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Preface to ”Information Theory in Molecular

Evolution: From Models to Structures and Dynamics”

Modern biological sciences are driven by information. Large amounts of experimental data

are collected and synthesized to create models to explain the complexity of biological systems. In

addition, inter- and intra-cellular information processing is key to understanding cellular physiology

and disease. The study of evolution and, in particular, molecular evolution, has benefited from

information theoretical insights since the foundational work of Ronald A. Fisher. In recent years,

there has been a growing interest in using tools from information theory and statistical physics

to quantify and model the evolutionary processes. An integration of quantitative evolutionary

models with structural aspects of biomolecules has energized scientific contributions and discovery.

Applications include: the fields of protein structure prediction; protein folding; conformational

plasticity in molecules; chromosome architecture and epistasis. Modern approaches also look at the

study of dynamics, allostery, and interactions within complexes that facilitate molecular recognition

and catalytic specificity.

This issue includes contributions from scientists with diverse and interdisciplinary

backgrounds and aims to be accessible to a wide range of scientists including graduate students,

postdoctoral researchers and principal investigators interested in quantitative aspects of

molecular evolution driven by the analysis or large amounts of data and models.

Faruck Morcos

Editor
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Historically, information theory has been closely interconnected with evolutionary
theory. The work of Ronald Fisher in population genetics [1] and the formulation of
the principle of minimum Fisher information [2] are just two early examples of such
connections. In recent years, with the advent of high-throughput sequencing technologies,
the field of molecular evolution has been able to take advantage of large amounts of samples
from evolution to improve models and applications to understand structural, dynamical,
and functional aspects of biomolecules. Information metrics have been prevalent, in recent
years, to estimate the likelihood that two amino acid sites in a protein are coevolving.
A relevant example of such metrics is Direct Information (DI) [3,4] used in the context of
Direct Coupling Analysis to estimate if two positions in a multiple sequence alignment are
likely to be proximal in the 3D structure of a protein or RNA molecule. Other standard
information metrics like Mutual Information have been applied and are particularly useful
for the case of molecular complexes and interactions [5,6].

This special issue focuses on important aspects of the study of molecular evolution
through the statistical features of sequence data, molecular simulation, and evolutionary
convergence towards specificity in signaling networks. Three articles [7–9] investigate
how phylogenetic relationships in sequence data have an effect in the inference proce-
dure of a joint probability distribution P(a1, a2, a3, . . . , aL) of a given sequence of length
L. Particularly, these studies are centered under the premise that a preprocessing step for
multiple sequence alignment analysis might reduce phylogenetic bias and could improve
the inference procedure. These methods, ultimately, improve prediction of amino acid
contacts and functional connections among amino acid sites.

In [7], Hockenberry et al. conducted a systematic study of previously relevant
reweighting schemes that have been useful in other applications. These methods con-
trast versus the current practices of identity-based sequence reweighting used in Potts
model inference. They find that previous applications do not add considerable value for
the inference task and leave open the question for novel schemes that might improve the
inference of coevolving residue pairs. Interestingly, in [8,9], the authors propose novel
schemes to account for phylogenetic bias. First, Horta et al. [8] introduce a new inference
method which uses a priori information about phylogeny to enhance contact prediction
and fitness effects in simulated data. Second, Maliverni et al. [9] propose another scheme
called continuous sequence reweighting (SR) that reveals structural features that are unique
to subfamilies as opposed to determining global properties common to all family members.
These articles as a whole provide an in-depth and useful picture on how to deal with
phylogenetic correlations in the task of contact inference and the estimation of the effects
of mutation.

A second set of articles in this issue [10–12] deals with the complex problem of evo-
lutionary dynamics in protein structures and sequences. Cadet et al. [12] study formal
statistical properties of sequence change and show how fluctuations follow a −5/3 Kol-
mogorov power and behave like an incremental Brownian process. In another study,
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Wang et al. [10] investigate members of the family of β-Lactamases, enzymes involved in
antibiotic resistance. In this study, they uncovered, via molecular simulations, important
amino acid positions that share functional and dynamical features with another class of
evolutionarily related proteins called Penicillin-binding proteins (PBP), enhancing our un-
derstanding of the dynamics of catalytic residues in the context of antibiotic resistance. In
a third article, also concerned with the dynamics of protein evolution, Campitelli et al. [11]
devise accurate metrics to quantify epistasis upon amino acid perturbations (EpiScore) and
the asymmetric Dynamic Coupling Index (DCIasym) to measure how connected residues
are affected depending on which residue has been perturbed. These metrics are relevant
contributions to the study of allostery and the evolutionary forces that shape this important
functional phenomenon.

In a final study, Sinner et al. [13] construct another information metric to predict the
degree of specificity between molecules in two-component signaling networks. Molecular
interactions between histidine kinases (HK) and response regulators (RR) have evolved
towards amino acid specificity at the physical interface in the HK-RR complex where
phosphotransfer occurs. A degree of coevolutionary strength at this interface can be
quantified for a large number of organisms. The authors created a public web server called
ELIHKSIR.org (Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with
Response regulators) to facilitate the prediction and analysis of these links and to assess
the effect of mutations in interacting specificity.

All together, the methodological contributions presented in this issue of Entropy
will help advance the study of molecular evolutionary dynamics through the lens of
information theoretical metrics and a combination of structural modeling and molecular
dynamics simulations.
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Abstract: Homologous sequence alignments contain important information about the constraints
that shape protein family evolution. Correlated changes between different residues, for instance,
can be highly predictive of physical contacts within three-dimensional structures. Detecting such
co-evolutionary signals via direct coupling analysis is particularly challenging given the shared
phylogenetic history and uneven sampling of different lineages from which protein sequences are
derived. Current best practices for mitigating such effects include sequence-identity-based weighting
of input sequences and post-hoc re-scaling of evolutionary coupling scores. However, numerous
weighting schemes have been previously developed for other applications, and it is unknown
whether any of these schemes may better account for phylogenetic artifacts in evolutionary coupling
analyses. Here, we show across a dataset of 150 diverse protein families that the current best practices
out-perform several alternative sequence- and tree-based weighting methods. Nevertheless, we find
that sequence weighting in general provides only a minor benefit relative to post-hoc transformations
that re-scale the derived evolutionary couplings. While our findings do not rule out the possibility that
an as-yet-untested weighting method may show improved results, the similar predictive accuracies
that we observe across conceptually distinct weighting methods suggests that there may be little
room for further improvement on top of existing strategies.

Keywords: direct coupling analysis; evolutionary coupling analysis; contact prediction; phylogenetic bias

1. Introduction

Correlated evolution of amino acid positions within a sequence alignment can be leveraged
to inform structural models of proteins, predict mutational effects, and identify protein binding
partners [1–5]. The ability to detect correlated evolution has been revolutionized by direct coupling
analyses and other related methods that seek to re-construct one- and two-site marginal amino acid
probabilities based on the observed distribution of sequence data [6–11]. Inference of two-site coupling
parameters from a multiple sequence alignment is technically challenging, however, and numerous
related approaches have been developed in recent years [9,10,12–17]. This intense focus on related
methodologies stems from the fact that the highest scoring evolutionary coupling values are highly
enriched in residue-residue pairs whose side-chains physically interact within three dimensional
structures [18]. Evolutionary couplings can thus provide valuable information about structural
constraints within and between protein families, while only requiring sequence information as
inputs [15,19–22].

All methods to detect correlated evolution between different positions in a protein family
require large numbers of representative sequences and therefore start by finding—and subsequently
aligning—homologous sequences from large sequence databases [5]. An oft-remarked upon fact is
that sequence databases are composed of a highly biased sample of life on Earth; some species are
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much more densely sampled than others (as are some genera, families, orders, etc.) [23–27]. Even if all
extant life were equally well sampled and represented in sequence databases, species are related by
complicated historical patterns and cannot be considered as independent observations [28].

Statistical issues arising from this shared phylogenetic history and biased sampling have long
been noted by biologists [28]. The problem can be most clearly summarized by a toy example.
In Figure 1A, we show a hypothetical sequence alignment and ask the question: What amino acid
is preferred at the indicated site? At first glance, a phylogenetically agnostic method would simply
count the frequency of different amino acids and conclude that valine (V, four occurrences) is preferred.
However, accounting for phylogenetic relationships, a different perspective could reasonably conclude
that threonine (T, three occurrences) is more highly preferred given that it occupies a substantially
larger fraction of the phylogenetic tree and therefore dominates the evolutionary history of the
protein family; the abundance of valines in the alignment is an apparent result of over-sampling
one closely related lineage (which may represent numerous representatives of the same species,
for example). Naively, the problem can be solved by simply selecting a single member from each
species to prevent over-sampling. However, the issue remains equally problematic at other taxonomic
levels (i.e., sampling numerous species from the same genus, numerous genera from the same family,
etc.) and it is clear that a more general solution is required.

Prior research has shown that the best way to account for phylogenetic effects is to explicitly
incorporate an evolutionary model into the statistical methods whenever possible [29–36]. However,
this strategy can be challenging for certain problems [37] and simpler methods that differentially weight
taxa according to their overall similarity to other taxa in a given dataset have been developed and
applied for decades [38–46]. In the context of the toy example in Figure 1A, the choice of valine as the
preferred amino acid comes from a model that weights each sequence uniformly. By down-weighting
highly similar sequences, however, weighted frequencies could be used to come to the conclusion that
threonine is instead the preferred amino acid. Instead of looking at preferred amino acid residues
(one-site probabilities), evolutionary coupling analyses use sequence alignments to infer co-evolving
positions via their two-site marginal probabilities. The current best practice for evolutionary coupling
analyses is to down-weight sequences that are highly similar to one-another when inferring parameters
from the multiple sequence alignment data. While this strategy appears in numerous methods,
a systematic analysis of the benefit that sequence weighting provides in comparison to uniform weights,
and an evaluation of different conceptually distinct strategies for assigning weights to sequences has
not been performed to our knowledge.

Here, we evaluate existing weighting strategies alongside alternative tree- and sequence-based
methods that have been proposed and used in various biological applications. We define the
accuracy of a given method according to how well the resulting evolutionary couplings are able
to predict residue–residue contacts within known representative structures of protein families [18].
Despite potential theoretical disadvantages, we find that the current best practice method of 80%
sequence-identity-based weighting outperforms alternative methods that explicitly incorporate
knowledge of phylogenetic relatedness. We show that a modification of this method provides a slight
but insignificant improvement, and more broadly show that several methodologically distinct methods
produce accuracies that are nearly indistinguishable both from one-another and from uniform weights.

6
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Figure 1. Weighting methods and their relationships in empirical datasets. (A) A toy example
illustrating the problem of biased sampling and phylogenetic relatedness. Judging by their frequency
(i.e., uniform weighting), valine (V) is the preferred amino acid at the indicated position. However,
threonine (T) occupies a substantially larger proportion of the inferred evolutionary history. (B) For an
example protein sequence alignment (PDB:1AOE), different weighting strategies produce a more- and
less-uniform distribution of weights as visualized by the Lorenz curve. (C) The distribution of GINI
coefficients for 150 protein families (higher coefficients correspond to a less uniform distribution of
weights) using different weighting strategies (boxes span the 25th to 75th percentiles, and the red line
indicates the median). (D) The median correlation coefficient (Spearman’s ρ) of different weighting
methods observed across the same 150 protein families.

2. Results

2.1. An Explanation of Weighting Methods

Many variants of evolutionary coupling analysis methods have been developed, and most
methods implement a sequence-identity-based correction to mitigate the effect of phylogenetic
relatedness [10,11,13]. Specifically, given n sequences in an alignment, the pairwise similarity of
all sequences is calculated and the weight W(i) of a given sequence i within an alignment equals
the inverse of the total number of sequences j whose distance d(i, j) to sequence i is less than some
parameter λ:

W(i) = 1/
n

∑
j=1

I(i, j), (1)

where n is the number of sequences in the alignment and I(i, j) is an indicator variable defined as
7
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I(i, j) =

{
0 if di,j < λ,

1 if di,j >= λ.
(2)

The distance d(i, j) and the cutoff λ are usually measured as percent sequence identity: the number
of identical residues between two aligned sequences divided by their total length.

Under this weighting scheme, highly unique sequences are given a weight value of 1, whereas
sequences that are similar to others are assigned weights between 0 and 1 according to how many
such similar sequences are in the alignment. Given this strategy, the effective number of sequences is
simply the sum the weights assigned to all sequences, which takes a value between 0 and n.

Several possible issues arise from this weighting scheme. First, it is not immediately apparent
what value of λ is most appropriate to use as a sequence identity threshold. While this parameter
can be optimized for practical utility (the field has coalesced largely around a value of 80%), it is
unclear what this value tells us about the co-evolutionary process or why it works so well. Second,
this weighting scheme can produce some counter-intuitive results. Given an 80% sequence identity
threshold, two otherwise independent sequences in an alignment sharing 99% sequence identity
will each be assigned a weight of 0.5 reflecting their relative similarity to one another. In the same
alignment, two sequences sharing 81% sequence identity will similarly each be assigned a weight
of 0.5 despite being much more distinct from one another compared to the former pair. However,
two sequences sharing 79% sequence identity will be assigned a weight of 1.0. Finally, the underlying
phylogenetic history of the sequence evolution is ignored by this sequence-based comparison method
which may inhibit its overall effectiveness.

Our goal here is not to exhaustively evaluate all possible strategies for assigning weights to
sequences or tips on a phylogeny but rather to test several popular methods that represent logical
starting points for possible improvements for use in evolutionary coupling analyses. Specifically, we
decided to implement and test three algorithms: one sequence-based method and two conceptually
distinct tree-based methods. The sequence-based method was proposed by Henikoff and Henikoff [44]
and proceeds across each position by first awarding each observed residue at given position in an
alignment an equal share of the weight for that position (where each position in the alignment has
a starting weight of 1). The weights at that position for each sequence in the alignment are then
assigned by dividing the weight assigned to each residue equally among all sequences sharing the
same residue. Finally, the weight of a given sequence is simply the sum of the weights assigned to
each position/residue. The method gives intuitively correct results for toy examples and has been
used in numerous popular applications including HMMER and PSI-BLAST, with several different
modifications for dealing with gap sequences [47,48].

We additionally implemented two tree-based methods that were initially proposed by
Altschul et al. [38] (hereafter referred to as “ACL” weights) and Gerstein et al. [43] (hereafter referred
to as “GSC” weights). The ACL method is equivalent to a model of electricity where a power source is
plugged into the root of the tree, each branch provides resistance proportional to its length, and the
current flowing out of each tip is used to determine the weights [38]. By contrast, the GSC method
is a way of partitioning the branch lengths of a tree where the final weight of each tip is a weighted
sum of all the branch lengths leading up to it [38,43]. Conceptually, ACL and GSC weights are quite
distinct with GSC weights assigning a higher weight to tips that have particularly long branch lengths
(and thus occupy a larger proportion of the tree) and ACL weights assigning the highest weights to
sequences with particularly short branch lengths that reside closest to the root. We note that both
metrics explicitly account for the underlying tree topology and thus require a previously constructed
rooted evolutionary tree.

A notable caveat to the HH, ACL, and GSC weighting methods is that they do not provide
intuitive absolute scales. The sum of all HH weights in their original formulation is equivalent to the
length of the alignment, ACL weights are relative and sum to 1, and GSC weights are in units of branch
length (substitutions per unit time) [38,43,44]. Differences in absolute scales will affect the output of

8
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co-evolutionary models because the regularization strength used during model fitting is proportional
to the number of effective sequences. That is to say, a model fit to data where all weights are assigned a
uniform value of 1 will be different from a model fit to the same set of sequences where all weights are
assigned a uniform value of 0.1. Thus, both the relative differences in weights and their absolute scale
are important considerations. For each of the three new methods, we employ two re-scaling strategies:
First, we divide each weight value by the mean for that alignment, such that the weights for a given
alignment will sum to n, where n is the number of sequences. Second, we divide each weight by the
maximum observed weight in an alignment, such that the largest relative weight will be assigned a
value of 1 and all other weights are some fraction of this.

For an example protein (PDB:1AOE), assigning weights to a sequence alignment/tree
demonstrates that the methods vary substantially in how uniformly they distribute weights (Figure 1B).
The GINI coefficient is a measurement of uniformity where values of zero correspond to uniform
weights and values approaching 1 illustrate the case where a small number of sequences have very
large weights while the remainder have very small weights. This relationship can be visualized by a
Lorenz curve, which in this case plots the cumulative fraction of weights (y-axis) against the cumulative
fraction of sequences (x-axis, sorted from lowest to highest weights). The Lorenz curves in Figure 1B
show that ACL weights in particular result in a highly uneven distribution of weights. This finding
holds more broadly across a dataset of 150 diverse protein families; the tree-based methods produce a
more un-even distribution of weights, with ACL weights being particularly highly skewed (Figure 1C).

The different weighting schemes (when applied to the same multiple sequence alignment)
are only modestly correlated with one-another. Figure 1D shows the median correlation (across
the 150 protein families) observed among HH, GSC, and ACL as well as the commonly used 80%
sequence-identity-based re-weighting method. In general, the weights produced by different methods
on the same protein family are significantly positively correlated with one-another, but the correlations
are fairly low, demonstrating that the weighting methods themselves are distinct. We additionally note
that tree-based weighting methods may be subject to numerous errors during the tree construction
and rooting process. We performed bootstrap resampling of multiple sequence alignments to compare
the resulting weights to the originally calculated set of weights and found that they were significantly
positively correlated (Figure S1). GSC weights, however, were much more robust (median Spearman’s
ρ of 0.84) compared to ACL weights (median Spearman’s ρ of 0.61).

2.2. Sequence Weighting Does Little to Improve Contact Predictions

To test the effectiveness of different weighting methods, we calculated evolutionary couplings
using the program CCMPredPy—a Python-based implementation of one of the most popular
pseudo-likelihood based methods (CCMPred), which we modified to accept weights from externally
supplied files—for 150 unique protein families with known structural representatives [13,16]. We next
tested what fraction of the top L couplings for a given protein family (where L is the length of the
reference sequence with a known three-dimensional structure) are true intramolecular residue–residue
contacts—a metric known as the Positive Predictive Value (PPV) (see Section 4 for details) [18]. We
separately quantified accuracies from the raw evolutionary couplings, entropy-corrected couplings,
and Average Product Corrected (APC) couplings. The latter two post-hoc corrections have been shown
to improve the accuracy of evolutionary couplings by accounting for uneven sequence entropies across
positions in the alignment and perhaps the underlying phylogenetic structure [16,49].

As expected, we found that across all weighting schemes, the APC (and to a slightly lesser extent,
the entropy-corrected) evolutionary couplings produce substantially more accurate results compared
to raw coupling scores (Figure 2). In nearly all cases, sequence-identity-based weighting resulted in
the highest accuracy. For the best performing APC coupling scores (Figure 2A), the commonly used λ

parameter representing an 80% sequence identity threshold resulted in significantly higher accuracies
compared to the uniform weight controls (Wilcoxon signed-rank test, p < 0.001). One phylogeny-based
weighting method (GSC) and the HH sequence-based method were slightly more accurate than
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uniform weights provided that they were mean-scaled but the improvement was not significant in
either case (p = 0.09 and p = 0.1, respectively); both methods were significantly less accurate than the
80% sequence-identity-based method (p < 0.001 for both cases). ACL weights by contrast generally
performed poorly in all cases.

Figure 2. Testing the ability of evolutionary couplings to predict residue–residue contacts in
representative structures. “Uniform” refers to the use of uniform weights for all sequences when
fitting evolutionary coupling parameters (the red dashed line indicates the mean of this distribution
and represents a baseline performance that methods should improve upon). “Threshold (λ)” refers
to sequence-identity based weighting with different parameters, and “Mean scale” and “Max scale”
refer to two different scalings of the indicated weighting methods (HH, GSC, and ACL). (A) Using
APC couplings, the mean positive predictive values (PPVs) of the top L couplings vary across different
weighting schemes used to infer evolutionary couplings. However, the only methods that significantly
improve performance is sequence-identity-based re-weighting with λ = 0.8 or 0.9 (Wilcoxon signed-rank
test, p < 0.001), but the magnitude of the improvement is modest (1.9% and 1.1% median improvement
over uniform). (B) Using entropy-corrected evolutionary coupling values leads to similar conclusions
that no weighting scheme substantially outperforms uniform weights. (C) Using raw evolutionary
coupling values results in substantially higher accuracies for certain weighting methods relative to
uniform, but the overall accuracies remain low compared to (A,B).

10



Entropy 2019, 21, 1000

We note that even in the best case scenario the increase in PPV due to sequence weighting is
comparatively small when compared to the large improvements in accuracy that result from the
post-hoc APC and entropy corrections: median PPV for uniform weights are more than twice as high
for APC couplings relative to raw couplings. Interestingly, the best performing weighting schemes
substantially improve the accuracy of raw evolutionary couplings relative to the uniform weight
control (Figure 2C, 44% median increase in PPV for max-scaled GSC weights, p < 0.001), but do
comparatively little in the case of the more accurate APC couplings (Figure 2A, 2% median increase in
PPV for 80% sequence-identity-based weights, p < 0.001).

A caveat noted above is that the regularization strength of the CCMPred model is proportional
to the effective number of sequences. The typical value used for the pairwise regularization strength
parameter (“LFACTOR”) is 0.2, but this regularization strength was tuned for the previously best
performing 80% sequence identity-based weights that are commonly employed. For the GSC, ACL,
and HH methods, we tested a range of parameters (from 0.05 to 1.0) to see if a different pairwise
regularization strength parameter might produce superior results (Figure S2). No combination
of weighting method and parameter values, however, results in substantially improved accuracy
for the best performing APC couplings. For all of the max scaled methods, smaller values of this
parameter substantially improve results but only up to the level achieved by the best performing
mean-scaled methods. Perhaps most notably, for entropy-corrected couplings, we found that larger
pairwise regularization strength parameters were helpful for the best performing methods and brought
the overall mean PPVs nearly on par with that of the APC couplings (Figure S2). The strength
of regularization is thus an important consideration when evaluating different weighting schemes,
but our finding that numerous methods achieve roughly the same overall accuracy remains unchanged
from this analysis.

2.3. Weighting on Time-Scaled Trees

In Figure 1, we note that tree-based weighting methods produced a more un-even distribution of
weights compared to the sequence-based weighting methods that we tested. A potential issue with
both of the tree-based weighting methods that we consider here (aside from the possible noise/error
in their calculation that was previously noted) is that the rates of evolution vary across phylogenetic
trees and thus species are not equidistant from the root sequence. Phylogenetic trees reflect both the
relationship between species and the rate of evolution along each branch. For trees consisting solely of
extant species, numerous methods can re-scale trees to produce tips that are contemporaneous and
equidistant from the root (Figure 3A) [50]. Since GSC and ACL weighting methods are significantly
influenced by the overall distance from the root for individual tips, we reasoned that computing these
weights on scaled-trees may produce less variable weights and perhaps more accurate results. We thus
used the RelTime algorithm to transform each raw tree into a time-scaled tree and re-computed the
weights for the two tree-based weighting methods on these RelTime trees [50].

For a given protein alignment, weights constructed in this manner display significantly less
heterogeneity than weights calculated from the raw trees (Wilcoxon signed-rank test, p < 0.001).
The PPVs of mean- and max-scaled weighting methods were significantly improved in all cases relative
to weights computed on the raw trees (Figure 3B, results shown for APC couplings). The improvements
were again comparatively small and no method out-performed 80% sequence-identity-based weights.
However, PPVs with mean-scaled GSC weights calculated from RelTime trees were significantly
higher than PPvs from uniform weighting (Wilcoxon signed-rank test, p = 0.003) and the difference in
PPV between these weights and the best performing 80% sequence-identity-based weights was not
significant (p = 0.14).
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Figure 3. Tree re-scaling prior to calculation of weights slightly improves accuracies. (A) Raw, rooted
phylogenetic trees can be converted to time-scaled trees with contemporaneous tips using the RelTime
algorithm. (B) Sequence weights calculated from RelTime trees result in slightly better residue–residue
contact prediction for the two tree-based weighting methods that we consider (and the two separate
scalings of those weights). Shown is the mean PPV for 150 protein families using APC couplings,
with error bars showing the standard deviation.

2.4. An Altered Sequence-Identity-Based Method That Accounts for Sequence Similarity

Thus far, we have shown that the current best practice of using sequence-identity-based weighting
within a 80% sequence similarity neighborhood results in evolutionary couplings that have the
highest power to predict intra-molecular residue–residue contacts. However, we also discussed some
potentially counter-intuitive properties of this sequence-identity-based method. We thus developed
and tested a variant of the sequence-identity-based method that down-weights sequences according
to pairwise similarity and an identity threshold, but does so by accounting for the actual similarity
between the sequences. Whereas the original method assigns each sequence a value of 1 and divides
by the raw number of similar sequences (defined according to the λ parameter), our modification
instead divides by the sum of a similarity-adjusted value for each sequence. Specifically,

W(i) = 1/
n

∑
j=1

Iadj(i, j). (3)

In contrast to Equation (2), Iadj(i, j) produces a continuous range of values between 0 and 1:

Iadj(i, j) =

{
0 if di,j < λ,

(di,j − λ)/(1 − λ) if di,j >= λ.
(4)

As in Equations (1) and (2), the distance di,j and the cutoff λ are measured as percent
sequence identity.

Using this method with a λ value of 0.8, two otherwise independent sequences in an alignment
with 99% sequence identity will each be assigned a weight of 0.513 [or 1/(1 + 0.95), where
0.95 = (0.99 − 0.8)/(1 − 0.8)], reflecting their high similarity to one another. In the same alignment,
two sequences sharing only 81% sequence identity will by contrast each be assigned only a slightly
decreased weight of 0.95 [or 1/(1 + 0.05), where 0.05 = (0.81 − 0.8)/(1 − 0.8)]. All else being equal,
the more similar sequences are, the more they will be down-weighted up to the given sequence identity
threshold, at which point no further down-weighting occurs.

Comparing this similarity-adjusted sequence-identity-based method to the original method
shows that the similarity-based adjustment produces more robust results across the range of possible
values for λ (Figure 4). Across all of the different variants that we tested, similarity-adjusted
sequence-identity-based weights with an identity parameter of 0.8 (and the APC, Figure 4A) produced
evolutionary couplings with the highest median and mean PPV for the 150 protein families. PPVs
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resulting from this method were significantly higher than results from uniform weights (1.9% median
and 3.7% mean increase in PPV, Wilcoxon signed-rank test p < 0.001) but the increase compared to
80% sequence-identity weights calculated in the original manner was slight and not significant (0%
median and 0.3% mean increase in PPV, p = 0.11).

Figure 4. An altered sequence-identity-based method is more robust to parameter choice. (A) Using
APC couplings, mean PPVs for similarity-adjusted sequence-identity-based weights are equal to or
higher than PPVs calculated with the commonly used sequence-identity-based weights. (B) Same
as in (A), using entropy-corrected evolutionary coupling values. (C) Same as in (A,B), using raw
evolutionary coupling values.

3. Discussion

Natural sequence alignments are not composed of independently evolved lineages and instead
have an unknown pattern of relationships that can be inferred and visualized as a phylogenetic tree.
Statistical methods that fail to account for these relationships are expected to be biased, but in the case
of direct coupling analyses a phylogenetically agnostic model has nevertheless proven valuable
at predicting residue–residue contacts within protein structures [5,10,11]. Differential sequence
weighting is commonly employed in such analyses as a way to partially mitigate phylogenetic effects,
but the overall benefit that such weights provide has yet to be systematically interrogated. We have
shown here that numerous (and conceptually distinct) weighting methods produce evolutionary
couplings with a roughly equivalent ability to predict residue–residue contacts—given that the
coupling values are transformed post-hoc via the average product correction (APC). We found that
uniform, HH, GSC, and two variants of 80% sequence-identity-based weights all produce nearly
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indistinguishable accuracies from one another. While we have only evaluated a few different weighting
methods and variants, the similar predictive power of top-performing weighting strategies (despite
being substantially different from one-another, Figure 1D suggests that there may be little room for
improvement on top of current best practices.

Intuitively, uneven sampling and phylogenetic biases are expected to introduce spurious effects
into statistical models. Indeed, this is known to be the case in numerous contexts, such as when
assessing the strength of correlations between discrete and continuous traits [28,34,36]. Nevertheless,
we have shown here that using variable sequence weights to correct for these problems provides little
(if any) practical benefit when attempting to predict residue–residue contacts. Why might this be the
case? We caution that weights alone are an imperfect method of accounting for shared phylogenetic
history, and in other contexts achieving accurate true and false positive rates from statistical tests
requires more than simple re-weighting of data points [29,31,36,51,52].

In the context of evolutionary couplings, it is unclear whether uneven sampling and phylogenetic
biases do not affect the fitting of coupling parameters as much as one might initially think, whether the
APC (a post-hoc re-scaling procedure) largely corrects for any such factors, or whether weighting in
general is simply an inadequate solution to the problem of phylogeny. Several lines of evidence
currently indicate that the overall effect of phylogeny in direct coupling analysis models may
be minimal. For instance, our results confirm previous findings showing that correcting for
column-wise entropy produces comparable accuracies when compared to the average product
correction (even though the latter is thought to partially correct for phylogenetic effects) [16]. Recent
work has also shown that eigenvectors with the largest eigenvalues in a residue–residue covariance
matrix strongly reflect the phylogenetic relatedness of the aligned sequences [53–55]. Removal of these
eigenvectors substantially improves predictions of structural contacts in this conceptually distinct
model, and variants of direct coupling analysis appear to achieve this same result via different
means [55]. Future studies investigating the contribution of uneven sequence weighting towards these
high value eigenvectors may be particularly illustrative about the impact of phylogenetic weights and
their potential role in covariation analyses moving forward.

While we found that numerous weighting methods produce roughly equivalent end results on
average, our findings raise other several potential issues that may be worthy of further study moving
forward. We noted that many weighting methods do not clearly provide an intuitive absolute scale
and instead assign weights to sequences (or tips in a phylogenetic tree) that are either relative or
in irrelevant units. This can be problematic from a practical standpoint because most methods for
inferring evolutionary coupling parameters between residue–residue pairs rely on some form of prior
and the weight given to observed data relative to this prior may affect results. For the HH, GSC,
and ACL methods, we found that two different scaling procedures (which maintain relative weights
within a dataset but change their absolute values) produced varying accuracies (Figure 2). With the
exception of star phylogenies, the effective sample size from phylogenetically structured data is strictly
less than the number of sequences/data points analyzed. More accurately estimating the effective
sample size and scaling weights accordingly may improve the performance of different weighting
schemes beyond what we observed here.

Additionally, the HH, GSC, and ACL methods do not include a free parameter that can be tuned
to improve results. We validated that an 80% sequence-identity neighborhood is optimal using the
currently accepted method and a similarity-adjusted variant, but this 80% value is a free parameter
that has been optimized to produce the highest accuracy for sequence-identity-based weighting.
What we believe the optimality of this parameter represents in practice is that once two sequences
diverge past approximately 80% similarity, their evolution is effectively independent. If this is the case,
down-weighting sequences that for instance share 50% sequence identity might make little sense. Fully
answering this question, however, would require testing a range of regularization strengths since the
effective number of sequences at that level of sequence identity down-weighting is substantially less
than at 80% sequence identity. By contrast, the HH, GSC, and ACL methods all inherently compare
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each sequence to every other sequence in a global manner. It seems possible that some phylogenetic
tree transformation may be able to introduce the same intuition of ignoring evolutionary relatedness
past some threshold level into tree-based weighting methods [30,32]. The best way to perform such
re-scaling, or how to perform something conceptually similar for HH weights, is a promising area for
future research.

Another potential area for future research is to specifically investigate the cases when sequence
re-weighting makes the largest/smallest impact on PPV relative to uniform weights. The overall
predictive power of evolutionary couplings varies both within and between protein families. Previous
work has shown that within an individual protein family, structural contacts that are mediated by
side-chain interactions are most likely to be detected by co-evolutionary methods, as opposed to those
mediated by atomic interactions in the peptide backbone [18]. Between protein families, the substantial
variability in PPVs result from numerous factors including but not limited to the number of sequences
in an alignment, the diversity of those sequences, homo-oligomerization, alignment errors from repeat
proteins, and family structural variation [56]. While we found that PPVs are highly variable across
protein families and that sequence re-weighting can help increase these scores a relatively small amount
on average (Figure 2), the magnitude of this increase is higher for some families compared to others.
Being able to associate the magnitude of the increase with properties of the sequences or tree, such
as their diversity or bias, may provide interesting clues about the general ineffectiveness of sequence
weighting or insight into novel strategies that could better account for these effects.

Despite being weakly correlated with one another, uniform, 80% sequence identity, HH, and GSC
weights perform roughly equivalently at predicting residue–residue contacts. We recommend that
any method with substantially improved performance should become the standard but computational
complexity and run-time are real constraints that most researchers should additionally consider. Once a
phylogenetic tree is constructed, the cost of calculating the different weights that we considered here is
negligible relative to the run-time of inference algorithms. However, given the ideal size of protein
family alignments (thousands to tens of thousands of sequences), the most accurate methods for
phylogenetic tree construction are computationally infeasible. Even more rapid methods, such as those
we employed here, may substantially increase the overall run-time for a pipeline relying on tree-based
weights. At present, our current results give no indication that the increased computational time and
complexity of tree-construction will provide any benefit. If we were to see such a benefit, the choice of
whether a few percent increase in accuracy would be worth doubling (or worse) the run-time for a
protein family of interest would be dependent on the researcher and the application.

While several methods were nearly indistinguishable from one another in terms of their accuracies,
we did find that a slightly modified sequence-identity-based re-weighting method that accounts for
sequence similarity actually performs the best of any method that we tested. This method does
not require calculation of a phylogenetic tree and therefore has an overall run-time that is virtually
equivalent assuming uniform weights or existing best practices. However, using either the original or
similarity-adjusted sequence-identity-based weighting can be expected to offer less than a few percent
improvement in accuracy compared to uniform weights, which completely ignore phylogeny. We
therefore speculate that if phylogenetic effects are truly problematic for inferring co-evolution—and
we caution that this is not necessarily a given—then substantial improvements to existing methods
may require the explicit incorporation of phylogenies and time-dependent sequence evolution rather
than heuristic re-weighting strategies.

4. Materials and Methods

4.1. Description of the Dataset

For all of our analyses, we used the so-called “psicov” dataset—an existing set of 150 distinct
protein structures with corresponding multiple sequence alignments that have been used in numerous
benchmark studies for predicting residue–residue contacts from evolutionary couplings [14,57,58].
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All sequence and structure data were taken directly from Jones and Kandathil [58], but, given the
large number of different analyses that we ran, we first randomly down-sampled each alignment
to a maximum of 1001 sequences (1000 sequences plus the mandated inclusion of the reference
protein sequence).

4.2. Phylogenetic Tree Construction

For each sequence alignment in our dataset, we constructed a rough phylogenetic tree using
the double precision version of FastTree2 (v.2.1.10; LG model, gamma distributed rate variation,
with pseudocounts) [59]. We next adjusted the branch lengths on each guide tree by running the
alignment and the template tree through the more accurate IQtree software (v1.6.9; LG model,
Gamma-distributed rate variation with 20 categories) [60]. Finally, we rooted the resulting trees
using the mid-point method [61].

For RelTime trees, we implemented our own version of the RelTime algorithm as described in the
original manuscript while ensuring that our method produced similar results [50]. We note here only
that our implementation does not perform a statistical test (and subsequent alteration of rates) at the
end of the algorithm to ensure that rate changes are significant.

4.3. Weighting Methods

We developed all of our weighting methods from scratch using custom python programs
that heavily leveraged tools from the Biopython package [61]. For sequence identity weighting
and the novel similarity-adjusted version we propose here, details are presented in the main text,
Equations (1)–(4). We ensured that our own version of sequence-identity-based weighting was
equivalent to the method implemented within CCMpredPy by comparing the resulting effective
number of sequences metrics and accuracies and finding them to be identical.

For HH based weights, we followed the procedure outlined in the initial paper and ensured that
our implementation gave the desired results on the toy examples presented therein [44]. Researchers
have pointed out subsequent modifications to this method [47,48] concerning how to effectively treat
gap sequences. Rather than treating these as a 21st character as some implementations have done, our
implementation assigns gap sequences a weight value of zero. Further, each column in the alignment
is weighted from 0 to 1 according to the fraction of non-gapped positions. In this manner, alignment
positions with more gaps are assigned lower weights and the positions with gaps themselves contribute
a weight of zero. Summation and calculation of final weights follows the published procedure [44].
However, since the units and absolute value of these weights are not intuitive, we finally re-scaled the
weights via separate mean- and max-scaling procedures. In mean-scaling, we calculate the mean of all
weights determined via the HH algorithm for a particular sequence alignment and then divide the
weight of each sequence in the alignment by this value. This ensures that the sum of all final weights
will be equal to the number of sequences in the alignment (n). In the separate max-scaling procedure,
we find the maximum weight observed for a particular sequence alignment, and subsequently divide all
weights in the alignment by this value. The sum of all weights following this procedure is guaranteed
to be some value less than the total number of sequences (n).

For ACL and GSC weights, we again followed the procedures outlined in the respective
manuscripts [38,43] and ensured that our implementations produced identical results to the examples
presented therein. As with HH, calculation of final weights occurred by (separately) scaling the weight
values via their mean and maximum values as noted above.

4.4. Evolutionary Coupling Analysis

We chose to use CCMpredPy (v1.0.0, contained as part of the CCMgen package) [13,16] for
all evolutionary coupling analyses since we were able to modify the source code for this popular
method to accept externally supplied weights in the form of a simple text file where the weight value
for each sequence corresponded to its line in the input sequence file. We used the default values
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with the ofn-pll flag corresponding to the pseudo-likelihood optimization of coupling parameters.
For each different weighting method that we tested, we outputted files corresponding to the raw,
entropy-corrected, and average product corrected coupling matrices.

4.5. Structural Analysis and Accuracy Determination

We used the .PDB files provided as part of the psicov dataset and for each structure computed
a matrix of residue–residue distances. Each distance value is measured according to the geometric
center for all side-chain heavy atoms for a particular residue (including the Cβ atom, excluding the
Cα atom) [18]. In the case of glutamine, the side-chain center coordinates were assigned to the Cα

atom. We determined residue–residue contacts according to a uniform 7.5 angstrom threshold for
all proteins.

We determined the accuracy of evolutionary couplings by determining how well they were able
to predict residue–residue contacts within a reference structure. We first selected the top L-ranked
couplings for each dataset, where L corresponds to the length of the reference protein sequence
(i.e., the sequence for which we have a known structure). The PPV for a particular dataset corresponds
to the fraction of those top L-ranked couplings that are classified as residue–residue contacts according
to the above definition.
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Abbreviations

The following abbreviations are used in this manuscript:

HH weights derived via the method of Henikoff and Henikoff [44]
GSC weights derived via the method of Gerstein et al. [43]
ACL weights derived via the method of Altschul et al. [38]
APC Average Product Correction/ed
PPV Positive Predictive Value
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Abstract: Global coevolutionary models of protein families have become increasingly popular due
to their capacity to predict residue–residue contacts from sequence information, but also to predict
fitness effects of amino acid substitutions or to infer protein–protein interactions. The central idea
in these models is to construct a probability distribution, a Potts model, that reproduces single and
pairwise frequencies of amino acids found in natural sequences of the protein family. This approach
treats sequences from the family as independent samples, completely ignoring phylogenetic relations
between them. This simplification is known to lead to potentially biased estimates of the parameters
of the model, decreasing their biological relevance. Current workarounds for this problem, such as
reweighting sequences, are poorly understood and not principled. Here, we propose an inference
scheme that takes the phylogeny of a protein family into account in order to correct biases in
estimating the frequencies of amino acids. Using artificial data, we show that a Potts model inferred
using these corrected frequencies performs better in predicting contacts and fitness effect of mutations.
First, only partially successful tests on real protein data are presented, too.

Keywords: phylogeny; co-evolution; direct coupling analysis

1. Introduction

Based on the rapidly growing availability of biological sequence data [1–3], statistical models
of sequences have gained considerable interest over the last years [4–7]. In this context, the direct
coupling analysis (DCA) [8] takes inspiration from inverse statistical physics [9]: it aims at describing
the sequence variability of sets of evolutionarily related protein sequences—so-called homologous
protein families—via Potts models. Such a model gives a probability

P(A) =
1
Z

exp

{
∑

1≤i<j≤L
Jij(Ai, Aj) + ∑

1≤i≤L
hi(Ai)

}
(1)

to each aligned amino acid sequence A = (A1, ..., AL) of length L, with the Ai ∈ A = {A, C, ..., Y,−}
being either one of the 20 amino acids, or an alignment gap, “–”, representing amino acid insertions
or deletions. The total alphabet size is q = |A| = 21. Strong statistical couplings Jij between
different positions have been found to be indicative of contacts of the corresponding amino acids in
the three-dimensional protein fold, thereby facilitating protein structure prediction from sequence
information [10,11]. Furthermore, the statistical energy landscape (i.e., the Hamiltonian H(A) =
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−∑1≤i<j≤L Jij(Ai, Aj)− ∑1≤i≤L hi(Ai) of the Potts model in Equation (1)) around a sequence has been
found to be informative about the effects of mutations on the protein’s functionality (or fitness) [12].

Sequence data for protein families are typically available as multiple-sequence alignments (MSA),
i.e., as collections {Am}m=1...M of M distinct sequences of the same (aligned) length L. To fit the model
P(A) in Equation (1) to these data, typically a very strong assumption is made: the MSA is considered
an independently and identically distributed sample of the statistical model. This implies that the
model can be inferred by maximizing the likelihood

Li.i.d.({Jij(A, B), hi(A)} | {Am}) =
M

∏
m=1

P(Am) (2)

over all couplings Jij(A, B) and fields hi(A). Although this task is computationally hard—it
requires in particular the calculation of the partition function Z in Equation (1) as a sum over 21L

sequences—numerous approximation schemes have been developed and are reviewed in [7,9].
However, the evolutionary history of proteins is in evident contradiction with the assumption of

statistical independence between sequences. The very notion of homologous protein families implies
that present sequences derive from a common ancestor. Even if the divergence time from this common
ancestor is long enough to result in overall high sequence diversity, some protein sequences may be
found in closely related species, or may go back to a relatively recent event of duplication or horizontal
gene transfer. This is commonly observable in MSA, where sequences differing by only few amino
acids are frequent.

The evolutionary history of a protein family is typically represented by a phylogenetic tree [13],
cf. Figure 1 for a simple example. Sequences observable today correspond to the leaves of this tree,
and the common ancestor to its root. Branching points correspond to events separating two sequences,
typically via speciation, duplication, or horizontal gene transfer. On distinct branches, proteins are
assumed to evolve independently.

… R I H D L R H T N … 
… F L H N L R G T D … 
… H E H R T E Q T E … 
… K Y D L L R T L D … 
… R R D A V E M L N … 

Figure 1. Homologous proteins constituting a multiple-sequence alignment (MSA) are related by
common ancestors through a phylogenetic tree.

However, if the branching event separating two sequences, A1 and A2, took place some time Δt
in the past, the joint probability should be written as P(A1, A2|Δt), which a priori differs from the
product of the two equilibrium probabilities. This becomes evident in the case Δt = 0, where A1 = A2,
and thus P(A1, A2|Δt = 0) = P(A1) δA1,A2 with δ being the multidimensional Kronecker symbol. This
extreme situation can be observed in protein families, where, e.g., protein sequences of different strains
of the same species differ at most by a few mutations. Note that nevertheless each single sequence
may be in equilibrium: ∑A2 P(A1, A2|Δt) = P(A1) for all Δt, and similarly for A2.

The statistical dependence between homologous proteins poses an important problem to the
inference of our statistical model P(A). The likelihood of the coupling and field parameters given the
MSA {Am}m=1...M and the phylogenetic tree T

L({Jij(A, B), hi(A)} | {Am}, T ) �= Li.i.d.({Jij(A, B), hi(A)} | {Am}) (3)
22
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does not factorize into a product of single-sequence probabilities P(Am). Using the factorized
expression (2) as an approximation leads to biased statistics, as groups of closely related organisms in
the family lead to an over-representation of certain regions of sequence space. Two consequences are
illustrated in Figure 1: if we do not consider the tree T , columns 3 (red/blue) and 6 (green/orange)
seem to have an equivalent statistics and equal single-site entropies. However, observing the tree,
we see that column 3 can be explained by a single mutation in one of the early branches of the tree,
whereas column 6 requires at least two mutations in more recent branches. The same amplification
of mutations in subtrees may also lead to spurious correlations in the amino acid usage of column
pairs. The amino acid usage of columns 3 and 8 (both red/blue) may be explained by a single mutation
per site, but suggests a correlation in their joint amino acid usage. It has been recently shown [14]
that the phylogenetic bias changes the spectral properties of the correlation matrix. A power-law tail
of large eigenvalues emerges from the hierarchical structure the phylogenetic tree, in difference to
the Marchenkov–Pastur distribution, which would be present in data lacking both phylogenetic and
functional correlations.

Direct inference of a DCA model P(A), by maximizing the factorized approximation of the
likelihood, thus leads to the existence of field and couplings parameters that attempt to model the
full biased statistics. As a result, the parameters of the DCA model cannot be expected to accurately
represent functional constraints acting on the protein, even if all single sequences were individually
distributed according to P(A).

Usual implementations of DCA [7,8] use the so-called reweighting scheme to account for
phylogeny: sequences with more than 80% identity are downweighted, counting for one observation
in total. In the Δt = 0 case, this has the correct effect of considering A1 and A2 as a single observation.
However, in the general setting, this is only a crude correction for the biases, which are generated by
the hierarchical sequence organization on the phylogenetic tree.

Here, we aim at designing a more principled method of taking phylogenetic effects explicitly into
account. This is done in Section 2, where an approximate but computationally feasible correction of
phylogenetic biases is proposed. Section 2.4 discusses how the resulting corrected one- and two-site
statistics can be translated into a corrected DCA model. Section 3 shows, first, results on artificial but
well-controlled data, which show that our approach is able to correct the statistics of the data, and in
turn to improve Potts model inference. Results on real protein data are also shown in this section.
The work is concluded with a Discussion in Section 4.

2. Methods

Quantitatively, the evolutionary process can be defined by its propagator P(A2|A1, Δt): the
probability of observing sequence A2 knowing that it has sequence A1 as an ancestor at a time Δt in
the past. For the evolutionary process to be stationary, the propagator should satisfy the condition

∑
A1

P(A2 | A1, Δt)P(A1) = P(A2) . (4)

The equilibrium distribution of sequences can be recovered by taking Δt → ∞, making sequence A2

independent from A1. Knowledge of the propagator and the phylogenetic tree would allow us to
calculate the likelihood Equation (3) using Felsenstein’s pruning algorithm [15]. Note that this model
of evolutionary dynamics can easily take into account point mutations, deletions, and insertions, but
not large-scale rearrangements like intragenic recombination, which would invalidate the assumption
of the existence of a phylogenetic tree. It can take into account selection when the Hamiltonian is
considered to be a fitness proxy, but it cannot take into account changes in selection, which would
invalidate the assumption of stationary evolution. It can take into account changes in mutation rate
when times Δt are measured in terms of a molecular clock rather then in physical time.

Assume the phylogenetic gene tree T to be given, with nodes indexed by n (we do not consider
the problem of tree inference here). Following the description of Felsenstein’s pruning algorithm

23



Entropy 2019, 21, 1090

in [16], let Ln(A) be the conditional probability of observing all existing sequences that share n as an
ancestor, given that the sequence of this ancestor is A, but without any information on the sequences
at potential intermediary nodes inside the subtree of T rooted in n. If n itself represents a leaf node,
i.e., an existing sequence An, we trivially have Ln(A) = δA,An . For any internal node of the tree, we
find the recursion relation illustrated in Figure 2A:

Ln(A) = ∏
m∈C(n)

[
∑
B

P(B|A, Δtm)Lm(B)

]
, (5)

where C(n) collects the children nodes of n and Δtm equals the time separating node m from its direct
ancestor n. This recursion can be conducted from the leaves to the root r of the tree, with Lr(A) as a
result. As the sequence of the root of the tree is unknown, it is necessary to sum one more time over all
possibilities for this sequence. The probability of observing the sequences of the initial MSA given the
tree T and the model parameters, or equivalently the likelihood of the parameters given the MSA and
the tree, is given as

L({Jij(A, B), hi(A)} | {Am}, T ) = ∑
A

P(A)Lr(A) , (6)

which obviously differs from the factorized likelihood in Equation (2). Note that in this last equation
we have assumed that the propagator depends on the model parameters, i.e., the couplings Jij(A, B)
and the fields hi(A). If we would know this dependence explicitly, we might maximize the likelihood
in Equation (6) to infer the equilibrium Potts model Equation (1) from data.

However, this approach suffers from two major technical problems:

• The first is that the propagator P(A2|A1, Δt) associated to the Potts model is not known a
priori. Many distinct microscopic dynamics might lead to the same equilibrium, but the exact
evolutionary processes underlying correlated protein evolution are not known. Even if we would
assume some dynamics, the propagator for arbitrary time differences Δt would require to sum
over all possible evolutionary trajectories going from A1 to A2—but this is intractable in practice.

• The second problem is that each use of the recursion relation (5) involves the summation over all
possible sequences for each child node of node n. This amounts to summing over 21L terms each
time, with L being the sequence length.

Thus, a direct application of this scheme appears impossible for systems of realistic sizes, i.e., for
typical sequence lengths L = 50–500. The following sections therefore propose two approximations
based on the previously described idea, intending to make the computation of the likelihood tractable.

2.1. Approximating Dynamics: Independent-Site Evolution

To reduce the complexity of the problem, we first apply an approximation commonly used
in evolutionary biology and phylogeny. The independent-site approximation—also referred to
as “single-site” approximation in the following—considers each column of the MSA as evolving
independently from all others. In this setting, instead of considering probabilities of observing full
sequences as in Ln(A), we focus on the distribution of amino acids in one MSA column only. The
single-site equivalent of Equation (5) becomes

Ln
i (A) = ∏

m∈C(n)

(
∑

B∈A
P(B|A, Δtm)Lm

i (B)

)
, (7)

where Ln
i (A) is the probability of observing the state of column i in existing sequences that share n

as an ancestor, given that the sequence of this ancestor contains A ∈ A at this position. Summations
over all possible configurations of internal nodes are replaced by summations over single symbols B,
resulting in a complexity of O(L × M × q) for computing the L sitewise likelihoods. As the number M
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of sequences equals the number of leaves, the number of internal nodes to be summed over equals
M − 1.

To apply this idea, a propagator is designed using the Felsenstein model of evolution [15] and
assuming a constant mutation rate μ (remember that time was measured according to a molecular clock,
i.e., the assumption of constant μ is quite natural). In a time interval Δt, no mutations appear, thus with
probability e−μΔt, and B remains equal to the ancestral amino acid A. With probability (1 − e−μΔt),
one or more mutations happen. In this case, the new amino acid at position i is assumed to be
chosen according to its stationary distribution Pi(B) = ωi(B). The following propagator summarizes
this process,

Pi(B|A, Δt) = e−μΔtδA,B + (1 − e−μΔt)ωi(B) . (8)

When using this simple dynamical model and applying the recursion of Equation (7), it is possible to
compute the likelihood of the observed data very efficiently.

The likelihood does not only depend on the MSA and the phylogenetic tree, but also on the value of
the mutation rate μ, which in general may be unknown. Within the independent-site approximation, we
can easily estimate it using the data. To this aim, we observe that the average of the Hamming distance

dH(A, B) =
L

∑
i=1

(1 − δAi ,Bi ) (9)

between two equilibrium sequences at evolutionary time distance Δt can be easily calculated,

dH(Δt) =
L

∑
i=1

∑
Ai ,Bi∈A

(1 − δAi ,Bi ) Pi(Ai|Bi, Δt)ωi(Bi)

=
(

1 − e−μΔt
) [

L − ∑
i,A

ωi(A)2

]

=
(

1 − e−μΔt
)

dH(∞) . (10)

Thus, it starts at Hamming distance zero for Δt = 0, and approaches exponentially a plateau value,
which is given by the average Hamming distance between two independent equilibrium sequences in
the independent-site model. In the sequence data, we have no direct observation of parent–child pairs
of sequences. The dynamical process given by Equation (8) is, however, a stationary one satisfying
detailed balance Pi(A|B, Δt)ωi(B) = Pi(B|A, Δt)ωi(A). Therefore, we can take any two sequences
Am, An from the sequence alignment, calculate their Hamming distance together with their time
separation on the phylogenetic tree by adding all branch lengths along their connecting path, and use
the result as an instance of dH(Δt), cf. Figure 2B. Taking all pairs of sequences from the MSA, we can
bin the observed times, calculate average Hamming distances for each time bin, and fit the functional
form of Equation (10) to obtain the desired value of μ, cf. Section 3 for examples.
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Ln( ) Lm( )

( | m)

∈ C( )

H( m n)

A B

Figure 2. (A) Illustration of Equation (5): Ln(A), as represented on the left, is the probability of
observing all sequences in the MSA having node n as common ancestor, given the sequence A of
this ancestor. This probability can be decomposed into a product over contributions of node n’s
children m ∈ C(m). For each child m, we have to consider the propagator P(B | A, Δtm) from n to m,
times the probability Lm(B) associated with the subtree rooted in m, and summed over all possible
configurations B of m. Note that the sum over each child can be done independently; therefore,
Felsenstein’s algorithm runs in linear time in the number of internal nodes. (B) Measuring Hamming
distances and time separations between sequences: thanks to the stationary dynamics of Felsentein’s
model, the time-dependence of the Hamming distance between a parental and a child configuration
can be estimated from observed leaf configurations. To this end, for any two leaves, Am and An, we
determine the Hamming distance dH(Am, An) and the time separation Δt, the latter by summing the
lengths of all branches on the connecting path. Time binning and averaging are used to estimate the
curve dH(Δt).

2.2. Approximating Dynamics: Independent-Pair Evolution

Using the independent-site approximation, one recovers the most likely single-site stationary
distribution ωi(A), given the corresponding MSA column and the topology of the evolutionary tree.
Unfortunately, this method is intrinsically unable to correct for spurious correlations such as the one
displayed in Figure 1. To reach that aim, we need to find a way to take two-point correlations into
account. However, performing phylogenetic analysis with a model of the full sequence is intractable,
as is explained at the beginning of this section.

To deal with this dilemma, we choose to use an independent-pair approximation: each pair of
sites i and j is thought of as evolving independently from the others, with a propagator similar to that
of Equation (8). The probability that i changes amino acid from A to C in time Δt, and j from B to D, is
defined as

Pij(C, D | A, B, Δt) = e−2μΔt δA,C δB,D

+e−μΔt(1 − e−μΔt)
[
ωj|i(D | A) δA,C + ωi|j(C|B) δB,D

]
(11)

+(1 − e−μΔt)2 ωij(C, D) ,

where ωij(C, D) is the stationary pairwise distribution of sites i and j, and ωi|j(C | B) =

ωij(C, B)/ ∑C′ ωij(C′, B) the conditional probability of observing C in i given B in j. Note that this
conditional probability is able to implement epistatic interaction between sites, in difference to the
independent-site approximation. In turn, Felsenstein’s recursion relation becomes

Ln
ij(A, B) = ∏

m∈C(n)

(
∑

C,D∈A
P(C, D | A, B, Δtm)Lm

ij (C, D)

)
. (12)

The summation over all possible configurations of two sites and the computation of the likelihood for
all pairs now results in a still feasible complexity of O(L2 × M × q2).
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Of course, a naive application of this method poses a major consistency problem: two pairs
sharing one residue cannot evolve independently. As a result, the inference of the most likely pairwise
statistics ωij(A, B) for each pair will give globally inconsistent results. For three pairwise distinct
residues—i, j, and k—one will typically find

∑
B∈A

ωij(A, B) �= ∑
C∈A

ωik(A, C) , (13)

i.e., marginal distributions for site i do not coincide when extracted from distinct pairs containing i. To
settle this inconsistency, we propose a constrained optimization of the pairwise likelihoods over the
probabilities ωij, subject to the constraint that its single-site marginals equal the single-site distributions
obtained using the independent-site approximation scheme developed in the previous subsection
(superscript “is”). In other words, for all i and j, the following condition is imposed,

∑
B∈A

ωij(A, B) = ωis
i (A) and ∑

A∈A
ωij(A, B) = ωis

j (B) , (14)

where ωis
i (A) stands for the result of the scheme described in Section 2.1.

The hope is that by extending the phylogenetic inference beyond a sitewise description, the
background pairwise statistics of the evolutionary process might be recovered, therefore improving
the inference of the DCA coupling parameters.

2.3. Optimization: Maximizing the Likelihood

The independent-site or independent-pair approximations allow for a computationally efficient
estimation of the likelihood. To correct empirical frequencies f for phylogenetic biases, we now
need to find stationary frequencies ω maximizing the approximated likelihoods: Equation (7)
(Equation (12), respectively) has to be optimized over ωi(A) (respectively ωij(A, B)). As each site i
or each pair (i, j) is treated independently from the others depending on the approximation used,
the optimization is conducted over either q or q2 parameters at a time. However, the gradient of the
likelihood in both approximations is intractable, and its concavity is unknown, making the use of
standard gradient ascent techniques impractical.

Here, we rely on a stochastic optimization scheme, which was empirically found to be efficient in
this scenario, inspired by the work in [17]. Parameter space, i.e., the ωi(a) or the ωij(a, b), is randomly
sampled by making global or local random moves: in global moves, all parameters to be optimized are
simultaneously changed, while in local moves only one is changed (up to subsequent normalization).
The moves are only accepted if they lead to an increased likelihood. Their magnitude is decreased
throughout the optimization, starting with large displacement in parameter space and ending with
small adjustments. The best parameters found are returned. This scheme is rather empirical and does
not guarantee convergence. However, in testing simplified scenarios where the stationary frequencies
ω are known, it was found to always lead to the correct solution.

In the case of the independent-pair approximation, ωij(A, B) needs to be optimized under the
constraints defined in Equation (14). For this reason, moves proposed by the stochastic exploration of
parameter space need to satisfy the constraints at all times. Here, we use a reparameterization trick
inspired by the definition of direct information in [18]: tentative pair frequencies are written as

ωij(A, B) =
1

z(J, h̃i, h̃j)
exp

{
J(A, B) + h̃i(A) + h̃j(B)

}
. (15)

The optimization is then conducted over the coupling parameter J. Whenever J is changed,
compensatory fields h̃i and h̃j are re-estimated to satisfy the marginalization constraints. In this
way, optimization is conducted in the space of frequencies that do satisfy Equation (14).27
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2.4. From Corrected Frequencies to DCA Models

Our final aim is to infer DCA models of the form Equation (1), which are corrected for phylogenetic
biases. In the last section, we have described an approximation scheme for correcting the single- and
two-site equilibrium frequencies. These must, in a next step, be included in an inference procedure for
the couplings and fields of Equation (1).

A first simple idea would be to use mean-field DCA [8], i.e., to invert the inferred covariance
matrix Cij(A, B) = ωij(A, B) − ωi(A)ωj(B) to obtain the coupling parameters Jij(A, B). However,
there is a problem: even if we have constructed the ωij(A, B) carefully to obtain local coherence via
fixing their single-site marginals to the ωi(A) obtained applying the independent-site approximation,
they are not globally coherent. In particular, the before-mentioned covariance matrix Cij(A, B) cannot
be obtained as the data-covariance matrix of a sequence sample. This is easiest visible when observing
the eigenvalue spectrum of the inferred C-matrix, which typically contains negative eigenvalues, while
a data-covariance matrix is guaranteed to be positive semidefinite. Mean-field DCA uses positive
pseudocounts for regularized inference, but this procedure would shift the negative eigenvalues of C
towards larger values, and induce singularities in its in inverse.

The other popular implementation of DCA is using pseudo-likelihood maximization (plmDCA)
to estimate the coupling and field parameters [19,20]. Although being more accurate than mean-field
DCA, it does not use empirical single- and two-site frequencies as inputs, but the full-length sequences
of the input MSA itself. To use plmDCA, we designed a way to construct an artificial MSA, which has
approximately a given pairwise target statistics ω

target
ij , using a simulated annealing strategy based

on the work in [21]. In a first step, we emit an MSA having the correct target profile ω
target
i , i.e., each

column is generated independently as a sample of ω
target
i . In a second step, entries inside columns are

permuted in a way to establish also the target correlations contained in ω
target
ij , while conserving the

single-site profile ω
target
i : in each move t, a column i and two rows m and n are chosen at random, and

an attempt to exchange Am
i and An

i is made. The probability of the exchange to take place is given by
the Metropolis rule:

P(exchange) = min
[
1, exp

(
−β||Ct+1 − Ctarget||+ β||Ct − Ctarget||

)]
, (16)

where Ct and Ct+1 are the covariance matrices of the current MSA before and after the exchange, and
Ctarget the covariance matrix corresponding to the target frequencies. || · || stands for the Frobenius
norm of matrices, and β is a formal inverse-temperature parameter. Thus, a move is more likely to
be accepted if it makes the connected correlation matrix of the alignment closer to that of the target.
Parameter β is initialized at a low value and slowly increased as more moves are made. In this way,
when β goes to infinity, we hope to have C approaching Ctarget as much as possible (remember that
our target Ctarget cannot be reached by C, as only the latter is positive semidefinite).

This procedure allows us to construct a sample approximating the corrected pairwise frequencies
ωij, using the independent-pair approximation described above: the target frequencies are simply

set to the ones resulting from the optimization of the likelihood, ω
target
ij = ωij. However, this is not

possible when using the independent-site correction, since only the single site frequencies ωi are
corrected. In this case, we build an artificial pairwise frequency matrix defined by

ωij(A, B) = fij(A, B)− fi(A) f j(B) + ωi(A)ωj(B), (17)

where fi(A) is the fraction of sequences in the MSA having amino acid A in position i, and fij(A, B)
is the fraction of sequences having simultaneously amino acids A and B in positions i and j. The
pairwise statistics defined in this way has the corrected single-site frequencies as marginals, but
uncorrected connected correlations. However, a major drawback of this method is that this manner of
combining different frequencies gives rise to inconsistencies, with some terms ωij(a, b) being larger
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than 1 or smaller than 0. It is therefore impossible for our simulated annealing procedure to construct
an alignment exactly reproducing these frequencies.

Once the corrected pairwise statistics are computed following Section 2, and a corresponding
MSA is built, standard plmDCA is used to infer the Potts model (1).

3. Results

3.1. Design of a Toy Model

To test the methodology, we first try our methods on a toy model. This allows us to fully control
the data generation, and the true model is known. As the aim of correcting data for phylogenetic bias
is ultimately to have a better DCA inference, we choose our toy model to be of the Potts form. In this
manner we know that using a sufficiently large i.i.d. sample the model parameters Jij and hi can be
recovered with high accuracy.

For computational efficiency, the length of the model is restricted to L = 25, with q = 4 states
for its variables. Couplings and fields are drawn from a normal distribution, with couplings taking a
predominantly ferromagnetic form:

J0
ij(a, b) = sijx

J
ij · δa,b and h0

i (a) = xh
i (a), (18)

where {xJ
ij}, i, j ∈ {1 . . . L} and {xh

i (a)}, i ∈ {1 . . . L}, a ∈ {1 . . . q} are Gaussian random variables:

xJ
ij ∼ N (μJ , σJ) and xh

i ∼ N (μh, σh) (19)

with μJ = 0.8, σJ = 0.2, μh = 0, and σh = 0.6. The sij are discrete binary variables taking values in
{0, 1}:

sij =

{
1 with probability c/L,
0 with probability 1 − c/L.

(20)

To mimic the effect of structural contacts, we dilute the couplings by taking a value of c = 3, making
the graph underlying the coupling matrix a sparse random graph [22]: each site i shares a direct
coupling Jij with 3 other sites j on average.

The corresponding “true” model will be called P0(A) in the following, it will constitute the
ground truth, against which our inference results can be tested.

3.2. Artificial Data

To simulate the effect of phylogeny, we sample the toy model P0 using MCMC (Markov Chain
Monte Carlo) simulations on a binary tree: Each branch of the tree corresponds to an independent
finite-time MCMC run. For a branch of length Δt, a number of “mutations” is drawn from a Poisson
distribution with mean μ L Δt, with μ being the mutation rate per site and time unit. For each of these
mutations, a site i is chosen at random and its new state is drawn from the local conditional probability
P0(Ai|A1, ..., Ai−1, Ai+1, ..., AL) in a Gibbs-sampling manner.

To generate an MSA, first, a root configuration is drawn from P0, duplicated onto the two outgoing
branches, and the described finite-time MCMC runs are performed. This process is iterated, taking the
two resulting configurations as new roots, thus growing the tree. For K iterations, the resulting tree
will consequently have 2K leaves, whose Potts configurations are reported as artificial MSA.

This scheme guarantees that the number of mutational events will correspond to dynamical
models in Equations (8) and (11). However, the way residues are re-drawn after a mutation
depends on the full current sequence through distribution P0, unlike the simplifying assumptions of
the propagators. 29
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For simplicity reasons, μ L Δt is set to be identical for all branches of the tree, taking values 3, 5
or ∞ (i.e., μΔt � 1), resulting in respectively strong, weak and absent phylogenetic effects. In the
following, the samples corresponding to finite values of Δt will be referred to as biased samples,
whereas the one corresponding to Δt → ∞ will be referred to as a fair or i.i.d. sample. 12 duplication
events are performed, resulting in a tree of 212 = 4096 leaves and 212 − 1 internal nodes. Finally, so as
not to depend on the particular choice of the root configuration, 30 repetitions of the sampling process
are performed for each Δt.

To keep the main text concise, only results concerning the μ L Δt = 3 are shown. This represents
the hardest case, as phylogeny effects are more pronounced for short branch lengths. Results for
μ L Δt = 5 are shown in the supplementary material in the form of figures.

Note that, for a model without couplings, the data generating process would correspond exactly to
the dynamics described in Section 2.1. For a coupled model, however, the real μ may differ from the one
to be used to fit our independent-site or -pair models, due to a slowing down of the MCMC dynamics.
We, therefore, use the strategy described in Section 2.1: For each sequence pair, the Hamming distance
and the evolutionary time separation are calculated. Times are binned (in the simplified data generation
times are actually discrete), and average Hamming distances are computed. The resulting data are
fitted against the theoretical result in Equation (10) to obtain the effective mutational parameter to
be used in the phylogenetic inference. Results for μ L Δt = 3 are shown in Supplementary Figure S1,
choosing Δt = 0.3 without loss of generality.

3.3. Phylogenetic Inference Corrects the One- and Two-Point Statistics

To assess the quality of the phylogenetic correction, we first compare single-site and pairwise
statistics before and after our inference to the same observables measured in an i.i.d. sample drawn
from P0.

In the case of the independent-site approximation, the single-site statistics are corrected.
Observables measured in the biased sample, i.e., the sample coming from the leaves of the tree, without
correction, referred to as the “tree” sample, will be denoted as f t

i . After phylogenetic correction, we

call the single-site frequencies f in f
i . The statistics of the i.i.d. sample is f 0

i , obviously without any
correction applied.

As demonstrated in Figure 3, the inference clearly improves the estimation of single-site
frequencies over naive counting in the biased sample. Pearson correlations between f in f

i and f 0
i

are significantly higher than between f t
i and f 0

i , being larger than 0.75 in 27 out of 30 repetitions. This
contrasts with the remarkably low correlations of 0.4 that can be achieved for some realizations of the
tree if no correction is performed. Similarly, the slope of a linear regression of f in f

i against f 0
i tends to

be much closer to 1 in most cases, also showing lower variation from repetition to repetition.
A similar comparison is made for pairwise frequencies in the case of the independent-pair

approximation. We now compare f t
ij and f in f

ij to their counterpart from the i.i.d. sample f 0
ij. The two

top panels of Figure 4 once again show an improvement resulting from the phylogenetic inference,
as pairwise statistics are closer to match f 0

ij after it is performed.
However, one has to keep in mind that some of this improvement is due to the single-site

correction. Indeed, in the independent-pair approximation, marginals of the pairwise frequencies
are constrained to match the corrected single site frequencies f in f

i . To evaluate the intrinsic quality
of the pairwise method, we focus on the connected correlations cij = fij − fi f j, thus removing the
influence of the single-site correction. Bottom panels of Figure 4 demonstrate that even this intrinsically
pairwise quantity is recovered with higher accuracy after inference, even if to a somewhat lesser extent
than for the frequencies. Even our very crude approximation—considering every pair as evolving
independently—can correct some of the statistical bias due to phylogeny, improving over naive
counting in the MSA. 30
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Figure 3. Result of the single-site phylogenetic inference for μ L Δt = 3. (A) Single-site statistics of a
sample of P0 coming from a tree, before (“Tree”), and after (“Inferred”) phylogenetic inference, against
“true” single site statistics coming from the fair i.i.d. sample. (B) Slope of the linear regression and
Pearson correlation corresponding to the plot in panel (A), for the 30 repetitions of the experiment.
The black-circled points correspond to the sample displayed in panel (A).

Figure 4. Result of the pairwise phylogenetic inference for μ L Δt = 3. (A) Pairwise frequencies fij(a, b)
of a sample of P0 coming from a tree, before (“Tree”), and after (“Inferred”) the phylogenetic inference,
against “true” pairwise frequencies coming from the fair sample. (B) Slope of the linear regression and
Pearson correlation corresponding to the plot in panel (A), for the 30 repetitions of the experiment.
The black-circled points correspond to the repetition displayed in panel (A). (C) Same as panel (A) for
connected correlations cij = fij − fi f j. (D) Same as panel (B) for connected correlations.
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3.4. DCA Parameters are Recovered with Increased Accuracy

We infer DCA models based both on the uncorrected and the corrected frequencies f t
ij and f in f

ij
using the methodology described in Section 2.4. To evaluate both of our approximations, we infer the
DCA model in the case of the single-site correction and the independent-pair correction.

In the top panel of Figure 5, inferred parameters are compared to the true ones J0 and h0 using
Pearson correlation as a measure. Both methods—single sites and independent pairs, labeled as
pairwise in the figures—lead to a significant improvement in the inference of fields. However,
the inference of couplings is deteriorated when using only the single site correction, whereas it
is improved in the pairwise case. This may be due to the inconsistencies appearing when combining
correlations from the biased sample with corrected single site frequencies, as is explained in Section 2.4.
Indeed, such inconsistencies (frequencies larger than 1 or smaller than 0) were observed for all of the
30 repetitions.

To understand if an inferred DCA model P̂ is a good fit to the true distribution, we compute its
symmetrized Kullback–Leibler (KL) divergence to the data-generating model P0:

DKL(P̂||P0) + DKL(P0||P̂) = 〈HP̂ −HP0〉P0 + 〈HP0 −HP̂〉P̂ , (21)

where HP indicates the Hamiltonian (or, up to an additive and sequence-independent term,
log-probability) of a statistical model P, and 〈·〉P the average over P. Although the standard
DKL depends on the intractable calculation of the partition function of one of the distributions,
its symmetrized version can be easily estimated by MCMC sampling from the average energies
of the two models, evaluated on samples of each model. It is a reasonable information theoretic
distance measure for distributions, as it is zero if and only if the two distributions coincide, and
positive otherwise. Figure 5B shows a histogram of this quantity for the 30 repetitions of the sampling
process. A clear ranking between methods appears, with the inference based on the biased sample
being the worst. Both phylogenetic corrections result in a model that is closer to P0, with anadvantage
for the pairwise method. Surprisingly, the decrease in inference quality of the couplings when using
the single-site correction does not appear to have a strong influence on Kullback–Leibler divergence,
as there is a very large drop of this quantity between a biased sample or a single-site correction
based DCA.

Note also that the imperfect nature of our approximation scheme becomes visible in the figure:
the KL divergence of the model inferred from an i.i.d. sample can be seen as a lower bound for what
can beobtained with a finite sample. It is substantially smaller than even the pairwise correction using
the same sample size.

Another important test of the model quality, in particular for protein systems, is the “contact
prediction”: strong couplings between pairs of sites are expected to correspond to the sparse graphical
structure of the model P0 used for data generation. To this end, couplings are ordered with respect to
their coupling strength (measured by the Frobenius norm of the coupling matrix in so-called zero-sum
gauge, cf. [20]); the positive predictive value (PPV) is the fraction of true predictions (nodes connected
by a link in the ground truth) in between the N first predictions. It is plotted as function of N in
Figure 5C. The inference based on the i.i.d. sample is perfect in this case, ranking couplings on
true links before those being not adjacent in the ground truth. The inference based on the biased
“tree” sample is performing slightly worse, and it is partially corrected by the pairwise correction.
On the contrary, as can already be expected from Figure 5A, the single-site correction deteriorates the
reconstruction of the interaction graph.
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Figure 5. Direct coupling analysis (DCA) models inferred after single-site or pairwise phylogenetic
correction for μ L Δt = 3. (A) Pearson correlation between parameters of inferred and of true DCA
models. y-axis: couplings Jij; x-axis: fields hi. One point corresponds to one repetition of the MCMC
process on the tree, i.e., to one sample. (B) Histogram of the symmetrized Kullback–Leibler divergences
between inferred and true models for all samples. (C) Positive predictive value for predicting non-zero
couplings (i.e., “contacts”) using inferred DCA models. DCA inferred on the i.i.d. sample performs
perfectly in this case.

3.5. Improvement in the Prediction of Single Mutant’s Energies

One of the most promising application of DCA-like methods is their ability to infer the effect of
mutations in proteins from the MSA of diverged homologs [23–27]. Here, we investigate the potential
of our phylogenetic correction to enhance the accuracy of these predictions. To recreate this setting in
our toy model, we consider single-site “mutants” of “wild type” artificial sequences. Wild types can
be taken either in the phylogenetically biased sample, as would be the case in standard DCA, or in the
i.i.d. sample, i.e., without phylogenetic correlation to the sequences in the MSA. For any wild type
sequence A = (A1, ..., AL), the L × (q − 1) single mutants (i.e., single-spin flips) are denoted by A(i,α),
with i ∈ {1, ..., L}, α ∈ A \ Ai. For each of these, the effect of the mutation is defined by the energy
difference between wild type A and mutant A(i,α):

ΔHiα = H(A(i,α))−H(A) . (22)

H can be either the true Hamiltonian H0 of the generative model P0, then defining the true mutational
effect, or an inferred one, corresponding to the predicted mutational effect.

To evaluate the influence of both the phylogenetic correction and the DCA methodology on the
quality of predictions, we choose to also infer a profile model as a comparison point. Profile models
have vanishing couplings and reproduce the single site statistics fi(A) ∼ ehi(A) using local fields only,
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different sites are independent. They have been used with success for predicting mutational effects in
proteins based on the conservation profile of the MSA [28,29], and they are the asymptotic stationary
distributions of the independent-site evolution model of Section 2.1.

We first focus on the single-site phylogenetic corrections. Given a model (profile/DCA), a statistics
(tree/corrected), and a specific wild type sequence A, we compute the Pearson correlation between the
predicted energy shifts {ΔH(i,α) | i ∈ {1, ..., L}, α ∈ A \ Ai} and the true ones, {ΔH0

(i,α)}. This is done
for all sequences either in the biased or the i.i.d. sample, and resulting correlations are averaged over
each sample. The resulting value represents thus the quality of predictions of the energies of single
mutants with wild types in a given sample.

As is shown in Figure 6, when the reference sequence is taken in the biased sample, all methods
seem to perform equally well, apart from the profile model inferred on the biased frequencies.
In particular, applying the DCA methodology and thus attempting to fit correlations or using a
simple profile model on corrected data seems to result in the same improvement.

Figure 6. Pearson correlation in predicting energies of single mutants averaged over sets of reference
sequences for μ L Δt = 3. In the top panel, reference sequences are taken in the biased sample,
i.e., among the leaves of the phylogenetic tree. In the bottom panel, reference sequences are taken in a
fair sample of P0. Predictions are made using four models: a profile model and a Potts model trained
on the uncorrected biased sample, respectively (“Profile on tree” and “DCA on tree”, respectively),
and using the corrected single site frequencies (“Profile + single site inf.” and “DCA + single site
inf.”, respectively). Error bars indicate the standard deviation across the 30 repetitions of the tree
sampling process.

The picture changes when the reference sequence is taken in a fair sample, i.e., when it is
independent from the sample used for model inference. In this case, the performance of both
DCA on uncorrected data and of the profile models drop significantly, whereas DCA inferred on
corrected frequencies remains accurate. To investigate this further, we compute the average Pearson
correlation as a function of the Hamming distance of the wild type to the closest sequence in the biased
sample. Supplementary Figure S2 shows that while the performance of the uncorrected DCA and the
profile models declines rapidly when using a reference sequence far away from the biased sample,
the corrected DCA has a more stable performance before large Hamming distances are reached.

As the combination of DCA and of the single site phylogenetic correction outperforms profile
models or a naive DCA approach, we now consider inferring the Potts model based on the corrected
pairwise frequencies. The same scoring as above is used, using all single mutants for wild type
sequences in both samples and computing the average Pearson correlation across wild types. Figure 7
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compares the predictions of the DCA models using the tree levels of phylogenetic correction: none,
sitewise and pairwise. The latter leads to a significant improvement in accuracy of predictions,
outperforming the two other methods. This stands both in the case of a wild type belonging to the
biased sample or to the fair sample.

Figure 7. Pearson correlation in predicting energies of single mutants for μ L Δt = 3 averaged over sets
of reference sequences. In the top panel, reference sequences are taken in the biased sample, i.e., among
the leaves of the phylogenetic tree. In the bottom panel, reference sequences are taken in a fair sample
of P0. Predictions are made using a DCA model inferred either directly on biased data, either using
corrected single site frequencies, either using corrected pairwise frequencies. Error bars indicate the
standard deviation across the 30 repetitions of the tree sampling process.

Again, we investigate the dependence of those predictions on the distance of the wild type
to the closest sequence in the biased sample. The largest increase in Pearson correlation resulting
from the pairwise phylogenetic inference once again happens for sequences that are far from the
biased sample (Figure S3). Removing part of the phylogenetic bias seems to have a stronger influence
when considering the energy landscape around sequences that are far away from the leaves of the
phylogenetic tree. When using those leaves as a sample without accounting for their non-independence,
the resulting model seems not to learn much about the energy landscape far away from those points.
However, correcting for non-independence, even in a rather crude way, leads to a much better inference
in this regard.

3.6. Results on Protein Data

The main application of DCA-like methods so far has been their ability to predict contacts in
the three-dimensional protein structure. Strong couplings between two sites in the Potts model are
a good indication of the corresponding amino acids being in contact in the protein fold. As, in the
case of artificial data, couplings are inferred more accurately when frequencies are corrected for
phylogeny (Figure 5), it is natural to ask whether this translates to improved contact predictions for
actual protein data.

To assess the performance of our correction scheme on actual protein data, we evaluated the PPV
of DCA contact predictions on five protein families(cf. Supplementary Material S1 for details). Those
families were chosen from the families used in [8] on the basis of having short enough sequences for our
pairwise phylogenetic correction to be tractable in reasonable time, and to have potentially stronger
phylogenetic correlations than current Pfam data, which are based on representative proteomes,
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i.e., which have undergone already some phylogeny-based sequence pruning. In contrast to the
artificial data, the phylogenetic tree is not a priori known, and we have applied FastTree [30,31] for
each family for tree inference. Next, for each family, three DCA models were inferred: a “naive” model
based on completely uncorrected statistics; a model based on frequencies corrected by the reweighting
scheme, which is the one used in common DCA implementations; and a model based on frequencies
corrected by our pairwise phylogenetic inference scheme. Contact prediction was done using the
standard procedure of plmDCA [20].

Figure 8 shows representative results for two of the five families. In the case of PF00013,
our phylogenetic correction clearly performs worse than both reweighted and uncorrected DCA
for the first 100 predictions. Note that the reweighting method does not lead to any improvement
either, suggesting that the phylogenetic bias may be weak for this family, and the potential benefit of the
correction is overcome by problems due to the approximations used. The picture changes for PF00046,
where both correction methods—reweighting and phylogenetic inference—improve significantly over
the uncorrected DCA model. Reweighting outperforms our method for the prediction corresponding
to the strongest coupling, having a fraction of true predictions of ∼0.7 versus ∼0.5 for the first ten
predictions. However, for a large number of predictions, the phylogenetically informed DCA model
tends to have an enriched fraction of contacts among its couplings when compared to the reweighted
model. This observation fits well with results on artificial data, showing an overall increase in the
accuracy of inferred couplings. However, as applications of DCA usually rely on the very strong
couplings only, this long-term increase in accuracy remains of limited practical interest.

Results for three other families can be seen in Figure S4. Over all the five investigated protein
families, our phylogenetic correction only shows improvement with respect to an uncorrected model
for two of them: PF00046 and PF00111. In both cases, it is outperformed by reweighting in the
first predictions.

Figure 8. Positive predictive value for predicting contacts in representative structures for two protein
families PF00013 and PF00046. The blue lines indicate a naive DCA method without any correction for
phylogeny. The orange lines show results for the sequence reweighting scheme. The green lines show
results after our phylogenetic inference scheme.

4. Discussion

In this paper, we propose a principled way to correct for phylogenetic effects in the inference
of Potts models from sequence data. Although the standard technique to account for these effects in
coevolutionary analyses relies on an empirical reweighting of sequences, our method aims at doing
so using the phylogenetic tree as well as an evolutionary model. The global nature of Potts models
implies that the evolutionary model used should depend on the full sequence. However, such a
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global approach is intractable in the case of discrete variables such as amino acids. To overcome this
problem, we proposed two subsequent levels of approximation: the first one relying on sites evolving
independently as in standard models of sequence evolution; the second one describing pairs of sites,
which display internal correlations but evolve independently from the rest of the sequence.

We show that our phylogenetic correction method combined with these approximations is efficient
in the case of artificial data. When data are generated by a known Potts model using a sensible but
simple evolutionary process on a known tree, our method is able to efficiently correct single-site and
pairwise statistics, including connected correlations as intrinsically pairwise quantities. This, in turn,
results in an improved inference of the Potts model in all tested aspects: individual coupling and
field parameters are more accurate, the inferred Potts probability distribution is closer to the real one,
contact prediction is more precise, and prediction of local energy changes from mutations is improved.

In the case of actual protein families however, results are at best mitigated. For only two of the
five investigated families (PF00046 and PF00111), our method does improve the accuracy of contact
predictions with respect to uncorrected data, whereas it has a negative effect on these predictions
for two of the other families (PF00013 and PF00014). Furthermore, even in the positive cases, it is
still outperformed by the simpler empirical method of reweighting sequences according to simple
sequence-similarity measures.

In this regard, it is important to note two things: The first is that for the two families for which
our method fails, the reweighting technique leads to very marginal improvements in terms of contact
prediction. This seems to indicate that our method does perform reasonably well only in the case
of strong phylogenetic biases. It also suggests that phylogeny does not affect contact prediction to a
noticeable degree in some families. The second is that in the cases of protein families for which our
method does provide an improvement, it outperforms reweighting in the “long run”, e.g., for more
than ∼100 predictions for PF00046. This may mean that phylogeny has a strong effect on weaker DCA
couplings that reweighting fails to correct. Even though these are not necessarily relevant for contact
prediction, they impact the accuracy of the model in other aspects, such as predicting mutational
effects or generating new sequences. If one wants to use DCA as a sequence model rather than simply
a contact-prediction tool, it becomes all the more important to correct for phylogeny if it has a global
influence on all parameters of the model. If this is the case, it is arguable that principled methods such
as ours would be more appropriate than uninformed methods such as reweighting at correcting subtle
effects of phylogeny.

Different reasons can be invoked for the mitigated results on protein families. One is that our
method relies on the exact knowledge of the phylogenetic tree, depending both on its topology and on
branch lengths. This knowledge is of course not available for proteins, where we rely on inference
software to find a tree. Inaccuracies in this tree inevitably affect our method in a negative way. Another
possible problem is the stationary and Markovian nature of our evolutionary model, which may
not be true in the case of protein evolution. Over evolutionary time scales, variable environments
lead to changing selective pressures, population sizes and mutation rates, which are currently not
accounted for by our model. However, we expect that the major problem lies in the nature of the
approximations we had to resort to. The first one, independent sites, is in contradiction with the global
nature of the Potts model we try to infer. The second—independent pairs—allows for the correction
of pairwise statistics, but suffers from obvious consistency problems since overlapping pairs of sites
cannot be considered independent. Note that this has an important consequence, when we go to
protein families with longer sequences: whereas phylogenetic tree inference becomes more accurate
for longer sequences, and the independent pair approximation requires O(L2) inferences for all pairs
of residue positions, with L being the sequence length. As a consequence, the before-mentioned
inconsistencies are expected to grow drastically with sequence length.

The necessity for these approximations comes from two characteristics of the class of models we
are using: their global nature, in the sense that they give probabilities to sequences in a nonfactorized
way, and the discrete nature of the variables used (amino acids). By rendering certain calculations
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intractable, such as tracing over all possible states of internal nodes in the tree; these two characteristics
make the use of approximations unavoidable. In this article, approximations attempt to circumvent
the global nature of the Potts model by factorizing probabilities in different ways, namely, sitewise
and pairwise. However, an interesting different class of approximations would be to forget about
the discrete nature of amino acids and model them by continuous variables instead. This would
transform the Potts model into a Gaussian distribution, making the design of a global propagator
tractable. Note that on similar grounds gaussDCA [32], an analytically solvable Gaussian version of
DCA, was developed a few years back, and it was found to perform similar to other DCA techniques
in contact prediction.

Another interesting alternative might be built upon the observation made in [14]: phylogenetic
correlations between the sequences of the training MSA lead to a fat tail of large eigenvalues of the
covariance matrix, i.e., of the empirically observed statistics reproduced by DCA models. Furthermore,
it was argued in [33] that the corresponding eigenvectors are extended over many positions and
amino acids, thereby giving rise to many small couplings. The contact prediction was found to be
more closely related to small eigenvalues of the covariance matrix, with localized eigenvectors giving
rise to large localized couplings. However, while phylogenetic correlations between sequences are
sufficient to generate extended eigenvectors with large eigenvalues, the latter may also result from
slightly different functionalities of subfamilies of the studied MSA, i.e., they may contain biologically
sensible information, cf. [34,35]. Disentangling the two—sequence clustering by phylogeny and by
subfunctionalization—seems a nontrivial task.

As DCA-like pairwise models are increasingly used in sequence analysis, and as their ability
to accurately model sequence variability in protein families gets more established, the need to infer
parameters more accurately and without bias increases. For this reason, correcting for phylogeny in a
controlled and principled way is essential. Whether this can be achieved using techniques similar to
the one presented in this paper, or using different types of approximations as the two mentioned in the
last to paragraphs, or totally different techniques, remains a widely open and challenging question.

Supplementary Materials: The following are available at http://www.mdpi.com/1099-4300/21/11/1090/s1:
Supplementary Material S1, containing Figures S1–S11, Table S1.
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Abstract: Extracting structural information from sequence co-variation has become a common
computational biology practice in the recent years, mainly due to the availability of large sequence
alignments of protein families. However, identifying features that are specific to sub-classes and
not shared by all members of the family using sequence-based approaches has remained an elusive
problem. We here present a coevolutionary-based method to differentially analyze subfamily specific
structural features by a continuous sequence reweighting (SR) approach. We introduce the underlying
principles and test its predictive capabilities on the Response Regulator family, whose subfamilies
have been previously shown to display distinct, specific homo-dimerization patterns. Our results
show that this reweighting scheme is effective in assigning structural features known a priori to
subfamilies, even when sequence data is relatively scarce. Furthermore, sequence reweighting allows
assessing if individual structural contacts pertain to specific subfamilies and it thus paves the way for
the identification specificity-determining contacts from sequence variation data.

Keywords: coevolutionary analysis; direct-coupling analysis; specificity determining contacts;
sequence reweighting; maximum entropy models; protein contact predictions

1. Introduction

The last decade has seen the emergence and maturation of coevolutionary methods aimed at
predicting functionally interacting residue pairs from sequence alignments of homologous protein
sequences [1–5]. The novel methodological developments, based on the use of global statistical models,
have led to significant improvements in the quality of inter-residue contact prediction and computational
structure prediction. This can be seen in the high scores obtained by the top-ranking teams in the
recent CASP competition (Critical Assessment of Protein Structure Prediction), which mostly rely on
coevolutionary predictions to guide their structural modelling [6]. Beyond the de-novo prediction
of novel folds [5,7,8], coevolution-based analysis has also allowed the structural characterization of
homo [2,9–11] and hetero-oligomeric [4,12,13] complexes and the determination of conformational
ensembles [10,14,15].

The success of covariation-based contact prediction relies on the availability of deep multiple
sequence alignments (MSAs) of homologous proteins. The rapid growth of protein sequence
databases [16,17], driven by the decrease in cost of next-generation sequencing, resulted in the
availability of very large protein families. In addition, the advent and improved access to
meta-genomics databases further increased the pool of available sequence data [8]. In such a data-rich
regime, the availability of ultra-large protein families (with typically more than 100 K homologous
sequences) raises the intriguing question of how to analyze subfamily specific structural features by
sequence covariation.
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Indeed, coevolutionary analysis generally results in contacts predicted at the whole family level,
thus predicting contact maps putatively formed by any member of the protein family. However,
for large families consisting of multiple subgroups (or subfamilies), gene duplication and specialization
lead to structural and functional variability of paralogous proteins sharing the overall same fold,
but potentially carrying a sub-set of different contacts defining subfamily specificities [18,19]. Similarly,
organisms with different genetic backgrounds and evolving in different environments will be subject
to different fitness landscapes, thus not necessarily requiring the exact same structural and functional
features, while still maintaining the same overall fold and function [20,21]. These observations imply
that not all the members of a large protein family will necessarily satisfy all contacts predicted by
coevolutionary analysis. Furthermore, the limited statistical weight of smaller subfamilies within a
global alignment may prevent the identification of their specific features in a standard analysis.

This last point is of particular importance in the inspection or modelling of precise features
pertaining to particular members of protein families rather than features common to the whole family.
The latter scenario is typically encountered when dealing with complex eukaryotic families of great
pharmacological interest, e.g., nuclear receptors [22] or G-protein coupled receptors [23], where the
focus is often on specific members or sub-group. To generate predictions applicable in practice, one
might need to understand or predict the effects of a small number of mutations affecting a particular
set of sequences in the family. As such, novel tools and methodological developments designed for the
analysis and identification of subfamily specific features at the contact level are currently required.

Some approaches have been already proposed to tackle this problem question. In [9], the authors
propose to split the sequence dataset in multiple subfamily specific alignments and perform
multiple independent Direct Coupling Analysis (DCA) on the sub-alignments, thereby successfully
identifying subfamily specific features. Similarly, the authors in [24] performed independent DCAs on
sub-class specific alignments to study different binding modes of protein complexes. Alternatively,
a sequence reweighting scheme has been introduced in [10], whereby sequences belonging to two
different phylogenetic groups where continuously reweighted and specific coevolutionary signals
recorded, thereby assessing their phylogenetic origin. In a more recent development, authors of [25]
introduced the use of restricted Boltzmann machines to simultaneously identify subfamilies and their
characterizing motifs.

In the following, we build upon the reweighting concept introduced in [10], showing in a complex
multi-dimensional case how this reweighting strategy can be used to identify sub-family specific
contacts even in the case where the number of sequences is very low.

2. Results

To investigate how subfamily specific structural features can be extracted from complex protein
families, we focus on the abundant and well-characterized family of bacterial response regulators
(RR). RRs are part of the bacterial two-component signaling system, which forms one of the major
transmembrane signaling systems in bacteria, and is generally composed of a transmembrane receptor
and a cognate RR [26]. Upon sensing extracellular stimuli, the receptor usually auto-phosphorylates
through its kinase domain and the phosphoryl group is then transferred to the RR. Prototypical RRs
are generally comprised of a receiver domain, which are activated by the transfer of the phosphoryl
group from the kinase domain of the receptor, and a C-terminal DNA binding domain, which acts as a
transcription factor [27].

The interest in RRs as model system to study subfamily specific features originates in the fact
that these proteins are classified according to their domain structure into different groups, which are
characterized by alternate homo-dimerization interfaces [27]. As such, RRs form a (large) protein family,
composed of several well-defined subfamilies displaying well-characterized different structural features

In particular, we focus here on three of the largest RRs subfamilies, namely the OmpR, LytTR and
GerE classes, which share the same domain architecture (Figure 1A) but have been shown to exhibit
different homo-dimeric arrangements. Interestingly, while RRs are classified according to the nature
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of the C-terminal DNA-binding domain, the receiver domain alone carries class-specific signatures,
as clearly shown by a principal component analysis of its sequence space (Figure 1B). Indeed, we
observe that sequences belonging to the three subfamilies form relatively well-defined clusters in the
plane defined by the first two principal components, which bear the largest variance in sequence space.
This finding suggests that a significant fraction of the sequence variability in the receiver domain can
be explained by the nature of the tethered DNA-domain. The three subfamilies discussed here thus
carry distinct sequence signatures, which pave the way for the investigation of class-specific structural
features encoded in the sequence covariation of the receiver domain, as previously noted [9].

 
Figure 1. Sequence and Structural variability in the Response Regulator (RR) family. In all panels
the color scheme follows the one defined in panel (A). (A) The three most abundant two-domain
RR architectures with different dimerization modes, and their number of sequences in the complete
RR alignment (fraction of the total number of sequences in parentheses). (B) Sequence variability
of the RR family as shown by principal component projection of the RR sequences composed of the
OmpR, LytTR, and GerE subfamilies. Projections are along the first two principal components. Black
lines depict iso-density levels. (C) Contact map of three representative structures of the different
subfamilies. Contacts are defined by a 5 Å distance-threshold between heavy atoms. Gray dots depict
intra-molecular contacts. Colored dots depict homo-dimeric inter-molecular contacts (see Methods).
(D–F) Heterogeneous homo-dimerization assemblies in the RR family. The three structural models
used to define the contact map in panel C are depicted. The gray monomers in each model are
structurally aligned.

The high-resolution structure of proteins belonging to these three subfamilies have been
determined, and in particular, models of their homo-dimeric arrangements are available. While
the overall fold of the receiver domain is very similar in all the three classes, the homo-dimeric
interfaces display striking variations (Figure 1C–F). Specifically, members of the LytTR and OmpR have
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different arrangements but their interfaces involve similar regions of the receiver domain, as shown
by the corresponding contact maps (Figure 1C). In contrast, the homo-dimeric interface of the GerE
subfamily involves a dramatically different region of the contact map, clearly highlighting a completely
different binding mode. Furthermore, we note that only a small set of contacts can be actually used for
defining the arrangement found in the LytTR class. Indeed, several residue pairs that are involved into
this homodimeric interface form structural contact at the intra-molecular level in the whole family and
hence cannot be used to define a subfamily specific feature.

For the sake of clarity, we will denote hereafter the structural interfaces corresponding to the
OmpR, LytTR, and GerE as α-, β-, and γ-interface, respectively (Figure 1D–F).

The most straightforward way to look for sub-class specific contacts in a DCA framework is to
split the global alignment in multiple sub-class specific alignments and perform independent contact
predictions. The comparative analysis of the resulting DCA predictions can then indicate which
contacts are exclusively predicted in particular sets of sequences, as already shown for the RR family [9].
While effective, this approach requires that all subfamilies are composed of enough sequences to
yield sufficient statistical power to perform precise contact prediction by DCA. Even if this strict
requirement is fulfilled for the RR family and its subfamilies (Figure 1A), it is certainly not the case
in general. We thus first investigated how the number of available sequences affects the capability
of correctly assigning subfamily specific features. To this aim, we randomly subsampled the three
class-specific MSAs retaining a finite fraction Bf of the original sequences and performed independent
DCA predictions on these smaller alignments.

We first measured the overall prediction precision as a function of Bf, by comparing the N
highest-ranked DCA predictions with a common global contact map, comprising all the intra- and
inter-molecular contacts observed in the three reference structures (Figure 2A). As expected from
the large size of the RR family, even subfamily alignments yield excellent overall prediction quality,
with precisions of 85–90%, if we make use of all available sequences (Bf = 1). Remarkably, in this
case the full RR alignment (union of the three subfamilies) does not yield any significant increase in
precision, highlighting the probable saturation of the prediction quality. Nevertheless, decreasing the
fraction of retained sequences rapidly leads to reduced precisions, and this effect is proportional to the
total number of sequences in the alignment. Therefore, the gap between the results obtained for the
family and those obtained for individual subfamilies initially increases for smaller Bf, while eventually
the precision collapses for all the alignments when the statistical power is too low (Bf < 0.01). Note that
at Bf = 0.01, the full RR alignment is comprised of 861 effective sequences (see methods), which is still
acceptable for performing high-quality predictions, as suggested by the overall precision using the
family alignment (76%). At the same subsampling level, the DCA results for the OmpR subfamily
are still partially reliable (precision ~64%) whereas the predictions obtained with GerE and LytTR
sequences are of limited to no practical use (50% and 33%, respectively).

We then specifically evaluated the range of applicability of the alignment splitting strategy
for extracting subfamily features by focusing on DCA predictions of the α, β and γ interfaces.
The α-interface (defined by 16 homo-dimeric contacts) is generally well recovered even at low sequence
fractions using the OmpR sequences (Figure 2B). Indeed, DCA of this subfamily alignments can identify
up to 60% of the contacts defining the α-interface, and roughly half of this interface is recovered
on average even at Bf = 0.01. Reassuringly, α-interface contacts are never predicted using the GerE
sequences for any subsampling even if the analysis of sufficiently large LytTR alignments yields
some predictions in this interface. This result is not completely surprising, if we take into account
the close proximity of the α- and the β-interfaces in the contact map. Nevertheless, the huge gap
between the fractions of α-interface recovered by the two subfamily alignments makes unambiguous
the assignment of the α-interface to the OmpR sequences.
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Figure 2. Prediction quality at varying alignments size. All reported quantities are shown as a function
of the fraction of sequences randomly sampled from the full alignment Bf. Error bars denote standard
deviations over 200 random samplings. (A) Overall precision (i.e., true positive rate) computed over
the complete contact map (union of intra-molecular contacts and all interface contacts). Full denotes
the union of all three alignments. (B) Fraction of the α-interface predicted in the N (112) highest ranked
contacts. (C) Fraction of the β-interface predicted in the N (112) highest ranked contacts. (D) Fraction
of the γ-interface predicted in the N (112) highest ranked contacts.

Conversely, the assignment of the β-interface represents a much more difficult case (Figure 2C),
due to its smaller area (11 contacts) and the limited size of the cognate LytTR subfamily. In practice,
even using the full alignment, only a small fraction of the interface is predicted using the LytTR
sequences, whereas no β-interface contacts are predicted using either the OmpR or GerE specific
alignments. The case of the γ-interface is somewhat intermediate (Figure 2D). Indeed, while this is
the largest interface (20 contacts), the cognate GerE subfamily consists of significantly less sequences
compared to the large OmpR. Analysis of large sub-alignments (Bf > 0.01) results into the prediction
of ~15–20% of the γ-interface for the GerE to be compared with ~5% obtained in the case of either
OmpR or LytTR sequences. This identification gap is further decreased by statistical noise as we
decrease the fraction of analyzed sequences. At Bf = 0.01, the interface assignment to a single subfamily
becomes ambiguous. At such samplings, the overall precision (Figure 2A) lies between 30% and 60%

45



Entropy 2019, 21, 1127

depending on the family. Thus, the identification of subfamily specific contacts in these low sampling
regimes would require dealing both with ambiguous interface assignments and with a potentially very
large number of false-positive predictions even in the intra-molecular part, which lowers the overall
confidence one can have in the interface predictions.

Taken together, these results illustrate that even if the splitting strategy works efficiently when
sufficient sequence data is present in subfamilies [9], DCA predictions obtained with subfamily
alignments might become unreliable and unable to identify subfamily specific structural features in
the case of more common family sizes.

In order to circumvent this limitation, we present and discuss here an alternative scheme that
does not imply the analysis of isolated subfamily alignments but instead relies on assigning arbitrary
statistical weights to subfamilies within the full family alignment [10]. The core idea of this strategy is to
monitor the dependence of inter-residue statistical couplings on the weights associated to subfamilies.
Residue pairs whose coupling strength is strongly correlated with the weight associated to a particular
subfamily will be identified as potential structural contacts specific to that subfamily. By keeping a
mixture of sequences belonging to multiple sub-classes, the inference of model parameters directly
controlling structural features shared by multiple subfamilies (typically intra-molecular contacts for
the common fold) will benefit from increased quality of local statistics, therefore potentially helping to
stabilize the overall prediction quality.

We propose the following algorithm, hereafter referred to as subfamily reweighting (SR) (see
Methods for implementation details):

1. All sequences in a global alignment are subdivided into K subfamilies, indexed by k = {1, . . . ,K}.
2. All the sequences belonging to a single sub-class are assigned a common weight ωk ∈ [0, 1].
3. DCAs are performed, assigning weights {ωk} to the sequences in the inference step, for a varying

set of sequences weights.
4. The relative change in coupling scores is measured on a set of contacts of interest, as {ωk} is varied.
5. Subsets of residue pairs whose overall coupling strength is strongly correlated to the change in

weights are identified as subfamily specific contacts.

Additionally, we can record the overall precision computed over the whole contact map for all
values of the class-specific weights. This allows identifying the regions of weight space over which the
precision, taken here as proxy of our confidence in the predictions, remains in a reasonable range.

We illustrate the use of the SR approach on the RR family discussed above, in the case where
only 1% of sequences are sub-sampled (Bf = 0.01). In this context, the SR procedure consists of the
following steps: Sequences are grouped into three sub-classes corresponding to the OmpR, LytTR and
GerE subfamilies. We assign all combination of weights in the range [0,1] in steps of 0.01 to the three
subfamilies (see Methods) and perform DCA analysis for each set of weights. We then measure the
overall precision and the coupling-scores for the α-, β-, and γ-interfaces, as a function of the subfamily
weights and we report the results as triangle plots (Figure 3A–D). In this representation, the three
vertices of the triangles correspond to the cases where we only keep sequences of one subfamily, while
each interior point corresponds to a DCA performed with linearly interpolated weights.

We first focus on the overall precision computed over the complete contact map, which shows that
the reweighting procedure results into a relatively high precision (typically above 70%) over a large
range of relative weights (Figure 3A). Unsurprisingly, the quality of DCA results sharply decreases
only in near vicinity of the vertexes and edges, which correspond to limiting cases where only one
(vertices) or two (edges) subfamily are analyzed. In particular, the lowest precision is obtained when
using only the smallest LytTR alignment (bottom-right vertex), consistently with what reported in
Figure 2. Remarkably, we can explore regions of the weights-space relatively close to any extreme case
while maintaining an overall precision of at least 70%, in strong contrast to the sharp precision drop
obtained with subfamily alignments (Figures 2A and 3A). This finding suggests that we can reliably
interpret the DCA results obtained for weights in a large portion of the weights space.
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Figure 3. Results of sequence reweighting (SR). (A) Overall precision of the N highest ranked predictions,
computed over the full contact map, comprising all intra- and inter-molecular contacts observed in the
three reference structures. (B) Average coupling-score of the α-interface. (C) Average coupling-score of
the β-interface. (D) Average coupling-score of the γ-interface.

We now inspect how the coupling-scores are affected by sequence reweighting, specifically
focusing on the average coupling scores of the residue pairs defining the a priori known interfaces
(Figure 3B–D) (see Methods). It appears strikingly that larger weights for the OmpR sequences
correspond to higher coupling-scores over the cognate α-interface (Figure 3B). The trend is nearly
linear with the orthogonal distance to the OmpR subfamily, indicating that the coevolutionary signal
of the α-interface arises from the covariation encoded in OmpR sequences and it does not depend on
the relative weighting of the two other subfamilies.

Interpreting the behavior of the average-coupling score over the β-interface is more difficult
(Figure 3C). Indeed, there appear to be two local maxima, located both near the GerE and the cognate
LytTR vertexes, with a non-monotonous behavior in the central part. This complex behavior does
not lean itself to an easy interpretation and might be due to statistical noise. Indeed, the very low
number of LytTR sequences in the sub-sampled alignment, combined with the relatively small number
of contacts within the β-interface, may be responsible for this non-conclusive case.

In contrast, the average coupling-scores over the γ-interface display a nearly linear trend (albeit
slightly tilted) with the orthogonal distance to the GerE subfamily (Figure 2D) and unambiguously
identify this interface as a structural feature associated to the GerE sub-class. The clear result for the
γ-interface obtained with SR approach is thus in sharp contrast with the more ambiguous assignation
based on DCAs on the subfamily alignments (Figure 2D).

The success of the SR procedure in correctly characterizing both the α- and γ-interface as subfamily
features, even with a limited amount of sequences, motivates us to test whether we can extend the same
approach to assign individual contacts to specific subfamilies. This extension would greatly widen the
range of applicability of the SR approach to protein families lacking any previous characterization of
potential subfamily features.

To this aim, we can determine the coupling-scores of each residue pair as a function of the subfamily
weights, analogously to what reported for whole interfaces in the triangle plots (Figure 3B–D). This
information can then be used to devise scoring functions Fk

ij that quantify how strongly a given contact
(I,j), is associated to the subfamily k (see Methods). While many functional forms can be adopted to
define the scores Fk

ij, here we limit ourselves to a proof of principle and we test a simple approach
based on multilinear kernel functions (see Methods).

We then test if this strategy may be used for associating individual homo-dimeric contacts, taken
from the union of the α-, β-, and γ-interfaces, to a specific subfamily.

To this aim, we sort all the contacts using the three subfamily specific scores and we inspect
for each subfamily the highest-ranked ones, which are assumed to best represent subclass features
(Figure 4A–C). If we limit ourselves to the ten top-ranked pair of residues, the predictions match the
cognate structural interfaces reasonably well, even using our simple functional form for the scoring
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functions (8/10 for α/OmpR, 5/10 for β/LytTR and 8/10 γ/GerE cases, respectively). As in previous
analyses, LytTR represents the most challenging case due to the smaller amount of available sequences
and the smaller cognate interface (β-interface, 11 contacts), as is reflected in the lower fraction of
correctly predicted interface contacts for this subfamily (5/10 vs. 8/10).

 

Figure 4. Identification of subfamily specific residue contacts by SR. Gray dots depict intra-molecular
contacts. Colored dots depict interface contacts pertaining to the α- (blue), β- (orange) and γ-
(brown-red) interfaces respectively. Dots in green are the top ranked contacts according to the Fk

ij scores
(see Methods). (A) Top 10 highest ranked SR contacts for k = OmpR. (B) Top 10 highest ranked SR
contacts for k = LytTR. (C) Top 10 highest ranked SR contacts for k = GerE.

These promising results, although imperfect, highlight the ability of the SR procedure to identify
single residue-pairs pertaining to specific subfamilies, thus being potential candidates of specificity
determining contacts. While results are based on the use of the simplest possible single-contact scoring
functions as proof of principle, the use of more sophisticated subfamily specific scores will potentially
increase the prediction quality of the method.

3. Discussion

The sequence reweighting approach presented here, combined with coevolutionary contact
prediction, allows the characterization and analysis of pairwise contacts which pertain to protein
sequences belonging to specific subfamilies. Using the well characterized response regulator family as a
prototypical proof-of-concept system, we showed that the SR approach is capable of correctly assigning
subfamily specific interfaces, as well as identifying specificity determining contacts. In particular,
the reweighted use of all classes allows for statistically robust results, even in cases where only limited
sequence data is available.

In the present work, we relied on the a-priori knowledge of the subfamilies, based on their
domain architectures. In principle, this supervised component of the algorithm could be replaced by
a pre-processing step consisting in clustering the sequences and thereby automatically identifying
subfamilies [28–30]. In combination with the SR procedure, this would allow a large-scale search over
protein sequence databases (e.g., PFAM [17]) to identify families with significant structural diversity at
the subfamily level. Such an automated procedure will inevitably introduce assignment noise whose
consequences on the robustness of the identification of sub-family specific contacts will have to be
systematically evaluate.

Furthermore, the identification of subfamilies and their associated specific contacts might be of
valuable help in the context of homology modelling, specifically in the scenario where only structural
models of remote homologs are present. In such cases, it is possible to erroneously impose some
structural features of the template homolog, whereas the particular target belongs to a subfamily
possessing some critical structural differences. As such, being able to identify the subfamily specific
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contacts by sequence analysis might allow to better guide the modelling step and/or improve the
critical assessment of homology models based on remote homologs.

Additionally, many structural features of protein families are currently inferred by the analysis of
available “representative” structures, often determined on model organisms. While such structural
models are of great value, they might actually represent “snapshots” of the heterogeneous structural
ensemble characterizing the complete protein family [20]. A computational tool aiming at highlighting
potential deviations from the common structural scaffold defining the whole family could thus help
identifying sub-classes with novel uncharacterized structural features and thus fruitfully complement
structural biology approaches.

From a practical point of view, the SR algorithm is based on associating subfamily specific weights
to the sequences in the inference step. We here relied on DCA, a popular method to predict structural
contacts [6], but in principle, the SR procedure can be incorporated in any prediction approach based
on optimizing a data-dependent objective function analogous to the pseudo-likelihood discussed here.
In a wider context, SR can be seen as an instance of a transfer-learning approach [31], whereby we
make use of the available sequences of the whole protein family to maximize the statistical power of
the method, while adapting it to specific sub-problems. Such classes of algorithms, aimed at maximally
exploiting the available data, are of great interest particularly when the available training data is
limited, as in the case of eukaryotic protein families. In this scenario, analyzing particular subfamilies
requires the efficient use all the data available for the whole family, even when focusing on questions
pertaining to specific paralogous sub-groups.

While we here focused on the sequence reweighting for sub-family analysis, alternative reweighting
schemes have been suggested to address the problem of phylogenetic and sampling bias in large
MSAs [32]. The SR procedure could in principle be easily combined with these approaches to potentially
improve the prediction quality.

The identification of specificity determining features in subfamilies of protein sequences is a
longstanding challenge in bioinformatics [33–35]. In this context, SR can be extended to investigate
specificity determining interactions, beyond the well-studied problem of identifying specificity
determining positions (SDPs). Indeed, prediction of sub-class specific contacts potentially allows the
prediction of more precise structural and functional features involving pairwise epistatic interactions,
non-detectable by single-site SDP analysis.

4. Materials and Methods

4.1. Sequence Data Collection and Pre-Processing

All sequence data was obtained from the PFAM database, release 32.0. We downloaded all aligned
sequences for the Response regulator (RR) family (PFAM ID: PF00072), comprising 342,025 response
regulator sequences of length N = 112 amino-acids. Additionally, the alignments for the DNA binding
domains of three response regulator families where downloaded, namely the OmpR family (PFAM ID:
PF00486), the LytTR family (PFAM ID: PF04397) and the GerE family (PFAM ID: PF00196).

Subfamily alignments of the response regulator domain where then built by selecting sequences
from the response regulator alignment which possess either the OmpR (78,494 sequences), LytTR
(14,883 sequences) or GerE (49,868 sequences) domains.

To reduce phylogenetic and sampling bias, and to simplify the reweighting procedure, the three
alignments where filtered by identity, keeping only sequences in the alignments with a maximal
pairwise hamming distance of 90%, using the hhfilter utility of the hhblits suite [36]. This resulted in
40,857 OmpR sequences, 12,082 LytTR and 33,344 GerE sequences. The sequences being pre-filtered by
identity, the absolute number of sequences is therefore equivalent to the effective number of sequences
(at a 90% identity threshold) in the current discussion.

To explore the effect of smaller datasets, sub-alignments were generated by randomly selecting
a fraction Bf of sequences from the alignments. 200 random subsets where generated for analyzing
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the MSA depth effect (Figure 2). Three random subsets where generated for the reweighting analysis
(Figures S2 and S3).

4.2. Structural Data Collection and Processing

The following structural models of the subfamily specific RR homo-dimers were collected (Table 1).

Table 1. Overview of used structural models.

Family Interface PDB ID Model

OmpR α-interface 1nxs Biological Assembly 1

LytTR β-interface 4cbv Biological Assembly 1

GerE γ-interface 4e7p Biological Assembly 2

Inter-residue contacts were defined whenever pairs of residues had any heavy-atom distance
below 5 Å. Given the close proximity of the α- and β-interfaces we chose here such a stringent contact
definition threshold, lower than typically used in coevolutionary studies [2,9,37,38]. This ensures the
definition of orthogonal contact interfaces. Indeed, increasing the contact threshold progressively
widens the definition of interface contacts and ultimately results in partially overlapping interfaces
(Figure S1).

The intra-molecular part of the contact map was defined as the union of the three intra-molecular
maps from the three structural model. The three dimer interfaces were defined as all contacts not in
the intra-molecular distance map for each model respectively.

In the three X-ray structures, the identification of biological assemblies is unambiguous and the
corresponding homodimers do not display any noticeable break of symmetry. The three homodimers
present in the asymmetric unit of 4cbv (β-interface) are characterized by the same set of intermolecular
contacts according to our definition.

The contact maps were aligned to the RR multiple sequence alignment using the mapPDB tool
from the dcaTools package [39] (available at https://gitlab.com/ducciomalinverni/dcaTools).

4.3. Direct-Coupling Analysis and Sequence Reweighting

Direct-Coupling Analysis (DCA) was performed using the asymmetric pseudo-likelihood inference
method [37,40] as implemented in the lbsDCA package [39] using default inference parameters (available
at https://gitlab.com/ducciomalinverni/lbsDCA). The method infers the parameters of the Hamiltonian
of a generalized Potts model

P(s) =
1
Z

e
∑N

i=1 hi(si)+
∑N,N

ij Ji j(si,sj)

where s = (s1, . . . , sN) denotes the amino-acid sequence of length N, Z denotes the normalizing partition
function and hi and Jij are model parameters controlling the single- and two-site frequencies to be
fitted to the data (see, e.g., [41] for a full review on DCA and its applications).

The inference is performed by numerically minimizing the regularized negative pseudo-log
likelihood lPL of the data with respect to the model parameters {hi, Jij} (see, e.g., [37] for a detailed
discussion of the pseudo-likelihood inference method).

lPL = − 1
Be f f

B∑
b=1

ωb log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
exp

(∑
i hi

(
sb

i

)
+

∑
i< j Ji j

(
sb

i , sb
j

))
∏

i
∑21

a=1 exp
(
hi(a) +

∑
j� i

(
a, sb

j

))
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where b indexes the available sequences, ωb denotes the weight associated to sequence b (see below),
Be f f =

∑B
b=1 ωb and a indexes the 21 amino-acids.
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Here, we introduced subfamily specific relative weights such that ωb = ωk for all sequence b
belonging to subfamily k ∈ {

OmpR, LytTR, GerE
}
.

We further restricted the weights to sum to unity, i.e.,

ωOmpR +ωLytTR +ωGerE = 1

While this is not strictly necessary, the normalization allows for a straightforward mapping from
the 3 dimensional weights space to a visualizable 2D space. The relative weights were then varied in
steps of 0.01, including the border cases ωk = {0, 1}.

The raw inter-residue coupling scores were computed by the Frobenius norm of the
coupling parameters.

Sij = ‖Ji j(A, B)‖A,B

where the norm is taken over the 20 natural amino-acids, excluding the couplings involving the
gap-parameter, following [42].

Finally, the coupling scores are given by the average-product corrected (APC) raw scores
following [43], i.e.,

S̃i j =
Sij − Si·S· j

S··
where · denotes averaging over the relevant dimension.

All DCAs were performed using four threads per computation and took ~7 s each on a standard
desktop workstation, resulting in a total computational time of roughly 10 h for generating the results
presented in Figure 4.

4.4. Kernel Function Scoring

In the reweighting approach, each residue-pair is characterized by a series of coupling scores
computed at different relative weights S̃i j

(
ωOmpR,ωLytTR,ωGerE

)
. In order to annotate each contact by

a single scalar for each family of interest, we introduce the following multi-linear kernel functions.

ϕk
(
ωOmpR,ωLytTR,ωGerE

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωOmpR

(
1−ωLytTR

)
(1−ωGerE) if k = OmpR(

1−ωOmpR
)
ωLytTR(1−ωGerE) if k = LytTR(

1−ωOmpR

)(
1−ωLytTR

)
ωGerE if k = GerE

Such kernel functions have the desirable property and smoothly interpolate between these three
border cases. As such, they allow to effectively compute a single weighted coupling score for each
contact and each subfamily, which continuously assigns higher weights to coupling scores computed
in realizations which weighted sequences of the subfamily more.

ϕk =

{
1 if ωk = 1

0 if ωi = 1 ∀ i � k

In practice, to focus on the relative variation of coupling scores, irrespective of their absolute value,
we subtract for each residue pair the average coupling score < S̃i j > (averaged over all weights triplets)
before computing the kernel integral. This finally allows to define an average-corrected subfamily
specific score for each residue-pair.

Fk
ij =

∑
ωOmpR,ωLytTR,ωGerE

ϕk
(
ωOmpR,ωLytTR,ωGerE

)
(S̃i j

(
ωOmpR,ωLytTR,ωGerE

)
− < S̃i j >)

∀ k ∈ {
OmpR, LytTR, GerE

}

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/11/1127/s1,
Figure S1: Structural contact maps and overlap between structural interfaces at increasing contact threshold.
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Gray dots depict intra-molecular contacts. Colored dots depict homo-dimeric inter-molecular contacts. Figure S2:
Triangle plots for the SR procedure for the three random sub-samplings (analog to Figure 3). Figure S3: Identification
of subfamily specific residue contacts by SR (analog to Figure 4), for all three random sub-samplings. A Top 10
highest ranked SR contacts for k = OmpR, replica 1. B Top 10 highest ranked SR contacts for k = LytTR, replica 1.
C Top 10 highest ranked SR contacts for k = GerE, replica 1. D Top 10 highest ranked SR contacts for k = OmpR,
replica 2. E Top 10 highest ranked SR contacts for k = LytTR, replica 2. F Top 10 highest ranked SR contacts for
k = GerE, replica 2. G Top 10 highest ranked SR contacts for k = OmpR, replica 3. H Top 10 highest ranked SR
contacts for k = LytTR, replica 3. I Top 10 highest ranked SR contacts for k = GerE, replica 3.
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Abstract: Understanding the underlying mechanisms behind protein allostery and non-additivity of
substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of
mutations, particularly at non-conserved sites. In an effort to model these two biological properties,
we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic
Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the
residue fluctuation response of a functional site when two other positions are perturbed with random
Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two
other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures
the degree of asymmetry between the residue fluctuation response of two sites when one or the
other is perturbed with a random force. Applied to four independent systems, we successfully show
that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution
outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino
acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic
network of interactions where the inclusion of the full network of interactions is critical for accurate
modeling. Consequently, mutations which drive towards a new function may require a fine balance
between functional site asymmetry and strength of dynamic coupling with the functional sites.
These two tools will provide mechanistic insight into both understanding and predicting the outcome
of dual mutations.

Keywords: epistasis; allostery; elastic network model; protein conformational dynamics

1. Introduction

A growing body of data on the human genome suggest that within the exome (the protein coding
region), one individual may possess 10,000 or more non-synonymous nucleotide variants, many of
which occur at positions which are not evolutionarily conserved [1–3]. Predicting the functional
outcome of mutations at non-conserved sites remains an extremely difficult challenge. In particular,
providing accurate predictions about the impact of these variations is difficult when only considering
single, independent point mutations without accounting for the background of other positions and
their chemical specificity (i.e., context dependence).

One reason why predicting the impact of mutations may fail is that extensive epistasis occurs
during evolution [4–6]. Epistasis is defined as a context-dependent functional outcome, where,
the alternative context could be just one single amino acid difference, or it could be a paralog with 25%
sequence identity. Experimentally, epistasis manifests as a non-additive outcome from two or more
amino acid changes within a protein. The effects can be dramatic. For example, a substitution may
only confer a beneficial effect upon fixation of a second-site, also known as a “permissive” change;
conversely, a neutral substitution might become deleterious in the presence of other “restrictive”
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substitutions [7–9]. Thus, epistasis plays a vital role in shaping trajectories of protein evolution [4–10].
Furthermore, mounting evidence indicates that protein evolution, particularly evolution towards new
function, proceeds not only through mutations at functionally critical sites, but also through sites
which can have a subtle (or, occasionally, substantial) effect on function when mutated without being
immediately identifiable as positions with particular functional or structural importance [11–13].

Epistatic relationships becomes crucial when comparing homologous protein families or protein
domains, which can exhibit significant sequence variation and biochemical properties that may span
orders of magnitude while still maintaining a similar three-dimensional (3-D) fold [14–19]. Thus,
single or dual mutations on homologous proteins yield a wide range of functional outcomes [20–24].
In fact, understanding the mechanics or predicting the results of dual mutations remains a significant
challenge in the presence of systems which experience large epistatic effects, even when accurate
experimental data are available for the single mutant systems [7–10,25].

On the other hand, when protein equilibrium dynamics and each individual position’s contribution
to these dynamics are taken into consideration, we can shed light onto the mechanism of epistatic
relations. This is because proteins sample many different conformations within the native state,
and these conformational dynamics, governed by the strength of the 3-D network of interactions,
underlie protein function. Within this dynamic view, we can simply treat a protein as a biological signal
processor where the 3-D interaction network mediates long-range communication through amino acid
fluctuations nascent to a given protein sequence. Therefore, the knowledge of how mutations may
fine-tune this sequence-function relationship necessitates evaluating the role of each residue position in
establishing a protein’s internal communication network through protein dynamics [26,27]. Particularly,
when two substitutional sites are considered together, the dynamic coupling of these sites results in a
joint effect (i.e., a cooperative response) leading to the modulation of signal processing responsible for
biophysical behavior and, ultimately, may give rise to a non-additive functional outcome.

The non-additive, epistatic interactions therefore can use dynamic features of a protein to modulate
function. These dynamics features are similar to that found in allosteric modulation in which a protein
is able to control catalytic function or regulate on/off states through the binding of a ligand to a site distal
from a catalytic/active site. This distal binding has been shown to modulate catalytic site dynamics,
sometimes without association to distinct conformational states. This type of allostery, which can
impact function by manipulating the normal modes of the protein while retaining the conformation,
is known as dynamic allostery [28,29]. We now understand this form of allosteric regulation to be a
specific, and often more dramatic, emergent property of the unique internal networking between amino
acids within a protein. To this end, allosteric systems reduce the enormous dimensionality associated
with information transfer and communication pathways for these complex, anisotropic networks
by identifying important regulation sites a priori. Therefore, as observed in allosteric regulations,
the long-distance interactions through dynamic coupling between different positions and active sites
can be modulated and re-wired through substitutions, which emerge as epistasis that drives the
evolution of new function. Here, we aim to identify these epistatic relations through the development
of dynamics-based metrics which can measure the strength of long-range dynamic interactions.

The modeling of protein conformational dynamics using force perturbations and elastic networks
has been previously used successfully in attempts to understand the role of long-range interactions
in protein evolution [30–33]. Here we attempt to model these effects through the use of Perturbation
Response Scanning (PRS) and the Elastic Network Model (ENM) to construct a Dynamic Coupling
Index (DCI) where we can capture the dynamic coupling between any given residue pair or set
of residues via a system’s response to random force perturbations. DCI captures the strength of
displacement response of a given position i upon perturbation to a single position (or subset of
positions) j, relative to the average fluctuation response of position i when all of the positions within a
structure are perturbed. Expanding upon the dynamic coupling concept, here we develop a new metric
called EpiScore. EpiScore measures the difference in the residue fluctuation response of an active site
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when two mutational sites are simultaneously perturbed by random forces versus the response when
individual force perturbations are exerted one at a time to the mutational sites.

In order to determine whether EpiScore can identify the degree and strength of epistatic
relationships between position pairs, we first applied our analysis to the deep scanning database of
double mutations between all positions in the IgG-binding domain of protein GB1 [24]. These modern,
high-throughput screens (e.g., deep mutational scans) assay large numbers of mutants (up to 108) [34–37],
but the information is largely qualitative. Therefore, to further test whether our approach can identify
epistatic relations which specifically emerge during the evolution of new function, we applied our
methodology to two different protein systems where the traditional biochemical quantifications of
mutational effects (e.g., kcat, KM, IC50) for a range of substrates are available. These two systems,
P. falciparum DHFR (pfDHFR) and a β-lactamase (TEM-1), naturally confer resistance to drugs and
the trajectories of these resistances as well as their epistatic relationships have been explored [22,23].
Importantly, these two systems are also known to be allosteric proteins.

We first observed that EpiScore can distinguish positive and negative epistasis in dual mutations
when analysis was performed over 1045 single mutants and 509,963 double mutants of GB1. We also
found that the average EpiScore value correlates well with experimental epistatic measures calculated
using pyrimethamine IC50 values of pfDHFR dual mutants and the catalytic turnover rates for
cefotaxime of TEM-1 dual mutants. Furthermore, each pfDHFR amino acid pair exhibits distinct
distributions of EpiScore values showing the importance of how these two positions communicate
with the active site through the anisotropic interaction network.

Interestingly, DCI is usually not symmetric, i.e., the fluctuation response of position i upon exerting
random forces on j is not identical to the response of j when position i is perturbed; we calculate
this asymmetry with DCIasym. We applied our DCIasym analysis to the TEM-1 dual-mutant sites
and found that, indeed, a relationship exists between dynamic coupling asymmetry and EpiScore
when all active sites in the TEM-1 system are considered. Specifically, two of the three dual mutant
positions which exhibited the largest positive epistasis in cefotaxime kcat/KM from the wild-type had
both EpiScore values < 1 (indicating strong non-additivity) with respect to active site S70. Additionally,
these dual mutants also exhibit asymmetry in dynamic coupling based on DCIasym, with consistent
unidirectionality from active sites site to mutation sites in long range communication. We propose
that this communication directionality signature should be readily apparent in known allosteric
systems as mentioned above. Therefore, we applied a similar analysis to a Pin1 protein well-studied
for its dynamic allostery and showed that the DCIasym between the catalytic binding sites and
non-catalytic distal binding sites presents a unique directionality in long distance dynamic coupling,
leading to a cause-and-effect relationship between allosteric sites and active sites also observed in
epistatic interactions.

2. Methods

We previously designed a unique way to capture site-specific coupling between residue pairs or
groups of residues, the Dynamic Coupling Index (DCI). The underlying premise behind DCI is the
importance of a system’s response to a force perturbation, be that protein-solvent, protein-protein,
protein-ion or protein ligand interactions. Additionally, the point mutations here are modeled by the
response of a system to a perturbation at a specific site, a.k.a. a single amino acid.

DCI is a combination of the Elastic Network Model (ENM) and Linear Response Theory (LRT)
where the protein is modeled by representing the amino acids as nodes in a network connected
by Hookean springs (Figure 1). The interaction between two amino acids close in space due to
their 3-dimensional structure is represented by a simple harmonic function. A random Brownian
kick in the form of a unit force perturbation is applied to an individual position which generates a
response propagating through the rest of the structure, causing other positions to respond to this
perturbation through the network of interactions. Using LRT, we can calculate the fluctuation response
ΔR (Equation (1)) of each position and create response vector that measures the magnitude and
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direction (x, y and z) of displacement of every residue from its mean. As mentioned above, this (to the
first order) mimics the effects of in vivo interactions of a protein. For example, a ligand binding
event will apply a force to residues in the binding pocket of a receptor protein. In our perturbation
residue scanning (PRS) approach, this is averaged over many unit force directions to simulate an
isotropic perturbation.

[ΔR]3N×1 = [H]−1
3N×3N [F]3N×1 (1)

Figure 1. Elastic network model representation of protein Pin1 (PDB ID 3TCZ [7], ligands removed).
Here, each residue within the structure is represented as a single node at the Cα position, connected
to other nodes via Hookean springs. Using a combination of Perturbation Response Scanning (PRS)
and Linear Response Theory (LRT) [38,39], each residue is perturbed by a Brownian kick applied as an
isotropic external force which then generates a fluctuation response in all other residues within the
network. This figure was rendered in PyMol [40].

H is the Hessian, a 3N× 3N matrix which can be constructed from 3-dimensional atomic coordinate
information where it is composed of the second order derivatives of the harmonic potential energy
with respect to the components of the position vector of length 3N. The Hessian matrix can be extracted
directly from molecular dynamics simulations as the inverse of the covariance matrix. This method
allows one to implicitly capture specific physiochemical properties and more accurate residue-residue
interactions via atomistic force fields and subsequent all-atom simulation data. However, for the
purposes of this paper, we wished to investigate only those relationships which could be derived
solely from inter-atomic distances of single protein structures and thus we used the ENM version of
our approach.

Repeating this process, each position in the structure is perturbed sequentially to generate a
perturbation response matrix A
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〈(ΔR)2〉 is the magnitude of fluctuation response at position i due to the perturbations

at position j. From this perturbation response matrix, we can construct DCI. DCIij, then, represents
the displacement response of position i upon perturbation to a single functionally important position
(or subset of positions) j, relative to the average fluctuation response of position i when all of the
positions within a structure are perturbed.

DCIij =
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j
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∣∣∣
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As such, DCI can be considered a measure of the dynamic coupling between residue i and
residue(s) j upon perturbation to residue(s) j.

It is often more convenient to represent DCI as a percentile rank,

%DCIij =
m≤i

N
(4)

where m≤i is the number of positions with a DCI value ≤ DCIij for a system of N residues.
One of the most important aspects of DCI is that the entire network of interactions is explicitly

included in subsequent calculations without the need of dimensionality reduction such as Normal
Mode Analysis through principal component analysis. If one considers interactions such as allostery
as an emergent property of an anisotropic interaction network, it is critical to include the interactions
of the entire network to accurately model the effect one residue can have on another.

Here, we present two further extensions of DCI which allow us to uniquely model allosteric
interactions and epistatic effects; EpiScore and DCIasym, respectively. EpiScore can identify or describe
potential non-additivity in substitution behavior between residue pairs. This metric can capture
the differences in a normalized perturbation response to a position k when a force is applied at two
residues i and j simultaneously versus the average additive perturbation response when each residue i,
j, is perturbed individually (Figure 2). EpiScore values < 1 (>1) indicate that the additive perturbations
of positions i and j generates a greater (lesser) response at position k than the effect of a simultaneous
perturbation. This means that, when treated together with a simultaneous perturbation at both sites i
and j, the displacement response of k is lower (higher) as compared to the average effect of individual
perturbations to i and j, one at a time. As EpiScore is a linear scale, the further the value from 1,
the greater the effect described above.

Interestingly, through the use of DCI we can capture asymmetry between different residues within
a protein, as coupling in and of itself is asymmetric within an anisotropic network. That is, each amino
acid has a set of positions to which it is highly coupled, and this anisotropy in connections gives
rise to unique differences in coupling between a given i j pair of amino acids which do not have
direct interactions (Figure 3). DCIasym, then, is simply DCIij (the normalized displacement response of
position j upon a perturbation to position i) − DCIji (Equation (5)). Using DCIasym we can determine
a cause-effect relationship between the i j pair in terms of force/signal propagation between these
two positions.
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Figure 2. Schematic describing the calculation of EpiScore. The numerator is the %Dynamic Coupling
Index (%DCI) value at position k upon a simultaneous perturbation to positions i and j divided by the
average %DCI value at position k when positions i and j are perturbed individually. Thus, an EpiScore
value of 1 indicates a perfect coupling additivity with respect to a given position k in individual versus
simultaneous perturbations of two positions i and j. Figures rendered in PyMol [40] using β-lactamase
(TEM-1) structure 1BTL [41].

DCIasym = DCIi −DCIj (5)

%DCIasym = %DCIi −%DCIj (6)

Figure 3. Example of asymmetric coupling between residue R68 of the PPIase domain and A31 of
the WW domain in Pin1 (PDB ID 3TCZ [7]). The differences in local contacts give rise to network
inhomogeneities which subsequently result in different %DCI values from R68 to A31 versus A31 to
R68 (left). The subtraction of these two values gives a measure of coupling directionality upon external
perturbations between these two sites (right). These figures were rendered in PyMol [40].

3. Results and Discussion

3.1. Epistasis and EpiScore

To investigate the relationship between internal networking and epistasis, we first apply our
analysis to protein G domain B1 (GB1, PDB ID 2QMT [42]), for which there exists a comprehensive set
of mutational data. Specifically, fitness effects of mutations were determined with high confidence for
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1045 single mutants and 509,963 double mutants, with data available for all 1485 possible position
pairs [24]. In this work, experimental epistasis was calculated as ln(Wab) − ln(Wa) − ln(Wb), where Wab

represents the fitness for the dual mutant and Wa and Wb are the fitness values for the single mutants.
Here we investigate the relationship between the experimental epistasis and EpiScore by comparing the
average EpiScore for each position pair with instances of positive (blue) or negative (red) epistasis using
the skewness of the experimental epistasis distribution over the full mutational space available for a
given pair (Figure 4). Skewness was chosen as it more accurately represented the substitution behavior
than position averages, which would often tend towards zero without capturing the substitution
behavior for a given position pair. EpiScore values were calculated for all position pairs relative to
every other position within the protein and averaged over, generating one average EpiScore value for
each pair. Interestingly, when we obtained the average EpiScore distribution of experimental positive
and negative epistatic pairs we found that EpiScore values above and below one tend to distinctly
divide positive from negative epistasis; positive experimental epistasis was more frequently skewed
towards EpiScore > 1, and likewise negative cases are skewed towards EpiScore < 1.

 

Figure 4. Distribution of the average EpiScore for protein GB1 protein pairs separated by positive
and negative experimental epistasis using experimental deep scanning data for every position pair
(excluding position 1). EpiScore values above and below one (dashed line) tend to distinctly divide
cases for which experimental epistasis was more frequently skewed towards the positive (below one)
and negative (above one)).

The full system analysis of GB1 showed the existence of a general trend between epistasis and
EpiScore; particularly, an inverse relationship between EpiScore above or below one and skewness in
experimental epistasis, indicating that positions with EpiScore less than 1 more often work cooperatively
towards beneficial protein function, whereas pairs yielding EpiScore values greater than 1 usually result
in antagonistic interactions which impair function. In an effort to elucidate more specific mechanistic
details or trends underlying epistatic interactions which may exist in other systems, we broaden our
application of EpiScore to other known epistatic proteins with a focus on specific mutation pairs.
As such, we next study DHFR, a protein involved in the development of anti-malarial resistances in
malarial parasites. Anti-malarial drugs commonly target the DHFR, which catalyzes the reduction of
dihydrofolate and is essential to cellular growth and proliferation. Pyrimethamine is one such drug,
used to treat malaria caused by one of the most common malarial parasites, Plasmodium falciparum,
by competitively inhibiting DHFR. While exhibiting a particularly low sequence conservation between
species, most differences in sequence are from flexible loop regions [43], while the secondary structures
between these loops are highly conserved across all species [44]. However, widespread use of
pyrimethamine has resulted in a prevalence of pyrimethamine-resistant P. falciparum DHFR (pfDHFR)
mutants as a result of four key amino acid substitutions at positions N51, C59, S108 and I164 which
have also exhibited significant epistasis between mutation combinations [22] (Figure 5A).
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An EpiScore analysis applied collectively to the behavior of the functionally important FG
loop shows an immediate relationship between epistasis in pyrimethamine IC50 values of the
pairwise mutants and their associated EpiScore values. Figure 5B shows the EpiScore violin plots
(i.e., distributions and kernel density estimates) with respect to FG loop residues 196–206 for each
pfDHFR mutant pair. These violin plots show that EpiScore distribution for different mutation pairs
yields a different distribution for different residue pairs. S108-I164 gives a narrow distribution with a
peak around 1, suggesting that force perturbations simultaneously exerted on these positions yields
the same fluctuation response profile of the FG loop positions as the average of individual fluctuation
responses of the FG loop when the forces are exerted individually at S108 and I164. This distribution
pattern was also observed for positions N51 and C59, although at completely different positions within
the protein. On the other hand, pairing the position I164 with C59 rather than with S108 results in a
completely different EpiScore distribution, with diverse fluctuation responses of FG loop positions.
This suggests that I164 and C59 are highly cooperative, leading to a non-additive behavior when
these two positions are perturbed simultaneously. As I164 and C59 are located at different regions of
the protein (Figure 5A), one can expect to observe a wide range of EpiScore values associated with
this pair. This pattern tends to hold with distally located positions in the N51-S108 and C59-S108
distributions as well. Interestingly however, N51-C59 also exhibits EpiScore values less than 1, despite
the fact that they belong to the same helical region. The distributions suggest that anisotropy in the
network of interactions could modulate a wide range of fluctuation responses via these position pairs,
which result in different functional behavior upon mutation. To determine whether the change in
fluctuation response of the FG loop to simultaneous perturbations at these mutational positions can
capture functional substitution outcomes, we next investigate the relationship between EpiScore and
experimentally measured epistasis using pfDHFR pyrimethamine IC50 values.

Figure 5C presents the average EpiScore values with respect to the FG loop for each pfDHFR
pairwise mutant, in order of increasing pyrimethamine IC50 epistasis. A dashed line at an EpiScore
value of 1.0 has been added to aid in visual inspection. Here, IC50 epistasis is reported as the IC50

ratio of the dual mutant to the IC50 sum of the individual mutants. Any FG loop residue which
was within 10 angstroms of either mutation site per dual mutant was excluded from the averaging
in order to eliminate any strong dynamic coupling effects that arise as a result of direct contact
interactions. The average EpiScore values have a strong, negative correlation (R = −0.77) with IC50

epistasis, where the stronger the positive epistasis, the lower the average EpiScore value. For example,
an EpiScore value of ~0 means the pairwise dynamic coupling to FG loop positions of a dual mutant
pair is negligible as compared to the average individual dynamic coupling; that is, the distal sites
can individually impact position the FG loop residues allosterically. However, when treated together
with a simultaneous perturbation at both sites, the displacement response of the FG loop residues
are significantly lower, and, subsequently, their joint ability to allosterically regulate these FG loop
positions is effectively lost. Due to the interaction network between the two distal positions with the
FG loop, they may antagonistically compensate the amplitude and direction of the response when the
perturbations on these two sites are exerted at the same time. To the reverse, an EpiScore value >> 1
suggests that, simultaneously, two positions may exhibit dynamic coupling to the FG loop enough
such that their pairwise mutational impact fundamentally alters the role the FG loop plays within the
pfDHFR interaction network resulting in loss of function.

At first, this relationship may seem somewhat counterintuitive, as one could reasonably expect that
the higher the EpiScore value (i.e., the stronger the dual position dynamic coupling versus individually
averaged dynamic coupling), the higher the experimental epistasis. However, when complexed with
substrate, the functionally critical M20 loop [45] is stabilized in part through interactions with amino
acids in the FG loop [46]. It is possible that it is more favorable, in terms of pyrimethamine resistance,
to have mutations occur at position pairs that induce a smaller fluctuation response of FG loop when
perturbed simultaneously, (i.e., restricting the dynamics) than the average fluctuation response of
individual perturbations applied one at a time. This is in agreement with previous work which showed

62



Entropy 2020, 22, 667

that point mutations to two of the FG loop amino acids in E.coli resulted in a > 30 fold decrease in the
steady state hydride transfer rate constant as compared to the wild-type [47]. This could additionally
explain the pervasive and persistent nature of these mutations appearing globally in pfDHFR proteins.

 

Figure 5. (A) P. falciparum DHFR (pfDHFR) structure (PDB ID 3QGT [48]) with FG loop residues
(196–206) in yellow and mutation sites N51, C59, S108 and I164 colored in red. While not directly
involved in catalytic activity, widespread use of pyrimethamine has resulted in pervasive and persistent
mutations at these sites which confer pyrimethamine resistance. (B) Violin plot (distribution and kernel
density estimate) of EpiScore values and (C) average EpiScore values with respect to FG loop residues
for each pfDHFR dual mutant, in order of increasing pyrimethamine IC50 epistasis. A dashed line at
EpiScore values of 1.0 has been added to aid in visual inspection. In (B) any FG loop residue which
was within 10 angstroms of either mutation site per dual mutant was excluded from the averaging.
The average EpiScore values have a strong, negative correlation (R = −0.77) with IC50 epistasis,
where the stronger the positive epistasis, the lower the average EpiScore value.

Expanding our study to another system important to the concept of antibiotic resistance, we analyze
TEM-1, a protein which possesses antibiotic resistance largely driven by its high evolvability, with over
170 TEM-1 mutants discovered as clinical or hospital isolates [49]. TEM-1 is a well-studied enzyme in
experimental or laboratory-guided evolution, in an effort to both understand the mechanisms associated
with its antibiotic resistance as well as predict possible resistance-conferring mutations [49–52].

Previous work has shown that the majority of the resistance-conferring mutations in TEM-1 are
both distal to (10 Å or further) and highly coupled with the active site residues [53], indicating that
these mutations impact TEM-1 function by allosterically regulating active site behavior. Additionally,
it is now also understood that mutations resulting in the emergence of new enzymatic function
are generally destabilizing which suggests that the evolution of new function requires additional,
stabilizing mutations. As such, a more complete understanding of TEM-1 mutational behavior requires
an investigation into the epistatic interplay of point mutation combinations. Thus, it is an ideal system
for exploration of long-range dynamic communication to understand epistatic relationships in the
emergence of resistance.
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Here we focus on the specific epistatic relationship between four TEM-1 mutation sites (42, 104,
182 and 238) which have exhibited significant non-additive behavior [23]. Treating point mutations as
external perturbative forces to the internal network of a protein, we apply EpiScore analysis to the
main TEM-1 active site, residue S70, using a TEM-1 3-D structure obtained by an energy-minimized
and equilibrated version of PDB ID 1BTL [53] with mutation sites shown as blue spheres in Figure 6A,
along with active site S70 in red and alternative control sites (43, 105, 181 and 237) in yellow. Figure 6B
(left) shows a plot of EpiScore versus experimental epistasis using cefotaxime turnover rates and
exhibits a relationship similar to that found in pfDHFR, with a strong negative correlation of R = −0.71.
We also find that position pairs with EpiScore values > 1.0 (horizontal dashed line), presenting a
stronger pairwise dynamic coupling with position S70 compared to the average of the individual
dynamic coupling, also corresponds to two of the three TEM-1 dual mutants with negative epistatic
turnover rates (separated by vertical dashed line). Position pair 182-238 represents a deviation from
this behavior, and position pair 42-104 is a comparative outlier to the overall correlation. The deviation
of position pair 182-238 may be related to specific catalytic site interactions associated with position 238,
the only position in which mutation resulted in an increase in turnover rate across all eight possible
combinations of TEM-1 background. Interestingly, position 182, present in all position pairs with
the three highest EpiScore values, was also the position in which mutation resulted in a significantly
beneficial effect in the fewest number of possible backgrounds [23]. As a control, we also conducted this
analysis using the alternative sites representing positions immediately adjacent to the four mutation
sites (Figure 6B (right)). These positions result in a significantly worse correlation with cefotaxime
turnover rate epistasis than the mutation positions (R = −0.45 as compared to R = −0.71), showing the
sensitivity in the EpiScore metric to specific positions, regardless of separation distance.

 

Figure 6. (A) TEM-1 structure showing mutation positions (blue spheres), alternative control positions
(yellow spheres) and active site S70 (red sphere). ((B) left) EpiScore to active site S70 versus epistasis in
ln of turnover rate of cefotaxime for β-lactamase TEM-1 mutants [23]. Horizontal dashed line divides
EpiScore values above and below 1 while vertical dashed line divides positive and negative epistasis.
EpiScore and epistasis exhibit a strong negative correlation of R =−0.71. EpiScore values > 1 (horizontal
dashed line), indicating to a stronger pairwise dynamic coupling to position S70, also corresponds
to two of the three TEM-1 dual mutants with negative epistatic turnover rates (separated by vertical
dashed line). Position pair 182-238 represents a deviation from this behavior, and position pair 42-104
is a comparative outlier to the overall correlation. ((B) right) EpiScore versus ln of turnover rate using
the alternative control positions. Although these positions are immediately adjacent to the mutation
positions, they generate different EpiScore values resulting in a significantly worse correlation of
R = −0.45.
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3.2. Asymmetry and Epistasis

In TEM-1, mutational sites which confer incremental changes in biophysical activity are neither
locally distributed with respect to one another, nor at important functional sites. Furthermore, they do
not belong to an immediately identifiable allosteric inhibitor site, but they do, however, exhibit unique
pairwise epistatic behavior which indicates that they likely regulate the active sites allosterically.
In an effort to analyze whether the pairs having EpiScore less than 1 and associated with positive
epistasis (a beneficial, cooperative interaction) exhibit long-range communication that is distinct from
the pairs having EpiScore greater than 1 and associated with negative epistasis, we explored the
degree of asymmetry in long-range communication between the mutational positions and the active
site positions using DCIasym. Thus, we calculated DCIasym between each TEM-1 dual-mutant site
and all main active sites for the relevant TEM-1 structure (70, 73, 130, 166, 234, Figure 7), excluding
the outliers 182-238 and 42-104 from Figure 6B. Here, positive %DCIasym values indicate active-
site-dominant dynamic coupling, where mutational sites exhibit higher fluctuation response when the
active site is perturbed. On the other hand, negative %DCIasym values indicate mutation-dominant
dynamic coupling where perturbations at those positions controls the active site fluctuation response.
Interestingly, we observe a relationship that provides some mechanical insight relating the degree of
asymmetry to EpiScore; the dual mutants with EpiScore > 1 to active site S70 and epistasis < 1 had more
instances of mutational-dominant coupling asymmetry, while the reverse was true for two of the three
dual mutants with EpiScore < 1 and epistasis > 1 (position pair 42-104, an outlier in Figure 6B, does not
hold to this pattern). This suggests that the epistatic effects captured through EpiScore to active site
S70 may be compensated via coupling asymmetry to all active sites, with dynamic modification of the
system ultimately including both effects. A position pair that more strongly affects active site S70 via
EpiScore also possesses active site-dominant coupling asymmetry and vice versa. Taken together with
Figure 6B, these data indicate that dual mutants which confer less disruption to important active sites
(indicated by EpiScore < 1) than their averaged individual constituents, and those which are under
active site regulation, (indicated by positive %DCIasym) are those which display the largest degree of
positive epistasis.

Thus, as a test system, TEM-1 highlights the complex relationship between mutational positions,
allosteric relationships, and epistatic interplay. These emergent properties of the anisotropic
residue-residue interaction network within a protein must be accounted for when attempting to
fully understand or predict mutation outcomes.

3.3. Unidirectional Communication through DCIasym Creates Cause-Effect Relationships in Allosteric
Regulations

Using the dynamical picture presented above, the modulation of protein dynamics through
mutations (i.e., the fluctuation response to node perturbations within a network) is similar to the
modulation of dynamics through binding; this is the fundamental principle behind the concept of
dynamic allostery. With the TEM-1 dual mutation positions showing unique coupling asymmetry to the
active sites, it follows that there should be an obvious, unidirectional signature between allosteric sites
and active sites in known allosteric proteins. Here we explore the role dynamic coupling directionality
plays in allosteric regulations using an ideal model system, Pin1. Pin1 is a two-domain protein
containing a catalytic PPIase domain and a distally-located WW domain, connected by a flexible
(and highly disordered) interdomain linker [54–56]. While strictly regulated in both function and
expression within healthy biological tissue [57], the up-regulation and down-regulation of Pin1 is
associated with several forms of cancer and Alzheimer’s disease, respectively [57–61]. Studies have
shown that the activity of the PPIase domain is enhanced when a ligand is bound at the non-catalytic
WW domain [62,63] and communication between these two domains is requisite for proper biological
function [55,64–66].
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Figure 7. %DCIasym distributions to all TEM-1 active sites (70, 73, 130, 166, 234) for each dual mutant
position pair along with three-dimensional (3-D) structural representation of mutation sites (blue) and
active sites (red) excluding the outliers 182-238 and 42-104 from Figure 6B. The first dual mutant (104-182,
top left) has arrows drawn to indicate the coupling asymmetry, where red is active site-dominant and
blue is mutation site-dominant. Both dual mutants with negative epistasis in turnover rate and EpiScore
to position S70 < 1 also had %DCIasym distributions which were, overall, mutation site-dominant and,
conversely, those with positive epistasis in turnover rate and EpiScore to position S70 > 1 exhibited
active site-dominant %DCIasym.

Previous works propose the existence of communication networks between the WW domain
and the PPIase domain, including a unique allosteric pathway which only becomes active when a
substrate is bound to the WW domain [62]. A further computational study indicated that pathways of
communication via force propagation from the PPIase domain to the WW domain changed when a
ligand was WW domain-bound [67].

Applying our asymmetry analysis to binding pocket residues in the catalytic PPIase (%DCIij)
and non-catalytic WW domains (%DCIji) of Pin1 (PDB ID 3TCZ [7], ligands removed), we calculate
“%DCIasym” (%DCIij − %DCIji) the coupling asymmetry between PPIase domain binding positions
(63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) (Figure 8). Hence, negative
values indicate the WW domain position is dominant (blue arrows) whereas positive values indicate
the PPIase domain position is dominant (red arrows). We see that each of the four positions in the WW
domain exhibit unique asymmetric coupling with the PPIase domain positions, even when the WW
domain positions are close to one another. However, with the exception of coupling between position
63 and 31, the behavior of the PPIase domain positions is unique to their catalytic loop grouping
(e.g., {63,68}, {129,130,131}), where each position within a group has the same asymmetry directionality
to a given WW domain position. Overall, however, the full %DCIasym distribution indicates that there
is a clear bias toward unidirectionality from the WW domain to the PPIase domain; the WW domain is
dynamic coupling-dominant over the PPIase domain, with twice as many residue pairs exhibiting
WW-dominant coupling than the reverse (16/24 vs. 8/24, Figure 8C).
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Figure 8. (A) Graphical representation of coupling asymmetry between PPIase domain binding
positions (63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) where blue arrows
indicate the WW domain position is dominant and red arrows indicate the PPIase domain position is
dominant. (B) Explicit values of %DCIasym versus position combinations for position 31 in the WW
binding domain where values above and below 0 correspond to PPIase or WW domain dominating,
respectively (a value of 0 corresponds to perfect symmetry). (C) Full distribution of %DCIasym values
for all four WW domain binding positions and all six PPIase domain binding positions where 16 total
residue pairs are dominated by the WW domain whereas only eight pairs are PPIase domain-dominant.

This suggests a cause-and-effect relationship exists between the two domains. Using this
framework, a ligand binding event is modeled as a force perturbation to the binding positions in
each domain. Upon these random force perturbations, we find that, overall, the WW domain is able
to induce a stronger perturbation response in the PPIase domain than the reverse. This is largely
the expected relationship between an allosteric site and a catalytic site; communication between
these sites should predominantly involve information transfer from the allosteric site to the catalytic
site, indicating that %DCIasym can capture communication directionality in allosteric systems from
structural dynamics encoded within a given set of atomic coordinates.

4. Conclusions

In this work we showed how the anisotropic interaction network within a protein captures two
essential emergent properties of protein evolution—epistasis and communication directionality—using
the information stored in structural dynamics alone. Additionally, EpiScore can capture the behavior of
dual-mutation epistatic outcomes with some consistent trends across different protein systems. As seen
in pfDHFR, mutation pairs with a lower pairwise dynamic coupling versus average of individual
couplings (EpiScore < 1) to FG loop positions are favorable, as dual mutations at these positions may
be less likely to disrupt the FG loop’s interaction with the functionally critical M20 loop. A similar
trend was also observed in the EpiScore analysis of TEM-1 dual mutants, where lower EpiScore
to active site S70 was generally associated with higher positive experimental epistasis (R = −0.71)
Further, the system-wide EpiScore analysis of GB1 dual mutants has shown that the position pairs
with average EpiScore values > 1 were associated more frequently with negative epistasis, indicating
that these positions might ultimately be more disruptive to the entire protein when mutated together.
Furthermore, when dynamic coupling asymmetry analysis was applied via %DCIasym to TEM-1,
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we found that EpiScore and epistasis both relate to dynamic coupling asymmetry, where position pairs
which exhibited high EpiScores associated with negative epistasis also exhibited mutation-dominant
coupling asymmetry. This suggests that %DCIasym and EpiScore may both capture factors which
contribute towards the biochemical outcome of dual mutations. If both mutational sites dominate
the dynamics coupling with the active site (i.e., the active site responds more to mutational site
perturbations), then dual mutations on both sites lead to negative epistasis.

As modulation of normal modes and protein dynamics is not only a tool used in evolution but also
a principle exploited via allostery, we used an “ideal” allosteric system, Pin1, and observed the dynamic
coupling asymmetry between a well-identified allosteric domain and an enzymatically active domain
exhibits behavior that, as expected, showed the allosteric WW domain to dominate communication
to the PPIase domain. Overall, these two novel protein dynamics-based metrics provide steps to
mechanistically describe these complicated interactions, and also shed light on the complex anisotropic
interaction network which ultimately gives rise to epistasis and allosteric regulation. They can be
useful to predict mutational outcomes, particularly for those sites distal from the active site that can
modulate function [68].
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Abstract: β-Lactamases are enzymes produced by bacteria to hydrolyze β-lactam-based antibiotics,
and pose serious threat to public health through related antibiotic resistance. Class A β-lactamases
are structurally and functionally related to penicillin-binding proteins (PBPs). Despite the extensive
studies of the structures, catalytic mechanisms and dynamics of both β-lactamases and PBPs,
the potentially different dynamical behaviors of these proteins in different functional states still remain
elusive in general. In this study, four evolutionarily related proteins, including TEM-1 and TOHO-1
as class A β-lactamases, PBP-A and DD-transpeptidase as two PBPs, are subjected to molecular
dynamics simulations and various analyses to characterize their dynamical behaviors in different
functional states. Penicillin G and its ring opening product serve as common ligands for these four
proteins of interest. The dynamic analyses of overall structures, the active sites with penicillin G,
and three catalytically important residues commonly shared by all four proteins reveal unexpected
cross similarities between Class A β-lactamases and PBPs. These findings shed light on both the
hidden relations among dynamical behaviors of these proteins and the functional and evolutionary
relations among class A β-lactamases and PBPs.

Keywords: TEM-1; TOHO-1; PBP-A; DD-transpeptidase; conformational changes; catalytic
mechanism; evolution

1. Introduction

β-Lactam antibiotics have been used to treat bacterial infections since 1942. Antibiotics can
interfere with the cross-linking in cell-wall biosynthesis, inhibiting cell wall growth and thus killing
bacteria. As a mechanism of resistance for survival, bacteria produce β-lactamases to inactivate β-lactam
antibiotics. The bacterial resistance to β-lactam antibiotic is an urgent and critical threat to global health.
The main resistance mechanism involves antibiotic hydrolysis by β-lactamases through acylation and
de-acylation catalytic cycles. β-Lactamases can be classified into four sub-groups (Classes A, B, C
and D) based on their amino acid sequences and substrates [1]. Classes A, C and D are serine-based
β-lactamases and class B are zinc-based β-lactamases. Among the four sub-groups, class A β-lactamases
have a wide range of substrates and can spread via horizontal transfer, therefore posing a serious threat
to public health [2] and have been widely studied [3].

Penicillin is the first commonly used β-lactam antibiotic. TEM-1, belonging to the Class A
β-lactamases, can hydrolyze penicillin with high efficiency. TEM-1 has two conserved domains (α/β
and α) around its active site. The structure of TEM-1 binding with benzyl penicillin (penicillin G)
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as substrate (PDB ID: 1FQG) at 1.7 Å resolution was reported in 1992 [4]. In the reported crystal
structure, the penicillin G has a covalent bond with Ser70 as an intermediate structure. The catalytic
mechanism of TEM-1 against penicillin was proposed to involve acylation and de-acylation steps
(Figure 1). In the acylation step, the β-lactam ring of penicillin is attacked by the TEM-1 Ser70 residue.
In the de-acylation step, TEM-1 Glu166 residue acts as a general base in the attack on the substrate
assisted by a water molecule.

 
Figure 1. (A) Benzyl penicillin, (B) the hydrolysis product of benzyl penicillin.

TOHO-1 is another Class A β-lactamase, and has an efficient hydrolytic activity against penicillin.
Among Class A β-lactamases, TEM and the extended spectrum β-lactamases (ESBLs) CTX-M exhibit
highly variable substrate profiles. TOHO-1 belongs to the ESBL CTX-M type enzymes and exhibits
about 40% identity with the TEM families. The acyl-intermediate structure of TOHO-1 with penicillin
G was reported in 2002 [5]. Like other β-lactamases, TOHO-1 has two highly conserved domains (α/β
and α) around its active site. Ser70 at the active site of TOHO-1 is also critical for the hydrolysis of the
penicillin molecule. The structure TOHO-1 apo forms with triple mutants was solved using neutron
diffraction [6]. The Glu166 residue was proposed to act as a general base in the acylation reactions
of TOHO-1 [7]. The catalytic mechanism of TOHO-1 against cefotaxime was investigated using both
neutron and high-resolution X-ray diffraction. The study further emphasized the role of Lys73 in
the acylation mechanism [8]. Additional studies also related TOHO-1 catalytic mechanism with the
functions of active site residues [9–11].

Many reported structural evidences show that β-lactamases were evolved from cell wall
biosynthetic enzymes, which are referred to as penicillin-binding proteins (PBPs) [12]. PBPs have a
high sequence homology to class A β-lactamases. For example, the protein PBP-A shares a typical
catalytic cavity and an overall fold with Class A β-lactamases, and 28% sequence similarities with
β-lactamases on average [13]. Comparing the structure of PBP-A with Class A β-lactamases, PBP-A
has a six residues deletion on the conserved Ω-loop, and there is no residue corresponding to Glu166
in TEM-1 as a general base in hydrolysis mechanism.

D-Alanyl-D-alanine transpeptidase (DD-transpeptidase), which was discovered in Streptomyces
sp. R61 and classified as a PBP, has low sequence similarity compared to class A β-lactamases.
DD-transpeptidase is a main target of penicillin and was proposed to share the same ancestor with
β-lactamases [14]. Similar to TEM-1 and TOHO-1, DD-transpeptidase also has acylation and de-acylation
catalytic steps for hydrolyzing penicillin. One main difference between β-lactamases (TEM-1 and
TOHO-1) and DD-transpeptidase is that the de-acylation step reaction rate of DD-transpeptidase is
extremely slow. Therefore, DD-transpeptidase can become effectively trapped in the acylated state.
The crystal structure of DD-transpeptidase with penicillin G as a substrate was solved in 2004 and
used to compare with the DD-transpeptidase complex with a peptidoglycan-mimetic β-lactam [15].
The structures and kinetic data from this study support the hypothesis that peptidoglycan-mimetic
side-chains can improve the β-lactam inhibition activity [15]. In addition, Thr299 was identified as a
highly conserved residue in the active site of DD-transpeptidase [16].

It was proposed that the majority of Class A β-lactamases and the present DD-transpeptidase were
evolved from a same ancestor, most likely a DD-transpeptidase because of the similarity of substrate
profiles, overall folds and the functional groups of the active site [17]. The ligand similarity could be
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used to cluster proteins with low sequence similarity. For example, a network-based model reported by
Cheng et al. analyzes the interaction between proteins and ligands without structural information [18].
β-Lactamases and PBPs haven been studied through a ligand centric network model as well [19].

PBPs could undergo acylation reaction with penicillin G. PBP-A was identified as a member of
a new family in PBPs due to a significant sequence similarity to class A β-lactamases. The crystal
structure of PBP-A in apo state and acylated with penicillin G intermediate are both available from
a study to evolve PBP-A into β-lactamase. In this study, PBP-A was compared with TEM-1 using
structural alignment and hydrogen bond networks analysis [13]. Residue Glu166 was introduced to
the shorter Ω-Loop of PBP-A, and a 90-fold increase in de-acylation rate was obtained. However, the
sequence of PBP-A was not homologous with DD-transpeptidase [20].

Many computational methods, including molecular dynamic (MD) simulations and hybrid
quantum mechanical and molecular mechanical (QM/MM) calculations were used to characterize the
conformational changes and elucidate the catalytic mechanisms of protein structures [21]. The catalytic
mechanism of DD-transpeptidase against cephalothin was studied using QM/MM method [22]. Tyr159
in DD-transpeptidase was proposed to carry functions different from the Tyr150 in β-lactamase as a
general base. β-Lactamases have a rapid de-acylation step compared with DD-transpeptidase [23].
MD simulations could provide detailed dynamical insight into protein functions. Markov state model
(MSM) is an effective method to model the kinetic information based on MD simulations [24,25].

In one of our previous studies, the dynamical properties of TEM-1 in different functional states,
including complexes binding with penicillin G and its de-acylation product, respectively, and the apo
state were characterized through MD simulations and machine learning methods [26]. The key residues
for TEM-1 dynamics in different functional states were identified using machine learning methods.

In the current study, TEM-1, TOHO-1, PBP-A and DD-transpeptidase as structurally and
functionally related proteins are subjected to extensive MD simulations and analyses. Despite
the low sequence and structural homology, all four proteins could hydrolyze penicillin G, and are
coupled with the evolution from ancient PBPs to β-lactamases. Detailed analyses were carried out
using the hidden Markov state model (HMM) based on the overall enzyme structures and MSMs based
on the active site binding with penicillin G to shed light onto the evolutionary relations among these
four proteins.

2. Materials and Methods

The initial structures of TEM-1, TOHO-1, Penicillin-Binding Protein (PBP-A) and
DD-transpeptidase were obtained from the Protein Data Bank (PDB). Their PDB IDs are 1FQG [4],
1IYQ [5], 2J8Y [13] and 1PWC [15], respectively. All four selected crystal structures are in acylated state
with covalent bonds to penicillin G intermediates. For each protein, three states were constructed: the
apo state (a protein alone without ligand), reactant state (a protein binding with penicillin G, Figure 2A),
and product state (a protein binding with the hydrolyzed product of penicillin G Figure 2B). It should
be noted that no crystal structure for these enzymes in the reactant or product state is available in PDB.

2.1. Molecular Dynamic Simulations

The CHARMM36 force field was used to describe the selected enzymes [27]. CHARMM General
Force Fields (CGenFF) [28,29] for penicillin G and its de-acylation product were generated using the
online server ParamChem (https://cgenff.paramchem.org/). All simulation systems were solvated
in water box using a TIP3P water model [30,31] with the addition of sodium and chloride ions to
balance the charge and reproduce typical physiological ion concentrations. Initially, the simulation
systems were subjected to 5000 steps of the steepest descent energy minimization and the adopted
basis Newton-Raphson (ABNR) method with the gradient tolerance 0.02 kcal/mol·Å. Then, 10 ns of
isothermal-isobaric ensemble (NPT) MD simulation was carried out for four proteins in each state.
Subsequently, 1050 ns NVT ensemble MD simulations at 300 K were conducted. The first 50 ns
simulations were discarded as equilibration and the following 1 μs was used for further analysis. The
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time step for MD simulations is 2 fs, and simulation trajectories were saved every 1000 steps (2 ps). All
the bonds associated with hydrogen atoms were fixed during the simulation using SHAKE method [32].
Periodic boundary condition was used in all simulations, and electrostatic interactions were calculated
using the particle mesh Ewald (PME) method [33]. All structural preparation and simulations were
constructed using CHARMM simulation package version 41b1 with the support of GPU calculations
based on OpenMM [34–36].

Figure 2. The sequence of four proteins including TEM-1, TOHO-1, PBP-A and DD-transpeptidase
with STAMP structural alignment: (A) residue indices are from 1 to 103; (B) residue indices are from
104 to 206; (C) residue indices are from 207 to 309; (D) residue indices are from 310 to 409. TEM-1
residues are listed in blue text, TOHO-1 residues are listed in red text, PBP-A residues are listed in green
text, DD-transpeptidase residues are listed in yellow text and DD-PEP represents DD-transpeptidase.

2.2. Root-Mean-Square Fluct+uation (RMSF)

RMSF is a parameter to evaluate the fluctuation of conformation for each snapshot of the simulation
from the averaged structures:

RMSFi =

⎡⎢⎢⎢⎢⎢⎣ 1
T

T∑
t=1

∣∣∣ri(t) − ri
∣∣∣2
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1
2

(1)

2.3. Principal Component Analysis (PCA)

PCA is a widely used dimensionality reduction method for molecular dynamics simulations [37,38].
It could be used to extract the dominant modes of the motion from a trajectory of molecular dynamic
simulation. The normal modes for PCA were obtained through diagonalizing the correlation matrix of
the atomic position in one trajectory. The correlation matrix element is calculated as:

Cij =
cij√ciicj j

=
〈rirj〉 − 〈ri〉〈rj〉√[

(〈r2
i 〉 − 〈ri〉2)(〈r2

j 〉 − 〈rj〉2)
] (2)

where Cij is the variable of correlation matrix between atoms i and j.

2.4. Configurational Entropy

Entropy is estimated for the simulations using quasi-harmonic approximations based on MD
simulations. Quasi-harmonic analysis is calculated by the inversion of the cross-correlation matrix C:

Fij = kBT
[
C−1

]
i j

(3)
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Fij is the element of the force constant matrix F describing the quasi-harmonic potential [39], kB is the
Boltzmann constant and T is the temperature. The configurational entropy Scon f ig of the system can be
calculated by the vibrational frequency γi of the molecule with N atoms:

Scon f ig = kB

3N−6∑
i

hγi/kBT

ehγi/kBT − 1
− ln (1− e−hγi/kBT) (4)

where h is the Planck constant. The vibrational frequency γi in the quasi-harmonic model i of a
molecule can be calculated as the solution of the secular equation for angular frequency ω:

det(F−ω2M) = 0 (5)

where M is the mass matrix of the molecule [37].

2.5. Time-Structure-Based Independent Component Analysis (t-ICA)

t-ICA [40–43] method was n-dimensional times series, t-ICA is performed by solving generalized
eigenvalue problem:

CF = CKF (6)

where K = diag(k1, . . . , kn) and F = ( f1, . . . , fn) are the eigenvalue and eigenvector matrices,
respectively. C is the covariance matrix, and C is the time-lagged covariance matrix at lagged
time τ, which are defined as:

C = 〈(x(t) − 〈x(t)〉)t(x(t) − 〈x(t)〉)〉 (7)

C = 〈(x(t) − 〈x(t)〉)t(x(t + τ) − 〈x(t)〉)〉 (8)

Generally, the time-lagged covariance matrix is asymmetric. Avoiding complex numbers in
eigenvectors and eigenvalues, a symmetrized time-lagged covariance matrix is given by 1

2 (C + tC),
which is under an assumption of time reversibility of a trajectory. The projected trajectories:

a(t) = t(a1(t), . . . , an(t)) = tFx(t) (9)

The independent component vectors obtained from t-ICA are uncorrelated and have the maximum
autocorrelation value.

2.6. Markov State Models (MSMs)

A MSM [44,45] is used to reduce the complexity of the MD simulations by dividing the phase
space into discrete microstates. The discrete microstates are generated by k-means clustering method.
Consequently, the transition matrix could be computed, and the element in matrix Tij represents the
probability of a microstate starting from microstate i, being transferred to microstate j after the lag
time, τ. The dynamics of one system can be decomposed into independent processes represented by
the eigenvectors of matrix T. The time scales of the process are computed from the eigenvalues, λi, of
matrix T as:

ti = − τ
ln|λi| (10)

2.7. Hidden Markov Model (HMM)

It was shown that all important mechanistic molecular quantities, both kinetic and thermodynamic,
computed by a Markov state model (MSM) are also computable from HMM [25,46,47]. In HMM
framework, the basic assumption is that the full phase-space dynamics are Markovian in thermodynamic
equilibrium. The dynamics can be projected onto the discrete clusters whose discrete dynamics was

77



Entropy 2019, 21, 1130

observed, which can generate so-called Projected Markov Models (PMMs). If the dynamics are
metastable with a number of m slow relaxation processes, and the processes can transfer to the
next-faster processes within a separation of timescales, then the PMMs can be approximated by HMM
with m hidden states. A maximum likelihood transition matrix could be estimated among hidden
states by an adequate lag-time. The lag-time dependent on estimated relaxation timescales is plotted
in Supplementary Information (SI), and the lag time used in analysis is selected at the convergence of
timescale. Meanwhile, the probability of a microstate belonging to a certain hidden state is estimated.

2.8. Transition-Path Theory

In order to build the transition pathways, two subsets of the state space corresponding to unbound
structures (initial states) and bound complex (end states) are defined to investigate the transition
processes. All the other states are intermediate states. The committor probability q+i is defined as
the probability at state i, in which the system will reach the end state next rather than the initial
state. According to the definition, q+i = 0 for all i in initial state and q+i = 1 for all i in end state.
The committor probability for all intermediate states i can be calculated by the following equation:

− q+i +
∑
k∈ I

Tikq+k = −
∑

k∈end states

Tik (11)

The committor increases from an initial state to an end state. The effective flux fi j = πiq−i Tijq+j ,
where πi is the stationary probability when the transition matrix Tτ is normalized. Here, Tτ has a
single eigenvector and eigenvalue 1, since it is ergodic (within finite time any state can be reached
from any other state), q−i is the probability at state i and previously at an initial state. In equilibrium of
a molecule, q− = 1− q+. For any intermediate states pair i, j, both the fi j and f ji are positive. If the f+i j

is only considered, f+i j = max
{
0, fi j − f ji

}
. The total flux can be calculated by:

F =
∑

i ∈ initial state

∑
j �initial state

πiTijq+j (12)

The individual pathways pi connecting an initial state to an end state can be decomposed from
the flux. In equilibrium, a flux can be nonuniquely decomposed into pathways from an initial state to
an end state. The decomposition generates a set of pathways pi along fi. The fi provides a relative
probability when the set of pathways pi is considered [24,48]:

pi =
fi∑
j f j

(13)

In the current study, the PCA of all α-carbon coordinates for four proteins in three states are
analyzed by Bayesian HMM [46]. HMM is used to explore the conformational changes of overall
structures of four proteins in each state. α-Carbons are backbone carbons, which represent the
relative position with reference to other functional groups. Protein α-carbons have been used in
many computational methods, such as principal component analysis and recurrence quantification
analysis, to elucidate the essential dynamics and functions of proteins [49–51]. In this paper, α-carbon
coordinates were subjected to HMM analysis to extract the overall dynamic motions of proteins in three
states. To apply HMM, simulations were first grouped into microstates through clustering analysis.
Then several macrostates could be identified with appropriate lag time and estimated transition
probabilities. The lag-time and number of macrostates for each protein in different states are not
unique (time scales dependent on lagged time listed in Supplementary Figures S1–S4). The top two
tICs (lag-time 2 ns used for all four proteins) of pairwise distances among heavy atoms of residues in
active site (residues are listed in Table 1) were carried out for each protein in different states. MSMs
are constructed to elucidate the conformational changes of active site for each protein complex with
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penicillin G. Perron-cluster cluster analysis (PCCA) was applied to map microstates onto macrostates.
The lag-time are selected depending on the implied timescale plots listed in Supplementary Figure S5.
The lag time at the end of the x-axis is the adequate lag time (Supplementary Figures S1–S5) used in
further construction. PyEMMA version 2.5.6 [25,52–54] was employed to build Markov state Models
and Hidden Markov state Model. Other parameters besides lag time in the construction of models are
set to their default values.

Table 1. The residues in active site of TEM-1, TOHO-1, PBP-A and DD-transpeptidase.

TEM-1 TOHO-1 PBP-A DD-Transpeptidase

S70 S70 S61 S62
K73 K73 K64 K65
S130 S130 S122 Y159
N132 N132 N124 N161
N166 A166 L158 A237
K234 K234 K219 H298
S235 T235 T220 T299
A237 S237 D222 T301
G244 N245 G228 T307

3. Results

3.1. Hidden Markov State Models Analysis of Overall Structures

The structures of TEM-1 (PDB ID: 1FQG), TOHO-1 (PDB ID: 1IYQ), PBP-A (PDB ID: 2J8Y) and
DD-transpeptidase (PDB ID: 1PWC) were aligned for the comparisons in structure and sequence
(Figure 2). All four proteins are subjected to a structural alignment by MultiSeq tool in VMD
under STAMP structural alignment algorithm [55,56]. TEM-1 and TOHO-1 both belong to class A
β-lactamases and have a very high sequence similarity. PBP-A and DD-transpeptidase belong to the
penicillin-binding proteins (PBPs). Although PBPs were reported to share low sequence similarity
with β-lactamases [13], PBP-A does show high homology level with TEM-1 and TOHO-1. Comparing
to the other three proteins, DD-transpeptidase has several long insertions in its structure. The longest
sequence insertion of DD-transpeptidase (residue number 143 to 190 in Figure 1B) was close to the
Ω-loop of TEM-1 (residue number 191 to 200 in Figure 1B). The residue numbers listed in the Figure 2
are based on the STAMP structural alignment and do not represent the real residue ordered in the
PDB structures.

The acylation mechanism of Class A β-lactamase is divided into two steps, shown in Scheme 1A [57].
In the first step, a proton is abstracted from Ser70 and another proton is transferred to Glu166 via water
as a bridge. The nucleophilic (deprotonated Ser70) attacks the carbonyl group of the β-lactam ring.
In this step, the tetrahedral intermediate structure is formed. Next, the cleavage of the β-lactam bond
is accompanied by Ser130, Lys73 is neural, and Glu166 remains protonated. Then, a proton transfers
from Glu166 to Lys73, with the formation of the acyl-enzyme.

The deacylation mechanism of Class A β-lactamase is divided into three steps, shown in
Scheme 1B [58]. In the first step, the nucleophilic attack catalyzed by the hydrolytic water molecule
occurs on the carbonyl carbon of the acyl-enzyme. And the Glu166 plays as a general base accepting
the proton from the water molecule. In the second step, the bond between Ser70-O and the β-latam
carbonyl carbon atom is broken. In the third step, the protonation state of the protein is regenerated
through the hydrogen transfer from the Glu166 carboxylate to the Ser70-O.

The secondary structures of TEM-1, TOHO-1, PBP-A and DD-transpeptidase are illustrated in
Figure 3 with the penicillin G molecule shown as sticks and balls. There are three unique active site
residues shared by all four proteins. Through the comparison among the TOHO-1 (1IYQ) [5] and
TEM-1 (1FQG) [4] active sites in acyl-intermediate structures, PBP-A (2J8Y) [13] active site binding with
penicillin G, and DD-transpeptidase (1PWC) [15] active site binding with penicillin G, three residues
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are shared among all four proteins. These common active site residues are Ser70, Lys73 and Asn132 in
TEM-1, Ser70, Lys73 and Asn132 in TOHO-1, Ser61, Lys64 and Asn124 in PBP-A, and Ser62, Lys65 and
Asn161 in DD-transpeptidase. These three common active residues are illustrated in Figure 3.

  
Scheme 1. (A) The acylation mechanism of Class A β-lactamases, Step 1: The nucleophilic attack and
formation of the tetrahedral intermediate; Step 2: Formation of the acylenzyme from the tetrahedral
intermediate (B) The deacylation mechanism of Class A β-lactamases, Step 1: The nucleophilic attack
by a water molecule and formation of the tetrahedral intermediate; Step 2: The bond-breaking between
Ser70-O of the enzyme and the β-latam carbonyl carbon atom; Step 3: Hydrogen atom transfers from
Glu166 to Ser70-O and the regeneration of protonation state of the enzyme.

Figure 3. The structures of proteins binding with penicillin G molecule (red sticks): (A) TEM-1;
(B) TOHO-1; (C) PBP-A; (D) DD-transpeptidase. The binding pockets are identified around three
active site residues represented by balls (Ser70, Lys73 and Asn132 for TEM-1; Ser70, Lys73 and Asn132
for TOHO-1; Ser61, Lys64 and Asn124 for PBP-A; Ser62, Lys65 and Asn161 for DD-transpeptidase),
penicillin G is illustrated as balls and sticks.
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The Hidden Markov state Model (HMM) analyses were carried for TEM-1 in apo, reactant and
product states based on the principal component analysis (PCA) of all α carbon coordinates in each
state. In each state of TEM-1, the saved snapshots from simulations are projected onto the top two
main vectors referred to as the principal component 1 (PC1) and principal component 2 (PC2) space.
The projected snapshots are consequently subjected to the k-means clustering analysis and divided
into 200 microstates on the PC1/PC2 surface. Evaluations of the implied timescale show convergences
at lag time 160 ps for the apo state, 200 ps for the reactant state, and 180 ps for the product state
(Supplementary Figure S1). The HMM was applied to construct metastable macrostates from the
clustered microstates using appropriate lag time for each state.

The HMM analyses of TEM-1 result in three, three, and four metastable macrostates for the apo,
reactant and product states, respectively (Figure 4). The metastable macrostates are illustrated in
different colors for comparison purpose. In the three states of TEM-1, the macrostates distributed in
a similar area on the PCA surface are in the same color, suggesting that these macrostates share a
similar dynamic behavior. The transition probabilities among the macrostates for each TEM-1 state
were calculated using HMM. For each macrostate, the probability to remain in the current state is
overwhelmingly higher than the probability transferring to any other states. Therefore, each macrostate
represents a free energy minimum on the surface with kinetic barriers preventing transformations
to other macrostates. The simulation of TEM-1 apo state comprises three macrostates (Figure 4A).
The macrostate 2 with the largest coverage on the PCA surface is the dominant state among three
macrostates. The three macrostates in TEM-1 reactant state (Figure 4B) have an arrangement similar to
the apo state, suggesting a similar dynamical behavior for the TEM-1 in these two functional states.
Interestingly, the interconversion between macrostates 2 and 3 is extremely unlikely in the reactant
state (Figure 4B). This demonstrates the significant impact from the binding with penicillin G on
the dynamical properties of TEM-1. The TEM-1 product state simulations were divided into four
macrostates (Figure 4C). The distribution of these four macrostates on the PCA surface is significantly
different from the apo and reactant states. The interconversion between macrostates 1 and 4 in the
product state is extremely unlikely (Figure 4C).

Figure 4. Hidden Markov state model (HMM) of TEM-1 apo (A), reactant (B), and product (C) states.
The macrostates resulted from the HMM are based on the 200 microstates generated using k-means
clustering analysis of TEM-1 simulations in each state. The simulations of each TEM-1 state are projected
onto two main vectors referred to as the principal component 1 (PC1) and principal component 2 (PC2)
from the principal component analysis (PCA) of all α carbon coordinates in each state simulations. The
transition probabilities among macrostates in HMM are also listed. Overall, the probability to remain
in the macrostate is overwhelmingly higher than transferring to any other macrostates.

To further understand the dynamical behaviors of TEM-1 in different functional states, the
representative structures for each macrostate in apo, reactant and product states of TEM-1 are
illustrated in Figure 5. The RMSFs for each macrostate of TEM-1 in three states are plotted in
Supplementary Figure S10 to distinguish the key conformational change. Key secondary structures
with significantly different RMSF values in three functional states are highlighted in different colors
(Figure 5). Penicillin G and its hydrolyzed product as ligands in the reactant and product states are
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illustrated in space filling mode. Residues 163 to 178 located around the active site in the TEM-1
structure is referred to as Ω loop, which is a critical functional group in the catalytic process of TEM-1
with penicillin G.

 
Figure 5. The representative structures of macrostates in three functional states of TEM-1: (A) apo state,
(B) reactant state, (C) product state. In TEM-1 apo state (A): residue 163 to 178 (Ω loop), residue 216 to
228 are highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green). In TEM-1 reactant
state (B): residues 64 to 74, residues 163 to 178 (Ω loop), residues 212 to 228 and residues 234 to 236 are
highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green). The penicillin G ligand is
illustrated as space filling model in the binding pocket. In TEM-1 product state (C): residues 124 to 134,
residues 163 to 178 (Ω loop) and residues 212 to 228 are highlighted in macrostate 1 (blue), macrostate 2
(red), macrostate 3 (green), and macrostate 4 (orange). The hydrolyzed penicillin G (product state) is
illustrated as space filling model in the binding pocket.

The structural differences among three macrostates in the TEM-1 apo state mainly stem from the Ω
loop and residues 216 to 228 (Figure 5A). The residues 216 through 228 also form a loop-like structure,
which is located at the distal end of the active site and displays certain flexibility in the apo state.

In the reactant state, the Ω loop and residues 216 to 228, 64 to 74, 234 to 236, and 211 to 215 display
significant differences among three macrostates (Figure 5B). Compared to the apo state, the binding
with the penicillin G ligand changes the distribution of Ω loop in the reactant state, in favor of
conformations closer to the ligand. In addition, the binding with the ligand diminishes the flexibility
of loop region residues 212 to 228. Residues 64 to 74 and 234 to 236 as two loops adjacent to the active
site, however, show a slightly higher flexibility than in the apo state. Some key catalytic residues for
TEM-1, including Ser70, Lys73, Ser235, belong to these regions.

The representative structures of four macrostates in TEM-1 product state are illustrated in Figure 5C.
Surprisingly, the Ω loop displays much higher flexibility than both the apo and reactant states. But a
loop region of residues 212 to 228 displays conformations similar to the reactant state. Different from the
apo and reactant states, another loop region of residues 124 to 134 displays significant conformational
changes of TEM-1 in the product state. Interestingly, the residues 130, 131, 132 in this loop is important
functional residues in catalytic mechanism [59,60].

The simulations of TOHO-1 in apo, reactant and product states are also projected onto the surfaces
formed by top two vectors (PC1 and PC2) from the PCA using all α carbon coordinates for each
state. The projected snapshots were consequently subjected to the k-means clustering analysis and
divided into 200 microstates based on structural differences. HMM was then applied on the microstates
to generate macrostates. The lag time used in the construction of HMM for TOHO-1 is 160 ps for
the apo state, 160 ps for the reactant state, 180 ps for the product state as shown in Supplementary
Figure S2A–C. The HMM analysis of TOHO-1 resulted into three, four, and five macrostates for the apo,
reactant and product states, respectively (Figure 6). The transition probabilities among macrostates in
each TOHO-1 functional state is also estimated using HMM and labeled (Figure 6). The probability
of each macrostate remaining in itself is much higher than the probabilities of transferring to other
macrostates, making each macrostate as a free energy minimum.
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Figure 6. Hidden Markov state model (HMM) of TOHO-1 (A) apo, (B) reactant, and (C) product
states. The macrostates resulted from the HMM are based on the 200 microstates generated using
k-means clustering analysis of TOHO-1 simulations in each state. The simulations of each TOHO-1
state are projected onto two main vectors referred to as the principal component 1 (PC1) and principal
component 2 (PC2) from the principal component analysis (PCA) of all α carbon coordinates in each
state simulations. The transition probabilities among macrostates in HMM are also listed.

The HMM analysis of TOHO-1 apo state resulted into three macrostates (Figure 6A).
The macrostates 1 and 2 are adjacent to each other with relatively high transition probabilities
among them. The representative structures of three macrostates are illustrated in Figure 7A and the
key conformational changes are highlighted in blue, red and green colors for macrostates 1, 2 and 3,
respectively. Surprisingly, the TOHO-1 apo state does not show a significant flexibility. The Ω loop
(residues 160 to 178) displays a limited flexibility. The main conformational changes among three
macrostates lie in the helix of N-terminus (residues 27 to 45), which swings away from the protein in
the macrostate 3 (highlighted in green).

Figure 7. The representative structures of macrostates in three functional states of TOHO-1: (A) apo
state, (B) reactant state, (C) product state. In TOHO-1 apo state (A) N-terminus helix (residues 27 to 45),
a loop of residues 267 to 255 and Ω loop (residues 160 to 178) are highlighted in macrostate 1 (blue),
macrostate 2 (red), and macrostate 3 (green). In TOHO-1 reactant state (B) N-terminus helix (residues
27 to 45), Ω loop (residues 160 to 178), loop of residues 215 to 240, loop of residues 267 to 275 and loop
of residues 275 to 288 are highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green)
and macrostate 4 (orange); the penicillin G is illustrated in space filling mode at the binding pocket.
In TOHO-1 product state (C): loop of residues 97 to 110 and Ω loop (residues 160 to 178) are highlighted
in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green), macrostate 4 (orange) and macrostate 5
(cyan). The hydrolyzed penicillin G (product state) is illustrated in the space filling mode.

The distribution of four macrostates in TOHO-1 reactant state (Figure 6B) closely resembles the
distribution of the macrostates in TOHO-1 apo state (Figure 6A). Macrostates 1, 2, and 4 in the TOHO-1
reactant state lie in the left-hand side of the PC1-PC2 surface, covering the area corresponding to the
macrostates 1 and 2 in the TOHO-1 apo state. The distributions of macrostates 1, 2, and 4 of TOHO-1
reactant state show little overlapping between adjacent states 1 and 2 as well as adjacent states 2
and 4. The representative structures of macrostates 1 to 4 are illustrated in Figure 7B. The secondary
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structures with significant conformational changes among different macrostates are highlighted in
blue (macrostate 1), red (macrostate 2), green (macrostate 3) and orange (macrostate 4). It is interesting
that the helix at the N-terminus (residues 27 to 45) in the reactant state shows more flexibility than
the apo state. The Ω loop shows the comparable flexibility to the apo state, but there is a loop region
(residue 267 to 275) close to the ligand displaying significant conformational changes among different
macrostates. In addition, the loop comprising residues 215 to 240 and helix comprising residues 276 to
288 also display higher flexibilities in the reactant state than in the apo state. Overall, the binding with
penicillin G seems to increase the overall flexibility and conformational distribution of TOHO-1.

The distribution of five macrostates in TOHO-1 product state (Figure 6C) is dramatically different
from the apo and reactant states. The distributions of macrostates 1, 2 and 3 are close to each other and
cover the majority of the surface. The transition probabilities between states pairs 1 and 3, 1 and 2
are rather high. Transitions to and from states 4 or 5 are rather rare, and do not lead to meaningful
transition probabilities associated with either of these two states, suggesting that these two states
are rather isolated in the product state. The representative structures of these five macrostates are
illustrated in Figure 7C. Interestingly, the binding mode of the hydrolysis product of penicillin G is
quite different from the binding mode in the reactant state, and leads to a different dynamical behavior
of the protein. The Ω loop shows a significant flexibility comparing to the apo and reactant states.
This is actually similar to the case of TEM-1. Another loop region of residues 97 to 110 of TOHO-1 also
shows a higher flexibility than in both apo and reactant states of TOHO-1. Both of these two loops
are away from the ligand of product state. On the other hand, the N-terminus (residues 27 to 45) is
more rigid in the product state than in the apo and reactant states. In both TEM-1 and TOHO-1 case,
the binding with hydrolysis product of penicillin G leads to the dynamical behavior of the protein
dramatically different from both the apo and reactant states. These findings indicate the importance of
dynamical behavior in different functional states of β-lactamases. It is also worth to point out that
the dynamical behaviors of both TEM-1 and TOHO-1 in product state are significantly different from
the apo and reactant states. This may suggest that the key differences in dynamical behaviors of
β-lactamases in different functional states are important for their catalytic functions.

The HMM analysis was carried out for the simulations of PBP-A in apo, reactant, and product
states similar to TEM-1 and TOHO-1, and lead to four macrostates in each functional state of PBP-A
(Figure 8). The lag times used for PBP-A three states is are 180 ps for the apo state, 180 ps for the
reactant state, 160 ps for the product state as shown in Supplementary Figure S3. In the apo state of
PBP-A, macrostates 2, 3, and 4 are adjacent to each other, with significant transition probabilities among
them. The macrostate 1 is separated from the macrostates 2, 3, and 4, and is connected to macrostate 2
with a detectable transition probability. The representative structures of four macrostates in PBP-A apo
states are illustrated in Figure 9A. Among the macrostates of apo state, the Ω loop (residues 154 to 164)
does not show significant conformational changes. But a loop region of residues 96 to 108 at the active
site shows significant conformational changes. Despite the overall structural difference, the structural
alignment between PBP-A and TEM-1 shows that the Ω loop in PBP-A (residues 152 to 166) aligns well
to the Ω loop of TEM-1.

All four macrostates in the reactant state of PBP-A are clustered together with significant transition
probabilities among them (Figure 8B). This indicates that the PBP-A bound with penicillin G in reactant
state may not be flexible. The representative structures of four macrostates of PBP-A in the reactant
state are illustrated in Figure 9B. The binding with the ligand diminishes the flexibility of overall
structure of PBP-A, especially the loop region of residues 96 to 108. However, the Ω loop (residues 152
to 166) shows somewhat a higher flexibility in the reactant state than in the apo state. The residues 48
to 64 include a key active site residue Ser 61. Residues 48 to 64 have a relative high flexibility because of
a flexible Ser61 and adjacent residues. Although the region does not seem to have high conformational
changes in representative structures, the actual RMSFs of this region are higher than other regions as
plotted in Supplementary Figure S17.
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Figure 8. Hidden Markov state model (HMM) of PBP-A (A) apo, (B) reactant, and (C) product states.
The macrostates resulted from the HMM are based on the 200 microstates generated using k-means
clustering analysis of PBP-A simulations in each state. The simulations of each PBP-A state are projected
onto two main vectors referred to as the principal component 1 (PC1) and principal component 2 (PC2)
from the principal component analysis (PCA) of all α carbon coordinates in each state simulations. The
transition probabilities among macrostates in HMM are also listed.

Figure 9. The representative structures of macrostates in three functional states of PBP-A: (A) apo state,
(B) reactant state, (C) product state. In PBP-A apo state (A): loop of residues 96 to 108 and Ω loop
(residues 154 to 164) are highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green) and
macrostate 4 (orange). In PBP-A reactant state (B): residues 48 to 64, loop of residues 96 to 106, and
Ω loop of residues 154 to 164 are highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3
(green) and macrostate 4 (orange). The penicillin G is illustrated in space filling mode in the binding
pocket. In PBP-A product state (C): loop of residues 96 to 108 and Ω loop of residues 154 to 164 are
highlighted in macrostate 1 (blue), macrostate 2 (red), macrostate 3 (green), macrostate 4 (orange).
The hydrolyzed penicillin G (product state) is illustrated in space filling mode in the binding pocket.
The hydrolyzed penicillin G (product state) is represented in the space filling mode.

The four macrostates in the product state of PBP-A are also clustered together with significant
transition probabilities among them (Figure 8C). This may suggest that the overall structural flexibility
of PBP-A in this state is low. The representative structures of four macrostates in the product state are
illustrated in Figure 9C. The Ω loop (residues 152 to 166) shows similar conformations to the apo state.
Interestingly, the loop of residues 96 to 108 is more flexible than in both apo and reactant states.

The HMM analysis was carried out for the simulations of DD-transpeptidase in the apo, reactant,
and product states similar to the other three proteins, and lead to four macrostates in each functional
state of PBP-A (Figure 10). The lag times used in the construction of HMM for DD-transpeptidase
are 180 ps for the apo state, 160 ps for the reactant state, and 180 ps for the product state as shown
in Supplementary Figure S4A–C. In the apo state of DD-transpeptidase, all four macrostates are
adjacent to each other with significant transition probabilities among them (Figure 10A). Similar to
the PBP-A analysis, this could indicate that the protein does not show a high flexibility in this state.
The representative structures of four macrostates in the apo state are illustrated in Figure 11A. Residues
117 to 141 with mixed loop and helix, residues 227 to 243 (corresponding to the Ω loop in TEM-1
under structural alignment in Figure 2C), and the loop of residues 273 to 279 are highlighted with the
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significant conformational variance in overall DD-transpeptidase structure (Figure 11A). It should be
noted that the residues 117 to 141 are located in an insertion of sequence (among residues 110 to 157 as
shown in Figure 2B). Residues 273 to 279 are among another insertion of sequence (residues 275 to 284).

Figure 10. Hidden Markov state model (HMM) of DD-transpeptidase (A) apo, (B) reactant, and (C)
product states. The macrostates resulted from the HMM are based on the 200 microstates generated
using k-means clustering analysis of DD-transpeptidase simulations in each state. The simulations
of each PBP-A state are projected onto two main vectors referred to as the principal component 1
(PC1) and principal component 2 (PC2) from the principal component analysis (PCA) of all α carbon
coordinates in each state simulations. The transition probabilities among macrostates in HMM are
also listed.

Figure 11. The representative structures of macrostates in three functional states of DD-transpeptidase:
(A) apo state, (B) reactant state, (C) product state. In DD-transpeptidase apo state (A): residues 117 to
141, residues 227 to 243 and residues 273 to 279 are highlighted in macrostate 1 (blue), macrostate 2
(red), macrostate 3 (green) and macrostate 4 (orange). In DD-transpeptidase reactant state (B): residues
41 to 63, residues 117 to 141 and residues 170 to 183 are highlighted in macrostate 1 (blue), macrostate 2
(red), macrostate 3 (green) and macrostate 4 (orange). The penicillin G is represented in space filling
mode in the binding pocket. In DD-transpeptidase product state (C): residues 117 to 141, residues 147
to 163, residues 225 to 239 and residues 271 to 279 are highlighted in macrostate 1 (blue), macrostate
2 (red), macrostate 3 (green), macrostate 4 (orange). The hydrolyzed penicillin G (product state) is
illustrated in the space filling mode.

Comparing to the apo state, the four macrostates in the reactant state of DD-transpeptidase are
separated from each other (Figure 10B). The representative structures of these macrostates in the
reactant state are illustrated in Figure 11B, and do not show a significant difference from the apo state
structures. Two loops (residues 41 to 63 and residues 170 to 183) and residues 117 to 141 (including
mixed loop and helix) with significant conformational changes among four macrostates are highlighted.
Residues 117 to 141 are in an insertion of sequence in DD-transpeptidase comparing to TEM-1, TOHO-1
and PBP-A structure. Residues 41 to 63 includes a key active site residue Ser62. A loop formed by
residues 170 to 183 away from the active site shows a higher flexibility in the reactant state than in the
apo state.
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Four macrostates in the product state of DD-transpeptidase are rather close to each other on the
PCA surface (Figure 10C). The distribution of these four states are similar to both the apo and reactant
states, which indicates a similar dynamical behavior in three functional states of DD-transpeptidase.
The representative structures of these macrostates are illustrated in Figure 11C. The flexibility displayed
by the residues 117 to 141 is similar to those in the apo and reactant states. The other three loops
region, residues 147 to 163, residues 225 to 239 and residues 271 to 279 with significant conformational
changes do not show high flexibilities either. All the four loops are located around hydrolyzed product
of penicillin G as a ligand.

3.2. Analysis of Active Site Structures Using Markov State Models

The above analyses strongly indicate that TEM-1 and TOHO-1 as two Class A β-lactamases share
a similar dynamical behavior in different catalytic functional states, including binding with either
reactant or product and the apo state as well. PBP-A and DD-transpeptidase, on the other hand, share
a similar dynamical behavior in different catalytic functional states. All four proteins share a similar
catalytic cavity. The active site residues of each protein are listed in Table 1. To further analyze and
directly compare the dynamical behaviors of these proteins related to their catalytic activities, the active
site of each protein combining with the reactant penicillin G are subjected to analysis using MSM based
on t-ICA. The lag times of the MSM for four proteins are 3 ns as shown in Supplementary Figure S5.

The main focus is the dynamical process of binding between the protein active site and the
ligand. During the simulations of all four proteins, the escaping of the ligand from the active site
was observed. Only the simulations of reactant state for each protein were subjected to the analysis.
Therefore, the binding process of the ligand from the active site in each protein could be characterized as
macrostates generated from the MSM. The distribution of macrostates in the reactant state simulations
of each protein are plotted in Figure 12.

Such an analysis reveals dominant transition pathways of the system of interest. For example,
states sequence [2–5] in Figure 12A represents a transition pathway 4→5→2→3 with probability 0.871,
with state 4 is an initial state and state 3 is an end state. The representative structures of active site
combining with reactant for macrostates generated from the MSM of trajectories are illustrated in
Figure 13. These representative structures are divided into the initial state (unbound state), intermediate
states, end state (bound state) and trapped states. The trapped states are those states that are terminal
states without being on the transition pathway connecting the bound and unbound states. It should
be noted that the unbound states are those structures that are the most different from the bound
structure, and are not expected to be a completely dissociated state between the active site and ligand.
The trapped states can be described as local minima on kinetic energy surface, separated by energy
barrier from the main basin. Such trapped states are rarely visited, and are stable for significant amount
of time if they are actually visited [61].

Based on the transition probabilities among these macrostates, one could identify the most
probable transition pathways connecting the bound and unbound states. For example, the most
probable transition pathway from the unbound state to intermediate state to the bound state for TEM-1
binding with penicillin G is macrostates 4→5→2→3 with transition probability as 0.871 (Figure 12A).
The probability is calculated using the committor probability described in transition-pathway
theory. The representative structures for macrostates 2–5 illustrated in Figure 13A demonstrate
the conformational change of active site with the ligand throughout the binding process. There
are other possible transition pathways, including 4→2→6→3 and 4→2→3, which bear much lower
transition probabilities. In the macrostate 4 (initial state), the penicillin G resides at the cavity of TEM-1
with a weak interaction with Ala237. In the intermediate states, residue Asn132 in the macrostates 2, 5
and 6 moves opposite to the penicillin G and creates additional space for the ligand. This behavior of
Asn132 was reported in an experimental paper [59]. In the six macrostates of TEM-1, residues Ala237
and Lys73 have significant conformational changes. Ala237 moves closer to the ligand. From the initial
state to the end state, residue Lys73 gradually moves to the back side and closer to Ser70.
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The most probable transition pathway of TOHO-1 binding with penicillin G is identified through
MSM as macrostates 5→4→2→1 (Figure 12B). This transition pathway is illustrated in Figure 13.
The trapped state 3 seems to be similar to the bound state. Overall, the active site of TOHO-1 reactant
state does not show a high flexibility. Only Asn132 has a significant conformational change in this case.
Similar to TEM-1, the binding pocket of TOHO-1 is broadened in the intermediate states (macrostates 2
and 4) by the rotation of sidechain of residue Asn132.

The macrostates distributions of active site with penicillin G in PBP-A cover a wide range of t-ICA
surface constructed by the two main vectors. The significant transition probabilities among multiple
macrostates lead to multiple transition pathways between the bound and unbound state (Figure 11C).
The most probable transition pathway is 1→ 5→ 6 . The second most probable transition pathway is
1→ 2→ 6 . The representative structures are illustrated in Figure 13. Other transition pathways are less
probable. It is interesting that the transition pathway 1→ 5→ 2→ 6 is less probable than the pathway
as 1→ 5→ 2→ 4→ 6 , because of the higher transition probability for transition of 2→ 4→ 6 than
the one for transition of 2→ 6 . The main conformational changes along the transition pathway are
from Asn124 and Asp222, which correspond to Asn132 and Ala237 in TEM-1 active site. Residue
Asn124 has a similar motion to provide space for the ligand in the intermediate states. However,
residue Asp222 provides a closer interaction with penicillin G than Ala237 in TEM-1.

Figure 12. Markov state model analysis of reactant state simulations for (A) TEM-1, (B) TOHO-1, (C)
PBP-A, (D) DD-transpeptidase. The simulations are subjected to t-ICA to identify the top two vectors
(t-ICA 1 and t-ICA 2), upon which the simulations are projected. Based on the representative structures,
different macrostates are identified as initial state (unbound state), intermediate states, end state (bound
state) and trapped states. It should be noted that the trapped states are terminal states without being
on the transition pathway connecting the bound and unbound states. The unbound states are those
structures that are the most different from the bound structure, and are not expected to be a completely
dissociated state between the active site and ligand.
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Figure 13. The representative structures of active site of TEM-1, TOHO-1, PBP-A and DD-transpeptidase
with penicillin G as a ligand corresponding to the macrostates in Figure 12. The macrostates are divided
into four states: initial state (unbound state), intermediate states, end state (bound state) and trapped
states. The trapped states are those states that are terminal states without being on the transition
pathway connecting the bound and unbound states. The unbound states are those structures that are
the most different from the bound structure, and are not expected to be a completely dissociated state
between the active site and ligand. The residues in each active site are illustrated as surface in different
colors, and penicillin G molecule is illustrated in stick model. The residues in TEM-1 active site include
S70, K73, S130, N132, N166, K234, S235, A237, G244; the residues in TOHO-1 active site include S70,
K73, S130, N132, A166, K234, T235, S237, N245; the residues in PBP-A active site include S61, S64, S122,
N124, L158, K219, T220, D222, G228; the residues in DD-transpeptidase active site include S62, K65,
Y159, N161, E237, H298, T299, T301, T307. The residue names are labeled in the initial states, some
residues hidden in the back are not labeled.

There are only three macrostates generated for the active site of DD-transpeptidase with penicillin
G (Figure 12D). The most probable transition pathway is going through the sole intermediate state.
The similarity among the three macrostates of DD-transpeptidase active site (Figure 13) agrees with
the observation of the low flexibility of DD-transpeptidase in the reactant state. This is similar to the
active site of TOHO-1. Upon the ligand binding, an active site residue Tyr159 has a rotational motion
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from the initial state to the intermediate state. In the end state, Tyr159 returns to the conformation as in
the initial state.

Both the active sites of TEM-1 and PBP-A show a significant flexibility with multiple transition
pathways connecting the bound and unbound states. The TEM-1 and PBP-A have similar t-ICA
distributions, and TOHO-1 and DD-transpeptidase simulations have similar narrow arched t-ICA
surfaces, but the overall distributions of TEM-1 and TOHO-1 are similar to each other, and PBP-A
shares similar layouts with DD-transpeptidase.

3.3. Atomic Distance

The analyses of whole protein simulations show that the TEM-1 and TOHO-1 as Class A
β-lactamase share similar overall dynamical behaviors, and PBP-A and DD-transpeptidase as PBPs
share similar overall dynamical behaviors. But the above analyses of active site dynamics reveal that
TEM-1 and PBP-A active sites are more flexible than the active sites of TOHO-1 and DD-transpeptidase.
As pointed out earlier in this study, TEM-1, TOHO-1, PBP-A and DD-transpeptidase share three unique
residues, including serine, lysine and asparagine, at their active site. [4,5,13,15] To further compare the
dynamical behaviors related to their catalysis, the averaged distances among heavy atoms of three
residues (in total 23 heavy atoms) and penicillin G (23 heavy atoms) are illustrated as a heat map
in Figure 14. The structures of penicillin G and three conserved residues in active site are shown in
Figure 15. All the atom numbers on penicillin G, serine, lysine and asparagine structures are listed in
Supplementary Scheme S1.

Figure 14. The heat-map of averaged distance (nm) among the heavy atoms of penicillin G and
three conserved residues at the active site (A) TEM-1: Ser70, Lys73 and Asn132; (B) TOHO-1: Ser70,
Lys73 and Asn132; (C) PBP-A: Ser61, Lys64 and Asn124; (D) DD-transpeptidase: Ser62, Lys65 and
Asn161. The color bars are listed on the right of the heat map from dark red to light yellow. (The atom
numbers of both heavy atoms of penicillin G and three residues are listed in Supplementary Scheme S1,
Tables S1 and S2).

90



Entropy 2019, 21, 1130

Figure 15. The structures of penicillin G and three conserved residues at active site (Serine, Lysine and
Asparagine) in (A) TEM-1: Ser70, Lys73 and Asn132; (B) TOHO-1: Ser70, Lys73 and Asn132; (C) PBP-A:
Ser61, Lys64 and Asn124; (D) DD-transpeptidase: Ser62, Lys65 and Asn161. The hydrogen atoms are
not plotted for clarity.

The darker color means a short distance, and lighter color represents a long distance. The distance
heat map could be viewed as a 2D fingerprint for dynamics of this three residues triad in each protein.
The bird eye views of TEM-1, TOHO-1 and PBP-A are similar. Although all four heatmaps display
overall similar pattern, the heatmaps of TEM-1 and PBP-A are more similar to each other, while the
heatmaps of TOHO-1 and DD-transpeptidase are more similar to each other.

3.4. Configurational Entropy

The configurational entropies of four proteins based on the simulations in different states are
calculated and plotted in Figure 16.

Figure 16. The configurational entropies of four proteins in apo state (red circles), reactant state (green
stars) and product state (blue triangles), (A) TEM-1, (B) TOHO-1, (C) PBP-A and (D) DD-transpeptidase.

All the proteins display clear convergence tendency in each state. TEM-1 and PBP-A are similar
to each other in a way that the apo state has the lowest entropy and the reactant and product states
have very close entropies. TOHO-1 and DD-transpeptidase are significantly different. The apo state of
TOHO-1 also has the lowest entropy. The entropy of TOHO-1 reactant is marginally higher than the
apo state. But the entropy of TOHO-1 product state is significantly higher than both apo and reactant
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state. Therefore, the entropy could be a main driving factor for the TOHO-1 catalysis against various
ligands. Different from other three proteins, DD-transpeptidase reactant state has the lowest entropy.
Both reactant and product states entropies are only slightly higher with the product state entropy as
the highest. Overall, it is unlikely that entropy plays dominant role in the functions of TEM-1, PBP-A
and DD-transpeptidase.

4. Discussion

In this study, TEM-1, TOHO-1, PBP-A and DD-transpeptidase in the apo, reactant, product
states were subjected to MD simulations and detailed analyses. Their dynamical behaviors are
impacted differently by the presence of penicillin G as a ligand in the reactant state and the hydrolyzed
penicillin G as a ligand in the product state. Although the catalytic and dynamic mechanisms of
β-lactamases and PBPs in reactant state were investigated intensively, the importance of dynamic
behaviors of β-lactamases and PBPs in product state is still underestimated. It has been proposed that
DD-transpeptidase could be closely related to a common ancestor of modern PBPs and β-lactamases [23].
The current study provides dynamical information related to the evolutionary relations between
β-lactamases and PBPs represented by the target four proteins.

A common Ω loop at the active site for class A β-lactamases has been recognized as a crucial
structure for their catalysis against antibiotics [5,62]. One study of TEM-1 using MD simulations and
NMR showed that TEM-1 is a rigid structure. The main function of Ω loop is to broaden the catalytic
cavity through its fluctuation [63]. Our study provides additional insight into the dynamical behavior
of TEM-1 Ω loop as it displays more flexibility in the product state than in the apo and reactant states
(Figure 5). Meanwhile, the residues 124 to 134 region also shows significant conformational changes
only in TEM-1 product state, and is more stable in reactant and apo state. Therefore, this region could
be as a potential mutagenesis position to increase the flexibility of Ω loop. This unique feature of Ω loop
is also shared with TOHO-1 (Figure 6). However, both PBP-A and DD-transpeptidase do not show this
particular feature of Ω loop. For both proteins, the Ω loop or the structure corresponding to the Ω loop
do not show high flexibility in the product states (Figures 9 and 11). Therefore, it could be speculated
that the high Ω loop flexibility in the product state could be one of key properties of β-lactamases
developed during the evolution from ancient PBPs. A more general observation of these four proteins
is that both the apo and reactant states of TEM-1 and TOHO-1 have similar flexibility which is lower
than their product states. But all three states of PBP-A and DD-transpeptidase have similar flexibility.
Considering the catalytic function of β-lactamases against antibiotics, it could be suggested that higher
flexibility in the product state is auxiliary to maintain an appropriate turnover rate.

Residues 218 to 224 form a helix in TEM-1 and is referred to as helix 11. This helix 11 is proposed
as an allosteric site in TEM-1 related to its thermal stability [64]. A wider range of residues 216 to
228 enclosing helix 11 display significant flexibility in all three states of TEM-1. In both reactant and
product states, this flexible region extends to residue 212 towards the catalytic active site of TEM-1.
This observation also supports the allosteric behavior of the helix 11. The Leu220 in this region was
proposed to interact with substrates to improve binding. The Val216 also has an auxiliary role to anchor
a structurally conserved water molecule [65,66]. Therefore, the region of residues 216 to 228 plays a
critical role with substrate binding. In the reactant and product state, this extended flexible region
(include up to residue 212) reveals that the dynamics of residues 212 to 215 are impacted by substrate
binding interactions. Therefore, residues 212 to 215 could be potential mutagenesis targets to alter the
catalytic activities of this protein. Ser70 is a critical residue for TEM-1 catalytic activity, and is located
on the loop of residues 64 to 74. The Ser70 is covalently bound to the ring opening intermediate of
Penicillin G as a product of the acylation step [4,26]. Interestingly, the loop of residues 64 to 74 display
significant flexibility only in the reactant state of TEM-1 (Figure 5), showing its unique role for catalysis
in the reactant state.

In TOHO-1, residues 234, 235, and 236 are recognized as the catalytically important KTG
sequence [5,67]. Residues 215 to 240 display significant flexibility only in the reactant state of TOHO-1
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(Figure 7), also showing its unique role for catalysis in the reactant state. A Ser237Ala mutation in this
region can significantly change the catalytic efficiency of this protein. Besides, the residue 240 could
affect catalytic efficiencies of many substrates [67]. Furthermore, we propose that other residues in the
region of residues 215 to 240 could also serve as mutagenesis targets to adjust the catalytic efficiencies
of TOHO-1 against various antibiotics. As an extended-spectrum β-lactamase, TOHO-1 does show
higher catalytic activities against more antibiotics than TEM-1. Our analysis shows that TOHO-1 in
its reactant state display the higher flexibility than both the apo and product states, which could be
correlated with the wide range of ligands profile associated with TOHO-1.

Comparing to other extended-spectrum β-lactamases, TOHO-1 contains a unique residue Arg274
on residues 266 to 288 helix. When binding with penicillin G as a substrate, Arg274 was forced out of
the active site since it obstructs the binding pocket of TOHO-1 [5]. This could be one of the reasons
that residues 266 to 288 helix display significant flexibility in the reactant state of TOHO-1. Also
in TOHO-1, residue Tyr105 was reported to be involved in active site binding with substrate [68].
It was also reported in the same study that Tyr105 displays a single conformation in apo state and two
conformations in complexed state. Tyr105 is located on the loop region of residues 97 to 110, which
displays significant flexibility only in the product state (Figure 6C).

However, not all the observations about TEM-1 and TOHO-1 in this study agree with the
experimental study well. An NMR study of TEM-1 in its apo state identifies residues 124 to 134 with
important chemical shift difference [69]. This region, however, displays more prominent flexibility in
the product state than in the reactant and apo states (Figure 5). The increased flexibility is reflected
in one of the macrostates of TEM-1 in product state (Supplementary Figure S12), and is induced by
the binding with the penicillin G hydrolysis product. In addition, the overall RMSFs on total 1 μs
simulations of TEM-1 in apo, reactant and product states show similar flexibilities (Supplementary
Figure S6). Residues 124 to 134 indeed have fluctuations in TEM-1 apo state, which corresponds to the
chemical shift difference in NMR study. However, the flexibility is more observable in the macrostate 2
of product state.

In PBP-A, two loops forming the active site, residues 96 to 108 and Ω loop (residues 154 to 164)
display significant flexibilities in all functional states (Figure 9). It was reported that the loop of residues
96 to 108 in PBP-A displays different conformations from the corresponding loop of residues 100 to
115 in TEM-1 [13]. Specifically, Glu104 and Tyr105 in TEM-1 are not well aligned with the equivalent
residues Glu96 and Ala97 with an amino acid insertion in PBP-A. This structural difference could
be the main reason for the difference of dynamical behavior between PBP-A and TEM-1, which may
contribute to the significant differences between the catalytic activity and profiles of these two enzymes.

DD-transpeptidase as the other PBP in this study displays a similar dynamical behavior to PBP-A
with similar flexibilities of key secondary structures around the active site. Both Ser62 and Lys65 in
DD-transpeptidase are catalytically important residues [15]. The loop of residues 41 to 63 containing
residue Ser62 shows moderate flexibility only in the reactant state. In addition, Tyr159 was also
proposed as a key residue in acylation step [70,71]. The loop of residues 147 to 163 shows a moderate
flexibility only in the product state.

TEM-1 and TOHO-1 in reactant state have increased flexibilities of the residues in the active site
than in the apo state, because of the interactions between penicillin G and residues in active site. Starting
with the binding with the cavity of protein, the penicillin G ligand gradually leaves the active site after
long time simulations, resulting in the observed conformations in initial states, intermediate states,
end states and trapped states (Figure 13). Unlike β-lactamases, both PBP-A and DD-transpeptidase do
not catalyze wide range of hydrolysis reactions against various antibiotics. Therefore, these enzymes
do not display significantly different flexibility among apo, reactant, and product states. In addition,
due to the larger size of DD-transpeptidase than other three proteins, the binding with a ligand may
lead to smaller impact on protein flexibility.

Further analysis of active site structures combining with the penicillin G as a ligand leads to an
unexpected similarity between TEM-1 and PBP-A as well as between TOHO-1 and DD-transpeptidase.
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We propose that the dynamic properties of the catalytic cavity of TEM-1 are closer to PBP-A than
TOHO-1 in terms of their evolution. And the catalysis related dynamics of TOHO-1 has a closer
relationship with DD-transpeptidase than with TEM-1. Additional analysis of three residues serine,
lysine and asparagine at active site shared by all four proteins leads to some similarities among TEM-1,
TOHO-1, and PBP-A, other than DD-transpeptidase. Given that the crystal structures of TEM-1,
TOHO-1, and PBP-A are aligned well to each other, while DD-transpeptidase has numerous sequence
insertions comparing to the other three proteins (Figure 2), these comparisons do shed light onto the
relations among dynamical behaviors of these proteins in different functional states and the functional
and evolutionary relations among class A β-lactamases and PBPs.

5. Conclusions

In this study, the hidden Markov state model was used to analyze the molecular dynamics
simulations of two class A β-lactamases, TEM-1 and TOHO-1, and two penicillin binding proteins,
PBP-A and DD-transpeptidase. Both principal component analysis and time-lagged independent
component analysis were employed as dimensionality reduction methods for the projection of
simulations onto reduced dimensions of space. The analysis of dynamical behaviors of overall
structures of four proteins agrees with the overall structural comparison in that the key loop structures
around the active site in TEM-1 and TOHO-1 displays lower flexibility in the apo and reactant
states than in the product state. Likely due to its wider spectrum of ligands, TOHO-1 displays
higher overall flexibility in its reactant state than in the apo and product states. Both PBP-A and
DD-transpeptidase display consistent flexibility in all three states, agreeing with their specific catalytic
functions. Additional analysis of dynamical behavior of active sites complexed with penicillin G in
these four proteins reveals that the active sites are rather flexible in TEM-1 and PBP-A with multiple
transition pathways between bound and unbound states. Further analysis of three key catalytic residues
shared among four proteins indicates similarity of dynamical property among TEM-1, TOHO-1, and
PBP-A. All the dynamics analyses presented in this study show the complication of evolutionary
relations between β-lactamases and PBPs, and support the notion that protein dynamics may play a
significant role in and are characterized by the catalytic functions of these enzymes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/11/1130/s1,
Figure S1: Estimated relaxation timescale based on different lag time for TEM-1. (A) Apostate simulations; (B)
Reactant state; (C) Product state. The relaxation timescales are estimated based on transition probabilities among
different microstates regarding with the different lag time as interval for analysis, Figure S2: Estimated relaxation
timescale based on different lag time for TOHO-1. (A) Apo state simulations; (B) Reactant state; (C) Product state.
The relaxation timescales are estimated based on transition probabilities among different microstates regarding
with the different lag time as interval for analysis, Figure S3: Estimated relaxation timescale based on different lag
time for PBP-A. (A) Apo state simulations; (B) Reactant state; (C) Product state. The relaxation timescales are
estimated based on transition probabilities among different microstates regarding with the different lag time as
interval for analysis, Figure S4: Estimated relaxation timescale based on different lag time for DD-transpeptidase.
(A) Apo state simulations; (B) Reactant state; (C) Product state. The relaxation timescales are estimated based on
transition probabilities among different microstates regarding with the different lag time as interval for analysis,
Figure S5: Estimated relaxation timescales based on different lag time for active site binding with penicillin G
in reactant states of: (A) TEM-1; (B) TOHO-1; (C) PBP-A; (D) DDtranspeptidase. The relaxation timescales are
estimated based on transition probabilities among different microstates regarding with the different lag time
as interval for analysis, Figure S6: The RMSFs for 1 μs TEM-1 simulations in apo, reactant and product states,
Figure S7: The RMSFs for 1 μs TOHO-1 simulations in apo, reactant and product states, Figure S8: The RMSFs for
1 μs PBP-A simulations in apo, reactant and product states, Figure S9: The RMSFs for 1 μs DD-transpeptidase
simulations in apo, reactant and product states, Figure S10: The RMSFs for three macrostates in TEM-1 apo
state simulations. Region A1 represents residues 163 to 178 (Ω loop), Region A2 represents residues 216 to 228,
Figure S11: The RMSFs for three macrostates in TEM-1 reactant state simulation. Region A1 represents residues 64
to 74, region A2 represents residues 163 to 178 (Ω loop), region A3 represents residues 212 to 228, and region A4
represents residues 234 to 236, Figure S12: The RMSFs for four macrostates in TEM-1 product state simulations.
Region A1 represents residues 124 to 134, region A2 represents residues 163 to 178 (Ω loop), and region A3
represents residues 212 to 228, Figure S13: The RMSFs for three macrostates of TOHO-1 apo state simulations.
Region A1 represents residues 27 to 45, and region A2 represents residues 160 to 178 (Ω loop), Figure S14: The
RMSFs for four macrostates in TOHO-1 reactant state simulations. Region A1 represents residues 27 to 45, region
A2 represents residues 160 to 178 (Ω loop), region A3 represents residues 215 to 240, and region A4 represents
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residues 266 to 288, Figure S15: The RMSFs for five macrostates in TOHO-1 product state simulations. Region A1
represents residues 97 to 110, and region A2 represents residues 160 to 178 (Ω loop), Figure S16: The RMSFs for
four macrostates in PBP-A apo state simulation. Region A1 represents residues 96 to 108, and region A2 represents
residues 154 to 164, Figure S17: The RMSFs for four macrostates in PBP-A reactant state simulations. Region
A1 represents residues 48 to 64, region A2 represents residues 96 to 106, and region A3 represents residues 154
to 164 (Ω loop), Figure S18: The RMSFs for four macrostates in PBP-A product state simulations. Region A1
represents residues 96 to 108, and region A2 represents residues 154 to 164 (Ω loop), Figure S19: The RMSFs for
four macrstates in DD-transpeptidase apo state simulations. Region A1 represents residues 117 to 141, region
A2 represents residues 227 to 243, and region A3 represents residues 273 to 279, Figure S20: The RMSFs for four
macrostates in DD-transpeptidase reactant state simulations. Region A1 represents residues 41 to 63, region A2
represents residues 117 to 141, and region A3 represents residues 170 to 183, Figure S21: The RMSFs for four
macrostates in DD-transpeptidase product state simulations. Region A1 represents residues 117 to 141, region A2
represents residues 147 to 163, region A3 represents residues 225 to 239, and region A4 represents residues 271 to
279, Scheme S1: Penicillin G and three residues at active site (Serine, Lysine and Asparagine) shared by TEM-1,
TOHO-1, PBP-A and DD-transpeptidase. The atomic symbol with sequence numbers are corresponding to the
symbol used atomic distances in heat map, Table S1: The atomic numbers used in averaged distance heatmap for
the heavy atoms of Serine, Lysine and Asparagine (1-23) shared among all four proteins, Table S2: The atomic
numbers used in averaged distance heatmap, the heavy atoms in penicillin G (1-23).
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Abstract: The nature of changes involved in crossed-sequence scale and inner-sequence scale is
very challenging in protein biology. This study is a new attempt to assess with a phenomenological
approach the non-stationary and nonlinear fluctuation of changes encountered in protein sequence.
We have computed fluctuations from an encoded amino acid index dataset using cumulative
sum technique and extracted the departure from the linear trend found in each protein sequence.
For inner-sequence analysis, we found that the fluctuations of changes statistically follow a −5/3
Kolmogorov power and behave like an incremental Brownian process. The pattern of the changes in
the inner sequence seems to be monofractal in essence and to be bounded between Hurst exponent
[1/3,1/2] range, which respectively corresponds to the Kolmogorov and Brownian monofractal process.
In addition, the changes in the inner sequence exhibit moderate complexity and chaos, which seems
to be coherent with the monofractal and stochastic process highlighted previously in the study.
The crossed-sequence changes analysis was achieved using an external parameter, which is the
activity available for each protein sequence, and some results obtained for the inner sequence,
specifically the drift and Kolmogorov complexity spectrum. We found a significant linear relationship
between activity changes and drift changes, and also between activity and Kolmogorov complexity.
An analysis of the mean square displacement of trajectories in the bivariate space (drift, activity) and
(Kolmogorov complexity spectrum, activity) seems to present a superdiffusive law with a 1.6 power
law value.

Keywords: power law; Brownian process; Kolmogorov complexity; entropy; chaos; monofractal;
non-linear; cumulative sum; sequence analysis; protein engineering

1. Introduction

From the information viewpoint, a protein sequence can be considered as a distribution of
successive symbols extracted with a rule from a dictionary. Conceptually, it means that the protein
sequence is simply encoded to a set of symbol combinations. Moreover, the number of the symbols
used is usually very small in comparison to the length of the protein sequence. Consequently, there is
a huge variety of combinations of symbols to encode a protein sequence in the real world. It is
well-known that the molecular mechanism (stability, structure function, disorder) is often triggered
by complex interactions [1–3]. Like the emerged part of an iceberg, the intricated symbol set of an
encoded protein sequence can be seen as a footprint of a wide range of covert biochemical interactions
within the protein. Then, there are numerous encoder models that try to reflect the reality accurately
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using a conversion rule related to physicochemical and biochemical properties [4–6]. Beyond the
symbol combination and arrangement of the protein sequence, understanding the nature and the
organization of the symbols is very challenging in protein biology. Therefore, analyzing the encoded
protein sequence by means of nonlinear analysis can provide some insights about the dynamics of
the changes within the dataset. Searching for similarities between encoded protein sequences in a
dataset is one of the important advantages of morphological analysis of protein sequences. There are
many approaches to extract groups, which are conceptually based on a clustering method of global
or local information about the protein sequence [7–13]. The prediction of disorder of the protein
sequence is often related to the ability to track the degree of randomness, the stochasticity, and the
complexity embedded in the whole encoded dataset. There are studies which focus on randomness,
chaos, long-range interaction between sequences for classification, and predictability. For example,
Yu et al. [14] have made a comparative study of structure and intrinsic disorder between 10,000
natural and random protein sequences and found that natural sequences have more long disordered
regions than random sequences. In addition, Gök et al. [5] have used the Lyapunov exponent and
test four classifier algorithms (Bayesian network, Naïve Bayes, k-means, and SVM) to identify the
disordered protein regions. Long short-term memory (LSTM) recurrent neural networks is a deep
learning algorithm that has gained some interest for tracking the long-range interactions between
sequences [1,15]. These studies reveal that there is potential information about degree of randomness,
disorder, and stochasticity in protein sequences and beyond some degree of predictability. It means
that the protein sequence exhibits some order within disorder and changes are not a likelihood for this
set of symbols. To find out what kind of information and properties of disorder or complexity we are
able to extract from protein sequences, we propose to scan the changes inside the protein sequences and
between sequences using a multidisciplinary approach. It means that we intend, at the same time, to use
tools from information theory field (entropy of information, Kolmogorov complexity), physical theory
(chaos, fractional Brownian processes, drift-diffusion processes), and signal processing (multifractality,
Fourier analysis). To our knowledge, the use of multidisciplinary tools to analyze the dynamics of
the changes within a protein sequence and between sequences is new. As mentioned previously,
the encoded protein sequence contains successive numerical values and can also be considered as a
time series. The aim of this paper is to encompass the variability of the inner changes hidden behind
the encoded protein sequence using nonlinear tools, and to assess the predictability of the underlying
non-stationary protein sequence activity.

The study is organized as follows. Section 2 presents the experimental dataset and the encoded
protein sequence. Section 3 describes the algorithm used to analyze the time series (i) entropy and
chaos, (ii) Kolmogorov complexity and Turing machine, (iii) law-scaling and stochastic process, and (iv)
surrogated and shuffled data. Finally, Section 4 includes both presentation of the results obtained and
discussion. The concluding remarks are given in Section 5.

2. Experimental Dataset

To facilitate the understanding of readers outside the realm of life sciences, we will provide a brief
definition of a polypeptide/protein sequence. A protein sequence is a chain made of residues of amino
acids. Twenty amino acids are the basic building blocks for proteins. We will provide an application
example as well.

2.1. Alphabetical Dictionary

Each amino acid is represented by a letter corresponding to the one-letter code for an amino
acid. The global sequence has a biological meaning. A single variation in the sequence could have a
huge impact on the activity of the protein. An example of a protein sequence (Cytochrome P450) is
given below:
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MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDES
RFDKNLSQALKFVRDFAGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIATQLI
QKWSRLNPNEEIDVADDMTRLTLDTIGLCGFNYRFNSFYRDSQHPFITSMLRALKEAMNQSKRL
LRLWPTAPAFSLYAKEDTVLGGEYPLEKGDELMVLIPQLHRDKTIWGDDVEEFRPERFENPSAIPQ
HAFKPFGNGQRACIGQQFALHEATLVLGMILKYFTLIDHENYELDIKQTLTLKPGDFHISVQSRH
QEAIHADVQAAE

2.2. An Application Example: Cytochrome P450

Cytochrome P450 is a protein, i.e., a polypeptidic sequence of 464 or 466 amino acids. It is used
to generate products of significant medical and industrial importance. Three parental cytochromes
P450, i.e., CYP102A1(P1), CYP102A2(P2), and CYP102A3(P3) were used to generate 242 chimeric
sequences of cytochrome P450 [16]. Further, 242 thermostable protein sequences were created by
recombination of stabilizing fragments. For each variant, the thermostability (defined herewith as:
Activity) was analyzed by the measurement of the T50, T50 being the temperature at which 50% of the
protein was irreversibly denatured after incubation for 10 min. The result is a decrease in activity.
Activity ranges from 39.2 ◦C to 64.48 ◦C. Chimeras are written according to fragment composition:
23121321 represents a protein that inherits the first fragment from parent P2, the second from P3,
the third from P1, and so on.

3. Methodology

In this study, the questions are: “Can statistical, nonlinear, and complexity analysis give us
some information about the pattern in a protein sequence and its changes along the sequence and
also the next, or other sequences? Can we group sequences according to their activity but also their
morphological pattern?”. To assess the ability of the statistical chaos and complexity tools, we have
transformed each protein sequence into numerical or binary time series according to the need of the
use of the tool.

First of all, there exist different conversion tables to transform protein residues (letters) to numerical
sequences. We have used the freely available one, namely AA index database [17,18]. This database
contains a huge number of ascribed numerical values for each protein residue. There are 566 numerical
values, which are for each index in the sequence univocally in correspondence with physicochemical
and biochemical properties of the residues. In this case, we have selected the index 532 in the dataset,
which allows us to rank and encode 20 standard amino acids.

3.1. Entropy and Chaos

Entropy is a concept that was first discovered in physics. Nevertheless, this concept is also
encountered in other fields and especially in the theory of information. In 1948, Shannon [19]
formalized the concept of entropy of the information H of a string of length N, which contains Q
repeated symbols S =

{
s1, s2, . . . , sQ

}
. H is shown by the well-known formula:

H = −
∑Q

i=1
p̂ilogp̂i (1)

where p̂i =
Nsi
N .

Nsi is the number of appearances of the symbol si in the string of length N. Thus, pi is the
probability of occurrence within the range value ]0 1]. As we suppose that all Q symbols exist in the
string, the probability 0 is excluded. The minus sign is to ensure a positive value of the entropy H as
the logarithm is always negative. H is a global measure of the total amount of information in an entire
probability distribution contained in a sequence.

Another measure of entropy is the sample entropy [20]. Let us consider a set of N symbols
si,k in a sequence Si chosen among M sequences in the dataset. From the sequence Si we extract
two subsets of m symbols Sm

i,p =
{
si,p, si,p+1, . . . , si,p+m

}
and Sm

iq =
{
si,q, si,q+1, . . . , si,q+m

}
where p � q.
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The parameters p and q correspond to the index position of the first symbol of respectively the subset
Sm

i,p and Sm
i,q within the sequence Si. The sample entropy (SampEn) of the sequence Si is defined as

SampEn(m, r, N)i = −log
(Ai

Bi

)
, where Ai is the number of pair-wise subset symbols

(
sm+1

ip , sm+1
iq

)
of length

m + 1 with a distance d
(
sm+1

ip , sm+1
iq

)
< r while Bi is the number of pair-wise subset symbols

(
sm

ip, sm
iq

)
of

length m with a distance d
(
sm

ip, sm
iq

)
< r. The r is a threshold value of similarity between the pair-wise

subset symbols
(
sm

ip, sm
iq

)
. In our study, the sequence is a set of numbers. Then, the distance d

(
sm

ip, sm
iq

)
is

a Euclidian distance and the tolerance value threshold value r is chosen between 0.1 and 0.2 of the
standard deviation of the sequence Si [20]. Moreover, the embedding dimension m is usually taken to
be 2. Finally, the sample entropy is a positive value, which can be 0 for a regular sequence and roughly
2.2 or 2.3 for a strongly irregular sequence. The sample entropy is a measure of the regularity within
a sequence.

In addition, sometimes an irregularity pattern in a time series could be related to the chaos process
within a sequence. The largest Lyapunov exponent is the most common parameter used to characterize
chaos in a dynamical system. The sign and the value of this parameter give an indication of the
response of a system to amplify, damp, or oscillate a small perturbation. In our case, it means that if the
largest Lyapunov exponent is (i) positive, then the process is chaotic, (ii) close to zero, then the process
is periodic or quasi-periodic, and finally (iii) negative, the process is damping and has an attractor. In
our study, to achieve the search for chaos pattern in a sequence Si, we have used Wolf’s algorithm [21]
to compute the Lyapunov exponent spectrum and the largest Lyapunov exponent (LLE).

3.2. Kolmogorov Complexity and Turing Machine

Let us assume we have a set of M sequences S = {S1, S2, . . . , SM}. Then, we suppose that we
have for each sequence i of string Si, a set of N values defined as Si =

{
pi

1, pi
2, . . . , pi

N
}
. To assess

disorder within a sequence, we use the Kolmogorov complexity method [22]. This method is based
on the concept of Turing machine and the mathematical expression of the algorithmic complexity
can be written KT(s) = min

{∣∣∣p∣∣∣, T(p) = s
}
. This states that the algorithmic complexity of a string s is

the shortest program p computed with a Turing’s machine T to gather output s [23,24]. To compute
the Kolmogorov complexity (KC), there are three processes: (i) Convert the sequence Si to binary
sequence Bi using a threshold method, (ii) compress the sequence Bi with Lempel-Ziv compressor
to a compressed sequence Ci, and (iii) compute and normalize the Kolmogorov complexity number
associated with the original sequence Si.

Binarizing the sequence Si is based on the particular value used as threshold value pi
T to assign

each number pi
k in the sequence Si with the value of 0 if pi

k is less than the threshold value pi
T,

or conversely assigned with the value of 1 if pi
k exceeds the threshold value pi

T. The mathematical
expression of the binary value of the number pi

k in the sequence Si is:

Bk
i

∣∣∣
i = {1, 2, . . . , M}
k = {1, 2, . . . , N}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i f pi

k < pi
T

or
1 i f pi

k ≥ pi
T

(2)

where pi
T is a threshold value of sequence Si.

Usually, the mean of the set
{
pi

1, pi
2, . . . , pi

N
}

is used as a threshold value of the sequence Si.
Nevertheless, we will take into account the amplitude of the numbers pi

k to compute the optimum
threshold value pi

T
opt associated with the sequence Si. Thus, we introduce the Kolmogorov complexity

spectrum (KCS), which is an iterative procedure to compute the Kolmogorov complexity for various
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threshold values within the range values pi
k of the sequence Si [25]. The encoding number to binary

value is presented as:

Bk
i

∣∣∣
m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i f pi

k < pi
Tm

or
1 i f pi

k ≥ pi
Tm

m = 1, 2, . . .K (3)

where pi
TL = mink

({
pi

k
})
+ m

{
maxk

({
pi

k
})
−mink

({
pi

k
})

K−1

}
.

Thus, for each sequence Si, the Kolmogorov complexity spectrum is a set of K Kolmogorov
complexity values KCi

K =
{
KCi

1, KCi
2, . . . , KCi

K
}
. The optimum threshold pi

T
opt is chosen among the

set of threshold values
{
pi

T1 , pi
T2 , . . . , pi

TK
}

using the condition pi
T

opt =
{
pi

Tj
∣∣∣∣ KCi

j = maxk
(
KCi

k
)}

.
The compression method used in this study is the Lempel-Ziv compressor [26]. This is an iterative

search in the binary series Bi of the overall possible subset sequences, which are different from each
other. The result is a compressed sequence Ci. If |Ci| represents the length of the compressed binary
sequence Ci, then Kolmogorov complexity KCi associated with the sequence Si is:

KCi = |Ci|log2N/N. (4)

The term log2N/N in the expression of KCi insures the normalization of the Kolmogorov
complexity.

3.3. Law-Scaling and Stochastic Process

As previously mentioned, a sequence is defined as a set of alphabetic letters, which could be
converted to other symbols (numerical, binary, etc.). Nevertheless, the changes of symbols along
the chain are usually related to the real world of biochemical activities along the protein sequence.
The question is “Do those changes present a regular or irregular pattern within a sequence which can provide
some information about an underlying dynamic in a sequence?” First, we have to define the changes in
a sequence i of pairwise symbols separated by a distance, namely an increment of position. Let us
assume d is the increment pairwise symbols and the quantity Δpdi =

∣∣∣pi
j − pi

k
∣∣∣
d=|k− j| is the magnitude

of changes of the pairwise symbols separated by an increment of d. We define the structure function
Sqi(d) for a sequence i defined by the expression Sqi(d) =

1
Ndi

∑Ndi
m=1

∣∣∣pi
j − pi

k
∣∣∣q
d=|k− j| where Ndi is the

number of pairwise symbols separated with a distance d. By extension, this function can also be used
to track the existence of scaling law in the data Sqi(d) ∝ dξ(q). ξ(q) is the generalized Hurst exponent,
which is indicative of the nature of pairwise symbol changes and the stochasticity of processes like
long-term memories, Brownian motion, self-similarity pattern [27]. The probability function (PDFs)
of the distribution of the normalized changes of pair-wise symbols Δpdi/σ

(
Δpdi

)
within a sequence

i can be computed to analyze the normality of the changes in a sequence. Additionally, kurtosis or
flatness is another measure of the normality of the changes of the pairwise symbols. For sequence
i, the kurtosis Fi = S4i(d)/(S2i(d))

2. The terms S4i(d) and S2i(d) are, respectively, the fourth- and
second-order moment of the pairwise distribution.

3.4. Surrogated and Shuffled Data

The methods to surrogate and shuffle the data are very popular tools to assess the existence of
nonlinearities and the scaling properties of a process. Both algorithms are based on the generation of
randomized synthetic data using specific constraint rule to generate the synthetic data. Surrogated
data used in this study are the iterative amplitude-adjusted Fourier transform (IAAFT). This method
preserves the statistical properties of the original data but randomizes the phase spectrum of the
Fourier transform of the original data. The synthetic data generated with this method lead to removing
nonlinearities in the original data. Shuffled data are obtained by a random permutation between
values of the original data. This method is a bootstrapping algorithm without repetition of the indices’
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permutation. Variants of the protein (synthetic sequences) are obtained by variation of any position
in the sequence and not by variation of the fragments constitutive of the protein (described in the
Section 2.2 “An application example: Cytochrome P450”). The data obtained are a set of values that
do not exhibit any linear correlation in the synthetic data and preserve the amplitude distribution.
For more information about these two algorithms, the reader can refer to the review of Schreiber and
Schmitz [28].

4. Normalized Detrended Cumulative Sum (NDCS) Method

Fluctuations or changes along the protein sequence are of interest in this study but we need to
show how we extract this information from the original data. Cumulative sum is a sequential method
that is widely used to detect changes in a time series and to track the self-similarity in a dataset [29].
In this study, we have applied this algorithm for each sequence and generated a new sequence of
fluctuations defined as a departure from the linear trend. Within the 242 protein sequences of a length
of 466 for each one, each index in a sequence is originally labelled with an alphabetical letter. There are
20 letters used (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) corresponding to the
one-letter code for amino acid. In this study, the D PRIFT index is chosen from the AA index catalog to
convert the alphabetical symbols to numerical values [30]. It allows us to distinguish each of the 20
amino acid residues by a unique value related to its hydrophobicity property. The encoding process,
which converts the original alphabetical letters to numerical values within the [−5.68 6.81] range,
is shown in Table 1.

Table 1. Conversion rule of protein sequence of AA index 532—D PRIFT index [30].

AA Index 532 D PRIFT Index (Cornette et al. 1987)

Letter A C D E F G H I K L M N P Q R S T V W Y

Value Index −5.68 −5.62 −5.30 −4.47 −3.99 −3.86 −1.94 −1.92 −1.28 0.96 0.62 0.21 0.75 3.34 4.54 4.76 5.06 5.39 5.54 6.81

We are aware that this description by their hydrophobicity values is oversimplified and does not
account (i) for many other properties of amino acids that are well known to strongly affect pattern
changes in protein sequences along families, such as volume, aromaticity, and different charge states
for the same amino acid in distinct positions or, (ii) for the fact that the exposure of continuous amino
acids sequences to solvent or their occlusion in protein cores is a fundamental requirement for proteins
to fold in functional arrangements, giving importance to hydrophobic and polar amino acids and their
distribution. However, whatever the choice among all the possible amino acid indexes that are able to
distinguish between the 20 amino acid residues, the index will be insufficient.

As shown in Figure 1a, the distribution values show a non-normal distribution, which is indicative
of the non-gaussian process along the protein sequence. Roughly, the distribution looks like a U-shape
where the highest probability of occurrence is obtained for the extreme values and the lowest for the
mean value of the available D PRIFT index. Then, the pattern of the encoded protein sequence appears
like complex bounced stairs with randomness as a sharp jump (Figure 1b).
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Figure 1. (a) Histogram of the D PRIFT index for 242 protein sequences. Red, blue, green, and yellow
dots along the x-axis corresponds to the 20 values of the D PRIFT index. (b) Global view of the converted
dataset (i.e., 242 protein sequences) using D PRIFT index rule. Yellow circle is indicative of the position
within each sequence of the aliphatic hydrophobic, aromatic hydrophobic, and polar amino acids.

To target the jump stair pattern analysis within the protein sequence, we have used the normalized
detrended cumulative sum (NDCS) method. The cumulative sum is a well-known and widely used
algorithm to detect changes and shifts in time series [31]. In this study, we have extracted the linear
long-term and normalized the cumulative sum of each sequence to (i) focus on the local change and
(ii) have the same scale to compare transformed data. Figure 2 presents an example of transforming
the original data (Sequence 1) into a detrended cumulative sum data. For clarity, we only present
here the cumulative sum and linear detrending of the data. The normalized process is shown in the
next figure. The trend of the cumulative sum is considered to be a linear trend for all the 242 protein
sequences. The negative drift of the cumulative sum is related to the mean of a sequence. In our
dataset, the average of the D PRIFT index is negative for each sequence and explains the downward
drift of the cumulative sum.
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Figure 2. (a) D PRIFT index of sequence 1, which is parent CYP102A1 (P1); (b) Cumulative index
(black line) and detrended cumulative sum (red line) of D PRIFT index of sequence 1. The blue line
corresponds to the linear trend or drift of the cumulative sum of D PRIFT index.

Figure 3a depicts the NDSC plot in comparison with the original data (Sequence 1). Fluctuations
reflect the local changes along the sequence and also a significant change pattern around the middle
of the sequence. The fluctuation pattern relying on the cumulative sum transformation involves
continuous distribution, conversely to the discrete distribution of the original D PRIFT index (Figure 3b).
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Figure 3. (a) D PRIFT index of sequence 1, which is parent CYP102A1 (P1). A superimposed red line
corresponds to the normalized detrended cumulative sum (NDCS) of D PRIFT index; (b) Original
(black dot) and normalized detrended cumulative sum (small red cross) of D PRIFT index for
242 protein sequences.

Figure 4a shows that the fluctuations of the NDCS of the D PRIFT index changes are normally
distributed, with skewness close to 0 and kurtosis close to 3, which are the expected values for a normal
distribution. In addition, the QQ-plot displayed in Figure 4b reveals that the observed distribution is
close to a normal distribution and the two samples’ (dataset values and generated normal data values)
Kolmogorov–Smirnov test applied to this distribution does not reject the null hypothesis at the 5%
significance level.
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Figure 4. (a) Distribution of the NDCS of D PRIFT index changes for all sequences (black dots). Red line
corresponds to Gaussian distribution; (b) QQ-plot of the NDCS of D PRIFT index changes quantiles
and Gaussian quantiles. Red dotted line is a linear fitting of observed quantile distribution versus
normal quantile distribution.

5. Results and Discussion

5.1. Normality and Intermittency

The changes along the protein sequence for four different pairwise distances show a platykurtic
nature (Figure 5a). The average distribution exhibits large amplitude for fluctuations greater than
2.5 times the standard deviation of NDCS of D PRIFT index changes. The average is computed using
242 protein sequences. Below this threshold value, the distribution is close to the Gaussian distribution.
This kind of departure from the Gaussian distribution in fluctuations is indicative of intermittency.
Moreover, Figure 5b highlights that the platykurtic nature of the fluctuations covers a wide range of
pairwise distances, but it is more pronounced with the [30–60] pairwise distance and for distances less
than 10 pairwise. To summarize, this flat distribution indicates more diversity of changes for the large
amplitude of pairwise distance within the protein sequence.
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Figure 5. (a) Shape of average and normalized experimental probability functions (PDFs) of the
increment of NDCS of PRIFT index changes at different distances in pairwise sequence d = 5, d = 10,
d = 50, and d = 100 of 242 protein sequences. (b) Deviation of NDCS of PRIFT index changes
distribution with respect to the Gaussian distribution at different pairwise sequence d.

5.2. Kolmogorov’s Law and Brownian Process

We have conducted a Fourier analysis to focus on the fluctuation of the NDCS of D PRIFT index
changes. Surprisingly, scale invariance can be detected in the log-log presentation of the Fourier spectra
(Figure 6a). An average of −1.68 based on power law is obtained, which is very close to the Kolmogorov
power law result of −5/3. This highlights that the fluctuations of the NDCS of D PRIFT index changes
along a sequence are similar to a non-stationary process and obey the famous Kolmogorov’s law of
the energy cascade for turbulence in the inertial scale range [22]. In addition, as shown in Figure 6b,
the range scale value for each sequence is rather close to −5/3, with an observed minimum slope value
of −1.56 and a maximum slope value of −1.84. This means that the changes within the protein sequence
can be formulated according to Fourier transform as E( f ) = f β where β is the slope of the law and is
close to the Kolmogorov spectrum. In addition, we can use criteria to check if the changes of protein
are stationary or not [32]. This is summarized by the following test:

• β < 1, the changes are stationary,
• β > 1, the changes are non-stationary,
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• 1 < β < 3, the changes are non-stationary with stationary increments.

Thus, the changes in the sequence protein follow a non-stationary process. Moreover, the coefficient
of variation of the fluctuations of the NDCS of D PRIFT index changes computed for all 242 sequences
is less than 3%, confirming that this similarity with the Kolmogorov spectrum seems to be reproducible
for each protein sequence as confirmed by the distribution of the spectrum slope obtained randomly
with surrogated and shuffled data.

Figure 6. (a) Power spectrum density (PSD) of the NDCS of D PRIFT index changes of all 242 protein
sequences Si (black dots); (b) PDFs of the spectral exponent estimated from Fourier analysis. We have
superimposed the PDFs obtained with surrogated (red spots) and shuffled data (blue squares).

As shown previously in Figure 3b, the fluctuations of the NDCS of D PRIFT index changes appear
to show seemingly organized fluctuations. The question is “Is there some dynamic pattern of these change
fluctuations along a sequence Si and is there some randomness of changes within the protein sequence?”. A first
approach is to analyze the behavior of the fluctuation of the pairwise protein index. Figure 7a shows
that on average, the second-order moment S2i(d) of the pairwise protein sequence index separated by
a distance d is linearly scaled in a sequence between pairwise protein sequence indexes separated by a
distance d roughly below 50. We found a power law of 0.87, which is close to the Brownian power law
process. Then, the behavior of the change fluctuations along each protein sequence Si seems to be close
to a Brownian process. Furthermore, we found for each protein sequence a power law between a range
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of [0.69 0.99] and a coefficient of variation less than 7%, which reveals that the fluctuations of NDCS
of the D PRFIT index changes along a sequence Si statistically have a behavior close to a Brownian
process in regard to the results obtained with the surrogated and shuffled data (Figure 7b).

Figure 7. (a) Log-log presentation of the second-order moment S2i(d) of the NDCS of D PRIFT index
changes of all 242 protein sequences S2i versus the distance d of the pairwise protein sequence index
(black dots); (b) PDFs of the slope of the scaling law distribution of the second-order moment S2i(d) of
the NDCS of D PRIFT index changes estimated for each protein sequence Si. We have superimposed
the PDFs obtained with surrogated (red spots) and shuffled data (blue squares).

In addition, we have also computed the q-order moment for each protein sequence Si. The result is
shown in Figure 8a. As observed with second-order moment S2i(d) analysis, we again have a scaling
law distribution between pairwise protein sequence index Si below d = 50 for a higher-order moment.
This result reveals the existence of a monofractal feature along the protein sequence Si. Figure 8b
shows that the fluctuations of NDCS of D PRIFT index changes of each protein sequence Si contain a
monofractal feature with ξ(q) = 0.43 q, which is a linear law of q and reveals monofractal behavior.
The slope of the linear law is called the Hurst exponent H. As a reminder, if the value of H = 1

2 ,
it means the changes in a sequence contain no memory as for the Brownian motion. If the changes
of the sequence are anti-persistent

(
0 < H < 1

2

)
, then the main pattern of the changes shows that a

decrease is followed by an increase and vice-versa. Finally, if the Hurst exponent is as 1
2 < H < 1,

then there is a persistent behavior in the changes and an increase or decrease will be maintained in a
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sequence. In our case, the changes are anti-persistent and they are statistically embedded between
Kolmogorov process ξ(q) = q

3 [22] and the Brownian process ξ(q) = q
2 . Thus, there is a potential

stochastic model like the fractional Brownian model to predict the changes along the protein sequence.

Figure 8. (a) Experimental high-order structure functions Sqi(d) with varying moments for q = 1, 2, 3, 4,
and 5; (b) Generalized Hurst exponent ξ(q). We have added the maximum and minimum value of ξ(q)
obtained with surrogated and shuffled data.

5.3. Entropy, Chaos, and Complexity

As previously mentioned, a sequence is defined as a set of alphabetic letters, which could be
converted to other symbols (numerical, binary, etc.). Nevertheless, the changes of symbols or numerical
values along the sequence are usually related to the real world of biochemical activities inside the whole
protein sequence. The question is “Do those changes present regular, irregular, chaotic and complex pattern
within a sequence?” Furthermore, nonlinear analysis is one approach to estimate the changes in features
along a sequence. In this study, we have used five algorithms to assess the degree of the randomness
or the disorder and complexity in protein sequences: (i) The Shannon entropy (ShEn); (ii) the sample
entropy (SampEn); (iii) the largest Lyapunov exponent (LLE); (iv) Kolmogorov complexity (KC); and (v)
the Kolmogorov complexity spectrum (KCS) algorithm. Table 2 presents the descriptive statistics of
the NDCS of D PRIFT index changes for 242 protein sequences. On average, there is a significant
amount of information in an entire probability distribution contained in a sequence. We observe that
SampEn and LLE values are close to one. Moreover, the KC method underestimates the complexity in
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comparison to the KCS method, which takes into account the amplitude of the changes. Following the
comparison with the surrogated and shuffled data generated from the original data, we found that the
NDCS of D PRIFT index changes for 242 protein sequences used in this study include stochastic and
moderate chaotic processes and show apparent embedding between the Kolmogorov (H = 1/3) and
Brownian (H = 1/2) monofractal processes.

Table 2. Descriptive statistics of entropy, chaos, and complexity of the NDCS of D PRIFT index changes
for 242 protein sequences.

D PRIFT
Index

Entropy Chaos Complexity Fractal

Information Regularity

NDCS
Data

Shannon
Entropy

Sample
Entropy

Largest
Lyapunov
Exponent

Kolmogorov
Complexity

Kolmogorov
Complexity
Spectrum

Hurst
Exponent

Minimum
Original 3.671 1.251 0.930 0.247 1.008 0.347

Surrogate 3.514 1.051 0.730 0.152 1.046 0.332
Shuffled 3.498 0.600 0.332 0.095 1.046 0.273

Mean
Original 3.880 1.433 1.277 0.475 1.071 0.432

Surrogate 3.875 1.289 1.070 0.399 1.105 0.481
Shuffled 3.911 1.147 0.911 0.328 1.103 0.498

Median
Original 3.888 1.436 1.286 0.475 1.065 0.436

Surrogate 3.895 1.296 1.072 0.399 1.103 0.482
Shuffled 3.933 1.154 0.906 0.323 1.103 0.498

Maximum
Original 4.066 1.618 1.601 0.647 1.141 0.481

Surrogate 4.131 1.547 1.501 0.646 1.179 0.615
Shuffled 4.188 1.604 1.469 0.627 1.160 0.690

Standard
deviation

Original 0.084 0.063 0.117 0.084 0.031 0.027
Surrogate 0.117 0.094 0.143 0.081 0.023 0.033
Shuffled 0.130 0.188 0.220 0.109 0.022 0.058

1st quartile
Original 3.833 1.389 1.207 0.418 1.046 0.420

Surrogate 3.805 1.226 0.969 0.342 1.084 0.459
Shuffled 3.842 1.017 0.750 0.228 1.084 0.459

3rd
quartile

Original 3.940 1.470 1.351 0.533 1.103 0.450
Surrogate 3.963 1.355 1.160 0.456 1.122 0.503
Shuffled 4.005 1.297 1.045 0.399 1.122 0.538

5.4. Drift (DRF), Kolmogorov Complexity Spectrum (KCS), and Activity (ACT): Linear Correlation and
Superdiffusive Process between Sequences

The activity as defined in Section 2.2 (Thermostability) is also freely available for each protein
sequence. Figure 9a shows the cumulative sum of activity, entropy, chaos, complexity, fractal, and drift
parameters for 242 protein sequences. In order to track the biochemical activity changes through an
invariant sequence arrangement, we have sorted, in ascending order, each sequence with increasing
activity. Then, we have also sorted the remaining parameters in respect to the increasing activity and
applied the cumulative sum. For clarity, we have presented the 10th of the entropy, chaos, complexity,
fractal, and drift parameters, and the 1000th for activity. Most of the curves show a slightly linear shape,
which is the average mode through increasing sequence activity. Nevertheless, the dynamic of changes
through this increasing activity highlights that NDCS’s activity changes are well correlated with the
NDCS of Kolmogorov complexity spectrum and drift (Figure 9b). There are pronounced parabola with
an open upwards shape for activity (ACT) changes and a conversely open downwards shape for the
Kolmogorov complexity spectrum (KCS) and drift (DRF) changes. The correlation coefficient is very
high between ACT, KCS, and DRF as shown in Figure 9c.
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Figure 9. (a) Cumulative sum of activity, entropy, chaos, complexity, fractal, and drift parameters
for ascending sorted activity; (b) Normalized detrended cumulative sum of activity, entropy, chaos,
complexity, fractal, and drift parameters for ascending sorted activity; (c) NDCS of activity (ACT)
versus NDCS of drift (DRF) and Kolmogorov complexity spectrum (KCS). The square of the correlation
coefficient R2 for both curves is added on the figure. The first and last sequence positions of the 242
ordered sequences are also shown. The green circle and square symbol indicate the position of the
parents CYP102A1 (P1), CYP102A2 (P2), and CYP102A3 (P3) in this diagram.
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We found a relationship between the inner-sequence changes drift, the complexity, and the activity
throughout crossed 242 rearranged increasing activity protein sequences. As shown in Figure 9c,
the trajectories of the bivariate parameter (drift, activity) or (complexity, activity) exhibits trajectories
with jump between sequences, which leads to the question: “Are these successive jumps related to variable
changes ruled by a power law?”. Then, we have analyzed these trajectories by calculating the mean
square displacement of changes 〈(ΔdS)

2〉 in the bivariate parameter (drift, activity) or (complexity,
activity) space where dS is the distance between two sequences. Moreover, we defined the mean

square displacement as 〈Δ(dS)
2〉 = 1

NdS

∑NdS
m=1

[(
Xj −Xk

)2
+

(
ACTj −ACTk

)2
]
dS=|k− j|

where NdS is the

number of pairwise sequences separated by a distance dS and X is the drift (DRF) or Kolmogorov
complexity spectrum (KCS). Figure 10 shows 〈Δ(dS)

2〉 ∼ dS
α with α ∼ 1.7 for the drift and α ∼ 1.6

for the complexity. We found that there is a scaling law of the bivariate (DFT, ACT) or (KCS, ACT)
parameter that is similar to a super diffusive process with an exponent coefficient α > 1 [33]. Here,
we have plotted 〈Δ(dS)

2〉/〈Δ(dSc)
2〉 where dSc is the characteristic distance between two sequences

computed with the correlation function 〈δ(dS)〉 = 1
NdS

∑NdS
m=1

[
XjXk + ACTjACTk

]
dS=|k− j|.

Figure 10. Log–log presentation of the mean square displacement 〈Δ(dS)
2〉/〈Δ(dSc)

2〉 of the bivariate
(KCS, ACT) parameter versus the pairwise scaled d distance (dS/dSc) between sequences.

6. Conclusions

In this work, we analyze the nonlinear behavior of the D-PRIFT index changes around the overall
linear trend scale of the protein sequence. To assess the nonlinear analysis, we have used protein
residue values that are freely available, namely the AA index database. The protein dataset used
contains 242 sequences and each sequence has 466 numerical values, one per amino acid residue.
A protein sequence corresponds to a combination of encoding symbols from a dictionary of 20 standard
amino acids symbols.

We have applied to each sequence a normalized detrended cumulative sum algorithm to extract
the fluctuations of the numerical signal in the protein sequence. We analyzed these fluctuations with
different tools, which are related to (i) entropy (information and regularity); (ii) chaos (largest Lyapunov
exponent); (iii) complexity (Kolmogorov complexity and Kolmogorov complexity spectrum); and (iv)
fractal (Hurst exponent). First, we showed that the change fluctuations of all the studied 242 protein
sequences in the dataset seem to be non-stationary and follow on average a −5/3 Kolmogorov
power-law. This result seems to be statistically significant in regard to a coefficient of variation less than
2% and a test done with randomly generated synthetically obtained data with surrogate and shuffle
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technique. To understand the nature of the inner changes within the protein sequence, we achieved
the analysis of the variance of the changes through the scope of the spatial correlation: Here, the index
position within the protein sequence. We found an invariance of pairwise scale index d, which is
ruled by a S2i(d) ∝ dα with α = 0.87, a coefficient close to one of the well-known stochastic Brownian
processes. The dispersion of the slope obtained for all 242 protein sequences is statistically coherent in
comparison with the results obtained with synthetic data. Following the local analysis of the changes
along the protein sequence, we have performed a systematic q-order moment of the fluctuations in
order to track if there is a self-similar repeating pattern in the inner sequence. We showed that change
fluctuations within the protein sequence have a monofractal behavior, which is an average among the
242 sequences embedded between the Kolmogorov and Brownian monofractal processes with a Hurst
exponent ranging between 1/3 and 1/2. To encompass the local analysis and to have an overview of the
nonlinearity analysis, we have computed statistical parameters related to entropy, chaos, complexity,
and fractality. We demonstrated that the NDCS of D PRIFT index changes for the 242 protein sequences
used in this study exhibit statistically moderate complexity, and low chaotic fluctuations.

Moreover, to integrate these results in the analysis of the protein activity changes for each sequence,
we have conducted a study of the relationship between the linear-trend (drift) computed with the
cumulative sum algorithm, the Kolmogorov complexity spectrum, which is indicative of computational
complexity, and the activity of each protein sequence. As this analysis focused on the dynamics of the
changes, we also applied the normalized detrended cumulative sum for these three parameters as done
for the inner-sequence analysis. The results show a strong linear relationship between the bivariate
(drift, activity) and (complexity, activity) parameters, which provides insight into the potential use
of drift and complexity as a predictor in a linear model. Moreover, the analysis of the trajectories in
the bivariate space highlights superdiffusive behavior of the change fluctuations with a power-law
around −1.6 of the mean square displacement for each chosen bivariate parameter. This study
demonstrates that the changes in the inner sequence and throughout the crossed inter-sequence are
nonstationary, stochastic, irregular, complex, weakly chaotic, and monofractal. To conclude, there is
some predictability of protein sequence changes, which can be modelled using a stochastic model.
Linear law and scale invariance features found in this study should be explored in future work to study
for classification, regression predictive model, and could be useful in the field of protein engineering.
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Abstract: Two-component systems (TCS) are signaling machinery that consist of a histidine kinases
(HK) and response regulator (RR). When an environmental change is detected, the HK phosphory-
lates its cognate response regulator (RR). While cognate interactions were considered orthogonal,
experimental evidence shows the prevalence of crosstalk interactions between non-cognate HK–RR
pairs. Currently, crosstalk interactions have been demonstrated for TCS proteins in a limited number
of organisms. By providing specificity predictions across entire TCS networks for a large variety
of organisms, the ELIHKSIR web server assists users in identifying interactions for TCS proteins
and their mutants. To generate specificity scores, a global probabilistic model was used to identify
interfacial couplings and local fields from sequence information. These couplings and local fields
were then used to construct Hamiltonian scores for positions with encoded specificity, resulting in
the specificity score. These methods were applied to 6676 organisms available on the ELIHKSIR web
server. Due to the ability to mutate proteins and display the resulting network changes, there are
nearly endless combinations of TCS networks to analyze using ELIHKSIR. The functionality of
ELIHKSIR allows users to perform a variety of TCS network analyses and visualizations to support
TCS research efforts.

Keywords: statistical inference; mutational phenotypes; interaction specificity; phosphorylation;
fitness landscape; bacterial signaling

1. Introduction

Two-component systems (TCSs) are ubiquitous in bacteria and archaea and are the
key signaling transduction machineries for sensing and responding to the environment.
TCSs consist of sets of interaction signaling partners, histidine kinases (HKs) that phos-
phorylate their cognate response regulators (RRs). Interactions, however, are often not
one-to-one. Multiple HKs can interact with multiple RRs. Identifying relevant interactions
among TCS is an important task that has been addressed experimentally only for a limited
number of organisms.

We advanced the study of interaction specificity in TCS by creating a model based
on amino acid coevolution at the interface of HKs and RRs. Our Direct Coupling Anal-
ysis (DCA) [1] based interaction model not only confirms known cognate partners [2]
but also reveals novel interactions in multiple organisms. We uncovered a TCS network
in Synechococcus elongatus regulating cyanobacterial circadian clock and confirmed im-
portant master regulators [3]. Our model is also able to predict functional mutations to
modulate binding specificity between partners, such as PhoQ and PhoP [4] or even design
new interactions between non-cognate, interspecies TCS proteins, such as the EnvZ from
Escherichia coli and Spo0F from Bacillus subtilis [5]. Another application of this model
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is the identification of crosstalk across signaling networks and the influence of mutation
in the topology of the network. Figure 1 illustrates a section of statistical couplings in a
protein sequence and highlights two of the most common applications, the identification
of physical contacts in a protein [6,7] or the identification and quantification of interactions
between multiple proteins [8,9].p p

Figure 1. Statistical couplings for sequence position and residue type are inferred from the MSA for
the protein family using the DCA method. High couplings indicate significant interactions between
sequence positions. These couplings can be used to infer physical contacts within a single protein
structure, or to infer the interaction interface and strength between two proteins.

We decided to make this model and tools available to the scientific community in an
interactive web server that facilitates the analysis and prediction of TCS networks as well
as the exploration of the effects of mutation in these proteins prior to experimental work.
We named the service Evolutionary Links Inferred for Histidine Kinase Sensors Interacting
with Response regulators (ELIHKSIR) and it can be accessed at https://elihksir.org.

In recent years, online repositories of sequence data have seen a large influx of se-
quences and are painting a more refined picture of protein families. Using these data,
one can construct global probabilistic models that verify the observed statistics and relate
them to inter-residual couplings. Cheng et al. [2] have used these probabilistic models
to introduce an objective function Hspeci f ic

TCS (�σ) to describe the specificity (fitness) of the
interaction between a response regulator and a histidine kinase partner by a scalar score
using a sequence�σ from a linked multiple sequence alignment (MSA). For completeness,
we reproduce the introduction of Hspeci f ic

TCS (�σ) here.
Using the set of sequences {�σ}, we can create a global probabilistic model P(�σ) to find

a given amino acid sequence�σ in a protein family by the following:

P(�σ) =
1
Z
· exp (−H(�σ)) (1)
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with a general Hamiltonian H(�σ) and the partition function Z to verify normalization for
the probabilities. A sufficient form for H(�σ) [10] is given by the large-q Potts Model [11]:

H(�σ) ∝ −∑
ij

eij(ai, aj)− ∑
i

hi(ai) (2)

with the coupling matrix eij(ai, aj) between two sequence sites ai, aj at sequence positions
i and j; and the local field hi(ai) at the site ai at sequence position i. The sites a can have
q = 21 different states for amino acid and sequence gap composition. The entries of
the coupling matrix eij(ai, aj) and the local fields hi(ai) encode preferences for sequence
compositions at positions i and j. The inference of the coupling matrix eij(ai, aj) and the
local fields hi(ai) is a non-trivial task. Several methods exist to do so [1,12,13]. We inferred
the couplings using mean field DCA (mfDCA), which is fast and accurate at predicting
interaction specificity in TCS.

From these coupling parameters, we can introduce and create objective functions to
measure varying effects. In the Material and Methods, we introduce an objective function
Hspeci f ic

TCS (�σ) that is sensitive to sequence mutations and linked to protein interaction speci-

ficity. For the calculation of Hspeci f ic
TCS (�σ), we need full access to the couplings eij(ai, aj) and

local fields hi(ai). Throughout the process, we consider these as constant and created a
database that our server uses internally to calculate new values for the Hspeci f ic

TCS (�σ) score in
a mutation event.

Figure 2 gives an overview of the entire process of the ELIHKSIR web server. The MSA
for our system is created by concatenating the HisKA domain section of the Pfam [14]
Histidine Kinase (HK) family (Pfam:PF00512) [15] and the REC domain of the Response
Regulator (RR) family (PF00072) [16], which contains information for thousands of organ-
isms. Furthermore, we collect metadata for each organism and sequence pairs through the
Uniprot database [17]. From this, we calculate the coupling matrices eij(ai, aj) and the local
fields hi(ai). These parameters allow us to calculate a score for the interaction specificity
HTCS. The data are visualized in a web interface with interactive heatmaps.

ELIHKSIR is a user-friendly and accessible tool that displays TCS signaling networks.
The breadth of the web server allows for analysis of TCS networks in both common and
uncommon species and strains. Table 1 summarizes the number of organisms and interac-
tion partners available. Users can easily search for their organism of interest, view TCS
specificity networks for the whole organism, and view all possible interactions for an HK or
RR of interest. This capability allows researchers with restricted computational resources
to analyze signaling networks. Some common use cases of ELIHKSIR’s features include
identifying cross-talk interactions between non-cognate HKs and RRs, comparing speci-
ficity of different HK–RR pairs, and comparing differences in signaling networks between
species and/or strains. In addition to browsing and exporting wild-type TCS networks,
mutations may be introduced into HKs and/or RRs, for which all interaction specificity
scores are recalculated and displayed. This allows users to predict network-wide changes
in specificity after introducing a mutation. Further applications include testing mutants for
desired change(s) in specificity, guiding engineering of TCS proteins with interaction or
insulation requirements, and viewing changes in specificity for new or uncommon clinical
and environmental variants. With these capabilities, ELIHKSIR is an effective tool for a
variety of researchers who interface with TCS proteins and signaling.
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Figure 2. (a) A concatenated MSA is generated for Pfam [14] Histidine Kinase (HK) family
(Pfam:PF00512) [15] and Response Regulator (RR) family (PF00072) [16]. (b) From this MSA coupling
matrices are generated with mfDCA [1]. From these couplings, we are able to calculate a numeric
score using the equation shown. This equation formally describes how Hamiltonian scores are
generated for each HK–RR pair and is equivalent to Equation (3). The data are displayed in a web
interface with interactive heatmaps. The user has an elaborate menu available to explore the data by
creating mutations to sequence positions. The default heatmap legend is more sensitive towards the
outer extremes of the values, coloring strongly negative (favorable) or positive values (unfavorable).

Table 1. Attributes of the ELIHKSIR web server.

Total Organisms 6676

Bacteria 6412
Archaea 65
Eukaryotes 188
Unknown Organisms/Metagenomes 11

Total Interactions Evaluated 6,272,607

Number of HKs 111,032
Number of RRs 225,616

2. Results

2.1. Validation

Validation of the ELIHKSIR web server was performed through detailed investigation
using three model organisms: Escherichia coli, Synechococcus elongatus, and Enterococcus
faecalis. True positive specificity predictions were defined by either positive selection
and/or negative selection for a cognate pair. Positive selection is defined as an HK having
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its highest specificity with a single RR. Negative selection is defined as an RR having
poor specificity across all HKs but having its relative highest specificity with an HK.
False negatives were defined as selection towards a noncognate partner that is greater than
that of the cognate partner, in which both positive and negative selection fail to identify
the cognate pair. Only cognate pairs in which the HK contains a HisKA domain were
evaluated. For E. coli, there were fourteen true positives and three false negatives for
seventeen cognate pairs, shown in Figure A1. For S. elongatus, there were five true positives
and one false negative for the six cognate pairs, shown in Figure A2. For E. faecalis, there were
seven true positives and one false negative for the eight cognate pairs, shown in Figure A3.
The resulting sensitivity and accuracy is 0.84.

DCA identifies coevolving residues at the HK–RR interface for HisKA and REC
domains that have been used to accurately predict the structure of the HK–RR complex [18].
Out of the top 20 DCA-identified interfacial couplings, 10 are present in the 3DGE structure,
as shown in Figure A4b. Information about all 3DGE interfacial contacts is present in
the DCA-generated couplings and local fields (Figure A4a). Couplings are scored by
their direct information (DI) value as defined by DCA (Table A2). Thus, higher DI values
indicate that these couplings are more important for HK–RR interactions. When utilizing
DCA couplings for the calculation of Hamiltonian values, only couplings present on
the structurally verified HK–RR interface are used. This ensures auxiliary information
obtained through DCA does not impact the Hamiltonian values, and thus, does not impact
the resulting specificity score.

The interface is aligned for each TCS pair during the construction of the MSA,
which was performed using a hidden Markov model. The sequences displayed in ELIHK-
SIR are the aligned residues and gaps. Predictions made based on HK and RR sequences
only consider residues which align with their respective protein family. Insertions and
deletions are not considered in the alignment of the interface and may result in deviations
in the three dimensional structure of the resulting signaling complex. The model assumes
no changes in the three dimensional structure of the HK–RR interface during evaluation of
different TCS pairs.

2.2. Mutations

A key functionality of the ELIHKSIR server is the ability to interactively perform
in silico mutations on a HK–RR pair. In the mutation screen, as shown in Figure 3b, the full
MSA of a pair is shown with a visual clue to the histidine kinase region and the response
regulator region. Any part of the MSA can be transformed and the changes in a HK or RR
become applied globally. The heatmap is also updated accordingly. Gaps can be introduced
as ’-’ characters. As the mutation values are run against a tabulated database for the
positions and amino acid type, the total length of the MSA has to remain at 176 amino
acids. Insertions are not possible in the model unless they occur in gap regions.

Only a subset of the positions in the genetic sequence correspond to an actual inter-
facial residue of the protein interface between Thermotoga maritima class I HK853 and
the response regulator RR468, (PDB ID: 3DGE). Because of this, not every change in the
sequence performed by a user will translate into a change in the specificity score. Further-
more, some types of amino acids can play similar roles in a specific residue position. In this
case, the model accounts for this and only reflects minor or no changes in the total score.

An interesting application of the mutation user interface is shown in Figure 4,
the rewiring of specificity. By transferring portions of a sequence from one cognate pair
to another cognate pair, interaction properties can be discovered or lost. In this specific
example, a portion of amino acids positions 70 to 80 transferred from ntrC into the same po-
sition in the cusR response regulator creates cross-talk with a new interacting partner qseC,
while maintaining the initial interaction cognate partner cusS. Alternatively, introducing
the same sequence positions from the response regulator qseB into cusR is entirely sufficient
to rewire the entire interaction and create an exclusively positive selection towards qseC.
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Figure 3. (a) Heatmap for Synechoccus elongatus as displayed on ELIHKSIR and when exported
as an image. (b) Mutation screen as displayed on ELIHKSIR. (c) Histogram depicting all selectivity
scores for a given HK or RR.
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Figure 4. (a) One of the many use cases for the web server is the exploration and in silico change of specificity. In this
example, we identify the response regulator cusR as the interaction partner of the histidine kinase cusS indicated by the
lowest value in our Hamiltonian. (b) The transfer of a significant sequence portion of the response regulator ntrC does
not disrupt the initial interaction and introduces cross-talk through a second interaction partner. (c) Alternatively, the
introduction of a sequence portion of the response regulator qseB into cusR disrupts the initial interaction and rewires the
interaction towards qseC.

2.3. Data Export

The user has three options to export data from ELIHKSIR. First, the user may export a
PNG image, as shown in Figure 3a of the entirety of the heatmap in PNG format by clicking
on the Export to PNG button on the left panel once a heatmap has been displayed. This will
generate a PNG image of the heatmap on a transparent background and download it onto
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the user’s machine. The image will also include the labels and legend. When selecting an
n × m-sized subselection in a heatmap, the user is presented with the choice to display
the subselection as a new heatmap. Second, the user may export a PNG image of a
histogram as shown in Figure 3c of a row of response regulator and histidine kinase pairs
that corresponds to a desired histidine kinase by clicking on the Export to PNG button
that is located inside the opened histogram. The histogram export will also include the
names of each response regulator. Finally, the user may export a CSV representation of
the user’s arbitrary selections of the cells of the heatmap. After the user makes selections
of the cells on the heatmap, the Export to CSV button on the right panel can be clicked to
download a file that contains a comma delimited list of the user’s selections. All these
methods of exporting will take into consideration the mutated Hamiltonian values, if any,
of the response regulator and histidine kinase pairs.

2.4. Negative Selection

An important concept highlighted by the server is that of negative selection. Not only
are interaction partners indicated by strong couplings and a highly negative score for a
TCS pair, but equally by high interaction scores with each partner except one. In this
case, the interaction with a marginal advantage will be the strongest interaction and may
facilitate signal transduction. Hence, we differentiate by either positive selection and/or
negative selection for the cognate pair, where positive selection is defined as an HK having
the highest specificity for its cognate RR and where negative selection is defined as the
cognate HK having the highest specificity out of all HKs for a given RR. Figure 5 highlights
this for two different cases in E. coli (ECOLI). Besides the heatmap, a good indicator for
the interactions is a look at the histograms (Figure 5b) of interaction strengths, which
are, for this purpose, available through the server. In cusR, a single interaction between
cusR and the histidine kinase cusS is dominant (Figure 5b top). In rcsB, the majority of
interactions are reported as less specific. Even though the interaction between rcsB and the
histidine kinase rcsC is not reported as very specific, it will be the dominant interaction
for rcsB.

Figure 5. Negative selection in Escherichia coli strain K12 (ECOLI). (a) Heatmap view for the response
regulators cusR and rcsB. In cusR, a single interaction between cusR and the histidine kinase cusS is
dominant. This is a case of positive selection between two interacting partners. In rcsB, the majority of
interactions are reported as having a low specificity. Even though the interaction between rcsB and the
histidine kinase rcsC is not reported as having a high specificity, it will be the dominant interaction for rcsB
as there is no stronger interaction partner for signal transduction. This is an example of negative selection.
(b) Histogram view for the response regulators cusR and rcsB. From these histograms, it becomes clear
that cusR-cusS (top) and rcsB-rcsC (bottom) are the dominant interactions.
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3. Discussion

3.1. Characterization of Cognate Specificity

Through both mutational and computational analyses, the interface between the
HisKA domain and the REC response regulator domain has been shown to control speci-
ficity of TCS interactions [19]. In Figure 6, this finding is confirmed for 14 out of 17 cognate
pairs shown for E. coli. In Figure 7, this finding is confirmed for all eight cognate pairs
shown for M. tuberculosis. While predictions of interaction specificity have been previously
demonstrated, ELIHKSIR presents specificity scores for all HisKA HK and RR pairs in
thousands of organisms, defining specificity landscapes. These specificity landscapes can
then be used to determine favorable interactions through identification of pairs exhibiting
positive and/or negative selection. When assessing cognate pairs, the prevalence of interac-
tions either partially or solely characterized by negative selection becomes apparent. In the
validation process, 54.8% of detected cognate pairs exhibited both positive and negative
selection and 19.4% of detected cognate pairs were characterized by negative selection only.
Negative selection is important for preventing cross-talk and ensuring orthogonality [20],
but results indicate that it may be a main or contributing determinant of many cognate
interactions. It is unclear if other attributes or domains contribute to reinforcement of
specificity for cognate pairs detected by negative selection only.

By identifying whether cognate interactions are maintained by positive and/or nega-
tive selection, users can explore how deletion of TCS proteins may affect gene expression.
Experimental deletion of the cognate RR in a pair regulated by negative selection may result
in a noncognate RR being phosphorylated by the HK. In deletion experiments, it may be
useful to understand how removal of TCS proteins may affect overall expression. Further-
more, some TCS proteins are encoded for on plasmids. Understanding how the presence or
lack of plasmid-encoded TCS proteins on organisms’ genetic expression may be important
for the study of antibiotic resistance and plant cell transformation by bacteria [21].

It is important to note that, in many proteins, HisKA domains are accompanied
by an HATPase_c domain, which is responsible for binding ATP and transferring its γ
-phosphate to the HisKA domain. Aside from its ATPase activity, the HATPase_c domain
alone can act as a histidine kinase [22]. It is unknown whether the HATPase_c domain itself
encodes specificity or is partially responsible for specificity in certain cognate TCS pairings.
Further analysis of the HATPase_c domain as well as other histidine kinase domains could
reveal additional residues and mechanisms controlling TCS orthogonality.

3.2. Exploration of Non-Cognate Interactions

The ELIHKSIR web server allows for exploration and visualization of signaling net-
works. Using the displayed heatmap, users may identify crosstalk interactions in signaling
networks. Non-cognate, crosstalk interactions are common in signaling networks and
may influence the expression patterns in organisms. HTCS scores can be used to identify
non-cognate, crosstalk interactions. Non-cognate interactions may be predicted by high
specificity for a non-cognate partner as shown in Figures 7b–d and 6b,d. Any negative
score indicates some level of encoded specificity. While scores near zero indicate no en-
coded specificity, TCS non-cognate partners with scores near zero may still interact due to
shared attributes present in all TCS proteins, shown in Figures 6c and 7b. TCS non-cognate
pairs in which shared TCS attributes are partially removed have positive specificity scores,
indicating low specificity. These methods of identifying possible interactions may be used
across all available organisms, allowing for users to investigate crosstalk interactions within
specific, and possibly uncommon, species or strains.

TCS pairs in which the RR has a cognate HK of a different family than HisKA have
low specificity, but may still interact are shown in Figures 7b,d,f and 6b,d,f. The ability
to interact despite very low specificity indicates there may be activity of HATPase_c in
phosphorylation of non-cognate RRs whose cognates belong to other HK families since
HATPase_c is present in both HisKA and HisKA3 family HKs.
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Figure 6. (a) Cognate interactions and observed in vitro crosstalk interactions overlaid onto the speci-
ficity score heatmap for E. coli [23]. Noncognate interactions are assessed. (b) BarA phosphorylates
cusR, narL, and narP, in which the scores are −5.723, 2.390, and 3.491 respectively. The score for
barA-cusR indicates that phosphorylation occurs due to high specificity for its noncognate partner.
Phosphorylation of narL and narP are characterized in (f). (c) PhoR phosphorylates cpxR, in which
the score is −0.037. A score near zero indicates diminished specificity, while still retaining attributes
shared among all TCS pairs. (d) BaeS phosphorylates glrR, rssB, and cheY, in which the scores
are −1.264, 3.998, and 4.605. The score for baeS-glrR indicates that phosphorylation occurs due
to increased specificity for a noncognate partner. Phosphorylation of rssB is characterized in (g).
Phosphorylation of cheY can be described similarly to (f), as its cognate HK utilizes a different
family of HK than HisKA. (e) Cognate, crosstalk, and average non-cognate scores are shown for each
HK. (f) HKs narQ and narX are not shown as they utilize a HisKA3 family HK, rather than HisKA.
Their RRs, narL and narP, have low specificity for all HKs utilizing the HisKA domain. This leads
narL and narP to be nonspecific for HisKA family HKs. Despite a lack of specificity, crosstalk is
observed. (g) RssB is an orphan RR that can be phosphorylated by multiple HKs.

127



Entropy 2021, 23, 170

a 

b          c       d     e 

           

  
                  

                     

             f 
         
               

  

  

 

      

MtrB PrrB PhoR

Figure 7. (a) Cognate interactions and observed in vitro crosstalk interactions overlaid onto the
specificity score heatmap for M. tuberculosis [24]. Noncognate interactions are assessed. (b) MtrB
phosphorylates kdpE, phoP, tcrX, tcrA, and narL, in which the scores are −4.895, −5.826, 0.391,
−1.093, and 2.813 respectively. Scores for kdpE, phoP, and tcrA indicate that phosphorylation
by mtrB occurs due to high specificity for these noncognate partners. TcrX has a score near zero,
/textcolorredindicating diminished specificity but a presence of attributes shared among all TCS
pairs. Phosphorylation of narL is characterized in (f). (c) PrrB phosphorylates mprA, in which the
score is −11.263. This score indicates that phosphorylation of mprA by prrB occurs due to high
specificity. (d) PhoR phosphorylates tcrX, tcrA, and devR, in which the scores are −5.744, −5.176,
and 6.856, respectively. Scores for tcrX and tcrA indicate that phosphorylation by phoR occurs due
to high specificity for these noncognate partners. Phosphorylation of devR is characterized in (f).
(e) Cognate, crosstalk, and average noncognate scores are shown for each HK. (f) HKs devS and narS
are not shown as they utilize a HisKA3 family HK, rather than HisKA. Their response regulators,
narL and devR, have low specificity for all HKs utilizing the HisKA domain.

In Figure 6g, we observe an orphan RR that exhibits low specificity for many HKs and
has been phosphorylated by HKs with low predicted specificity. Aside from the possibility
of HATPase_c domain contributions, it is possible that low specificity for orphan RRs is
favorable as it promotes promiscuity. In the case of rssB in E. coli, phosphorylation is
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important for function [25,26]. Therefore, promiscuity of rssB could ensure maintenance of
function throughout the E. coli life cycle. Using similar reasoning, one can identify potential
interactions with orphan HKs and RRs. Information yielded from analysis of orphan TCS
proteins may assist in describing their role in organisms’ life cycles, environmental stress
responses, and expression patterns. Utilizing predicted orphan TCS protein interactions
could be useful in the study of antibiotic resistance in bacteria, response to environmental
metals and compounds in archaea, or plant response to drought.

3.3. Revealing Interaction Specificity for Mutation and Variation

After mutating a protein residue, specificity scores are recalculated and the heatmap
is updated. This reveals how mutation(s) change interaction specificity with all possible
TCS partners. A feature that becomes important when scientists would like to assess the
network effect of mutations as opposed to single pairwise interactions. The ELIHKSIR web
server also separates organisms by strain, allowing interaction specificities to be compared
between different strains of the same organism. Accessibility of specificity predictions
for different mutants and strains may reveal differences in TCS signaling of clinical and
environmental variants and may assist in the engineering of sensory kinases and response
regulators as it has been shown in previous studies [5].

4. Materials and Methods

4.1. MSA Construction

Raw HMM profiles for HisKA and REC were obtained through Pfam’s hidden Markov
models (HMM) [27,28]. Then, the profile was searched using Hmmer’s hmmsearch against
the TrEMBL database. HKs with a sequence gap of 5 residues or larger were excluded
from the MSA. The resulting HisKA domain MSA was 67 residues in length and contained
111,032 sequences utilized in the ELIHKSIR web server. RRs with a sequence gap of
6 residues or larger were excluded from the MSA. The resulting REC domain MSA was
112 residues in length and contained 225,616 sequences utilized in the ELIHKSIR web
server. Cognate HK-RR pairs were concatenated and used for the generation of couplings
and local fields using mfDCA, where cognate is defined by having adjacent loci [29].
The resulting cognate MSA was 179 residues in length and contained 10,091 sequences.
A number of 25 iterations of random concatenation of each HK to a random RR was used
to generate a scrambled MSA. The resulting MSA was 179 residues in length and contained
16,363,100 sequences.

4.2. mfDCA Evolutionary Couplings and Hamiltonian Scores

Mean field DCA (mfDCA) [1] was used to infer the coevolutionary parameters from
conjugated multiple sequence alignments (MSAs) of cognate HK–RR sequences and scram-
bled HK–RR sequences. The resulting coupling parameters and local field parameters
were utilized in the calculation of Hamiltonian scores. In order to quantify changes on the
Hamiltonian H(S), Cheng et al. introduced a score HTCS as follows:

HTCS(HKA + RRA) =−
LHKA

∑
i=1

LHKA+LRRA

∑
j=LHKA+1

eij(Ai, Aj)× Θ(c − rij)

−
LHKA+LRRA

∑
i=1

hi(Ai)

(3)

for a specific pair between a sequence HKA and RRA of sequence lengths LHKA and LRRA
with the coupling matrix eij(Ai, Aj) between two sequence sites Ai, Aj at sequence positions
i and j; and the local field hi(Ai) at the site Ai at sequence position i. LHKA is 67 for the
HisKA domain and LRRA is 112 for the REC domain. The couplings are only taken within a
pair distance rij < c = 12Å of a native contact, expressed by a function Θ(x) = 1 for all
x > 0 and Θ(x) = 0 for x ≤ 0. The contact map of the native interfacial pairs is given by
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the 3D resolved structure of protein interface Thermotoga maritima class I HK853 with
its cognate, RR468, (PDB ID: 3DGE). This interface is used as a template for the spatial
complex. Equation (3) is used to calculate energies HTCS and H0

TCS at interface positions,
where HTCS is calculated using cognate couplings and local fields and H0

TCS is calculated
using scrambled couplings and local fields. H0

TCS is generated using the large-q Potts
Hamiltonian model on the scrambled MSA which is constructed by completing 25 rounds
of concatenation of any of m HKs in the data set with any of n RRs in the dataset:

H0
TCS({HK, RR}) =

〈HTCS(HKX |X ∈ {1,...,m}+ RRY|Y ∈ {1,...,n})〉25
(4)

To find Hspecific
TCS , Hamiltonian energies calculated from shared attributes present in all

HK–RR pairs must be removed from the specific HK–RR pair being evaluated:

Hspecific
TCS (HKA + RRA) =

HTCS(HKA + RRA)− H0
TCS({HK, RR})

(5)

where the resulting Hspecific
TCS represents the interaction specificity strength between the HK

and RR. Therefore, this energy function could be used to predict the interaction preference
between any HK and RR. Additionally, an updated Hspecific

TCS score, after incorporating a
mutation in the MSA, serves a reference for the effect of the mutation on binding specificity
strength. The updated Hspecific

TCS is generated by performing the same calculations presented

in Equations (3) and (5). Ranges for Hspecific
TCS values are varied between organisms and

strains where a positive score indicates a loss of shared encoded TCS attributes, a negative
score indicates encoded specificity, and a score of zero indicates a presence of all shared
TCS attributes but diminished encoded specificity. When qualifying potential interactions,
users should compare Hspecific

TCS for different TCS pairs belonging to the same organism.
One should consider more negative values to have increased encoded specificity, zero val-
ues to be capable of interacting with other TCS proteins without encoded specificity in the
HisKA domain, and positive values to exhibit insulation of HisKA and REC domains.

4.3. Software

The web server has a custom-built front end running React [30] for enhanced user
experience with custom components. The back-end is serving data through REST [31]
endpoints. Upon mutation, the scores are looked up from a pre-computed table. The python
source code for the calculation of HTCS is accessible via the web server. Details on public
endpoints can be found in Appendix A.

5. Conclusions

The ELIHKSIR web server is a valuable tool for analyzing TCS specificity landscapes
in a growing list of 6412 species and strains of bacteria, 65 species and strains of archaea,
and 188 species and strains of eukaryotes. This allows users to find potential cross-talk
interactions and characterize existing orthogonality for many organisms across different
kingdoms. For each organism, heatmaps and histograms of TCS networks are easily ac-
cessed, displayed, and exported. Furthermore, the ability to compute, display, and export
changes in specificity for mutated HK or RR proteins allows users to explore potential
interactions and visualize changes in specificity over an entire signaling network. This abil-
ity can assist in the analysis of engineered mutants, clinical and environmental variants,
and cross-talk behavior. While ELIHKSIR is useful for interactions between HisKA family
HKs and the REC domain of RRs, there exist other HK families in which the ELIHKSIR
model does not evaluate. Building and validating models to predict specificity for other
families of HK would further assist TCS research. Even though ELIHKSIR only displays
specificity scores for HisKA and REC domains, these domains are critical in determining

130



Entropy 2021, 23, 170

specificity for many TCS interactions, as demonstrated by the 6,272,607 HK-RR pairs evalu-
ated. Due to the ability to mutate each protein and recalculate network-wide specificity
scores, there are nearly endless possibilities of HK–RR pairs to evaluate using ELIHKSIR.
The accessibility, breadth, and functionality of ELIHKSIR allows a variety of researchers
(both computational and experimental) to harness TCS specificity predictions, supporting
research efforts through a tool that did not previously exist.
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Abbreviations

The following abbreviations are used in this manuscript:

ELIHKSIR
Evolutionary Links Inferred for Histidine Kinase Sensors
Interacting with Response regulators

TCS Two-Component System
DCA Direct-Coupling Analysis
mfDCA couplings generated by mean-field method as outlined in Morcos, 2011 [1]
DI Direct Information
HK Histidine Kinase, Histidine Kinase family (Pfam:PF00512) [15]
RR Response Regulator, Response Regulator family (Pfam: PF00072) [16]
TP True Positive
FN False Negative
PS Positive Selection
NS Negative Selection

Appendix A

Data of the server can be accessed in a programmatic way through two REST end-
points as described in Table A1. The all organisms endpoint api/list returns a list of
all the organisms currently accessible through ELIHKSIR. The return value will contain
the names (ORGANISM_NAMES::STRING), UNIPROT ID (ORGANISM_UNIPROT_ID::STRING),
and the numeric identifier/primary key (ORGANISM_ID::INT) for each organism. By
using the numeric identifiers obtained from the list endpoint further meta data and in-
formation, along with the scores for each interacting pair, can be obtained through the
api/pairs endpoint.

Table A1. List of the available endpoints for the REST API.

Endpoint HTTP Method URL

All Organisms GET api/list
Pairs for heatmap GET api/pairs/{ORGANISM_ID::INT}
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Figure A1. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable interaction.
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Figure A2. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable.

Figure A3. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable interaction.
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Table A2. Couplings used in specificity model sorted by descending DI value.

HK RR DI HK RR DI HK RR DI HK RR DI

18 77 0.102853 7 147 0.00806367 14 170 0.00572271 16 77 0.00460402
22 80 0.0722833 30 83 0.00801695 19 169 0.00571496 42 77 0.00460128
11 167 0.0705232 33 83 0.00781679 14 147 0.00570246 26 176 0.004455
26 84 0.0515243 22 171 0.00767719 22 170 0.00569941 42 76 0.00444185
23 80 0.0492594 19 79 0.00765574 16 76 0.00569788 17 169 0.00442802
14 146 0.04276 23 172 0.00763662 15 76 0.00568733 27 80 0.00440244
46 76 0.0398581 18 171 0.00759788 38 80 0.0056818 15 167 0.00439432
19 76 0.0392644 19 147 0.00753089 10 147 0.00567069 19 81 0.00420284
25 170 0.0351779 18 81 0.00752615 22 172 0.00562105 38 79 0.00418686
25 171 0.0303173 12 148 0.00734758 13 147 0.00559724 41 79 0.00416339
11 168 0.0285807 10 150 0.00732327 34 87 0.00559491 15 170 0.0041264
15 146 0.0270048 45 76 0.007169 33 84 0.00556154 24 173 0.00403743
29 87 0.0265711 22 76 0.00712089 34 84 0.00552466 18 146 0.00382329
19 77 0.0259669 21 172 0.00705718 25 169 0.00545037 16 147 0.00378105
30 87 0.0215653 30 80 0.00702085 15 118 0.00544512 18 172 0.00377972
23 76 0.0193616 15 74 0.00697282 25 174 0.00543429 20 168 0.00375797
19 80 0.0189693 18 147 0.00691656 18 74 0.00541696 16 169 0.00366294
22 77 0.0188355 45 79 0.00690392 14 149 0.00540391 25 81 0.00362641
23 79 0.0180874 22 78 0.00680398 30 86 0.00538702 13 169 0.00359782
19 74 0.0176283 19 170 0.00679327 33 87 0.00538074 10 148 0.00359015
8 147 0.0172729 23 170 0.00679065 17 147 0.00537632 20 77 0.00355346
18 169 0.0171606 18 78 0.00676363 33 86 0.00534217 11 146 0.00345648
29 171 0.0170736 26 81 0.00675062 7 149 0.00530426 21 81 0.00344168
16 168 0.0168674 31 87 0.0067342 14 169 0.00530394 42 80 0.00338203
15 77 0.0152404 21 77 0.00670382 38 83 0.00526882 28 173 0.00334077
25 172 0.0149784 27 84 0.00667465 26 82 0.00525117 22 174 0.0032904
39 83 0.014901 22 81 0.00666247 17 77 0.00524036 20 170 0.00327778
29 172 0.0146187 46 77 0.00658625 42 83 0.00521168 14 168 0.0032269
21 170 0.014469 26 79 0.00657677 34 83 0.00520958 22 176 0.00319442
26 80 0.0141692 18 168 0.00651457 34 80 0.00518935 24 172 0.00310293
26 83 0.0139579 45 80 0.00648245 20 80 0.00514101 17 170 0.00307046
23 83 0.0130196 19 172 0.00639985 46 80 0.00512939 19 168 0.00298315
12 168 0.0128269 18 76 0.00633046 18 170 0.00510377 26 85 0.00290492
15 147 0.0123301 28 172 0.00626959 23 82 0.00509604 20 171 0.0027667
29 84 0.0121863 25 175 0.00623035 25 80 0.00502442 15 169 0.00275228
8 148 0.0119021 16 74 0.00615123 49 77 0.00502117 20 169 0.00269252
23 84 0.0118386 30 88 0.00614559 45 77 0.00501361 15 168 0.00266174
22 84 0.0113964 19 75 0.00610985 24 171 0.00496918 21 168 0.00254422
23 171 0.0108972 10 149 0.00608531 17 76 0.00494564 26 174 0.00238278
32 87 0.0108637 24 80 0.00607124 14 167 0.00492586 27 173 0.00238187
26 171 0.0107505 23 169 0.00605014 15 148 0.00492344 24 169 0.00237797
25 84 0.0104978 33 88 0.00604033 23 173 0.00489615 20 172 0.00233119
14 148 0.0104055 7 150 0.00599047 24 170 0.00488941 18 145 0.00222389
30 84 0.0102802 48 76 0.00596518 44 76 0.00484498 13 168 0.00190674
26 87 0.0102777 21 80 0.0059512 21 173 0.00483877 10 169 0.00186603
23 78 0.01007 25 173 0.00592837 29 173 0.00481891 18 167 0.00162171
23 77 0.00997545 28 171 0.00591566 10 168 0.00480323 12 169 0.00147153
22 169 0.00996165 42 79 0.00586154 17 171 0.00478502 15 145 0.00135628
43 80 0.00972282 22 173 0.00585409 22 168 0.00478308 11 149 0.00105631
22 83 0.00952424 26 172 0.0058532 12 147 0.0047804 11 169 0.000969333
18 80 0.0093605 49 76 0.005838 26 173 0.00476983 11 150 0.000862052
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Table A2. Cont.

HK RR DI HK RR DI HK RR DI

7 148 0.00897782 26 175 0.00581626 22 82 0.00476307 11 148 0.000856593
29 83 0.00882006 30 172 0.00577961 45 75 0.00475623 11 118 0.000790599
21 171 0.00865425 22 79 0.00577265 39 80 0.00473036 11 147 0.000413171
26 170 0.00854487 15 73 0.00576882 27 172 0.00472585
19 171 0.00831504 41 80 0.00576018 41 76 0.00472158
17 168 0.008266 30 173 0.00574398 27 83 0.0046522
19 78 0.00818936 23 81 0.00573789 20 76 0.00465154
21 169 0.0080992 22 175 0.00573107 16 77 0.00460402

(a)

(b)
Figure A4. Gray structures show the HK residues lying outside of the HisKA domain. Black structures show the RR residues
lying outside the REC domain. The blue structure represents the HisKA domain, and the yellow structure represents the
REC domain. Green pseudobonds show contacts within 12 Angstroms Cα to Cα. Red pseudobonds show the top 20 DCA
couplings. The distribution of DCA couplings indicates that the model does not show biases towards subregions of the
interface. (a) All contacts within 12 Angstroms as found in the structure viewed from two different positions, left and right
faces; (b) Top 20 interfacial DI contacts as viewed from left and right faces.
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