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engineering sciences (Université catholique de Louvain (UCLouvain), Belgium, 2013) in the field of 
antennas involving metamaterials. Since September 2011, she has been professor at the Haute Ecole 
Louvain in Hainaut and head of research of the electricity/electronics department of CeREF (HELHa 
research center). She is involved in various research projects aiming, in particular, at the development 
of intelligent and connected electronic boards and platforms in medical or cultural applications.

vii





sensors

Editorial

Low-Cost Sensors and Biological Signals

Frédéric Dierick 1,2,3,*, Fabien Buisseret 3,4 and Stéphanie Eggermont 3

Citation: Dierick, F.; Buisseret, F.;

Eggermont, S. Low-Cost Sensors and

Biological Signals. Sensors 2021, 21,

1482. https://doi.org/10.3390/

s21041482

Received: 2 February 2021

Accepted: 17 February 2021

Published: 20 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Analyse du Mouvement et de la Posture, Centre National de Rééducation Fonctionnelle et de
Réadaptation-Rehazenter, 2674 Luxembourg, Luxembourg

2 Faculty of Motor Sciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
3 CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium; buisseretf@helha.be (F.B.);

stephanie.eggermont@cerisic.be (S.E.)
4 Service de Physique Nucléaire et Subnucléaire, UMONS, Research Institute for Complex Systems,

Place du Parc 20, 7000 Mons, Belgium
* Correspondence: frederic.dierick@gmail.com

Low-cost sensors, i.e., sensors typically cheaper than USD 100, are currently available,
allowing the measurement of a wide range of physiological signals. These signals contain
valuable information that can be used to increase the understanding of any physiological
function of clinical interest. Hence, low-cost sensors are expected to play a key role in
the future of clinical practice and medical diagnosis. In particular, they may facilitate the
collection of big data and allow broader diffusion of evidence-based medicine, which is
essential to improving medical practice. Low-cost sensors may also be of interest in virtual
or augmented reality applications, including rehabilitation. Their use is associated with
several challenges: First, sensors should be accurate enough to unambiguously compute
relevant indicators from biosignals, in particular in patients with medical conditions.
Second, the designed sensors should be as non-intrusive and ready-to-use as possible
with fast calibration procedures. Third, they require user-friendly and cross-platform
interfaces that provide secure data storage and easy data analysis and visualization. We
invited authors to submit their latest results in the field, either research articles or reviews;
12 papers were accepted for publication in this Special Issue of Sensors, entitled “Low-Cost
Sensors and Biological Signals.” They are summarized in the next paragraphs.

Low-cost sensors allow for the full monitoring of human motion. In particular, inertial
measurement units (IMUs) and magnetic angular rate and gravity sensors (MARGs) are
compact devices able to measure the 3D acceleration and angular speed of a given anatom-
ical landmark with an accuracy comparable to gold-standard material only available in
research centers [1]. As shown in this work through the study of a clinical test assessing
neck mobility, the precision reached is sufficiently high for daily use in clinical practice.
More generally, physiotherapy is a field that can benefit from such motion sensors. Cap-
pelle et al. [2] present a low-complexity wireless motion sensor based on IMUs designed
to be physiotherapist-friendly. The small size and low weight as well as the wireless data
transmission are needed to reduce the impact on patient motion and to allow for easy
positioning on a patient’s body.

Regarding daily use, calibration has to be as fast as possible compared to the typical
time a clinician spends with a patient. Accurate calibration will allow the computation
of angular position from acceleration and angular velocity. Angular amplitudes are one
of the most commonly used indices to assess joint mobility. Calibration procedures are
presented [3] for IMUs, leading to an accuracy of less than 3.4◦ on lower limb amplitude
measurements. These results are coherent with those of Hage et al. [1], although Hage et al.
focused on the neck rather than lower limbs. In real-life situations, some perturbations
cannot be avoided, which jeopardize calibration efforts, e.g., magnetic disturbances for
MARGs. It may be necessary to add extra information to compensate for the perturbations.
An example is given in Wöhle and Gebhard [4], who show that eye-tracking data can be
used to improve the accuracy on MARG head-orientation measurements.

Sensors 2021, 21, 1482. https://doi.org/10.3390/s21041482 https://www.mdpi.com/journal/sensors

1



Sensors 2021, 21, 1482

Once human motion is measured, it can be used as an input signal to interact with
a virtual environment or with more classical videogames. An example is provided in
Foreman and Engsberg [5], who show that Microsoft Kinect® is a reliable tool for assessing
trunk motion. The coupling between low-cost motion sensors and serious videogames
opens the possibility to innovative methods in rehabilitation. A review [6] shows that the
use of videogames and motion-capture systems in rehabilitation contributes to the recovery
of the patient, mostly in post-stroke rehabilitation. Sensors may be relevant not only in
rehabilitation but also in helping patients to improve their motor abilities and to recover
autonomy. Krasovsky et al. [7] focus on adults and children with motor impairments such
as stroke or cerebral palsy. They show that a spoon instrumented with an IMU allows for a
clinically feasible assessment of self-feeding.

Kinematics is obviously not the only method to assess physical activity. Two other
types of biosignals are discussed [8,9]. In Tahir et al. [8], a systematic design and char-
acterization procedure for different pressure sensors is proposed for building low-cost
smart insoles for detecting vertical ground reaction force in gait analysis. In Wójcikowski
and Pankiewicz [9], a new algorithm for the measurement of the human heart rate us-
ing photoplethysmography is presented. The algorithm is less demanding in computing
power than many others, which is an important advantage regarding the autonomy of
wearable devices.

Low-cost sensors may not only be useful in characterizing an individual’s state: they
can also offer ways to classify individuals in different groups. Gabis et al. [10] show that
accelerometers provide enough information to discriminate between typically developed
children and children with autism spectrum disorder via a simple motor task (star jump).
Li et al. [11] report that the kinematic patterns measured by IMUs are significantly different
between the Baduanjin teacher, senior students, and junior students: changes in kinematics
are, in this case, related to one participant’s experience.

A direction in which low-cost sensors may be applied is in affective technologies:
biosignals measured by sensors (temperature, skin humidity, etc.) reflect the emotional
state of an individual. Such signals may be communicated to a wearable device worn by
another person to enhance the methods of communicating with each other [12].
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Abstract: Various noninvasive measurement devices can be used to assess cervical motion. The size,
complexity, and cost of gold-standard systems make them not suited to clinical practice, and actually
difficult to use outside a dedicated laboratory. Nowadays, ultra-low-cost inertial measurement units
are available, but without any packaging or a user-friendly interface. The so-called DYSKIMOT is a
home-designed, small-sized, motion sensor based on the latter technology, aiming at being used by
clinicians in “real-life situations”. DYSKIMOT was compared with a gold-standard optoelectronic
system (Elite). Our goal was to evaluate the DYSKIMOT accuracy in assessing fast head rotations
kinematics. Kinematics was simultaneously recorded by systems during the execution of the
DidRen Laser test and performed by 15 participants and nine patients. Kinematic variables were
computed from the position, speed and acceleration time series. Two-way ANOVA, Passing–Bablok
regressions, and dynamic time warping analysis showed good to excellent agreement between Elite
and DYSKIMOT, both at the qualitative level of the time series shape and at the quantitative level of
peculiar kinematical events’ measured values. In conclusion, DYSKIMOT sensor is as relevant as a
gold-standard system to assess kinematical features during fast head rotations in participants and
patients, demonstrating its usefulness in both clinical practice and research environments.

Keywords: inertial sensor; kinematics; head rotation; ecological research

1. Introduction

Neck pain is a common neuromusculoskeletal symptom with a prevalence ranging from 22% to
70%, increasing with age and affecting most often women around 50 years old [1]. It is the fourth
leading cause of years lived with disability in 188 countries during the period 1990–2013 [2]. Therefore,
the correct identification of the source of neck pain is paramount. However, probably due to imperfect
diagnosis, the majority of patients with neck pain are still nowadays called “non-specific” [3].

According to the Bayesian inference, a medical diagnosis indicates that one disorder (e.g., muscular,
discogenic, lack of sensorimotor control deficits) more than another is probably the cause of a patient’s
symptoms, and thus, investigations are needed to reinforce or refute the hypothetical diagnosis [4].
In accordance with the literature [2,5–7], diagnoses and therapeutic interventions for neck pain
should be informed using quantitative (strength and range of motion) and qualitative (sensorimotor

Sensors 2020, 20, 833; doi:10.3390/s20030833 www.mdpi.com/journal/sensors5
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appraisal) assessment of neck rotation. Quantitative devices have been reported to be superior to visual
estimation to assess the cervical range of motion [8], the most popular method used by clinicians being
goniometry [9]. Although very easy to use, goniometry has a margin of error of about 5◦ [9]. Moreover,
maybe more important than movement amplitude [5,10], the evaluation of sensorimotor function
has demonstrated its importance in developing a better understanding of the pathophysiological
mechanisms associated with cervical pain [6] both in cases of specific neck pain such as traumatic neck
pain [11], as well as for idiopathic neck pain [12]. Therefore, in an attempt to better define the clinical
picture of patients by focusing on head movement [5,13,14] especially in axial rotation [15], clinicians
show increased interest in quantitative devices that can accurately monitor movement.

Various noninvasive three-dimensional motion capture systems are used in the field of cervical
research in order to evaluate kinematic variables going beyond simple range of motion such as speed,
acceleration and deceleration using electrogoniometers [16], ultrasound waves [17], optical-based
systems [18,19] and inertial sensors [20] and so on. Nevertheless, their dimension, complexity, and cost
make such systems often difficult to use in clinical practice. The need for compact, user-friendly and
low-cost measurement devices that can bring relevant information in everyday clinical practice is
therefore obvious and goes beyond neck exploration, although we chose to focus on that topic in the
present study.

Inertial measurement units sensors (IMUs) began to be applied to human movement before
2000 [21]. IMUs consist of accelerometers and gyroscopes which are organized in orthogonal triads
in order to obtain three-dimensional kinematics [22]. Most often, IMUs are now supplemented by
magnetometers and thermometers and are called MARG sensors (magnetic angular rate and gravity
sensors). This technology has the advantage of not requiring external equipment such as cameras
to acquire the orientation and position of the human segments, and it does not limit the subject’s
movement to the volume covered by the cameras. IMUs or MARGs thus seem to be the appropriate
basic tool to design a device which could be easily used in a clinical and ecological environment [23,24].
Note that this technology suffers from high measurement noise and drift [25] that can mostly be
cured by a Kalman filter [25]. Nowadays, the large-scale production MARGs sensors make them
affordable compared to gold-standard systems but nevertheless the prices are several thousand euros
(e.g., Vicon®, XSENS®). Other MARGs may indeed be bought at typical prices less than 50 €, still
without any packaging nor user-friendly interface.

It is in this context that our team designed a small-sized, light, and ultra-low-cost inertial sensor
called DYSKIMOT. After first laboratory tests, our goal was to evaluate the accuracy of DYSKIMOT
compared to a gold-standard optoelectronic system when performing a clinical sensorimotor test
developed by Hage et al. (i.e., the DidRen-Laser Test) in small groups of asymptomatic and symptomatic
neck pain participants [26]. We selected different dynamic outcomes to evaluate our DYSKIMOT [27,28]:
range of motion, peak speed, average speed, peak acceleration, and peak deceleration.

2. Materials and Methods

2.1. Participants

Fifteen cervical non-disabled participants (NDP) (3 females, 12 males) and 9 cervical disabled
patients (DP) (4 females, 5 males) were recruited from students in University hospital and among
researchers’ patients to participate in this study, see Table 1. Inclusion criteria for NDP were the
absence of neck pain episodes in the last 6 months and a neck disability index (NDI) [29] score of less
than or equal to 8%. Inclusion criteria for the DP were a numeric pain rating scale (NPRS) equal to or
greater than 3/10 [30] and an NDI > 8%. Exclusion criteria were for NDP and DP: impaired cognition,
blindness, deafness, dizziness, or vestibular disorders diagnosed by a physician. Participants and
patients did not exhibit any neuromusculoskeletal or neurologic disorder that could influence the
performance of head rotation in the horizontal plane. The participants signed informed consent and
gave permission to publish their case details. The study was approved by the local ethics committee
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(Comité d’Ethique Hospitalo-Facultaire Saint-Luc-UCL (IRB 00001530)) and conducted in accordance
with the declaration of Helsinki.

Table 1. Characteristics of the participants in NDP and DP groups. Data are given either under mean ±
SD or median [Q1–Q3] form.

NDP (n = 15) DP (n = 9)

Age (years) 24 ± 3 31 ± 14
Gender (men/women) 12/3 5/4

BMI (kg/m2) 22.2 ± 2.7 21.8 ± 2.3
NDI (%) 0 [0–0] 14 [10–16]

NPRS (/10) 0 [0–0] 3 [0–0] 1

1 SD = Standard Deviation, BMI = Body Mass Index, Q1 = First Quartile, Q3 = Third Quartile, NDI =Neck Disability
Index. NPRS = Numeric Pain Rating Scale, NDP = Non-Disabled Participants. DP = disabled participants.

2.2. The DidRen Laser Test

The DidRen Laser Test [26] was used to assess neck mobility through standardized axial rotations
of the head in NDP and DP.

After watching an explanatory video, participants sat on a chair with backrest, without armrests,
placed at 90 cm from a vertical panel equipped with 3 targets (LEDs) arranged horizontally and located
52 cm apart (Figure 1). Participants wore an adjustable helmet with a laser beam attached on the top
was worn by the participant (Figure 1). The experimenter (RH) adjusted the helmet so that the laser hit
the central target while the participant was in a neutral position before the test began. The instructions
were the same for all participants: “You must reach the targets as fast as you can and perform the
head movement without moving your shoulders”. The targets were then turned on in a predefined
sequence and the participant’s task was to rotate his/her head so that the laser beam hit the target as
quickly as possible. When the laser beam was stabilized by the participant on a target for at least 0.5 s,
the target LED lit up and an audible signal was emitted. A complete test was composed of 5 cycles of
cervical axial rotation to the right and left sides respectively.

 

Figure 1. (A) DidRen Laser Test installation device. (B) Schematic view from above. The passage from
one target to another induces an axial rotation of the head of 30◦ either to the left or to the right sides
of the bodyline. (C) The Helmet worn by the participant with the Laser on the top. The DYSKIMOT
sensor can be seen (red circle) at the front of the helmet.

A first test was carried out to familiarize the participant and a second for data recording and
analyses [26].
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2.3. Motion Sensors

2.3.1. Elite System (BTS)

An optoelectronic system composed of 8 infra-red cameras (ELITE, BTS, Milan, Italy) (Figure 2A)
with sampling frequency of f = 200 Hz test carried out the three-dimensional recording of the markers
on the helmet during the DidRen Laser. A kinematic model composed of 3 markers on a helmet and
fixed during all experimentations representing the head was used and adapted from [31] (Figure 2B,C).
Helmet markers were positioned such that one was just aside the top of the head (Top H) and positioned
next to the laser, and two on each side of the head (R.H and L.H) (Figure 2C). Real time detection of
head rotation markers was executed around a coordinate system such that the axis of rotation for head
axial rotations was X (inferior-superior axis). The Y-axis was aligned with participant’s mediolateral
axis at the beginning of the test and the Z-axis was aligned with the antero-posterior axis. This is
illustrated in Figure 2B. The system was previously calibrated within the infra-red camera’s field of
view [31] and the instantaneous X, Y, and Z coordinates of the three markers were recorded, leading to
→
XTop H,

→
XL.H, and

→
XR.H. The vector

→
u =

→
XTop H −

→
XL.H+

→
XRH

2 gives the orientation of antero-posterior
axis (coinciding with that of the laser beam).

Figure 2. (A) Infra-red cameras (ELITE, BTS, Milan, Italy). (B) Head axis of rotation is denoted as X.
(C) Placement of the reflective markers on the head.

The angular displacement time series of the head, θi, has been computed from the coordinates of

the markers as described in details in [32]: θi = cos−1
( →

u i.
→
u 0

||→u i ||||→u 0 ||

)
. The index i denotes the vector at time

i Δt, Δt = 1/ f . The angular velocity was then computed as ωi =
θi+n−θi−n

2.n.Δt
with n = 5 and, similarly,

the angular acceleration has been computed as αi =
ωi+n−ωi−n

2.n.Δt
. The choice n = 5 guaranteed an optimal

smoothness of the curves both for Elite and DYSKIMOT time series (assessed by visual inspection).

2.3.2. DYSKIMOT

The DYSKIMOT sensor is a MARG sensor based on the Micro-Electro-Mechanical Systems (MEMS)
IMU LSM9DS1 (SparkFun, 14 €), with a mass of 10.44 gr and size of 3 × 3 cm (Figure 3A,C). It is
composed of 3-axis accelerometer, gyrometer and magnetometer, plus a temperature sensor (Figure 3B).
These internal components respectively measure acceleration (in [g], ±16 [g]), angular velocity (in [◦/s],
±2000 [◦/s]) and magnetic field (in [gauss], ±16 [gauss]).The apparatus can operate between −40 ◦C
and +85 ◦C. The sensitivity depends on the sensor and on the selected range; detailed information
is given in the datasheet (https://www.st.com/en/mems-and-sensors/lsm9ds1.html). For example,
the gyrometer sensitivity is 8.75 10−3 ◦/s /LSB at the range ± 245 ◦/s, i.e., the range we use in the present
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study. Communication with other electronic components is made via serial peripheral interface bus
(SPI) or inter-integrated circuit (I2C) protocol. The data recorded at a sampling frequency f = 100 Hz
are transmitted to a PC via an Arduino Uno Rev 3 (23 €) and a USB cable (RS232 serial link). That
sampling frequency was actually the maximal reachable with the devices used. The Arduino contains
the data recovery program, using the SparkFun library provided for this sensor, and transfers them to
a home-made acquisition software.

 

Figure 3. (A) Micro Electro-Mechanical Systems (MEMS). (B) 3-axis accelerometer, a 3-axis gyrometer,
a 3-axis magnetometer and a temperature sensor. (C) Dimension of the DYSKIMOT.

The DYSKIMOT sensor was placed in front of the helmet (Figure 1C) with the X-axis in the vertical
direction (inferior-superior axis). The Y-axis was aligned with participant’s mediolateral axis at the
beginning of the test and the Z-axis was aligned with the antero-posterior axis. This choice has two
advantages. From a clinical point of view it is the most reliable position to record cervical axial rotation
as shown in [33]. From an algorithmic point a view, the sensor orientation is such that the relevant
information about the DidRen Test is fully contained in the X-component of angular velocity measured
by the gyroscope. The latter time series was denoted ωi. A trapezoidal integration gave the head’s
rotation angles θi, where the constant of integration was chosen such that the angle was zero at the
beginning of the test. The derivative αi =

ωi+n−ωi−n
2.n.Δt with n = 5 and Δt = 1/f provided the head’s angular

acceleration. Angles computed from the gyroscope showed a linear drift. Since the DidRen Laser
Test consists of quasi-periodic rotations of 30◦ around a neutral position, a straightforward way of
removing the drift is to subtract the least square regression line from the time series θi. Notice that
Elite (DYSKIMOT) time series are written with (without) a bar.

Before using the DYSKIMOT in this study, a test was performed using a sensor attached to a servo
motor (see Figure 4) to mimic the sequence of the cervical axial rotation during the DidRen test, i.e.,
angles from 30◦ to the left and right by going back through the 0 angle (Figure 4). The servo motor
with an Arduino Uno Rev 3, was programmed to perform the sequence repeatedly. The result can be
seen in Figure 5. The sensor was kept static during the first 20 s of the test. The linear drift is clearly
observable on the raw angular data and the parameters of this line are computed by a least squares
regression. Then comes the activation of the actuator and the beginning of the sequence (around 25 s)
started. The fitted linear drift was eventually subtracted from the raw angular data. Such a procedure
is satisfactory for time series displaying the typical behavior of the DidRen Laser Test (Figure 5). Such a
procedure may actually work in all cases, including non-periodic tests. The regression line parameters
may even be stored provided they do not change over time or with temperature. We checked that the
drift stays linear at larger time scales (30 min).

2.4. Data Analysis

Signals from DYSKIMOT and Elite were synchronized by an external digital trigger (National
Instrument, Austin TX, United States). Since the frequencies of both sensors were different (100 Hz vs
200 Hz), the accuracy of the synchronisation of the time series θ, ω, α (Elite) and θ, ω, α (DYSKIMOT)
is in the order of 5 ms.
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Figure 4. (A) Servo motor + housing adapted to its axis to fix the MARG. (B) Angle = 0◦,
(C) Angle = +30◦, (D) Angle = −30◦.

Figure 5. Example of linear drift due to integration of DYSKIMOT’s raw angular velocity (red line) and
correction of the drift of the test angle Z with the servo motor (blue line). The corrected angle (blue
line) is obtained by subtraction of the regression line to the raw angle. This plot has been obtained
by fixing the DYSKIMOT sensor on a servo motor (MG995, Tower Pro) performing successive and
opposite rotations of amplitude 30◦.

Then the following parameters were calculated during each cycle and averaged on the 5 cycles
achieved by each participant, see Figures 6 and 7 for a graphical illustration of our computational
procedure: (1) angle (range of motion, in ◦); (2) peak angular velocity (maximum angular velocity
reached, in ◦s−1); average angular velocity (in ◦s−1); (3) peak angular acceleration (maximum angular
acceleration reached, in ◦s−2); (4) peak angular deceleration (minimum angular acceleration reached,
in ◦s−2). The beginning of all cycles has been manually marked by one of the authors (RH) within a
homemade software that performed the averages over the 5 cycles for each trial. The peak value of a
given time series Xi has been computed to be max(Xi) unless the maximal value was judged to be an
artefact by visual inspection of the curves. Then, the value below this maximum was retained.

Although our goal was to measure the agreement between Elite and DYSKIMOT sensors for ND
and NDP participants, the computed parameters were of clinical interest, as neck velocity during fast
rotation can discriminate between nonspecific neck pain and healthy control [13,14].

A Passing–Bablok regression [34], which allows to compare the DYSKIMOT vs Elite data, was
performed on the individual values of the parameters for DP and NDP simultaneously so that the
agreement between both sensors could be appraised and summarized by a “calibration line”.
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Figure 6. Typical plots of variables analyzed during one right rotation in a DP (34 years, Male, NDI = 22,
NRPS = 5) and an NDP (25 years, Male, NDI = 0, NPRS = 0): (A) Angle; (B) Angular velocity; (C)
Angular acceleration. Elite curves (dotted lines) can be compared to DYSKIMOT ones (solid lines).
Computed parameters are illustrated by blue (Elite) or red (DYSKIMOT) arrows. (1) angle; (2) peak
angular velocity; (3) peak angular acceleration; (4) peak angular deceleration.
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Figure 7. Typical traces of the head motion during the 5 cycles of the DidRen Laser Test showing
comparison of Elite (red line) and DYSKIMOT (Blue line) angle discrepancies. In (A), the best angle
agreement between Elite and DYSKIMOT (difference = 0.6◦, mean angle during 5 cycles = 25.7◦) in
an DP (34 years, male, NDI=22, NPRS = 5), and in (B) the worst agreement (difference = 4.0◦, mean
angle during 5 cycles = 27.5◦) in a NDP (22 years, male, NDI = 0, NPRS = 0). Cursors indicating the
beginning (grey) and end (green) of one axial rotation movement are shown.

A two-way ANOVA was then used to assess potential differences between the two systems (System
factor: Elite or DYSKIMOT) and between the groups (Status factor: NDP or DP) for the parameters
mentioned above. When the ANOVA indicated significant interaction, a post hoc Holm-Sidak analysis
with pairwise multiple comparisons was carried out. Significance was fixed at p < 0.05 and all statistical
procedures were performed with SigmaPlot 13 (Systat Software, Inc).

Finally, a dynamic time warping (DTW) analysis (without windowing) was carried out on the
z-normalized data and the Euclidian DTW distances between the time series angle

(
θ,θ

)
, angular

velocity (ω,ω), angular acceleration (α,α) for DYSKIMOT and Elite were calculated for all the

participants and then averaged. The z-normalization consisted in replacing a time series X by X−E(X)
SD(X)

,
E and SD denoting the average and standard deviation respectively.

The Passing–Bablok regressions and the DTW were performed by using R v3.4.2 and the packages
mcr and dtw.
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It is worth saying that the accuracy of synchronization is not a matter of concern: the parameters
have been independently computed from Elite and DYSKIMOT time series, and no locality constraint
has been added in the DTW procedure through a window parameter. Synchronization was mainly a
facilitating tool for graphical exploration of the data.

3. Results

A total of twenty-four participants were recruited with their demographics charateristics detailed
in Table 1.

Results of the two-way ANOVA are shown in Table 2. A statistically significant difference was
observed in the angle (p < 0.001) and average angular velocity (p < 0.022) for the System factor, i.e.,
Elite and DYSKIMOT lead to different means. Neither the status factor nor the interaction effects lead
to statistically significant differences.

Table 2. Results of the two-way ANOVA performed on the parameters. p values are given for
the differences between Elite and DYSKIMOT (System), between DP and NDP (Status) and for the
interaction effect System x Status. p values lower than 0.05 are given in bold font.

ANOVA
Difference of the Means

(Dyskimot-Elite or DP-NDP)
p

Angle (◦)
System 1.76 <0.001
Status −0.398 0.157

System x Status 0.094

Average angular
velocity (◦s−1)

System −5.50 0.022
Status 1.72 0.462

System x Status 0.655

Peak angular
velocity (◦s−1)

System 5.74 0.498
Status 6.22 0.630

System x Status 0.708

Peak angular
acceleration (◦s−2)

System 89.9 0.282
Status 59.8 0.473

System x Status 0.880

Peak angular
deceleration (◦s−2)

System −81.3 0.261
Status −46.6 0.517

System x Status 0.955

The results of Passing–Bablok regressions are shown in Table 3. The slopes were close to 1, with the
best agreement observed for the peak angular velocity, and Pearson’s coefficients range from 0.431
to 0.922, i.e., there is a moderate to excellent linear correlation between DYSKIMOT and Elite results.
The agreement between both systems can be graphically appraised in Figure 8. Angles show the
poorest linear correlation, resulting in a large uncertainty in the best fit (large 95% confidence interval).
The other parameters show better linear correlation, and the best fit is known with better accuracy
(smaller 95% confidence intervals).

Table 3. Results of Passing–Bablok regressions performed on the computed parameters. Slope and
Offset are given with their 95% confidence intervals (between brackets).

Slope Offset r

Angle (◦) 0.908 [−2.09, 1.86] 4.34 [−20.6, 82.5] 0.431
Average angular velocity (◦s−1) 0.922 [0.713, 1.32] −0.518 [−18.0, 7.57] 0.694

Peak angular velocity (◦s−1) 1.01 [0.942, 1.11] 2.80 [−5.27, 10.2] 0.906
Peak angular acceleration (◦s−2) 1.10 [0.939, 1.20] 7.71 [−50.4, 125] 0.922
Peak angular deceleration (◦s−2) 1.04 [0.906, 1.13] 43.1 [−0.623, 131] 0.918
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Figure 8. Passing-Bablok regressions showing the individual parameters computed from the
DYSKIMOT and Elite data (points): (A) Angle, (B) Peak angular velocity, (C) Peak angular deceleration,
(D) Average angular velocity, (E) Peak angular acceleration. The regression line (solid line) is given
and compared to the identity line (dotted line). The 95% confidence interval for the linear fit is also
displayed (colored band).

The DTW distance (d) allows for an estimation of the closeness of DYSKIMOT and Elite systems for
the whole time series, not only for selected valued. We obtained 5.16± 2.68, 8.82± 5.80, and 14.40 ± 7.14
for angle, angular velocity, and angular acceleration time series respectively. Typical traces are shown
in Figure 9.
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Figure 9. Typical plots of DTW matching between Elite (black solid lines) and DYSKIMOT (red dashed
lines) analyzed for z-normalized data in one NDP (22 years, Male, NDI = 0, NRPS = 0) participant:
(A) Angle, (B) Angular acceleration, (C) Angular speed. The DTW distance is added for completeness.

4. Discussion

Before comparing Elite and DYKIMOT measurements we recall their main features in Table 4.

Table 4. Summary of Elite and DYSKIMOT main features relative to the present study.

Elite DYSKIMOT

Infrared digital cameras 8 MARG sensor IMU LSM9DS1
Resolution 1.5 Mpixel Gyrometer range ±245 ◦/s

Sample frequency 200 Hz Sample frequency 100 Hz
Accuracy/volume <0.1 mm on 4 × 3 × 3 m Gyrometer sensitivity 8.75 10−3 ◦/s

The two-way ANOVA revealed that angle and average angular velocity were significantly different
between Elite and DYSKIMOT systems. The difference in angle (1.76◦) between the two systems is lower
than the standard clinical angle evaluation of 5◦ reported via classical goniometry [9]. Such difference
between the two systems is not clinically relevant, as an error of 2◦ is acceptable in most clinical
situations [35]. Concerning the average angular velocity, the difference of −5.50 ◦s−1 may come from
the errors induced by the derivation of the Elite position. This result is lower than the difference
necessary to detect significant differences (7.1 ◦s−1) between adults and children [28]. Nevertheless,
the clinical significance of a such difference is currently unknown. Apart from these differences,
two other ANOVA results may be noted. First, as in [36], no signifiant difference between DP and
NDP were observed for all variables studied. Second, the interactions effects (System x Status) did not
induce significant differences. At this stage, DYSKIMOT and Elite give broadly similar results, but the
computed parameters do not allow to distinguish between DP and NDP, at least in our population.
Another point preventing the separation of DP and NDP is that the differences of the means were
generally larger for the system factor than for the status factor: The accuracy of the DYSKIMOT device
has to be improved, e.g., by appropriate filtering of the raw data and a better integration of gyrometer
data, to reduce these discrepancies and improve the diagnostic ability of the sensor.
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In a classic way [37–39], we have previously used Bland and Altman’s method to evaluate the
agreement between DYSKIMOT and Elite [40]. It appeared that the Bland and Altman’s plots did not
show a trend with the mean values of the measurements. The Bland and Altman plot for the angle
parameter showed more points outside or close to the limits of agreement than the other plots, which
is an indication that agreement between both systems is less obvious for the range of motion than for
other parameters [40]. Since this method does not provide any quantified results on the comparison
and leaves the user to decide whether this agreement is clinically acceptable or not, we analyzed the
agreement between DYSKIMOT and Elite using Passing–Bablok regressions. The Passing–Bablok
regression method is a non-parametric method for estimating the slope and the intercept of the linear
relationship between two compared [34]. These two parameters are valued by medians and are less
sensitive to extreme data and not making assumptions about errors distribution [41]. In our results,
the Passing–Bablok indicated that the link between same parameters computed from both systems
was well compatible with a linear shape (r = 0.694 to 0.922) for all parameters but angle, for which
Pearson’s coefficient was rather weak (r = 0.431) [42]. Nonzero offsets were observed but the 95%
confidence intervals were large and always contained 0 value, while the slopes were close to 1 (up to
10% accuracy) with 95% confidence intervals always containing the value 1. Another advantage to this
method is that by assuming that Elite results are gold-standard values, the Passing–Bablok regressions
could be used to convert measured parameters with DYSKIMOT into “exact values” which are the
Elite ones.

Although DTW has been known in the field of acoustic signal comparison [43], it has also been
proposed for the purposes of similarity analysis during the functional pattern of gait [44], but never
to compare motion neck signals obtained by two different devices. DTW is, by definition, sensitive
for measuring two sequences with different lengths using dynamic programming [45]. In this work,
the DTW distance between Elite and DYSKIMOT curves was adopted as an indicator of the similarity
(up to an affine transformation) between the curves. In other words, the question was: Do both systems
measures the same qualitative behaviors in position, angular velocity, and angular acceleration?
Although angle measurements displayed a poor agreement between both systems, the DTW distance
between DYSKIMOT and Elite angle was minimal: This result was expected since the structure of angle
was simpler than angular velocity and angular acceleration. The DTW distance then increases between
the angular velocity and the angular acceleration of the DYSKIMOT and Elite systems. This mostly
results in the noise induced by the successive derivations, showing that qualitative features of these
curves, especially the angular acceleration, should be interpreted carefully and might be artefacts of
the sensor used.

The identification of particular kinematic events is relevant for the clinical assessment of patients,
but the global shape of time series may contain more information of clinical interest. In our case for
example, it is known that patients with neck pain have poorer sensory-motor control with open eyes,
characterized by an increase in joint positioning error and a decrease in speed and acceleration during
all movements [12]. The absence of difference in our kinematics data between patients and participants
could seem unexpected as previous studies showed significant differences in terms of kinematics [5,46].
However this absence of difference could be explained by our sample size, resulted in low power,
and by the difficulty for the DidRen laser to discriminate between such groups [47,48].

An obvious limitation of the present study is that we restricted our comparison of Elite and
DYSKIMOT to cervical movements, while potential clinical applications may involve any other joints.
Another limitation is that we used “naïve” drift correction following data acquisitions, which had to be
implemented in real-time in the software. The Arduino prevented us to reach the desired frequency of
100 Hz with real-time complex filters like Kalman or Mahony. A future development would be the
replacement of the Arduino by a slightly more expensive controller (ARM, 30 €), that will allow for
real-time filtering and eventually for real-time angular data visualization without entailing too much
the low-cost aspect of the DYSKIMOT project. It is therefore obvious that the presented experiments
were carried out with a non-user-friendly interface, particularly because of the drift-related problems.
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However, as the goal of this study was to evaluate the accuracy of a device that could be used by
clinicians in clinical practice, we have chosen to leave this concern for future works. A user-friendly
interface is currently under development.

In conclusion, the DYSKIMOT-based analysis system compares fairly well to a gold-standard
optoelectronic system (Elite) up to linear errors. This ultra-low-cost sensor is recommended for clinical
use as it provides more accurate information than the commonly used systems in clinical practice.
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Abstract: We present a motion sensor node to support physiotherapy, based on an Inertial
Measurement Unit (IMU). The node has wireless interfaces for both data exchange and charging,
and is built based on commodity components. It hence provides an affordable solution with a low
threshold to technology adoption. We share the hardware design and explain the calibration and
validation procedures. The sensor node has an autonomy of 28 h in operation and a standby time of
8 months. On-device sensor fusion yields static results of on average 3.28◦ with a drift of 2◦ per half
hour. The final prototype weighs 38 g and measures ø6 cm × 1.5 cm. The resulting motion sensor
node presents an easy to use device for both live monitoring of movements as well as interpreting the
data afterward. It opens opportunities to support and follow up treatment in medical cabinets as well
as remotely.

Keywords: physiotherapy; e-health; motion sensing; wireless charging; wireless connectivity;
low power

1. Introduction

Context: evolution in physiotherapy. In the last few decades, physiotherapy has expanded from
focusing on physical treatment solely with massage and stretching to a broader health context.
Common treatments at a physiotherapist’s practice nowadays are for example post-operative
rehabilitation, neurological injury treatment, occupational injury prevention, etc. Not only the
field of application has developed, but also physical treatment techniques and approaches have
improved, thanks to general medical progress. In particular, the technological improvements in
imaging have helped physiotherapists for example to locate injuries more precisely and adjust the
patient’s treatment [1]. The goal of the development reported in this paper is to introduce technological
support at the patient’s side to improve the treatment, both curative and preventive.

Focus: motion-sensing node. In this paper, we present an Inertial Measurement Unit (IMU)
sensor node to support the tracking and visualization of a patient’s execution of physical exercises
or daily movements. The priorities for the sensor design were low-power, low-complexity, low-cost,
and a small form factor. We achieved the goal to realize a sensor node with a diameter of maximum
6 cm, weighing less than 50 g, costing less than 30€, which can be lowered significantly for higher
volumes. Considering the medical context, the sensor node must be hermetically sealed. Therefore,
wireless charging is implemented. The measured data is transmitted wirelessly to a base station for
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further analysis. Calibration of the different sensors is done on-board to obtain measurements with
higher precision than by using no calibration.

Progress with respect to the state of technology. Comparing the proposed sensor to currently
available systems like [2,3], we focus on the raw output data rather than developing software that
processes this automatically. Nonetheless, the raw data can be displayed graphically and present the
data in a meaningful way. Secondly, the sensor design has features that contribute to the user-friendliness
and accessibility for our target audience, the patient, and the physiotherapist. The presented motion
sensor node thus exhibits a low complexity and user-friendly solution that can lower the cost with
respect to available systems considerably, while preserving the same functionality. A smart watch,
for example, is widely adopted to track overall activity of people. However, it is not fit to be attached
anywhere on the body to monitor particular movements in physiotherapy, nor does it fulfill the
low-cost and low-complexity requirements of the sensor nodes we aim for.

Contribution. We propose an innovative design, based on low-cost sensors, and the operation of
the contactless sensor module, including automated calibration, which is in particular relevant to the
targeted applications in e-treatment for physiotherapy. The novel contribution of this paper is threefold.
First, we present the design and implementation of the wireless sensor node featuring wireless
communication and charging and full filling the other requirements that were put forward. We share
the open design it via GitHub [4]. Secondly, we elaborate on a simple, straightforward one-time sensor
calibration procedure. This eases the operation of the system and ensures the reliable performance of
the system. Lastly, we show how we performed the sensor validation with photogrammetry, which can
be realized with inexpensive and widely available equipment in a real-life experiment. We further
provide technological and application context.

Structure of this paper. This paper is further organized as follows: Section 2 presents the
low-complexity design of the wireless sensor node. It zooms in on the calibration and wireless
connectivity, as well as how the sensor node was optimized for low energy. The prototype is presented,
meeting the initial requirements. In Section 3, the operation and accuracy of the sensor is validated
using easily accessible equipment, avoiding expensive instruments. Next to this static validation,
Section 4 elaborates on the dynamic behavior. This can be done with physical exercises. We explain
the opportunities opened by the wireless sensor node for e-treatment in physiotherapy applications,
and envisioned extensions to the system in Section 5. Section 6 summarizes the main conclusions of
this paper and looks forward to potential future work.

2. Low Complexity Design of Wireless Motion Sensor Node

In the design of the sensor node, the following targets were set:

• Accuracy. The sensor node needs to be able to measure the human body movement with high
precision. With proper calibration, it is possible to achieve a target accuracy of ±2

◦
with a sampling

frequency of 50 Hz [5].
• User-friendly. The device needs to be easy to use, capable of being operated by anyone, regardless

of any medical or technical background. We opted to implement wireless charging to increase
user-friendliness in operation and maintenance. The data is also wirelessly transferred to eliminate
a mess of cables and thus providing freedom of movement.

• Autonomy. Users want to focus on the application rather than constantly thinking about charging
the device. Therefore, an autonomy of at least 5 h and a charge time of less than 1.5 h is necessary.

• Affordable. To provide an appealing multi-purpose product for a wide range of applications,
it needs to come at a low cost. That way, we want to reach a wide audience, both professionals
as individuals.

The sensor node is built around an IMU. The data is wirelessly transmitted to a receiver and the
internal battery can be wirelessly charged. Figure 1 shows an overview of the system. We discuss the
main features of the sensor node here below.

22



Sensors 2020, 20, 6362

IMU

Sensor node

Wireless charger Receiver

Figure 1. Overview of the hardware: The sensor node built around an Inertial Measurement Unit
(IMU), wirelessly rechargeable and with wireless connectivity to a receiver base station.

2.1. Sensors

Motion can be monitored in several ways. A camera-based motion capturing system such as [6]
can be used. These systems are highly accurate but expensive and cannot be used anywhere. Another
method of monitoring movement that is more suited for our requirements, is by using an IMU. This type
of sensor consists of several internal sensors. A 6 Degrees of Freedom (DoF) IMU is commonly used in
recent works [7,8]. It has a constant drift in the resulting measurement data that cannot be corrected for.
To eliminate this problem, our design uses a 9 DoF IMU in which the additional magnetometer provides
a fixed reference. It consists of a Microelectromechanical Systems (MEMS) gyroscope, accelerometer,
and compass. The IMU (ICM-20948 from Invensense ) [9] was chosen for its ultra-low power operating
current and high accuracy. The gyroscope is set to ±2000 dps full scale, the accelerometer is set to ±4 G
full scale and the magnetometer is set to ±4900 μT. The sample rate of all sensors is set to 50 Hz.

To obtain accurate orientation data, sensor fusion is needed. As used in [10], a Digital Motion
Processor (DMP) can be very efficient for running specialized sensor fusion algorithms. By offloading
computationally heavy calculations from the main processor, the system can be more power-efficient.
The lack of control of the sensor fusion and calibration is a significant drawback. By implementing
our own sensor fusion and calibration, we can implement the most suited fusion algorithms and
have full control over the calibration. Some systems use sensor fusion algorithms like a Kalman
filter [7], which provide very accurate results but can be computationally intensive. A complementary
filter, which is very easy to process but typically provides less accurate results than a Kalman filter,
is sometimes used. It uses a high pass filter for the gyroscope values and a low pass filter for the
accelerometer values. This method of sensor fusion is inaccurate during long measurements with
a lot of movement. In [8] for example, [8] use a complementary filter for measuring static angles,
thus primarily depending on the accelerometer values. We need high dynamic accuracy with low
processing power thus implemented a Madgwick filter [11], which combines the best of both worlds.

The algorithm runs on the central microcontroller (ARM Cortex M0+microcontroller (EFM32HG)
from Silabs) [12]. It is designed by [11]. By combining the efficiency of this algorithm with a high
accuracy, a bit of battery power is saved. Quaternions, a very good way of representing orientations,
are used for the calculations. Figure 2 illustrates the functional block diagram of this filter with ⊗
a quaternion product,

.
q a quaternion derivative and q̂ a normalized vector. The algorithm has two

adjustable parameters, β and f. β represents the error on the gyroscope measurements as the magnitude
of a quaternion derivative. It determines the proportion of the correction value for the gyroscope.
f represents the frequency of the measurements. The orientation is mainly calculated by integrating
the changes in angular velocity from the gyroscope (1). At the same time, an orientation is calculated
using the accelerometer and magnetometer values. A gradient descent algorithm, represented by �,
is used to find the most likely solution in the set of infinite solutions. (3) represents the measured
orientation from the earth’s magnetic field. In (4), the measurements are normalized and mapped to
the plane of the earth. In (5) = � f , the orientation from magnetometer and accelerometer values is
calculated using a gradient descent algorithm. These values are normalized in (6) and used to correct
gyroscope values with a factor β. These corrected gyroscope values are integrated in (2). Everything is
further normalized in (7) to form unit quaternions and the results form is given as in Equation (1).
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q = a + b · i + c · j + d · k (1)
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Eĥt

E b̂t

1

2
S
E q̂est,t−1 ⊗ Sωt

∫
.dt

q

‖q‖

JT
g,b(

S
E q̂est,t−1,

E b̂t)fg,b(
S
E q̂est,t−1,
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Figure 2. Block diagram Madgwick algorithm [11].

By using quaternions, we avoid the gimbal lock problem, the inability to uniquely represent an
orientation, of Euler angles. When for example the pitch angle is 90◦, yaw and roll cause the sensor to
move in exactly the same fashion. Another problem is the inability to produce reliable estimates when
an angle approaches 90◦ [13]. The benefit of the Madgwick algorithm is that we can run it at a very
low speed and still get accurate results. At 50 Hz, the sample rate used by the sensor node, we get a
static error of ±1◦ and a dynamic error of ±2◦ [11].

The sensor node goes to sleep as much as possible to conserve battery energy. When the sensor
node is picked up, the always-on accelerometer generates an interrupt and wakes up the system.
Figure 3 illustrates this procedure. When the Madgwick parameters are set correctly, just a small portion
of the accelerometer and compass values are used to correct the gyroscope error. When the sensor
node wakes from sleep, the gyroscope has no reference orientation thus it would take approximately
30 s to obtain a correct orientation, depending on how much the actual orientation, when the sensor is
picked up, differs from the orientation in sleep. After wake-up, the parameters of the Madgwick filter
are dynamically adjusted to obtain a correct orientation quicker. The accelerometer and compass are
used in the first few seconds of activity to obtain a correct reference frame. After this, the parameters
are automatically adjusted to a high accuracy mode. In this mode, the integration of changes in
angular velocity from the gyroscope is mostly relied on for calculating the orientation of the node.
The accelerometer and the compass are only used to make small corrections.

As a low power design consideration, inactivity is detected by checking the gyroscope values
every second in an interrupt service routine, called from an Real Time Counter (RTC) interrupt.
The gyroscope values are supposed to be zero when idle. This procedure automatically puts the sensor
node in sleep when it is not used.
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Init

Sleep

WOM 
Interrupt

RTC 
Interrupt

Measure

Check 
variables

Send Data

Calibrate

Sleep

Figure 3. Flowchart code: The sensor node is calibrated once at initialization, a Wake On Motion
(WOM) interrupt wakes up the system and measurements can start, an Real Time Counter (RTC) timer
is used to periodically check the status of the sensor node to maximize autonomy.

2.2. Calibration

Calibration is an essential part of motion capturing systems. With calibration, the accuracy
of the measurements can be drastically increased. In this design, a manual one-time calibration
is used. The manual calibration allows the use of a very energy-efficient microcontroller and can
yield calibration values with high accuracy. First, the gyroscope and the accelerometer are calibrated.
This happens by simply putting the sensor node on a flat, leveled surface. During these measurements,
no changes in angular velocity from the gyroscope or acceleration forces from the accelerometer are
expected. The accelerometer and gyroscope are temporarily set to the most sensitive measurement
range of±250 dps full scale and±2 G full scale to obtain the highest calibration accuracy possible. A few
thousand measurements are taken by filling the First In First Out (FIFO) buffer of the IMU. From these
measurements, a gyroscope and accelerometer bias offset is calculated and further subtracted from the
actual measurements. After calibration of the gyroscope and accelerometer, the measurement ranges
are changed back to ±2000 dps full scale and ±4 G full scale.

The compass is calibrated by rotating the device 360◦ around its three axes or performing a
figure-8 movement. For these measurements, the maximum sampling frequency of 100 Hz is temporary
used to have more data to work with and therefore obtain a better calibration. After calibration,
the magnetometer sample rate is changed back to 50 Hz. The result of such a measurement is shown
in Figure 4, a 2D visualization of the three planes of the 3D sphere after rotating the sensor node.
Two types of distortions can occur on the IMU measurements: hard and soft iron distortions [14].
Hard iron distortions, caused by a permanent magnetic material, create a constant offset on the sphere.
These offsets can be determined by calculating the center of the sphere and subtracting this value from
the measurements. Soft iron distortions are caused by materials like iron. These materials do not create
their own magnetic field but create a deformation on one or more axes. This will generally create an
ellipse instead of a circle in a 2D plot. Soft iron distortions are more difficult to correct. Each axis
is multiplied with a scale factor to calibrate the measurements. The minimal and maximal compass
values captured in the calibration procedure of each axis are measured determined. The span of the
compass values for all three axes is calculated, as well as the mean span for the three axes. The scale
factor per axis is thus mean divided by the span of the axis that will be corrected. Equation (2) provides
the equation for the x-axis scale factor, exemplary for the three axes. The result of these corrections,
with the three circles perfectly round and centered, is given in Figure 5, showing that the calibration
procedure operates correctly.

Scalefactor =
maxx −minx + maxy −miny + maxz −minz

3 · (maxx −minx)
(2)
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Figure 4. 2D plot of a sphere after rotating the sensor node around each axis before calibration.
The circles are not perfectly round (elliptical sphere in 3D) caused by soft iron distortions. Also,
offsets between the centers of the circles and the origin, caused by hard iron distortions, are present.

Figure 5. 2D plot of a sphere after rotating the sensor node around each axis after calibration. The circles
are perfectly round (near perfect sphere in 3D) and no offsets between the center of the circles and the
origin are visible.

2.3. Wireless Connectivity

Many wireless connectivity standards for Wireless Body Area Networks (WBAN) are available.
We here briefly comment on the most considered technologies given the application focus of the
presented design.

ZigBee operates with very low power usage. It works on top of the IEEE 802.14.4 standard,
has a range of up to 100 m, and can be implemented as a mesh network. The low data rates of up
to 250 kbps at 2.4 GHz make ZigBee less suited [15]. A second wireless standard is Z-Wave, a low
data rate communication protocol with data rates of 40 kbps—100 kbps and a range of up to 30 m.
Since it uses the 900 MHz band, it is not bothered by interference from 2.4 Ghz wireless communication
like WiFi. It is commonly used in home automation for interconnecting energy efficient sensor nodes.
The master-slave type network has a typical latency of 200 ms [16]. A third wireless standard is
Bluetooth. It is based on the IEEE 802.15.1 standard, has a higher data rate of up to 2 Mbps and a
range of up to 100 m. The more advanced Bluetooth protocol is widely used for data and audio
transmission. It uses a master-slave model for communication [17]. For the design of the low power
sensor node, Bluetooth Low Energy (BLE) is more appropriate. This special Bluetooth version is
specifically designed for applications with very low power usage. A maximal data rate of 1 Mbps
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and a range of a few tens of meters can be achieved. BLE can use a master-slave model in a star
topology or BLE devices can form a mesh network [16]. The advantage of BLE is its ability to directly
connect to a smartphone or Bluetooth enabled device without the need for a separate receiving station.
Following up with WiFi, based on the IEEE 802.11 standard with a very high data rate of 54 Mbps.
The high power consumption makes WiFi less suited for a low power design [17]. We also studied the
possibility of using a proprietary solution. The advantages are a possible further reduction in power
consumption by packets with increased information density. Table 1 summarises the different wireless
connectivity options in terms of power consumption, range, data rate and price. BLE is chosen for its
low power consumption, sufficient range, relatively high data rate, low price, and high compatibility
with existing devices.

Table 1. Comparison between available wireless technologies: ZigBee, Z-Wave, Bluetooth 5, BLE, and
WiFi [15–17].

ZigBee Z-Wave Bluetooth 5 BLE WiFi

Power consumption (max) 100 mW 1 mW 100 mW 10 mW >100 mW
Range (max) 100 m 30 m 100 m <100 m 1000 m
Data rate (max) 250 kbps 100 kbps 2 Mbps 1 Mbps 54 Mbps
Price Low High Very low Very low Average

A WBAN is necessary for transmitting the measured data. BLE is chosen for its high throughput,
minimal power consumption, and interoperability with other devices [16]. The Proteus II module
(AMB2623 module from WE based on an nRF52832) [18] is chosen for its small form factor and
integrated PCB antenna. The data is transmitted at 0 dBm.

The data packet, sent out at 50 Hz, contains a preface, the module ID of the receiver, the RSSI,
the data, and a checksum for error correction. This is clarified in Figure 6.

Preface Module ID RSSI Data x Data y Data z Batt Checksum
02 84 0B 00 BC 04 20 DA 18 00 XX x x x x y y y y z z z z % CS

Figure 6. Bluetooth Low Energy (BLE) data packet structure: The data is composed of a preface,
the module ID, three Euler angles, the remaining battery charge (percentage) and a checksum.

The quaternions from the Madgwick sensor fusion filter are converted to Euler angle floats.
The three floats each take up four bytes in memory [19]. Exactly those bytes will be read from
memory and transmitted wirelessly to ensure no loss in accuracy. One byte is added to transmit the
battery status.

To guarantee a low power design, some software features are added. When the sensor node is
picked up and cannot connect to a receiving device within five seconds, the sensor node enters sleep
mode. The automatic reconnection of the sensor node with the receiving device is also built-in.

The receiving device is based on a development board (STM32L4+ microcontroller on an ST
NUCLEO L45ZI development board) [20]. The same BLE module is chosen for this device. To be
able to receive the transmitted data fast enough, an interrupt-based method is used together with a
circular buffer [21]. The UART interrupt receives data and stores it in the buffer in the background.
The received data is processed independently in the main program. A second UART transmits the
data to a pc. A 3D representation of the orientation is written in VPython for visualization purposes.

2.4. Wireless Charging

Inductive wireless energy transfer is mainly used to recharge batteries of smartphones, wearables
or, Internet of Things (IoT) devices. Implementation standards such as Qi, PMA, or AirFuel ensure a safe,
efficient transfer of energy. Low power applications, below 5 W, often use e.g., proprietary solutions such
as the “LinkCharge Low Power” technology from Semtech. Wearable devices, Electric toothbrushes,
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or LoRa based sensors are some of the many applications for the implementation of this technology [22].
ST Microelectronics also offers wireless power solutions for Smartwatches, or IoT battery-powered
smart devices. The last option is to design your own Wireless Power Transfer (WPT) system without
using existing standards. Building more efficient systems is time-consuming and not necessary since a
lot of research has already been carried out in the 5 W WPT range.

In recent years, it has been generally accepted that the Qi is preferred over all other standards.
The Wireless Power Consortium (WPC) manages and develops this standard. In the meantime,
PMA, AirFuel and WPC have started a collaboration. All Qi-certified devices can communicate
with each other. Charging a Qi-supported device can be performed by any Qi-certified charger.
A series of functions in the standard ensures a safe charge cycle, such as thermal shutdown protection,
foreign object detection, and overvoltage AC clamp protection [23].

The first wirelessly rechargeable smartwatches used proprietary WPT standards. New wearables
switched to the Qi standard in contrast to wirelessly rechargeable smartphones, which were immediately
equipped with the Qi standard. Recent smartphones are available with the option “Reverse Charging”,
which means that the internal smartphone coil can be used to charge devices that support Qi [24].
This new feature offers the possibility of recharging smartwatches with a smartphone. It makes sense
that Qi was chosen above all other options for the sensor module. In most households, a Qi charger or
a smartphone that supports reverse charging is available. Future measurements with this sensor can
be used within families, as they can recharge their sensor modules at home.

We here further discuss the actual implementation of the battery charging circuit in the design of
the sensor node presented in this paper. Since energy is transferred wirelessly via the Qi protocol, a Qi
receiver IC was used. A TI Qi receiver IC (BQ51050) [23] was selected because of its high efficiency,
wireless power receiver, integrated rectifier, and battery charger in a single package. The BQ51050A
variant, combined with a Li-Ion battery is chosen because of its 4.20 V output voltage limitation. It is
paired with an inductor coil (760308101214 coil from WE) [25], chosen for its very small size and
a relatively decent Q-factor. The charging current is 200 mA with a termination current of 20 mA
to ensure fast and safe charging. Temperature control with automatic cut-off functionality at 60◦ is
implemented by using a Negative Temperature Coefficient (NTC) resistor. Because of the small coil,
we implemented some extra shielding to ensure a more optimal WPT.

Figure 7 shows the two coils in the system with corresponding resonant circuits. A power
transmitter coil is present in each charger pad and a receiver coil in each battery-powered device.
Wireless charging achieves higher link efficiencies when implementing LC resonant circuits on both the
receiver and transmitter. The coupling factor between the two coils is very low. Therefore implementing
a resonant circuit can filter out the leak inductance and improve the link efficiency drastically [26]. A Qi
charger pad has a built-in amplifier connected to an LC series resonant circuit. The energy receiver
side consists of an LC resonant circuit with L, Cs1, and Cs2. These capacities can be calculated with the
Equations (3) and (4). L′s represents the inductance measured when the receiver coil is placed on top of
a charger pad. Ls is the free-space inductance. fs and fD are fixed values respectively 100 kHz and
1 MHz [23].

C1=
1

(2π · fs)
2 ·L′s

(3)

C2=

(
( fD · 2π)2 ·Ls − 1

C1

)−1
(4)

Filling in the formula and converting to values for which actual hardware components are
commercially available gives 100 nF for Cs1 and 1 nF for Cs2. Three other types of capacitors have an
important function in the circuit. The BOOT, COMM, and CLAMP capacitors. The BOOT or bootstrap
capacitors are used for driving the high-side FETs of the synchronous rectifier. The COMM capacitors
allow communication with the charger pad. Here, capacitive load modulation is used. An extra
capacitance is connected to the resonance circuit, which changes the resonance frequency. This change
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is visible on the charger pad side. Load modulation allows communication between the power receiver
charging circuit and the power delivery pad circuit. Guidance values for resistive load modulation can
be found in the datasheet. The CLAMP capacitors ensure overvoltage protection. Above the rectified
voltage of 15 V, the CLAMP capacitors are switched to change the resonance frequency and protect the
circuit against high voltages. The datasheet provides suggestions for these values. Values of 10 nF,
470 nF and 47 nF were used for the BOOT, CLAMP and COMM capacities, respectively [23].

Cs1

Cs2

Cp

Ls'Lp'
Power 

transmitter

Qi charger pad

Power 
receiver 

+ 
load

Qi  resonance circuit of the sensor module

Figure 7. Wireless Power Transfer (WPT) setup. A Qi power transmitter with a Qi power receiver and
load, based on LC resonant circuits.

2.5. Optimization for Low Energy

One of the main focuses of this work is the realization of a node with a convenient autonomy.
A Li-Ion battery is chosen for its high energy density and low weight. The round battery with a
capacity of 200 mAh is ideal for this prototype. This battery is rechargeable. With compatibility and
ease of use in mind, Qi-compatible wireless charging is implemented. The whole system is powered
at 2 V with an ultra-low Iq buck converter. In this configuration, a buck converter is much more
efficient than a Low-dropout (LDO) regulator, even in sleep mode. The IMU works at 1.8 V. Here,
the use of an LDO for the voltage drop of 0.2 V is more efficient. By running the whole system at
2 V instead of the traditional 3.3 V, a theoretical power difference of 9.610 mW is calculated when
quiescent currents are neglected. This translates to a gain in the autonomy of 29.3 %. The sensor node
consumes 0.102 mW in sleep mode and 25.839 mW in active measurement mode. This is reflected in
an autonomy of 28 h in operation and of 261 days in sleep mode, which is well above the five hours
put forward. An active power consumption of 25.839 mW is very low for this kind of system and
can’t be significantly improved with the hardware we are currently using. This power consumption
in combination with a 200 mAh battery allows for a long enough time between charges. The sleep
current of 0.102 mW can possibly be improved by disabling the Qi-wireless charger completely when
it’s not being used, thus eliminating quiescent currents. This can be done by using a MOSFET.

2.6. Prototype

A small physical design that is easy to place on the body is crucial. The sensor node features a
round design with no sharp edges. The final prototype weighs 38 g and has dimensions ø6 cm × 1.5 cm.
The structure of the case is shown in Figure 8. The wireless charging coil is positioned at the bottom
(1). It is held in place by some offsets in the case (2). On top of that is the battery (3). Above the battery
is the PCB (4) which is supported by four pins in the case (5). Everything is fastened nicely by the
cover (6), which can be attached with a twist top. We did not yet hermetically seal the case for the
initial experiments. By applying some sealant on the twist top, one can make the case more waterproof.
Figure 9 shows the assembled prototype of the sensor node. The total cost of components is 28€with
case and 22€without the case.
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Figure 8. Cross-section of the sensor node. 1: wireless charging coil, 2: offsets, 3: battery, 4: PCB,
5: support pins, 6: twist top.

(a) Bottom (b) Top

Figure 9. Result: sensor node in the 3D printed case. (a) Bottom side: wireless charging coil and battery.
(b) Topside: IMU, microcontroller, and BLE chip.

3. Validation with Easily Accessible Equipment

For the validation of the accuracy of the motion measurements realized by the sensor node, it is
common to use professional equipment. The static verification process of the IMU has already been
performed by using a computer monitored pan-tilt unit to place the sensor node in specific angles or by
using a Vicon motion capturing system [6,8,27]. In the validation of the Madgwick filter for example,
a Vicon motion capture system is also used [28]. Sensor validation on this equipment in general yields
very accurate results but it is less accessible, expensive and time-consuming.

We propose an alternative, very accessible way of validation using convenient equipment in the
context of designing a low-cost system that is user-friendly. With photogrammetry, one can get a fairly
accurate representation of the performance of the sensor node. In this method, we take and interpret
photographic images of positions of the sensor. By comparing the data from the IMU with the data
extracted from images, the static error on the measurements can be derived. The advantages are that this
method can be performed almost anywhere and can be used with consumer off-the-shelf equipment.
Since, in contrast to professional cameras, lower-cost equipment, such as a smartphone camera,
suffers from lens distortions and lower quality recordings, some measures must be taken. To minimize
the effect of the lower quality equipment, the camera is placed horizontally and perpendicular to the
wall. This way, foreshortening effects are eliminated. Furthermore, the sensor is positioned such that
its projection lies near the center of the image where radial distortion is minimal. This eliminates the
need for a camera calibration procedure. Finally, we add several markers to the scene as shown in
Figure 10. The relative position of these markers is measured up to ±2 mm.

Since all we need is angles, we can perform measurements in the image and transfer them to
the reference system of the sensor node. By attaching a lever to the sensor node, the accuracy of the
readings in the image increases. The angle of the sensor can easily be measured by indicating front and
endpoints of the lever (red and green points in Figure 10) and mapping these points in the image to
points on the wall, using the coordinate system defined by the surrounding markers. By comparing
the data from the IMU with the data extracted from the images, the static error on the measurements
can be derived for the pitch and roll axis. In our experiments, only static measurements are performed.
Dynamic measurements are possible as well, in which case video instead of images should be recorded
and the video frames must be synchronized with the output data of the sensor node. Doing so, one can

30



Sensors 2020, 20, 6362

obtain angles at frame level. Instead of manually indicating points in each video frame, this process
can be automated using image tracking [29,30].

Figure 10. Method for sensor validation based on photogrammetry using convenient, commercial
off-the-shelf equipment. By comparing the data from the IMU with the data extracted from images,
the static error on the measurements can be derived for the pitch and roll axis.

Table 2 gives an overview of the measurements. For roll and pitch angles, the setup as shown in
Figure 10 is used with the sensor node rotated 90◦ between roll and pitch measurements. Since the yaw
values have no real fixed orientation, relative measurements are taken by using the setup as shown
in Figure 11 where the sensor and markers are positioned on the floor instead of against the wall.
Several static measurements were performed. The static sensor drift is 2◦ per half hour. The average
error on the pitch axis is 3.06◦, the average error on the roll axis is 2.75◦ and the average error on the
yaw axis is 4.04◦.

Table 2. Result of pitch, roll, and yaw static measurements with their respective error at different angles.

Target Angle [◦] Reference [◦] Sensor [◦] Error [◦]
Pitch 0 0.08 −3.2 3.28

45 44.76 42.5 2.26
90 90.19 95.04 −4.85
180 178.45 176.6 1.85

Roll 0 0.47 1.8 −1.33
45 48.41 44.8 3.61
90 90.15 87 3.15
180 180.01 177.1 2.91

Yaw 45 48.03 45.1 2.93
90 95.49 88.9 6.59
180 182.18 185.2 −3.02
270 274.12 270.5 3.62

Alternatively, it is possible to measure all three (roll, pitch, yaw) angles at once by measuring the
position of the lever endpoints in 3D using a stereo or multi-camera setup. However, drawbacks of
such a method are the much higher complexity, the need for calibration and synchronization, and the
lower accuracy in the depth dimension.

There are some irregularities in the measurements. The yaw value at 90◦ seems to be off. A root
cause could be the influence of a nearby magnetic object. The sensor can get disturbed in the near
proximity of magnetic objects such as speakers and smartphones. These magnets create a distortion in
the magnetic field which isn’t fixed to the reference frame of the sensor node, thus can’t be corrected
for in calibration. The user can perform reliable measurements when staying half a meter away from
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these objects to obtain accurate measurements. The pitch error at 90◦ is also too large. The reason is
that Euler angles are not good at representing orientations in the neighborhood of 90◦ [13].

Figure 11. Photogrammetry-based method for yaw axis sensor validation.

4. Validation with Real-Life Exercises

To evaluate and validate the dynamic behavior of the sensor node and real-life operation, two back
exercises are performed. The first exercise starts with a person kneeling with hands on the ground.
The back is periodically rounded and made hollow, thus demonstrating the periodic concavity of the
spine. This is illustrated in Figure 12.

Figure 12. Illustration of the first exercise: periodic concavity of the spine (Images provided by Pocket
Yoga (www.pocketyoga.com)). The arrows indicate the position of the sensor node. (a) Start position.
(b) End position.Illustration of the first exercise: periodic concavity of the spine

Figure 13 presents the result of the measurements. The exercise has been performed in a set of
3 repetitions. A periodic movement with a variation of ±45◦ on the roll axis can be observed. The pitch
axis shows a little bit of sideways rotation in the lower back. The yaw axis is stable, which is to
be expected. A second captured exercise is the lateral rotation of the back, illustrated in Figure 14.
The patient should rotate the hull sideways, while maintaining stable lower limbs. The measured
result is represented in Figure 15. An angular deviation of ±50◦ is present in the yaw axis data.
Small changes in roll and pitch values are also observed. These two exercises provide a first evaluation
of the dynamic characteristics of the sensor node. We clearly see that the amount of samples taken is
appropriate to acquire accurate results. However, more testing, either by dynamic photogrammetry or
with specialized equipment, is needed before a firm conclusion on accuracy can be made.
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Figure 13. Exercise: Rounded back—hollow back. A periodic movement with a variation of ±45◦ on
the roll axis can be observed. The pitch and yaw axis are stable.

Figure 14. Illustration of the second exercise: lateral rotation of the back (Images provided by Pocket
Yoga (www.pocketyoga.com)). The arrow indicates the position of the sensor node.

Figure 15. Exercise: Rotation of the back. A periodic movement with a variation of ±50◦ on the yaw
axis can be observed. The roll and pitch axis are stable.

5. Opportunities in e-Treatment Applications and Extended Functionalities

We here first explain the opportunities opened up by stand-alone low-cost and low-complexity
sensor nodes in physio-therapeutic e-treatment. We benchmark the current solution and
introduce further extensions of the system that can bring interesting features for both private and
professional users.

5.1. Opportunities in Supporting e-Treatment in Physiotherapy

The presented wireless sensor node has been designed to meet the particular needs to support
physiotherapy treatment. We wish to introduce technical support at the patient’s side to improve
both curative and preventive treatment. The sensor thus enables e-treatment, which we define as
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(remote) physical therapy that is supported by measurements made by wireless sensors. In a curative
treatment, the patient can wear the sensor to assist the physiotherapist in the evaluation of (eventual
take-home) rehabilitation exercises. A preventive treatment could consist of monitoring a person’s
daily movements or measuring a patient’s flexibility. We specifically expect measurements at work to
be interesting, knowing that the large majority of neuromusculoskeletal disorders result from repetitive
movements and bad posture at work [31].

Also important in our definition of e-treatment, is the word remote. In the case of remote treatment,
the patient is not physically present in the physiotherapist’s practice, but for example at home and
possibly assisted with one or more sensors. Especially because of the increasing cost of healthcare
in our ageing society, it is important to look at efficient and low-cost alternatives. The connection
is then real-time through a conference call, or non real-time by exchanging exercises over a manual
for example. There are several reasons why a remote session can be preferred over a conventional
consultation:

• The patient can perform the session more or less independently.
• The patient is abroad and wants to continue the treatment with the same physiotherapist.

For example, elite athletes who have to travel a lot.
• A patient is not allowed to leave the house. The COVID-19 pandemic proved this to be a

realistic scenario.

The effectiveness of e-treatment in a remote sense is exhaustively discussed in [32]. A last
important field of application is the education of physiotherapists. With the help of our technology in a
bigger ecosystem, we want to reach physiotherapist with e-learning and help them train and improve.
In summary, the sensor can enable remote treatment, as well as support conventional consultations or
even acquire measurement data for preventive purposes.

5.2. Extension to Multiple Sensor Nodes

Richer information and support in rehabilitation and e-treatment could be offered by the
combination of multiple sensor nodes, either of the same type or using heterogeneous sensors.
An especially relevant type is an Surface Electromyography (sEMG) sensor module for measuring
muscle activity. While we have designed the first prototype for this sensor type, in a future version we
will combine the IMU and the sEMG sensor into one module. By combining these sensors, we can
capture a more complete picture of what the human body is doing. However, this generates extra
technological challenges, especially with respect to synchronization, both intra- and inter-module,
required to ensure concurrent measurements. Synchronization between the sEMG and the IMU can
be implemented using a shared clock. Both sensors will experience the same clock drift. BLE beacon
packets from a central node, in this case the receiver, or a custom protocol can be used to synchronize
the clocks between sensor nodes [33]. The data can be transmitted using unidirectional beacon packets
without re-transmission. This type of data transfer is very simple but does not guarantee the packet
arrives at the receiver. A better way would be to use the BLE re-transmission functionality to ensure
the packets are received properly. Time synchronization beacon packets could be sent in between. It is
evident that both the electrical and the mechanical design will be more complicated, not in the least
because of the need to integrate the functions in a small space.

6. Conclusions and Future Work

Conclusion. In this paper, a wireless on-body sensor node for measuring movement is presented.
The careful choice of components, software optimizations, and overall low power design considerations
lead to a sensor node with an autonomy of 28 h. An ‘always-on’ buttonless design, with a standby
time of 8 months is developed that is ready to measure whenever it is picked up. We explained the
calibration of the sensor node and zoomed in, in particular on a photogrammetric procedure to validate
the sensor with easily accessible, low-cost equipment. On-device sensor fusion by using a Madgwick
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filter yields static results of on average 3.28◦ with a drift of 2◦ per half hour. The final prototype weighs
38 g and measures ø6 cm × 1.5 cm. The result of this work can be used in a broad range of applications.
It allows doctors and physiotherapists to have an easy to use device to pass along with patients and
afterward interpreting the results, it can be used for live monitoring of rehabilitation exercises or
anything motion tracking related.

Future work. We see multiple opportunities in future work to both the current sensor node, and
to extend it with new functionality and features. Firstly, we plan to further examine the accuracy
of the sensor node by checking it against specialized equipment. We will add other sensors to
get a more in-depth view of the human body. We also designed a sEMG sensor for measuring
muscle activity. These two sensors could be integrated into one module to perform simultaneous
measurements. Synchronization, both inter- and intra-sensor node, will be implemented to ensure
precise, simultaneous measurements. A future upgrade could also implement a real-time calibration by
using artificial intelligence [34]. This could well be implemented on a low power microcontroller with
an ARM Cortex M4 chip (nRF52832 from Nordic Semiconductor), which is already used in the BLE
module. By running the Bluetooth stack and the peripheral code on the same chip, we could eliminate
the central Cortex M0+microcontroller and further reduce the power consumption. We could also
design our own PCB antenna. In the current design, the data is, other than being visualized, not further
processed. To detect and analyze complex movements, further data analysis as well as learning
algorithms can be implemented. Another extension to the system is a direct communication between
the sensor nodes and a smartphone through an app. This eliminates the need for a separate receiver.
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The following abbreviations are used in this paper:
BLE Bluetooth Low Energy
DMP Digital Motion Processor
DoF Degrees of Freedom
FIFO First In First Out
IMU Inertial Measurement Unit
IoT Internet of Things
LDO Low-dropout
MEMS Microelectromechanical Systems
NTC Negative Temperature Coefficient
RTC Real Time Counter
sEMG Surface Electromyography
WBAN Wireless Body Area Networks
WOM Wake On Motion
WPC Wireless Power Consortium
WPT Wireless Power Transfer
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Abstract: Inertial measurement unit (IMU) records of human movement can be converted into joint
angles using a sensor-to-segment calibration, also called functional calibration. This study aims
to compare the accuracy and reproducibility of four functional calibration procedures for the 3D
tracking of the lower limb joint angles of young healthy individuals in gait. Three methods based
on segment rotations and one on segment accelerations were used to compare IMU records with an
optical system for their accuracy and reproducibility. The squat functional calibration movement,
offering a low range of motion of the shank, provided the least accurate measurements. A comparable
accuracy was obtained in other methods with a root mean square error below 3.6◦ and an absolute
difference in amplitude below 3.4◦. The reproducibility was excellent in the sagittal plane (intra-class
correlation coefficient (ICC) > 0.91, standard error of measurement (SEM) < 1.1◦), good to excellent in
the transverse plane (ICC > 0.87, SEM < 1.1◦), and good in the frontal plane (ICC > 0.63, SEM < 1.2◦).
The better accuracy for proximal joints in calibration movements using segment rotations was traded
to distal joints in calibration movements using segment accelerations. These results encourage further
applications of IMU systems in unconstrained rehabilitative contexts.

Keywords: inertial sensor; gait; validity; functional calibration; accuracy; wearable electronic devices

1. Introduction

Quantitative assessment of lower limb kinematics is required in various applications, such
as motion analysis, sports science, and rehabilitation. Although opto-electronic motion capture
systems are considered the gold standard for this assessment, their widespread use is limited by
their restricted area of measurement, their optical limitations due to marker occlusion or reflection,
and their cost. Moreover, opto-electronic trackers are generally used in a restricted lab environment,
which further limits the exploration of real-life movements and exercises. Wearable sensors, such as
inertial measurement units (IMUs), have been developed to overcome these limitations [1], allowing
for human motion analysis in unconstrained real-life conditions [2,3].

Sensors 2020, 20, 715; doi:10.3390/s20030715 www.mdpi.com/journal/sensors39
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Although they generally contain a 3D accelerometer, a 3D gyroscope, and an optional 3D
magnetometer, an IMU does not measure joint angles perfectly. Joint angles obtained via signal
integration typically drift over time [4,5] and their accuracy varies with the joint assessed and the
movement complexity [6,7]. While an error under 5◦ is generally accepted for most clinical gait
applications [8], the measurement error typically ranges from 5◦ to 18.8◦ depending on the joint and the
plane of motion [6]. Another major challenge in IMU-based human motion analysis that the IMUs’ local
coordinate systems are not aligned with physiologically meaningful axes [9]. Such alignment, required
to compute joint angles, can be performed via a “sensor-to-segment” calibration procedure [10].

The first approach to ensure this alignment consists of a rigorous positioning of the sensor in
relation to the anatomy [11]. This method assumes that the segment axes are parallel to the IMU
axes, is approximate, and requires user expertise to locate the sensor axes relative to the joint axes for
both segments around each joint. The second approach consists of placing an IMU on each segment
and aligning the IMU and joint axes via a set of calibration postures [12] and/or movements around
physiological motion axes. The latter functional method [13,14] consists of making the subject stand
upright with straight legs for a few seconds to define the vertical axis for each IMU or segment,
while the other axes are defined via active or passive movements [13,14]. Since the movements are
generally human-controlled, the accuracy of the axes definition essentially relies on the subjects’ ability
to precisely hold a given posture and on the execution of a given movement [9]. The third approach
consists of exploiting the kinematic constraints of the joints and use almost arbitrary movements
to perform the sensor-to-segment calibration [9,15]. This method is particularly adapted to single
axis joints that can be satisfactorily modelled as a hinge joint like the knee; however, the modeling
of spherical joints requires the execution of movements mostly around one axis to identify the joint
axes [9], which resemble the functional method.

The IMU-based tracking of lower limb spherical joints, using one of the two aforementioned
methods, therefore requires the execution of a functional calibration movement. While the accuracy of
the sensor-to-segment calibration is determined by the quality of the functional calibration movement,
to our knowledge, it has only been investigated in one study for upper limb motion tracking [16] and
no study has compared functional calibration movements for the tracking of lower limb joint angles.

This study aimed to (1) assess the accuracy of different functional calibration methods in order
to compute the lower limb joint angles during walking, (2) assess the reproducibility of different
functional calibration movements, and (3) compare the accuracy provided by functional calibration
movements in different gait movements.

2. Materials and Methods

2.1. Participants

Seven healthy young adults participated in this study (6 females, 1 male, mean (SD) age = 22.6
(1.5) years, height = 1.67 (0.08) m, body mass = 65.4 (11.6) kg). Participants were included in the study
if they were between 20 and 25 years old and free of any injury at the time of participation. The study
protocol was approved by the ethics committee of our university (agreement number: B403201523492)
and each patient provided written informed consent to the use of their anonymized data.

2.2. Experimental Setup and Recordings

To assess the lower limb joint kinematics, seven wearable IMUs; (x-IMU, x-io Techologies, Bristol,
UK) were fixed in matched 3D-printed ABS (acrylonitrile butadiene styrene) enclosures and attached
by means of a semi-elastic belt to seven lower body segments, as shown in Figure 1: the waistline at
the level of the fifth lumbar vertebra (L5), the middle of the thighs, the middle of the shanks, and at the
dorsal side of the feet. The IMUs were firmly strapped on the skin or clothes. Although this could
lead to undesirable artifacts, it is more representative of records in an unconstrained context, such
as outdoor conditions. Each IMU included a tri-axial accelerometer (full scale ±6 g), a gyroscope
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(±2000◦/s), and a magnetometer (±8.1 G) that were sampled at a frequency of 128 Hz. The IMUs were
connected to a computer by means of a Bluetooth connection using a custom application based on
open source software [17] (C# program, github.com/xioTechnologies). Each movement was recorded
independently. The synchronization between the IMUs was ensured by a custom-built magnetic coil
that sent a magnetic impulse at the beginning of each recording.

Figure 1. Sensor locations: (a) x-IMU from xi-o Technologies, (b) 3D-printed acrylonitrile butadiene
styrene (ABS) enclosures (4 markers of 14 mm diameter) with the inertial measurement unit (IMU)
reference frame, and (c) segment reference frame of the 7 IMUs on the subject.

Four reflective markers were fixed at each corner of the ABS enclosures to define clusters for each
segment (Figure 1). Motion capture data were collected at a rate of 200 Hz using an eight-camera
motion analysis system (Vicon V5 Motion Systems, Oxford Metrics Ltd., Oxford, UK)) and processed
using Nexus 2.5 software. The position of each marker on the cluster allowed for the orientation of
each segment to be computed in the lab reference frame.

2.3. Functional Calibration and Test Movements

The experimental protocol is illustrated in Figure 2. Four functional calibration movements were
performed to assess their reproducibility and accuracy regarding lower limb joint angle measurement
with the IMUs. These movements were designed to include a rotation in the sagittal plane of each
lower body segment, including the pelvis, while being easy to explain and reproduce. Each functional
calibration movement included (1) an upright static posture with the arms alongside the body and the
feet parallel beside each other that was used to define the segment vertical axis and (2) a functional
movement spanning a range of orientations for each segment in the sagittal plane that was used to
define a second segment axis. In the static posture, the segment was supposed to have a zero angle
in all three planes such that the segment reference frames were aligned with the lab reference frame.
The X axis was defined as the medio-lateral axis, pointing to the left of the subject; the Y axis as the
anterio-posterior axis, pointing in front of the subject; and the Z axis as the vertical axis, pointing
downward (Figure 1c).

The instructions were as follows:

- Calibration movement 1: “Tilted to stand”: Start in a leaned-back position with extended legs on
the chair, bend the knees, bend the trunk forward, get up from the chair, and stop moving.

- Calibration movement 2: “Extension stand up”: Sit on the chair, extend the knees in front of you,
bend the knees, bend the trunk forward, get up from the chair, and stop moving.

- Calibration movement 3: “Squat”: Stand in front of the chair, rise on your heels, squat deeply, get
up, and stop moving.
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- Calibration movement 4: “Walking” 5 m:
- 4a. Walk at your pace to the red line on the floor, then stop moving.
- 4b. Fast: walk five meters as fast as you can without running to the red line on the floor as if you

were late to a meeting.
- 4c. Slow: walk five meters slowly to the red line on the floor but keep moving.

Figure 2. (a) Experimental protocol. (b) Functional calibration movements: for movements 1, 2, and
3, where the second axis was defined as the principal rotational axis as determined by a principal
component analysis (PCA) on gyroscope signals; for movements 4a, 4b, and 4c, the second axis was
defined as the principal acceleration axis through a PCA on accelerometer signals. (c) Two options to
determine the segment reference frames, as shown in segment frontal views. (d) The accuracy was
assessed using the root mean square error (RMSE), the absolute difference in the range of motion
(ΔROM) between both systems, and the absolute drift accumulated during the movement (DRIFT).
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The functional calibration movements were demonstrated by the operator and each participant
received practice trials to get used to each movement. Each functional calibration movement was
recorded three times before and three times after the execution of the test movements. The walking
movement at self-selected speed was only performed two times, before and after the test movements.

Four test movements were performed in the same order:

• walking five meters at a self-selected speed;
• stepping over an obstacle 28 cm in height while walking 5 m at a self-selected speed;
• ascend a step 20 cm in height;
• descend a step 20 cm in height.

The mean recorded times for test movements were 11 s for walking, 11 s for stepping over an
obstacle, 14 s for the step ascent, 16 s for the step descent.

2.4. Signal Processing

An open source attitude and heading reference system (AHRS) algorithm was used for sensor fusion
between the accelerometer and gyroscope sensor data of the IMU (Mahony’s AHRS algorithm) [18];
the magnetometer signals were omitted. The four calibration movements were used to compute the
orientation of each segment relative to the lab reference frame in different ways. The gravity vector
during the static upright posture was used to define the vertical axis for each segment. A second
segment axis was defined in one of two ways depending on the method of functional calibration.
For functional calibration movements 1, 2, and 3, it was defined as the principal rotational axis
as determined by a principal component analysis (PCA) on gyroscope signals. Two options were
used to determine the segment reference frame (see frontal views of the segment reference frame
in Figure 2c): either the gravity vector (g) was defined as the vertical axis and the lateral axis was
forced to be the orthogonal axis closest to the rotation axis of the functional calibration movement (r),
or the lateral axis was defined as the functional calibration movement rotation axis and the vertical
axis was the orthogonal axis closest to the gravity vector (and thus the transversal plane was not
perfectly horizontal in the static upright posture). For functional calibration movements 4a, 4b, and 4c,
the second axis was defined as the principal acceleration axis through a PCA on accelerometer signals
transformed in a lab-fixed reference frame. The 3D orientation of the pelvis and joint angles for the
hips, knees, and ankles were calculated from the segment orientations based on the recommendations
of the International Society of Biomechanics [6] for the different functional calibration movements.
Flexion-extension were rotations around the X axis, abduction-adduction was around the Y axis,
and internal-external rotations were around the Z axis.

The lower body 3D kinematics derived from the optical system were computed in two different
ways. They were either computed in the lab frame or computed through the same functional calibration
procedures described above, using the principal axis of rotation or acceleration determined from
optical records.

For each participant, a static period (about 5 s) in a standing position was captured at the beginning
of each test to define the segment’s initial orientation for the IMU AHRS algorithm.

2.5. Data Analysis

Joint angles of the walking test movement were calculated for all functional calibration procedures.
The accuracy of the IMU kinematics was computed for each calibration procedure as the difference in
joint angle between the IMU and optical measurements. The accuracy was assessed using the root
mean square error (RMSE) during the movement period, the absolute difference in the range of motion
(ROM) between both systems (ΔROM), and the absolute drift accumulated during the movement due
to the error in the angular rate integration (DRIFT). The RMSE, ΔROM, and DRIFT parameters were
computed using Matlab 2018 (Mathworks Inc, Natick, MA, USA) and are expressed in degrees.
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A generalized linear model was used to assess the effect of (1) the functional calibration movement,
(2) the option used to determine the segment’s reference frame to compute the IMU orientation, and
(3) the functional calibration method for the optical system on the amplitude of the RMSE, ΔROM,
and DRIFT parameters for each joint angle and plane of motion. This analysis was performed with
SPSS (version 25, IMB Corporation, Amonk, NY, USA) and the significance level was set to α = 0.05.

The reproducibility of each functional calibration movement was assessed as the difference in
joint angle computed from each repetition of the functional calibration movement. The reproducibility
of the ROM parameter in all movement planes and joints was determined based on the intra-class
correlation coefficient (ICC) [19] and standard error of measurement (SEM) [19]. Values of ICC ≥
0.90 were considered as excellent, 0.70–0.89 as good, 0.40–0.69 as acceptable, and <0.40 as low [20].
The SEM estimates the non-systematic variance and reflects the within-subject variability among
repeated calibrations. A proportional SEM (SEM%) was calculated by expressing the SEM relative to
the mean ROM (SEM% = (SEM/mean) × 100%)) [21]. An SEM% above 10% was considered as high.

Once the most accurate and reproducible functional calibration method was selected for a walking
test, the accuracy was determined for the other test movements, namely the step ascent, descent, and
stepping over an obstacle, using the RMSE and ΔROM parameters. The parameters were calculated for
the front leg (i.e., the first leg to touch the step in the step ascent, the first leg to touch the floor leg in
the step descent, and the first leg to touch the ground in obstacle stepping) and for the back leg in the
different test movements. Differences in the RMSE and ΔROM parameters between test movements
were assessed with a one-way ANOVA. Tukey’s post hoc test was used to reveal which groups differed
in the case of significant p-values. The significance level was set to α = 0.05.

3. Results

The pelvis orientation and the joint angles during a time-normalized typical gait stride at a
self-selected speed of 1 m·s−1 are illustrated in Figure 3 for measurements with the IMUs and with
the optical system using the walking functional calibration (Calibration movement 4a). The traces
displayed a classical movement pattern as indicated by the similarity between both set of measurements,
with a mean RMSE value lower than 5◦ for all joints in all planes.

3.1. Assessment of the IMU Accuracy

The mean differences between measurements from the IMUs and from the optical system, as well
as the factors affecting this difference, are presented in Table 1. The highest mean error was observed
at the knees and at the ankles, bilaterally, as shown by the RMSE between 3.0◦ and 4.1◦ and by the
ΔROM between 1.9◦ and 5.1◦ in any plane of motion. The generalized linear model also indicated
that these differences were significantly linked to the functional calibration movement; see the details
in Figure 4. These errors were also significantly associated with the methods of determination of the
IMUs reference frame, although to a lesser extent: the mean (SD) RMSE was 2.3◦ (1.7◦) when the
vertical axis was aligned to the gravity vector and 3.0◦ (3.1◦) when the lateral axis was aligned to the
segment rotation axis. The errors were not significantly linked to the two different methods used to
compute the 3D kinematics from the optical system (lab frame or computed through the functional
calibration). Table 1 also shows that the DRIFT was largely independent of the factors considered in
the generalized linear model.
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The variation of the RMSE across different functional calibration movements is illustrated in
Figure 4. While the RMSE varied between approximately 1◦ and 6◦ for most joints, planes of motion,
and functional calibration movements, it was larger for the “squat” calibration movement, especially
at the knee and ankle where the upper confidence limit of the RMSE reached up to 8◦ and the upper
confidence limit ΔROM reached up to 10◦ or more. Tilted, extension, and walking functional calibration
movements tended to provide less accurate measurements at the knee. Walking functional calibration
movements tended to report more accurate angles for distal lower limb joints, although without a clear
visible impact on the ROM accuracy. After excluding the “squat” movement, the mean accuracy for all
other calibration movements is summarized in Table 2, indicating a mean RMSE of less than 2◦ at the
pelvis, less than 3◦ at the hip and ankle, and less than 4◦ at the knee with a trend for larger errors in the
frontal plane. The mean errors were smaller in ΔROM. DRIFT values at the hips and at other lower
limb joints in the sagittal plane were on average under 2.7◦, while higher mean values up to 4.9◦ were
observed at the knee and at the ankle in the frontal and transverse planes.

Table 2. Summary of the accuracy without the squat calibration movement and with reference frames
aligned with gravity.

RMSE (◦) ΔROM (◦) DRIFT (◦)
Mean (SD)

Pelvis Sagittal 1.0 (0.7) 0.7 (0.8) 0.4 (0.6)
Frontal 1.2 (1.1) 0.7 (0.9) 0.5 (0.4)

Transverse 1.5 (1.8) 0.2 (0.2) 0.2 (0.2)

Hip right Sagittal 2.1 (1.3) 1.0 (1.0) 1.6 (1.6)
Frontal 2.9 (2.2) 2.0 (1.7) 2.3 (1.6)

Transverse 2.2 (1.5) 1.7 (1.1) 2.1 (1.3)

Knee right Sagittal 3.6 (2.5) 1.1 (0.6) 1.9 (1.8)
Frontal 2.8 (1.6) 2.5 (2.3) 4.0 (5.3)

Transverse 2.2 (1.2) 1.8 (1.9) 2.9 (4.8)

Ankle right Sagittal 2.0 (1.3) 1.6 (1.1) 2.7 (5.4)
Frontal 2.4 (1.6) 2.6 (2.7) 3.5 (4.6)

Transverse 2.2 (1.0) 3.4 (2.9) 4.9 (6.6)

Hip left Sagittal 2.5 (1.7) 1.1 (0.7) 0.8 (0.7)
Frontal 2.4 (1.9) 1.8 (1.8) 2.0 (1.7)

Transverse 2.0 (1.5) 1.5 (1.3) 2.0 (1.8)

Knee left Sagittal 3.2 (2.6) 1.0 (0.7) 1.4 (1.1)
Frontal 3.2 (1.7) 3.1 (3.0) 4.0 (3.9)

Transverse 2.3 (0.9) 1.5 (1.1) 2.5 (3.9)

Ankle left Sagittal 2.9 (1.4) 0.9 (0.8) 2.1 (4.1)
Frontal 2.3 (1.2) 2.3 (1.9) 3.1 (3.3)

Transverse 1.9 (0.8) 1.7 (1.7) 3.1 (5.1)

Bold values indicate angles >3◦.

3.2. Assessment of the IMU Reproducibility

The mean ROM recorded for each joint in each plane of motion during one walking test movement
are presented in Table 3, together with the reproducibility indices computed across repetitions of each
calibration movement. The mean ROM displayed symmetrical values for both limbs and classical
movement amplitudes for walking at 1 m·s−1. Overall, the mean reproducibility was excellent for
all calibration movements in the sagittal plane (ICC: 0.96–0.99) and it was good to excellent in the
transverse plane (ICC: 0.87–0.93). In the frontal plane, the mean reproducibility was good for all
calibration movements (ICC: 0.79–0.86), except for walking, which had an acceptable reproducibility
on average (ICC: 0.63) due to the low ICC observed for the hip and knee. The reproducibility was
uniformly good to excellent across the calibration movements, except for the walking movement,
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which reported slightly lower reproducible movement amplitudes for proximal joints (as low as ICC =
0.76 for the hip compared to ICC = 0.94 for any other movement) and slightly higher reproducibility in
distal joints (as high as ICC = 0.91 for the ankle compared to ICC = 0.82 for other movements). For all
functional calibration movements, whatever the joint, the mean SEM was within 1.2◦ in all planes,
although the mean SEM remained generally higher at the knee (0.9◦) and ankle (1.8◦) compared to the
hip (0.6◦) and pelvis (0.1◦). This resulted in acceptable variations between movements, as shown by a
mean SEM% of 1.8% in the sagittal plane, 4.8% in the transverse plane, and 7.9% in the frontal plane,
where articular amplitudes were smaller for all lower limb joints.

3.3. Assessment of Accuracy in Different Test Movements

The functional calibration movements that provided the highest accuracy were the tilted and
extension movements, as well as walking at a self-selected speed (mean RMSE for all joints, respectively:
2.5◦, 2.3◦, 2.2◦). Since these calibration movements provided a comparable performance for the
functional calibration of the IMU, the mean accuracy with the walking functional calibration was
computed for the measurement of the four gait test movements, namely walking, ascending or
descending one step, and stepping over an obstacle, when considering the lateral axis of the reference
frame perpendicular to the gravity vector (as similar accuracies were obtained when considering it
parallel to the axis of the segment rotation during the functional calibration). The mean accuracy
obtained with the functional calibration movements retained is presented in Table 4. The RMSE and
ΔROM were both smaller than 6◦ for ascending a step and smaller than 13◦ for descending it. For
stepping over an obstacle, the RMSE reached 13◦ but the ΔROM had maximum values of only 4◦.
Notably, the accuracy of the IMU measurements were higher in walking than in other gait movements,
where larger inaccuracies were observed, especially for a step ascent (both ankles in the sagittal plane
and back leg hip in the frontal plane), for a step descent (all joints of both legs), and for stepping over
an obstacle (all joints of both legs excluding the pelvis), although the error was generally within 5◦ and
only rarely exceeded 10◦.

Figure 4. Accuracy across functional calibration movements (1. Tilted to stand, 2. Extension, 3. Squat,
4a. Walking (1 ± 0.1 m·s−1), 4b. Walking fast (1.5 ± 0.1 m·s−1), 4c. Walking slow (0.6 ± 0.1 m·s−1)).
Error bars are the confidence interval means at 95%.
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4. Discussion

The main objective of this study was to compare the accuracy and reproducibility of lower limb
joint angles computed from IMUs following different functional calibration methods. The study showed
that applying a functional calibration movement before IMU-based lower limb kinematic assessment
allowed for a fairly accurate measurement of gait movements. Except for the squat calibration
movement, only small discrepancies were observed between functional calibration movements during
a walking task, with a peak mean error of 3.6◦ for any joint in any plane of movement. Overall, the
absolute reproducibility was similar for the three planes, but relative reproducibility was higher in
the sagittal plane, with a mean standard error of measurement of less than 1.1◦ observed between
multiple repetitions of the same functional calibration movement. A comparable overall performance
was observed for different calibration movements, although each movement reported variable merits
for different joints and planes of movement. Although the highest accuracy was observed in straight
walking with a mean error of 2.2◦, more complex gait movements tended to provide larger but
limited errors, with a mean error of 3.5◦ for a step ascent, 5.4◦ for a step descent, and 4.7◦ for crossing
an obstacle.

4.1. Accuracy of Different Calibration Methods during Straight Walking

The accuracy reported in this study during straight walking ranged from 1.1◦ to 3.6◦ for RMSE
and from 0.2◦ to 3.4◦ for ΔROM, which is comparable to the mean error below 3◦ reported when
using marker clusters on segments [22] rather than markers on anatomical landmarks [23–25]. Indeed,
both methods reported different joint kinematics and accounted differently for errors of markers
placement, soft tissue artefacts, and biomechanical model calculations [22]. The functional calibration
of the optical system did not influence the accuracy, indicating that the reference frame obtained for
each segment with the functional calibration movements were close to the optical reference frame.
As the magnetometer was not used in the AHRS algorithm, the DRIFT was controlled to be acceptable
(mean of 2.3◦) for such short experiments. The drift was slightly higher in the more distal joints,
probably due to the higher speed of the movements [26,27]. The drift was slightly lower in the sagittal
plane, probably because the drift in this plane was better compensated by the sensor fusion algorithm.
Although a mean error under 2◦ has been obtained on a single-joint movement [13], the accuracy
obtained with our multi-joint model is acceptable for most clinical gait applications [8].

While the tilted and extension calibration movements provided a higher accuracy in the hip and
ankle kinematics compared to the knee, walking calibration movements reported a higher accuracy
for distal joints, whatever the walking speed. This observation can be supported by (1) a greater
variability in the knee kinematics during the tilted and extension movements compared to straight
walking and (2) higher accelerations of the distal relative to the proximal segments during walking.
This observation also showed that the reference frame for each segment can be equally determined via
a rotational movement recorded by the gyroscopes or via a translational movement recorded by the
accelerometers contained in each IMU. The accuracy obtained in slow walking also validates the use of
this functional calibration movement in similar conditions, which is often encountered in pathological
gaits or in older adults [28].

The lower accuracy reported for the knee and ankle via the squat calibration movement could be
explained by the lower movement amplitude of the shank and foot segments during this calibration
movement. Indeed, the smaller amplitude-to-noise ratio probably resulted in an erroneous definition
of the reference frame, leading to kinematic crosstalk [29]. This result also showed that functional
movements exploring a wide range of segment orientation tended to provide more accurate segment
reference frames.
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4.2. Reproducibility of Calibration Movements

Reproducibility was excellent in 65% of the tested joints and motion planes, good in 24%, acceptable
in 10%, and poor in 1 observation out of 84. Concerning differences between calibration movements,
the walking calibration movement produced the highest reproducibility and SEM% for the ankle, while
the other functional calibration movements produced higher reproducibility indices for the pelvis and
hip joints. The lower reproducibility at the ankle for the segment-rotation-based movements could be
explained by the difficulty in reproducing movements purely in the sagittal plane. This observation
also supports previous results showing that the variable position of the foot affects the functional
calibration when using different static postures [12]. The use of more guidance or more repetitions of
the calibration movements could improve the reproducibility by (1) avoiding parasitic movements
of the feet out of the sagittal plane and (2) decreasing the impact of any parasitic movement on the
definition of the rotation axis. However, in order to limit the complexity and burden of the functional
calibration movements, the walking calibration movement remains a remarkably convenient alternative
since it offers a good to excellent reproducibility (though lower than other movements for the proximal
joints), with a very simple and ecological movement. Caution may be needed for subjects having an
impaired walking pattern, e.g., a subject walking with the feet pointing outwards.

A higher reproducibility was observed in the sagittal plane compared to the frontal plane. This
could be explained by the higher range of motion in the sagittal plane during walking, leading to more
kinematic crosstalk in the other planes measured and/or by the fact that the functional calibrations
mainly generated segment movements in the sagittal plane. The combination of the higher variability
and smaller ROM in the frontal plane during walking led to a higher SEM% in this plane, as also shown
in upper limb anteroposterior reaching tasks [19]. Higher SEM% values inevitably require higher
changes to detect meaningful functional changes, e.g., after therapy. The reproducibility of calibration
movements in the frontal plane should be explored for the assessment of functional outcomes involving
larger movements in the frontal plane.

4.3. Accuracy across Different Gait Movements

More complex gait movements tended to provide larger errors than a peak mean RMSE of 3.6◦ and
a peak mean ΔROM of 3.4◦ for straight walking. Indeed, the peak mean errors obtained in the sagittal
plane for a step ascent of 3◦, 5◦, and 5◦ for hip, knee, and ankle, respectively, correspond to errors
in elevation angles of 5◦, 4◦, and 4◦ previously reported for the same joints [30]. Similarly, the peak
mean ΔROM of 6.4◦ obtained for the stair ascent and of 4.6◦ for the stair descent are comparable to
the errors previously reported for healthy subjects (peak error of 4.1◦ for a stair ascent and 4.8◦ for a
stair descent) [31]. Therefore, before implementing inertial sensors in a complex, real-life context, the
accuracy should be established in such a context rather than extrapolated from simpler gait movements
recorded in controlled lab conditions.

4.4. Limitations and Perspectives

This study focused on healthy adults and this could be a limitation in case the functional calibration
movements proposed here would be used with patients with a limited range of motion or who
have parasitic movements that may hinder an accurate and reproducible calibration movement.
The transferability to the elderly or to patients with motion disabilities should be assessed in
further studies.

The IMU magnetometer was voluntarily omitted in this study in order to avoid ferromagnetic
disturbances. The recordings in this study were limited in time due to the short time required to
execute the investigated movements. The drift resulting from longer records [32] could be limited by
using the IMU magnetometer or algorithms that constantly fuse the segment’s angular velocity and
linear acceleration via known kinematic relations between segments [33].
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Although a high accuracy for the lower limb joint angles has been obtained by using only
the gyroscope signals, our methods could be improved by also accounting for the segment
accelerations [9,34], which can be used to locate the joint centers and improve the robustness of
the segment orientations [35]. Another approach consists in using a hinge joint model and kinematic
constraints to develop automatic or so-called “plug and play” calibrations [9,36]. This less restrictive
method may facilitate clinical applications where patients with motion disabilities cannot be expected
to perform precise prescribed calibration movements.

5. Conclusions

This study documents the high accuracy of IMU-derived lower limb joint angles during walking
using several functional movements for the sensor-to-segment calibration. Functional movements
requiring larger segmental angular amplitudes provided more accurate segmental reference frames and
led to a higher accuracy regarding the kinematics of the adjacent joints. Alternatively, the higher linear
accelerations generated at distal segments during a walking functional calibration also led to a higher
reproducibility for distal joints, in comparison to the functional calibration based on the principal
rotational axes. The walking, tilted, and extension functional calibration movements were shown to be
three equivalent options for the gait movement examined in this study. In addition, for examining
walking, the walking functional calibration may be superior because it involved very limited material
and instruction complexity, which strengthens its interest in uncontrolled environments.
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Abstract: This paper presents the use of eye tracking data in Magnetic AngularRate Gravity
(MARG)-sensor based head orientation estimation. The approach presented here can be deployed
in any motion measurement that includes MARG and eye tracking sensors (e.g., rehabilitation
robotics or medical diagnostics). The challenge in these mostly indoor applications is the presence
of magnetic field disturbances at the location of the MARG-sensor. In this work, eye tracking data
(visual fixations) are used to enable zero orientation change updates in the MARG-sensor data fusion
chain. The approach is based on a MARG-sensor data fusion filter, an online visual fixation detection
algorithm as well as a dynamic angular rate threshold estimation for low latency and adaptive
head motion noise parameterization. In this work we use an adaptation of Madgwicks gradient
descent filter for MARG-sensor data fusion, but the approach could be used with any other data
fusion process. The presented approach does not rely on additional stationary or local environmental
references and is therefore self-contained. The proposed system is benchmarked against a Qualisys
motion capture system, a gold standard in human motion analysis, showing improved heading
accuracy for the MARG-sensor data fusion up to a factor of 0.5 while magnetic disturbance is present.

Keywords: data fusion; MARG; IMU; eye tracker; self-contained; head motion measurement

1. Introduction

Measuring head motion for medical diagnostics, virtual or augmented reality applications or
human-machine collaboration usually involves multimodal sensorized interfaces to estimate motion
and generate an appropriate control input for the desired application. In the context of human-machine
collaboration and direct interaction with assistive technologies these interfaces are often designed
to be used hands-free [1–3]. Such an interface needs to be precise, robust and fail safe. The research
and development of new interaction technologies is in demand. A promising hands-free sensing
modality involves Magnetic AngularRate Gravity (MARG)-sensors to estimate orientation of the
operators head to interact with or teleoperate a robotic system [1]. In general MARG-sensors consist
of a tri-axis accelerometer, tri-axis gyroscope as well as a tri-axis magnetometer. Such a sensor can
also be termed inertial measurement unit (IMU) if it does not feature the tri-axis magnetometer.
The orientation estimation from these sensors is based on the integration of the gyroscope raw angular
rate data. This raw signal suffers from various noise terms that need to be taken care of, especially the
dc-bias [4]. Even if the dc-bias of the gyroscope is set to zero at the MEMS-fab, there is a dc-bias that
depends on sensor type, packaging and temperature, which in turn leads to a drift of the integrated
gyroscope data [5]. This drift is usually corrected by the underlying data fusion process. Most common
algorithms use the absolute references, direction of gravity and geomagnetic field to reduce orientation
drift introduced through the gyroscope measurements [4,6]. The influence of permanent magnets,
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that is, hard iron effect, and magnetizable materials, that is, soft iron effect, in the direct neighborhood
of the MARG-sensor will cause superpositions of the surrounding magnetic field. The distorted
magnetic field can no longer be used to correct for dc-bias errors in the heading estimate (yaw-axis).
During magnetic disturbances the MARG-sensor relies on gyroscope data only and will over time result
in a drift in the heading estimate because of the accumulated errors if not corrected somehow [7,8].

This paper presents a novel approach to reduce heading estimation errors of head movement
measurements by functional combination of mobile eye tracking and a head worn MARG-sensor.
The approach utilizes the physiological connection between eye and head movements to identify static
and dynamic motion phases. The eye tracking glasses are used to track visual fixations which indicate
static phases. This indication is used for zero orientation change updates in a MARG-sensor data
fusion algorithm. The approach relies on an infrared based eye camera only and does not need a
scene or world camera and therefore no eye to world camera calibration. The presented approach is
decoupled from most surrounding environmental conditions.

Human-robot collaboration in industrial production as well as rehabilitation robotics are
applications that benefit from the proposed approach. These applications are mostly indoor and
introduce potential magnetic interference at the location of the MARG-sensor. The work presented here
not only enhances robustness of heading estimate of the head orientation measurements, it also presents
a self-contained device mostly decoupled from varying visual markers and lightning conditions in the
surrounding scenery.

1.1. State of the Art in MARG Based Orientation Measurements

Many algorithms exist to fulfill orientation estimation for head motion tracking. The Kalman filter
has become the de facto standard for industrial and research applications [9,10]. However, various
fast and lightweight data fusion methods for orientation estimation have been developed to reduce
computational load while keeping orientation errors at a reasonable level. A famous method was
introduced by Madgwick et al. in 2011 [11]. This method is based on the gradient descent algorithm and
has gained popularity due to its fast and effective implementation on a microcontroller. Unfortunately
MARG-sensors are exposed to magnetic field disturbance, termed soft- or hard-iron effects, resulting in
incorrect orientation estimation [7]. This error scales with respect to the distance between the sensor and
source of magnetic disturbance and magnetic properties of the source, for example, 35–50◦ error near
large ferromagnetic metal objects or the floor (indoor) [12]. Recent approaches try to overcome these
magnetic disturbances by software, for example, online gyroscope bias estimation [13] or fast online
magnetometer calibration [14]. These software based corrections do not require additional hardware
nor other sources of reference but might require certain motion conditions. For example online
magnetometer calibration approaches are usually based on a sampling of sparse 3D magnetometer
data points to adapt the calibration matrix, which might not be possible in every situation due to fast
changing magnetic field values or the rather small motion space of the head. The use of other hardware,
for example, visual odometry, usually provides a decent source of reference for the heading estimate
but depends on the surrounding environmental conditions, for example, structured environment,
reasonable lighting conditions and small relative motion in the scenery [15]. These conditions can not
always be guaranteed especially in the context of human-machine collaboration which will feature a
lot of relative motion from the robotic system and heavy dynamic magnetic disturbances due to the
robots metal-links and motor-joints.

1.2. State of the Art in Eye Tracking

The analysis of the direction or the location of interest of a user through eye tracking is key for
many applications in various fields, that is, human-computer interfaces (gaze mouse), human-machine
interfaces, medical diagnostic and many more [16]. Therefore, fast and reliable eye tracking devices
and software have been heavily researched [17]. Eye trackers can be separated into stationary or mobile
devices. Stationary eye trackers are fixed in position referenced to the world frame. The devices’ camera

58



Sensors 2020, 20, 2759

observes the users eyes and maps the tracked gaze to a defined surface (e.g., screen monitor) [18].
Mobile devices on the other hand usually consist of a frame, that is worn like a pair of glasses,
a mono- or binocular eye camera fixed to the frame monitoring the pupil and a world camera to merge
calibrated pupil positions to a gaze point in the world frame [17]. Furthermore, modern mobile eye
tracking devices either feature a MARG-sensor or an IMU-sensor or the eye tracker can be extended
by a custom or third-party sensor board. In this work, we use a monocular mobile eye tracker that
gained popularity in the research community over the past years due to the open source software and
affordable pricing [19].

2. Working Principle

The proposed work is based on the physiological relationship between eye and head rotations
during visual fixations of stationary objects. The eyes of a human are centered in a fixed axis of rotation
inside the head and are therefore naturally affected by head rotations. Visual fixations of objects will
result in small or nonsignificant rotation of the eyeball during stationary motion phases, see Figure 1a.
A rotation of the head during visual fixation of a stationary object however, will result in an opposite
rotation of the eyeball due to the vestibo-ocular reflex, stabilizing the visual scenery [20], see Figure 1b.
The physiological relationship between head and eye rotations therefore represents a natural indicator
for head rotation and can be used to support head orientation measurements.

A mobile eye tracker is used to measure the above mentioned relationship and utilize this indicator
for MARG-sensor based head orientation measurements. The method assumes that the MARG-sensor
is fixed in position with respect to the eye tracker frame, for example, attached to it. The mobile eye
tracker is worn by the user and should be adjusted in a way that prevents heavy slippage during head
motion, for example, through an eye wear strap which is common practice in mobile eye tracking.
From the setup given in Figure 1, the following constraints can be derived.

The coordinate system of the mobile eye tracker and MARG-sensor share a common reference
frame with the users head and rotate conjointly, see Figure 1. Every rotation of the head is directly
coupled with the rotation of the eye-tracker frame and MARG- or IMU-sensor. This rotation will result
in a change of the pupil position in the eye camera image. This is either due to a voluntary change
in the visual fixation or a head movement. In contrast to head rotation based changes of the pupil
position, a change of visual fixation is usually coupled with high angular velocity of the eyeball due to
a significant pupil position change of consecutive eye camera images. If the visual target is moving
while the head is stationary or the fixation changes to another visual target, there will be a significant
change in pupil position, due to the given coordinate system setup. The eye tracker camera is in a
fixed position with respect to the head coordinate system. If the eyes follow a moving target or switch
the visual fixation the pupil position changes within consecutive frames because the target changes its
position with respect to the head and eye tracker coordinate system. Changes in the pupil position
will therefore always indicate motion, whether it is introduced through head motion or voluntary
eye motion. Near zero changes in the pupil position between eye tracker camera images however
indicate near zero head rotation with one possible exception from this assumption. If a visual fixation
stays on a moving target while the head is rotating at the same rotational speed at which the target is
moving, all local coordinate systems do keep their relative positions between each other. This would
result in a no motion classification from the pupil position change criteria. In this kind of situation
the pupil position does not change with respect to the eye tracker coordinate system since the head
and target coordinate system do not change their relative positions and orientations between each
other. A MARG- or IMU-sensor however does measure motion related to the world coordinate system
and will therefore measure a change in the orientation between the world and eye tracker coordinate
system. The rotational velocity of the motion, or in other words the change of orientation between
coordinate systems, needs to exceed a minimum threshold to distinguish the motion from gyroscope
noise during these special phases.
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The approach presented here uses this pupil motion description under visual fixation of an
object to reduce the drift effect at stationary phases and therefore improve the MARG-sensor based
heading estimate. Since all local coordinate systems are in a fixed position towards each other, every
simultaneous measured movement or motion is caused by head rotations. Every significat pupil
position change indicates motion, either from head rotation or eye rotatation. Zero or no rotation
however, is indicated by every visual fixation, independent of the total fixation time, that results in
near zero change in the pupil position and angular velocity.
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Figure 1. Coordinate systems between eye tracker, Magnetic AngularRate Gravity (MARG)-sensor
and head when fixating an object (a) without and (b) with head motion. The condition of fixation
of the object results in a stable gaze position. Possible motion of the pupil during fixations
itself, so called microsaccades, is very small (0.2◦ at a duration of 20–30 ms) and can be neglected
(yellow boundary box).

3. Data Fusion Process

In this work it is proposed to support MARG-sensor based heading estimates by zero rotation
updates measured and indicated by visual fixation detection. The detection of visual fixation (given in
subsection A) is used to feed the previous estimate of heading from the MARG-sensor fusion process
(given in subsection B) recursively to the filter itself to reduce accumulation of gyroscope bias related
heading errors. We calculate an IMU heading vector N�NIMU,k based on the previous estimate of the
heading that represents the direction of a horizontalized heading vector in the North East Down
(NED) frame. This heading vector can be used as a complete substitute to the magnetometer based
horizontalized north direction vector in the MARG-equation of an adapated form of Madgwick’s
Gradient Descent filter stage.

Synchronization of both systems is achieved through timestamp based message filtering. The data
of the mobile eye tracker as well as the used MARG- or IMU-sensor should be accessible in real time by
the manufacturers application programming interface (API) and provide a timestamp that can be used
for synchronization processes, for example, using the message filter package from the robot operating
system (ROS) framework. An angular rate threshold based switching can be either implemented
on the MARG-sensor or host computer to account for possible latency issues between both systems.
This threshold is based on the median head motion noise in static motion phases indicated by visual
fixations. If the gyroscope raw signal exceeds the median noise level, the zero orientation update is
turned off. This median noise threshold is also used to address the special case that the pupil position
does not change while the head and eyes are following a moving target at the same rotational speed.
During these special motions the magnitude of the measured angular rate will exceed the median
gyroscope threshold which in turn disables the zero orientation update.
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3.1. Visual Zero Rotation Detection

The trigger signal for the zero rotation update is based on an online visual fixation detection
algorithm that utilizes dispersion (spatial movement, thd) and duration (tht) thresholds to identify
fixations. These thresholds define the total amount of allowed gaze or pupil position differences (Δp)
between time successive eye camera images (Δt). The algorithm utilizes a sliding window which
length is determined by the duration threshold tht and sampling frequency. Dispersion p is calculated
as the sum of the differences between consecutive pupil positions

Δp = [(max(x)− min(x) + (max(y)− min(y)], (1)

where x and y are the eye tracker cameras pixel positions. The dispersion is compared to the maximum
dispersion threshold thd. Fixations are identified as such if the dispersion stays below thd. This results
in an expansion of the window to the right until the dispersion exceeds this threshold. If no fixation is
detected the window does not expand but moves forward in time [21].

This kind of algorithm has proven to be very accurate and robust regarding online fixation
identification but needs careful parameter setting [21]. While the visual fixation stays on a target
and inside the dispersion threshold boundaries, the head is assumed to be stationary. The threshold
parameter ratings for the magnitude of dispersion in time is given due to involuntary movement,
for example, microsaccades and tremor. However, these involuntary movements usually consist of
rather small duration in the range of 20–30 ms and amplitudes peaking in a visual angle of 0.2◦ [22].
The fixation detection parameters should be chosen in a way that fixations are still detected even in
the presence of microsaccades and tremor. A fixation is identified and labeled as such, as soon as
the fixation duration threshold is reached. Upon this a trigger signal (St) is emitted indicating a zero
orientation update cycle for the MARG-sensor data fusion process.

St =

{
1, Δp ≤ thd ∧ Δt ≤ tht

0
(2)

The trigger starts an acquisition cycle that stores gyroscope raw data while the fixation holds true.
When a sufficient amount of gyroscope samples has been recorded, updated motion noise parameters
are sent to the MARG-sensor to update the threshold to account for desynchronization and latency
issues between both systems and their different sampling rates. This procedure ensures adaptive and
individual noise parameterization for the current user and use case and enables a real-time support.

3.2. MARG-Sensor Datafusion

In general the approach can be used independently of the underlying MARG-sensor data fusion
process, since it indicates whether the users head is in dynamic or static motion phases. In this work,
we exploit the approach on an adaptation of Madgwick’s gradient descent algorithm (GDA) based
filter. Figure 2 depicts the complete filter fusion approach that will be explained in detail in the
following subsection.

As proposed by Madgwick et al. a quaternion N
B q is computed by solving a minimization problem

min
N
B q∈R4

f (N
B q, N�d, B�s), (3)

that rotates a vector N�d into the orientation of a reference vector B�s

f (N
B q, N�d, B�s) = N

B q •
(

0
N�d

)
• N

B q̇ −
(

0
B�s

)
, (4)
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where N
B denotes the orientation of the global navigation frame relative to the body frame and N

B q is
the four component quaternion

N
B q =

(
q1 q2 q3 q4

)T
. (5)

A possible solution to the optimization problem in Equation (3) can be given by gradient descent
based solving for the obtained magnetometer and accelerometer vector measurements respectively

N
B qk+1 = N

B qk − μt
∇ f (N

B qk, N�d, B�s)

||∇ f (N
B qk, N�d, B�s)|| , k = 0, 1, 2, . . . n, (6)

where μt denotes the stepsize of the gradient function. For a complete mathematical explanation of
the filter see Reference [11] or Reference [8]. The GDA filter stage computes a complete quaternion
N
B qk either based on gyroscope, magnetometer and accelerometer (MARG-case) or gyroscope and
accelerometer only data (IMU-case). This is to reduce errors in the heading estimate from magnetic
disturbances but requires two different sets of equations [8]. This is due to the missing magnetometer
measurement vector in the IMU case set of equations and therefore needs an adapted objective function
and Jacobian respectively.

Figure 2. Block diagram of the proposed fusion approach. Upon detection of a zero rotation update
through the eye tracker (St = 1), the current orientation is used to define an inertial measurement
unit (IMU) heading vector (N �NIMU). This IMU heading vector will be updated with accelerometer
measurements and fixed heading information as long as St = 1 is triggered and magnetic disturbance
is present. If magnetic disturbance is present and the trigger is zero (St = 0) the IMU heading vector is
iterativly updated. Switching between magnetometer based north direction vector (N �Nm )and IMU
heading vector (N �NIMU) is based on the deviation angle ε between both vectors.

In this work, we propose calculating an IMU heading vector that substitutes the magnetometer
vector while magnetic disturbance is present to reduce the needed sets of equations as well as to
guarantee convergence and a continuous quaternion solution to the minimization problem. We use
the north direction vector N�Nm from the NED formulation through accelerometer and magnetometer
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measurements while no disturbance is present. The north direction vector is defined as the cross
product between the down and east vector,

N�Nm =N �D ×N �E, (7)

where the down vector is defined as the inverse of the acceleration measurement vector (B�a)

N�D = −B�a, (8)

and the east vector is defined as the cross product between the down vector and the magnetometer
measurement vector (B�m)

N�E =N �D ×B �m. (9)

During rotation the acceleration vector will be subject to motion acceleration and therefore does
not accurately reflect the direction of gravity. This effect however is typically reduced by low pass
filtering the acceleration vector. Most modern sensors provide onboard low pass filter banks that
can be configured by the user to the appropriate needs. Furthermore, the rotational accelerations
will be rather small compared to the dominant acceleration originating from gravity. This is due to
the small distance (in this case 0.1 m) between the rotational center of the head and the position of
the MARG-sensor resulting in minor inaccuracies during dynamic motion. The influence of these
incaccuracies during dynamic motion is further reduced by the subsequent data fusion filter. The data
fusion filter usually does emphasize gyroscope data integration during fast dynamic motion to reduce
inaccuracies from the motion acceleration on the orientation estimation.

We calculate a substitute to the north direction vector, termed IMU heading vector N�NIMU , based
on the orientation estimation from the gyroscope and accelerometer measurements. This is achieved
through the following process.

We extract the heading information of the output quaternion N
B qk by calculating a three component

vector (N�NIMU,k) describing heading information in the NED frame. First the heading information
(yaw angle, ψE) from the quaternion N

B qk is converted to Euler angle representation

a = (qk,1
2 + qk,2

2 − qk,3
2 − qk,4

2)

b = 2 · (qk,2 · qk,3 + qk,1 · qk,4)

ψE = atan2(b, a).

(10)

When a zero rotation update is triggered, the fusion process samples the current output angle
ψE from the last output quaternion N

B qk of the GDA filter stage and holds it while the trigger St is
true. The subscript E indicates that the angle ψ is not updated if the sample and hold mechanism is
activated. If the trigger signal is false, indicating head motion, the fusion process updates the angle ψE
with every new output quaternion N

B qk.
Second we convert the iterative updated roll (φk) and pitch (θk) angles derived from the current

quaternion N
B qk by the following process

a = 2 · (qk,3 · qk,4 + qk,1 · qk,2)

b = (qk,1
2 − qk,2

2 − qk,3
2 + qk,4

2)

c = 2 · (qk,2 · qk,4 + qk,1 · qk,3)

φk = atan2(b, a)

θk = asin(−c).

(11)

From the yaw (ψE) angle and the current roll (φk) and pitch (θk) angles we build a new temporary
quaternion shown in Equation (12),
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N
B qE,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(
φk
2
)c(

θk
2
)c(

ψE
2
) + s(

φk
2
)s(

θk
2
)s(

ψE
2
)

s(
φk
2
)c(

θk
2
)c(

ψE
2
)− c(

φk
2
)s(

θk
2
)s(

ψE
2
)

c(
φk
2
)s(

θk
2
)c(

ψE
2
) + s(

φk
2
)c(

θk
2
)s(

ψE
2
)

c(
φk
2
)c(

θk
2
)s(

ψE
2
)− s(

φk
2
)s(

θk
2
)c(

ψE
2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where c and s are sine and cosine functions respectively.
This quaternion is now applied to a x-axis unit vector because the north direction vector defines

the sensors body x-axis, resulting in

�x =
(

1 0 0
)T

N�NIMU,k =
N
B qE,k •

(
0
�x

)
•N

B q̇E,k

, (13)

where • indicates quaternion multiplication and q̇ represents the conjugate quaternion to q. The vector
N�NIMU,k now represents the direction as a substitute to the magnetometer based north direction vector
in the NED frame, as can be seen in Figure 3.

Bx

By

Bz

B�a

B �m

N �D

N �E

N �Nm

i

(a)

Bx

By

Bz

B�a

N �NIMU

N �Nm =N �NIMU

(b)

Figure 3. Depiction of the north direction vector substitutes, (a) north direction vector, termed N �Nm

from accelerometer (B�a) and magnetometer (B�m) measurements in the case of undisturbed magnetic
field measurement, and (b) IMU heading vector, termed N �NIMU calculated based on quaternion vector
multiplication from the gradient descent algorithm (GDA) filter without magnetometer data in the
case of disturbed magnetic field measurements.

Since the vectors N�Nm and N�NIMU lie in the same plane it is possible to calculate a deviation
angle (ε) that can be used to determine magnetic disturbance due to sudden changes in the direction
of the north direction vector in contrast to the IMU heading vector. The deviation angle is calculated
as follows

ε = cos−1
(

N�Nm •N �NIMU

)
, (14)

where • represents the dot product respectively.
If magnetic disturbance is present, the deviation angle ε will increase. If it exceeds a threshold Δθ,

the filter switches towards the virtual sensor vector based quaternion calculation and vice versa if it
vanishes. This procedure enables the calculation of a complete and continuous quaternion solution that
involves current sensor measurements from the accelerometer and the extracted heading information
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from the previous quaternion. It is possible to use the same set of equations without any adaptation
and switch from magnetometer based north direction vector to the IMU heading vector without
divergence of the quaternion. While the zero rotation trigger is enabled, the fusion process holds the
recent calculated yaw angle ψE. This ensures that the GDA based calculation of the new quaternion
N
B qk is less affected by possible drift in the heading direction due to uncorrected gyroscope bias but
will however be corrected in the remaining axes through accelerometer updates and preserves a
continuous solution and convergence. While no trigger is emitted, the fusion approach simply updates
the measurement quaternion with every iteration based on either magnetic north direction vector
when no disturbance is present or the IMU heading vector from the current orientation. It is known
that Euler angle representation is subject to gimbal lock if two rotation axis align. This effect can be
dealt with in two different ways. Either by designing the experiment in a way that does not include
head rotations around the pitch exceeding ±90◦, which causes gimbal lockin the chosen rotation order
(Z-Y-X), or by formulating a quaternion based heading orientation estimation method. The quaternion
based solution can be found in the following paragraph.

The heading information (yaw angle, ψE) from the quaternion N
B qk is converted to a quaternion

representing only the yaw rotation (N
B qψ,E) by deriving it from the corresponding Euler angle

representation [23]. A unit quaternion representing heading information (N
B qψ) is expressed as a

rotation ψ around the z-axis

q =
(

cos(ψ/2) 0 0 sin(ψ/2))T
)

,
N
B qψ = q

‖q‖ .
(15)

We can express the heading quaternion N
B qψ,E without trigonometric functions by substituting

the corresponding Euler angle Equation (10) with (15) and normalize it, resulting in

q =
(
((qk,1

2 + qk,2
2 − qk,3

2 − qk,4
2)) 0 0 (2 · (qk,2 · qk,3 + qk,1 · qk,4))

)T
,

N
B qψ = q

‖q‖ .
(16)

To get the half rotation angle from Equation (10) we add a unit quaternion and normalize the result

q =N
B qψ +

(
1 0 0 0

)T
,

N
B qψ,E = q

‖q‖ .
(17)

Likewise, to the Euler angle solution the zero rotation update trigger samples the current output
quaternion N

B qψ,E from the last output quaternion N
B qk of the GDA filter stage and holds it while it is

activated. If the trigger signal is deactivated, the fusion process updates the heading quaternion N
B qψ,E

with every new output quaternion N
B qk.

We calculate a quaternion (N
B qφ,θ,k) representing the iterative updated roll (φk) and pitch (θk)

angles based on the current quaternion N
B qk. This is achieved by removing the yaw component of the

current quaternion N
B qk through conjugate quaternion multiplication. We calculate a yaw quaternion

N
B qψ,k based on the Equation (16) and apply the conjugate to the current quaternion N

B qk

N
B qφ,θ,k =

N
B q̇ψ,k •N

B qk, (18)

where • indicates quaternion multiplication and q̇ represents the conjugate quaternion to q.
The final quaternion N

B qE,k can be computed by combining the heading quaternion N
B qψ,E and the

iterative updated quaternion representing only roll and pitch N
B qφ,θ,k through quaternion multiplication,

N
B qE,k =

N
B qψ,E •N

B qφ,θ,k. (19)
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The quaternion N
B qE,k now represents a complete orientation expressed as quaternion and

combines heading information from the sample and hold mechanism with current updates regarding
roll and pitch information from the filter’s output quaternion. This solution does not suffer from
gimbal lock and can be used as the input quaternion to Equation (13). Both methods, Euler angle
conversion or the complete quaternion based heading calculation, are valid and can be chosen based
on the desired application and design of experiment.

4. Interface Setup

We use a custom designed MARG-sensor board running the GDA based sensor data fusion on
an Espressif 32 bit dual-core microcontroller unit (MCU). The sensor board features a low power
9-axis ICM 20948 InvenSense MARG-sensor, see Figure 4. The MCU is running the FreeRTOS realtime
operating system on both cores at 1 kHz scheduler tick rate [24]. The standalone implementation is
designed to simultaneous calculate orientation data from two copies of the data fusion process at
250 Hz, while their only difference is the active eye tracking trigger update. The two data fusion filters
run in real time on the MCU and publish the two sets of fused orientation data and the calibrated
9-axis sensor data are at 100 Hz via micro-USB over UART. The sensor is attached via a custom casing
to a low cost monocular eye tracker from Pupil Labs [19]. The tracker frame is secured via an eyewear
strap on the users head. The eye tracker features 120 Hz frame rate of the eye tracking process at a
resolution of 400 × 400 pixels. It is connected to a host computer running the Pupil Labs open source
capture tool to acquire and preprocess the data as well as taking care of online fixation detection.
The data are accessible in real-time through ZeroMQ. Two custom c++ ROS (Robot Operating System)
nodes handle the synchronization and inter device communication. Synchronization between the
MARG and eye tracking data is achieved through comparison of their corresponding timestamp
upon arriving at the host system with a maximum lag of 3 ms between the timestamps. While
fixation is true, the trigger signal is broadcasted to the MARG-sensor system indicating zero rotation.
Furthermore, the trigger starts the gyroscope raw data capture process on the host computer. When
the visual fixation is released the trigger is set to false which stops the gyroscope capture process as
well as the zero orientation update cycle. The median gyroscope noise for stationary motion phases
is sent to the MARG-sensor, when sufficient amount of data has been captured. To reduce latency
impact on the orientation calculation, a movement threshold based on this median gyroscope noise is
implemented on the MARG-sensor to ensure that the trigger will be set to false without latency drops
or desynchronization.

(a) (b)
Figure 4. Proposed head interface and custom designed MARG-sensor board. The head interface (a)
consists of a pupil core headset, a passive IR-marker tree that is in line to the custom MARG-sensor
board (b) which is attached to the eye tracker frame.
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5. Experimental Setup

The accuracy of the proposed interface is benchmarked against a Qualisys motion capture system
(Qualisys Miqus Camera M3, Qualisys AB, Kvarnbergsgatan 2, Göteborg, Sweden). The interface
is worn by a user alongside a leightweight medium density fiberboard based rigid body passive
IR-marker tree connected to the MARG-sensor casing, see Figure 4. The capture process of the Qualisys
motion capture system broadcasts data at 120 Hz over a real-time client, allowing for timestamp based
synchronization via the before mentioned ROS-nodes.The threshold Δθ is chosen based on the 3σ

standard deviation of the north direction vector under static conditions for a short period of time
(10 s). The first calculated north direction vector of this series is the initial vector. This initial vector is
used to calculate the standard deviation of this series of deviation angles ε based on Equation (14).
For the ICM20948 on the custom sensor board the threshold Δθ results in 3◦. After a warm up phase,
the magnetometer data is turned off to simulate a magnetically disturbed environment and examine
the eye tracking supported zero orientation change trigger update mechanism as a proof of concept.
The proof of concept of the proposed orientation estimation update mechanism can be provided either
by using real magnetometer data or by turning off the magnetometer data measurement completely.
A difference is not evident. This is due to the switching from north heading vector to IMU heading
vector when a magnetic disturbance is present. In such a case magnetometer data is not used in the
orientation estimation algorithm and is therefore not dependent on real magnetometer data input.
Thus, we simulate disturbance by switching magnetometer data off to investigate the performance of
the proposed data fusion during periods of non usable magnetometer input. To compare rotations,
the coordinate system of the Qualisys data is transformed into the body coordinate frame of the
MARG-sensor by calculating an alignment matrix from six stationary positions through least square
method described in Reference [25]. The user is instructed to freely move his head and eyes with some
static or no-rotation phases spanning between 2–5 s in duration. The total duration for one trial was
limited to 15 min. A total of six trials was gathered for one individual user as a proof of concept for the
proposed method. Visual fixation detection parameters were chosen based on experimental pretests
that minimize latency drops when changing from stationary to dynamic head motion and were set to
the following: thd = 0.21◦, and tht = 220 ms.

Two pretests were conducted to demonstrate the interchangeability of the north direction vector
substitute calculations described in Section 3.2 and the filter’s capability to detect interference based
on the deviation angle ε. The three axis magnetometer was calibrated based on the process described
in Reference [26]. The MARG-sensor is rotated arbitrarily in all dimensions. The tri-axis magnetometer
data is sampled during this period. After recording the magnetometer data is calibrated through least
square fitting of the ellipsoid data into a unit sphere and scaled to the surrounding field strength
afterwards. During a 10 min warm up phase, the filter uses magnetometer data to converge towards
the direction of magnetic north and gravity respectively. To demonstrate the interchangibility of
the vectors we switch off the filter to use the IMU heading vector instead of the magnetometer
based north direction vector and move the sensor arbitrarily for a short period of time (50 s). Both
vector measurements are recorded throughout the trial. The second pretest covers the validation of
magnetic interference detection and the switching from north to IMU heading vector. The sensor is
set up according to the previous mentioned calibration and warm up routines. We record two sets of
orientation: (a) The proposed filter with magnetic interference detection and switching and (b) the
same filter without the switching mechanism. After 44 s an iron bar is brought close to the sensor
(15 cm) to introduce magnetic interference.

6. Results and Discussion

In this work it is proposed to support MARG-sensor based heading estimates by zero rotation
updates measured and indicated by visual fixation detection. An interchangeable north direction
vector substitute is used for a gradient descent based orientation estimation. Section 6.1 gives an
overview of the pretest to show the interchangeability of the heading vector substitutes calculation
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described in Section 3.2 whereas Section 6.2 the filters capability to detect magnetic disturbance and
switch towards IMU heading vector. Section 6.3 presents the experimental results from the full fusion
approach using visual fixations for zero rotation update.

6.1. Interchangeable North Direction Vector Substitutes

Figure 5 depicts normalized individual x-, y- and z-axis results for north direction vector N�Nm

from calibrated magnetometer data through Equations (7)–(9) and the IMU heading vector N�NIMU
based on the process given by Equations (10)–(13). Both vectors show similar results during the
whole trial with maximum deviations of ±0.1 normalized units. The north direction vector from
magnetometer data has a larger spread of measurement values compared to the IMU heading vector.
This originates from the different noise characteristics and computations of the vector components.
The north direction vector is directly calculated from raw accelerometer and magnetometer data and
will directly reflect raw sensor noise, whereas the IMU heading vector is based on smoothed quaternion
fusion from gyroscope and accelerometer readings from the GDA filter. The noise spreading level,
however, does stay at a reasonable level during the trial. This pretest shows the interchangeability of
the different north direction vector substitutes which guarantees a continuous quaternion solution and
convergence of the filter.

(a)

(b)

(c)
Figure 5. Comparison between (a) magnetometer based normalized x-axis north direction vector and
normalized x-axis IMU heading vector, (b) magnetometer based normalized y-axis north direction
vector and normalized y-axis IMU heading vector and (c) magnetometer based normalized z-axis north
direction vector and normalized z-axis IMU heading vector.
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The IMU heading vector will drift apart from the north direction vector with respect to time.
This is due to uncorrected gyroscope biasresulting in drift in the heading estimate of the quaternion
used for determining the IMU heading vector. For short periods of time and under the same initial
conditions however both vectors are almost identical. The length of the time period in which both
vectors are mostly identical depends on the individual noise characteristics of the used gyroscope
and computational errors from the discrete implementation. High grade navigation gyroscopes will
experience less drift compared to consumer based gyroscopes used in this work. The maximum time
before gyroscope errors accumulate more than 1◦ drift in the heading estimate is 50 s for the custom
MARG-sensor board used in this work.

6.2. Magnetic Disturbance Detection

Figure 6 depicts yaw angle results as well as the corresponding yaw angle errors for the magnetic
disturbance detection and switching from north direction to IMU heading vector based on Equation (14).
The Figure 6a presents three different yaw angle estimations over time: ground truth yaw data
(Qualisys, yellow), yaw estimations from the proposed filter with deviation detection and heading
vector substitutes (ME, blue) as well as yaw estimations of a version of the filter without heading
vector switching (MO, orange). The figure also presents values for the magnetic deviation angle ε

(black) over time. Figure 6b presents the corresponding yaw angle errors referenced to the ground
truth yaw data. Magnetic disturbance is introduced for a short period of time starting at 44 s and
ending at 66 s by bringing an iron bar close to the sensor (15 cm).

(a)

(b)
Figure 6. Influence of magnetic disturbance on yaw angle estimation: (a) yaw angle comparisons
between ground truth (Qualisys, yellow), the proposed filter with magnetic disturbance detection
and heading vector substitute switching (ME, blue), a filter version without heading vector switching
(MO, orange) as well as the magnetic deviation angle ε (black). (b) depicts the corresponding heading
error referenced to the Qualisys system. Magnetic interference is introduced for a short period of
time (43 s to 66 s) by bringing and iron bar close to the MARG-sensor. The proposed filter detects the
interference and switches towards IMU heading vector usage resulting in less error.
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The proposed filter (ME) detects the disturbance when it is introduced because the deviation
angle ε exceeds the threshold Δθ, see Figure 6a. The filter switches towards IMU heading vector
substitute and is not affected by the disturbance, resulting in a maximum error of 2◦ during this phase.
In contrast, the filter without switching mechanism experiences large yaw angle erros and results
in up to 17◦ total error (see Figure 6b). This pretest demonstrates the filters capability of magnetic
disturbance detection based on the deviation angle calculation between north direction and IMU
heading vector. After the filter detects a disturbance it uses the IMU heading vector for orientation
estimation. In this mode the filter furthermore enables visual zero rotation updates mechanism to
reduce heading error accumulation over time.

6.3. MARG-Sensor Data Fusion Approach Using Visual Fixations

Figure 7 shows typical data for yaw angle measurements from a 30 s sequence of one 900 s trial.
The yaw angles are presented in degrees over time in seconds. The figure depicts yaw angle estimation
data from the ground truth motion capture system (Qualisys system, yellow), the proposed (ME, blue)
and standard version (MO, orange) of the data fusion process. The visual fixation trigger state St is
presented in purple. During visual fixation phases (St, purple) the proposed eye tracking supported
version ME does drift less compared to the standard implementation MO. In dynamic motion phases
both filter versions do accumulate the same amount of drift.

Figure 7. Typical yaw angle measurements for a motion sequence from the Qualisys system (yellow),
the proposed (ME, blue) and standard version (MO, orange) of the data fusion. During stationary
motion, the trigger signal St (purple) is set to high and indicates zero orientation change.

The performance of the proposed approach for the heading estimation is presented as total Euler
angle error (degrees see Figure 8) as well as mean error reduction rate (eψ, unitless see Table 1). The total
Euler angle errors are calculated as the difference between the ground truth of absolute orientation
from the Qualisys system and the orientation estimation of the proposed (ME) and standard version
(MO) of the data fusion process (see Figure 7). The dashed black line indicates the reference for zero
heading error. Figure 8 presents two sets of Euler angle errors in degrees over time for the complete
900 s duration of two different trials. At the start of the trial the eye tracking supported version of the
filter (ME, blue) as well as the standard GDA filter (MO, orange) perform identical. During dynamic
phases both filters accumulate the same amount of error due to uncorrected gyroscope bias. However,
when stationary phases are indicated and the trigger signal St is enabled, the eye tracker supported
GDA filter version accumulates less gyroscope drift in contrast to the standard implementation, see
Figure 8. This effect covers the entire duration of the trials. The orientation estimation errors rise
significantly over time for both solution. The GDA based approach with eye tracking based zero
orientation change update results in nearly 50% less absolute orientation, see Figure 8.
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The mean error reduction rate eψ and its standard deviation is calculated based on the absolute
error quotient between the proposed (ME) and standard version (MO) of the fusion process at 900 s.
Table 1 presents total Euler angle errors from six different trials for the proposed (ME) and standard
version (MO) of the fusion after 900 s and the calculated error reduction rate. On average, the eye
tracking supported GDA filter approach accumulates near 50% less orientation error (0.46 ± 0.07)
compared to the GDA filter without eye tracking data support, see Table 1.

(a)

(b)
Figure 8. Typical results for absolute heading error referenced to the Qualisys system from the GDA
based approach with (ME, blue) and without eye tracking (MO, orange) support for two different trials.
The eye tracking supported filter results in (a) a total of 18.84◦ error whereas the standard version
results in 32.76◦ and (b) in a total of 8.82◦ error for the eye tracking supported version whereas the
standard version results in 22.55◦.

Table 1. Absolute error values and error reduction rate (eψ) for the GDA based data fusion with (ME)
and without eye tracking (MO) support after 900 s.

ME [◦] MO [◦] eψ = 1 − ME
MO

1. −18.84 −32.76 0.42
2. −8.82 −22.55 0.59
3. −13.89 −23.17 0.40
4. −11.33 −19.09 0.40
5. −12.63 −26.06 0.51
6. −7.16 −13.52 0.45

average 0.46 ± 0.07

71



Sensors 2020, 20, 2759

7. Conclusions

Utilizing eye tracking data to support sensor data fusion of MARG-sensor shows improvements
of the heading accuracy in magnetically disturbed environments or for IMU sensors that do not feature
a heading reference in the order of 50%. Because of the physiological coupling between eye and
head rotations, eye tracking can deliver an indicator signal for near zero head orientation change.
Furthermore, this trigger signal allows for individual and adaptive noise parameterization through
gyroscope capturing and could be used in the context of adaptive noise estimation with respect to
head motion while a sufficient amount of data is captured. The proposed method can be used with any
mobile eye tracking devices that either feature a build-in IMU or MARG-sensor or are expanded by a
custom or third-party sensor. The presented approach does not need a world camera and is therefore
mostly independent of surrounding environmental lightning conditions. In addition, the proposed
use of interchangeable north direction vector substitutes enables switching between full MARG and
IMU-mode, without the need for an additional set of equations in a given filter. This guarantees a
continuous quaternion computation and convergence of the filter.

Limitations

The magnitude of error compensation does scale with respect to total fixation duration and
amount of stationary motion phases. However, the solution does not reduce the effect during dynamic
motion phases, since it does not directly estimate and correct the dc-bias term of the raw gyroscope
signal. This is due to various other noise effects that are present in the raw gyroscope signal. Main
noise terms among other that influence the in-run dc-bias estimation are ac-noise, oscillating head
motion, output rate limitations and possible desynchronization between timestamps of both systems.

When estimating in-run dc-bias the presence of these noise terms can lead to a wrong estimation.
Since the dc-bias is subtracted from the raw gyroscope signal at every time step, it effects the complete
measurement from that point forward and might result in a worse heading estimate. However, if a
sufficient amount of sensor data has been gathered, a low-pass filtered dc-bias estimation might be
used to reduce the drift at a smaller scale since the data are only captured during near stationary
motion phases and therefore restrain heavy amplitude changes.

The proposed solution can be affected by very slow motion acceleration triggering the visual
fixation detection plugin and falsely labeling a static phases. This effect however only appears if the
resulting angular rate of the head motion is smaller than the angular rate constraint derived from the
dispersion and time threshold of the fixation detection plugin and stays below the median angular
rate threshold that is sampled throughout the trial. In this work the angular rate constraint from the
fixation detection plugin that might lead to a wrong classification during fixation and simulatanious
head motion is 0.95 ◦

s for a 220 ms measurement window. This angular rate results in the maximum
dispersion of 0.21◦. This would result in a fixation detection which would in turn trigger the zero
rotation update mechanism for one cycle. After this the dispersion threshold is exceeded, setting the
trigger to false which in turn resets the online fixation detection sliding window.

8. Future Work

Future research will focus on adaptive gyroscope noise parameter estimation based on the
proposed visual fixation trigger for head motion detection. The gyroscope noise parameter estimation
can be used to reduce the heading errors even further and without the visual fixation trigger being
active. While a sufficient amount of samples is gathered during visual fixations an adapted noise
parameter can be estimated and used to identify no motion phases just as the visual fixation trigger.
A second instance of the filter running in parallel could be used to compute orientation that includes
the estimated gyroscope noise and compare it to the first instance of the filter in real-time. Based on
the deviation between both solutions, the estimated bias could be used or discarded from that point
on which in turn will lead to improved heading accuracy. Advanced parameter specification of the
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proposed fusion method will be explored by a broader set of experiments, including experiments in
real use cases, multiple age varying paticipants as well as the influence of gyroscope noise parameter
estimation on the proposed method.

Author Contributions: Conceptualization, L.W.; methodology, L.W.; software, L.W.; validation, L.W., and M.G.;
formal analysis, L.W..; investigation, L.W. and M.G.; resources, M.G.; data curation, L.W.; writing–original draft
preparation, L.W..; writing–review and editing, L.W. and M.G.; visualization, L.W.; supervision, M.G.; project
administration, M.G.; funding acquisition, M.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the Federal Ministry of Education and Research of Germany grant number
13FH011IX6. We acknowledge support by the Open Access Publication Fund of the Westfälische Hochschule,
University of Applied Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MARG MagneticAngularate Gravity sensor
IMU Inertial Measurement Unit
GDA Gradient Descent Algorithm
MEMS Micro-Electro-Mechanical Systems
API Application Programming Interface
NED North East Down
MCU Microcontroller Unit
dc-bias direct current bias

References

1. Rudigkeit, N.; Gebhard, M. AMiCUS—A Head Motion-Based Interface for Control of an Assistive Robot.
Sensors 2019, 19, 2836. [CrossRef] [PubMed]

2. Jackowski, A.; Gebhard, M.; Thietje, R. Head Motion and Head Gesture-Based Robot Control: A Usability
Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 161–170. [CrossRef] [PubMed]

3. Alsharif, S.; Kuzmicheva, O.; Gräser, A. Gaze Gesture-Based Human Robot Interface. Technische
Unterstützungssysteme, die die Menschen Wirklich Wollen 2016, 12, 339.

4. Wendel, J. Integrierte Navigationssysteme: Sensordatenfusion, GPS und Inertiale Navigation; Walter de Gruyter:
Berlin, Germany, 2011.

5. Shiau, J.K.; Huang, C.X.; Chang, M.Y. Noise characteristics of MEMS gyro’s null drift and temperature
compensation. J. Appl. Sci. Eng. 2012, 15, 239–246.

6. Valenti, R.G.; Dryanovski, I.; Xiao, J. A linear Kalman filter for MARG orientation estimation using the
algebraic quaternion algorithm. IEEE Trans. Instrum. Meas. 2016, 65, 467–481. [CrossRef]

7. Gebre-Egziabher, D.; Elkaim, G.; Powell, J.D.; Parkinson, B. A non-linear, two-step estimation algorithm for
calibrating solid-state strapdown magnetometers. In Proceedings of the 8th St. Petersburg International
Conference on Integrated Navigation Systems (IEEE/AIAA), St. Petersburg, Russia, 28–30 May 2001.

8. Wöhle, L.; Gebhard, M. A robust quaternion based Kalman filter using a gradient descent algorithm for
orientation measurement. In Proceedings of the 2018 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [CrossRef]

9. Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and
magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [CrossRef] [PubMed]

10. Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature
Inertial Sensors; Technical Report; Xsens Motion Technologies BV: Enschede, The Netherlands, 8 April 2009;
pp. 1–9.

11. Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a
gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics
(ICORR), Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

73



Sensors 2020, 20, 2759

12. Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Effect of local magnetic field disturbances on
inertial measurement units accuracy. Appl. Ergon. 2017, 63, 123–132. [CrossRef] [PubMed]

13. Wu, Z.; Sun, Z.; Zhang, W.; Chen, Q. Attitude and gyro bias estimation by the rotation of an inertial
measurement unit. Meas. Sci. Technol. 2015, 26, 125102. [CrossRef]

14. Wu, Y.; Zou, D.; Liu, P.; Yu, W. Dynamic Magnetometer Calibration and Alignment to Inertial Sensors by
Kalman Filtering. IEEE Trans. Control Syst. Technol. 2018, 26, 716–723. [CrossRef]

15. Aqel, M.O.; Marhaban, M.H.; Saripan, M.I.; Ismail, N.B. Review of visual odometry: Types, approaches,
challenges, and applications. SpringerPlus 2016, 5, 1897. [CrossRef] [PubMed]

16. Valenti, R.; Sebe, N.; Gevers, T. What are you looking at? Int. J. Comput. Vis. 2012, 98, 324–334. [CrossRef]
17. Kassner, M.; Patera, W.; Bulling, A. Pupil: An Open Source Platform for Pervasive Eye Tracking and

Mobile Gaze-based Interaction. In Adjunct Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing; ACM: New York, NY, USA, 2014; pp. 1151–1160.

18. Wöhle, L.; Miller, S.; Gerken, J.; Gebhard, M. A Robust Interface for Head Motion based Control of a
Robot Arm using MARG and Visual Sensors. In Proceedings of the 2018 IEEE International Symposium
on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [CrossRef]

19. Pupil Labs GmbH. Pupil Core. Open Source Eye Tracking Platform Home Page. Available online:
https://pupil-labs.com/products/core/ (accessed on 12 April 2020).

20. Larsson, L.; Schwaller, A.; Holmqvist, K.; Nyström, M.; Stridh, M. Compensation of head movements in
mobile eye-tracking data using an inertial measurement unit. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, New York, NY, USA,
13–17 September 2014; pp. 1161–1167. [CrossRef]

21. Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings
of the 2000 Symposium on Eye Tracking Research & Applications, Palm Beach Gardens, FL, USA,
6–8 November 2000; pp. 71–78. [CrossRef]

22. Duchowski, A.T.; Jörg, S. Eye animation. In Handbook of Human Motion; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 1–19.

23. Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35.
24. Real Time Engineers Ltd. FreeRTOS. Real-Time Operating System for Microcontrollers. Available online:

https://www.freertos.org/Documentation/RTOS_book.html (accessed on 12 April 2020).
25. STMicroelectronics. Parameters and Calibration of a Low-g 3-Axis Accelerometer, Application Note 4508.

Available online: https://www.st.com/resource/en/application$_$note/dm00119044-parameters-and-
calibration-of-a-lowg-3axis-accelerometer-stmicroelectronics.pdf (accessed on 12 April 2020).

26. Gebre-Egziabher, D.; Elkaim, G.H.; David Powell, J.; Parkinson, B.W. Calibration of strapdown
magnetometers in magnetic field domain. J. Aerosp. Eng. 2006, 19, 87–102. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

74



sensors

Article

The Validity and Reliability of the Microsoft Kinect
for Measuring Trunk Compensation during Reaching

Matthew H. Foreman *,† and Jack R. Engsberg

Program in Occupational Therapy, Washington University in St. Louis, 4444 Forest Park Ave.,
St. Louis, MO 63108, USA; engsbergj@wusm.wustl.edu
* Correspondence: mforeman@methodist.edu; Tel.: +1-(910)-482-5426
† Current address: Doctor of Occupational Therapy Program, Methodist University, Fayetteville, NC 28311, USA.

Received: 12 November 2020; Accepted: 4 December 2020; Published: 10 December 2020

Abstract: Compensatory movements at the trunk are commonly utilized during reaching by persons
with motor impairments due to neurological injury such as stroke. Recent low-cost motion sensors
may be able to measure trunk compensation, but their validity and reliability for this application are
unknown. The purpose of this study was to compare the first (K1) and second (K2) generations of the
Microsoft Kinect to a video motion capture system (VMC) for measuring trunk compensation during
reaching. Healthy participants (n = 5) performed reaching movements designed to simulate trunk
compensation in three different directions and on two different days while being measured by all three
sensors simultaneously. Kinematic variables related to reaching range of motion (ROM), planar reach
distance, trunk flexion and lateral flexion, shoulder flexion and lateral flexion, and elbow flexion were
calculated. Validity and reliability were analyzed using repeated-measures ANOVA, paired t-tests,
Pearson’s correlations, and Bland-Altman limits of agreement. Results show that the K2 was closer in
magnitude to the VMC, more valid, and more reliable for measuring trunk flexion and lateral flexion
during extended reaches than the K1. Both sensors were highly valid and reliable for reaching ROM,
planar reach distance, and elbow flexion for all conditions. Results for shoulder flexion and abduction
were mixed. The K2 was more valid and reliable for measuring trunk compensation during reaching
and therefore might be prioritized for future development applications. Future analyses should
include a more heterogeneous clinical population such as persons with chronic hemiparetic stroke.

Keywords: trunk; upper extremity; compensation; reaching; Kinect; video motion capture;
validity; reliability

1. Introduction

Upper extremity (UE) motor impairments are highly prevalent in many clinical populations such
as stroke [1]. Impaired UE movement is frequently accompanied by compensatory strategies that help
a person adapt to limitations in motor function but may impact recovery and cause negative effects if
used long term [2–4]. There are numerous well-researched, standardized assessments that measure UE
abilities according to factors such as speed, strength, range of motion (ROM), and movement quality,
but few that directly measure the amount of compensation utilized during task performance [5–7].
Without objective measurement and subsequent intervention, continued compensatory movements
can reduce the amount of task-driven neuroplastic change achieved following neurologic injury
and ultimately contribute to maladaptive plasticity, learned disuse or non-use, and chronic pain or
injury [2–4]. Objective assessment of targeted and compensatory UE movements often relies on video
motion capture cameras (VMC) or electromagnetic sensors that, while extremely accurate, are typically
expensive and not feasible for application in a clinical setting. Because the amount of motor recovery
achieved, and inversely the amount of compensation used, is highly predictive of participation and
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quality of life in persons living with long-term UE impairments, a clinically feasible, affordable, accurate,
and objective measure of movement compensation may be an important innovation in rehabilitation
science [8].

The Microsoft Kinect (Microsoft Corp., Redmond, WA, USA) is a low-cost, off-the-shelf motion
sensor originally designed for video games that can be adapted for quantitative assessment of UE
clinical movements [9–12]. The measurement abilities of the first-generation Kinect (K1) have been
established for UE movements, spatiotemporal gait variables, standing balance, postural control,
and even static foot posture [9,10,13–15]. The abilities of the second-generation Kinect (K2) are not as
robustly established, but have been investigated for some UE, gait, and postural movements [11,16,17].
A recent study within our laboratory found both sensors to be valid relative to the gold standard
of a VMC system when measuring reaching (forward and side) and angular shoulder movements
(frontal, transverse, sagittal) [12]. Both sensors have also been frequently used within our laboratory
for virtual reality (VR)-based motor rehabilitation aimed at improving UE motor abilities of persons
with various impairments [18–21]. The Kinect sensors have some advantages over widely used optical
and inertial sensor systems, namely significantly lower cost, higher portability, easier deployment in
a lab or clinic, wider accessibility, and marker-less motion tracking with simpler throughput for the
control of video games and VR applications. Conversely, the Kinects typically produce significantly
lower resolution and less reliable data compared to gold-standard motion capture systems such as
VMC and wearable inertial sensors [9–11,16].

Reaching is one of the most rigorously researched UE movements due to its involvement in many
activities of daily living (ADLs). The kinematics of reaching in populations such as chronic stroke
have been investigated in many different studies that often rely on VMC systems [22,23]. Not only do
persons with stroke reach less accurately, slower, and with less motor control, they also utilize trunk
flexion earlier and to a greater degree compared to the healthy population [22]. While differences in
symmetry and joint coordination exist between healthy and impaired reaching, placing objects beyond
the arm’s length of healthy participants has been found to elicit trunk movement similar to that used
by hemiparetic stroke patients reaching to objects within arm’s length [23]. Few previous studies have
examined the abilities of both generations of the Kinect sensor for measuring trunk compensation
during reaching [24], and only one existing study has compared the measurement abilities of both
sensors to simultaneous video motion capture [12]. The current study aims to go beyond previous
work performed in our laboratory [12] to include a larger sample size of participants and movement
trials with a focus on trunk kinematics during reaches that require trunk compensation. The purpose
of this investigation was to establish the validity and reliability of two versions of the Microsoft Kinect
for measuring UE and trunk kinematics during different reaching conditions.

2. Materials and Methods

2.1. Participants

A convenience sample of five healthy participants (3 women and 2 men, mean age 24.8 years)
were recruited to participate in this study. A small sample size was considered due to the large sample
of reaches (240 repetitions) performed by each participant and the overall focus of this study being
the comparison of repeatable reaching motions across sensors and testing days. All participants
gave informed written consent and the study protocol was approved by the university’s Institutional
Review Board.

2.2. Hardware

Both the K1 and K2 combine standard red-green-blue (RGB) video and an infrared (IR)
depth sensor with advanced pattern recognition algorithms to provide full-body, three-dimensional
(3D) skeletal motion capture without the use of wearable trackers. Both sensors provide data at
approximately 30 frames per second (fps), but the K2 generally boasts improved hardware compared
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to the K1 (Table A1) [25]. For example, the K2 collects high definition RGB images (1920 × 1080 pixels)
while the K1 collects standard definition RGB (640 × 480 pixels) that fails to compete with most modern
webcams [25]. The RGB and IR cameras in the K2 also have wider fields of view and, when combined
with updated tracking algorithms, can track greater numbers of skeletal landmarks and overall
users [25]. Most importantly, the K2 utilizes a time-of-flight algorithm for motion tracking that is
more robust, less noisy, and more reliable than the structured light algorithm used by the K1 [25].
The VMC system was considered the gold standard for comparison in this case and consisted of eight
IR motion capture cameras (MAC Eagle Digital Cameras, Motion Analysis Corp., Santa Rosa, CA,
USA) measuring at 60 fps with a 3D resolution accurate to within one millimeter.

2.3. Experimental Procedure

Participants performed a set of targeted reaching movements similar to a previously developed
reaching performance task [12,26] while simultaneously being measured by the K1, the K2, and an
8-camera VMC system. Each participant was seated on a stool in the center of the VMC capture volume
with the K1 and K2 positioned at a midline distance of approximately 2.0 m and a height of 1.2 m [12].
Each movement set involved reaching towards a target in the sagittal (forward), scaption (45 degree
angle), or frontal (lateral) planes at either a non-extended or extended distance. The non-extended
distance was defined relative to each participant’s anthropometrics as shoulder height and arm’s
length, while the extended distance was moved 20 cm beyond arm’s length (Figure 1). This extended
reach required a healthy participant to flex the trunk and displace the shoulder to meet the target,
similar to compensatory movements employed for reaching by persons with hemiparetic stroke [23].
Participants were provided verbal instruction but, given that they were healthy participants performing
a relatively simple targeted reaching movement, no formal training was provided. On two different
testing days, five repetitions were performed within each of four sets for the three directions and two
conditions, resulting in a total of 240 repetitions for each of five participants. Given the large number
of movements, participants were consistently asked for signs of fatigue and pain. None of the healthy
participants reported any pain or fatigue in the UE. Participants were also given short breaks between
movement sets (approx. 3–5 min) to mitigate fatigue. These breaks allowed researchers to code and
save data files, check for data errors, and double check or adjust experimental setup and procedures.

Figure 1. An example of a participant reaching towards the target (T) during an extended scaption
reach while wearing retroreflective markers.
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2.4. Data Collection

Kinematic data were collected for the K1 and K2 using the Microsoft Kinect for Windows Software
Development Kit (SDK v1.8 and v2.0) [27], a virtual reality peripheral network (VRPN) server [28],
and custom software designed in MATLAB (r2012a, Mathworks Inc., Natick, MA, USA). The 3D
positions of 11 upper body landmarks for the K1 and K2 were measured relative to each sensor’s origin
(Figure 2). Common landmarks were head, neck, shoulders, elbows, wrists, and hands. The K1 defined
torso as the body centroid, while the K2 defined the torso as a mid-spine landmark. Similar data were
simultaneously collected for the VMC system using Motion Analysis software (Cortex, Motion Analysis
Corp., Santa Rosa, CA, USA) to measure the positions of 25 retroreflective markers placed on bony
landmarks on the participant’s upper body. Markers were placed on the top of the head (vertex);
C7, T10, L5, and S4 vertebrae; sternal notch; xiphoid process; acromion processes; medial and lateral
epicondyles; ulnar and radial styloids; anterior superior iliac spines; dorsal hands; and index fingers.
Two redundant markers were placed on the humerus and forearm.

Figure 2. Examples of the kinematic body landmarks measured by the K1 (A), K2 (B), and VMC (C).
The K1 and K2 measured 11 body landmarks. The VMC measured the position of 25 body landmarks.

2.5. Analysis Procedure

Once collected, Kinect data were filtered (6th order, 6 Hz Butterworth) and used to create
body segment vectors including spine (torso-neck), humerus (shoulder-elbow), and forearm
(elbow-wrist/hand). VMC data were similarly filtered (6th order, 6 Hz Butterworth), imported into
MATLAB, and used to create analogous body segments using marker midpoints and biomechanical
conventions [29]. Clinically relevant variables were calculated including reaching ROM, planar reaching
distance (sagittal and frontal), shoulder flexion and abduction, trunk flexion and lateral flexion,
and elbow flexion. Reaching ROM was defined as the Euclidean distance between the shoulder and the
hand, while planar reaching distance was defined as the distance traveled by the hand in the sagittal or
frontal plane. Shoulder flexion and abduction were defined as the angle between the humerus and
spine in the sagittal and frontal planes, respectively. Trunk flexion and lateral flexion were similarly
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defined as the angle between the spine and the vertical coordinate axis in the sagittal and frontal planes,
respectively. Finally, elbow flexion was defined as the angle between the forearm and the humerus.

2.6. Statistical Approach

A peak detection algorithm was used to determine the start and stop of each reach in terms of the
maximum and minimum distance of the hand from the target. The target’s position was not inherently
available from the Kinect data, therefore an estimation was calculated as the average hand position
at its maximum Euclidean distance from neutral. The first repetition of each trial was disregarded
due to variable starting positions of the arm and hand. A three standard deviation algorithm was
used to identify and remove outliers due to motion tracking errors. Validity was investigated using
data from the first testing day (D1) to calculate magnitude differences, Pearson’s correlations (r),
Bland-Altman 95% limits of agreement (LOA), and a repeated measures analysis of variance (ANOVA)
with Bonferroni corrections across sensors. Reliability was investigated using averages within each
testing day to calculate magnitude differences, intra-class correlations (ICC), Pearson’s correlations (r),
Bland-Altman 95% LOA, and paired t-tests between days [30,31]. Estimates of correlations in terms of
r and ICC were evaluated as excellent (0.75–1), modest (0.4–0.74), or poor (0–0.39) [31]. Bland-Altman
analyses for validity (Table A2) and reliability (Table A4) as well as Pearson’s correlations for reliability
(Table A3) are presented in the Appendix A.

3. Results

3.1. Trunk Compensation

For trunk flexion and trunk lateral flexion, the K2 was closer in magnitude to the VMC than
the K1 in all directions and for both non-extended and extended reaches (Table 1). For trunk flexion,
when considering Bland-Altman LOA for all movements, the K2 was within −3.5◦–6.6◦ and the K1
was within −2.7◦–14.2◦ of the VMC (Table A2). Similarly for trunk lateral flexion, the K2 was within
−5.9–7.9◦ and the K1 was within −9.0–13.4◦ of the VMC. Significant differences were found between
K2 and VMC for trunk flexion during extended forward reaching and lateral flexion during extended
scaption reaching (Table 1). Significant differences were found between K1 and VMC for trunk flexion
during all extended reaches and lateral flexion in all conditions but extended lateral reaching.

The K2 was more valid than the K1 for measuring trunk movements during extended reaches
(Table 2). The K2 showed excellent agreement with the VMC for measuring trunk flexion (r = 0.77–0.88)
and lateral flexion (r = 0.77–0.89) during extended reaches. The K1 showed moderate–excellent agreement
with the VMC for trunk flexion (r = 0.52–0.78) and moderate agreement for lateral flexion (r = 0.50–0.60)
during extended reaches. For non-extended reaches, the K2 showed only moderate agreement (r = 0.43)
for measuring trunk flexion during lateral reaching. All other correlations were poor for both the K1 and
K2. Bland-Altman analyses show that mean biases for trunk flexion and lateral flexion were smaller and
with narrower LOA for the K2 than the K1 when compared to VMC (Table A2).

Reliability results were mixed for all three sensors when measuring the trunk (Table 3).
The K2 showed excellent reliability for measuring trunk flexion during lateral reaching (ICC = 0.91),
but poor–modest reliability for trunk flexion in all other reach directions (ICC = −0.53–0.69). The K2
also showed excellent reliability for lateral flexion in the scaption (ICC = 0.75), lateral (ICC = 0.82),
and extended forward (ICC = 0.84) directions, but poor–modest reliability in all other directions
(ICC= 0.12–0.66). The K1 showed modest–excellent reliability (ICC= 0.62–0.88) for trunk measurements
during reaches in all directions except forward (ICC = 0.28–0.34). The VMC showed mixed
results similar to K2, with poor–excellent reliability in the forward direction (ICC = −0.42–0.93),
poor–excellent reliability in the scaption direction (ICC = 0.08–0.89), and modest–excellent reliability in
the lateral direction (ICC = 0.66–0.82) for both trunk flexion and lateral flexion. Pearson’s correlations
between testing days mirror these results (Table A3). Bland-Altman LOA analyses show small
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mean biases for trunk flexion and lateral flexion between testing days for the K1 (bias = −1.4◦–0.8◦),
K2 (bias = −3.2◦–1.4◦), and VMC (bias = −3.0◦–1.8◦) (Table A4).

Table 1. Mean (± SD) magnitudes for the K1, K2, and VMC for all kinematic variables and all
movements on the two different testing days D1 and D2. Each of five participants performed four sets
of five reaches (N = 100) for each direction and condition. This sample was repeated on two separate
testing days (D1 and D2).

D1 D2

K1 K2 VMC K1 K2 VMC

Forward (N = 100)
Reaching ROM (cm) 43.9 ± 11.6 * 49.2 ± 15.7 * 32.7 ± 14.0 36.3 ± 13.2 42.1 ± 19.6 25.4 ± 17.3
Sagittal reach distance (cm) 49.2 ± 4.4 54.0 ± 12.2 42.0 ± 6.1 45.4 ± 6.5 49.5 ± 14.9 41.1 ± 6.6
Shoulder flexion (deg) 77.7 ± 7.5 * 78.0 ± 6.5 * 60.8 ± 6.1 83.0 ± 10.7 74.7 ± 9.0 62.9 ± 5.3
Trunk flexion (deg) −2.2 ± 0.9 −0.4 ± 0.8 0.4 ± 1.3 −2.7 ± 1.2 −0.2 ± 0.5 0.2 ± 1.5
Trunk lateral flexion (deg) 0.6 ± 0.5 * 0.0 ± 0.4 −1.1 ± 0.7 0.6 ± 0.5 −0.1 ± 0.4 −3.1 ± 11.3
Elbow flexion (deg) 110.1 ± 43.6 104.4 ± 38.1 86.9 ± 29.5 87.5 ± 50.9 80.1 ± 48.3 69.0 ± 33.0

Forward Extend (N = 100)
Reaching ROM (cm) 37.4 ± 18.3 52.2 ± 19.4 * 30.3 ± 13.7 34.5 ± 16.5 51.5 ± 16.8 26.7 ± 15.4
Sagittal reach distance (cm) 58.6 ± 12.8 72.7 ± 14.2 62.6 ± 6.8 57.7 ± 12.3 72.2 ± 15.9 61.0 ± 9.4
Shoulder flexion (deg) 88.5 ± 9.5 103.0 ± 8.4 * 81.7 ± 7.2 87.8 ± 15.4 95.6 ± 16.3 78.8 ± 9.0
Trunk flexion (deg) 10.3 ± 2.7 * 15.0 ± 3.5 * 18.7 ± 3.0 11.7 ± 1.6 17.9 ± 2.9 21.7 ± 3.5
Trunk lateral flexion (deg) 0.9 ± 1.8 * −0.9 ± 1.4 −3.7 ± 2.5 1.0 ± 2.1 −0.9 ± 2.3 −4.2 ± 5.7
Elbow flexion (deg) 109.3 ± 44.7 111.3 ± 45.2 87.9 ± 29.3 99.4 ± 42.0 97.2 ± 43.0 73.9 ± 32.1

Scaption (N = 100)
Reaching ROM (cm) 39.1 ± 14.4 37.3 ± 16.7 33.3 ± 15.5 34.5 ± 13.4 30.6 ± 17.8 27.8 ± 17.3
Sagittal reach distance (cm) 25.0 ± 5.9 26.8 ± 11.6 24.0 ± 6.0 25.9 ± 5.1 23.4 ± 11.6 24.0 ± 5.0
Frontal reach distance (cm) 42.9 ± 7.5 * 45.2 ± 10.4 37.8 ± 6.5 37.9 ± 7.5 39.2 ± 10.2 34.3 ± 5.5
Shoulder flexion (deg) 65.9 ± 12.3 * 57.7 ± 9.9 * 41.4 ± 11.6 67.4 ± 7.9 61.1 ± 6.5 46.3 ± 5.4
Shoulder abduction (deg) 52.8 ± 17.2 * 55.2 ± 13.5 * 36.1 ± 11.4 57.7 ± 11.1 60.1 ± 9.9 37.0 ± 6.8
Trunk flexion (deg) −3.4 ± 1.0 * −0.2 ± 0.7 0.0 ± 0.8 −3.7 ± 1.2 −0.2 ± 0.6 0.3 ± 1.1
Trunk lateral flexion (deg) −7.3 ± 1.5 * −0.1 ± 0.5 −0.4 ± 0.8 −6.6 ± 1.8 −0.1 ± 0.5 −0.3 ± 0.9
Elbow flexion (deg) 112.1 ± 44.7 101.1 ± 42.4 88.2 ± 33.3 88.5 ± 51.5 82.9 ± 41.6 74.4 ± 34.0

Scaption Extend (N = 100)
Reaching ROM (cm) 36.6 ± 14.6 40.5 ± 17.8 * 31.8 ± 14.5 28.3 ± 16.8 31.5 ± 19.3 24.7 ± 17.8
Sagittal reach distance (cm) 30.4 ± 6.3 37.3 ± 11.2 37.8 ± 7.3 31.3 ± 6.5 34.3 ± 11.6 38.8 ± 5.3
Frontal reach distance (cm) 47.4 ± 14.2 54.6 ± 14.9 51.2 ± 9.3 42.7 ± 11.0 48.6 ± 13.5 46.1 ± 7.4
Shoulder flexion (deg) 72.0 ± 8.7 88.9 ± 7.6 * 62.1 ± 7.5 72.2 ± 8.1 87.8 ± 5.0 65.1 ± 6.9
Shoulder abduction (deg) 66.7 ± 11.0 * 86.3 ± 8.9 * 58.5 ± 7.3 67.6 ± 8.6 87.6 ± 7.4 57.5 ± 7.2
Trunk flexion (deg) 5.5 ± 1.4 * 12.5 ± 2.5 15.0 ± 2.8 6.4 ± 1.9 13.1 ± 2.5 15.1 ± 4.9
Trunk lateral flexion (deg) 10.2 ± 1.7 * 13.4 ± 2.4 * 16.0 ± 3.5 10.8 ± 3.1 13.3 ± 3.5 15.9 ± 3.9
Elbow flexion (deg) 107.4 ± 44.9 108.8 ± 42.7 88.6 ± 32.6 85.7 ± 48.6 86.4 ± 46.5 72.0 ± 36.6

Lateral (N = 100)
Reaching ROM (cm) 25.6 ± 16.0 27.7 ± 16.8 29.0 ± 16.7 23.3 ± 14.0 22.6 ± 16.5 27.4 ± 17.9
Frontal hand distance (cm) 49.7 ± 10.8 57.8 ± 12.6 51.6 ± 5.4 44.6 ± 10.2 ** 50.9 ± 14.9 ** 47.1 ± 7.5
Shoulder abduction (deg) 51.3 ± 12.2 53.1 ± 10.5 * 42.6 ± 10.3 49.3 ± 12.0 49.5 ± 12.7 39.2 ± 9.6
Trunk flexion (deg) 0.3 ± 0.9 0.2 ± 0.7 −0.2 ± 0.7 0.4 ± 0.9 0.0 ± 0.3 0.1 ± 0.6
Trunk lateral flexion (deg) −7.8 ± 1.3 * −0.6 ± 0.9 0.0 ± 1.4 −7.7 ± 2.5 −0.5 ± 0.6 −0.5 ± 0.9
Elbow flexion (deg) 91.1 ± 48.4 91.6 ± 44.5 79.2 ± 35.9 84.8 ± 48.8 80.2 ± 42.9 72.9 ± 36.6

Lateral Extend (N = 100)
Reaching ROM (cm) 13.1 ± 14.8 * 23.7 ± 16.1 25.3 ± 15.4 13.8 ± 17.3 20.5 ± 18.2 24.5 ± 18.1
Frontal hand distance (cm) 55.7 ± 13.1 * 69.9 ± 14.9 69.4 ± 7.6 52.6 ± 15.2 65.2 ± 19.6 65.5 ± 11.8
Shoulder abduction (deg) 77.4 ± 8.5 88.5 ± 9.2 * 72.9 ± 9.4 72.1 ± 10.3 81.0 ± 11.4 67.4 ± 11.5
Trunk flexion (deg) 0.0 ± 2.2 * 3.8 ± 3.0 3.8 ± 3.1 −0.8 ± 1.3 2.5 ± 2.7 ** 3.0 ± 2.9
Trunk lateral flexion (deg) 18.9 ± 3.9 21.7 ± 3.4 23.9 ± 4.6 18.4 ± 4.9 20.5 ± 3.8 22.1 ± 6.4
Elbow flexion (deg) 87.5 ± 48.4 93.6 ± 42.6 77.3 ± 32.4 81.3 ± 51.6 86.9 ± 46.6 73.2 ± 36.3

* p < 0.05 for Bonferonni-corrected pairwise t-test between Kinect and VMC. ** p < 0.05 for paired t-test between testing
days. K1: KinectV1; K2: KinectV2; VMC: video motion capture; D1: day one of testing; D2: day two of testing.
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Table 2. Validity measured by Pearson’s correlation coefficients (r) between the K1 and VMC and the
K2 and VMC on D1.

Forward Scaption Lateral

K1 K2 K1 K2 K1 K2

Non-Extended
Reaching ROM (cm) 0.93 * 0.95 * 0.94 * 0.94 * 0.94 * 0.94 *
Sagittal reach distance (cm) 0.60 * 0.79 * 0.75 * 0.81 * - -
Frontal reach distance (cm) - - 0.93 * 0.97 * 0.92 * 0.94 *
Shoulder flexion (deg) 0.19 0.24 0.77 * 0.80 * - -
Shoulder abduction (deg) - - 0.97 * 0.97 * 0.88 * 0.96 *
Trunk flexion (deg) −0.19 0.01 −0.44 * 0.22 −0.03 0.17
Trunk lateral flexion (deg) 0.25 * 0.10 −0.36 * 0.20 −0.23 * 0.43 *
Elbow flexion (deg) 0.95 * 0.94 * 0.97 * 0.99 * 0.96 * 0.99 *

Extended
Reaching ROM (cm) 0.95 * 0.91 * 0.90 * 0.98 * 0.90 * 0.95 *
Sagittal reach distance (cm) 0.91 * 0.82 * 0.67 * 0.84 * - -
Frontal reach distance (cm) - - 0.97 * 0.96 * 0.94 * 0.95 *
Shoulder flexion (deg) 0.23 * 0.36 * 0.31 * 0.66 * - -
Shoulder abduction (deg) - - 0.90 * 0.91 * 0.72 * 0.89 *
Trunk flexion (deg) 0.78 * 0.88 * 0.52 * 0.77 * 0.72 * 0.83 *
Trunk lateral flexion (deg) 0.51 * 0.77 * 0.60 * 0.89 * 0.50 * 0.78 *
Elbow flexion (deg) 0.98 * 0.97 * 0.96 * 0.98 * 0.99 * 0.99 *

* p < 0.05 for Pearson’s correlation between Kinect and VMC. K1: KinectV1; K2: KinectV2; VMC: video motion
capture; D1: day one of testing.

Table 3. Reliability measured by intra-class correlation coefficients (ICC) between testing days D1 and
D2 for each of the three sensors.

Forward Scaption Lateral

K1 K2 VMC K1 K2 VMC K1 K2 VMC

Non-Extended
Reaching ROM (cm) 0.59 0.86 0.78 0.88 0.82 0.84 0.98 0.96 0.99
Sagittal reach distance (cm) 0.54 0.90 0.82 0.58 0.73 0.74 - - -
Frontal reach distance (cm) - - - 0.74 0.77 0.76 0.93 0.94 0.84
Shoulder flexion (deg) 0.37 0.46 −0.08 0.52 −0.22 −0.02 - - -
Shoulder abduction (deg) - - - 0.56 0.56 0.84 0.99 0.93 0.96
Trunk flexion (deg) 0.28 0.31 0.93 0.74 0.43 0.89 0.86 0.69 0.66
Trunk lateral flexion (deg) 0.34 0.14 0.84 0.69 0.75 0.36 0.85 0.82 0.81
Elbow flexion (deg) 0.75 0.82 0.74 0.76 0.72 0.80 0.99 0.97 0.99
Extended

Reaching ROM (cm) 0.95 0.99 0.94 0.85 0.77 0.83 0.97 0.96 0.99
Sagittal reach distance (cm) 0.90 0.98 0.79 0.65 0.67 0.78 - - -
Frontal reach distance (cm) - - - 0.92 0.87 0.70 0.97 0.97 0.92
Shoulder flexion (deg) −0.57 −0.23 −0.61 0.17 −0.69 −1.47 - - -
Shoulder abduction (deg) - - - −0.18 −0.04 0.26 0.52 0.66 0.88
Trunk flexion (deg) 0.74 −0.53 −0.42 0.75 0.66 0.74 0.63 0.91 0.82
Trunk lateral flexion (deg) 0.87 0.84 0.65 0.62 0.20 0.08 0.88 0.66 0.71
Elbow flexion (deg) 0.94 0.92 0.91 0.82 0.75 0.82 0.98 0.98 0.97

K1: Kinect V1; K2: KinectV2; VMC: video motion capture; D1: day one of testing; D2: day two of testing.

3.2. Upper Extremity Movements

The movement traces for the three planar reaching conditions (i.e., sagittal, scaption, frontal)
illustrate directional differences between the Kinects and the VMC (Figure 3). Discrepancies in
reaching magnitude between the Kinects and the VMC were dependent on the direction of movement.
Differences in reaching ROM and planar distance were greatest during forward reaching, reduced during
scaption reaching, and least during lateral reaching (Figure 3). Reaching ROM, planar reach distance,
and elbow flexion measurements consistently showed excellent validity for the K2 (r = 0.79–0.99)
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and moderate–excellent validity for the K1 (r = 0.60–0.95) (Table 2). Reliability of these measurements
was moderate–excellent for all three sensors (Table 3). Validity and reliability of shoulder flexion and
abduction measurements varied from poor to excellent for all three sensors (Tables 2 and 3).

Figure 3. Three sets of curves showing reach ROM from start to stop of a typical reaching movement.
The left curve (F) represents a forward reach, the middle curve (S) represents a scaption reach, and the right

curve (L) represents a lateral reach. Curves for the K1, K2, and VMC are shown separately (see legend).

4. Discussion

The purpose of this investigation was to establish the validity and reliability of two versions
of the Microsoft Kinect for measuring UE and trunk kinematics during various reaching conditions.
Specifically, participants were asked to perform both a non-extended and extended reach in each
of three directions (forward, scaption, lateral) while their movements were recorded by the K1, K2,
and the gold-standard VMC simultaneously. The K2 measured the trunk more similarly to the VMC as
shown by smaller average magnitude differences in trunk flexion and lateral flexion. Validity results
for trunk measurement were excellent for the K2 and modest–excellent for the K1 during extended
reaching conditions intended to simulate movements that might be used by persons with chronic stroke.
Reliability for trunk measurement was modest–excellent for extended reaching with the K1, with the
exception of the forward direction, but varied from poor to excellent for the K2. Results for both
sensors were generally excellent for measuring arm and hand displacement, excellent for measuring
elbow flexion, and mixed for shoulder measurement, with reaches in the scaption and lateral directions
providing more valid and reliable results than the forward direction.

The results of this study are supported by previous research that examines the validity of the K1 and
K2 in terms of other functional movements. Bonnechere and colleagues [9] found similar results when
comparing the K1 to VMC during the performance of four functional movements including shoulder
abduction (similar to lateral reaching) and elbow flexion (similar to forward reaching). Clark and
colleagues [11] found the K2 to have excellent concurrent validity for measuring trunk movements
during dynamic balance tasks and anterior–posterior movements, but poor–moderate validity for
static tasks and medial–lateral movements. In the current investigation, the K2 similarly shows the
greatest validity for measuring trunk flexion during an extended movement in the anterior–posterior
direction. Reither et al. [12] found similar results while measuring the K1, K2, and VMC simultaneously
with a single participant reaching forward, reaching to the side, and performing shoulder movements
in various planes, but did not investigate trunk kinematics during such movements. In summary,
Reither et al. [12] similarly found a greater range in single-day correlations between K1 and VMC
(r = 0.31–0.96) than between the K2 and VMC (r = 0.45–0.96) with correlation magnitudes dependent
on movement plane. The authors also found varied day-to-day reliability results for both K1 and K2
and, in general, a greater direction-dependent underestimation of kinematics displayed by the K1 [12].
The current study goes beyond the methods of Reither et al. [12] by utilizing an increased sample
size of participants and movements, the inclusion of extended reaches to elicit trunk compensations,
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analysis of the trunk along with the UE, and movements in the scaption plane along with sagittal,
frontal, and transverse planes.

We found several low and negative reliability (ICC) values (Table 3), particularly for shoulder flexion,
shoulder abduction, trunk flexion, and trunk lateral flexion during non-extended reaching in the forward
and scaption directions for all sensors including VMC. Negative ICC values are not ideal and can often
be attributed to low between-subjects variance in the phenomenon being measured [32]. Accordingly,
these results might be due to small between-day variance in the kinematic variables being tested.
For example, a negative ICC value (ICC = −0.53) was calculated for the K2 between days for trunk flexion
during the extended forward reach, but Bland-Altman analysis shows a small mean bias (bias = −3.0◦)
and LOA (LOA = −13.2–6.8◦). This suggests a relatively small mean difference, and thus satisfactory
repeatability, between testing days even in the face of a negative ICC calculation that may be due to
small and non-systematic variance. A more heterogeneous clinical population may improve correlation
results by increasing variance in the sample. Pearson’s correlations (Table A3) and Bland-Altman LOA
(Table A4) were included to give a broader picture of absolute and relative reliability for all three sensors.
Additional, more advanced analyses may also provide further insight into these discrepancies; for example,
dynamic time warping (DTW) is an advanced signal processing technique that could provide a measure
of signal match for the time series data collected by the K1 and K2 [33].

The most notable limitation to this work is the use of healthy participants rather than a sample of
participants with hemiparesis. As mentioned previously, persons with hemiparesis reach significantly
differently than unimpaired persons, namely with slower movement, less accuracy, impaired interjoint
coordination, and increased use of compensatory movement at the trunk [22,23]. Targets placed
beyond the reach of healthy participants can elicit a similar compensatory response at the trunk,
but persons with hemiparesis exhibit less symmetry and earlier trunk recruitment in comparison [23].
Healthy reaching is simply not the same as hemiparetic reaching. However, the purpose of the
current study is to validate the measurement capabilities of the K1 and K2 relative to each other and
to a gold-standard VMC system. Numerous referenced studies use healthy participants for sensor
validation with intentions for future clinical application [9–17]. Healthy participants are more accessible,
can perform the large number of required movements without fatigue or pain, and can more readily
reproduce movements across trials and testing days for validity and reliability analyses. Given that
the ultimate application of this study is implementation for clinical measurement of neurologically
impaired populations, the ecological validity of future work would greatly benefit from testing with a
more heterogeneous sample of persons with hemiparetic stroke.

The current study provides some insights for the design of such future work; for example,
it may be necessary to recruit more individuals and reduce the overall repetitions performed to better
capture variability, mitigate fatigue, and enhance the generalizability of results for real-world clinical
populations. In addition, the experimental protocol could be adjusted to provide detailed instruction
and training for impaired populations to reduce trial variability and enhance the efficiency of data
reduction and cleaning. Given that the evidence shows that persons with hemiparetic stroke recruit
the trunk earlier and more often than healthy populations [23], it may be necessary to eliminate or
reduce the distance of the extended reach to maximize reaching performance and reduce frustration.
Finally, given the results of the current study, it may be prudent to focus on the planes of movement
best measured by the K1 and K2 due to their hardware constraints (e.g., lateral > scaption > forward).

Other variations in results might be attributed to various study limitations. First, the Kinect SDK
uses a tracking algorithm that does not rely on the specific placement of markers on palpable bony
landmarks as does the VMC. While this is convenient for users, it has been previously noted as a
limitation in the Kinect’s ability to accurately measure kinematics of movement due to variable body
segment lengths; however, previous studies have developed algorithms through regression that may be
able to correct for this during real-time tracking [9]. Second, it was clear through both observation and
the relatively high standard deviations attributed to each movement (Table 1) that different strategies
were used for reaching by individual participants. No neutral starting point was defined a priori,

83



Sensors 2020, 20, 7073

and some participants returned their arm to their lap between repetitions while others remained in
a flexed position. This resulted in large variations in range of motion, namely with elbow flexion.
Finally, reliability results varied inconsistently for all three sensors, and it should be noted that, on top
of statistical limitations, there are intra-individual differences across trials and across days in each
participant’s reaching kinematics. Participants were given similar instructions for each trial and testing
day, but differences in the repeatability of human movement yet exist and may be attributable to
the slight variance in between-day correlation and significance testing. Participants were provided
verbal instruction but no formal training at the simple reaching movements, so movement may
have differed between movement sets and even testing days due to subtle learning effects. It is also
possible that the placement of motion capture markers varied slightly between days, resulting in
reliability differences. Increasing the overall sample size in the future could mitigate these intra- and
inter-individual differences in repeatable movement.

This study shows that the K1 and K2 may serve as useful tools for objectively measuring UE and
trunk kinematics, but application may depend on the body segment, joint, and movement plane of
interest. Few studies have investigated their relative measurement properties, but both sensors are
widely employed as the basis for VR-based interventions for persons with motor impairments including
stroke and cerebral palsy [19,21]. Use of such interventions continues to grow along with client interest,
professional knowledge, and technological accessibility [34]. The current investigation may inform
future VR development, namely the inclusion of real-time measurement of trunk compensation using
the K2.

5. Conclusions

In conclusion, the K1 and K2 have been shown to be valid and reliable for measuring some
aspects of UE and trunk kinematics during reaching. In particular, the K2 exhibited slightly better
characteristics for measuring the trunk during standard and extended reaching in different directions,
and may be recommended over the K1 in future development for purposes of measuring trunk
compensation in clinical populations.
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Appendix A

Table A1. Comparison of the first-generation Microsoft Kinect V1 (K1) and the second-generation
Microsoft Kinect V2 (K2). The K2 boasts improved motion sensing hardware, particularly in resolution,
field of view, and sensing algorithms. This is adapted from Pagliari and Pinto (2015) [25].

Kinect V1 Kinect V2

RGB camera (pixels) 640 × 480 1920 × 1080
Depth camera (pixels) 640 × 480 512 × 424
Max depth distance (m) 4.0 4.5
Min depth distance (m) 0.8 0.5
Horizontal field of view (deg) 57 70
Vertical field of view (deg) 43 60
Skeletal markers 20 26
Possible skeletons tracked 2 6
USB capability 2.0 3.0

RGB: red-green-blue; USB: universal serial bus.

Table A2. Validity measured by mean bias (Bias) and Bland-Altman limits of agreement, lower bound
(LB) and upper bound (UB), for K1 and K2 in comparison to VMC on D1.

K1 K2

Bias LB UB Bias LB UB

Forward
Reaching ROM (cm) −11.2 −21.4 −0.9 −17.5 −27.0 −8.0
Sagittal reach distance (cm) −7.2 −16.9 2.5 −12.6 −28.7 3.5
Frontal reach distance (cm) - - - - - -
Shoulder flexion (deg) −16.9 −34.0 0.2 −16.9 −31.2 −2.5
Shoulder abduction (deg) - - - - - -
Trunk flexion (deg) 2.7 −0.8 6.1 0.8 −2.0 3.5
Trunk lateral flexion (deg) −1.7 −3.2 −0.2 −1.1 −2.7 0.6
Elbow flexion (deg) 23.3 −11.9 58.4 19.9 −7.9 47.7

Forward Extend
Reaching ROM (cm) −7.2 −20.7 6.3 −22.5 −38.8 −6.2
Sagittal reach distance (cm) 4.0 −10.1 18.1 −10.7 −29.2 7.8
Frontal reach distance (cm) - - - - - -
Shoulder flexion (deg) −6.8 −27.5 13.9 −21.3 −37.5 −5.1
Shoulder abduction (deg) - - - - - -
Trunk flexion (deg) 8.4 4.6 12.2 3.3 0.0 6.6
Trunk lateral flexion (deg) −4.6 −9.0 −0.2 −2.6 −5.9 0.8
Elbow flexion (deg) 20.5 −13.8 54.8 23.9 −9.0 56.9

Scaption
Reaching ROM (cm) −5.8 −16.2 4.5 −4.0 −14.8 6.8
Sagittal reach distance (cm) −0.9 −9.1 7.2 −2.8 −17.5 12.0
Frontal reach distance (cm) 5.2 −0.4 10.7 7.5 −1.2 16.1
Shoulder flexion (deg) −24.6 −38.9 −10.3 −16.2 −29.2 −3.3
Shoulder abduction (deg) −16.7 −30.1 −3.3 −19.1 −26.4 −11.7
Trunk flexion (deg) 3.4 0.3 6.5 0.2 −1.6 2.0
Trunk lateral flexion (deg) 6.9 3.1 10.7 −0.2 −1.9 1.4
Elbow flexion (deg) 23.9 −5.1 52.9 12.9 −8.4 34.2

Scaption Extend
Reaching ROM (cm) −4.8 −17.3 7.7 −8.7 −18.0 0.7
Sagittal reach distance (cm) 7.3 −3.6 18.2 0.5 −12.2 13.1
Frontal reach distance (cm) −3.8 −14.8 7.2 3.4 −9.2 16.0
Shoulder flexion (deg) −9.8 −26.9 7.4 −26.7 −37.4 −16.0
Shoulder abduction (deg) −8.5 −18.1 1.0 −28.0 −33.9 −22.1
Trunk flexion (deg) 9.5 4.8 14.2 2.5 −1.1 6.1
Trunk lateral flexion (deg) 5.8 0.3 11.3 2.7 −0.7 6.0
Elbow flexion (deg) 18.8 −12.7 50.3 20.2 −4.3 44.7
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Table A2. Cont.

K1 K2

Bias LB UB Bias LB UB

Lateral
Reaching ROM (cm) 3.3 −7.7 14.3 1.3 −9.7 12.2
Sagittal reach distance (cm) - - - - - -
Frontal reach distance (cm) −1.8 −13.9 10.2 6.2 −8.9 21.2
Shoulder flexion (deg) - - - - - -
Shoulder abduction (deg) −8.7 −20.1 2.7 −10.6 −16.3 −4.9
Trunk flexion (deg) −0.5 −2.7 1.6 −0.4 −1.8 1.1
Trunk lateral flexion (deg) 7.8 3.6 11.9 0.5 −2.0 3.0
Elbow flexion (deg) 11.9 −21.5 45.4 12.4 −7.4 32.2

Lateral Extend
Reaching ROM (cm) 12.2 −0.9 25.2 1.6 −8.7 11.9
Sagittal reach distance (cm) - - - - - -
Frontal reach distance (cm) −13.7 −26.5 −0.8 0.5 −15.3 16.4
Shoulder flexion (deg) - - - - - -
Shoulder abduction (deg) −4.5 −17.7 8.7 −15.7 −24.2 −7.1
Trunk flexion (deg) 3.9 −0.4 8.1 0.0 −3.5 3.5
Trunk lateral flexion (deg) 5.0 −3.4 13.4 2.2 −3.5 7.9
Elbow flexion (deg) 10.2 −23.7 44.1 16.3 −6.4 39.1

Bias: mean bias of VMC-Kinect for each sensor; LB: lower bound for Bland-Altman limits of agreement;
UB: Upper bound for Bland-Altman limits of agreement; K1: KinectV1; K2: KinectV2; VMC: video motion
capture; D1: day one of testing.

Table A3. Reliability measured by Pearson’s correlation coefficients (r) between testing days D1 and
D2 for each of the three sensors.

Forward Scaption Lateral

K1 K2 VMC K1 K2 VMC K1 K2 VMC

Non-Extended
Reaching ROM (cm) 0.48 * 0.83 * 0.64 * 0.76 * 0.65 * 0.68 * 0.95 * 0.93 * 0.97 *
Sagittal reach distance (cm) 0.30 * 0.83 * 0.62 * 0.23 * 0.51 * 0.52 * - - -
Frontal reach distance (cm) - - - 0.64 * 0.65 * 0.66 * 0.84 * 0.93 * 0.81 *
Shoulder flexion (deg) 0.19 0.08 −0.04 0.29 * −0.11 −0.01 - - -
Shoulder abduction (deg) - - - 0.39 * 0.32 * 0.68 * 0.92 * 0.82 * 0.93 *
Trunk flexion (deg) 0.05 0.06 0.70 * 0.30 * 0.01 0.70 * 0.42 * 0.04 0.31 *
Trunk lateral flexion (deg) −0.06 0.11 0.45 * 0.56 * 0.36 * 0.13 0.68 * 0.41 * 0.63 *
Elbow flexion (deg) 0.64 * 0.79 * 0.60 * 0.67 * 0.55 * 0.65 * 0.97 * 0.94 * 0.96 *
Extended

Reaching ROM (cm) 0.82 * 0.91 * 0.82 * 0.74 * 0.63 * 0.72 * 0.90 * 0.92 * 0.97 *
Sagittal reach distance (cm) 0.74 * 0.90 * 0.60 * 0.34 * 0.45 * 0.56 * - - -
Frontal reach distance (cm) - - - 0.84 * 0.77 * 0.56 * 0.89 * 0.96 * 0.93 *

Shoulder flexion (deg) −0.25
* −0.16 −0.25 * 0.08 −0.28

* −0.44 * - - -

Shoulder abduction (deg) - - - −0.11 −0.02 0.10 0.36 * 0.59 * 0.82 *

Trunk flexion (deg) 0.59 * −0.32
* −0.24 * 0.36 * 0.33 * 0.56 * 0.48 * 0.68 * 0.53 *

Trunk lateral flexion (deg) 0.52 * 0.60 * 0.54 * 0.38 * 0.11 0.04 0.64 * 0.37 * 0.47 *
Elbow flexion (deg) 0.83 * 0.87 * 0.83 * 0.69 * 0.61 * 0.71 * 0.94 * 0.96 * 0.93 *

* p < 0.05 for Pearson’s correlation between D1 and D2. K1: Kinect V1; K2: KinectV2; VMC: video motion capture;
D1: day one of testing; D2: day two of testing.
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Table A4. Reliability analysis using mean bias (Bias) and Bland-Altman limits of agreement, lower
bound (LB) and upper bound (LB), to compare all three sensors across testing days D1 and D2.

K1 K2 VMC

Bias LB UB Bias LB UB Bias LB UB

Forward
Reaching ROM (cm) 8.0 −16.9 32.8 6.8 −15.6 29.3 7.4 −19.2 33.9
Sagittal reach distance (cm) 3.9 −9.1 17.0 4.0 −13.2 21.2 0.9 −9.9 11.8
Frontal reach distance (cm) - - - - - - - - -
Shoulder flexion (deg) −5.0 −28.3 18.2 2.0 −16.8 20.8 −2.1 −18.2 14.1
Shoulder abduction (deg) - - - - - - - - -
Trunk flexion (deg) 0.4 −2.6 3.4 −0.1 −1.7 1.4 0.2 −1.9 2.4
Trunk lateral flexion (deg) 0.0 −1.5 1.4 0.1 −1.0 1.2 0.2 −1.6 2.1
Elbow flexion (deg) −18.7 −91.3 53.9 −16.1 −71.0 38.8 −17.9 −72.9 37.2
Forward Extend

Reaching ROM (cm) 3.0 −17.7 23.7 −0.5 −15.8 14.8 3.6 −13.7 20.9
Sagittal reach distance (cm) 0.9 −17.0 18.8 −1.2 −15.5 13.1 1.6 −13.3 16.5
Frontal reach distance (cm) - - - - - - - - -
Shoulder flexion (deg) 0.7 −38.4 39.8 7.1 −30.9 45.1 3.0 −22.4 28.3
Shoulder abduction (deg) - - - - - - - - -
Trunk flexion (deg) −1.4 −5.7 3.0 −3.2 −13.2 6.8 −3.0 −13.2 7.1
Trunk lateral flexion (deg) −0.1 −3.9 3.7 0.0 −3.4 3.5 0.5 −9.0 10.0
Elbow flexion (deg) −9.8 −59.7 40.1 −11.4 −57.3 34.4 −14.2 −49.5 21.1
Scaption

Reaching ROM (cm) 4.9 −13.9 23.8 6.7 −21.6 34.9 5.5 −20.5 31.5
Sagittal reach distance (cm) −0.6 −13.8 12.7 3.4 −18.9 25.8 0.0 −10.7 10.7
Frontal reach distance (cm) −4.5 −16.8 7.7 −6.1 −22.9 10.7 −3.5 −13.4 6.4
Shoulder flexion (deg) 0.1 −22.1 22.2 −3.0 −26.5 20.5 −4.5 −28.6 19.5
Shoulder abduction (deg) −3.3 −34.0 27.5 −5.0 −32.3 22.4 −0.8 −17.4 15.7
Trunk flexion (deg) 0.3 −2.3 2.8 −0.1 −1.8 1.6 −0.3 −1.9 1.3
Trunk lateral flexion (deg) −0.7 −3.8 2.3 −0.1 −1.1 1.0 −0.1 −2.4 2.1
Elbow flexion (deg) −16.0 −89.3 57.3 −18.2 −96.5 60.1 −13.9 −69.3 41.6
Scaption Extend

Reaching ROM (cm) 8.2 −14.2 30.7 9.0 −22.5 40.5 7.1 −17.1 31.3
Sagittal reach distance (cm) −0.8 −15.2 13.5 3.0 −20.5 26.5 −1.0 −13.2 11.1
Frontal reach distance (cm) −4.7 −19.7 10.4 −5.9 −24.9 13.0 −5.1 −20.8 10.6
Shoulder flexion (deg) −0.1 −22.5 22.2 1.2 −18.8 21.1 −2.1 −24.2 20.0
Shoulder abduction (deg) −0.9 −22.7 21.0 −0.1 −20.4 20.1 1.5 −16.4 19.4
Trunk flexion (deg) −0.7 −4.1 2.7 −0.6 −6.2 5.0 −0.1 −8.1 8.0
Trunk lateral flexion (deg) −0.6 −6.3 5.2 0.0 −7.8 7.9 0.1 −9.9 10.1
Elbow flexion (deg) −21.6 −93.6 50.3 −22.4 −100.2 55.4 −16.6 −68.8 35.7
Lateral

Reaching ROM (cm) 2.3 −8.2 12.7 5.1 −7.5 17.7 1.6 −6.4 9.6
Sagittal reach distance (cm) - - - - - - - - -
Frontal reach distance (cm) −5.2 −17.0 6.7 −6.9 −17.8 4.1 −4.5 −13.1 4.2
Shoulder flexion (deg) - - - - - - - - -
Shoulder abduction (deg) 2.0 −7.4 11.4 3.6 −10.4 17.7 3.4 −4.1 10.9
Trunk flexion (deg) −0.1 −2.0 1.8 0.1 −1.1 1.2 −0.3 −1.7 1.2
Trunk lateral flexion (deg) −0.1 −3.6 3.5 −0.1 −1.8 1.5 0.5 −1.6 2.6
Elbow flexion (deg) −6.3 −30.1 17.5 −11.4 −40.7 17.9 −6.3 −27.0 14.4
Lateral Extend

Reaching ROM (cm) −0.7 −15.8 14.4 3.2 −11.1 17.5 0.8 −8.9 10.4
Sagittal reach distance (cm) - - - - - - - - -
Frontal reach distance (cm) −3.1 −16.6 10.5 −4.7 −17.9 8.5 −3.9 −14.5 6.7
Shoulder flexion (deg) - - - - - - - - -
Shoulder abduction (deg) 5.3 −15.7 26.3 7.6 −11.1 26.2 5.5 −7.5 18.4
Trunk flexion (deg) 0.8 −3.2 4.7 1.4 −3.2 5.9 0.9 −4.7 6.6
Trunk lateral flexion (deg) 0.4 −7.0 7.9 1.1 −6.8 9.0 1.8 −9.8 13.3
Elbow flexion (deg) −6.2 −41.4 29.0 −6.7 −32.1 18.7 −4.1 −30.5 22.3

Bias: mean bias of D1-D2 for each sensor; LB: lower bound for Bland-Altman limits of agreement; UB: Upper bound
for Bland-Altman limits of agreement; K1: KinectV1; K2: KinectV2; VMC: video motion capture.
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Abstract: The use of videogames and motion capture systems in rehabilitation contributes to the
recovery of the patient. This systematic review aimed to explore the works related to these technologies.
The PRISMA method (Preferred Reporting Items for Systematic reviews and Meta-Analyses) was used
to search the databases Scopus, PubMed, IEEE Xplore, and Web of Science, taking into consideration
four aspects: physical rehabilitation, the use of videogames, motion capture technologies, and upper
limb rehabilitation. The literature selection was limited to open access works published between
2015 and 2020, obtaining 19 articles that met the inclusion criteria. The works reported the use
of inertial measurement units (37%), a Kinect sensor (48%), and other technologies (15%). It was
identified that 26% used commercial products, while 74% were developed independently. Another
finding was that 47% of the works focus on post-stroke motor recovery. Finally, diverse studies
sought to support physical rehabilitation using motion capture systems incorporating inertial units,
which offer precision and accessibility at a low cost. There is a clear need to continue generating
proposals that confront the challenges of rehabilitation with technologies which offer precision and
healthcare coverage, and which, additionally, integrate elements that foster the patient’s motivation
and participation.

Keywords: serious videogames; motion capture; upper limbs; physical rehabilitation;
telerehabilitation; inertial sensors; inertial measurement unit (IMU); state of the art

1. Introduction

One of the sustainable development objectives suggested by the United Nations (UN) is oriented
toward the universal and integral coverage of health services, and the reduction of its inequalities,
in order for everyone to be in good health [1]. In accordance with the above, it is taken into account
that inequalities contribute to millions of people with disabilities facing difficulties in carrying out
their basic daily activities. This is more pronounced among people from communities with fewer
opportunities and resources, which are generally geographically located in areas that are distant from
the services required for rehabilitation processes [2].

Of the different types of disabilities, motor disability is considered to be one of the main limitations
to human beings carrying out their basic activities, affecting the quality of life of the individual, as well
as that of those around them [3]. In the last few years, telemedicine and telerehabilitation have been
strengthened with the implementation of diverse technologies that support rehabilitation processes,
oriented toward providing patients with the services required, reducing the number of journeys to
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main cities, where, in general, specialists, hospitals, clinics, and centers equipped with the technology
for the therapies are located. The benefits of telemedicine are more evident in cases associated with
traveling and the mobility of the patient, costs, or other factors, for instance, in a situation of isolation
or confinement such as that experienced worldwide due to COVID 19, which does not allow people to
travel somewhere that is adapted for the necessary therapy session for the patients’ recovery [4].

Although in the last few years there have been many technological proposals that support
physical rehabilitation, there are still difficulties and gaps in the area which represent an opportunity
to contribute to improvements in biomechanical data capture accuracy, the coverage and affordability
of health services, and the flexibility and motivation offered to the patients.

With the purpose of identifying the advances and the options available, in order to contribute to
the improvement of motor rehabilitation processes, this review includes works published between
2015 and June 2020, oriented toward the support of upper limb physical rehabilitation, which use
videogames and a motion capture system. These publications mainly show the use of the Kinect
sensor and inertial sensors as motion capture systems. At the same time, it is identified that the works
included mainly support motor rehabilitation in people who have suffered a stroke, and another aspect
that stands out is the use of commercial systems on the market, which offer different videogames for
motor rehabilitation. The objective of this systematic review is to determine the main contributions to
this type of rehabilitation in order to identify the opportunities and challenges that should be taken
into consideration in future proposals, focused on the improvement in quality of life of people with
motor disabilities.

2. Materials and Methods

This section provides a description of the process and criteria taken into account to conduct the
article selection included in this documental research, according to aspects of the PRISMA method
(Preferred Reporting Items for Systematic reviews and Meta-Analyses) [5]. This allowed the authors to
critically identify, select, and evaluate the relevant research, as well as compile and analyze the data
from the studies included in the review.

2.1. Eligibility Criteria

The eligibility criteria taken into consideration for inclusion of the studies in this review were
(i) that they were published in English, (ii) that they were published within the last 5 years, in the
period 2015–June 2020, (iii) that the full text was open access, and (iv) that the type of document was
an article, systematic review, state-of-the-art review, or journal.

Concerning the second aspect, the period mentioned was selected, given that as, from 2010, when
Kinect was created, and until 2015, its use became popular in different contexts. After 2015, it is
noticeable that there was an upsurge of companies and projects using other motion capture systems
and integrating serious videogames, in addition to the Kinect sensor, in the field of rehabilitation,
which is the main interest of the present study. Another relevant element in this review is that the
studies included had therapeutic purposes of rehabilitation or telerehabilitation of the upper limb
using videogames and some motion capture system, regardless of the gender and age of the population
which participated in the validation of the proposals described.

2.2. Search Strategy

The search of the publications was carried out in four academic databases: Scopus, PubMed,
IEEE Xplore, and Web of Science. The following search terms, classified into four groups, were used:
(i) medical aspect: rehabilitation, health, “physical therapy”, musculoskeletal, telerehabilitation,
“tele-rehabilitation”, “tele rehabilitation”; (ii) use of videogames: videogames, “video games”,
video-games, “serious videogames”, “serious games”, “serious video games”, exergames, exergaming,
“active videogames”; (iii) motion capture system technology: “inertial sensor”, “motion capture”,
mocap, “motion capture system”, wearable; iv) segment or part of the body the rehabilitation is focused
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on: “upper limb”, elbow, shoulder, arm, wrist, humerus. In the search parameters used in the databases
(see Table 1), in each group, the operator OR was included between the different terms considered to
be synonyms, and, to separate the groups, the operator AND was used, thereby enabling the search to
include at least one relevant term from each group in the data consultation.

Table 1. Search parameters in the different databases.

Database Search Parameters

Scopus

TITLE-ABS-KEY (((rehabilitation OR health OR “physical therapy” OR “musculoskeletal”)
AND (videogames OR “video games” OR “video-games” OR “serious videogames” OR

“serious games” OR “serious video games” OR “exergames” OR “exergaming” OR “active
videogames”) AND (“upper limb” OR “elbow” OR “shoulder” OR “arm” OR “wrist” OR

“humerus”) AND (“inertial sensor” OR “motion capture” OR “motion capture system” OR
mocap OR wearable))) AND (LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019)

OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR,
2016) OR LIMIT-TO (PUBYEAR, 2015))

PubMed

((rehabilitation OR health OR “physical therapy” OR “musculoskeletal”) AND (videogames
OR “video games” OR “video-games” OR “serious videogames” OR “serious games” OR

“serious video games” OR “exergames” OR “exergaming” OR “active videogames”) AND
(“upper limb” OR “elbow” OR “shoulder” OR “arm” OR “wrist” OR “humerus”) AND

(“inertial sensor” OR “motion capture” OR “motion capture system” OR mocap OR wearable))

IEEE Xplore
and

Web of Science

((rehabilitation OR health OR “physical AND therapy” OR musculoskeletal) AND
(videogames OR “video AND games” OR video-games OR “serious AND videogames” OR

“serious AND games” OR “serious AND video AND games” OR exergames OR exergaming
OR “active AND videogames”) AND (“upper AND limb” OR “elbow” OR “shoulder” OR

“arm” OR “wrist” OR “humerus”) AND (“inertial AND sensor” OR “motion AND capture”
OR “mocap” OR “motion AND capture AND system” OR wearable))

The terminology used to refer to motion capture technology often changes between scientific
domains. For instance, in clinical studies, it may be possible that focus was given to the manufacturer
name. In other papers, alternative terms may have been used, such as simply “accelerometers” or
“motion sensing”. We recognize this is a limitation of the methodology adopted in this paper, which
may have prevented some papers from being listed in the first stage.

2.3. Description of the Selection Process of the Study

The selection process of the works related to the review topic included four phases: firstly, the
identification of the studies, in which all the records that respond to the search parameters in each
database were taken into account; secondly, the application of a filter, using the eligibility criteria,
in order to select the works related to the purpose of the review, which are available and can be accessed;
thirdly, a “screening” phase, which filtered out works, eliminating those that did not adjust to the focus
of the investigation and/or those which appeared in multiple databases; finally, an inclusion phase,
allowing for the identification of documents to be part of the detailed analysis of the systematic review.

3. Results

This section shows the findings of the selection process of the study, as well as the characteristics
of the works included in the analysis and the individual results presented in those publications.

3.1. Selection of the Study

Figure 1 presents the systematic process for the selection of peer-reviewed articles, in which it was
identified that a total of 122 documents, published between 2015 and June 2020 and which included the
search terms, were found on the databases. In essence, they are studies that focused on the support of
upper limb physical rehabilitation, with the use of videogames and motion capture systems. From the
total, after applying the eligibility criteria described, 31 works were left; afterward, 11 were eliminated
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as they were duplicated, and one referred to a book of abstracts from a conference [6]. Thus, the
number was reduced to 19 documents, which were directly related to the topic of this review.

Figure 1. Systematic process used in the selection of articles, based on PRISMA (Preferred Reporting
Items for Systematic reviews and Meta-Analyses).

3.2. General Characteristics of the Study

The main characteristics of the 19 works included in the review could be classified into four groups:
(i) according to the motion capture system used; (ii) according to the diagnoses or clinical condition
the investigation focuses on; (iii) population included in the validation process; (iv) availability
(affordability) of the technology used (motion capture system, videogame, technological platform) in
the investigation.

3.2.1. Motion Capture Systems Reported in the Studies

Regarding the motion capture systems reported to be used in the 19 studies, nine (48%) used
Microsoft Kinect, seven (37%) used inertial measurement units (IMUs), one (5%) used a passive orthosis
(which integrates inertial sensors, which would add up to 42% for the use of inertial sensors in these
works), one (5%) of the studies used Microsoft HoloLens, and the remaining 5% corresponded to a
study which reported a systematic review in a period different from that established and, therefore, it
was not considered in the review (see Figure 2).

Figure 2. Percentage of the use of motion capture systems.

3.2.2. Diagnosis or Clinical Condition on Which the Technology Described in the Works Was Focused

In the studies analyzed, it was identified that 47% of the investigations focused on the treatment
of people who suffered a stroke, 11% addressed situations related to the range of movement (ROM),
another 11% contributed to the treatment of any injury in the upper limb, 5% oriented their investigation
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toward people with Friedreich’s ataxia, 5% focused on the treatment of children with cerebral palsy,
5% analyzed energy expenditure in the execution of physical activity, and 16% did not focus on an
illness or clinical condition in particular, but on the analysis of technology; thus, they were classified as
“not applicable” (N/A), as observed in Figure 3.

Figure 3. Diagnoses in the works analyzed.

3.2.3. Population Involved in the Validation of the Results

In the validation process (Figure 4), 47% of the studies involved patients (with a 21.66 median and
a 19.77 standard deviation), 32% validated their proposal only with healthy participants, 11% made a
correlational validation between patients and healthy participants, and the remaining 11% did not
validate their proposal with a specific population, given that it had a technical focus (drift correction or
systematic review of the literature, mainly).

Figure 4. Percentage of the population involved in the study.

3.2.4. Affordability of the Technology Used

With regard to technology availability and affordability, 21% of the works included in this review
used commercial products focused on physical rehabilitation. Another 21% proposed systems, referring
to the development of technology in academic and/or investigative environments. Most of the studies
(58%) were classified as “mixed”, given that the technology used involved a combination of commercial
products and some personalized development (mainly videogames), as observed in Figure 5.

Figure 5. Distribution of the technology used.

An additional aspect in the global analysis of the literature is that, although, within the search
parameters, the upper limbs were included, it was identified that there was diversity regarding the
part of the body being focused on in the works, as presented in Figure 6. It can be observed that 47%
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referred, in a general way, to the upper limb, 16% referred specifically to the wrist and the hand, 5%
analyzed the range of movement of the shoulder joint, 5% included both upper limbs and lower limbs,
11% oriented the treatment toward the upper part of the body, another 11% focused on the movement
of the whole human body, and the remaining 11% had a different focus; thus, they did not analyze any
part of the human body.

Figure 6. Distribution of the part of the body treated in the study.

3.3. Technologies as Support in the Physical Rehabilitation of the Upper Limb

Table 2 presents the main characteristics of each of the 19 studies analyzed and identifies how
they supported physical rehabilitation using videogames and motion capture systems.

Table 2. Search parameters in the different databases. IMU, inertial measurement unit; MS, Microsoft;
ROM, range of motion; N/A, not applicable.

No. Mocap System Clinical Condition
Population
(Sample) *

Technology Used **
Part of the Body

Rehabilitated
Reference

1 IMU Cerebral palsy 19 P

Mixed: Myo bracelet, adapted
commercial videogame (Dashy

Square and personalized
software development)

Hand and wrist [7]

2 MS HoloLens ROM 25 H Mixed: MS HoloLens and
developed videogame Shoulder [8]

3 IMU Stroke 8 H
Proposed system: an

environment of games and
software for the therapist

Upper and lower
limbs [9]

4 MS Kinect Upper limb lesions 10 P
Mixed: MS Kinect V2,

videogame development, and
web application

Arm [10]

5 IMU N/A 11 H Proposed system Arm [11]
6 IMU N/A N/A Commercial: ArmeoSenso N/A [12]

7 IMU Upper limb lesions 10 P Mixed: Myo bracelet and a
developed videogame Arm [13]

8 MS Kinect Stroke 30 H
Commercial: MS Kinect V2 and

Mystic Isle (videogame
integrated to Kinect)

Upper part of the
human body [14]

9 MS Kinect Stroke 11 P Mixed: MS Kinect and a
developed videogame Arm [15]

10 MS Kinect Stroke 24 P
Mixed: MS Kinect and

Recovery Rapids™
(personalized videogame)

Arm [16]

11 MS Kinect ROM 10 H
Mixed: MS Kinect and

development of a personalized
system

Arm [17]

12 MS Kinect Friedreich’s ataxia 27 P, 43 H Mixed: MS Kinect and
development of a videogame. Arm [18]

13 IMU Stroke 29 P Commercial: Bimeo Arm [19]
14 IMU Stroke 11 P Commercial: ArmeoSenso. Arm [20]
15 MS Kinect Stroke 74 P Commercial: JRS Wave Human body [21]

16 MS Kinect Stroke 18 P, 12 H Proposed system Upper part of the
human body [22]

17 MS Kinect Energy expenditure 19 H Mixed: MS Kinect and
development of a system Human body [23]

18 Other optical systems Lesions due to brain injury N/A Mixed Hand [24]
19 Orthosis with IMU Stroke 7 P Proposed system Wrist and hand [25]

* Population: P = patients; H = healthy participants. ** Technology used: commercial and/or developed.
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The terms rehabilitation and habilitation, according to the World Health Organization [26], are two
processes which “enable persons with disabilities to attain and maintain their maximum independence,
full physical, mental, social, and vocational ability, and full inclusion and participation in all aspects of
life”. Rehabilitation is defined as the group of methods geared toward the recuperation of an activity or
function lost or diminished by a trauma or illness, and it covers a wide variety of activities, including
medical care rehabilitation, physiotherapy, psychotherapy, language therapy, occupational therapy,
and support services. In this sense, physical rehabilitation is oriented to the recovery of the patient’s
motor function by the physical medicine and rehabilitation team.

For the autonomous development of different basic activities, the movement of various parts
of the body is required, especially the upper limbs, which allow the realization of diverse complex
manual activities [27]. In this sense, in the literature, diverse proposals were found oriented toward
processes of upper limb physical rehabilitation, denoting marked trends concerning the use of motion
capture systems and videogames.

3.3.1. Use of Motion Capture Systems in Upper Limb Physical Rehabilitation

Motion capture (MOCAP) is the process of acquiring motion by combining software and
hardware [28] and is understood as a technique for recording motion and its corresponding
transformation into a digital model. It is commonly used in areas such as entertainment, robotics,
medicine, and physical rehabilitation, among others [29,30]. Specifically in the field of physical
rehabilitation, it is used to identify the effectiveness of appropriate therapy plans [31,32], which
when integrated with information and communication technologies in this field, provides therapeutic
assistance to patients under the modality of telemedicine. Biomechanical motion capture systems can
mainly be optical and non-optical, as shown in Figure 7.

Figure 7. Main motion capture system methods [33].

Optical Systems Used

Optical systems that use infrared light require the location of markers at specific points on the
individual’s body. Then, using a configuration with multiple cameras, properly placed around the
capture space, the position of the reflective markers is recorded [34].

The measurement of human movement with optoelectronic systems offers precision due to the
position of the retroreflective markers, and that depends, to a great extent, on the optical characteristics
of the camera system and the algorithms implemented in the monitoring software [35]. Microsoft
Kinect is an example of an optical system for motion capture without markers. This system can detect
25 joints of the human body of six people at the same time and provides precise information on depth
data or corresponding original red/green/blue (RGB) data [36].

In this review, most of the works described how they involved a Kinect sensor as an optical
system for motion capture in the development of the research. Some used the sensor, and, in addition,
they proposed new products to support rehabilitation. For example, [10] evaluated the usability
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and performance of the KineActiv platform developed in Unity Engine and incorporating Microsoft
Kinect V2. Its purpose was to encourage patients to do the rehabilitation exercises prescribed by the
specialist, who could control the patient’s performance and correct errors in their execution along
the way. In addition, this work included a web platform allowing the physiotherapist to monitor
the results of the session, control the patient’s health, and adjust the rehabilitation routines. At the
same time, [17] proposed a system denominated GoNet V2, which was associated with the Microsoft
Kinect V2 game controller. It was aimed toward physical and rehabilitation specialists, and, through
the recording, storage, and management of information, it supported the treatment and evaluation of
the range of movement of the joint. In [18], the Kinect sensor and a game developed in a previous
project (ICT4Rehab) were used in order to corroborate whether serious videogames could be used as
an evaluation tool for the functioning of the upper limbs in the treatment of motor deterioration in
patients with Friedreich’s Ataxia, even with a patient sitting in a wheelchair.

Furthermore, [14] determined the spatial precision and the validity of the measurement of
Microsoft Kinect V2, using the videogame Mystic Isle, developed as a rehabilitation game. In this case,
they compared the results of the sensor with a motion capture system using standard markers, Vicon,
which is another optical motion capture system incorporating markers, which uses infrared cameras to
track the three-dimensional location of the reflective markers placed on the body. This work presented
satisfactory results in the improvement of the motor function and the performance of daily activities
in people with a chronic cerebrovascular accident. Regarding the results of the visual comparative
analysis with Vicon, for the case of the hand and the elbow, Kinect V1 showed good precision in the
calculation of the movement trajectory, but its validity was limited in terms of the movement of the
shoulder. For its part, [15] presented five experiments, three of which were application cases, using
devices part of the research project called REHABITATION. In one of these cases, a videogame was
proposed in addition to the use of Kinect, which fostered the rehabilitation of the upper limbs in stroke
patients. In this case, the purpose was the evaluation of the usability perceived. In this aspect, it was
ranked as “excellent” on the scale of usability system (SUS) and as “good” on the modified scale of
usability system (mSUS).

Other investigations did not focus on the development of new products, but rather on the validation
of different attributes in the use of technologies in motor rehabilitation. In [22], the authors evaluated
Kinect’s capacity to find movement performance indices through a reliability analysis between sessions
and tests. Specifically, reliability was analyzed using eight performance indices: medium velocity,
normalized medium velocity, peaks of normalized velocity, logarithm of dimensionless jerk, curvature,
spectral arc length, shoulder angle, and elbow angle. In the results of the study, acceptable reliability
and sensitivity were mentioned in all the sessions for medium velocity, logarithm of dimensionless
jerk, and curvature measured by Kinect for healthy individuals and stroke patients.

In the same way, in [21], the feasibility, efficiency, and safety of the JRS Wave commercial system
were evaluated. This software is part of the rehabilitation system called Jintronix (JRS) which was
launched by the company Jintronix [37] and uses Microsoft Kinect as its motion capture system.
JRS Wave has tasks already set up regarding the upper limb and balance, standing, and walking,
and it was used in the rehabilitation of patients hospitalized due to stroke. At the same time, it has
a telemedicine system allowing doctors to manage the information of the patients and monitor the
physical rehabilitation tasks. The main result referred to the efficiency in the differences of activity levels
of the use of rehabilitation technology in comparison to regular rehabilitation. At the same time, in [15],
five experiments were described, three of which were cases of application, using devices proposed in
the framework of the investigation project developed by the authors. One of these cases, in particular,
was related to the aspects addressed in this document, in which the authors proposed a videogame
and, along with Microsoft Kinect, fomented the rehabilitation of upper limbs in post-stroke patients.

Another approach identified in the works was that of proposals to optimize the data capture by the
Kinect sensor. For example, in [16], a methodology was proposed to extract and evaluate the therapeutic
movements of the game-based rehabilitation, executed in environments which were not controlled or
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supervised. This methodology was oriented toward isolating the relevant movements and eliminating
strange movements from the data captured by Kinect, involving the development of computer models
that can efficiently process large volumes of data for their later kinematic analysis. Using the Kinect
sensor and Microsoft SDK, in [23], three predictive algorithmic models were applied: a Gaussian process
regression (GPR), a locally weighted k-nearest-neighbor regression, and linear regression (LR), in order
to calculate the mechanical work carried out by the human body and subsequent metabolic energy. The
determination of the body segment properties, such as segment mass, length, center-of-mass position,
and radius of gyration, were calculated from the Zatsiorsky–Seluyanov’s equations of de Leva, with
adjustments made for posture cost. The results showed that the Gaussian process regression slightly
outperformed the other two techniques and that it was possible to determine the physical activity
energy expenditure during exercise, using the Kinect sensor. Therefore, the estimates for high-energy
activities, such as jumps, could be made with accuracy, but not for activities which require low energy
such as squats and other activities with stationary positions.

With regard to the use of optical systems, in addition to Kinect, the use of a glove called the 5DT
Data Glove Ultra from the company 5DT [38] was presented in the research. This glove was initially
designed for computer animation, but it has since been used in other fields. It is fabricated with an
elastic material and uses fiber-optic sensors in each of the five fingers to detect changes in the global
position of the finger [39]. In the review presented in [24], two documents were included that used
this glove as a motion capture system. The first presented the development of a videogame platform
with virtual reality that integrated a 5DT Data Glove Ultra and a PlayStation 3 videogame console,
for the rehabilitation of adolescents affected by cerebral palsy. This had the purpose of contributing
to improving hand movement and the consistency of the bones in the forearm. The other document
presented a rehabilitation plan involving videogames, using a PlayStation 3 console and the 5DT Data
Glove Ultra for the rehabilitation of the hand of pediatric patients with hemiplegia. In this review,
a third document was presented that used an infrared transmitter fixed with a Velcro strap to the hand
of the patient and an infrared camera (Nintendo Wiimote) as a motion capture system, which captured
the infrared transmission in order to generate an image of the patient in the virtual environment.

On the other hand, in [8], the potential offered by Microsoft HoloLens was explored, i.e., an optical
device placed on the head which does not require markers or sensors for the following of the arm or the
hand. An application was developed with augmented reality, using the engine from the game Unity
and the Microsoft HoloToolkit, for the improvement of the range of movement of the shoulder, allowing
a perfect remote interaction with the personal doctor. The work, using the Likert questionnaire,
identified good levels of motivation and ergonomics in the proposed technology, from the perspective
of a group of patients, as well as that of rehabilitation specialists.

Non-Optical Systems Used

Non-optical systems are based on small inertial sensors with built-in accelerometers, gyroscopes,
and magnetometers, which allow the recording of data associated with movement in an integrated
storage device; these systems are characterized by their low cost, accuracy, and ease of use in ambulatory
environments [33]. Portable systems with IMUs are ergonomic, portable, and sensitive, and they
can obtain relevant data quickly and accurately in order to make correct decisions related to the
intervention of the patient [40].

Different works implemented IMUs due to their potential, such as the case presented in [9],
in which a rehabilitation system that integrates videogames and portable technology was proposed,
allowing exercises to be realized at home, in order to help the remote recuperation of stroke patients
presenting a disability in the upper limbs. The system developed had two principal components:
the game engine environment and the software of the therapist to remotely track and follow the
progress and achievements of the patients. With regard to the hardware proposed for motion capture,
a server in a Raspberry Pi connected wirelessly to a development platform and an MPU6050 sensor
was implemented, with a flexible sensor for the detection of flexion and resistance of the fingers and a
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pulse sensor in order to control the cardiac frequency. Through a survey, the authors identified a great
potential for the developed system to facilitate the rehabilitation process of patients from the comfort
of their homes and under the remote supervision of the therapist.

Understanding the advantages of the use of inertial sensors, some works focused on an
improvement in their efficiency and, taking into account that one of the limitations that IMUs
have shown is the problem of drift, in [12], a drift correction method was proposed on the basis of
a rest pose magnetometer (RPMC), for the measurement of combined inertia and the following of
the arm in real time with a magnetometer. This method corrected drift while the user was relaxing,
involving a precalibrated direction of the magnetic field. The commercial system ArmeoSenso was
used and a videogame was developed to validate a method following arm movement, resulting in
precise monitoring, low latency, and good rhythm, including in environments with proximity to
ferromagnetic materials, such as in the home. In the same way, another work optimizing the data
generated by IMUs was presented in [11], whose authors began from the premise that classifying a
large number of arm movements with IMU-based systems is a difficult task. Therefore, they built a
single wrist-mounted device with an inertial sensor and a temperature sensor, to explore the possibility
of increasing the classification accuracy of IMU-based systems. The data obtained were pre-processed,
and the secondary characteristics were calculated using principal component analysis (PCA) for
dimensionality reduction; then, several automated learning models were applied to select the optimal
model for speed and accuracy. The results showed that adding a thermal sensor to the IMU-based
system significantly increased the classification accuracy in 24 arm movements in healthy participants
from 75% to 93.55%.

Another aspect of the research was the accuracy offered by IMUs, which is why they were
compared with systems recognized as gold standards in motion analysis [41–45], obtaining acceptable
and trustworthy results in different fields, including that of medicine. Moreover, one of the five
experiments described in [14] approached the comparison of IMUs to the Vicon Motion Analysis
system configured with seven Vicon Bonita infrared cameras. The experiment was conducted on
the measurement of the range of movement of the shoulder joint, specifically with three movements:
shoulder abduction, external rotation of the shoulder joint, and horizontal adduction. The papers
showed the high utility of IMUs in simple monitoring activities, thanks to their ease of connection and
handling. Furthermore, the type of system used and the expected period of use influenced motion
detection and its characteristics.

Furthermore, [25] took advantage of IMUs in the implementation of a passive orthosis in order to
detect movements of the elbow and hand through a classification mechanism, in order to evaluate the
progress, or its opposite, in the motor recovery of post-stroke patients, implementing a system that can
be used at the patient’s home, demonstrating that the mechanism of adaptation was effective in 78.6%
of the sessions, making it appropriate as a self-adjusting tool for machine-based exercise.

Other works used commercial systems involving IMUs, which presented stability in their
operation and offerred reliability in the data they provide, allowing the evaluation of their contribution
to rehabilitation processes. On the one hand, Bimeo is a sensor-based rehabilitation device aimed
at stroke patients and other neurological patients. This device offers a motivating virtual reality
environment, which aims to make the therapy effective and motivating for patients and also offers
therapists a support tool to monitor and control the Bimeo process [46]. This system was used
in [19] to evaluate the short-term effects of competitive and collaborative games in arm rehabilitation.
The participants’ subjective experience was quantified using the “intrinsic motivation inventory”
questionnaire after each game, and they also used a final questionnaire on game preferences. Exercise
intensity was quantified using the Bimeo system, according to wearable inertial sensors that measured
hand speed in each game. The results of the work indicated that both competition and cooperation
could increase patient motivation to play and that exercise intensity increased when the play partner
was a family member or friend.
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The ArmeoSenso system [47] involves virtual reality and is based on IMUs for the training of the
function of the upper limbs. It also includes therapy software with videogames and automatically
evaluates the arm movement [48]. In [20], a feasibility study was carried out on the development of
unsupervised arm therapies in self-directed rehabilitation processes carried out in patients’ homes.
In this study, after the training given by the specialist, patients with arm hemiparesis used the system
in their homes for six weeks with an average duration of 137 min per week, identifying that home
therapy is safe and contributes to guiding the rehabilitation process.

The Myo bracelet, developed by Thalmic laboratories, is a portable movement and gesture control
device. The newest version of the system, which consists of eight EMG sensors and IMUs, allows
the user to control events from a computer (or other device) via a Bluetooth connection, which has
been widely used in research environments because of its accessibility [49]. The Myo bracelet is an
electromyographic detection device, i.e., the sensors can detect biometric changes in the user’s arm
muscles as they move, determining the user’s intentions [50], offering high precision, depending on the
location and orientation in which it is used [51]. The bracelet has been used in different contexts, and
one of the concerns regarding home interventions is low adherence; thus, [7] evaluated the feasibility
of a new intervention that combines a gaming technology integrating evidence-based biofeedback and
training strategies. In this case, the purpose was to use the bracelet and videogames in the experiment
to identify the recruitment rate of 8–18 year old patients with cerebral palsy and their continuity in
home therapy for one month. The Myo bracelet was also used by children with upper limb disabilities
in [13] to evaluate a game developed and adapted to be controlled with the bracelet. According to the
results, they identified that the participants felt comfortable and were able to interact with the game
and, therefore, there was high acceptance due to the fun that was experienced. In this way, the authors
reported that the Myo bracelet made it possible to improve accessibility to videogames and improve
the exercise of the upper limbs.

3.3.2. Use of Videogames in Upper Limb Physical Rehabilitation

Another aspect of interest in this review was to identify how the use of videogames is being
addressed in upper limb physical rehabilitation. It was found that, although some studies involved the
use of commercial products, most of them developed new videogames adapted to the needs of the
target population of the investigation.

In [7], the commercial videogame “Dashy Square” was used [52], which was launched in 2016 by
KasSanity and was adapted so that the participants in the investigation executed therapeutic gestures
with their hands to control the actions of the game on the screen; this was used as a motivational
environment involving goals to tackle muscle weakness and selective motor control. It was determined
that the training focusing on the solution, proposed in this work, in combination with videogames that
provide biofeedback, had a positive influence on the activities that require enrolment of participants and
practice at home, and that there was more retention of patients during a monthly intervention, which
were the parameters defined. Another commercial product used was the videogame therapy software
included in the ArmeoSenso system, which has been previously mentioned, which is oriented toward
the recovery of the function of the arm. In [12], a therapy game called “Meteors” was implemented
in ArmeoSenso. This game involves a virtual robotic arm that coincides with the movement of the
arm of the player and is used to catch meteors which fall on a planet. At the same time, in [20],
in addition to the videogame “Meteors”, the game “Slingshot” was used, with the purpose of training
arm coordination and improving precision in the movements for aiming and extending the arm. In this
game, the patient exercises the flexion/extension of the elbow. To this end, the patient holds a virtual
slingshot with which they have to shoot stones to set targets which may be stationary or in motion,
while the size and velocity may vary. In these games, the score is calculated according to performance.
The level of difficulty can be dynamically adjusted in order to maintain motivation and commitment
during the recovery of the patient.
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In [21], the JRS Wave software was used, which was designed in collaboration with occupational
and physical therapists, using criteria of motor relearning. In this system, amusing and attractive
videogames were programmed in order to exercise the upper limbs, practice balance, and walking.
In this work, although the authors did not provide details about the videogames used, they claimed
that they could be adjusted to different levels of complexity and speed, and they determined that these
tools increase adherence and joy for exercising, thereby increasing the amount of repetitive exercise
carried out by people with limited mobility.

Furthermore, works were identified in which, regardless of whether the motion capture system was
commercial or an independent proposal, specific videogames for the development of the investigation
were presented. In this group of works, the development of videogames that used the platform Unity
was noticeable [53]. For example, in [8], with the purpose of treating any deficit of the upper limb
which deteriorates the range of motion, a videogame was designed and developed from traditional
rehabilitation exercises with the Rolyan range-of-motion shoulder arc. The game presents a curved
tube, with mobile colored rings around it. They have to be moved from one side of the tube to the
other, achieving a complete range of motion of the upper limb. This improves motor planning abilities
and visual monitoring. The videogame can also be used with the HoloLens glasses using augmented
reality. In this case, the user, with the movement of the hand, controls a virtual cursor throughout a
predefined virtual trajectory. Furthermore, in [10] using Unity, active videogames were created to be
executed with Kinect in the platform KineActiv, through which patients interact with a gamified user
interface that implements a personalized game environment for each type of exercise.

Using Unity 3D and the C# programming language, [13] developed and evaluated a videogame
involving a jigsaw puzzle with three levels of difficulty, adapted to be used with the Myo bracelet.
In the game, the gestures perceived by electromyography such as double touch, shake the hand to the
right and the left, close fist, and separate the fingers, were the commands to interact with the videogame
and put together the jigsaw puzzle, contributing to motor recovery, as well as to cognitive aspects of
the patient. The evaluation tool was based on an evaluation questionnaire of educational games and
showed that the videogame was stimulating and attractive, and that it fulfilled the expectations of
the patients (5–15 years old children with disabilities). It was also identified that the genres preferred
by the children were those of adventure, reasoning, and creativity. In the same way, [14] developed
“Mystic Isle” with Unity 3D, a multiplane, full-body rehabilitation videogame which uses Kinect V2 as
an input device. This game, depending on the therapeutic treatment, can be used in either a sitting or a
standing position, and different movements can be followed: gross motor movements (steps, jumps,
squats) or fine motor movements (shake a hand, turn the palm face up, open and close the hand). With
this system, the player is tracked in a three-dimensional space and, afterward, the data are registered in
real time by the associated software, showing good results related to motor function and the execution
of basic daily activities in chronic post-stroke patients.

In one of the cases in [15], a rehabilitation videogame was presented which implements C# and
UnityScript. This game is oriented toward the physical recovery of upper limbs in neurological patients,
through the interaction with two scenarios related to their daily lives. The first scenario presents a
bookshelf, and the player has to avoid the books in it falling. The second scenario simulates a kitchen
where the player, in a given time, has to pick up an object requested in a written text. Both games are
controlled by the movement of the hands, which is detected by Kinect V2. For that reason, the first
time that the game was used, a calibration was carried out in order to guarantee that the patient could
reach all corners of the screen with their virtual hands.

The use of Kinect and its utilities was also noticeable in [16], through “Recovery Rapids”,
a personalized videogame to be used with Kinect, in which data were captured to evaluate the relevant
movements of the continual therapeutic game. In this work, a methodology was presented to isolate
the relevant movements and eliminate strange movements from the data obtained through Kinect
during the therapeutic game, incorporating the implementation of computational models to efficiently
process great volumes of motion capture data compiled in noncontrolled environments.
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In [18], a serious videogame called “WipeOut” was used (developed by the authors for a previous
project), and, in conjunction with the use of the Kinect sensor, a functional evaluation of the upper
limbs was carried out. With the movement of the arm and the position of the hand, the player must
wipe the screen to discover an image. The evaluation was carried out contrasting the performance
(time and precision) in the execution of the activity in two groups: one of patients with Friedreich’s
ataxia and another of healthy individuals.

Using C# and Microsoft XNA game studio, in [22], a game was designed to be used with Kinect,
the purpose of which was to be able to monitor the movement of the hands of the participants. For
this, the player had to move their hands to intercept and catch several colored balls which went in
the direction of the person, according to the guide given by the system. The program registers the
positions of the joints of the upper part of the body (hand, wrist, elbow, shoulder, center of the shoulder,
position of the head, and waist) to be able to carry out the respective analysis. The results of the study
indicated acceptable reliability in the session and between sessions when the Kinect sensor and the
proposed game were utilized, which as comparable to the data calculated with robotic systems or
clinical evaluation scales.

Another example of videogame development for physical rehabilitation was included in the
SCRIPT system [25], designed for wrist and hand rehabilitation, through the execution of daily exercises
mediated by three interactive videogame options. In one of these games, the patient must open and
close their hand, with this movement controlling a seashell that opens and closes to catch fish. They
also used the videogame “Crocco”, in which the subject must move a crocodile on the screen. This
game is available in four variants. In the simplest one, the player flexes and extends the wrist to avoid
obstacles; in the second case, lateral arm movements are added to move the crocodile laterally on
the screen; the third variant of the game requires the grip movement to simulate the crocodile eating
fruit, and the fourth variant includes all the previous movements. The third game included in the
system described is called “Labyrinth”, in which the patient moves the cursor through a maze, in three
variations of the game. In the simplest one, the cursor can be moved up and down with anteroposterior
hand movements, as well as to the left and right, encouraging the flexion–extension of the wrist. In the
second variation, prone supination of the hand is used to open and close the doors in the labyrinth.
The third variation includes a gripping gesture to take a key before opening doors. In this research,
although the participants did not practice as much as initially advised, such that great variability in
the duration of the sessions was obtained, relative ease in the movement of the wrist compared to the
movement of the hand was identified, as well as that the proposed system can be used as an adaptive
regulator of the difficulty of the exercise, depending on the performance of each subject. Likewise,
in [10], a rehabilitation environment was presented, in which one of its modules corresponded to
a videogame engine, which included three games designed specifically for rehabilitation purposes
located in the patient’s home. However, in this case, the system allowed the recovery of both the upper
and the lower limb, through the use of designed games.

Another approach to the use of developed videogames, specifically for motor recovery, was the
comparison of competitive, cooperative, or individual videogames. In this regard, [19] designed
four videogames for arm rehabilitation. One of those videogames was competitive, in which the
patient plays against another person (a friend, relative, or therapist). There were also two cooperative
games, in which the patient and another player play together against the computer; lastly, there was
an individual game in which the patient plays alone against the computer. It was identified that
competitive games contributed, to a greater extent, to the functional recovery and improvement in the
quality of life of the patients in comparison to conventional rehabilitation exercises.

3.3.3. Diagnosis and Treatments Supported by Technology

The publications analyzed in this review were oriented toward the support of physical rehabilitation
using technology. Most of these works fostered the recovery of patients who suffered from a particular
clinical condition. Below, there is a description of the contribution made by each of them.
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Technological Support in Post-Stroke Motor Recovery

A cerebrovascular accident, also known as a stroke, is an acute event, caused primarily by a
blockage (accumulation of fatty deposits on the inner walls of the blood vessels), which prevents blood
from flowing to the brain. They can also be caused by bleeding from a blood vessel in the brain or
by blood clots [54]. One of the main effects of a stroke, in patients and their families, is the limitation
in carrying out basic daily activities; thus, one of the main purposes of rehabilitation therapies is to
improve the movements of the arm and promote the recovery of lost function through rehabilitation
therapy [55].

In the review, it was identified that most of the works were geared toward the support of motor
rehabilitation treatments in post-stroke patients, as is the case of [9,14,16,19–22,25], and the five cases
presented in [15]. These works described different experiments that involved videogames and motion
capture systems in the motor recovery of neurological patients to contribute to the improvement in
their quality of life and facilitate the work of the medical staff involved.

Technological Support in the Recovery from Other Diagnoses

Another diagnosis mentioned was cerebral palsy, which is the most frequent cause of motor
disability in children and the third cause of disorders in neurological development. It is, in essence,
a group of nonprogressive disorders which occur during the development of the brain, in the fetal
phase or the first years of life. These disorders affect mobility and postural development; therefore, they
also make carrying out different activities more difficult [56]. In [7], the feasibility of using technology
involving games was identified, integrating biofeedback from the evidence and training strategies,
focusing on the solution proposed, in order to support the execution of the therapy efficiently in the
home of young people with cerebral palsy. In [24], a systematic review was presented which analyzed
in depth three works associated with lesions due to brain injury: cerebral palsy, stroke, and children
with hemiparesis; concern with developing works contributing to the motor recovery of neurological
patients was noted.

Additionally, in [18], the contribution of serious games was validated, which were developed for
rehabilitation, and it was determined how they can be used as an evaluation tool for the function of the
upper limb in patients with advanced Friedreich’s ataxia. This is a hereditary disease of the central
nervous system and the peripheral nervous system which causes gait ataxia, dysmetria, dysarthria,
dysphagia, severe proprioceptive and superficial sensory loss, weakness, limb atrophy, and loss
of muscle tone or spasticity or a combination of both, among other complications related with the
senses [57].

Another aspect of interest related to human health is that of energy expenditure in the execution of
physical activity, given that energy expenditure and the metabolism substrate are important elements
when considering physical activity, and, from their characteristics, it is possible to establish treatments
to improve a person’s quality of life [58]. Hence, in [23], through the use of Kinect and Microsoft SDK,
an estimation was made of the mechanical work carried out by the body and, thus, it was possible to
calculate the metabolic energy using predictive algorithmic models.

Concerning the evaluation and analysis of the range of movement, and the lesions in the upper
limbs derived from different clinical conditions, in [7,9,12,16], and in one of the experiments presented
in [15], it was identified that the contribution of these technologies to a patient’s motor recovery is
positive, as it helps to overcome the limitation of traditional rehabilitation methods.

In conclusion, the findings of the analysis of the articles which met the inclusion criteria of the
review can be classified as is shown in the Venn diagram in Figure 8.
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Figure 8. Paper classification according to the technologies used.

It is necessary to mention that, while optical motion capture systems (11 papers) presented
problems with sensor occlusion, in the systems using IMUs or non-optical systems (eight papers), the
investigations were left open in order for future research to obtain better precision and to correct the
drift generated by the magnetometer. In addition, for the years 2019 and 2020, the literature consulted
registered an increase in the use of non-optical motion caption systems (five papers), as opposed to
optical systems (two papers).

Furthermore, regarding the use of videogames in physical rehabilitation, there was a clear trend
toward the development of personalized videogames (13 papers) and, on fewer occasions, commercial
videogames were used (six papers).

Taking into account that the objective of the investigation included the integration of motion
capture systems and videogames in upper limb physical rehabilitation, it is appropriate to mention
that future investigations could focus on the development of technological tools involving IMUs and
the independent development of videogames for the support of said processes.

4. Discussion

According to the importance of physical and functional rehabilitation in the quality of life of
patients and the people around them, in this review, the technological contributions developed in
the past few years in this field were identified, mainly regarding the inclusion of videogames and
motion capture systems as support in the motor recovery of the upper limb. In the literature, a wide
use of Kinect was identified as the motion capture system, although there were some limits regarding
the movements carried out in the depth and occlusal planes of the limbs, i.e., the visual interruption
between the camera and some of the body segments, as well as the capture of data in some specific
positions (for example, sitting). Furthermore, aspects related to precision were considered in [59–61],
with greater emphasis when it comes to physical rehabilitation, where precision can be a determining
factor in the process. Even so, this sensor was used as a complement in the motor recovery therapies
or in works focused on the validation of different attributes such as the usability of the technologies
proposed or the verification of motion evaluation methods [10,14,16–18,21–23]. Among commercial
products, not only Microsoft Kinect was used; the use of Nintendo Wii with its Balance Board and the
Myo bracelet was reported, allowing validations in the medical field thanks to the fact that they have a
lesser cost in comparison with clinical systems, such as Vicon, OptiTrack, and Qualisys, among others.

In this sense, comparisons were made of different motion capture systems with respect to
Vicon, OptiTrack, or Qualisys considered to be the gold standard, against which those systems using
inertial measurement units have shown a comparable performance [41–45,62] denoting the reliability,
accessibility, accuracy, and portability offered by IMUs. In this way, inertial sensors become a good
option to be used in the medical field to support motor and functional recovery processes, which
require precise measurements with an accessible cost in order to be mass-produced.
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Currently, novel motion capture technology involving video alone is available. Using tools from
machine learning, researchers have demonstrated that tracking joints of multiple human figures may be
achieved [63]. The potential of this approach is enormous, since it would enable implementing games
for rehabilitation using hardware available in most dwellings. Nevertheless, for real-time operation,
these methods still require powerful graphics hardware, which limits their availability at the moment.

On the other hand, the use of serious videogames has increased due to the lack of motivation of
patients when they are in the process of motor recovery. In the face of this, individual, cooperative,
and competitive video games have been used. Commercial video games were used in [7,12,19–21],
which, despite encouraging the execution of physical activity and supporting the player’s motivation,
were not adapted to the particular characteristics of physical rehabilitation. For this reason, most of
the studies proposed active video games specifically for rehabilitation, to increase motivation and
adherence to therapies [8,11,13,15–18,22,23,25], in some cases associated with a configuration module
allowing the health professional to adjust the characteristics of the game according to the diagnosis
and progress of the patient in treatment [9,10,14,24]. In the particular case of commercial rehabilitation
products, such as ArmeoSenso, Bimeo, or JRS Wave, they respond adequately to such requirements in
the area of physical rehabilitation, although the additional costs involved must be taken into account.

When referring to the use of commercial products, i.e., videogames and motion capture systems,
it should be noted that they are an important contribution to the field of rehabilitation. However,
they are not certified as medical products [15] and, therefore, to include them in a clinical routine,
it is recommended that a thorough preliminary study be carried out or, if possible, a design and
development procedure, guided by health professionals, to obtain products that respond to the
specific needs of the rehabilitation process. Among the particular characteristics of a videogame for
rehabilitation, it is worth mentioning that it should have simple visual backgrounds, clinical diagrams
in accordance with the patient’s situation, and configurability in terms of range of movement, speed,
and recovery time, among other aspects of the process [18].

Although this review included works that used videogames and motion capture systems in
physical rehabilitation, not all the works analyzed integrate these components into a single product or
system, i.e., the information generated by these technologies was disconnected, making complete and
timely analysis difficult in motor recovery therapy.

One of the fundamental aspects in order to achieve the objectives of a physical rehabilitation
process is that it is adequately monitored and controlled, and that it is adjustable in a timely manner
regardless of whether the patient and the health professional are in the same geographical location or
not. For this reason, an optimal system to support physical rehabilitation should integrate various
functionalities and technologies, including an accurate and portable motion capture system, as well as
a customized active video game module to encourage patient motivation and guide them properly
in the execution of therapy. It is also important that the system has a management and monitoring
module of the rehabilitation plan assigned to each patient in real time, making it possible to manage
the electronic medical record of rehabilitation processes.

In this sense, out of the works included in this review only five presented home rehabilitation
systems that allow the therapist to remotely adjust and monitor the configuration of the game according
to the patient’s rehabilitation objectives, incorporating the recording of information in an associated
computer system. Out of these, in [8], IMUs are used, in [9,13,20] the Kinect sensor was used, and two of
the three works analyzed in [23] used the 5DT Data Glove Ultra and the Nintendo Wiimote. Moreover,
in four of these five works, videogames developed specifically for rehabilitation were proposed. In this
sense, it was identified that this type of system offers a significant contribution to the processes of
motor recovery and that it is important that the information gained from the therapies carried out by a
patient in a location is convenient for them and registered correctly, such that the process is evaluated
in a timely and reliable manner. Thus, telerehabilitation involving a system with these components
offers proper support for the management of the process, benefitting patients, their caregivers, and the
medical team involved.
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5. Conclusions

The ability to carry out basic daily activities autonomously is an aspect related to an individual’s
quality of life. People can lose their mobility and their capacity to execute daily activities for different
reasons, as in the case of neurologic diseases or other clinical conditions. In order to recover functionality,
physical rehabilitation systems are implemented that require, in addition to knowledge and orientation
from professionals in the area, tools and technologies which provide precision and optimize the process.
Motivation and commitment of the patient are also required, as reported in the works analyzed in
this research.

This review included studies which support the physical rehabilitation of the upper limb with the
use of videogames and motion capture systems, and it identified 19 documents which met the criteria
of eligibility defined for this investigation. In the documents analyzed, it was found that, concerning
motion capture systems, the use of Microsoft Kinect is prominent, due to its affordability and ease
of use. There was also a strong trend regarding the implementation of IMUs given their precision
and portability.

Concerning the affordability of the technologies used, it can be stated that most of the works
used commercial systems and complemented them with the development of components allowing the
adjustment of the technology to rehabilitation processes. Development mainly involved personalized
and configurable videogames that respond to some requirements of the motor rehabilitation process,
especially attending to the need to foment, increase, and maintain the motivation of the patient in
the execution of the therapy. In general, the works showed the advantages provided by the use of
active videogames in the recovery of patients, as long as they are designed and developed with the
accompaniment of physical and functional rehabilitation professionals, and that they can be used in
the patient’s environment.

The studies analyzed included videogames, as well as motion capture systems, although only 26%
of these works integrated the different components into one sole product and complemented them
with a system that manages the data of the patients for respective monitoring throughout therapy.
Thus, in general, this review identified that an optimal system to support physical rehabilitation should
include a motion capture system that offers precision and portability, a module of active videogames
that are configurable to the particular needs of each patient’s recovery, which permit motivation and
proper guidance in the execution of the therapies and, lastly, a computer system which allows the
management and monitoring of the rehabilitation plan assigned to each patient, attending to the
fundamental aspects of telerehabilitation.
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19. Goršič, M.; Cikajlo, I.; Novak, D. Competitive and cooperative arm rehabilitation games played by a patient
and unimpaired person: Effects on motivation and exercise intensity. J. Neuroeng. Rehabil. 2017, 14, 1–18.
[CrossRef] [PubMed]

20. Wittmann, F.; Held, J.P.; Lambercy, O.; Starkey, M.L.; Curt, A.; Höver, R.; Gassert, R.; Luft, A.R.;
Gonzenbach, R.R. Self-directed arm therapy at home after stroke with a sensor-based virtual reality
training system. J. Neuroeng. Rehabil. 2016, 13, 1–10. [CrossRef] [PubMed]

21. Bird, M.L.; Cannell, J.; Callisaya, M.L.; Moles, E.; Rathjen, A.; Lane, K.; Tyson, A.; Smith, S. “FIND Technology”:
Investigating the feasibility, efficacy and safety of controller- free interactive digital rehabilitation technology
in an inpatient stroke population: Study protocol for a randomized controlled trial. Trials 2016, 17, 1–6.
[CrossRef]

22. Mobini, A.; Behzadipour, S.; Saadat, M. Test–retest reliability of Kinect ’ s measurements for the evaluation of
upper body recovery of stroke patients. Biomed. Eng. OnLine 2015, 14, 1–13. [CrossRef]

23. Nathan, D.; Huynh, D.Q.; Rubenson, J.; Rosenberg, M. Estimating Physical Activity Energy Expenditure
with the Kinect Sensor in an Exergaming Environment. PLoS ONE 2015, 10, 1–22. [CrossRef]

108



Sensors 2020, 20, 5989

24. Callejas-cuervo, M.; Díaz, G.M.; Ruíz-olaya, A.F. Integration of emerging motion capture technologies and
videogames for human upper-limb telerehabilitation: A systematic review. Rev. DYNA 2015, 82, 68–75.
[CrossRef]

25. Basteris, A.; Nijenhuis, S.M.; Buurke, J.H.; Prange, G.B. Lag—Lead based assessment and adaptation of
exercise speed for stroke survivors. Rob. Auton. Syst. 2015, 73, 144–154. [CrossRef]

26. OMS Atención Médica y Rehabilitación. Available online: https://www.who.int/disabilities/care/es/ (accessed
on 8 November 2019).

27. Guzik-Kopyto, A.; Michnik, R.; Wodarski, P.; Chuchnowska, I. Determination of Loads in the Joints of
the Upper Limb during Activities of Daily Living. In Proceedings of the Advances in Intelligent Systems and
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Abstract: Clinically feasible assessment of self-feeding is important for adults and children with
motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for
self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon
(DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults
(three male; age 27.2 ± 6.6 years) used DataSpoon at three movement speeds (slow, comfortable,
fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics
were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR).
Eating events were automatically identified for both systems and kinematic measures were extracted
from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles.
Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA)
were computed to determine agreement between the systems for each kinematic variable. Most
variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch
and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower
agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01–0.07 s
(95% LOA [−0.54, 0.53] to [−0.63, 0.48]) was calculated for measures of duration. DataSpoon enables
automatic detection of self-feeding using simple, affordable movement sensors. Using movement
kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for
adults and children with motor impairments.

Keywords: kinematics; concurrent validity; outcome assessment; feasibility; rehabilitation

1. Introduction

Recent technological advances have enabled the development of lightweight, wearable inertial
motion sensors, which are showing promise as rehabilitation tools [1]. Inertial sensors can monitor
movement quality and present valuable information to clinicians during on-site or tele-rehabilitation
sessions using affordable equipment [2].

Sensor-based assessment of movement kinematics is currently used for gait analysis in healthy
individuals [3] as well as clinical populations such as Parkinson’s disease [4], stroke and Huntington’s
disease [5] and children with cerebral palsy [6]. Upper limb kinematics have been recorded using
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wearable sensors in healthy individuals [7] as well as individuals after stroke [8], in order to objectively
quantify movement patterns. Additionally, inertial sensors are able to detect performance of functional
tasks such as drinking or brushing hair, in both healthy and clinical populations [9]. In future
applications, information derived from low-cost inertial sensors may be able to be used to provide
feedback (e.g., auditory, visual, tactile), and affect motor performance as is currently the case with
more high-end motion capture systems [10].

Due to their age or physical condition, the use of body-mounted sensors is problematic for some
populations who may be uncomfortable with or encumbered by the use of external measurement
devices. To circumvent this problem, sensor-based technology can be embedded within everyday
objects thereby creating clinically-feasible tools for the measurement of movement quality during
functional movements such as eating. Existing applications of instrumented tools for eating include
forks [11] and chopsticks [12] which help assess and promote fine motor skills and healthy eating
habits in children.

In this study, we present the initial validation of an instrumented spoon (DataSpoon) [13,14],
developed as an assessment tool for clinicians that provides quantitative information regarding
self-feeding in children and adults with motor impairments such as cerebral palsy (CP) or stroke.
Self-feeding is one of several self-care activities that are critical for the well-being of a child [15],
hence it is an important skill to train, develop and monitor in children with motor disorders [13].
Furthermore, self-feeding kinematics is altered in people with neurological conditions, such as
Parkinson’s disease [16], stroke [17], or Multiple Sclerosis [18], and in children [19] and adults [20]
with cerebral palsy. Specifically, both spatial and temporal patterns of reaching with a utensil to the
mouth may be altered and movements are slower, more curved and less smooth. Furthermore, due to a
reduced ability to individually control the fingers, people with neurological conditions may opt for an
alternative grip strategy (e.g., “power grip”) which is typical for young children [21] and leads to further
changes in kinematics and force production throughout the movement [16,17,22]. Such alterations
in kinematics support the need to evaluate self-feeding in people with motor impairments using
a clinically-feasible measurement system. The DataSpoon system includes an instrumented spoon
wirelessly paired with an Android smartphone application which presents information regarding
eating patterns to a clinician. Monitoring self-feeding kinematics was demonstrated to be feasible
among children of different ages and a small sample of children with CP [23]. However, before
measures of self-feeding kinematics can be used to detect between-group differences in children
or adults with or without motor impairments, it is essential that the psychometric properties of
measuring self-feeding kinematics be established. Thus, the current work is a preliminary validation
of sensor-based information from the spoon vis-à-vis a “gold standard” kinematic measurement,
during self-feeding in healthy young adults. This was accomplished by: (1) describing the automated
detection of feeding events from an affordable inertial sensor embedded within a teaspoon (DataSpoon)
and (2) determining the validity of kinematic measures extracted from DataSpoon when compared
with a “gold standard” motion capture system. We chose to evaluate kinematic measures which are
associated with linear velocity and acceleration and are considered “gold standard” [24] as well as
measures based on angular velocity and acceleration.

2. Materials and Methods

2.1. Participants

Ten young adults (3 male, 27.2 ± 6.6 years old) were recruited from local university students and
staff. They were included in this study if they: (1) were 18–40 years of age, (2) were right-hand dominant
and (3) did not have any orthopedic or neurological problems affecting arm movement kinematics or
causing pain in arm movement. Ethics approval was received from the Tel-Aviv University Human
ethics committee (authorization no. 11152802), and the participants signed an informed consent form
before participating in the study.
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2.2. Instruments

DataSpoon is an instrumented spoon (size: 19*2*1.5 cm, mass: 38 g; Figure 1a) which enables
measurement of 6 Degrees of Freedom kinematic data and real-time presentation of movement via
a smartphone app. A small, low cost wireless 3D accelerometer with gyroscope and magnetometer
(red amber from GemSense, Haifa, Israel, see Table 1) is mounted at the proximal base of the spoon’s
handle, and a single CR2032 replaceable battery is mounted at the distal end of the spoon’s handle.
The raw 3D acceleration data and fused absolute orientation angles (in quaternions) were sampled at
50 Hz and transmitted via Bluetooth to a dedicated android smartphone and transformed to Excel
files for offline processing. DataSpoon signals were compared to a “gold-standard” magnetic motion
capture system (trakSTAR, Ascension Technology Corp., Shelburne, VT, USA, see Table 1). A trakSTAR
sensor (Figure 1a) sampling at 200 Hz was attached to the center of the DataSpoon handle such that
concurrent data was collected from both systems. The sensor’s lightweight cable was attached with
medical tape to the subject’s forearm, allowing free movement of the spoon while minimizing the
forces applied by the cable on the spoon.

Figure 1. (a) Experimental setup. DataSpoon was placed on a placemat pointing towards the distal
end of the table. A smartphone captured real-time spoon movement. A trakSTAR sensor was located
at the center of the spoon and connected to the trakSTAR box via a lightweight cable. (b) Natural grip.
(c) Power grip. (d) Rotated power grip.
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Table 1. Comparison of motion capture devices used in the study.

GemSense Red Amber (Including
Battery Extension)

Ascension trakSTAR System with Model 180 Sensor

Size 24 mm diameter 2 mm diameter, 9.9 mm length (not including cable)

Mass 25 g <5 g (not including cable)

Accuracy Not available Position: 1.4 mm RMS, angle: 0.5◦ RMS

Range Dependent on Bluetooth (approx. 10 m) 58 cm at highest accuracy level

Approximate cost USD 40 USD 4000 (for a one-sensor setup)

Sample rate 50 Hz 200 Hz (maximum is 255 Hz)

2.3. Procedures

Participants were seated by a table such that both feet were flat on the floor with hips and knees
flexed at 90 degrees. A plate was placed on the table such that the center of the plate aligned with
the midline of the participant. A mark on the table to the right of the plate identified the initial and
final position of the spoon (Figure 1a). Participants were required to eat small amounts of yoghurt/soft
cheese/fruit puree using the DataSpoon at three speeds of movement (slow, comfortable, fast) and with
three different grips of the spoon: “natural” grip, power grip and rotated power grip (Figure 1b–d).
The power grip is a common grip used among typically developing young children [25,26] as well as
children [19] and adults [16,17] with motor impairments due to neurological conditions. Due to limited
range of motion in the wrist in the frontal plane (radial/ulnar deviation), this grip type allows for a
smaller variety of movements [27]. The rotated power grip was intended to provide an awkward eating
posture for participants in order to facilitate variable movement kinematics among healthy individuals,
which may be closer to the increased variability of movement kinematics observed in people with motor
impairments such as cerebral palsy [22,28]. The inclusion of varied grip positions was intended to
provide a variable constraint on hand posture which may translate to variable self-feeding kinematics,
and thus challenge the detection of feeding events (such as spoon in mouth) and allow for more
accurate computation of validity scores. The instruction to participants was to “hold the spoon as
you normally would hold a spoon” for the “natural” grip, which was typically a precision grip, to
“keep the thumb below the handle and close to the spoon itself” for the power grip and to “keep the
thumb below the handle and oriented towards the distal end of the spoon” for the rotated power grip.
Participants performed three repetitions in each condition, such that the total number of eating cycles
was ~27.

2.4. Data Analysis

Yaw, Pitch and Roll angles (Figure 2) were obtained directly from the trakSTAR and computed
from quaternions for DataSpoon. The angles from the red amber in the DataSpoon are calculated on the
device from the raw data using a proprietary algorithm. A filtered derivative for Yaw was calculated
(2nd order Butterworth low-pass filter, 1 Hz cutoff) and used to detect eating events using a similar
algorithm for both the trakSTAR and DataSpoon signals (Figure 3): (1) Movement onset event: the first
point where both the yaw and yaw velocity signals exceed 5% of their respective peaks; (2) Spoon in
mouth event: the highest peak in the yaw signal, removing adjacent peaks if inter-peak distance was
under 2 s; (3) Spoon down event: time of the first zero crossing in the yaw velocity signal after each “in
mouth” event. For visualization purposes, trakSTAR and DataSpoon signals were synchronized by
performing a fast rotation (pitch) movement of the spoon prior to each recording. The timing of the
peak in pitch was synchronized between the signals automatically using code. However, outcome
measures were calculated separately for each device.
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Figure 2. Yaw, Pitch and Roll angles (Tait–Bryan angles). The final orientation consists of three rotations
in order: (a) yaw is the rotation about the z (up-down) axis; (b) pitch is the rotation about the rotated
horizontal (y) axis; (c) roll is the rotation about the long axis (rotated x axis) of the spoon.

Figure 3. Yaw, Pitch and Roll angles for 3 consecutive eating cycles at natural spoon position and
comfortable speed. trakSTAR (blue) and DataSpoon (red) signals were synchronized by a common
movement of pitch at onset of recording. Black vertical lines indicate timing of eating cycle events
identified for trakSTAR signals. Blue and red vertical lines (bottom panel) demonstrate the calculation
of range (in this case - of roll) for one movement part.

The duration of the eating phases (to- and from the mouth) and the range of pitch and roll motion
were calculated from Yaw, Pitch and Roll angles (Tait–Bryan angles, Figure 2). Additional measures
were extracted from the acceleration signal: in order to obtain tangential velocity, the following
procedure was performed: a filtered acceleration signal (2nd order Butterworth low-pass filter, 1 Hz
cutoff) was multiplied by the rotation matrix obtained from the spoon. The baseline acceleration signal
was subtracted in order to eliminate the effect of gravity, and the acceleration signal was low-pass
filtered (4th order Butterworth filter, 3 Hz cutoff low-pass), integrated and high-pass filtered (4th
order Butterworth filter, 0.35 Hz cutoff) before calculating the square root of the sum of squares
to obtain tangential velocity [29]. The peak tangential velocity was computed for each part of the
movement—up (onset to in mouth) and down (in mouth to spoon down). As a measure of movement
fluency (i.e., smoothness), the number of zero crossings in the acceleration profile was calculated for
each movement axis and summed over the three axes (Figure 4). This number represents the number
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of peaks in the tangential velocity profile, which is a measure of smoothness (more peaks indicate a
jerkier movement) [30].

Figure 4. Tangential velocity profiles from trakSTAR (middle panel) and DataSpoon (bottom panel).
Yaw for both systems is depicted in the top panel for comparison. One movement duration is marked
for both devices. The number of peaks in the tangential velocity profile (i.e., zero crossings in the
acceleration profile) is marked for the first part of movement (“to mouth”), and the peak velocity is
marked for the second part (“from mouth”).

2.5. Statistical Analysis

Concurrent validity was provided using two-way, mixed model Intraclass correlation coefficients
(ICCs; single measures) which were computed separately for each movement condition (model ICC
(3,2)) [31]; ICC values smaller than 0.4 were defined as poor, 0.41 < ICC < 0.6 as fair, 0.61 < ICC < 0.8
as good, and 0.81 < ICC < 1.0 as excellent agreements. In addition, 95% limits of agreement were
calculated by averaging the measurements for each participant under each condition, subtracting
the DataSpoon measurement from the trakSTAR measurement and computing mean ±1.96 standard
deviations of the difference.

3. Results

Out of a total of 257 movements which were recorded, eight movements were unavailable due to
technical issues associated with the spoon (communication lags and disconnections) and 27 movements
were removed when events could not be identified reliably by either device (for example when pause
between movements was too small). Thus, 222 movements were analyzed in total.

Results of ICCs are detailed in Table 2. ICCs were fair to excellent for measures of duration and
range of motion, and poor to fair for measures of peak velocity and movement fluency. Mean differences
and 95% Limits of Agreement are detailed in Table 3. Although the mean bias was smaller than
100 ms for temporal measures, and smaller than 1.5 degrees for angular measures (range of roll and of
pitch movement in the first stage of eating), 95% limits of agreement exceeded 22 degrees for angular
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measures and were ~±0.5 s for temporal measures. Tangential velocity and acceleration measures
showed some bias, which may have resulted from integration error for the DataSpoon.

Table 2. Intraclass correlation coefficients (ICCs) depicting agreement between trakSTAR and
DataSpoon, with 95% confidence interval (square brackets) and significance level below. ICC values
higher than 0.8 (excellent agreement) are in bold.

Measure Natural Grip Power Grip Rotated Power Grip

Slow Comfortable Fast Slow Comfortable Fast Slow Comfortable Fast

Duration of
Movement to
Mouth

0.99
[0.99, 1.00]
<0.01

0.99
[0.97, 0.99]
<0.01

0.86
[0.66, 0.94]
<0.01

0.95
[0.90, 0.98]
<0.01

0.85
[0.66, 0.93]
<0.01

0.86
[0.66, 0.94]
<0.01

0.97
[0.92, 0.98]
<0.01

0.98
[0.95, 0.99]
<0.01

0.88
[0.77, 0.94]
<0.01

Duration of
Movement from
Mouth

0.87
[0.74, 0.94]
<0.01

0.83
[0.89, 0.98]
<0.01

0.55
[0.16, 0.79]
<0.01

0.90
[0.79, 0.95]
<0.01

0.88
[0.74, 0.94]
<0.01

0.50
[0.06, 0.77]
0.02

0.95
[0.89, 0.98]
<0.01

0.83
[0.67, 0.92]
<0.01

0.89
[0.77, 0.95]
<0.01

Duration of
Movement
(total)

0.97
[0.93, 0.98]
<0.01

0.99
[0.97, 0.99]
<0.01

0.91
[0.80, 0.96]
<0.01

0.94
[0.86, 0.97]
<0.01

0.94
[0.87, 0.97]
<0.01

0.87
[0.69, 0.95]
<0.01

0.96
[0.89, 0.98]
<0.01

0.94
[0.87, 0.97]
<0.01

0.97
[0.93, 0.98]
<0.01

Range of Pitch
0.86
[0.70, 0.93]
<0.01

0.81
[0.62, 0.91]
<0.01

0.62
[0.27, 0.83]
<0.01

0.75
[0.52, 0.88]
<0.01

0.64
[0.32, 0.83]
<0.01

0.90
[0.75, 0.96]
<0.01

0.87
[0.73, 0.94]
<0.01

0.92
[0.83, 0.96]
<0.01

0.92
[0.84, 0.96]
<0.01

Range of Roll
0.93
[0.85, 0.97]
<0.01

0.98
[0.96, 0.99]
<0.01

0.50
[0.10, 0.76]
0.01

0.79
[0.58, 0.90]
<0.01

0.97
[0.93, 0.99]
<0.01

0.85
[0.65, 0.94]
<0.01

0.95
[0.84, 0.98]
<0.01

0.97
[0.94, 0.99]
<0.01

0.94
[0.88, 0.97]
<0.01

Peak Velocity to
Mouth

0.24
[−0.10, 0.59]
<0.01

0.21
[−0.06, 0.57]
<0.01

0.07
[−0.25, 0.43]
0.35

0.21
[−0.10, 0.52]
0.04

0.05
[−0.15, 0.32]
0.33

0.37
[−0.08, 0.71]
<0.01

0.07
[−0.28, 0.42]
0.36

−0.03
[−0.14, 0.16]
0.66

0.00
[−0.10, 0.16]
0.50

Peak Velocity
Down

0.07
[−0.10, 0.30]
0.21

0.09
[−0.05, 0.35]
0.01

0.06
[−0.07, 0.29]
0.16

0.06
[−0.07, 0.26]
0.16

0.07
[−0.07, 0.30]
0.11

0.28
[−0.11, 0.65]
<0.01

0.10
[−0.09, 0.36]
0.12

0.07
[−0.08, 0.30]
0.13

0.08
[−0.08, 0.30]
0.13

Fluency -
Acceleration
Zero Crossing
(total)

0.14
[−0.26, 0.50]
0.25

0.41
[0.04, 0.68]
<0.01

0.21
[−0.13, 0.54]
0.12

0.00
[−0.32, 0.35]
0.50

0.45
[0.07, 0.72]
0.01

0.26
[−0.21, 0.63]
0.14

−0.11
[−0.48, 0.29]
0.70

0.36
[−0.02, 0.65]
<0.01

0.14
[−0.13, 0.43]
0.15

Table 3. Median and IQR values for the different kinematic measures for trakSTAR and DataSpoon,
mean difference (bias) and 95% limits of agreement (±1.96 standard deviations) between trakSTAR and
DataSpoon measurements.

Measure Units trakSTAR DataSpoon Mean Bias 95% Limits of Agreement

Duration of Movement
to Mouth

Seconds 2.10 (0.71) 2.20 (0.70) −0.07 [−0.51, 0.38]

Duration of Movement
from Mouth

Seconds 1.32 (0.43) 1.31 (0.53) −0.01 [−0.54, 0.53]

Duration of Movement
(total)

Seconds 3.46 (0.91) 3.51 (1.08) −0.07 [−0.63, 0.48]

Range of Pitch Degrees 43.74 (21.79) 45.60 (18.58) −0.27 [−23.47, 22.93]

Range of Roll Degrees 54.95 (28.50) 56.81 (27.37) −1.32 [−27.16, 24.51]

Peak Velocity to Mouth m/s 0.42 (0.19) 0.23 (0.13) 0.18 [−0.20, 0.56]

Peak Velocity Down m/s 0.49 (0.31) 0.19 (0.09) 0.31 [−0.07, 0.68]

Fluency - Acceleration
Zero Crossing (total)

Number 4.67 (6.54) 3.00 (3.33) 1.8 [−7.23, 10.82]

4. Discussion

The current work presents an instrumented spoon which uses a simple, affordable inertial
movement sensor and extracts kinematic features of movement that may be clinically important for
feeding kinematics in general, and specifically for children and adults with motor disorders. The present
results indicate that for most kinematic measures, concurrent validity of movement quality measures,
which were extracted automatically from both systems, was fair to excellent when evaluated for young,
healthy individuals. These results were similar for different grips, a natural grip and two types of
power grip, designed to impose a constraint on movement kinematics which requires a modification
of the motor plan. Agreement was low for measures based on tangential velocity and acceleration,
as compared with yaw, pitch and roll measures. For some measures, agreement was lower for faster
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movements. This result merits further investigation, as it may be that for faster movements, differences
between devices such as sampling rate or sensitivity may become more significant. However, one of
the main differences of self-feeding patterns in people with motor impairments such as stroke [17,32] or
cerebral palsy [20,22] is slowness of movement. This suggests that the larger ICCs identified for slower
movements may be advantageous when evaluating self-feeding in people with motor impairments.

Recent years have witnessed the increased integration of technology into clinical practice via
measures of movement quality, specifically for upper limb movement [33] and functional activities
such as handwriting [34]. Affordable systems allow for objective and accurate assessment of movement
quality using wearable sensors for mobility as well as upper limb movement [1]. However, a review
of objective measures of upper limb functional task performance demonstrated that measurement
of upper limb kinematics relies on inertial sensors in only 2.2% of the cases, whereas in 64.5% of
papers published between 2002 and 2013, the instrument used was an opto-electric or magnetic motion
capture system [24]. These instruments are typically expensive and require special operating conditions
(e.g., somewhere to place the cameras). In order for this ratio to change, assessment of movement
quality based on relatively cheap inertial sensors should rely on valid and reliable measurement. The
current work demonstrated that the validity of the outcome greatly varies, specifically the validity of
outcomes based on angular velocity vs. linear acceleration. Most kinematic outcomes involve measures
of position (e.g., path length) or velocity (e.g., peak velocity, time to peak velocity) [24]. However, the
computation of velocity and position from an inertial sensor is not a trivial problem. Inertial sensor data
are characterized by drift, which accumulates when integrating acceleration to velocity and further to
position. Potential solutions to this problem may include periodic recalibration of the data at rest [29]
which requires manual identification of rest periods, a technique that is labor intensive. The current
work takes a different approach, and shows that by using measures based on yaw, pitch and roll, better
agreement can be reached between DataSpoon and a gold standard motion capture system. More work
is required in order to verify whether these measures accurately capture features of self-feeding in
children and adults with motor impairments. To date, we have demonstrated the initial feasibility of
DataSpoon with children of different ages with and without CP [23], and future work is required to
address its feasibility in other clinical populations. Indeed, in the process of designing DataSpoon,
input from clinicians suggested that some of these measures (e.g., duration, smoothness) are clinically
meaningful to experts in the field [13]. It should be noted, however, that the placement of the inertial
sensor within the spoon itself (and not on the arm/hand complex) limits the ability to capture essential
aspects of motor performance during self-feeding, such as the type of grip, or compensations related to
movements of the wrist, elbow, shoulder and/or trunk [22]. This limitation is common to wearable
sensors which are placed on the end-effector, but may be overcome by adding additional sensors on
proximal body segments. In the current study, a single trakSTAR sensor was placed on the spoon itself
in order to compare its movement with that computed by DataSpoon. Although the sensor and cable
may potentially affect movement kinematics, the cable was exceptionally lightweight and the use of
similar setups in many studies involving various arm movements [35,36] suggest that the effect on
kinematics is minimal. An additional limitation of the current work is the somewhat heavier (38 g)
weight of the DataSpoon compared with an ordinary spoon due to the added board and batteries in
the handle. We expect that the effect of this weight change on external torques during self-feeding
to be minimal since most of the spoon’s weight is located in the handle which is placed close to the
anchor point (i.e., the hand). It is thus unlikely that the kinematics of using the DataSpoon differed
significantly from that of an ordinary spoon. Furthermore, in preliminary feasibility testing with
children [23] the spoon’s weight was not subjectively reported to be an issue. We therefore suggest that
deviations from typical self-feeding kinematics are minimal, supporting future use of the DataSpoon
by people with motor impairment.
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5. Conclusions

Eating with a spoon is characterized by several salient kinematic features: a unidirectional change
in yaw angle for each movement phase, a short-duration change in roll and in pitch angle during
the initial scooping phase, followed by relatively stable roll and pitch angles during the transport to
mouth phase [14]. This work shows that automatic identification of these salient events is possible.
We suggest that using these measures to describe self-feeding kinematics, makes it possible to tap into
functionally-relevant variables associated with efficient performance. In the future, these measures can
potentially be used to provide targeted knowledge of performance feedback [32] in order to modify
self-feeding performance in people with motor impairments.

In this study, measures of duration and of angular range of motion demonstrated excellent
validity. Furthermore, we demonstrate here that kinematic measures based on angular velocity
have higher concurrent validity compared with measures based on linear velocity and acceleration
(peak velocity, fluency) when extracted from a low-cost inertial sensor, possibly due to the larger
computational cost and errors associated with obtaining the latter measures. Future studies will be
performed to validate this approach with atypical populations (e.g., cerebral palsy) where self-feeding
kinematics are impaired [28]. In addition, additional information will be integrated to complement
the DataSpoon, such as a time-coupled trunk movement sensor [22] which will assist identification of
postural compensations.
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Abstract: Gait analysis is a systematic study of human locomotion, which can be utilized in various
applications, such as rehabilitation, clinical diagnostics and sports activities. The various limitations
such as cost, non-portability, long setup time, post-processing time etc., of the current gait analysis
techniques have made them unfeasible for individual use. This led to an increase in research interest in
developing smart insoles where wearable sensors can be employed to detect vertical ground reaction
forces (vGRF) and other gait variables. Smart insoles are flexible, portable and comfortable for gait
analysis, and can monitor plantar pressure frequently through embedded sensors that convert the
applied pressure to an electrical signal that can be displayed and analyzed further. Several research
teams are still working to improve the insoles’ features such as size, sensitivity of insoles sensors,
durability, and the intelligence of insoles to monitor and control subjects’ gait by detecting various
complications providing recommendation to enhance walking performance. Even though systematic
sensor calibration approaches have been followed by different teams to calibrate insoles’ sensor,
expensive calibration devices were used for calibration such as universal testing machines or infrared
motion capture cameras equipped in motion analysis labs. This paper provides a systematic design
and characterization procedure for three different pressure sensors: force-sensitive resistors (FSRs),
ceramic piezoelectric sensors, and flexible piezoelectric sensors that can be used for detecting vGRF
using a smart insole. A simple calibration method based on a load cell is presented as an alternative
to the expensive calibration techniques. In addition, to evaluate the performance of the different
sensors as a component for the smart insole, the acquired vGRF from different insoles were used to
compare them. The results showed that the FSR is the most effective sensor among the three sensors
for smart insole applications, whereas the piezoelectric sensors can be utilized in detecting the start
and end of the gait cycle. This study will be useful for any research group in replicating the design of
a customized smart insole for gait analysis.

Keywords: gait analysis; characterization; smart insole; vertical ground reaction forces; force sensitive
resistors; piezoelectric sensors; sensor calibration

1. Introduction

Gait analysis offers an opportunity for assessment of the act of walking, one of the most important
features of the individual’s use pattern that displays posture in action. By identifying gait kinetics, gait
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kinematics and musculoskeletal activity, gait analysis can be utilized in various applications, such as
rehabilitation, clinical diagnostics and sport activities [1]. Gait kinetics studies the forces and moments
that results in movement of lower extremities during gait cycle. Vertical ground reaction forces
(vGRFs) are the forces between the foot and ground which can be obtained by wearable sensors [2]
and are considered as the main measurement in kinetic analysis. Gait kinetics have recently become
a convenient tool for biomedical research and clinical practice. Different research teams studied the
ability to diagnose or early detection of various diseases using gait analysis [3–5]. Some research teams
used gait analysis in fall detection of elderly people, one of the most common domestic accidents
among the elderly. With smart insoles, the fall event can be detected and doctors or personal who takes
care of the elderly can be notified to take action. In athletic sports where walking, running, jumping
and throwing are involved, gait analysis can be utilized to recognize an athlete’s faulty movement and,
accordingly, enhance it. In addition, gait analysis can play positive role in the rehabilitation process for
several diseases and complications.

Recently, with the development in sensor technologies, gait analysis using wearable systems
became an effective approach [6–8]. Various types of wearable sensors such as force sensors, strain
gauges, magneto-resistive sensors, accelerometers, gyroscopes, inclinometers etc. can analyze different
gait characteristics. Accelerometers were used to conduct gait analysis studies, in which they were
attached to feet or legs to measure the acceleration or velocity of human lateral movements during gait
cycles [4]. Gyroscopes were used in gait analysis to measure the changes in orientation of lower body
extremes with respect to the vertical axis. Goniometers measured the relative rotational motion between
different body segments [2]. Electromagnetic tracking systems were developed as 3D measurement
device that can be applied in the kinematic study of body movements [9].

Gait analysis is typically carried out using a force plate system or multi-camera-based system
to capture the ground reaction forces (GRF) during different gait cycles. However, this method
requires a costly set up and long post-processing time and can measure only limited number of strides.
Therefore, it is not affordable by individuals for personal use [3,8,10]. Instrumented trade mills with
few force plates laid on the trade mill are used by different research groups to mitigate the limitations
of conventional force plates [2], but with treadmills restrictions are still present as subjects need to walk
in a straight line where direction changes and turning cannot be realized. This led to an increase in
research interest towards developing smart insoles, where wearable sensors can be employed to detect
vGRF, joint movements, acceleration of lower extremities, and other gait variables [3,4,11,12]. vGRF is a
useful tool to assess the health conditions of the patient, to enhance the performance of athletes [13–15].
Among different solutions for vGRF measurement, smart insoles have several extra advantages over
force plates and multi-camera systems. Although force plates can measure shear forces and pressure
changes, smart insoles are portable and capable of tracking motions and measuring pressure without
rigid mounting, whereas the camera-based system requires large space for set-up along with long
post-processing time. The smart insole offers flexible, portable, and comfortable solution for vGRF
measurement. It is designed to monitor, process and display plantar pressure using pressure sensors
embedded in the insole [3,4,11,12]. Recently, several off-the-shelf smart insoles have been offered by
some companies (e.g., F-scan [16], MoveSole [17], Bonbouton [18], FeetMe [19] etc.), however, the
commercial systems are very expensive for individual use, making it difficult for a home setting.

The aim of this study is to design and characterize smart insoles to detect vGRF during gait,
with three different types of low-cost commercial force sensor: force-sensitive resistors (FSRs) [20],
ceramic piezoelectric sensors [21], and flexible piezoelectric sensors [22]. All three types of sensor were
calibrated before checking their suitability for smart insole application. A simple low-cost calibration
method based on load cells is presented, mitigating the need to use expensive calibration devices or
Motion Analysis Labs as a calibration reference. This work provides a systematic approach for sensor
calibration guides, which can be replicated easily by other researchers to perform studies on smart
insoles or other body-sensing technologies. To the best of our knowledge, this is the first article to
compare three different low-cost commercially available force sensors for smart insole application.
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The remainder of the article is organized into five sections. In Section 2, a comprehensive review
of the recent works with smart insoles to detect vGRF in gait cycles are summarized. In Section 3, the
experimental details for sensors calibration and insole characterization are presented. In Section 4, the
mathematical analysis of each insole characterization and sensor calibration are explained. Results and
a discussion are presented in Section 5. Finally, we conclude with future recommendations in Section 6.

2. Literature Review

Several research teams focused on fabricating and synthesizing the sensing parts or sensing
fabrics of the smart insoles [23–25]. Sensing fabrics are fibers/yarns with sensing technologies or
electrical components made of fabric materials, offering a flexible alternative to comfortably measuring
human movement. Usually, piezoelectric, piezoresistive and piezo-capacitive materials are used to
fabricate the sensing parts of the sensing fabrics, due to their elastic properties [26,27]. Shu et al. [26]
implemented a low-cost insole with high pressure sensitivity using a fabric pressure sensing array
made by the researchers with a pressure range of 10 Pa to 1000 kPa. It is attached to six locations
corresponding to a polyimide film circuit board that takes the shape of the foot. They were able to
measure the peak pressure, mean pressure, center of pressure (COP), and illustrate different pressure
levels occurring at the six-targeted areas. However, the quality of the gait cycle records was poor,
with irregular peak values, where the common gait shape with two peaks of the heel strike and toe
off cannot be distinguished. Kessler et al. [27] demonstrated a low-cost flexible insole, made with
Velostat and conductive ink electrodes printed on polyethylene terephthalate (PET) substrate. However,
repeatability was a major problem and they proposed an averaging method to reduce the repeatability
issue. However, the proposed method does not provide a generic solution for the force-sensing
problem, it can be utilized only with periodic forces where spatial information is the key. On the other
hand, some research teams used low-cost flexible force sensors to design the smart insoles [28–30]
using commercially available piezoresistive [20], piezoelectric [21,22], capacitive transducers [2], fiber
brag grating [5,31] sensors.

Piezoelectric force sensors are materials that generate electric charges when stressed. However,
there are a few factors which limit the usage of piezoelectric sensors in smart insoles. The parasitic
effect of piezo materials neutralizes the generated charge within a short time. Therefore, sophisticated
electronics are needed to extract resultant charges, and this makes it difficult to use these sensors in
measuring static or slow varying forces. In addition, protection circuits are needed, since piezo sensors
generate high voltage values, which might reach above 100 V with peak vGRF values. Capacitive force
sensors are another alternative force sensor, consisting of parallel capacitor plates that changes the
capacitance in correspondence to applied force/weight. However, they need complex conditioning
circuits and are highly subject to noise [20].

A commonly used body-sensing technology is the piezo-resistive sensor or FSR, which changes its
conductivity based on the applied force. FSR is a polymer thick film (PTF) that is used to measure the
applied force in different applications such as human touch and medical applications, industrial and
robotics applications, and automotive electronics. The main advantages of FSRs are: thin size, very
good shock resistance, low power requirement, fast response to force changes, robustness against noise,
simple conditioning circuits, ability to fabricate using flexible materials, and low unit cost compared to
other commercial force sensors [20]. However, these sensors have some disadvantages that need to be
compensated for, such as non-linear behavior and repeatability error [3].

Bamberg et al. [4] used a combination of different FSRs, piezo electric sensors, accelerometers
and gyroscopes to determine the vGRF. The main advantage of this approach is that it enables the
detection of heel strike and toe off events in each gait cycle. In addition, it helps in estimating foot
orientation and position. Even though gait variability can be analyzed by walking in a straight line,
gait analysis concentrating merely on straight walking or running may not be adequate to interpret gait
variability, since changing walking directions or turning have effects on extrinsic gait variability [11].
Similar research was done recently in [32], where the research group used the FSR sensor to develop
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the smart foot sole which transmits wirelessly the vGRF to a computer, and the patients were asked to
walk on treadmill during the signal acquisition. Liu et al. [11] developed a wearable measuring insole
using five triaxial force sensors in each shoe capable of measuring GRF and center of pressure (COP)
on insole. The GRF results showed a great correspondence between the insole and the reference data.
Kim et al. [33] conducted a similar study, where they have used similar triaxial force sensors and the
sensors performance were tested on seven healthy male subjects. An in-shoe plantar measurement
sensor with 64 sensing points made from an optoelectronics transducer covered with silicon in a matrix
form covering 80% of contact region between the foot and the insole and handling capability of 1MPa
was implemented by De Rossi et al. to measure COP and vGRF [5]. Howel et al. [3] demonstrated the
design of a wearable smart insole using low-cost FSRs for gait analysis. This provided subject-specific
linear regression models to determine the vGRF accurately using simultaneous collected data from
motion analysis laboratory. However, insufficient information was given about the sensors calibration
and the hardware design of the insole and the wireless system to transmit the data to host PC, making
it difficult for other researchers to replicate the work.

Even though systematic sensor calibration with clear steps was followed by different research
teams, expensive calibration devices were used to calibrate the force sensors. Some research teams
carried out the experiments on the smart insoles in motion analysis labs, where simultaneous data
collection from infrared motion capture cameras/RGB depth camera and force plates were done as
reference measurement for the collected insole data [34,35]. In addition, some research teams used a
universal testing machine to apply incremental weight values to sensor active area during calibration.
Barnea et al. [36] used the CETR Universal Micro-Tribometer (UMT)-2 micro tribometer) device for
calibrations, that can apply precise weights in X, Y and Z directions. Marco et al. [5] performed the
sensor calibrations using robotic platform that can precisely apply controllable loads to the desired
positions. Parmar et al. [37] evaluated the performance of 5 different commercial FSRs during static
and dynamic loading with reliable test setups that can mimic realistic conditions when applying
pressure on human limbs. The sensors were evaluated quantitatively based on their accuracy, drift,
and repeatability behaviors. The tested sensors showed lower accuracy levels with static pressures
compared to the dynamic pressure test, with high drift values. This necessitates the need for further
study and analysis on the use of FSRs for static pressure applications.

3. Methodology

This section demonstrates the design of a complete system describing the main blocks of the smart
insole along with illustrations of sensor calibration and insole characterization process.

3.1. Smart Insole Sub-System

Figure 1 shows the complete block diagram of the system, where the pressure sensor array
was placed in a customized shoe above the control circuit. Pressure data were digitized through a
microcontroller before they were sent wirelessly to a host computer for post processing and analysis.
This subsystem was powered by a battery with the help of a power management unit. Pressure data
were analyzed to extract various gait characteristics for different gait applications.
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Figure 1. Smart insole block diagram.

3.1.1. Pressure-Sensing Array

The vGRF during gait cycles can be sensed using one of three alternatives:
A. Force-Sensitive Resistor (FSR)
The FSR exhibits a decrease in resistance as the applied force to the surface of the sensor increases.

FSR sensors from Interlink Electronics [20] were used in this study as shown in Figure 2A. The sensors
have a flexible round active area of diameter 12.7 mm to detect the applied force, with a two flexible
lead wires to connect the sensor to the acquisition circuit. A FSR exhibits a non-linear relation between
the applied force and the sensor’s resistance. In addition, no direct relationship is provided in the
sensor’s datasheet. Therefore, proper calibration must be done prior to the sensor usage.

B. Ceramic Piezoelectric Sensor
A piezoelectric element is a sensor that produces an alternating voltage in response to an applied

dynamic pressure or vibration. With applications related to dynamic forces, the piezoelectric sensor is
highly recommended. When a force applied to the piezoelectric crystal element, the net movement of
both positive and negative ions occurs. When there is a constant or zero pressure, the dipole is not
formed [38]. It is important to mention that the force plate is originally made of piezoelectric material
mounted between two metal plates to produce three-dimensional forces with a special mechanical
arrangement [39]. This comes in different sizes; however, a ceramic piezoelectric element with 12.8 mm
electrode diameter would be suitable to obtain a high-resolution pressure map as shown in Figure 2B.

Figure 2. (A) Force-sensitive resistor (FSR) sensor from Interlink Electronics [20], (B) piezo-electric
sensor from Murata Manufacturing Co. [38], (C) micro-electromechanical systems (MEMS) sensor
LDT0-028K from Measurement Specialties Inc. [40].

C. Micro-Electromechanical Systems (MEMS) Sensor
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The micro-electromechanical systems (MEMS) sensor is a new member of piezoelectric sensors
family (Figure 2C). Similar to ceramic piezo electric sensors, it converts mechanical forces into electrical
signals. However, the MEMS sensor can detect forces in x, y or z axes generating electrical impulses
with positive or negative amplitudes depending on the force direction on a certain axis [40]. MEMS
sensors are useful for detecting human motion sensor due to their flexibility, wide frequency range
(0.001 Hz to 10 MHz), low acoustic impedance, high mechanical strengths, and high stability resisting
moisture, etc. [40].

3.1.2. Data Acquisition System

A. Microcontroller (MCU):
A microcontroller (MCU) was used to collect the data from the sensor and to send to the computer

for classification. Simblee is a very compact and powerful ARM Cortex-M0 MCU with a six channels
10-bit analog-to-digital converter (ADC). It is featured with an inter-integrated circuit (I2C) and serial
peripheral interface (SPI) communication interface, which were required for 9-degree of freedom (DOF)
module. Moreover, it has an incorporated Bluetooth low energy (BLE) 4.0 module, which can be
utilized to send data to the computer. This MCU operates on a power supply between +2.1 to 3.6 V.

B. Multiplexer (MUX)
Since MCU has a limited number of ADC channels whereas the number of sensors is needed for

better spatial resolution of smart insole, it is suggested to use multiplexers (MUX) to reduce the number
of required channels in MCU. A MUX allows several inputs in parallel to be routed into a single output
depending on the input combinations of the data selectors. Active area of these sensors are close
and sixteen sensors were used to create sensors’ array for each leg insole to obtain a high-resolution
pressure map. Therefore, the CD74HC4067 multiplexer from Texas Instruments with 16 input channels
was used in this study [41].

3.1.3. Transmission Techniques

Three commonly used transmission techniques for connected biomedical sensors are ZigBee,
Bluetooth Low Energy (BLE) and Wi-Fi. ZigBee is a two-way wireless communication technique
developed for sensors and control networks, which need a wider range, low latency, low energy
consumption at lower data rates. BLE is an alternative to the classical Bluetooth with higher data rate
and low power consumption within a limited area with low latency at 2.4 GHz. Wi-Fi makes a good
candidate for transmitting data with a data rate of up to 450 Mbps for indoor applications. However, it
imposes latency on the system of more than 25 ms and higher power consumption. Table 1 shows a
comparison between three different communication interfaces.

Table 1. Transmission methods comparison [42–46].

Latency Speed Power Consumption Range

ZigBee 15 ms 250 Kbps 9.3 mA 291 m
Bluetooth Low

Energy
6 ms 1–11 Mbps 4.5 mA 10 m

Wi-Fi ≥25 ms
1.3 Gbps over 5

GHz and 450 Mbps
over 2.4 GHz

35 mA 50 m

Since the smart insole was intended for indoor application, BLE and WiFi both were suitable for
communication interface; however, the higher power consumption and latency made WiFi non-suitable
for smart insole application. Moreover, Simblee MCU has in-built BLE in its small form factor.
Therefore, BLE has been chosen as communication interface.
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3.1.4. Power Management Unit (PMU)

Power supplies were chosen depending on the operating voltage of the system components. The
microcontroller and multiplexer both can operate at 3.3 V. The power management unit (PMU) is
LiPo Charger/Booster module MCP73831 [47] and AMS1117 voltage regulator connected to a Lithium
Polymer (LiPo) battery of 3.7 V (1000 mAh), which was regulated to 3.3 V. The PMU is not only
delivering regulated 3.3 V to the system but also capable to charge LiPo battery.

3.1.5. Host Computer

The acquired data from smart insole can be sent wirelessly to a host computer, where post
processing, thereby displaying the vGRF as pressure maps during gait cycle, was carried out.
The obtained data can be used in different gait analysis applications such as medical diagnostics,
rehabilitation and athlete’s performance assessment.

3.2. Sensors’ Calibration

The first step in designing the smart insole is to calibrate the force sensors that are going to be
used to detect the vGRF during the gait cycle. Three different force sensors were calibrated: FSR [20],
piezo-electric sensor [21] and piezo -vibration sensor [22].

3.2.1. Force-Sensitive Resistor (FSR) Calibration

Firstly, a voltage divider circuit must be used with the sensor to convert the resistance change (due
to applied force) of the sensor to a voltage value, which can be acquired by microcontrollers. Secondly, a
load cell of 5kg from HT sensor technology company [48], with HX711 amplifier modules [15] was used
as a weight reference for FSR calibration (Figure 3). The load cells consist of straight metal bar with two
strain gauge sensors and two normal resistors arranged in a Whitestone bridge configuration, a constant
excitation voltage (3–5 V) can be applied as an input to the circuit and the balanced configuration of
the circuit replicates a zero output voltage in normal conditions when no force is applied. Any force
applied to the load cell results in an unbalanced condition of the bridge leading to small voltage values
in the output that can be detected and converted to force [48]. The load cell has high sensitivity and
can detect as small as 1 gm of weight variation. However, the output voltage from the load cell is very
small, with a maximum value of 5 mV. Therefore, a HX711 amplifier module was used. The amplifier
module has instrumentational amplifier to amplify the signal with a 24-bit ADC that converts the
analog signal from the load cell bridge to digital value that is readable by a microcontroller. The HX711
transmits data to the microcontroller using I2C communication protocol with 10Hz sampling rate [15].

The bar-type load cell was mounted with screws and spacers so that the strain can be measured
correctly (refer Figure 3B). The load cell was placed between two plates with only one side screwed
into each plate/board. This setup provides a moment of force on the strain gauges rather than just a
single compression force, resulting in higher sensitivity to applied forces. The output voltage from the
load cell exhibits a linear relationship with the applied force. This can be calibrated easily with any
small object of known mass such as a coin that weighs a few grams.

A known weight object (ex. a coin) was placed on load cell plate; the calibration factor was
adjusted until the output reading matches the known weight. Once the correct calibration factor is
obtained, it was used to convert the load cell voltages to corresponding weights. The calibration factor
is the slope of output voltage of load cell vs. real weights’ graph. The FSR was attached to adhesive
material on the back face of the active area, which was used to fix the FSR on the scale. A cylindrical
acrylic of 12.7 mm diameter, matching the active area of FSR, was used to apply force on the sensor
only. In addition, a square shaped acrylic plate was glued on top of the cylindrical acrylic to support
the weights, as shown in Figure 3. Then, 500 g weights are placed every 4 to 5 s until 5000 g is reached.
Readings from load cell and FSR circuit are acquired simultaneously by Arduino, which were saved in
a text file in a computer.
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Finally, the FSR output voltage was plotted with respect to the load-cell weight and a mathematical
relationship was derived. The equation was used to convert smarts insole FSR readings into the
corresponding applied pressure by the foot.

Figure 3. FSR calibration setup (A) and load-cell scale (B).

3.2.2. Piezo-Electric Sensor Calibration

The same load-cell module was used for piezo calibration with some modifications (as shown in
Figure 4). Piezo transducers convert the applied mechanical forces into electrical impulses. Therefore,
a high sampling frequency (above 50 Hz) is needed to acquire both the piezo output and the applied
weights from the load cells. HX711 amplifier module samples the data with a low sampling frequency
of 10 Hz. Therefore, the data was acquired directly by the 10-bit ADC of Arduino MCU with a sampling
frequency of 1 kHz. However, AD620AN instrumentational amplifiers [39] were used before the
acquisition step to amplify the small load cell outputs (maximum of 5 mV).

Firstly, a voltage divider circuit was used to reduce the high piezo voltage outputs, which can go
up to 20 V. Secondly, the load cell was calibrated again due to the modification. Three dead weights
of known masses were used: 500 kg, 2500 kg 5000 kg (maximum load for load cell). AD620AN
instrumentational amplifier gain was adjusted to give an output of voltage when maximum load is
applied. This ensures that the full range of the Arduino ADC was utilized. Three dead weights were
added one by one on the scale and the output voltage from load cells were acquired by Arduino. A
linear relationship was fitted between the load cell voltages and applied weights. This relationship
was used to convert the load cell voltage to a corresponding weight.

Unlike the FSR, weights cannot be used to calibrate the piezo sensor, since piezo sensors are
sensitive to dynamic forces only. Therefore, a fast finger press and release is suggested as an alternative.
The calibration can be done by pressing the active area/ceramic of the sensor with various strengths
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and recording the generated electrical signals for each press as shown in Figure 4. Readings from the
load cell and piezo voltage divider circuit were acquired simultaneously by the Arduino MCU. Serial
terminal software was used to store the data in the computer. Load cell readings were plotted against
the piezo output voltage and a linear relationship was derived. The equation was used to convert
smarts insole readings into the corresponding applied weight by the foot.

Figure 4. Piezoelectric sensor calibration setup.

3.2.3. Micro-Electromechanical Systems (MEMS) Sensor Calibration

MEMS sensors produce alternating current (AC) impulses with both positive and negative peaks.
Therefore, little modification was required for the setup of piezo electric vibration sensor, refer to
Figure 5. An offset circuit was added for the piezo-electric acquisition circuit. The piezo-vibration
output voltage was reduced by a voltage divider circuit to ±1/2 Vcc, then adder amplifier was used
to add an offset of +1/2 Vcc, so the new AC signal will be centered around +1/2 Vcc with maximum
value of Vcc and minimum of 0 V. After modifying the acquisition circuit, the piezo electric sensors’
calibration steps were used to calibrate the piezo-vibration sensor.

Figure 5. LDT0-028k MEMS sensor calibration setup.
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3.3. Insole Fabrication

Once the sensors were calibrated, these sensors were separately used to construct the smart insole
for vGRF detection during gait cycles. The FSR sensors and piezo-electric sensors were chosen to
construct two different insoles. While the piezo-vibration sensor was found not suitable for vGRF
detection, the reason of not selecting the piezo-vibration sensor is discussed in a later section. As
shown in Figure 6, the most common place of the foot plane, where most of the pressure is exerted
during gait are the heel, metatarsal heads, hallux and toe.

Figure 6. Area of foot selected for sensors (A), and array of pressure sensor (B) in those areas.

Sixteen sensors were placed on each insole to record pressure values in these areas. While no
sensors were placed on the medial arch area of the foot as most people exert very low/no pressure
on that area due to it is arch shape [49]. Smart insole data were collected from 16 FSRs/piezo-electric
sensors. Sixteen inputs were multiplexed to one output through a 16-to-1 multiplexer and applied to
an ADC input of the microcontroller then sent to host computer. All subjects were asked to place the
sensor’s insole inside their shoes, then placing another layer of insole on top of it to ensure comfort
of the subject while walking. The acquisition and transmission circuit were connected through a
conductive pathway that can help in minimizing the size of the wire and avoiding any electrical hazard.
The insoles were worn by the subject inside his/her own shoe while the acquisition and transmission
circuits were placed inside a 7cm × 7cm box attached to the subject’s leg by an adhesive strap belt while
acquiring the data. Acquired data were sent via Bluetooth to a computer, where they were plotted
and analyzed.

3.3.1. FSR Insole Characterization

Twelve healthy subjects (Table 2) were asked to walk a straight 10 m walkway with self-selected
cadence six times with an average walking speed of 3–4 mile per hour (MPH) and data acquired
at 60 Hz sampling frequency using the smart insole made up of 16 FSRs (Figure 7). On treadmills,
participants are restricted to walk in straight line as direction changes and turning cannot be realized;
however, in the proposed study, the user walked freely in a 10-m walkway and they were asked to walk
in a corridor which has a length of 10m and width of 1.5 m and they did not need to walk completely in
a straight path and the user can walk in self-cadence, which is not possible on a treadmill. Subjects were
asked to place the smart insole in their shoe while wearing cotton socks to avoid any sweat leakage
that might damage the sensors or affect data acquisition from the sensors. Although walking speed is
an important factor in some applications, it is not needed in many gait studies where the main focus is
to detect the vertical ground reaction forces and asses the gait variables. The statistical gait variables
were the symmetry between both feet, percentage of different phases (stance and swing phase) and
sub phases (heel strike, mid-stance, toe off etc.) in a full gait cycle. Those statistical variables were
used in various studies including sports or medical applications for gait analysis, without the need for
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walking speed measurement. However, the walking speed was recorded to see the impact of walking
speed in the vGRF for a gait cycle. The FSR data were converted into force values by the relationship
obtained in the calibration stage. Then 16 sensors’ data were added at each time instance to obtain one
value that represents the full force exerted by the body while walking (i.e., vGRF).

Table 2. Demographic variables of participants.

Number of
Subjects

Age (Year) Weight (kg) Height (cm)
Body Mass

Index (kg/m2)
Gender

7 30.1 ± 13.1 77.3 ± 21.2 159.8 ± 4.9 30.3 ± 7.9 Female
5 52.3 ± 4.8 83.5 ± 3.34 172.7 ± 11.7 28.3 ± 2.9 Male

Figure 7. Smart Insole using FSR sensor: top (A) and bottom (B).

3.3.2. Piezo-Electric Insole Characterization

A similar test was carried out with the piezo-electric sensor based smart insoles (Figure 8). Three
subjects were asked to walk in a 10 m walkway in normal cadence, with three trials carried out by each
subject. The data were acquired with a sampling frequency of 60 Hz.

Figure 8. (A) Piezo insole with 16 piezo sensors, (B) additional insole layer placed on top on piezo
insole to ensure comfortability.

3.4. Performance Evaluation of the Prototype System

A commercial F-scan smart insole system (Figure 9A) was used to validate the designed insole.
The F-scan system is one of the best insoles currently available on the market. The insole comes with
ultra-thin (0.18 mm) flexible printed circuit with 960 sensing nodes. Each sensing element was recorded
with 8-bit resolution with a scanning speed up to 750 Hz. However, the overall cost of the system is
13,000 $ for the wired system and 17,000 $ for the wireless system. On the other hand, the instrumented
insole costs only ~500 $. Usually, the vGRF peak is around ±10% of the subject’s weight. Therefore,
using F-scan software, data collected from each subject was calibrated based on subject’s weight. The
user needs to stand on one foot applying his/her full weight on the insole for 4 to 5 s, then the average
applied weight was calculated. If the value obtained was less than the subject’s weight, the F-scan
software adjusted the output by a multiplication factor. Similar approach was used in the prototyped
FSR insole as well. Figure 9B,C show the F-scan and prototyped system worn by the same subject to
compare the vGRF signal acquired by the individual system.

133



Sensors 2020, 20, 957

Figure 9. F-scan commercial system (A), F-scan system worn by Subject 01 (B) and FSR-based prototype
system worn by Subject 01 (C).

4. Analysis

This section explains the mathematical calculations and analyses used for the sensor calibrations
and insole characterization.

4.1. Sensors’ Calibration

4.1.1. FSR Sensor Calibration

The FSR sensors exhibits resistance change in correspondence to the applied force. Therefore, a
voltage divider circuit was used to convert the resistance changes to voltage values to be acquired
by microcontroller.

Vout = VCC × R
R + FSR

= 5V × 11 kΩ
11 kΩ + FSR

(1)

As the applied force increases, the FSR resistance also decreases, showing an increased output
voltage according to Equation (1). The acquired voltages were then converted to their equivalent FSR
resistance values by substitution of Equation (1).

FSR =
5V × 11kΩ

Vout
− 11kΩ (2)

4.1.2. Piezo-Electric Sensor Calibration

The piezo-electric sensor generates high voltage values, as high as 20 V with weights less than 5
kg, which requires using a voltage divider circuit before data acquisition by microcontroller.

Vmax input = Voltage divider Gain ×VPiezo max (3)

⇒ Voltage divider Gain =
Vmax input

VPiezo max
=

VCC
VPiezo max

=
5V
20V

= 0.25 (4)

Therefore, the voltage divider circuit were chosen as follows:

Vout =
R1

R1 + R2
×VPiezo =

3 MΩ
3 MΩ + 9 MΩ

×VPiezo = 0.25VPiezo (5)

Substituting the maximum piezo voltage in Equation (5) gives:

Vout max = 0.25VPiezo max = 0.25(20V) = 5V (6)

This ensures that maximum microcontroller input voltage (5 V) was not exceeded. The acquired
voltages were then converted to their equivalent Piezo sensor voltage outputs by subject substitution
of Equation (5).

VPiezo =
1

0.25
×Vout = 4Vout (7)
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There are different equivalent electrical models for the piezo-electric sensors [28]. A simplified
common model is a voltage source/generator with a capacitance, which was used in this study. Usually,
the capacitance values are in Nano Farad range. The equivalent capacitance is typically measured
using a parallel connection of a capacitance meter to the sensor. Connecting the piezo-electric sensor to
the voltage divider circuit forms a first order high-pass filter. Therefore, high resistance values in mega
ohms were used to ensure that most of the generated frequencies by the applied forces would pass.
Assuming equivalent capacitance of piezo-electric sensor equal to 9 nF, the cut-off frequency can be
written as:

fcutt−o f f =
1

2πRC
=

1
2π(3M + 9M)9nF

= 1.47Hz (8)

Apart from DC and very low frequency components, other signal components were expected to
be applied to the MCU input. AD620AN instrumentational amplifiers were used to amplify the low
amplitude load cell signals, before it was applied to the microcontroller. The load cells give an output
of maximum 40 mV, which can be amplified to the full-scale range of the analog channel. Therefore,
the gain of the amplifier and the amplifier gain resistor were chosen as follows:

G =
Vcc

Vload max
=

5 V
40mV

= 125 (9)

RG =
49.9k
G− 1

=
49.9kΩ

124
= 402 Ω (10)

4.1.3. MEMS Sensor Calibration

As mentioned previously, the MEMS generates positive or negative amplitude signals based on
the applied force in x, y or z directions. This requires an offset circuit along with a voltage divider
circuit to reduce the signal amplitude. It is assumed the piezo-vibration output can go up to 10 V with
the maximum applied force.

Vmax input = Voltage divider Gain ×VPiezo max (11)

Voltage divider Gain =
Vmax input

VPiezo max
=

VCC/2
VPiezo max

=
5V/2
10V

= 0.25 (12)

Therefore, the voltage divider circuit were chosen as follows:

Vout =
R1

R1 + R2
×VPiezo =

3 MΩ
3 MΩ + 9 MΩ

×VPiezo = 0.25VPiezo, (13)

Substituting the maximum and minimum piezo voltage in Equation (13) gives:

Vout max/min = 0.25VPiezo max/min = 0.25(±10V) = ±2.5V (14)

The next step is to add an offset of 1/2Vcc to ensure that the signal was within 0 V to Vcc range.

4.2. Piezo-Electric Sensor Response

The piezo-electric sensors can detect the applied forces efficiently, by converting the mechanical
movements into electrical signals. However, the movements need to be dynamic. The piezo-electric
sensor generated electrical pulses that mimicked the applied mechanical movement. If the mechanical
movement was a fast press and release of finger on the active area of the piezo-electric sensor, the pulse
was shrunk to an impulse-liked shape.

On the other hand, if a gentle force was applied by a slow press and remove by the palm of a
hand, the generated signal had irregular pulse shape with longer duration compared to the fast finger
press. Even though the piezo-electric sensor’s output can mimic dynamically changing force, it fails to
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detect a static force. Therefore, when the applied force is a mixture of dynamic and static force such as
smart insole application, the piezo-electric sensors cannot be used to acquire static pressure. However,
the piezo-electric sensors can be used to detect heel strike or toe off with good accuracy. Figure 10
illustrates the individual sensor output for the different applied forces.

Figure 10. Piezo insole sensors output with Arduino serial plotter: (A) fast finger press and release,
(B) slow palm press and release, (C) sensors output for two-step walking.

Figure 11 shows the output from a single piezo-electric sensor of an insole for few gait cycles. When
a force was applied vertically on the sensor’s active area (ceramic), it compressed, exerting an electrical
impulse with a positive peak that mimicked the mechanical force applied. The electrical signal went back
to zero. As the applied force was released, the signal continued to some negative values as the piezo
ceramic bounced to the opposite direction of the applied force. Finally, the signal returned to zero. The
microcontroller clipped the negative part of the signal. However, some part of the negative signal was
still there, due to the offset added in the acquisition circuit as illustrated in Figure 11.

Example of a piezo
electric sensors output
when a vertical force is
applied then released

The piezo signal after being
attenuated by the voltage divider circuit,

assuming a factor of (1/15)

Added offset (0.2 0.4V), this could be
added noise picked by the high impedance
resistors of the voltage divider (in Mega

ohms range)

The analog input to the
microcontroller. The negative

part of the signal will be clipped

Removing
the offset ( 0.3)

Multiplying by a gain
(x15) to compensate for the
attenuation by the voltage

divider circuit

Figure 11. Mimicking piezoelectric sensor output during gait cycle.
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5. Results and Discussion

This section illustrates and discuss the results obtained from calibration and characterization tests.

5.1. Sensors’ Calibration

5.1.1. FSR Sensor Calibration

Three calibration trials were undertaken for one FSR sensor from Interlink Electronics [22],
following the calibration procedure explained previously; 500 g weights where placed one by one every
3–4 s until it reached 5000 g, followed by unloading process from 5000 g down to 0 g. In the loading
experiment, output voltage from the voltage divider circuit showed increasing values reflecting the
decrease in FSR resistance as shown in Figure 12A. When the applied weight was constant, the output
voltage remained constant with small variations.

(A) (B)

Figure 12. FSR calibration test (A) applied weight and FSR circuit output vs. time (B) applied weight
vs. FSR resistance.

In addition, if the constant weight was kept for a longer time (a few minutes), the sensor voltage
stabilized to a steady value. However, the aim of this study was to investigate the dynamic response of
the FSR. Therefore, the average output voltage for the sample were calculated and plotted against the
corresponding applied weights. Figure 12B shows the plotted data with the fitted waveform. The
calibration showed slight difference between the loading and unloading curves, which was expected
due to the hysteresis behavior of FSRs. However, the error was caused by the FSR hysteresis, which
can be neglected, as the difference was not significantly high. This can be justified if the response from
the smart insole using FSR sensors resembles typical vGRF reported in the literature.

Off-Loading tests best fit relations:

WeightTrial1 = 5035.2 ∗Resistance−1.72

WeightTrial2 = 3436.5 ∗Resistance−1.895WeightTrial3 = 8111.8 ∗Resistance−2.589

It is evident that the first and third trial relationships were close to each other (Figure 13). Therefore,
either of them can be chosen for the FSR insole. The second trial showed a steaper curve due to higher
hystersis error.
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For each of the three trials, loading and off loading relationships where obtained.
Loading tests best fit relations:

Figure 13. FSR calibration test: best fit curves between applied weight and FSR resistance for three trials.

5.1.2. Piezo-Electric Sensor Calibration

Two piezoelectric sensors were used in the calibration process. Three trials were conducted on
the first sensors with four trials for the second sensor. The piezoelectric sensors showed a linear
relationship with the applied weights (Figure 14).

(A) (B)

Figure 14. Piezo-electric sensor calibration test: (A) applied weight vs. time and piezoelectric output
voltage vs. time (B) applied weight vs. piezoelectric output voltage.

The second and fourth trials for the 2nd piezo sensor had different slopes compared to the
remaining trials. This could be related to the calibration process itself, as the weights were applied by
fast presses and releases on the active area of the sensor. Therefore, applying the force on the exact
same areas is not guaranteed between successive readings. This issue can be overcome by using a
machine to apply the weights. However, this would defeat the purpose of the study in providing a
low-cost setup (Figure 15).
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Figure 15. Piezoelectric sensor calibration test: seven trials shows relationship between the applied
weight and piezoelectric output voltage.

Obtained lines of best fit:

WeightPiezo1Trial1 = 0.42867 ∗ PiezoVoltage− 0.19123

WeightPiezo1Trial2 = 0.41110 ∗ PiezoVoltage + 0.0081012

WeightPiezo1Trial3 = 0.39321 ∗ PiezoVoltage + 0.084656

WeightPiezo2Trial1 = 0.34619 ∗ PiezoVoltage + 0.4105

WeightPiezo2Trial2 = 0.27242 ∗ PiezoVoltage + 0.57351

WeightPiezo2Trial3 = 0.35564 ∗ PiezoVoltage + 0.30325

WeightPiezo2Trial4 = 0.31765 ∗ PiezoVoltage + 0.36416

5.1.3. MEMS Sensor Calibration

Twenty different calibration trials were conducted on a piezo-vibration sensor. However, high
repeatability error persisted, making it difficult to obtain a clear relation between sensor output voltage
and the applied weight. The applied weight showed a direct proportional relation with output voltage
for some successive readings and an inverse relation with some other successive readings. This is
because of the MEMS sensitivity to the applied force in 3-D space (x, y or z directions). It generates 1-D
output voltage with positive or negative amplitude depending on the applied force in certain direction.
Therefore, if the applied force is a summation of forces in 2 or 3 axes, the output voltage might go to
zero or attenuated with the addition of different sign amplitudes.

A linear relation was not clearly obtained by the application of vertical forces, as the applied force
might not be applied in one axis only (Figure 16).
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(a) (b)

Figure 16. MEMS sensor calibration test: (A) applied weight vs. time and MEMS sensor output voltage
vs. time (B) applied weight vs. MEMS sensor output voltage.

The mathematical relations obtained in the calibration phase cannot be used to design a
piezo-vibration sensor-based smart insole, since the applied force in gait can be in any of the x,
y or z directions (Figure 17). Therefore, the piezo-vibration sensor was discarded from the sensor list
for designing smart insole. However, it can be utilized in other biomedical applications where the
force directions are limited to a certain axis or a fixed plane. Moreover, it can be used to detect initial
timing of the applied force. The lines of best fit obtained were:

WeightTrial1 = 1.4145 ∗ PiezoVoltage− 1.3447

WeightTrial2 = 1.5215 ∗ PiezoVoltage− 1.8581

WeightTrial3 = 0.80343 ∗ PiezoVoltage− 0.22721

Figure 17. MEMS sensor calibration test: 3 best trials shows relationship between the applied weight
and MEMS sensor’s output voltage.
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5.2. Insole Charecterization

5.2.1. FSR-Based Insole Characterization

The gait cycle of 12 subjects were recorded while walking on a 10 m walkway in self-selected
walking manner. Each subject had 6 trials recorded, where the first and last few (1 to 3) cycles were
discarded from each trial, and the remaining part of the gait cycles for both feet were considered
for analysis. The gait cycle of one of the subjects is analyzed in the following lines, illustrating a
simple analysis technique that can be replicated in different application by researchers working with
wearable insoles.

In normal gait cycles both heel peak (first peak) and toe off (peak) must show close values, with
both feet having symmetrical signals. Even though the right foot signal showed close peak values
(Figure 18), the left foot signals showed a big variance between the heel-strike and toe-off peaks. This
can be explained, by the sensitivity difference between the FSRs of the insole and their hysteresis
effect. As explained earlier, this issue was mitigated by some research teams using a regression models
that calibrates the FSR insole readings against a reference signal, recorded simultaneously in motion
analysis labs [34,35]. This expensive approach can be neglected in some applications, where the quality
of the acquired signal is sufficient to achieve the desired goal. For instance, smart detection application,
where the machine-learning algorithm can differentiate between different groups of people even with
low- or medium-quality recorded gait cycles (vGRF).

Figure 18. Gait cycles readings for left and right foot with FSR smart insole.

The full gait record was segmented into distinct gait cycles. Then it was resampled into to 512
sample. Segmentation is a common practice to facilitate the comparison between all the gait cycles.
The segmented gait cycles are used in smart detection algorithms where segments of equal length are
used to train specific machine learning algorithms to classify different groups of people based on their
gait. In addition, statistical data of the segmented cycles such as mean, standard deviation, time to
peaks, and percentage of stance phase in a full cycle/stride (stance phase plus swing phase) can be
utilized as a gait analysis tool in sports and medical applications.

The segmentation was carried out by a customized MATLAB code that detects groups of
consecutive non-zero samples. Then it segments those signals into individual stance phases, each
starting with a heel-strike and ending with a toe off. Figure 18 shows the first 10-m trial of one of the
participants, where four gait cycles were extracted after excluding the first and last two gait cycles.
Left foot vGRF was segmented into four stance phases (Figure 19A).
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(A) (B)

Figure 19. (A) Segmented left-foot gait cycles, (B) segmented right-foot cycles.

The data were sampled with a sampling rate of 60 samples/second, where each segment (stance
phase) takes around 0.7 s. Therefore, each segment consists of around 42 samples, which were then
resampled into 512 samples. The mean values and standard deviations of each of the 512 samples with
respect to the 4 segmented signals were calculated. Then the mean values along with the deviation
from the means (means plus and minus the deviation) for the left foot was calculated and plotted
(Figure 20). Similar steps were repeated with left foot vGRF (Figure 20). This provides an illustrative
figure that can be used by in different sport and medical applications to asses walking behaviors
or complications.

Figure 20. Means and standard deviations of gait cycles; blue curves represents the mean gait value of
the left foot with dashed line representing the deviation from the mean, while orange curves represents
the mean gait value of the right foot with dashed line representing the deviation from the mean value.

The vGRF of a subject mainly depends on his/her health condition and the footwear used. In
this study, all participants were advised to wear comfortable walking shoes avoiding high-heel shoes,
especially for female subjects. This ensured that all subjects went through similar condition while
conducting the experiment. It was observed that the collected data did not show any significant
statistical difference based on gender.
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5.2.2. Piezoelectric Sensor Based-Insole Characterization

Three subjects participated in the piezo-electric insole test in the same manner as the testing of
FSR based insole. The piezoelectric insoles were expected to detect the gait cycle, with impulse signals
in heel-area sensors during the heel strike phase and lower amplitude impulses from all the sensors
during the mid-stance phase. Finally, impulse signals from the toe and metatarsal heads sensors were
taken in the toe-off phase. However, the readings were not promising, showing single irregular shape
pulses per sensor for each individual gait cycle. The addition of different sensors output showed
periodic impulses, one impulse per period (Figure 21). This indicates that the full stance period was
detected as one event only. Meanwhile, the correct vGRF must show two distinct peaks between
the mid-stance phase, summing up to three main phases: heel strike, mid stance and toe off. The
rigid nature of the piezo sensor made it difficult to detect different gait phases. Therefore, it can be
summarized that it is not suitable for the smart insole application which requires to produce reliable
vGRF signal due to gait.

(a) (b)

Figure 21. Gait cycles for left and right foot with piezoelectric smart insole (a) subject 1, (b) subject 2.

In this study, the authors have characterized three samples from each sensor category randomly;
however, the smart insole was implemented using 16-sensors. Therefore, it was expected that there
would be a small variation of the vGRF recorded from the smart insole in different trials and in different
subjects. However, Figure 20 clearly depicts that the vGRF from an individual foot has a unique pattern
and this finding matches with the vGRF recorded by the commercial smart insole and force plate. This
reflects the fact that the smart insole designed using FSR is capable of acquiring vGRF reliably and the
designed system is robust enough to adapt to the age, gender and body mass index (BMI) variation of
the participants. However, carbon piezoresistive material (like Velostat), which authors have tested in
preliminary experiments (not reported here in order to avoid unnecessary length of the manuscript),
showed very high hysteresis and this type of material is not suitable for human dynamicity monitoring.
On the other hand, piezoelectric sensors can monitor dynamic pressure variation however, they are
very sensitive to small pressure change and incapable to reliably produce mean vGRF. Moreover, the
vGRF changed over trials and over subjects significantly and, therefore, temporal feature of vGRF
cannot be identified using piezoelectric sensor-based smart insole.

5.3. Performance Evaluation of the FSR-Based System

Comparing the mean and standard deviation of vGRF for a gait cycle of the same subject recorded
using the two systems, commercial F-scan and the proposed FSR insoles, it can be seen that both
showed good quality signals except slight differences in peak values (Figure 22). The FSR insole
showed smaller vGRF during left-foot heel strike phase compared to the F-scan insole. This is an
expected behavior as each sensor is somewhat unique due to the manufacturing process and we cannot
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calibrate individual sensors, which can lead to some variation. In addition, due to the presence of
an insole, the sensitivity of some FSRs decreases more than the others in the shoe. To mitigate this
problem, a highly uniform pressure should be applied across individual sensors. Each sensor should
produce uniform output. When this is not the case for a specific sensor, the software should determine
a unique scale factor to compensate for the output variation. Currently, there are a few companies such
as T-scan, that provide a special piece of equipment (equilibration device) which applies a uniform
pressure on the full insole using a thin flexible membrane to perform such calibration. Moreover,
compared to the F-scan system, the FSR readings showed smaller differences between vGRF peaks
and mid stance values. This was mainly due to the superior number of sensors for the F-scan system
(960 sensing areas) compared to the proposed insole (16 FSRs). In addition, the F-scan sensing elements
were uniformly distributed on the full foot area, while the FSR sensors were placed on the foot areas
where most of the pressure is exerted with no sensors placed on the low-pressure areas (medial arch).
Adding a few FSR sensors to the medial arch can improve the quality of the signal obtained, especially
for subjects with flat foot, who exerts considerable amount of pressure on medial arch areas.

Figure 22. Comparison between the mean and standard deviation of vertical ground reaction forces
(vGRF) from left (blue) and right (orange) foot using F-scan system (A) and FSR-system (B).

6. Conclusions

In this study, the authors have proposed and designed low-cost calibration setups for calibrating
three different force sensors: FSR, ceramic piezoelectric and flexible piezoelectric sensors. The
experiments conducted showed the effectiveness of the proposed setup in calibrating FSR and
piezoelectric sensors, which are mainly affected by 1D force. It was found that the flexible piezoelectric
sensors were performing poor in terms of calibration due to their sensitivity to 3D forces. Special
force calibration machines are required to control the applied force in x, y or z directions. In addition,
a systematic procedure for designing and characterizing two different smart insoles were illustrated.
The vGRF signal acquired and segmented to obtain mean vGRF and its standard deviation for a gait
cycle were calculated, which can be used to measure different statistical metrics (such as mean standard
deviation, time to peak, etc.) that can help in assessing the walking behavior of athletes, patients or
normal people. The FSR-based smart insole was able to acquire high quality vGRF for different gait
cycles. On the other hand, the piezoelectric sensor-based insole failed to detect distinct gait phases. It
cannot be utilized as an alternative to FSR in smart insole application. However, the calibrated piezo
sensors can be utilized in other bio-sensing technologies such as detecting the start and end of each
gait cycle.

144



Sensors 2020, 20, 957

Author Contributions: Experiments were designed by M.E.H.C., N.E. and A.K. Experiments were performed
and experimental data were acquired by A.M.T., S.A.-H., M.A., and S.A. Data were analyzed by A.M.T., M.E.H.C.,
A.K. and N.A.-E. All authors were involved in interpretation of data and writing the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by Qatar National Research Foundation (QNRF), grant number
NPRP12S-0227-190164 and Research University Grant DIP-2018-017. The publication of this article was funded by
the Qatar National Library.

Acknowledgments: The authors would like to thank Engr. Ayman Ammar, Electrical Engineering, Qatar
University for helping in printing the printed circuit boards (PCBs).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kowalski, E.; Catelli, D.S.; Lamontagne, M. Side does not matter in healthy young and older
individuals–Examining the importance of how we match limbs during gait studies. Gait Posture 2019,
67, 133–136.

2. Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283.
[CrossRef] [PubMed]

3. Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic gait analysis using a
low-cost insole. IEEE Trans. Biomed. Eng. 2013, 60, 3284–3290. [CrossRef] [PubMed]

4. Bamberg, S.J.M.; Benbasat, A.Y.; Scarborough, D.M.; Krebs, D.E.; Paradiso, J.A. Gait analysis using a
shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 413–423. [CrossRef]
[PubMed]

5. De Rossi, S.; Lenzi, T.; Vitiello, N.; Donati, M.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C.
Development of an in-shoe pressure-sensitive device for gait analysis. In Proceedings of the 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA,
30 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011.

6. Smart Tracking and Wearables: Techniques in Gait Analysis and Movement in Pathological Aging. Available
online: https://www.intechopen.com/books/smart-healthcare/smart-tracking-and-wearables-techniques-
in-gait-analysis-and-movement-in-pathological-aging (accessed on 9 February 2020).

7. Gurchiek, R.D.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J.; McGinnis, R.S.
Remote gait analysis using wearable sensors detects asymmetric gait patterns in patients recovering from
ACL reconstruction. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and
Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019; IEEE: Piscataway, NJ, USA,
2019.

8. Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing gait in parkinson’s disease using wearable
motion sensors: A systematic review. Diseases 2019, 7, 18. [CrossRef] [PubMed]

9. Mills, P.M.; Morrison, S.; Lloyd, D.G.; Barrett, R.S. Repeatability of 3D gait kinematics obtained from an
electromagnetic tracking system during treadmill locomotion. J. Biomech. 2007, 40, 1504–1511. [CrossRef]

10. Huang, E.; Sharp, M.T.; Osborn, E.; MacLellan, A.; Mlynash, M.; Kemp, S.; Buckwalter, M.S.; Lansberg, M.G.
Abstract TP173: Feasibility and Utility of Home-Based Gait Analysis Using Body-Worn Sensors. Stroke 2019,
50, ATP173. [CrossRef]

11. Liu, T.; Inoue, Y.; Shibata, K. A wearable ground reaction force sensor system and its application to the
measurement of extrinsic gait variability. Sensors 2010, 10, 10240–10255. [CrossRef] [PubMed]

12. Razak, A.; Hadi, A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review.
Sensors 2012, 12, 9884–9912. [CrossRef] [PubMed]

13. Alam, U.; Riley, D.R.; Jugdey, R.S.; Azmi, S.; Rajbhandari, S.; D’Août, K.; Malik, R.A. Diabetic neuropathy
and gait: A review. Diabetes Ther. 2017, 8, 1253–1264. [CrossRef] [PubMed]

14. Farahpour, N.; Jafarnezhad, A.; Damavandi, M.; Bakhtiari, A.; Allard, P. Gait ground reaction force
characteristics of low back pain patients with pronated foot and able-bodied individuals with and without
foot pronation. J. Biomech. 2016, 49, 1705–1710. [CrossRef] [PubMed]

15. Sacco, I.C.; Picon, A.P.; Macedo, D.O.; Butugan, M.K.; Watari, R.; Sartor, C.D. Alterations in the lower limb
joint moments precede the peripheral neuropathy diagnosis in diabetes patients. Diabetes Technol. Ther. 2015,
17, 405–412.

145



Sensors 2020, 20, 957

16. Dabbah, M.A.; Graham, J.; Petropoulos, I.N.; Tavakoli, M.; Malik, R.A. Automatic analysis of diabetic
peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal
microscopy imaging. Med. Image Anal. 2011, 15, 738–747. [CrossRef] [PubMed]

17. International Diabetes Federation: IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/
epidemiology-research/diabetes-atlas/19-atlas-6th-edition.html (accessed on 9 February 2020).

18. Dworkin, R.H.; Malone, D.C.; Panarites, C.J.; Armstrong, E.P.; Pham, S.V. Impact of postherpetic neuralgia
and painful diabetic peripheral neuropathy on health care costs. J. Pain 2010, 11, 360–368. [CrossRef]

19. Dyck, P.J.; Overland, C.J.; Low, P.A.; Litchy, W.J.; Davies, J.L.; Dyck, P.J.B.; O’brien, P.C. Signs and symptoms
versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial.
Muscle Nerve 2010, 42, 157–164.

20. Taksande, B.; Ansari, S.; Jaikishan, A.; Karwasara, V. The diagnostic sensitivity, specificity and reproducibility
of the clinical physical examination signs in patients of diabetes mellitus for making diagnosis of peripheral
neuropathy. J. Endocrinol. Metab. 2011, 1, 21–26. [CrossRef]

21. Watari, R.; Sartor, C.D.; Picon, A.P.; Butugan, M.K.; Amorim, C.F.; Ortega, N.R.; Sacco, I.C. Effect of diabetic
neuropathy severity classified by a fuzzy model in muscle dynamics during gait. J. Neuroeng. Rehabil. 2014,
11, 11. [CrossRef]

22. England, J.; Gronseth, G.; Franklin, G.; Carter, G.; Kinsella, L.; Cohen, J.; Asbury, A.; Szigeti, K.; Lupski, J.;
Latov, N. Practice Parameter: Evaluation of distal symmetric polyneuropathy: Role of laboratory and genetic
testing (an evidence-based review) Report of the American Academy of Neurology, American Association
of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and
Rehabilitation. Neurology 2009, 72, 185–192.

23. Zhang, Q.; Wang, Y.L.; Xia, Y.; Wu, X.; Kirk, T.V.; Chen, X.D. A low-cost and highly integrated sensing insole
for plantar pressure measurement. Sens. Bio-Sens. Res. 2019, 26, 100298. [CrossRef]

24. Zhang, W.; Yin, B.; Wang, J.; Mohamed, A.; Jia, H. Ultrasensitive and wearable strain sensors based on
natural rubber/graphene foam. J. Alloys Compd. 2019, 785, 1001–1008. [CrossRef]

25. Sengupta, D.; Pei, Y.; Kottapalli, A.G.P. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane
Composite Foams as Piezoresistive Sensors. ACS Appl. Mater. Interfaces 2019, 11, 35201–35211. [CrossRef]
[PubMed]

26. Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.D.; Tao, X. In-shoe plantar pressure measurement and analysis
system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775. [PubMed]

27. Giovanelli, D.; Farella, E. Force sensing resistor and evaluation of technology for wearable body pressure
sensing. J. Sens. 2016, 2016. [CrossRef]

28. Feasibility of Force Detection in 3D Printed Flexible Material Using Embedded Sensors. Available
online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10970/109702F/Feasibility-
of-force-detection-in-3D-printed-flexible-material-using/10.1117/12.2514051.short?SSO=1 (accessed on
9 February 2020).

29. Heng, W.; Pang, G.; Xu, F.; Huang, X.; Pang, Z.; Yang, G. Flexible Insole Sensors with Stably Connected
Electrodes for Gait Phase Detection. Sensors 2019, 19, 5197. [CrossRef]

30. Lee, W.; Hong, S.-H.; Oh, H.-W. Characterization of Elastic Polymer-Based Smart Insole and a Simple Foot
Plantar Pressure Visualization Method Using 16 Electrodes. Sensors 2019, 19, 44. [CrossRef]

31. Theodosiou, A.; Kalli, K. Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer
optical fibres. Opt. Fiber Technol. 2020, 54, 102079. [CrossRef]

32. Abdelhady, M.; van den Bogert, A.; Simon, D. A High-Fidelity Wearable System for Measuring Lower-Limb
Kinetics and Kinematics. IEEE Sens. J. 2019. [CrossRef]

33. Kim, J.; Bae, M.N.; Lee, K.B.; Hong, S.G. Gait event detection algorithm based on smart insoles. ETRI J. 2019.
[CrossRef]

34. Vilas-Boas, M.d.C.; Rocha, A.P.; Choupina, H.M.P.; Cardoso, M.; Fernandes, J.M.; Coelho, T.; Cunha, J.P.S.
TTR-FAP Progression Evaluation Based on Gait Analysis Using a Single RGB-D Camera. In Proceedings of
the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019.

35. Cui, X.; Zhao, Z.; Ma, C.; Chen, F.; Liao, H. A Gait Character Analyzing System for Osteoarthritis Pre-diagnosis
Using RGB-D Camera and Supervised Classifier. In Proceedings of the World Congress on Medical Physics
and Biomedical Engineering, Prague, Czech Republic, 3–8 June 2018; Springer: Berlin, Germany, 2018.

146



Sensors 2020, 20, 957

36. Barnea, A.; Oprisan, C.; Olaru, D. Force Sensitive Resistors Calibration for the Usage in Gripping Devices.
Diagn. Predict. Mech. Eng. Szstems DIPRE 2012, 3, 18–27.

37. Parmar, S.; Khodasevych, I.; Troynikov, O. Evaluation of flexible force sensors for pressure monitoring in
treatment of chronic venous disorders. Sensors 2017, 17, 1923. [CrossRef]

38. Insole Energy Harvesting from Human Movement Using Piezoelectric Generators. Available online:
https://trepo.tuni.fi/handle/123456789/25768 (accessed on 9 February 2020).

39. Development of a Smart Insole System for Real-Time Detection of Temporal Gait Parameters and Related
Deviations in Unilateral Lower-Limb Amputees. Available online: https://scholarlyrepository.miami.edu/
cgi/viewcontent.cgi?article=1393&context=oa_theses (accessed on 9 February 2020).

40. Sacco, I.; Amadio, A. A study of biomechanical parameters in gait analysis and sensitive cronaxie of diabetic
neuropathic patients. Clin. Biomech. 2000, 15, 196–202. [CrossRef]

41. Menz, H.B.; Lord, S.R.; St George, R.; Fitzpatrick, R.C. Walking stability and sensorimotor function in older
people with diabetic peripheral neuropathy1. Arch. Phys. Med. Rehabil. 2004, 85, 245–252. [CrossRef]
[PubMed]

42. Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of Bluetooth Low Energy, ZigBee
and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless
Symposium (IWS), Beijing, China, 14–18 April 2013; IEEE: Piscataway, NJ, USA, 2013.

43. Sacco, I.; Amadio, A. Influence of the diabetic neuropathy on the behavior of electromyographic and sensorial
responses in treadmill gait. Clin. Biomech. 2003, 18, 426–434. [CrossRef]

44. Kwon, O.-Y.; Minor, S.D.; Maluf, K.S.; Mueller, M.J. Comparison of muscle activity during walking in subjects
with and without diabetic neuropathy. Gait Posture 2003, 18, 105–113.

45. Akashi, P.M.; Sacco, I.C.; Watari, R.; Hennig, E. The effect of diabetic neuropathy and previous foot ulceration
in EMG and ground reaction forces during gait. Clin. Biomech. 2008, 23, 584–592. [CrossRef] [PubMed]

46. Sacco, I.C.; Akashi, P.M.; Hennig, E.M. A comparison of lower limb EMG and ground reaction forces between
barefoot and shod gait in participants with diabetic neuropathic and healthy controls. BMC Musculoskelet.
Disord. 2010, 11, 24. [CrossRef]

47. Gomes, A.A.; Onodera, A.N.; Otuzi, M.E.; Pripas, D.; Mezzarane, R.A.; Sacco, N.; Isabel, C. Electromyography
and kinematic changes of gait cycle at different cadences in diabetic neuropathic individuals. Muscle Nerve
2011, 44, 258–268.

48. Sawacha, Z.; Spolaor, F.; Guarneri, G.; Contessa, P.; Carraro, E.; Venturin, A.; Avogaro, A.; Cobelli, C.
Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait Posture 2012,
35, 101–105.

49. Zhu, H.; Wertsch, J.J.; Harris, G.F.; Loftsgaarden, J.D.; Price, M.B. Foot pressure distribution during walking
and shuffling. Arch. Phys. Med. Rehabil. 1991, 72, 390–397.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

147





sensors

Article

Photoplethysmographic Time-Domain Heart Rate
Measurement Algorithm for Resource-Constrained
Wearable Devices and its Implementationt

Marek Wójcikowski * and Bogdan Pankiewicz

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk,
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Abstract: This paper presents an algorithm for the measurement of the human heart rate, using
photoplethysmography (PPG), i.e., the detection of the light at the skin surface. The signal from
the PPG sensor is processed in time-domain; the peaks in the preprocessed and conditioned PPG
waveform are detected by using a peak detection algorithm to find the heart rate in real time.
Apart from the PPG sensor, the accelerometer is also used to detect body movement and to indicate the
moments in time, for which the PPG waveform can be unreliable. This paper describes in detail the
signal conditioning path and the modified algorithm, and it also gives an example of implementation
in a resource-constrained wrist-wearable device. The algorithm was evaluated by using the publicly
available PPG-DaLia dataset containing samples collected during real-life activities with a PPG sensor
and accelerometer and with an ECG signal as ground truth. The quality of the results is comparable to
the other algorithms from the literature, while the required hardware resources are lower, which can
be significant for wearable applications.

Keywords: heart rate; photoplethysmography; PPG; time-domain; wearable device

1. Introduction

Advancements in modern technologies enabled field monitoring of some parameters of
human health [1]; for example, heart monitoring is used for off-hospital monitoring and in
fitness and professional sport activities. The most commonly measured value is the heart rate
(HR), although advanced applications also use other values, e.g., pulse irregularity, as well as
biometric identification or analysis of accurate electrical signals that cause heart contraction, i.e.,
electrocardiography (ECG) [2]. Accurate ECG requires connecting electrodes to the patient’s body
in several different places, which is inconvenient for the patient, and it can be used only in certain
situations. A much more convenient method is measuring the pulse on the wrist by using photoelectric
methods. The skin of the wrist is irradiated with single or multicolor light, and then the reflected light
is measured. The intensity of the reflected light depends on the absorption of the skin, which depends
on the blood volume supplied to the tissues. In this way, the received signal contains information
about the current blood supply to the vessels near the measuring device. This method, introduced by
Hertzman [3], is known as photoplethysmography (PPG). Unfortunately, PPG signals obtained from a
moving person’s wrist are weak, distorted, and contain noise. The noise level is often higher than a
usable PPG signal. Correct analysis of a low-quality PPG signal is a very challenging task and can
consume significant processing time, energy, and resources.
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Heart rate estimation from wrist PPG is now a popular area of investigation, and many algorithms
for such a task have been proposed [4]. Some of them require significant computing power and
memory usage, blocking their application in small portable low-power devices. There are two main
approaches used: time-domain sophisticated filtering and frequency-domain processing. Both are often
accompanied by a movement sensor (accelerometer) for movement-based artefacts/spectrum removal.

A straightforward approach toward heart rate estimation is peak detection in a periodic signal.
One of the simplest possibilities is to use threshold or auto-threshold values in the signal time
window [5,6]. Another way is to use transforms such as continuous wavelet [7] or Hilbert [8]. In [9],
a nonlinear filter bank was used, with variable cutoff frequencies. In [10], the detection algorithm
was based on a time-varying autoregressive model, with a Kalman filter used for autoregressive
parameter estimations. Hidden Markov models were used in [11] for combining structural and
statistical knowledge of the signal in a single parametric model. A neural network adaptive whitening
filter to model the lower frequencies of the signal is presented in [12]. Much recent work is concentrated
on methods using time-frequency spectra [13,14] and deep-learning approaches [15–17]. A review of
the current state-of-the-art signal-processing techniques for HR estimation from a wrist PPG signal can
be found, for example, in [4,18].

The proposed solution of time-domain heart rate measurement algorithm (TDHR) consists of
three main blocks: signal conditioning, peak detection, and heart-rate-measuring blocks. In this work,
the modified Automatic Multiscale-based Peak Detection (AMPD) algorithm from [19], together with a
bandpass filter/limiter, was used for finding the HR from a wrist-based PPG signal. All of the signal
processing was done while taking into account the need for low power, low resources, and computing
power utilization, necessary for a self-sufficient mobile sensor. The main contributions of this paper
are as follows:

• A two-stage input-signal-conditioning digital nonlinear filtering block with limiter;
• Application of the AMPD algorithm for HR peak detection;
• Modification of the AMPD algorithm toward efficient implementation in low-power

resource-constrained hardware;
• The proposition of a time-domain heart-rate-measuring algorithm with an accelerometer-based

false measurement removal.

This paper is organized as follows. In Section 2, the signal conditioning block is described,
which is followed by the peak detection algorithm described in Section 3 and the heart rate calculation
block presented in Section 4. The proposed algorithm was evaluated by using a multi-hour dataset;
the results of the evaluation and the comparison to the other solutions from the literature are presented
in Section 5. Section 6 contains the details of the implementation in a low-power wearable device.
Finally, conclusions are provided in Section 7.

2. Signal Conditioning

PPG-signal measuring is usually done with an infrared (IR), red, or green light-emitting diode
(LED) as the light source and a photodetector (PD) receiving the reflected or transmitted light.
Often, instead of one, a few LEDs and/or PDs are used, providing the possibility to choose the best
observed signal or to use additional preprocessing, such as, for example, averaging. Two measure
modes can be used: reflectance and transmission. In the first case, the LED and PD are placed on the
same skin surface, close to each other; the typical spacing between the PD and LED is in the range
of 5–15 mm. The PD measures the light reflected from the tissue. In transmission mode, the LED
and PD are placed on the opposite sides of a human body part, and the light reaching the PD goes
through the whole body part. The commonly used places on a human body for such PPG devices are
the fingertip, wrist, earlobe, forehead, torso, ankle, and nose [18,20]. The wrist is the most convenient
place to mount the monitoring device for everyday life, but this is not optimal regarding the strength
of the signal. Due to the relatively large thickness and the presence of bones, only the reflectance
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method of measurement is practical on the wrist. In Figure 1, the waveforms of the signal received
from the sensor in reflectance mode on the index finger and on the outer wrist, where a watch is usually
worn, are presented. A useful signal carrying information about the pulse is present in the form of
the peaks with the period of about 30–40 samples superimposed on the curve. As shown in Figure 1,
the amplitude of these peaks for the signal measured at the finger is about 200, while the amplitude
measured at the wrist is much lower, about 30–50, while the average signal level (baseline) is about
11,100.

Figure 1. Photodetector(PD) waveforms: raw signals obtained from photoplethysmography (PPG)
sensor in reflective configuration placed on the index tip (dotted line) and on the wrist (continuous line).

As can be seen from the waveforms from Figure 1, the signal from the wrist is much weaker;
moreover, each signal has a variable offset, and it contains noise and interference. To extract the heart
rate in a time-domain, the signal must be preprocessed, so that the peak detection algorithm can find the
peaks. The simplest approach is to use a band-pass filter that can help to reduce the noise and eliminate
the constant component of the signal. Such a solution is in common use [4]. However, the signal at the
input of the filter can have significant changes of the constant component, as well as signal fluctuations
caused by wrist movement, resulting in large peaks and oscillations at the output of the band-pass
filter, as can be seen in Figure 2a,b.

(a) 

Figure 2. Cont.
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(b) 

(c) 

Figure 2. Waveforms of the signals from the PPG detector: (a) the raw signal; (b) the raw signal from
(a) filtered only by a band-pass filter; and (c) the raw signal from (a) filtered first with the limiting
section described in the paper and then by the same biquadratic filter as used in (b).

The proposed approach for PPG signal acquisition and processing is presented in Figure 3. The
raw signal obtained from the PD is fed, in the first step, to the band-pass biquad section, with an
internal limiter. The output value of the standard biquad section using direct version I is given by
Equation (1):

yi =
1
a0
(b0xi + b1xi−1 + b2xi−2 − a1yi−1 − a2yi−2), (1)

where yi is i-th output sample; xi is i-th input sample; a0, a1, and a2 and b0, b1, and b2 are, respectively,
the denominator and nominator coefficients of the biquad transfer function. The biquad section with
the internal limiter works in two steps: First, it calculates candidate yC,i for the output value, according
to Equation (1), and then it uses Equation (2) to update the actual output value:

yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yC,i if LL ≤ yC,i ≤ LH

LL if yC,i < LL

LH if yC,i > LH

, (2)

where LL and LH are the limiter’s parameters. These parameters should be selected so that the PPG
signal from the heart contractions will remain intact, while distortions resulting from hand movements
should be cut off. Figure 2a shows the PPG signal containing distortions taken from a wrist. For this
case, the limiter parameters should therefore cut off these high distortions, while the small sawtooth
waveform should not be affected. The signal after the bandpass filter does not contain a constant
component, as is presented in Figure 2b. In the case of the signal from Figure 2b, good choices for
the LL and LH parameters’ values could be −150 and 150, respectively. Figure 2c shows the results of
preprocessing for such a limiter, together with the band-pass biquad section. In general, these values
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for a given PPG system should be selected as about 100–150% of the negative and positive amplitude
of the useful signal, respectively.

 

Figure 3. Block diagram of PPG signal acquisition, preprocessing, and final HR estimation by
TDHR algorithm.

In the second stage of the proposed preprocessing block, a typical fourth-order band-pass filter
built from two biquads was employed. The band-pass of both stages was set to 0.5–2.5 Hz.

The introduction of the limiting section in the form of a single biquad stage significantly reduces
the rapid changes of the signal at the input of the band-pass filter and improves its recovery after a rapid
change of the constant component in the input signal. An example of distorted signal, together with
the accelerometer readouts, is presented later in this paper.

3. Peak Detection

The conditioned signal from the detector was used as an input to the block responsible for finding
the peak values of the signal; the heart rate can then be easily calculated from the detected peaks.
The detection of peaks is based on the AMPD algorithm [19]. The AMPD algorithm has the capability to
work with noisy periodic and quasi-periodic signals. It needs the input signal to be linearly detrended,
but the use of the input filter of band-pass characteristic with the limiter described in the previous
section satisfies this requirement. The AMPD algorithm performs well for the filtered PPG signal, but it
is computationally expensive, which can be unacceptable for wearable devices. The need to calculate
a large matrix with real-valued elements, where moving windows are used, can be avoided due to
the modifications of the algorithm proposed in further parts of this paper. This section starts with
the detailed description of the AMPD algorithm, and then the proposed modifications are introduced.
In this way, the authors wanted to make it easier for the reader to track changes that were applied to
the original algorithm, without having to refer to the reference.

The main part of the AMPD algorithm is the Local Maxima Scalogram (LMS) matrix M of elements,
mk,i, which is calculated for the discrete uniformly sampled signal x = [x1, x2, . . . , xN] in the analyzed
window, where N is the constant number of samples, and scale k defines the moving window of
varying length, wk, according to Equation (3):

mk,i =

⎧⎪⎪⎨⎪⎪⎩0 xi−1 > xi−k−1 ∧ xi−1 > xi+k−1

r + 1 otherwise
, (3)

where wk = 2k | k = 1,2, . . . , L, k is k-th scale of the signal, L = ceil(N/2) − 1, and r is a uniformly
distributed random number of values [0,1]. The values of mk,i are calculated for every scale k and i = k
+ 2, k + 3, . . . , N − k + 1.

Having calculated the LMS matrix, the next step in the AMPD algorithm is to calculate the
scale-dependent distribution of zeros in the LMS, by calculating vector γ = [γ1, γ2, . . . , γk]:

γk =
N∑

i=1

mk,i for k ∈ {1, 2, . . . , L} (4)
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and the global minimum of γ, λ = arg min(γk). The value of γ is used to obtain the matrix Mr, which is
the matrix M with deleted bottom rows for k > λ. The peaks are then found for indexes, i, for which
the column-wise standard deviation, σi, is equal to zero:

σi =
1
λ− 1

λ∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝mk,i − 1

λ

λ∑
k=1

mk,i

⎞⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (5)

Parameter λ enables the determination of how many rows of matrix M should be used for
calculating the matrix Mr. The noisier the signal from the PPG sensor, the larger the value of λ.

In this paper, the authors propose modifying the AMPD algorithm toward a more efficient
implementation. From practical observation, it has been inferred that the signal is too noisy, and it is of
no use for peak detection and heart rate calculation, when we have the following:

λ > λmax (6)

The value of λmax = 17 was found empirically to be a good choice. Therefore, it is practical to
assume a priori, that the signals for which the condition (6) is true are of no use and the full matrix
M is not used. To save the memory, only the matrix Mr, instead of M, can be calculated and stored
together with the vector γ.

Processing and storing floating point values, mk,i, requires storage space and processing resources.
To simplify the processing, the authors propose replacing real-valued elements of matrix Mr with the
matrix Mr’ containing 1-bit binary values, m’k,i, as follows:

m′k,i =

⎧⎪⎪⎨⎪⎪⎩0 xi−1 > xi−k−1 ∧ xi−1 > xi+k−1

1 otherwise
. (7)

This saves a lot of the device’s memory, requires only integer operations, and results in another
simplification: Instead of calculating the column-wise standard deviation σi from Equation (5),
calculating the column-wise summation presented in Equation (8) can be used:

si =
λ∑

k=1

m′k,i. (8)

As the m’k,i are 1-bit binary values, si can be calculated with fast integer summation. The indices
of peaks pi can be located by finding all indices, i, for which si = 0. The values of σi and si, together with
the values of γk were shown in Figure 4b,c, for an exemplar input signal (Figure 4a).

The PPG signal from a wrist is weak, as can be seen in Figure 2c, and when sampled, the situation
of a “flat” peak with two equal values for samples ti-1 and ti, as shown in an example in Figure 5,
can sometimes occur. Such a peak would neither be detected by the AMPD algorithm nor its modified
version proposed in this paper. To improve the peak detection in such a case, an additional rule was
introduced: The peak is also detected at time t’i.

t′i =
ti−1 + ti

2
(9)

for which the following simple condition (10) holds for si from Equation (8):

si-2 > 1 ∧ si-1 = 1 ∧ si=1∧ si+1 > 1. (10)

The proposed simplified peak detection algorithm was compared to the original AMPD algorithm
presented in [19]. For this purpose, the PPG signals from the PPG-DaLia database [15] were used, and the
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detected peaks were compared. As the original AMPD peak detection algorithm uses a random variable
to fill the LMS matrix, its results are slightly different from run to run, depending on the seed value of the
random number generator. The results are very similar, while the modified version can be implemented
more efficiently. An example is presented in Figure 6: the arrows indicate the missing peaks, which were
exclusively detected by the other algorithm. It can be seen that only a few peaks are differently detected.

(a) 

(b) 

(c) 

Figure 4. Sample of (a) filtered input PPG signal, (b) calculated and normalized values of σi from
Equation (5) and si from Equation (8), and (c) calculated values of γk from Equation (4).
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Figure 5. An example of special case of a “flat” peak consisting of two equal values at ti-1 and ti.

(a) 

(b) 

Figure 6. Comparison of the results of the peak detection algorithm proposed in this paper (a) with the
AMPD peak detection algorithm (b) from [19] on the same waveform. The arrows indicate the peaks
not detected by one of the algorithms but detected by the other one. All other peaks were detected at
the same positions, by both methods.

The presented example uses an unfiltered PPG signal to present the robustness of the algorithm.
The signal after filtration would be more regular; thus, the differences in the results between the two
versions of the algorithm would be even smaller.

4. Heart Rate Calculation

In an ideal situation, where the patient is not moving, the detected peaks from the peak detection
algorithm can be directly used to calculate the heart rate. However, the PPG signal can be seriously
distorted by the movement of the patient. Each movement of the patient can cause a change in the
saturation of the tissues with blood, and a sensor displacement on the wrist, which results in artefacts
in the signal received by the optical detector. To mitigate this problem, the accelerometer is used for
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detecting the movement of the patient’s hand. The movement data are aligned with the detected peaks,
and the periods between the peaks which are affected by movements are discarded from the calculation
of the pulse period. The example of the elimination of the patient’s movement is presented in Figure 7.

(a) 

(b) 

(c) 

(d) 

Figure 7. Elimination of the patient’s movement from pulse-signal detection: (a) the PPG signal
distorted with the patient’s movement; the areas in gray are excluded from pulse period calculation due
to the detected movement; (b) acceleration values read from the accelerometer placed together with the
heart rate detector on the wrist, (c) and the values of movement di from Equation (11); (d) signal di after
threshold, as in Equation (12), and with the eliminated short-term peaks (the eliminated peak is shown
with a dotted line).

To find the time periods that will be excluded from period calculations, first the acceleration
values from the accelerometer are differenced to obtain the movement indicator, di, according to the
following equation:

di =
1
G

√
(gx,i − gx,i−1)

2 +
(
gy,i − gy,i−1

)2
+ (gz,i − gz,i−1)

2, (11)
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where i is the index of the sample; gx,i, gy,i, and gz,i are the acceleration values read from the accelerometer
for axes X, Y, and Z, respectively; and G is a constant value used for normalization to obtain di ∈ [0,1]
for all i and for the acceleration values in gx,i, gy,i, and gz,i in the accelerometer’s full measuring range.
The movement values, di, are then compared to the constant, H, to obtain a digital binary signal Vi:

Vi =

⎧⎪⎪⎨⎪⎪⎩1 di > H

0 otherwise
(12)

Signal Vi is then filtered in time, to eliminate spikes longer than Ts. The values of H and Ts were
experimentally set to H = 0.0025 and Ts = 500 ms for the accelerometer range ±2 g.

For the final result of the heart rate, the inverse of the median of the periods between the peaks not
affected by the movement is calculated. For a valid result, a minimal number of peaks, P, is required,
and it is calculated as shown in Equation (13):

P = f loor
(

N · BPMmin

60 fs

)
, (13)

where fs is the sampling frequency, and BPMmin is the minimal heart rate required to be measured by
the system.

5. Evaluation on Dataset

For the purpose of evaluating the algorithm, the PPG-DaLia database [15], containing more than
35 h of data recorded from 15 persons, was used. The database contains signals collected from a
PPG sensor, accelerometer, and ECG, where the ECG is used as ground truth. As described in [15],
ground truth heart rate values were obtained from an ECG signal processed by R-peak detection
algorithm [21]. Then, the detection results were manually inspected and corrected, mainly for a
few cases where significant motion was observed. The ECG signal was segmented with a shifted
window; ground truth heart rate was finally calculated as the mean heart rate within each window.
The signals were collected during eight different types of typical daily life activities, under controlled
but close-to-real-life conditions. This dataset is the longest one available to the authors. The accuracy
of the algorithm was evaluated by using the mean absolute error (MAE) metric of beats per minute
(bpm), calculated by using the sliding window approach of length 8 s, with a 2 s shift, according to the
following equation:

MAE =
1
W

W∑
j=1

(
BPMest( j) − BPMre f ( j)

)
, (14)

where W is the total number of windows, BPMest(w) is the heart rate in bpm for window j, and BPMref(j)
is the reference heart rate obtained from the ECG ground truth signal for the same window j.
This evaluation method is commonly used in related work [14,15,22,23].

The quality of the signal and the possibility of the measurement are checked in the TDHR
algorithm. When the measurement is not possible due to not satisfying Equation (6), i.e., λ > λmax or
due to movement detected by the accelerometer affecting all of the periods between the detected peaks,
the measurement result is indicated as invalid. The evaluation of the algorithm is performed in two
ways: (i) When the result is not available, the last valid result is used; (ii) only valid results are used to
calculate the performance metric; and then the percentage of the valid samples is also given. The results
of the evaluation, together with the performance of the SpaMa [14], SpaMaPlus [15], Schaeck2017 [23],
CNN average, and CNN ensemble [15] algorithms are presented in Table 1. The TDHR algorithm was
evaluated for several lengths of the sliding window: N = 1024 (32 s), N = 512 (16 s), N = 256 (8 s),
and N = 128 (4 s).
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Table 2 presents the comparison of the computational cost of several algorithms. For the TDHR
algorithm, the number of operations per second was estimated from a manual analysis of the C code as
the number of arithmetic operations needed to obtain a single heart-rate result. The TDHR algorithm
requires only a few parameters, as opposed to the CNN algorithms, but it needs storage memory for
calculating the LMS array; the size of this memory depends on the window length, N.

Table 2. Comparison of the performance versus computational cost of the TDHR algorithm and the
algorithms from the literature. The computational cost of the TDHR algorithm was calculated as the
number of arithmetical operations and the number of memory bytes needed for algorithm realization
in a microcontroller.

Algorithm
Performance

Mean MAE ± STD
(% = Only Valid Measurements)

Computational Cost

Number of
Parameters/Memory Bytes

Operations Per
Second

CNN average 8.82 ± 3.8 8.5 M 34.5 M

CNN ensemble 7.65 ± 4.2 60 M 240 M

CNN constrained 9.99 ± 5.9 26 K 190 K

TDHR N = 1024 10.96 ± 4.49
66 k 2.4 M

TDHR N = 1024 6.77 ± 3.26 (72%)

TDHR N = 512 11.31 ± 4.41
16 k 598 k

TDHR N = 512 7.65 ± 3.30 (74%)

TDHR N = 256 12.66 ± 4.25
4 k 152 k

TDHR N = 256 9.70 ± 3.21 (76%)

TDHR N = 128 14.92 ± 4.16
1 k 40 k

TDHR N = 128 13.37 ± 3.46(82%)

As can be seen from Tables 1 and 2, the performance of the proposed TDHR algorithm is similar
to SpaMa, SpaMaPlus, and Schaeck2017, while it is worse than CNN average, CNN ensemble, and CNN
constrained. The computational costs of SpaMa, SpaMaPlus, and Schaeck2017 are not known, but they
can be high, as those algorithms require the calculation of the power spectral density and the analysis
of the PPG spectrum. The CNN-based algorithms, even CNN constrained, require larger computational
costs than most versions of the TDHR algorithm. The proposed algorithm uses the mechanism of
removing the time periods with body motion registered by the accelerometer, so there can be gaps
between valid measurements in the case of long-lasting motions. The presented results in Tables 1
and 2 can help to select N to achieve a compromise between the accuracy and computational cost.

6. Implementation

The proposed algorithm was implemented in low-power wearable hardware and tested.
The hardware consists of the main board, power supply PCB, with external coil for wireless inductive
charging, and a LiPo battery of capacity 110 mAh. A block diagram of the hardware is presented
in Figure 8. As the processing unit, a PSoC6 microcontroller from Cypress was used. This is an
ultra-low-power microcontroller with dual processor architecture: Arm Cortex M4 and M0+ cores.
A BH1790GLC optical sensor from Rohm detects the PPG signal and also drives the four green 527 nm
LEDs, equally placed in a circle of diameter of 6 mm, with the optical sensor placed in the center. The
detector detects the light emitted by the LEDS and reflected from the patient’s skin. An LSM6DSL
accelerometer from STMicroelectronics is mounted on the same board as the optical sensor. The optical
sensor and the accelerometer are connected to the microcontroller via an I2C bus, used for configuration
and data transfer.

160



Sensors 2020, 20, 1783

 
Figure 8. Block diagram of the device implementing the algorithm for measuring the heart rate.

The software for heart rate measurements runs on the Cortex M4 processing core of the PSoC6
microcontroller. The algorithm presented in this paper was written in C as two tasks running on the
FreeRTOS operating system: The first task constantly reads data from the sensors, realizes filtering,
and buffers data. The second task starts periodically and executes the peak detection algorithm, using
data from the buffer. The calculated heart rate is sent wirelessly, using the Bluetooth Low Energy
protocol. For this purpose, a built-in BLE transceiver in PSoC6 device was used. According to the
BLE nomenclature, in the proposed solution, the BLE transceiver block was configured to perform
a peripheral (a device constrained in resources such as energy and computing power) and server
role (a device working as a data source and sending that data to the remote master device). As a
data format, standard BLE Heart Rate Profile was used. The values of the measured heart rate are
transmitted periodically; the user can receive the transmitted values by connecting any Bluetooth
receiver compatible with Heart Rate Profile.

The PPG signal is sampled with 14-bit resolution and with frequency fs = 32 Hz, using a buffer of
N = 128 . . . 1024 samples, which enables data from 4 to 32 s to be analyzed, depending on the selected
value of N, compromising accuracy versus computational cost and memory usage.

The prototype device was built and installed inside a custom-made 3D-printed case with a rubber
strap, as shown in Figure 9. The size of the printed case (without the rubber strap) is 11.7 × 26 × 46
mm. The cost of the components, including the battery, was about $60, at retail prices, for 15 pieces.
The proposed implementation was capable of continuous measuring of the heart rate for more than
24 h.

  
(a) (b) 

Battery 

Power Supply Main Board 

Coil 

4xLEDs 

PD 

Figure 9. The prototype implementation of a wrist sensor for heart rate measurements with the
implemented TDHR algorithm: (a) the picture of the internal modules and parts; (b) the picture of the
final device with strap. The main board has the dimensions of 20 × 30 mm.
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7. Discussion and Conclusions

Nowadays, there are many smart watches on the market that are capable of measuring the heart
rate. The details regarding the optical part of the measurement, such as the number of sensors or the
wavelengths of the LEDs used during measurement, are often revealed. However, the details regarding
the algorithms used are not available. Most of the publications focus on measuring the accuracy of the
popular devices. In [24], the authors measured the performance of Apple’s iWatch Apple Watch Sport
42 mm (first generation), during cardiopulmonary exercise test (CPET). They observed MAE from 6.34
to 7.55. It is difficult to exactly compare this to our results, as we use different and longer test conditions.
In fact, the details of the PPG algorithms can only be found in the scientific publications, where the
authors try to increase the accuracy of the measurement by using novel ideas and powerful techniques.

In this paper, a time-domain algorithm for the real-time detection of the heart rate was
presented. The algorithm is aimed at wearable, resource-constrained devices, where battery capacity,
processor speed and memory size are constrained. The algorithm processes raw data in a time-domain
and requires only a few parameters. The approach is simple, the proposed algorithm has a reasonable
accuracy, and it can be implemented in a typical (not DSP) microcontroller.

The algorithm consists of a two-stage input-signal-conditioning block with a limiter, the peak
detection block, and period calculation block. The two-stage input conditioning block is built out of two
digital bandpass filters, where the first filter has been modified to process data nonlinearly, to provide
fast recovery after large signal transients. The use of band-pass filters is very simple to implement; it
appeared sufficient and very effective for conditioning the signal; therefore, other methods such as
wavelet-based baseline removal would not need to be considered.

The peak detection block enables operation at significantly lower processing and implementation
costs, compared to the original AMPD algorithm. The period calculation block uses the median to
calculate the heart rate based on the time differences between the peaks, with the use of an accelerometer
to exclude the time periods affected by body movement.

In this study, most of the parameters were set experimentally, as we targeted on a simple and
economical hardware implementation. It would be interesting to provide a method of automatic and
dynamic adjustment of the parameters to further reduce the computational cost, basing on the input
signal quality and the movement readouts. This will be a topic of our further research.

The proposed algorithm was evaluated in several variants, for different sliding window lengths, N,
providing the possibility to compromise the accuracy versus lower operational costs. The authors mainly
used N = 1024, which seems to be a good compromise between the calculation cost and the accuracy.
The proposed algorithm was compared to the other algorithms from the literature. The achieved
accuracy is comparable to the other algorithms at smaller computational costs. The proposed solution
was also implemented in a low-power wrist-wearable device.

Author Contributions: Conceptualization, B.P. and M.W.; methodology, M.W.; software, M.W.; validation, M.W.;
formal analysis, M.W.; investigation, B.P. and M.W.; resources, M.W.; data curation, M.W.; writing—original draft
preparation, M.W. and B.P.; writing—review and editing, M.W. and B.P.; visualization, M.W.; supervision, M.W.;
project administration, M.W.; funding acquisition, M.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was partially supported by the DS Programs of Faculty of Electronics, Telecommunications
and Informatics, as well as National Centre for Research and Development, Poland, project “E-Pionier—using the
potential of universities to improve the innovation of ICT solutions in the public sector”, No. 17/02/2018/UD.

Acknowledgments: The authors would like to thank Małgorzata Szczerska for her initiative in organizing research
and raising funds for research.

Conflicts of Interest: The authors declare no conflict of interest.

162



Sensors 2020, 20, 1783

References

1. Rault, T.; Bouabdallah, A.; Challal, Y.; Marin, F. A survey of energy-efficient context recognition systems
using wearable sensors for healthcare applications. Pervasive Mob. Comput. 2017, 37, 23–44. [CrossRef]
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Abstract: Motor coordination deficit is a cardinal feature of autism spectrum disorder (ASD).
The evaluation of coordination of children with ASD is either lengthy, subjective (via observational
analysis), or requires cumbersome post analysis. We therefore aimed to use tri-axial accelerometers to
compare inter-limb coordination measures between typically developed (TD) children and children
ASD, while jumping with and without a rhythmic signal. Children aged 5–6 years were recruited to
the ASD group (n = 9) and the TD group (n = 19). Four sensors were strapped to their ankles and
wrist and they performed at least eight consecutive jumping jacks twice: at a self-selected rhythm and
with a metronome. The primary outcome measures were the timing lag (TL), the timing difference
of the maximal acceleration of the left and right limbs, and the lag variability (LV), the variation of
TL across the 5 jumps. The LV of the legs of children with ASD was higher compared to the LV of
the legs of TD children during self-selected rhythm jumping (p < 0.01). Additionally, the LV of the
arms of children with ASD, jumping with the rhythmic signal, was higher compared to that of the TD
children (p < 0.05). There were no between-group differences in the TL parameter. Our preliminary
findings suggest that the simple protocol presented in this study might allow an objective and accurate
quantification of the intra-subject variability of children with ASD via actigraphy.

Keywords: motor variability; actigraphy; triaxial accelerometers; jumping

1. Introduction

Autism spectrum disorder (ASD) is defined by impairments in social communication and/or the
presence of repetitive or restricted behaviors. The prevalence of ASD in the United States is reported
as one in 68 children [1]. Aside from social difficulties, motor impairments are prevalent in individuals
with ASD and worsen with age [2]. Motor impairments in individuals with ASD might affect both
gross and fine motor functions, e.g., manual dexterity and balance [3]. Specifically, motor coordination
deficit was characterized as a cardinal feature of ASD [3].

To date, the accuracy level of the diagnostic tests of ASD are relatively limited [4]. Specifically,
standardized motor assessments for children with ASD take between 15 min to over one hour
to complete [5]. It has been recently suggested that simple quantitative measures of motor
coordination may assist in the identification of subtle motor impairments in individuals with ASD [5,6].
Early detection of abnormalities in the coordination abilities of the child may assist clinicians in
devising an optimal treatment plan, e.g., engaging children with ASD in ball games [7]. Therefore,
devising a quick and simple protocol for an examination that produces accurate quantitative measures
of the child’s coordination capabilities is a challenge for future studies.

Sensors 2020, 20, 2769; doi:10.3390/s20102769 www.mdpi.com/journal/sensors165
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Previous studies characterizing coordination abnormalities in children have attempted to use
rhythmic signals, e.g., via a metronome, to analyze movement synchronization. For example,
coordination abnormalities in children with ASD were measured while performing various multi-limb
actions with a metronome, such as marching and clapping [8]. The coefficient of variation (CV) of
the inter-event duration was obtained as a variability measure by analyzing recorded video data.
The authors reported that children with ASD exhibit higher CV compared to typically developed (TD)
children, but there was no difference in the CV between two groups of children with ASD, with lower
and higher intelligence quotient (IQ) [8]. However, using video recordings of the child in the clinical
setting might not be appreciated by their parents. Moreover, the post analysis is cumbersome and does
not produce quick results.

Wearable tri-axial accelerometry is a simple and effective mean to record activity in individuals
with ASD. Actigraphy was previously used to report physical activity levels in individuals with
ASD [9] and the effects of various factors (for example age [10], social engagement with adults [11],
and household structure [12]) on the physical activity levels of these individuals. Additionally,
actigraphy has been used to monitor sleep patterns in individuals with ASD [13,14], demonstrating, for
example, that sleep latency, as measured by actigraphy, was longer in individuals with ASD compared
to controls [15]. Another study showed that an accelerometer worn by youth with ASD can predict
aggression to others, one minute before it occurs [16]. Overall, the literature supports the usage of
wearable tri-axial accelerometers with individuals with ASD. However, to the best of our knowledge,
no studies utilized these sensors to assess lower and upper limb coordination in children with ASD
while performing a quick and simple jumping activity. Furthermore, rhythmic auditory cueing was
suggested as a technique to stabilize the variability in the movement pattern and facilitate a motor plan
for individuals with ASD [17]. Since the effect of a rhythmic signal on the coordination measures while
performing jumping activity has not been reported, our aim was to compare inter-limb coordination
measures between TD children and children ASD, while jumping with and without a rhythmic signal.

2. Methods

2.1. Population

We recruited children, aged 5–6 years, diagnosed with ASD according to the criteria listed
in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Exclusion
criteria were inability to understand and/or comply with simple instructions, other pathologies, e.g.,
epilepsy, orthopedic impairments, uncorrected auditory or visual impairments, cognitive disability.
Age-matched TD children were recruited as controls. The study received the approval of the Helsinki
committee of the hospital (approval #0119-13-SMC).

2.2. Tools

Four Actigraph™ sensors (GT3X; ActiGraph, Pensacola, FL, USA) were used in this study.
These are small (3.8 × 3.7 × 1.8 cm) and lightweight (27 g) sensors, easily donned on the limbs of the
subjects using elastic belts. The sensors provide accelerations in three axes and can be activated at a
frequency of 30 Hz. These sensors have been extensively used in various populations of different ages,
as recently reviewed in [18]. Specifically, the sensors have been used in children with ASD [12]. For the
rhythmic signal, a digital metronome was set to 1 Hz. This frequency was chosen following a pilot
with TD children, by setting the metronome to various frequencies and asking the children which was
their preferred comfortable choice of jumping frequency.
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2.3. Protocol

The parents signed an informed consent form and the child gave verbal consent to participate in
the trial. The parents filled out a demographic questionnaire. Then, two sensors were attached to the
wrists of the child and two to the ankles using elastic belts. The child was asked to ambulate with the
sensors and report any inconvenience. Then, the child was asked to perform at least 8 consecutive
jumping jacks (also called star jumps). The jumps were demonstrated before data recording began.
This was performed twice: once at a self-selected rhythm and once guided by the metronome, located
1 m behind the subject.

2.4. Post Analysis

The data from each accelerometer were downloaded to a personal computer and then exported as
CSV files using Actilife™ software version 5.10.0 (ActiGraph, Pensacola, FL, USA). A custom code was
created in LabView (v2015, National Instruments, Austin, TX, USA). The acceleration magnitude was
calculated using the accelerations of the 3 axes, Ax, Ay, and Az, as:

Limb acceleration
[m
s2

]
=

√
A2

x + A2
y + A2

z (1)

Five consecutive jumps were taken (the first and last jumps were excluded from the analysis as
initiation and termination of movement). We designed this protocol to include a small number of
jumps because a longer jumping sequence might involve fatigue, which will produce bias in the results
of limb accelerations. Also, the cooperation levels and concentration span of 5-year-olds in the clinical
settings might be low, so that a longer examination might not be possible. The maximal acceleration
of each limb of each jump was calculated. Also, the timing of the peak acceleration (in seconds) of
each jump was calculated and the following inter-limb timing measures were computed using the
following formulas:

TL [sec] =
∑
(tL − tR)

5
(2)

LV [sec] =

√∑
TL2 − (

∑
TL)2

5

5
(3)

The timing lag (TL) is the difference in the timing of the maximal acceleration of the left lower or
upper limb (tL) and right lower or upper limb (tR), averaged for five consecutive jumps. It is defined
similarly as constant error of two measures (left and right limb herein) that are expected to be
identical during symmetric movement [19,20]. A positive TL value denotes that the left limb reached
maximal acceleration sooner compared to the right limb. As the TL value decreases towards zero,
the coordination of the two limbs in reaching maximal acceleration is higher, meaning that they are
more in-phase. The lag variability (LV) is the variation of TL across the 5 jumps. It is defined in a similar
manner as variable error of two measures and produces the average of the standard deviation [19].
High LV is indicative of low consistency between jumps. These measures are calculated separately for
each condition, with and without the metronome rhythm, and presented in seconds.

All of the statistical analyses were performed in IBM SPSS Statistics 25. Mann–Whitney U test
was used to test for between-group differences in age and body mass index (BMI), and the Chi-square
test was used to test for between-group differences in sex. ANOVA analysis of group (ASD and
TD) × condition (with and without metronome) was performed. Post hoc tests were administered
according to the findings. Effect size estimates, r, for Mann–Whitney non-parametric tests were
calculated according to [21]:

r =
Z√
N

(4)

Statistical significance was set to p < 0.05.
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3. Results

The personal characteristics of the two groups are detailed in Table 1. There were no significant
differences between the two groups in age, sex, and BMI.

Table 1. Median and interquartile ranges of demographic characteristics of the subjects.

TD (n = 19) ASD (n = 8) p Value

Age (years) 5.0 (4.4–6.0) 5.2 (5.0–6.6) 0.322
Sex 8 girls, 11 boys 2 girls, 6 boys 0.395

BMI (kg/m2) 14.4 (13.6–16.7) 15.4 (13.4–16.7) 0.710

TD: Typically Developed; ASD: Autism Spectrum Disorder; BMI: Body Mass Index.

The maximal limb accelerations of each group in each condition, as well as the coordination
parameters of the upper and lower limbs are presented in Table 2. There was a significant main effect
of group, but there was no main effect of condition. Specifically, the TD children reached higher
accelerations of their left limbs during self-selected rhythm jumping compared to children with ASD
(Figure 1). In that condition, the LV of their legs were lower compared with the LV of the legs of
children with ASD (Figure 2). Additionally, the LV of the arms in TD children, jumping with the
rhythmic signal, was lower compared to that of the ASD group (Figure 2).

Figure 1. The maximal acceleration (m/s2) of the (a) left leg with self-selected rhythm and (b) left arm
with self-selected rhythm in Typically Developed (TD) children and children with Autism Spectrum
Disorder (ASD).
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Figure 2. The lag variability of the (a) legs with self-selected rhythm and (b) arms with rhythmic signal
in Typically Developed (TD) children and children with Autism Spectrum Disorder (ASD).
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4. Discussion

We compared inter-limb coordination measures between TD children and children with ASD,
while performing jumping jacks with and without rhythmic signal. Our main findings show no effect
of the rhythmic signal on the coordination measures. However, children with ASD exhibited high
variability in limb coordination, as shown by the LV measure, compared to the TD children. This is the
first study to report a difference in an inter-limb coordination measure between children with ASD and
TD children, performing a simple, quick four-limb jumping activity.

While the maximal value of the limb accelerations was not a primary outcome measure of
this study, we report lower accelerations in the ASD group compared to the TD group (statistically
significant for the left leg and arm during self-selected rhythm jumps and not significant but showing
the same trend for the other limbs and the rhythmic signal condition). This finding is expected,
as several publications report slower repetitive hand and foot movement assessed with standardized
test batteries in individuals with ASD, as reviewed by Gowen and Hamilton [22]. Also, drumming
movements of children with ASD were reported as slower compare to TD children [23].

There was no statistically significant main effect of the rhythmic signal, provided during the
jumping activity. Since there are reports of impaired early auditory pathways in ASD [24], the timing
of motor neuron transmission in our ASD group may have been influenced by delayed auditory
processing, rendering the cues unhelpful or even disturbing to the task execution. This explanation
was suggested in a study that compared the cadence during an auditory-cued two-legged hopping task
between TD and ASD groups [25]. While the TD group showed a high performance of synchronizing
their jumps with the cues, the ASD group showed a varied deviant response to the cueing [25].
In·our study, however, we did not test for synchronization between the rhythmic signal and the
movements of the children. Therefore, we cannot attest to the success or failure of the metronome
in regulating the jumping sequence. Our results suggest that the rhythmic signal has no effect on
the inter-limb coordination or its variability between jumps in children (with or without ASD) while
performing jumping jacks.

Surprisingly, we found no statistically significant differences in the TL outcome measure between
the two groups. This finding suggests similar inter-limb coordination between TD and ASD children
performing jumping jacks. We assume that this finding can be explained by the simplicity of the
chosen activity. Contrarily to marching or drumming activities, which involve out-of-phase inter-limb
movement, jumping jacks comprise of in-phase symmetrical limb movements. It was suggested that
this type of activity produces a simultaneous activation of homologous muscle groups [26]. Therefore,
the complexity of motor planning required for the activity chosen for this study might be smaller
compared to activities such as gait. We assume that the deficits in motor planning in children with ASD
contributed to the inter-limb coordination deficits in the studies reported in the literature due to the
more complex task chosen. Conversely, for the jumping jacks activity, we surmise that the main factor
influencing coordination is not motor planning, but the sense of proprioception. The ability to perform
inter-limb coordinated movements relies, among other factors, on an intact sense of proprioception [27].
It has been reported that the sensory input of individuals with ASD is intact. Specifically, studies
demonstrated no deficit in proprioception in individuals with ASD. For example, the accuracy and
precision of the proprioceptive estimates of identifying the angle of the elbow and the position of
the fingertip in adolescents with ASD was similar to adolescents without ASD [28]. We therefore
conclude that the similarity in the TL between the ASD and TD groups relates to the characteristics of
the jumping activity, selected for this study, which relies more on the sense of proprioception then on
motor planning.

As expected, children with ASD exhibited high variability in limb coordination, i.e., high LV
measures, compared to the TD children. This means that while the inter-limb asynchronization in TD
children was consistent across consecutive jumps, the inter-limb asynchronization in children with ASD
varied between consecutive jumps, and this difference was statistically significant. High intra-individual
variability is considered a marker for ASD [29,30]. The high intra-individual variability in ASD was
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demonstrated for measures such as reaction time [31,32], hand grip strength [29], finger tapping [29],
drumming [23], and walking tasks [29,33,34]. Our research makes an important contribution to the
literature as it demonstrates the ability to perform objective quantitative discrimination between TD
children and children with ASD using a simple and quick protocol of a four-limb activity. This protocol
could be used in future studies to investigate differences in intra-subject variability between groups of
children with ASD of different sex, age, and level of IQ.

The main limitation of this study is the small sample size of the ASD group. Future studies should
be encouraged by our preliminary results and continue the investigation on a larger population of
children with ASD. Another limitation concerns the placement of the sensors, attached to the wrist and
ankles of the subject. Although there were no between-group differences in BMI, slight variability
of limb length between the children is expected. Accordingly, the maximal acceleration values may
have been influenced by this, so that higher acceleration values would be measured when the sensor is
located further from the shoulder or hip joint. This limitation, however, has no effect on the values
of the TL and the LV since the calculations of these measures consider the difference between both
limbs. Also, the metronome frequency, set to 1 Hz, might not have been suited to all participants and
they might have ignored it. Finally, although we report coordination deficits in children with ASD,
these could be attributed to differences in IQ, motivation, or imitation ability.

In conclusion, our preliminary findings suggest that the simple protocol presented in this study
might allow an objective and accurate quantification of the intra-subject variability of children with
ASD via actigraphy. This method should be further explored to discern between groups of children
with ASD and other populations with motor dysfunction.
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Abstract: This study aimed to evaluate the motion accuracy of novice and senior students in Baduanjin
(a traditional Chinese sport) using an inertial sensor measurement system (IMU). Study participants
were nine novice students, 11 senior students, and a teacher. The motion data of all participants
were measured three times with the IMU. Using the motions of the teacher as the standard motions,
we used dynamic time warping to calculate the distances between the motion data of the students and
the teacher to evaluate the motion accuracy of the students. The distances between the motion data
of the novice students and the teacher were higher than that between senior students and the teacher
(p < 0.05 or p < 0.01). These initial results showed that the IMU and the corresponding mathematical
methods could effectively distinguish the differences in motion accuracy between novice and senior
students of Baduanjin.

Keywords: motion capture; inertial sensor measurement systems; motion accuracy; Baduanjin;
physical education

1. Introduction

Traditional Chinese sport has been a compulsory component of Physical Education (PE) in
universities in China since 2002 [1]. Although there are various traditional Chinese sports to choose
from, 76.7% of universities taught martial arts in their PE curriculum [2]. In 2016, the Communist Party
of China and the Chinese government adopted the ‘Healthy China 2030’ national health plan [3]. In this
plan, Baduanjin was identified as a traditional Chinese sport that was promoted and supported by the
government. This resulted in increased Baduanjin teaching and research in universities throughout the
country [4].

Although universities in China must incorporate traditional Chinese sports into their PE
curriculum, there have been problems with its implementation. These include a high student-teacher
ratio, uninteresting forms of teaching-learning resources, and an incomplete assessment system.
These three problems adversely affected the requirements for teaching quality set by the People’s
Republic of China Ministry of Education [5,6]. Although the high student–teacher ratio has been a
problem since 2005, it has yet to be resolved [7,8]. Teachers are not able to provide individual guidance
to each student because of the large number of students in the class. As a result, teachers cannot correct
all the students’ mistakes, and students are not aware of their incorrect movements [9].

In recent years, motion capture (Mocap) has been widely applied in fields such as clinical and
sports biomechanics to distinguish between different types of motions or analyze differences between
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motions [10,11]. Studies have also applied Mocap in PE for adaptive motion analysis to evaluate the
motion quality of learners and feedback the information to assist them in detecting and correcting their
inaccurate motions. In the study by Koji Yamada et al. [12], a system based on Mocap was developed
for Frisbee learners. Researchers used the Kinect device to obtain 3D motion data of learners during
exercise, detect their pre-motion/motion/post-motion, and display the feedback information to improve
their motions. The results showed that the system developed by the researchers can effectively improve
the motions of learners [12]. Chen et al. [13] applied Kinect in Taichi courses in universities. The 3D
data of motions from novice students captured by Kinect were compared with an expert in order to
evaluate the quality of motions and students were informed of their results. The research showed that
the motion evaluation system on Kinect developed by the researchers accelerated learning by novice
Taichi students. More recently, Amani Elaoud et al. [14] used Kinect V2 to obtain red, green, blue and
depth (RGB-D) data of motion. They used these data to compare the differences between novice
students and experts on the central angles of points that affect throwing performance in handball.
These experiments show how researchers have used various categories of Mocap.

Based on different technical characteristics, the application of Mocap in PE can be divided into
four categories: optoelectronic system (OMS) [15], electromagnetic system (EMS), image processing
systems (IMS), and inertial sensor measurement system (IMU) [16]. In these four Mocap categories,
OMS is the most accurate and is considered to be the gold standard in motion capture [16,17]. However,
OMS requires a large number of high-precision and high-speed cameras that will inevitably result in
issues related to cost, coordination, and manual use [18]. Moreover, OMS cannot capture the movement
of objects when the marker is obscured [19]. These deficiencies have limited the practical application
of OMS in PE. The advantage of EMS over OMS is that it can measure motion data of a specific point
of the body regardless of visual shielding [20]. However, EMS is susceptible to interference from
the electromagnetic environment which distorts measurement data [21]. Also, EMS has to be kept
within a certain distance from the base station, which limits the use range [22]. IMS has better accuracy
compared to EMS and an improved range compared to OMS [16]. Most studies have used low-cost
IMS (such as the Kinect device) to capture motion for analyzing motion in PE. However, there are some
disadvantages in low-cost IMS, namely low-accuracy, insufficient environment adaptability, and limited
range of motion because the Kinect sensor has a small field of vision [16]. High-performance IMS
does not have these shortcomings. Generally, high-performance IMS has favorable accuracy and a
good measurement range. However, high-performance IMS requires expensive high quality and/or
high-speed cameras which has limited its application [16].

Based on the disadvantages of low-cost IMS in its application in PE, applying IMU (a motion
capture consisting of an accelerometer, gyroscope, and a magnetometer) in PE may mitigate these
application problems [23]. In recent years, the development of technology has reduced the cost of
IMU, making it possible to be used in PE. The validity of assessing motion accuracy of IMUs has
been confirmed. Poitras et al. [24] confirmed the criterion validity of a commercial IMU system
(MVN Awinda system, Xsens) by comparing it to a gold standard optoelectronic system (Vicon).
Compared to low-cost IMS, IMU has certain advantages in environmental adaptability and a sufficient
range of motion. The IMU does not require any base station to work, which means it is the most mobile
of the available motion capture systems [16]. Moreover, IMU can measure high-speed movements and
is non-invasive for the user, making it an attractive application for PE [16,25].

However, there are a few issues capturing motions using IMU. First, the IMU sensors are sensitive
to metal objects nearby which distort the measurement data [16]. Therefore, participants should wear
fewer metal objects when capturing motion using IMU. Fortunately, in traditional Chinese martial
arts such as Baduanjin, exercisers should, in principle, wear traditional Chinese costumes without
any metal, which minimizes the impact of metals on IMU sensors. Second, a common IMU system,
Perception Neuron 2.0, was used in our research which uses data cables to connect all sensors with a
transmitter. Although users cannot wear this wired IMU system on their own, it does not affect the
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accuracy of the data. Also, the latest IMU overcomes this problem that users can’t wear it on their own
by having each sensor transmit the data to the external receiving terminal directly [26].

Therefore, we propose applying IMU in Baduanjin by developing a system that assesses and
records the quality of motions to assist teachers and students in determining inaccurate motions.
Using IMU, students can learn Baduanjin independently after class and teachers can evaluate students’
progress, which is useful for formative assessment. That may alleviate current problems faced in
PE classes in Chinese universities. For this purpose, we explored the feasibility of using an IMU to
distinguish the difference in motion accuracy of Baduanjin between novice and senior students.

2. Materials and Methods

2.1. Overview

This study consists of three sections, namely recruiting and selecting participants, capturing motion
data of Baduanjin participants on IMU, and processing and analyzing the motion data. We invited
teachers and students from a university in Southwest China to participate in the study. We divided
them into three groups—teachers, novice students, and senior students. We captured motion data
of all participants on IMU when they practised Baduanjin. The motion data were converted to
quaternions and analysed in two different ways. The first way was based on the quaternions of motion,
where dynamic time warping (DTW) was used to calculate the distances between the quaternions of
the teacher and the two groups of students (novice and senior). The motion accuracy of the students
was expressed by distances. DTW is a classic similarity method to solve the time-warping issue in
similarity computation of time series [27]. Compared with the other methods, namely the hidden
Markov model (HMM) and symbolic aggregate approximation (SAX), the taken time of DTW is
shorter [28,29]. Considering that, in the actual teaching, students need to get feedback information
and a large number of student data in realtime, we adopted DTW in the study. The second way used
the extracted key-frames to calculate distances. Based on the quaternions of key-frames, DTW was
used to calculate the distances. Finally, based on data of the distances, an independent sample T-test
or Mann–Whitney U test was used to define whether the motions of the two groups of students
(novice and senior) were different in motion accuracy (see Figure 1).
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Figure 1. Flow diagram of the study.

2.2. Recruiting and Selecting Participants

In this study, we invited a martial arts PE teacher and undergraduate students to participate in
the study. The inclusion criteria for participants are as follows:

Teacher: martial arts PE teacher, former national martial arts athlete, with an undergraduate and
master’s degree in traditional Chinese sports (martial arts specialization), and more than ten years’
experience teaching Baduanjin.

Novice students: undergraduate students in the university with no experience of Baduanjin,
without a disability and no clinical or mental illness.

Senior students: undergraduate students in the university who have passed Baduanjin in their PE
course, without a disability, and no clinical or mental illness.
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Participants read the information sheet that outlined the purpose and procedure of the study.
Those who agreed to participate were given the consent form to sign.

2.3. Capturing Motion Data of Participants on IMU

Baduanjin is a traditional Chinese martial art for fitness. The speed of motions is relatively
slow [30]. We used IMU to capture the motion data of the teacher, novice, and senior students for eight
standard motions of Baduanjin as shown in Figure 2.

 
Figure 2. Eight standard motions of Baduanjin.
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2.3.1. IMU

We used Perception Neuron 2.0, a low-cost IMU developed by Noitom, to capture Baduanjin
motion data of participants [31]. This IMU includes 17 inertial sense units and each unit comprised a
3-axis gyroscope, 3-axis accelerate, and 3-axis magnetometer, which measures and records the rotation
angle data of 17 position points of human movement. Sers et al. [32] compared the IMU used in our
study with a gold standard optoelectronic system (Vicon), and confirmed the IMU’s effectiveness in
measuring motion accuracy. The supporting software of the IMU, Axis neuron software developed by
Noitom, transforms the recorded data into Biovision Hierarchy (BVH) motion files.

2.3.2. Capturing Motion Data

Before measuring the motion data, the teacher and senior students practised Baduanjin for 30 min.
As the novice students had not learned Baduanjin, they followed the demonstration of the teacher
practising Baduanjin for 30 min. After the practice, the motion data of participants were measured by
IMU. No feedback was given to students during practice.

2.4. Data-Analysis

2.4.1. Extracting and Converting Raw Data

The raw data was converted into BVH file by the Axis neuron software. The BVH file is a file
format developed by the BVH Company to store skeleton hierarchy information and three-dimensional
motion data [33]. The BVH file comprises two parts: one is used to store skeleton hierarchy information
and the other to store motion information. The skeleton hierarchy information includes the connection
relationship between joint points and the offsets of the child joint points from their parent skeleton
points. In the skeleton hierarchy, the first skeleton point is defined as Root. Root is the parent of
all other skeleton points in the skeleton hierarchy. Motion information stores the global translation
amount and the rotation amount of Root in each frame of the movement. The global translation
amount is the position coordinate: X position, Y position, and Z position in the world coordinate
system and the rotation amount is the rotation component: X rotation, Y rotation, and Z rotation in the
Euler angle [33]. The motion information of other skeleton points is recorded on the rotation amount
related to the parent points. The IMU used 17 sensors to measure motion data on 17 points of the body
and the recorded order of the rotation amount of each point is Z rotation, Y rotation, and X rotation.
The skeleton hierarchy information of BVH on the IMU and the skeleton model are shown in Figure 3.

In the BVH file, the rotation data is recorded on the Euler angle of 17 skeleton points. Some issues
with rotation data expressed on the Euler angle (gimbal lock and singularity problems) were
overcome using quaternion [34]. Quaternion is a 4-dimensional hyper-complex number, expressing
a three-dimensional vector space on real numbers [35]. We used four-tuple notation to represent
quaternion as follows:

q = [w, x, y, z] (1)

In this quaternion, w is the scalar component, and x, y, z are the vectors.
Therefore, the format of the rotation data from BVH files was converted from Euler angle to

quaternion. If the order of rotation in Euler angle is z, y, x, we used α, β, γ to represent the rotation
angles of the object around x, y, and z axes. The corresponding quaternion can be converted as follows:

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w
x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(γ/2)
0
0

sin(γ/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(β/2)

0
sin(β/2)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(α/2)
sin(α/2)

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(γ/2) cos(β/2) cos(α/2) + sin(γ/2) sin(β/2) sin(α/2)
cos(γ/2) cos(β/2) sin(α/2) − sin(γ/2) sin(β/2) cos(α/2)
cos(γ/2) sin(β/2) cos(α/2) + sin(γ/2) cos(β/2) sin(α/2)
sin(γ/2) cos(β/2) sin(α/2) − cos(γ/2) sin(β/2) sin(α/2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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(a) 

 
(c) 

 
(b) 

Figure 3. The skeleton hierarchy information of BVH on the IMU (Perception Neuron 2.0): (a) A participant
wearing the IMU (Perception Neuron 2.0) to measure the motion data; (b) The interface of Perception
Neuron 2.0; and (c) The skeleton model of BVH file for Perception Neuron 2.0.

2.4.2. Extracting Key-Frames

After extracting the motion data, we used key-frames extraction to reduce the motion data.
Due to the limited storage and bandwidth capacity available to users, the large amount of motion
data collected on Mocap may restrict its application [36]. Key-frames extraction, which extracts a
small number of representative key-frames from a long motion sequence, is widely used in motion
analysis. This technology can reduce the data amount, which facilitates data storage and subsequent
data analysis [36,37].

Extraction of Key-Frames on Inter-Frame Pitch

We used the distance between quaternions to evaluate the inter-frame pitch between frames and
set a threshold of inter-frame pitch to extract key-frames [38]. The method is based on the rotation
data of each skeleton point which is represented as a quaternion and uses a simple form to evaluate
the distance between two quaternions. The inter-frame pitch between the two frames is assessed by
the sum of the distances between the quaternions of every point. The process is constructed with
three sections: calculating the distance between quaternions, calculating the inter-frame pitch between
frames, and extracting key-frames on the set threshold of inter-frame pitch.

1. The distance between quaternions

To evaluate the distance between two quaternions, the conjugate quaternion q* of a quaternion is
defined as follows:

q∗ = [w,−x,−y,−z] (3)
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and the quaternion norm ||q|| is defined as follows:

‖q‖ =
√

w2 + x2 + y2 + z2 (4)

then:
‖q‖2 = qq∗ = w2 + x2 + y2 + z2 (5)

when a quaternion norm ||q|| is 1, which means:

w2 + x2 + y2 + z2 = 1 (6)

the quaternion is a unit quaternion. A quaternion is converted to a unit quaternion by dividing it by
its norm.

From the definitions of conjugate quaternion, quaternion norm, and unit quaternion, we can
define the inverse of a quaternion (q−1) as follows [39]:

q−1 =
1
‖q‖ =

1

‖q‖2 q∗, ‖q‖ � 0 (7)

According to Shunyi et al. [38], if there are two quaternions: q1, q2 are unit quaternions and:

q1q2
−1 = [w, x, y, z] (8)

the distance between the quaternions q1 and q2 is:

d(q1, q2) = arccosw (9)

Therefore, we converted the rotation of a skeleton point based on Euler angles into quaternion,
then normalized and converted the quaternion into unit quaternion, and finally calculated the difference
between any two quaternions of the point according to Equation (9).

2. Calculation of Inter-Frame Pitch between Two Frames

We used the sum of the differences between the quaternions at 17 skeleton points to evaluate the
inter-frame pitch between two frames. The human motion represented by the BVH file are discrete-time
vectors, which is the same after conversion to quaternions [38]. The weightage for different points needs
to be taken into account when calculating the inter-frame pitch due to the tree-structure (parent-child)
of the BVH format. Referring to the methods used in previous research [38,40], and the relationship
structure between the skeleton points on the IMU in this study (see Figure 3), we assigned the weightage
values of the 17 skeleton points as shown in Table 1.

If t1 and t2 are the two frames in a sequence of frames, we defined the inter-frame pitch between
two frames: t1 and t2 as the following equation:

D(t1, t2) =
n∑

i=1

Wid(qi(t1), qi(t2)) (10)

In Equation (10), n represents the total number of skeleton points (n = 17), Wi represents the
weightage of each skeleton point (shown in Table 1), and qi represents the quaternions of each
skeleton point.
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Table 1. The weightage of the 17 skeleton points.

Point Weightage

Hip 16
Right up leg 8

Right leg 4
Right foot 2
Left up leg 8

Left leg 4
Left foot 2

Spine 8
Head 4

Right shoulder 4
Right arm 2

Right forearm 1
Right hand 0.5

Left shoulder 4
Left arm 2

Left forearm 1
Left hand 0.5

3. Key-frames extraction on the set threshold of inter-frame pitch

Based on the inter-frame pitch between two frames, we set: key_frame as an array to store the
quaternion corresponding to the key-frames of motion; key_num as a set of vector to store the serial
number corresponding to a key-frame; key_num1 presents the time series number corresponding to
the first key-frame; current_key as the last frame in the set of key_num. λ is a preset threshold value of
inter-frame pitch which is mainly determined based on the demand for a compression rate of frames.
The algorithm steps are shown in Figure 4.

 

Figure 4. The algorithm steps of key-frames extraction.

4. Motion reconstruction error
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The purpose of motion reconstruction is to rebuild the same number of frames as the original
frames based on interpolation reconstruction of non-key-frames between adjacent key-frames [38,41].
First, individually, the position coordinates (in the world coordinate system) of points were calculated
on the point hierarchy and relative rotation angle between the points in the BVH file. Second, given that
pt1 and pt2 are the positions of a point of adjacent key-frames in time t1 and t2, then pt (representing
the position of a point of non-key-frame in time t) is calculated by linear interpolation between pt1 and
pt2 as follows [41]:

pt = u(t)pt1 + (1− u(t))pt2,
u(t) = t2−t

t2−t1
,

t1 < t < t2

(11)

The algorithm steps of motion reconstruction are shown in Figure 5.

 

Figure 5. The algorithm steps of motion reconstruction.

In this study, we used the position error of the human posture to calculate the reconstruction
error between the reconstructed frames and the original frames [38]. Assuming m1 is the original
motion sequence, m2 is the reconstruction motion sequence from the key-frames, the reconstruction
error E(m1, m2) is evaluated as [42]:

E(m1, m2) =
1
n

n∑
i=1

D(pi
1 − pi

2) (12)

The distance of human posture is used to measure the position error of human posture:

D(pi
1 − pi

2) =
m∑

k=1

‖pi
1,k − pi

2,k‖
2

(13)

In this equation, m represents the total number of skeleton points, pi
1,k is the position of k

point in i frame of the original motion sequence, and pi
2,k is the position of k point in i frame in the

reconstruction sequence.

Extraction of Key-Frames on Clustering

A problem with the key-frames extraction on inter-frame pitch is that the compression rate of
the key-frames with the same inter-frame threshold for different actions may vary considerably [40].
As the eight motions of Baduanjin are quite different, the key-frames extraction on the inter-frame
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pitch may cause some motions to be compressed too much, and some motions not compressed enough.
Therefore, we also chose another way to extract key-frames on clustering. This method was used for
key-frames with the pre-set compression rate [43].

1. K-means clustering algorithm

K-means clustering algorithm is an iterative partition clustering algorithm. In this key-frame
extraction method, we used the K-means clustering algorithm to cluster the 3D coordinates ([x, y, z]) of
the skeleton points in the original frame. Assuming that the total length of the original frames is N,
i represents the i frame in N. pi is the vectors of the 3D coordinate positions of all relevant skeleton
points of the i frame in the original frames. Therefore, the vectors collection of the 3D coordinate data of
every point of original frames is (p1, p2, . . . , pi), pi ∈ RN. According to the K-means clustering algorithm,
the data of skeleton points (RN) in the frames is clustered into K (K ≤ N) clusters as follows [44]:

Step 1: Randomly select K cluster centroids from RN are u1, u2 . . . uK;
Step 2: Repeat the following process to get convergence.
For the pi corresponding to one frame, we calculated the distances from each cluster centroid

(uj, j ∈ K) and classified it into the class corresponding to the minimum distance [45]:

D = argmin
N∑

i=1

K∑
j=1

‖pi − uj‖2 (14)

In this equation, D represents the minimum distance between the cluster centroid and the centre
of pi, and when D is the smallest, pi is classified into class j.

For each class j, the cluster centroid (uj) of that class was recalculated:

uj =

N∑
i=1

rijpi

N∑
i=1

rij

(15)

In this equation, rij indicates that when pi is classified as j, it is 1; otherwise, it is 0.

2. Key-frames extraction

Using the above k-means clustering algorithm, we extracted K cluster centroids from the original
frame. Each cluster is clustered from the 3D coordinates of the 17 points in the original frames.
Therefore, one cluster centroid is constructed with 51 (17 × 3) vectors. Based on these cluster centroids,
we extracted the key-frames by calculating the Euclidean distance between the cluster centroid of each
point and the corresponding point coordinates in the original frames. The steps to extract key-frames
are as follows:

Start
Input the 3D coordinate data of every point of the original frames:(

p1, p2 . . . pi
)
, pi ∈ RN;

pi = (pi
1, pi

2 . . . p
i
j), j = 17;

pi
j = [xi

j, yi
j, zi

j]

(16)

and the number of key-frames to be extracted is K;
Step 1: Using the k-means clustering algorithm to calculate cluster centroids of the K clusters are

expressed as:
um = (um1, um2 . . . umj), m ∈ (1, 2, 3 . . .K), j = 17;
umj = [xmj, ymj, zmj]

(17)
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Step 2: Calculate the Euclidean distance of 3D coordinates between each point of the cluster and
the corresponding point of the original frames:

Cm = min(um, pi)

=
17∑

j=1
min(dis(umj, pi

j));

dis(umj,pi
j) = ‖umj − pi

j‖
2

(18)

min(dis(umj, pi
j)) means that after calculating the distances between m cluster and all original

frames, the j point of pi which value of dis(umj, pi
j) is minimum is recorded as 1; otherwise, it is recorded

as 0. i of pi corresponding to the maximum value of Cm is a sequence of key-frames.
Step 3: Sequences of key-frames are arranged from small to large after extraction. If the first frame

and the last frame in the original frames are not included in the key-frames, the first frame and the last
frame must be added into key-frames.

End
In this key-frames extraction, the number of key-frames can be preset. The key-frames of the

corresponding compression rate is obtained by presetting the compression rate as follows [42]:

K = c_rate ∗N (19)

where K is the number of key-frames to be extracted, c_rate is the compression rate of the key-frame to
be obtained, and N is the total number of original frames.

After extracting key-frames, we continued with the ways to motion reconstruction and evaluate
reconstruction error as described above.

2.4.3. Evaluate Motion the Accuracy of Motions Data

In this study, we referred to previous studies [13,46] to evaluate the motion accuracy of student
motions by assessing the differences between students’ motions and teacher’s motions. Due to
the difference in speed between individual movements, different time series were considered when
assessing the difference between two motions. We chose DTW, a well-established method, to account
for different time series to evaluate the difference in the motions between teachers and students [47].
Since DTW compares the other methods, i.e., HMM and SAX, without a training stage, the taken time
is shorter. First, the derived quaternions were normalized in unit length of a quaternion: q = [w, x, y, z]
can be described as: ||q|| = 1 and w2 + x2 + y2 + z2 = 1. Therefore, three components (x, y, z) out of the
four components (w, x, y, z) of the quaternions can be used to represent the rotations of the skeleton
points over a temporal domain. Then, we used DTW to evaluate the difference between two sequences
of motions on the skeleton points. First, we assessed the difference between two motions on a single
skeleton point. For example, there are two motion data on quaternions for a skeleton point from a
teacher and a student, one from the teacher: qtea(t), one from a student: qstu(t). The length of the two
sequences of quaternions are n and m:

qtea(t) = qtea(1), qtea(2), . . . , qtea(i), . . . , qtea(n)
qstu(t) = qstu(1), qstu(2), . . . , qstu( j), . . . , qstu(m)

(20)

The vector in the quaternion arrays consists of three components (x, y, z) of quaternions. A distance
matrix (n ×m) is constructed to align the quaternions of two sequences. The elements (i, j) in the matrix
represent the Euclidean distance: dis(qtea(i), qstu(j)) between the two points qtea(i) and qstu(j):

dis(qtea(i), qstu( j)) =
∣∣∣qtea(i) − qstu( j)

∣∣∣2 (21)
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In the distance matrix, many paths are from the upper-left corner to the lower-right corner of the
distance matrix. We used Φk to represent any point on these paths: Φk = (Φtea(k), Φstu(k)) where:

Φtea(k): the value of k is 1, 2, . . . , n,
Φstu(k): the value of k is 1, 2, . . . , m,
Φk, the value of k is 1, 2, . . . , T, (T = n × m)
We found a suitable path as the warping path, where the cumulative distance of path is the

smallest of all paths [39]:

DTW(qtea(t), qstu(t)) = min
T∑

k=1

dis(Φtea(k), Φstu(k)) (22)

Then, the distance of DTW(qtea(t),qstu(t)) is obtained through dynamic programming as follows [47]:

DTW(qtea(t), qstu(t)) = f (n, m);
f (0, 0) = 0;
f (0, 1) = f (1, 0) = ∞;
f (i, j) = dis(qtea(i), qstu( j)) + min

{
f (i− 1, j), f (i, j− 1), f (i− 1, j− 1)

}
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m)

(23)

To prevent the wrong matching by excessive time warping, the warping path was constrained
near the diagonal of the matrix by setting the global warping window for DTW [48,49]. In this
study, the global warping window is set as 10 percent of the entire window span: 0.1 × max(n, m).
The cumulative distance of the warping path represents the difference of rotation between teacher and
student on the skeleton points is shown in Equation (22). Then, the macro difference between students’
motions and teacher’s motions was evaluated by taking the average of the cumulative distances of all
the skeleton points as follows:

D(mtea, mstu) =

n∑
i=1

DTW(qi
tea, qi

stu)

n
(24)

In this equation, mtea represents the teacher motion sequence; mstu represents the students’ motion
sequence, qi is the vectors of the quaternion of i skeleton point in the two motion sequences, and the
total number of skeleton points is n.

Finally, data of the differences were analysed using IBM SPSS Statistics 25.0 to assess if there
were significant differences in the motion accuracy of the two groups of students (novice and senior
students) on the whole and each point. We used the independent sample T-test on data with normal
distribution and the Mann–Whitney U test on data with non-normal distribution.

3. Results

3.1. Demographic Characteristics of Participants

We recruited 21 participants for this study, including a martial arts teacher, nine undergraduate
students who have not learned Baduanjin (novice students), and 11 undergraduate students who
had completed the Baduanjin course (senior students). All participants gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the University of Malaya Research Ethics
Committee (UM.TNC2/UMREC–558). The demographic characteristics of the students are shown in
Table 2. For each mean duration of the eight motions shown in Table 3, we measured all participants
three times with IMU, resulting in 63 motion data.
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Table 2. Demographic characteristics of the students.

Group Gender
Age (years)

(mean ± SD)
Height (cm)
(mean ± SD)

Weight (kg)
(mean ± SD)

Novice Student
Male: 5 18.60 ± 0.55 169.40 ± 3.91 58.20 ± 4.60

Female: 4 18.75 ± 0.96 161.25 ± 3.59 48.25 ± 2.06

Senior Student
Male: 4 20.25 ± 0.50 170.75 ± 4.11 60.50 ± 4.80

Female: 7 20.00 ± 0.82 161.43 ± 3.84 48.57 ± 3.74

Table 3. Mean duration of Baduanjin.

Motion Valid
Mean duration (s)

(mean ± SD)

Motion 1 63 12.24 ± 2.49
Motion 2 63 21.52 ± 4.19
Motion 3 63 16.75 ± 4.14
Motion 4 63 14.79 ± 3.85
Motion 5 63 19.18 ± 5.25
Motion 6 63 16.95 ± 4.09
Motion 7 63 13.10 ± 3.93
Motion 8 63 1.51 ± 0.25

3.2. Differences in Motion Accuracy between Novice and Senior Students on Original Frames

Algorithms explained in the data analysis section were coded with Matlab R2018b. Independent
sample T-tests and Mann–Whitney U tests were used to assess the differences in motion accuracy of
novice and senior students.

Before assessing macro differences, we assessed the normality of original frames data using the
Shapiro–Wilk test (see Table 4).

Table 4. Normality of data of groups using the Shapiro-Wilk test.

Motion Group Statistic df Sig.

1
Novice Student 0.788 27 0.000
Senior Student 0.753 33 0.000

2
Novice Student 0.962 27 0.408
Senior Student 0.973 33 0.575

3
Novice Student 0.956 27 0.299
Senior Student 0.948 33 0.120

4
Novice Student 0.963 27 0.428
Senior Student 0.979 33 0.758

5
Novice Student 0.963 27 0.428
Senior Student 0.979 33 0.758

6
Novice Student 0.789 27 0.000
Senior Student 0.852 33 0.000

7
Novice Student 0.881 27 0.005
Senior Student 0.878 33 0.001

8
Novice Student 0.932 27 0.078
Senior Student 0.890 33 0.003

From Table 4, we can see that the data of the groups on Motions 2, 3, and 4 were normally
distributed (p > 0.05), whereas the others were not. Therefore, we assessed the differences in motion
accuracy of Motions 2, 3, and 4 between novice and senior students using independent sample T-tests
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(see Table 5). The differences in the motion accuracy of other motions between novice and senior
students were assessed using Mann–Whitney U tests (see Table 6).

Table 5. Differences in motion accuracy between novice and senior students on original frames (using
the independent sample T-test).

Motion Group N 1 Mean 2 Std. Deviation F Sig. t Sig. 3

2
Novice Student 27 640.76 74.38 2.289 0.136 4.275 0.000
Senior Student 33 565.72 61.64 4.195 0.000

3
Novice Student 27 543.46 78.92 4.879 0.031 5.085 0.000
Senior Student 33 455.75 54.30 4.903 0.000

4
Novice Student 27 536.45 41.44 0.061 0.806 5.805 0.000
Senior Student 33 468.66 47.70 5.888 0.000

1 Number of motions; 2 Mean of differences in motion between teacher and students; 3 2-tailed.

Table 6. Differences in motion accuracy between Novice students and senior students on original
frames (using the Mann-Whitney U test).

Motion Group N 1 Mean Rank Sum of Ranks M-W U 2 Wilcoxon W Z Asymp. Sig. 3

1
Novice Student 27 38.52 1040.00 229.00 790.00 −3.217 0.001
Senior Student 33 23.94 790.00

5
Novice Student 27 41.96 1133.00 136.00 697.00 −4.599 0.000
Senior Student 33 21.12 697.00

6
Novice Student 27 35.93 970.00 299.00 860.00 −2.177 0.029
Senior Student 33 26.06 860.00

7
Novice Student 27 37.41 1010.00 259.00 820.00 −2.771 0.000
Senior Student 33 24.85 820.00

8
Novice Student 27 42.19 1139.00 130.00 691.00 4.688 0.000
Senior Student 33 20.94 691.00

1 Number of motions; 2 Mann-Whitney U; 3 2-tailed.

From Tables 5 and 6, we can see significant differences (p < 0.05 or p < 0.01) in motion accuracy of
all eight motions between novice and senior students. The differences in motion accuracy between the
teacher and senior students were lower than the differences in motion accuracy between the teacher
and novice students.

We also evaluated the difference in motion accuracy on each skeleton point between novice and
senior students (Figure 6).

From Figure 6, we found that out of the 17 points on eight motions of Baduanjin, there were
significant differences in the motion accuracy between novice and senior students for some points.
For example, in Motion 1, there were significant differences in motion accuracy between the two groups
at the head and neck (points 8 and 9) and the right upper limb (points 10, 11, and 12).
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Figure 6. Differences in motion accuracy of points between novice and senior students on original frames.

3.3. Differences in Motion Accuracy between Novice and Senior Students on Key-Frames

3.3.1. Compression Rate and Reconstruction Error of Two Different Key-Frames Extraction Methods

Motion accuracy is assessed based on key-frames. In this study, we chose two methods to extract
key-frames. In the key-frames extraction method on inter-frame pitch, we selected different thresholds
(0.1, 0.5, 1.0, 1.5, 2.0) to extract key-frames and evaluated the compression rate and the reconstruction
error of corresponding key-frames on different thresholds. The results are shown in Table 7.

Table 7. Compression rate and reconstruction error of corresponding key-frames on inter-frame pitch.

Threshold Index
Motion

1 2 3 4 5 6 7 8

0.1
Rate 1 60.45 80.57 55.84 62.00 86.84 76.58 58.83 67.30
Error 2 0.059 0.028 0.062 0.046 0.017 0.042 0.022 0.068

0.5
Rate 15.28 27.36 14.02 16.87 36.75 25.12 15.29 20.16
Error 0.447 0.364 0.455 0.378 0.330 0.448 0.474 0.612

1.0
Rate 7.74 14.79 7.09 8.77 20.72 13.39 8.03 9.97
Error 1.031 0.904 1.110 0.971 0.799 1.021 1.164 1.969

1.5
Rate 5.14 10.04 4.70 5.93 14.44 9.05 5.57 6.36
Error 1.811 1.590 1.967 1.719 1.346 1.692 2.099 3.971

2.0
Rate 3.81 7.58 3.49 4.48 11.12 6.80 4.35 4.50
Error 2.712 2.362 3.021 2.586 1.966 2.474 3.203 6.936

1 Compression rate (%); 2 Reconstruction error.

Table 7 shows significant differences in the compression rates of the different motions extracted
under the same threshold. We can see when the threshold value is set to 1 for obtaining key-frames
using the inter-frame pitch, there was a difference in average compression rates ranging from 7.08% to
20.78% for the eight motions of Baduanjin. Moreover, when the threshold value increased, the number
of key-frames decreased, which decreased the compression rate. However, the error of motion
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reconstruction also increased. Based on the data in Table 7, it can be seen that in the five preset values,
the compression rate and reconstruction error of the extracted key-frames are relatively reasonable
when the threshold is 1. In the other key-frames extraction method on clustering, we chose different
compression rates (5, 10, 15, 20, 25) to extract key-frames and evaluate the reconstruction error on
different key-frames. The results are shown in Table 8.

Table 8. Reconstruction error of corresponding key-frames on clustering.

Rate (%) 1
Reconstruction Error

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5 Motion 6 Motion 7 Motion 8

5 4.528 7.185 3.875 3.430 8.790 6.823 3.886 6.206
10 1.484 2.428 1.268 0.997 2.927 2.359 1.281 2.216
15 0.851 1.244 0.638 0.547 1.485 1.286 0.650 1.342
20 0.498 0.757 0.401 0.353 0.971 0.797 0.415 0.769
25 0.366 0.518 0.281 0.235 0.700 0.569 0.297 0.531

1 Compression rate (%) of key-frames.

From Table 8, we can see that as the compression rate increases, the error of motion reconstruction
decreases. When the compression rate increased from 5% to 15%, the reconstruction error dropped
sharply. But when the compression ratio increased from 15% to 25%, the reconstruction error decrease
tended to be smooth. It can be seen that, in the five preset values, the compression rate and reconstruction
error of the extracted key frames were relatively reasonable when the preset compression rate is 15%.

3.3.2. Differences in Motion Accuracy on Key-Frames

The differences in motion accuracy on key-frames between novice and senior students are shown
in Tables 9 and 10.

Table 9. Differences in motion accuracy on the key-frames on inter-frame pitch between novice and
senior students.

Threshold
p Value

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5 Motion 6 Motion 7 Motion 8

0.1 0.000 0.000 0.000 0.000 0.000 0.006 0.075 1 0.000
0.5 0.001 0.000 0.001 0.005 0.000 0.004 0.122 1 0.000
1.0 0.001 0.000 0.001 0.017 0.004 0.004 0.122 1 0.000
1.5 0.001 0.000 0.002 0.050 1 0.008 0.004 0.141 1 0.000
2.0 0.001 0.001 0.004 0.112 1 0.018 0.004 0.176 1 0.000

1 p ≥ 0.05.

Table 10. Differences in motion accuracy on the key-frames on clustering between novice and
senior students.

Rate (%) 1
p Value

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5 Motion 6 Motion 7 Motion 8

5 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.000
10 0.000 0.000 0.000 0.000 0.000 0.024 0.003 0.000
15 0.000 0.000 0.000 0.000 0.000 0.020 0.004 0.000
20 0.000 0.000 0.000 0.000 0.000 0.031 0.004 0.000
25 0.000 0.000 0.000 0.000 0.000 0.024 0.004 0.000

1 Compression rate (%) of key-frames.

From the results of the key-frames on clustering, the motion accuracy of the eight motions of
novice and senior students were significantly different. This result is consistent with the result based
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on the original frames. However, on the key-frames of inter-frame pitch on five different thresholds,
there was no significant difference in motion accuracy between the two groups in Motion 7.

The differences in motion accuracy of points between the two groups on key-frames were also
evaluated. Figure 7 shows the results on the key-frames of inter-frame pitch when the setting threshold
= 1.

 
Figure 7. Differences in motion accuracy of points between novice and senior students on the key-frames
of inter-frames pitch (Threshold = 1).

From Figures 6 and 7, we find that there was a difference between the results on the original
frame and the key-frames on the inter-frame pitch. When there was a significant difference in motion
accuracy between the two groups, we set the point to 1, otherwise, it was 0. Then, we evaluated
the correlation between the results on the original frames and different key-frames on the Kendall
correlation coefficient test (see Figures 8 and 9).

The results for key-frame extraction on inter-frame pitch show that when the threshold value was
0.1, the result of the differences in motion accuracy on the key-frames was highly correlated with the
result based on the original frame (Kendall coefficient of points in each motion is higher than 0.7 except
for Motion 7). However, when the threshold was 0.1, the compression rates of the key-frames were
higher. As shown in Table 7, when the threshold was 0.1, the compression rate of each motion exceeded
50%. For key-frames extraction on clustering, there is a high correlation when the compression rate is
0.1. The Kendall coefficient of points in each motion is higher than 0.7 except for Motion 5, where the
coefficient was 0.63.

We also tested the mean processing time for using DTW to calculate the distances between motions
on original frames and key-frames (Table 11).
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Figure 8. The Kendall coefficient of differences between skeleton points based on two difference
methods (on the original frames and the key-frames on inter-frame pitch).

Figure 9. The Kendall coefficient of differences between skeleton points based on two difference
methods (on the original frames and the key-frames on clustering).
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Table 11. The mean processing time on the original frames and the key-frames.

Motions
The Mean Processing Time (s)

Original Frames Key-Frames 1 Key-Frames 2

1 1.891 0.021 0.042
2 5.960 0.195 0.180
3 3.674 0.026 0.078
4 4.439 0.027 0.069
5 5.515 0.218 0.117
6 4.055 0.053 0.069
7 2.209 0.028 0.043
8 0.145 0.013 0.017

1 Key-frames on inter-frames pitch (Threshold = 1); 2 Key-frames on clustering (compression rate = 15%).

From Table 11, the processing time on the key-frames is lower than original frames. Therefore,
using key-frames can effectively decrease data processing time.

4. Discussion

When using mathematical methods, the macro differences between the motion data of novice
students and the teacher were higher than the distances between the motion data of senior students
and the teacher on eight motions of Baduanjin. Because the motion data of the experimental analysis
are the rotation data of specific skeleton points measured by the IMU, if the teacher’s motions were
taken as the standard, the results show that the motions of senior students were closer to the standard
motions. Therefore, IMU can effectively distinguish the differences in motion accuracy in Baduanjin
between novice and senior students.

When using the original frames to evaluate the differences at 17 skeleton points in eight motions
between novice and senior students, the results show the differences in motion accuracy between the
two groups on skeleton points varied for the different motions. For Motion 1, the differences between
the two groups were mainly concentrated on the head-spine segment and upper limbs, especially the
right upper limb. The differences mean that the motion errors of novice students relative to senior
students were mainly concentrated on these joints. The results are consistent with the common motion
errors described in the official book: “When holding the palms up, the head is not raised enough, or the
arms are not raised enough” [30]. However, for Motion 4, the common motion errors are described in
the official book as: “Rotating head and arm are insufficient” [30]. The description shows that the main
errors occur in the head-spine and bilateral upper limbs. However, significant differences of skeleton
points were at bilateral upper limbs but not head-spine. This difference may be related to the small
number of participates in this study.

In this study, we also used two methods to extract key-frames. The raw data can be effectively
compressed to decrease the data storage space using extracting key-frames [40,41]. The repetitiveness of
action exercises in the teaching process will generate an extremely large amount of raw data. From the
results, both key-frames extraction methods can effectively compress the raw data. We also found that
the data processing speed could be accelerated on key-frames. However, the compression rates of
key-frames on different motions when using key-frames on inter-frame pitch were different. We found
that the differences in skeleton points on the key-frames on inter-frame pitch were not consistent with
the results on the original frames. However, there was high consistency between the results on the
key-frames on clustering and the results on the original frames, especially when the compression rate
was 15%. Therefore, we can use key-frames to replace the original frames to evaluate motion accuracy
of Baduanjin in order to decrease data storage space and processing time.

However, the small number of participants in our study limits the application of the results. As the
participants were from a university in China, the results might only be suitable for university students
in China because different populations have variations in anatomical characteristics, physiological
characteristics, and athletic ability.
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Based on our results, IMU can effectively distinguish the difference in the motion accuracy of
Baduanjin between novice and senior students. Therefore, in the following work, we can develop
a system using IMU to evaluate the motion quality of students and provide feedback to teachers
and students. Thus, it would be able to assist teachers in correcting errors in the motions of
students immediately.

5. Conclusions

These initial results show that, based on the original frames, the IMU and the corresponding
mathematical methods can effectively distinguish the motion accuracy of all eight motions of Baduanjin
between novice and senior students. Furthermore, the IMU can identify the differences between the
novice and senior students on the specific skeleton points of the eight motions of Baduanjin. The results
regarding key-frames on clustering were highly correlated with the results of the original frames,
which means, to a certain extent, that key-frames can replace the original frame to decrease the data
storage space and processing time.
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Abstract: Research in the use of ubiquitous technologies, tracking systems and wearables within
mental health domains is on the rise. In recent years, affective technologies have gained
traction and garnered the interest of interdisciplinary fields as the research on such technologies
matured. However, while the role of movement and bodily experience to affective experience is
well-established, how to best address movement and engagement beyond measuring cues and signals
in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to
remodel how affective technologies can help address body and emotional self-awareness. We present
an overview of biosignals that have become standard in low-cost physiological monitoring and show
how these can be matched with methods and engagements used by interaction designers skilled in
designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers
unprecedented design opportunities that inspire further research. Through first-person soma design,
an approach that draws upon the designer’s felt experience and puts the sentient body at the forefront,
we outline a comprehensive work for the creation of novel interactions in the form of couplings that
combine biosensing and body feedback modalities of relevance to affective health. These couplings lie
within the creation of design toolkits that have the potential to render rich embodied interactions to
the designer/user. As a result we introduce the concept of “orchestration”. By orchestration, we refer
to the design of the overall interaction: coupling sensors to actuation of relevance to the affective
experience; initiating and closing the interaction; habituating; helping improve on the users’ body
awareness and engagement with emotional experiences; soothing, calming, or energising, depending
on the affective health condition and the intentions of the designer. Through the creation of a
range of prototypes and couplings we elicited requirements on broader orchestration mechanisms.
First-person soma design lets researchers look afresh at biosignals that, when experienced through
the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it,
understand it and reflect upon our bodies.

Sensors 2020, 20, 5968; doi:10.3390/s20215968 www.mdpi.com/journal/sensors199
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1. Introduction

The rise of tracking technologies has started to foster international collaborations that tackle
the design of technologies for emotional awareness and regulation to support wellbeing and
affective health. In fact, mental health research is trying to catch up with the affordances that
ubiquitous technologies, wearable devices, and tracking systems offer in general, albeit not without
challenges [1–3]. These can be addressed through interdisciplinary research bridging the gap between
the fields of Human-Computer Interaction (HCI), Biosensing research, and Clinical psychology [4–6].
Projects such as AffecTech [6,7], have explored the development of digital platforms that position
bodily affective awareness and engagements centrally, drawing on somaesthetic design [8]. Somaesthetic,
or soma design for short, is grounded in somatic experiences, letting designers examine and improve
on connections between sensation, feeling, emotion, subjective understanding and values. The soma
design framework offers a coherent theoretical basis starting from the constitution and morphology of
our human body and perception [8–10]. In particular, soma design emphasizes our ability to change
and improve our aesthetic appreciation skills and perception. Other interaction design works within
affecting computing exemplify ways to draw upon the body and its embodied metaphors [11,12].
This research builds on the growing HCI interest in affective technologies, whose ethical underpinnings
could benefit from more consideration [13,14], addressing issues such as the pluralism of bodies,
data privacy and ownership. The body has for a long time inspired emotion research across
disciplines [15–18], as relevant connections exist between the body, emotion and movement, its
interpretation, enacting and processing. Moreover, research studies point at the links between emotion
and physical activity, for example, dance, exercise, movement, or paying attention to our body senses
while immersed in nature [19–21]. Engagement with and through the body might therefore be a
fruitful path to explore. There is room for an affective computing that does not look at the body as “an
instrument or object for the mind, passively receiving sign and signals, but not actively being part of
producing them”—as phrased by Höök when referring to dominant paradigms in commercial sports
applications [22]. However, how to best address bodily movement and engagement beyond measuring
cues and signals is unclear. Most studies in affective computing revolve around affect recognition from
emotion detection and bodily data classification [23]. We take somaesthetic design—a design stance
that draws upon the felt body and takes inspiration from experiencing it—and then combine it with
the innovative integration of biosensors and actuators. The disruptive somaesthetic view, moves away
from the idea of monitoring the body for the sake of bad habit reduction in pursuit of a healthy and
long life [24]. Soma design, rather, lets us get attuned to our bodies and use sensations as a valuable
resource instead of something to be improved to meet performance standards.

In this context, we present novel research on embodied interaction design couplings, that
is, sensing-actuation combinations of aesthetically evocative body input-output modalities that
render biodata shareable, body-centered, highly tangible or even able to be experienced collectively.
The biosignals we address have become standard for physiological data tracking research, and are
present in the low-cost BITalino biosensing platform [25]. Choosing them for the overview presented
and further exploration is motivated by these two aspects, that is, standard and low-cost. The
contribution of this paper is an approach to designing sensing-actuation orchestrations, that is, the
ways in which body input-output systems and meanings are put in place, coupled, coordinated,
customized, sequenced and exposed so that the underlying mechanisms can be better understood,
challenged or extended—in other words, sketching, in hardware and software, tangible experiences
that allow designers to design and improve overall orchestrated experiences addressing affective
health. To make this design approach viable, we combine:
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1. An overview description of biosignals used in ubiquitous low-cost personal sensing technologies
that have gained strength in affective technology research and the possible actuation feedback
elements that, when coupled, can lead to novel interactions embracing body awareness

2. The use of soma design [8], with an evaluative and explorative stance, to assess whether couplings
are meaningful or evocative to address the question of how interaction design can further support
interdisciplinary research of affective technologies

The individual components that take part in an interaction that integrates different body inputs
and outputs must implement ways to communicate information, process and represent it, trigger
events turning actions on/off and enabling interaction decisions. An orchestration of the protocols and
interfaces involved could be beneficial for the design exploration or even for the introduction of use
case scenarios, for example, closer to the actual psychotherapeutic practice [2,3,26]. In the discussion,
we describe how these elements are shaping the future direction of our research, for example, extending
interaction configuration tools with novel sensing-actuation couplings to better explore the design
space of affective health technologies and their ethical underpinnings. Using technology for sensing
and actuating upon our body, we can get access to bodily states from our physiology to then act in
such a way that we help to alter or reassess our psychophysiological states. This construction process
may be developed to extend our knowledge and expectations regarding the internal mechanics of our
own body and serves as a bridge to design better informed affective health technologies. Moreover,
not only does this approach aim to help having a better self-understanding but paves the way to put
the body and its felt experience at the core of the design of such technologies.

The paper is organized as follows. In Section 2, we provide a brief overview of self-monitoring and
affective technologies. Section 3 showcases a set of biosignals that we have had access to throughout
our research and the information we can extract from their features in order to open a window to
our internal psychophysiological processes. The features commonly available for each biosignal are
listed to provide guidelines on what level of information is to be extracted. The actuation on the
subject’s body, addressed in Section 4, can be executed through a variety of mechanisms. We list
actuation mechanisms that are available for interaction design using mainly consumer electronics.
In Section 5, we present the design research approach that we have adopted, describing what the
first-person perspective is and introducing soma design in this context. This design process has
been applied to several explorations. The outcomes of our design explorations, coupling biosensing
to actuation, are discussed (see Section 6). In this section, together with Section 7, we proceed by
addressing coupling concepts and discussing the orchestration process. With the idea of orchestration,
we highlight the role of technology-coordinated sequences and the possibilities brought by machine
learning and advanced signal processing. We end by commenting on the ethical underpinnings of
affective technology and somaesthetic design.

2. Body-Centric Affective Technologies

With the emergence of everyday personal sensing such as the sensing embedded in our
permanently reachable phones, smart watches and fitness bracelets, HCI and ubiquitous computing
scholars have highlighted the value of these technologies for innovative research. Affective Computing
refers to computing that relates to, arises from, or deliberately influences emotions [27]. Technologies
that we have seen permeate the everyday space with quantification, exercise tracking, and physical
wellbeing, have also—perhaps in line with a more traditional affective computing view—made
researchers dream of extended healthcare, diagnosis and monitoring applied as well to mental
wellbeing [4,28–30]. As exemplified by Bardram and Matic [1], mental health research is catching up.
In recent years, research on mobile and wearable technologies that track behavioral, psychological, and
contextual signals has gained momentum in the field, albeit not without pending design challenges [31].
Following a research path toward ubiquitous technologies deployed in mental wellbeing domains
may help to bring attention to such aspects as personalization, achieving forms of rapport or
engagement not seen in traditional healthcare. The promise of affective computing is vast. In our
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view, we could argue that just as self-awareness plays a major role in the motivation of change in
rehabilitation therapy, for example, in cardiac rehabilitation [32], psychotherapy could benefit from
self-monitoring technologies revealing bodily dynamics. Awareness, for instance, may contribute both
to a (re)assessment of emotions and behavioral change that are solid grounds of cognitive behavioral
psychotherapy [33,34].

Emotion plays an integral role in design work, and design researchers are not exempt from its
ups and downs [35–37]. As affective computing reaches maturity, alternative methods have emerged
and reshaped traditional approaches to affect. In an effort to attend to emotions, rather than primarily
recognizing them, researchers investigating what is known as the affect through interaction [22]
prioritize making emotion available for reflection. In such line of thought, seeking emotion aside from
context would not make sense. In this “affect-through-interaction” view, the role that emotion has had
for a long time in artistic and design endeavors is acknowledged. This is exemplified by the analysis of
Boehner et al. [38], later picked up by Howell et al. [39] to defy the role of personal sensing in design,
in particular the role of biosensing. That is, by no means, to say that the progress that personal sensing
has witnessed under the advent of affective computing should be diminished. Rather, dialogue with
artificial intelligence research and attention to more cognitivist-oriented outcomes can strengthen the
affect-interaction paradigm. From our standpoint, when designing technology-mediated experiences,
we see the affect as a sociocultural, embodied, and interpretative construct. Hence, embarking on the
challenge of creating use cases for novel technology that touch upon emotions, we start experiencing
the body first (see Section 5). The examples and reflections laid down in this paper, the description of
technologies we choose to design with, our AffecTech coupling results, and those we used as inspiration,
convey directions in which we believe personal sensing, its mapping to actuation, and designing
with the body are successfully integrated. Under the overarching lens of first-person design that
provides strong foundations, paying respect to ethics, and “resisting the urge” [35] to engage users,
we rediscover (and invite others to do so) technologies that are called upon to extend possibilities
within affective interaction.

State of the Art

In the design space of affective interaction and physiological data, existing research has utilized
visual and haptic technologies for affective feedback. Affective Health [40], for example, mapped skin
conductance data measured from an electrodermal activity sensor (EDA) into a colorful spiral on a
mobile phone screen. After using the mobile app for a month, users interpreted the skin conductance
data as a tool to manage stress levels, track emotions, monitor personality, and even to change their
behaviors. Khut [41] has been a pioneer in the area of designing heart rate based visual and sonic
artworks for relaxation, both through a mobile app and large scale projections. HCI researchers have
started to utilize alternative materials such as thermochromic ones to visually represent biosensing
data. Howell et al. designed Ripple [42], a thermochromic-based shirt that changes colors responding
to skin conductance. By using the garment over a two-day period, wearers were able to reflect on
their emotions but they rarely questioned if the display was actually representing their feelings.
In Reference [43], Umair et al. mapped skin conductance to haptic changes in addition to using visual
thermochromic materials, that is, vibrations, heating, and squeezing effects. The feedback about the
body properties measured is worn, felt or placed in contact with the body. The findings of these studies
highlight that the material-driven qualities of such visual and haptic body interactions shape people’s
interpretation of how they identify, attribute, and regulate emotions in everyday life. Haptics have
also been used with biosensors to regulate affect, which requires users to adapt their ongoing feelings.
EmotionCheck [44] and Doppel [45] use vibrations simulating a slower heart rate sensation for the users
and helped them decrease their anxiety. Recently, Miri et al. [46] used a vibration-based personalized
slow-paced breathing pacer on the belly which delivered vibrations in a biphasic pattern for inhalation
and exhalation and helped users in reducing anxiety during a stressor. With a research approach that
explicitly sets out to design with the body—not as an object to be measured but “understanding the
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body as a site of creative thinking and imagination” [47]—, works at the intersection of biosensing,
interaction design and affective technologies offer an opportunity to study how to support the design
of interactions that make us connect with our bodies [9,48,49].

3. Sensing the Body

Biosignals are time representations of changes in energy produced in the body. These changes
correspond to energy variations of different nature, such as electrical, chemical, mechanical, and
thermal (as presented in Table 1). With the turn of the 21st century and the advent of the digital
era, the advances in the field of electronic components that spurred the development of computing,
instrumentation, and algorithms left their impact on medical and biosignal devices. Biosensing and
electrophysiology technologies were greatly improved, ready for the study of body functions and
health monitoring in the context of clinical research. As technologies grew, the miniaturization and
reduction of costs contributed to the growth of biosensing monitoring technologies beyond clinical
settings as well. Physiology signals and sources of tracking information are more available than ever,
ranging from electromyography (EMG), electrocardiography (ECG), electroencephalography (EEG),
electrodermal activity (EDA) to electrooculography (EOG) or eye movement tracking.

Table 1. Parameters and type of energy measured through body sensing. Adapted from Reference [50].

Energy Changing Parameter Measurement Examples

Mechanical Position, force, torque, pressure Muscle contractions, cardiac pressure, muscle movement
Electrical Voltage, charge, current EMG, ECG, EEG, EDA, EOG
Thermal Temperature Surface body temperature
Chemical Concentrations, exchanged energy pH, oxygen, hormonal concentrations

A direct consequence of such rapid expansion is the creation of the sports & health monitoring
markets that fill up the mobile app stores and provide remarkable revenues in the ubiquitous
computing paradigm that we live in. The democratization of the study of biosignals, however, comes
with interesting possibilities such as a better understanding of the self and a richer, unprecedented
way to interact with technologies that accompany us. This yields an opportunity to define alternative
ways to live an affectively healthy life.

As the maturity of open access physiology databases [51] backs up the improvement of processing
algorithms, low-cost hardware platforms help populate the open source space [52] where users embrace
biosensing, share ideas and drive the future of biosignals applied in different areas. Furthermore, the
biosignals that were once limited to hospitals and clinics, or in specialized research labs, addressed in
classical texts of physiology, are nowadays accessible in virtually any context by means of wearable
technologies. In the review of Heikenfeld et al. [53], an interesting account of the transition from
lab tracking to wearables during the 20th century is offered along an in-depth overview of body
sensing mechanisms not only restricted to electrophysiology. The field of affective computing has
consistently found in biosignals a relevant source of information [54]. Besides, the fact that biosensing
platforms have jumped off the clinic has contributed to embracing them alongside other technologies
like movement tracking, traditionally linked to behavioral and psychophysiology labs.

We present a selection of studied biosignals (see Figure 1) that can be incorporated into the creation
of new technologies for affective health. We focus on a subset of biosignals present in the BITalino
revolution do-it-yourself (DIY) low-cost biosensing platform [25,55,56] that backed and inspired some
of our research in affective technologies. These, although not an exhaustive list, are to some extent
physiological signals that have become standard for physiology tracking research—slowly crossing
disciplines and making their way into affective health tracking, interaction design, and other domains
of interest. Moreover, with objectives that range from out-of-the-lab psychophysiology tracking [57–59]
to new perspectives in interaction design [43,49,60] our work has often addressed biosignals through
other available biosignal research platforms beyond BITalino, such as biosignalsplux [61], Empatica
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E4 [62], Arduino accessories like the Grove GSR [63], or even commercial wearables such as the
Samsung Gear S2 [64] among others.

Figure 1. Visual representation of different biosignals: (a) Electromyography (EMG), (b) Electrodermal
activity (EDA) and (c) Respiration signals. biosignals and icons obtained at PLUX S.A.

In this section we present a collection of these biosignals and offer a systematic but brief
description on (1) How it works, summarizing the basic physiological principles that provide the
biosignals energy observables; (2) What can be extracted from the collected biosignal; (3) Where the
biosignal can typically be collected in the human body; (4) When, or how often, the signal should be
sampled describing the concerns on the timing of the acquisition and in particular the typical sampling
frequency of each biosignal; and (5) Limitations of the biosignal acquisition and processing with the
challenges of noise or signal artifacts. All of them are examples of signals that we have addressed in
our research. This non-exhaustive selection offers a good starting point for researchers interested to
integrate biosignals in their design of technologies for wellbeing and mental health.

3.1. Surface Electromyography (sEMG)

How it works: The recording of the electrical activity produced by skeletal muscles receives the
name of electromyography (EMG). Human muscles are made up of groups of muscle units that, when
stimulated electrically by a neural signal, produce a contraction. The recording of the electrical activity
of the muscles (voltage along time), traditionally relying on intrusive needle electrodes (intramuscular),
is easily accessible nowadays by means of surface electrodes that capture the potentials of the fibers
they lay upon. The result of this measurement is a complex surface electromyography signal (sEMG)
that reveals data about movement and biomechanics of the contracted muscles (see Figure 1a).

What: Electromyography signals inform about the contraction of specific muscles and parts of the
body. The EMG signal consists in the time representation of rapid voltage oscillations. Its amplitude
range is approximately 5 mV. In terms of signal analysis, the EMG allows the assessment of several
aspects such as muscle contraction duration, the specific timing at which movements or contractions
are activated, the presence of muscular tension or fatigue, and the extent to which different fibers (area)
are contracted. The analysis is conducted through noise filtering, together with feature extraction that
yields contraction onset detection, the estimation of signal envelopes, and the computation of average
frequencies. This lets subjects deepen their understanding of movement strategies, very relevant for
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embodied art and sports performance, improve muscle coordination, or even reveal existing movement
patterns that they are unaware of.

Features: Onset instants; Max amplitude; Instant of maximum amplitude; Activation energy;
Envelope.

Where: Having become the standard in EMG monitoring, bipolar surface electrodes consist of
three electrodes. Two of them (+/−) must be placed close to each other, on the skin that lies on top
of the muscle under study, along the fibers’ direction, while the third one is placed in a bony area
where no muscular activity is present. This allows the measurement of electrical potential differences
with respect to a common reference, yielding a unique signal that represents the muscular activity of
the area.

When/Frequency: Given the fast muscle-neural activation nature of EMG signals and the presence
of different active muscles contributing to the same signal, muscle activity must be acquired at sampling
rates no lower than 200 Hz frequencies. Working at 500 Hz is desirable, while a sampling rate of
1000 Hz guarantees the tracking of all the relevant events at a muscular level.

Limitations: Surface EMGs are intrinsically limited to the access to superficial muscles. This is
compromised by the depth of the subcutaneous tissue at the site of the recording which depends on
the weight of the subject, and cannot unequivocally discriminate between the discharges of adjacent
muscles. Proper grounding (reference electrode attached to a bony inactive muscular region) is
paramount to obtain reliable measurements. Motion artifacts and muscular crosstalk compromise the
assessment of the muscle activity under study. In this context, interference from cardiovascular activity
is not uncommon, particularly in areas such as chest and abdomen. The presence of power supplies
and mains (powerline) in the vicinity poses the risk of 50 Hz–60 Hz interference.

3.2. Electrodermal Activity (EDA)

How it works: Electrodermal activity (EDA), also known as galvanic skin response (GSR),
measures the electrical properties of the skin, linked to the activation of the autonomic nervous system
(or more precisely the sympathetic nervous system). By applying a weak current upon two electrodes
attached to the skin, it is possible to measure the variations of voltage that are present between the
measuring points (see Figure 1b). When placed at specific locations on the skin, the measured electrical
signals are affected by the sweat secreted by the glands that are found in the dermis.

What: Electrodermal activity signals inform about the activity of the sympathetic nervous
system. Given its electrolyte composition, the sweat secreted by sweat glands has an impact on
the electrical properties of the skin. This phenomenon, visibly monitored in voltage signals by means
of electrical conductance (or impedance/resistance, conversely), facilitates the assessment of arousal
effects. Arousal is the physiological response that stimuli such as emotional or cognitive stressors
trigger. The measurement of electrodermal activity is usually decomposed in two major behaviors
present and superposed in any skin response signal, that is, the skin conductance (tonic) level, with
slowly varying dynamics, and the skin conductance (phasic) responses, that exhibit relatively faster
dynamics. In terms of signal analysis, this decomposition is accompanied by the assessment of
characteristics such as the rate of detected EDA events, detection of onsets, and the characteristic rise
and recovery times.

Features: Onset instant; Skin Conductance Response (SCR) rise time; SCR 50% recovery time;
Event rate; Skin Conductance Level (SCL).

Where: EDA measurements use two electrodes to monitor changes in electric potential between
two locations on the skin. Electrodes must be placed a few centimeters apart for differences to be
relevant. The nature of the measurement technique and the phenomenon itself, makes hand palm a
suitable electrode location, for which either palm placement or finger phalanges, most subject to skin
sweating, are optimal for the monitoring of electrodermal activity. Additionally, foot sole placement,
also affected by sweating glands, is not uncommon in EDA measurements given that particular
use cases or settings require access to hands for carrying out certain activities. For the alternative
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placements of the EDA sensors, such as forehead or wrist, the presence (or lack) of sweating glands
remains a decisive factor in obtaining reliable measurements.

When/Frequency: Electrodermal activity is considered to be a slow physiological signal. Thus,
sampling rate frequencies as low as 10 Hz allow a full representation of the skin conductance variations.
Electrodermal activity peaks usually occur after few seconds from the exposure to a given stimulus
(1–5 s).

Limitations: Electrodermal activity measurements use changes in electrical properties of the
skin produced by sweating. Since sweating is not only triggered by arousal but also the human
thermoregulation system, ambient heat and physical activity monitoring are aspects that limit the
capabilities of EDA studies. In common practice, electrodermal sensors are usually prepared to
obtain salient data from the most comprehensive userbase, providing relevant (measurable) changes
regardless of the wide variety of sweating responses from subject to subject. However, it is not
uncommon to find examples of subjects with either too high or too low skin conductance responses
that complicate the measurements. Moreover, settings that involve an intense physical activity pose
concerns on the electrode attachment and motion interference. The presence of power supplies and
mains (power line) in the vicinity of the acquisition systems pose the risk of 50 Hz–60 Hz interference.
With regard to feasibility, since traditional electrodermal activity studies rely on hands or feet electrode
placement that compromises certain actions, attention needs to be given to the use case and activities
that take place while monitoring, on a case by case basis.

3.3. Breathing Activity

How it works: Respiration (or breathing) sensors monitor the inhalation-exhalation cycles of
breathing, that is, the process to facilitate the gas exchange that takes place in the lungs. In every
breathing cycle, the air is moved into and out of the lungs. A breathing sensor uses either piezoelectric
effects on bendable wearable bands or accessories (one of the most predominantly used technologies),
respiratory inductance plethysmography on wired respiration bands around the thorax, microphonics
on the nose/mouth airflow, plethysmographs (measuring air inflow) or radiofrequency, image and
ultrasonic approaches. A review on breathing monitoring mechanisms is found in Reference [65]. For
piezoelectric breathing sensors, thoracic or abdominal displacements (strain) produced in breathing
cycles bend a contact surface that converts ressistive changes to continuous electrical signals (see
Figure 1c).

What: A breathing signal informs about the respiration dynamics, that is, the dynamics of the
process mediating gas exchange in the lungs, as well as supporting sound and speech production.
The monitoring of the fundamental function of breathing brings in the assessment of breathing
cycles and rates which in turn allows the study of apnoea-related problems (involving breathing
interruptions), oxygen intake, metabolism of physical activity, and the effect of cognitive or emotional
stressors in breathing. In terms of analysis, breathing cycles are studied using breathing rates, the
maximum relative amplitude of the cycle, inhale-exhale volume estimation, inhale-exhale duration,
and inspiration depth, that allow the characterization of several breathing patterns.

Features: Respiration rate; Inspiration duration; expiration duration; Inspiration-expiration ratio;
Inspiration depth.

Where: A piezoelectric breathing sensor is usually located on the thoracic cavity or the belly,
using a wearable elastic band. With adjustable strap and fastening mechanisms, the sensor can
be placed slightly on one side where bending is most relevant, optimizing the use of the sensor
range. These kinds of sensors, allow both the study of thoracic and abdominal breathing. With the
development of conductive fabric, breathing sensors are making its way into the smart garment market
in the form of T-shirts and underwear bands.

When/Frequency: Breathing is a relatively slow biosignal, with breathing rates often below
20 inhale/exhales per minute. A sampling rate frequency as low as 50 Hz is sufficient to capture the
dynamics of respiration.
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Limitations: While piezoelectric breathing sensors are prominent given the low cost and form
factor advantages of wearable sensor platforms, deviations in placement have an effect in the relative
range of the response signal. Movement artifacts, most relevant when physical activity is present,
are a common source of problems. Respiration sensing techniques like the respiratory inductance
plethysmography, compensate the highly localized piezoelectric approach with a sensor capturing the
general displacement of the whole thoracic cavity, yielding a signal less prone to movement artifacts.
The monitoring of breathing cycles is usually accurate, although the exploration of effects to be used
as voluntary inputs in interactions, such as holding the breath, are not easily captured.

4. Actuation

The mechanisms to provide actuation in a form of feedback to the human take an important
role in creating a complete interaction from sensing body properties to making the subject aware of
them. Our research aims at linking biosensing to body actuation. Actuation is generally provided
by mechanical elements that move and respond to input signals in order to either control or inform
about a system. We stretch this definition to include feedback mechanisms such as screen-based
visuals, although no mobile mechanical element is necessarily implied. In this section, we focus
on actuation mechanisms that can be easily controlled and coupled to our body. We take a similar
approach to the structure used to describe the biosignals, on explaining: how, what, where, when,
and the actuator limitations and usage precautions for a selected list of actuators. The range of
actuation mechanisms presented draws upon our research on affective technologies and interaction
design, as well as inspirational works present interaction design research, but it should be seen as a
non-exhaustive list of possibilities.

4.1. Screen-Based Visual Biofeedback

How it works: Screen-based visual biofeedback is the representation of body signals that inform
about body changes happening along time. Its goal is to provide to the researcher a means to assess
the dynamics of the aforementioned changes, helping to gain understanding and tracking the inner
state of a given subject. Examples of this could be ECG feedback, respiration feedback, or movement
tracking, usually employed in health metrics or sports performance research. Screen-based biosensing
systems for feedback are standard practice in clinical settings and hospitals. Biofeedback use has for
instance been adopted in psychotherapy, as research suggests that the technique provides a mechanism
to self-regulate the emotions.

What: Screen-based visual biofeedback uses a 2D graphical interface and benefits from light,
colors, strokes, and visual styles to represent a changing signal that evolves with time. Signal peaks
and troughs appear in an axis showing the measurement magnitude in a given range, so that rapid
and slow dynamics can be seen as the representation moves along the time axis when updated.

Where: Screen-based visual feedback takes place in a display, either a computer screen or a
sensing platform display.

When: It is important that the represented signals are updated in real-time. Doing otherwise,
although possible using delays or technology limitations, would compromise the ability of the actuation
to convey the tracking meaning attributed to the practice of biofeedback. When sensing requirements
pose concerns on the technical ability to render a smooth representation through time, approaches
such as averaging or undersampled representations are used.

Limitations: Screen-based visual biofeedback connects easily with the mathematical properties
that underlie the signals under study. However, signal processing procedures such as filtering, scaling
or normalization are crucial in achieving a smooth and flowing representation. These come, of course,
tightly dependent on the available computing capabilities. There are situations in which feedback users
report finding difficulties or experiencing anxiety when engaging in the assessment of body rhythms.
Moreover, visual information tends to remarkably capture the attention of the user, thus needing
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special care when used as an element of broader interaction (movement, performance, exercise) that
could render a poorer experience quality or present a deviation from the aimed activity.

4.2. Sound Feedback

How it works: Sound feedback, when applied to biosignals, is the audio representation of body
signals that uses sound properties to inform about body changes happening along time. Its goal is to
exploit our sophisticated trained sense of hearing to convey meanings linked to body signal features,
leading to the understanding and tracking of a given subject’s biosignal dynamics.

What: Sound feedback uses the properties of sound, that is, volume, pitch or frequency (note),
rhythm, harmony, timbre, and transients (attack, sustain, etc.) among others, to represent a signal (or
its features) that changes over time. Its generation, often using speakers or headphones, is linked to
properties of the signal. Alternative approaches draw upon several transducing paradigms, that is,
different ways to convert electrical signals into sound (electromechanical as in the case of speakers,
piezoelectric or others), often more limited such as buzzers or beepers made of basic vibrating elements
that produce sound.

Where: Sound can be generated in speakers, devices that work converting electrical pulses to
sound (air pressure) waves, allowing users to listen to the feedback without the need for additional
equipment. Headphones, working by the same principle, can be used for the same purpose but only
providing feedback to the person wearing them.

When: The human hearing range typically comprises frequencies between 20 Hz and 20,000 Hz.
The oscillating frequency of the sound wave that is created is what gives it a particular tone (what we
call a note). The different times at which sound waves are generated is what creates the meaning of
rhythm and articulation.

Limitations: Audio generation and processing techniques are complex. Whilst high-level
hardware and software tools can be exploited to make a complete system more accessible, there
certainly remains a relevant learning-curve. The scenario in which audio feedback is deployed
conditions a lot the effect achieved, given the fact that materials surrounding the sound generating
system at use impose effects like reverberation, echoes, or absorption. Exposure to sound feedback for
a prolonged period of time has some drawbacks. Sound volume can potentially harm our auditory
system. Sound feedback that lack textural richness (e.g., a single sine-wave) has the risk of becoming
unengaging for the user or potentially cause irritation.

4.3. Vibrotactile Actuation

How it works: Vibrotactile actuation uses motors to stimulate communication utilizing touch,
and more precisely tactile vibrations. When linked to biosensors, it can use the properties of the
so-called vibrations to convey features of the biosignal being tracked.

What: Vibrotactile actuation is a technology communication mechanism that uses touch vibrations
to exploit the touching sense of humans. It is built upon motors, which can mostly be categorized
under two types:

• Eccentric rotating mass vibration motor (ERM), with a small unbalanced mass on a DC motor
that creates a centripetal force translated to vibrations when rotating.

• Linear resonant actuator (LRA), containing a small internal magnetic mass attached to a spring,
which creates a displacement force in a single axis when driven by an AC signal, usually operating
around a specific narrow frequency bandwidth that increases efficiency.

These motors usually take the form of small (few millimeters) enclosures with simple positive and
negative (+/−) terminals to be driven, lowering the power and supporting (weight) requirements.
The typical power supply needed for this kind of micromotors is of the order of 1–5 V.

Where: With weights below 1g, the small form factor of these motors makes them suitable for
body explorations, often relying on patches, elastic bands, or holders. Typical uses include also
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vibrotactile-equipped wristbands or smartwatches. Besides the traditional game/remote controllers
including vibrotactile feedback and actuating on the hands, the currently ubiquitous role of mobile
phones has spread the use of vibration feedback and patterns for notification, alarms and other
communication examples anywhere a phone can be placed or hold.

When: Small vibrotactile motors feature fast startup and breaking times and can actuate taking
rotations up to 11,000 revolutions per minute (RPM), in the case of ERMs, and oscillations of the order
of few hundreds of Hertz.

Limitations: Vibration comes often with undesired noises or sounds. While this is mitigated by
rubber-made absorbing structures often integrated in the motors, use cases need to consider this aspect.
While vibrotactile actuation offers the opportunity to explore a particular type of haptic feedback,
the use of small motors limits the generated effects, in terms of amplitude, duration, and intensity
perceived. To create vibration sequences, several motors are needed, provided integration software and
hardware development efforts are carried out. The actuators often require extra drivers to widen the
operating regime possibilities while maintaining electrical safety standards. As generally advised in
the case of feedback modalities applied to the body, haptic feedback actuation has to go hand in hand
with user experience studies, since prolonged exposure and certain placements can lead to discomfort.

4.4. Temperature Actuation

How it works: Temperature actuation uses heating and cooling elements to stimulate
communication using heat passed by haptics, that is, through our sense of touch. When used with
biosensors, it can use the properties of the heating/cooling dynamics of the material to convey
characteristics of the biosignal being tracked.

What: Temperature actuation is a type of communication that is used as feedback drawing
upon the human haptic (touch) sense. The properties of the temperature feedback depend on the
materials that are used to convey the features of the information (e.g., biosignals, behavioral data,
etc.) of interest. Most commonly used approaches rely on the conversion of an electrical current input
into heat/cold outputs, mainly by using resistive elements that heat up when current flows through.
Examples of these are nichrome wires, conductive threads, conductive fabrics, and thermoelectric
coolers (Peltier elements).

Where: The nature of the heating elements determines where the temperature actuation can
be placed. The flexibility of wires and fabric has led to many developments that extend wearable
capabilities, producing smart garments that lie close to the skin. Implementation possibilities of these
technologies comprise patches and configurations to be mounted in accessories (bags, caps, etc.),
among others. In applying heat or cold, placement plays a key role given the different perceptual and
comfort ranges that exist throughout the body skin.

When: Typically, heat is an actuation modality that acts slowly. Whereas thermoelectric coolers
and nichrome could seem to behave otherwise, being able to be turned on in a fast manner thanks to
conduction, there is usually an element that plays a dissipating (slow) role in heat dynamics either
using convection or radiation. Heat transfer, hence, usually involves relatively slow dynamics.

Limitations: As it is the case with actuation having an effect upon the body, heat/cool feedback
has to closely consider the user comfort and perceptual thresholds. Materials’ properties (mainly heat
conductivity) constrain the possibilities in terms of time. While options like actuation upon wide-areas
or multi-actuator sequences emerge as interesting actuation paradigms, power requirements remain
a challenge. Moreover, sensitivity to temperature varies widely from user to user and is affected by
ambient temperature conditions.

4.5. Shape-Changing Actuation

How it works: Shape-changing actuation uses interfaces that exhibit changes in size, shape,
or texture in order to, when linked to feedback, exploit the human visual and tactile perception
to convey meanings and information content. By using shape changes that unfold over time,
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the actuation dynamics are brought forth letting the user be able to play with concepts such as time
(increasingly/decreasingly fast, slow, abrupt) and volume or size to depict the desired information.

What: Shape-changing actuation interfaces use the change of physical form that, when linked
to feedback, provide a certain output conveying meanings and properties of the signal that they are
bound to. Shape-changing exploits a combination of the senses of sight and touch to convey meanings
intrinsic in the dynamics of the information that they are linked to, such as rapid changes, stability,
increase, decrease, and steady growth. Such interfaces, despite the parallelisms found in visual
screen-based explorations done in visual computing, are emerging as an alternative, physical, and
tangible way of interacting with technological devices [66]. Three of the most widely used examples of
shape-changing actuation elements are:

• Shape-memory wire (“muscle wire”, nitinol, flexinol): a unique type of wire, which can be
deformed, stretched and bent at room temperature, able to restore its shape when heated (i.e.,
when exposed to the electrical current). The wire activates rapidly when the electrical current is
applied or the wire is heated.

• Linear actuator: a mechanical device that converts electrical current into a linear movement along
a given axis, as opposed to the circular motion of a conventional electric motor. When equipped
with extra sensors (such as Hall effect sensors) they are able to provide precise information on
their length(the absolute position of the moving element on the axis).

• Inflatable shapes: enclosed structures which can be inflated with fluids (typically gas: air, oxygen,
nitrogen, helium, etc.), usually accompanied by pressure or volume control mechanisms.

Where: In order for the technology to best benefit from the focus on visual and tactile perception,
shape-changing actuation implementations must remain under reach (sight or touch) to convey the
meanings embedded in the changes of shape. This can entail direct contact with the body, with the
potential to increase the felt shape meaning when in contact with a large body area, or where touch
sensations are more developed, or within the field of vision of the user.

When: The wide range of shape-changing actuation possibilities comes with different actuation
timings in it. While it is possible to work with shape-memory wires that are rapidly heated or
compressed gas or pumps that quickly fill up a given inflatable, the time affordances of this kind of
actuation do not generalize. Linear actuators, for instance, usually require a system of pistons and
damping mechanisms that have an impact on the dynamics of the actuation while it unfolds over time.
Moreover, it is often the case that the behavior of shape-changing interfaces is not symmetrical, for
example, although an inflatable can be rapidly fed air by a pump or a reservoir, deflation valves have
their own rules.

Limitations: Memory wires, although visually appealing, imply the utilization of high
temperatures which challenges the use of haptic shape-changing feedback based on them. In turn,
the strains achieved (or pulling forces) are generally weak, often leading to implementations that
use several wires. It is very common that the developments using this kind of actuation include the
application of protective heat layers. In the case of linear shape-changing actuators, movement is often
accompanied by undesired noise and relatively slow dynamics. The actuators themselves, made of
rigid moving elements, impose a certain rigidity to the overall actuation. Moreover, multiple units
are often needed to create appealing effects. Shape-changing inflatables often present problems of
fluid leaks, as well as different asymmetric behaviors for inflation and deflation. These can be tuned
by further developments on valves and compartments but requires significant work. Besides, the
type of pump poses specific fluid requirements and usually exhibits noise that interferes with the
actuation designed.

5. Sensing and Actuation under the Soma Design Approach

Our affective technology research aims to create personal technologies that enable
self-reflection [6]. With a focus on the body, design research is used as a way to enter introspectively
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to emotion self-reflection and potentially disrupt the way we relate to our mental well-being with
technology-mediated interactions. Technology-mediated interactions, drawing upon ubiquitous
computing capabilities (biosensing, wearables, monitoring applications, embodied actuation) could
add novelty and be taken further to psychotherapy contexts. In this section, we introduce the
design approach taken to accomplish meaningful biosensing-actuation couplings. This comprises
the first-person design stance, the somaesthetic design (“design through the body”) approach,
and the path to orchestration (i.e., the mechanisms for the coordination and event recognition
in technology-mediated body interactions and the connections and sequencing for evocative
sensing-actuation experience design).

5.1. Designing from a First-Person Perspective

Often in user-centered design, designers conceive, test, and set requirements for the ultimate
users that are placed at the center of the design efforts. In doing so (using a third-person perspective),
users are relegated to a second line, in which from time to time, designers probe, test and interview
the target users iteratively in order to modify and render the design outcome meaningful according
to their needs. This approach, however, misses out the potential of stepping into the user’s shoes.
The first-person perspective [67], instead, constitutes a way to highlight the designers’ user experiences,
paying honest tribute to the potential end-users, and actively engaging in experiencing the design
meanings and effects. The designer who follows the first-person perspective embarks in an iterative
process of trying, testing, feeling, and evaluating the designed object or interaction. The design is tried
by the designer herself/himself. This process provides meaningful insight into what the eventual user
could get from the resulting design. When taking the first-person perspective, the designer is seen as
the user, since eventually, anyone interacting with the technology shapes its meaning and how the
technology behaves.

5.2. Somaesthetic Design

Somaesthetic design underscores the need to place importance on the aesthetic aspect of the
felt bodily experiences, as a fundamental element of the design process. This is, for us, a great first
step to attempt to create embodied technologies or interactions. The chosen approach, consequently,
confers in our case a key role to the body in the design of personal technologies for affective health.
Somaesthetics, introduced by philosopher R. Shusterman [10] is the result of the efforts of combining
the body with aesthetics, with a strong emphasis on how the body plays a major role in how we feel,
perceive and think the world. With somaesthetic design, an attempt is made to leverage the role of
the feeling body when engaging in design experiences. This strategy, requiring certain training to
grasp one’s sensations, control the movement and perceive what we feel, offers a fresh approach to
using the body as the main instrument to feel, assess, and appreciate the design affordances. The soma
design manifesto [8] highlights, among other aspects, the need to engage slowly in the aesthetic
appreciation of the technologies being designed, disrupting the habitual and inspiring users’ drive to
obtain interactions—biosignal-mediated in our case—that lead to novel ways to embrace technologies
in our lives. Body practices to support the process of getting attuned to one’s sensations are usually
employed, as exemplified in Reference [9]. These often further support the notion of estrangement
(or disrupting the habitual), that is, how designers can engage in actions, movements, or performances
far from the habitual way of carrying them out. By doing so, the intricacies of a certain interaction
become exposed, helping its analysis or reaching to novel possibilities to carry it out.

5.3. First-Person Biosensing

Having successfully been applied to design workshops that address the effects of actuation-based
interaction for embodiment and self-reflection, the somaesthetic design offers a unique opportunity
to address the challenging goal of bringing together biosensing and actuation in an evocative
way, relevant to the user who would utilize personal technologies for emotional awareness and
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regulation. In taking a somaesthetic design approach, affective technology researchers find a path
to make sensing workable, paving the way for discoveries that support the creation of new relevant
technology-mediated experiences as targeted by the AffecTech project [6]. To explore how our internal
physiological mechanisms can be revealed via a set of biosignals, a routine for experiencing sensing
from a first-person perspective was followed, significantly inspired by previous haptic actuation
explorations [48,68] and used in part in Reference [49]. Using the knowledge in biosignals acquisition
and relevant information processing the designed routine aims to support the learning of newcomer
students to the field of biosignals, potentially adding tangible interaction features that make the
topic more accessible. This process was originally thought as having an expert guide on biosignals
and a learner that would follow and report on the felt biosensing experiences during a 1-3 hour
session depending on the number of different biosignals covered, but in practice moved to a more
open exploration scheme based on switching roles where no expert/novice knowledge hierarchy is
sought [49]. The first-person sensing experience goes beyond a theoretical explanation and the lab
experience with pre-recorded signals or a recording session of biosignals. With this different approach,
the students or researchers that want to be initiated follow an introspection process to discover in
a deeper way how and what can change the internal mechanisms of the signals and the body. This
process is not thought to take place in a formal lab experience or lecture teaching environment, but
accompanied by a person experienced both in soma design and biosensing that would revisit the
experience and rely on body practices to awaken the somaesthetic appreciation needed for the exercise
(see for instance the work of Windlin et al. and Tsaknaki et al. [9,48]).

5.4. Orchestration

Orchestration mechanisms try to answer the overarching goal of achieving systems that facilitate
the exploration of biosensor data and meaningful representation through actuation that addresses
many more modalities than just visual feedback (see Section 4.1). To achieve this facilitation it is crucial
to be able to combine and nicely coordinate the relationship between input (biosensors) and output
(actuators). In this paper, the term orchestration defines the process of:

• Creating couplings, that is, combining biosensors and actuators in place
• Coordinating the technology-mediated body interactions
• Working on the sequence in which different modalities are addressed via the sensors and actuators.

Deciding which one goes first
• Guiding users in understanding the captured biodata through their felt experience by means of

the addressed modalities
• Providing the design exploration ground, showing capabilities, limitations and roles of the

involved technologies that participate in these interactions
• Potentially laying out machine learning, feature extraction, smart event recognition, or signal

processing tools that can be applied to render the interactions more intuitive or meaningful

5.5. A Soma Design Example: The Breathing Light, or How Light Actuation Inspires Design

Interaction design research work by Ståhl et al. such as the Breathing Light [69], preceding the
cross-disciplinary efforts presented in this paper, proved inspirational to our research. The goal of
the Breathing Light prototype is to help the users to find a safe place where they can take a break
from daily routines, focus on inner body processes, and reflect. The prototype is built from fabric
and string curtains creating a secluded space for the user’s upper body. The Breathing Light system
switches the users’ attention to breathing, focusing on the experience of inhale/exhale cycles. Light has
been chosen as a modality given its ability to subtly guide the attention of the participants inwards.
Technology-wise, the Breathing Light is a lamp with a proximity sensor. The sensor measures the
distance between the chest of the user and the lamp, which in practice becomes a breathing sensor
under these conditions. The ambient light in the prototype is dimming in accordance with the breathing
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patterns: exhale with a dim-out and recovering when inhaling. The intensity of the ambient light is
high enough to make it possible to follow the light pattern even with the eyes closed but is not high
enough to distract the user. The participants reported that when they were lying under the Breathing
Light module, they felt enclosed and taken care of. Limitations arose as it was a demanding task to set
the timing, intensity, and warmth of the light. However, in turn, this interaction facilitated an intimate
correspondence between the perception of the breathing and the light, which meant that the light was
perceived as an extension of the body, providing a much richer experience of breathing.

6. Results: Designing Biosensing-Actuation Couplings

In the work of Somadata [49], soma design sessions and first-person accounts of the user/designer
participants are highlighted to understand what constitutes a tangible or “felt encounter” with an
otherwise disembodied design material, that is, biosignals. Our design approach is not that of a
“solutionist” method that tries to quantitatively acquire data and formally evaluate how a coupling
solves a given problem. This avoidance of a solution is a resource that has been leveraged in design
fiction [70]. Our research does not try to tackle the recognition of certain given patterns in biodata to,
for example, make users optimize behaviors (walking, running or fitness related activities) nor prevent
anomalies (heart malfunction, fall detection, stress recognition). We use design topics, or challenges, at
most—such as exploring synchrony between peers. We do not work with a given problem. Rather,
a qualitative, explorative stance grounded on the body is at the basis of design discoveries that help us
look at biosignals as design material to be shaped, changed and integrated in interaction design toolkits
instead of taken as a given, unchallenged and immutable. Where we have failed with other coupling
attempts, a selection of carefully crafted sensing-output combinations succeed in achieving what we
call soma data, that is, biodata that is somatically experienced, leading to novel insight, collectively
shareable and in line with a design context or goal. Soma data examples in Reference [49] include
a mechanism for groups of two people to connect non-verbally through audio and synchronous
movements, a way to share muscle activity insight (on the calf muscles) relevant to an activity of
crossing a balancing pole and new way to understand EDA data thanks to a haptic heating effect—that
we address in more detail. In this paper, we want to open the design space. Hence, we bring to
discussion the underlying interaction mechanisms of this kind of experiences. Although prototypes
could be evolved into final products and studied quantitatively, the research presented in this paper is,
instead, driven by the inspiration gathered from works that use technology to connect experientially to
our felt bodies [9,48,68]. We aim to incorporate biosensing in soma design toolkits, as a design material,
and discern what is needed to support this design. When used in soma design workshops, first-person
somaesthetic accounts of users exploring the couplings are taken to assess whether an input-output
connection is meaningful with regard to body self-awareness. Orchestration decisions are integrated in
the organization of wired, programmed effects and input-output mechanisms found in the couplings
that successfully led us to what we consider interaction design discoveries [49].

However, our interaction design research seems to suggest that better orchestration mechanisms
would render our technology-mediated interactions more aesthetic [9,48]. In this line of thought,
we have conceptualized a workflow that integrates sensor devices and actuators into a shared network
that is controlled through a server, responsible for data transmission between components. In this
scenario, the designer has the ability to explore available devices either via a graphical user interface
(GUI) or tangible user interface. Furthermore, the available devices can be connected with one another
through the GUI to couple input signal streams (such as biosignals) to output signals (like the intensity
of a haptic actuator) and allow one to create and fine-tune somatic associations. These associations are
designed through defining triggers and responses to signals or even via training machine learning
models that react to input signals and act on the output signals. The system should allow for a flexible
use of devices, their signals and behaviors to uncover novel interactions (Figure 2). An early example
of an interactive visual programming metaphor can be seen in Figure 6.

213



Sensors 2020, 20, 5968

In this section, we describe Scarfy, one of our research outcome biosensing-actuation coupling
prototypes (EDA to temperature), as well as current work in Breathing Synchrony and EMG couplings
with audio. In our view, a potential orchestration platform should let the users choose what elements
are present in every experience, such as sensing-actuation modalities (haptic, sound, light, heat, cold,
airflow, shape-changing), count on visual programming interfaces (as used in the EMG-audio feedback
experience), enable the possibility to run signal processing code snippets (e.g., breathing synchrony
assessment and audio feedback), allow interactions that work more implicitly (movement monitoring,
wireless/wearable devices), and set the time sequence structure and order in place, hence shifting the
design focus away from the technology constraints and highlighting how experiences are enacted and
elements are part of a whole.

Soma Sensorium
Graphical User Interface &
Physical devices

Switching on Explore coupling 
interaction

Explore sensor 
interactions

Adjust sensors
signals &

thresholds

Explore
 actuators 

interactions

Alter actuators
Behaviour &

triggers

Orchestration
Data Recording

Machine Learning

Underneath the surface (server-side)

Autodiscovery of new devices
(sensors and actuators)

Manage connections between devices
Help identifying physical devices and 

representation

Record Data
Train models

Figure 2. Mechanisms needed for the orchestration of couplings.

6.1. Scarfy: A Temperature Scarf to Make Electrodermal Activity Perceptible

Inspired by existing research and commercial work on haptic material actuators on the body [43,
71], we started exploring different materials and actuators to communicate biodata. We explored
materials that are low-cost and safe to use for near body applications that take wearability and
comfort into account. After trying out and working with different materials and actuators, that is,
thermochromic, heat resistive materials, vibrotactile motors, shape memory alloys [43] and sensors,
that is, electrodermal activity, heart rate and breathing, we started preparing a temperature-actuated
scarf to promote interpersonal synchrony by linking skin conductance data. This coupling was aimed
toward a soma-design session that explored the concept of interpersonal synchrony [49]. We chose the
EDA signal, which has been often used to communicate increase and decrease of physiological arousal,
to actuate heating and cooling. We used four 20x20 mm Peltier modules in series with a distance of
2.5 cm and enclosed them in a scarf. The resulting artifact can be easily worn on the neck and taken off
as shown below (Figure 3).
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Figure 3. Scarfy: (a) EDA heat/cool temperature scarf coupling, (b) participants exploring actuation
on the neck, (c) forehead and (d) showing the heating elements.

The Peltier modules are driven by Arduino boards with motor drivers. Their actuation is triggered
by an EDA sensor. To mark the increase and decrease of changes in physiological arousal using
temperature, we created four different patterns of heating and cooling as shown (see Figure 4).
These patterns are Appearing/disappearing heat/cool actuating heat or cold in all the modules at once
and then turning them off simultaneously. The second and third patterns as shown in Figure 4b,c
are Increasing heat/cool meaning that heat or cool slightly turns up module by module, and Decreasing
heat/cool, that is, gently reducing the thermal effect one by one. The fourth pattern is the Moving
heat/cool pattern (Figure 4d ) in which thermal actuation is alternated on the modules one by one
following a spatial direction and keeping the temperature constant.

Figure 4. Scarfy EDA-temperature patterns with four Peltier module elements and how they change
over time ti: (a) Appearing/disappearing heat/cool, (b) Increasing heat/cool, (c) Decreasing heat/cool
and (d) Moving heat/cool.

The purpose of this coupling and heating and cooling patterns was to communicate increasing
and decreasing arousal in interpersonal settings. A set of designers’ first-person accounts and insight
on using the prototype in a design workshop focused on synchrony are found in Reference [49].
We wanted to explore how Scarfy can mediate synchrony between people and probe what heating and
cooling patterns, intensity and duration would best support this quality. Besides we also wanted to
explore feedback around technology black-boxing in Scarfy—that is, what design elements should be
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overtly exposed for customization—how it can be improved, and how it should be used in everyday
life settings. Participants in design workshops approached Scarfy by wearing it around the neck, trying
out different patterns and positions to feel the increase and decrease of heat and cold. While exploring
different patterns and placement we felt that, although subjective, heat and cold have different scales,
that is, the sensation of both heating and cooling feels different depending on the parts of the body it
is applied to. While exploring the patterns on the body, we discussed how cold feels more pleasant
than heat because of the placement of the modules inside a thick scarf fabric which is itself warm.
Placing the scarf around the neck, we found that Peltier modules often do not touch the skin and
need to be pressed in order to be felt. We were not limited to the neck area only in our exploration.
We also explored several other areas such as the forehead (see Figure 3c), back, shoulder, and wrist.
While exploring these other placements, we found that the considerable size of the scarf is harder
to manage around these other areas. Therefore, we discussed that it would be better to place Peltier
modules in smaller strap-on patches that can be placed and taken off easily. It would give us enough
freedom to quickly explore patterns on different parts of the body. Finally, talking about arousal
and the overall purpose, we discussed that the exploration should shape what meaning we assign
to it, that is, whether you are trying to learn about yourself or you are trying to calm yourself down.
In fact, ambiguity and the interpretability of electrodermal data have been a recent matter of study in
human-computer interaction research [40], with some works questioning the user’s meaning-making
processes and challenges when new representations are appropriated, taken outside the lab [72,73].
For Scarfy, any researcher can explore several patterns and needs to figure out which one fits for
his/her personal experience, that is, bodily awareness, calming yourself down, feeling your peers’
arousal. Moreover, the interaction described in Reference [49], invites us to rethink how the aspects or
features of the signal translated to actuation changes constrict the way biodata is perceived.

6.2. Breathing in Synchrony: From Physiological Synchrony to Audio Feedback

This coupling example, drawing upon the psychology concept of therapeutic alliance [74],
takes respiration data from two users in the same physical space, where two BITalino devices stream
data wirelessly to a host computer. In this example, two users participate in a timed breathing exercise
together whilst their individual respiratory patterns are being measured with piezoelectric (PZT) bands
placed around the diaphragm (see Figure 5). The data is aggregated on the host computer, executing a
script that measures the collective breathing activity. From here, we apply shared biofeedback in the
form of sound to stimulate synchrony awareness and physiological dialogue between users over time.

Figure 5. Breathing synchrony-audio experiment, based on the analysis of two BITalino piezoelectric
abdominal respiration signals (image showing the two BITalino streaming simultaneously).

The exploration followed a stage of preliminary research on physiological synchrony features
both in published research and drawing upon statistical measurements, potentially generalizable to
signals other than breathing. We implemented the computation of linear regression coefficients, cosine
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similarity and correlations between filtered signal and derivatives. The process for mapping the user’s
activity audio output can be split into two main components. First, the device data is transmitted to
a Python program, which is used to perform statistical analysis on the incoming signals, calculating
a “magnitude of synchrony” using the features listed above. After a fifteen second warm-up period,
the system accumulates a sufficient amount of data to determine mutual behavior, and the resulting
values are encoded into Open Sound Control (OSC) messages that are continuously streamed to a local
address, enabling the designer to map the data to appropriate parameters for sound feedback. With this
generic protocol in place, we aim to embrace modularity, and advocate for the experimentation of sonic
associations. In our tests, we used Cecilia’s [75] built-in granular synthesis engine; this manipulates the
playback of a pre-recorded soundscape divided into independent samples of 10 to 50 milliseconds [76].

6.3. Orchestrating an EMG-Audio Feedback Coupling

A depiction of an orchestration platform we achieved to create is that of the EMG-audio feedback
coupling. Through a visual programming interface called PureData (Pd) [77,78], we connected a muscle
activity signal with processing capabilities and a given audio pitch that changes properties according
to the biosignal dynamics as muscles are contracted. The interface, shown in Figure 6, presents
intuitive elements such as sliders and value boxes that facilitate the decision and modification of the
coupling properties. This patch receives the EMG signal from a BITalino R-IoT device, a WiFi-enabled
sensor platform, via Open Sound Control (OSC) [79,80] data packets. We mapped the EMG signal to
sound in three steps: first, we took the absolute value of the signal—a full-wave rectification; second,
we smoothed it with a low-pass filter to remove some of the oscillations; finally, the smoothed signal
was mapped to the pitch of a sine wave generator. The higher the measured muscle contraction the
higher the pitch the generator produces, and vice versa.

Figure 6. Orchestrating an EMG-audio feedback coupling in a PureData interface patch.

6.4. Understanding the Different Input/Output Tradeoffs

Through soma design sessions, we used first-person accounts of the designers or users of the
created technology couplings to better understand the drawbacks and benefits that the input and
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output modalities pose. This subsection lists resulting remarks on the couplings and modalities
studied (see Table 2). Scarfy, for example (Section 6.1), draws on previous studies [42,43] that propose
novel EDA feedback. Although works such as Reference [41] are interesting in how they look
differently at biodata to engage with, in our case we avoid visual feedback and design with the
body to investigate effects that can be worn and felt. However, our results, letting us envision the
platforms to support the design of couplings, lack the perspective of longitudinal studies highlighting
users’ data interpretation [40].

Table 2. Technology drawbacks and benefits.

Drawbacks Benefits

EDA
temperature

• Limited EDA placement
• High power supply needs
• Circuitry-dependent orchestration
• High temperature safety risks
• Non-symmetrical effects

(increase/decrease,
heat dissipation)

• EDA data is shown tangibly (not only as peaks
building up but also dissipating)

• Low sampling rate, easily trackable with averages
• Slow signal in line with the deliberate soma

design stance
• On-the-body effects (perceptible and

physically grounding)
• Easy to adjust, put on and take off in case

of discomfort

Breathing
synchrony

input

• Advanced processing features that
capture synchrony and
multi-sensor behavior

• Piezoelectric breathing sensor
limitations (precise breathing rates
but inaccurate breath
holding detection)

• Multi-sensor (allowing multi-user and
synchrony studies)

• Highly controllable (useful for affective tracking but
also interaction controls, for example, breathing
amplitude and rate)

EMG input

• Placement for specific muscle
tracking (trial and error needed)
with high sampling rates (rapid
muscle activity is precisely captured
and multi-EMG muscle group and
articulation monitoring possible)

• Low cost sensors with high sampling rates (rapid
muscle activity is precisely captured and multi-EMG
muscle group and articulation monitoring possible

• Simple processing (signal energy and envelopes) to
detect EMG bursts

Audio
feedback

• Off-the-body actuation (needs a
context or activity to relate to the
physical body)

• Highly developed human hearing (high perception
of pitch and rhythm changes)

• Large consumer electronics audio possibilities
(wireless speakers and headphones)

• Many programming interfaces for audio. Music
development area (many programming languages,
libraries, platforms)

• Existence of audio processing libraries in visual
programming platforms → address orchestration
platform GUIs

Our claim here is not that a soma design approach is the best or most efficient way to design
with biosignals. Instead, we argue that soma design provides an interesting way to bridge between
engineering- and interaction design perspectives and that this bridge in turn renders novel, creative,
and relevant design concepts. In our work, it led to the creation of digitally-enabled experiences
that succeeded in making us aware of sensations and reactions of our own bodies as well as those of
our peers, at the same time as these explorations pinpointed technological challenges when sensors
and actuators were used in ways they were not intended for. It helped us to move away from the
predominant health optimization or fitness performance paradigm often present in physical and
activity tracking devices that most biosensors are built for. In this sense, it provided a richer space for
what biosensing might be used for.

218



Sensors 2020, 20, 5968

7. Discussion

The coupling prototypes presented in this paper, in line with the reflections presented by
Reference [49], led to what are arguably design discoveries in combining biosensing with body
actuation. These are used to highlight the role of the body and ultimately make us, the users/designers,
connect more intimately with it. Soma design is not a shortcut to circumvent the difficulties present
when designing with biosensing, but a way to approach them differently. Interaction designers must
face the same challenges that engineers or developers struggle with when evaluating what form factor,
sampling rate or placement for a sensor is best for a given input or action of interest. Within our
soma design exploration, though, issues such as noise in muscle tracking, electrode misplacement,
or sensor undersampling that leads to no data variations are experienced through, for example,
distorted sounds, excessive vibrations, or changeless temperature feedback, echoing what Fdili Alaoui
writes about artists avoiding a problem-solving approach and turning technology resistance into
creativity [81]. We believe that instances of couplings that have succeeded in bringing design insight
should be integrated into a design or prototyping toolkit. Furthermore, our design approach offers
the foundations to successfully integrate different sensing and actuation modalities in a way that is
evocative to the body. With regard to Scarfy (Section 6.1), there is a direct link to the works that inspired
an EDA coupling [42,43] to be more closely felt on the body emerge from an affective awareness goal.
That is also the case of breathing, where Miri et al. [46] show haptic actuation examples with a
clear affect intervention workflow. Our approach, instead, is that of supporting the design process.
We do so by exploring what effects are possible and using the designer’s own felt body to assess
them. The change of focus is relevant. For instance, instead of using feedback as a breathing pacer
[ibid.] or affect control mechanism, we delve into the experiential properties of the biosignal at
hand and how they are shared or understood collectively. Although there is room for development,
the paradigms that we used depict avenues in which we aim to widen the palette of interactions,
refine orchestration mechanisms and connect to the underlying ethics of our way of designing bodily
awareness or affective technologies.

7.1. Orchestration: The Soma Bits Toolkit

In previous work, we have brought forth the Soma Bits: a prototyping toolkit [48]. Acting as
accessible “sociodigital materials”, Soma Bits allow designers to pair digital technologies, with their
whole body and senses, as part of an iterative design process. The Soma Bits have a form factor and
materiality that allow actuators (heat, vibration, and shape-changing) and sensing (biosensors and
pressure sensors) to be placed on and around the body (see Figure 7). They are comprised of a growing
library of three-dimensional physical soft shapes, which are made of stretchable textile and memory
foam. Each shape has at least one pocket, making it possible to insert different sensing or actuating
components. By combining several actuators with shapes, one can orchestrate experiences, and explore
the qualities of the sociodigital material directly on the body, by changing the parameters of the sensors
and actuators and placing the shapes on different parts of the body.
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Figure 7. Elements of the Soma Bits design toolkit: (a) shapes, (b) temperature actuation,
(c) vibration actuation.

The Soma Bits are easily (re-)configurable to enable quick and controllable creations of soma
experiences which can be both parts of a first-person approach as well as shared with others. In the
case of a first-person exploration, someone can, for example, experience and reflect on the properties
of heat actuation on their foot and gain a bodily understanding of a heat modality, which can be later
integrated into the design of interactive systems. In the case of exploring somaesthetic experiences
shared with others, an example can be that one person feels on their spine the breathing patterns and
rhythm of another person, translated into a shape-changing pattern that is experienced through the
spine soma shape that is part of the Soma toolkit.

We have taken the first steps towards orchestrating collective behaviors of the Soma Bits by
combining different Bits and allowing interaction designers to program complex behaviors (e.g.,
slowly shape-changing materials that heat up when a user presses on them). To achieve that, we aimed
at a protocol and an interface for connecting Soma Bits together. In the middle, between sensing
and actuation, we provide an “orchestration unit”. This unit acts as a hub for the sensor and
actuator network. The orchestration unit is controllable through OSC (Open Sound Control) [79,80].
This protocol enables the usage of common musical interfaces, such as controllers or sequencers,
allowing end-users to program the bits without having to write code. We have also started using
supervised learning algorithms to quickly help bootstrap interactions. These algorithms allow for
mapping noisy sensor data to actuation, which in turn would allow for more complex behaviors to
also be programmed into the bits without writing code. We tested the Soma toolkit focusing mainly
on combinations of shapes and actuators during three workshops with interaction design researchers
and students from several disciplines. Research purposes were explained to participants, who signed
informed consent forms. The first was a one-day workshop at the Amsterdam University of Science
that took place in October 2018, in which 30 master’s students engaged in a soma design process
having the Soma toolkit as the main medium to explore actuation and bodily experiences around
the topic of empathy. The second workshop took place in December 2018 at the Mixed Reality Lab,
at the University of Nottingham, UK, and was focused on the Soma Bit shapes addressing the topic
of balance. First-person accounts of the designers involved in the study and an elaborate analysis
of design outcomes of the workshop can be found at References [49,82]. Together, we explored for
three days the Soma Bits in several design contexts, including VR applications and leg prosthetics
for dancers. During this workshop, we introduced sensing, apart from actuation, through the
BITalino prototyping platform [25,55,56]. We also initiated the design of couplings between sensing and
actuation, for example by translating movement through acceleration, to sound. The third workshop
deploying the Soma Bits was conducted in February 2019 in Milan (see examples in Reference [49]).
In this workshop, researchers from several disciplines including psychology, engineering, and

220



Sensors 2020, 20, 5968

interaction design, experienced different prototypes that were brought to the workshop, in combination
with the Soma Bits toolkit. The workshop lasted for a day, synchrony was the main topic underlying
the prototype demonstrations, as well as the bodily and technological explorations. As a general
reflection we observed that as soon as the Soma Bits toolkit was introduced to the design process,
the workshop participants shifted their attention to experiencing the sensing-actuation technology
through their bodies, rather than just on a conceptual or verbal level. On a broader level, the Soma
Bits toolkit addresses the difficulty we experienced in past soma design processes—that of articulating
sensations we want to evoke to others, and then maintaining these experiences in memory throughout
a design process. Thus, the Soma Bits enable designers to know and experience what a design might
feel like and to share that with others. The Soma Bits have become a living, growing library of shapes,
sensors, and actuators and we continue using them in our design practices, as well as when engaging
others in soma design processes.

7.2. Missing Bits: Shape-Changing Actuation

In the creation of a Soma Design toolkit, we aim for a wide range of tunable modalities for the user
to explore and create the effects what communicates best for her/his soma. In this regard, we know
that our prototyping efforts fall short on making shape-changing actuation available. HCI research has
already shown some of the design potential behind linear actuators and inflatable shape-changing
mechanisms that inspire us and guide our future research perspectives.

7.2.1. Linear Actuators

The linear actuator serves as a central piece of what we call the Soma Pixel system. Soma Pixel is
a modular interchangeable sensor-actuator system (see Figure 8a), inspired by shape-changing projects
carried out by MIT researchers from the Tangible Media and the Senseable groups:

• Project Materiable [83,84]
• Project Lift-Bit [85,86]

We aim at having a number of smart modules (“pixels”), capable of sensing the human body
(pressure by weight, biosignals) and providing certain actuation. The shape-changing actuator
(currently a linear one) serves as a skeleton for the “pixel”. Sensors and other actuators are thought to be
located in the upper part of the device. The modules can be easily rearranged in space, while “knowing”
their relative position with respect to each other. At the moment, in the Soma Pixel setup, the linear
actuator is coupled with a force sensor. Actuation happens when weight/force is being applied to the
sensor. This is, nonetheless, accompanied with limitations, that is, the linear actuators cannot move
(change length) fast and the motor inside of the linear actuator makes substantial noise when running.

Figure 8. Shape change: (a) Prototyping with linear actuators (b) Inflatable shape.

7.2.2. Inflatable Shapes

In an ongoing research line, inflatable shapes are currently being used for constructing a “singing
corset” prototype, as well as a part of a newer revision of the Soma Bits toolkit. The corset is built upon
an Arduino-powered inflatable that will be integrated with the Soma Bits (see Figure 8b). However,
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the first iteration of inflatable shapes had difficulties with fast deflation. This was partly solved by
adding another air pump, devoted specifically for exhausting air. Experimenting with the addition
of separators inside an inflatable shape or splitting it into multiple inflatable sections may further
improve exhaust performance. Another limitation is unavoidable minor air leakage, which will happen
due to imperfections in manufacturing the actuator (sealing inflatable shape, valve timing).

7.3. Extending Orchestration: The Role of Biosignal Processing

A relevant part of our research has focused on the extension of biosignal feature extraction,
processing, and analysis in real-time (to enrich real-time feedback possibilities within the lab and in
more ecological settings). While initial sensing-actuation orchestration couplings have successfully
made use of basic signal processing, further possibilities lie in improving the current algorithms and
processing approaches. Any sort of biosignal acquisition, in particular in psychophysiology sensing,
can be seen as the process of dealing with sequential and time-series data. Prior to the deployment of
feature extraction and selection techniques, data must be preprocessed properly. ECG, EMG, EDA,
IMU, respiration, and all the data collected from available sensors are in general sampled at different
rates and present different properties that entail signal noise and instances of data that do not conform
to (standard) expected representations. These can be seen as artifacts or “meaningless” data. Since the
data obtained in real-world ambulatory settings is always noisy, presenting inconsistencies or missing
values, preprocessing and cleaning is required (see examples in previous studies we conducted [57]).
As it is the case for the features listed in Section 3, time domain and statistical features such as, in the
case of designing with breathing and/or heart monitoring (ECG), the mean value of the rates, the mean
value of the time between events, the standard deviation of those intervals and the root mean square
of successive interval differences are accessible in the wild. Of particular interest are the less apparent
frequency-based features which given the demanding spectral analysis computational requirements
have just begun to appear in the nowadays more capable out-of-the lab devices. While certain features
count on solid research support, pointing at the most scientifically validated ones, attention is given
to the exploration of the potential mappings that can be built upon them. The use of multimodal
data (namely, the use of several biosensors at the same time), extends the monitoring capabilities
that can be brought to the couplings’ design by widening the perspective and being able to keep
track of body signals that are not the main focus of the interaction. This allows the designer to put
in place validation mechanisms, gaining accuracy, and supporting the claims made with respect to
the the targeted biosignal. If orchestration aims at the creation of meaningful technology-mediated
interactions, the made connections need to rely on processing capabilities, event detection, and
high-level feature extraction to overcome the limitations of too basic couplings that only put in
place simple (signal) amplitude-to-intensity mappings. Moreover, the group somaesthetic design
appreciation sessions where the felt experiences are brought together and debated (usually relying on
inspirational body-centered exercises, reenactions, body sketching tools, and verbal communication)
could be significantly enriched with the monitoring of signals acquired during the design experience.
As design explorations have already started to show, there seems to be room for the creation of machine
learning and processing capabilities that could render interactions with the technology more implicit
(also embodied or intuitive).

7.4. Extending Orchestration: Machine Learning Capabilities and Personalization

Standard machine learning workflows are usually multi-step and involve the definition of
problem-specific feature extraction methods, as well as in-depth expert knowledge of the problem
at hand. Deep Learning (DL) [87] techniques, also part of our signal processing research efforts,
shift the ML practitioner focus from that of feature extraction methods to feature learning. In particular,
in end-to-end learning settings, DL models are directly fed with the raw input signal (i.e., without
any form of pre-processing, or at best very mild), and use this to automatically extract (deep) features
from it and make predictions based on them [23,88]. Its benefits apply as well to machine learning
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approaches aimed at improving pattern recognition capabilities of relevance in physiology or affective
data [89]. In cases in which the input signal is high-dimensional or when timestamps are a relevant
characteristic of the problem at hand (e.g., biosignals, multimodal), DL methodologies have been
shown to outperform traditional pattern recognition techniques. While research for real-life DL
deployments is still under progress, with algorithm computational resources being one of the main
limitations nowadays, DL approaches emerge as mechanisms to overcome the difficulty of coming up
with sensible hand-crafted features for a certain classification problem at hand. Provided advances
towards DL in ambulatory scenarios are made, orchestration design (of sensing-to-actuation couplings)
can potentially benefit from DL feature learning by lowering the technology expertise burden on the
designer/experimenter side. Overall, this would allow experience design to focus more specifically
on the affordances of the interaction rather than the processing mechanisms. To this end, work on
Convolutional and Recurrent Neural Networks (CRNN) has shown to be able to deploy a Neural
Network paradigm that obtains classification/recognition performance improvements by algorithm
personalization, that is, avoiding specific calibrations to be done according to the user. Typically,
personalized Machine Learning models are simply the idea of learning individual behaviors that
train a model using the data collected only from the subject. These models are usually customized to
the requirements of each individual, imposing requirements to consider the individual differences,
yet still using data collected from the population. To some extent, new deep learning paradigms are
circumventing these requirements.

In Section 3, we describe how embodied sensor technologies react differently in accordance
with the unique biological characteristics of the body. Similarly, the perceived impact of a given
actuation mechanism—as those described in Section 4—largely depends on the sensitivity to a given
stimulus, as well as the natural bodily variations between different users. With this considered,
we recognize the necessity to attune the system’s parameters in order to produce mappings that
facilitate meaningful interactions that are not overly obtrusive. While auto-calibration mechanisms
have been implemented in the previous examples, which typically define and minimum/maximum
parameter ranges, we foresee an extended benefit in adopting Interactive Machine Learning (IML) [90]
frameworks as means to foster perspectives respecting body pluralism. Existing frameworks such as
Wekinator [91] and Teachable Machine [92] facilitate the design of classification and regression-based
mappings that are initiated and iteratively adjusted with example data provided by the user (e.g.,
Reference [93]). Furthermore, we would like to explore the use of Interactive Machine Learning to
develop novel coupling relationships that go beyond linear mappings, as well as intuitive mappings
between multimodal inputs and multi-dimensional outputs.

In our sound-based examples, visual programming environments heavily assisted the
orchestration process. In both cases, the systems enabled users to visualize a continuous stream
of mappable data in real-time, clearly exposing any unexpected behavior that may occur (for example,
with the displacement of sensor electrodes). The node-based functionality of the frameworks allowed
for a coherent representation of the dataflow and signal processing steps in order of execution,
less abstract compared to a code-based script. During the process of developing the system, a user
interface is generated in parallel on-the-fly as each node presents a GUI element that grants the designer
access to parameters such as scaling and smoothing coefficients. In Section 6.2, a basic interface allowed
users to test and compare a set of algorithms for sound mappings. This workflow can be beneficial for
rapid experimentation with a variety of parameters and signal processing techniques that influence
the interactive experience. It also presents a convenient solution for fine-tuning a complete system
according to the user’s experience.

7.5. Ethical Underpinnings

We have provided examples of research on sensing and actuation technologies, first-person
somaesthetic approaches and experiments to foster the design and research of self-awareness
(embodied, wearable) technologies with the potential to support self-reflection, emotion regulation, and
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affective health. In any design process, and particularly for technologies that may be used in affective
or health contexts, it is important to consider the ethical implications of design, use, and research.
Ethics simply concerns what is good, with a utilitarian perspective dealing with the greatest good
for the greatest number of people. To assist in ethical decisions and practices, ethical frameworks
outline key concepts such as beneficence and nonmaleficence, justice, responsibility, autonomy, privacy
and confidentiality, and respect for the rights and dignity of others [13,14,94–97]. By reflecting on
these ethical principles and standards, designers and researchers can ensure that their processes,
technological developments, and research are done ethically and for the greater good.

The concept of the first-person somaesthetic design reflects qualities of good ethical practice
through its focus on experiencing each aspect of the technology to facilitate its appropriate use,
integration, and development. This extensive design process explores the benefits and potential adverse
effects of the various sensors and actuators and uses this to shape orchestration and future design.
Guiding users in interpreting the captured data throughout the felt experience and exposing or creating
the meanings attached to personal sensing is a deliberate effort to make interactions intuitive but
conspicuous. In Reference [67], designing with the body is seen as a route for designers to harmonize
with their felt experiences, an alternative of particular relevance in light of the implicit interaction
direction that personal tracking technologies seem to move into. The slow and deliberate soma design
methods also reinforce the careful consideration of how technology may impact experience, and
therefore the potential effects this may have on future users. Part of our research on orchestration,
attempts to provide the design exploration ground that would show capabilities, limitations and roles
of the involved technologies that participate in the designed interactions, in line with the first-person
perspective. It is important to acknowledge that when stepping into the user’s shoes, designers jump
to the firing line. Potential effects for the user are experienced firsthand. Another ethical strength
lies in the acknowledgement of the need for variety and customization of these experiences to suit
the individual end-users and their specific needs, as avoiding the blindness for body differences is
advocated early on in first-person work [67]. This is important for inclusive and diverse technologies
which must consider not just individual differences across users, but also users with additional needs
or impairments who may be disadvantaged or excluded from technologies which focus on only one
modality, such as visual interfaces. The ethical somaesthetic design will involve consideration and
incorporation of ethical principles and practices in the design process from conceptualization and
throughout the design and development lifespan. Designers and researchers should be familiar with
core ethical principles and should reflect on how these may shape their design practices, research, and
technological developments. Research examples such as the work of Balaam et al. [35], point at ways to
challenge the design practice, especially in emotion work, and avoid engaging participants by default
but questioning and justifying their engagement. Autoethnographic and first-person design are seen
as promising alternatives. Future research should explore how to incorporate user-centered design
within the first-person design process. This will increase the validity of the premise that first-person
experiences can be used to create devices to serve the diversity of human experiences. This is especially
crucial for devices that may be used for emotion regulation or affective health, where different users
may have different experiences, needs, and risks based on their unique histories and circumstances.
Experiments such as the design explorations and couplings described in this paper can, therefore,
be adapted to involve persons with varied lived experiences to explore how their experience of the
soma toolkit or other technologies may differ from those of the designers. This is further connected to
concepts of beneficence, non-maleficence, and justice which encompass issues related to benefits, risks,
safety, fairness, and equal access for all. Technology offers opportunities to reduce barriers but to do
so, design and development must consider how to deliver innovative and impactful technology while
still being accessible and affordable. Designers also have a responsibility to consider the intended
and unintended potential consequences of any new technology, and the need for appropriate design,
guidance, and support to ensure safe use. While discussions of impact, effects, and outcomes are
centered on end-results, it is crucial for these to be considered at the beginning of the design process
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and throughout to ensure the creation of good and safe technology. Also important to consider are
issues of data security, privacy, and ownership of personal data, with the safe and secure handling of
biosensor data an important design consideration with ethical and legal implications for its use and
misuse. Finally, while somaesthetic couplings may offer opportunities for self-awareness and emotion
regulation, designers must consider the balance between optimizing and pathologizing typical human
experiences, as well as the potential stigma in encouraging the tracking and monitoring of affective
health. As with all ethical issues, this must be considered throughout the design process. Like the
somesthetic design, the ethical design must be a continuous process integrated throughout all aspects
of the design experience and production.

8. Conclusions

Research on mobile and wearable technologies that track behavioral, psychological, and contextual
signals has recently gained momentum in the field of mental health. At the same time, the rise of
personal sensing has garnered the interest of HCI research. In this paper, we approached the design
of sensing-actuation experiences intended for rich embodied interactions with relevance to affective
health. To achieve this, we adopted first-person soma design to integrate biosignals that are commonly
used in ubiquitous low-cost personal sensing together with actuation mechanisms studied in HCI. Our
design exploration, giving special attention to the sentient body and acknowledging alternative ways to
address affect within interaction, culminated with a set of coupling examples, in which we demonstrate
data mapping strategies between various devices in the context of bodily and emotion awareness.
The soma design approach applied to the creation of biosensing-actuation couplings for affective and
self-awareness experiences is the main contribution of this paper. Through the couplings, we arrived at
the concept of orchestration, defining the ways in which body input-output systems and meanings are
put in place, the range of mappings and how they unfold. Soma design is a theoretically robust design
approach that helps us sketch experiences to develop a (not necessarily dialogue-oriented) toolkit to
facilitate creating affective technologies grounded on the body and enhanced by biosignals that are
made available as design material. As a design toolkit, the examples created so far are instances of
a wider collection of tools. The findings of our design explorations have unveiled a set of research
directions (or requirements) to pursue in order to achieve broader orchestration mechanisms:

1. Further work on real-time machine learning tools to train biosignal-based input-output effects
on the fly (in line with research in interactive machine learning [90–92]) and extend options to
customize the features recognized and feedback received, according to the user preferences

2. Continue developing and testing programming interfaces that not only enable setting new
sensing-actuation connections but leverage the user configuration and control while a coupling is
being explored

3. Carry out more studies on multi-sensor experiences, as these point to the need for more advanced
real-time signal processing and the rich multi-user interactions where outputs are the result of
user collaborations or shared, bodily understanding of biodata

This insight aims to inspire developments in affective technologies and invites the joint work
of engineering, interaction design, or even clinical disciplines that are traditionally disconnected
from one another. Moreover, our discussion points at current limitations and paves the way for
future research. We indicate sensing-actuation modalities that have been underexplored, then we
consider the potential benefits of integrating refined machine learning algorithms and (developing) new
orchestration interfaces to assist and democratize the crafting and customization process. As somatic
perspectives are becoming more incorporated in areas of interaction design (research) and embraced
with rigor, we foresee valuable intersections in other research domains.
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