
campaigns were performed by ASIA Aero Survey co., Ltd. (Seoul, Korea) using an AISA Dual
airborne hyperspectral sensor. The sensor direction is perpendicular to the ground. The altitude of
the aircraft was 3 km and the flying time was between two and three hours, beginning at 8:30 a.m.
The hyperspectral image has 127 wavelength bands from 404 nm to 996 nm. The image has a spectral
resolution of 4 nm to 5 nm and a spatial resolution of 2 m × 2 m. This study applied atmospheric
correction using ATCOR 4, MODTRAN 6, and an ANN.

Table 1. Monitoring and experimental data acquisition.

Date Point
Airborne

Campaign
Min/Max PC

Concentration *
Min/Max Chl-a
Concentration *

Min/Max
PC:Chl-a

Min/Max TSS
Concentration **

12 August 2016 18 Implemented 6.25/150.90 14.19/111.40 0.32/1.91 6.27/40.14
24 August 2016 19 Implemented 12.48/100.00 25.95/61.44 0.28/2.72 10.13/23.33

20 September 2016 17 Implemented 0.83/1.64 11.85/60.88 0.025/0.089 11.47/19.33
14 October 2016 20 Implemented 0.19/0.88 13.74/46.17 0.0062/0.047 13.60/19.60

* Unit of PC and chlorophyll-a (Chl-a) concentration is mg m−3 and ** unit of total suspended solids (TSS) is mg L−1.

2.2.3. Atmospheric Correction

ATCOR is a commercial software package that was developed during the 1990s [45,68]. The
main features of this software are correction of the topographic and adjacency effect and spectral
smoothing [45]. ATCOR 4 is a user-friendly software for atmospheric correction of HSI. Its ease of use
stems from the straightforward and fast simulation [69].

MODTRAN was developed by Spectral Science, Inc. (Burlington, MA, USA) and the Air Force
Research Laboratory (AFRL) [47]. The MODTRAN code solves the radiative transfer function to
generate physical parameters related to atmospheric correction such as transmittance and spherical
albedo. MODTRAN version 6 has a graphical user interface (GUI), making this software user friendly.

This study implemented atmospheric correction using the ANN to simulate ρsurf. Detailed
descriptions of the atmospheric correction using ATCOR 4, MODTRAN 6, and ANN are presented in
Appendix A in the Supplementary Material.

2.2.4. Bio-Optical Algorithms for Determination of PC and Chl-a Concentration

This study estimated PC and Chl-a concertation using four bio-optical algorithms, two AOP
algorithms, and two IOP algorithms, as follows.
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AOP Algorithm

The AOP algorithm is based on the following remote-sensing reflectance:

Rrs(λ) = 0.54
(

f
q

b(λ)
a(λ) + b(λ)

)
(3)

where Rrs(λ) is the remote-sensing reflectance on the water surface, f is the geometric light factor, q is
the light distribution factor, b(λ) is the backscattering coefficient, and a(λ) is the absorption coefficient.

This study used either two or three bands to estimate PC and Chl-a concentration. The first
algorithm used was the two-band ratio algorithm [17,37,70–72], which is referred to as band ratio (2)
in this text. Band ratio (2) estimates the PC concentration as follows:

PC (mg m−3) ∝
Rrs(708)
Rrs(622)

(4)

Chl − a (mg m−3) ∝
Rrs(708)
Rrs(660)

(5)

where Rrs(708) is the reflectance at 708 nm, Rrs(660) is the reflectance at 660 nm, and Rrs(622) is the
reflectance at 622 nm.

The second algorithm used was the three-band ratio algorithm [28], which is referred to as the
band ratio (3) in this manuscript. PC concentration was estimated by band ratio (3) using the following
equations:

PC (mg m−3) ∝
(

1
Rrs(622)

− 1
Rrs(708)

)
·Rrs(755) (6)

Chl − a (mg m−3) ∝
(

1
Rrs(660)

− 1
Rrs(708)

)
·Rrs(755) (7)

where Rrs(755) is the reflectance at 755 nm.

IOP Algorithm

The IOP algorithm mainly uses absorption and b(λ) by rearranging Equation (4) in terms of
a(λ). Many studies have used the ratio form to retrieve a(λ) because this allows the removal of
geometric and ambient light effects, assuming these effects are independent of wavelength [29].
The a(λ) equation is classified according to whether b(λ) is wavelength-dependent or not.
Simis et al. [31] and Duan et al. [37] suggested the following formulation for the a(λ) equation
with a wavelength-independent b(λ):

a(λa) =
Rrs(λw)

Rrs(λa)
(a(λ)− b)− b (8)

where λa is the wavelength for the phytoplankton pigment (i.e., Chl-a or PC) and λw is the wavelength
for water.

Li et al. [29,30] introduced the following definition of a(λ) with a wavelength-dependent
absorption coefficient:

a(λa) =

(
Rrs(λw)b(λa)(aw(λw) + b(λw))

Rrs(λa)b(λw)

)
− b(λa)− aw(λa) (9)

where aw is the absorption coefficient of water referred to by [73]. The expression for the PC and Chl-a
concentrations uses both the absorption coefficient and the specific absorption coefficient as follows:

PC (mg m−3) =
a
(
λpc

)
a∗
(
λpc

) (10)
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Chl − a (mg m−3) =
a(λchl−a)

a∗(λChl−a)
(11)

where λpc is the PC wavelength, a∗(λpc) is the specific absorption coefficient of PC (m2 mg−1), λchl−a
is the Chl-a wavelength, and a∗(λchl−a) is the specific absorption coefficient of Chl-a (m2 mg−1).
A more detailed description of the IOP algorithm for the determination of PC and Chl-a can be found
in [29–32].

The IOP algorithm requires many empirical parameters as well as wavelength bands that
accurately reflect optical properties of the water body. This study optimized the Simis algorithm
and Li algorithm using the multi-objective optimization, resulting in 622 nm for PC and 660 nm for
Chl-a [38]. The band ratio (2), band ratio (3), Simis, and Li algorithms were applied to images which
had atmospheric correction completed by MODTRAN 6, ATCOR 4, or ANN.

2.3. Performance Evaluation

Nash-Sutcliffe efficiency (NSE) and the root mean square error (RMSE) were used to evaluate the
performances of the atmospheric correction, optimized bio-optical algorithm, and ANN simulation
following Equations (12) and (13),

NSEx = 1 − ∑
(
Xx,pre − Xx, obs

)2

∑
(

Xx, obs − Xavg
x, obs

)2 (12)

RMSEx =

√
∑
(
Xx,pre − Xx, obs

)2

n
(13)

Biasx =
∑
(
Xx,pre − Xx, obs

)
n

(14)

where Xx,pre is the predicted value, Xx, obs is the observed value, Xavg
x, obs is the average observed value,

and x represents either the reflectance (sr−1) value or PC and Chl-a concentrations (mg m−3).

3. Results

3.1. Algal Variation in the Baekje Weir

Figure 3 shows the temporal variation in PC, Chl-a, PC:Chl-a values, and TSS during the
sampling period. The measured PC and Chl-a ranged from 0.19 to 150.90 mg m−3 and from 11.85 to
111.40 mg m−3, respectively (Table 1). Thus, the PC:Chl-a value ranged from 0.0062 to 2.72. The high
PC concentration resulted in a high PC:Chl-a value (Figure 3). In addition, the observed concentration
of TSS measured from 6.27 to 40.14 mg L−1.

On 12 and 24 August 2016, the PC, Chl-a, and TSS concentrations were relatively high compared
to those of the other sampling events. On 14 September and 20 October 2016, the PC concentration
was near 0, but Chl-a maintained a relatively high concentration ranging from 11.85 to 60.88 mg m−3.
The TSS concentration was also maintained between 11.36 mg L−1 and 19.60 mg L−1.

3.2. Performance of Atmospheric Correction Techniques

Figure 4 and Figure S1 show the atmospheric correction results achieved using MODTRAN 6 and
ATCOR 4. The averaged spectra showed good agreement with in-situ reflectance (Figure 4a–d) while
the correlation between the corrected reflectance of the individual bands and the in-situ reflectance
was concentrated along the 1:1 line (Figure 4e–h). In contrast, the reflectance spectra corrected using
ATCOR 4, shown in Figure S1, are four orders of magnitude smaller than the in-situ reflectance and are
less correlated with the observed reflectance. The overall atmospheric correction performance of both
models is presented in Table S4. Most NSE values of MODTRAN 6 were higher than 0.8. In addition,
the RMSE values for the MODTRAN 6 results were smaller than 0.0034 sr−1.
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Figure 4. Atmospheric correction results using MODTRAN 6. Panels (a–d) show the average in-situ
and corrected surface reflectance ρsurf, respectively. Panels (e–h) show the correlation between the
observed and corrected results at different wavelengths for each sampling point.

All reflectance corrected by the ATCOR 4 values had negative NSE values (Table S4) while their
RMSE values were higher than those of the MODTRAN 6 results. The average error of the MODTRAN
6 and ATCOR 4 reflectance across all four sampling events is shown in Figure S3. The reflectance error
of MODTRAN 6 was less than 30%. However, the errors in the wavelength ranges of λ < 500 nm
and λ > 700 nm were higher than the errors in the other wavelength bands (Figure S3a–d, Table 2).
In particular, the corrected reflectance at 439 nm, 445 nm, 755 nm, and 779 nm had higher errors than
the other bands. Similar to MODTRAN 6, the errors of ATCOR 4 increased when the wavelength was
less than 500 nm and greater than 700 nm (Figure S3e–h). The error of the ATCOR 4 correction was
between 99% and 100%, which was three times higher than that of the MODTRAN 6 correction results.
The simulated reflectance from the ANN model is shown in Figure S2. The simulation has an NSE
value of 0.79 while the error was largely between 10% and 50% (Table 2). The reflectance error of the
ANN simulation was greater than that of the MODTRAN 6 simulation but was less than that of the
ATCOR 4. In addition, all three different methods did not show good performance for the imagery
taken on 14 October 2016.
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3.3. Performance of the Bio-Optical Algorithm

Figures 5 and 6 show the results of the bio-optical algorithm for estimating PC and Chl-a,
respectively. Figures S4 and S5 show the performance of the absorption coefficient with respect
to PC and Chl-a estimation, respectively. Multi-objective optimization of the IOP algorithm was
conducted using the observed reflectance data. The optimized parameters were applied to build the
IOP algorithm using the reflectance data that had been atmospherically corrected using MODTRAN 6,
ATCOR 4, or the ANN simulation (Table 3). The reflectance corrected by MODTRAN 6 showed good
agreement with the observed PC concentration with R2 values ranging from 0.68 to 0.77. The R2 values
of the Chl-a algorithms ranged from 0.49 to 0.53.

 

Figure 5. Optimized PC algorithm results with respect to in-situ and atmospherically corrected
reflectance. Panels (a–c) show the band ratio (2) results. Panels (d–f) show the band ratio (3) results.
Panels (g–i) show the Li algorithm results. Panels (j–l) show the Simis algorithm results.
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Table 3. Optimized algorithm performance.

PC MODTRAN 6 ATCOR 4 ANN

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

Band (2) 0.75 14.57 −0.0025 0.68 18.33 2.48 0.57 18.51 0.95
Band (3) 0.68 15.97 0.0673 0.62 18.25 2.14 0.55 18.88 0.49

Li 0.76 20.13 14.26 0.34 60.74 17.06 0.56 25.69 16.97
Simis 0.77 14.90 2.56 0.50 22.68 11.00 0.37 23.18 4.57
Chl-a R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

Band (2) 0.49 12.24 −5.44 0.29 13.91 −4.94 0.46 13.03 −6.54
Band (3) 0.51 11.03 −3.01 0.25 13.63 −2.90 0.56 11.09 −4.35

Li 0.53 10.62 −1.71 0.025 156.73 150.82 0.52 10.90 −2.30
Simis 0.53 10.88 −1.20 0.29 13.17 −2.08 0.53 11.19 −1.96

* Unit of root mean square error (RMSE) and bias of PC and Chl-a is mg m−3.

 

Figure 6. Optimized Chl-a algorithm results with respect to in-situ and atmospherically corrected
reflectance. Panels (a–c) show the band ratio (2) results. Panels (d–f) show the band ratio (3) results.
Panels (g–i) show the Li algorithm results. Panels (j–l) show the Simis algorithm results.
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The PC and Chl-a algorithm results from ATCOR 4 showed a lower accuracy than MODTRAN
6-based results in terms of R2 and RMSE (second column in Figures 5 and 6). Based on the ANN
simulation (fourth column in Figures 5 and 6), the R2 values of the PC and Chl-a algorithms ranged
from 0.37 to 0.57 and 0.46 to 0.56, respectively.

Among the PC algorithms, the Simis algorithm with MODTRAN 6 correction showed the highest
accuracy with an R2 value of 0.77, an RMSE of 14.90 mg m−3, and a bias of 2.56 mg m−3 (Figure 5j). This
resulted from a good agreement of the estimated absorption coefficient with the observed coefficient
(Figure S4a). For Chl-a estimation, the Simis algorithm with MODTRAN correction showed the
highest performance with an R2 value of 0.53, an RMSE of 10.88 mg m−3, and a bias of −1.20 mg m−3

(Figure 6g). This proved the accurate estimation of the absorption coefficient (Figure S5d). Both the Li
and Simis algorithms overestimated the PC and Chl-a concentrations when both concentrations were
below 25 mg m−3 (third and fourth row in Figures 5 and 6). Under atmospheric correction by ATCOR
4, the Li algorithm was not responsive to PC and Chl-a concentration. This resulted in the lowest R2

values of 0.34 and 0.025 and the highest RMSE values of 60.74 mg m−3 and 156.73 mg m−3, as well as
the highest biases of 17.06 mg m−3 and 150.82 mg m−3, respectively.

3.4. PC and Chl-a Distribution Map

Following MODTRAN 6, ATCOR 4, and ANN correction, the spatial distribution of PC and Chl-a
showed a similar pattern (Figures 7–14). However, the PC and Chl-a concentration obtained from
the reflectance data corrected using MODTRAN 6 was relatively high compared to the concentration
obtained from reflectance data corrected using ATCOR 4 and ANN. A distinctive spatial distribution of
high PC and Chl-a concentration was observed in Section 1 on 12 August 2016. In addition, a high PC
and Chl-a concentration level was distributed along the left edge of the river on 12 and 24 August 2016.

The IOP algorithms showed higher concentrations of PC and Chl-a than those of the AOP
algorithm in terms of MODTRAN 6, ATCOR 4, and ANN correction. However, the Simis algorithm
with ANN correction did not correctly estimate the PC distribution (Figures 7k and 8k). The PC
concentrations of the Li algorithm with MODTRAN 6 correction were underestimated in the area
highlighted by the dotted circle (i.e., region 1 in Figure 7c); however, the Li algorithm with ATCOR 4
correction showed the opposite Chl-a concentration pattern compared to the other results (Figures
11g and 12g). On the other sampling dates (20 September and 14 October 2016), the PC and Chl-a
concentrations and spatial distribution were fairly constant (Figures S6–S13). The band ratio (2)
algorithm produced a reasonable concentration range of spatial distributions for PC during these
sampling events. In contrast, the IOP algorithms using reflectance data corrected by MODTRAN 6,
ATCOR 4, and ANN showed higher PC and Chl-a concentrations than those of the AOP algorithms.
Most algorithms showed concentrations ranging from 10 to 40 mg m−3 for the Chl-a estimations.
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4. Discussion

4.1. Variation in Algae in the Baekje Reservoir

The HSI images taken on 12 and 24 August 2016 succinctly identified a cyanobacteria-dominant
bloom in the reservoir. Most of the PC:Chl-a values on 12 and 24 August 2016 were observed to be
greater than 0.5, which is a standard for assessing whether the cyanobacteria bloom is at risk. In
particular, the PC:Chl-a of 12 and 24 August 2016 could be classified as medium risk because of the
relatively high Chl-a concentrations [60].

The low PC concentration and relatively high Chl-a concentration on 20 September and
14 October 2016 signified an algal species succession from cyanobacteria to diatoms and green algae.
This occurrence was mainly because of the observed water temperature between 18 ◦C and 22 ◦C,
which is not a preferred growth condition for cyanobacteria [9]. The total number of cyanobacteria
cells significantly decreased from 105,840 cells mL−1 to 23,840 cells mL−1 on 20 September and 14
October 2016, respectively, while the total cells of green algae and diatoms did not change substantially:
116,512 cells mL−1 (i.e., 30% green algae and 70% diatoms) on 20 September and 110,816 cells mL−1

(i.e., 30% green algae and 70% diatoms) on 14 October 2016.

4.2. Atmospheric Correction Performance

Overall, the atmospheric correction performance of MODTRAN 6 was acceptable, with an NSE value
greater than 0.80. Although the averaged reflectance spectra of the MODTRAN 6 atmospheric correction
was in good agreement with the in-situ spectra, the corrected reflectance result had 20–30% error in
the blue and green bands (i.e., λ < 500 nm) and the near infrared bands (i.e., λ > 700 nm) (Figure S3).
In addition to the uncertainty of the in-situ measurement, the reflectance errors caused by atmospheric
correction have been documented by several authors. Bernstein et al. [52] reported that reflectance
corrected using MODTRAN differed from the observations because of the lack of in-situ reflectance
data as well as difficulties in the elimination of absorption and scattering properties in the atmospheric
correction. Gao et al. [53] emphasized that retrieval of aerosol information allowed description of the
absorption and scattering properties, which could be used to reduce the reflectance error in wavelength
regions where λ < 500 nm and λ > 700 nm. Adler-Golden et al. [74] highlighted that the poor performance
of the atmospheric correction method was driven by the high water column which increased the fractional
error of the reflectance bands because of the combined effects of atmospheric absorption and scattering.
Hunter et al. [33] noted that intensive scattering of aerosol and water vapor resulted in poor correction
performance in the wavelength regions of λ < 500 nm and λ > 750 nm.

Similarly, the atmospheric correction performance of ATCOR 4 in this study may have been
affected by the limited available data on the atmospheric conditions during the measurement
campaigns. Hadjimitsis et al. [75] insisted that given sufficient data on the atmospheric conditions at
the time of measurement, molecular absorption and scattering in the atmosphere could be described,
resulting in accurate atmospheric correction using a physically based model such as ATCOR. In this
study, the inaccuracy of the MODTRAN 6 atmospheric correction in certain reflectance bands and
the poor performance of ATCOR 4 may have been caused by the lack of available data on important
atmospheric conditions such as water vapor column and aerosol optical depth, as Lpath and S depend
on the water vapor column, which might not have been well defined in this study (see Appendix
A in the Supplementary Material). Uncertainty in the atmospheric parameters would have led to
uncertainty being distributed throughout the image [22]. Another possible cause of the correction
error was suggested by Matthews et al. [22], who insisted that the absence of Lambertian bidirectional
reflectance distribution functions could negatively affect the accuracy of the corrected reflectance.

In addition, imperfect time-matching between ground-based and airborne monitoring may have
caused distortion of the corrected reflectance because of changes in water vapor over time [33]. The
outliers of the corrected reflectance were observed on 12 August 2016, because of the phytoplankton
influence on the in-situ reflectance. When the massive phytoplankton occurred on the water surface,
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the reflectance spectra had higher values greater than 700 nm because of the increased scattering
of the phytoplankton and lower values less than 500 nm because of the increased absorption of
the phytoplankton [76]. Then, averaged atmospheric parameters might not consider this abnormal
circumstance to estimate the surface reflectance. The corrected reflectance on 14 October 2016 was less
concentrated along the 1:1 line than the reflectance results of the other sampling periods. A haze effect
on the water surface might be a cause of the uncertainty of the in-situ reflectance measurement [77,78].
This might increase the scattering, which results in distorted measurement of in-situ reflectance.

The atmospheric correction using the ANN model in this study showed satisfactory performance
during both the training and validation steps, which had NSE values of 0.80 and 0.76, respectively.
Compared to previous studies, the authors of [51] applied an ANN to the atmospheric correction of
Medium Resolution Imaging Spectrometer (MERIS) imagery to retrieve remote-sensing reflectance
under the water conditions in case 2. Their model showed a high correlation between the in-situ and
corrected reflectance. Schroeder et al. [50] atmospherically corrected a MERIS image in the water in
case 1 that had a low RMSE value for the at-sensor radiance by using top-of-atmosphere radiance,
humidity, and angle data. Goyens et al. [49] corrected atmospheric effects in a MODIS-Aqua image
using an ANN model which achieved an R2 value greater than 0.8.

4.3. Bio-Optical Algorithm Application

The MODTRAN 6 correction led to the higher performance of the AOP and IOP algorithms
compared to that of the ATCOR 4 correction in both PC and Chl-a estimation (Figure 15 and
Figure S14). However, the AOP algorithm with ATCOR 4 correction resulted in an acceptable estimation
(Figure 5b,e) as it can compensate for magnitude differences by using simple ratios [79]. The low
performance of the ANN simulation might have been because of an insufficient number of reflectance
input data points. Goyens et al. [49] and Schroeder et al. [51] used over 10,000 and 30,000 data
points, respectively, to construct an ANN model. They showed an acceptable correction accuracy
with R2 and RMSE values of 0.8 and ±1.1 W m−2 μm−1 sr−1, respectively. The IOP algorithms
were directly influenced by the correction performance, because these algorithms directly use the
corrected reflectance in various wavelength bands. This could be caused by monitoring uncertainty in
remote-sensing reflectance data [30,80]. Thus, the IOP algorithms were more significantly affected by
the performance of the atmospheric correction than the AOP algorithms because of the intervention
of the various reflectance bands (Figure S14). IOP algorithms commonly overestimate low PC
concentrations because of the difficulty in accurately measuring the optical intensity at low PC
concentrations. Li et al. [30] found degraded performance for the Li and Simis algorithms in low PC
conditions because of optical interference, for example, from colored dissolved organic matter.

Although Li et al. [30] improved the algorithmic results at low PC concentrations by considering
the interference effect in the algorithm, the Li algorithm still overestimated the PC concentration
under those conditions. This implies that, in the case of IOP algorithms, it might be difficult to
correctly estimate lower PC concentrations using the combination of various reflectance bands. Thus,
AOP algorithms would be a straightforward means to describe low PC concentrations and their
spatial distribution.

Even though Chl-a estimates showed lower precision than those of the PC estimates, the
MODTRAN 6 correction showed more accurate results of the bio-optical algorithms than those using
reflectance data corrected by ATCOR 4 and ANN (first column in Figure 6). The poor performance of
the Chl-a algorithms was mainly from the relatively low level of Chl-a concentrations on 20 September
and 14 October 2016. During these sampling events, the influence of interference such as TSSs might
have increased as the TSS concentration was maintained from 12 mg L−1 to 20 mg L−1 (Figure 3).
This was proven by the nonlinear relationship between the particulate matter and Chl-a as suggested
by Bricaud et al. [81], Garver et al. [82], and Yentsch and Phinney [83]. They found that as Chl-a
concentration decreased, the particulate optical properties increased. The particulate interference
eventually resulted in poor performance of the Chl-a algorithms.
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4.4. Spatial Distribution Map of Algal Concentration

Under the MODTRAN 6 correction, the Li algorithm was able to describe the spatial distribution
of PC appropriately on 12 August 2016. However, it still underestimated the PC concentration in
the middle of region 1 because of the unstably corrected reflectance in bands greater than 700 nm
(Figure 7c). In addition, the Chl-a distribution of the Li algorithm showed reverse concentration pattern
because low reflectance values greater than 700 nm decreased b(λw), which resulted in an abnormally
high Chl-a estimation (Equation (9)).

In the middle of the river in Section 1 on 12 August (Figures 7 and 11), the gate operation for
the hydropower plant caused a tailed shape of the PC and Chl-a distribution [9]. In this near-Baekje
Weir region, high concentrations of PC and Chl-a were observed. This resulted in a high PC:Chl-a
value, which resulted in a caution index for the cyanobacteria dominant bloom (first row in Figure S15).
Likewise, the PC:Chl-a value on 24 August 2016 was high near the Baekje Weir region (second row
in Figure S15). Thus, this near-Baekje Weir region could be classified as a medium risk zone on
12 and 24 August 2016 [33,60]. PC concentrations tended to be high along the edge of the river
because the water flow was slower there than in the middle of the river, leading to longer water
retention times. Figure 16 shows the negative relationship between flow velocity and PC:Chl-a
on 12 and 24 August 2016 (p-value = 0.003). This proved that the cyanobacteria favor a long water
retention time to form a dominant cyanobacteria bloom. Previous studies are in agreement with
cyanobacteria blooms occurring when the water retention time is long [10,84–86]. Further, Park et al. [9]
reported that a flow velocity less than 0.06 m s−1 was a suitable physical condition for cyanobacteria
growth. In addition, a high water temperature and stable nutrient concentration were proven as
dominant environmental factors for PC distribution on 12 and 24 August 2016 [9]. Overall, atmospheric
correction using the ANN simulation resulted in a similar PC and Chl-a distribution as that using
MODTRAN 6 or ATCOR 4. Sufficient input datasets are required to obtain a reasonable performance
using the ANN model. If there is not sufficient input data, the results are often observed to have a
single simulation value with various observed values on the dotted line as shown in Figure S2 [87].
Therefore, it is assumed that the scarcity of the input data for the ANN simulation resulted in relatively
poor performance in developing the PC and Chl-a concentration map.

 

Figure 16. Relationship between flow velocity and the ratio of PC and Chl-a on 12 and 24 August 2016.
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5. Conclusions

This study estimated the spatial distribution of PC and Chl-a concentrations using hyperspectral
image data and identified how the performance of bio-optical algorithms depended on which
atmospheric correction method was used. In addition, how the algae were distributed by influence
factors such as flow velocity was also analyzed. The atmospheric correction methods investigated in
this study were MODTRAN 6, ATCOR 4, and ANN. Field monitoring and experimental analysis were
conducted, after which, bio-optical algorithms were built to quantify PC and Chl-a concentrations
using hyperspectral image data. IOP algorithms were optimized using multi-objective optimization.
MODTRAN 6, ATCOR 4, and ANN all succeeded in correcting for atmospheric effects on the
hyperspectral image obtained from airborne monitoring. Both AOP and IOP algorithms generated
maps of the spatial distribution of PC and Chl-a concentrations using the corrected images. The major
findings of this study are as follows:

• The cyanobacteria bloom on 12 and 24 August 2016 occurred as the PC:Chl-a value was greater
than 0.5. A succession of algal species from cyanobacteria to diatoms was then observed on
20 September and 14 October 2016.

• MODTRAN 6 provided reasonable atmospheric correction performance compared to that of
ATCOR 4. However, the accuracy was low in certain regions of the reflectance spectra (λ < 500 nm
and λ > 700 nm). This was mainly because of insufficient atmospheric observations during
the campaigns.

• The most accurate atmospheric correction by MODTRAN 6, compared to ATCOR 4 and ANN,
contributed to improving the performance of the bio-optical algorithms in terms of the estimation
of PC and Chl-a concentration. The ANN model was found to require large quantities of input
data to achieve accurate simulation results.

• The spatial distribution of a high PC:Chl-a value was derived using the flow velocity of less than
0.06 m s−1. This study directly proved that the influence factor of the dominant PC bloom was a
long water retention time.

This study identified the effect of the atmospheric correction method used in HSI on PC
and Chl-a concentrations derived from images, and it evaluated the influence factor on the algal
distribution. Thus, atmospheric correction performance has been shown to be critical in providing
useful, informative, and precise maps of the spatial distribution of PC when employing airborne or
satellite imagery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/8/1180/
s1, Appendix A: Atmospheric correction of ATCOR 4, MODTRAN 6, and ANN, Table S1: MODTRAN input
composition, Table S2: Solar angle for geometry specific input, Table S3: Input information for the ANN, Table S4.
Atmospheric correction performances of MODTRAN 6 and ATCOR 4, Figure S1: Atmospheric correction results
using ATCOR 4. Panels a–d show the average in-situ and corrected surface reflectance ρsurf. Panels e–h show
the correlation between the observed and corrected results at different wavelength for each sampling point,
Figure S2: ANN simulation atmospheric correction results for overall wavelengths, Figure S3: Reflectance
error (%) of the atmospheric correction. Panels a-d show the MODTRAN 6 correction error and panels e-h
show the ATCOR 4 correction error, Figure S4: Optimized absorption coefficient results of PC algorithm with
respect to in-situ and atmospheric corrected reflectance. Panels a–d show Li algorithm results. Panels d–f
show Simis algorithm results. abs indicates absorption coefficient at 622 nm, Figure S5: Optimized absorption
coefficient results of Chl-a algorithm with respect to in-situ and atmospheric corrected reflectance. Panels a-d
show Li algorithm results. Panels d-f show Simis algorithm results. abs indicates absorption coefficient at 660
nm, Figure S6: Phycocyanin concentration images 20 September 2016 in Section 1. Panels a–d show the PC
distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the PC distribution driven
by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN atmospheric
correction, Figure S7: Phycocyanin concentration images on 20 September 2016 in Section 2. Panels a–d show the
PC distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the PC distribution driven
by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN atmospheric
correction, Figure S8: Phycocyanin concentration images on 14 October 2016 in Section 1. Panels a–d show the
PC distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the PC distribution driven
by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN atmospheric
correction, Figure S9: Phycocyanin concentration images on 14 October 2016 in Section 2. Panels a–d show the
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PC distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the PC distribution driven
by the ATCOR 4 atmospheric correction. Panels i–l show the PC distribution driven by the ANN atmospheric
correction, Figure S10: Chlorophyll-a concentration images on 20 September 2016 in Section 1. Panels a–d show
the Chl-a distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the Chl-a distribution
driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven by the ANN
atmospheric correction, Figure S11: Chlorophyll-a concentration images on 20 September 2016 in Section 2. Panels
a–d show the Chl-a distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show the Chl-a
distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution driven by the
ANN atmospheric correction, Figure S12: Chlorophyll-a concentration images on 14 October 2016 in Section 1.
Panels a–d show the Chl-a distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h show
the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution
driven by the ANN atmospheric correction, Figure S13: Chlorophyll-a concentration images on 14 October 2016 in
Section 2. Panels a–d show the Chl-a distribution driven by the MODTRAN 6 atmospheric correction. Panels e–h
show the Chl-a distribution driven by the ATCOR 4 atmospheric correction. Panels i–l show the Chl-a distribution
driven by the ANN atmospheric correction. Figure S14: Influence of atmospheric correction with MODTRAN 6
and ATCOR 4 on a: PC algorithm and b: Chl-a algorithm.* indicates the band ratio algorithm, ** indicates the
Li algorithm, and *** indicates the Simis algorithm. Figure S15: PC:Chl-a map estimated by Li algorithm from
reflectance data corrected by MODTRAN 6 in 12 and 24 August 2016.
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Abstract: Freshwater lakes provide many important ecosystem functions and services to support
biodiversity and human well-being. Proximal and remote sensing methods represent an efficient
approach to derive water quality indicators such as optically active substances (OAS). Measurements
of above-ground remote and in situ proximal sensors, however, are limited to observations of the
uppermost water layer. We tested a hyperspectral imaging system, customized for underwater
applications, with the aim to assess concentrations of chlorophyll a (CHLa) and colored dissolved
organic matter (CDOM) in the water columns of four freshwater lakes with different trophic conditions
in Central Germany. We established a measurement protocol that allowed consistent reflectance
retrievals at multiple depths within the water column independent of ambient illumination conditions.
Imaging information from the camera proved beneficial for an optimized extraction of spectral
information since low signal areas in the sensor’s field of view, e.g., due to non-uniform illumination,
and other interfering elements, could be removed from the measured reflectance signal for each
layer. Predictive hyperspectral models, based on the 470 nm–850 nm reflectance signal, yielded
estimates of both water quality parameters (R2 = 0.94, RMSE = 8.9 μg L−1 for CHLa; R2 = 0.75,
RMSE = 0.22 m−1 for CDOM) that were more accurate than commonly applied waveband indices
(R2 = 0.83, RMSE = 13.2 μg L−1 for CHLa; R2 = 0.66, RMSE = 0.25 m−1 for CDOM). Underwater
hyperspectral imaging could thus facilitate future water monitoring efforts through the acquisition of
consistent spectral reflectance measurements or derived water quality parameters along the water
column, which has the potential to improve the link between above-surface proximal and remote
sensing observations and in situ point-based water probe measurements for ground truthing or to
resolve the vertical distribution of OAS.

Keywords: chlorophyll a; colored dissolved organic matter; in situ measurements; vertical distribution;
water column; snapshot hyperspectral imaging

1. Introduction

Lake ecosystems provide essential functions and services, including contributions to biodiversity,
hydrologic regulation and water supply, and human well-being through their recreational benefits [1,2].
At the same time, they are subject to various threats from climate change, alterations of catchment land
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use, anthropogenic pollutants, aquatic invasive species, or human harvest including aquaculture [3].
Hence, appropriate monitoring adapted to relevant temporal and spatial scales is necessary for an
improved understanding of lake ecosystems and their feedbacks.

Remote sensing in the visible and near-infrared (VNIR) range (400–1000 nm) allows for the
spatio-temporal monitoring of various water quality parameters in freshwater lakes [4,5]. The most
important indicators of water quality, in general, are phytoplankton, colored dissolved organic matter
(CDOM) and total suspended matter (TSM), which represent optically active substances (OAS) [4,6].
Changes in the quantity of the OAS have a direct effect on the spectral signature detected by remote
(or proximal) sensors, which, in turn, enables the estimation of OAS contents from measured spectra
through physically-based analytical or empirical models [4,7,8]. Nevertheless, in the case of optically
complex inland water bodies, the variety of OAS concentrations and their specific inherent optical
properties is wide and independent from each other [6,9]. This complexity limits the use of simple
band ratio approaches and might affect the accuracy of analytical models due to partly unknown
optical properties of contributing OAS [7,10].

Beyond this, the general application of remote sensing methods may be limited, e.g., by cloud
cover during overflight. Accurate atmospheric correction is another critical issue for retrieving surface
reflectances from remotely sensed data; inaccuracies might affect the OAS retrieval, especially in the
case of optically complex inland waters [9,11–14].

While remote sensing observations can per se provide consistent, spatially-distributed
measurements of water quality parameters at large scales, such spectral measurements can be
limited by the lake specific penetration depth of light, which might be shallower than the actual
constituent layer; otherwise the constituent layer might just form a thin layer within the remotely sensed
water layer [15–18]. Consequently, remotely-sensed measurements cannot resolve the distribution of
constituents in the water column, which may impede the correct retrieval of column OAS contents
when strong density gradients occur in the remotely-sensed water layer and below.

Water-quality probes, on the other hand, can acquire information from the entire water column,
which is relevant, for example, for a series of ecological issues including the detection and analysis
of the deep chlorophyll maximum as a hot spot of primary production and nutrient cycling [19].
Besides OAS such as CHLa and CDOM, these sensors can also retrieve additional water parameters
including, e.g., temperature, dissolved oxygen, conductivity and pH (e.g., [20–22]). Remote sensing
and in situ methods can therefore complement each other, for example by allowing ground truthing of
satellite-derived biochemical data products or, conversely, the extension of point information across
larger spatial scales [23].

In this context, the in situ hyperspectral measurement of water columns, from the uppermost layer
observable by remote sensing through deeper layers that are limited to point sensor observations, offers
the potential to improve the link between in situ water monitoring networks and Earth observation
systems through consistent radiometric measurements along a water profile. Various studies have
used hyperspectral point or imaging sensors to provide ground truth data for overflight campaigns
and to validate satellite imagery products (e.g., [22,24,25]), but also for the direct derivation of OAS
products for water monitoring purposes [21,26,27]. Recently, Keller et al. (2018) [21] deployed a
hyperspectral snapshot camera mounted on a boat to collect hyperspectral imagery (450–950 nm)
along the Elbe river in Germany with the goal to quantify multiple OAS such as CDOM and CHLa.
While they could successfully estimate OAS quantities with surface measurements, it could also be
advantageous to transfer this technology into the water column to measure OAS at multiple depths
with the same device.

In this study, we evaluated the capabilities of a hyperspectral snapshot camera system to resolve the
vertical distribution of CHLa and CDOM in pre-defined segments in the water column. The camera’s
spectral imaging quality and capabilities for underwater sensing were first tested in a laboratory
experiment against a well-established point spectrometer. Afterward, we conducted a field campaign
with multiple water column measurements in four freshwater lakes in Central Germany with the aims
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to (i) develop an approach to measure water column reflectance without distortions through variations
in ambient illumination and (ii) to estimate CHLa and CDOM concentrations through multivariate
calibrations with partial least squares regression (PLSR) in comparison to commonly applied CHLa
and CDOM indices.

2. Materials and Methods

2.1. Hyperspectral Snapshot Camera

We collected hyperspectral measurements with a snapshot camera system (UHD 285; Cubert
GmbH, Ulm, Germany) incorporated in a waterproof casing. The camera used a silicon CCD chip,
which enabled the simultaneous acquisition of an entire three-dimensional hyperspectral image cube
with one trigger pull. Its built-in sensor covered the spectral range of 450–998 nm with 8 nm spectral
resolution at a 4 nm sampling interval. The acquired hyperspectral image cubes had a resolution of
50 × 50 pixels, resulting in 2500 spectra at 138 wavelengths. Due to spectral artifacts in the first few
spectral bands and a Si-induced sensitivity loss at the end of the spectrum [28], we reduced the final
spectral range to 470–850 nm with 96 spectral bands.

2.2. Laboratory Experiment

To test the camera’s ability to capture small changes in OAS contents, we compared its
performance with parallel measurements using an ASD FieldSpec 4 (Malvern Panalytical Ltd.,
Almelo, The Netherlands) point spectrometer in a laboratory experiment.

The laboratory setup included a small water tank with a 20 × 20 cm Zenith Polymer® (white panel
with an average absolute reflectance of 0.95) placed at the bottom. Both spectrometers were installed
with a nadir viewing geometry, and the scene was illuminated with an ASD ProLamp (14.5 V, 50 W) at
a 45◦ zenith angle. After calibrating the instruments, we filled the tank with distilled water up to a
column height of 20 cm. The ASD measurements were carried out directly above the water surface as
the instruments’ fiber optics cable could not be immersed in the water. To exclude contributions to
the measured radiance due to specular reflection at the air-water interface, the fibre optics cable was
encased with a non-reflective material. The measured reflectance thus referred to the water-leaving
radiance after passage through the interface:

ρASD =
Lw

L0,lamp
(1)

where Lw is the water-leaving radiance and L0,lamp is the radiance of the light source at the water
surface, measured through the reference panel.

Measurements with the hyperspectral camera were carried out with the camera opening
placed slightly below the water surface. The measured reflectance thus refers to the upwelling
underwater radiance:

ρCam =
Lu

L0,lamp
(2)

where Lu is the upwelling radiance before transmission through the surface.
The two reflectances can be related through a dimensionless proportionality factor that accounts

for the transmission through the water–air interface [29]. Since we were mainly interested in the quality
of the camera’s data acquisition, i.e., shape of reflectance spectra, resolution of peaks, signal-to-noise
ratio, and also carried out the field measurements (Section 2.5) below the water surface, we decided
not to convert the ASD spectra to camera-equivalent reflectances.

We carried out two separate series of measurements to test the spectral response of CDOM and
CHLa. Humic acid-sodium salt and a commercial Chlorella sp. powder were used as surrogates
for CDOM and CHLa, respectively. Both substances were each mixed into the tank’s water at
increasing concentrations (CDOM with absorption coefficients at 440 nm: 0.0–0.5 m−1 in 0.1 increments,
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and 0.5–3.0 m−1 in 0.5 increments; CHLa: 0.0–12.5 μg L−1 in 2.5 increments, and 12.5–112.5 μg L−1 in
12.5 increments) and reflectance spectra were recorded at each stage.

2.3. Field Campaign

For the field campaign, we investigated four artificial freshwater lakes in Central Germany
(Figure 1), which were characterized by significant differences in size, trophic state index,
and management practices (Table 1). The studied lakes were selected to cover a broad range in
terms of depths of visibility, OAS concentrations and trophy with the aim to test the camera’s image
acquisition and CHLa and CDOM modelling capabilities in different environments (Section 2.6).
The shallow, hypereutrophic lake Auensee is a flooded, groundwater-fed former gravel pit with an
average depth of 3.5 m, located in an inner city hardwood floodplain forest [30]. The groundwater-fed
Cospuden Lake, with a maximum depth of ~54 m, represents a former open cast lignite mine [31],
currently used as a recreational area. The Mulde and Kriebstein sites are both reservoirs, fed by the
Mulde and the Zschopau river, respectively.

Figure 1. Location of the lake sites in Central Germany and sampling points (red dots) for water column
measurements (satellite imagery: Sentinel 2A - RGB – 432 (17/04/2019); coordinate system of the map:
ETRS89/UTM zone 33N).

Table 1. Characteristics of the investigated lake sites in Central Germany.

Site Area (ha) Trophic State Index Type
Secchi

Depth * (m)
Number of

Sampling Points
Number of

Sampling Units

Auensee 12 Eutrophic/hypereutrophic Former gravel pit 0.40–0.65 6 27
Cospuden 436 Oligotrophic Former open cast mine 6.00–6.05 2 10
Kriebstein 132 Oligotrophic Reservoir 2.35–2.45 2 10

Mulde 630 Mesoeutrophic Reservoir 1.25–1.30 2 9

* Refers to the viewing depth at the time of measurement using a 20 cm Secchi disk.

At each lake, spectral measurements and reference samples were collected at near-shore sampling
points accessible by footbridges and at fixed markings within the lakes (Figure 1). Additionally,
we determined the viewing depth using a 20 cm Secchi depth at each sampling point. For the
Mulde, Kriebstein and Cospuden sites, measurements were carried out at two sampling points in
each lake; whereas for the more variable Auensee site, samples were collected at six sampling points.
Measurements were carried out for up to five continuous 0.5 m segments from the water surface
down to a depth of 2.5 m, if possible, and for four segments in shallower waters. In total, 56 samples
were taken.
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2.4. CHLa and CDOM Reference Analysis

In parallel with the spectral measurements of the water column, we collected bulk water samples
for each segment with a Ruttner water sampler (1.7 l, height: 24.5 cm). The samples were stored in
cooling boxes and transported to the laboratory on the same day for the analysis of chlorophyll a (CHLa)
and colored dissolved organic matter (CDOM). CHLa absorption was determined photometrically
after hot ethanol extraction by using a SPECORD double-beam photometer with pure water (Milli-Q)
as reference; CHLa concentrations were calculated afterwards according to ISO 10620 [32]. CDOM
contents were also determined photometrically after filtering subsamples through Whatman GF/F-filters
(pore size of 0.45 μm). The remaining filtrate was used to measure the absorbance of CDOM at 440 nm
in 1 cm quartz cuvettes by using a SPECORD double-beam photometer with pure water (Milli-Q) as
reference. Absorption coefficients were calculated according to the following expression [33]:

aCDOM(440 nm) = 2.303 · A(440 nm)

l
(3)

where aCDOM(440 nm) is the CDOM absorption coefficient at 440 nm, A(440 nm) is the measured
absorbance at 440 nm, and l is the path length of the cuvette in m.

2.5. Hyperspectral Image Acquisition and Processing

For water column measurements, the hyperspectral camera system was mounted on a customized
rack equipped with a portable halogen lamp (100 W). A Zenith Polymer® reference panel (average
absolute reflectance of 0.95; 25 × 25 cm) was attached in front of the camera at a fixed distance of 40 cm
so that it covered the entire field of view of the camera (Figure 2).

 

Figure 2. Hyperspectral camera system for underwater measurements: (a) camera system mounted on
a rack with halogen light source and reference panel; (b) in situ measurement of uppermost water layer
(0–0.5 m); (c) top-down view of night-time measurement in the water column (0.5–1.0 m).

Images of the reference panel above the water surface and of the individual water column
segments were recorded in the raw digital number format (DN). Under optimal illumination conditions,
the conversion from DN to radiance is a linear function and reflectance values can be calculated as:

ρsample =
DNsample

DNre f
· ρre f ·

( tre f

tsample

)
(4)

where ρsample = reflectance of sample, DN = digital number, ρre f = reflectance factor of the reference
panel and t = integration time during the measurement.
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At each sampling point, we measured the reference panel above the water surface to acquire
a calibration file for the entire water column. Since ambient illumination varies for each measured
segment due to non-linear sunlight attenuation through the water column, we compensated for this
effect through parallel measurements of the reflectance target with and without artificial illumination
to retrieve the final reflectance curves. That is, two separate images were taken for each measurement,
both for the reference panel above the water surface and for the individual segments within the
water column. The first image was taken with the external lamp switched on, the second image
with the lamp switched off. The difference between the two respective images then represents the
signal of the measured water column segment without the impact of ambient stray light (Figure 3).
Before calculating the final mean reflectance spectrum, we performed two processing steps for each
image (Figure 4) to define an optimally illuminated region within the image while minimizing the
impact of interfering objects. First, we applied a binary mask by thresholding pixel values at 710 nm,
the wavelength of maximum signal intensity of the halogen lamp. This wavelength yielded a high
discrimination accuracy for the applied threshold due to an optimal signal-to-noise ratio and was also
less influenced by absorption processes of our target variables (see Section 3.1).

Figure 3. Field measurement setup for underwater reflectance retrieval: the upper row shows radiance
measurements on the reference panel for calibration with light source turned on (a) and turned off
(b). The difference of (a) and (b) represents the signal contributed by the light source only, which was
used for instrument calibration (c). The lower row shows measurements below the water surface
with the light source turned on (d) and turned off (e). The difference between measured spectra in
configuration of (d) and (e) represents the reflected signal that only refers to the illumination from the
artificial light source (f).

Since the illumination conditions and OAS contents varied between the images, each image-specific
threshold was defined as the mean DN value at 710 nm. All pixels with a DN value less than the image
mean were discarded to remove poorly illuminated pixels and interfering image objects (e.g., shadowing
effects of surface waves, bubbles due to gaseous emissions from the seafloor, or floating plant residues
in the water column). In the second step, we defined a square region of interest (ROI) with a maximum
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of 121 pixels centered at the pixel with the largest DN value (710 nm) to calculate the mean DN
spectrum for each image (Figure 4).

Figure 4. Image processing steps to extract optimal mean spectra for multivariate calibrations:
(a) example of 2D image (at 710 nm) recorded near the bottom of the Auensee site where suspended
particles and bubbles appeared during image acquisition; (b) masking of poorly illuminated image
areas and interfering elements; (c) definition of a region of interest (ROI) around the ‘brightest’ pixel
(at 710 nm).

Finally, the reflectance of each water column segment was calculated from the extracted mean DN
spectra as:

ρsample =
DN(x)sun+lamp −DN(x)sun

DN(x = 0)sun+lamp −DN(x = 0)sun

· ρre f ·
( tx=0

tx

)
(5)

where the numerator represents the averaged sunlight-compensated DN of the measurement at depth x,
the denominator represents the averaged sunlight-compensated DN of the reference panel measured
above the water surface (x = 0), and tx and tx=0 are the corresponding integration times.

Accordingly, the calculated reflectance curves were only dependent on the energy input of the
external halogen light source and were thus comparable across all investigated water bodies.

To validate the compensation algorithm, we compared the calculated reflectance curves of daytime
and nighttime measurements at the Cospuden site. During nighttime measurements, ambient light
does not interfere with the measurements, so that these measurements only reflect the contributions of
the halogen light source. As the Cospuden site was oligotrophic, no additional OAS variability was
expected to contribute to the spectral information. The shape of the spectral signatures was therefore
expected to remain constant throughout the entire vertical profile, regardless of any daytime ambient
light effects.

2.6. Predictive Modeling of CHLa and CDOM

Based on the aggregated field dataset, we tested two different empirical approaches to estimate
CHLa and CDOM including two waveband indices for each target variable and multivariate regression
based on the full spectrum. For CHLa, we used the following three-band ratio, which is widespread in
remote sensing applications [34], see in [8]:

CHLa = a + b
(

1
R670

− 1
R710

)
·R750 (6)

where a and b are model coefficients that were empirically re-optimized in the cross-validation loop,
R is reflectance, and the subscript indicates the wavelength in nm. Additionally, we applied a single
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waveband model based on the first derivative of the reflectance signal at 690 nm, shown to work well
for CHLa estimation in reservoirs by [35]:

CHLa = a + b(R′690) (7)

where R′ is the first derivative of the reflectance curve.
For CDOM, we used a published two-band ratio model [36], which was tested successfully at

various lakes by Zhu et al. (2014) [37]:

CDOM = a
(

R570

R654

)b
(8)

The choice between existing CDOM algorithms was limited to the spectral range we used for our
dataset (470–850 nm) since many of the empirical algorithms are based on wavelengths <470 nm [37].
In parallel to the approach of [35] for CHLa, we empirically defined the wavelength at 602 nm as the
one with the strongest correlation between CDOM and the first derivative of reflectance, resulting in
the following model:

CDOM = a + b(R′602) (9)

To compare the performance of target variable-specific waveband indices with the use of
hyperspectral data, we calibrated partial least squares regression (PLSR) models [38] with reflectance
(PLSref) and first derivative spectra (PLSfda) using the full spectral range. PLSR is widely used in
chemometrics to develop multivariate calibrations with hyperspectral data. The method can cope
with multicollinear and noisy datasets and has been applied in hyperspectral water spectroscopy
of optically complex waters where OAS specific empirical band ratios might produce inaccurate
results (e.g., [39–42]).

All models were evaluated with a ‘leave-one-profile-out’ cross-validation (CV). Therefore, we split
the entire dataset iteratively up into eleven water column profiles for calibration, applying either the
above-mentioned waveband models or full range PLSR, and the remaining water column profile for
validation. Subsequently, we pooled the estimates of the individually cross-validated profiles for each
method and calculated the following performance measures to evaluate the models: coefficient of
determination (R2), root mean square error (RMSE):

RMSE =

√∑
(ŷ− y)2

n
(10)

where y=measured value, ŷ= estimated value and n= number of samples, and the ratio of performance
to interquartile range (RPIQ):

RPIQ =
IQR

RMSE
(11)

where IQR is the interquartile range of the reference data.

3. Results and Discussion

3.1. Laboratory Experiment

The results of the performed laboratory experiments are summarized in Figure 5. For reasons of
comparison with the hyperspectral camera, we reduced the ASD spectra to a range between 470 and
850 nm. Additionally, we normalized all spectra to the measured reflectance at 810 nm to minimize
potential scattering effects due to particulate characteristics of the added substances. The spectra
recorded with the UHD 285 hyperspectral camera and the ASD FieldSpec point spectrometer were very
similar overall. Reflectance patterns and absorption features at various levels of CDOM and CHLa
were clearly defined and did not show any significant deviations between the instruments. The minor
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systematic offset between the spectra of the point spectrometer and the hyperspectral camera was
presumably a result of the measurement setup, as the front of the camera was positioned slightly below
the water surface, in contrast to the fiber optic cable of the ASD spectrometer with a position just above
the water surface. The addition of CDOM caused a gradual increase in absorption in the ‘blue-to-green’
spectral range (<550 nm) that leveled off at higher wavelengths as already described in previous studies
(e.g., [43–45]). CDOM did not show any distinct absorption features in the VNIR range. The high
absorption in the shorter wavelengths presumably reflected large absorption features of dissolved
organic matter (DOM) in the ultraviolet (UV) range that tailed off in the VIS [43]. Increasing the
concentrations of algae showed a more differentiated effect on the spectra with a characteristic CHLa
absorption feature around 670 nm, but induced also less pronounced peaks around 620 nm and 540 nm
that might have originated from accessory pigments of Chlorella sp.

Figure 5. Comparison of experimental laboratory measurements between ASD FieldSpec 4 and
UHD 285 hyperspectral camera at various levels of colored dissolved organic matter (CDOM) (a,b),
and chlorophyll a (CHLa) (d,e) concentrations. Panels (c,f) show a direct comparison of the measured
reflectance at specific key wavelengths sensitive to changes in CDOM and CHLa, respectively.

The normalization of the reflectance spectra to the wavelength at 810 nm resulted in an almost
perfect match of the spectral signatures at wavelengths longer than 710 nm. This documented that both
substances were not spectrally active in this range. On the other hand, both substances showed overlaps
in the entire range below 710 nm. Hence, the presence of one substance might impair the spectral
retrieval of the other substance, leading to a non-unique solution referred to as the ill-posed problem of
spectra analysis [46]. Besides the absorption coefficient at a certain wavelength in the 400–460 nm range,
CDOM could also be characterized by the spectral slope that describes the exponential decay of CDOM
absorbance with increasing wavelength and which strongly depends on the molecular composition
of DOM (see [43]). The reference analysis in the performed experiment with dissolved humic acid
in the given concentration range indeed revealed a spectral slope of 0.008 in the 400–500 nm range.
In freshwater lakes, however, the spectral slope of CDOM typically varies in a range between 0.014
and 0.020 (see [44,45,47]), and therefore has a smaller impact on the ‘red’ spectral range at each given
absorption coefficient. Nevertheless, high amounts of CDOM with typical values of the described
spectral slope might also affect empirical algorithms for CHLa retrieval in optically complex waters if
based on wavelengths around the CHLa feature at 670 nm.

In summary, the hyperspectral camera was able to capture small OAS variabilities with an accuracy
comparable to the ASD point spectrometer under laboratory conditions. The signal quality of the image
mean was comparable to the point measurement of the ASD instrument and the minor divergence in
total reflectance resulted from differences in the instrumental setup.
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3.2. Water Quality Characteristics of the Investigated Lakes

The two target variables showed a high degree of variability between the studied lakes (see Table 2).
The CHLa contents of the complete dataset varied between 0 and 96 μg L−1, with an overall mean
concentration of 37.2 μg L−1. The Cospuden and Kriebstein sites generally had low CHLa contents
throughout the complete measured water column with site-specific mean values of 0.6 μg L−1 and
2.3 μg L−1, respectively, and a standard deviation of 0.5 μg L−1. In the other two lakes mean
concentrations were significantly higher with 63.9 μg L−1 at the Auensee site and 36.9 μg L−1 at the
Mulde site.

Table 2. Descriptive Statistics of reference values of chlorophyll a—contents (CHLa, in μg L−1)
and CDOM absorbance at 440 nm (in m−1). OAS = optically active substance, n = number of
samples, min =minimum, Q1 = first quartile, Q2 = median, Q3 = third quartile, max = maximum,
mean = arithmetic mean, sd = standard deviation.

OAS Site n Min Q1 Q2 Q3 Max Mean sd

CHLa all 56 0 2 37 64 96 37.2 32.2
Auensee 27 27 46 64 84 96 63.9 20.9

Cospuden 10 0 0 1 1 1 0.6 0.5
Kriebstein 10 2 2 2 3 3 2.3 0.5

Mulde 9 15 35 36 41 53 36.9 10.5
CDOM all 56 0.1 0.9 1.0 1.3 1.6 0.97 0.43

Auensee 27 0.9 1.0 1.0 1.2 1.3 1.10 0.12
Cospuden 10 0.1 0.1 0.2 0.2 0.2 0.16 0.03
Kriebstein 10 1.4 1.4 1.4 1.6 1.6 1.45 0.11

Mulde 9 0.7 0.9 0.9 1.2 1.2 0.95 0.18

A vertical CHLa stratification occurred in those lakes with relatively high CHLa contents (Figure 6).
At the Auensee site, the layer-specific CHLa means ranged between 70 and 76 μg L−1 within the upper
1.5 m, and the upper layers were also characterized by a high variability (indicated by wide ranges
within each layer). By contrast, the average concentration dropped to almost half (40 μg L−1) at a
depth of 2.5 m. A similar pattern was observed at the Mulde site with mean values between 38 and 45
μg L−1 in the upper 1.5 m and 15 μg L−1 in the lowest layer. Due to the overall low CHLa contents,
no substantial stratification was observed at the Cospuden and Kriebstein sites.

Figure 6. Vertical distribution of CHLa (a) and CDOM (b) for the investigated lake sites. Points mark
the layer-specific mean, solid lines mark the layer-specific range of measured reference values.
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The results of the CDOM analysis showed less variability across the lakes with CDOM values
between 0.1 and 1.6 m−1. We found the lowest CDOM levels at the Cospuden site with a maximum
absorption coefficient of 0.2 m−1, whereas the remaining lakes showed mean levels between 0.95 at the
Mulde site and 1.45 m−1 at the Kriebstein site. In all four lakes, the vertical profile of CDOM showed
an approximately uniform distribution.

In line with the relatively high CHLa concentrations in the surface layer, the Auensee site
and the Mulde site showed the lowest Secchi disk depths measured during the field campaigns
with ~0.5 m and ~1.3 m, respectively. Given that the Secchi depth approximates the water depth
suitable for above-ground remote or proximal sensing, this documents the need for underwater in situ
measurements to assess the complete vertical distribution of OAS.

3.3. Validation of Ambient Light Compensation

To validate the applicability of Equation (5) under realistic conditions, we compared the measured
reflectance values of nighttime measurements at the Cospuden site with the calculated reflectance
values of daytime measurements carried out only a few hours later at the same position (Figure 7).

Figure 7. Comparison of reflectance spectra acquired at Cospuden site during (a) nighttime measurements,
(b) daytime measurements without compensation for sunlight attenuation, and (c) daytime measurements
with compensation for sunlight attenuation.

The spectra of the nighttime measurements were almost identical for all five increments.
The reflectance curves showed no variability in terms of OAS absorption features (Figure 7a), which was
in line with the results of the laboratory reference analysis, as the entire water column showed negligible
contents of CHLa and CDOM. The calculation of reflectance based on daytime measurements without
sunlight compensation (Equation (4)) resulted in an increased spectral variability throughout the entire
spectral range (Figure 7b). This was solely caused by varying conditions of the ambient light field
with increasing water depth. Accordingly, the application of the sunlight compensation algorithm
(Equation (5)) removed these differences almost entirely (Figure 7c) and implied an optimization for
the retrieval of CDOM and CHLa at different depths, as both absorb in the affected wavelength ranges
(as shown in Section 3.1).

At the Auensee site, with a Secchi depth of ~0.5 m, the measured signal below a depth of ~2 m
was very low, even with greatly increased integration times, and the retrievable spectral information
was therefore limited to the range between 500–700 nm (data not shown), corresponding to the energy
maximum of sunlight in the visible range. In the remaining parts of the spectrum, the signal was
overlaid by dark current. The authors of [22] also reported a signal loss of >78 % for wavelengths longer
than 620 nm within the first meter of a freshwater lake with noticeable algae and cyanobacteria contents.
The use of a portable lamp, as shown in the present study, therefore allowed to compensate for the
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effects of sunlight attenuation and the associated signal loss with increasing depth. The combination
of a constant light source and a reference panel at a fixed distance in front of the camera simulated
shallow water with a standardized bottom and resulted in almost constant measurement conditions
throughout the entire water column. Consequently, all acquired reflectance spectra were comparable
between the investigated lakes and across different depths.

3.4. Predictive Modeling of CHLa and CDOM

The lake specific mean reflectance spectra (Figure 8) mirrored the measured OAS reference values.
Starting with the mean spectrum of the Cospuden site, which represented low contents of CHLa
and CDOM, a clear decrease of reflectance mainly at the shorter wavelengths was observed for the
Kriebstein site, mainly attributable to high CDOM levels. Since CHLa was low, reduced reflectance
values in the ‘red’ range might also be caused by CDOM at this site. Although CDOM absorption
decays exponentially with increasing wavelengths, this finding suggests that high and variable CDOM
contents may also affect CHLa retrieval based on the absorption feature at around 670 nm. The Auensee
site showed the lowest overall reflectance curves due to both, high CDOM and CHLa contents, with a
marked CHLa feature at ~670 nm. The application of the first derivative on the spectra resulted in
the removal of the baseline and a narrowing of the reflective range especially in the region below
670 nm. Values at zero indicated pronounced peaks and troughs of the reflectance spectra, whereas
slope differences were highlighted by the first derivative.

Figure 8. Mean visible and near-infrared (VNIR) reflectance spectra (a) and first derivative of mean
VNIR reflectance spectra (b) of the investigated lake sites in the range 470–850 nm. The colored spectral
curves represent the mean spectra of each lake. The shaded region displays the range between the
minimum and maximum values at each wavelength for the entire data set.

Based on the found spectral sensitivities, the three-band ratio model worked well for CHLa
retrieval in the case of the eutrophic and turbid Auensee waterbody (Table 3, Figure 9), which confirmed
the applicability of this index for turbid and productive waters (see [8]).

Table 3. Root mean square error (RMSE) (in μg L−1) for CHLa estimation per lake.

Site Three-Band Ratio Single Wavelength PLSref PLSfds

Auensee (63.9) * 9.52 19.86 11.24 10.29
Cospuden (0.6) * 11.04 1.72 2.69 3.46
Kriebstein (2.3) * 12.07 13.78 5.17 5.98

Mulde (36.9) * 22.78 15.23 8.72 7.13

* Values in parentheses represent measured CHLa mean concentrations (in μg L−1) of the lakes.
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Figure 9. Measured and cross-validated prediction values of CHLa with error metrics based on the
entire dataset: (a) three-band ratio, (b) single wavelength at 690 nm of first derivative, (c) partial least
squares (PLS)ref = PLS regression based on reflectance spectra, and (d) PLSfds = PLS regression based
on first derivative spectra. The dashed line represents the 1:1 line.

For the Mulde site, however, values of nearly all samples were underestimated; conversely,
we found a general overestimation of values for the remaining two sites (Cospuden, Kriebstein) with
low CHLa contents. The single waveband approach based on spectral values of the first derivative at
690 nm showed similar results for the Mulde and Kriebstein sites compared to the three-band ratio.
However, more accurate and precise estimates were achieved for the oligotrophic Cospuden site,
whereas values of Auensee site samples with high CHLa levels being greater than 70 μg L−1 were
all underestimated (Figure 9). For lakes with very low CHLa (and CDOM) concentrations, however,
relative estimation errors, compared to the lake-specific mean values, were very large due to the small
dynamic range in CHLa and CDOM. In the case of the Cospuden and Kriebstein sites, the water
bodies were essentially transparent and the range of observed values was consequently lower than the
sensitivity of the reflectance spectra given the uncertainties included in field measurements.

For all studied samples, the overall RMSE of cross-validation was 13.2 μg L−1 (three-band ratio)
and 16 μg L−1 (single waveband), respectively. Similar results were found by Duan et al. (2010) [48]
who investigated a single eutrophic lake and achieved slightly better results with the three-band
ratio compared to the use of the single waveband of the first derivative at 680 nm. Nevertheless,
Cheng et al. (2013) [49] showed that first derivative models using one waveband in the 690–700 nm
range might be more robust when transferred to independent datasets compared to two-, three-,
and four-band ratios of reflectance spectra.

With regard to the entire dataset, the PLSR models based on the full spectral information provided
higher accuracies with RMSE values at 8.9 μg L−1, and 8.2 μg L−1, the latter for the first derivative
(Figure 9). In addition, there was no systematic over- or under-estimation of a lake-specific sample set
or a certain CHLa range. These results suggest that the use of full range reflectance in combination
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with an empirical multivariate model produces potentially more accurate and robust results than
spectral indices, which is in line with other studies (e.g., [40–42]). The authors of [41], who combined
PLSR with a genetic algorithm to identify most suitable CHLa sensitive wavelengths, emphasized
a better transferability of models calibrated in that way to new sites compared to empirical models
based on three-band indices. Nevertheless, the data in Table 3 indicate that CHLa related band indices
may provide similarly good or even more accurate results at specific lakes compared to full spectrum
approaches. However, prior expert knowledge of the lake under consideration seems to be necessary
for the selection of a suitable index, as their estimation accuracies showed a higher variability between
the lakes compared to the use of full spectrum models.

These findings suggest that the use of continuous hyperspectral data in the range between ~400
and ~1000 nm for CHLa retrieval is generally of advance compared to the use of band ratio models.
Benefits relate to accuracy and transferability, especially for highly diverse water bodies or multiple
water bodies with variable conditions.

For CDOM, the results were different (Table 4, Figure 10), which may be traced back to strong
influences of e.g., algal biomass on the main region of CDOM absorption in the visible domain
(see Section 3.1). Regarding the lake-specific error metrics (Table 4), the indices again show a variable
pattern of estimation accuracies. While the single wavelength approach based on the first derivative
value at 602 nm achieved the most consistent result of all models for the Cospuden site, the most
accurate estimations for the Mulde site were yielded by the two-band ratio. Full spectrum models
provided their best results for the Auensee and Cospuden sites.

Table 4. RMSE (in m−1) for CDOM estimation per lake.

Site Two-Band Ratio Single Wavelength PLSref PLSfds

Auensee (1.10) * 0.42 0.18 0.11 0.15
Cospuden (0.16) * 0.32 0.12 0.17 0.16
Kriebstein (1.45) * 0.22 0.35 0.27 0.27

Mulde (0.95) * 0.23 0.36 0.38 0.36

* Values in parentheses represent measured CDOM mean levels (in m−1) of the lakes.

Overall estimation accuracies, as indicated by RPIQ values (Figure 10), were thus significantly
lower than those for CHLa. The two-band ratio approach produced the poorest results. This contrasts
to Zhu et al. (2014) [37], who achieved—with this index—RMSE values at 0.28 m−1 for lakes with
CDOM levels between 0.9 and 2.1 m−1 and at 0.05 m−1 for CDOM levels beyond 3.4 m−1. Nevertheless,
they also stated that the algorithm might overestimate low CDOM levels. In our study, the single
waveband index derived from the first derivative spectra outperformed the two-band ratio index.
At this point, the physical relevance of the wavelength region at around 602 nm for the retrieval of
CDOM is not obvious, but Brezonik et al. (2015) [47] also summarized several studies that included
(at least with moderate success) wavelength regions beyond 500 nm for the retrieval of CDOM.
Shao et al. (2016) [50] also tested different index approaches and found a ratio index calculated from
reflectance values at 584 nm and 646 nm to outperform a single band index based on values of the first
derivative at 406 nm (which showed the highest correlation with CDOM in their dataset). Additionally,
they applied PLS with a back-propagation artificial neural network, but this provided less accurate
results compared to the two-band ratio approach. Our results showed, different from that, that PLSR
with both reflectance and first derivative spectra produced overall more accurate results with an RMSE
at 0.22 m−1. The plotted CDOM values revealed two clusters with markedly different levels of CDOM
(which qualifies the applicability of one common linear approach and the retrieved statistical measures).
Regardless of achieved estimation accuracies, the first derivative waveband approach and the PLS
models were both able to separate these two classes, as evident from Figure 10.
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Figure 10. Measured and cross-validated prediction values of CDOM with error metrics based on the
entire dataset: (a) two-band ratio, (b) single wavelength at 602 nm of first derivative, (c) PLSref = PLS
regression based on reflectance spectra, and (d) PLSfds = PLS regression based on first derivative
spectra. The dashed line represents the 1:1 line.

Results for CDOM were generally poorer compared to CHLa, which might be due to a missing
diagnostic absorption feature within the investigated spectral range of 470–850 nm and due to a large
overlap between CDOM and CHLa absorption in the ‘blue’ spectral range. Additionally, further OAS
such as detritus (non-living organic suspended matter), which is known to absorb in a similar pattern
as CDOM does [51], may also affect CDOM retrieval. Therefore, accurate CDOM retrieval based on
empirical methods seems to be still challenging, especially in optically complex waters.

Similar to our study, Abd-Elrahman et al. (2011) [26] also studied the retrieval of CHLa in fishery
ponds by using a combination of hyperspectral measurements and submergible targets. To this end,
they installed a hyperspectral scanner (400 to 1000 nm) above the water surface of 14 aquaculture
ponds, where CHLa concentrations ranged from 0.8 to 494.4 μg L−1. Additionally, they developed a
three-level design of vertically arranged reflective targets. The first one was positioned above the water
surface for calibration purposes, the second one 10 cm below, and the third one 30 cm below the water
surface to test the effect of fixed viewing depths by using standardized bottoms. For CHLa retrieval,
they used two-band and three-band indices. The best results were achieved with a three-band index
and the target that was positioned 10 cm below the water surface (RMSE = 13.4 μg L−1), whereas the
lowest accuracy was obtained with the target 30 cm below the water surface (RMSE = 89.9 μg L−1).
They confirmed the advantage of using reflective targets in the upper water column to enhance the
quality of the spectral signal. We successfully extended that approach by measuring multiple depths
of 2.5 m water columns while being almost independent from ambient illumination conditions.

Generally, our results imply a strong potential for resolving the vertical water column at a
fine scale for the provision of both, hyperspectral information and OAS products, which could be
helpful for modelling approaches regarding the water leaving spectrum [15,16,52] and additionally
provides insights into water layers below the viewing depth of above-ground remote or proximal
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sensors. Further, our measurement protocol proposes an experimental approach to cope with variable
illumination conditions in order to obtain consistent reflectance spectra, which can be a critical aspect
for in situ measurements [53]. The combination of its use for above-water surface measurements
(e.g., [21,26]) and for underwater use (this study), hyperspectral cameras provide a potential link
between point source underwater measurements and spectral imaging above the water surface.

4. Conclusions

We evaluated the performance of a submersible hyperspectral camera for underwater reflectance
measurements and the estimation of CHLa and CDOM at various depths in four freshwater lakes
with different trophic levels. The measurement configuration we developed allows a consistent
retrieval of reflectance spectra throughout the water column with potential applications in OAS
retrieval or radiometric ground truthing for remote sensing observations of the uppermost water layer.
The available image information allows a pixel-wise analysis of the sensor’s field of view to improve
data quality through the removal of poorly illuminated areas or interfering objects. For quantitative
OAS retrieval, predictive models based on hyperspectral reflectance data can achieve more robust
and accurate estimates for CHLa and CDOM than empirical algorithms based on specific wavebands,
at least in complex datasets that include multiple lakes at different trophic levels. As our comparison
included only two common waveband indices, however, a lake-specific selection of different band
ratios might yield similar results to hyperspectral algorithms.

While the UHD 285 camera used in this study is a commercial-grade instrument with a mature data
acquisition and processing chain, the customizations for underwater use, including the camera mount
and the required instrument calibration procedures, were at a research level. Further refinements
in the technology are necessary to allow a more rapid deployment, data acquisition and analysis,
e.g., for near-real time water monitoring, the integration in sensor networks or operational use by
environmental agencies.

Despite these present and future challenges, hyperspectral measurements throughout the water
column may potentially bridge the gap between spatially continuous remote sensing observations of
the surface water layer and point sensors that can provide continuous water monitoring data at and
below the surface.
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Abstract: Hyperspectral systems integrated on unmanned aerial vehicles (UAV) provide unique
opportunities to conduct high-resolution multitemporal spectral analysis for diverse applications.
However, additional time-consuming rectification efforts in postprocessing are routinely required,
since geometric distortions can be introduced due to UAV movements during flight, even if
navigation/motion sensors are used to track the position of each scan. Part of the challenge in obtaining
high-quality imagery relates to the lack of a fast processing workflow that can retrieve geometrically
accurate mosaics while optimizing the ground data collection efforts. To address this problem,
we explored a computationally robust automated georectification and mosaicking methodology.
It operates effectively in a parallel computing environment and evaluates results against a number of
high-spatial-resolution datasets (mm to cm resolution) collected using a push-broom sensor and an
associated RGB frame-based camera. The methodology estimates the luminance of the hyperspectral
swaths and coregisters these against a luminance RGB-based orthophoto. The procedure includes an
improved coregistration strategy by integrating the Speeded-Up Robust Features (SURF) algorithm,
with the Maximum Likelihood Estimator Sample Consensus (MLESAC) approach. SURF identifies
common features between each swath and the RGB-orthomosaic, while MLESAC fits the best
geometric transformation model to the retrieved matches. Individual scanlines are then geometrically
transformed and merged into a single spatially continuous mosaic reaching high positional accuracies
only with a few number of ground control points (GCPs). The capacity of the workflow to achieve
high spatial accuracy was demonstrated by examining statistical metrics such as RMSE, MAE,
and the relative positional accuracy at 95% confidence level. Comparison against a user-generated
georectification demonstrates that the automated approach speeds up the coregistration process by
85%.

Keywords: georectification; mosaicking; push-broom; UAV; hyperspectral imaging

1. Introduction

Remote sensing has provided incredible advances in our capacity to observe and understand the
earth system [1], with new and emerging technologies providing further opportunities for insights and
understanding [2]. One of the key constraints in our observation capacity relates to the compromise
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between spatial and temporal resolution, i.e., space-based platforms tend to suffer from either spatial
or temporal restrictions that affect the frequency and fidelity of retrievals. Within the last decade,
developments in remote sensing using unmanned aerial vehicles (UAV) have provided a sensor-flexible
platform that has lowered operational costs, while providing unprecedented spatial (<10 cm) and
on-demand temporal resolution [3,4]. To leverage these technological advances, hyperspectral camera
systems capturing radiances across the visible and near-infrared portions of the spectrum [5] have been
developed, with diverse applications being presented in agriculture [6–8], forestry [9], and mining [10]
studies. However, while UAV technology has progressed rapidly and there is a level of maturity
in many sensing capabilities [11], routine application of hyperspectral imaging systems remains
challenging and has been constrained by a lack of automation and processing options to streamline the
image analysis. In particular, additional efforts are required in the integration of accurate positional
sensors with spectral devices during image collection and subsequent automated geometric calibration
frameworks based on image coregistration and ground control points. To realize this potential,
UAV-based hyperspectral sensing systems need to provide radiometrically and geometrically accurate
data that allow posterior quantitative analysis to be performed with confidence.

UAV-based image products are generally produced by stitching together hundreds of overlapping
scanlines or frames captured on the fly [10]. However, when “matching” any two images,
the transformation and reprojection undertaken by the fitting algorithms routinely introduce localized
distortions. While the positional accuracy of an individual image may be on the order of a few
centimeters, the accuracy of the completed mosaic may increase to the decimeter range as the positional
errors accumulate through the merging process. In the case of scanning systems, image distortion can
also result due to geometric noise induced by UAV movements. Likewise, accurately overlapping
swaths requires a good number of matching and ground control points (GCPs) to avoid further
distortion in the final mosaic [11]. A range of hyperspectral sensor configurations is available for
UAV-based integration, including point [12] and push-broom spectrometers, as well as 2D spectral
imagers [3]. In general, the traditional image georectification process for any such system relies on
positional, orientation, rotation, and acceleration data collected by Global Navigation Satellite Systems
(GNSS) and/or Inertial Navigation Systems (INS) [13]. In the case of point spectrometers [12,14–17],
spectra are collected with no integrated spatial reference, requiring ancillary data (onboard and
in situ) to georeference the imagery. Push-broom sensors [18–27] offer a high spectral and spatial
resolution by sampling individual lines of spectra during flight. However, the spatial accuracy
of each scanline is highly dependent on flying conditions, with the resulting error constrained
by GNSS/INS sensors accuracy [28] and the stability provided by the gimbal setup. Conversely,
2D cameras collect band sequential spectra data in two spatial dimensions or by integrating multiple
synchronized cameras [29–33]. Such is the case of snapshot systems [34–36], which record all the bands
simultaneously, with the advantage of capturing spatial and spectral data with every scene. In both
cases, the mosaicking process of UAV-based spectral imaging requires rectification approaches [37,38],
which, when integrated with an optimal combination of complementary sensors, assure the spatial
accuracy of the products.

Multiple applications using UAV-based hyperspectral systems have been proposed in the literature,
exploring a range of prototypes and georectification methods. For instance, Zarco-Tejada et al. [18,20]
investigated the early detection of plant diseases and the seasonal trends of narrow-band physiological
and structural vegetation indices using a Headwall micro-Hyperspec [21] VNIR push-broom sensor
onboard a fixed-wing platform. In their studies, the geometric rectification of the 30 cm [18] and
40 cm [20] pixel resolution imagery was conducted using the PARGE [39] software, which relies
on GNSS/INS parameters and a digital elevation model (DEM) to perform the ortho-rectification of
airborne optical scanner imagery. Lucieer et al. [22], Turner et al. [23], and Malenovsky et al. [24],
used the same sensor mounted on a multirotor aircraft, collecting 2–4 cm ground sample distance (GSD)
hypercubes to map the health and status of vegetation. In these cases, the geometrical rectification was
based on a dense network of ground control points in addition to using PARGE [39] and achieved a root
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mean square error (RMSE) of around 5 cm. A different arrangement was employed by Sankey et al.,
2017, who collected 12 cm pixel resolution data by integrating the Headwall Nano-Hyperspec [21],
and a Light Detection and Ranging (LiDAR) system onboard an octocopter for forest monitoring.
Sankey et al. preprocessed the individual hyperspectral tiles in the SpectralView software [40], and then
manually tied the georectified swaths to produce a single mosaic, achieving an RMSE of 0.94 m and
1.1 m in the X and Y dimensions, respectively. Recently, a boresight calibration of GNSS/INS has been
explored by Habib et al. [41], in an attempt to directly derive the scanner position and orientation by
defining the optimal/minimal flight and control/tie point configuration.

With an aim of reducing the required ground sampling efforts and the payload onboard,
some studies have explored photogrammetry-based computer vision approaches to determine sensor
orientations. Suomalainen et al. [26] and Turner et al. [23] developed processing workflows that include
RGB frame-based scenes captured simultaneously with the hyperspectral imagery, to produce a DSM by
using Structure from Motion (SfM) algorithms, and then feeding PARGE [39] with this high-resolution
model, with resulting imagery achieving accuracies below 10 cm RMSE. Ramirez-Paredes et al. [37]
sought to exploit the homographies between RGB frames to align line-to-line the hyperspectral
data in the frame camera image plane, by using a low-cost payload on a radio-controlled airplane.
Habib et al. [38] proposed an alternative mosaicking approach relying on image coregistration
algorithms to stitch together hyperspectral swaths, which were previously rectified by feeding
SpectralView [40] with a base-frame DSM, reaching submetric accuracies. Further, computer vision
coregistration approaches have even been explored as standard video stabilization techniques [42–44]
by performing a robust feature detection using Scale-invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF), Features from Accelerated Segment Test (FAST), and Binary Robust
Independent Elementary Features (BRIEF) key points between adjacent frames, then smoothing the
sensor path and finally rendering the stabilized frames of a video.

From the approaches presented above, the semiautomated [18,20,22,26,39] solutions require
additional efforts, including collection of a high number of GCPs and manually detecting matching
points to produce decimeter accurate georectified mosaics. In contrast, previous semiautomated [37,38]
methods identify pairs of points based on image coregistration algorithms, with the limitations
involving manually identifying geometrical features [28], being compute-intense, and not exceeding
the accuracies achieved by manually-based approaches. In general, all of the described techniques
highlight the necessity for further research towards highly accurate, fast and fully automated methods
that provide a balance between sensors payload, ancillary field data needs, and computational efficiency.
An additional challenge is the massive volume of UAV-based hyperspectral data cubes (on the order
of terabytes) that are now being collected [45], particularly for those studies where millimeter scales
may be required (i.e., phenotyping investigations) [46]. All of these factors highlight the need for
speeding up geo-processing to achieve highly accurate hyperspectral imagery while optimizing the
data collection demands.

In view of the above, the goal of this research was to conduct a fully automated workflow to produce
highly accurate georectified UAV-based hyperspectral mosaics collected by push-broom scanners
and to optimize the geoprocessing time by adopting an efficient computing coregistration strategy,
requiring a small number of GCPs. UAV-based hyperspectral scans and RGB scenes from two different
experiments were used to assess the applicability of the proposed workflow, which follows the five
stages of image coregistration process between individual hyperspectral scans and an RGB frame-based
orthophoto [47], including: (i) feature detection and description, (ii) feature matching, (iii) inlier
selection, (iv) derivation of a transformation function, and (v) image mosaicking. RGB frame-based
orthophotos were used as a reference to georectify preprocessed hyperspectral swaths by implementing
a parallelized routine of feature detector functions that find the corresponding points between them.
The Speeded Up Robust Features (SURF) [48] matching algorithm was integrated with the Maximum
Likelihood Estimation SAmple and Consensus (MLSAC) [49], estimator method to automate the
coregistration processing. Accordingly, individual geographical transformations per swath were
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estimated, and the georectified strips were mosaicked. The computational robustness of the approach
was evaluated by timing each step-process, and the spatial accuracy was assessed by determining
standard accuracy metrics such as root mean square error (RMSE), mean absolute error (MAE), with
the relative positional accuracy determined at the 95% confidence level. The proposed methodology
provides a novel solution to expedite one of the most costly postprocessing stages of UAV-based
hyperspectral remote sensing for push-broom sensors, implementing a simplified coregistration
strategy and achieving high positional accurate results.

2. Materials and Methods

2.1. Study Area and Experimental Design

Data were collected from two experimental facilities in Saudi Arabia (Figure 1). The first dataset
supports a phenotyping study undertaken over a wild tomato crop at the King Abdulaziz University
experimental farm, located at Hada Al-Sham, approximately 60 km east of Jeddah [50]. The site is
characterized by a tropical arid climate [49] with an annual rainfall below 100 mm and is situated in
a valley at an elevation of approximately 250 m above sea-level, with a predominantly sandy loam
soil type. Four campaigns were conducted during the winter season from November 2017 to the end
of January 2018, when the average air temperature (during UAV flight) was between 10 and 35 ◦C.
The second study site was a commercial date palm plantation near Al-Kharj [51], a city approximately
200 km southeast of Riyadh. The site is located in a desert depression approximately 1300 m above
sea level, it has an average annual rainfall of 51 mm and has sandy desert soils that are irrigated by
a natural spring [52]. A single campaign was undertaken during May 2018, when average daytime
temperatures reached highs of around 33 ◦C. Both sites present quite different crop types and geographic
extents, which allows an assessment of the transferability of the proposed georectification approach.
For instance, a square area of 80 m × 80 m was established for the tomato experiment, comprising
four fields with rows aligned along the north-east direction at approximately 2 m spacing. For the
date plantation, a total area of approximately 8.7 hectares (270 m × 320 m) was overflown following a
north-east direction, with a total of 1300 individual palms (equally spaced at 8 m intervals) captured.

 
Figure 1. Study site locations, including (left) the tomato experiment at the Hada Al-Sham experimental
facility (Lat. = 21.797◦, Long. = 39.725◦), approximately 60 km east of Jeddah, and (right) the commercial
date farm near Al Kharj (Lat. = 24.231◦, Long. = 47.633◦), approximately 200 km southeast of Riyadh.

2.2. Unmanned Aerial Vehicles and Sensor Package

Two separate UAV-based remote sensing systems were used for data collection (Figure 2).
Hyperspectral imagery was collected using a DJI Matrice 600 (M600) hexacopter [53] coupled with
a Ronin-MX gimbal to reduce flight dynamic effects. The flight platform housed a Headwall
Nano-Hyperspec [21] push-broom camera, with 12 mm lens and a horizontal field of view (FOV) of
21.1◦, which gathered radiometric data in the 400–1000 nm range across 272 continuous bands and
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with 6 nm FWHM. Two GNSS antennas were mounted on the upper plate of the UAV, with one for
the aircraft navigation and another for the hyperspectral camera. An Xsens inertial measurement
unit (IMU) was paired with the camera and the GNSS antenna, to monitor the roll, pitch, and yaw
motions. The total payload of the M600 was 3.65 kg, which constrains the flight time to approximately
20 min. Ancillary RGB imagery was captured using a DJI Matrice 100 (M100) quadcopter [54], which is
paired with a 3-axis gimbal to keep the camera steady in the air, an IMU built in the main controller,
and a single GNSS navigation antenna. An on-board Exmor CMOS Zenmuse X3 frame camera [55],
with 20 mm optical lens and diagonal FOV of 94◦, collected RGB data across a single spectral range
(400–700 nm). The total payload of the M100 was 0.25 kg, constraining the flight time to approximately
20 min.

 
Figure 2. The DJI Matrice 600 and 100 unmanned aerial vehicle (UAV) systems, sensors, and payload
used for data collection over the experimental sites. The Headwall Nano-Hyperspec collects surface
radiance in the wavelength range from 400–1000 nm across 270 continuous bands. The Zenmuse X3
camera collects RGB radiance in the visible spectral range across a single 400–700 nm spectral range.

2.3. Flight Planning

Prior to each field campaign, a flight plan was designed depending on flight altitude, spatial
resolution requirement, area to cover, overlap percentage between swaths, and lighting conditions
(Figure 3). Additional preflight aspects to consider included planning for optimal atmospherical
conditions. Morning hours close to solar noon under clear sky were preferred to avoid wind and
thermals generated by environmental heating. The Universal Ground Control Station [56] desktop
application was used to construct all UAV flight plans. For the tomatoes experiment, the hyperspectral
swaths were collected using the M600, with 30% sidelap at a speed of 1 m/s and a height of 16 m,
scanning at a frame rate of 100 fps to ensure square pixels. A total of four flights per campaign were
required to collect 56 swaths, with a ground sampling distance (GSD) of 0.007 m. RGB data was
captured with a 78% along-track overlap and 82% sidelap at a speed of 2 m/s and a height of 13 m,
with a frame frequency of 0.33 fps. A total of 196 frames with a 0.005 m pixel size fully covered the
area. For the date palms plantation, a total of 16 hyperspectral strips were scanned, reaching a GSD of
0.06 m with 40% sidelap, flying at a speed of 5 m/s and a height of 80 m above the ground, scanning at
a frame rate of 100 fps. In addition, 184 RGB frames at a 0.04 m spatial resolution were captured with
the M100, with an 82% along-track overlap and 87% sidelap, flying at a speed of 5 m/s and a height of
80 m. More detailed information on the specific flight configurations is provided in Table 1.
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Figure 3. Flight plans and mission areas for (a) the experimental crop of tomatoes, where one flight
per quarter of the field was required to cover the total area; and (b) the commercial plantation of date
palms, which was covered by a single flight.

Table 1. Flights planning and collected data details per campaign.

Crop
Area
(ha)

Year/DOY
RGB

Frames

Hyperspectral
Swaths
Per Day

Hyperspectral
Data Size

(Gigabytes)

Ground
Sampling Distance

GSD (m)
GCPs

Tomato 0.64

2017/320

196 56

232.8

0.007 5
2017/334 220.4
2017/340 202.2
2018/007 274.7

Date Palms 8.70 2018/087 184 16 77 0.06 3

2.4. Ground Data Collection

The GNSS receivers fitted on the UAVs record the geographical location of the cameras with
decimeter-level accuracy when an image is taken. However, this low geometric accuracy could affect
the quality of the imagery and consequently the products derived from them. In order to assure the
highest possible geometric accuracy, GCPs were spaced throughout each area of interest, surveying
their center coordinates using a Leica Viva GS15 rover [57] and a RTK Leica AS10 GNSS base station [58].
All raw data from the base station and rover were postprocessed using Leica Geo Office package [59].
For the tomatoes field, five checkerboards of dimension 1 m × 1 m were used as GCPs, with four placed
in each corner and one in the center of the field. For the date palms, three circular targets of 0.5 m
diameter were spaced throughout the area of interest.

3. Methods

Raw remote sensing imagery is comprised of row and column coordinates pairs, i.e., pixels
do not have preassociated geographic coordinates. Unprocessed images present geometric and
location distortions that must be corrected through a process known as georectification. This process
combines two key steps including rectification, whereby pixels are transformed to a common plane
that corrects for geometric distortions; and georeferencing, where real-world coordinates are assigned
to each pixel of the image. For an accurate georectification, an automated coregistration methodology
between preprocessed hyperspectral scans and RGB orthorectified images is proposed herein (Figure 4).
Under this approach, the pixel geometry and location in each data-cube is defined by its corresponding
pixel in the RGB base image, which has been previously orthorectified using a digital elevation model
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reconstructed from a Structure from Motion technique (SfM) [60]. The automated georectification
workflow was fully coded in Matlab and performed under a parallel computing scheme to speed up
data processing. The desktop analysis employed an Intel Xeon E5-2680 v2 processor, 20 cores @2.8
GHz, and 200 GB RAM. The following sections describe the proposed methodological workflow to
rectify, georeference, and ultimately to mosaic UAV-based hyperspectral imagery.

 

Figure 4. The workflow of the proposed methodology is divided into two main stages, preprocessing
and automated processing. The preprocessing corresponds to raw data preparation before going
through the georectification and mosaicking routine. The automated processing starts with an RGB
subsampling from the hyperspectral swaths to calculate the illuminance image, followed by the
coregistration strategy phase required to perform the geographical transformation by swath. Then,
the set of georectified strips are merged together to retrieve the final hyperspectral mosaic.
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3.1. RGB Imagery Orthorectification

The RGB data was processed in Agisoft PhotoScan Professional 1.3 [61] to produce a georeferenced
orthomosaic for each experimental campaign. The digital photogrammetric routine implemented
in Photoscan [62] includes several stages [63] based on SfM and computer vision algorithms. First,
the frame camera positions measured by the GNSS/IMU sensors onboard the M100 aircraft and the set of
matching points generated between overlapping images were used in a bundle adjustment to perform
the imagery alignment. The default number of key and tie points, 40,000 and 4,000 pairs, respectively,
were used to retrieve an initial cloud of matches. Then, the external and internal orientations of the
frame camera were estimated. Based on the camera positions and a minimum of three GCPs manually
identified, a dense cloud of georeferenced 3D points was generated and interpolated over the area to
produce a digital elevation model (DEM) and an RGB orthomosaic. Ultra-high accuracy and moderate
depth filtering options were set to discriminate most of the outlier points and retrieve the dense
cloud. Because the GSD reached by the orthomosaics was smaller than the hyperspectral imagery
GSD (Table 1), the orthomosaics were resampled to the hyperspectral pixel size by applying a bilinear
interpolation, where the output pixel value is estimated by averaging the four surrounding pixels.

3.2. Raw Hyperspectral Data Preprocessing

Nonsystematic distortions are common in airborne sensing. For instance, turbulence and
eddy-induced effects during the flight can cause scale and location errors, since the sensor direction
and height above ground level varies while scanning. Initial preprocessing of the raw hyperspectral
swaths was performed to correct for such distortions by using a parametric model developed by
Headwall [40]. Under this approach, the difference (θ) between the effective view angle vector (V) and
the theoretic view angle vector (Vt) is calculated by modeling the three-dimensional movements of the
aircraft, i.e., roll (ω), pitch (ϕ), and yaw (κ), which are recorded by the onboard IMU (see Figure 5).
This formulation considers adjustment features such as GPS coordinates, timestamps, IMU offsets,
the field of view (FOV), lens parameters, and sensor orientation, to reconstruct the scanning geometry
line by line and to compose each individual swath. However, this reconstruction approach is limited
by the GPS/IMU accuracy leading to geometric errors in the preprocessed scans [28], hence requiring
additional processing.

 

Figure 5. Three-dimensional range of motion of the UAV, where ω, ϕ, κ denote roll, pitch, and yaw
angles, respectively. θ represents the difference between the theoretical view angle vector Vt and the
effective look angle vector V.
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3.3. Luminance Retrieval

Grayscale images are preferred over colored ones in order to simplify the image processing
complexity, by transforming an RGB color image into a single channel image. Moreover, grayscale
images contain the brightness, contrast, edges, shapes, contours, textures, perspective, and shadows of
the original RGB data, easing the matching process between two scenes. From the variety of grayscale
approaches, luminance images are considered as the best option to identify potential matching points
in scenes composed of homogenous textures [64]. In this study, the RGB mosaic was converted to a
grayscale luminance image (Lrgb) by eliminating the saturation and hue information, while retaining
the original luminance, using the formulation defined in the international standard National Television
System Committee (NTSC) [65] (1). Contrast enhancement of the luminance image was then performed
using a histogram equalization process.

L = 0.299R + 0.587G + 0.114B , (1)

A luminance image was also retrieved via an RGB composite from each preprocessed hyperspectral
swath (Lhyp) by extracting the central wavelength red, green, and blue bands (670 nm, 540 nm,
and 480 nm).

3.4. Extraction of Matching Points by SURF

An implementation of the Speed Up Robust Features (SURF) [48] computer vision technique
was used to align the Lhyp based on corresponding points from the Lrgb. SURF is implemented since
it is widely used as a scale-invariant feature detector method that is able to retrieve both matching
points position and their correspondent descriptors. SURF performs the matching points (or features
detection) by following three main stages: (i) extraction, (ii) description, and (iii) matching. Edges,
corners, blobs, ridges, or any other specific pattern is considered as a feature, with the only condition
to be unique, easily tracked, and comparable. First, the locations of key points that are likely to be
found in both images are extracted by convolving two-dimensional box Gaussian smoothing filters,
vertically and horizontally, with the integral images of Lhyp and Lrgb, which are an averaged version of
the luminance L commonly used to speed up the convolution calculation. Thus, feature orientations
are defined by the vector sum of vertical and horizontal responses for the neighborhood around each
point. This process is done in parallel for different scales by using filters with different sizes, increasing
the chances to detect both smaller and larger sized features, and identifying in this way, scale and
rotation invariant key points such as corners, blobs, and T-junctions. The results of these convolutions
are integrated into a Hessian matrix per each point. Then, a new neighborhood window is oriented
along the dominant direction of each point, and by dividing each window into 4 × 4 sub-regions,
horizontal (Σdx) and vertical (Σdy) Haar wavelet responses are again taken to form a vector descriptor
V (2), which describes the luminance (L) distribution and polarity (Σ|dx|, Σ|dy|) of the surrounding
pixels. Finally, the sign (-, +) of the Hessian matrix trace is used to classify bright features on dark
backgrounds and dark features on a bright background. Only features from both images, Lrgb and
Lhyp, with identical sign are compared, and the Euclidian distance between their descriptor vectors is
calculated to select the set of matching points.

V =
(
Σdx, Σdy, Σ|dx|, Σ

∣∣∣dy
∣∣∣) , (2)

3.5. Selection of True Matching Points by MLSAC

The set of paired points obtained by SURF can contain both true and false feature matches, affecting
the accuracy of the fitted geographical transformation. To address this, a parameter estimation approach
is required, that adjusts the best transformation model from outlier-corrupted data. Here, we use the
Maximum Likelihood Sample Consensus (MLSAC) [49] algorithm, which is an adaptation of the widely
applied Random Sample Consensus (RANSAC) technique. RANSAC [66] is a hypothesis-verify iterative
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method used in coregistration applications to estimate model (projective, affine, etc.) parameters
that best fit the set of paired points (true and false) retrieved by a feature detector (SIFT, SURF, etc.).
It proceeds by repeatedly generating and testing solutions estimated from a minimal random set of
matches gathered from the total paired points. The best solution relies on the highest number of true
matches (inliers), with an error below a user-defined threshold. In contrast, MLSAC adopts the same
iterative strategy to generate solutions from random samples of matches, but chooses the solution that
minimizes the error, rather than just looking for the maximum number of inliers. The following three
points motivate that use of MLSAC herein:

• MLSAC improves upon RANSAC by assuming the distance between paired points follows a
Gaussian distribution, with a zero-mean error and a uniform standard deviation.

• A maximum likelihood cost function is evaluated in terms of finding the solution that minimizes
the error.

• Since the optimal solution does not rely on a defined number of inliers, MLSAC is well suited to
estimating complex geometric transformations that exist between images captured under different
viewing geometries, where just a few true matches could be retrieved.

MLSAC workflow consists of five general stages. First, a randomly sampled set of matching
points is considered to fit an initial transformation model, using the remaining points for testing. Then,
each individual matching pair is evaluated by using the fitted model to estimate the distance error in
pixels between the point in Lrgb and the projection of the corresponding point from Lhyp. The algorithm
classifies as inliers those points whose distance error is below a threshold of N pixels and counts
the total number of inlier candidates. The N limit depends on the aimed positional accuracy of the
results, which in this case was set to a maximum of 1.5 pixels. Then, the likelihood of the probability
distribution function of the errors is maximized, and the above process is repeated i times (3) to
evaluate a statistically significant number of subsamples. These i iterations depend on the randomly
sampled subset size (m), the percentage of outliers (w) allowed, and the probability of selecting a good
subsample (q). Generally, a probability q = 99% is desired, considering w = 50% as the worst case
scenario, and m = 3, or m = 4 when using an affine or projective transformation, respectively. After the
loop is finished, the transformation model that maximizes the likelihood of the cost function with a
99% confidence of finding the maximum number of inliers is selected as the best solution.

i =
log(1− q)

log(1−wm)
(3)

3.6. Geographical Transformation and Mosaicking

Affine transformation, a special case of the projective approach, was used to convert the Lhyp units
to real-world coordinates, based on the Lrgb mosaic, since it is one of the most flexible transformation
methods (4) [67]. This transformation model requires a minimum of three pairs of matching points to
translate, scale, shear, and rotate an image while preserving parallelism. Generally, the greater the
number of true matching pairs, the higher the accuracy of the model.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
y′
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 tx

a3 a4 ty

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where x′ and y′ are the coordinates of the transformed point, x and y are the original coordinates of the
point, a1, a2, a3, and a4 define linear transformations composed by scale, shear, and rotation factors,
and tx and ty specify the displacement or translation along the X and Y axis, respectively.

By running the routines previously described, individual geographic transformation solutions
per swath were determined and operated band by band. Finally, the hyperspectral mosaic is produced
by merging one by one these multiple georectified swaths into a single mosaic per band and stacking
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together these individual mosaics into a raster data cube, where the output pixel values for the
overlapping areas are determined by the value from the last swath added into the mosaic.

3.7. Georectification Assessment

The relative positional accuracy between each georectified hyperspectral dataset and the
correspondent RGB mosaic was determined by calculating the root mean square error (RMSE),
the mean absolute error (MAE), and the accuracy at the 95% confidence limit. The RMSE (5) is
determined by calculating the Euclidean distance between the rectified coordinates in the hyperspectral
mosaic and the reference coordinates in the RGB mosaic. The closer the RMSE values are to zero,
the more accurate the georectification. In this case, the reference coordinates were prespecified check
points from each of the imagery. Check points are identifiable features in both the reference RGB image
and the hyperspectral mosaic, whose locations are used to quantitatively assess the positional quality
of the georectified data cube. To compute the RMSE, at least 20 well-defined checkpoints are used
per mosaic, making sure that 25% are well distributed in each of the four quadrants of the image of
interest (for the tomato experiment). A total of 52 (tomato) and 25 (date plantation) checkpoints were
randomly spread over each dataset.

RMSE =

√√
1
n

n∑
i=1

((
xhyp − xrgb

)2
+
(
yhyp − yrgb

)2)
(5)

The MAE [68] (6) measures the average magnitude of the Euclidean distance in the set of
checkpoints, where all individual differences have equal weight.

MAE =

∑n
i=1

√(
(xhyp − xrgb)

2 +
(
yhyp − yrgb

)2)
n

, (6)

According to the National Standard for Spatial Data Accuracy (NSSDA) [69,70], the relative
horizontal positional accuracy is reported in meters at the 95% confidence level (9) and is determined
in two separate components: x (7) and y (8). The value of 1.22385 in the accuracy expression in (9),
is derived from the Chi-square statistical distribution for 2 degrees of freedom and a lower tail area of
0.05. In other words, 95% of the positions in the hyperspectral mosaic will have an error with respect
to the RGB mosaic position that is equal to, or smaller than, the reported accuracy value.

RMSEx =

√√
1
n

n∑
i=1

(xhyp − xrgb)
2 , (7)

RMSEy =

√√
1
n

n∑
i=1

(yhyp − yrgb)
2 , (8)

Accuracy95% = 1.22385 ×
(
RMSEx + RMSEy

)
, (9)

In addition, the performance of the proposed automated method was evaluated with respect to a
semiautomated approach by manually selecting matching points between the hyperspectral swaths
and the RGB image. The number of good matches (or inliers) retrieved by the automated workflow
was used as a reference to set the number of point pairs to be identified by hand and to fit an affine
transformation per swath. The aligned strips were mosaicked together, and the above-mentioned
positional accuracy metrics were estimated to compare the performance of both methods.
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4. Experimental Results and Analysis

The UAV-based hyperspectral imagery for both field experiments was georectified and mosaicked
using the methodology described above. In this section, the efficiency of the automated coregistration
routine between hyperspectral data and RGB frame-based imagery is evaluated, together with a
qualitative and quantitative assessment of the accuracy reached for the georectified high spatial
and spectral resolution mosaics. An analysis of the computational cost of the automated process is
also undertaken.

4.1. RGB Frame-Based Orthomosaic

As described in the previous section, the RGB orthomosaics derived from the collected frame
images were processed using a SfM package and GCPs. All the mosaics over the tomatoes field
(Figure 6a) were resampled from 0.005 to 0.007 m, with a rectification error of 0.002 m. Similarly,
the native resolution of the date palms mosaic (Figure 6b) was resized from 0.034 to 0.060 m, with an
RMSE error of 0.043 m. From visual inspection of these images, in general a good alignment was
reached by the RGB mosaics, well preserving sizes and shapes. Figure 6a shows how some linear
features are continuous, such as irrigation pipes, defined objects like individual plants are free of gaps
or blur effects, and contrasting tones and textures are visible in the bare soil areas. From Figure 6b,
road edges are continuous and well defined, date palms keep their characteristic shapes, and soil areas
preserve smooth textures and contrasting tones.

 

 

Figure 6. (a) Multitemporal RGB orthomosaics over the tomatoes field and close-ups of one of the
quarters of the total area showing the good alignment and high spatial resolution achieved; (b) RGB
orthomosaic and close-up over the date palms plantation.

4.2. Efficiency of the Automated Coregistration Routine

The most important steps in the coregistration processing are the extraction and selection of
common features between the RGB reference image and each preprocessed hyperspectral swath.
Under the proposed methodology, SURF was used to extract a set of matching points, which were
purged of false positives or outlier pairs by using the MLSAC model. The efficiency of these combined
routines relies on the number of inliers retrieved to fit the best affine transformation function, to align
each swath to the RGB mosaic. The higher the number of inliers, the better the fitting of the
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transformation model. Table 2 presents the number of features detected in the RGB mosaics and
the average detected per swath, together with the matches identified by SURF, and the total inliers
selected by MLSAC. It is evident how the features retrieval varies from one flight to another, since this
process is performed by using luminance images, which in turn vary with the illumination and surface
conditions. Although a large number of features were extracted, from 10K in the hyperspectral data to
300K in the RGB approximately, only few matches were retrieved, between 505 and 951 pairs in the
case of the tomato crop, and 103 pairs in the date palms dataset. This performance is explained not
only by different illumination conditions but also when coregistering data from different sensors [71].
In the case of the tomato field experiments, the percentage of points pairs detected as inliers from the
total of matches varies between 65% and 80%. An average of 26% of matches was selected as inliers for
the date palms swaths. In both cases, the number of inliers was sufficient to fit the transformation
models by swath and to ultimately stitch the hyperspectral mosaics.

Table 2. Features, matches, and inliers detected per flight.

Crop Year/
DOY

RGB
Features

Metrics Accounting all Swaths per Flight

Hyperspectral Features Matching Points Average
Inliers

Inliers/
Matching

Min. Aver. Max. Min. Aver. Max. (%)

Tomato

2017/320 309461 37135 38667 40199 818 951 1083 757 80
2017/334 293013 32817 35161 37505 633 771 908 591 77
2017/340 246575 29589 36487 43385 393 505 616 327 65
2018/007 301210 36145 36798 37451 520 667 813 477 71

Date Palms 2018/087 448156 8963 9750 10537 80 103 125 27 26

Both the number of inliers and the distribution of the points along the swaths are determinant by
the georectification quality. Inliers should be fairly uniform and located across the strips in order to
avoid local distortions after performing the geometric transformation. Figure 7 shows some examples
of the distribution and location of the matching points extracted by SURF, from which MLSAC selected
the set of inliers. In the case of the tomato crop (Figure 7a), a dense cloud of matches was retrieved,
including some outliers that are generated when the texture, color, or intensity of the surface are
homogeneous, thus identifying similar patches between the hyperspectral strip and the RGB reference.
After MLSAC prunes the false matches (or outliers), a good distribution of inliers is achieved. Figure 7a
shows a close-up of an area where some calibration panels and GCPs were placed and where a good
number of inliers were selected. However, the number of matches can decrease when repetitive forms
are present within the images, i.e., the neighborhood around the features does not vary enough to
allow for reliable comparison between both scenes. An example of this effect is shown in Figure 7b,
where the crown of the palms represents a very homogeneous pattern. In this case, the density of
matches is reduced, but the extracted inliers are still well distributed across the swath.

4.3. Qualitative Accuracy Assessment

As part of the accuracy assessment of the results, an evaluation of visual factors such as gaps,
matches across boundaries, deformations, and patches was performed. Figure 8 shows a comparison
between the preprocessed and the georectified multitemporal hyperspectral mosaics for the tomato
experiment. As can be seen, the full dataset is free of gaps and patches, and the hyperspectral swath
borders are dissembled. In the zoomed areas, the impact of the automated alignment can be seen on
some linear features, such as irrigation pipelines, furrows, and fences, which are straight, parallel,
or continuous across the stitched swaths. Likewise, the shapes and sizes of individual plants are
well maintained. The high degree of visual consistency achieved indicates that the estimated affine
transformations were well fitted with sufficient and well-distributed corresponding points.
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Figure 7. (a) Matches identified by Speeded-Up Robust Features (SURF) and inliers selected by
Maximum Likelihood Estimator Sample Consensus (MLSAC) between both the hyperspectral strip
(Lhyp) and the RGB reference (LRGB) luminance images in the tomatoes field on 2017/320; (b) matching
and inlier points identified between Lhyp and LRGB in the date palms field.

For the case of the date palms experiment, the misalignment between preprocessed passes can
clearly be seen in Figure 9, with overlapping distortions of individual palms. After processing, a good
fit between the RGB reference and the hyperspectral georectified mosaic was reached. The matching
quality of linear geometries, such as the border of the roadway (Figure 9b), or the continuity of
leaflets in the crown of the palms can be observed throughout the mosaic. As with the tomato
experiment, the collinearity and equidistance between individual palms were recovered by the
georectification process. Particularly noticeable is the good performance of the affine transformations
at the extreme borders of the swaths, which are usually susceptible to deformation when insufficient
or poorly-distributed stitching points are retrieved. While the automated routine produced a lower
number of matches in this case than for the tomatoes experiment, the set of inliers was sufficient to fit a
highly accurate transformation model.

4.4. Spatial Accuracy

Although the visual inspection of the hyperspectral mosaics provides an important qualitative
indication of the spatial accuracy, quantifying statistical metrics such as the mean absolute error (MAE),
root square mean error (RMSE), and relative positional accuracy (Table 3) is necessary to develop
confidence in the approach.
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Table 3. Relative positional accuracy assessment of the automated georectification.

Crop
Image

(Year/DOY)
Check
Points

Min.
Error (m)

Max.
Error (m)

MAE
(m)

RMSE
(m)

Accuracy
95% (m)

# Check
Points Whose
Error >MAE

Tomato

2017/320 52 0.005 0.151 0.044 0.054 0.092 3
2017/334 52 0.001 0.214 0.046 0.063 0.107 2
2017/340 52 0.003 0.289 0.060 0.083 0.137 1
2018/007 52 0.003 0.224 0.056 0.074 0.126 3

Date Palms
Automated

25
0.001 0.222 0.095 0.113 0.188 1

Semi-automated 0.032 0.275 0.096 0.102 0.167 3

 

Figure 8. Comparison between preprocessed (before) and rectified multitemporal hyperspectral
data (after). Close-ups of a central area show the good alignment achieved by continuous linear
features, such as irrigation pipelines and furrows, which were originally shifted before performing
the georectification.
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Figure 9. (a) Box-plot of the spatial error distribution for the tomatoes case study; (b–e) false infrared
composition of the georectified hyperspectral mosaic of the tomato experimental field and positional
error for 52 check points.
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Figure 10 illustrates the checkpoints evaluation for the hyperspectral data series in the tomato
experiment. The error is randomly distributed over the mosaics, reaching an overall MAE between 6
and 8 times the ground sampling distance (which represents around 5 cm) and an RMSE at the level of
7 to 11 times GSD (corresponding to approximately 6 cm). Figure 9 shows how the error is distributed
throughout the checkpoints over the date palms crop. In this case, the MAE and RMSE were at the
level of 1 and 1.5 times GSD, which equates to 6 and 9 cm, respectively. However, errors for some of
the mosaics are more variable than others, which is the case for the last two datasets in the tomato
experiment and single capture for the date palm experiment, showing a direct correlation between
the achieved error and the percentage of inliers selected from the total matching points, i.e., the more
inliers that are detected (Table 2), the lower the RMSE.

 

Figure 10. (a) Comparison of the hyperspectral mosaic before and after the automated georectification;
(b) false infrared composition of the georectified hyperspectral mosaic overlapping the RGB base and
positional error for 25 checkpoints. Some close-up (right) of two areas show the alignment of a road
and the palm crowns.

The relative accuracy was tested by comparing the X (east) and Y (north) coordinates of the
checkpoints with their correspondent coordinates from the RGB mosaic, which is considered an
independent source of higher accuracy. This metric is reported in ground distances to directly compare
the results, considering their different spatial resolutions. The accuracy achieved in the tomato
experiments throughout the 52 checkpoints and at a 95% confidence level, varies between 9 and 13 cm
(Table 3). According to the NSSDA standard, when 50 points are tested, the percentage confidence
level allows a maximum of three checkpoints to be above the MAE. This criterion is met for all of
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the mosaics in the tomato experiments, as shown in Table 3 (last column) and Figure 10 (red points).
In the case of the date palm experiment, the accuracy reached throughout the 25 checkpoints at a 95%
confidence level, was 18 cm. Following the NSSDA standard for >20 tested points, only one is allowed
to be above the MAE, which is a condition achieved by the resulting mosaic (see Figure 9, red points).

An additional spatial quality assessment for the date experiment was performed by comparing a
semiautomated georectification with the automated method proposed herein. To do this, matching
points between each scanned swath and the RGB-frame reference were manually identified, with a
total of 27 stitching points per swath selected (as this number corresponds with the average of inliers
retrieved per swath by the automated method; see Table 2). A polynomial affine transformation was
performed using these points, achieving an RMSE of 0.102 m, an MAE of 0.096 m, and an accuracy
of 0.167 m at a 95% confidence level. Figure 9d,e show the error distribution of the checkpoints
achieved for both methods. As anticipated, the error is smaller and more homogenous across the
manually-rectified mosaic compared to the automated effort, although the difference in spatial accuracy
achieved is around 1 cm.

4.5. Processing Efficiency

Given that the proposed approach can achieve spatial accuracies comparable with those obtained
by manually identifying the matching points, one of the key reasons for choosing an automated method
will be based on the processing time (i.e., it should be faster and as reliable when compared with
manual approaches). The efficiency of an algorithm is usually expressed in terms of its processing time.
As such, the computational cost of the proposed automated georectification workflow, coded in Matlab,
was measured on a per step basis to allow an intercomparison of the approaches. Some factors, such as
200 GB of RAM memory and 20 processor cores, were set as constant to execute the routines. Table 4
compares the timing measurements per dataset for three general stages: (i) extraction and selection
of matching points, (ii) geographic transformation, and (iii) mosaicking. The manual coregistration
performed for the date palms imagery was also timed, with an average of 3 min required to manually
identify each of the 27 pairs of matching points per swath, from a total of 16 flight lines (i.e., 21.6 h
in total). It is noticeable that the time required to execute each stage is correlated with the data size.
That is, the larger the data set, the longer the processing time. For the automated solution, nearly 10% of
the processing time is used to extract and select the matching points, while another 10% is spent by the
geographic transformation. The majority of the time, around 80%, is dedicated to stitching the strips
and stacking the bands together into a single hyperspectral mosaic. In contrast, when comparing both
approaches (the automated with the semiautomated), a difference of 21.3 h was measured, where 85%
of the total time was spent by the handmade selection of points.

Table 4. Georectification processing time by stage.

Crop
Hypers.
Mosaic

Mosaic
Dimension

(Rows ×
Columns)

Mosaic Size
(Giga-bytes)

Matching Points
Extraction

and Selection
(hours)

Geographic
Transforma-tion

(hours)

Mosaicking
Time

(hours)

Net
Processing

Time
(hours)

Toma-toes

2017/320 16571 × 16429 220 0.6 0.6 5.3 6.5
2017/334 16714 × 16143 195 0.5 0.6 5.2 6.3
2017/340 16571 × 16000 170 0.4 0.5 5.2 6.1
2018/007 16429 × 16571 220 0.6 0.6 5.3 6.5

Date
Palms

Automa-ted
8588 × 7758

17 0.3
0.4 3.0

3.7
Semiautomated 17 21.6 25

5. Discussion

A range of semiautomated [18,20,22,26,41] and fully automated frameworks [37,38,72–74] have
been explored to georectify UAV-based hyperspectral data captured by push-broom cameras. However,
challenges related to data collection procedures, quality assessment, and optimization of algorithms
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require further investigation to expedite data processing and accomplish a standardized positional
accuracy of retrieved data. These factors, together with the need for processing large volumes of
image time-series, motivated the development of a simplified, expedited, and automated workflow to
georectify and mosaic high-spatial-resolution hyperspectral images acquired by UAV-based push-broom
spectroradiometers. To address these challenges, an improved coregistration strategy combining SURF
feature detector and MLSAC model-fitting algorithm was established to allow robust direct geographic
transformation between the hyperspectral scans and an RGB reference orthophoto. An additional
novel aspect of the proposed approach is the fact that high positional accuracies can be reached with
different percentages of true matches without requiring any additional image treatment and with a
limited number of GCPs.

Some considerations relevant to the development and execution of the proposed methodology
must be taken into account to assure an effective implementation for multiple applications. For instance,
in the data collection stage, it is advised to design a flight plan that allows the simultaneous collection
of coincident hyperspectral and RGB frame-based data. Establishing a minimum of requisites, such as
atmospheric conditions, side-lap overlaps, flight speed and height, frame rate scanning, and FOV allows
the capture of both datasets under similar illumination conditions and to achieve comparable spatial
resolutions. However, if different GSD are collected between the RGB reference and the hyperspectral
dataset, then the RGB dataset should be resampled to the hyperspectral imagery resolution, to increase
the efficiency of the SURF coregistration method. Although SURF is a scale-invariant feature detector,
it has been shown elsewhere that the algorithm operates considerably better when comparing similarly
scaled images [75]. An alternative to managing the scale difference was proposed by Habib et al. [38],
who established a GSD ratio threshold between the spectral scans and the RGB reference to constrain
the feature detection in SURF. However, our study demonstrates that resizing the RGB orthomosaic is
enough to retrieve hundreds of matches. Another aspect to account for is the flight time, since the
coregistration is based on the similarity of the luminance images derived from the hyperspectral
swaths and the RGB orthophotos. Both datasets should be consecutively (or simultaneously) collected
in order to avoid significant changes in luminance. Theoretically, SURF or any other type of feature
detector/descriptor algorithm always retrieves interest points from an image unless it is a constant matrix
whose pixel values are all the same [75]. However, the number of features detected can be reduced
by the homogeneity of the scene, since the detection is based on local texture analysis. For instance,
a poor number of SURF points could be retrieved for an image covering a highly homogeneous and flat
desert area. In such a case, the number of true matches between two scenes could be null if these were
captured under slightly different illumination conditions, hence requiring ancillary GCPs. Although
SURF is also robust under invariant illumination conditions [48], large differences between the images
to coregister (e.g., shadows or new elements placed on the ground) can reduce the number of matches
and the georectification quality. Considering such factors will not only help to reduce ground-based
collection efforts, but it will also make the data more reliable.

Amongst the different approaches used to georectify and mosaic UAV-based hyperspectral
data, those using coregistration methods with RGB scenes from frame sensors generally yield better
accuracies and products than those based on dense networks of ground control points (GCP) and
manual stitching [22,25]. Habib et al. [38] used the same hyperspectral camera and IMU reference
employed in this study, with a 17 mm lens and onboard a fixed-wing UAV, to capture 5 cm GSD swaths
with 50% side lap over a crop field. Their approach includes a partial rectification of the hyperspectral
scans based on a derived DEM from the RGB frame-based dataset and a coregistration strategy based
on a modified version of SURF. Their results achieved relative accuracies between 0.5 to 0.9 m RMSE per
swath. Considering the comparable date palm study (6 cm GSD) explored here, the relative accuracy
achieved for our georectified mosaic (0.1 m RMSE) improved these results by between 67% and 88%.
This improvement relies on the use of luminance images and the integration of SURF and MLSAC. In
previous approaches [23,38,39], most establish a comparison between the hyperspectral and the RGB
data using a single band (often the red band), thereby omitting radiometric differences of both sensors.
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In contrast, luminance images are based on a model of a weighted combination of RGB wavelengths
that equalizes multiple data sources under a standard metric. By comparing the luminance images
derived from the high spectral and the RGB datasets, SURF is able to retrieve thousands of features
and hundreds of matching points, as shown in the presented study cases. Furthermore, the strategy
of selecting true matches (or inliers) is essential to fit an affine model, especially when the study site
has a homogeneous land cover. The alternative proposed by Habib et al. [38] to reduce the number of
false matches, was by constraining SURF with some ratios and ranges in the spatial location, scale,
and main orientation, achieving a maximum of 350 true matching pairs between consecutive swaths,
and fitting an affine model base on them. In contrast, our study implements the MLSAC routine as a
strategy to do both, selecting the best matching points or inliers, and fitting the transformation model
per swath through a maximum likelihood of the error, where the distance error parameter can be set to
be as restrictive as required. In the case of the date palms, only an average of 27 inliers per swath are
retrieved, and these are the best points that assure an affine model with an error ≤0.09 m per swath.

One of the aims of automated approaches based purely on computer vision and coregistration
algorithms is to reduce field and manual work. Ramirez-Paredes et al. found that navigation and
positional data are not required to achieve an alignment line-to-line between the RGB reference
and the hyperspectral strips, demonstrating this by combining a light payload sensing system with
machine vision algorithms. However, spatial accuracy is the most important factor to evaluate in
the georectification and mosaicking process. In order to quantify and minimize the absolute error,
GCPs, check points, and onboard navigation sensors are always required. Here, it is demonstrated that
an automated method that relies on the RGB reference accuracy, requires just a few well-distributed
GCPs (minimum five), high-precision GNSS base stations, and GNSS/IMU sensors integrated with the
cameras, to produce high-quality results. Moreover, recent studies [76] have found that a minimum of
three GCP/ha are sufficient to assure sub centimeter-level horizontal accuracies when operating similar
UAV-based RGB systems at 30 m above the ground approximately. One of our study cases reached
absolute accuracies of ~1.5 pixels for RGB orthophotos with 5 mm GSD, and relative accuracies between
two and seven pixels for hyperspectral images with millimetric resolution (7 mm). Turner et al. [23]
conducted a comparative experiment by using the Headwall Micro-Hyperspec onboard a small
multi-rotor UAV, integrated with a dual frequency GNSS antenna, an IMU, and a machine vision
camera. Their georectified hyperspectral imagery achieves 2 cm GSD with an absolute accuracy
of ~2.5 pixels, by sampling 46 GCPs. Although having a significant level of difference in accuracy,
these results support the viability of using an ancillary frame camera and automated coregistration
methods in combination with a sufficient quantity of GCPs. Ultimately, the number of required GCPs
will depend on the area, the desired accuracy level, the terrain conditions, and the available resources
(i.e., equipment, time, people).

In terms of computational efficiency, the robustness of the presented workflow is demonstrated
(Table 4) by the parallel implementation of optimized algorithms, following the suggestion of
Ramirez-Paredes et al. Although it is not possible to establish a comparison between the automated
methods in the literature (since these do not report the process timing and barely describe the
computational resources and data size), some aspects can be highlighted regarding the efficiency of
some of the adopted algorithms. In comparison with the Habib et al. [38] approach, our method
performs the feature detection routine SURF only once, whereas their workflow executes it several times,
since there is a feature detection between consecutive swaths, and between the swaths and the RGB
orthomosaic. Consequently, under that approach, the computational effort in the extraction and selection
of matching points stage could increase considerably as the number of flight lines increases. Another
comparison can be established with the geocoding package PARGE [39,77], whose ortho-rectification
strategy relies on using navigation data (GNSS/IMU), ancillary sensor information (FOV, scanning
frequency), high-resolution digital surface models (DSM), and tens of GCPs, in order to fully reconstruct
the geometry of the scanning process. According to Schläepfer et al. [77] the whole processing time that
PARGE can take to georectify a typical airborne-based scan of 512 × 2000 pixels at 200 spectral channels,
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is within about 4 h, achieving submetric accuracies. Based on this performance, it is expected that this
approach would require a higher computational and manual effort than the approach proposed herein.
Likewise, the SpectralView [40] application provides a quick geometry correction approximation,
requiring only a coarse resolution DTM and navigation data to produce georeferenced scans. Based on
the preprocessing stage of our study data, one hyperspectral scan of 640 × 2000 pixels with 270 bands
can be georeferenced through SpectralView within about 1 h, reaching only a submetric level of
accuracy and requiring additional processing (like that proposed herein), in order to obtain consistently
high positional accuracies.

Although the presented case studies show this automated approach is a valid, computationally
efficient, and accurate alternative to the current variety of georectification methods, some improvements
would further strengthen the performance of the methodology. In terms of the extraction and selection
of matching points, a further comparative study could explore different possible integrations of new
image feature detector methods [75] (like SURF) with model fitting routines [78] (like MLSAC), aiming
to strengthen the proposed coregistration strategy. With respect to the spatial accuracy assessment
of automated georectification methods, as a best practice, it is suggested to use international spatial
quality control tests [69,79] that guide how to decide when the accuracy of the results is sufficient or not,
for a specific study purpose. Further work could also involve laying out a dense GCP network over a
study site to assess the absolute accuracy of the hyperspectral mosaics, especially for mountainous
terrains or nonflat fields. In addition, regarding the computational efficiency of the mosaicking stage,
it is advised that efficient stitching and band-stacking strategies that can speed up the creation of the
hyperspectral mosaic data cube be explored.

6. Conclusions

In order to address the postprocessing georectification challenges in a timely and computationally
efficient manner, a batch processing workflow was presented to produce georectified UAV hyperspectral
mosaics captured with push-broom sensors. The approach uses as a reference an auxiliary orthophoto
collected with a frame-based camera, which is used to individually coregister each spectral scan.
SURF and MLSAC computer vision stitching algorithms were implemented to produce thousands of
matching points between the intensity images of the RGB reference and each hyperspectral swath.
Affine transformations were estimated to obtain free-distortions scanlines, and to stitch them together
as mosaic data cubes. The number of inliers extracted from the matching points is correlated with
the accuracy of the results, which demonstrates the importance of the SURF coregistration approach
to produce high-quality matches, and the consensus algorithm MLSAC to select the inlier pairs.
The methodology was tested with different temporal and high-spatial-resolution scenes collected
over two varying landscapes. The hyperspectral mosaics with millimeter spatial resolution (7 mm),
achieved centimeter level residual errors, with an RMSE of ~7 cm, MAE of ~ 5 cm, and accuracy of
~9 cm at a 95% confidence level. The hyperspectral dataset with centimetric spatial resolution (6 cm)
achieved decimeter level residual errors, with an RMSE of ~11 cm, MAE of ~9 cm, and accuracy
of ~18 cm at a 95% confidence level. In terms of the computational complexity of the workflow,
SURF and MLSAC provide a robust and highly efficient solution to automate the matching points
selection process, assuring enough high-quality points to perform an affine geometric transformation.
Additional tests are required for implementing approaches that speed up the mosaicking step, since the
composition of a mosaic data cube is computationally intensive. Future work should also focus on
testing the proposed approach over different terrains and land surface and atmospheric conditions to
further improve the framework.
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