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As the guest editors of this Special Issue, we feel proud and grateful to write the
editorial note of this issue, which consists of seven high-quality research papers. We
are incredibly grateful to the colleagues who submitted their papers and to the referees
who provided thoughtful and constructive feedback within the tight deadlines provided
by the journal. We acknowledge the hard work and commitments of the authors, who
have implemented revisions that addressed all essential comments and suggestions of the
referees. As guest editors, it was a pleasure for us to observe this prompt, collegial and
constructive reviewing process. In our tasks and efforts, we were assisted by the efficient
support provided by the Editor-in-Chief, Marc Paolella, and the assistant editor.

This Special Issue deals with problems of statistical inference and the use of p-values.
Recently, the issue of the use of p-values in various scientific investigations and data
analytics techniques has raised questions regarding the validity of statistical decision-
making in social sciences including the business and economics disciplines. It is common
practice among practitioners and researchers to make statistical decisions exclusively by
using the “p-value < 0.05” criterion, regardless of sample size, statistical power and/or
expected loss function underlying the selected models. Some of the well-known scholars
have raised serious concerns about this practice and have warned that the use of “p-value”
may lead to wrong decisions and give distorted scientific results. As an example, we quote
a statement made by the American Statistical Association (Wasserstein and Lazar 2016)
and the presidential address given by the American Finance Association (Harvey 2017). A
few studies have commented on this issue by presenting empirical evidence, such as the
paper by Keuzenkamp and Magnus (1995) and McCloskey and Ziliak (1996) for economics,
Fazal et al. (2020) for energy, Kim et al. (2018) for accounting, and Kim and Choi (2017) for
finance, among others.

The problem has become more challenging with increasing availability of large data
sets. In particular, it is widely recognized that statistical significance (based on the conven-
tional p-value criterion) is becoming irrelevant for big data (see, for example, Gandomi
and Haider 2015). To this end, Rao and Lovric (2016) maintain that “the 21st century
researchers work towards a ‘paradigm shift’ in testing statistical hypothesis”. There are calls
that the researchers conduct more extensive exploratory data analysis before inferential
statistics are considered for decision-making (see, for example, Leek and Peng 2015; Soyer
and Hogarth 2012). There are even calls that the use of statistical significance based on the
p-value criterion should be abandoned (Wasserstein et al. 2019). In light of these criticisms
and calls for change, the Special Issue has been proposed.

The present Special Issue of Econometrics is a collection of seven excellent papers that
address some of the following topics:

1. New or alternative methods of hypothesis testing such as estimation-based method
(e.g., confidence interval), predictive inference, and equivalence testing.

2. Application of adaptive or optimal level of significance to business decisions.
3. Decision–theoretic approach to hypothesis testing and its applications.
4. Compromise between the classical and Bayesian methods of hypothesis testing.

Econometrics 2021, 9, 2. https://doi.org/10.3390/econometrics9010002 https://www.mdpi.com/journal/econometrics
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5. Exploratory data analysis for large or massive data sets.
6. Critical review papers on the current practice of hypothesis testing and future direc-

tions in business.

This Special Issue begins with an inaugural article by Richard Startz entitled, “Not

p-Values, Said a Little Bit Differently”, which is an important contribution toward the
ongoing discussion about the use and/or misuse of p-values. Numerical examples are
presented which demonstrate that a p-value can, as a practical matter, give you a different
answer than the one that you want. Further contributions to the topic come from Thomas
Dyckman and Stephen A. Zeff on “Important Issues in Statistical Testing and Recom-

mended Improvements in Accounting Research”. This paper proposes improvements to
both the quality and execution of research related to statistical inference in developing
statistical tests which address the limitations in existing literature. They explore the sit-
uational effects of “data carpentry”, alternatives to winsorizing, and suggest necessary
improvements instead of relying on a study’s calculated “p-values”.

One of the many highlights of this Special Issue is the paper titled “Interval-Based

Hypothesis Testing and Its Applications to Economics and Finance” authored by Jae
Kim and Andrew P. Robinson. This paper tackles a long-standing literature review on
interval-based hypothesis testing (such as tests for minimum-effect, equivalence, and
non-inferiority) widely used in biostatistics, medical science, and psychology. It presents
the methods in the contexts of a one-sample t-test and a test for linear restrictions in
a regression. The paper employs testing for market efficiency, validity of asset-pricing
models, and persistence of economic time series. Authors argue that, from the point of
view of economics and finance, interval-based hypothesis testing provides more sensible
inferential outcomes than those based on point-null hypothesis. It proposes interval-based
tests which can be routinely used in empirical research in business, as an alternative to
point null hypothesis testing, especially in the new era of big data.

Another paper addressing a similar issue is written by David Trafimow, entitled “A

Frequentist Alternative to Significance Testing, p-Values, and Confidence Intervals”. In
this article David begins his debate about null hypothesis significance testing, p-values
without null hypothesis significance testing, and confidence intervals. The first major
section addresses some of the main reasons these procedures are problematic and concludes
that none of them are satisfactory. However, there is a new procedure, termed the a priori
procedure (APP), which validly aids researchers in obtaining sample statistics that have
acceptable probabilities of being close to their corresponding population parameters. The
second major section provides a description and review of APP advances. Not only does
the APP avoid the problems that plague other inferential statistical procedures, but it is easy
to perform, too. Although the APP can be performed in conjunction with other procedures,
the present recommendation is that it be used alone.

The fifth important paper is the contribution of Jan Magnus, who addresses the issue
of the use of t-ratios. The title of this paper is “On Using the t-Ratio as a Diagnostic”,
in which the author points out that tests and diagnostics are the two uses of t-ratios in
econometrics. The paper proposes a new pretesting method model averaging over t-ratio
and pretest estimators.

The sixth paper of the Special Issue is authored by John Quiggin with the title “The

Replication Crisis as Market Failure”. Adopting a microeconomic approach, John’s paper
begins with the observation that the constrained maximization central to model estimation
and hypothesis testing may be interpreted as a kind of profit maximization. The output of
estimation is a model that maximizes some measure of model fit, subject to costs that may
be interpreted as the shadow price of constraints imposed on the model. The replication
crisis may be regarded as a market failure in which the price of “significant” results is
lower than would be socially optimal.

The seventh paper is on the pedagogy of econometrics, entitled “Teaching Grad-

uate (and Undergraduate) Econometrics: Some Sensible Shifts to Improve Efficiency,

Effectiveness, and Usefulness” by Jeremy Arkes. According to Wasserstein et al. (2019),
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“Statistics education will require major changes at all levels to move to a post ‘p < 0.05’
world”. As educators, we will need to rethink the way we train the future decision-makers,
especially in the big data era where the p-value criterion is no longer relevant. Jeremy
proposes a range of critical points on the issue of teaching econometrics, including the prob-
lem related to the p-value, maintaining that the teaching of graduate (and undergraduate)
econometrics needs to be revamped.

We are very thankful to all authors, who have made considerable efforts to meet the
standards of the journal. We believe that this Special Issue has been very successful in
attracting seven high-quality contributions from established and well-known scholars in
their prospective fields. The journal has provided an open access-publishing facility to the
contributors, which is a realistic option for our discipline. We hope this Special Issue will
stimulate further research and novelty in understanding a new paradigm for statistical
evidence of p-value insights. We take this opportunity to thank the numerous reviewers
who have greatly contributed to the quality of the published papers. Finally, we thank the
editor-in-chief, Marc Paolella, and the team of assistant editors without whose devotion this
Special Issue would not have been produced in such a smooth and well-managed manner.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Building on arguments by Joshua Angrist and Jörn-Steffen Pischke arguments for how
the teaching of undergraduate econometrics could become more effective, I propose a redesign of
graduate econometrics that would better serve most students and help make the field of economics
more relevant. The primary basis for the redesign is that the conventional methods do not adequately
prepare students to recognize biases and to properly interpret significance, insignificance, and p-values;
and there is an ethical problem in searching for significance and other matters. Based on these
premises, I recommend that some of Angrist and Pischke’s recommendations be adopted for graduate
econometrics. In addition, I recommend further shifts in emphasis, new pedagogy, and adding
important components (e.g., on interpretations and simple ethical lessons) that are largely ignored
in current textbooks. An obvious implication of these recommended changes is a confirmation of
most of Angrist and Pischke’s recommendations for undergraduate econometrics, as well as further
reductions in complexity.

Keywords: teaching of econometrics; regression analysis; economics pedagogy

1. Introduction

On 23 January 2015, basketball player Klay Thompson of the Golden State Warriors hit all 13 of
his shot attempts in the 3rd quarter of a game against the Sacramento Kings—this included making
9 of 9 on 3-point shots1. These 3-point shots were not all wide-open 3-point shots players typically
take (with the team passing the ball around until they find an open player). Rather, several of them
were from far beyond the 3-point line or with a defender close enough to him that under normal
circumstances, few would dare take such a heavily contested shot.

Everyone knew that Klay Thompson was “in the zone” or “en fuego”, or that Thompson had
the “hot hand” that night. Everyone that is . . . unless you are a statistician, a psychologist, or an
economist (particularly, a Nobel-Prize-winning economist) without adequate training in econometrics
or regression analysis. Starting with Gilovich et al. (1985), an entire literature over 25 years found
no evidence for the hot hand in basketball. Even the famous evolutionary biologist, Steve Jay Gould,
got in on this research (Gould 1989). From the results, these researchers claimed that the hot hand was
a “myth” or “cognitive illusion”.

This was an incredibly appealing result: that all basketball players and fans were wrong to believe
in the hot hand (players achieving a temporary higher playing level) and that they were committing

1 See https://www.youtube.com/watch?v=BNHjX_08FE0. One extra 3-pointer he made came after a referee whistle, so he
was actually (but not officially) 10 of 10. This performance harkens back to a game in which Boston Celtic Larry
Bird hit every low-probability shot he put up, as he racked up 60 points against the Atlanta Hawks in 1985—https:
//www.youtube.com/watch?v=yX61Aurz3VM. (The best part of the video is the reaction by the Hawks’ bench to some of
Bird’s last shots—those opponents knew Bird had the “hot hand”).

Econometrics 2020, 8, 36; doi:10.3390/econometrics8030036 www.mdpi.com/journal/econometrics5
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the cognitive bias of seeing patterns (the hot hand) in data that, the researchers claimed, were actually
random and determined by a binomial process. Therefore, the story has shown up in many popular
books—e.g., Nudge (Thaler and Sunstein 2009) and Thinking Fast and Slow (Kahneman 2011). Note that
Kahneman and Thaler are the 2002 and 2017 winners of the Nobel Prize in economics, respectively.
In addition, this was a story that a recent-Harvard-President-and-almost-Fed-Chairman-nominee
gave to the Harvard men’s basketball team, as he brought media along in his address to the team
(Brooks 2013).

However, it turns out, these researchers and Nobel laureates failed to recognize a few biases to the
estimated relationship between making prior shots and the current shot—i.e., alternative explanations
for why there was no significant relationship. In addition, they made a major logical error in their
interpretation. Both are discussed in a moment.

From my experience playing basketball and occasionally experiencing the hot hand, I knew the
researchers were wrong to conclude that the hot hand was a myth (This, as it turns out, is an example
of the fact that sometimes, there are limits to what data can tell us; and, the people engaged in an
activity often will understand it better than researchers trying to model the activity with imperfect data
or imperfect modeling techniques). Eventually, I developed a more powerful model by pooling all
players together in a player-fixed-effects model rather than have players analyzed one at a time, as in
the prior studies. In Arkes (2010), I found the first evidence for the hot hand, showing that players
were about 3- to 5-percentage points more likely to make a second of two free throws if they had made
their first free throw.

Yet, I failed to recognize an obvious bias in past studies and my own study that Stone (2012) noted:
measurement error. Measurement error is not just from lying or a coding error. It could also stem
from the variable not representing well the concept that it is trying to measure—a point that eluded
me, along with the prior researchers. Therefore, whether a player made their first free throw is an
imperfect indicator of whether the player was in the hot-hand state, and the misclassification would
likely cause a bias towards zero in the estimated hot-hand effect. There was another major problem
in these studies from the Gambler’s Fallacy, as noted by Miller and Sanjurjo (2018). This leads to a
negative bias (not just towards zero, as would bias from measurement error). Both biases make it more
difficult to detect the hot hand.

Reading Stone (2012) was a watershed moment for me. I realized that in my graduate econometrics
courses, I had learned equation-wise how these biases to coefficient estimates work in econometrics,
but I never truly learned how to recognize some of these biases. And, this appears to be a pattern.
The conventional methods for teaching econometrics that I was exposed to did not teach me (nor others)
how to properly scrutinize a regression. Furthermore, given that such errors were even being
committed by some of those we deem to be the best in our field, this appears to be a widespread and
systemic problem.

What was also exposed in these studies and writings on the hot hand (beyond the failure to
recognize the measurement error) was the authors’ incorrect interpretations. They took the insignificant
estimate to indicate proof that the hot hand does not exist (A referee at the first journal to which I
sent my 2010 hot-hand article wrote that the research had to be wrong because “it’s been proven
that the hot hand does not exist”). This line of reasoning is akin to taking a not-guilty verdict or
a finding of “not enough evidence for a crime” and claiming that it proves innocence. The proper
interpretation should have been that the researchers found no evidence for the hot hand. And now,
despite the hurdles of negative biases, there is more evidence coming out that the hot hand is real
(e.g., Bocskocsky et al. 2014; Miller and Sanjurjo 2018).

This article is my attempt to remedy relatively common deficiencies in the econometric education
of scholars and practitioners. I contend that inadequate econometrics education directly drives
phenomena such as the errors in the hot-hand research and on other research topics I will discuss
below. Although the veracity or falsifiability of the basketball hot hand probably does not materially
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affect anyone, errors in research can affect public perceptions, which in turn affects how much influence
academics can have.

Angrist and Pischke (2017) recently called for a shift in how undergraduate econometrics should
be taught. Their main recommended shifts were:

(1) The abstract equations and high-level math should be replaced with real examples;
(2) There should be greater emphasis on choosing the best set of control variables for causal

interpretation of some treatment variable;
(3) There should be a shift towards randomized control trials and quasi-experimental methods

(e.g., regression-discontinuities and difference-in-difference methods), as these are the methods
most often used by economists these days.

Angrist and Pischke’s recommendations, particularly (2) and (3), appear to be largely based on
earlier arguments they made (Angrist and Pischke 2010) that better data and better study designs have
helped economists take the “con” out of econometrics. They cite several random-assignment studies,
including studies on the effects of cash transfers on child welfare (e.g., Gertler 2004) and on the effects
of housing vouchers (Kling et al. 2007).

In this article, I build on Angrist and Pischke (2017) study to make the argument for a redesign of
graduate econometrics. I use several premises, perhaps most notably: (a) a large part of problems in
research is from researchers not recognizing potential sources of bias to coefficient estimates, incorrectly
interpreting significance, and potential ethical problems; (b) any bias to coefficient estimates has a
much greater potential to threaten the validity of a model than bias to standard errors.

And so, the general redesign I propose involves a change from the high-level-math econometric
theory to a more practical approach and shifts in emphasis towards new pedagogy for recognizing when
coefficient estimates might be biased, proper interpretations, and ethical research practices. I argue
that the first two of Angrist and Pischke (2017) arguments should apply to graduate econometrics as
well. However, because some of the models in their third argument are based on the rare instances of
randomness or having the data to do a more-complicated quasi-experimental method, I recommend a
shift in emphasis away from these towards more practical quasi-experimental methods (such as fixed
effects). The idea is, rather than teaching people how to find randomness and build a topic around
that, it might be more worthwhile for students to learn how to deal with the more prevalent research
problem of needing to use less-than-ideal data.

My new recommended changes are:

A. Increase emphasis on some regression basics (“holding other factors constant” and
regression objectives)

B. Reduce emphasis on getting the standard errors correct
C. Adopt new approaches for teaching how to recognize biases
D. Shift focus to the more practical quasi-experimental methods
E. Add emphasis on interpretations on statistical significance and p-values
F. Advocate less complexity
G. Add a simple ethical component.

Although most of the article makes the case for changes to graduate econometrics, my argument
implies that undergraduate econometrics needs a similar redesign. This follows directly from the
arguments on graduate econometrics, along with the idea that the common approach, using high-level
math, is teaching undergraduates as if they would all become econometric theorists; probably less than
one percent of them will.

The ideas and arguments I present come from my experiences in two types of worlds: in research
organizations (where I had to develop models to assess policy options) and as an academic (creating
my own research and teaching about econometrics).
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The article proceeds, in Section 2, with a discussion of the premises behind why I believe changes
are needed and demonstrates how much various topics are covered and how little more important
topics are covered in the leading textbooks. Section 3 presents some examples of topics with decades
of research failing to recognize biases and examples of my own research errors. Section 4 discusses my
proposed changes. Section 5 makes the case for changes to undergraduate econometrics. I provide
conclusions in Section 6.

2. Why a Redesign Is Needed

In this section, I give five reasons why there needs to be a major shift in teaching graduate
econometrics, and I show what is emphasized in leading graduate textbooks. By “major shift” or
“redesign”, I mean that there should be new topics, new pedagogy (for teaching how to scrutinize
a regression), and shifts in emphasis for what is taught among existing topics. The five reasons I
give also serve as the premises for support of some of Angrist and Pischke (2017) recommendations
on redesigning undergraduate econometrics and for the recommended changes I give in Section 4.
The five reasons are:

• There are concerns on the validity of much economic research;
• Biases in coefficient estimates threaten a model’s validity much more than biases in standard errors;
• The conventional methods for teaching econometrics do not adequately prepare students to

recognize biases to coefficient estimates;
• The high-level math and proofs are unnecessary and take valuable time away from more important

concepts; and
• There are ethical problems in research, namely on the search for significance and not fully

disclosing potential sources of bias.

2.1. There Are Concerns on the Validity of Much Economic Research

There is growing evidence of problems with validity in all academic research, and economics
certainly has its problems. In my view, there are three main sources of the concerns. First, there are some
topics that have conflicting results in the research—e.g., the research on the effects of minimum-wage
increases (see Gill 2018). Second, there are errors in interpretations. For example, akin to the incorrect
interpretations in the hot-hand research, Cready et al. (2019) find that 65% of articles in the top
Accounting journals with null results misrepresent the true meaning of those null results. I am not
aware of a similar study for economics, but as I will discuss below, it is taught incorrectly in several
leading econometric textbooks.

Third and (in my view) most importantly, researchers sometimes fail to recognize or fully
acknowledge potential biases to the coefficient estimates. Not addressing potential biases could result
in the failure of studies to be replicated. This certainly could be the cause of some cases of conflicting
results. In Section 3, I give some examples in a few economics topics in which nearly the entire
literature failed to recognize likely biases. This highlights the point below that the current methods are
not working well for preparing students to develop proper models and to recognize the biases.

2.2. Biases in Coefficient Estimates Threaten a Model’s Validity More Than Biases in Standard Errors

From my experience, almost all corrections for clustering or heteroskedasticity result in standard
errors being adjusted less than 15%. That said, there can be instances of much larger bias in the
standard errors, particularly for panel data sets. For example, Petersen (2009) finds that the bias in
standard errors for finance panel data sets is as high as 45% under certain circumstances. However,
generally speaking, the bias on coefficient estimates from any of the major pitfalls (e.g., reverse
causality, omitted-variables bias, and measurement error) could be significantly larger and, except for
measurement error, even produce an estimated effect that has the reverse sign of the true effect (which
would mean more than a 100% bias).
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Supporting this idea is the contention that the major research errors are more likely to come from
biased coefficient estimates than biased standard errors. For example, the initial research on estrogen
replacement therapy (based on observational data) suggested that it was highly beneficial to women in
terms of reduced mortality (e.g., Ettinger et al. 1996). However, a follow-on randomized control trial
in 2002 found that taking estrogen could actually lead to a greater risk of death (Rossouw et al. 2002).
And, later research after following the participants in the randomized study for longer found that
taking estrogen could actually improve health outcomes (Manson et al. 2017), depending on age.

2.3. Current Methods Do Not Teach How to Recognize Biases

This statement is based on several observations. First, as mentioned earlier, there are problems
of validity in some academic research. Second, after having received the conventional training in
econometrics, I have failed in several instances to recognize pitfalls and biases in my own research.
Third, just by common sense, it must be difficult to translate the concept of conditional mean
dependence/independence of the error term (the conventional criterion) to recognize whether a
coefficient estimate might be biased (from, for example, omitted-variables bias and measurement error).
I admittedly have difficulty and must think hard about making this connection. Fourth, to the best
of my knowledge, conditional mean dependence of the error term cannot explain the bias from the
inclusion in a model of mediating factors, or “bad controls”, as Angrist and Pischke (2009) call them.
These are variables that are part of the mechanism for why the treatment affects the outcome. (This is
different from “collider” variables used in the Directed Acyclic Graph approach, in which a variable is
affected by both the treatment and the outcome.)

2.4. The High-Level Math and Proofs Are Unnecessary and Take Valuable Time Away from More
Important Concepts

I consider myself to be a “generalist” researcher, with deeper dives into military, labor, health,
behavioral, and sports economics. In my dozens of publications and dozens of reports, I never needed
the calculus or linear algebra that was used in the econometrics courses I took. Although the necessary
math underlying basic probability theory and statistics was important, the calculus and linear algebra
used in econometrics never helped me understand the real nuances of what happens when you hold
other factors constant nor how to recognize the pitfalls and sources of bias. What contributed to my
understanding of these things has been the intuition I have gained from using regressions for many
research projects and from the mistakes I made—mistakes due to not adequately grasping how to
recognize the pitfalls of regression analysis.

And so, along the lines of Angrist and Pischke (2017) argument, real examples would be much
more useful and practical than the math underlying the regressions. The lessons from examples are
almost certainly more likely to be retained than abstract equations. Adding visual aids could be even
more effective.

This is not to say that the high-level math theory is not important for all students. For those
aiming to study econometric theory, they would need that more mathematical approach. However,
for improvisation of applying the concepts to new situations, students would likely benefit more from
examples than from knowing the high-level math underlying the econometrics.

Let me emphasize that this is my view, based on my experiences described above. As I look back
to the errors I have made, what would have helped more than the math for me would have been
more practical experience on recognizing pitfalls and understanding the nuances of certain techniques.
However, others feel differently and believe the math is essential.

2.5. There Is an Ethical Problem in Economic Research

In the scores of job-market-candidate seminars I have attended in my two decades since graduate
school, I do not remember one in which the candidate had an insignificant coefficient estimate on the
key explanatory variable. The high percentage of significant results could be due to graduate students
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giving up on a topic if the results do not support the theory they developed. However, it could also
partly stem from some searching for significance (or p-hacking), meaning that some students keep
changing the model (by adding or cutting control variables or by changing the method) until they
achieve a desirable result. There has been mixed evidence on p-hacking; one study that found evidence
for p-hacking is Head et al. (2015), although they argue that the extent of it is relatively minor when
compared to effect sizes.

Another issue, mentioned above as a source of validity problems, is that researchers are not always
fully honest and forthright about potential limitations of a study. To do so would reduce their chance of
being published. Or, for those producing reports for sponsors (e.g., at research organizations), I suspect
that many do not want to express any lack of confidence in their results.

These ethical problems are certainly not universal, as most research is probably done objectively
and honestly. However, likely due to the pressures to publish and raise research funds, there is certainly
a portion of research that could be conducted more responsibly. Simple ethical lessons might be able
to help.

2.6. What the Textbooks Teach

Table 1 shows my estimates on the number of pages devoted to various topics in the six textbooks
I believe are the most widely used for graduate econometrics. This is not a scientific assessment, as it
is based on my judgment of the number of pages having the discussion centered around the topic
and does not include other mentions of the topic. One pattern is that other than for “simultaneity”,
there appears to be greater emphasis on the things that could bias the standard errors than there is
on the things that could bias the coefficient estimates. In fact, one of the potential sources of bias for
coefficient estimates (inclusion of mediating factors) is not even mentioned other than by Angrist and
Pischke (2009), and there is minimal discussion for the other biases. The large number of pages I
indicate is devoted to simultaneity might be misleading, as few of these pages are devoted to identifying
when it could occur and the direction of the bias. In fact, “reverse causality” is a very small part of
number of pages devoted to simultaneity (and not mentioned in most of these).

Table 1. What the main graduate textbooks teach (number of pages on a given topic).

Goldberger
(1991)

Hayashi
(2000)

Russell and
MacKinnon

(2004)

Angrist and
Pischke
(2009)

Greene
(2012)

Wooldridge
(2012)

Causes of bias in the standard
errors

Heteroskedasticity 0 10 11 2 2 8

Multicollinearity 7 0 1 0 2 0

Causes of bias in the coefficient
estimates

Simultaneity 6 3 13 0 22 32

Omitted-variables bias 1 1 0 4 1 1

Measurement error 0 3 2 1 2 6

Mediating factors 0 0 0 4 0 0

Other important topics

Holding other factors constant 0 1 0 0 0 0

Fixed effects 0 23 5 12 12 9

Bayesian critique of p-values 0 0 0 0 0 0

Correctly indicates an
insignificant coef. estimate does
not mean accept the null

No No Yes N/A No N/A

Note: “N/A” in the last row indicates that I do not believe the topic of how to interpret insignificant estimates
is discussed.
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Furthermore, in most of these books, there is for the most part no discussion on the intuition
behind “holding other factors constant” and what exactly happens when you do so, and there is no
discussion in any of the books on the Bayesian critique of p-values. In addition, three of the four books
that discuss hypothesis tests incorrectly state that an insignificant coefficient estimate indicates that
one should accept the null hypothesis.

Assuming that econometrics courses mirror these books, there are many changes needed in the
teaching of graduate econometrics, as the typical emphasis in econometrics appears to be on things
that diverge from the reality of the problems that practitioners face.

3. Research Topics with Decades of Research Errors

Responding to Leamer (1983) critique on the unreliability of econometric research, Angrist and
Pischke (2010) argued that better data and better research designs have improved the credibility of
econometric research. I imagine that overall, there have been improvements in research. However,
plenty of unreliable research continues to be published.

I will discuss in this section the following three research topics in which the investigators failed to
recognize likely biases and did not realize it for decades:

(A) The hot hand in basketball, continuing the discussion from the Introduction;
(B) The public-finance/macroeconomic topic of how state tax rates affect Gross State Product;
(C) How occupation-specific bonuses affect the probability of reenlistment in the military.

3.1. The Hot Hand in Basketball

The world is not necessarily better offwith knowledge of whether the hot hand in basketball is real
or not. However, if it turns out that there is no hot hand, which would stand in contrast with what the
population believes, then this would be indicative of a mass cognitive illusion. However, in my view,
the real value in the research comes from the arc of the story on the research and the mistakes made.

As discussed in the Introduction, no researcher in the first 25 years of study on the hot
hand in basketball found any evidence for the hot hand. These studies were based on runs tests,
conditional-probability tests, and stationarity tests for individual players, finding no statistically
significant evidence for a hot-hand effect—see Bar-Eli et al. (2006) for a review of the early studies.
The researchers (and Nobel Prize winners writing about this research) claimed that the “hot hand is
a myth” or a “figment of our imaginations”. However, in Arkes (2010), I pooled all players into a
player-fixed-effects model (to generate more power) that regressed “whether a player made a second
free throw in a set of two or three free throws” on “whether the player made the first free throw”.
I found a small but significant hot-hand-effect of 3 to 5 percentage points. Still, this study turned out to
be flawed.

The first major error the researchers made is that they interpreted an insignificant estimate as
proof of non-existence. However, as the saying goes, absence of evidence is not evidence of absence.
The correct interpretation should have been that there is no evidence for the hot hand. This is a common
logical error made throughout academia (not just Economics and Statistics), and it was highlighted in
Amrhein et al. (2019), which I discuss below.

The second major error is that the researchers (including myself this time) failed to recognize
what should have been an obvious bias: measurement error. Stone (2012) noted that the hot hand
means that a player is in a state in which he/she has a higher probability than normal of making a shot
(which contrasts with the conventional thought that a player “can’t miss”). This means that a player
can be in the hot-hand state and miss a shot, and the player can be in the normal state and make a few
shots in a row, making it seem as if he/she is in that hot-hand state.

This means that the crude indicator I used for being in the hot-hand state in Arkes (2010)—making
the first of two free throws—and the indicators that others have used (e.g., making the last three shots)
could very well occur in the normal state. In addition, having missed the prior shot(s) could still occur in
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the “hot hand” state. The misclassification (measurement error) likely caused a downward bias, and this
certainly could have contributed to the failure of most studies to detect the hot hand. In addition,
the hot-hand effect I found for free throws in Arkes (2010) was probably a gross understatement due to
the measurement error.

Miller and Sanjurjo (2018) found another major error in this research, related to the Gambler’s
Fallacy, that was not so obvious. They demonstrated that if you take all “heads” in a finite sequence
of coin flips, the probability that the following flip is “heads” is actually less than 50%—yes, this is
true! They then applied this to the hot-hand application and, with the correction, actually found a
significant hot-hand effect with the data used in the seminal hot-hand study (Gilovich et al. 1985).

This source of bias again highlights the flaws in the original interpretations that the lack of
evidence for the hot hand proved it was a myth. Not only had most of the literature misinterpreted the
significance tests, but they had not given the model a thorough scrutiny of the potential biases that
could speak to whether the lack of any estimated effect was correct.

3.2. How State Income Tax Rates Affect Gross State Product

Another research topic that has had questionable modeling strategies has been on how state
tax rates affect state economic growth. The convention has been to use a Cobb-Douglas model
as the theoretical framework underpinning the econometric model. The Cobb-Douglas model
has state economic growth as a function of tax rates, as well as other economic factors such as
labor and capital. Therefore, models typically include control variables reflecting labor and capital.
For example, several studies include a measure of the unemployment rate as a control variable
(Mofidi and Stone 1990; Bania et al. 2007). Others use the amount of capital (Reed 2008; Yeoh and
Stansel 2013). And, some studies even include state personal income per capita (Wasylenko and
McGuire 1985; Poulson and Kaplan 2008) or the wage rate (e.g., Wasylenko and McGuire 1985;
Funderburg et al. 2013) as control variables.

Including these variables may not have been the best approach. Bartik (1991) raised an important
consideration for these models that has been largely ignored in the literature: that several factors of
economic growth are endogenous. Variables such as the average wage rate, the labor supply (proxied
by the unemployment rate), the level of capital, and capital growth are all factors of economic growth
and, at the same time, are measures of economic growth that could depend on the tax rate. They are
what Angrist and Pischke (2009) described as “bad controls” in that they come after the treatment
(taxes) and control for part of the effect of the tax rate. Or, Arkes (2019) considers such variables as
potential mediating factors for how the tax rate affects economic growth, i.e., tax rates could affect how
much investment and employment growth there is, which in turn affect economic growth. We can also
think of investment, the unemployment rate, employment growth, and personal income per capita
being themselves outcomes of tax rates.

Including these variables means that what is being estimated is something akin to (but not
exactly) the effect of tax rates on Gross State Product beyond the effects on employment growth,
investment, and/or personal income per capita. This is no longer informative on how tax rates affect
Gross State Product. The counterargument is that excluding these factors from the model could cause
omitted-variables bias. At the very least, the issue of mediating factors versus omitted-variables bias
should be acknowledged by the researchers.

3.3. How Occupation-Specific Bonuses Affect the Probability of Reenlistment

This is an important research issue for the military services, as they try to set the optimal bonuses
to efficiently achieve a required reenlistment rate in an occupation. In over 40 years of research on this
topic, all studies have been subject to numerous biases, some of which were only recently recognized.
The typical model would be:

Rio = β1 × (BONUS)io + Xioβ2 + μo + εio,
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where Rio is the reenlistment/retention decision for serviceperson i in occupation o, BONUS is either
a dollar amount or a multiple-of-basic-pay determining the amount a serviceperson would receive,
X would be a set of other factors, such as year, home-state unemployment rate, and more, and μo

represents occupation fixed effects.
Arkes (2018) describes four major sources of bias in these studies:

1. There is the obvious bias of reverse causality in that lower reenlistment rates lead to higher bonuses.
2. Enlisted personnel often have latitude on when they reenlist, so if they were planning to reenlist,

they may time it to when the bonus appears to be higher than normal; so, the bonus is endogenous
in that it is chosen to some extent by those reenlisting. This is an indirect reverse causality, in that
the choice of reenlisting or not (R) would affect the timing of the reenlistment; and those choosing
to reenlist would tend to do so when the bonus is relatively high within their reenlistment window.

3. There is likely bias from measurement error, as servicepersons often have a few different bonuses
during their reenlistment window, and the one most often recorded is the one at the official
reenlistment date, not the one when they sign the new contract (which is not among the available
data and can be up to two months earlier).

4. There is unobserved heterogeneity because excess supply for reenlistments can mean that we
only observe whether a person reenlists rather than whether he/she is willing to reenlist (or actual
reenlistment supply). Excess supply of reenlistments could result from reduced demand from the
military (e.g., occupations being eliminated) or worsening civilian prospects for the skill. Excess
supply when an occupation is eliminated (and the reenlistment rate and bonus equals zero) could
lead to a large exaggeration of the bonus effect.

In the numerous studies on this topic—see Arkes (2018) for a list of some of the more recent
studies—none recognized the third and fourth sources of bias, and only one (Goldberg 2001) recognized
the second source of bias. Furthermore, most studies attempted to address the reverse causality with
separate occupation and year fixed effects. However, any variation across occupations in changes in the
propensity to reenlist (due to changing civilian-economy opportunities or military environment) would
still result in this reverse causality. I used occupation-fiscal-year-interacted fixed effects to reduce the
bias from reverse causality, but I acknowledged that it likely led to greater bias from measurement
error (Arkes 2018), as occurs often with fixed effects (see below).

The ultimate result of all this is that with the historical and current reenlistment rules and
inadequate data, this is a research question that just cannot be accurately answered with any adequate
degree of confidence that the potential biases are being addressed. Indeed, Hansen and Wenger
(2005) note that different assumptions in such models produce widely different results. Even random
assignment would probably not work well, as servicepersons would likely know whether they received
a high or low bonus, and any perceived inequity could have its own effects on retention.

3.4. Summary

These three topics highlight how the entire literature on a topic can go decades without recognizing
likely sources of bias. I cannot speak to how extensive this is among the many big topics in empirical
economics, but there must be other topics that have had similar problems. For example, there is a
literature on how the state unemployment rate (or other measures of local economies) affects various
health or social outcomes—I have had several articles in this literature. I cannot recall one (including
mine) that recognized that using state fixed effects (or controls) exacerbates any bias from measurement
error in the economic measure, which would likely cause attenuation bias—a lesson I learned far
too late into my career. This is not terribly harmful in this case, as at least it is a bias against finding
significant estimates, but it has been an unrecognized bias, nonetheless.
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4. Recommended Changes and New Topics for Graduate Econometrics

In this section, I propose seven new recommendations for redesigning graduate econometrics
courses, most of which follow from the premises from Section 2. However, first, I contend that the
first two of Angrist and Angrist and Pischke (2017) recommendations for changing undergraduate
econometrics would work well for changes to graduate econometrics. These recommended changes are:

• Replace the math with intuition and examples
• Focus on choosing the best set of control variables.

The first is consistent with basic tenets of pedagogical theory, as the practice of some skill to learn
about certain concepts can be much more instructive than learning the abstract equations underlying
the concepts. The second one is important for avoiding potential biases, and it goes hand in hand with
my first new added recommendation below.

What follows are my new recommended changes. These are the new components, changes in
pedagogy, and shifts in emphasis that should help to develop effective and responsible academics and
practitioners. The recommended changes and shifts I will discuss are:

A. Increase emphasis on some regression basics (“holding other factors constant” and
regression objectives)

B. Reduce emphasis on getting the standard errors correct
C. Adopt new approaches for teaching how to recognize biases
D. Shift focus to the more practical quasi-experimental methods
E. Add emphasis on interpretations on statistical significance and p-values
F. Advocate less complexity
G. Add a simple ethical component

A. Increase emphasis on some regression basics (“holding other factors constant” and
regression objectives)

These two concepts of “holding other factors constant” and the various regression objectives are
important building blocks needed to understand when there could be potential bias to a coefficient
estimate and for determining the optimal set of control variables to use—Angrist and Pischke’s second
point. In addition, together they should help foster understanding of why modeling strategies should
be different depending on the objectives of a regression analysis.

I believe it is commonly assumed that students will understand “holding other factors constant”
from the few pages, if that, devoted to the concept in textbooks. However, in my view, this is usually
not the case. Lessons on this topic should include a discussion of the purpose of holding other factors
constant, a demonstration of what happens when you do so, and in what circumstances would you
not want to hold certain factors constant. In Arkes (2019), I describe a simple issue of whether adding
cinnamon to your chocolate-chip cookie improves the taste. In this example, I ask which is the better
approach: (1) make two batches from scratch, adding cinnamon to one; or (2) make one batch, split it
in two, and add cinnamon to one of them. Most would agree that the second would be a better
test because you do not want any other factor that could affect the outcome of taste (butter, sugar,
and chocolate chips) to vary as you switch from the no-cinnamon to cinnamon batch, i.e., you want to
hold those other factors constant. This is the point of multivariate models: design the model so that the
only relevant factor that changes is the treatment or key explanatory variable. That said, with interval
(quantitative) variables, it is impossible to perfectly control for the variable, and so perhaps the best
that can be said is that one is attempting to adjust for the variable.

In Arkes (2019), I describe what I believe are the four main objectives of regression analyses:
(1) estimating causal effects; (2) forecasting/predicting an outcome; (3) determining predictors for
an outcome; and (4) analyzing relative performance by removing the influence of contextual factors,
which is similar to the concept of “anomaly detection.”I proceed to describe how the choice of
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control variables (what should be held constant) should depend on the objective. For example,
a causal-effects model might attempt to estimate the effect of a college degree on the probability of
getting in a car accident in a given year. An insurance company, on the other hand, might be more
interested in predicting the probability of a person getting in a car accident—the second objective
above. One potential control variable in both analyses would be whether the person has a white-collar
job. That could be a mediating factor (a “bad control”) for how a college degree affects the probability
of an accident, so it would be best to exclude that variable in the causal-effects analysis. However,
the insurance company might find that variable to be a valuable contributor to obtain a more accurate
prediction of the probability of an accident. The insurance company does not care about obtaining the
correct estimate of how a college degree affects the likelihood of an accident. Likewise, forecasting
GDP (or Gross State Product, GSP) growth would involve a different strategy from that for estimating
the effects of tax rates on GDP/GSP growth. In these cases of predicting an outcome or forecasting,
including explanatory variables is not meant to hold other factors constant but rather to improve the
prediction/forecast.

Some textbooks, e.g., Greene (2012), indicate that the adjusted R2 could be used as part of the
“model selection criteria”. However, any measure of goodness-of-fit would primarily be useful for
determining whether a variable should be included for forecasting/prediction. For estimating causal
effects, whether a potential control variable contributes to explaining the dependent variable should not
be a factor in determining whether it should be included in the model. These are just a few examples
of why understanding the objective of the regression is important.

B. Reduce emphasis on getting the standard errors correct

This was a passing point by Angrist and Pischke (2017). However, in my view, it deserves status
as one of the main recommendations. The justification for this recommendation is partly based on one
of the premises from Section 2: that biases to standard errors are typically minimal compared to the
potential biases to coefficient estimates. To this point, Harford (2014) argues that sampling bias can
be much more harmful than sampling error, as demonstrated by the 1936 Literary Digest poll that
found a 55-41 advantage for Landon over Roosevelt in the Presidential election. The 2.4-million sample
size (and tiny standard errors) did not matter when there was sampling bias. This idea goes back to
Leamer (1988), who argued that corrections for heteroscedasticity are mere “white-washing” if there is
no consideration of the validity of the coefficient estimates.

Further justification for reducing the emphasis on corrections for standard errors comes from the
vagueness of the p-value and statistical significance. Getting the standard errors correct is typically
meant to make proper confidence intervals or correct conclusions on hypothesis tests, which are usually
based on t-stats or p-values meeting certain thresholds. However, as I learned not too long ago (and far
too late into my career), the p-value by itself actually has little meaning, given the Bayesian critique of
p-values. This is discussed by Ioannidis (2005), who points out that the probability that an empirical
relationship is real depends on: (1) the t-statistic; (2) the a priori probability that there could be an
empirical relationship; and (3) the statistical power of the study (and this depends on the probability of
a false negative and requires an alternative hypothesized value). The p-value is based just on the first
one, the t-statistic. The less likely there is such a relationship, a priori, the less likely any given t-statistic
indicates a significant relationship, as Nuzzo (2014) demonstrates. For example, even for an a priori
toss-up (50% chance there is a relationship), p-values of 0.05 and 0.01 translate to only 71% and 89%
probabilities that the relationship is real.

Unfortunately, it is nearly impossible to know beforehand what the probability is that there is an
effect of one variable on another. This uncertainty means that higher levels of significance than is the
current convention would be needed to make any strong conclusions about statistical relationships
being real. Given the vagueness of the p-value and that high levels of significance should be used to
make any strong conclusions, errors in the standard errors would tend to be much less impactful to
those conclusions than would potentially much larger biases in coefficient estimates.
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Correcting standard errors for heteroskedasticity and clustering is still important, yet it is easy to
recognize when it is needed and typically takes only a few characters of code to correct for. Recognizing
and addressing biases to coefficient estimates is more difficult and takes much more practice to become
proficient, and so greater emphasis should go towards those concepts.

C. Adopt new approaches to teach how to recognize biases

As I described above, I do not believe that “conditional mean dependence of the error term” is
an effective concept to teach how to recognize biases. I believe that calling a source of bias what it is
(e.g., reverse causality) rather than what it does (conditional dependence of the error term) is a good
starting point. I believe it would be more effective if we were to list the most common sources of bias,
provide some visual depictions of the biases (when possible), and give examples of the various types
of situations in which they might arise. In Arkes (2019), I list what I believe are the six most common
biases for coefficient estimates when estimating causal effects: reverse causality, omitted-variables
bias, self-selection bias, measurement error, and including mediating factors or outcomes as control
variables. In addition, I give guidance on how to recognize such biases. These are the main alternative
stories that need to be considered before making conclusions from results. (I since added a 7th bias, from
improper reference groups2.) Useful visual depictions could be the “directed acyclical graphical” (DAG)
approach (Pearl and Mackenzie 2018; Cunningham 2018), basic flowcharts (Arkes 2019), and animations
produced by Nick Huntington-Klein on his website: http://nickchk.com/causalgraphs.html. These tools
demonstrate when there could be bias and what needs to be controlled for.

As an example of using visualizations (with flowcharts), let us take again the research issue from
Section 3 on how occupation-specific bonuses affect retention decisions in the military:

Rio = β1 × (BONUS)io + Xioβ2 + μo + εio,

Figure 1 demonstrates the concept of reverse causality and omitted-variables bias. An arrow in
such a pictorial representation of a model would represent the causal effect of a one-unit change in the
pointing variable on the pointed-to variable. The objective would be to estimate A, the average causal
effect of the occupational-specific bonus on the probability that a serviceperson reenlists. We hope that
β̂1 is an unbiased estimate of A in Figure 1. However, β̂1 captures all the reasons why the bonus and
the retention decision might move together (or not), after adjusting for the factors in X.

 

Figure 1. A visual representation of reverse causality.

To determine whether there is any potential bias, it does not require a formal theoretical model
with assumptions on what factors affect what other factors. Rather, one would start by considering the

2 The new source of bias on improper reference groups is available under the “eResources” tab at https://www.routledge.com/
Regression-Analysis-A-Practical-Introduction-1st-Edition/Arkes/p/book/9781138541405 or at https://tinyurl.com/yytmnq65.
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reasons why the bonus and retention variables move (or do not move) together, other than the bonus
affecting the retention decision. This would also determine what needs to be controlled for.

The question to ask for reverse causality is whether the probability of reenlistment could affect
the bonus, represented by the arrow labeled B in Figure 1. It very likely could, as a decrease in the
probability of reenlistment for people in a certain occupation (due perhaps to increases in civilian labor
market demand for the skill or increases in the deployment rates for the occupation) would cause the
military service to have to increase the bonus; and an increase in the probability of reenlistment would
allow the service to reduce the bonus.

Because B is likely negative, there would be a negative bias from the reverse causality on the
estimated effect of the bonus on the probability of reenlistment. This bias would cause β̂1 to be
lower than the value of A in Figure 1. (It requires much deeper and more-convoluted thought to
determine the sign of the bias from an argument based on conditional mean dependence of the error
term.) Thus, we would have an alternative story for why the estimated effect of the bonus is what it
is—i.e., alternative to the causal-effects story. Attempts to address this with fixed effects would need to
make sure that within the fixed-effects group, there still would not be any potential reverse causality
(or omitted-variables bias).

For omitted-variables bias, in my experience, students have a hard time thinking of whether any
variable might affect both the treatment and the outcome. Therefore, I found it to be more effective to
use three steps: (a) What factors are the main drivers of why some have high vs. low (or 1 vs. 0) values
of the treatment? (b) Which of those (if any) can you not adequately control for? (c) Could any of those
factors affect the outcome beyond any effects through the treatment?

In Figure 1, we would need to think of what causes variation in the bonus in the sample. I imagine
the list would include the occupation, the year (and factors specific to a given year, such as national
economic conditions), the particular demand for the skills of servicepersons in a given occupation,
and the working conditions for those in that occupation—such working conditions could change over
time, and they would probably be rougher (say, more negative in theory) during periods of wars or
increased deployments. All of these factors could affect the outcome beyond any effects through the
bonus, and so if not controlled for, they would cause omitted-variables bias. I demonstrate this in
Figure 1, with the omitted factor being working conditions for those in the occupation, using an oval to
represent that we do not have a measure for it. Therefore, if we cannot adequately control for this,
then better working conditions for an occupation in a given year would negatively affect the bonus
(directly or indirectly through higher retention, leading to reverse causality) and positively affect
retention, so C < 0 and D > 0. Thus, not adequately controlling for working conditions (and other
things that could impact both the bonus and retention) for the occupation would lead to a negative
omitted-variables bias for β̂1 (the product of C and D in Figure 1 would be negative). These are perhaps
the most common sources of bias, and they follow directly from such a figure. However, there are
other sources of bias, such as measurement error, that need to be considered.

Figure 2 demonstrates another type of omitted-variables bias based on the research issue of how
the state unemployment rate (representing the strength of the labor market) affects marijuana use
for teenagers. Therefore, A is the true average effect of a one-percentage-point increase in the state
unemployment rate on the probability of a teenager using marijuana.

The problem is that whereas there is probably not any general factor that systematically affects both
the state unemployment rate and teenage marijuana use, it still could be that states that have a higher
general propensity to use marijuana (outside the influence of the economy) tend to have higher or lower
unemployment rates, but not due to any systematic relationship. Therefore, whereas the occupational
bonus and retention propensity for an occupation, in Figure 1, might have “spurious correlation” (due to
a systematic relationship) contributing to why the variables move together, the state unemployment
rate and propensity for teenage marijuana use might have “incidental correlation” that contributes
to why they move together. If so, this would cause omitted-variables bias. (Line C, without arrows,
is indicative of an incidental correlation that does not have an underlying systematic relationship).
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Figure 2. A visual representation of omitted-variables bias from incidental correlation.

Alternatively, you could put a specific state (say, California) as the potential omitted factor at
the bottom of the figure and then have an arrow pointing from the California variable to both the
unemployment rate (a positive effect, as California tends to have higher unemployment rates than
the U.S.) and teen marijuana use (I am guessing positive). In this case, there would be positive
omitted-variables bias from not controlling for California. For other states, it could be different. And,
as a whole, it is quite possible that either the negative or positive biases could dominate the other,
leading to a non-trivial bias in the estimate.

In this case, controlling for the states (with dummy variables or state fixed effects) would help
towards addressing this problem. However, based on the concept mentioned at the end of Section 3,
using fixed effects (or, controlling for a categorization) when the treatment has some error could cause
greater bias from measurement error. In this case, a higher proportion of the usable variation in the
state unemployment rate within states would be due to measurement error. (That is, in the ratio of
variation due to measurement error divided by overall usable variation, state fixed effects reduces the
denominator significantly but does not reduce the numerator.)

Let me give two tangents. First, omitted-variables bias is not a problem if the regression
objective is forecasting or determining predictors of an outcome—this provides an example of how an
understanding of regression objectives (recommendation A above) is important. Second, Arkes (2019)
notes that the conventional definition of omitted-variables bias needs some modification. Note that in
Figures 1 and 2, the correlation between the treatment and the omitted variable is based on the omitted
variable affecting the treatment or incidental correlation. If, on the other hand, the omitted variable
were a mediating factor and were affected by the treatment, then there would not be omitted-variables
bias by excluding the variable; rather, there would be bias by including the variable. Therefore,
the conventional definition that an omitted variable is correlated with the treatment and affects the
outcome needs to add as a condition that the correlation is not solely due to the treatment affecting the
omitted variable. Seeing this in a flow-chart demonstration can help with this concept.

In another visual lesson to recognize the direction of the biases, the bias from non-differential
measurement error can be demonstrated with a simple bar graph of an outcome (say, income) for
two groups (no-college-degree and college-degree). One can then easily see what would happen
to the difference in income if people get randomly misclassified as to whether they have a college
degree. The two averages would converge, and the estimated effect of a college degree would be
biased downwards, at least from measurement error.

Finally, any teaching of how to recognize biases would be served well by having numerous
examples to apply the concept to. This is consistent with the lessons from the book, How Learning
Works (Ambrose et al. 2010), in which the authors argue that mastery of a subject requires much
practice applying the topic and knowing when to and which topic to apply to a new situation. This is
also consistent with higher levels of understanding, based on Bloom’s Taxonomy. Furthermore,
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seeing research mistakes in action could provide meaningful lessons. And, dissecting media reports
on research and gauging how trustworthy that research is (based on simply reading the media report)
might be worthwhile for developing intuition on scrutinizing research.

D. Shift focus to the more practical quasi-experimental methods

This recommendation actually is in the same spirit as but diverges from the third of
Angrist and Pischke (2017) recommendations. They espouse a shift in the focus of econometrics
classes to randomized control trials (RCT) and quasi-experimental methods. One method they mention
is the Regression-Discontinuity (RD) approach, which has appeared to become the new favorite
approach for graduate students. This strategy parallels an earlier article (Angrist and Pischke 2010)
and their book (Angrist and Pischke 2009).

However, I would argue there could be a better approach. The methods Angrist and Pischke
espouse are more for academics who can search for randomness or a discontinuity and build a topic
from that. It is not as effective for non-academics and other academics who are trying to address a
specific policy question that will probably not afford the opportunity to apply an RCT or RD to the
problems they are given. Furthermore, it limits the usefulness of economists. As Sims (2010) stated:

“If applied economists narrow the focus of their research and critical reading to various
forms of pseudo-experimental, the profession loses a good part of its ability to provide advice
about the effects and uncertainties surrounding policy issues”.

Sims (2010) also suggested that many of the quasi-experimental studies have limited scope with regards
to the extrapolation of the results. This could occur, for example, due to non-linearities or just the
nature of Local Average Treatment Effects that some quasi-experimental methods estimate. This further
limits the usefulness of economics research.

Meanwhile, the less-complicated quasi-experimental methods might be more fruitful for most
people conducting economic research and may be less limiting in extrapolation of the estimates.
In particular, from my experiences in the non-academic world, a fixed-effects model is often the only
plausible approach to addressing some potential sources of bias.

Given that the fixed-effects method would likely be a more useful tool than RD and other
quasi-experimental methods, more emphasis should be placed on the nuances of fixed effects.
These include many particulars of fixed effects that I wish I had learned in graduate school. For example:

(1) As described above in some things I had missed in my own research, bias from measurement
error can be exacerbated by fixed effects;

(2) The estimated treatment effect with fixed effects is a weighted average of the estimated treatment
effects within each fixed-effects group;

(3) The natural regression weights of the fixed-effects groups with a higher variance of the treatment
are disproportionately higher—this concept and the correction is described in Gibbons et al.
(2018) and Arkes (2019, Section 8.3); and so shifting the natural weight of a group could partly
explain why fixed-effects estimates are different from the corresponding estimates without fixed
effects; also besides fixed effects, this concept applies to cases in which one simply controls for
categories (e.g., race). Reweighting observations can help address this problem.

Although the RCT is the most valid type of study, it is easy to analyze and few will have the
resources to conduct one. The RD approach is a rare occurrence, and it is more for “finding a topic
to use the method” than “finding a method for a topic”. The fixed-effects method is much more
widely used, and so shifting focus to the nuances of fixed effects would be more practical and useful to
most students.

E. Add emphasis on interpretations on statistical significance and p-values

Perhaps the most important topic for which interpretations need to be taught better is on statistical
significance and insignificance. In a recent article in Nature, Amrhein et al. (2019) call for an end to
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statistical significance and p-values and instead to use confidence intervals. There have been similar
calls for teaching statistical analysis beyond the “p-value” approach over the last few decades—e.g.,
Gigerenzer (2004), Wasserstein and Wasserstein and Lazar (2016), and Wasserstein et al. (2019).
Wasserstein et al. (2019) said: “Statistics education will require major changes at all levels to move
to a post ‘p< 0.05’ world”. However, most textbooks continue to teach hypothesis tests based on the
conventional approach that uses p-values.

I am aware of only two textbooks that discuss the problems of p-values and potential solutions:
Paolella (2018) and Arkes (2019). Paolella (2018) points out all the problems with hypothesis tests,
the p-value, and even the use of confidence intervals. He makes the point that hypothesis tests should
not be used, but he notes how the p-values still might be useful. A single study with a low p-value
provides little evidence for a theory or an empirical relationship. However, repeated studies with low
p-values would provide stronger evidence. This confirms the value of the importance of replications.
Furthermore, as Paolella argues, finding a p-value of 0.06 on a new drug that could cure cancer does
not mean that society should discard any further research on the drug. Rather, the result should be
interpreted as “something might be there” and it should be further investigated (Paolella 2018).

One area that could also use better instruction is on the various possible explanations for
insignificance. Amrhein et al. (2019) find that over half of 791 articles across five journals made the
mistake of interpreting insignificance as meaning that there is no effect—and these do not include
the hot-hand studies. Aczel et al. (2018) find an even worse statistic for three leading psychology
journals: 72% of 137 studies from 2015 with negative results had incorrect interpretations of those
results. What highlights the problem with these interpretations is that an insignificant estimate may still
provide more evidence for the alternative hypothesis than for the null (Aczel et al. 2018). Abadie (2020)
makes the argument that an insignificant estimate might have more information than a significant
estimate. In addition, there is always the possibility that a biased coefficient estimate has caused
the insignificance; and a bias could cause significance when there is no causal effect. Furthermore,
as described in Arkes (2019), if a treatment were to positively affect some and negatively affect others,
then it could be that an insignificant effect is the average of these positive and negative effects that are,
to some extent, cancelling each other out. Thus, it would be improper to conclude that the treatment
has no effect based on an insignificant estimate. That said, a precisely estimated coefficient very close
to zero (“precise nulls”, as some call them), if free from potential biases, could mean that there is
evidence for no meaningful average effect.

In light of the problems with the traditional p-value approach and the misinterpretations of
insignificant estimates, lessons from Kass and Raftery (1995) or Startz (2014) on how to calculate
posterior odds and on determining the most likely hypothesis would be useful components to the
teaching on any statistical testing. Unfortunately, these often introduce an inconvenient vagueness in
properly interpreting a hypothesis test. However, it is the proper approach to interpreting statistical
tests. In addition, introducing the Bayesian critique should give the important lesson that strong
conclusions on an empirical relationship should require quite high levels of significance.

Another important consideration for hypothesis tests would be the costs (loss) from a wrong
conclusion. Therefore, such costs should be considered when determining the optimal significance
level for the hypothesis test (Kim and Ji 2015; Kim 2020). Adjustments to the optimal significance level
should be made for quite large samples. In addition, there should be some discussion on statistical
significance for a meaningful effect size (rather than using zero as a baseline effect).

In the end, perhaps the post-(p < 0.05) world should be one without hypothesis tests. Even the
correct conclusions of “fail to reject” and “reject” (and not including “accept”) come across as more
conclusive than they actually are. And, they do not account for the potential biases and the practicality
of the estimated relationship.

F. Advocate less complexity
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The current go-to model for the Department of Defense (DoD) for evaluating the effects of various
manpower policies (including bonuses) on retention is the Dynamic Retention Model (DRM). This is a
complex model that only relatively recently has become able to be estimated, given the huge computing
power it requires. Even though I had a (very) minor role in an application of it, I do not have a strong
understanding of the model. And, my educated speculation is that no one at DoD funding such studies
understands the model neither.

However, I do understand the model enough to know that the DRM is deficient in many ways,
as described in Arkes et al. (2019). In retention models, the DRM estimates complex concepts, such as
the discount rate and a taste-for-military parameter. However, it fails to control for basic factors that
could partly address the reverse causality for bonuses I describe above, such as military occupation,
fiscal year, and their interactions (Arkes 2018). Furthermore, the DRM will never be able to address the
other problems noted above of measurement error and excess supply, as we only observe whether a
person reenlists, not their willingness to reenlist. Thus, the DRM will probably not give a more reliable
answer than the simpler and more-direct models. And, in my view, guesses from subject-matter-experts
would be more reliable than what any model would tell us.

These empirical challenges are probably not well known to DoD officials. Therefore, they appear
to be enamored by the complexity of the model. Some may put more faith in complex models. However,
the simpler models are often more credible, as they rely on fewer assumptions.

One lesson may come from the history of instrumental-variables models. Early studies tended
to not pay much attention to the validity of the instruments. For example, Sims (2010) noted that
Ehrlich (1975) research on capital punishment lacked any discussion on the validity of the numerous
instruments that were used, such as lagged endogenous variables. Later studies (e.g., Bound et al. 1995)
noted the major problems with instrumental variables if assumptions were violated. This is an example
of how the problems with complex models come out as people start understanding them better.

G. Add a simple ethical component

We conduct research to help inform society on the best public policies, health behaviors, business
practices, and more. What we hope to see in others’ research is the product of the optimal model they
can develop, not the product of their efforts to find statistical significance. This means that our goal in
conducting research should not be to find statistical significance, but rather to develop the best model
to answer a research question and to give a responsible assessment of that model.

I recommend a few basic lessons in ethics (or good research practices). The first one would stress
honesty in research and would give examples of when or how people might not be honest, such as
with p-hacking. This could include some efforts to detect p-hacking, as described in Christensen and
Miguel (2018). The second lesson would be the simple concept that “significance is not the goal of
research”. This is obvious to my students when they hear it (after they have taken other statistics and
econometrics classes), but it is new to them and proves to be a valuable lesson. One student said, in an
end-of-term reflection paper, that she had an insignificant estimate on her treatment variable in her
thesis. She had the temptation to change the model to find significance, but she resisted that temptation
based on this simple lesson that significance is not the goal. Other students, before hearing this lesson,
tell me that something must be wrong with their model because their main coefficient estimate was
insignificant. A simple statement on the order of “insignificant estimates are okay” might help change
the culture. The third lesson in ethics would be on the importance of making responsible conclusions.
This should involve being completely forthright about all potential pitfalls and biases to the coefficient
estimates that could not be addressed and being careful with the conclusions on significance based on
the Bayesian critique of p-values. This is important for society to properly synthesize the meaning
and conclusions that can be drawn from a study. Overall, having textbooks incorporate lessons on the
ethics of research might be a good step towards contributing to more honest research.

These lessons may also benefit from what Baicker et al. (2013) did for the study on how an
expansion of Medicaid in Oregon affected health outcomes. They developed their model and published
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the research plan before implementing it. New resources, such as from the Center for Open Science,
are promoting the online posting of research plans3.

5. Implications for Undergraduate Econometrics

It follows logically that if my argument is correct that graduate econometrics training needs
to be changed as I suggest, so too does undergraduate econometrics. Here is an equation from the
textbook assigned in the undergraduate econometrics class I took many years ago, which remains in
the current edition:
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It makes me wonder what would be a more efficient use of students’ time: deciphering equations

such as this or learning how to recognize biases.
One colleague said to me as I was writing my textbook, “Undergraduate econometrics is taught

as if everyone will go on to a Ph.D. Economics program.”I would take that statement further and
argue that undergraduate econometrics is generally taught as if everyone will become an econometric
theorist. However, few will.

To highlight how misguided it might be to use a high-level math approach rather than a more
practical approach, consider these numbers. There are about 26,500 undergraduate economics majors
per year (Stock 2017). And, according to the American Economic Association, there are about 1000 new
Economics Ph.D.’s each year4. I will guess that no more than 10% of those Ph.D.’s become econometric
theorists. There are also some Economics Ph.D. students who may not have had undergraduate
econometrics. Therefore, less than 4% of undergraduate econometrics students end up receiving an
Economics Ph.D., and easily less than 1% of them end up becoming econometric theorists.

Just as with graduate econometrics, I would agree with the first two of Angrist and Pischke (2017)
recommended changes to undergraduate econometrics:

• replace the math with examples, which is a basic tenet of fostering student motivation
(Ambrose et al. 2010)

• increase the emphasis on choosing the correct set of control variables.

However, I would argue that there is even less justification (than for graduate econometrics)
for their third point (increase emphasis on RCT and quasi-experimental methods), at least for most
quasi-experimental methods that have limited opportunities to be applied. More so than graduate
students, few undergraduate econometric students will become academics, and so few will have the
opportunity to search for randomness, valid instrumental variables, or discontinuities. Rather, they will
mostly have to make the best of non-random data. Therefore, lessons should focus on developing
skills for dealing with such data, understanding what the potential sources of bias are, figuring out
how (if possible) to address the potential biases, and making responsible conclusions. These are the
skills that will be needed for most people using regression analysis to try to solve problems. Learning
how to conduct regression analysis without learning how to properly scrutinize a model and interpret
results (in terms of causality and significance) has the potential to do more harm than good.

Table 2 is similar to Table 1, but it is for the top undergraduate textbooks, as used by Angrist and
Pischke (2017), and with a few more I added. It shows, again, my estimate for the number of pages
centered around a given topic. There is the same problem as with graduate textbooks that important
concepts are not covered much or at all, while much space (and likely time in undergraduate classes) is

3 See https://www.cos.io/our-services/prereg?_ga=2.152997817.1848170691.1585117163-115791253.1585117163.
4 This comes from https://www.aeaweb.org/resources/students/careers/the-economics-profession.
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devoted to concepts that are relatively minor for what would be useful to learn, in my view. Although
the things that could cause bias in standard errors appear to have a large emphasis, there remains
minimal coverage of things that could bias coefficient estimates. Furthermore, while those books that
do discuss how to interpret an insignificant coefficient estimate do so correctly (albeit, briefly for each of
them), it appears that only four of the eight books discuss it in the main discussion of hypothesis tests.

Table 2. What the main undergraduate textbooks teach (number of pages on a given topic).

Kennedy
(2008)

Gujarati
and Porter

(2009)

Studenmund
(2010)

Baltagi
(2011)

Wooldridge
(2015)

Angrist and
Pischke
(2015)

Dougherty
(2016)

Stock and
Watson
(2018)

Causes of bias in the
standard errors

Heteroskedasticity 5 47 1 12 28 1 17 5

Multicollinearity 10 31 28 3 5 0 9 3

Causes of bias in the
coefficient estimates

Simultaneity 18 32 27 24 20 0 4 4

Omitted-variables
bias 2 6 8 0 5 13 9 9

Measurement error 7 5 4 1 7 9 7 3

Mediating factors 0 0 0 0 0 4 0 0

Other important
topics

Holding other
factors constant 2 5 5 2 9 11 2 1

Fixed effects 6 15 0 3 8 0 6 12

Bayesian critique of
p-values 19 0 0 0 0 0 0 0

Correctly indicates an
insignificant coef.
estimate does not
mean accept the null

N/A Yes Yes (in a
footnote) N/A Yes N/A Yes N/A

Note: “N/A” in the last row indicates that I do not believe the topic of how to interpret insignificant estimates
is discussed.

With a more practical approach, there can be useful lessons that would actually be applicable for
most of the undergraduate econometrics students. I grant that not all undergraduate econometrics
students will have a job using econometrics. However, perhaps the greater skill they should come
away with is the ability to recognize sources of bias. This could help them understand why correlation
could but does not always mean causation. It could help them understand other important statistical
concepts such as omitted-variables bias and Type I errors, both of which have applications to many
workplace situations. Learning about biases could help engender a healthy skepticism in the statistics
and research they hear about every day. And, these are skills that could form the foundation for more
efficient learning in graduate econometrics, for those who take that route.

6. Conclusions and Topics for Further Discussion

The goal we should have as econometrics instructors is to teach the skills that would encourage
solid, honest, and responsible research that can help improve the world. Being able to have a voice for
improving the world requires trust that what we produce is valid. Therefore, efforts in instruction
should foster honesty, responsibility, and the skills and research practices that produce valid research.

This means that we need to assess what concepts and what methods of instruction are the most
important for producing solid researchers. Based on this idea, I have made the case, building on
Angrist and Pischke (2017), that we need to shift emphases.

The teaching of graduate (and undergraduate) econometrics needs to be revamped. As instructors,
we need to think about what most students will be doing with their skills, what are the most practical
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lessons from econometrics, what potential problems are most likely to affect the validity of a study,
and how do we produce ethical and responsible researchers.

Not everyone is going to be an academic with the freedom to search the world for random
assignment and choose their own topics from the randomness they find. Rather, most students will
become non-academic practitioners who will need to address important problems with data that
do not have random assignment. Their task would be to recognize the potential sources of bias,
design the optimal method to address the issue, choose the optimal set of control variables, recognize
the remaining sources of bias that could not be addressed, and make responsible conclusions. Or,
as consumers of research, they should have the tools to recognize biases, which can also apply to the
everyday statistics they hear in the news or even properly assessing events by considering alternative
stories that could explain why two variable move (or do not move) together. These are the things that
econometrics courses should be aimed towards, both at the graduate and undergraduate levels.

Certainly, such shifts would impact certain fields in which there would be methods particular to
that field, such as Macroeconomics. And, anyone studying econometric theory would need a new
course on the high-level math underlying econometrics. However, such shifts would make sense
to spend class and student-studying time more efficiently, avoiding spending time on field-specific
methods or the high-level math for students who would never need such material. Furthermore, a class
that spent more time giving examples that demonstrate the nuances of certain methods should help
students better understand the mathematical theory behind the models.

Let me end by calling for a larger assessment of what skills Ph.D. economists need in their research.
Would most Ph.D. students benefit from a shift in focus from the high-level math to something more
practical? Should basic graduate econometrics be any different from undergraduate econometrics?
For what I believe is a large share of Ph.D. economists, two good low-math undergraduate courses
(that incorporate the changes I describe above), along with applied graduate courses and plenty
of practice, should be sufficient to prepare them to become successful researchers. Based on my
experiences at research organizations and in academia, I believe that these lessons would have been
sufficient for most of my colleagues. The redesign and shifts that I have discussed, as I have argued in
this article, would have helped me avoid most of my research mistakes.
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1. Introduction

Concerns about the inadequacy of standard practices in statistics and econometrics have been
long-standing. Since the 1980s, criticisms of econometric practice, including those of Leamer (1983);
Lovell (1983); McCloskey (1985) have given rise to a large literature. Kim and Ji (2015) provide a survey.
Even more significant, within the economics profession was the Lucas (1976) critique of Keynesian
economic modelling Lucas and Sargent (1981).

Most of the concerns raised in these critiques apply with equal force to other social science disciplines
and to fields such as public health and medical science. Ioannidis (2005) offered a particularly trenchant
critique, concluding that “most published research findings are false”.

The emergence of the “replication crisis”, first in psychology and then in other disciplines,
has attracted the broader public to some of these concerns. The applicability of the term “crisis” is
largely due to the fact that, unlike previous debates of this kind, concern over replication failures has
spilled over disciplinary boundaries and into the awareness of the educated public at large.

The simplest form of the replication crisis arises from the publication of a study suggesting the
existence of a causal relationship between an outcome of interest y and a previously unconsidered
explanatory variable x followed by studies with a similar design that fail to find such a relationship.

Most commonly, this process takes place in the context of classical inference. In this framework,
the crucial step is the rejection of a null hypothesis of no effect, with some specified level of significance,
typically 95 per cent or 90 per cent. In the most commonly used definition, a replication failure arises
when a subsequent study testing the same hypothesis with similar methods but with a different
population fails to reject the null.1

For example, Kosfeld et al. (2005) found that exposure to oxytocin increases trust in humans.
This finding created substantial interest in possible uses of oxytocin to change mood, potentially for
malign as well as benign purposes. Similar results were published by Mikolajczak et al. (2010). However,
a subsequent attempt at replication by the same research team, Lane et al. (2015), was unsuccessful.

1 As an anonymous referee points out, this characterisation of replication failure is too stringent since some failures to reject
the null are to be expected. More stringent definitions of replication failure are that the null is not rejected using the pooled
data or that the parameter estimates from the two studies are (statistically) significantly different.
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The crisis was brought to the wider public’s attention by the publication by Open Science Collaboration
(2015) of a systematic attempt to replicate 100 experimental results published in in three psychology
journals. Replication effects were half the magnitude of original effects, representing a substantial decline.
Whereas ninety-seven percent of original studies had statistically significant results, only thirty-six percent
of replications did.

A variety of responses have been offered in response to the replication crisis. These include
tightening the default P-value threshold to 0.005 (Benjamin et al. 2018), procedural improvements such
as the maintenance of data sets and the preregistration of hypotheses ((Nosek and Lakens 2014), attempts
to improve statistical practice within the classical framework, for example, through bootstrapping
(Lubke and Campbell 2016)), and the suggestion that Bayesian approaches might be less vulnerable
to these problems (Gelman 2015).

This paper begins with the observation that the constrained maximisation central to model
estimation and hypothesis testing may be interpreted as a kind of profit maximisation. The output
of estimation is a model that maximises some measure of model fit, subject to costs that may be
interpreted as the shadow price of constraints imposed on the model. This approach recalls the
observation of Johnstone (1988) “That research workers in applied fields continue to use significance
tests routinely may be explained by forces of supply and demand in the market for statistical evidence,
where the commodity traded is not so much evidence, but “statistical significance.”2

In mainstream economics, an unsatisfactory market outcome is taken as prima facie evidence
of a “market failure”, in which prices are not equal to social opportunity costs.3

In this paper, we will consider the extent to which the replication crisis, along with broader
problems in statistical and econometric practice, may be seen as a failure in the market that generates
published research.

2. Model Selection as an Optimisation Problem

In the general case, we consider data (X, y) where y is the variable (or vector of variables)
of interest, and X is a set of potential explanatory variables. We consider a finite set of models M, with
typical element m. The set of models may be partitioned into classes Mκ , where κ = 1 . . . K. Typically,
although not invariably, lower values of κ correspond to more parsimonious and, therefore, more
preferred models.

For a given model m, the object of estimation is to choose parameters β∗ (m; X, y) to maximise
a value function V (β; X, y), such as log likelihood or explained sum of squares. Define

V∗ (m; X, y) = max
β

V (β; X, y) = V (β∗ (m; X, y) ; X, y) . (1)

The model selection problem is to choose m to maximise the global objective function

Π (m; X, y) = V∗ (m; X, y)− C (m) , (2)

where C (m) is a cost function. Given the interpretation of V as a value function and C as a cost
function, Π may be regarded as a profit function.

2 I am indebted to an anonymous referee for pointing out this article, foreshadowing my central point.
3 Quiggin (2019) extends this analysis to encompass issues such as unemployment and inequality.
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2.1. Linear Case

We will confine our attention to linear models with a single variable of interest y and N
observations on a set of K potential explanatory variables X = (x1...xK). The generic model of this
form is

Y = Xβ + ε

Rβ = υ, (3)

where
Y is an N × 1 vector of observations on y;
X is an N × K matrix of observations on X;
β is a K × 1 vector of parameters;
ε is an N × 1 error term;
R is a J × K vector of constraints, where J < K and R has full rank;
the special case of ordinary least squares (OLS) is that of k unconstrained explanatory variables.

In this case, J = K − k and R =

(
0k

IK−k

)
. The model may be written without explicit constraints as

Y = Xβ + ε, (4)

where
Y is an N × 1 vector; of observations on y
X is an N × k matrix of observations on (x1...xk);
β is a k × 1 vector of parameters;
ε is an N × 1 error term, distributed as iid.N(0, σ)

2.2. Value Functions, Cost Functions, and Profit Functions

2.2.1. Value

The most commonly used value measures are
(i) measures related to likelihood,

L =∏
n

p (yn|β) ; (5)

(ii) those based on the proportion of variation in y explained by the model. The canonical measure is

R2 =
RSS
TSS

. (6)

These value measures may be interpreted in terms of explanation and prediction. If the objective
of the model is taken to be the explanation of observed outcomes in terms of a given model, the best
explanation may be seen as the choice of β that maximises the likelihood of the observed y. If the
objective of the model is taken to be prediction of y given X, R2 is the value function implied by the
minimisation of a quadratic loss function.

2.2.2. Cost

The simplest cost functions C are monotonic functions of k, the number of non-zero parameters
in the model. More generally, we may attach a cost c to the relaxation of a constraint Rβ = 0 suggested
by theory.
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Any cost function gives rise to a partition of the set of models into classes Mκ where κ = 1 . . . K,
where the equivalence relation is defined by the property that if κ (m) = κ (m′), C (m) = C (m′) .

Standard choices include

C (m) = k,

C (m) =
k − 1

N − k − 1
,

C (m) = K − J. (7)

2.2.3. Profit

In a general setting, profit may be defined as

Π = py − wx, (8)

where y is an output measure, p is the output price, x is an input measure, and w is the wage or factor
price. Treating output as numeraire, we may simplify to

Π = y − wx. (9)

Given the interpretation above, profit maximisation is represented by the choice of the best-fitting
model, subject to a cost associated with rejecting restrictions suggested by theory or by concern about
Type 1 error.

As in a market setting, profit maximisation will be consistent with a broader notion of optimality
if y and x are measured correctly and if the price w represents social cost.

3. Model Selection and Hypothesis Testing

To examine problems of hypothesis testing and model selection, we introduce an adjacency
relationship between models. Informally, two models are adjacent if they differ by a single step such
as the inclusion of an additional variable or the imposition of a linear restriction. As these examples
indicate, it will typically be the case that adjacent models m, m′ are ranked by parsimony so that, if m
is derived by imposing a restriction in m′, then m′ κ (m) < κ (m′) , and there exists no m′′ such that
κ (m) < κ (m′′) < κ (m′) . The adjacency relation is directed and will be denoted by m → m′ (for the
case κ (m) < κ (m′)).

3.1. Global Model Selection Criteria

Many widely used model selection criteria may be interpreted as profit functions, with a reversal
of sign to make the problem one of maximisation rather than minimisation

Examples include the Akaike information criterion (AIC),

− AIC = 2 log (L)− 2k, (10)

the corrected AIC,

− AICc = AIC − 2k2 + 2k
N − k − 1

, (11)

and the Bayesian information criterion (BIC)

− BIC = 2 log (L)− log (N) k. (12)

It is also possible to include a cost function in measures based on R2.
For example, we may write

V = R2 − k − 1
N − k − 1

. (13)
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Closely related is the R̄2 criterion, which satisfies

1 − R̄2 = (1 − R2)
N − 1

N − k − 1
(14)

or

R̄2 =
ESS/ (k − 1)

RSS/ (N − k − 1)
. (15)

3.2. Local Model Selection Criteria

Definition 1. Let m → m′ be adjacent models. Then m′ is a stepwise profit improvement (reduction) over m if
Π (m′; X, y) > (<)Π (m′; X, y) .

This definition immediately suggests consideration of the stepwise regression algorithm proposed
by Efroymson (1960). Let the profit function Π be R̄2. From an initial m, choose the adjacent m′ that
maximises Π (m′; X, y) terminating when, for all adjacent m′′, Π (m′; X, y) ≥ Π (m′′; X, y) . Forward
selection adds the requirement m → m′ so that selection proceeds by adding variables. Conversely,
backward selection requires m′ → m.

3.3. Hypothesis Testing

The problems of model selection and hypothesis testing are commonly treated separately. From the
viewpoint offered here, they may be regarded as global and local versions of the same problem, that of profit
maximisation. This point may be illustrated with respect to the large class of classical hypothesis tests
encompassed by the Wald, likelihood ratio, and Lagrange multiplier statistics Engle (1984), and also with
respect to the t and F tests used in hypothesis testing in the OLS framework.

Model selection may be considered locally in terms of a pairwise choice between models, so that
m is preferred to m′ if and only if Π (m; X, y) > Π (m′; X, y), which may be written as

V∗ (m; X, y)− C (m) > V∗ (m′; X, y
)− C

(
m′) (16)

or
V∗ (m; X, y)− V∗ (m′; X, y

)
> C (m)− C

(
m′) . (17)

If V (m; X, y) = log (L) , the left-hand side of (16) and (17) is a log likelihood ratio. If m′ is obtained
from m by the imposition of a vector of J constraints Rβ = υ, then under the standard assumptions
of the general linear model, the Likelihood Ratio (LR) statistic is distributed as χ2 with J degrees
of freedom in the limit. Hence, if we set C (m′) = 0 and C (m′) equal to a suitably chosen critical value
for χ2 (J) , we obtain the usual LR test.

Compare this approach to the various information criteria discussed in the previous section.
The domains of the two approaches coincide in the case of nested models where the restrictions
imposed in m′ consist of setting some coefficients equal to zero. The canonical criteria set out above
have in common that more parsimonious models are always preferred, at least weakly. In formal
terms, the classical hypothesis-testing framework shares this characteristic. The only difference is in the
choice of cost function.

The same point may be made with respect to value functions based on explained variation.
The natural starting point is the F-test,

F =
(RSS (m)− RSS (m′)) /J

RSS (m) / (N − k)
. (18)
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Alternatively, we may consider the framework of constrained optimisation. The objective for
a linear model m may be written as

V (m; X, y)− λ (Rβ − υ) , (19)

where λ is a vector of Lagrange multipliers, such that λ (Rβ − υ) = 0. In the context of constrained
optimisation, as observed by Breusch and Pagan (1980), the Lagrange multiplier represents the shadow
price of relaxing a constraint.

The most usual restriction is that of setting the coefficient on some variable equal to zero. In this
case, the F statistic is typically replaced by its square root, and the test is a t-statistic.

Such tests of significance give rise to an estimation strategy in which variables are included
sequentially in the model. The most usual criterion is the t-statistic associated with the added variable,
typically with a stopping criterion associated with 5 per cent significance.

As Dhrymes (1970) observes, this strategy is closely related to the criterion of maximising
R̄2. However, R̄2 is (locally) optimised by including variables whenever their t-statistic is greater
than one and, therefore, implies a lower price for including variables. A similar point may be made
with respect to the relationship between information criteria such as the AIC and the likelihood
ratio test.

4. Market Failure

When the model selection problem is interpreted as one of profit maximisation, it is natural
to interpret problems within econometric practice as market failures. In particular, the profit function
being maximised by researchers differs from that which would be suggested by an objective of social
welfare maximisation.

In relation to the replication crisis, the core of the problem, as it is generally perceived, is that
the price of including a variable of interest as statistically or economically significant in the reported
model is too low.

On the one hand, the bias against publication of negative results means that the benefit
to researchers of reporting models with no significant variables of interest is limited and, in many
fields, close to zero.

On the other hand, the availability of the set of techniques pejoratively referred to as “p-hacking”
means that the test statistics reported in published studies are more likely to arise through chance than
would be suggested by the classical hypothesis-testing framework.

Taken together, these observations suggest that the price to researchers of including a variable
of interest in a published model is lower than would be socially optimal. As a result, too many positive
results are reported.

But what is the socially optimal price? The classical hypothesis-testing framework is of limited
value here. Informal reasoning about Type 1 and Type 2 errors implies that there must exist a trade-off
that can be expressed in terms of relative prices. But the relationship between that trade-off and the
notion of statistical significance is opaque, to say the least. Holding the size (likelihood of Type 1
error) constant means that the power (likelihood of Type 2 error) depends on a combination of sample
size and the variance of the error term in a way that bears no obvious relationship to the relative
desirability of avoiding the two types of error.

Bayesian approaches based on loss functions are much closer to the spirit of the approach being
suggested here. The main difference between the profit maximisation approach proposed here and the
loss function approach (apart from a trivial change of sign) is the inclusion of an explicit cost associated
with the estimation of a more general model.

The central point of the market failure analogy is that excessive publication of fragile results
implies that the price of a positive result is too low. As with other market failures, a solution may be
sought either in regulation or in pricing.
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Regulatory approaches include measures such as the preregistration of estimation strategies.
To develop an appropriate model of socially optimal prices, we must consider how, as a society, we respond
to research publications.

This is, in some sense, an equilibrium outcome. If we accept at face value either the classical
interpretation of a finding of statistical significance or its natural subjective misinterpretation
(the probability that the variable in question is causally related to the variable of interest is near
one), then the fact that many findings cannot be replicated is a major social problem. The initial result
would lead us to act on a belief that cannot be substantiated.

Such an outcome cannot be sustained, however. Most people now understand that a reported
result, whatever the supposed statistical significance, is not conclusive in the absence of replication,
and certainly not at the stated level of significance. The question, therefore, is whether the publication
of the result is, on balance, socially beneficial.

In this view, the most important requirement is that the price should be high enough to offset the
inevitable effects of publication bias. Publication of a result showing a statistically significant result
should be treated as an indication that further research is warranted, rather than conclusive or even
highly probable evidence that the reported relationship is real.

5. Concluding Comments

Statistical research is a social and economic enterprise aimed at discovering, testing, and ultimately
acting on relationships between variables of interest. The economic concepts of profit maximisation
and market failure provide a way of thinking about statistical research that reflects its social role.
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Abstract: There has been much debate about null hypothesis significance testing, p-values without
null hypothesis significance testing, and confidence intervals. The first major section of the present
article addresses some of the main reasons these procedures are problematic. The conclusion is that
none of them are satisfactory. However, there is a new procedure, termed the a priori procedure
(APP), that validly aids researchers in obtaining sample statistics that have acceptable probabilities
of being close to their corresponding population parameters. The second major section provides a
description and review of APP advances. Not only does the APP avoid the problems that plague other
inferential statistical procedures, but it is easy to perform too. Although the APP can be performed in
conjunction with other procedures, the present recommendation is that it be used alone.
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1. A Frequentist Alternative to Significance Testing, p-Values, and Confidence Intervals

Consistent with the purposes of the Econometrics special issue, my goal is to explain some of the
problems with significance testing, point out that these problems are not solved satisfactorily using
p-values without significance testing, and show that confidence intervals are problematic too. The
second major section presents a frequentist alternative. The alternative can be used on its own or in
conjunction with significance testing, p-values, or confidence intervals. However, my preference is for
the alternative to be used on its own.

2. Discontent with Significance Testing, p-Values, and Confidence Intervals

2.1. Significance Testing

Researchers use widely the null hypothesis significance testing (NHST) procedure, whereby
the researcher computes a p-value, and if that value is under a threshold (usually 0.05), the result
is declared statistically significant. Once the declaration has been made, the typical response is to
conclude that the null hypothesis is unlikely to be true, reject the null hypothesis based on that
conclusion, and accept the alternative hypothesis instead (Nickerson 2000). It is well-known that
this sort of reasoning invokes a logical fallacy. That is, one cannot validly make an inverse inference
from the probability of the obtained effect size or a more extreme one, given the null hypothesis; to
the probability of the null hypothesis, given the obtained effect size (e.g., Cohen 1994; Fisher 1973;
Nickerson 2000; Trafimow 2003).1 The error is so common that it has a name: the modus tollens fallacy.

1 This is an oversimplification. In fact, the p-value is computed from a whole model, which includes the null hypothesis
as well as countless inferential assumptions. That the whole model is involved in computing a p-value will be addressed
carefully later. For now, we need not consider the whole model to bring out the logical issue at play.
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To see the reason for the name, consider that if the probability of the obtained effect size or a more
extreme one given the null hypothesis were zero; then obtaining the effect size would guarantee that
the null hypothesis is not true, by the logic of modus tollens (also termed denying the consequent).
However, modus tollens does not work with probabilities other than zero and the unpleasant fact of the
matter is that there is no frequentist way to compute the probability of the null hypothesis conditional
upon the data. It is possible to use the famous theorem by Bayes; but most frequentists are unwilling
to do that. Trafimow (2003, 2005) performed the Bayesian calculations and, not surprisingly, obtained
very different findings from those obtained via the modus tollens error.2 Thus, there is not only a
logical invalidity; but a numerical one too.

An additional difficulty with making the modus tollens error is that to a frequentist, hypotheses
are either true or false, and do not have probabilities between zero and unity. From this perspective,
the researcher is simply wrong to assume that p < 0.05 implies that the probability of the null hypothesis
given the data also is less than 0.05 (Nickerson 2000).

To be sure, researchers need not commit the modus tollens error. They can simply define a
threshold level, such as 0.05, often termed an alpha level; and reject the null hypothesis whenever
the obtained p-value is below that level and fail to reject the null hypothesis whenever the obtained
p-value is not below that level. There is no necessity to assume anything about the probability of the
null hypothesis.

But there are problems with threshold levels (see (Trafimow and Earp 2017) for a review).
An important problem is that, under the null hypothesis, p-values have a uniform distribution between
zero and one (0, 1). Therefore, whether the researcher obtains a p-value under the alpha level is partly
a matter of luck. Just by getting lucky, the researcher may obtain a large sample effect size and a
small p-value, thereby enabling publication. But in that event, the finding may be unlikely to replicate.
Although this point is obvious from a statistical regression standpoint, the Open Science Collaboration
effort (2015) showed empirically that the average effect size in the replication cohort of studies was less
than half that in the original cohort of studies (from 0.403 to 0.197). Locascio (2017a) has argued that
the most important disadvantage of NHST is that it results in scientific literatures replete with inflated
effect sizes.3

Some have favored reducing the alpha level to lower values, such as 0.01 or 0.005 (e.g., Melton 1962;
Benjamin et al. 2018); but these suggestions are problematic too. The most obvious problem is that
having a more stringent alpha level merely increases statistical regression effects so that published
sample effect sizes become even more inflated (Trafimow et al. 2018). Furthermore, more stringent
thresholds need not increase replication probabilities. As Trafimow et al. (2018) pointed out, applying
a more stringent alpha level to both the original and replication studies would render replication even
more difficult. To increase the replication probability, the researcher would need to apply the more
stringent alpha level to the original study and a less stringent alpha level to the replication study.
And then there is the issue of what justifies the application of different alpha levels to the two categories
of studies.

There are many problems with NHST, of which the present is only a small sampling. But this
small sampling should be enough to render the reader highly suspicious. Trafimow and Earp (2017)
presented a much larger list of problems and the subsequent section includes yet additional problems.
Critique of the use of Fisherian p-values and Neyman-Pearson hypothesis testing for model selection
has even made its way into (graduate) statistics textbooks; see, e.g., Paolella (2018, sct. 2.8).

2 Also see Kim and Ji (2015) for Bayesian calculations pertaining to significance tests in empirical finance.
3 The interested reader should consult the larger discussion of the issue in the pages of Basic and Applied Social Psychology

(Grice 2017; Hyman 2017; Kline 2017; Locascio 2017a, 2017b; Marks 2017).
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2.2. p-Values without Significance Testing

The American Statistical Association (Wasserstein and Lazar 2016) admits that p-values provide
a poor justification for drawing conclusions about hypotheses. But might p-values be useful for
something else? An often-touted possibility is to use p-values to obtain evidence against the statistical
model of which the null hypothesis—or test hypothesis more generally—is a subset. It is a widely
known fact—though not widely attended—that p-values depend on the whole model and not just
on the test hypothesis. There are many assumptions that go into the full inferential statistical model,
in addition to the test hypothesis, such as that the researcher sampled randomly and independently
from a defined population (see (Trafimow), for a taxonomy of model assumptions). As Berk and
Freedman (2003) pointed out, this assumption is practically never true in the soft sciences. Worse
yet, there are many additional assumptions too numerous to list here (Armhein et al. 2019; Berk and
Freedman 2003; Trafimow). As Armhein et al. (2019) concluded (p. 263): “Thus, statistical models
imply countless assumptions about the underlying reality.” It cannot be overemphasized that p-values
pertain to models—and their countless assumptions—as opposed to just hypotheses.

Let us pretend, for the moment, that it is a valuable exercise for the researcher to obtain evidence
against the model.4 How well do p-values fulfill that objective? One problem with p-values is that they
are well known to be unreliable (e.g., Halsey et al. 2015), and thus cannot provide strong evidence
with respect to models or to the hypotheses that are subsets of models.5 In addition to conceptual
demonstrations of this point (Halsey et al. 2015), an empirical demonstration also is possible, thanks to
the data file the Open Science Collaboration (2015) displayed online (https://osf.io/fgjvw/). The data
file contains a wealth of data pertaining to the original cohort of published studies and the replication
cohort. After downloading the data file, I obtained exact p-values for each study in the cohort of
original studies; and for each study in the cohort of replication studies. After correlating the two
columns of p-values, I obtained a correlation coefficient of 0.0035.6 This empirical demonstration
of the lack of reliability of p-values buttresses previous demonstrations involving mathematical or
computer simulations.

And yet, there is a potential way out. Greenland (2019) suggested performing a logarithmic
transformation of p-values: (−1)· log2(p). The logarithmic transformation causes p-values to be
expressed as the number of bits of information against the model. For example, suppose that p = 0.05.
Applying the logarithmic transformation implies that there are approximately four (the exact number
is 4.32) bits of information against the model. An advantage of the transformation, as opposed to
the untransformed p-value, is that the untransformed p-value has endpoints at 0 and 1, with the
restriction of range potentially reducing the correlation that can be obtained between original and
cohort sets of p-values. As an empirical demonstration, when I used the logarithmic transformation
on the two columns of p-values obtained from the Open Science Collaboration data file, the original
p-value correlation of 0.0035 jumped to 0.62! Thus, not only do transformed p-values have a more
straightforward interpretation than do untransformed p-values; but they replicate better too. Clearly,
if one insists on using a p-value to index evidence against the model, it would be better to use a
transformed one than an untransformed one. However, there nonetheless remains the issue of whether
it is worthwhile to gather evidence against the model in the first place.

Let us return to the issue that a p-value—even a transformed p-value—is conditioned not only
on the test hypothesis; but rather on the whole model. For basic research, where one is testing a

4 As will become clear later, this is not a valuable exercise; but the pretense is nevertheless useful to make an important point
about logarithmic transformations of p-values.

5 Sometimes p-value apologists admit p-value unreliability but point out that such unreliability has been known from the
start. Although this contention is correct, it fails to justify p-values. That a procedure has been known from the start to be
unreliable does not justify its use!

6 This correlation, rounded to 0.004, was mentioned by Trafimow and de Boer (2018); but these researchers did not assess
transformed p-values.
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theory, there are assumptions in the theory (theoretical assumptions) as well as auxiliary assumptions
used to connect non-observational terms in the theory to observational terms in empirical hypotheses
(Trafimow). If the researcher is to employ descriptive statistics, such as means, standard deviations,
and so on; there are statistical assumptions pertaining to issues such as whether means should be
used or whether some other location statistic should be used, whether standard deviations should be
used or whether some other dispersion statistic should be used, and so on (Trafimow 2019a). Finally,
there are inferential assumptions such as those pointed out by Berk and Freedman (2003), especially
concerning random and independent sampling. As suggested earlier, it is a practical certainty that
not all the assumptions are precisely true, which means that the model is wrong (Armhein et al. 2019;
Berk and Freedman 2003; Trafimow 2019b, forthcoming). The question then arises: What is the point
in gathering evidence against a model that is already known to be wrong? The lack of a good answer to
this question is a strong point against using statistics of any sort, even transformed p-values, to gather
evidence against the model.

A counter can be generated out of the cliché that although all models are wrong, they might be
close enough to correct to be useful (e.g., Box and Draper 1987). As an example of the cliché, suppose
that based on the researcher’s statistical model, she considers sample means as appropriate to estimate
population means. In addition, suppose that the sample means really are close to their corresponding
population means, though not precisely correct. It would be reasonable to argue that the sample means
are useful, despite not being precisely correct, because they give the researcher a good approximation
of the population means. Can this argument be extended to p-values or transformed p-values?

The answer is in the negative. To see why, consider that in the case of a p-value or a transformed
p-value, there is no corresponding population parameter; the researcher is not estimating anything!
And if the researcher is not estimating anything, closeness is irrelevant. Being close counts for much if
the goal concerns estimation; but being close is irrelevant in the context of making accept/not accept
decisions about hypotheses. In the case of such binary decisions, one cannot be close; one can only be
correct or incorrect. It is worthwhile to reiterate. The Box and Draper (1987) quotation makes sense
in estimation contexts; but it fails to save p-values or transformed p-values because nothing is being
estimated. Obtaining evidence against a known wrong model fails to provide useful information.

2.3. Confidence Intervals

Do the foregoing criticisms of p-values, either with or without NHST, provide a strong case for
using confidence intervals (CIs) instead? Not necessarily.

To commence, most researchers use CIs like they use p-values. That is, if the critical value falls
outside the CI, it is statistically significant; and if the critical value does not fall outside the CI, it is not
statistically significant. Used in this way, CIs are plagued with all the problems that plague p-values
when used for NHST.

Alternatively, researchers may use CIs for parameter estimation. For example, many researchers
believe that constructing a 95% CI around the sample mean indicates that the population mean has a
95% chance of being within the constructed interval. However, this is simply false. There is no way to
know the probability that the population mean is within the constructed interval. To understand what
a 95% CI really entails, it is necessary to imagine the experiment performed an indefinite number of
times, with the researcher constructing a 95% CI each time. In this hypothetical scenario, 95% of the
constructed 95% CIs would enclose the population mean but there is no way to know the probability
that any single constructed interval contains the population mean. Interpreting a CI as giving the
probability that the population parameter is within the constructed interval constitutes another way
of making an inverse inference error, not dissimilar to that discussed earlier with respect to p-values.
Furthermore, if one is a frequentist, it does not even make sense to talk about such a probability as
the population parameter is either in the interval or not, and lack of knowledge on the part of the
researcher does not justify the assignment of a probability.
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Sophisticated CI aficionados understand the foregoing CI misinterpretations and argue instead
that the proper use of CIs is to provide information about the precision of the data. A narrow CI
implies high precision and a wide CI implies low precision. But there is an important problem with
this argument. Trafimow (2018b) showed that there are three types of precision that influence the
size of CIs. There is sampling precision: larger sample sizes imply greater sampling precision under
the usual assumptions. There is measurement precision: the more the random measurement error,
the lower the measurement precision. Finally, there is precision of homogeneity: the more similar the
people in the sample are to each other, the easier it is to discern the effect of the manipulation on the
dependent variable. CIs confound the three types of precision.7

The obvious counter is that even a confounded precision index might be better than no precision
index whatsoever. But Trafimow (2018b, 2019a) showed that provided the researcher has assessed the
reliability of the dependent variable, it is possible to estimate the three kinds of precision separately,
which provides superior precision information than a triply confounded CI. The fact that the three
types of precision can be estimated separately places the CI aficionado in a dilemma. On the one hand,
if the aficionado is honestly interested in precision, she should take the trouble to assess the reliability
of the dependent variable and estimate the three types of precision separately. On the other hand,
if the aficionado is not interested in precision, there is no reason for her to compute a CI anyhow. Thus,
either way, there is no reason to compute a CI.

A further problem with CIs, as is well-known, is that they fluctuate from sample to sample. Put
another way, CIs are unreliable just as p-values are unreliable. Cumming and Calin-Jageman (2017)
have attempted to justify that this is okay because most CIs overlap with each other. But unfortunately,
the extent to which CIs overlap with each other is not the issue. Rather, the issue—in addition to
the foregoing precision issue—is whether sample CIs are good estimates of the CI that applies to the
population. Of course, in normal research, the CI that applies to the population is unknown. But it is
possible to perform computer simulations on user-defined population values. Trafimow and Uhalt
(under submission) performed this operation on CI widths, as well as upper and lower CI limits. The
good news is that as sample sizes increase, sample CI accuracy also increases. The bad news is that
unless the sample size is much greater than those typically used, the accuracy of CI ranges and limits
is very poor.

In summary, CIs are triply confounded precision indexes, they tend not to be accurate, and they
are not useful for estimating population values. To what valid use CIs can be put is far from clear.

2.4. Bayesian Thinking

There are many ways to “go Bayesian.” In fact, Good (1983) suggested that there are at least 46,656
ways!8 Consequently, there is no feasible way to do justice to Bayesian statistical philosophy in a
short paragraph. The interested reader can consult Gillies (2000), who examined some objectivist and
subjectivist Bayesian views, and described important dilemmas associated with each of them. There is
no attempt here to provide a critical review, except to say that not only do Bayesians disagree with
frequentists; but Bayesians often disagree with each other too. For researchers who are not Bayesians,
it would be useful to have a frequentist alternative that is not susceptible of the problems discussed

7 To understand why, consider that CIs are based largely on the standard error. In turn, the standard error is based on the
standard deviation and the sample size. Finally, the standard deviation is influenced by random measurement error but also
by systematic differences between people. Thus, the standard deviation in the numerator of the standard error calculation
is influenced by both measurement precision and precision of homogeneity; and the denominator of the standard error
includes the sample size, thereby implicating the importance of sampling precision. Thus, all three types of precision
influence the standard error. This triple confound is problematic for interpreting CIs.

8 Good (1983) stated that Bayesians can make a variety of choices with respect to a variety of facets. In calculating that the
number of Bayesian categories equals 46,656, Good also pointed out that this is larger than the number of professional
statisticians so there are empty categories (p. 21).
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with respect to NHST, p-values, and CIs. Even Bayesians might value such an alternative. We go
there next.

3. The A Priori Procedure (APP)

The APP takes seriously that the researcher wishes to estimate population parameters based on
sample statistics. To see quickly the importance of having sample statistics that are at least somewhat
indicative of corresponding population parameters, imagine Laplace’s Demon, who knows everything,
and who warns researchers that their sample means have absolutely nothing to do with corresponding
population means. Panic would ensue in science because there would be no point in obtaining
sample means.

In contrast to the Demon’s disastrous pronouncement, let us imagine a different pronouncement.
Suppose the Demon offered researchers the opportunity to specify how close they wish their sample
statistics to be to corresponding population parameters; and the probability of being that close. And the
Demon would provide the necessary sample sizes to achieve specifications. This would be of obvious
use, though not definitive. That is, researchers could tell the Demon their specifications, the Demon
could answer with necessary sample sizes, and researchers could then go out and obtain those sample
sizes. Upon obtaining the samples, researchers could compute their descriptive statistics of interest
under the comforting assurance that they have acceptable probabilities of being within acceptable
distances of the population values. After all, it is the researcher who told the Demon the specifications
for closeness and probability. Because the researcher is assured that the sample statistics have acceptable
probabilities of being within acceptable distances of corresponding population parameters, the need
for NHST, p-values, or CIs is obviated.

Of course, there is no Demon; but the APP can take the Demon’s place. As a demonstration,
consider the simplest possible case where the researcher is interested in a single sample with a single
mean, and where participants are randomly and independently sampled from a normally distributed
population. That these assumptions are rarely true will be addressed later. For now, though, let us
continue with this ideal and simple case to illustrate how APP thinking works.

Trafimow (2017) provided an accessible proof of Equation (1) below:

n =

(
ZC
f

)2
, (1)

where

• f is the fraction of a standard deviation the researcher defines as sufficiently “close,”
• ZC is the z-score that corresponds to the desired probability of being close, and
• n is the minimum sample size necessary to meet specifications for closeness and confidence.

For example, suppose the researcher wishes to have a 95% probability of obtaining a sample
mean that is within a quarter of a standard deviation of the population mean. Because the z-score
that corresponds to 95% confidence is approximately 1.96, Equation (1) can be solved as follows:

n =
(

1.96
0.25

)2
= 61.47 ≈ 62. In other words, the researcher will need to recruit 62 participants to meet

specifications for closeness and confidence.9

The researcher now can see the reason for the name, a priori procedure. All the inferential work
is performed ahead of data collection and no knowledge of sample statistics is necessary. But the
fact that the APP is an a priori procedure does not preclude its use in a posteriori fashion. To see
that this is indeed possible, suppose that a researcher had already performed the study and a second
researcher wishes to estimate the closeness of the reported sample mean to the population mean, under

9 Because participants do not come in fractions, it is customary to round upwards to the nearest whole number.
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the typical value of 95% for confidence. Equation (2) provides an algebraic rearrangement of Equation
(1), to obtain a value for f given that n has already been published:

f =
ZC√

n
. (2)

For example, suppose that the researcher had 200 participants. What is the closeness? Using
Equation (2) implies the following: f = 1.96√

200
= 0.14. In words, the researcher’s sample mean has a

95% probability of being within 0.14 standard deviations of the population mean.

3.1. j Groups

An obvious complaint to be made about Equations (1) and (2) is that they only work
for a single mean. But it is possible to extend to as many groups as the researcher wishes.
Trafimow and MacDonald (2017) derived Equation (3), that allows researchers to calculate the sample
size per condition needed to ensure that all ( j) sample means are within specifications for closeness
and probability:

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Φ−1
(

j√p( j means)+1
2

)

f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(3)

where

• j is the number of groups,
• p( j means) is the probability of meeting the closeness specification with respect to the j groups,
• and Φ−1 is the inverse of the cumulative distribution function of the normal distribution.

Algebraic rearrangement of Equation (3) renders Equation (4) that can be used to estimate the
precision of previously published research:

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Φ−1
(

j√p( j means)+1
2

)
√

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

(Trafimow and Myüz (forthcoming) used Equation (4) to analyze a large sample of published
papers in lower-tier and upper-tier journals in five areas of psychology. They found that although
precision was unimpressive in all five areas of psychology, it was worst in cognitive psychology and
least bad in developmental and social psychology.

3.2. Differences in Means

In some research contexts, researchers may be more interested in having the difference in two
sample means be close to the population difference, than in having each individual mean be close to
its corresponding population mean. Researchers who are interested in differences in means may use
matched or independent samples. If the samples are matched, Trafimow et al. (forthcoming) derived
the requisite equation:

t α
2 , n−1 ≤

√
n f , (5)

where t α
2 , n−1 is the critical t-score, analogous to the use of the z-score from Equation (1). Unfortunately,

Equation (5) cannot be used in the simple manner that Equations (1)–(4) can be used. For instance,
suppose a researcher wishes to specify f = 0.2 at 95% confidence for matched samples. The researcher
might try n = 99, so the right side of Equation (2) is 1.99, which satisfies Equation (5). That is,
t α

2 , n−1 = 1.81 ≤ √99·0.2 = 1.99. Alternatively, the researcher might try n = 98, which does not satisfy
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Equation (5): t α
2 , n−1 = 1.9847 �

√
99·0.2 = 1.9799. Because n = 99 satisfies Equation (5) whereas

n = 98 does not, the minimum sample size necessary to meet specifications for precision and confidence
is n = 99. Equation (5) is best handled with a computer that is programmed to try different values
until convergence on the smallest sample size that fulfils requirements.

Equation (5) can be algebraically rearranged to give closeness, as Equation (6) shows:

f ≥
t α

2 , n−1√
n

(6)

If the researcher uses independent samples, as opposed to matched samples, Equation (5) will
not work and it is necessary instead to use Equation (7). When there are independent samples, there
is no guarantee that the sample sizes will be equal, and it is convenient to designate that there are
n participants in the smaller group and m participants in the larger group, where k = n

m . Using k,
Trafimow et al. (forthcoming) derived Equation (7):

t α
2 , q ≤

√
n

k + 1
f , (7)

where t α
2 ,q is the critical t-score that corresponds to the level of confidence level 1− α and degrees of

freedom q = n +
[

n
k

]
− 2 in which

[
n
k

]
is rounded to the nearest upper integer.

If the researcher has equal sample sizes, Equation (3) reduces to Equation (4):

t α
2 , 2(n−1) ≤

√
n
2

f . (8)

Like Equation (5), Equation (7) or Equation (8) is best handled using a computer to try out different
sample sizes. Again, the lowest sample sizes for which the equations remain true are those required to
meet specifications.

Alternatively, if the researcher is interested in the closeness of already published data, Equation (7)
can be algebraically rearranged to render Equation (9); and Equation (8) can be algebraically rearranged
to render Equation (10).

f ≥
t α

2 , q√
n

k+1

(9)

f ≥
t α

2 , 2(n−1)√n
2

(10)

3.3. Skew-Normal Distributions

Most researchers assume normality and consequently would use Equations (1)–(10). But many
distributions are skewed (Blanca et al. 2013; Ho and Yu 2015; Micceri 1989), and so Equations (1)–(10)
may overestimate the sample sizes needed to meet specifications for closeness and confidence. The
family of skew-normal distributions is more generally applicable than the family of normal distributions.
This is because the family of skew-normal distributions employs three, rather than two, parameters.
Let us first consider the two parameters of normal distributions: mean μ and standard deviation σ.
For skew-normal distributions, these are replaced by the location parameter ξ and scale parameter
ω, respectively. Finally, skew-normal distributions also include a shape parameter λ. When λ = 0,
the distribution is normal, and ξ = μ and ω = σ. But when λ � 0, then the distribution is skew-normal,
and ξ � μ and ω � σ. Although the mathematics are too complex to render here, skew-normal
equations have been derived analogous to Equations (1)–(10) (e.g., Trafimow et al. 2019). In addition,
Wang et al. (2019a) have shown how to find the number of participants necessary to meet specifications
for closeness and confidence with respect to estimating the shape parameter. Finally, Wang et al. (2019b)
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have shown how to find the number of participants necessary to meet specifications for closeness
and confidence with respect to estimating the scale parameter (or standard deviation if normality is
assumed).

3.4. Limitations

Although much progress has been made in the approximately two years since the APP was
invented, there nevertheless remain limitations. The most important limitations are conceptual. Unlike
many other inferential statistical procedures, the APP does not dictate what hypotheses to accept or
reject. For those researchers who believe that other inferential statistical procedures, such as NHST,
really do validly dictate what hypotheses to accept or reject, this is an important limitation. Hopefully,
the remarks in the first major section of the present article have disabused the reader that any procedure
is valid for making decisions about hypotheses. If the reader is convinced, then although the limitation
remains serious in the absolute sense that it would be nice to have an inferential procedure that validly
dictates what hypotheses to accept or reject; the limitation is not serious in the relative sense that other
inferential procedures that make the promise fail to deliver, so nothing is lost by using the APP.10

A second conceptual limitation is suggested by one of the arguments against p-values. That is,
the model is known wrong and so there is no point using p-values to gather evidence against it. It is
tempting to apply model wrongness to the APP, where the models again will not be precisely correct.
However, as we pointed out earlier, closeness counts heavily with respect to estimation; but does not
count at all for binary decisions, that are either correct or incorrect. Because the APP is for estimation,
if the model is reasonably close to being correct, though it cannot be precisely correct, the estimate
should be reasonably good. And this point can be explained in more specific terms. Suppose that
the model is close but not perfect, thereby resulting in a sample size that is slightly larger or slightly
smaller than the precisely correct sample size necessary to meet specifications. In the case of the larger
sample size, the result will be that the researcher will have slightly better closeness, and little harm is
done, except that the researcher will have put greater than optimal effort into data collection. In the
case of the smaller sample size, the researcher’s sample statistics of interest will not be quite as close to
their corresponding population parameters as desired; but may nevertheless be close enough to be
useful. Therefore, although model wrongness always is important to consider, it need not be fatal for
the APP whereas it generally is fatal for p-values.

There are also practical limitations. Although work is in progress concerning complex contrasts
involving multiple means (assuming a normal distribution) or multiple locations (assuming a
skew-normal distribution), the requisite APP equations do not yet exist. Similarly, for researchers
interested in correlations, regression weights, and so on; although work is in progress; the requisite
APP equations do not yet exist. Another practical limitation is the lack of an APP computer program
that will allow researchers to perform the calculations without having to do their own programming.
And yet, work proceeds and we hope to be able to address these practical limitations in the very
near future.

3.5. APP versus Power Analysis

To some, the APP may seem like merely an advanced way to perform power analysis. However,
this is not so as can be shown in both a general sense and in two specific senses. Speaking generally,
the APP and power analysis have very different goals. The goal of power analysis is to find the number
of participants needed to have a good chance of obtaining a p-value that comes in under threshold

10 I thank an anonymous reviewer for pointing out that, due to the lack of cutoff points, this limitation can be considered a
strength. According to the reviewer, “There is no cutoff point, so potentially all estimates could be viable.”
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(e.g., p < 0.05) when the null hypothesis is meaningfully violated.11 In contrast, the APP goal is to find
the number of participants necessary to reach specifications for closeness and confidence.

This general difference results in specific mathematical differences too.12 First, power analysis
depends importantly on the anticipated effect size. If the anticipated effect size is small, a power analysis
will indicate that many participants are necessary for adequate power; but if the anticipated effect size
is large, a power analysis will indicate that only a small sample size is necessary for adequate power.
In contrast, the anticipated effect size plays no part whatsoever in APP calculations. For example,
suppose that anticipated effect size for a single sample experiment is 0.80. A power analysis would
show that only 13 participants are needed for power = 0.80; but an APP calculation would nevertheless
demonstrate that the closeness value is a woeful 0.54.13

A second specific difference is that APP calculations are influenced, importantly, by the desired
level of closeness. In contrast, power calculations are completely uninfluenced by the desired level
of closeness. Moreover, absent APP thinking, few researchers would even consider the issue of the
desired level of closeness. In summary, the APP is very different from power analysis, both with respect
to general goals and with respect to specific factors that influence how the calculations are performed.

3.6. The Relationship between the APP and Idealized Replication

Much recent attention concerns replication probabilities across sciences. For example, the Open
Science Foundation (2015) publication indicates that most published papers in top psychology journals
failed to replicate. One of the many disadvantages of both p-values and CIs is that they fail to say
much about the extent to which experiments would be likely or unlikely to replicate. In contrast,
as Trafimow (2018a) explained in detail, the results of the APP strongly relate to reproducibility.

To understand the relationship, it is necessary to make two preliminary points. The first point
is philosophical and concerns what we would expect a successful replication to entail. Because of
scientists’ addiction to NHST, most consider a successful replication to entail statistically significant
findings in the same direction, in both the original and replication studies. However, once NHST is
admitted as problematic, defining a successful replication in terms of NHST is similarly problematic.
But the present argument extends beyond NHST to effect sizes more generally.

Consider the famous Michelson and Morley (1887) experiment that disconfirmed the presence
of the luminiferous ether that researchers had supposed to permeate the universe.14 The surprise
was that the effect size was near zero, thereby suggesting that there is no luminiferous ether, after
all.15 Suppose a researcher today wished to replicate. Because larger effect sizes correspond with
lower p-values, it should be clear that going by replication conceptions involving p-values, it is much
more difficult to replicate smaller effect sizes than larger ones.16 Thus, according to traditional NHST
thinking, it should be extremely difficult to replicate Michelson and Morley (1887), though physicists
do not find it so. This is one reason it is a mistake to let effect sizes dictate replication probabilities.
In contrast, using APP thinking, a straightforward conceptualization of a successful replication is if the
descriptive statistics of concern are close to their corresponding population parameters in both the
original and replication studies.17 An advantage of this conceptualization is that it treats large and

11 For those who prefer CIs, an alternative goal would be to find the number of participants required to obtain sample CIs of
desired widths.

12 For elaborated mathematical discussions of the differences, see Trafimow and Myüz (Trafimow and Myüz) and
Trafimow (2019b).

13 See (Trafimow and Myüz (forthcoming) for details.
14 Michelson received his Nobel Prize in 1907.
15 It is interesting that Carver (1993) reanalyzed the data using NHST and obtained a statistically significant effect due to the

large number of data points. As Carver pointed out, had Michelson and Morley used NHST, the existence of the luminiferous
ether would have been supported, with incalculable consequences for physics (also see Trafimow and Rice 2009).

16 A counter might be to use equivalence testing; but this is extremely problematic because it involves the computation of at
least two p-values, whereas we already have seen that even one p-value is problematic.

17 If specifications are not met in one of the two studies, that constitutes a failure to replicate.
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small effect sizes equally. What matters is not the size of the effect; but rather how close the sample
effect is to the population effect, in both the original and replication studies.

The second point is to imagine an idealized universe, where all systematic factors are the same in
both the original and replication study. Thus, the only differences between the original and replication
study are due to randomness.

Remembering that our new conceptualization of a successful replication pertains to the sample
statistics of interest being close to their corresponding population parameters, in both the original and
replication studies, invoking an idealized universe suggests a simple way to calculate the probability
of replication. Specifically, the probability of replication in the idealized universe is simply the square
of the probability of being close in a single experiment (Trafimow 2018a). We have already seen that
all APP equations can be algebraically rearranged to yield closeness given the sample size used in
the original study. Well, then, it is equally possible to fix closeness at some level and algebraically
rearrange APP equations to yield the probability of meeting the closeness specification given the
sample size used. Once this has been accomplished, the researcher merely squares that probability
to obtain the probability of replication in the idealized universe. Trafimow (2018a) described the
mathematics in detail and showed how specifications for closeness and sample size influence the
probability of replication.

A way to attack the usefulness of the APP conceptualization of a successful replication is to focus
on the necessity to invoke an idealized universe to carry through the calculations. But the attack
can be countered in both general and specific ways. The general counter is that scientists often have
suggested idealized universes, such as the ideal gas law in chemistry, Newton’s idealized universe
devoid of friction, and so on. The history of science shows that idealized conceptions often have
been useful, though not strictly correct (Cartwright 1983). More specifically, however, consider that
the difference between the APP idealized universe and real universe is that only random factors can
hinder replication in the idealized universe whereas both random and systematic factors can hinder
replication in the real universe. Because there is more that can go wrong in the real universe than in the
idealized universe, it should be clear that the probability of replication in the idealized universe sets an
upper limit on the probability of replication in the real universe. Because Trafimow (2018a) showed
that most research has a low probability of replication even in the idealized universe, the probability of
replication in the real universe must be even lower. In summary, whereas p-values and CIs have little
to say about the probability of replication, the APP has much to say about it.

3.7. Criteria18

An unaddressed issue concerns the setting of criteria with respect to closeness and the probability
of being close. The temptation is to set cutoffs; for example, that closeness must be at the 0.02 level or
better, at 95% probability or better, to justify publication. However, this temptation must be resisted,
lest the APP degenerate into dichotomous thinking that is currently problematic in the sciences. Instead
of cutoffs, it would be better to have graduated verbal descriptions for what constitutes different levels
of closeness and probabilities of being close. However, even graduated verbal descriptions may be
problematic because researchers in different fields, or areas within fields, might justifiably differ with
respect to what constitutes suitable verbal descriptions. For example, closeness at the 0.40 level might
be “poor” in some fields or areas, and “acceptable” in others. It would be a mistake to impose such
criteria from outside.19

One way to address the issue would be to have conferences, workshops, or symposia where
people in similar fields and areas meet; become familiar with the APP, with a solid understanding
about closeness and the probability of being close; and engage in serious discussions about criteria for

18 I thank an anonymous reviewer for suggesting this issue.
19 Trafimow (2018a) used some graduated verbal descriptions but also emphasized that these should not be taken very seriously.
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graduated verbal descriptions. An alternative possibility would be to use the social media. Yet another
alternative would be for editors of substantive journals to promulgate special issues devoted to setting
criteria for graduated verbal descriptions such that substantive experts can provide perspectives.

Given academia’s publish or perish culture, it cannot be overemphasized what a mistake it would
be to turn APP thinking dichotomous, with publication thresholds for closeness and probability of
being close. The ability of researchers to meet criteria for various verbal descriptions should only be
one consideration for publication. Many factors should influence publication decisions, including the
worth of the theory, the execution of the study, the feasibility of obtaining participants, the writing
clarity, and others. Hopefully, having graduated verbal descriptions, instead of dichotomous cutoffs,
that differ across fields and areas; will facilitate journal editors and reviewers to engage in more
nuanced thinking that weighs many relevant factors.

4. Conclusions

The first major section considered NHST, p-values without NHST, and CIs. All were found
wanting. Consequently, the second major section focused on a new way to think: the APP. The APP
differs from the others because all the inferential work is performed before data collection. This is not to
say that the others involve no work, whatsoever, before data collection. The setting of threshold levels,
for instance, is work that is done before data collection when one uses NHST. But there nevertheless is
a strong difference. With traditional procedures, once the data have been collected, it is still necessary
to calculate p-values or CIs. In contrast, using the APP, the only inferential work that needs to be
done after data collection is to acknowledge the results of the descriptive work. The researcher can
be assured that the descriptive statistics have acceptable probabilities of being acceptably close to
corresponding population parameters. After all, it is the researcher who decided what constitutes an
acceptable probability and an acceptable degree of closeness and collected the requisite sample size to
meet specifications. And if reviewers or editors believe that the investigator was too liberal in setting
specifications, they have the option to reject the manuscript or insist that the researcher augment the
sample. For example, if the researcher uses f = 0.4 and the editor favors f = 0.1, it is transparent how
to calculate how much the researcher needs to augment the sample to reach the editor’s specification.

A reasonable person might agree that the APP is a good thing; but also argue that NHST, p-values
without NHST, or CIs are good too. As was stated earlier, there is nothing about APP calculations
performed before data collection that renders impossible the calculation of p-values or CIs after data
collection. Thus, it is possible to use all the procedures for the same study. This possibility need not be
inconvenient for setting the APP apart from other procedures. If researchers were to routinely use
the APP, they also would become accustomed to APP thinking. In turn, this would result in their
eventually perceiving just how barren p-values and CIs are if one wishes to advance science. This is
not to say that scientists should not test hypotheses. They should. But they should not depend on
automatized decision-makers such as p-values and CIs to do it. Instead, researchers should perform
much of their thinking up front and make a priori specifications for closeness and confidence. Then
they should take their descriptive results seriously; with such seriousness being warranted by a priori
specifications of acceptable closeness at acceptable probabilities. Of course, there are other factors
that also influence the trust researchers place in descriptive statistics, such as the worth of the theory,
the validity of the auxiliary assumptions, and so on. Whether or how much to believe substantive
hypotheses, or the larger theories from which they are derived, is a process that cannot be automated.
There will always remain an important role for expert judgment. The APP recognizes this explicitly.

Funding: This research received no external funding.
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Abstract: The t-ratio has not one but two uses in econometrics, which should be carefully
distinguished. It is used as a test and also as a diagnostic. I emphasize that the commonly-used
estimators are in fact pretest estimators, and argue in favor of an improved (continuous) version of
pretesting, called model averaging.
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1. Introduction

The concept of ‘statistical significance’ appears in almost all scientific papers in order to form or
strengthen conclusions, and the p-value or the t-ratio are commonly used to quantify this concept.
Unfortunately, there is a lot of confusion about statistical significance. Almost 25 years have passed
since Hugo Keuzenkamp and I wrote on this issue (Keuzenkamp and Magnus 1995), but the confusion
persists and does not seem to diminish over time.

Most importantly, despite many warnings in textbooks, there is confusion about the difference
between significance and importance. Statistical significance does not imply importance. This and
other misuses of the p-value were recently well summarized by (Wasserstein and Lazar 2016).

In this note, which draws heavily on my recent undergraduate textbook (Magnus 2017),
I concentrate on another (mis)use of the t-ratio (or of the p-value)—one which is not mentioned
in (Wasserstein and Lazar 2016), but also needs attention and warning. This concerns the role of the
t-ratio as a diagnostic. My aim is to explain that the t-ratio has not one but two uses in econometrics,
which should be carefully distinguished; to emphasize (again) the difference between significance
and importance; to show that the estimators that are used in practice are pretest (or post-selection)
estimators (Leeb and Pötscher 2005); and to argue in favor of an improved (continuous) version of
pretesting, called model averaging.

2. Two Uses of the t-Ratio

The t-ratio can be viewed in two ways. We could, for example, be interested in testing the
hypothesis that β j = 0 in the linear model y = Xβ + u. In that case the t-ratio tj can be fruitfully
employed, because under certain assumptions (such as normality) tj follows Student’s t-distribution
under the null hypothesis and if we fix the significance level of the test (say at 5%) then we can reject
or not reject the hypothesis.

The t-ratio, however, is also commonly employed in a different manner. Suppose we are primarily
interested in the value of another β-coefficient, say βi. Then, tj is often used as a diagnostic rather than
as a test statistic in order to decide whether we wish to keep the jth regressor xj in the model or not.
In this situation the 5% level is also typically used, but why? The two situations are quite different
because in the first case we are interested in β j while in the second case we are interested in βi. In the
first case we ask: Is it true that β j = 0? In the second case: Does inclusion of the jth regressor improve
the estimator of βi? These are two different questions and they require different approaches.
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3. Significance and Importance

Suppose you are an econometrician working on a problem and some famous expert comes by,
looks over your shoulder, and tells you that she knows the data-generation process (DGP). Of course,
you yourself do not know the DGP. You use models but you do not know the truth; this expert does.
Not only does the expert know the DGP but she is also willing to tell you, that is, she tells you the
specification, not the actual parameter values. So now, you actually have the true model. What next?
Is this the model that you are going to estimate?

The answer, surprisingly perhaps, is no. The truth, in general, is complex and contains many
parameters, nonlinearities, and so on. All of these need to be estimated and this will produce large
standard errors. There will be no bias if our model happens to coincide with the truth, but there will
be large standard errors. A smaller model will have biased estimates but also smaller standard errors.
Now, if we have a parameter in the true model whose value is small (so that the associated regressor
is unimportant), then setting this parameter to zero will cause a small bias, because the size of the
bias depends on the size of the deleted parameter. Setting this unimportant parameter to zero also
means that we don’t have to estimate it. The variance of the parameters of interest will therefore
decrease, and this decrease does not depend on the size of the deleted parameter. Thus, deleting
a small unimportant parameter from the model is generally a good idea, because we will incur a small
bias but may gain much precision.

This is true even if the estimated parameter happens to be highly ‘significant’, that is, has a large
t-ratio. Significance indicates that we have managed to estimate the parameter rather precisely, possibly
because we have many observations. It does not mean that the parameter is important.

Note the proviso ‘if our model happens to coincide with the truth’ in the second paragraph.
When we omit relevant variables we get biased estimators (which is bad), but a smaller variance (which
is good). This, however, is only true when we compare the restricted model with an unrestricted model
which coincides with the DGP. If, which is much more likely, we compare two models one of which
is small (the restricted model) and the other is somewhat larger (the unrestricted model), but both
are smaller than the DGP, then the estimator from the unrestricted model is also biased and, in fact,
this bias may be larger than the bias from the restricted model; see (De Luca et al. 2018).

We should therefore omit from the model all aspects that have little impact, so that we end up
with a small model—one, which captures the essence of our problem.

4. Pretesting

Let us consider the situation where tj is used as a diagnostic in more detail. In fact, we have
three estimators of βi: the estimator from the unrestricted model, β̂iu; the estimator from the restricted
model (where β j = 0), β̂ir; and the estimator after a preliminary test,

bi = wβ̂iu + (1 − w)β̂ir, w =

{
1 if |tj| > c,

0 if |tj| ≤ c,

for some c > 0, such as c = 1.96 or c = 1. The estimator bi is called the pretest estimator.
The estimators β̂ir and β̂iu are linear and (under standard assumptions) normally distributed,

but bi is nonlinear, because its distribution depends on a random restriction. The pretest estimator is
therefore much more complicated than the other two estimators. But it is the pretest estimator that
is commonly used in applied econometrics, because in applied econometrics we typically use t- and
F-statistics as diagnostics to select the most suitable model. That in itself is not ideal, but what is worse
is that we typically ignore the model selection aspect when reporting properties of our estimators.

The pretest estimator is kinked and therefore inadmissible. Its poor features are well-studied; see
for example (Magnus 1999). Surely we should be able to come up with an estimator which performs
better than the pretest estimator. This is where model averaging comes in.
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5. Model Averaging

In (Magnus 2017) I tell the following story.

A King has twelve advisors. He wishes to forecast next year’s inflation and calls each of
the advisors in for his or her opinion. He knows his advisors and obviously has more faith
in some than in others. All twelve deliver their forecast, and the King is left with twelve
numbers. How to choose from these twelve numbers? The King could argue: which advisor
do I trust most, who do I believe is most competent? Then I take his or her advice. The King
could also argue: all advisors have something useful to say, although not in the same degree.
Some are more clever and better informed than others and their forecast should get a higher
weight. Which way of thinking is better?

Intuitively most people, and I also, prefer the second method (model averaging), where all pieces of
advice are taken into account. In standard econometrics, however, it is the first method (pretesting)
which dominates.

There are theoretical and practical problems with the pretest estimator. One practical problem is
the property that—if 1.96 is our cut-off point—for tj = 1.95 we would choose one estimator and for
tj = 1.97 another, while in fact there is little difference between 1.95 and 1.97. This is not satisfactory.

These and other considerations lead us to reconsider the estimator

b1 = wβ̂iu + (1 − w)β̂ir

by allowing w to be a smoothly increasing function of |tj|. This is model averaging in its simplest form,
and we see that it is just the continuous counterpart to pretesting. In model averaging we give weight
to all models of interest, but not in the same degree, while in pretesting we select one model after
a preliminary test, precisely as the King in the story above.

In practice, econometricians use not one but many models. One of these is the largest and one is
the smallest. Neither is probably the most suitable for the question at hand. If we use diagnostic tests
to search for the best-fitting model, then we need to take into account not only the uncertainty of the
estimates in the selected model, but also the fact that we have used the data to select a model. In other
words, model selection and estimation should be seen as a combined effort, not as two separate efforts.
This is what model averaging does. It incorporates the uncertainty arising from estimation and model
selection jointly. Failure to do so may lead to misleadingly precise estimates.
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Abstract: This paper presents a brief review of interval-based hypothesis testing, widely used
in bio-statistics, medical science, and psychology, namely, tests for minimum-effect, equivalence,
and non-inferiority. We present the methods in the contexts of a one-sample t-test and a test for
linear restrictions in a regression. We present applications in testing for market efficiency, validity of
asset-pricing models, and persistence of economic time series. We argue that, from the point of view of
economics and finance, interval-based hypothesis testing provides more sensible inferential outcomes
than those based on point-null hypothesis. We propose that interval-based tests be routinely employed
in empirical research in business, as an alternative to point null hypothesis testing, especially in the
new era of big data.
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zero probability paradox
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Genuinely interesting hypotheses are neighbourhoods, not points. No parameter is exactly
equal to zero; many may be so close that we can act as if they were zero.

Edward Leamer (1988)

1. Introduction

The paradigm of point null hypothesis testing has been almost exclusively adopted in all areas of
empirical research in business, including accounting, economics, finance, management, and marketing.
The procedure involves forming a sharp null hypothesis (typically the value of a parameter equal to
zero, to represent no effect) and using the “p-value less than α” criterion to reject or fail to reject the
null hypothesis, or in the Neyman–Pearson tradition, determining whether the test statistic lies in a
region defined by α, the test size. Although the alternative hypothesis is often unspecified, the rejection
of a null hypothesis of no effect is frequently taken as evidence for the existence of a non-zero effect.

As a hybrid of Fisher’s approach to significance testing and Neyman–Pearson decision-theoretic
approach, the procedure is often conducted in an automatic manner without considering the key
factors of statistical research, such as effect size, statistical power, relative loss, and prior beliefs
(see, for example, Kim and Choi 2019). This practice has been criticized by many authors, for example,
Gigerenzer (2004) calls it the “null ritual”; while McCloskey and Ziliak (1996) warn against widespread
practice of “asterisk econometrics” and “sign econometrics”. Despite numerous calls for change for
years, little improvement has been made in the practice of “mindless statistics” (Gigerenzer 2004).
The consequences include serious distortion of scientific process (Wasserstein and Lazar 2016),
an embarrassing number of false positives (Kim and Ji 2015; Harvey 2017; Kim et al. 2018) replication
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crises in many fields of science (see, for example, Open Science Collaboration 2015), and publication
bias (Basu and Park 2014; Kim and Ji 2015).

With increasing availability of large or massive data sets in the business disciplines in recent
years, the current paradigm has become even more problematic, and arguably deficient. This is
because, in reality, any null hypothesis is violated even when it is (practically or economically)
true (see, for example, De Long and Lang 1992). Rao and Lovric (2016) call this phenomenon the
zero-probability paradox, providing a mathematical proof for a simple case. Its consequence is that
the p-value is a decreasing function of sample size, even when the null hypothesis is violated by an
economically or scientifically negligible margin (see Kim and Ji 2015). As a result, the probability of
a false positive increases with sample size, as also noted by Ohlson (2018). As Spanos (2017) points
out, there is nothing paradoxical about this, since it is a reflection of the consistency property of a test.
As Kim and Ji (2015) and Kim et al. (2018) report from their respective meta-analytic surveys, many
empirical researchers routinely adopt large or massive samples under the current paradigm, with a
high chance that their scientific findings represent false positives. It is also problematic in the context
of model specification testing, since any model may be judged to be mis-specified when the sample
size is large enough (Spanos 2017).

In view of the above points, Rao and Lovric (2016) argue that “in the 21st century, statisticians
will deal with large data sets and complex questions, it is clear that the current point-null paradigm
is inadequate” and that “next generation of statisticians must construct new tools for massive data
sets since the current ones are severely limited” (see also van der Laan and Rose 2010). They call for a
paradigm shift in statistical hypothesis testing and suggest the Hodges and Lehmann (1954) paradigm
as a possible alternative, arguing that this will substantially improve the credibility of scientific research
based on statistical testing. Under the Hodges and Lehmann (1954) paradigm, the null and alternative
hypotheses are formulated as intervals. The focus of testing is whether the parameter value belongs
to an interval of no practical (or economic) significance, with its limits set by the researcher based
on substantive importance. In this way, the researcher’s economic reasoning or judgment can be
incorporated into hypothesis testing.

In fact, the tests for interval-based hypotheses have been in existence and being used in biostatistics
and psychology under the name of equivalence tests, non-inferiority tests, and minimum tests: see,
for comprehensive and in-depth reviews, Wellek (2010), Murphy et al. (2014), and Lehmann and
Romano (2005, sct. 13.5.2). However, the researchers in the business disciplines have little knowledge
about these tests, especially those who are engaged in empirical or applied research. The purpose
of this paper is to present a brief review of these tests to the researchers in business, discussing their
merits and otherwise. The tests are also presented for parameter restrictions and model specification
in the linear regression context, incorporating the bootstrap method. The tests are presented with three
empirical applications in economics and finance. We propose that these tests be routinely employed in
business research as an alternative to point null hypothesis testing. We hope that this will contribute
to a paradigm shift in statistical inference, which will restore credibility and integrity in statistical
research in business disciplines.

In the next section, we briefly discuss the current paradigm of point null hypothesis and its
problems and consequences. In Section 3, we present a review of equivalence, non-inferiority,
and minimum-effect tests for the simple t-test and regression F-test. Section 4 provides empirical
applications, and Section 5 concludes the paper.

2. Current Paradigm and Its Deficiencies

We begin by presenting the current (frequentist) paradigm of hypothesis testing, which is widely
adopted in many areas of statistical research, in the context of a simple t-test for a point null hypothesis.
This is followed by a review of its deficiencies as a criterion of statistical evidence. We also review
the problems and malpractices such as p-hacking and data-mining and how they are related with the
current paradigm of statistical inference.
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2.1. A Simple t-Test for a Point Null Hypothesis

Consider the case of a simple one-sample t-test for the population mean θ, where Xi (i = 1, . . . , n)
is independently generated from a normal distribution with mean θ and standard deviation σ. Applying
the point null hypothesis paradigm, we test (assuming two-tailed alternative) for

H0 : θ = 0; H1 : θ �= 0.

The null hypothesis most often represents the claim of “no effect”. When H0 is true (hereafter, under
H0), the t-statistic follows a t-distribution; while under H1, it follows a non-central t-distribution with
the non-centrality parameter

√
nθ/σ. The decision to reject or fail to reject depends on the “p-value

less than α” criterion where p-value ≡ Prob(|t| > tc,1−0.5α|H0) and tc,1−0.5α is the critical value from
a central t-distribution at the α level of significance. The value of α conventionally adopted is 0.05,
although values such as 0.01 or 0.10 are often used. When the p-value satisfies the criterion, the
effect is said to be statistically significant at the α level of significance. This is what Gigerenzer (2004)
calls the “null ritual”, which is a hybrid of the proposal of Fisher and that of Neyman and Pearson.
In practical applications, a small p-value is often interpreted as a strong evidence against H0 and its
strength is marked with the number of asterisks indicating the significance at a 0.10, 0.05, or 0.01
level of significance. More seriously, many researchers do not pay attention to the magnitude of the θ

estimate, making their decisions based only on its sign and statistical significance. This practice has
been branded as “asterisk econometrics” and “sign econometrics” by Ziliak and McCloskey (2008),
who correctly argue that it only shows whether the effect exists or not, but nothing about economic
significance or substantive importance of the effect (see also Kleijnen 1995).

2.2. Shortcomings of the p-Value Criterion

It is well-known that the p-value is not a good measure of evidence for a hypothesis. For example,
Berger and Sellke (1987) shows that the p-value provides a measure of evidence against H0 that can
differ from the actual value by an order of magnitude. Johnstone and Lindley (1995) demonstrates that
a p-value less than 0.05 may represent evidence in favor of the null, not against it, especially when the
sample size is large (see, also, Kim et al. 2018). It is largely because the p-value does not take account
of the probability under H1; nor does it represent the probability that null is true given data. On this
basis, the American Statistical Association expressed grave concerns against the misuse or abuse of the
p-value criterion in empirical research, stating that this practice has led to a considerable distortion of
the scientific process (Wasserstein and Lazar 2016).

Another problem of the p-value criterion is that the choice of its threshold α is arbitrary
(Keuzenkamp and Magnus 1995; Lehmann and Romano 2005, p. 57). As Arrow (1960) and
Leamer (1978) argue, it should be chosen in consideration of the key factors such as sample size,
statistical power, and relative loss from Type I and II errors. For example, the level of significance
should be set at a range of 0.3 to 0.4 when the power is low (Winer 1962); while is should be set at a
small a value (such as 0.001) when the sample size is large (McCloskey and Ziliak 1996, p. 102). This is
to balance the probabilities of Type I and II errors when the losses from Type I and II errors are (almost)
equal. Kim and Choi (2017, 2019) provided a review of a decision-theoretic approach to the optimal
level of significance with applications.

2.3. Zero-Probability Paradox

In practice, the null hypothesis cannot hold exactly, as shown by Rao and Lovric (2016).
As Leamer (1988), De Long and Lang (1992), and Startz (2014) point out, an economic hypothesis
should not be formulated as a point, but as a neighborhood or an interval since an economic effect
(or parameter) cannot take a numerically exact value such as 0. The consequence is that, with
observational data, the distribution under a point H0 is never observed nor realized; but the t-statistic
is always generated from the distribution under H1, which is a non-central t-distribution. This is
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another reason that makes the p-value criterion deficient because the critical value tc,α is obtained from
a central t-distribution which is never observed in practice.

The problem is exacerbated as the sample size increases, because the non-centrality of the
t-distribution (

√
nθ/σ) also sharply increases, meaning that the p-value approaches 0. This occurs

even when the true value of θ is practically or economically no different from 0. When the sample size
is large, this distribution is so far away from the central t-distribution. Hence, when H0 is numerically
violated but it holds practically, rejection of H0 occurs with certainty in large samples, as long as the
level of significance α is maintained at a conventional value such as 0.05. In practice, many empirical
researchers often take an economically negligible violation of H0 as evidence for particular alternative
hypothesis, committing what is called the “fallacy of rejection” (Spanos 2017). A natural solution in
this context is to obtain the critical value from a non-central distribution under H1, which increases
with sample size. In fact, this is a proposal of interval-based hypothesis testing, as we shall see in the
next section.

2.4. Problems and Consequences

The deficiency and weakness of the p-value criterion discussed above have created a number
of problems and malpractices, namely p-hacking (Harvey 2017), data mining (Black 1993) or data
snooping (Lo and MacKinlay 1990). They generally refer to the practice of cherry-picking the results in
order to achieve statistically significant outcome. Black (1993, p. 75) provides a good description of
data mining:

When a researcher tries many ways to do a study, including various combinations of
explanatory factors, various periods, and various models, we often say, he is “data mining.”
If he reports only the more successful runs, we have a hard time interpreting any statistical
analysis he does. We worry that he selected, from the many models tried, only the ones
that seem to support his conclusions. With enough data mining, all the results that seem
significant could be just accidental.

A consequence is an embarrassing number of false positives, as Harvey (2017) puts it.
As Kim and Ji (2015), Kim et al. (2018) and Kim (2019) report, the use of alternative criteria for statistical
significance (such as Bayes factors, adaptive or optimal levels of significance, or posterior probabilities
for null hypotheses) gives different inferential outcomes from the p-value criterion in a large number
of published results. This may have led to accumulation of many false stylized facts in empirical
studies. For example, Black (1993) argues that most of investment anomalies identified in finance are
likely to be the result of data-mining; while Kandel and Stambaugh (1996) argue that the p-value as
measure of evidence often conflicts with economic significance in asset-allocation decisions. Kim and
Choi (2017) report that many economically puzzling research outcomes (such as empirical invalidity
of the purchasing power parity) based on unit root testing may be the result of incorrectly maintaining
the conventional level of significance, despite extremely low power of the test. In behavioral finance,
it is a stylized fact that the weather affects stock market (see, for example, Saunders 1993; Hirshleifer
and Shumway 2003). However, as Kim (2017) argues, this statistical significance is the result of
having power of practically one due to massive sample size. In a similar context, Kamstra et al. (2003)
report the statistically significant effect of winter blues on stock market (as discussed in Section 4.1
as an application), while they find statistically insignificant effect of weather variables in the same
equation. This conflicting result may be the outcome of data-mining, where statistical significance is
purely accidental.

Abuse and misuse of the p-value criterion for statistical significance also have contributed to
other serious problems which undermines the research integrity and credibility in science: namely,
publication bias and replication crisis. The practice of p-hacking and data-mining is closely related
with publication bias where statistically significant results are favored in the publication process.
The meta-analytic evaluation of Kim and Ji (2015) and Kim et al. (2018) reveal unreasonably high

58



Econometrics 2019, 7, 21

proportions of studies published in accounting and finance journals are statistically significant.
Harvey (2017) also recognizes the practice of p-hacking can contribute to publication bias. This is
partly because many journal editors and referees favor statistically significant results, and often
judge statistically insignificant studies with skepticism and suspicion. As a consequence, many
studies with statistically insignificant results (at a conventional significance level) may not have
been published, even though they are economically important and statistically sound. This practice
can push many researchers to the malpractice of p-hacking or data-mining to gain higher chance of
publication. “Replication crisis” refers to the problem that a high proportion of published results
are not reproducible by replication exercises (Peng 2015). For example, in psychology, only 36% of
the replications are found to be statistically significant, compared to 97% of the original studies that
reported significance (Open Science Collaboration 2015).

As discussed in this section, the current paradigm of statistical inference has a number of problems,
and has contributed to a range of serious issues that undermine research integrity and credibility.
On this basis, Rao and Lovric (2016) call for a new paradigm for statistical inference, especially needed
in the big data era where the p-value fails as a measure of statistical evidence and the conventional
level of significance is inappropriate. They suggest an interval-based test as a possible alternative,
which will be discussed in the next section.

3. Tests for Minimum-Effect, Equivalence, and Non-Inferiority

We now present the three types of interval tests, namely the equivalence, minimum-effect, and
non-inferiority tests, based on the well known one-sample t-test or test for linear restrictions in the
linear regression. Loosely speaking, the difference between the equivalence and minimum-effect
tests comes down to the condition for which proof is being sought. If the status quo conjecture is
characterized by equality, that is, the conjecture against which we wish to assess evidence is that one
thing equals another, then we falsify the conjecture by the minimum-effect test. On the other hand, if
the status quo conjecture is characterized by inequality, so the conjecture against which we wish to
assess evidence is that things are unequal, then we falsify using an equivalence test. A non-inferiority
test may be used when the hypothesis formulated as an open interval.

3.1. Test for Minimum Effect

The minimum-effect test, originally put forward by Hodges and Lehmann (1954), has the null
and alternative hypotheses of the following form:

H0 : θl ≤ θ ≤ θu; H1 : (θ < θl) ∪ (θu < θ), (1)

where θl and θu denote the limits of practical or economic importance. Hodges and Lehmann (1954,
p. 254) propose conducting separate one-tailed t-tests of the two one-sided hypotheses. That is,

• H01 : θ ≤ θu against alternative H11 : θ > θu and
• H02 : θ ≥ θl against alternative H12 : θ < θl .

According to Hodges and Lehmann (1954, p. 254), we then reject H0 given in (1) if either of these
separate tests rejects. The size of this composite t-test is the sum of their separate sizes. The power
of the test should depend on the power of the individual one-tailed tests associated. The decision
can also be made by using the confidence interval: the null hypothesis of minimum-effect given in (1)
cannot be rejected at the α level of significance if a two-sided (1 − 2α) confidence interval for θ lies
entirely within the interval [θl , θu].

Even though the interval test extends the simple t-test, the intention is the same: to detect a
statistically significant and important difference. Rejection of the test is interpreted as a failure to
detect such a difference—a failure to split. We now review tests that have the opposite effect: to detect
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a statistically significant and important similarity. These tests are equivalence tests. Rejection of these
tests is interpreted as a failure to detect such a similarity—a failure to lump.

3.2. Test for Equivalence

If we switch the null and alternative hypotheses, we have what is called an equivalence test
(e.g., Wellek 2010). That is,

H0 : (θ ≤ θl) ∪ (θu ≤ θ); H1 : θl < θ < θu. (2)

The decision rule for the equivalence test can be developed by conducting two one-sided test
procedures similarly to the above, which is referred to as TOST:

• H01 : θ ≤ θl against alternative H11 : θ > θl and
• H02 : θ ≥ θu against alternative H12 : θ < θu.

Let p1 be the one-sided p-value for the test of H01 against H11; and p2 be the same for for the
test of H02 against H12. For the equivalence test, the null hypothesis of no equivalence given in (2) is
rejected at the α level of significance if max(p1, p2) < α. Equivalently, it is rejected at the α level of
significance if a two-sided (1 − 2α) confidence interval for θ lies entirely within the interval [θl , θu].
The power of the test should depend on the power of the individual one-tailed tests associated.

Note that the researcher should choose between the minimum-effect test and equivalence test by
considering whether the evidence being sought is against similarity (minimum effect test) or difference
(equivalence test). It is worth mentioning that, as the sample size increases, the confidence interval
shrinks but the limits of economic significance do not change. For interval-based tests, this can be
interpreted as the critical values increasing with sample size, relative to the test statistic, which is a
feature not shared by point-null hypothesis testing. It is also worth mentioning that the minimum
effect and equivalence tests give mutually exclusive results in that one always rejects and the other
always does not, as long as the two tests share the same limits of economic importance.

3.3. Test for Non-Inferiority

It is often the case that testing for a one-sided (open) interval may be appropriate. The test is called
the non-inferiority test or superiority test, whose null and alternative hypotheses can be written as

H0 : θ ≥ θl ; H1 : θ < θl , (3)

where θl denotes the smallest effect size of economics importance. The non-inferiority test tests whether
the null hypothesis that an effect is at least as large as θl can be rejected. The actual direction of the
hypothesis depends on whether a higher value of the response is desirable or not. The above test can
be conducted as a usual one-tailed test.

3.4. Interval Tests in the Linear Regression Model

Following Hodges and Lehmann (1954), Murphy and Myors (1999) approach the minimum-effect
using the F-test, which can be presented in a regression context. In this subsection, we review their
proposal and extend it to a more general setting.

Consider a regression model of the form

Y = γ0 + γ1X1 + ... + γKXK + u, (4)

where Y is a dependent variable and X’s are independent variables. Suppose the researcher tests for a
linear restriction such as H0 : γ1 = ... = γJ = 0, where J ≤ K. The F-statistic can be written as
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F =
(R2

1 − R2
0)/J

(1 − R2
1)/(T − K − 1)

, (5)

where R2
j represents the coefficient of determination under Hj (j = 0, 1). Under H0, the F-statistic

follows the F-distribution with J and T − K − 1 degrees of freedom, denoted as F (J, T − K − 1).
Under H1, the F-statistic follows F(J, T − K − 1; λ), which denotes the non-central F-distribution with
the degrees of freedom (J, T − K − 1) and the non-centrality parameter λ. Note that

λ = T
R2

p1 − R2
p0

1 − R2
p1

≡ Tη, (6)

where R2
pj denotes the population or desired coefficient of determination under Hj, following from

Peracchi (2001, Theorem 9.2). Note that η ≡ (R2
p1 − R2

p0)/(1 − R2
p1) may be called the population

signal-to-noise ratio, measuring the incremental contribution of (X1, . . . , XJ) relative to the noise to
the model. The degree of non-centrality is determined as a product of sample size and signal-to-noise
ratio, with the former playing a dominant role.

Hodges and Lehmann (1954, p. 253) and Murphy and Myors (1999) propose that the above
non-central distribution be used to test for the minimum-effect test. As an example, consider a
simple regression model Y = γ0 + γ1X1 + u with H0 : γ1 = 0. Here, R2

p1 measures the incremental
contribution of X1 for Y (note that R2

p0 = 0). The researcher wishes to test for H0 : 0 ≤ γ1 ≤ γu,
where γu represents the limit for the minimum-effect. The researcher can also specify the value of R2

p1

corresponding to the value of γu, which is the minimum desired value of R2 for X1 to be economically
significant (see Section 3.8 for the details as to how this value may be chosen with applications in
Section 4.1). Alternatively to H0 : 0 ≤ γ1 ≤ γu, one can formulate the null hypothesis in terms of
R2

p1, namely H0 : 0 ≤ R2
p1 ≤ R2

max, where R2
max is the maximum of R2

p1 value for 0 ≤ γ1 ≤ γu, given
(Y, X1); and also 0 < λ ≤ λmax corresponding to 0 ≤ R2

p1 ≤ R2
max.

If the F-statistic is greater than Fα,λmax , the α-level critical value from F(J, T −K − 1; λmax), then the
null hypothesis of the minimum-effect is rejected at the α-level of significance. An interesting feature of
the decision rule for the minimum-effect test is that its critical value and sampling distribution change
with sample size. This is in stark contrast with those of the point-null hypothesis, which do not change
with sample size. The latter property is the root cause of the “large-n problem” associated with the
point-null hypothesis, as Rao and Lovric (2016) point out.

As an illustration, consider a regression where K = 1. For simplicity, we assume that Var(X1) =

Var(Y), when the sample size T takes values 2000 and 4000. Consider first the case of point-null
hypothesis where H0 : γ1 = 0. The black curves in Figure 1 plot the density F(J, T − K − 1), which is
the distribution of the F-statistic under H0 : γ1 = 0, for each sample size of 2000 and 4000. It is clear
that the 5% critical value does not change with increasing sample size. Since F-statistic is an increasing
function of sample size, rejection of H0 : γ1 = 0 will eventually occur (except of course for the rare
case that the true value of γ1 is really numerically identical to zero).

Suppose the researcher tests for a minimum effect: H0 : 0 ≤ γ1 ≤ 0.1 against H1 : γ1 > 0.1. Since
R2

p1 = γ2
1Var(X1)/Var(Y) and R2

p0 = 0, the null and alternative hypotheses can be formulated as H0 :
R2

p1 ≤ 0.01 against H1 : R2
p1 > 0.01. The red curves in Figure 1 plot the density F(J, T − K − 1; λmax)

associated with R2
p1 = 0.01 for each sample size. The gray under area under represents 5%, indicated by

the critical value which is the 95th percentile of the red curve. It appears that this critical value increases
with sample size. The blue curve plots the density F(J, T − K − 1; λ) associated with H1 : R2

p1 = 0.02
and the red shaded area represents the power of the test for H0 : R2

p1 ≤ 0.01. It shows that the power
increases with sample size.
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Note: The  black curve  plots  the  density  T K 1) which is the distribution of the  statistic 
under H0 :  = 0. The gray area under it represents 5% associated with the corresponding critical 
value.  The red curve plots the density F(J, T K 1; max) which is the distribution of the F-
statistics under H0 : 0.1 or H0 :  0.01.The gray area under it represents 5% associated with 
the corresponding critical value. The blue curve plots the densit y F(J, T K 1; ) for H1 :  =

0.02. The red-shaded are represents the power of thetest for H0 :    0.01. 

γ1

γ1

λ R2
p1

R2
p1

R2
p1

Figure 1. Test for minimum-effect: An illustration.

It is often the case in economics and finance that a test for linear restrictions is conducted involving
a number of regression parameters. For example, under the point-null paradigm, the null hypothesis
can be formulated as H0 : γ1 = γ2 = 0 for a regression of Y on X1 and X2. In the context of
minimum-effect test, the null hypothesis can be written as

H0 : (γ1l ≤ γ1 ≤ γ1u) ∪ (γ2l ≤ γ2 ≤ γ2u),

where γil and γiu for (i = 1, 2) denote the boundaries of economic significance. In this case, the null
hypothesis can be formulated in terms of R2

pj. That is,

H0 : η ≤ ηmax,
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where ηmax is the maximum population signal-to-noise ratio implied by R2
pj. The researcher can

formulate the value of R2
p1 − R2

p0 as the economically significant incremental contribution of (X1, X2) to
Y, where the value of R2

p0 can be estimated from the regression with restriction γ1 = γ2 = 0. Let λmax =

Tηmax, then if the F-statistic is greater than Fα,λmax , the α-level critical value from F(J, T − K − 1; λmax),
the null hypothesis of the minimum-effect is rejected at the α-level of significance. An example in a
more general setting can be found in Section 4.1.2.

3.5. Bootstrap Implementation

The tests introduced so far are valid under the assumption of normality. When the assumption
of normality is questionable, the one-tailed tests, confidence intervals and the distribution
F(J, T − K − 1; λ) can be implemented using the bootstrap (Efron and Tibshirani 1994). Since there are
extensive references available for bootstrapping the p-value and confidence intervals for a one-sample
t-test, the details are not given here.

For the minimum-effect test in the linear regression model, the researcher may want to obtain the
bootstrap counterpart of the red curve in Figure 1, when the underlying normality is questionable.
Consider a simple case of H0 : 0 ≤ γ1 ≤ 0.1 against H1 : γ1 > 0.1. Since γ1 = 0.1 is associated with
the maximum value of R2

p1 of 0.01, we consider the regression model under the restriction γ1 = 0.1.
That is,

Y = γ̂0 + 0.1X1 + e,

where γ̂0 is the estimator for γ0 under the restriction γ1 = 0.1 and e represents the associated residuals.
Generate the artificial data Y∗ given X1 as

Y∗ = γ̂0 + 0.1X1 + e∗,

where e∗ is a random resample of e with replacement. Calculate the F-statistic from {Y∗, X1}, denoted
as F∗. Repeat the above process sufficiently many times, say B, to obtain {F∗(i)}B

i=1, which represents
the bootstrap distribution for F(J, T − K − 1; λ).

When a number of parameters are involved with the linear restrictions being tested, the bootstrap
can be conducted at the parameter values which maximize the value λ. As an example, consider the
minimum-effect test

H0 : (γ1l ≤ γ1 ≤ γ1u) ∪ (γ2l ≤ γ2 ≤ γ2u).

Let γ̂1 and γ̂2 denote the values under the above H0 which jointly imply the largest economic impact
on Y. The bootstrap is conducted with the restrictions γ1 = γ̂1 and γ2 = γ̂2.

3.6. Model Equivalence Test

Lavergne (2014) proposes a general framework based on the Kullback-Leibler information to
assess the approximate validity of multivariate restrictions in parametric models, which is labeled
as model equivalence testing. Consider a random sample Xt (t = 1, . . . T) whose probability density
function is denoted as f (X|θ0) where θ0 ∈ Θ the parameter space. Let g(θ0) = 0 denote multivariate
restrictions on θ0 with r number of restrictions. As a measure of closeness to the true distribution,
Lavergne (2014) adopts the Kullback-Leibler information criterion, which is defined as

KLIC = Eθ0

[
log

f (X|θ0)

f (X|θc
0)

]
,
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where Eθ0 denotes the expectation when θ0 is the parameter value and θc
0 is the value which maximizes

Eθ0 log f (X|θ0) under g(θc
0) = 0. Noting that KLIC ≥ 0 and it is 0 when the restriction g(θ0) = 0 holds

exactly, Lavergne (2014) considers the null and alternative hypotheses of the form

H0 : 2KLIC ≥ δ2/T; H1 : 2KLIC < δ2/T, (7)

where δ2 ≡ TΔ2 while Δ2 being the tolerance of substantive importance. Rejection of H0 implies that
the restriction g(θ0) = 0 is close to be valid.

According to Lavergne (2014), the above model equivalence test can be conducted using the
log-likelihood ratio (LR) test, which can be written as

LR = 2
[

L(θ̂)− L(θ̂c)
]
, (8)

where θ̂ denotes the unrestricted (quasi) maximum likelihood estimator for θ and θ̂c the restricted
(quasi) maximum likelihood estimator. The LR statistic follows a non-central chi-squared distribution
with r degrees of freedom with the non-centrality parameter δ2, denoted as χ2

r,δ2 . The null hypothesis is
rejected in favor of model equivalence if the LR statistic is less than χ2

r,δ2(α), which is the αth percentile
of χ2

r,δ2 .
Note that the vanishing tolerance δ2/T is based on a theoretical consideration,

as Lavergne (2014, p. 416) points out. In practical applications, a fixed tolerance Δ2 is chosen
so that δ2 = TΔ2. This means that the degree of non-centrality of χ2

r,δ2 increases with sample size, so
does the critical value of the test. This is a feature different from the point-null hypothesis testing where
the critical value is obtained from a central distribution regardless of sample size. Lavergne (2014)
has shown that, in the regression context, 2KLIC measures the loss in explanatory power coming
from imposing the constraint relative to the error’s variance. Hence, if the researcher sets Δ2 = 0.1,
the models under H0 and H1 are considered to be equivalent if the loss of explanatory power due to
imposing the restriction is no more than 10%. Lavergne (2014) provides further asymptotic theories of
the test, along with empirical applications.

3.7. Equivalence Test for Model Validation

Model validation or specification tests are often performed based on the paradigm of point null
hypothesis testing, for which the null hypothesis is that the model is valid, and the alternative
hypothesis is that the model is not valid. Such tests inherit the problems associated with the
conventional statistical testing. As Box (1976) points out, all models are wrong, they are approximations
to the true data-generation process; consequently a test based on a sharp null hypothesis is not suitable.
It is possible that, in small samples, the tests may commit Type II errors due to low power, whereas in
large samples all models are found to be rejected due to extreme power (see, for example, Spanos 2017).

As a consequence, Robinson and Froese (2004) recommended the use of equivalence tests
for model validation, arguing that using traditional point-null hypothesis testing, as commonly
done, enabled the rejection of good models when the data were too many and the failure to reject
poor models when the data were too few. Furthermore, equivalence tests permit the expression
of a ‘region of equivalence’, within which model predictions could be close enough to reality
to be useful, without necessarily being exactly identical (see, e.g., Kleijnen 1995; Robinson 2019).
The principle was further extended by Robinson et al. (2005), who produced an equivalence-based
variant of a regression-style test originally proposed by Cohen and Cyert (1961). We now summarize
Robinson et al.’s (2005) approach.

Assume that we have computer simulation results xi, i = i, . . . , n that are intended to represent
process observations yi. For example, y could be the heights of a sample of trees selected from a forest,
and x the predicted heights for the same trees having been computed using the tree diameter and some
mathematical function that we wish to validate; ŷ = x = f (d; β). Centre the predictions: x∗i = xi − x̄.
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Fit the linear regression model yi = β0 + β1x∗i + εi; εi
d
= N(0, σ2). Then, perform a TOST on the null

hypothesis that β0 �= 0 as a test of model bias and a TOST on the null hypothesis that β1 �= 1 as a
test of the model fidelity, where fidelity is taken to mean both the spread of the predictions compared
to the observations and the order of the predictions compared to the observations. The estimate of
the slope will reflect how well the predictions match the spread of the observations—close to 1 is
good, and the standard error of the slope will reflect how well the quantiles of the predictions match
the quantiles of the observations—small is good. In this way, several interpretable characteristics of
model performance can be distilled from the omnibus test. Robinson (2019) provides a more detailed
explanation with examples, and Robinson (2016) provides an R (R Core Team 2017) package that runs
such tests1.

3.8. Choosing the Limits of Economic Significance

The choice of the limits of economic significance is the most critical step for interval-based tests.
Detailed discussions in the contexts of psychology and medical research appear in Murphy and
Myors (1999), Walker and Nowacki (2011) and Lakens et al. (2018), among others. These limits affect
the outcomes of the test, and also provide scientific credibility to the research outcome. The limits
should be determined by the researcher, in consideration of economic theories and meaningful effect
size. In so doing, economic reasoning or theory can be incorporated into statistical decision-making.

As Murphy and Myors (1999, p. 237) point out, the choice of limits requires “value judgment”.
The choice can also be “context-dependent”, since it may depend on the type of dependent variable
involved; and can also depend on the likelihood or seriousness of Type I and II errors. It would be
desirable to have a set convention or a consensus of expert opinions in the related field as to the extent
of “negligible effects” that could be economically ignored. One may also use meta-analytic evidence
from past studies.

The researcher can be guided by estimation-based measures to further justify their choice.
For example, one may choose the limits so that they imply the smallest effect size guided by the
value of Cohen’s d (Cohen 1977), which is a measure of effect size (the mean difference divided by
the standard deviation of the data). In the regression context, the limits may be determined so that
the implied economic impact provides a certain value of (incremental) signal-to-noise ratio η given
in (6) (which is also called Cohen’s f 2) or desired coefficient of determination R2

pj. For example. if Y is
stock return and X is a proposed factor, the interval can be formulated so that X can explain at least
5% of the total variation of stock return (R2

p1 = 0.05; and R2
p0 = 0). This is based on the judgment

that an economically meaningful factor should explain at least 5% of the stock return variation, in the
absence of other factors. Again, this choice requires value judgment that can be context-dependent.
For example, the choice may be different across markets depending on the market conditions such
as the trading cost, regulatory framework, and development of market structure, among others.
The researcher may consider a number of different values or possible candidates of this value, and
make a decision considering the inferential outcomes and their economic significance. However, most
ideally, the choice of the limits should be made before the researcher observes the data.

The proposed interval can be indicative of the decision when the point estimate is available.
However, the point estimate is subject to sampling variability and it is necessary to conduct the test
to make a more informed decision under sampling variability. Proposing such an interval may be
equivalent to providing a prior distribution for the Bayesian inference. It is well known that the
outcome of the Bayesian inference in large part depends on the choice of prior. But if the choice
is made based on concrete economic reasoning and evidence, the Bayesian inference can provide

1 There are two other R packages for equivalence and non-inferiority tests. One is EQUIVNONINF (Wellek and Ziegler 2017)
which accompanies the book by Wellek (2010), and the other is PowerTOST (Labes et al. 2018), which contains functions to
calculate power and sample size for various study designs used for bio-equivalence studies.
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an informed decision. Similarly, if the interval of economic significance is proposed with concrete
economic rationale, then it can help the researcher make a correct decision.

Furthermore, it is important for the researcher to include the key components of the test in
reporting, such as the interval of equivalence. Doing so serves two purposes: first, it enables the
reader to apply different intervals for different applications, and second, it provides a check against
unscrupulous researchers choosing intervals that suit their narrative.

4. Empirical Applications

In this section, we provide empirical applications of the interval-based tests discussed in Section 3
to economics and finance. We present two cases where large sample size is used; and one case of a
small sample.

4.1. A SAD Stock Market Cycle

In empirical finance, a large number of market anomalies have been identified, where it is claimed
that a stock market is systematically influenced by the factors unrelated with the market fundamentals.
The evidence is at odds with the efficient market hypothesis which is a cornerstone of modern finance
theories. Central to this is the findings that investors’ mood systematically and negatively affects stock
return. For example, it is hypothesized that less sunlight or more cloudiness negatively affect investors’
mood, which in turn exerts a negative impact on stock market return. The seminal papers in this
area of literature include Saunders (1993), Hirshleifer and Shumway (2003), and Kamstra et al. (2003).
However, as Kim (2017) reports, the studies in this area typically show negligible effects with high
statistical significance, accompanied by large sample size and negligible R2 values.

Kamstra et al. (2003) study the effect of depression linked with seasonal affective disorder (SAD)
on stock return. They claim that, through the link between SAD and depression, and the link between
depression and risk aversion, seasonal variation in length of day can translate into seasonal variation
in equity return. They consider the regression model of the following form:

Rt = γ0 +
2

∑
i=1

γiRt−i + γ3Mt + γ4Tt + γ5SADt + γ6Ft + γ7Ct + γ8Pt + γ9Gt + εt, (9)

where Rt denotes the stock return in percentage on day t; M a dummy variable for Monday; T a dummy
for the last trading day or the first five trading days of the tax year; F a dummy for fall; C cloud cover,
P a precipitation; and G temperature. SADt is a measure of seasonal depression, which takes the value
of Ht − 12 where Ht represents the time from sunset to sunrise if the day t is in the fall or winter;
0 otherwise.

Kamstra et al. (2003; p. 326) argue that lower returns should commence with autumn because
depressed investors shunning risk and re-balance their portfolio in favor of safer assets (i.e., γ6 < 0).
This is followed by abnormally higher returns when days begin to lengthen and SAD-affected investors
begin resuming their risky holdings (i.e., γ5 > 0). They use the daily index return data from the
markets around the world: U.S. (S&P 500, NYSE, NASGAQ, AMEX), Sweden, U.K., Germany Canada,
New Zealand, Japan, Australia, and South Africa. They report, nearly for all markets, that the
parameter estimate of γ5 is positive and statistically significant at a conventional level of significance;
and that of γ6 is negative and statistically significant. These results are the basis of their evidence
for the existence of the SAD effects around the world. However, the results are based on the point
null hypothesis at a conventional level of significance under large sample sizes, for which Rao and
Lovric (2016) among others are concerned about. In this section, we evaluate the regression results of
Kamstra et al. (2003) using the interval-based tests.
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4.1.1. Evaluating the Results of Kamstra et al.

We first conduct the interval tests using the regression results reported in Kamstra et al. (2003).
Table 1 reports the sample size (T) and R2 values of the regression (9), reproduced from
Kamstra et al. (2003; Tables 2 and 4A–C). From these values, we calculate the F-statistic for joint
significance of all slope coefficients are jointly zero (H0 : γ1 = · · · = γ9 = 0), as reported in Table 1.
The CR column reports the 5% critical values from the central F distributions, which are around
1.88 regardless of sample size. It appears that the F-test for joint significance is clearly rejected for
all markets at a conventional significance level, which indicates that the all slope coefficients of
regression (9) are statistically significant. However, this is at odds with negligible R2 values reported
in Table 1 which indicate little predictive power for all markets.

Suppose that, for a regression model for stock return to be economically significant, it should
explain at least 5% of the return variation. That is, we test for H0 : 0 ≤ R2

p1 ≤ 0.05 against H1 : R2
p1 >

0.05. The column labeled CR2 reports the 5% critical values associated with F(J, T − K − 1; λmax) while
the value of λmax is associated with R2

p1 = 0.05 (and R2
p0 = 0). According to these critical values, the

null hypothesis of economically negligible effect cannot be rejected for all market indices except for
US4. The critical values listed in column CR1 are those associated with H0 : 0 ≤ R2

p1 ≤ 0.01, which
delivers rejection in four markets only. If we test for H0 : 0 ≤ R2

p1 ≤ 0.1, the critical values in column
labeled CR3 indicate that the predictive power of the estimated models are economically negligible for
all markets.

Table 1. Testing for the SAD effect.

Market T R2 F CR CR1 CR2 CR3

US1 18,380 0.011 20.43 1.83 26.87 120.25 245.15
US2 9688 0.027 29.84 1.88 15.76 66.27 133.20
US3 7083 0.033 26.82 1.88 12.33 49.83 99.26
US4 9688 0.091 107.66 1.88 15.77 66.27 133.20
SWE 4836 0.017 9.28 1.88 9.29 35.46 69.70
UK 4534 0.009 4.57 1.88 8.87 33.51 65.69

GER 9411 0.008 8.42 1.88 15.40 64.53 129.61
CAN 8308 0.030 28.52 1.88 13.96 57.58 115.26
NZ 2627 0.010 3.31 1.94 6.79 23.49 45.04
JAP 12,783 0.002 3.20 1.94 22.11 96.18 194.77
AUS 5521 0.010 6.19 1.88 10.22 39.86 78.75
SA 7247 0.010 8.12 1.88 12.54 50.87 101.41

US1: United States, S&P500, from 04 January 1928 to 29 December 2000; US2: United States, NYSE, from
1962-07-05 to 2000-12-29; US3: United States, NASDAQ, from 1972-12-18 to 2000-12-29; SWE: Sweden from
1982-09-15 to 2001-12-18; UK: Britain from 1984-01-04 to 2001-12-06; GER: Germany from 1965-01-05 to
2001-12-12; CAN: Canada from 1969-01-03 to 2001-12-18; NZ: New Zealand from 1991-07-02 to 2001-12-18;
JAP: Japan from 1950-04-05 to 2001-12-06; AUS: Australia from 1980-01-03 to 2001-12-18; SA: South Africa
from 1973-01-03 to 2001-12-06; T: sample size, calculated using R package “bizdays” (Freitas 2018) from
the sample ranges reported in Kamstra et al. (2003; Table 2); R2: R2 values reported in Kamstra et al. (2003;
Table 4A–C); F: F-statistic for the joint significance of regression slope coefficients; CR: 5% critical values from
a central F distribution for H0 : R2 = 0; CR1: 5% critical values for H0 : 0 ≤ R2 ≤ 0.01; CR2: 5% critical values
for H0 : 0 ≤ R2 ≤ 0.05; CR3: 5% critical values for H0 : 0 ≤ R2 ≤ 0.10.

Economic significance of the magnitude of regression coefficients reported in Kamstra et al. (2003)
is also questionable. For example, for the U.S. market with S&P500 index (US1), γ̂6 = −0.058 and
its 90% confidence interval is [−0.10,−0.01]. The point estimate means that the stock return is on
average lower by 0.058% during the autumn period. Suppose, for a factor to have an economically
meaningful impact on stock return, its marginal effect should be at least 0.5% (either positive or
negative) to justify transaction cost. Then, one can formulate the null hypothesis of economically
negligible effect as H0 : −0.5 ≤ γ6 ≤ 0.5. The 90% confidence interval is clearly within this bound,
so we do not reject H0 at the 5% level of significance. The same inferential outcomes apply to all
the other regression coefficients of (9) reported in Kamstra et al. (2003). Note that, depending on the
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attitude of the researcher, one can formulate the null hypothesis as H0 : (γ6 < −0.5)∪ (γ6 > 0.5), but it
is also clearly rejected at the 5% level in favor of a negligible effect. Although Kamstra et al. (2003)
justify their effect size using the annualized return, this annualized return does not take account of the
underlying volatility of stock return or trading costs involved.

4.1.2. Replicating the Results of Kamstra et al.

We now replicate the model (9) using the value-weighted daily returns from the NYSE
composite index (CRSP). The SAD variable and other dummy variables are generated following
Kamstra et al. (2003), using programming language R (R Core Team 2017). The data for weather
variables (C, P, and G) are collected from the National Center for Environmental Information.2

Our data for the regression ranges from January 1965 to April 1996 (7886 observations), due to the
limited availability of the weather data (C) for New York. We have the following estimated values
for the key coefficients: γ̂5 = 0.032 with t-statistic of 2.29; γ̂6 = −0.055 with t-statistic of −2.17; and
R2 = 0.05. These values are fairly close to those reported in Table 4A of Kamstra et al. (2003).

We first pay attention to the point null hypothesis that H0 : γ5 = γ6 = 0 for joint significance of
the SAD effects. The F-statistic is 3.18 with the p-value of 0.04, rejecting H0 at the 5% significance level.
This is despite the observation that the incremental contribution of these two variables is negligible,
measured by R2

1 − R2
0 = 0.0008 with R2

1 = 0.0501 and R2
0 = 0.0493. Next, we consider an interval

hypothesis of minimum-effect. Suppose that the incremental contribution of these variables should be
at least 0.01 to be economically significant. That is,

H0 : (R2
p1 − R2

p0) ≤ 0.01.

Assuming R2
p0 = 0.05, λmax = 83.87 and the corresponding 5% critical value is 58.97, obtained from

F(J, T − K − 1; λmax). With this critical value being much larger than the F-statistic of 3.18, the above
interval null hypothesis of minimum-effect cannot be rejected at the 5% level, providing evidence that
the SAD economic cycle is economically negligible in the U.S. stock market.

4.2. Empirical Validity of an Asset-Pricing Model

An asset-pricing model explains the variation of asset return as a function of a range of risk
factors. The most fundamental is the capital asset pricing model (CAPM) which stipulates that an
asset (excess) return is a linear function of market (excess) return. The slope coefficient (often called
beta) measures the sensitivity of an asset return to the market risk. While the CAPM is theoretically
motivated, the market risk alone cannot fully explain the variation of asset return. In response to
this, several multi-factor models have been proposed, which augment the CAPM with a number of
empirically motivated risk factors such as the size premium or value premium (see, for example,
Fama and French 1993). The most recently proposed multi-factor model is the five-factor model of
Fama and French (2015), which can be written as

Rit − R f t = ai + bi(RMt − R f t) + siSMBt + hi HMLt + riRMWt + ciCMAt + eit, (10)

where Rit is the return on an asset or portfolio i at time t (i = 1, . . . , N; t = 1, . . . , T), R f t is the risk-free
rate, RMt is the return on a (value-weighted) market portfolio at time t, SMBt is the return on a
diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks, the
HMLt is the spread in returns between diversified portfolios of high book-to-market stocks and low
book-to-market stocks, RMWt is the spread in returns between diversified portfolios of stocks with
robust and weak profitability, and the CMAt is the spread in returns between diversified portfolios

2 https://www.ncdc.noaa.gov/data-access.
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of low and high investment firms. The precursors to this 5-factor model include the 3-factor model
of Fama and French (1993) which include (RMt − R f t), SMB, and HML; and the 4-factor model of
Carhart (1997) which adds momentum factor (MOM) to the 3-factor model. If these factors fully or
adequately capture the variation of asset return, then the intercept terms ai (which may be may be
interpreted as the risk-adjusted return) should be zero or sufficiently close to it. On this basis, the
model’s empirical validity is evaluated by testing for H0 : a1 = ... = aN = 0, which is a point-null
hypothesis.

4.2.1. GRS Test: Minimum-Effect

The F-test for H0 is widely called the GRS test, proposed by Gibbons et al. (1989). Let a =

(a1, . . . , aN)
′ be the vector of N intercept terms, and Σ be the N × N covariance matrix of error terms.

The model (10) is estimated using the ordinary least-squares: â denotes the estimator for a and Σ̂ the
estimator for Σ. The F-test statistic is written as

F =
T(T − N − K)
N(T − K − 1)

â′Σ̂−1 â
1 + μ̂′Ω̂−1μ̂

, (11)

where T is the sample size, K = 5 is the number of risk factors, Ω̂ is the K × K covariance matrix of
risk factors, and μ̂ is the K × 1 mean vector. Under the assumption that the error terms e’s follow a
multivariate normal distribution, the statistic follows the F(N, T − N − K; λ) distribution, with the
non-centrality parameter

λ =

(
T

1 + θ̂2

)
a′Σ−1a =

(
T

1 + θ̂2

)
(θ∗2 − θ2), (12)

where θ̂ is the ex-post maximum Sharpe ratio of K-factor portfolio, θ is the ex-ante maximum Sharpe
ratio of K-factor portfolio, and θ∗ is the slope of the ex ante efficient frontier based on all assets.
Gibbons et al. (1989) call θ/θ∗ the proportion of the potential efficiency. Note that, under H0, this ratio
is equal to one and λ = 0.

However, perfect efficiency cannot exist in practice. It is unrealistic that all of a values are
jointly and exactly zero. On this point, it is sensible to consider an interval-based hypothesis testing.
For example, consider H0 : 0.75 < θ/θ∗ ≤ 1 against H1 : θ/θ∗ < 0.75. This is on the basis of judgment
that the factors with the proportion of potential efficiency of 0.75 or higher provide practically efficient
asset-pricing.

The data is available from French’s data library monthly from 1963 to 2015 (T = 630).3 We use
25 portfolio returns (N = 25) sorted by size and book-to-market ratio extensively analyzed by
Fama and French (1993, 2015). Table 2 reports the test results. The GRS test for H0 : a1 = . . . = aN = 0
are clearly rejected for all models considered, with the p-value (not reported) practically 0 for all
cases. The critical values of this test (from the central F distributions) is listed in the column labeled
CR. This results suggest that none of the asset pricing models are able to fully capture asset return
variations. This is at odds with the high values of R2 and small values of |a|, especially multi-factor
models. For the 4-factor and 5-factor model, the estimated ratio of potential efficiency is much higher
than other models, close to 0.7.

3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.
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Table 2. GRS test for asset-pricing models.

Model GRS R2 |a| CR CR1 Ratio

CAPM 4.41 0.74 0.25 1.52 1.88 0.25
3-factor 3.61 0.92 0.10 1.52 2.62 0.46
4-factor 3.07 0.92 0.09 1.52 3.70 0.63
5-factor 2.79 0.92 0.09 1.52 4.03 0.67

CAPM: the model with single factor (RMt − R f t); 3-factor: CAPM plus SMB and HML
(Fama and French 1993); 4-factor: 3-factor plus MOM (Carhart 1997); 5-factor: 3 factor plus RMW and
CMA (Fama and French 1993); GRS: GRS test statistic H0 : a1 = . . . = aN = 0; R2: average R2 values
over N = 25 equations; |a|: average intercept estimates over N = 25 equations; CR: 5% critical value from
F(N, T − N − K); CR1: 5% critical value from F(N, T − N − K, λmax); ratio: sample estimate of θ/θ∗.

Table 2 also reports the critical values (CR2) for H0 : 0.75 < θ/θ∗ ≤ 1, which is calculated from
F(N, T − N − K, λmax) distribution with the value of λmax implied by θ/θ∗ = 0.75. It is found that,
for the 4-factor and 5-factor models, H0 : 0.75 < θ/θ∗ ≤ 1 cannot be rejected at the 5% level of
significance. This suggests that these multi-factor model have captured the variation of asset returns
adequately, with economically negligible deviation from the perfect efficiency. For the CAPM and
3-factor models, the interval-based H0 is rejected at the 5% level, but this seems consistent with the
estimated values of potential efficiency which are less than 0.5 for both cases. It is worth noting that
the critical values CR for the point-null hypothesis (based on the central F-distribution) are nearly
identical for all cases, regardless of the estimation results such as R2 and |a|. However, those for the
interval-based tests are different, depending on the model estimation results.

4.2.2. LR Test: Model Equivalence

We now test for the validity of the asset-pricing models using the model equivalence test discussed
in Section 3.6. We calculate the LR test for given in (8) for H0 : a1 = ... = aN = 0, which is written as

LR = T(log{det[Σ̂(H0)]} − log{det[Σ̂(H1)]}),

where Σ̂(Hi) denotes the maximum likelihood estimator for Σ under Hi. For the model equivalence
test given in (7), the above LR statistic follows the χ2

N,δ2 distribution with δ2 = TΔ2. Using the same
data set as in Section 4.2.1, the LR statistic is 105.67, 88.05, 75.82, and 69.26 for the CAPM, 3-factor
model, 4-factor model, and 5-factor model respectively. If we set Δ2 to 0.1, the 5% critical value is 61.12,
indicating that H0 is not approximately valid for all models. If we set Δ2 to 0.15, the 5% critical value
is 87.19, indicating H0 is approximately valid only for 4-factor and 5-factor models. If we set Δ2 to
0.20, the 5% critical value is 114.00, indicating that H0 is approximately valid for all models. It appears
that the results are sensitive to the choice of Δ2 values. However, at a reasonable value of Δ2 = 0.15,
the results are consistent with the minimum-effect test based on the GRS test conducted above.

4.3. Testing for Persistence of a Time Series

The presence of a unit root in economic and financial time series has strong implications to many
economic theories and their empirical validity (see Choi 2015). For example, a unit root in the real
exchange rate is evidence that the purchasing power parity does not hold (Lothian and Taylor 1996);
and a unit root in the real GNP supports the view that a shock to the economy has a permanent
effect, which is not consistent with the traditional (or Keynesian) view of business cycle (Campbell
and Mankiw 1987). To test for the hypothesis, the unit root test proposed by Dickey and Fuller (1979)
has been widely used, while a large number of its extensions and improvement have been proposed.
The augmented Dickey–Fuller (ADF) test for a time series Y is based on the regression of the form

ΔYt = δ0 + δ1t + θYt−1 +
m−1

∑
j=1

ρjΔYt−j + ut, (13)
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where ΔYt = Yt − Yt−1; m is the autoregressive (AR) order of Y; and ut is an i.i.d. error term with zero
mean and fixed variance. Note that θ ≡ τ − 1 where τ is the sum of all AR(m) coefficients in level of
Y, measuring the degree of persistence. The test for a unit root is based on point-null hypothesis of
H0 : θ = 0 against H1 : θ < 0. Under H0, the t-test statistic asymptotically follows the Dickey–Fuller
distribution, from which the critical values of the test are obtained. Under H1, the t-test statistic
asymptotically follows the standard normal distribution.

The problems of the unit root test are well documented (see, for example, Choi 2015). The most
well-known is its low power (at a conventional significance level), which means that there is a
high chance of committing Type II error (failure to reject a false null hypothesis). On this point,
Kim and Choi (2017) propose the unit root test at the optimal level of significance, which is obtained
by minimizing the expected loss from hypothesis testing. They find that the optimal level is in the 0.3
and 0.4 range for many economic time series, arguing that the exclusive use of 0.05 level has led to
accumulation of false stylized facts. The other problem of the test is the discontinuity of the sampling
distributions of the test statistic under H0 and H1. This makes the decision highly sensitive to the value
specified under H0.

More importantly, as discussed in Section 2.3, it is unrealistic to assume that an economic time
series such as the real GNP or real exchange rate has an autoregressive root exactly equal to one.
An economist may wish to test whether a time series shows a degree of persistence practically different
from that of a unit root time series. The test can be conducted in the context of non-inferiority test
discussed in the previous section. To do this, we need to find the value of τ or θ under which a time
series shows a practically different degree of persistence from a unit root time series. According to
DeJong et al. (1992), a plausible value of τ under H1 : θ < 0 is 0.85, 0.95, 0.99 for annual, quarterly and
monthly data respectively, which translate to the θ values of −0.15, −0.05, and −0.01. On this basis,
we test for the persistence of a time series using the following interval hypotheses:

H0 : θ ≤ θ1; H1 : θ > θ1,

where θ1 ∈ {−0.15,−0.05,−0.01} depending on the data frequency. The time series is practically
trend-stationary under this H0. This test is a standard one-sample t-test whose statistic asymptotically
follows the standard normal distribution. However, we note that the least-squares estimator for τ or θ

is biased in small samples, which may adversely affect the small sample properties of the test. As an
alternative to the non-inferiority test, we also use the bias-corrected bootstrap confidence interval for θ

for improved statistical inference, similar to those of Kilian (1998a, 1998b) and Kim (2004).
For a set of time series (Y1, . . . .YT), we first estimate the parameters of model (13) using the

bias-corrected estimators. Let (δ̂0, δ̂1, θ̂, ρ̂1, . . . , ρ̂m−1) be the bias-corrected estimators; and let {et}
denote the corresponding residual. Generate the artificial data set as

Y∗
t = δ̂0 + δ̂1t + β̂1Yt−1 + · · ·+ β̂mYt−m + e∗t ,

using (Y1, . . . , Ym) as the starting values, where e∗t is a random draw with replacement from {et}T
t=m+1

and (β̂1, . . . , β̂m) are the AR coefficients in level associated with (θ̂, ρ̂1, . . . , ρ̂m−1). Using {Y∗
t }T

t=1,
estimate the AR(m) coefficients, again with bias correction, (δ̂∗0 , δ̂∗1 , β̂∗

1, . . . , β̂∗
m). For bias correction, we

use Shaman and Stine (1988) asymptotic formula with stationarity-correction, following Kilian (1998b)
and Kim (2004). We obtain θ̂∗ = τ̂∗ − 1, where τ̂∗ = ∑m

j=1 β̂∗
j . Repeat this process B times to obtain the

bootstrap distribution {θ̂∗(j)}B
j=1, which can be used as an approximation to the sampling distribution

of θ̂. If the confidence interval for θ obtained from {θ̂∗(j)}B
j=1 covers θ1, then this is evidence that the

time series shows a degree of of persistence practically no different from that of a trend-stationary
time series.

Table 3 reports the results from the extended Nelson and Plosser (1982) data for a set of annual
U.S. macroeconomic time series, setting θ1 = −0.15. Firstly, the ADF test (a point-null hypothesis
test) provides the p-values larger than 0.05 for most of time series, providing evidence that many
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macroeconomic time series have a unit root. In contrast, the t-test (non-inferiority test) results for
H0 : θ ≤ −0.15 against H1 : θ > −0.15 show that we clearly cannot reject this H0 at the 5% level
of significance (asymptotic critical value 1.645) for the real GNP, real per capita GNP, industrial
production, employment, unemployment rate, providing evidence that these time series are practically
trend-stationary. As for the bootstrap inference, it is found that the 95% bias-corrected bootstrap
confidence interval for θ does cover −0.15, for the real GNP, real per capita GNP, industrial production,
employment, unemployment rate, real wage, and interest rate, indicating that these time series show
the degree of persistence practically of a trend-stationary time series. The two alternative methods are
in agreement in their inferential outcomes, except for real wage and interest rate.

Table 3. Test for persistence: Extended Nelson–Plosser Data.

T p-Value θ̂ t-Stat CI1 CI2

R.GNP 80 0.05 −0.140 −0.66 −0.298 −0.037
N.GNP 80 0.58 −0.010 2.96 −0.147 −0.0001
P.GNP 80 0.04 −0.150 −0.82 −0.304 −0.043

IP 129 0.26 −0.098 −0.21 −0.274 −0.002
Emp 99 0.18 −0.118 −0.21 −0.242 −0.031

Uemp 99 0.01 −0.214 −1.53 −0.430 −0.074
Def 100 0.70 −0.003 5.56 −0.081 −0.0001
CPI 129 0.91 −0.002 13.22 −0.019 −0.0001

Wages 89 0.53 −0.026 2.81 −0.144 −0.0002
Rwages 89 0.75 −0.010 1.90 −0.183 −0.0002

MS 100 0.18 −0.037 3.83 −0.110 −0.0016
Vel 120 0.78 −0.001 4.65 −0.099 −0.0001

Rate 89 0.98 −0.025 2.35 −0.191 −0.0004
S&P 118 0.64 −0.021 2.15 −0.144 −0.0002

R.GNP: Real GNP; N.GNP: Nominal GNP: P.GNP: Real per capita GNP; IP” Industrial Production; Emp:
Employment; Uemp: Unemployment Rate; Def: GNP deflator; CPI: Consumer Price Index; Wages: Wages;
Rwages: Real Wages: MS: Money Stock; Vel: Velocity; Rate: Interest rate; S&P: Common Stock Price. T:
Sample size; p-value: p-value of the ADF test for H0 : θ = 0; θ̂: bias-corrected estimators for θ; t-stat: t-statistic
for H0 : θ ≤ −0.15 against H1 : θ > −0.15 based on equation (13) with 5% critical value of 1.645; (CI1, CI2):
lower and upper bounds of 95% bootstrap bias-corrected confidence interval for θ; The AR orders used are
same as those of Nelson and Plosser (1982).

The results for the test of persistence based on the non-inferiority test are largely consistent
with those of Kim and Choi (2017) who re-evaluate the ADF test results at the optimal level of
significance and report evidence that the real GNP, real per capita GNP, employment, and money
stock do not have a unit root. These results are also largely consistent with the Bayesian evidence of
Schotman and van Dijk (1991).

5. Conclusions

This paper provides a review of interval-based hypothesis testing methods, which are known
under the name of minimum-effect, non-inferiority, and equivalence tests in biostatistics and
psychology. Although the first proposal of such a test goes back to Hodges and Lehmann (1954),
it has attracted little attention in the business disciplines of science. In the latter, the paradigm of
point-null hypothesis has been the major workforce in making statistical decisions and establishing
research findings. However, as a number of authors have criticized for many years, the current
paradigm has a range of limitations and deficiencies, as discussed in Section 2 of this paper. These
problems have become even more apparent in the big data era, where the p-value criterion widely and
routinely adopted by statistical researchers is no longer usable in making sensible statistical decisions.
The consequences are serious, with widespread practice of data-mining (Black 1993), data-snooping
(Lo and MacKinlay 1990), p-hacking (Harvey 2017), and multiple testing (Harvey et al. 2016), which
result in an embarrassing number of false positives as Harvey (2017) puts it. The related empirical
evidence is provided by meta-analytic studies conducted by Kim and Ji (2015) and Kim et al. (2018).
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Even more serious is systematic distortion of published results, such as publication bias (Basu and
Park 2014) and replication crisis (Peng 2015). In light of these problems, Rao and Lovric (2016) call for a
new paradigm to be in place for statistical testing in the 21st century, with a proposal of interval-based
hypothesis testing as a possible solution.

An important point in favor of adopting an interval-based test is the fact that an economic
hypothesis cannot be formulated as a point. Rather, it is more sensible when it takes a form
of an interval or a neighborhood: see, for example, De Long and Lang (1992), Leamer (1988),
and Startz (2014). For example, when a researcher tests for stock market efficiency, she is not testing
for a perfect efficiency (as described by a point-null hypothesis), since such a perfect relationship
cannot hold economically (Grossman and Stiglitz 1980). More realistically, the researcher is interested
in whether the degree of market inefficiency (Campbell et al. 1997) is economically large enough to be
concerned (an interval hypothesis). Hence, it makes more sense to consider an interval hypothesis for
decision-making in economic or business research.

As we have seen in this paper, an interval-hypothesis can be implemented in a simple and
straightforward manner, using the existing instruments of hypothesis testing such as one-tailed test,
confidence interval, and non-central distributions. Its main attraction is that the critical values of these
tests increase with sample size, overcoming a major deficiency of point-null hypothesis testing. A key
requirement of the test is that the researcher should specify an interval of economic significance under
the null or alternative hypothesis, preferably before she observes the data. This may require a value
judgment depending on contexts, accompanied by a thorough economic analysis on the effect size
of the relationship under investigation. This is an integral part of interval-based hypothesis testing,
since it has a strong impact on the test outcome and research integrity. It is also highly desirable that
the relevant research community establishes a consensus on the range of minimum effect size that
matters economically.

We have applied the interval-based tests to economics and finance applications. The first is a
test for market efficiency, whether investors’ mood has a systematic effect on stock market return.
While the effect may appear to show statistical significance under the current point-null paradigm,
the minimum-effect tests cannot reject its negligible economic effect. The second is on the empirical
validity of asset-pricing models. In contrast to the findings based on point-null hypothesis testing,
we find that a class of multi-factor models are empirically valid based on minimum-effect and model
equivalence tests. The third is on the degree of persistence of economic time series. A unit root test
based on a conventional point-null hypothesis strongly favors the presence of a unit root in many
macroeconomic time series such as the real GNP. According to the non-inferiority test, many time series
in Nelson–Plosser data set are found to show a degree of persistence of a trend-stationary time series,
especially in the real income variables. From these applications, we find that the interval-based tests
are applicable to many contentious research problems in the business disciplines of science, shedding
new lights on the existing results or stylized facts. We propose that interval-based hypothesis tests be
widely adopted in business research, especially in the new era of big data.
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Abstract: A great deal of the accounting research published in recent years has involved statistical tests.
Our paper proposes improvements to both the quality and execution of such research. We address
the following limitations in current research that appear to us to be ignored or used inappropriately:
(1) unaddressed situational effects resulting from model limitations and what has been referred to
as “data carpentry,” (2) limitations and alternatives to winsorizing, (3) necessary improvements to
relying on a study’s calculated “p-values” instead of on the economic or behavioral importance of
the results, and (4) the information loss incurred by under-valuing what can and cannot be learned
from replications.

Keywords: model specification; model testing; reporting results (p-values); replications

1. Introduction

As professors of accounting for nearly 60 years and past presidents of the American Accounting
Association, we are concerned about the quality of statistical research in accounting. This article is a
call to our accounting colleagues, and also perhaps to those in other fields, to invest substantial time
and effort toward improving their requisite knowledge and skill when conducting the appropriate
statistical analysis. Involving expert statisticians may be helpful, as we all need to recognize the
limitations in our own knowledge in order to tap into this expertise. Our heightened interest in
improvements to the quality of statistical analysis in accounting research was in response to attending
research presentations and reading the current literature.

Several years ago, we suggested several improvements to statistical testing and reporting
(Dyckman and Zeff 2014). In that paper, we reviewed the 66 articles involving statistical testing that
accounted for 90 percent of the research papers published between September 2012 and May 2013
in The Accounting Review and the Journal of Accounting Research, two leading journals in the field of
accounting. Of these 66 papers, 90 percent relied on regression analysis. Our paper examined ways of
improving the statistical analysis and the need to report the economic importance of the results.

An extension of these concerns was included in a commissioned paper included in the 50th
anniversary of Abacus (Dyckman and Zeff 2015). We acknowledge several accounting academics who
are also concerned with these issues, including Ohlson (2018), Kim et al. (2018), and Stone (2018),
whose works we cite.

Concerns about statistical testing led to exploring the advantages of a Bayesian approach and
abandoning null hypothesis tests (NHST) in favor of reporting confidence intervals. We also suggested
the advantages—and limitations—of meta-analysis that would allow for the inclusion of replication
studies in the assessment of evidence. This approach would replace the typical NHST process and its
reliance on p-values (Dyckman 2016).
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A fourth article which reviewed the first 30 years’ history of the research journal, Accounting
Horizons, continued our concern with the current applications of statistical testing to accounting
research. An additional aspect of this article was the attention we gave to accounting researchers’
seeming lack of interest in communicating with an audience of professionals beyond other like
researchers, as if their only role as researchers was to enrich the research literature and not to contribute
to the stock of accounting knowledge. We submit that accounting academics, because of the academic
reward structure in their universities, tend to write for their peers. Accounting standard setters and
accounting professionals, as well as those who make business and policy decisions, are all too often
relegated to the sidelines. We argued that accounting research should, in the end, be relevant to
important issues faced by accounting professionals, regulators and management, and that the research
findings should be readable by individuals in this broader user community (Zeff and Dyckman 2018).

In the current paper, we expand on the statistical testing issues raised in our earlier papers, and
we identify limitations often overlooked or ignored. Our experience suggests that many accounting
professors, and perhaps those in other fields, are not familiar with, or equipped to, address them.
We take up the following major topics: Model Specification and Data Carpentry, Testing the Model,
Reporting Results, and Replication Studies, followed by A Critical Evaluation and A Way Forward.

2. Model Specification and Data Carpentry

The choice of a topic and related theory established the basis for the hypotheses to be examined and
the concepts that will constitute the independent variables. Accounting investigations often rest only
on a story rather than on a theory. A major problem here is that a story, but not theory, can be changed or
modified, which encourages data mining (Black 1993, p. 73). Establishing the appropriate relationships
require an understanding of the actual decision-making environment. These ingredients, along with the
research team’s insights and abilities, are critical to designing the research testing program and the data
collection and analysis process. Failure to take them into account in the data-selection decision process
and analysis was discussed in detail in a recent paper by Gow et al. (2016). There, the authors provided
a detailed example (pp. 502–14) of how the decision environment can reflect its own idiosyncratic
differences that, in turn, influence the data. For example, even if the business context is essentially the
same across companies, data limitations remain. First, the data will inevitably reflect different sets of
decision makers and different organizations, different time periods, different information, and, at least,
some differences in the definitions of the variables deemed to be relevant. The interactions between
these variables, and with any relevant but excluded variables, will, as the authors showed, lead to
questionable results. How the selected variables interact with each other—and with any excluded but
relevant variables—depends on the nature of the contextual environment in which the relation arises.
We note here that careful research designs up front can reduce interactions among the independent
variables. Authors can and should describe the decision environment and differences, if any, that have
a potential impact upon the analysis and conclusions. A thorough analysis and description of the
decision environments is essential and endows additional credibility on the research.

Typically, a concept can be operationalized by more than one variable. For example, firm size may
be proxied by the number of employees or by revenue. Furthermore, the choice of a measure is often
made according to data availability. Even the topic selection may be determined by the availability of
an interesting data set. Unfortunately, authors usually do not acknowledge the latter and may fail to
justify the selected variable measure. Once the hypotheses have been modeled and the variables with
their measure selected, the decisions must not be altered, expanded, or dropped without full disclosure.
Yet, we have seldom seen these explicit limitations revealed, let alone discussed. Authors appear to
ask readers to accept implicitly that such alterations have not occurred. Even a careful reading may
not reveal the authors’ reasons for their specific choices. Authors should not assume that their choices
are transparent and elect not to address the choice process.

The choice of the data set for the variables included in the study is critical. We think of this
as the data carpentry, during which the raw data are melded into the data set for analysis. This is
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when data snooping, data mining, and related inappropriate activities must be avoided. Furthermore,
researchers should not unquestioningly adopt a data set used by previous authors without verifying
its accuracy and applicability to the current issue addressed. (For a discussion of what can occur,
see Zeff 2016). Authors should also be alert to data sets reflecting different time periods, locations,
or information processes. Conditions can be very different for the same variable across these dimensions.
An assumption that data obtained under such circumstances will lead to valid conclusions cannot be
sustained. Moreover, if the data source, timing, processing, or availability changes, the research team
is obliged to bring these changes to the attention of the reader, together with the resulting limitations
imposed on the findings.

2.1. Assumption of Randomness

The concept of hypothesis testing and its key elements, including test statistic, p-value, standard
error, sampling distribution, significance level, rely on an implicit assumption of randomness.
The investigation relies on the researchers obtaining a random sample from a well-defined population.
Indeed, one of the purposes of hypothesis testing is to determine how big or small the random sampling
error is with respect to the parameter value being tested under the null hypothesis. Accounting
researchers, by their failure to address the issue, are taking this fundamental assumption for granted.
This is unfortunate. Authors appear to be implicitly relying on Dunning (2012) assurance that
randomness can be accepted if the reader can be assured that the researchers had no influence, intended
or not, on the data process. Unfortunately, databases may be problematic in the context of random
sampling. For example, these databases often cover the data for listed companies only, which can
provide a biased sample if the research outcome is applied to non-listed companies. The decision to
seek big data or even a large sample can lead to a similar problem (Harford 2014). Several examples
with serious consequences are examined in this article.

A thorough defining of the population is essential, but is not easily accomplished, and often
remains unspecified by the authors. An implicit assumption of randomness may be comforting, but
it is not adequate. Authors are obliged to expend the necessary human capital to alert the reader to
possible limitations in their data and how any such limitations could affect their results. An example is
provided by big data (Boyd and Kate 2011). Unless the research design takes the sampling distribution
into account, it becomes difficult to justify resampling and randomization. The authors recall no recent
accounting papers, including those relying on big data, that have addressed this situation. The process
of determining whether a subset of big data amenable to the theory of relevance could be identified is
likely to doom any honest sampling process. Additionally, it would preclude replication.

2.2. Model Modifications

Once the hypotheses have been modeled and the variables have been selected and measured,
any changes must be justified with full disclosure. Yet we have seldom seen such changes revealed.
Authors apparently expect readers to accept implicitly that such alterations have either not occurred or
are appropriate. A new approach to reduce this problem is being explored that requires authors to
describe their choices in advance of executing the research project and to communicate to the editors
any changes thereafter (Bloomfield et al. 2018; Kupferschmidt 2018). However, there is no assurance
that this requirement will always be met, because the action may occur before initial submission.

2.3. Winsorizing

It is not uncommon to find accounting studies whose authors have winsorized their data and
assumed their readers understand the process. By winsorizing, the authors are attempting to prevent
what they regard as outliers in the data from unduly influencing the results. Authors using this
approach apparently assume that the outliers do not belong to the set defined by the variable under
consideration. Retaining these data points, if inappropriate, will bias the results. Each such data point
also has a larger impact on the results. However, the adjustment process used is generally ad hoc.
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We submit that data points omitted from the analysis require individual justification based on analysis.
An omitted observation might even be the most interesting data point, were it to be investigated.
Or it may be due to factors not associated with the other sample data, a possibility advanced by
Belsley et al. (1980). There is no theory justifying winsorizing (or truncation). These methods also
make replication decidedly more difficult.

Winsorizing is one example of inappropriate data manipulation practiced during data carpentry,
together with data mining and data snooping. Other examples of inappropriate data activities involved
in establishing the data set include omitting data obtained under different circumstances, such as from
different companies, time periods, or locations. Data produced by different individuals operating
under different procedures and dissimilar situations also should be assumed to be inappropriate. See
Zeff (2016) for an example. Inclusion of any such data must be thoroughly vetted and disclosed,
including its impact on the identified hypothesis.

Instead of winsorizing, we suggest the authors consider robust regression (RR) recommended by
Leone et al. (2019). Using simulation, the authors find RR outperforms winsorization and truncation,
which are largely ineffective. The authors suggest using approaches based on residuals for which RR is
both theoretically appealing and easy to implement.

3. Testing the Model

An approach that some researchers are turning to—and which we encourage—is to apply the
research model to alternative relevant data sets (Lindsay 1995). While this approach is time-consuming,
the results, when thus confirmed, are more compelling. Additionally, tests might also be run on logical
choices of subsets of the original data. An interesting alternative would be to test the model through
one or more predictions, although we have not seen much enthusiasm for this option.

The data sets in accounting studies, other than experimental ones, tend to be large. Data sets over
10,000 are not uncommon. Small data sets, below 25, are unusual, except in behavioral accounting
work, an area we are not explicitly targeting here. Accounting journals would not reject a small sample
of, say, 25 if there were a compelling reason for the size and the results were clearly of interest. Multiple
hypotheses based on a single data set are common, and the use of a data set to examine a different
hypothesis by a different research team is not uncommon. The concern here, however, is that any data
problem that is unresolved or miss-handled in the original research is likely to influence the new work.
We believe that a borrowed data set must go through a thorough analysis before it can be presumed to
be appropriate for testing a new hypothesis. This is appropriate for the original paper and even more
so for a replication or the use of the sample by a new investigating team.

Our reading of the accounting literature indicates that some authors do rely on the same data set
to test multiple hypotheses. Yet Floyd and List (2016, p. 454) observe, “When multiple hypotheses . . .
are considered together, the probability that at least some Type 1 errors are committed often increases
dramatically with the number of hypotheses.” See also Ohlson (2018). Fortunately, studies that perform
multiple tests on a single data set are not difficult to identify. Authors should either alert readers to
what amounts to over-testing or confine their analysis to the critical issue of the study. Additionally,
it often happens that the ideal data set is impossible to obtain. When this is the case, the ideal data set
should be acknowledged and its absence justified, including any change in the variables selected and
their measures. Unfortunately, while applauding the changes in the reviewing process championed by
Bloomfield et al. (2018) and others, we believe there is currently no way to assure that data tampering,
including data mining, does not occur prior to the submission of a research paper to a journal.

Sample Size Concerns

Sample size has an important effect on statistical tests. Many accounting studies involve very
large samples, while small samples are rare except in situations involving behavioral experiments.
Indeed, researchers appear to believe that very large samples are somehow superior or more likely to
generate statistical significance. Yet what the researcher observes in the sample may not be true at
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the population level. This is particularly likely to happen when the sample data ultimately used in
the test are substantially fewer than what are contained in the initial sample. This situation, while
not common in accounting research, does occur. See Santanu et al. (2015). The authors reported a
sample size of 11,262 after concluding that, for undisclosed reasons, 14,042 observations were rejected,
a rejection level of 55% of the available data. This condition alone does not invalidate the research.
Such a large reduction calls for an explanation, which was not given. Indeed, the authors were likely
engaged in data snooping, which could lead to such a large reduction in sample size. Researchers
should also not forget the Jeffery-Lindley paradox, which shows that, with a large enough sample size,
a 0.05 significance result can correspond to assigning the null hypothesis a high probability (0.95). This
result does not hold, however, for interval hypotheses. See also Ohlson (2015) on sample size.

4. Reporting Results

The most important point to be made here is not whether a reported significant p-value, say at the
0.01 level, has been obtained but rather the overall credibility of the work. Credibility depends on
a myriad of factors. These factors include the accuracy and veracity of not only the model but also
the variable choices and their measurement. For example, if the model were to omit an important
explanatory variable, the effect of the omission may be subsumed under one or more of the other
explanatory variables, causing it or them to appear more significant than would otherwise be the
case. It remains the responsibility of the authors to consider the challenges that serious readers are
likely to raise concerning the central model, the variable choices or omissions, and how they should be
operationalized. Assuring that readers have an adequate description of the methodology, including
the model, data set, and the computer protocol in order to permit, and indeed invite, a replication
would be one template for ascertaining that the essential elements have been disclosed. Improperly
executed research can, as pointed out most recently by Kim et al. (2018) and by Lindsay (1994, 1995),
ultimately lead to poor decisions and may even inflict serious social harm.

4.1. Reporting p-Values

First, it is useful to define what a p-value is. A p-value is the probability of observing a value of
the test statistic that is as extreme as, or more extreme, than the value resulting from the sample, given
that the null hypothesis is true. It is both a conditional probability and a statistic with a sampling
distribution. Our view of p-values’ contribution to the research in accounting is best captured by
the following quotation: “Misinterpretations and abuse of statistical tests, confidence intervals, and
statistical power have been decried for decades, yet remain rampant. A key problem is that there are
no interpretations of these concepts that are at once simple, intuitive, correct, and foolproof. Instead,
correct use and interpretation of these statistics requires an attention to detail which seems to tax
the patience of working scientists. This high cognitive demand has led to an epidemic of shortcut
definitions and interpretations that are simply wrong, sometimes disastrously so—and yet these
misinterpretations dominate much of the scientific literature” (Greenland et al. 2016, p. 337). Authors
of publications in accounting and related fields invariably report and rely on small p-values (0.01, 0.05,
0.10) as an indication of the importance of their work. Yet, there is no theoretical justification to guide
researchers in selecting a specific p-value to justify the conclusion that significance has been in fact
attained or, if so, whether it matters. The smaller the calculated p-value, the more comfortable the
researcher may feel in rejecting the null hypothesis. However, this information alone considers neither
the importance of the results nor the costs of an incorrect rejection. Johnstone and Lindley (1995) argue
that significance at 0.05 is meaningless without knowing the sample size, the magnitude of the observed
effect, and the operational importance of that effect. Alone, it fails to assure readers that the analysis
has even uncovered a useful result. Indeed, the p-value, so endemic to much of accounting research,
is useless by itself. Without some measure of the impact (size effect) or economic importance of the
result, little if anything has been learned. Ziliak and McCloskey (2004), after reviewing the literature in
several fields, found that nine out of 10 published articles make this mistake. If, in the accounting
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literature for example, the reported results suggest that a specific behavior reduces audit delays, little
is gained unless a reasonably accurate determination of the economic impact of the revealed delay to
an identified clientele is determined. Authors, then, must identify in advance the user of the research
result who would find the size or impact important. We note that several distinguished journals in other
fields, including Basic and Applied Social Psychology, have banned the use of p-values, while others,
including PLOS Medicine and the Journal of Allergy and Clinical Immunology, actively discourage its
use. The American Statistical Association has recently urged caution in relying on statistical significance
at the traditional 0.05 level as a basis for claims (Wasserstein et al. 2019). We continue to be dismayed
that editors or reviewers in our field appear to require a reported p-value of 0.10 or less as a necessary
condition for publishing the results of a study relying on statistical research in accounting. Perhaps the
recent final appeal to renounce relying on p-values was sounded by a recent paper published in The
American Statistician in which Wasserstein et al. (2019, p. 1) state: “Don’t conclude anything about
scientific or practical importance based on statistical significance (or lack thereof).” The same issue
of the American Statistician includes 43 additional papers that addresses statistical Inference in the
twenty-first century.

An improvement would be to report the Bayes factor, as suggested in the context of accounting
research by Kim et al. (2018). This is the ratio of the observed value, or a lesser value under the null
hypothesis, to the probability of the observed value or a lesser value under the alternate hypothesis.
The approach is a Bayesian concept and reflects the ratio of the new knowledge to what was previously
presumed. This concept is consistent with using new information to update one’s prior beliefs,
a common accounting objective. The calculation necessitates that the researcher initially specifies the
denominator of the likelihood ratio. Furthermore, reporting a confidence interval is an improvement
over reporting a p-value and provides more information.

Yet, it is wrong to conclude that p-values are useless. A p-value from a well-executed study could
provide useful information. For example, such a value could indicate that there is something unusual
or interesting in the analysis, justifying further study. Alternatively, a review of the process may
indicate a flaw in the analysis. Perhaps the data or the data-carpentry activity was faulty. The model
may be inappropriate. There could have been an error in the computer program. And well-done
studies could suggest further potential regardless of the resulting p-value.

4.2. Effect Size (ES) or Economic Importance (EI)

Determining the effect size (Cohen 1990; Stone 2018) or the economic importance (Basu 2012;
Dyckman 2016) of the results should be the sought-after objective of research. One way of presenting
the result is to use a confidence interval measure to capture the impact on the specific costs or benefits
suggested by the research. Yet we could locate very few articles in the accounting literature that
have rcct size. Judd et al. (2017, p. 34) provide an example that does addresses this issue. “In terms
of economic significance, we find on average, a one standard deviation increase in CEO narcissism
[proxied by the CEO’s picture size in the annual report and the CEO’s relative cash and non-cash
pay] is associated with a 2.4 percent to 3.3 percent increase in external audit fees, which equates to
approximately $116,497 to $160,183 for our sample mean firms.” We note here that the authors elect, not
to emphasize the economic significance by reporting their findings in either the Synopsis or Conclusion.
Their approach may be explained in part by the studies limitations described in their footnote two.

Irani et al. (2015, p. 847) provide a recent example of explicitly addressing the statistical
significance/economic importance issue. They state, “We recognize the small magnitude of the
univariate market reaction, which, although statistically significant, is arguably not economically significant”
[emphasis added]. It is essential to identify the importance of a study’s results and not just rely on
whether one or more hypotheses are statistically significant at a specific reported p-value. Furthermore,
as noted earlier, not finding a variable to be statistically significant does not necessarily mean it is
unimportant. Eshleman and Lawson (2017, p. 75) report that they “find a positive association between
audit market concentration and audit fees.” Their main conclusion was, “As a whole, our findings
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suggest that U.S. audit market concentration is associated with both higher audit fees and higher
audit quality” (p. 76). Unfortunately, we are not informed of the importance of the impact that the
concentration had on audit fees.

A more recent accounting study by Brown et al. (2018) recognizes the limitation of research that
stops with the reporting of a significant p-value, yet the authors fail to deal with the economic importance.

5. Replication Studies

Researchers quite understandably seek to explore new questions in their research. Thus, it is
not surprising that replication studies are rare. Yet, regardless of a study’s results, whether it is an
important finding or an unsuspected failure to support an expected finding, replication studies are
relevant and important. Replications are, however, decidedly difficult to perform satisfactorily and are
not welcomed by many journals across the accounting research landscape. Replications therefore must
pass rigorous scrutiny. Several new journals have been launched, and a few existing outlets now do
consider replication papers. New journals have been initiated recently that do consider replication
papers. There are also existing journals that have published replications for some time. The American
Economic Review and the Journal of Applied Econometrics are leaders in their field, and they publish about
a 30 percent of the replications in economics (Reed 2018). The Replication Network is an excellent
source for information on replication studies.

A few replication studies have begun to appear in accounting journals. The ability to fully replicate
depends on an agreed theory. Stories do not provide ideal bases for replications. An early, well
executed replication study in accounting that deserved and ultimately achieved publication was done
by Bamber et al. (2000), who replicated Beaver (2000) Seminal Award-winning paper. It is interesting
to note that the authors’ work was published in Accounting, Organizations and Society, not in one of the
journals noted for empirical/archival research. This is not where one would expect to find it, because it
was rejected by the journal that published Beaver’s article.

Mayo (2018, preface) sets a high bar when applied to any study, including replications. She
advises that the results of any study need to be “severely tested.” She writes, “The [severe] testing
metaphor grows out of the idea that before we have evidence for a claim, it must have passed an
analysis that could have found it flawed.” In other words, as Mayo states, “a hypothesis must have
passed an analysis that could have found it flawed” (Mayo 2018, preface). We are unable to locate
an accounting paper that currently meets this or a similar rigorous standard. We would encourage
researchers to consider applying this test.

The rewards for attempting replications are currently not enticing. Furthermore, precise
replications have seldom been possible, in part because the necessary information to perform such
studies is not ordinarily made available by authors. Nevertheless, we encourage replications because
they provide the test that what has been found matters. This could be the case if a study were to
identify a potential measurable and meaningful size effect. Unfortunately, in accounting, we are
left with a sparse landscape of replication studies that provide confirmation of important results or
which encourage the publication of synopses of important replications (particularly of effect size or
economic importance) that are well-executed. Fortunately, journals do exist that consider replications.
One relatively new journal is The International Journal for Re-Views in Empirical Economics (IREE).

A recent study by Peng (2015) concludes that a high proportion of published results across fields
were not reproducible by replication. This does not reflect well on the academic community. Studies of
reproducible results lend credence to the value of the exercise. On the other hand, failed replications cast
doubt on the original results. Brodeur et al. (2018, abstract) report that in “Applying multiple methods to
13,440 hypothesis tests reported in 25 top economics journals in 2015, we show that selective publication
and p-hacking is a substantial problem in research employing DID [differences-in-differences] and (in
particular) IV [instrumental variables].” A large study reported in Science describes the results of 270
researchers replicating 100 experiments reported in papers published in 2008 in three high-ranking
psychology journals (Aarts et al. 2015). The replications yielded the same results according to several
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criteria. They showed that only 39% of the original findings could be replicated unambiguously. This
information is not encouraging.

Recently, we came across an announcement of a new e-journal, SURE (for The Series of
Unsurprising Results in Economics), which commits to publishing high-quality research even with
unsurprising findings. The journal emphasizes scientifically important and carefully executed studies
with statistically insignificant results or otherwise unsurprising findings. Studies from all fields of
economics will be considered. As a bonus, there are no submission fees.

An additional process that can increase our confidence in results, and one that merits consideration,
is meta-analysis (Dyckman 2016; Hay and Knechel 2017; Stone 2018). An advantage of meta-analysis is
that it suggests the integration of current and future investigations of a given phenomenon. Using this
technique reflects a cumulative approach to a specified hypothesis by which a triangulation on the topic
can lead to a better understanding of a common research objective. This approach allows competing
explanations of a given phenomenon to be merged to produce a result depicted, for example, by a
confidence interval. Opting for a meta-analysis approach provides an opportunity for researchers to
reexamine and perhaps reinforce important past results. The adoption of meta-analysis in accounting
remains exceedingly rare, perhaps partially reflecting editor reluctance to publish replications.

6. A Critical Evaluation and a Way Forward

We believe that a healthy skepticism should abide from the beginning and then remain with
the authors throughout the process. This attitude must extend to the apparent confirmation of any
basic hypotheses. Asking why and how the authors could be wrong, or whether they have missed an
important influence on the analysis, should accompany the entire investigation. We fear, however, that
authors may not expend the time and human capital to critique their work sufficiently. Readers are
often not sufficiently familiar with the authors’ subject to discover a study’s short-comings. Indeed,
the authors themselves are the most likely to be conscious of their study’s limitations and potential
extensions. They should advise readers on where additional analysis would be most fruitful, including
the known or suspected limitations to their own work. Essentially all studies have limitations, and
that alone provides ample reason for encouraging disclosure, and in important situations, replications.
Access to all that went into the original analysis should be available, on request if necessary.

The process begins with the selection of an important question or issue. A relevant and available
data source will need to be identified or created in order to proceed. Once these are determined,
we suggest that the investigation concentrate on operationalizing the dependent variable, identifying
the independent variables, including their interrelationships, and how they can best be operationalized.
This approach then allows the research team to craft the model. The research team should keep a record
of all assumptions and decisions made in this process. Attention will need to be given to variable
interactions, and whether the conditions affecting the observations are different in a way, or ways, that
could have an impact upon the findings.

The primary objective is to reveal an important result, one that is based on an important economic
or behavioral impact. If no such impact was revealed, the authors should take what has been learned,
pack their bags and move on to a new project. If the process has been appropriate, the authors should
take what has been learned and seek a new topic worthy of investigation. There is no reason to attempt
to resurrect a deceased patient.

Authors should avoid placing reliance on p-values, concentrating instead on the economic or
behavioral implications of the work. If the result is controversial and the analysis is well done, so
much the better. Reporting confidence intervals instead of p-values should be the common practice.
(Dyckman 2016; Stone 2018).

Our discipline, and others as well, will benefit from applying new approaches to establishing the
importance of the phenomena being studied. Stone (2018, p. 113), has recently suggested exploring
triangulation, a complementary approach that could, for example, combine a quantitative and a
behavioral approach to a problem. Also see Jick 1979. Such studies can provide insights not otherwise
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apparent. Combining methodologies has limitations, one being that replications are extremely difficult
to execute. The adoption or reliance on new methodologies or pirating them from other disciplines is
also to be encouraged.

Thus, we are in accord with Johnstone (1990) and with Kim et al. (2018, p. 14) that a Bayesian
approach to statistical hypothesis testing, which recognizes the importance of the power of the test,
offers a means of dealing with the inherent bias introduced by the conventional hypothesis testing
currently prevalent in accounting. Furthermore, we encourage authors, as a few have done, to consider
areas and methodologies from sister disciplines, including medicine and even philosophy. In this
paper, we have relied on medicine (Ioannidis 2005), epidemiology (Greenland et al. 2016), and on
philosophy (Mayo 2018). We maintain that there is much to be learned from these and other disciplines.

The ultimate importance of a study is the economic or behavioral consequences of the research
findings, not the statistical significance as reflected in a calculated p-value. Investigators should be
looking for a size or economic Importance measure. The p-value may provide some information, as
described above. However, it should not be considered the study’s goal or a measure of its contribution.

Finally, we would encourage accounting professors to improve their statistical knowledge.
The resources are immediately available. In addition, universities hold excellent summer programs. One
current example is an August program under the auspicious of Northwestern and Duke Universities.

7. Conclusions

Our purpose in this paper has been to encourage authors to consider ways to improve their
research. Our paper began by emphasizing the importance of careful model building, data selection, and
carpentry as well as the disclosures essential to assuring the integrity and reproducibility of the work.
The choice of topic should be based on its relevance to practice or on improving research techniques.

Researchers must understand the limitation of relying on p-values as the sole or even primary
support for their findings. Confidence intervals should replace reporting p-values. Until the reader
is informed of the importance of the results, framed by the economic or behavioral consequences of
the findings, the research objective has not been achieved. The issues addressed in this paper are
advanced as a means of accomplishing this objective. To assist in the mission, we strongly encourage
researchers to read the paper by Greenland et al. 2016, which offers a tutorial on statistical tests,
p-values, confidence intervals, and power. (Greenland et al. 2016 is also available through Dave Giles’
Blog of 2 May 2019 (Giles 2019) and Bob Jensen’s Blog 2 September 2019 (Jensen 2018). The Jensen blog
includes the article).
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1. Introduction

The American Statistical Association statement on “Statistical Significance and P-values”
(Wasserstein and Lazar 2016) aimed at reminding the statistics community about a number of pitfalls
that are commonly fallen into, in the everyday use of p-values. The statement and accompanying
introduction also pointed to the rich history of the statisticians who have articulated the issues,
providing a long list of references. This raises a question: If no one has listened before, will they
be swayed by this latest exhortation? Perhaps a numerical example might be more convincing—an
example that illustrates that the issue is less that the common use of p-values is philosophically
misguided, and more that the numbers can just be completely wrong (for evidence that these issues
are of real, applied importance in economics and finance see Kim and Ji (2015).

One way in which to understand the misuse of the p-value is as a misapplication of the modus
tollens argument. Suppose we had data that would prove a null hypothesis to be true or false, with
certainty. If the null hypothesis is true, then the data would support the null with certainty. So if the
data did not support the null, we would know that the null is false. However, such logic does not
apply to statistical reasoning, where the data does not give answers with certainty. If the null is true,
then a small p-value is unlikely. The fallacy of applying modus tollens is that it may be that if the null is
false, then a small p-value is also unlikely.

Problems with the misuse of p-values have been understand for a very long time—at least in
principle. The purpose here is to provide a new-but-simple example of the disconnect between a
p-value and the probability that a null hypothesis is true—adding to the long list of existing examples.
Beginning with a quick review of what has been said in the past may be useful. There are a number of
concerns with regard to p-values, which have been discussed at least as far back as Berkson (1942), and
as recently as Wasserstein and Lazar (2016). The latter also includes many references. I focus here solely
on the issue that a p-value is not designed to speak to the relative merits of a null hypothesis versus
the alternative. Nickerson (2000) explains the problem, and gives many further references. Trafimow
(2003) puts the matter succinctly, “although one can calculate the probability of obtaining a finding
given that the null hypothesis is true, this is not equivalent to calculating the probability that the null
hypothesis is true given that one has obtained a finding.”1 Trafimow (2005) is more pointed, writing,

1 See also Trafimow (2015) and Trafimow and Marks (2015). Trafimow offers a bit of history and explanations that are suitable
for students at https://www.youtube.com/watch?v=dsp_hSIsacQ.
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“A p-value can be a dramatic overestimate or underestimate of the desired posterior probability of the
null hypothesis depending on the prior probability of the null hypothesis and the probability of the
finding given that the null hypothesis is not true.”

Dickey (1977) points out that the area under the tail is not, in general, a good approximation to
the Bayes factor. Berger and Sellke (1987) summarize the issue nicely, writing that “actual evidence
against a null (as measured, say, by posterior probability or comparative likelihood) can differ by
an order of magnitude from the p-value. . . . The overall conclusion is that p-values can be highly
misleading measures of the evidence provided by the data against the null hypothesis” Trafimow and
Rice (2009) show that the p-value need not even be very highly correlated with the true probability of
the null hypothesis.

The point addressed here is the ASA’s second principle, “P-values do not measure the probability
that the studied hypothesis is true . . . ” Or as Pearson (1938) wrote eight decades ago, “Gosset . . .
had a tremendous influence on the . . . idea which has formed the basis of all the . . . researches of
Neyman and myself. It is the simple suggestion that the only valid reason for rejecting a statistical
hypothesis is that some alternative hypothesis explains the events with a greater degree of probability.”
Hubbard and Bayarri (2003) explain the difference between Fisher’s advocacy of the p-value and
the idea of Neyman and Pearson to compare a null hypothesis to an alternative, offering historical
perspectives as well. Robinson and Wainer (2002) discuss a number of issues with the use of p-values,
including the point that “ . . . many users of NHST [Null Hypothesis Significance Testing] interpret the
result as the probability of the null hypothesis based on the data observed. . . . This error suggests that
users really want to make a different kind of inference—a probabilistic statement of the likelihood of
the hypothesis”, which is the point that we pursue below.2 Hubbard and Lindsay (2008) write that
“P-Values Exaggerate the Evidence Against the Null Hypothesis”. This is the most damning criticism of the
p-value as a measure of evidence.” (Emphasis in the original). We shall see, however, that it is also
possible for a p-value to understate the evidence against the null.

2. The General Problem

Wasserstein and Lazar (2016) succinctly remind everyone that “Informally, a p-value is the
probability under a specified statistical model that a statistical summary of the data . . . would be equal
to or more extreme than its observed value.” Following Trafimow (2005), suppose that we call finding
that probability to be equal to or more extreme to be the “finding”, or simply, F. The “philosophical”
problem is that p-values summarize P(F|Hypothesis), while we are, with rare exception, interested in
P(Hypothesis|F). The two are related by Bayes’ Theorem, but they are not the same. Pointedly, they
need not even be close. As a reminder, the p-value is calculated by assuming that the null hypothesis is
true, and then calculating the probability that some observed outcome would come about under the
null hypothesis. The classic case is to calculate the probability that an estimated parameter should be
as far or farther from a point that is specified by the null, as is the observed estimate. The p-value is
P(F|Hypothesis), but from Bayes’ theorem:

P(Hypothesis|F) = P(F|Hypothesis)× P(Hypothesis)
P(F)

(1)

The generic reason that the p-value need not be close to the conditional probability of the
hypothesis is that the p-value is missing the other two elements in Equation (1). Since this is obvious,
it is probably worth commenting on why the deployment of the p-value remains nearly pervasive.
The requirement to specify P(Hypothesis) is sometimes viewed as non-scientific, as it comes from
something other than the data at hand. Also, the specification of P(F) generally requires considerable

2 Robinson and Wainer (2002) take a more sanguine view of the possible damage of conflating the Fisherian and
Neyman–Pearson approaches than does Hubbard and Bayarri (2003).
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information about the alternative hypothesis, certainly much more than merely the idea that the
alternative is anything other than the null.

The notion that the p-value summarizes P(F|Hypothesis) is an oversimplification, of course, as
it ignores conditioning on the econometric specification of the entire estimate. Really, the p-value
gives P(F|Hypothesis; speci f ication). Conditioning on specification carries through to the left side of
Equation (1), but in what follows, I will omit it for the sake of brevity. In addition, when one applies
Bayes’ Theorem, the result is really conditioned on the prior specified, although this is traditionally
omitted from the notation. It is also true that frequentists and Bayesians sometimes disagree over the
entire nature of the statistical enterprise, including even the meaning of “probability.” Nothing in what
follows speaks to these deeper issues.

3. A Simple Example of the Problem

Consider the decision of whether a coin is fair or not, based on the number of heads, h, observed
after n tosses. If there are 26 heads out of 64 tosses, the p-value is 0.08 (so the null seems very unlikely).
Though a bit short of the magic number 0.05, that’s a sufficiently low p-value that a sympathetic
editor might consider publication. Doing the Bayes’ Theorem calculation requires some additional
assumptions, but arguably innocuous assumptions suggest that the coin is more likely than not, fair,
P( f air|data) = 0.59—a strikingly different conclusion (“Arguably innocuous” being taken here as the
prior odds for the coin being fair being 50/50, and that if the coin is not fair, all we know is that the
probability of a head is between zero and one). Note that since the posterior is not far from the prior,
we would conclude that the data is not very informative, which is probably not the conclusion one
would draw from looking at the 0.08 p-value.

In this example, the studied hypothesis is that the mean chance of a head is μ = 0.5, and that
the p-value is FB(h, nμ = 0.5) + (1 − FB(n − h, nμ = 0.5), where FB is the cdf (cumulative distribution
function) of the binomial distribution. Bayes Theorem gives us P(μ = 0.5|h, n) as a function of the
binomial probability mass function PB, and a prior over μ, P(μ).

P(u = 0.5|h, n) =
PB(h, n|μ = 0.5)× P(μ = 0.5)∫ ∞

−∞ PB(h, n|μ)× P(μ)dμ

Unlike the formula for calculating the p-value, here, the answer requires some extra inputs. Most
researchers would probably agree that the probability of a head is between zero and one, so that
outside that range, P(μ) equals zero. Beyond that, we probably want to put some finite mass onto
the studied hypothesis. π ≡ P(μ = 0.5) = 0.5 might be thought of as neutral.3 Also, we might be as
ignorant as possible about alternative values, by spreading the rest of the mass uniformly between the
limits, so between zero and one, P(μ) = 1. This gives:

P(μ = 0.5|H, n) =
PB(h, n|μ = 0.5)× π∫ 1

0 PB(h, n|μ)dμ × (1 − π) + PB(h, n|μ = 0.5)× π

Using these assumptions gives us the P(μ = 0.5|h = 26, n = 64) = 0.59 value given above. Of
course, varying counts of heads give different probabilities and p-values, with the relation between the
two for the 64 coin tosses shown in Figure 1. If the p-value gave the probability that the hypothesis
were true, the plot would lie along the 45◦ line. However, it does not do so. Regardless, the more
important lesson is that the curve is often very far from the 45◦ line, and indeed, it can lie either above
or below.

3 A dedicated Bayesian might point out that in the presence of prior information, a relatively non-informative prior would
not be appropriate. An informative prior might lead to P(μ = 0.5|H, n), either closer to the p-value or farther away.
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Different priors do give different probabilities for the studied hypothesis, so there may well be a
prior for which the p-value does coincide with the correct probability for the studied hypothesis. In the
example here, if we put a prior weight, π, on the fair coin that is equal to 0.04, we obtain a probability
that is equal to the 0.08 p-value. Still, it seems likely that a p-valuista who rejects a fair coin did not
intend to declare a prior of 96 percent against the coin being fair.

Figure 1. Relation between probability of the null and the p-value for various observed heads.

4. Summary

The point in the ASA statement is not that p-values give the wrong answer; the point is that
p-values usually commit what (Raiffa (1968), attributing the idea to John Tukey) called “errors of the
third kind: solving the wrong problem.” Not always, of course. For example, in a capital punishment
case, we might well be interested only in controlling for Type I error against a null of not guilty, as
distinct from deciding whether the accused is innocent or guilty. But in most cases, we do care about
what the data tells us with regard to the probability of the studied hypothesis. As a practical matter,
the p-value cannot be expected to be a good guide for this probability.
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