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Preface to ”Advanced Deep Learning Strategies for the

Analysis of Remote Sensing Images”

The last two decades have unveiled that remote sensing (RS) has become an essential technology

in monitoring urban, atmospheric, and ecological changes. The increased availability of satellites

and airborne sensors with different spatial and spectral resolutions has made this technology a key

component in decision making. In addition to these traditional platforms, a new era has been opened

recently by the adoption of UAVs for diverse applications such as policing, precision farming, and

urban planning.

The great potential provided in terms of observation capability introduces similarly great

challenges in terms of information extraction. However, processing the massive amounts of data

collected by these diverse platforms is impractical and ineffective using traditional image analysis

methodologies. This calls for the adoption of powerful techniques that can extract reliable and

impressive information. In this context, deep learning (DL) strategies have recently been shown

to hold the great promise of addressing the challenging needs of the RS community. Indeed, the

introduction of DL dates back decades ago, when the first steps towards building artificial neural

networks were undertaken. However, due to the limited processing resources, it did not reach a

cutting-edge success in data representation and classification tasks until the recent appearance of

high-performance computing facilities. This in turn enabled the design of sophisticated deep neural

architectures and boosted the precision of many problems to groundbreaking performances. In this

context, this book presents several contributions for the analysis of remote sensing imagery, including

interesting topics related to scene classification, semantic segmentation, and image retrieval.

Yakoub Bazi, Edoardo Pasolli

Editors
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Deep Multi-Scale Recurrent Network for Synthetic
Aperture Radar Images Despeckling

Yuanyuan Zhou, Jun Shi *, Xiaqing Yang, Chen Wang, Durga Kumar and Shunjun Wei

and Xiaoling Zhang

School of Information and Communication Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China
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Abstract: For the existence of speckles, many standard optical image processing methods, such as
classification, segmentation, and registration, are restricted to synthetic aperture radar (SAR) images.
In this work, an end-to-end deep multi-scale recurrent network (MSR-net) for SAR image despeckling
is proposed. The multi-scale recurrent and weights sharing strategies are introduced to increase
network capacity without multiplying the number of weights parameters. A convolutional long
short-term memory (convLSTM) unit is embedded to capture useful information and helps with
despeckling across scales. Meanwhile, the sub-pixel unit is utilized to improve the network efficiency.
Besides, two criteria, edge feature keep ratio (EFKR) and feature point keep ratio (FPKR), are
proposed to evaluate the performance of despeckling capacity for SAR, which can assess the retention
ability of the despeckling algorithm to edge and feature information more effectively. Experimental
results show that our proposed network can remove speckle noise while preserving the edge and
texture information of images with low computational costs, especially in the low signal noise ratio
scenarios. The peak signal to noise ratio (PSNR) of MSR-net can outperform traditional despeckling
methods SAR-BM3D (Block-Matching and 3D filtering) by more than 2 dB for the simulated image.
Furthermore, the adaptability of optical image processing methods to real SAR images can be
enhanced after despeckling.

Keywords: synthetic aperture radar; despeckling; multi-scale; LSTM; sub-pixel

1. Introduction

Synthetic aperture radar (SAR), owing to its all-weather and all-time condition operation, has
been widely applied to microwave remote sensing areas, such as topographic mapping, military target
reconnaissance, and natural disaster monitoring [1,2]. SAR imaging achieves high range resolution
by exploiting pulse compression technique and high azimuth resolution by using radar platform
to form a virtual antenna synthetic aperture along track [3,4]. However, speckle noise exists in the
imaging results due to the coherent imaging mechanism of SAR, which leads to images quality and
readability reduction. Meanwhile, the existence of speckles limits the effectiveness of the application
of common optical image processing methods to SAR images [5]. It thus restricts the SAR images
to further understanding and interpretation, increasing the difficulty of extracting roads, farmlands,
and buildings in the image and the complexity of spatial feature extraction in image registration,
and reducing the accuracy of detection and classification of the objects such as vehicles and ships [6].
Speckle suppression is, therefore, an important task in SAR image post-processing.

To improve the quality of SAR images, there have been various speckle suppression methods
proposed, including multi-look processing technologies during imaging and image filtering methods
after imaging [1,7]. Multi-look processing divides the whole effective synthetic aperture length into

Remote Sens. 2019, 11, 2462; doi:10.3390/rs11212462 www.mdpi.com/journal/remotesensing1
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multiple segments. The incoherent sub-views are then superimposed to obtain the high signal-to-noise
ratio (SNR) images [8]. However, multi-look processing reduces the utilization of Doppler bandwidth,
resulting in a decrease of the spatial resolution of the imaging results, which cannot meet the
requirements of high resolution [9].

The filtering methods are mainly divided into three categories: the spatial filtering method,
the transform domain filtering method, and the non-local mean filtering method. Median filtering
and mean filtering are the earliest spatial filtering methods of traditional digital image processing.
Although these two methods can suppress speckles to a certain extent, it leads to image blurring
and objects edge information loss. Afterward, Lee filter [10], Frost filter [11], and Kuan filter [12] are
designed for speckles suppression of SAR images. Based on the coherent speckle multiplier model,
Lee filter selects a fixed local window in the image, assuming that the prior mean and variance can be
calculated by the local region [10]. This method has a small amount of computation, but the selection
of local window size has a great influence on the result, and the details and edge information of the
image may be lost [13]. Frost filter assumes that the SAR image is a stationary random process and
coherent spot noise is multiplying noise, and uses the least mean square error criterion to estimate
the real image [11]. For the reason that the actual SAR image does not fully meet the hypothesis, the
SAR image processed by this method will have blurred edges in areas with rich details. Kuan filters to
apply sliding windows to estimate the local statistical properties of the image and then replaces the
global characteristics of the image with these local statistical properties [12].

The representatives of transform domain filtering methods are threshold filtering method and
multi-resolution analysis method based on wavelet transform. Donoho et al. first proposed a hard
threshold and soft threshold denoising method based on wavelet transform [14]. After that, Bruce
and Gao et al. proposed semi-soft threshold function methods to improve the hard threshold and
soft threshold denoising methods [15,16]. This method solved the problems of discontinuity of hard
threshold function and constant deviation of reconstructed signal with soft threshold function. He et al.
later proposed a wavelet Markov model [17], which achieved a significant result in SAR images
denoising. However, the wavelet transform cannot deal with two- and higher-dimensional images
well. Because in the case of high-dimensional wavelet basis, one-dimensional wavelet basis cannot
obtain the optimal representation of the two-dimensional function. In recent years, the appearance of
multi-scale geometric analysis has made up this defect. Also, multi-scale geometric analysis tools are
abundant, such as Ridgelets transformation, Curvelets transformation, Brushlets transformation, and
Contourlets transformation [18–20]. These transform domain filtering methods have good coherent
spots suppression capability, which preserved image details and edge information while speckles
are removed. However, the processing of these algorithms is based on local characteristics, which is
complex with a large amount of computation and easily producing pseudo-Gibbs stripes.

The non-Local Means (NLM) filtering method [21] proposed by Buades et al. repeatedly searched
the whole image with similar image blocks and used similar texture regions instead of noise regions to
achieve denoising. The authors of [22,23] applied NLM to SAR image denoising, which can effectively
eliminate the speckles. Kervrann et al. [24] further improved NLM by proposing a new adaptive
algorithm that modified the similarity measurement parameters of NLM. Dabov et al. [22] proposed
a Block-Matching and 3D filtering (BM3D) algorithm which applied the local linear minimum mean
variance (MMSE) criterion and wavelet transform, and combined the non-local mean idea with the
transform domain filtering method. It is one of the best methods for denoising at present. However,
this algorithm needs a large number of search operations at the cost of a large amount of computation
and low efficiency.

In recent years, deep convolutional neural network (CNN) has developed rapidly, which provides
a new idea for SAR image despeckling. Wang et al. constructed an image despeckling convolutional
neural network (ID-CNN) in [25]. ID-CNN can directly estimate the speckle distribution and eliminate
the estimated speckles from the image to obtain a clean image. Different from the ID-CNN, Yue et al.
in [6], combining the statistical model with CNN, proposed a framework that does not require
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reference images and could work in an unsupervised way when trained with real SAR images.
Bai et al. [26] added fractional total variational loss to the loss function to remove the obvious noise
while maintaining the texture details. The authors of [27] proposed a CNN framework based on dilated
convolutions called SAR-DRN. This network amplified the receptive field by dilated convolutions
and further improved the network by exploiting the skip connections and a residual learning strategy.
State-of-the-art results are achieved in both quantitative and visual assessments.

In this study, we design an end-to-end multi-scale recurrent network for SAR image despeckling.
Unlike [9,25–27], which only utilized CNN to acquire speckle distribution characteristics and
additional division operation or subtraction operation to remove speckle, we use the network
to learn the distribution characteristics of speckle noise, meanwhile automatically implementing
speckle suppression to output clean images. The proposed network is based on the encoder–decoder
architecture. To improve the operation efficiency, in the decoder part, we use the subpixel unit to
implement up-sample on the feature maps instead of the deconvolutional layer. Besides, this paper
applies a multi-scale recurrent strategy, which inputs the resized images with different scales to the
network, and different scale inputs share the same network weights parameters. So, the network
performance can be improved without increasing the network parameters and the output which is
friendly to the optical image processing algorithm can be obtained. Also, the convolutional LSTM unit
is used to implement information transmit among each scale. Although our network is the same as the
network based on noise output, i.e., a fully convolutional network, our MSR-net contains the pooling
layer that can reduce the dimension of the network and further reduce the amount of computation to
a great extent. Lastly, we propose two evaluation criteria based on image processing methods.

The paper consists of 6 parts. In Section 2, we analyze the speckles of SAR images and briefly
introduce CNN, and convolutional LSTM. After providing the framework of our proposed MSR-net in
Section 3, the result and discussion of the experiment are shown in Sections 4 and 5. The last section
will summarize this paper.

2. Review of Speckle Model and Neural Network

2.1. Speckle Model of Sar Images

Multiplicative model is usually used to describe speckle noise [28] and the formula is defined as:

I = ps · n, (1)

where I is image intensity, ps is a constant which denotes the average scattering coefficient of objects
or ground, and n denotes the speckle which is independent with ps statistically.

For the homogeneous SAR image, the single-look intensity I obeys negative exponential
distribution [29] and its probability distribution function (PDF) is defined as:

p(I) =
1
ps

exp
(
− I

ps

)
. (2)

The multi-look processing methods are usually used to improve the quality of SAR images by
diminishing the speckle noise. If the Doppler bandwidth is divided into L sub-bandwidths during
imaging, and Ii is the single-look intensity image corresponding to each sub-bandwidth, the result of
multi-look processing is:

I =
1
L

L

∑
i=1

Ii, (3)

3



Remote Sens. 2019, 11, 2462

where L is the number of looks. If Ii obeys the exponential distribution in Equation (2), then after
multi-look averaging, the L-look intensity image follows the Gamma distribution [1], and the PDF is:

p (I) =
1

psΓ(L)

(
LI
ps

)L−1
exp

(
− LI

ps

)
, L ≥ 1, (4)

where Γ(L) denotes the Gamma function. The PDF of L-look speckle n can be obtained by applying
the product model on Equations (1) and (4),

p(n) =
LLnL−1 exp (−Ln)

Γ(L)
, L ≥ 1. (5)

2.2. Convolutional Long Short-Term Memory

Convolutional neural networks (CNNs) have powerful capabilities of extracting spatial features
and can automatically extract universal features through back-propagation algorithms driven by
dataset [30,31], however they cannot be used to process sequence signals directly for the reason that
the input is independent with each other, and the information flows strictly in one direction from layer
to layer.To solve this problem, we introduce convolutional long short-term memory (ConvLSTM) [32]
to the network, the inner structure of ConvLSTM is shown in Figure 1. As a special kind of RNN, long
short-term memory network (LSTM) has internal hidden memory which allows the model to store
information about its past computations and capable of learning long-term dependency [33]. Different
than standard LSTM, all of the features variables of ConvLSTM including the input Xt, cell state Ct,
the output of the forget gate Ft, input gate it, and output gate Ot are three-dimensional tensors, the
latter two of which are spatial dimensions width and height. The key equations of ConvLSTM are
defined as:

Ft = σ(Wf [Ht−1, Xt] + b f ),

it = σ(Wi[Ht−1, Xt] + bi),

C̃t = tanh(WC[Ht−1, Xt] + bc),

Ct = Ft ∗ Ct−1 + it ∗ C̃t,

Ot = σ(Wo[Ht−1, Ft] + bo),

Ht = Ot ∗ tanh(Ct),

(6)

where “∗" and “σ" denote the Hadamard product and the logistic sigmoid function, respectively.
Ft controls the abandoned state information of the last layer and it is in charge of current state update,
i.e., C̃t. Wf , Wi, Wc, and Wo represent weights of each neural unit with b f , bi, bc, and bo denoting the
corresponding offsets.

Figure 1. Inner structure of convolutional long short-term memory (ConvLSTM) [32].
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3. Proposed Method

An end-to-end network MSR-net for SAR image despeckling is proposed in this paper. Rather
than using additional division operation [25,26] or subtraction operation [9,27], our network can
automatically perform despeckling and generate a clean image. In this section, we first introduce the
multi-scale recurrent architecture and then describe specific details through a single-scale model.

3.1. Architecture

MSR-net is built based on cascaded subnetworks, and each subnetwork contains three parts:
encoder, decoder, and ConvLSTM unit, as illustrated in Figure 2. Different levels of subnetworks
correspond to different scales of inputs and outputs. The next scale speckled image and the output of
current subnetwork are combined as the input of next-level subnetwork. In addition, an LSTM unit
with single input and two-output is embedded between encoder and decoder. Specifically, one output
is connected to the decoder, and the other output which represents the hidden state is connected to
LSTM unit of the next subnetwork.

Figure 2. The architecture of Multi-scale Recurrent. The yellow arrow denotes up-sampling by one time.

Different from the general cascaded network like [34], which uses three stages of independent
subnetworks, all the state features flow across scales and share the same training parameters in
MSR-net. Owing to the multi-scale recurrent and parameter share strategy, the number of parameters
that need to be trained in MSR-net is only 1/3 of [34].

For the subnetwork, the output Fi of encoder Neten, which takes the speckled image and
despeckled result up-sampled from the previous scale as input, can be defined as:

Fi = Neten

(
Ii

in, up(Ii+1
o ); Θen

)
, (7)

where Ii
in is the input image with speckle noise, Θen is the weights parameters of Neten. i = 0, 1, 2, ...

is the scale index. The larger i is, the lower the resolution is. i = 0 represents the original resolution
and i = 1 indicates down sampling once. Ii+1

o is the output of the previous coarse scale. up(·) is the
operator that adapts features or images from the (i + 1)-th to the i-th scale, which is implemented by
bilinear interpolation.

To exploit the information contained in feature maps of different scales, a convolutional LSTM
module is embedded between the encoder and the decoder. The ConvLSTM can be defined as:

5
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hi, gi = ConvLSTM
(

up(hi+1), Fi; ΘLSTM

)
, (8)

where ΘLSTM is the set of parameters in ConvLSTM, hi is the hidden state which is passed to the next
scale, hi+1 is the hidden state from the previous scales, and gi is the output of the current state (scale).
Finally, we use Θde to denote the parameters of the decoder, and the output can be defined as:

Ii
o = Netde

(
gi; Θde

)
. (9)

3.2. Single Scale Network

Details of the MSR-net are introduced by the single-scale model in this section. As shown in
Figure 3, the single-scale model consists of two parts: encoder and decoder. The encoder includes
three building blocks: convolutional layer, pooling layer, and Res block.

Figure 3. Architecture of Single Scale Modle

The convolution unit performs convolution operation and non-linear activation. Increasing the
number of convolutional layers can enhance the feature extraction ability [35,36]. Multiple Res blocks
are added after the convolutional layer while designing the network. Unlike the convolution unit,
skip connection proposed by He et al. [37] is built into this block, which can effectively avoid gradient
explosion or gradient disappearance, as well as increasing the training speed.

The size of the input and output of the convolutional layers keeps the same as the despeckling
networks designed in [6,25,27], which increases the amount of computation to a certain extent.
We reduce the amount of calculation by decreasing the dimension of the feature maps, i.e., adopting the
pooling layer. We choose max pooling operation with the 2 × 2 pooling kernel in this layer. It should
be noted that the pooling layer can also be replaced by strided convolutions [38].

The decoder consists of the convolutional layer and the sub-pixel units. The width and height of
the input feature map to the decoder are only 1/4 of the original image after down-sampling twice
through the pooling layer. Therefore, the up-sampling operation is required to make the output image
of the network the same as the input size. However, an up-sampling operation such as transposed
convolution used in [39,40] needs a high amount of computation and causes unwanted checkerboard
artifacts [41,42]. A typical checkerboard pattern of artifacts is shown in Figure 4. To reduce the network
runtime and avoid the checkerboard pattern of artifacts, the sub-pixel convolution described in
Section 3.3 is used to implement the up-sampling operation.

6
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Figure 4. Diagram of checkerboard artifacts. (a) original image without noise; (b) despeckling image
with checkerboard artifacts caused by transposed convolution.

3.3. Sub-Pixel Convolution

Sub-pixel convolution, also called as pixel shuffle, is an upscaling method first proposed in [43]
for image super-resolution tasks. Different from the commonly used up-sampling methods in deep
learning such as transposed convolution and fractionally strided convolution, sub-pixel convolution
adopts channel to space method which achieves spatial scale-up amplification by rearranging pixels in
multiple channels of the feature map, as illustrated in Figure 5.

Figure 5. The sub-pixel convolutional operation on the input feature maps with an upscaling factor of
r = 2, channel c = 1.

For a sub-pixel unit with r times up-sampling, its output image is defined as Iup, and we have
Iup ∈ R

W×H×c, in which W, H, and c denote the width, height and channels of Iup. The sub-pixel
convolution operation is defined as:

Iup(x, y, c) = F(�x/r�, |y/r�, c · r · mod(y, r) + c · mod(x, r) + c) (10)

where Iup(x, y, c) is the value of the pixel at the position (x,y) for the cth channel. F is the input of
sub-pixel and F ∈ R

W/r×H/r×cr2
. �·� represents floor function that takes as input a real number and

gives as output the greatest integer less than or equal to it [43]. After sub-pixel convolution operation,
the elements of F are rearranged to the output Iup by increasing the horizontal and vertical count,
and decreasing channel count. For example, when a 64 × 64 × 4 feature map is passed through the
sub-pixel unit, an output with shape 128 × 128 × 1 will be obtained.

3.4. Proposed Evaluation Criterion

In this paper, the peak signal to noise ratio (PSNR) [44], structural similarity (SSIM) [45], equivalent
number of looks (ENL) [46], and two new proposed evaluation criterions edge feature keep ratio (EFKR)
and feature point keep ratio (FPKR) are used to evaluate the performance of despeckling methods.
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PSNR is the ratio between the maximum possible power of a signal and the power of corrupting
noise that affects the fidelity of its representation, which has been widely used in quality assessment of
reconstructed images. SSIM is a metric of image similarity. ENL can describe the smoothness of regions,
and no reference image is needed for its calculation, so it can be used to evaluate the performance of
despeckling methods for real SAR images.

3.4.1. Edge Feature Keep Ratio and Feature Point Keep Ratio

PSNR and SSIM can effectively evaluate the overall performance of despeckling methods.
Specifically, PSNR measures noise level or image distortion, SSIM measures the similarity between
two images, and ENL measures the degree of region smoothing. They are not, however, capable of
evaluating the edge and typical features retention ability in despeckling tasks directly. In this section,
we propose two evaluation criteria that can compensate for the above deficiencies, i.e., edge feature
keep ratio (EFKR) and feature point keep ratio (FPKR).

(a) EFKR: from the edge detection results shown in Figure 6, we have the following observations.
(1) The edge outline of the speckled image is blurred, and there are discrete points in the image; (2) the
edge outline is clear after despeckling and there is no discrete point, which is in agreement with the
edge detection results of a clean image. Enlightened by this phenomenon, we design a quantitative
evaluation criterion EFKR with the ability of edge retention based on counting the number of pixels of
edges. The computation steps are as follows:

1. Edge detection processing for clean and test image using edge detection algorithms such as
Sobel [47], Canny [48], Prewitt [49], and Roberts [50] methods. After this, two images only with
only edge lines are obtained. The values of pixels in the edge position are set to 1, the values of
the other position are set to 0.

2. Bit-wise and operation on two images from step 1, values at the position where the edges coincide
are set to 1, values at other locations are set to 0.

3. Count the number of value 1 in the edge detected the result of a clean image and the number of 1
in step 2, and calculate the ratio of the two numbers.

Figure 6. Edge detection results. Images from left to right correspond to a clean image, an image with
speckle noise, and image after despeckling.
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The ratio of these two factors is the edge feature retention ratio, which is defined as:

EFKR =
sum(edge(X)&edge(Y))

sum(edge(Y))
, (11)

where & and sum denotes the bit-wise conjunction operation and sum operation, and edge represents
edge detection.

(b) FPKR: for real SAR images, ENL is only able to evaluate the smooth level but not the retention
ability of typical features such as edges, corners in the image. SIFT [51] can find feature points from
different scales and obtain the ultimate descriptor of features. Also, the key points found by SIFT
are usually corner points, edge points, bright spots in dark areas, and dark points in bright areas.
These points are robust to light, affine transformations, and other transformation. The registration
method based on SIFT first uses SIFT to obtain the feature points of the image to be registered, the
reference image and their descriptor then matches the feature points according to descriptor and
obtains one-to-one corresponding feature point pairs. Finally, the transformation parameters are
calculated, and the image registration is carried out.

For SAR images, the registration of feature points and descriptors at the lights spots of speckles
are redundant, which also reduce the efficiency and accuracy of subsequent searching of matching
points. Based on this phenomenon, we design an evaluation criterion FPKR targeting at key feature
points. We first execute an affine transformation to the evaluation image, then use the SIFT algorithm
to find the feature points in the two images before and after the transformation, and finally match the
feature points. The better the despeckling performs, the more typical features are preserved. The more
prominent the feature descriptor obtained by SIFT, the greater the difference of descriptor between
different features, so more effective feature point pairs can be searched efficiently. FPKR is defined as:

FPKR =
Nmatch(X, Xt)

min(N(X), N(Xt))
(12)

where N(X), N(Xt) are the number of key points before and after SIFT, and Nmatch(X, Xt) denotes the
number of points for calculating transformation parameters.

4. Experiments and Results

4.1. Dataset

Because it is hard to collect real SAR images without speckle noise, we train networks by using
synthetic noise/clean image pairs. Public dataset UC Merced Land Use Dataset (http://weegee.vision.
ucmerced.edu/datasets/landuse.html) is chosen as the original clean image for training. The dataset
contains 21 scene classes with 100 optical remote sensing images per class. Each image has a size of
256× 256 pixels and the pixel resolution is 1 foot [52]. According to [27], we randomly select 400 images
from the dataset as the training set and use the remaining images for testing. Some training samples
are shown in Figure 7. Finally, after grayscale preprocessing, the speckled images are generated using
Equation (1) same as the [25,53]. The noise levels (L = 2, 4, 8, 12) correspond to the number of looks in
SAR, and the code of adding speckle noise is available on GitHub (https://github.com/rcouturier/
ImageDenoisingwithDeepEncoderDecoder/tree/master/data{_}denoise).

9
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Figure 7. Part of the sample images used to train the network.

4.2. Experimental Settings

All the networks are trained with stochastic gradient descent (SGD) with a mini-batch size
of 32. All weights are initialized by a modified scheme of Xavier initialization [54] proposed by
He et al. Meanwhile, we use the Adam optimizer [55] with tuned hyper-parameters to accelerate
training. The hyper-parameters are kept the same across all layers and all networks. Experiments are
implemented on TensorFlow platform with Intel i7-8700 CPU and an NVIDIA GTX-1080(8G) GPU.

The details of the model are specified here. The number of kernels in each unit is shown in
Figure 3. The kernel sizes for the first and last convolutional layers are 5 × 5, while all others are
3 × 3. Rectified Linear Units (ReLU) are used as the activation function for all layers except for the
last convolutional layer before sub-pixel unit. The L1 loss is chosen to train the network, which is
defined as:

L1(Θ) =
1
N

W

∑
y=1

H

∑
x=1

|ϕ (X(x, y); Θ)− C(x, y)|, (13)

where Θ is the filter parameters that need to be updated during training, C, X and ϕ (·) denote the
objective image without noise, the input image with speckle noise, and the output after despeckling,
respectively.

4.3. Experimental Results

The test results of our proposed network will be presented in this section. To verify the proposed
method, we compare the performance of our MSR-net with other three despeckling methods,
SAR-BM3D [22], ID-CNN [25], and Residual Encoder-Decoder network (RED-NET) [53]. The first one
is a traditional nonlocal algorithm based on wavelet shrinkage, and the latter two methods are based
on deep convolutional neural networks.

4.3.1. Results on Synthetic Images

Building, freeway, and airplane, three classes of synthetic images, are chosen as the test set
to evaluate the noise reduction ability of each method. Part of the processing results of different
algorithms under different levels of noise are shown in Figures 8 and 9.
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Figure 8. Test results on images of airplanes with four levels of noise. The noise level from left to right
is L = 2, L = 4, L = 8, and L = 12. (a) Speckled image (b) SAR-BM3D (Block-Matching and 3D filtering)
(c) image despeckling convolutional neural network (ID-CNN) (d) RED-Net (e) multi-scale recurrent
network (MSR-net).
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Figure 9. Test results on images of buildings with four levels of noise. The noise level from left to
right is L = 2, L = 4, L = 8, and L = 12. (a) Speckled image (b) SAR-BM3D (c) ID-CNN (d) RED-Net
(e) MSR-net.

From the figures, we can observe that the CNN-based methods, including our MSR-net, can
preserve more details like texture features in images than SAR-BM3D after despeckling. When the
noise is strong, the SAR-BM3D algorithm will cause blurring at the edge of the objects.

ID-CNN has a good performance on image despeckling, however, after filtering by the network,
pepper and salt noise appear in the image, which needs to be processed subsequently by using
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nonlinear filters such as median filtering and pseudo-median filtering. As the noise intensity increases,
the salt and pepper noise increase gradually.

MSR-net has excellent retention performance of spatial geometry features like texture features,
lines, and feature points. Compared with the other three algorithms, MSR-net has a higher smoothness
of smooth areas as well as a smaller loss of sharpness of edges and details, especially for strong speckle
noise. Also, more detail information in image will loose when the speckle noise is strong and more
local detail can be preserved in output images when the speckle noise is weak.

When the level of noise added to the test set is small, all the CNN-based approaches can get
state-of-art results. Therefore, it is difficult to judge the merits of these algorithms by using visual
assessments. Experimental results of evaluation indexes such as PSNR and SSIM are necessary for
these circumstances. The PSNR, SSIM, and EFKR evaluation indexes of the above methods are listed
in Tables 1–4, respectively. The bold number represents the optimal value in each row, while the
underlined number denotes the suboptimal value. We also test MSR-net with only one scale and call it
a single scale network (SS-net) during the experiment.

Table 1. The peak signal to noise ratio (PSNR), structural similarity (SSIM), and edge feature keep ratio
(EFKR) of test set with noise level L = 2.

Classes Index SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

building
PSNR 20.343 ± 0.043 21.639 ± 0.073 22.321 ± 0.065 22.467 ± 0.039 22.768 ± 0.052
SSIM 0.579± 0.005 0.599 ± 0.002 0.672 ± 0.005 0.663 ± 0.002 0.684 ± 0.004
EFKR 0.3872± 0.061 0.3888 ± 0.058 0.5131 ± 0.053 0.4950± 0.040 0.5322 ± 0.049

freeway
PSNR 22.478 ± 0.081 23.17± 0.046 25.157± 0.033 25.255 ± 0.057 25.526± 0.064
SSIM 0.581 ± 0.002 0.536 ± 0.003 0.662 ± 0.003 0.663 ± 0.048 0.680 ± 0.002
EFKR 0.3046± 0.052 0.3376 ± 0.061 0.5071 ± 0.061 0.4929 ± 0.064 0.5065 ± 0.057

airplane
PSNR 21.351± 0.045 24.006 ± 0.058 23.97± 0.062 24.166 ± 0.046 24.433± 0.049
SSIM 0.602 ± 0.004 0.641 ± 0.003 0.638 ± 0.001 0.636 ± 0.002 0.649 ± 0.005
EFKR 0.3048± 0.069 0.2965 ± 0.073 0.4929 ± 0.063 0.4800 ± 0.058 0.5123 ± 0.065

The bold number represents the optimal value in each row, while the underlined number denotes the
suboptimal value in each row.

Table 2. The PSNR, SSIM, and EFKR of test set with noise level L = 4.

Classes Index SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

building
PSNR 21.789 ± 0.046 24.319 ± 0.101 24.366 ± 0.059 24.279 ± 0.032 24.370± 0.038
SSIM 0.694 ± 0.003 0.721 ± 0.005 0.737 ± 0.006 0.722 ± 0.001 0.735 ± 0.005
EFKR 0.5029± 0.059 0.5459± 0.057 0.5646± 0.050 0.5742± 0.0423 0.6021± 0.051

freeway
PSNR 24.351 ± 0.059 26.008 ± 0.051 26.821 ± 0.063 26.734 ± 0.030 26.893 ± 0.049
SSIM 0.645 ± 0.003 0.670 ± 0.002 0.718 ± 0.005 0.711 ± 0.003 0.722 ± 0.003
EFKR 0.4897± 0.061 0.5019± 0.060 0.5469± 0.057 0.5511± 0.065 0.5608± 0.051

airplane
PSNR 23.261 ± 0.041 25.747 ± 0.067 25.849 ± 0.050 25.905 ± 0.046 26.046 ± 0.064
SSIM 0.657 ± 0.003 0.677 ± 0.005 0.691 ± 0.004 0.686 ± 0.002 0.693 ± 0.005
EFKR 0.4976± 0.061 0.5149 ± 0.058 0.5484 ± 0.056 0.5728 ± 0.039 0.5871 ± 0.055

The bold number represents the optimal value in each row, while the underlined number denotes the
suboptimal value in each row.
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Table 3. The PSNR, SSIM, and EFKR of test set with the noise level L = 8.

Classes Index SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

building
PSNR 23.851 ± 0.071 26.004 ± 0.055 25.685 ± 0.043 25.989 ± 0.064 26.026 ± 0.048
SSIM 0.752 ± 0.003 0.780 ± 0.002 0.769 ± 0.05 0.774 ± 0.004 0.782 ± 0.004
EFKR 0.5992± 0.065 0.6191± 0.055 0.6305± 0.050 0.6261± 0.0525 0.6476± 0.060

freeway
PSNR 26.374 ± 0.081 27.738 ± 0.049 27.785 ± 0.068 28.027 ± 0.053 28.111 ± 0.057
SSIM 0.714 ± 0.003 0.740 ± 0.006 0.751 ± 0.006 0.753 ± 0.004 0.757 ± 0.003
EFKR 0.5432± 0.041 0.5809± 0.053 0.5990± 0.052 0.5890 ± 0.057 0.5954± 0.048

airplane
PSNR 25.31 ± 0.064 27.438 ± 0.051 27.161 ± 0.044 27.404 ± 0.061 27.443 ± 0.042
SSIM 0.71 ± 0.005 0.731 ± 0.004 0.720 ± 0.004 0.728 ± 0.005 0.732 ± 0.002
EFKR 0.5872± 0.057 0.6039 ± 0.047 0.6113 ± 0.053 0.6187 ± 0.038 0.6293 ± 0.051

The bold number represents the optimal value in each row, while the underlined number denotes the
suboptimal value in each row.

Table 4. The PSNR, SSIM, and EFKR of test set with the noise level L = 12.

Classes Index SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

building
PSNR 24.979 ± 0.060 26.891 ± 0.043 26.879 ± 0.056 26.929 ± 0.071 26.942 ± 0.052
SSIM 0.781 ± 0.004 0.805 ± 0.0002 0.805 ± 0.004 0.802 ± 0.005 0.806 ± 0.003
EFKR 0.6184± 0.051 0.6441± 0.049 0.6528± 0.047 0.6596± 0.054 0.6664± 0.058

freeway
PSNR 27.444 ± 0.042 28.643 ± 0.059 28.905 ± 0.047 28.787 ± 0.066 28.893 ± 0.050
SSIM 0.747 ± 0.003 0.768 ± 0.006 0.782 ± 0.007 0.776 ± 0.004 0.778 ± 0.005
EFKR 0.5975± 0.056 0.6130± 0.053 0.6218± 0.056 0.6247± 0.067 0.6197± 0.051

airplane
PSNR 26.463 ± 0.053 28.362 ± 0.64 28.352 ± 0.078 28.349 ± 0.059 28.407 ± 0.065
SSIM 0.737 ± 0.005 0.756 ± 0.003 0.758 ± 0.003 0.754 ± 0.005 0.756 ± 0.006
EFKR 0.6008± 0.059 0.6275 ± 0.057 0.6432 ± 0.052 0.6465 ± 0.052 0.6433 ± 0.053

The bold number represents the optimal value in each row, while the underlined number denotes the
suboptimal value in each row.

Consistent with the results shown in Figures 8 and 9, our method has much better
speckle-reduction ability than non-learned approach SAR-BM3D at different noise levels. In addition,
the advantage of MSR-net will increase as the noise level increases. Taking airplane images for
instance, the PSNR/SSIM/EFKR of our proposed MSR-net outperform SAR-BM3D by about
3.082 dB/0.047/0.2075, 2.785 dB/0.036/0.0895, 2.133 dB/0.022/0.0421, 1.944 dB/0.019/0.0425 for
L = 2, 4, 8, 12.

Compared with CNN-based methods, MSR-net still has an advantage when the noise is
strong. When L = 2, the PSNR/SSIM/EFKR of MSR-net outperform ID-CNN, RED-Net by about
1.129 dB/0.014/0.1434, 2.356 dB/0.144/0.1689, 0.427 dB/0.008/0.2152 and 0.447 dB/0.012/0.0191,
0.369 dB/0.018/-0.006, 0.643 dB/0.011/0.0194 for building, freeway, and airplane, respectively. When L
= 4, the PSNR/SSIM/EFKR of MSR-net outperform ID-CNN, RED-Net by about 0.051 dB/0.134/0.0562,
0.885 dB/0.052/0.0589, 0.299 dB/0.016/0.0722 and 0.004 dB/-0.002/0.0375, 0.072 dB/0.004/0.0139,
0.197 dB/0.002/0.0143 for building, freeway and airplane, respectively.

In addition, we can see that our network does not always achieve the best test results. We consider
this may have a certain relationship with the feature distribution of the images. Although MSR-net can
only get sub-optimal test results for a certain class of images, the difference to the best result is small.
For other classes of images, the advantages of MSR-net are more considerable. For example, we can
observe from Table 1 that the EFKR of RED-Net only outperforms MSR-net by about 0.006 for freeway
images, while MSR-net can outperform RED-Net by about 0.0191 and 0.0194 for building and airplane
images. When the noise level L = 12, our network only gets four best test values, which suggests the
advantage of the multi-scale network becomes smaller while the noise is weaker, as shown in Table 4.

MSR-net with a single scale (SS-net) also has very good speckle-reduction ability. When the
noise intensity is weak, the performance is even better than multi-scale. For example, when L = 12,
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PSNR/SSIM/EFKR of the freeway are 28.787 dB/0.776/0.6247 and 28.893 dB/0.778/0.6197 for SS-net
and MSR-net, respectively. Ultimately, we can find by comparison that the edge detection effect of the
image has been significantly improved after despeckling.

4.3.2. Results on Real Sar Images

To further verify the speckle-reduction ability of our network for real SAR images, two SAR
sceneries are selected, as shown in Figures 10a and 11a, and these two images are imaging results of
spaceborne SAR RADARSAT-2.

It can be seen by comparing the subgraphs in Figures 10 and 11 that MSR-net generates the visually
best output among all the results and retains the edge sharpness as well as the detail information
about the structure in the image while removing the speckle noise. After filtering by SAR-BM3D,
the loss of edge sharpness of the original SAR image is obvious and most of the lines and texture
feature are blurred. ID-CNN and RED-Net can generate smooth results in homogeneous regions while
maintaining textural features in the image. However, from the red boxes, we can observe that they are
capable of retaining some texture features but not better than MSR-net. Although SS-net performs well
in despeckling for real SAR images, it is still worse than multi-scale MSR-net.

The ENL results are shown in Table 5. We can observe from the table that MSR-net has
an outstanding performance for real SAR image despeckling. For these four evaluation regions,
the three highest scores and one second highest score of the ENL are obtained by our MSR-net.

Figure 10. Test results of Real SAR images (RADARSAT-2). (a) Original, (b) SAR-BM3D, (c) ID-CNN,
(d) RED-Net, (e) single scale network (SS-net), (f) MSR-net.
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Figure 11. Test results of Real SAR images (RADARSAT-2). (a) Original, (b) SAR-BM3D, (c) ID-CNN,
(d) RED-Net, (e) SS-net, (f) MSR-net.

Table 5. The equivalent number of looks (ENL) of real SAR regions

Data Original SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

region1 3 51 104 317 394 540
region2 51 195 173 413 2906 644
region3 3 80 101 333 339 622
region4 4 99 95 235 369 560

The bold number represents the optimal value in each row.

To achieve FPKR results for real SAR data with different methods, we first apply the same affine
transformation to each image, as shown in Figure 12. SIFT is then applied to search for the feature
points and calculate their descriptors. Matching key points are ultimately conducted by minimizing
the Euclidean distance between their SIFT descriptors. Generally, the ratio between distances is
used [56] to obtain high matching accuracy. In the experiments, we select three ratios and the FPKR
results are shown in Tables 6 and 7. By comparing EFKR of each image, MSR-net performs better
than SAR-BM3D. Also, MSR-net shows advantages over other neural network-based algorithms.
Specifically, MSR-net achieves the best testing results in five out of six sets of experiments. It also
indicates that pre-processing to SAR images by MSR-net can effectively enhance the usefulness of SIFT
algorithm to SAR images and improve its performance and efficiency.
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(a) Before despeckling. (b) After despeckling.

Figure 12. Search results of feature point pairs for synthetic aperture radar (SAR) image before and
after despeckling.

Table 6. Feature point keep ratio (FPKR) results before and after despeckling for real SAR image.

fp1 fp2 FPKR (r = 0.25) FPKR (r = 0.30) FPKR (r = 0.35)

original 5637 4531 0.0004 ( 2 ) 0.0077 ( 35 ) 0.0362 (164)
SAR-BM3D 4554 5947 0.0046 (21) 0.0212 (110) 0.0894 (407)
ID-CNN 3233 3981 0.0049 (16) 0.0294 ( 95 ) 0.1148 (371)
RED-Net 3636 4644 0.0055 (20) 0.0292 (106) 0.0976 (355)
SS-Net 3429 4357 0.0052 (18) 0.0286 ( 98 ) 0.1155 (396)
MSR-net 3080 4216 0.0071 (22) 0.0425 (106) 0.0981 (302)

The value inside brackets is the number of feature points. The bold number
represents the optimal value in each column.

Table 7. FPKR results before and after despeckling for real SAR image.

fp1 fp2 FPKR (r = 0.25) FPKR (r = 0.30) FPKR (r = 0.35)

original 4511 3476 0.0012 ( 4 ) 0.0118 ( 41 ) 0.0437 (152)
SAR-BM3D 3878 5289 0.0044 (17) 0.0273 (106) 0.0952 (369)
ID-CNN 2021 2533 0.0124 (25) 0.0574 (116) 0.1366 (267)
RED-Net 2137 2797 0.0140 (30) 0.0543 (116) 0.1526 (326)
MSR-net 2021 2533 0.0166 (33) 0.0674(134) 0.1579 (314)

The value inside brackets is the number of feature points. The bold number
represents the optimal value in each column.

4.3.3. Runtime Comparisons

To evaluate the algorithm efficiency, we make statistics of the runtime of each algorithm in CPU
implementation. The runtime of different methods on images with different sizes is listed in Table 8.
We can see that the proposed denoiser is very competitive although its structure is relatively complex.
Such a good compromise between speed and performance over MSR-net is properly attributed to the
following two reasons. First, two pooling layers that can achieve spatial dimensionality reduction are
embedded in the MSR-net. Each pooling layer with the 2 × 2 pooling kernel can reduce the amount of
data that needs to be processed by the subsequent convolution operation to 25% of before. Second, in
contrast to the transposed convolution which increases the resolution of feature maps by padding and
complex convolution operation, sub-pixel unit, which up-samples feature maps by a periodic shuffling
of pixel values, is adopted to build our network.

Table 8. Runtime (s) of different methods of images with sizes of 256 × 256 and 512 × 512.

Size SAR-BM3D ID-CNN RED-Net SS-Net MSR-Net

256 × 256 12.79 0.448 2.241 0.339 0.586
512 × 512 52.813 1.562 8.943 1.342 2.375
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5. Discussion

5.1. Choice of Scales

To select a proper scale, building, freeway, and airplane, three classes of test images are used
to analyze. Figure 13 shows the testing results of networks with different scales. In the single-scale
network, recurrent modules ConvLSTM are replaced by a convolution layer to keep the same number
of convolution layers.

We can observe that as the scale increases, the values of the three evaluation metrics are all
improved. It suggests that exploiting the multi-scale information can help with improving network
performance. However, we can meanwhile find that the improvement is small while the scale is greater
than 3. We thus choose s=3 in our network to balance the network performance and complexity.
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Figure 13. Test results of proposed network with scale 1, 2, 3, 4 when nosie level L = 2.

5.2. Loss Function

The influence of loss function on network performance is also discussed in this paper. Instead of
L1 loss, L2 loss function is used to train our MSR-net. L2 norm loss, also called Euclidean loss, is the
most commonly used loss function in despeckling tasks. It is defined as:

L2(Θ) =
1

2N

W

∑
y=1

H

∑
x=1

‖ϕ (X(x, y); Θ)− C(x, y)‖2
2 (14)

where Θ is the filter parameter that needs to be updated during the training process, C is the ground
truth image without noise, X is the input image with speckle noise, and ϕ (·) is the output after
despeckling. The purpose of training network is to minimize the cost. Smaller loss value suggests
a smaller error between the network output and its corresponding ground truth.
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Figure 14. Evaluation index (PSNR, SSIM, and EFKR) values of MSR-net with L1 and L2 Loss.

As shown in Figure 14, the network trained by L2 loss function is more likely to obtain a higher
PSNR only for building images and the network trained by L1 loss function can obtain both slightly
higher PSRN and SSIM with the other images. But for EFKR, the advantage of L1 loss is significant
compared to L2 loss. Generally speaking, the L1 loss is more suitable to SAR despeckling task.

6. Conclusions

In summary, different from the existing despeckling network, MSR-net proposed in this paper
adopts the coarse-to-fine structure and the convolutional long short-term memory unit that can obtain
high-quality despeckling SAR images. During research, we find that the weights sharing strategy
of convolutional kernels can reduce network parameters and training complexity, and the sub-pixel
unit used in this work can reduce up-sampling complexity, improve network efficiency, and shorten
the runtime of the network with respect to the transposed convolutional layer. Meanwhile, new
design evaluation metrics EFKR and FPKR are introduced herein to evaluate the compatibility of
the despeckling algorithms to the optical image processing algorithms. Experimental results show
that our MSR-net has excellent despeckling ability and achieves the state-of-the-art results both for
simulated and real SAR images with low computational costs, especially in low signal noise ratio
cases. The adaptability of optical image processing algorithms to SAR images can be enhanced after
despeckling in our network.
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Abstract: Road network extraction is one of the significant assignments for disaster emergency
response, intelligent transportation systems, and real-time updating road network. Road extraction
base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches
are based on traditional machine learning algorithms, which are complex and computational because
of impervious surfaces such as roads and buildings that are discernible in the images. Given the
above problems, we propose a new method to extract the road network from remote sensing images
using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of
dense connection units and skips connections, which strengthens the fusion of different scales by
connections at various network layers. The performance of the advanced method is validated on two
datasets of high-resolution images by comparison with three classical semantic segmentation methods.
The experimental results show that the method can be used for road extraction in complex scenes.

Keywords: high-resolution remote sensing imagery; multi-scale; road extraction; machine
learning; DenseUNet

1. Introduction

The traffic road network is one of the essential geographic element of the urban system,
which has critical applications in many fields, such as intelligent transportation, automobile navigation,
and emergency support [1]. With the development of remote sensing technology and the advancement
of remote sensing data processing methods, high temporal and spatial resolution, remote sensing data
can provide high-precision ground information and permit the large-scale monitoring of roads. Remote
sensing image data has quickly become the primary data source for the automatic extraction of road
networks [2]. Automating road extraction plays a vital role in dynamic spatial development. Extracting
the road in the urban area is a significant concern for the research on transportation, surveying,
and mapping [3]. However, remote sensing images usually have sophisticated heterogeneous
regional features with considerable intra-class distinctions and small inter-class distinctions. It is
very challenging, especially in the urban area, as many buildings and trees exist, leading to shadow
problems and a large number of segmented objects. The shadows of roadside trees or buildings can be
observed from high-resolution images. Consequently, it is challenging to obtain high-precision road
network information in the automatic extraction of road networks from remote sensing images.

There are many image segmentation methods for these problems by such conventional methods or
machine learning algorithms. These methods are mainly divided into two categories: road centerline
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extraction and road area extraction. This paper focuses on extracting road areas from high-resolution
remote sensing images. The road centerline is a linear element, and the spatial geometry is a line
formed by a series of ordered nodes, which is an essential characteristic line of the road. The road
centerline is generally obtained from the segmented image of road binary map through morphology
or Medial Axis Transform (MAT) [4]. The road area is a kind of surface element. The road area is
generated by image segmentation. The different spatial shape structure of boundary lines forms
a variety of shape structures of surface elements [5]. Road centerline extraction [6,7] is used to
detect the skeleton of the road, while road area extraction [8–13] generates the pixel-level label of the
road, and there are some methods to extract the road area [14] while obtaining the road centerline.
Huang et al. [8] try to extract road networks from the Ranging (LiDAR) data and light detection.
Mnih et al. [9] used the Deep Belief Network (DBN) model to identify road targets in airborne images.
Unsalan et al. [10] integrated three modules of road shape extraction module, road center probability
detection module, and graphics-based module to extract road network from high-resolution satellite
images. Cheng et al. [11] automatically extracted the road network information from complex remote
sensing images based on the probability propagation method of graph cut. Saito et al. [12], based on the
output of the channel function is put forward a new method of CNN’s tabbed semantic segmentation.
Alshehhi et al. [13] proposed an unsupervised road segmentation method based on the hierarchical
graph. Road area extraction can be divided into pixel-level classification or image segmentation
problems. Song et al. [15] proposed a method of road area detection based on the shape indexing
feature of the support vector machine (SVM). Wang et al. [16] present a road detection method based
on salient features and gradient vector flow (GVF) Snake. Rianto et al. [17] proposed a method to
detect main roads from SPOT satellite images. The traditional road extraction method depends on
the selected features. Zhang et al. [18] selected the seed points on the road, determined the direction,
width, and starting point of the road in this section with a radial wheel algorithm, and proposed a
semi-automatic method for road network tracking in remote sensing images. Movaghati et al. [19]
proposed a new road network extraction framework by combining an extended Kalman filter (EKF)
and a special particle filter (PF) to recover road tracks on obstructed obstacles. Gamba et al. [20] used
adaptive filtering steps to extract the main road direction, and then proposed a road extraction method
based on the prior information of road direction distribution. Li et al. [21] gradually extracted the road
from the binary segmentation tree by determining the region of interest of the high-resolution remote
sensing image and representing it as a binary segmentation tree.

However, the manually selected set of features is affected by many threshold parameters, such as
lighting and atmospheric conditions. This empirical design method only deals with specific data,
which limits its application in large-scale datasets. Deep learning is a representation learning method
with multiple levels of representation, which is obtained by combining nonlinear but straightforward
modules, each module representing a level of representation to a higher, slightly more abstract level.
It allows raw data to be supplied to the machine and representations to be automatically discovered.
In recent years, the deep convolutional network has been widely used in solving quite complex
classification tasks, such as classification [22,23], semantic segmentation [24,25], and natural language
processing [26,27].

Most importantly, these methods have proven to be profoundly robust to the appearance of different
images, which prompted us to apply them to fully automated road segmentation in high-resolution
remote sensing images. Long promoted the fully-convolutional network (FCN) and applied it to the
field of semantic segmentation. Likewise, new segmentation methods based on deep neural networks
and FCN were developed to extract roads from high-resolution remote sensing images. Mnih [28] put
forward a method that combined the context information to detect road areas in aerial images.

He et al. [29] improves the performance of road extraction networks by integrating the spatial
pyramid pool (ASPP) with the Encoder–Decoder network to enhance the ability to extract detailed
features of the road. Zhang et al. [30] enhanced the propagation efficiency of information flow by fusing
dense connections with convolutional layers of various scales. Aiming at the rich details of remote
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sensing images, Li et al. [31] proposed a Y-type convolutional neural network for road segmentation of
high-resolution visible remote sensing images. The proposed network not only avoids background
interference but also makes full use of complex details and semantic features to segment multi-scale
roads. RSRCNN [32] extracts roads based on geometric features and spatial correlation of roads.
Su et al. [33] enhanced the U-Net network model based on available problems. According to the
characteristics of a small sample of aerial images, Zhang et al. [34] proposed an improved network-based
road extraction design framework. By refining the CNN architecture, Gao et al. [35] proposed the
refined deep residual convolutional neural network (RDRCNN) to enable it to detect the road area
more accurately. To solve the problems of noise, occlusion, and complex background, Yang et al. [36]
successfully designed an RCNN unit and integrated it into the U-Net architecture. The significant
advantage of this unit is that it retains detailed low-level spatial characteristics. Zhang et al. [37]
proposed the ResU-Net to extract road information by combining the advantages of a residual unit
and U-Net. According to the characteristics of the narrow, connected, complex road, Zhou et al. [38]
proposed the D-LinkNet model while maintaining the road information, integration of the multi-scale
characteristics of the high-resolution satellite images. Based on the iterative search process guided by
the decision function of CNN, Bastani [39] proposed RoadTracer, which can automatically construct
accurate road network maps directly from aerial images. For irregular footprint problems between road
area and image, Li et al. [40] proposed a combining GANs and multi-scale context polymerization of
semantic segmentation method, used for road extraction of UAV remote sensing images. Xu et al. [41]
put forward a kind of road extraction method based on local and global information, to effectively
extract the road information in remote sensing images.

Inspired by the Densely Connected Convolutional Networks and U-Net, we propose the
DenseUNet, an architecture that takes advantage of Densely Connected Convolutional Networks
and U-Net architecture. The proposed deep convolutional neural network is based on the U-Net
architecture. There are three differences between our deep DenseUNet and U-Net.

First, the model used dense units rather than ordinary neural units as the basic building blocks.
Second, the proportion of road and non-road in remote sensing images is seriously unbalanced. Thus,
this paper tries to analyze and propose ideas in terms of this issue. Finally, the performance of the
proposed method is validated by comparison with three classical semantic segmentation methods.

2. Methods

2.1. Encoder–Decoder Architecture

State-of-the-art semantic image segmentation methods are mostly based on Encoder–Decoder
architecture such as FCN [42], U-Net [43], SegNet [44]. An end-to-end trainable neural network
recognizes the road in images and accurately segmented at the pixel level. Encoders usually use
pre-trained models (such as VGG, Inception and ResNet), and each encoding layer includes the
convolution, batch normalization (BN), the ReLU function and max pool layer. Each convolutional
layer extracts features from all the maps in the previous layer, which has characteristics of simple
structure and strong adaptability. Batch normalization [45] normalizes the input of each layer to
reduce the internal-covariate-shift problem. It accelerates training and acts as a regularizer. The result
shows that estimators based on a connected deep neural network with ReLU activation function and
correctly selected the network. Pooling layer aims to compress the input feature map, which reduces
the number of parameters in the training process and the degree of overfitting of the model. The main
task of the Decoder is to map the distinguishable features to the pixel space for dense classification.
Road network density refers to the ratio of the total mileage of the road network to the space of a
given areaFor the extraction of relatively dense urban roads (in the same area, there are more roads),
especially from high-resolution images, significant obstacles are leading to unreliable extraction results:
complex image scenes and road models, as well as occlusion caused by high buildings and their
shadows. Because of the above problems, this paper proposes DenseUNet, which is also based on
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Encoder–Decoder architectures and designs a more dense connection mechanism for the Encoder layer.
Because of the complexity of road scenes, U-Net cannot identify road features at a deeper level, and the
generalization ability of multi-scale information is limited, which cannot adequately convey scale
information. DenseUNet is a network architecture in which each layer feeds forward (within each
dense block) directly to each of the other layers. For each layer, the feature map for all other layers is
treated as a separate input, and its feature map is passed as input to all subsequent layers. Additionally,
our approach has far fewer parameters due to the intelligent construction of the model. This kind of
network design method not only extracts low-level features such as road edges and textures but also
identifies the deep contour and location information of the road.

2.2. Backpropagation to Train Multilayer Architectures

Multilayer architectures can be trained by stochastic gradient descent. If only the input function
and internal weight of the module are relatively smooth, the gradient can be computed by using the
backpropagation process. The backpropagation process used to compute the gradient of the objective
function about the weight of stacked multilayer modules is only the practical application of chain
rules of derivatives. The significant idea is that the derivative (or gradient) of the module input can be
computed by working backward from the gradient of the module output [46].

Figure 1 shows that the input space becomes iteratively warped until the data points become
distinguishable through the data flow at various layers of the system. In this way, it can learn highly
complex functions. Deep learning is a form of presentation learning—providing the machine with
the raw data and developing the representations needed for its pattern recognition—that consists of
multiple representation layers. These layers are usually arranged sequentially and consist of a large
number of original nonlinear operations, where the representation of such a layer (the original data
input) is fed into the next layer and converted to a more abstract representation [47]. The output layer
uses softmax activation function to classify the image in one of the classes, and we can use fine-tuned
CNNs as feature extractors to achieve better results.

 
Raw data                     Layer 1                      Layer 2                 Output 

Figure 1. When data flows from one layer to another of the neural network, they are linearly separated by
iteratively distorting the data. The final output layer outputs the probabilities of any class. This example
illustrates the basic concepts of large-scale network usage.

2.3. DenseUNet

2.3.1. Network Architecture

We chose U-Net as the primary network architecture. In semantic segmentation, in order to
achieve better results, it is essential to retain low-level details while acquiring high-level semantic
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information. The low-level features can be copied to the corresponding high-level to create information
transmission paths, allowing signals to propagate naturally between the lower and higher levels, which
not only helps the backpropagation in the training process but also compensates for the low-level
and details of the high-level semantic features. We show that making use of dense units instead of
ugly units can further improve the performance of U-Net. In this paper, the dense block is used as
sub-module for feature extraction. By design, DenseUNet allows the layer to access all of its previous
feature maps. DenseUNet takes advantage of the potential of the network to efficient compression
models through feature reuse. It encourages reuse of features throughout the network and leads to a
more compact model.

To restore the spatial resolution, FCN introduces an up-sampling path that includes convolution,
up-sampling operations (transpose convolution or linear interpolation), and skip connections.
In DenseUNet, we replace the convolution operation with up-sampling operations and transform
it. The transition up module consists of a transposed convolution, which upsamples the previous
feature mapping. Then the up-sampling feature map is connected to the input from the encoder skip
connection to form a new input. We utilize an 11-level deep neural network architecture to extract
road areas, as shown in Figure 2.

 
Figure 2. The architecture of the proposed deep DenseUNet. The dense block takes advantage of the
potential of the network to efficient compression models through feature reuse.

2.3.2. Dense Block

Deep neural networks extract multi-level features of remote sensing images from low to high
by convolution and pooling operations. The first few layers of convolution neural networks mainly
extract low-level features such as road edges and textures, while deep-level networks extract features
more complete, including road contours and location information. It can improve the performance of
multi-layer neural networks and extract higher-level semantic information; however, it may hinder
training and cause degradation problems. This is a problem with backpropagation [48]. He et al. [49]
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proposed residual neural networks to speed up training and solve degradation problems. The residual
neural network consists of a series of residual units. Each unit can be represented in the following form:

Zl = Hl(Zl−1) + Zl−1 (1)

Among them, Zl−1 and Zl are the input and output of the lth residual unit, and Hl(·) is the residual
function. Therefore, for ResNet model, the output of the lth layer is the composition of the l−1th

identity mapping and the l−1th nonlinear transformation. The connection between the low-level and
the high-level of the network will facilitate the dissemination of information without degradation.
However, this kind of integration destroys the information flow between the layers of the network
to a certain extent [50]. Here, we present the DenseUNet, a semantic segmentation neural network
that combines the advantages of a densely concatenated convolutional network and U-Net. This
architecture can be considered an extension of ResNet, which iteratively sums up the previous feature
mappings. However, this small change has some exciting implications: (1) feature reuse, all layers can
easily access the previous layer, so that the information in previously computed feature map can be
easily reused; (2) parameter efficiency, DenseUNet is more effective in parameter usage; (3) implicit
in-depth supervision, because of the short-path of all feature graphs in the architecture, DenseUNet
provides deep supervision. Figure 3 is the basic dense network unit in this paper.

Figure 3. Dense network unit. Fractal structures have statistical or similar self-similar forms.

Dense network elements are fractal architectures. Dense block layers are connected to each

other so that each layer in the network accepts the characteristics of all its previous layers as input.
Left: simple extended rules generate fractal architectures with l intertwined columns. Basically, H1(Z)
has a single layer of the selected type (e.g., convolution) between input and output. The connection
layers compute the average value of element-wise. Right: Deep convolution neural network reduces
spatial resolution periodically by pooling. A fractal version uses H1(Z) as the building block between
pooling layers. A block such as Stack B produces a network whose total depth (measured as a
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convolutional layer) is B × 2C−1. Dense units consist of three parts: dense connection, growth rate,
and bottleneck layers.

Dense connections. In order to further enhance the transmission of information among network
layers, this paper constructs a different connection mode: by introducing direct connections from any
layer to all subsequent layers. Figure 3 shows the layout of DenseUNet. Consequently, the Zl layer
receives the feature-maps of all other layers. Z0, Z1, · · · , Zl−1, as input:

Zl = Hl([Z0, Z1, · · · , Zl−1]) (2)

Among them [Z0, Z1, · · · , Zl−1] refers to the series of features generated in layer 0, . . . , l − 1.
To promote implementation, the multiple inputs of Hl(·) in Equation (2) are concatenated into a single
tensor. We define Hl(·) as a composite function of three continuous operations: batch normalization,
followed by a 3 × 3 convolution and a rectified linear unit.

Growth rate. Hl generates G feature-maps, and then the lth layer has G0 + G·(l− 1) input feature
maps, where G0 is the number of channels in the input layer. The difference between DenseUNet and
existing network architectures is that DenseUNet can have skinny layers. The hyper-parameter G is
called the growth rate of the network.

Bottleneck layers. Although each layer generates only G output element mappings, it usually
has more inputs. Literature [51] has noticed that before each 3 × 3 convolution, 1 × 1 convolution
can be introduced as the bottleneck layer to reduce the number of input feature maps and improve
the computational efficiency. We utilize such a bottleneck layer to refer to our network, i.e., the
BN-Conv-ReLU version for Hl. Figure 4 shows the operation of dense block layers, transition down
and transition up.

Figure 4. Basic layers of dense block, Transition Down, and Transition Up. (a) The dense block
layer consists of BN, followed by ReLU and dropout; (b) Transition Down consists of BN followed
by ReLU, dropout and a max-pooling of size 2 × 2; (c) Transition Up consists of a convolution,
using nearest-neighbor interpolation to compensate for the loss of pooling process spatial information.

In our experiments on Conghua roads dataset and Massachusetts roads dataset, we used
DenseUNet structure with five dense blocks on 256 × 256 input images. The number of feature maps in
other layers also follows the setting G. In the present study, and we used Adam optimizer to minimize
the classification cross-entropy. Let Y be a reference foreground segmentation with values yi, and X
be a prediction probability map of the foreground markers on the N image elements xi, where the
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probability of background class is 1− xi. The cross-entropy represents the dissimilarity between the
approximate output distribution and the real distribution of the labels. The cross-entropy describes the
difference between the true distribution of the input data and the distribution of the model obtained
through training. The binary cross-entropy loss function is defined as:

loss = − 1
N

N∑
i

(yi·logxi + (1− yi)·log(1− xi)) (3)

The reasonable ratio of positive and negative samples is about 1:1 for feature selection in binary
classification tasks. However, we find that the serious class imbalance between foreground and
background is the central cause of high-resolution remote sensing images in the training process of
semantic segmentation.

When the loss function gives equal weight to positive and negative samples, the category with
large sample dominates the training process, and the training model is inclined to the category with a
large sample, which reduces generalization ability of the model. We suggest reshaping the standard
cross-entropy loss to solve the class imbalance problem in order to reduce the loss assigned to large
samples. The weighted cross-entropy form of two-class can be expressed as:

loss = − 1
N

N∑
i

(θ1·yi·logxi + (1− yi)·log(1− xi)) (4)

where θ1 is attributed to the weight of the foreground class, here defined as:

θ1 =
N −∑N

i xi∑N
i xi

(5)

By appropriately increasing the loss caused by the fault positive samples, the problem of the vast
difference between the positive and negative samples is solved to some extent.

3. Experiments

3.1. Model Preprocessing

3.1.1. Software and Hardware Environment

In order to examine the proposed method, we construct a system platform, which is mainly
composed of two parts: the software and hardware environment. The training and testing of deep
neural networks require high-performance machines, which consumes a lot of video memory during
training. TensorFlow is provided with the advantages of high efficiency, strong expansibility, and
high flexibility design, and with the support of TensorFlow researchers, the efficiency of TensorFlow is
improved. Based on the above reasons, this paper selects TensorFlow framework for network training.
The basic configuration is shown in Table 1:

Table 1. Platform configuration.

Hardware Software

memory hard disk CPU GPU OS CUDA TensorFlow python

16GB 1TB Core-i7-
8700K GTX1080Ti Ubuntu16.04 9.0 1.5 2.7.12
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3.1.2. Data Augmentation

The deep learning model is trained with sufficient data, with the increase of the input size of the
deep neural network, the training parameters after convolution operation also increase. In order to
make use of the video memory and increased training efficiency, we utilize a 256 × 256 window to crop
image blocks. One of the main problems in such models and signature verification systems is the low
number of samples for training the model. Although transfer learning is effective in other domains,
the remote sensing images are essentially different from traditional images by rich spectral setting,
a wide range of image values, and different color and texture distributions. The image enhancement
method is introduced to improve the generalization ability of the model. The deep learning method
uses the method to add more data to the training dataset, which is called data augmentation. Data
augmentation has already proved to bring many benefits to convolutional neural networks (CNNs) [52].
For example, as a regularizer, it is used to prevent overfitting in neural networks [53] and to improve
the performance of unbalanced class problems [54]. As shown in Figure 5, the training set is expanded
by six times.

 

 
Original         Rotate      Rotate   Rotate   Flip vertically  Flip horizontally 

Figure 5. Data augmentation. The method mainly includes rotation, flipping (horizontally and
vertically), and cropping operations.

3.1.3. Hyper-Parameters Selection

The process of searching optimal models requires parallel training of multiple models. The selection
of learning batch size, learning rate, and optimization algorithm makes the model unique and different
from other models. The process of selecting the best model requires the hyper-parameters to
be optimized. We use TensorFlow to perform parallel data training with many models. Three
hyper-parameters batch size (batch size, learning rate, and epochs) allow parallel training of multiple
models, and the accuracy of test datasets determines the best model. We have studied various methods
to enable deep learning models to be learned from the training dataset. We studied various methods
to learn deep learning models from training data sets. Hyper-parameters can be used to activate the
training process. Adam is an adaptive learning method that requires less tuning, is computationally
efficient, and is superior to other stochastic optimization methods. The network hyper-parameter
settings are shown in Table 2. We chose Adam as the optimization method, and it represents faster
convergence than the standard stochastic gradient with momentum. We fix the parameters of Adam as
recommended in Reference [55]: β1 = 0.9 and β2 = 0.999.

Table 2. Hyper-parameters.

Hyper-Parameter Grid Search

batch size (2, 4, 8, 16)
epochs (50, 100, 150, 200)

learning rates (1 × 10−9, 1 × 10−5, 1 × 10−3, 1 × 10−1)
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Compared with the classical U-Net, SegNet, GL-Dense-U-Net, and FRRN-B network, we evaluated
the proposed method on two urban scenario datasets: Conghua road dataset, and Massachusetts road
dataset. For the sake of quantitatively estimate the performance of the semantic segmentation method,
we show the precision, recall, F1-Score, intersection over union (IoU) and kappa as different metrics
for performance. The recall rate is defined as the ratio of the correct detection category to the correct
detection category and the sum of a false negative, which will be used to assessments of the road
integrity. The precision rate is the proportion of successes made by a classifier over the whole instance
set, which reflects on the correctness of the road. The F1-score is the harmonic average of precision
and recall, computed based on the number of errors detected by computers and manual evaluators.
The Intersection over Union (IoU) is only the ratio of the overlap area between the truth and predicted
regions of interest on the ground to the area surrounded by them. The kappa coefficient is a statistic
which measures inter-rater agreement for specific items, and it is generally used to assess the accuracy
of remote sensing image classifications.

3.2. Massachusetts Dataset

The Massachusetts dataset [56] has an image resolution of 1 m, and each image contains
3 × 1500 × 1500 pixels. The open road dataset contains 1711 aerial images with a total area of more
than 2600 square kilometers. The dataset is divided into 1108 training images, 14 validation images,
and 49 test images. Figure 6 shows that U-Net, SegNet, and FRRN-B models can correctly identify most
of the roads. Although these models eliminate the effects of shadows and buildings to a certain extent,
the extraction results show that the correctness of intensive road is lower than in other regions. The
results of these models are poorly continuous, and the edge of the road is not distinct enough. U-Net
and SegNet performed poorly and lack of the necessary connectivity in the intensive road. From the
sixth and seventh columns, the performance ability of GL-Dense-U-Net is equal to that of DenseUNet.
Both models show good results in both single lane and dual lanes

 
(a) Input image  (b) Ground truth  (c) U-Net       (d) SegNet      (e) FRRN-B     (f) GL-Dense-U-Net (g) DenseUNet 

Figure 6. Images of the original actual color composite image are displayed and classified in three
regions using deep learning methods. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively.

3.3. Conghua Dataset

The image resolution of Conghua dataset is 0.2 m, which consists of three bands: Red, Green,
and Blue (RGB). There are 47 aerial images in this dataset, and each image consists of 3 × 6000 × 6000
pixels. Among these, 80% of the data is used for training, and the remaining 20% data is used for
model validation. Figure 7 shows that the white dotted line area is covered with thick trees, especially
in urban environments, where model performance is more challenging than other areas, and the road
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occlusion is more frequent due to trees. The method we propose is hardly affected by shadow occlusion,
and the average performance is better than the other three classical semantic segmentation algorithms
based on convolution neural network. The performance of the GL-Dense-U-Net model on this data set
is comparable to that of DenseUNet, and the extracted road edge information is relatively complete,
which maintains functional connectivity. We can extract the local feature information of the image
accurately and effectively. Figure 8 shows the details of the shaded area.

 
(a) Input image  (b) Ground truth  (c) U-Net       (d) SegNet      (e) FRRN-B    (f) GL-Dense-U-Net (g) DenseUNet 

Figure 7. Images of the original actual color composite image are displayed and classified in three
regions using deep learning methods. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively. The white dotted line in the images is enlarged for
close-up inspection in Figure 7.

 
(a) Input image  (b) Ground truth  (c) U-Net       (d) SegNet      (e) FRRN-B     (f) GL-Dense-U-Net (g) DenseUNet 

Figure 8. A close-up view of the original true-color composite image and classification results is
displayed across three regions using the deep learning method. The images are the subset from the
white dotted line marked in Figure 7. True positive (TP), false negative (FN) and false positive (FP)
were marked as green, blue, and red, respectively.

3.4. Accuracy Evaluation

Table 3 shows a comparison of the accuracy of automatic classification. We find that the proposed
method achieves the highest accuracy, and both F1-score and kappa are significantly higher than three
classical semantic segmentation methods on both datasets. The kappa metrics for the classification
results were 0.703 and 0.801, respectively. The proposed method provides the most important value
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for the F1-score, which involves recall and accurate metrics. The experimental results show that the
average performance of the method in recall rate, accuracy, and F1-score is better than the other three
classical semantics segmentation methods. In addition, it was found that the method can produce the
relatively high average performance of IoU, and kappa over all the images in the test set, which is
consistent with the predicted results of Figures 6 and 8.

Table 3. The experimental results of road extraction.

Model M-Dataset C-Dataset

P (%) R (%) F1 (%)
IoU
(%)

Kappa P (%) R (%) F1 (%)
IoU
(%)

Kappa

U-Net 58.92% 70.81% 60.78% 70.91% 63.65% 84.29% 75.23% 71.83% 77.35% 77.43%
SegNet 61.35% 71.33% 62.64% 71.91% 65.41% 85.03% 77.04% 73.94% 78.83% 78.52%
FRRN-B 76.51% 64.87% 66.71% 74.22% 67.70% 83.92% 77.22% 73.62% 78.72% 78.16%

GL- Dense-
U-Net 78.48% 70.09% 73.98% 72.73% 70.19% 85.33% 79.07% 76.41% 80.67% 80.35%

DenseUNet 78.25% 70.41% 74.07% 74.47% 70.32% 85.55% 78.51% 76.25% 80.89% 80.11%

Figures 6 and 8 illustrate three example results of U-Net, SegNet, FRRN-B, GL-Dense-U-Net,
and the proposed DenseUNet. The results show that compared with the other four methods, our
method has the advantages of high accuracy and low noise. Especially in the case of dense roads and
shadows, our method can divide each lane with high reliability and get prominent shadows, as shown
in the third row of Figures 6 and 8.

3.5. Model Analysis

Road background information is essential when analyzing complex structured objects.
Our network takes into account the information around the road to facilitate the distinction between
roads and similar objects, such as building roofs and dense trees. The context information is robust
when the road is occluded. From the first row of Figure 7, some of the roads in the circle are covered by
trees. Three classical semantics segmentation methods cannot detect the road under the tree; however,
our method has successfully marked them to some extent. A case of failure is shown in the gold
dotted line of Figure 8; the proposed method has a distinct error detection rate in impervious surface.
It is mainly because most of the roads in the urban impervious surface are not labeled. Therefore,
considering that our network regards them as contextual information of the foreground, these roads
share the same characteristics as normal roads. We provide a better insight into the performance
of the proposed method. In Figure 9, we show the loss and performance curves during system
training. The loss of the four models slowly decreases as the training time increases and eventually
stabilizes. Although the U-Net model showed large changes in the initial stage of the model training,
it finally reached a convergence state. It can be seen that the improved model ultimately achieves
good convergence. The connections in dense units and skipping connections between the lower and
higher levels of the network help to spread information without degradation, so that a neural network
with fewer parameters can be designed; however, better comparability can be achieved in semantic
segmentation performance.
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                       (a)                                    (b) 

Figure 9. Loss of training. (a) The five curves of blue, yellow, green, red and purple represent the losses
of U-Net, SegNet, FRRN-B, GL-Dense-U-Net, and DenseUNet; (b) The four curves represent models
with different growth rates and modified weights

DenseUNet extracts multi-level features from different stages of the dense block, which strengthens
the fusion of different scales. We train DenseUNet with different growth rates, G. The main results on
two sets of data dataset are shown in Table 4. It can be seen from the accuracy that the model has the best
performance (when the parameter G is equal to 24). Besides, Table 4 shows that relatively small growth
rates are sufficient to achieve excellent results on the test datasets. The growth rate defines the amount
of new information provided by each layer for the global state. It can be accessed from anywhere in
the network and does not need to be replicated between layers in traditional network architecture.

Table 4. Results of different growth factors.

G M-Dataset C-Dataset

OA (%) IoU (%) Kappa (%) OA (%) IoU (%) Kappa (%)

12 92.22% 73.24% 69.55% 94.18% 73.24% 69.55%
18 93.13% 74.04% 70.11% 94.87% 74.04% 70.11%
24 93.93% 74.47% 70.32% 95.02% 80.89% 70.32%

4. Discussion

Table 5 shows the statistics of the deep learning model and the variations of DenseUNet.
The average running time was calculated by iterating 50 times. U-Net adopts a shallow
Encoder–Decoder structure, which requires less computational resources and less reasoning time than
other models. However, the road integrity extracted from two sets of data is sparse. DenseUNet adopts
a custom encoder–decoder architecture, so it maintains a balance between computing resources and
reasoning time. It consumes less computing resources and reasoning time than other models.

Table 5. Compare the network efficiency between the tested deep learning model and DenseUNet.

Model Inference (ms) Model Size (MB) FPS

U-Net 340 106 32
SegNet 204 419 33
FRRN-B 338 297 20

GL-Dense-U-Net 1152 1690 22
DenseUNet-G-12 316 118 23
DenseUNet-G-18 450 279 17
DenseUNet-G-24 472 514 15
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GL-Dense-U-Net is equivalent to DenseUNet in terms of various indicators. GL-Dense-U-Net
consists of Local Attention Units (LAU) and Global Attention Units (GAU). The 1 × 1, 3 × 3, 5 × 5,
7 × 7 kernels are respectively used for convolution operation by LAU, and finally integrated step by
step from the bottom to the top. GAU introduces global average pool (GAP) into the unit to extract
comprehensive road information. However, since the GL-Dense-U-Net encoding and decoding layers
are composed of dense unit blocks provided by DenseNet, and LAU unit (the feature graph of different
scale is fused to realize the attention of pixel-level information) is added in the encoding stage while
GAU unit (feature maps from low and high levels are considered, and global information is provided
to restore features) is connected later in the decoding stage, the GL-Dense-U-Net model is the largest
and the inference time is the longest. DenseUnet adopts dense unit modules in the coding stage,
while the sampling stage in the decoding layer adopts the skip connection characteristic of U-Net.
Therefore, DenseUNet requires less inference time of 316 ms and a smaller model size of 118 MB
than other models. In general, DenseNet is more effective than most models. On the other hand, G
feature maps are output after the convolution of all layers in the dense block. The model sets a small
growth rate (G = 12) to get good results, as shown in Table 4. The overall accuracy and the mIoU of
DenseUNet-G-12 in Massachusetts datasets reached 92.22% and 73.24% respectively

In order to further verify the reliability of the proposed model, two groups of remote sensing image
data with different resolutions were selected to compare four classical image segmentation models.
In Massachusetts datasets, the overall accuracy and the mIoU of DenseUNet in the Massachusetts
dataset achieved 93.93% and 74.47%, respectively. The Conghua dataset achieved 95.02% and
80.89%, respectively. In particular, the classification result of Massachusetts is better than that of
GL-Dense-U-Net [41]. In general, DenseUNet performs better than Massachusetts datasets in Conghua
datasets, which may be a higher data resolution from the dataset.

The developed DenseUNet has excellent potential for improvement. First, the smoothness of road
contour is a key factor that affects the accuracy of road extraction. In the two sets of prediction datasets,
we found that compared with the ground truth value, the predicted result road had information loss
of edge and contour. Obtaining accurate road profile information is still a challenging task. Second,
different network models are suitable for different scenarios, such as PSPNet [57], DeepLabv3+ [58],
and BiSeNet [59], etc., which are suitable for real-time segmentation of street view. It is usually
necessary to design the network according to specific tasks to obtain the best performance. Neural
Architecture Search (NAS) is a kind of automated neural network design technology, which can
automatically design high-performance network structure according to the sample set through the
algorithm. This architecture can effectively reduce the use and implementation cost of the neural
network. Third, we only focused on the performance of different deep learning models during the
experiment. Traditional methods, such as threshold-based methods and object-based methods [60],
have not been compared, and a more comprehensive comparison of these methods is needed in
the future.

5. Conclusions

We propose an efficient road extraction method based on a convolution neural network for
high-resolution remote sensing images. The model combines the virtue of dense connection mode
and U-Net and solves the problem of tree and shadow occlusion to a certain extent, which we call
DenseUNet. In particular, we use a U-Net architecture combined with a suitable weighted loss
function to place more emphasis on foreground pixels. Following simple connection rules (fractal
extensions), DenseUNet naturally integrates deep supervision, the properties of identity mappings,
and diversified depth attributes. The dense connections within dense units and the skip connections
between the encoding and decoding paths of the network will help to transfer information and
accelerate computation, so they can learn more compactly and get more accurate models.

36



Remote Sens. 2019, 11, 2499

Although deep neural networks have acquired remarkable success in many fields, there are no
sophisticated theories yet. However, one of the critical disadvantages of deep learning models is their
limited interpretability, and often these models are described as “black boxes” that do not provide
insight into their inner workings. On the other hand, it will be challenging to create a general model
through theoretical guidance. Hence, the results obtained from such specific planning problem are
difficult to apply to other problems in the same field. We plan to use the trained DenseUNet model to
transfer knowledge to improve new tasks in future work.
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Abstract: Recently, convolutional neural networks (CNNs) achieve impressive results on remote
sensing scene classification, which is a fundamental problem for scene semantic understanding.
However, convolution, the most essential operation in CNNs, restricts the development of CNN-based
methods for scene classification. Convolution is not efficient enough for high-resolution remote
sensing images and limited in extracting discriminative features due to its linearity. Thus, there has
been growing interest in improving the convolutional layer. The hardware implementation of the
JPEG2000 standard relies on the lifting scheme to perform wavelet transform (WT). Compared with
the convolution-based two-channel filter bank method of WT, the lifting scheme is faster, taking up
less storage and having the ability of nonlinear transformation. Therefore, the lifting scheme can
be regarded as a better alternative implementation for convolution in vanilla CNNs. This paper
introduces the lifting scheme into deep learning and addresses the problems that only fixed and finite
wavelet bases can be replaced by the lifting scheme, and the parameters cannot be updated through
backpropagation. This paper proves that any convolutional layer in vanilla CNNs can be substituted
by an equivalent lifting scheme. A lifting scheme-based deep neural network (LSNet) is presented to
promote network applications on computational-limited platforms and utilize the nonlinearity of the
lifting scheme to enhance performance. LSNet is validated on the CIFAR-100 dataset and the overall
accuracies increase by 2.48% and 1.38% in the 1D and 2D experiments respectively. Experimental
results on the AID which is one of the newest remote sensing scene dataset demonstrate that 1D
LSNet and 2D LSNet achieve 2.05% and 0.45% accuracy improvement compared with the vanilla
CNNs respectively.

Keywords: scene classification; lifting scheme; convolution; CNN

1. Introduction

1.1. Background

High-resolution remote sensing images contain complex geometrical structures and spatial
patterns and thus scene classification is a challenge for remote sensing image interpretation.
Discriminative feature extraction is vital for scene classification which aims to automatically assign a
semantic label to each remote sensing image to know the category it belongs to. Recently, convolutional
neural networks (CNNs) has attracted increasing attention in remote sensing community [1,2],
which can learn more abstract and discriminative features and achieve the state-of-the-art performance
on classification. A typical CNN framework is shown in Figure 1, where three types of modules are cast
into, including feature extraction module, quantization module, and trick module. The quantization
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module includes spatial quantization, amplitude quantization, and evaluation quantization. Pooling
is a typical spatial quantization used for downsampling and dimensionality reduction to reduce
the number of parameters and calculations while maintaining significant information. Amplitude
quantization is a nonlinear process that compresses real values into a specific range. Examples
are sigmoid, tanh, ReLU [3] and its variants [4–6], which are often used to activate neurons
because nonlinearity is vital for strengthening the approximation and representation abilities.
Evaluation quantization is performed to obtain the outputs that meet the specific requirements.
For instance, the softmax function is often used in the final hidden layer of a neural network to
output classification probabilities. The trick module contains some algorithms such as dropout [7] and
batch normalization [8], for improving training effects and achieving better performance. Among all
the modules, the feature extraction module is the most essential, which is based on convolution to
extract image features. It invests CNN with some favourable characteristics such as local perception,
parameter sharing, and translation invariance.

Figure 1. Convolutional neural network (CNN) framework. CNN generally contains three modules,
including feature extraction module, quantization module, and tricks module. These three modules
are repeatedly stacked to build the deep structure, and finally, a classification module is applied for
the specific classification task. The trick module is embedded in the other two modules, which is not
displayed in this figure.

The extraction of scene-level discriminative features is the key step of scene classification.
In CNN-based methods, convolution is the most critical technology for remote sensing imagery
feature extraction. It has the properties of local connection, weight sharing, and translation invariance,
which makes full use of the spatial relationship between pixels. However, convolution has some
intrinsic drawbacks, such as considerable computational complexity and limitation in transformation
capacity due to its linearity. For high-resolution remote sensing images, the computation challenge
is severe, and the considerable computational complexity restrains scene classification from that
conducted on computationally limited hardware platforms. In addition, it is vital to learn
discriminative feature representation of remote sensing images, but the linearity impedes CNNs from
extracting more powerful features with better representation and fitting well on complex functions.
To extract more representative features, the literature [9] employs collaborative representation after a
pre-trained CNN. The literature [10] integrates multilayer features of CNNs. In [11], the last two fully
connected layer features of pre-trained VggNet are fused to improve the discriminant ability. In [12],
the pre-trained deep CNN is combined with a sparse representation to improve the performance.
Most of these methods increase the dimension of features and none of them are proposed to improve
the convolutional layer. Therefore, exploration for a better method to extract features is still of great
significance for future CNN-based scene classification research.
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Convolution is also the paramount operation of the traditional implementation of the wavelet
transform (WT). The discrete wavelet transform (DWT) is one branch of WT, which is traditionally
implemented by the two-channel filter bank representation [13]. It is widely applied in scientific
fields because it has the favourable characteristic of time-frequency localization, but is limited by the
considerable computation complexity and the linearity brought by convolution. To overcome those
difficulties, W. Sweldens proposed the lifting scheme [14–18], which mainly contains three steps: split,
predict, and update. Split: The input signal is decomposed into two non-overlapping sample sets.
A common method is the lazy wavelet transform, which splits the original signal into an even subset
and an odd subset, both of which contain half the number of input samples. Predict: The two subsets
divided by a signal with strong local correlation are highly correlated in most cases. With one subset
known, another subset is reasonably predicted with some predicted error produced. In particular,
the predicted errors are all zero for a constant signal. Update: One key characteristic of coarse signals
is that they have the same average as the input signal, which is guaranteed by this step. The lifting
scheme is an efficient algorithm for traditional DWT as Daubechies and W. Sweldens proved that any
FIR wavelet transform can be decomposed into a series of prediction and update steps [19]. The form
of the lifting scheme makes it easier to perform DWT on a hardware platform, which was adopted as
the algorithm used in the wavelet transform module in the JPEG2000 standard [20,21]. Furthermore,
the second-generation wavelet, produced directly by designing the prediction and update operators in
the lifting scheme [16], can be constructed to perform the nonlinear transformation [22–26]. Briefly,
compared with the traditional wavelet transform, the lifting scheme is superior in the following
aspects [19]: (1) It leads to a faster implementation of the discrete wavelet transform. (2) It allows a
fully in-place implementation of the fast wavelet transform, which signifies that the wavelet transform
can be calculated without allocating auxiliary memory. (3) Nonlinear wavelet transforms are easy to
build with the lifting scheme. A typical example is the integer wavelet transforms [25].

Therefore, the lifting scheme is a more efficient algorithm for DWT compared with the
convolution-based method. In this paper, we prove that the lifting scheme is also an efficient
implementation for convolution in the CNN and can substitute the convolutional layer to extract
better representations. With the lifting scheme introduced, neural networks share the advantages of
nonlinear transformation, all-integral transformation, and the facility of hardware implementation.

1.2. Problems and Motivations

This paper develops the method from the following aspects:

1. Compressing the convolutional layer is critical for easing the computational burden of
high-resolution remote sensing imagery analysis and promoting CNN applications on
computationally limited platforms. Methods of compressing the convolutional layer are diverse,
including utilizing 1 × 1 convolution to reduce the number of parameters [27,28], depthwise
separable convolution [29], and replacing the large size convolutional kernel with several
small-size kernels [30]. Most of these methods inevitably result in some accuracy losses. While
the lifting scheme is an equivalent implementation for traditional DWT, this paper provides a
new perspective on this problem, inspired by the successful application of the lifting scheme on
the hardware implementation of the JPEG2000 standard. From this aspect, this paper replaces
the vanilla convolutional layer with the lifting scheme, which may be a new direction for better
implanting the neural network to computationally limited hardware platforms.

2. Nonlinearity is vital for expanding the function space of CNN and learning discriminative feature
representation of remote sensing images. However, the utilization of the convolutional layer
limits CNN in extracting favourable representations, where the intrinsic linear characteristic
of convolution is responsible. Considering that one of the advantages of the lifting scheme is
its extension to nonlinear transformation, this paper proposes a nonlinear feature extractor to
enhance the representation ability of neural networks.
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3. To insert the lifting scheme into neural networks, for example, to substitute the convolutional
layer with the lifting scheme, it is necessary to determine the inner relationship between the
lifting scheme and the convolution. Daubechies and W. Sweldens proved that any FIR wavelet
transform can be decomposed into a series of lifting and dual lifting steps [19]. In other words,
all the first-generation wavelets have the equivalent lifting scheme. However, convolution kernels
in CNN are somewhat different from the filters in the two-channel filter bank representation
of DWT. In DWT, filter coefficients are pre-designed with some strict restraints and prefixed.
In contrast, parameters of convolutional kernels in CNN, which are commonly called weights,
are trained and updated ceaselessly in the training stage. Moreover, two-dimensional convolution
kernels in the CNN are most non-separable, bringing difficulties for lifting scheme implementation.
Therefore, this paper places great emphasis on expanding the few filters that can be replaced with
the lifting scheme to convolution kernels with random-valued parameters.

4. The lifting scheme must be compatible with the backpropagation mechanism for optimization.
Backpropagation empowers neural networks such that they can learn any arbitrary mapping
of input to output [31]. To embed the lifting scheme into neural networks without harming
the learning ability, parameters in the lifting scheme must also be trained and updated through
backpropagation, which needs to break through some restricts in the original lifting scheme.

1.3. Contributions and Structure

In this paper, the lifting scheme is introduced into neural networks to serve as the feature extraction
module, and a lifting scheme-based deep neural network (LSNet) method is proposed to enhance
network performance. The main contributions are summarized as follows. (1) This paper introduces
the lifting scheme to propose a novel CNN-based method for scene classification, which has potential in
easing the computational burden. (2) This paper expands the range of filter bases that can be replaced
with the lifting scheme, and the convolution kernel with random-valued parameters are proven to have
the equivalent lifting scheme. (3) A learnable lifting scheme block and the backpropagation approach
are given. Therefore, any vanilla convolutional layer in CNNs can be replaced with its relative lifting
scheme. (4) A novel lifting scheme-based deep neural network (LSNet) model is presented using a
nonlinear lifting scheme that is constructed by nonlinear operators. The nonlinear lifting scheme is
used as a feature extractor to substitute the vanilla linear convolutional layer to learn discriminative
feature representation of remote sensing images. (5) LSNet is validated on the CIFAR-100 and then
evaluated on the AID datasets. Experimental results demonstrate that the LSNet outperforms the
vanilla CNN and has potential in remote sensing scene classification.

The rest of this paper is organized as follows. Section 2 describes the proposed method and the
datasets. Section 3 describes the experimental results on the CIFAR-100 and AID datasets. Section 4
analyzes the results and discusses our future research directions. Section 5 closes with a conclusion.

2. Materials and Methods

In this section, the equivalence between the lifting scheme and the convolution in CNNs is first
proven, extending the few wavelet bases that can be replaced with the lifting scheme to convolution
kernels with random-valued parameters. With that, the relative lifting scheme is derived for a
1 × 3 convolution kernel as an example. Finally, we propose a novel lifting scheme-based deep neural
network (LSNet), substituting the linear convolutional layers in CNNs with the nonlinear lifting
scheme, demonstrating the superiority of the lifting scheme to introduce nonlinearity into the feature
extraction module. The datasets used in the experiment are also described in this section.

2.1. Equivalence between the Lifting Scheme and Convolution

In the two-channel filter bank representation of the traditional wavelet transform, a low-pass
digital filter h and a high-pass digital filter g are used to process the input signal x, followed by a
downsampling operation with base 2, as shown in Equations (1) and (2).
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a = (x ∗ h) ↓ 2 (1)

d = (x ∗ g) ↓ 2 (2)

The filter bank is elaborately designed according to requirements such as compact support
and perfect reconstruction, while downsampling is used for redundancy removal. The low-pass
filter is highly contacted with the high-pass filter. In other words, with the low-pass filter designed,
the high-pass filter is consequently generated. Therefore, the wavelet bases of the first-generation
wavelets are finite, restricted, and prefixed. In contrast, parameters of convolution kernels in CNNs are
changing ceaselessly during backpropagation, which makes it necessary to expand the lifting scheme
to be equivalent to a random-valued filter. In addition, to fit the structure of the convolutional layer,
the detailed component d generated by the lifting scheme is removed while the coarse component a is
retained in the following proof.

Consider a 1D convolution kernel represented by h = [h0, h1, . . . , hk−1]. It is a finite impulse
response (FIR) filter from the signal processing perspective, as only a finite number of filter coefficients
are non-zero. The z-transform of the FIR filter h is a Laurent polynomial given by

H(z) =
k−1

∑
i=0

hiz−i (3)

The degree of the Laurent polynomial H(z) is

deg(H(z)) = k − 1 (4)

In contrast to the convolution in the signal processing field [32,33], convolution in the CNN omits
the reverse operation. The convolution between the input signal x and the convolution kernel h can be
written as

y = x 	 h = x ∗ h̄ (5)

where y represents the matrix of output feature maps. Operators “	” and “∗” represent the
cross-correlation and the convolution in the spotlight of digital signal processing, respectively, while h̄
is the reversal signal of h. The z-transform of Equation (5) is

Y(z) = X(z)H(z−1) (6)

where H(z−1) is the z-transform of the reversal sequence h̄ = [hk−1, . . . , h1, h0].
In the lifting scheme implementation of traditional wavelets, a common method in the split stage

is splitting the original signal x = [x0, x1, x2, ...] into an even subset xe = [x0, x2, ..., x2k, ...] and an odd
subset x = [x1, x3, ..., x2k+1, ...]. Transforming the signal space to the z-domain, the two-channel filter
bank representation shown in Equations (1) and (2) is equivalent to Equation (7), with A(z) and D(z)
to represent the z-transform of a and d.(

A(z)
D(z)

)
= PT(z−1)

(
Xe(z)
Xo(z)

)
(7)

Xe(z) and Xo(z) are the z-transform of xe and xo, which are the even subset and odd subset of x,
respectively. P(z) is the polynomial matrix of h and g:

P(z) =

(
He(z) Ge(z)
Ho(z) Go(z)

)
(8)
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where He(z) and Ho(z) are the z-transform of the even subset he and the odd subset ho of h, respectively,
while Ge(z) and Go(z) are the z-transform of the even subset ge and the odd subset go of g, respectively.

Different from the DWT in Equations (1) and (2), there is only one branch in the convolution
in CNN, as shown in Equation (6). To adapt to the particular form of the convolution in CNN,
we maintain the low-pass filter h while discarding the high-pass filter g, and modify the polynomial
matrix to preserve only the relative part of H(z), as in Equation (9).

P(z) =

(
He(z)
Ho(z)

)
(9)

Instead of the lazy wavelet transform, we use the original signal x = [x0, x1, x2, ...] and a time-shift
signal x′ = [x1, x2, ...] as xe and xo in the first stage to obtain the same form as Equation (6), as shown
in Equation (10).

PT(z−2)

(
X(z)

zX(z))

)
= (He(z−2) + zHo(z−2))X(z)

= X(z)H(z−1)

(10)

Furthermore, the polynomial matrix P(z) can be decomposed into a multiplication form of finite
matrices and thus is completed by finite prediction and update steps. As mentioned above, both He(z)
and Ho(z) are Laurent polynomials. If the following conditions are satisfied:

He(z) 
= 0, Ho(z) 
= 0

deg(He(z)) ≥ deg(Ho(z))
(11)

There always exists a Laurent polynomial q(z) (the quotient) with deg(q(z)) = deg(He(z)) −
deg(Ho(z)), and a Laurent polynomial r(z) (the remainder) with deg(r(z)) < deg(Ho(z)) so that

q(z) = He(z)/Ho(z) (12)

r(z) = He(z)%Ho(z) (13)

Iterating the above step, P(z) is then decomposed. As convolution kernels frequently used in
CNN are commonly oddly size, such as 1 × 3, 3 × 1 [34], 3 × 3, 5 × 5, the above conditions are
generally satisfied. Comparing Equation (6) with (10), we reach a conclusion that convolution in CNN,
which is with random-valued parameters, has equivalent lifting scheme implementation.

2.2. Derivation of the Lifting Scheme for a Relative Convolutional Layer

2.2.1. Lifting Scheme for 1 × 3 Convolutional Layer

In this subsection, we derive the relative lifting scheme for a 1 × 3 convolutional layer as an
example to illustrate the decomposition of P(z) with the Euclidean algorithm. Given a convolution
kernel h = [h0, h1, h2], its polynomial matrix specifically is

P(z) =

(
He(z)
Ho(z)

)
=

(
h0 + h2z−1

h1

)
(14)

The first step of decomposition is to divide He(z) by Ho(z) and obtain the quotient and remainder.

r1(z) = He(z)%Ho(z) = h0

q1(z) = He(z)/Ho(z) =
h2

h1
z−1

(15)
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Then, the divisor Ho(z) in the first step serves as the dividend in the second step, divided by the
remainder r1(z) in the first step.

r2(z) = Ho(z)%r1(z) = 0

q2(z) = Ho(z)/r1(z) =
h1

h0

(16)

Iteration stops after two steps as the final remainder is 0 and the dividend in the final step
Ho(z) = h1 = gcd(He(z), Ho(z)), where the operator gcd(·) stands for the greatest common divisor.

With quotients and remainders obtained above, P(z) is decomposed into the form of matrix
multiplication, as Equation (17) shows.

P(z) =

(
q1(z) 1

1 0

)(
q2(z) 1

1 0

)(
h0

0

)
=

(
1 h2

h1
z−1

0 1

)(
1 0
h1
h0

1

)(
h0

0

)
(17)

Therefore,

PT(z−2) =
(

h0 0
)(

1 h1
h0

0 1

)(
1 0

h2
h1

z2 1

)
(18)

Given the matrix multiplication form in Equation (18), parameters of the lifting scheme, including
the prediction and update operators and the scaling factor, are thus obtained. The 1 × 3 convolutional
layer and its equivalent lifting scheme in one spatial plane are shown in Figure 2. In the
1 × 3 convolution, the convolution kernel moves across the input row by row in the horizontal
direction to perform the sliding dot product. The lifting scheme can simultaneously process the
entire input image within each of the steps listed in Table 1.

Figure 2. Equivalence between the 1 × 3 convolution and the lifting scheme. The convolution kernel
moves across the entire input image row by row to conduct the sliding dot product and generate the
output feature maps. The lifting scheme can process the entire input image in parallel within each
step. The lifting scheme implementation with three steps is equivalent to a vanilla 1 × 3 convolution in
one plane.

As illustrated in Table 1, the input image passes through the three steps in the lifting scheme.
In the split stage, the input is transformed into 2 branches, xe and xo. Different from the lifting scheme
in [14], we utilize a sliding window to obtain two branches instead of the lazy wavelet transform.
Then, xo is predicted by xe with the predict operator h2

h1
z2, the outcome of which is used to update xe.

The final output is obtained by scaling the updated xe by the factor h0.
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Table 1. Steps of the lifting scheme equivalent to 1 × 3 convolutional layer.

Step Illustration

split xe[i] = x[i], xo[i] = x[i + 1]

predict xo[i] = xo[i] + h2
h1

× xe[i + 2]

update xe[i] = xe[i] + h1
h0

× xo[i]

scaling y[i] = h0 × xe[i]

Note that notation x[i] represents the ith column in image x.

2.2.2. The Lifting Scheme for the 2D Convolutional Layer

For a convolutional layer with 2D convolutional kernels, the lifting scheme can also be realized
through the 1D lifting scheme. The 2D convolution operation is the sum of several 1D convolution
operations. For instance, the output of the convolution operation between a m × n input image and
a 3 × 3 convolutional kernel has a size of (m − 2)× (n − 2). Then, the element on the i-th row, j-th
column of the output matrix is obtained by

y(i, j) =
2

∑
u=0

2

∑
v=0

x(i + u, j + v) · h(u, v) (19)

which can be rewritten as

y(i, j) =
2

∑
v=0

x(i, j + v) · h(0, v) +
2

∑
v=0

x(i + 1, j + v) · h(1, v) +
2

∑
v=0

x(i + 2, j + v) · h(2, v) (20)

In other words, the 2D convolution operation is equivalent to the summation of three 1D
convolution operations. As the relative lifting scheme of the 1D convolution has been worked out as
the right side of Figure 2 shown, the 2D lifting scheme is simply the summation of the relative 1D
lifting scheme.

Thus, any convolution kernels with random-valued parameters have equivalent lifting scheme
implementation. As the prediction operator and update operator in the lifting scheme can be designed
to fit other requirements, which correspond to a larger serving range than vanilla convolution,
the lifting scheme is the superset of vanilla convolution. In other words, the vanilla convolutional layer
is just a special case of the lifting scheme. To improve the feature extractor in the CNN, a more powerful
lifting scheme structure can be designed by choosing other predict operators and update operators.

2.2.3. Backpropagation of the Lifting Scheme

In this part, we propose the backpropagation algorithm to train and update parameters in the
lifting scheme. For simplicity, a new list of weights w = [w0, w1, w2] is used to represent the parameters
in Figure 2 as

w0 = h0, w1 =
h1

h0
, w2 =

h2

h1
(21)

Assume the backpropagation error from the next layer is L, then the gradient with respect to this
layer’s output y is obtained by

Δy(i, j) =
∂L

∂y(i, j)
(22)

where y(i, j) represents one pixel in the output feature map y.
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According to the derivation rule, the gradients with respect to the weights are obtained as follows.

Δw0 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w0

= Δy 	 x + w1 · Δy 	 x′ + w1 · w2 · x′′ (23)

Δw1 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w1

= w0 · Δy 	 x′ + w0 · w2 · Δy 	 x′′ (24)

Δw2 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w2

= w0 · w1 · Δy 	 x′′ (25)

where x′ is the map whose elements in each row are the one-position left shifting elements in
the corresponding row of x. x′′ is the map whose elements in each row are the two-position left
shifting elements in the corresponding row of x. x′ and x′′ maintain the same size as x with some
boundary extension methods. The operator “	” represents the cross-correlation between two matrices.
With these gradients, the weights can be updated by stochastic gradient descent.

2.3. Lifting Scheme-Based Deep Neural Network

In this section, the lifting scheme is introduced into the deep learning field, and a lifting
scheme-based deep neural network (LSNet) method is proposed to enhance network performance.
From Sections 2.1 and 2.2, the lifting scheme can substitute the convolutional layer because it can
perform convolution and utilize backpropagation to update parameters. Specifically, operators in the
lifting scheme are flexible, which can be designed not only to make the lifting scheme equivalent to
vanilla convolutional layers but also extended to meet other requirements. Thus, we develop the LSNet
with nonlinear feature extractors utilizing the ability of nonlinear transformation of the lifting scheme.

2.3.1. Basic Block in LSNet

Nonlinearity enables neural networks to fit complex functions and thus strengthens their
representation ability. As the lifting scheme is capable of constructing nonlinear wavelets, we introduce
nonlinearity into the feature extraction module to build the LSNet. It is realized by designing nonlinear
predict and update operators in the lifting scheme, which demonstrates the enormous potential of the
lifting scheme to perform nonlinear transformation and enhance the nonlinear representation of the
neural network.

We construct the basic block in LSNet based on ResNet34 [35], as shown in Figure 3. The first layer
in the basic block is a 3 × 3 convolutional layer, which is used to change the number of channels and
downsampling. The middle layer is the LS block, mainly for feature extraction, with the same number
of channels between the input and the output. The plug-and-play LS block is used to substitute the
vanilla convolutional layer without any other alterations. In the LS block, the input is split into two
parts, including xe and xo. The nonlinear predict operator and update operator are constructed by a
vanilla convolution kernel followed by a nonlinear function. xo is then predicted by xe to gain the
detailed component, which is discarded after the update step. xe is updated by the detailed component,
the outcome of which is the coarse component and used as the final output of the LS block. Finally,
we add a 1 × 1 convolutional layer as the third layer to enhance channel-wise communication. Batch
normalization and ReLU are followed by the first two layers for overfitting avoidance and activation,
respectively. The identity of the input through a shortcut is added to the output of the third layer,
followed by batch normalization. The addition outcome is again activated by ReLU, which is the final
output of the basic block.

49



Remote Sens. 2019, 11, 2648

Figure 3. Basic block in LSNet.

As both the 1D and 2D convolutional layers are widely used, we propose the 1D and 2D LS block,
named the LS1D block and LS2D block, respectively. The specific processes of which are illustrated in
Table 2.

Table 2. Lifting scheme steps of LS1D block and LS2D block.

Step LS1D Block LS2D Block

split xe[i] = x[i], xo[i] = x[i + 1] xe[i, j] = x[i, j], xo[i] = x[i + 1, j + 1]

predict xo = xo −N { Pconv1D(xe) } xo = xo −N { Pconv2D(xe) }
update xe = xe +M{ Uconv1D(xo) } xe = xe +M{ Uconv2D(xo) }

Note that notation x[i] represents the ith column in image x while the notation x[i, j] represents the ith row, jth column
pixel in the image x.

Note that N {·} and M{·} denote the nonlinear transformation in the predict step and the update
step, respectively. PconvnD(·) and UconvnD(·) represent the vanilla nD convolution operation in the
predict and the update step, respectively. The operators N { PconvnD(·) } and N { UconvnD(·) } are
the prediction and update operators, respectively, which are changeable to meet other requirements.

2.3.2. Network Architecture and Settings

The network architecture of LSNet is shown in Figure 4. The input of LSNet passes through a
single LS block and a 1 × 1 convolutional layer for initial feature extraction. The feature maps are then
processed by stacked basic blocks to obtain low dimension image representation, which is followed by
an average pooling for dimension reduction. Finally, the representation is unfolded as a 1D vector,
and processed by a fully connected layer and a softmax function to obtain the output.

Figure 4. LSNet architecture.
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The modified ResNet34 is chosen as the baseline model to evaluate the performance of LSNet.
Experiments are separately conducted for the 1D convolution and the 2D convolution, as both are
widely used. The setups of each network are listed in Table 3.

In Table 3, the size and the number of convolution kernels in vanilla convolutional layers are
listed. For LSNet, the structure of the LS1D block and LS2D block are shown in Table 2, while the
number represents the depth of the output. To demonstrate the effect of nonlinearity, we use five
different nonlinear functions to construct different LS blocks to compare the performance, which are
ReLU [3], leaky ReLU [4], ELU [5], and CELU and SELU [6].

Table 3. Network architectures in contrast experiments.

Layer ResNet-1d LSNet-1d ResNet-2d LSNet-2d

LS1 1 × 3, 3 LS1D block, 3 1 × 3, 3 LS2D block, 3

C1 1 × 1, 64

M1

⎡
⎢⎢⎣

1 × 3, 64

1 × 3, 64

1 × 1, 64

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

1 × 3, 64

LS1D block,64

1 × 1, 64

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

3 × 3, 64

3 × 3, 64

1 × 1, 64

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

3 × 3, 64

LS2D block,64

1 × 1, 64

⎤
⎥⎥⎦ × 3

M2

⎡
⎢⎢⎣

1 × 3, 128

1 × 3, 128

1 × 1, 128

⎤
⎥⎥⎦ × 4

⎡
⎢⎢⎣

1 × 3, 128

LS1D block,128

1 × 1, 128

⎤
⎥⎥⎦ × 4

⎡
⎢⎢⎣

3 × 3, 128

3 × 3, 128

1 × 1, 128

⎤
⎥⎥⎦ × 4

⎡
⎢⎢⎣

3 × 3, 128

LS2D block,128

1 × 1, 128

⎤
⎥⎥⎦ × 4

M3

⎡
⎢⎢⎣

1 × 3, 256

1 × 3, 256

1 × 1, 256

⎤
⎥⎥⎦ × 6

⎡
⎢⎢⎣

1 × 3, 256

LS1D block,256

1 × 1, 256

⎤
⎥⎥⎦ × 6

⎡
⎢⎢⎣

3 × 3, 256

3 × 3, 256

1 × 1, 256

⎤
⎥⎥⎦ × 6

⎡
⎢⎢⎣

3 × 3, 256

LS2D block,256

1 × 1, 256

⎤
⎥⎥⎦ × 6

M4

⎡
⎢⎢⎣

1 × 3, 512

1 × 3, 512

1 × 1, 512

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

1 × 3, 512

LS1D block,512

1 × 1, 512

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

3 × 3, 512

3 × 3, 512

1 × 1, 512

⎤
⎥⎥⎦ × 3

⎡
⎢⎢⎣

3 × 3, 512

LS2D block,512

1 × 1, 512

⎤
⎥⎥⎦ × 3

average pooling, fully connected, Softmax

In the experiment on the AID dataset, we use the stochastic gradient descent (SGD) as an optimizer,
with a momentum of 0.9 and a weight decay of 5 × 10−4. We train the training set for 100 epochs,
setting the mini-batch size as 32. The learning rate is 0.01 initially, which decreases by 5 times every
25 epochs. For the CIFAR-100 dataset, all the settings are the same except that the mini-batch size is
128, and the initial learning rate is 0.1.

2.4. Materials

LSNet is firstly validated using the CIFAR-100 dataset [36], which is one of the most widely
used datasets for deep learning reaches. Then, we conduct experiments on the AID dataset [37] to
demonstrate the effectiveness of LSNet on the scene classification task.

CIFAR-100 dataset: This dataset contains 60,000 images, which are grouped into 100 classes.
Each class contains 600 32 × 32 colored images, which are further divided into 500 training images
and 100 testing images. The 100 classes in the CIFAR-100 dataset are grouped into 20 superclasses.
In this dataset, a “fine” label indicates the class to which the image belongs, while a “coarse” label
indicates the superclass to which the image belongs.

AID dataset: The AID dataset is a large-scale high-resolution remote sensing dataset proposed
by Xia et al. [37] for aerial scene classification. With high intra-class diversity and low inter-class
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dissimilarity, the AID dataset is suitable as the benchmark for aerial scene classification models.
Thirty classes are included, each with 220 up to 420 600 × 600 images. In our experiment, 80% images
of each class are chosen as the training data, while the rest 20% are chosen as testing data. Each image
is resized to 64 × 64. Some samples of the AID dataset are shown in Figure 5.

(a) airport (b) church (c) dense residential (d) industrial (e) medium residential

(f) park (g) pond (h) resort (i) river (j) square

Figure 5. Some samples of AID dataset.

3. Results

In this section, LSNet is firstly validated using the CIFAR-100 dataset. Then, we put
emphasis on evaluating LSNet on the AID dataset to demonstrate the effectiveness of LSNet on
the scene classification task, the performance of which is compared with ResNet34 that utilizes
vanilla convolution.

3.1. Results on the CIFAR-100 Dataset

The overall accuracy of the CIFAR-100 test set is used to evaluate the performance of LSNet,
as shown in Tables 4 and 5. This metric is defined as the ratio of the number of correctly predicted
samples to the number of samples in the whole test set, as shown in Equation (26).

pc =
∑n

k=1 Pkk

N
(26)

where Pkk represents the number of correctly classified samples in the kth class, while n and N are the
number of categories and the number of samples in the whole test set, respectively. Compared with
metrics that evaluate each category, pc is more intuitive and straightforward for comparing LSNet
and ResNet on the CIFAR-100 dataset, which has 100 categories. The parameter Delta is the accuracy
difference between LSNet-1d and ResNet-1d to demonstrate the performance of LSNet more intuitively.

Table 4. Performance of networks on the CIFAR-100 dataset in the 1D experiment.

Method ResNet-1d
LSNet-1d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 73.00% 74.92% 74.71% 75.48% 74.98% 75.21%

Delta − +1.92% +1.71% +2.48% +1.98% +2.21%
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In the 1D experiment, all of the LSNets that utilize different nonlinear functions in the LS1D block
outperform the baseline network ResNet-1d by more than 1.5%. In between, LSNet-1d with ELU used
in the LS1D block reaches the best test set accuracy, which is superior to the baseline network by 2.48%.

In the 2D experiment, LSNet-2d, whose LS2D block uses SELU as the nonlinear function, is slightly
inferior to the baseline network ResNet-2d, while other LSNets all outperform the baseline network.
In between, LSNet-2d with leaky ReLU used in the LS2D block performs best, which advantages over
ResNet-2d by 1.38%.

Table 5. Performance of networks on the CIFAR-100 dataset in the 2D experiment.

Method ResNet-2d
LSNet-2d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 74.64% 75.52% 76.02% 75.76% 76.00% 74.21%

Delta − +0.88% +1.38% +1.12% +1.36% −0.43%

The experimental results confirm the advantage of introducing nonlinearity into the feature
extractor module. With different nonlinear functions, LSNets perform differently, which indicates
the importance of choosing suitable nonlinear predict and update operators. For the 1D and
2D experiments, the most appropriate nonlinear functions are different, indicating that they
are structure-dependent.

3.2. Results on the AID Dataset

For each evaluated network, the results of the AID test set’s overall accuracy are listed in Table 6.
For the 1D experiment, all LSNets with different nonlinear functions used in the LS1D block outperform
the baseline ResNet-1d. Therefore, LSNet-1d with leaky ReLU performs similarly to ResNet-1d, while
LSNet-1d with ELU reaches the highest test set overall accuracy, which is superior to ResNet-1d
by 2.05%.

Table 6. Performance of networks on the AID dataset in the 1D experiment.

Method ResNet-1d
LSNet-1d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 82.45% 84.40% 82.55% 83.90% 84.50% 83.50%

Delta − +1.95% +0.10% +1.45% +2.05% +1.05%

Confusion matrices for each evaluated network are shown in Figure 6. The probabilities whose
values are more than 0.01 are displayed on the confusion matrices. Figure 6b–f are sparser than
Figure 6a, which indicates smaller error rates and higher recalls. As Figure 6a shows, ResNet-1d
performs well on some classes, such as baseball field, beach, bridge, desert, and forest, the recalls of
which are higher than 95%. However, ResNet-1d confuses some classes with other classes. For instance,
20% of the images of the park class are mistaken as the resort class, while approximately 10% of the
images of the mountain class are cast incorrectly into the dense residential class.
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(a) ResNet-1d (b) LSNet-1d with ReLU

(c) LSNet-1d with Leaky ReLU (d) LSNet-1d with ELU

(e) LSNet-1d with CELU (f) LSNet-1d with SELU

Figure 6. Confusion matrices of the AID dataset in the 1D experiment. The number on the ith row,
jth column represents the normalized number of the images in the ith class that are classified as the jth
class. The numbers below 0.01 are not displayed on the confusion matrices.
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For further comparison between LSNet-1d and ResNet-1d, we select the classes whose recalls are
below 75% in the ResNet-1d experiment and make further analysis. As shown in Figure 7, ResNet-1d
surpasses all 1D LSNets on the medium residential class, but it is inferior to all 1D LSNets on five
classes including railway station, resort, river, school, and square. All 1D LSNets are well ahead
of ResNet-1d on the square class by more than 10%, which demonstrates that features extracted by
nonlinear lifting scheme can better distinguish this class from all other classes.

Figure 7. Network performance on partial classes of the AID dataset. The classes whose test set recalls
are below 75% in the ResNet-1d experiment are selected for recall comparison between 1D LSNets
and ResNet-1d.

In the 2D experiment, LSNets slightly enhance the performance compared with ResNet-2d,
as shown in Table 7. In between, LSNet-2d with ReLU used in the LS2D block achieves the highest test
set accuracy, which is superior to ResNet-2d by 0.45%. Constructed by different nonlinear predict and
update operators, the LS blocks construct different LSNets, which are distinguished in performance.
This fact indicates the significance of seeking suitable nonlinear operators.

Table 7. Performance of networks on the AID dataset in the 2D experiment.

Method ResNet-2d
LSNet-2d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 83.30% 83.75% 83.20% 83.70% 83.55% 83.65%

Delta − +0.45% −0.10% +0.40% +0.25% +0.35%

To explore the comparison between 2D LSNets and ResNet-2d, confusion matrices are drawn to
displace the output probabilities whose values are more than 0.01, as shown in Figure 8. Recalls and
error rates are displaced for each class. It can be determined that 2D LSNets perform better on some
classes, such as the sparse residential class and the viaduct class, where all types of 2D LSNets are
superior to ResNet-2d.

Furthermore, we select the classes whose recalls are below 80% in the ResNet-2d experiment
and conduct further analysis. As shown in Figure 9, LSNets perform better on most of these classes.
For instance, LSNet-2d with ReLU and LSNet-2d with ELU are superior to ResNet-2d by 8.4%,
while LSNet-2d with CELU surpasses ResNet-2d by 7.8% on the commercial class. Moreover, all types
of LSNets are better than ResNet-2d in river class. This fact indicates that the nonlinear lifting scheme
provides an advantage in extracting the features to distinguish the river class from all other classes.
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(a) ResNet-2d (b) LSNet-2d with ReLU

(c) LSNet-2d with Leaky ReLU (d) LSNet-2d with ELU

(e) LSNet-2d with CELU (f) LSNet-2d with SELU

Figure 8. Confusion matrices of the AID dataset in the 2D experiment. The number on the ith row, jth
column represents the normalized number of the images in the ith class that are classified as the jth
class. The numbers below 0.01 are not displayed on the confusion matrices.
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Figure 9. Networks’ performance on partial classes of the AID dataset. The classes whose test set
recalls are below 80% are selected for recall comparison between 2D LSNets and ResNet-2d.

4. Discussion

Experimental results indicate that the proposed LSNet performs better than ResNet that utilizes
the vanilla convolutional layer. An analysis of the improvement is as follows.

1. LSNet can extract more discriminative features with the nonlinearity introduced by the lifting
scheme. Corresponding to larger function space, features extracted from the nonlinear module
are more distinguishable, which contains the information that cannot be represented by a linear
convolutional layer. Therefore, LSNet reaches higher recall in a single class and perform better on
the overall accuracy metric.

2. The lifting scheme shown in Figure 2 is more suitable for hardware implementation with the
advantages of in-place operation, acceleration, and auxiliary storage free, which can process
the entire input image in parallel within each step. In the LSNet, the lifting scheme block
performs prediction and update steps without transitional auxiliary storages. This characteristic
of the LSNet is expected to provide the potential for easing the computational burden of
high-resolution remote sensing imagery analysis and promoting applications on computationally
limited hardware platforms.

In the future, we will introduce other nonlinear wavelets into neural networks, such as the
morphology wavelet and the adaptive wavelet, to further enhance the nonlinear representation of
neural networks. In addition, we will attempt to implant LSNet into some computationally limited
platforms, such as FPGA, and compare its performance with existing methods.

5. Conclusions

CNN-based methods for scene classification are restricted by the computational challenge and
limited ability to extract discriminative features. In this paper, the lifting scheme is introduced into
deep learning and a lifting scheme-based deep neural network (LSNet) is proposed for remote sensing
scene classification. The innovation of this approach lies in its capability to introduce nonlinearity into
the feature extraction module to extend the feature space. The lifting scheme is an efficient algorithm
for the wavelet transform to fit on the hardware platforms, which shows the potential of LSNet to ease
the computational burden. Experiments on the AID datasets demonstrate that LSNet-1d and LSNet-2d
are superior to ResNet-1d and ResNet-2d by 2.05% and 0.45%, respectively. The method proposed in
this paper has room for further improvement, and we will introduce other nonlinear wavelets into
neural networks and implant LSNet into some computationally limited platforms in the future.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
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LSNet Lifting Scheme Based Deep Neural Network
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CIFAR Canadian Institute for Advanced Research
AID Aerial Image Dataset
DWT Discrete Wavelet Transform
SGD Stochastic Gradient Descent
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Abstract: In the past two decades, traditional hand-crafted feature based methods and deep feature
based methods have successively played the most important role in image classification. In some
cases, hand-crafted features still provide better performance than deep features. This paper proposes
an innovative network based on deep learning integrated with binary coding and Sinkhorn distance
(DBSNet) for remote sensing and texture image classification. The statistical texture features of the
image extracted by uniform local binary pattern (ULBP) are introduced as a supplement for deep
features extracted by ResNet-50 to enhance the discriminability of features. After the feature fusion,
both diversity and redundancy of the features have increased, thus we propose the Sinkhorn loss
where an entropy regularization term plays a key role in removing redundant information and
training the model quickly and efficiently. Image classification experiments are performed on two
texture datasets and five remote sensing datasets. The results show that the statistical texture features
of the image extracted by ULBP complement the deep features, and the new Sinkhorn loss performs
better than the commonly used softmax loss. The performance of the proposed algorithm DBSNet
ranks in the top three on the remote sensing datasets compared with other state-of-the-art algorithms.

Keywords: image classification; deep features; hand-crafted features; Sinkhorn loss

1. Introduction

1.1. Background

Image classification has always been an important basic problem in computer vision, and it is
also the basis of other high-level visual tasks such as image detection, image segmentation, object
tracking, and behavior analysis [1]. To propose an effective method to extract features which can
represent the characteristics of the image is always critical in image classification [2]. The methods of
extracting features can be divided into hand-crafted feature based methods and deep feature based
methods. Before the rise of feature learning, people mostly used hand-crafted feature based methods
to extract the essential features of the image such as edge, corner, texture, and other information [3].
For example, Laplacian of Gaussian (LoG) operator [4] and Difference of Gaussian (DoG) operator [5]
are designed for detecting blobs in the image, scale invariant feature transform (SIFT) [6] is independent
of the size and rotation of the object, local binary pattern (LBP) [7] has rotation invariance and
gray invariance, features from accelerated segment test (FAST) operator [8] has high computational
performance and high repeatability, bag of visual words model [9] pays more attention to the statistical

Remote Sens. 2019, 11, 2870; doi:10.3390/rs11232870 www.mdpi.com/journal/remotesensing61



Remote Sens. 2019, 11, 2870

information of features, Fisher vector [10] expresses an image with a gradient vector of likelihood
functions, etc. A few of the most successful methods of texture description are the LBP and its variants
such as uniform local binary pattern (ULBP) [11], COVariance and LBP Difference (COV-LBPD) [12],
median robust extended LBP (MRELBP) [13], fast LBP histograms from three orthogonal planes (fast
LBP-TOP) [14]. The ULBP proposed by Ahonen et al. reduces the number of binary patterns of LBP
and is robust for high frequency noise. Hong et al. proposed the LBP difference (LBPD) descriptor
and the COV-LBPD descriptor. The LBPD characterizes the extent to which one LBP varies from the
average local structure of an image region of interest, and the COV-LBPD is able to capture the intrinsic
correlation between the LBPD and other features in a compact manner. The MRELBP descriptor
proposed by Liu et al. was computed by comparing image medians over a novel sampling scheme,
which can capture both microstructure and macrostructure texture information and has attractive
properties of strong discriminativeness, grayscale and rotation invariance, and computational efficiency.
Hong et al. proposed the fast LBP-TOP descriptor which fastens the computational efficiency of
LBP-TOP on spatial-temporal information and introduced the concept of tensor unfolding to accelerate
the implementation process from three-dimensional space to two-dimensional space.

Since the rise of feature learning, deep learning methods have become a research hotspot and
have broad application prospects and research value in many fields such as speech recognition and
image classification [15]. Deep learning architectures mainly include four types: the autoencoder (AE),
deep belief networks (DBNs), convolutional neural network (CNN), and recurrent neural network
(RNN) [16]. Among these four deep learning architectures, CNN is the most popular and most
published to date. For example, neural networks such as GoogLeNet [17], VGGNet [18], and residual
neural network (ResNet) [19] have performed well in the field of image classification. GoogLeNet
proposes an inception module, VGGNet explores the effects of the depth of deep neural network,
and ResNet solves the problem of degradation of deep networks. These deep learning algorithms
build the reasonable model by simulating a multi-layer neural network. High-level layers pay more
attention to semantic information and less attention to detail information, while low-level layers are
more concerned with detailed information and less with semantic information.

The deep learning algorithms have automatic feature learning capabilities for image data relying
on large training sets and large models [20], while traditional methods rely primarily on hand-crafted
features. Despite the success of deep features, the hand-crafted LBP texture descriptor and its variants
have proven to provide competitive performance compared to deep learning methods in recent
texture recognition performance evaluation, especially when there are rotations and multiple types
of noise [21]. The LBP method introduces the priori information by presetting thresholds, so it can
directly extract useful features through a manually designed algorithm, while the acquisition of deep
features with excellent performance requires large training sets and large models. Therefore, there
are aspects where hand-crafted features and deep features can learn from each other. For example,
Courbariaux et al. proposed the BinaryConnect, which means training a DNN with binary weights
during the forward and backward propagations, while retaining precision of the stored weights [22].
Hubara et al. introduced a method to train binarized neural networks (BNNs)—neural networks
with binary weights and activations at run-time, and the binary weights and activations are used for
computing the parameter gradients at train-time [23]. Inspired by the characteristics of hand-crafted
features and deep features, this paper mainly studies the complementary performance between deep
features and binary coded features and proposes a more effective feature description method.

During the training of the model, the loss function is used to assess the degree to which a
specific algorithm models the given data [24]. The better the loss function, the better the performance
of the algorithm. The design of the loss function can be guided by two strategies: empirical risk
minimization and structural risk minimization. The average loss of the model on the training data
set is called empirical risk, and the strategy of minimizing empirical risk is that the model with
the least empirical risk is the best model. The related loss functions include center loss [25] and
large-margin softmax loss [26], which are typical improved versions of softmax loss. When the size
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of training set is small or the model is complex, the model with the least empirical risk makes it easy
to overfit the data. The strategy of structural risk minimization adds a regularization term based
on the empirical risk minimization strategy. The structural risk minimization strategy means that
the model with the least structural risk is the optimal model. The commonly used regularization
terms include L1-regularization and L2-regularization. Sinkhorn distance [27] is the approximation
of Earth mover’s distance (EMD) [28] which can be used as a loss function. Different from other
distance functions, EMD solves the correlation between two distributions by a distance matrix and a
coupling matrix related to the predicted probability distribution and the actual probability distribution.
The presetting distance matrix can increase the influence of the inter-class distance on the loss value,
thereby improving the performance of the model. However, when EMD is used as loss function, there
will be the problem of excessive computational complexity. Thus, as an approximate representation of
EMD, the Sinkhorn distance which adds an entropic regularization term based on EMD is introduced
as the loss function of the proposed model. The added entropic constraint turns the transport problem
between distributions into a strictly convex problem that can be solved with matrix scaling algorithms
and avoids the overfitting program.

This paper mainly verifies the performance of the proposed image classification algorithm in
texture classification and remote sensing scene classification. Texture classification is an important
basic problem in the field of computer vision and pattern recognition as well as the basis of other visual
tasks such as image segmentation, object recognition, and scene understanding. However, texture
is only the feature of the surface of an object, which cannot fully reflect the essential properties of
the object. High-level image features cannot be obtained using only texture features [29]. Remote
sensing scene classification is challenging due to several factors, such as large intra-class variations,
small inter-class differences, scale changes, and illumination changes [30]. With the rise of remote
sensing instruments, a large amount of satellite data has appeared in the field of remote sensing.
Therefore, deep learning is gradually introduced into the image classification of remote sensing scenes.
There are wild applications receiving more and more attention, such as land cover classification and
target detection.

1.2. Problems and Motivation

Firstly, the features used for classification in the deep model are often global features extracted
by high-level layers near the end of the model, with very few local features of the image. The global
features have proven important in classification tasks but the local features can enhance the
discriminability of features and are also helpful for image classification. Besides, when there are rotation
and noise in the image, the traditional hand-crafted features have proven to provide competitive
performance compared to the deep features. These two types of features have their own characteristics
and can be used for reference for each other in some aspects.

Secondly, after the feature fusion, not only the diversity of features but also the redundancy
of features is increased. When training the model by minimizing the loss function, we would like
to remove the redundancy of the fused features and maximize the inter-class distance to improve
classification performance of the model. However, the common used softmax loss in deep learning
usually has insufficient feature distinguishing ability [31]. The loss function that is more suitable for
the algorithm needs to be proposed.

1.3. Contributions and Structure

This paper presents a remote sensing and texture image classification network, which is based on
deep learning integrated with binary coding and Sinkhorn distance. The general framework of the
proposed algorithm is shown in Figure 1.
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Figure 1. The general framework of the proposed algorithm, deep learning integrated with binary
coding and Sinkhorn distance (DBSNet).

The contributions of this paper are summarized as follows.
Firstly, since the deep feature based methods and hand-crafted feature based methods are

complementary in some aspects, we combine these two kinds of features to obtain better features to
characterize the image. Specifically, the hand-crafted binary coding features extracted by ULBP are
introduced to supplement the deep features extracted by representative ResNet-50 in classification,
which makes the image features more accurate and comprehensive.

Secondly, a new loss function is proposed, which combines the score function with the Sinkhorn
distance to predict the class. Sinkhorn loss analyzes the loss value between distributions from the
perspective of doing work and removes the redundancy of the fused features with an entropic
regularization term. Since the Sinkhorn distance is bounded from below by the distance between the
centers of mass of the two signatures when the ground distance is induced by a norm, we can increase
the impact of the inter-class distance on the loss value by presetting the distance matrix to guide the
optimization process of the model.

The following sections are arranged as follows: Section 2 introduces the related work; Section 3
shows the proposed image classification algorithm; Section 4 introduces the experiments on texture
datasets and remote sensing scene datasets; Section 5 introduces the summary of this paper.

2. Preliminaries

2.1. Deep Feature for Image Classification

Deep learning was successfully applied to image classification, and it is possible to approximate
the complex functions of human visual perception by rationally combining several basic modules.
The basic modules of the deep model are mainly information extraction module, activation and pooling
module, and tricks module. The information extraction module extracts features from the input.
The activation and pooling module is mainly devoted to nonlinear transformation and dimensionality
reduction. The tricks module can speed up the training procedure and avoid overfitting [32].
The information extraction module of CNN is mainly composed of convolutional layers. Receptive
fields are used to describe the area of the input image which can affect the features of the CNN. Figure 2
shows that as the depth of the network deepens, the receptive field of the posterior neurons increases,
and the extracted features also change from low-level features such as edge information to mid-level
features such as texture information and high-level features such as structural information.

The high-level features are often used for classification in CNN, losing a lot of detailed information,
such as edge features and texture features, which may lead to poor performance in image classification
requiring more detailed information. In order to improve the discriminative ability of the model,
texture features can be used to complement the discriminability of deep features.

Deep models are widely used in texture classification and remote sensing scene classification.
ResNet is one of the best deep models for image classification. ResNet was proposed by Kaiming
He et al. in 2015. A 152 layer deep neural network was trained with a special network structure
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and won the championship on the ImageNet competition classification task (top-5 error rate: 3.57%).
ResNet overcame the difficulty that the deep network could not be trained, and not only the accuracy
of classification was improved, but also the parameter quantity was less than the VGG model.
Consequently, ResNet-50 is used as the deep feature extractor in the proposed algorithm.

Figure 2. The relationship between receptive field and network depth.

ResNet deepens the network without reducing the accuracy of classification by residual learning.
Based on the existing design ideas (batch normalization, small convolution kernel, and fully
convolution network), the residual module is introduced. Each residual module contains two paths,
one of which performs two or three convolution operations on the input feature to obtain the residual
of the feature; the other path is the direct path of the input feature. The outputs of these two paths
are finally added together to be the output of the residual module. There is an example of residual
module shown in Figure 3. The first 1 × 1 convolution in the module is used to reduce the dimension
(from 256 to 64), and the second 1 × 1 convolution is used to upgrade the dimension (from 64 to 256).
Consequently, the number of input and output channels of the intermediate 3 × 3 convolution is small
(from 64 to 64), and the parameters to be learned can be significantly reduced.

Figure 3. Residual module in ResNet-50.

Figure 4 shows the framework of ResNet-50, in which the residual modules are repeated 3 times,
4 times, 6 times, and 3 times respectively. The deep features of the image are extracted using the
fine-tuned ResNet-50.

Figure 4. The framework of ResNet-50.

2.2. Binary Coded Feature for Image Classification

In the field of texture recognition, LBP is one of the most commonly used texture description
methods, which was firstly proposed by T. Ojala et al. in 1994. It was originally developed as a
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method of describing texture images and later improved for image feature analysis. LBP has significant
advantages such as gray invariance and rotation invariance [29]. LBP has been extensively researched
in many fields and has demonstrated outstanding performance in several comparative studies [33,34].
The LBP descriptor works by thresholding the values of its neighborhood pixels, while the threshold
is set as the value of the center pixel. The LBP descriptor is capable of detecting local primitives,
including flat regions, edges, corners, curves, and edge ends, and it was later extended to obtain
multi-scale, rotational invariant, and uniform representations and has been successfully applied to
other tasks, such as object detection, face recognition [11], and remote sensing scene classification.
The framework of traditional LBP can be presented by Figure 5, which can be divided into three steps.
Firstly, the binary relationship between each pixel in the image and its local neighborhood is calculated
in grayscale. Then, the binary relationship is weighted into an LBP code according to certain rules.
Finally, the histogram sequence obtained by statistics in the LBP image is described as image features.

Figure 5. Calculation of the local binary pattern (LBP).

The traditional LBP algorithm can be expressed by Equations (1) and (2):

LBPP,R =
P−1

∑
p=0

s(gp − gc)2p, (1)

where

s(x) =

{
1, x ≥ 0
0, x < 0

.

P is the number of neighborhoods, R represents the distance between the central pixel and the
neighborhood pixel, and we set R = 1 here. gc is the grayscale value of the center pixel, and gp is
the grayscale value of the neighborhood pixel. Compared with the value of center pixel, the value of
neighborhood pixel is set as 1 when it is greater or 0 when it is less. Then binary encoding is performed
in a certain order. For those pixels which are not at the center of the neighborhood pixels, the grayscale
values of their neighborhood pixels can be estimated by linear interpolation. Finally, by traversing all
LBP pixel values, a histogram is created to represent the texture features of the image. Assuming the
image size is I × J, the histogram is expressed as:

H(k) =
I

∑
i=1

J

∑
j=1

f (LBPP,R(i, j), k), (2)
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where
k ∈ [0, 255],

f (x, y) =

{
1, x = y
0, otherwise

.

As one of the binary coded feature extractors, LBP can effectively deal with illumination changes
and is widely used in texture analysis and texture recognition. However, with the increase of the
variety of patterns, the computational complexity and the data volume of the traditional LBP method
will increase sharply. LBP will also be more sensitive to noise, and the slight fluctuations of the central
pixel may cause the coded results to be quite different. In order to solve the problem of excessive
binary patterns and make the process of statistic more concise, Ojala et al. proposed a uniform pattern
to reduce the dimension of the patterns. Ojala believed that most patterns only contain up to two
jumps from 1 to 0 or from 0 to 1 in the natural image. Therefore, Ojala defined the “Uniform Pattern”,
that is, when a loop binary pattern has a maximum of two jumps from 0 to 1 or from 1 to 0, the pattern
is called a uniform pattern, such as 00000000 (0 jump), 10001111 (first jump from 1 to 0, then jump
from 0 to 1). Except for the uniform pattern, other patterns are classified as mixed pattern, such as
10010111 (totally 4 jumps). The framework of ULBP is shown in Figure 6. U(LBPP,R) can be used to
indicate the number of jump in the code, which is calculated as follows:

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1

∑
p=1

|s(gp − gc)− s(gp−1 − gc)|. (3)

Through such an improvement, the number of patterns is reduced from the original 2P to P ×
(P − 1) + 3, where P represents the number of sampling points in the neighborhood. For 8 sampling
points in the 3 × 3 neighborhood, the number of binary pattern is reduced from 256 to 59. The values
of uniform pattern are assigned from 1 to 58 in ascending order, and the mixed pattern is assigned 0.
Since the range of grayscale value is 0–58, the ULBP feature image is entirely dark, which makes the
feature vector less dimensional and less impacted by high frequency noise.

Figure 6. The framework of uniform local binary pattern (ULBP).

3. Methodology

3.1. Sinkhorn Loss

The Sinkhorn loss consists of softmax function and Sinkhorn distance. When the score vector
is output from the fully connected layer, we convert it into a probability distribution by the softmax
function and then calculate distance between the actual distribution and the predicted distribution
using Sinkhorn distance. The approximate solution of optimal transport problem between two
distributions can be determined by iterative learning. The advantages of Sinkhorn distance in
calculating the distance between two distributions will be introduced next.
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Two signatures, P and Q, are defined to represent the predicted distribution and the actual
distribution, with m classes respectively. These two signatures can be represented by Equations (4)
and (5), where pi is the label in P, wpi is the probability of pi in P, qj is the label in Q, and wqj is the
probability of qj in Q. Here we set pi = i and qj = j to represent the different labels. The value of wpi is
determined by the output of softmax function. The value of wqi is determined based on the real class.
For a specific sample, if i is the real class of it, we set wqi = 1, otherwise we set wqi = 0.

P =
{(

p1, wp1

)
, . . . ,

(
pm, wpm

)}
, (4)

Q =
{(

q1, wq1

)
, . . . ,

(
qm, wqm

)}
. (5)

In order to measure the work of transforming one distribution into another, two matrices are
introduced: the distance matrix D and the coupling matrix F. Each element dij in the distance matrix
D represents the distance of moving pi to qj. Here we set dij = 1 when i 
= j and dij = 0 when i = j.
Each element fij in the coupling matrix F indicates the probability quality that needs to be assigned
when moving from pi to qj. According to the above definition, the total cost t(P, Q) can be calculated
by the Frobenius inner product between F and D:

t(P, Q) = 〈D, F〉 =
m

∑
i=1

m

∑
j=1

dij fij. (6)

The goal is to find an optimal coupling matrix F∗ that minimizes the overall cost function,
and the least cost function over all coupling functions is the solution to this optimal transport problem,
called EMD.

F∗ = arg min
F

t(P, Q), (7)

EMD =
min

F
t(P, Q)

m
∑

i=1

m
∑

j=1
fij

, (8)

s.t.
fij ≥ 0,

m

∑
j=1

fij ≤ wpi ,

m

∑
i=1

fij ≤ wqj ,

m

∑
i=1

m

∑
j=1

fi j = min(
m

∑
i=1

wpi ,
m

∑
j=1

wqj).

EMD has a complicated calculation method for finding the optimal solution and is not suitable
as a loss function. However, when solving the distance between distributions, it can increase the
influence of the inter-class distance on the cost function by reasonably presetting the distance matrix.
Thus, we introduce the Sinkhorn distance as loss function which is the approximate value of EMD.
It smooths the classic optimal transport problem with an entropic regularization term. The solution to
the problem can be rewritten as:

Forλ > 0, SD :=
〈

D, Fλ
〉

, (9)

where
Fλ = arg min

F
t(P, Q)− 1

λ
h(F),
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h (F) = −∑
ij

Fij log Fij.

λ is the regularization coefficient. When λ grows, a slower convergence can be observed as Fλ gets
closer to the optimal vertex F∗, but the computational complexity will also rise at the same time. Thus
we take λ = 10 where the computational complexity and the accuracy of the approximate solution
reach the compromise. By introducing entropy regularization term, the transport problem is turned
into a strictly convex problem that can be solved with Sinkhorn’s matrix scaling algorithm at a speed
which is several orders of magnitude faster than that of transport solvers. For λ > 0, the solution Fλ of
the problem is unique and has the form Fλ = diag(u)Kdiag(v), where u and v are two non-negative
vectors of Rm and K is the element-wise exponential of −λD.

3.2. Integrating Deep Learning with Binary Coding for Texture and Remote Sensing Image Classification

Nowadays, the networks used for image classification are generally trained and tested through an
end-to-end network, and the classification accuracy is improved by optimizing the parameters of the
feature extractor and classifier. However, the features extracted by the deep network have limitations.
In order to improve the performance of the classification algorithm, the local texture information
obtained by the ULBP of the image is used as the supplementary features. This paper combines it with
the deep features as the input of fully connected layer, and the optimization of network parameters is
guided by Sinkhorn loss. The framework of the two stream model is shown in Figure 7.

Figure 7. The detailed framework of the proposed algorithm: DBSNet.

The ResNet-50 is pre-trained on the ImageNet 2012 dataset used in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [35] and then the original softmax with cross-entropy loss
is replaced with the Sinkhorn loss to get a new network (RSNet). Finally, we fine-tuned the RSNet
on different datasets and removed the fully connected layer and the classifier to get the deep feature
extraction network. The binary coded feature extractor is the ULBP algorithm. The input of the model
is an RGB image. Firstly, 2048 dimensional features are extracted through the deep feature extractor.
At the same time, the image is grayscale processed and encoded by ULBP to get the 59 dimensional
local texture features. After the two sets of features are fused, the class of image is predicted by the
output of the fully connected layer.

In order to clearly observe the difference before and after the feature fusion, t-distributed stochastic
neighbor embedding (t-SNE) [36] is used to visualize the pre-fusion deep features, ULBP features and
the merged DBSNet features extracted on KTH-TIPS2-b texture dataset in the 2D space. The results
are shown in Figure 8. As shown in the figure, the deep features have good image characterization
capabilities, but the samples of the same class are more scattered. The LBP features have certain image
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characterization capabilities but the discriminability is not good. The DBSNet features combine the
deep features and the LBP features. It can be seen from the reduced-dimensional image features that
the image feature representation capability of the DBSNet features is better than the deep features
and the ULBP features and the samples of the same class are more compact, indicating that the ULBP
features complement deep features.

Figure 8. Comparison of feature maps of RSNet, ULBP, and DBSNet algorithms on KTH-TIPS2-b dataset.

4. Experiment

The performance of the proposed algorithm will be verified on two texture datasets and five
remote sensing scene datasets. Firstly, the texture recognition performance of the algorithm is verified
on two texture datasets and compared with the ResNet-50, RSNet, and several typical LBP-derived
algorithms. Then, the remote sensing scene classification performance of this algorithm is evaluated on
five remote sensing scene datasets and compared with the ResNet-50, RSNet, and the representative
remote sensing scene classification algorithm.

4.1. Experimental Data

4.1.1. Texture Dataset

The performance of the proposed algorithm is firstly validated on two classic texture datasets:
KTH-TIPS2-a dataset and KTH-TIPS2-b dataset.

The KTH-TIPS2-a dataset includes 11 classes of texture images. Most classes of the textures
are shot in nine different scales, three poses, and four different lighting conditions, for a total of
4608 images, each with a pixel size of 200 × 200. We use three sets of samples as the train set and one
set of samples as the test set and perform four experiments, with the average of four results as the
final result.

The KTH-TIPS2-b dataset includes 11 classes of texture images, each of which is shot in nine
different scales, three poses, and four different lighting conditions, for a total of 4752 images, each with
a pixel size of 200 × 200. We use one set of samples as the train set and three sets of samples as the test
set and perform four experiments, with the average of four results as the final result.

There are some examples of these texture datasets shown in Figure 9.

Figure 9. Example images of two texture datasets from top to bottom: KTH-TIPS2-a and KTH-TIPS2-b.
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4.1.2. Remote Sensing Scene Dataset

Besides the texture image classification, the performance of the algorithm is also validated on
five remote sensing scene datasets: AID dataset, RSSCN7 dataset, UC Merced Land-Use dataset,
WHU-RS19 dataset, and OPTIMAL-31 dataset.

AID dataset [37] contains 30 classes of scene images, each class has about 200 to 400 samples,
a total of 10,000, and each image has a pixel size of 600× 600. Each class of images is randomly selected
with ratio of 20:80 to obtain the train and test set.

RSSCN7 dataset [38] contains seven classes of scene images, each with 400 samples, a total of
2800, and each image has a pixel size of 400 × 400. Each class of images is randomly selected with ratio
of 50:50 to obtain the train and test set.

UC Merced Land-Use dataset [39] contains 21 classes of scene images, each with 100 samples,
a total of 2100, and each image has a pixel size of 256 × 256. Each class of images is randomly selected
with ratio of 50:50 to obtain the train and test set.

WHU-RS19 dataset [40] contains 19 classes of scene images, each with about 50 samples, a total
of 1005, and each image has a pixel size of 600 × 600. Each class of images is randomly selected with
ratio of 60:40 to obtain the train and test set.

OPTIMAL-31 dataset [41] contains 31 classes of scene images, each with 60 samples, a total of
1860, and each image has a pixel size of 256 × 256. Each class of images is randomly selected with ratio
of 80:20 to obtain the train and test set.

There are some examples of these remote sensing scene datasets shown in Figure 10.

Figure 10. Example images of five remote sensing scene classification datasets from top to bottom:
AID, RSSCN7, UC-Merced, WHU-RS19, and OPTIMAL-31.

4.2. Experimental Setup

Performance of the algorithms in the experiments is measured by the overall accuracy (OA) and
the confusion matrix (CM) on the test set. The classification accuracy over all scene categories in a
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dataset is calculated according to SP
ST

, where SP is the number of correct predictions in the test set and
ST is the total number of images in the test set. The CM allows us to clearly see the classification
accuracy of the algorithm for each type of image in the dataset.

In order to verify the performance of the proposed algorithm, we compare the proposed algorithm
DBSNet with several representative algorithms on texture datasets and remote sensing datasets.
For texture datasets, we compare the DBSNet with the hand-crafted texture feature descriptors ULBP
and some efficient and recently proposed LBP derived algorithms such as COV-LBPD, MRELBP,
and fast LBP-TOP. We experiment using the source code on the texture datasets. After the feature
extraction by the texture feature descriptors, classification using nearest neighbors is conducted. In the
proposed algorithm DBSNet, ResNet-50 is one solution for deep feature extractors. Because the
ResNet-50 model is complex and the dimension of extracted features is large, we replace ResNet-50
with a shallow CNN model shown in Figure 11 and do the classification experiments on texture
datasets to further verify the complementary effect of the hand-crafted texture features on the deep
features. The network is trained and tested on four different train-test sets respectively, and then four
feature extractors are obtained after removing the fully connected layer. For each feature extractor,
we extract the deep features and classify them by the fully connected layer. The deep features fused
with ULBP features are also classified by the fully connected layer to obtain the performance of the
fused features.

For remote sensing datasets, we compare the proposed method DBSNet with the classic
image classification algorithms IFK-SIFT [10], CaffeNet [42], VGG-VD-16 [18], GoogLeNet, ARCNet-
VGGNet16 [41], and GBNet + global feature [43]. In addition to comparing the original results
in the references [37,41,43], we do experiments on OPTIMAL-31 dataset with IFK-SIFT, CaffeNet,
VGG-VD-16, and GoogLeNet referring to the parameter settings in reference [37]. We extract the deep
features using the pretrained models without the fully connected layers on ImageNet and the IFK-SIFT
features and then classify them respectively by the liblinear [44] for 10 times and take the mean
accuracy as the result. Considering that the ResNet-50 used in the proposed methods are fine-tuned
for better performance, we fine-tune the deep models CaffeNet, VGG-VD-16, and GoogLeNet for
further comparison. We change the output channels of the last fully connected layer and optimize
the parameters of deep models with the stochastic gradient descent (SGD). The detailed parameter
settings are listed in Table 1.

Table 1. Parameter settings of the deep models.

Parameter Batch Size Learning Rate Momentum Weight Decay

Value 60 0.0001 0.9 0.0001

Besides the comparison methods mentioned above, three different algorithms are to be compared
based on the difference of feature extraction method and the loss function on both texture datasets
and remote sensing datasets, which are the fine-tuned ResNet-50, RSNet, and DBSNet algorithms.
These three comparison algorithms are respectively tested to verify whether the deep features extracted
by the RSNet and the statistical texture features obtained by the ULBP are complementary and whether
the proposed Sinkhorn loss has robust performance.

Figure 11. The framework of the shallow convolutional neural network (CNN).
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4.3. Experimental Results and Analysis

In this section, we report the classification performance of the proposed DBSNet and other
methods for comparison on challenging texture datasets and remote sensing scene classification
datasets respectively.

4.3.1. Experiments on Texture Dataset

For the texture recognition, the classification results given in Table 2 show the performance
comparison of the different algorithms on KTH-TIPS2-a and KTH-TIPS2-b texture datasets.
The accuracy of the best performing algorithm is bolded for different databases. It can be seen that on
the KTH-TIPS2-a and KTH-TIPS2-b datasets, the traditional hand-crafted methods are not competitive,
and the ResNet-50, the RSNet, and the DBSNet provide incremental performance, which proves
that the performance of the Sinkhorn loss is excellent and the features obtained by the ULBP are
complementary to the deep features.

Table 2. Classification accuracy of different algorithms on KTH-TIPS2-a and KTH-TIPS2-b
texture datasets.

ULBP COV-LBPD MRELBP Fast LBP-TOP
ResNet-50

(Fine-Tuning)
RSNet DBSNet

KTH-TIPS2-a 0.6014 0.6291 0.6342 0.6058 0.8247 0.8321 0.8359
KTH-TIPS2-b 0.2628 0.5588 0.5475 0.2499 0.7379 0.7458 0.7511

Tables 3 and 4 are the confusion matrices of the RSNet algorithm and the DBSNet algorithm on
KTH-TIPS2-b texture dataset which clearly reflect the classification performance on each category in
the dataset. We compare these two confusion matrices and find that among the 11 classes, DBSNet
algorithm outperforms RSNet algorithm in seven classes, which are aluminium foil, brown bread, cork,
cracker, lettuce leaf, linen, and wood, and is inferior to the RSNet algorithm in three classes, which are
corduroy, cotton, and wool. The overall classification performance of DBSNet is better than the RSNet
algorithm, which proves the superiority of the proposed feature extraction method over the normal
deep feature based method.

To further verify the complementary effect of the hand-crafted texture features on the deep
features, we replace the RSNet feature extractor with a shallow CNN feature extractor. In Table 5,
the accuracy of the best performing algorithm is bolded for different databases. It can be seen that
the classification performance of the fused features is better than the deep features on four train-test
sets of both KTHTIPS2-a and KTHTIPS2-b datasets. Consequently, the ULBP features complement the
low-dimensional deep features of shallow CNN in classification task and even though the dimensions
of deep features increase, the complement of ULBP features still exists, which has been proved in
Table 2.

Table 3. Confusion matrix (CM) of RSNet algorithm on KTH-TIPS-2b dataset.

Aluminium Foil Brown Bread Corduroy Cork Cotton Cracker Lettuce Leaf Linen White Bread Wood Wool

aluminium foil 0.9846 0 0 0 0 0 0 0.0154 0 0 0
brown bread 0 0.8549 0 0 0 0.0494 0 0 0.0957 0 0

corduroy 0.0123 0.0031 0.8117 0.0802 0.0062 0.0123 0 0.0463 0.0031 0.0031 0.0216
cork 0 0 0 0.8549 0 0.1204 0 0 0.0247 0 0

cotton 0 0 0.1358 0 0.2531 0 0 0.3827 0.0031 0.0463 0.1790
cracker 0 0.4846 0 0.0710 0 0.4414 0 0.0031 0 0 0

lettuce leaf 0 0 0 0 0.0062 0 0.9938 0 0 0 0
linen 0 0 0.0093 0 0.1790 0 0 0.8117 0 0 0

white bread 0 0 0 0 0 0 0 0 0.9877 0.0123 0
wood 0 0 0 0 0.0247 0 0 0 0.0278 0.9475 0
wool 0.0062 0.0031 0.0309 0.1636 0.0123 0 0 0.5216 0 0 0.2623
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Table 4. CM of DBSNet algorithm on KTH-TIPS-2b dataset.

Aluminium Foil Brown Bread Corduroy Cork Cotton Cracker Lettuce Leaf Linen White Bread Wood Wool

aluminium foil 1 0 0 0 0 0 0 0 0 0 0
brown bread 0 0.9352 0 0 0 0.0062 0 0 0.0586 0 0

corduroy 0.0741 0.0062 0.7130 0.0401 0.0031 0.0525 0.0031 0.0617 0.0062 0.0401 0
cork 0 0.0062 0 0.9475 0 0.0432 0 0 0.0031 0 0

cotton 0 0 0.2222 0 0.1265 0 0 0.4043 0.0031 0.0617 0.1821
cracker 0.0062 0.3457 0.0031 0.0432 0 0.5988 0 0 0 0.0031 0

lettuce leaf 0 0 0 0 0.0031 0 0.9969 0 0 0 0
linen 0 0 0.0031 0 0.1204 0.0031 0.0031 0.8673 0 0.0031 0

white bread 0 0.0062 0 0 0 0 0 0 0.9877 0.0062 0
wood 0 0 0 0 0.0062 0.0123 0 0 0.0216 0.9599 0
wool 0.1821 0.0062 0.0648 0.0772 0.0123 0 0 0.4630 0 0.0648 0.1296

Table 5. Classification accuracy of different feature sets on KTHTIPS2-a and KTHTIPS2-b
texture datasets.

Train-Test 1 Train-Test 2 Train-Test 3 Train-Test 4 OA

KTHTIPS2-a
Deep features 0.5097 0.4722 0.4318 0.5892 0.5007

Deep features+ULBP features 0.5182 0.4882 0.4840 0.6002 0.5227

KTHTIPS2-b
Deep features 0.3131 0.3151 0.3361 0.4458 0.3525

Deep features+ULBP features 0.3527 0.3561 0.4234 0.5208 0.4133

4.3.2. Experiments on Remote Sensing Scene Dataset

For the remote sensing scene classification, the results given in Table 6 show the performance
comparison of the different algorithms on the five challenging remote sensing datasets. The accuracy
of the top three best performing algorithms for different databases is bolded. It can be seen that the
DBSNet algorithm provides better performance than the RSNet algorithm and the RSNet algorithm
performs better than ResNet-50 algorithm on these five datasets, which demonstrates that the features
obtained by ULBP still have the performance complementary to the deep features on remote sensing
datasets and the proposed Sinkhorn loss can better guide the learning process of the network than
the commonly used softmax loss. Compared with the mid-level method IFK-SIFT, the advanced deep
feature based methods CaffeNet, VGG-VD-16, GoogLeNet, ARCNet-VGGNet16, and GBNet + global
feature achieve improvement performance but the advanced deep feature based methods still have
limitations in feature extraction. Based on the deep features, the algorithm DBSNet adds texture
features that are instructive for image classification and uses a more suitable loss function. Compared
with these representative methods, DBSNet always ranks in the top three on all five datasets.

Table 6. Classification accuracy of different algorithms on AID, RSSCN7, UC-Merced, WHU-RS19,
and OPTIMAL-31 remote sensing scene classification datasets.

AID RSSCN7 UC-Merced WHU-RS19 OPTIMAL-31

IFK-SIFT [37] 0.7192 0.8509 0.7874 0.8742 0.6022
CaffeNet [37] 0.8686 0.8825 0.9398 0.9624 0.8586

CaffeNet (fine-tuning) 0.8953 0.9043 0.9525 0.9550 0.8623
VGG-VD-16 [37] 0.8659 0.8718 0.9414 0.9605 0.8610

VGG-VD-16 (fine-tuning) 0.9036 0.9293 0.9552 0.9651 0.8737
GoogLeNet [37] 0.8344 0.8584 0.9270 0.9471 0.8454

GoogLeNet (fine-tuning) 0.9015 0.9368 0.9580 0.9650 0.8900
ARCNet-VGGNet16 [41] 0.8875 - 0.9681 0.9975 0.9270

GBNet + global feature [43] 0.9220 - 0.9705 0.9925 0.9328
ResNet-50 (fine-tuning) 0.9233 0.9312 0.9622 0.9751 0.9301

RSNet 0.9281 0.9400 0.9762 0.9800 0.9328
DBSNet 0.9293 0.9521 0.9790 0.9875 0.9344

The confusion matrices of RSNet algorithm and DBSNet algorithm are compared on RSSCN7
dataset to analyze the classification performance more carefully. It can be seen from Tables 7 and 8 that
among the seven classes, DBSNet algorithm outperforms RSNet algorithm in five classes, which are

74



Remote Sens. 2019, 11, 2870

Grass, Industry, Forest, Resident, and Parking, and is second to the RSNet algorithm in two classes,
which are Field and RiverLake. Generally speaking, the overall classification performance of DBSNet
algorithm is better than the RSNet algorithm. As a complement, texture features play a role in the
classification task.

Table 7. CM of RSNet algorithm on RSSCN7 dataset.

Grass Field Industry RiverLake Forest Resident Parking

Grass 0.9150 0.0500 0.0100 0.0100 0 0.0100 0.0050
Field 0.0400 0.9600 0 0 0 0 0

Industry 0 0 0.8800 0.0150 0 0.0350 0.0700
RiverLake 0.0050 0.0150 0 0.9650 0.0150 0 0

Forest 0.0100 0.0150 0 0.0050 0.9700 0 0
Resident 0 0 0.0250 0.0050 0 0.9600 0.0100
Parking 0 0.0050 0.0600 0 0 0.0050 0.9300

Table 8. CM of DBSNet algorithm on RSSCN7 dataset.

Grass Field Industry RiverLake Forest Resident Parking

Grass 0.9550 0.0300 0.0050 0.0100 0 0 0
Field 0.0450 0.9550 0 0 0 0 0

Industry 0 0 0.9000 0.0100 0 0.0350 0.0550
RiverLake 0.0150 0.0100 0.0100 0.9600 0.0050 0 0

Forest 0.0100 0 0 0.0050 0.9850 0 0
Resident 0 0 0.0250 0.0050 0 0.9700 0
Parking 0 0.0050 0.0450 0 0.0050 0.0050 0.9400

5. Conclusions

In this paper we have proposed a robust image classification algorithm based on deep learning
integrated with binary coding and Sinkhorn distance. Taking into account the characteristics of
hand-crafted features and deep features, we combine their advantages and supplement the deep
features with the statistical texture features to fully describe the image. In order to remove redundant
information from the fused features and train the model quickly and efficiently, we introduced the
Sinkhorn loss where an entropy regularization term plays a key role. In this paper, experiments
are carried out on two classic texture datasets and five remote sensing classification datasets.
The experimental results show that compared with the ResNet-50, the proposed two stream model
DBSNet can improve the overall performance when achieving image classification tasks. In addition,
compared with the classic classification algorithms for remote sensing scene classification, the algorithm
DBSNet can still provide better results. In the future, we will study how to combine the traditional
feature extraction framework with the deep learning framework so that they guide and improve
each other.
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Abstract: Exploring the relevance between images and their respective natural language descriptions,
due to its paramount importance, is regarded as the next frontier in the general computer vision
literature. Thus, recently several works have attempted to map visual attributes onto their
corresponding textual tenor with certain success. However, this line of research has not been
widespread in the remote sensing community. On this point, our contribution is three-pronged.
First, we construct a new dataset for text-image matching tasks, termed TextRS, by collecting images
from four well-known different scene datasets, namely AID, Merced, PatternNet, and NWPU datasets.
Each image is annotated by five different sentences. All the five sentences were allocated by five people
to evidence the diversity. Second, we put forth a novel Deep Bidirectional Triplet Network (DBTN)
for text to image matching. Unlike traditional remote sensing image-to-image retrieval, our paradigm
seeks to carry out the retrieval by matching text to image representations. To achieve that, we
propose to learn a bidirectional triplet network, which is composed of Long Short Term Memory
network (LSTM) and pre-trained Convolutional Neural Networks (CNNs) based on (EfficientNet-B2,
ResNet-50, Inception-v3, and VGG16). Third, we top the proposed architecture with an average fusion
strategy to fuse the features pertaining to the five image sentences, which enables learning of more
robust embedding. The performances of the method expressed in terms Recall@K representing the
presence of the relevant image among the top K retrieved images to the query text shows promising
results as it yields 17.20%, 51.39%, and 73.02% for K = 1, 5, and 10, respectively.

Keywords: remote sensing; text image matching; triplet networks; EfficientNets; LSTM network

1. Introduction

The steady accessibility of remote sensing data, particularly high resolution images, has animated
remarkable research outputs in the remote sensing community. Two of the most active topics in
this regard refer to image classification and retrieval [1–5]. Image classification aims to assign scene
images to a discrete set of land use/land cover classes depending on the image content [6–10]. Recently,
with rapidly expanded remote sensing acquisition technologies, both quantity and quality of remote
sensing data have been increased. In this context, content-based image retrieval (CBIR) has become
a paramount research subject in order to meet the increasing need for the efficient organization and

Remote Sens. 2020, 12, 405; doi:10.3390/rs12030405 www.mdpi.com/journal/remotesensing79



Remote Sens. 2020, 12, 405

management of massive volumes of remote sensing data, which has been a long lasting challenge in
the community of remote sensing.

In the last decades, great efforts have been made to develop effective and precise retrieval
approaches to search for interest information across large archives of remote sensing. A typical CBIR
system involves two main steps [11], namely feature extraction and matching, where the most relevant
images from the archive are retrieved. In this regard, both extraction of features as well as matching
play a pivotal role in controlling the efficiency of a retrieval system [12].

Content-based remote sensing image retrieval is a particular application of CBIR, in the field
of remote sensing. However, the remote sensing community seems to put the emphasis more on
devising powerful features due to the fact that image retrieval systems performance relies greatly
on the effectiveness of the extracted features [13]. In this respect, remote sensing image retrieval
approaches rely on handcrafted features and deep-learning.

As per handcrafted features, low-level features are harnessed to depict the semantic tenor of
remote sensing images, and it is possible to draw them from either local or global regions of the image.
Color features [14,15], texture features [2,16,17], and shape features [18] are widely applied as global
features. On other hand, local features tend to emphasize the description on local regions instead
of looking at the image as a whole. There are various algorithms for describing local image regions
such as the scale-invariant feature transform (SIFT) and speed up robust features (SURF) [19,20].
The bag-of-word (BOW) model [21], and the vector of aggregated local descriptors (VLAD) [22] are
generally proposed to encode local features into a fixed-size image signature via a codebook/dictionary
of keypoint/feature vectors.

Recently, remote sensing images have been witnessing a steady increase due to the prominent
technological progress of remote sensors [23]. Therefore, huge volumes of data with various spatial
dimensions and spectral channels can be availed [24]. On this point, handcrafted features may be
personalized and successfully tailored to small chunks of data; they do not meet, however, the standards
of practical contexts where the size and complexity of data increases. Nowadays, deep learning
strategies, which aim to learn automatically the discriminative and representative features, are highly
effective in large-scale image recognition [25–27], object detection [28,29], semantic segmentation [30,31],
and scene classification [32]. Furthermore, recurrent neural networks (RNNs) have achieved immense
success with various tasks in sequential data analysis as recognition of action [33,34] and image
captioning [35]. Recent research shows that image retrieval approaches work particularly well by
exploiting deep neural networks. For example, the authors in [36] introduced a content-based remote
sensing image retrieval approach depending on deep metric learning using a triplet network. The
proposed approach has shown promising results compared to prior state-of-the-art approaches. The
work in [37] presented an unsupervised deep feature learning method for the retrieval task of remote
sensing images. Yang et al. [38] proposed a dynamic kernel with a deep convolutional neural network
(CNN) for image retrieval. It focuses on matching patches between the filters and relevant images
and removing the ones for irrelevant pairs. Furthermore, deep hashing neural network strategies are
adopted in some works for large-scale remote sensing image retrieval [39]. Li et al. [40] presented a
new unsupervised hashing method, the aim of which is to build an effective hash function. In another
work, Li et al. [41], investigated cross-source remote sensing image retrieval via source-invariant deep
hashing CNNs, which automatically extract the semantic feature for multispectral data.

It is worthwhile mentioning that the aforementioned image retrieval methods are single label
retrieval approaches, where the query image and the images to be retrieved are labelled by a single
class label. Although these approaches have been applied with a certain amount of success, they tend
to abstract the rich semantic tenor of a remote sensing image into a single label.

In order to moderate the semantic gap and enhance the retrieval performance, recent remote
sensing research proposed multi-label approaches. For instance, the work in [12] presented a
multi-label method, making use of a semi-supervised graph-theoretic technique in order to improve
the region-based retrieval method [42]. Zhou et al. [43] proposed a multi-label retrieval technique
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by training a CNN for semantic segmentation and feature generation. Shao et al. [11] constructed a
dense labeling remote sensing dataset to evaluate the performance of retrieval techniques based on
traditional handcrafted feature as well as deep learning-based ones. Dai et al. [44] discussed the use of
multiple hyperspectral image retrieval labels and introduced a multi-label scheme that incorporates
spatial and spectral features.

It is evident that the multi-label scenario is generally favored (over the single label case) on
account of its abundant semantic information. However, it remains limited due to the discrete nature
of labels pertaining to a given image. This suggests a further endeavor to model the relation among
objects/labels using an image description. With the rapid advancement of computer vision and natural
language processing (NLP), machines began to understand, slowly but surely, the semantics of images.

Current computer vision literature suggests that, instead of tackling the problem from an
image-to-image matching perspective, cross-modal text-image learning seems to offer a more concrete
alternative. This concept has manifested itself lately in the form of image captioning, which stems as a
crossover where computer vision meets NLP. Basically, it consists of generating a sequential textual
narration of visual data, similar to how humans perceive it. In fact, image captioning is considered
as a subtle aid for image grasping, as a description generation model should capture not only the
objects/scenes presented in the image, but it should also be capable of expressing how the objects/scenes
relate to each other in a textual sentence.

The leading deep learning techniques, for image captioning, can be categorized into two streams.
One stream adopts encoder–decoder, an end-to-end fashion [45,46] where a CNN is typically considered
as the encoder and an RNN as the decoder, often a Long-Short Term Memory (LSTM) [47]. Rather
than translating between various languages, such techniques translate from a visual representation to
language. The visual representation is extracted via a pre-trained CNN [48]. Translation is achieved by
RNNs based language models. The major usefulness of this method is that the whole system adopts
end to end learning [47]. Xu et al. [35] went one step further by introducing the attention mechanism,
which enables the decoder to concentrate on specific portions of the input image when generating a
word. The other stream adopts a compositional framework, such as [49] for instance, which divided
the task of generating the caption into various parts: detection of the words by a CNN, generating the
caption candidates, and re-ranking the sentence by a deep multimodal similarity model.

With respect to image captioning, the computer vision literature suggests several contributions
mainly based on deep learning. For instance, You et al. [50] combined top-down (i.e., image-to-words)
and bottom-up (i.e., joining several relevant words into a meaningful image description) approaches
via CNN and RNN models for image captioning, which revealed interesting experimental results.
Chen et al. [51] proposed an alternative architecture based on spatial and channel-wise attention for
image captioning. In other works, a common deep model called a bi-directional spatial–semantic
attention network was introduced [52,53], where an embedding and a similarity network were adopted
to model the bidirectional relations between pairs of text and image. Zhang and Lu [54] proposed a
projection classification loss that classified the vector projection of representations from one form to
another by improving the norm-softmax loss. Huang et al. [52] addressed the problem of image text
matching in bi-direction by making use of attention networks.

So far, it can be noted that computer vision has been accumulating a steady research basis in the
context of image captioning [47,50,55]. In remote sensing, however, contributions have barely begun
to move in this direction, often regarded as the ‘next frontier’ in computer vision. Lu et al. [56] for
instance, proposed a similar concept as in [51] by combining CNNs (for image representation) and
LSTM network for sentence generation in remote sensing images. Shi et al. [57] leveraged a fully
convolutional architecture for remote sensing image description. Zhang et al. [58] adopted an attribute
attention strategy to produce remote sensing image description, and investigated the effect of the
attributes derived from remote sensing images on the attention system.

As we have previously reviewed, the mainstream of the remote sensing works focuses mainly
on scenarios of single label, whereas in practice images may contain many classes simultaneously.
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In the quest for tackling this bottleneck, recent works attempted to allocate multiple labels to a single
query image. Nevertheless, coherence among the labels in such cases remains questionable since
multiple labels are assigned to an image regardless of their relativity. Therefore, these methods do
not specify (or else model) explicitly the relation between the different objects in a given image for
a better understanding of its content. Evidently, remote sensing image description has witnessed
rather scarce attention in this sense. This may be explained by the fact that remote sensing images
exhibit a wide range of morphological complexities and scale changes, which render text to/from image
retrieval intricate.

In this paper we propose a solution based DBTN for solving the text-to-image matching problem.
It is worth mentioning that this work is inspired from [53]. The major contributions of this work can be
highlighted as follows:

• Departing from the fact that the task of text-image retrieval/matching is a new topic in the remote
sensing community, we deem it necessary to build a benchmark dataset for remote sensing image
description. Our dataset will constitute a benchmark for future research in this respect.

• We propose a DBTN architecture to address the problem of text image matching, which to the best
of our knowledge, has never been posed in remote sensing prior-art thus far.

• We tie the single models into fusion schemes that can improve the overall performance through
adopting the five sentences.

The paper includes five sections, where the structure of the paper is as follows. In Section 2,
we introduce the proposed DBTN method. Section 3 presents the TextRS dataset and the experimental
results followed by discussions in Section 4. Finally, Section 5 provides conclusions and directions for
future developments.

2. Description of the Proposed Method

Assume a training set D = {Xi, Yi}Ni=1 composed of N images with their matching sentences.
In particular, to each training image Xi we associated a set of M matching sentences Yi =

{
y1

i , . . . , yK
i

}
.

In the test phase, given a query sentence tq, we aimed to retrieve the most relevant image in the
training set D. Figure 1 shows a general description of the proposed DBTN method composed of
image and text encoding branches that aimed to learn appropriate image and text embeddings f (Xi)

and g(Ti), respectively, by optimizing a bidirectional triplet loss. Detailed descriptions are provided in
the next sub-sections.

 

(a) 

Figure 1. Cont.
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(b) 

Figure 1. Flowchart of the proposed Deep Bidirectional Triplet Network (DBTN): (a) text as anchor,
(b) image as anchor.

2.1. Image Encoding Module

The image encoding module uses a pre-trained CNN augmented with an additional network to
learn the visual features f (Xi) of the image (Figure 2). To learn informative features and suppress less
relevant ones, this extra network applies a channel attention layer termed squeeze excitation (SE) to
the activation maps layer obtained after the 3 × 3 convolution layer. The goal is to enhance further the
representation of the features by grasping the significance of each feature map among all extracted
feature maps. As illustrated in Figure 2, the squeeze operation produces features of dimension (1,1,128)
by means of global average pooling (GAP), which are then fed to a fully connected layer to reduce the
dimension by 1/16. Then the produced feature vector s calibrates the feature maps of each channel (V)
by channel-wise scale operation. SE works as shown below [59]:

s = Sigmoid(W2(ReLU(W1(V)))) (1)

VSE = s�V (2)

where s is the scaling factor, � refers to the channel-wise multiplication, and V represents the feature
maps obtained from a particular layer of the pre-trained CNN. Then the resulting activation maps VSE
are fed to a GAP followed by a fully connected and l2-normalization for feature rescaling yielding the
features f (Xi).

As pre-trained CNNs, we adopted in this work different CNNs including VGG16, inception_v3,
ResNet50, and EfficientNet. The VGG16 was proposed in 2014 and has 16-layers [27]. Such network
was trained on the imagenet dataset to classify 1.2 million RGB images of size 224 × 224 pixel into 1000
classes. The inception-v3 network [60], introduced by Google, contains 42 layers as well as three kinds
of inception modules, which comprise convolution kernels with sizes of 5 × 5 to 1 × 1. Such modules
seek to reduce the parameters number. The Residual network (ResNet) [25] is a 50-layer network
with shortcut connection. This network was proposed for deeper networks to solve the problem of
vanishing gradients. Finally, EfficientNets, which are new state-of-the-art models with up to 10 times
better efficiency (faster as well as smaller), were developed recently by a research team from Google [61]
to scale up CNNs using a simple compound coefficient. Differently from traditional approaches that
scale network dimensions (width, depth, and resolution) individually, EfficientNet tries to scale each
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dimension in a balanced way using a stationary set of scaling coefficients evenly. Practically, the
performance of the model can be enhanced by scaling individual dimensions. Further, enhancing the
entire performance can be achieved through scaling each dimension uniformly, which leads to higher
accuracy and efficiency.

 

Figure 2. Image encoding branch for extracting the visual features.

2.2. Text Encoding Module

Figure 3 shows the text encoding module, which is composed of K symmetric branches, where each
branch is used to encode one sentence describing the image content. These sub-branches use a word
embedding layer followed by LSTM, a fully-connected layer, and l2-normalization.

Figure 3. Text embedding branch: The five sentences describing the content of an image are aggregated
using an average fusion layer. LSTM is Long-Short Term Memory.

The word embedding layer receives a sequence of integers representing the words in the sentence
and transforms them into representations, where similar words should have similar encodings. Then
the outputs of this layer are fed to LSTM [62] for modeling the entire sentence based on their long-term
dependency learning capacity. Figure 4 shows the architecture of LSTM, with its four types of gates at
each time step t in the memory cell. These gates are the input gate it, the update gate ct, the output
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gate ot, and the forget gate ft. For each time step, these gates receive as input the hidden state ht−1 and
the current input yt. Then, the cell memory recursively updates itself based on its previous values and
forget and update gates.

Figure 4. LSTM structure.

The working mechanism of LSTM is given below (for simplicity, we omit the image index i) [62]:

it = sigmoid(Wi.[ht−1, yt]) (3)

ft = sigmoid
(
W f .[ht−1, yt]

)
(4)

c̃t = tanh
(
Wg [ht−1, yt]

)
(5)

ct = ft∗ ct−1 + it ∗ c̃t (6)

ot = sigmoid(Wo[ht−1, yt]) (7)

ht= ot ∗ tanh(ct) (8)

where ∗ denotes the Hadamard product, and Wi, W f , Wg, and Wo are learnable weights. In general,
we can model the hidden state ht of the LSTM as follows [62]:

ht = LSTM(ht−1, yt, rt−1) (9)

where rt−1 indicates the memory cell vector at time step t− 1.
For each branch, the output of LSTM is fed to an additional fully-connected layer yielding K

feature representation g
(
yk

i

)
, k = 1, . . . , K. Then, the final outputs of different branches are fused using

an average fusion layer to obtain a feature of dimension 128 [7]:

g(Ti) =

∑K
k=1 g(yk

i )

K
(10)

2.3. DBTN Optimization

Many machine learning and computer vision problems are based on learning a distance metric
for solving retrieval problems [63]. Inspired by achievements of deep learning in computer vision [26],
deep neural networks were used to learn how to embed discriminative features [64,65]. These methods
learn to project images or texts into a discriminative embedding space. The embedded vectors of
similar samples are closer, while they are farther to those of dissimilar samples. Then several loss
functions were developed for optimization such as triplet [65], quadruplet [66], lifted structure [67],
N-pairs [68], and angular [69] losses. In this work, we concentrate on the triplet loss, which aims to
learn a discriminative embedding for various applications such as classification [64], retrieval [70–74],
and person re-identification [75,76]. It is worth recalling that a standard triplet in image-to-image
retrieval is composed of three samples: an anchor, a positive sample (from the same category to the
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anchor), and a negative sample (from the different category to the anchor). The aim of the triplet loss is
to learn an embedding space, where anchor samples are closer to positive samples than to negative
ones by a given margin.

In our case, the network is composed of asymmetric branches, unlike standard triplet networks,
as the anchor; positive and negative samples are represented in a different way. For instance, triplets can
be formed using a text as an anchor, its corresponding image as a positive sample in addition to an
image with a different content image as a negative. Similarly, one can use an image as an anchor
associated with positive and negative textual descriptions. The aim is to learn discriminative features
for different textual descriptions and discriminative features for different visual features as well.
In addition, we should learn similar features to each image and its corresponding textual representation.
For such purpose, we propose a bidirectional triplet loss as a possible solution to the problem. The
bidirectional triplet loss is given as follows:

lDBTN = λ1L1 + λ1L2 (11)

L1 =
N∑

i=1

[∣∣∣∣∣∣∣∣g(Ti
a) − f (Xi

p) ||22−
∣∣∣∣∣∣∣∣g(Ti

a) − f (Xi
n) ||22 + α

]
+

(12)

L2 =
N∑

i=1

[∣∣∣∣∣∣∣∣ f (Xi
a) || − g(Ti

p)2
2−
∣∣∣∣∣∣∣∣ f (Xi

a) − g(Ti
n) ||22 + α

]
+

(13)

where |z|+ = max(z, 0),{\displaystyle A} and α is the margin that ensures the negative is farther away
than the positive. g(Ti

a) refers to the embedding of the anchor text, f (Xi
p) is the embedding of the

positive image, and f (Xi
n) refers to the embedding of the negative image. On the other side, f (Xi

a)

refers to the embedding of the anchor image, g(Ti
p) is the embedding of the positive text, and g(Ti

n)

refers to the embedding of the negative text. λ1 and λ2 are parameters of regularization controlling the
contribution of both terms.

The performance of DBTN heavily relies on triplet selection. Indeed, the process of training is
often so sensitive to the selected triplets, i.e., selecting the triplets randomly leads to non-convergence.
To surmount this problem, the authors in [77] proposed triplet mining, which utilized only semi-hard
triplets, where the positive pair was closer than the negative. Such valid semi-hard triplets are scarce,
and therefore semi-hard mining requires a large batch size to search for informative pairs. A framework
named smart mining was provided by Harwood et al. [78] to find out hard samples from the entire
dataset that suffered from the burden of off-line computation. Wu et al. [79] discussed the significance
of sampling and proposed a sampling technique called distance weighted sampling, which uniformly
samples negative examples by similarity. Ge et al. [80] built a hierarchal tree of all the classes to find
out hard negative pairs, which were collected via a dynamic margin. In this paper, we proposed to use
a semi-hard mining strategy, as shown in Figure 5, although other sophisticated selection mechanism
could be investigated as well. In particular, we selected triplets in an online mode based on the
following constraint [77]:

d(g(Ta), f (Xp)) < d(g(Ta), f (Xn)) < d(g(Ta), f (Xp)) + α (14)

where d(·) is the cosine distance.
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Figure 5. Semi-hard triplet selection scheme.

3. Experimental Results

3.1. Dataset Description

We built a dataset, named TextRS, by collecting images from four well-known different scene
datasets, namely the AID dataset, which consists of 10,000 aerial images of size 600 × 600 pixels within
30 classes collected from Google Earth imagery by different remote sensors. The Merced dataset
contains 21 classes; each class has 100 images of size 256 × 256 pixels with a resolution of 30 cm and
RGB color. Such dataset was collected from USGS. The PatternNet was gathered from high-resolution
imagery and includes 38 classes; each class contains 800 images of size 256 × 256 pixels. The NWPU
dataset is another scene dataset, which has 31,500 images and is composed of 45 scene classes.

TextRS is composed of 2144 images selected randomly from the above four scene datasets.
In particular, 480, 336, 608, and 720 images were selected from AID, Merced, PatternNet, and NWPU,
respectively (16 images were selected from each class of such datasets). Then each remote sensing
image was annotated by five different sentences; therefore, the total number of sentences was 10,720,
and all the captions of this dataset were generated by five people to prove the diversity. It is worth
recalling that the choice of the five sentences was mainly motivated by other datasets developed in the
general context of computer vision literature [47,81]. During, the annotation we took into consideration
some rules that had to be followed during generation of the sentences:

• Focus on the main dominating objects (tiny ones may be useless).
• Describe what exists instead of what does not exist in the scene.
• Try not to focus on the number of objects too much but use generic descriptions such as several,

few, many, etc.
• Try not to emphasize the color of objects (e.g., blue vehicles) but rather on their existence

and density.
• When mentioning, for instance, a parking lot (in an airport), it is important to mention the word

‘airport’ as well to distinguish it from any generic parking lot (downtown for example).
• Avoid using punctuation and conjunctions.

Some samples from our dataset are shown in Figure 6.
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Figure 6. Example of images with the five sentences for each image.

3.2. Performance Evaluation

We implemented the method using the keras open-source library for deep learning written in
python. For training the network, we randomly select 1714 images as training and the remaining 430
images as the test corresponding to approximately to 80% for training and 20% for testing. For training
the DBTN, we used a mini-batch size of 50 images with the Adam optimization method with a fixed
learning rate equal to 0.001 and exponential decay rates for the moment estimates equal to 0.9 and 0.999.
Additionally, we set the regularization parameters to the default values of λ1 = λ2 = 0.5. To evaluate
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the performance of the method, we used the wide recall measure, which is suitable for text-to-image
retrieval problems. In particular, we presented the results in Recall@K (R@K) terms for different values
of K (1, 5, 10), which are the percentage of ground-truth matches shown in the top K-ranked results.
We conducted the experiments on a station with an Intel Core i9 processor with a speed of 3.6 GHz and
32 GB of memory, and a Graphical Processing Unit (GPU) with 11 GB of GDDR5X memory.

3.3. Results

As mentioned in the previous sections, we used four different pre-trained CNNs for the image
encoding branch, which were EfficientNet, ResNet50, Inception_v3, and VGG16. Figure 7 illustrates
the evolution of the triplet loss function during the training phase for these different networks. We can
see that the loss function decreased gradually with an increase in the number of iterations. In general,
the model reached stable values after 40 iterations. In Figure 8 we show examples of features obtained
by the image and text encoding branches at the end of the training process.

Figure 7. Evolution of loss function for the EfficientNet, ResNet50, Inception_v3, and VGG16.

Table 1 illustrates the performance of DBTN using EfficientNet as a pre-trained CNN for encoding
the visual features. It could be observed with one sentence (Sent.1). The method achieved 13.02%,
40%, and 59.30% in R@1, R@5, and R@10, respectively. In contrast, when the five sentences are
fused, the performance was further improved to 17.20%, 51.39%, and 73.02% of R@1, R@5, and R@10,
respectively. Further, we computed the average of R@1, R@5, and R@10 for each sentence, and for
fusion, we observed that the average of fusion had the highest score. Table 2 shows the results obtained
using ResNet50 as the image encoder to learn the image features. We can see that the performances
in R@1, R@5, and R@10 were 10.93%, 38.60%, and 54.41%, respectively, for Sent.1, while the method
achieved 13.72%, 50.93%, and 69.06% of R@1, R@5, and R@10, respectively, with the fusion. Similarly,
from Table 3 we observed that with Inception_v3, considering the fusion, the performance was also
better than that of individual sentences. Finally, the results of using VGG16 are shown in Table 4. We can
see that for Sent.1, our method achieved 10%, 36.27%, and 51.62% of R@1, R@5, and R@10, respectively,
whereas the fusion process yielded 11.86%, 44.41%, and 63.72% of R@1, R@5, and R@10, respectively.

According to these preliminary results, one can notice that the fusing of the representations of the
five sentences produced better matching results than did using one sentence. Additionally, EfficientNet
seemed to be better compared to the other three pre-trained networks. This indicates that learning
visual features by EfficientNet was quite effective and allowed better scores to be obtained compared
to the other pre-trained CNNs.
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Figure 8. Image and text feature generated by the image and text encoding branches.

Table 1. Bidirectional text image matching results on our dataset by using EfficientNet-B2.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion

R@1 13.02 13.48 14.18 13.02 10.09 17.20
R@5 40.00 44.18 44.18 40.93 38.60 51.39
R@10 59.30 60.46 62.55 57.67 58.37 73.02

Average 37.44 39.37 40.30 37.21 35.69 47.20

Table 2. Bidirectional text image matching results on our dataset by using ResNet50.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion

R@1 10.93 12.79 12.32 12.32 11.86 13.72
R@5 38.60 38.37 42.58 43.02 38.19 50.93
R@10 54.41 56.27 61.16 60.93 55.58 69.06

Average 34.65 35.81 38.69 38.76 35.21 44.57

Table 3. Bidirectional text image matching results on our dataset by using Inception_v3.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion

R@1 8.13 11.86 10.46 10.69 11.16 13.95
R@5 34.88 36.97 36.04 35.58 36.51 46.74
R@10 54.18 55.34 56.27 54.18 55.11 67.44

Average 32.40 34.72 34.26 33.48 34.26 42.71

Table 4. Bidirectional text image matching results on our dataset by using VGG16.

Sent. 1 Sent. 2 Sent. 3 Sent. 4 Sent. 5 Fusion

R@1 10.00 9.06 11.86 8.13 7.67 11.86
R@5 36.27 35.11 36. 51 34.41 33.25 44.41
R@10 51.62 51.16 56.51 51.16 47.90 63.72

Average 32.63 31.78 38.84 31.23 29.60 40.00
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To analyze the performance in detail for image retrieval given a query text, we showed many
successful and failure scenarios. For example, we could see (Figure 9) a given query text (five sentences)
with its image, and the top nine relevant retrieved images (from left to right); the image in red box
is the ground truth image of the query text (true match). We could observe that our method output
reasonable relevant images, where all nine images had almost the same content (objects). In these four
scenarios, the rank of the retrieved true images was 1, 6, and 1, respectively.

 
                     (a) (b)  

 

(c) 

Figure 9. Successful scenarios (a, b and c) of text-to-image retrieval.
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In contrast, Figure 10 shows two failure scenarios. In this case, we obtained relevant and irrelevant
images, but the true matched image was not retrieved. This gives an indication that the problem was
not easy and requires further investigations in improving the alignment of the descriptions to the
image content.

                 (a)                                         (b)

Figure 10. Unsuccessful scenarios (a and b) of text-to-image retrieval.

4. Discussion

In this section, we analyze further the performances of DBTN using different versions of
EfficientNets, which are B0, B3, and B5. The version B0 contains 5.3 M parameters, while B3 and B5 are
deeper and have 12M and 30M parameters, respectively. The results reported in Table 5 show that
using B2 yields slightly better results compared to the other models. On the other side, B0 seems to be
less competing as it provides an average recall of 45.65 compared to 47.20 for B2.

Table 5. Bidirectional text image matching results on our dataset using different EfficientNets.

B0 B2 B3 B5

R@1 16.74 17.20 16.74 16.51
R@5 51.62 51.39 50.23 51.39
R@10 68.60 73.02 72.09 71.62

Average 45.65 47.20 46.35 46.51

Table 6 shows sensitivity analysis for bidirectional text image matching at multiple margin
values. We can observe that setting this parameter to α = 0.5 seems to be the most suitable choice.
Increasing further this value leads to a decrease in the average recall as the network tends to select
easy negative triplets.

In Table 7, we report the recall results obtained by using only one direction instead of bidirectional
training. That is, we use text-to-image (Anchor text) and image-to-text (Anchor image). Obviously, the
performance with bidirectional achieves the best results where relative similarity in one direction is
useful for retrieval in the other direction, in the sense that the model trained with text-to-image triplets
obtains a reasonable result in an image-to-text retrieval task and vice-versa. Nevertheless, the model
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trained with bi-directional triplets achieves the best result, indicating that the triplets organized in
bidirectional provide more overall information for text-to-image matching.

Table 6. Sensitivity with respect to the margin parameter α.

α

0.1 0.5 1

R@1 13 17.20 5
R@5 37.67 51.39 22.09
R@10 54.18 73.02 37.83

Table 7. Comparison between unidirectional and bidirectional loss.

Anchor Text Anchor Image Bidirectional

R@1 12.55 12.55 17.20
R@5 41.62 39.53 51.39
R@10 62.09 59.53 73.02

5. Conclusions

In this work, we proposed a novel DBTN architecture for matching textual descriptions to remote
sensing images. Different from traditional remote sensing image-to-image retrieval, our network
seeks to carry out a more challenging problem, which is text-to-image retrieval. Such a network is
composed of an image and text encoding branches and is trained using a bidirectional triplet loss.
In the experiments, we validated the method on a new benchmark data set termed TextRS. Experiments
show in general promising results in terms of the recall measure. In particular, better recall scores
were obtained by fusing the textual representations rather than using one sentence for each image.
In addition, EfficientNets allows better visual representations to be obtained compared to the other
pre-trained CNNs. For future developments, we propose to investigate image-to-text matching and
propose advanced solutions based on attention mechanisms.

Author Contributions: T.A., Y.B. and M.M.A.R. designed and implemented the method, and wrote the paper.
M.L.M., M.Z. and L.R. contributed to the analysis of the experimental results and paper writing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Saud University through the
Local Research Group Program, grant number RG-1435-050.

Acknowledgments: This work was supported by the Deanship of Scientific Research at King Saud University
through the Local Research Group Program under Project RG-1435-050.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Al Rahhal, M.M.; Bazi, Y.; Abdullah, T.; Mekhalfi, M.L.; AlHichri, H.; Zuair, M. Learning a Multi-Branch
Neural Network from Multiple Sources for Knowledge Adaptation in Remote Sensing Imagery. Remote Sens.
2018, 10, 1890. [CrossRef]

2. Aptoula, E. Remote Sensing Image Retrieval With Global Morphological Texture Descriptors. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 3023–3034. [CrossRef]

3. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral
image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [CrossRef]

4. Schroder, M.; Rehrauer, H.; Seidel, K.; Datcu, M. Interactive learning and probabilistic retrieval in remote
sensing image archives. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2288–2298. [CrossRef]

5. Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A Survey of Active Learning Algorithms for
Supervised Remote Sensing Image Classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [CrossRef]

6. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art.
Proc. IEEE 2017, 105, 1865–1883. [CrossRef]

93



Remote Sens. 2020, 12, 405

7. Mekhalfi, M.L.; Melgani, F.; Bazi, Y.; Alajlan, N. Land-Use Classification With Compressive Sensing
Multifeature Fusion. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2155–2159. [CrossRef]

8. Mekhalfi, M.L.; Melgani, F. Sparse modeling of the land use classification problem. In Proceedings of the
2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015;
pp. 3727–3730.

9. Weng, Q.; Mao, Z.; Lin, J.; Liao, X. Land-use scene classification based on a CNN using a constrained extreme
learning machine. Int. J. Remote Sens. 2018, 39, 6281–6299. [CrossRef]

10. Wu, H.; Liu, B.; Su, W.; Zhang, W.; Sun, J. Deep Filter Banks for Land-Use Scene Classification. IEEE Geosci.
Remote Sens. Lett. 2016, 13, 1895–1899. [CrossRef]

11. Shao, Z.; Yang, K.; Zhou, W. Performance Evaluation of Single-Label and Multi-Label Remote Sensing Image
Retrieval Using a Dense Labeling Dataset. Remote Sens. 2018, 10, 964. [CrossRef]

12. Chaudhuri, B.; Demir, B.; Bruzzone, L.; Chaudhuri, S. Multi-label Remote Sensing Image Retrieval using a
Semi-Supervised Graph-Theoretic Method. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1144–1158. [CrossRef]

13. Shao, Z.; Yang, K.; Zhou, W. Correction: Shao, Z.; et al. A Benchmark Dataset for Performance Evaluation of
Multi-Label Remote Sensing Image Retrieval. Remote Sens. 2018, 10, 1200. [CrossRef]

14. Bosilj, P.; Aptoula, E.; Lefèvre, S.; Kijak, E. Retrieval of Remote Sensing Images with Pattern Spectra
Descriptors. ISPRS Int. J. Geo-Inf. 2016, 5, 228. [CrossRef]

15. Sebai, H.; Kourgli, A.; Serir, A. Dual-tree complex wavelet transform applied on color descriptors for
remote-sensed images retrieval. J. Appl. Remote Sens. 2015, 9, 095994. [CrossRef]

16. Bouteldja, S.; Kourgli, A. Multiscale texture features for the retrieval of high resolution satellite images.
In Proceedings of the 2015 International Conference on Systems, Signals and Image Processing (IWSSIP),
London, UK, 10–12 September 2015; pp. 170–173.

17. Shao, Z.; Zhou, W.; Zhang, L.; Hou, J. Improved color texture descriptors for remote sensing image retrieval.
J. Appl. Remote Sens. 2014, 8, 083584. [CrossRef]

18. Scott, G.J.; Klaric, M.N.; Davis, C.H.; Shyu, C. Entropy-Balanced Bitmap Tree for Shape-Based Object
Retrieval From Large-Scale Satellite Imagery Databases. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1603–1616.
[CrossRef]

19. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

20. Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded Up Robust Features. In Proceedings of the Computer
Vision-ECCV 2006, Berlin, Heidelberg, 7–13 May 2006; Springer; pp. 404–417.

21. Yang, J.; Liu, J.; Dai, Q. An improved Bag-of-Words framework for remote sensing image retrieval in
large-scale image databases. Int. J. Digit. Earth 2015, 8, 273–292. [CrossRef]

22. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation.
In Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311.

23. Zhang, F.; Du, B.; Zhang, L. Scene Classification via a Gradient Boosting Random Convolutional Network
Framework. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1793–1802. [CrossRef]

24. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the
Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
Commun ACM 2017, 60, 84–90. [CrossRef]

27. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:14091556 Cs. Available online: https://arxiv.org/abs/1409.1556 (accessed on 24 January 2020).

28. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object
Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [CrossRef] [PubMed]

29. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 779–788.

94



Remote Sens. 2020, 12, 405

30. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 3431–3440.

31. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of
the IEEE international conference on computer vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528.

32. Han, W.; Feng, R.; Wang, L.; Cheng, Y. A semi-supervised generative framework with deep learning features
for high-resolution remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2018, 145,
23–43. [CrossRef]

33. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T.
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern
Anal. Mach. Intell. 2017, 39, 677–691. [CrossRef] [PubMed]

34. Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 1110–1118.

35. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of the International Conference on
Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 2048–2057.

36. Cao, R.; Zhang, Q.; Zhu, J.; Li, Q.; Li, Q.; Liu, B.; Qiu, G. Enhancing remote sensing image retrieval using a
triplet deep metric learning network. Int. J. Remote Sens. 2020, 41, 740–751. [CrossRef]

37. Tang, X.; Zhang, X.; Liu, F.; Jiao, L. Unsupervised Deep Feature Learning for Remote Sensing Image Retrieval.
Remote Sens. 2018, 10, 1243. [CrossRef]

38. Yang, J.; Liang, J.; Shen, H.; Wang, K.; Rosin, P.L.; Yang, M.-H. Dynamic Match Kernel With Deep Convolutional
Features for Image Retrieval. IEEE Trans. Image Process. 2018, 27, 5288–5302. [CrossRef]

39. Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-Scale Remote Sensing Image Retrieval by Deep Hashing
Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 950–965. [CrossRef]

40. Li, P.; Ren, P. Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 464–468. [CrossRef]

41. Li, Y.; Zhang, Y.; Huang, X.; Ma, J. Learning Source-Invariant Deep Hashing Convolutional Neural Networks
for Cross-Source Remote Sensing Image Retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6521–6536.
[CrossRef]

42. Chaudhuri, B.; Demir, B.; Bruzzone, L.; Chaudhuri, S. Region-Based Retrieval of Remote Sensing Images
Using an Unsupervised Graph-Theoretic Approach. IEEE Geosci. Remote Sens. Lett. 2016, 13, 987–991.
[CrossRef]

43. Zhou, W.; Deng, X.; Shao, Z. Region Convolutional Features for Multi-Label Remote Sensing Image Retrieval.
arXiv 2018, arXiv:180708634 Cs. Available online: https://arxiv.org/abs/1807.08634 (accessed on 24 January
2020).

44. Dai, O.E.; Demir, B.; Sankur, B.; Bruzzone, L. A Novel System for Content-Based Retrieval of Single and
Multi-Label High-Dimensional Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 2473–2490. [CrossRef]

45. Wu, Q.; Shen, C.; Liu, L.; Dick, A.; Hengel, A.v.d. What Value Do Explicit High Level Concepts Have in
Vision to Language Problems? In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 203–212.

46. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014,
arXiv:14061078 Cs Stat. Available online: https://arxiv.org/abs/1406.1078 (accessed on 24 January 2020).

47. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and Tell: Lessons Learned from the 2015 MSCOCO Image
Captioning Challenge. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 652–663. [CrossRef] [PubMed]

48. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

49. Fang, H.; Gupta, S.; Iandola, F.N.; Srivastava, R.K.; Deng, L.; Dollar, P.; Gao, J.; He, X.; Mitchell, M.; Platt, J.
From captions to visual concepts and back. In Proceedings of the 2015 IEEE Conference on Computer Vision
and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1473–1482.

95



Remote Sens. 2020, 12, 405

50. You, Q.; Jin, H.; Wang, Z.; Fang, C.; Luo, J. Image Captioning with Semantic Attention. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vega, NV, USA, 27–30 June 2016;
pp. 4651–4659.

51. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.S. Sca-cnn: Spatial and channel-wise attention
in convolutional networks for image captioning. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6298–6306.

52. Huang, F.; Zhang, X.; Li, Z.; Zhao, Z. Bi-directional Spatial-Semantic Attention Networks for Image-Text
Matching. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2018, 28, 2008–2020. [CrossRef]
[PubMed]

53. Wang, L.; Li, Y.; Lazebnik, S. Learning Two-Branch Neural Networks for Image-Text Matching Tasks. IEEE
Trans. Pattern Anal. Mach. Intell. 2018, 41, 394–407. [CrossRef]

54. Zhang, Y.; Lu, H. Deep Cross-Modal Projection Learning for Image-Text Matching. In Proceedings of the
European Conference on Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer;
pp. 686–701.

55. Yao, T.; Pan, Y.; Li, Y.; Qiu, Z.; Mei, T. Boosting image captioning with attributes. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4904–4912.

56. Lu, X.; Wang, B.; Zheng, X.; Li, X. Exploring Models and Data for Remote Sensing Image Caption Generation.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 2183–2195. [CrossRef]

57. Shi, Z.; Zou, Z. Can a Machine Generate Humanlike Language Descriptions for a Remote Sensing Image?
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3623–3634. [CrossRef]

58. Zhang, X.; Wang, X.; Tang, X.; Zhou, H.; Li, C. Description Generation for Remote Sensing Images Using
Attribute Attention Mechanism. Remote Sens. 2019, 11, 612. [CrossRef]

59. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

60. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Las
Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

61. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019,
arXiv:190511946 Cs Stat. Available online: https://arxiv.org/abs/1905.11946 (accessed on 24 January 2020).

62. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
63. Weinberger, K.Q.; Saul, L.K. Distance Metric Learning for Large Margin Nearest Neighbor Classification.

J. Mach. Learn. Res. 2009, 10, 207–244.
64. Wang, J.; Song, Y.; Leung, T.; Rosenberg, C. Learning Fine-Grained Image Similarity with Deep Ranking.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1386–1393.

65. Hoffer, E.; Ailon, N. Deep Metric Learning Using Triplet Network. In Proceedings of the Similarity-Based
Pattern Recognition, Copenhagen, Denmark, 12–14 October 2015; Feragen, A., Pelillo, M., Loog, M., Eds.;
Springer International Publishing: Cham, Switzerland; pp. 84–92.

66. Law, M.T.; Thome, N.; Cord, M. Quadruplet-Wise Image Similarity Learning. In Proceedings of the 2013 IEEE
International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 249–256.

67. Oh Song, H.; Xiang, Y.; Jegelka, S.; Savarese, S. Deep Metric Learning via Lifted Structured Feature Embedding.
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 4004–4012.

68. Sohn, K. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the Advances
in Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016; pp. 1857–1865.

69. Wang, J.; Zhou, F.; Wen, S.; Liu, X.; Lin, Y. Deep Metric Learning with Angular Loss. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2612–2620.

70. Huang, J.; Feris, R.; Chen, Q.; Yan, S. Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking
Network. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 7–13 December 2015; pp. 1062–1070.

96



Remote Sens. 2020, 12, 405

71. Lai, H.; Pan, Y.; Liu, Y.; Yan, S. Simultaneous Feature Learning and Hash Coding With Deep Neural Networks.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 3270–3278.

72. Zhuang, B.; Lin, G.; Shen, C.; Reid, I. Fast Training of Triplet-Based Deep Binary Embedding Networks.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 5955–5964.

73. Gordo, A.; Almazan, J.; Revaud, J.; Larlus, D. Deep image retrieval: Learning global representations for
image search. VI. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands,
11–14 October 2016; Volume 9910, pp. 241–257.

74. Yuan, Y.; Yang, K.; Zhang, C. Hard-Aware Deeply Cascaded Embedding. In Proceedings of the IEEE
international conference on computer vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 814–823.

75. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine
Vision Conference (BMVC); British Machine Vision Association: Swansea, September, 2015; pp. 41.1–41.12.

76. Wang, L.; Li, Y.; Lazebnik, S. Learning Deep Structure-Preserving Image-Text Embeddings. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 5005–5013.

77. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 815–823.

78. Harwood, B.; VijayKumar, B.G.; Carneiro, G.; Reid, I.; Drummond, T. Smart Mining for Deep Metric Learning.
In Proceedings of the IEEE international conference on computer vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 2821–2829.

79. Wu, C.-Y.; Manmatha, R.; Smola, A.J.; Krähenbühl, P. Sampling Matters in Deep Embedding Learning.
In Proceedings of the IEEE international conference on computer vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 2840–2848.

80. Ge, W.; Huang, W.; Dong, D.; Scott, M.R. Deep Metric Learning with Hierarchical Triplet Loss. In Proceedings
of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 269–285.

81. Plummer, B.A.; Wang, L.; Cervantes, C.M.; Caicedo, J.C.; Hockenmaier, J.; Lazebnik, S. Flickr30k Entities:
Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. In Proceedings of the
2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015;
IEEE; pp. 2641–2649.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

97





remote sensing 

Article

Water Identification from High-Resolution Remote
Sensing Images Based on Multidimensional Densely
Connected Convolutional Neural Networks

Guojie Wang 1,*, Mengjuan Wu 1, Xikun Wei 1 and Huihui Song 2

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of
Geographical Sciences, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044,
China; wu.mj@nuist.edu.cn (M.W.); 20181211018@nuist.edu.cn (X.W.)

2 School of Automation, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044,
China; songhuihui@nuist.edu.cn

* Correspondence: gwang@nuist.edu.cn; Tel.: +86-025-5873-1418

Received: 30 January 2020; Accepted: 26 February 2020; Published: 2 March 2020

Abstract: The accurate acquisition of water information from remote sensing images has become
important in water resources monitoring and protections, and flooding disaster assessment. However,
there are significant limitations in the traditionally used index for water body identification. In this
study, we have proposed a deep convolutional neural network (CNN), based on the multidimensional
densely connected convolutional neural network (DenseNet), for identifying water in the Poyang
Lake area. The results from DenseNet were compared with the classical convolutional neural
networks (CNNs): ResNet, VGG, SegNet and DeepLab v3+, and also compared with the Normalized
Difference Water Index (NDWI). Results have indicated that CNNs are superior to the water index
method. Among the five CNNs, the proposed DenseNet requires the shortest training time for model
convergence, besides DeepLab v3+. The identification accuracies are evaluated through several error
metrics. It is shown that the DenseNet performs much better than the other CNNs and the NDWI
method considering the precision of identification results; among those, the NDWI performance is by
far the poorest. It is suggested that the DenseNet is much better in distinguishing water from clouds
and mountain shadows than other CNNs.

Keywords: convolutional neural network; water identification; water index

1. Introduction

Water is an indispensable resource for a sustainable ecosystem on earth. It contributes significantly
to the balance of ecosystems, the maintenance of climate change and the carbon cycle [1]. The formation,
expansion, shrinkage and disappearance of surface water are important factors influencing the
environment and regional climate changes. Water is also an important factor in socioeconomic
development, because it affects many agricultural, environmental and ecological issues over time [2,3].
Hence the rapid and accurate extraction of water resource information can provide necessary data,
which is of great significance for water resource investigation [4–6], flood monitoring [7,8], wetland
protection [9,10] and disaster prevention and reduction [11,12].

In recent years, a lot of research has been done on image foreground extraction and
segmentation [13]. This study proposed an Alternating Direction of Method of Multipliers (ADMM)
approach to separate the foreground information from the background, and it has a great effect upon
the separation of text, moving objects and so on. There are also many algorithms for extracting
water from remote sensing images, including spectral classification [14], the threshold segmentation
method [7,15] and machine learning [16–18].
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However, the accurate identification of water is always a difficult problem because of the
complicated terrain, classification methods and remote sensing data itself. Because of its simplicity
and convenience, the water index is the most commonly used water identification method. Among
them, the Normalized Difference Water Index (NDWI) [19], Modified NDWI (MNDWI) [20] and
the Automated Water Extraction Index (AWEI) [21], are most representative methods. The NDWI
normalized green and near-infrared bands to enhance the water information to separate the water better,
but it had a large error in urban areas [20]. MNDWI ameliorates this problem by using mid-infrared
bands [20]. What these water indices have in common, is that they all use differences in the reflectivity
of water at different wavebands to enhance water information. The water is then classified by setting
a threshold.

There are two problems with the water index approaches, and one of them is that every water
index has its drawbacks. For example, the NDWI was poor at distinguishing between water and
buildings, and the MNDWI was poor at distinguishing water from snow and mountain shadows.
More sophisticated methods for high-precision water maps require auxiliary data, such as digital
elevation models and complex rule sets to overcome these problems [22–24]. Another problem is that
the optimal threshold to extract water is not only highly subjective, but also varies with region and
time. By adopting the method of the Automatic Water Extraction Index [21], the extraction result was
improved, but the threshold still changes with the change of time and area.

Statistical models are also used for identifying the water bodies, which can be divided into
unsupervised and supervised classifications. It is generally more accurate than other methods, because
it does not require an empirical threshold. No prior knowledge is applied in the unsupervised
classification, while supervised classification makes classifications by learning from given samples.
There are many popular supervised methods, like maximum likelihood [14] and the decision
tree [25,26]. Most methods require additional inputs for more accurate results, such as slope, and
mountain shadow [25,26], in the original band, and so on. All of these increase the data volume and
calculation difficulty.

In recent years, the recognition algorithm based on artificial intelligence has been developing
rapidly. Different from the traditional methods, deep learning can adapt learning from a large number
of samples with flexibility and universality [27]. The convolutional neural network is one of the
commonly used models of deep learning, which greatly reduces the number of parameters, enhances
the generalization ability, and realizes the qualitative leap of image recognition by its features of local
connection and weight sharing [17]. As part of the study of neural networks, the recent popularity
of neural networks has revitalized the research field. As the number of network layers increases,
the differences between different structures are also enlarging, which has stimulated the exploration
of different network structures [28–32]. Many different network structures have been proposed to
realize the semantic segmentation of images. One is the encoder–decoder structure, such as Unet [33],
SegNet [34] and RefineNet [35]. The encoder is used to extract image features and reduce image
dimensions. The decoder is used to restore the size and the detail of the image. The other is to
use the dilated convolutions, such as DeepLab v1 [36], v2 [37], v3 [38], v3+ [39] and PSPNet [40].
They can increase the input field without pooling, so that each convolution contains a larger range
of information in the output. In addition, networks that have been proven to be effective in object
detection applications were also applied to the instance segmentation field and showed good efficiency.
For instance, the regional convolutional network (R-CNN) [41], Fast R-CNN [42], Faster R-CNN [43],
Mask R-CNN [44], etc. A new framework has also been proposed called the Hybrid Task Cascade
(HTC), which combined cascade architecture with R-CNN for better results [45]. Attention mechanisms
have also been applied to segmentation networks by many researchers. Chen et al. [46] showed that
the attention mechanism outperforms average and max pooling. More recently, a Dual Attention
Network (DANet) [47] has been proposed which appended two types of attention modules on top of
dilated FCN, and achieved some new state-of-the-art results on multiple popular benchmarks.
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Besides those networks mentioned above, there are many other types of depth model applied to
image segmentation, like applying active contour models to convolutional neural networks (CNNs) [48],
and so on. Shervin et al. [49] have made a thorough network summary for image segmentation.

The corresponding features from the image of target detection and classification can be extracted
by the deep convolutional neural network. It is reported to perform well in image classification and
target detection, and there are already some models developed, such as LeNet [50] in 1998, AlexNet [28]
in 2012, GoogLeNet [29] and VGG [30] in 2014 and ResNet [31] in 2015. With the technical development,
the complexity of these models is increasing. The VGG network uses only a 3× 3 convolution kernel and
2 × 2 pooling kernel [30]. The use of a smaller convolution kernel can increase the linear transformation
and improve the classification accuracy. It also shows that the increase of network depth has a great
effect on the improvement of the final classification results of the network. However, simply increasing
the network depth will lead to gradient vanishing or gradient explosion. ResNet solves this problem
by introducing a residual block [31]. It passes information direct to output to protect the integrity of
the information. The whole network just needs to know the difference between the input and output,
simplifying the learning process. Recent research on ResNet shows that many of its middle layers
contribute little to the actual training process, and can be randomly deleted, which makes ResNet
similar to the recurrent neural networks [32]; but, since ResNet has its own weight every layer, it has a
larger number of parameters. The multidimensional densely connected convolutional neural network
(DenseNet) [51] proposed in 2016 does not have the above problems. It gives full play to the idea of a
residual block in ResNet, and each layer of its network is directly connected to its previous layer to
achieve the reuse of features. This enables the network to be easy to train by improving the flow of
information and gradient throughout the network. At the same time, it has a regularization effect, and
can prevent the overfitting effect for small data sets. Besides, each layer of the network is very narrow,
leading to reduced redundancy. Crucially, unlike ResNet, the DenseNet combines features, not by
summing them before passing them to the next layer, but through concatenation instead. Compared to
ResNet, the number of its parameters is greatly reduced. The experimental result has shown that the
DenseNet has fewer parameters, faster convergence speed and shorter training time under the premise
of ensuring the training accuracy [51].

So far, Landsat is one of the most commonly used data satellites in water extraction research, the
spatial resolution is 30 meters, and the temporal resolution is 16 days [52]. The GF-1 satellite was
launched in April 2013 by China, which was equipped with two full-color cameras with a resolution of
2 m, and a multi-spectral camera with a resolution of 16 m. Since the revisit period of the GF-1 satellite
is about four days, it has apparent advantages regarding its spatial and temporal resolutions. However,
there are still rare cases using GF-1 satellite images for water body extraction, especially with the deep
learning algorithms.

In this paper, we use the convolutional neural network (CNN) to extract water bodies from
GF-1 images. We borrowed the idea of DenseNet and added the up-sampling process to form a
fully convolutional neural network. At the same time, the skip layer connection was added in the
up-sampling and down-sampling processes to improve the efficiency of feature utilization. This paper
compares this model with the two segmentation networks of SegNet and DeepLab v3+, two feature
extraction networks of ResNet and VGG, and also the traditional water index method to understand
their efficiencies in water body identification.

2. Materials and Methods

2.1. Study Area

The Poyang Lake (28◦22′–29◦45′N, 115◦47′–116◦45′E), is located in the north of the Jiangxi
province. It is the largest freshwater lake in China. In the rainy summer season, the area of lake can
exceed 4000 km2; in the relatively dry autumn and winter, the lake area will typically shrink by more
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than 1000 km2. The lake is mainly fed by precipitation, and sometimes the Yangtze River flux. Rainy
season in the Jiangxi province usually begins in April, and lasts for about three months.

The increase in precipitation causes the water level of the Poyang Lake to rise. The precipitation
amount decreases after July. However, the water level of the Yangtze River rises due to the water
supply from precipitation and snowmelt in its upper reaches, which feeds the Poyang Lake and makes
the water level of this Poyang Lake continue to rise [53] under the continuous influence of human
activities and the Yangtze River water diversion and a large amount of sediment deposits, which has
an important influence on the area of Poyang Lake.

Figure 1 shows the river networks in the Poyang Lake basin. Since most of the water bodies in
the Poyang Lake basin are distributed in the northern region, we have selected an area of interest
to compare the water identification effects of different methods. Due to the influence of monsoon
precipitation, the spatial coverage of Poyang Lake changes significantly during the wet and dry seasons.
Therefore, we select images in summer and winter, respectively, to evaluate the water body recognition
effect of the used models.

Figure 1. The river networks in Poyang Lake basin.

2.2. Data

The GF-1 satellite was launched in April 2013 and obtained a large amount of data since then. It
carries two panchromatic/multi-spectral (P/MS) and four wide-field of view (WFV) cameras. Within
the spectral range of the GF-1 WFV sensor (450–890 nm), there are four spectral channels to observe
the reflected solar radiation from the earth. It has a spatial resolution of 16 m, a stripe width of 800 km,
and consists of four cameras. The temporal resolution is four days. Therefore, it has the characteristics
of high frequency revisit time, high spatial resolution and wide coverage, and is an ideal data for
large-scale land surface monitoring.

The GF-1 satellite images are provided by the China Resource Satellite Application Center
(http://www.cresda.com/CN/). In this study, our model also increases the input channels compared
with the conventional neural network, and all the four spectral channels of GF-1 images are used.
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2.3. Methods

To produce a water map from high-resolution satellite images, a DenseNet-based water mapping
method was proposed. To verify the effectiveness of the proposed method, we compared this method
with both methods of water index and classical convolutional neural network.

We select the method of the water index because it is the most widely used and representative
method in the field of remote sensing image water extraction. Using the water index, we want to
show that the proposed method has better performance than the traditionally used water index in
water extraction, and in order to avoid the influence of subjective factors above the threshold selection
of water index on the results, we used the Otsu’s threshold segmentation method [54,55] to find the
optimal threshold. Due to the limitation of GF-1 spectral bands, we choose the NDWI to extract water.

2.3.1. The Normalized Difference Water Index (NDWI)

The GF-1 images only contain four bands, hence NDWI can only be used to identify the water
area. The optimal threshold of NDWI is determined using Otsu’s method. The NDWI is a widely-used
method for water identification based on the green band and near-infrared band. Using GF-1 spectral
bands, the NDWI is computed as follows:

NDWI =
bgreen − bnear−infrared

bgreen + bnear−infrared
(1)

where bgreen represents the reflectivity of green band, bnear-infrared represents the reflectivity of
near-infrared band. Ideally, a positive NDWI value indicates the ground is covered with water, rain
or snow; a negative NDWI value indicates vegetation coverage; and the ground is covered by rocks
or bare soil if the NDWI is equal to 0. The threshold value is always not 0, due to various influences
such as vegetation on the water surface. The selection of threshold is a key and difficult problem for
accurate water body identification, and we use Otsu’s method to determine it.

This Otsu’s method is a classical algorithm in the image segmentation field which was proposed
by the Japanese Nobuyuki Otsu in 1979 [54,55]. It is an adaptive threshold determination method. For
a color image, it converts the image into a grayscale image and then distinguishes the target from
the background according to the grayscale characteristics. The larger the variance of the gray value
between target and the background, the greater the difference between these two parts. So, it calculates
the maximum value of the class variance between target and background to find the optimal threshold.
Among them, the definition of inter-class variance is as follows:

e2(T) = PO (μ − μ′O
)2
+ Pb (μ − μ′b

)2
(2)

where μ is the grayscale mean of the image, μo and μb are the means of the target and background, Po

and Pb are the proportion of grayscale of target and background, and T is the threshold. When T is the
maximum value of e2(T), it is the optimal threshold.

In this study, as the pixel-wise NDWI values are derived, it is necessary to stretch them to the
gray value from 0 to 256, from which Otsu’s threshold is then calculated to segment the water body
from the background.

2.3.2. Evolution of Convolutional Neural Network

With the development of technology and the optimization of hardware facilities, many classical
networks have emerged after numerous updates of the convolutional neural network. In 2014,
researchers developed the new deep convolutional neural network, VGG [30]. They discussed the
relationship between the depth and the performance of neural network. VGG [30] successfully
constructed the deep layer of 16–19 convolutional neural networks, and it proves that the increase of
the network depth affects the performance of the network to some extent. It was once widely used
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as a backbone feature extraction network for various detection network frameworks [42,56] until the
ResNet was proposed.

As a neural network with more than 100 layers, the ResNet’s biggest innovation lies in that it
solves the problem of network degradation through the introduction of a residual block. The traditional
convolutional network has problems such as information loss during information transmission, and
leads to the disappearance of gradient or gradient explosion, which makes the deep network unable
to train. ResNet passes the input information directly to the output, thus solving this problem to
some extent. It simplifies the difficulty of learning by learning the difference between input and
output, instead of all input characteristics. DenseNet was proposed based on ResNet, but with
considerable improvement.

As shown in Figure 2, the inputs of each layer of DenseNet are the outputs of all previous layers.
The information transmission between different layers of the network is guaranteed to be maximized.
Instead of connecting layers over summation such as the ResNet, the DenseNet connects the features
through concatenating to achieve feature reuse. Meanwhile, a small growth rate is adopted, and the
feature graph of each layer is relatively small; thus, to achieve the same accuracy, the computation
required by DenseNet is only about half that of the ResNet. Therefore, this study chooses DenseNet as
the backbone to extract features.

 
Figure 2. Multi-dimensional Dense Connection Module. (BN refers to Batch Normalization, ReLU
refers to Rectified Linear Unit, Conv refers to Convolution.)

For a standard CNN, the output of the layer is the input of the next layer. The ResNet simplifies
the training of the deep network by introducing the residual block, of which the output of the layer is
the sum of the output of the previous layer and its nonlinear transformation. As for a DenseNet, the
input of the l layer is the concatenation of the output characteristic map from 1 to l − 1 layer, and then
makes nonlinear changes, that is:

xl = Kl([x l−1, xl−2, . . . , x1]), (3)

here K is made up of batch normalization, activation functions, convolution and dropout. DenseNet’s
dense connections increase the utilization of features, make the network easier to train, and has the
effect of regularization.

Fully convolutional networks (FCNs) [57,58], as a convolutional neural network, can segment
images at pixel scale; therefore, it solves the problem of semantic segmentation. The classic CNN uses
the fully connected layers after the convolution layer to obtain the feature vector for classification
(fully connected layer + SoftMax output) [59–62]. Unlike the classic CNN, FCN uses deconvolution
to return the reduced feature map to the original size after feature extraction. In this way, while
preserving the spatial information of the input, the output with the same size of the input is gradually
obtained, so as to achieve the purpose of pixel classification. It can accept input images of any size.
Many networks have been proposed for image segmentation after FCN. SegNet [34] was proposed
as an encoder–decoder network which uses the first 13 layers of VGG16 as encoders, and the max
pooling indices as decoders to improve the segmentation resolution. DeepLab v3+ [39] was proposed
in 2018, and it is the latest version of DeepLab series. It uses deep convolutional neural network with
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atrous convolution in the decoder part. Then the Atrous Spatial Pyramid Pooling (ASPP) is used to
introduce multiscale information. Compared with DeepLab v3, v3+ introduces the decoder module,
which further integrates the low-level features and high-level features to improve the accuracy of
segmentation boundary.

2.3.3. Model-Based on DenseNet

Figure 3 shows the architecture of the network we have proposed for water body identification.
Our model is a fully convolutional neural network with the fusion of multiscale features. The model
chooses DenseNet as the backbone for feature extraction. The DenseNet we use contains four dense
blocks. The transition block makes the connection between each dense block. The transition block
consists of a 1 × 1 convolution and a 2 × 2 pooling operation. It can reduce the spatial dimensionality
of feature maps.

 

Figure 3. Proposed network architecture for semantic identification based on the DenseNet model.

In our network, in order to recover from the input spatial resolution, the upsampling layer is
implemented by the transpose convolution. The feature map of the upsampling is then concatenated
to the feature map from the dense block in the down-sampling process. The batch normalization (BN)
and the Rectified Linear Unit (ReLU) are performed before the convolution of the image.

Our model can input images of arbitrary size during inference. But for the convenience of training,
and to ensure that there is sufficient memory for training, we unified all input images into the size of 224
× 224 pixels. We cut out images of uniform size from GF-1 images, and screened out images containing
both water and non-water as effective training data. At the same time, to ensure that the model can
directly extract useful features from the original data, we did not do any preprocessing of the input
image. We used the Adam optimization algorithm to optimize the weight. Hyperparameters β1 = 0.9
and β2 = 0.999 are selected as recommended by the algorithm. We trained our model in stages with
the initial learning rate λ = 10−4, which was reduced by 10 times after 30 epochs. The initial learning
rate here is the best result from multiple trials. The growth rate of the network is set as 32, weight
decay is 10−4, and the Nesterov momentum is 0.9, which remain the same as the classic DenseNet.
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In order to determine the number of network layers, we experiment with the number of
convolutions in each dense block to find the optimal result. The DenseNet proposed by Huang
et al. [51] designed three network layers for different tasks, i.e., Densenet121, Densenet169 and
Densenet201. In addition to testing the above-mentioned three networks, we also adjust the number of
layers to find the most suitable result for this task. We first halve the convolution layers of first three
dense blocks of DenseNet121, the fourth block is unchanged, which is DenseNet79.

Then we tried to halve the convolution layers of four blocks and it became DenseNet63. We
trained five DenseNets with different network layers to compare which is the best.

In order to make an effective comparison of the results, we use training time as one indicator
to determine which network is faster and more convenient. We use the precision (P), recall (R), F1
score (F1) and mean Intersection over Union (mIoU) to quantitatively measure the performance of
the network, which are all based on the confusion matrix. The same indicators were used to evaluate
the performances of NDWI, VGG, ResNet, SegNet, DeepLab v3+ and DenseNet. As an evaluation
index, the confusion matrix evaluates the performance of a classifier, and it is more accurate for the
identification results of unbalanced categories. The confusion matrix divides the image identification
results into four parts: true positive (TP), true negative (TN), false positive (FP) and false negative
(FN). The specific calculation formula of evaluation index is as follows [63]:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

Fα =
(1 + α2)P×R
α2(P + R)

(6)

mIoU =
TP

TP + FP + FN
(7)

where P means the precision, and R means the recall. MIoU is the intersection of two sets of ground
truth and predicted results. Precision is the fraction of correctly identified water pixels (TP) among the
predicted water pixels (TP + FP) by the model. Recall is the fraction of correctly identified water pixels
(TP) among the actual water pixels (TP + FN). Since precision and recall are sometimes contradictory,
we further introduce the F1 score to measure the accuracy of a binary model, which simultaneously
takes precision and recall into consideration [64]:

F1 =
2(P + R)

P + R
(8)

The comparison results of five networks are shown in Table 1. The best results of all indicators are
displayed in bold fonts. We can see that with the increase of network layers, the training time also
increases; however, the performance does not become better with layer increase. This may be because
the input samples of the network are not enough, and the characteristics of the water are easier to
identify, so too many layers will not contribute to the results. Among these five networks, DenseNet79
has the best performance in recall, F1 score and mIoU. Its precision is lower than DenseNet169, but the
training time is almost two hours less than DenseNet169. Therefore, DenseNet79 is most suitable for
the task of water recognition in this study.
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Table 1. Comparison of DenseNets with different layers. The optimal value for each metric is shown in
bold. (P refers to Precision; R refers to Recall; F1 refers to F1 score and mIoU refers to mean Intersection
over Union).

Network Time P R F1 mIoU

DenseNet63 15,463 s 0.959 0.900 0.928 0.867
DenseNet79 16,377 s 0.961 0.904 0.931 0.872

DenseNet121 20,611 s 0.957 0.901 0.928 0.866
DenseNet169 24,018 s 0.964 0.896 0.928 0.867
DenseNet201 27,121 s 0.960 0.899 0.929 0.867

To verify the performance of our implementations, VGG, ResNet, SegNet and DeepLab v3+ were
selected to make comparisons. VGG and ResNet were selected, respectively, as representatives of
the neural network with less than 100 layers, and the neural network with more than 100 layers.
SegNet and DeepLab v3+were selected as representatives of two segmentation network structures:
encoder–decoder structure and Atrous convolution. Also, due to the limitation of computation
resources and the number of training datasets, it is not necessary to use powerful and complicated
networks as our exception, since, as the backbone of DeepLab v3+, we chose MobileNet [65] as the
backbone, which has much less parameter, and can achieve good results on our task in shorter time.

3. Results

To see if the DenseNet is more suitable and efficient than the other methods, we first compare the
result of the proposed network with the ground truth to evaluate its effectiveness in identifying the
water bodies. Then we compare with the results derived from the NDWI index and four other deep
neural networks of VGG, ResNet, SegNet and DeepLab v3+. Finally, we chose the best model and
made a simple analysis of the changes in water areas in Poyang Lake area in winter and summer from
2014 to 2018.

3.1. The Image Preprocessing

The dataset contains GF-1 images from the middle and lower reaches of the Yangtze River basin
in different periods. The corresponding labels were binary classifications of the water–nonwater area
by expert visual interpretation. To improve the efficiency of the model training, we clipped the input
data to 224 × 224 pixels. We have deliberately selected some labels with both land and water bodies as
training samples. Finally, we have selected 5558 water bodies samples. Of these, 4446 images were
used as training sets, while the remaining 1112 images were used as test sets. This data is only used
for model training and quantitative evaluation. Since the samples are cut into small pieces, and the
selection of training set and test set are random, the recognition efficiency of the model on a large
range of images cannot be seen from the existing data. To qualitatively evaluate the performance of
different models in different ground object types, we also applied the model to other GF-1 images in
different periods.

3.2. Water Identification Result of DenseNet

Figure 4 is the recognition result of 12 remote sensing images selected from the validation dataset,
the corresponding ground truths, and the DenseNet result. The sizes of images are all 224 × 224. These
12 images contain water bodies of various shapes and colors, from which the recognition effectiveness
of this model on different water bodies can be understood.
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Figure 4. Result of the water body identifications using the DenseNet model. The figure is divided into
four rows and nine columns, showing the recognition effects in 12 different regions. Column (a), (d), (g)
are the false-color remote sensing images; column (b), (e), (h) are the corresponding ground truths;
column (c), (f), (i) are the corresponding model (DenseNet) recognition results.

It can be seen from Figure 4 that the recognition result of DenseNet is consistent with the ground
truth. Although this model failed to identify some small water bodies, the error areas are generally
very small, and such small errors have little influence on the overall distribution of water bodies, which
can be ignored. In addition, the network can accurately identify the water bodies in different forms
and regions, and accurately separate small rivers in the towns, and even small barriers such as bridges
in the water can be correctly separated. The boundaries between water and land were identified, partly
because of the fine resolution of the GF-1 images, and partly because of the efficiency of the proposed
DenseNet model.

3.3. Working Efficiency of DenseNet, ResNet, VGG, SegNet and DeepLab v3+Models

Figure 5 shows the training losses of DenseNet, ResNet, VGG, SegNet and DeepLab v3+. In the
convolutional neural networks, the loss function is used to calculate the difference between the output
of the model and the ground truth, so as to better optimize the model. The smaller the loss is, the better
the robustness of the model is. In Figure 5, one epoch represents 1000 iterations. For the initial epochs,
the loss value of VGG is by far the highest, which is two or three times higher than those of ResNet
and DenseNet; and it remains the highest until 30 epochs. The initial loss value of SegNet is close to
VGG, followed by DeepLab v3+. The DenseNet has a higher initial loss value than the ResNet, but
then it declines faster than the ResNet and continues to be lower than the ResNet after five epochs.
The loss of DenseNet maintains the lowest after five epochs, indicating the fastest convergence speed
compared to the other four models.

Table 2 shows the training time of the five networks. Among them, the VGG has the longest
training time. The DeepLab v3+’s training time is the shortest, and DenseNet is next to it. The DenseNet
saves about 80 min compared to the VGG model, about 50 min compared to the ResNet model, and 40
min compared to the SegNet model.
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Figure 5. Training losses of the DenseNet, ResNet, VGG, SegNet and DeepLab v3+models. One epoch
represents 1000 iterations.

Table 2. Training time of the DenseNet, ResNet, VGG, SegNet and DeepLab v3+models.

Network Time

DenseNet 16,377 s
ResNet 19,436 s
VGG 21,471 s

SegNet 19,021 s
DeepLab v3+ 11,924 s

But it takes more than 70 min compared to DeepLab v3+. This indicates that under the same
training environment, the DeepLab v3+ requires the least training time; it is easier to train and use the
lowest resource consumption capacity. The reason why we did not compare the time consumption of
NDWI with these networks is that the NDWI method does not need a lot of time to process, and the
required time can be ignored.

3.4. Comparison of Identification Results

The derived P, R, F1 score and mIoU of the VGG, the ResNet, the DenseNet, the SegNet, the
DeepLab v3+ and the NDWI models are shown in Table 3. All values in the table were calculated by
the prediction results of 1112 images in the test set, and their corresponding ground truth. Given the
limited number of samples, we reported the 95% confidence interval of the metrics to see if the result is
statistically significant. The best result of each indicator is in bold. We can see from the results that all
neural networks’ results are much better than the NDWI index. For each network model, the DenseNet
result, with a narrower interval, appears more stable than the other methods.

Table 3. The derived P, R, F1score and mIoU of the VGG, ResNet, DenseNet, SegNet, DeepLab v3+ and
NDWI models with 95% confidence interval. The optimal value for each metric is shown in bold.

DenseNet ResNet VGG SegNet DeepLab v3+ NDWI

P 0.961 ± 0.011 0.936 ± 0.014 0.914 ± 0.016 0.911 ± 0.017 0.922 ± 0.016 0.702 ± 0.027
R 0.904 ± 0.017 0.902 ± 0.017 0.915 ± 0.016 0.934 ± 0.015 0.917 ± 0.016 0.983 ± 0.007
F1 0.931 ± 0.015 0.919 ± 0.016 0.914 ± 0.016 0.922 ± 0.016 0.919 ± 0.016 0.819 ± 0.023

mIoU 0.872 ± 0.020 0.850 ± 0.021 0.842 ± 0.021 0.856 ± 0.021 0.850 ± 0.021 0.767 ± 0.025

Among six models, the DenseNet appears to have the highest precision of 0.961, meaning that
96.1% of the water bodies are correctly predicted among the predicted water bodies by the model.
The precisions of ResNet, VGG, SegNet and DeepLab v3+ are 0.936, 0.914, 0.911 and 0.922, respectively.
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Such a rank of this precision is as expected, considering the pathway of theoretical improvements of
these deep neural network models. However, the NDWI model based on the spectral bands appears to
have a rather reduced prediction precision, which is only 0.702, although an adaptive threshold from
the Otsu method is employed. Hence, the DenseNet appears to perform the best among the three deep
neural networks regarding prediction precision; particularly, such a neural network, at least in this
case, is by far the better than normally used NDWI method for water body identification in the remote
sensing community.

Among the three deep neural networks, SegNet shows the highest recall value of 0.934. The ResNet
shows the lowest recall, which is 0.902. The DenseNet is only 0.02 higher than ResNet. VGG and
DeepLab v3+ have a recall of 0.915 and 0.917, respectively. The NDWI model shows the highest recall
value of 0.983 among all the six methods, indicating it has successfully identified most of the water
body samples in the training dataset. However, its precision value is the lowest, indicating that there
are still serious ill predictions from this method. As can be seen, the matrices of recall and precision
have given contrary indications of the model performances. To make a comprehensive evaluation of
these two indicators, we investigate the F1 score considering both the precision and the recall values.
We also use mIoU to evaluate the accuracy of model segmentation results. A higher F1 score and mIoU
indicates a better performance. The F1 scores of the DenseNet, ResNet, VGG, SegNet and DeepLab
v3+models are 0.931, 0.919, 0.914, 0.922 and 0.919, respectively, and the mIoUs of them are 0.872, 0.850,
0.842, 0.856 and 0.850, respectively. We can see from the results that the performance of DenseNet
is better than ResNet, VGG, SegNet and DeepLab v3+. This may be due to the dense connection,
which increases the utilization efficiency of the features. As for the result of DeepLab v3+, the training
efficiency is much better than DenseNet. This is because the backbone of DeepLab v3+we chose is
MobileNet, which is a lightweight network using the depth-wise separable convolution to reduce the
number of parameters and the amount of calculation. The F1 score and the mIoU of the NDWI index
are as low as 0.819 and 0.767, showing that all the deep neural networks have much better performance
than the traditional NDWI method from a comprehensive viewpoint.

The recalls of DenseNet and ResNet are not very good in these models, meaning that these
networks are not good at capturing all the water areas. Figure 6 shows some examples of this
disadvantage. The third column is the result of DenseNet, and the fourth column is the result of
ResNet; this figure shows that the water area which DenseNet recognized is the smallest in all six
models, and it distributes in small rivers and intertidal zones. Column (h) is the result of NDWI. NDWI
recognized the biggest water area, which is consistent with its highest recall value. However, with the
increase of identified water area, the probability of recognition error is also increasing, meaning that
the precision is more likely to drop with it. To increase the recall value of DenseNet, it may cost a sharp
drop of precision. It has good results of F1 score and mIoU, meaning that the overall performance of
this network is very good. Therefore, we decided not to further optimize the recall of DenseNet.

In order to further understand the performance of each method in different regions, we selected
two GF-1 images of the Poyang Lake during the wet and the dry seasons, respectively, to evaluate the
performance of different models, i.e., 29 July and 31 December 2016. Figure 7 shows the results from
the image on 31 December 2016, when the Poyang Lake basin was dry with a complex distribution of
water area.
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Figure 6. Examples of the recognition effect of different models which shows the high false negative
(FN) of DenseNet. (a) False color composite remote sensing image, and water body identification result
by (b) the ground truth, (c) the DenseNet, (d) the ResNet, (e) the VGG, (f) the SegNet, (g) the DeepLab
v3+ and (h) the NDWI models. White color indicates the identified water bodies.

 

Figure 7. Comparison of the water identification effect of different models in Poyang Lake on 31
December 2016. (a) False color composite remote sensing image, and water body identification result
by (b) the DenseNet, (c) the ResNet, (d) the VGG, (e) the SegNet, (f) the DeepLab v3+ and (g) the
NDWI models. White color indicates the identified water bodies, solid line depicts mountain area,
dashed line depicts urban area.

In the false-color image, the blue area is mostly water body, and the red area is mostly vegetated.
The other colored areas include bare land, buildings and other nonwater areas. The mountain area
is depicted with a solid line frame, while the urban area is marked with a dashed line frame. In the
prediction results of ResNet, many patches in the corresponding region of the mountains are predicted
to be water bodies, which proves that the ResNet model is prone to confuse mountain shadows with
water. In the same regions, the VGG and SegNet models have also falsely identified some mountain
shadow areas as water bodies. DeepLab v3+ has not confused the mountain shadow with a water
body, but the boundary of water area it extracted was not as concise as the other methods. The main
water body was correctly identified by the NDWI models, which are however much larger than the
actual water bodies, and the NDWI model has also identified too many fine patches. The NDWI
result also had false detection of the mountain shadows, which is larger than those from the ResNet
model, but smaller than those from the VGG model. Other than the mountain shadow, the biggest
problem with the NDWI result is that it falsely identified some bare land and urban construction areas
as water bodies. The DenseNet model has successfully identified the small rivers and lakes from the
GF-1 image, and the mountain shadows and water bodies are successfully separated. In general, these
five deep neural networks have consistently identified the large water bodies in winter, although the
ResNet and the VGG models show a false identification of mountain shadows. These neural networks
have performed much better than the traditionally used NDWI water body index.
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Figure 8 shows the identified water bodies from the GF-1 image on 29 July 2016. In the false-color
image, the white area in the dotted line indicates the cloud, and the dashed line depicts the urban area.
In summer, the Poyang Lake is in a season with abundant water, and its water area reaches its peak
within a year. It is found that the VGG, SegNet and DeepLab v3+models have falsely identified the
cloud as water bodies, and the DenseNet also has a small amount of false identification. We can see
that the NDWI index can better identify the bulk of the water body, but there is much noise in the
boundary areas; besides, it has falsely identified the urban buildings, bare ground and most clouds as
water bodies. It is the ResNet model that completely distinguishes between the cloud and the water
bodies, which however has some false identification of some water bodies. As for the DenseNet result,
it shows a relatively accurate identification of water bodies with clear boundary separation for the
transitional areas between land and water. The DenseNet method partially falsely identified cloud as
water bodies, but it has filtered out most of it compared to the NDWI result.

 
Figure 8. Comparison of water identification effect in Poyang Lake on 29 July 2016. (a) False color
composite remote sensing image, and water body identification result by (b) the DenseNet, (c) the
ResNet, (d) the VGG, (e) the SegNet, (f) the DeepLab v3+ and (g) the NDWI models. White color
indicates the identified water bodies, dashed line depicts urban area, dotted line depicts cloud area.

Therefore, for the image of 29 July 2016, these five deep networks have their advantages and
disadvantages for the water body identification, but overall show better performances than the
NDWI method.

3.5. Interannual Variations of the Water Areas

It can be concluded from the above results that the DenseNet model we proposed has higher
accuracy, and can be used for water body identification. Therefore, we have used this model to
understand the interannual changes of water areas of Poyang Lake. Since GF-1 was successfully
launched in late 2013, we could only study the water area changes from 2014 to 2018. The water areas
of Poyang Lake change significantly among seasons, and there is a huge difference between the wet
and the dry seasons. The first row of Figure 9 shows the spatial distribution of Poyang Lake in summer
from 2014 to 2018. The water area in 2016 was the largest, when there was a flooding disaster event
in the Yangtze River basin, and the area in 2018 was the smallest when there was a summer drought
due to the reduced precipitation. The second row shows the lake areas in winter. The water areas of
Poyang Lake decrease sharply in winter, and the main lake body shrinks to only tributaries and smaller
lakes. The disappearance of Poyang Lake is mainly concentrated in the central and southern parts of
the lake, leaving only a small part of the water body in the north and northeast. This is principally due
to the climatic conditions but is also partly related to the topography, the Yangtze River runoff and the
three gorges dam [66,67].
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Figure 9. The spatial variations of water area in summer and winter of 2014–2018 in Poyang Lake area
based on DenseNet. The first row shows the lake areas in summer and the second row shows those in
winter. White color indicates the identified water bodies.

Figure 10 shows the interannual variations of water areas of the Poyang Lake in summer and
winter respectively, which were derived from GF-1 images from 2014 to 2018 based on the DenseNet
model. The water areas in summer season are generally much larger than those in winter; this is not
surprising, because summer is the rainy season in the Poyang Lake basin. The difference in the lake
areas in winter and summer is about 2000 km2 on average. The water area in 2014 summer is about
5200 km2 and that in winter is about 3200 km2. In 2015, the water areas in summer and winter are
equivalent, amounting to about 4300 km2; this is because of the increased winter precipitation and
reduced summer precipitation contrasting to the normal years. In 2016, the water area in winter is
about 3250 km2 and that doubles in summer, reaching 7000 km2 due to a severe flooding. It appears
clearly that the water areas in summer are decreasing rapidly from 2016 on; however, those in winter
show relatively small changes.

 

Figure 10. Statistics on the change of water area in summer and winter from 2014 to 2018 in Poyang
Lake area, derived from GF-1 images.
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4. Discussion

It can be seen from the above results that the performance of a traditionally used water index
method is not satisfying, especially in urban areas. This indicates the common problems of water index
which are, at least partly, based on thresholds: the thresholds change largely with time and space; the
determination of threshold is highly subjective and contains a lot of background information [20,52].
The biggest advantage of NDWI lies in that it is simple and can generate a water map in a very
short time. The proposed DenseNet-based water identification method can extract water bodies from
the GF-1 images with high accuracy, but it needs hours of training time. However, considering the
improvement it has made in recognition accuracy, and once the network is trained, the time to use this
network is comparable to NDWI.

So, this network is still a better tool compared to the water index method. Meanwhile, the
comparison of the proposed method with other four neural networks shows that it is a more powerful
tool for water body recognition.

There are more and more studies using the deep convolution neural network to classify remote
sensing images [68]. Our results have approved that, for big remote sensing data like GF-1 images
with high spatial and temporal resolutions, the deep learning method can be used to extract water
bodies with accurate results efficiently. It can be seen from water area changes in the recent years that
the derived water areas from the deep learning method can well reflect the local drought or flooding
conditions. Therefore, using the proposed method, the changes of water bodies, such as river and
lakes, and wetland as well, can be timely and effectively monitored [69].

The algorithm proposed in this study shows a certain deviation in distinguishing water bodies
and clouds, which can be further improved by modifying the model structure and parameters. Also,
the cloud area can be removed using image preprocessing to avoid such misjudgment. In this study,
we did not preprocess to remove the cloud, such that the original information of the input images are
kept. In addition, we use the cloud as one of the indicators to evaluate the effect of water recognition
algorithm. When a flooding event occurs, the cloud is always a barrier for water body monitoring with
optical remote sensing image. In such a case, the identification results can be improved by removing
clouds first or adding samples containing clouds. For cloud removal, it is a solution to integrate optical
with microwave remote sensing images. The deficiency of optical remote sensing can be made up by
combining with the advantage of microwave remote sensing to penetrate clouds and fog [70,71].

5. Conclusions

This study presents a new multidimensional, densely connected, convolutional network for water
identification from high spatial resolution multispectral remote sensing images. It uses DenseNet
as the feature extraction network to carry out image downs-sampling, then uses trans-convolution
for image upsampling. On this basis, multiscale fusion is added to fuse features of different scales
in the down-sampling process into the upsampling process. Compared with the traditionally used
water index method, the deep convolutional neural network does not need to find the index threshold,
leading to reduced errors, and thus higher accuracy. Meantime, comparing the proposed DenseNet
with other networks of ResNet, VGG, SegNet and DeepLab v3+, this DenseNet method requires less
training time and has the fastest convergence speed besides DeepLab v3+. The overall performance
of DenseNet is still much better. We also added a 95% confidence interval to the evaluation results
to reduce the uncertainty caused by the limited samples. The results from the GF-1 images show
that, even though DenseNet cannot identify all of the water areas, but it can identify water with great
precision, and has much better performance in identifying the boundary between land and water, and
can better distinguish the mountain shadows, towns and bare land. Its performance is also better in
terms of distinguishing the cloud. Furthermore, the proposed deep learning approach can be easily
generalized to an automatic program.
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Abstract: Since the result images obtained by deep semantic segmentation neural networks are
usually not perfect, especially at object borders, the conditional random field (CRF) method is
frequently utilized in the result post-processing stage to obtain the corrected classification result
image. The CRF method has achieved many successes in the field of computer vision, but when it is
applied to remote sensing images, overcorrection phenomena may occur. This paper proposes an
end-to-end and localized post-processing method (ELP) to correct the result images of high-resolution
remote sensing image classification methods. ELP has two advantages. (1) End-to-end evaluation:
ELP can identify which locations of the result image are highly suspected of having errors without
requiring samples. This characteristic allows ELP to be adapted to an end-to-end classification
process. (2) Localization: Based on the suspect areas, ELP limits the CRF analysis and update area
to a small range and controls the iteration termination condition. This characteristic avoids the
overcorrections caused by the global processing of the CRF. In the experiments, ELP is used to correct
the classification results obtained by various deep semantic segmentation neural networks. Compared
with traditional methods, the proposed method more effectively corrects the classification result and
improves classification accuracy.

Keywords: semantic segmentation; high-resolution remote sensing image; pixel-wise classification;
result correction; conditional random field (CRF)

1. Introduction

With the advent of high-resolution satellites and drone technologies, an increasing number
of high-resolution remote sensing images have become available, making automated processing
technology increasingly important for utilizing these images effectively [1]. High-resolution remote
sensing image classification methods, which automatically provide category labels for objects in these
images, are playing an increasingly important role in land resource management, urban planning,
precision agriculture, and environmental protection [2]. However, high-resolution remote sensing
images usually contain detailed information and exhibit high intra-class heterogeneity and inter-class
homogeneity characteristics, which are challenging for traditional shallow-model classification
algorithms [3]. To improve classification ability, deep learning technology, which can extract higher-level
features in complex data, has been widely studied in the high-resolution remote sensing classification
field in recent years [4].

Deep semantic segmentation neural networks (DSSNNs) are constructed based on convolutional
neural networks (CNNs); the input of these models is an image patch, and the output are category
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labels for the image patch. With the help of this structure, a DSSNN gains the ability to perform rapid
pixel-wise classification and end-to-end data processing—characteristics that are critical in automatically
analyzing remote sensing images [5,6]. In the field of remote sensing classification, the most widely
used DSSNN architectures include fully convolutional networks (FCNs), SegNETs, and U-Nets [7–9].
Many studies have extended these architectures by adding new neural connection structures to address
different remote sensing object recognition tasks [10]. In the process of segmenting high-resolution
remote sensing images of urban buildings, due to their hierarchical feature extraction structures,
DSSNNs can extract buildings’ spatial and spectral building features and achieve better building
recognition results [11,12]. When applied to road extraction from images, DSSNNs can integrate
low-level features into higher-level features layer by layer and extract the relevant features [13,14]. Based
on U-Nets, FCNs, and transmitting structures that add additional spatial information, DSSNNs can
improve road border and centerline recognition accuracy obtained from high-resolution remote sensing
images [15]. Through the FCN and SegNET architectures, DSSNNs can obtain deep information
regarding land cover areas and can classify complex land cover systems in an automatic and end-to-end
manner [16–18].

In many high-resolution remote sensing semantic segmentation application tasks,
obtaining accurate object boundaries is crucial [19,20]. However, due to the hierarchical structures of
DSSNNs, some object spatial information may be lost during the training and classification process;
consequently, their classification results are usually not perfect, especially at object boundaries [21,22].
Conditional random field (CRF) methods are widely used to correct segmentation or super-pixel
classification results [23,24]. CRFs can also be integrated into the training stage to enhance a CNN’s
classification ability [25,26]. Due to their ability to capture fine edge details, CRFs are also useful
for post-processing the results of remote sensing classification [27]. Using CRFs, remote sensing
image semantic segmentation results can be corrected, especially at ground object borders [28–30].
Although CRFs have achieved many successes in the field of computer vision, when applied to
remote sensing images where the numbers, sizes, and locations of objects vary greatly, some of
the ground objects will be excessively enlarged or reduced and shadowed areas may be confused
with adjacent objects [31]. To address the above problem, training samples or contexts can be
introduced to restrict the behavior of CRFs, limiting their processes within a certain range, category,
or number of iterations [32,33]. Unfortunately, these methods require the introduction of samples to
the CRF control process, and these samples cause the corresponding methods to lose their end-to-end
characteristics. For classification tasks based on deep semantic segmentation networks, when the
end-to-end characteristics are lost, the classification work must add an additional manual sample
set selection and construction process, which reduces the ability to apply semantic segmentation to
networks automatically and decreases their application value [34]. Therefore, new methods must be
introduced to solve this problem.

To address the above problems, this paper proposes an end-to-end and localized post-processing
method (ELP) for correcting high-resolution remote sensing image classification results. By introducing
a mechanism for end-to-end evaluation and a localization procedure, ELP can identify which locations
of the resulting image are highly suspected to have errors without requiring training and verification
samples; then, it can apply further controls to restrict the CRF analysis and update areas within a small
range and limit the iteration process. In the experiments, we introduce study images from the “semantic
labeling contest of the ISPRS WG III/4 dataset” and apply various DSSNNs to obtain classification
result images. The results show that compared with the traditional CRF method, the proposed method
more effectively corrects classification result images and improves classification accuracy.
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2. Methodology

2.1. Deep Semantic Segmentation Neural Networks’ Classification Strategy and Post-Processing

Deep semantic segmentation neural networks such as FCNs, SegNET, and U-NET have been
widely studied and applied by the remote sensing image classification research community. The training
and classification processes of these networks are illustrated in Figure 1.

Figure 1. End-to-end classification strategy.

As shown in Figure 1, the end-to-end classification strategy is usually adopted for DSSNNs’
training and classification. During the training stage, a set of remote sensing images ImageSet =
{I1, I2, . . . , In} is adopted and manually interpreted into a ground truth set GroundTruthSet = {Igt1,
Igt2, . . . , Igtn}; then, the GroundTruthSet is separated into patches to construct the training dataset.
The classification model Mendtoend is obtained based on this training dataset. During the classification
stage, the classification model is utilized to classify a completely new remote sensing image Inew (not an
image from ImageSet). This strategy achieves a higher degree of automation; the classification process
has no relationship with the training data or the training algorithm, and newly obtained or other images
in the same area can be classified automatically with Mendtoend, forming an input-to-output/end-to-end
structure. Thus, this strategy is more valuable in practical applications when massive amounts of
remote sensing data need to be processed quickly.

However, the classification results of the end-to-end classification strategy are usually not "perfect",
and they are affected by two factors. On the one hand, because the training data are constructed by
manual interpretation, it is difficult to provide training ground truth images that are precise at the
pixel level (especially at the boundaries of ground objects). Moreover, the incorrectly interpreted areas
of these images may even be amplified through the repetitive training process [16]. On the other hand,
during data transfer among the neural network layers, along with obtaining high-level spatial features,
some spatial context information may be lost [35]. Therefore, the classification results obtained by the
"end-to-end classification strategy" may result in many flaws, especially at ground object boundaries.
To correct these flaws, in the computer vision research field, the conditional random field (CRF) method
is usually adopted in the post-processing stage to correct the result image. The conditional random
field can be defined as follows:

P(X|F) = 1
Z(F)

exp(−
∑
c∈Cg

log(XC
∣∣∣F) ), (1)

where F is a set of random variables {F1, F2, . . . , FN}; Fi is a pixel vector; X is a set of random variables
{x1, x2, . . . , xN}, where xi is the category label of pixel i; Z(F) is a normalizing factor; and c is a clique in
a set of cliques Cg, where g induces a potential ϕc [23,24]. By calculating Equation (1), the CRF adjusts
the category label of each pixel and achieves the goal of correcting the result image. The CRF is highly
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effective at processing images that contain only a small number of objects. However, the numbers, sizes,
and locations of objects in remote sensing images vary widely, and the traditional CRF tends to perform
a global optimization of the entire image. This process leads to some ground objects being excessively
enlarged or reduced. Furthermore, if the different parts of ground objects that are shadowed or not
shadowed are processed in the same manner, the CRF result will contain more errors [31]. In our
previous work, we proposed a method called the restricted conditional random field (RCRF) that
can handle the above situation [31]. Unfortunately, the RCRF requires the introduction of samples
to control its iteration termination and produce an output integrated image. When integrated into
the classification process, the need for samples will cause the whole classification process to lose its
end-to-end characteristic; thus, the RCRF cannot be integrated into an end-to-end process. In summary,
to address the above problems, the traditional CRF method needs to be further improved by adding
the following characteristics:

(1) End-to end result image evaluation: Without requiring samples, the method should be able to
automatically identify which areas of a classification result image may contain errors. By identifying
areas that are strongly suspected of being misclassified, we can limit the CRF process and analysis scope.

(2) Localized post-processing: The method should be able to transform the entire image
post-processing operation into local corrections and separate the various objects or different parts of
objects (such as roads in shadow or not in shadow) into sub-images to alleviate the negative impacts of
differences in the number, size, location, and brightness of objects.

To achieve this goal, a new mechanism must be introduced to improve the traditional CRF
algorithm for remote sensing classification results post-processing.

2.2. End-to-End Result Image Evaluation and Localized Post-Processing

The majority of evaluation methods for classification results require samples with category labels
that allow the algorithm to determine whether the classification result is good; however, to achieve an
end-to-end classification results evaluation, samples cannot be required during the evaluation process.
In the absence of testing samples, although it is impossible to accurately indicate which pixels are
incorrectly classified, we can still find some areas that are highly suspected of having classification
errors by applying some conditions.

Therefore, we need to establish a relation between the remote sensing image and the classification
result image and find the areas where the colors (bands) of the remote sensing image are consistent,
but the classification results are inconsistent; these are the areas that may belong to the same object
but are incorrectly classified into different categories. Such areas are strong candidates for containing
incorrectly classified pixels. Furthermore, we try to correct these errors within a relatively small area.

To achieve the above goals, for a remote sensing image Iimage and its corresponding classification
image Icls, the methods proposed in this paper are illustrated in Figure 2:
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Figure 2. End-to-end result image evaluation and localized post-processing.

As shown in Figure 2, we use four steps to perform localized correction:
(1) Remote sensing image segmentation
We need to segment the remote image based on color (band value) consistency. In this paper, we

adopt the simple linear iterative clustering (SLIC) algorithm as the segmentation method. The algorithm
initially contains k clusters. Each cluster is denoted by Ci = {li, ai, bi, xi, yi}, where li, ai, and bi are
the color values of Ci in CIELAB color space, and xi, yi are the center coordinates of Ci in the image.
For two clusters, Ci and Cj, the SLIC algorithm is introduced to compare color and space distances
simultaneously, as follows:

distancecolor(Ci, Cj) =

√
(li − l j)

2 + (ai − aj)
2 + (bi − bj)

2, (2)

distancespace(Ci, Cj) =

√
(xi − xj)

2 + (yi − yj)
2, (3)

where distancecolor is the color distance and distancespace is the spatial distance. Based on these two
distances, the distance between the two clusters is:

distance(Ci, Cj) =

√
(

distancecolor(Ci, Cj)

Ncolor
)

2

+ (
distancespace(Ci, Cj)

Nspace
)

2

, (4)

where Ncolor is the maximum color distance and Nspace is the maximum position distance. The SLIC
algorithm uses the iterative mechanism of the k-means algorithm to gradually adjust the cluster position
and the cluster to which each pixel belongs, eventually obtaining Nsegment segments [36]. The advantage
of the SLIC algorithm is that it can quickly and easily cluster adjacent similar regions into a segment;
this characteristic is particularly useful for finding adjacent areas that have a consistent color (band
value). For Iimage, the SLIC algorithm is used to obtain the segmentation result ISLIC. In each segment
in ISLIC, the pixels are assigned the same segment label.

(2) Create a list of segments with suspicious degree evaluations
For all the segments in ISLIC, a suspicion evaluation list for the segments HList = {h1, h2, . . . , hn} is

constructed, where hi is a set hi = {hidi, hpixelsi, hreci, hspci}, hidi is a segment label, hpixelsi holds the
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locations of all the pixels in the segment; hreci is the location and size of the enclosing frame rectangle
of hpixelsi; and hspci is a suspicious evaluation value, which is either 0 or 1—a “1” means that the pixels
in the segment are suspected of being misclassified, and a “0” means that the pixels in the segment are
likely correctly classified. The algorithm to construct the suspicious degree evaluation list is as follows
(SuspiciousConstruction Algorithm):

Algorithm SuspiciousConstruction

Input: ISLIC
Output: HList
Begin

HList = an empty list;
foreach (segment label i in ISLIC){

hidi = i;
hpixelsi = Locations of all the pixels in corresponding segment i;
hreci= the location and size of hpixelsi’s enclosing frame rectangle;
hspci = 0;
hi = Create a set {hidi, hpixelsi, hreci, hhypi};
HList ← hi;

}
return HList;

End

In the SuspiciousConstruction algorithm, by default, each segment’s spci = 0 (the hypothesis is
that no misclassified pixels exist in the segment).

(3) Analyze the suspicious degree
As shown in Figure 2, for a segment, the spci value can be calculated based on the pixels in ISLIC; hi’s

corresponding pixels can be grouped as SP = {sp1, sp2, . . . , spm}, where spi is the pixel number belonging
to category i, and the inconsistency degree of SP can be described using the following formula:

inconsistence(SP) = 1−
max
i=1..m

(spi)

m∑
i

spi

, (5)

Based on this formula, the value of hypi can be expressed as follows:

hspci =

{
0 inconsistence < α
1 inconsistence ≥ α , (6)

where α is a threshold value (the default is 0.05). When a segment’s hspci = 0, the segment’s
corresponding pixels in ISLIC all belong to the same category, which indicates that pixels’ features are
consistent in both Iimage (band value) and ISLIC (segment label); in this case, the segment does not need
correction by CRF. In contrast, when a segment’s hspci = 1, the pixels of the segment in ISLIC belong to
different categories, but the pixel’s color (band value) is comparatively consistent in Iimage; this case
may be further subdivided into two situations:

A. Some type of classification error exists in the segment (such as the classification result
deformation problem appearing on an object boundary).

B. The classification result is correct, but the segment crosses a boundary between objects in ISLIC
(for example, the number of segments assigned to the SLIC algorithm is too small, and some areas are
undersegmented).

In either case, we need to be suspicious of the corresponding segment and attempt to correct
mistakes using CRF. Based on Formulas 5 and 6, the algorithm for analyzing Icls using HList is as
follows (SuspiciousEvaluation Algorithm):
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Algorithm SuspiciousEvaluation

Input: HList, Icls
Output: HList
Begin

foreach(Item hi in HList){
SP = new m-element array with zero values
foreach(Location pl in hi.hpixelsi){

px = Obtain pixel at pl in Icls;
pxcl = Obtain category label of px;
SP[pxcl] = SP[pxcl] + 1;

}
inconsistence = Use Formula (5) to calculate SP;
hi.hypi = Use Formula (6) with inconsistence

}
return HList;

End

By applying the SuspiciousEvaluation algorithm, we can identify which segments are suspicious
and require further post-processing.

(4) Localized correction
As shown in Figure 2, for a segment hi that is suspected of containing error classified pixels,

the post-processing strategy can be described as follows: First, based on hi.hreci, create a cut rectangle
cf, (cf = rectangle hi.hreci enlarged by β pixels), where β is the number of pixels to enlarge and the
default value is 10. Second, use the cf cut sub-images from Iimage and Icls to obtain a Subimage and a
Subcls. Third, input Subimage and Subcls to the CRF algorithm, and obtain a corrected classification result
Corrected-Subcls. Finally, based on the pixel locations in hi.hpixelsi, obtain the pixels from Corrected-Subcls
and write them to Icls, which constitutes localized area correction on Icls. For the entire Icls, the localized
correction algorithm on Icls is as follows (LocalizedCorrection Algorithm):

Algorithm LocalizedCorrection

Input: Icls, HList
Output: Icls
Begin

foreach(hi in HList){
if (hi.hspci==0) then continue;
cf= Enlarge rectangle hi.hreci by β pixels;
Subimage, Subcls = Cut sub-images from Iimage and Icls;
Corrected-Subcls = Process Subimage and Subcls by CRF algorithm;
pixels = Obtain pixels in hi.hpixelsi from Corrected-Subcls;
Icls←pixels;

}
return Icls

End

By applying the LocalizedCorrection algorithm, the ICLS will be corrected segment by segment
through the CRF algorithm.

2.3. Overall Process of the End-to-End and Localized Post-Processing Method

Based on the four steps and algorithms described in the preceding subsection, we can evaluate
the classification result image without requiring testing samples and correct the classification result
image within local areas. By integrating these algorithms, we propose an end-to-end and localized
post-processing method (ELP) whose input is a remote sensing image Iimage and a classification result
image Icls, and whose output is the corrected classification result image. Through the iterative and
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progressive correction process, the goal of improving the quality of the ICLS can be achieved. The process
of ELP is shown in Figure 3.

Figure 3. Overall processes of end-to-end and localized post-processing method (ELP).

As Figure 3 shows, the ELP method is a step-by-step iterative correction process that requires a
total of γ iterations to correct the Icls content. Before beginning the iteration, the ELP method obtains
the segmentation result image ISLIC before iteration:

ISLIC = SLIC(Iimage), (7)

Then, it evaluates the segments and constructs the suspicion evaluation list for the segments HList:

HList = SuspiciousConstruction(ISLIC), (8)

In each iteration, ELP updates HList to obtain HListη, and it outputs a new classification result
image IηCLS, where η is the iteration value (in the range [1,γ]). The i-th iteration’s output is:

HListi = SuspiciousEvaluation(HListi−1, Ii−1
cls ), (9)

Ii
cls = LocalizedCorrection(Ii−1

cls , HListi), (10)

When η = 1, HList0 = HList, and I0
cls = Icls; when η ≥ 2, the current iteration result depends on the

result of the previous iteration. Based on the above two formulas, the ELP algorithm will update HList
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and Icls in each iteration; HList indicates suspicious areas, and these areas are corrected and stored in
Icls. As the iteration progresses, the final result is obtained:

PostProcessResult = Iγcls, (11)

Through the above process, ELP achieves both the desired goals: end-to-end result image
evaluation and localized post-processing.

3. Experiments

We implemented all the codes in Python 3.6; the CRF algorithm was implemented based on the
PyDenseCRF package. To analyze the correction effect for the deep semantic segmentation model’s
classification result images, this study introduces images from Vaihingen and Potsdam in the “semantic
labeling contest of the ISPRS WG III/4 dataset” as the two test datasets.

3.1. Comparison of CRF and ELP on Vaihingen Dataset

3.1.1. Method Implementation and Study Images

We introduced five commonly used DSSNN models as testing targets: FCN8s, FCN16s, FCN32s,
SegNET, and U-Net. All these deep models are implemented using the Keras package, and all the
models take a 224 × 224 image patch as input and output a corresponding semantic segmentation
result. The five image files from Vaihingen were selected as the study images and are listed in Table 1.

Table 1. Five study images from the Vaihingen dataset.

Image ID Filename Size Role

1 top_mosaic_09cm_area23.tif 1903 × 2546 Training/Testing image
2 top_mosaic_09cm_area1.tif 1919 × 2569 Testing image
3 top_mosaic_09cm_area3.tif 2006 × 3007 Training/Testing image
4 top_mosaic_09cm_area21.tif 1903 × 2546 Testing image
5 top_mosaic_09cm_area30.tif 1934 × 2563 Testing image

All five images contain five categories: impervious surfaces (I), buildings (B), low vegetation (LV),
trees (T), and cars (C). These images have three spatial bands (near-infrared (NIR), red (R), and green
(G)). The study images and their corresponding ground truth images are shown in Figure 4.

We selected study images 1 and 3 as training data and used all the images as test data. Study
images 1 and 3 and their ground truth images were cut into 224 × 224 image patches with 10-pixel
intervals; all the patches were stacked into a training set, and all the deep semantic segmentation
models were trained on this training set.

This study used two methods to compare correction ability:
(1) CRF: We compared our method with the traditional CRF method. For each classification result

image, the CRF was executed 10 times, and each time, the corresponding correct-distance parameters
were set to 10, 20, . . . , 100. Since all the study images have corresponding ground truth images, the CRF
algorithm selects the result with the highest accuracy among the 10 executions.

(2) ELP: Using the proposed method, the threshold value parameter α was set to 0.05, and the
CRF’s correct-distance parameters in the LocalizedCorrection algorithm were set to 10. The number of
ELP iterations was set to 10. Since ELP emphasizes “end-to-end” ability, no ground truth is needed to
analyze the true classification accuracy during the iteration process; therefore, ELP directly outputs the
result of the last iteration as the corrected image.
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Figure 4. The study images and their corresponding ground truth from the Vaihingen dataset.

3.1.2. Classification Results of Semantic Segmentation Models

We used all five deep semantic segmentation models as end-to-end classifiers to process five study
images. The classification results are illustrated in Figure 5.

As shown in Figure 5, because study images 1 and 3 are used as training data (the deep neural
network is sufficiently large to “remember” these images), the classification results by the five models
for study images 1 and 3 are close to “perfect”: almost all the ground objects and boundaries are
correctly identified. However, because just two training images cannot exhaustively represent all the
boundaries and object characteristics, these models cannot perfectly process study images 2, 4, and 5.
As shown in Figure 5, there are obvious defects and boundary deformations, and many objects are
misclassified in large areas. Based on the ground truth images, the classification accuracies of these
result images are as follows:

As shown in Figure 5, because study images 1 and 3 are used as training data (the deep neural
network is sufficiently large to “remember” these images), the classification results by the five models
for study images 1 and 3 are close to “perfect”: almost all the ground objects and boundaries are
correctly identified. However, because just two training images cannot exhaustively represent all the
boundaries and object characteristics, these models cannot perfectly process study images 2, 4, and 5.
As shown in Figure 5, there are obvious defects and boundary deformations, and many objects are
misclassified in large areas. Based on the ground truth images, the classification accuracies of these
result images are as follows:

Table 2 shows that because study images 1 and 3 are training images, all five models’ classification
accuracies of these two images are above 95%, which is a satisfactory result. However, on study images
2, 4, and 5, due to the many errors on ground objects and boundaries, all five models’ classification
accuracies degrade to approximately 80%. Therefore, it is necessary to introduce a correction mechanism
to correct the boundary errors in these images.
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Figure 5. Classification results of five deep semantic segmentation models.

Table 2. Classification accuracy for the study images.

Model
Classification Accuracy of Study Images (%)

1 2 3 4 5

FCN8s 97.46 81.92 96.16 79.52 80.37
FCN16s 96.90 79.61 95.04 76.98 80.12
FCN32s 97.22 82.27 95.01 78.59 81.63
SegNET 97.83 78.95 95.39 76.50 77.11

U-Net 97.91 82.02 97.38 79.43 80.07

3.1.3. Comparison of the Correction Characteristics of ELP and CRF

To compare the correction characteristics of the ELP and CRF, this section uses U-Net’s classification
result for test image 5 and applies ELP and CRF to correct a subarea of the result image. The detailed
results of the two algorithms with regard to iterations (ELP) and execution (CRF) are as shown in
Figure 6.
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Figure 6. Detailed comparison of the results of the ELP and conditional random field (CRF) algorithms.
(a) Ground truth and U-Net’s classification results of a subarea of test image 5; (b) results of ten
iterations of ELP; (c) results of ten executions of CRF.

As shown in Figure 6a, for the sub-image of test image 5, the classification results obtained by
U-Net are far from perfect, and the boundaries of objects are blurred or chaotic. Especially at locations
A, B, and C (marked by the red circles), the buildings are confused with impervious surfaces, and the
buildings contain large holes or misclassified parts. On this sub-image, the classification accuracy of
U-Net is only 79.02%.

Figure 6b shows the results of the 10 ELP iterations. As the method iterates, the object boundaries
are gradually refined, and the errors at locations A and B are gradually corrected. By the 5th iteration,
the hole at position A is completely filled, and by the 7th iteration, the errors at location B are also
corrected. For location C, because our algorithm follows an end-to-end process, no samples exist in
this process to determine which part of the corresponding area is incorrect; therefore, location C is not
significantly modified during the iterations. Nevertheless, the initial classification error is not enlarged.
As the iteration continues, the resulting images change little from the 7th to 10th iterations, and the
algorithm’s result becomes stable.

Figure 6c shows the results of the CRF. From executions 1 to 3, it can be seen that the CRF can
also perform boundary correction. After the 4th iteration, the errors in locations A and B are corrected.
It can also be seen that at position C, part of the correctly classified building roof was modified into
impervious surfaces, further exaggerating the errors. The reason for this outcome is that at location
C, for the corresponding roof color, the correctly classified part is smaller than the misclassified part.
In the global correction context, the CRF algorithm more easily replaces relatively small parts. At the
same time, as the iteration progresses, errors gradually appear due to the CRF’s correction process (as
marked in orange); some categories that were originally not dominant in an area (such as trees and cars)
experience large decreases, and the classification accuracy continues to decrease with further iterations.

Based on the ground truth image, we evaluate the classification accuracy of the two methods after
each iteration/execution as shown in Table 3:
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Table 3. Comparison of two algorithms by iteration/execution.

Methods
Classification Accuracy at each Iteration/Execution (%)

1 2 3 4 5 6 7 8 9 10

ELP 80.93 81.49 82.88 83.11 84.24 84.34 85.76 85.81 85.59 85.67
CRF 79.41 82.55 83.21 83.76 81.45 80.93 80.55 79.65 77.83 73.86

As seen from Table 3, compared to the original classification result, whose accuracy is 79.02%,
the ELP’s classification accuracy increases to 80.93% after the first iteration—the lowest among its ten
iterations, and it reaches 85.81% by the 8th iteration for a classification accuracy improvement of 6.79%.
The CRF’s classification accuracy is 79.41% after the first executions, and it reaches its highest accuracy
of 83.76% in the 4th execution; subsequently, the classification accuracy gradually declines during the
remaining iterations, falling to 73.86% by the 10th execution. Overall, the CRF reduced the accuracy by
5.16% compared with the original classification image. A graphical comparison of the classification
accuracy of the two methods is shown in Figure 7:

Figure 7. Graphical comparison of the classification accuracy of the two methods.

In Figure 7, the black dashed line indicates the original classification accuracy of 79.02%. The CRF’s
accuracy improvement was slightly better than that of the ELP algorithm in the second, third, and fourth
iterations; however, its classification accuracy decreases rapidly in the later iterations, and by the
ninth iteration, the classification accuracy is lower than that of the original classification result image.
In contrast, the classification accuracy of the ELP increases steadily, and after approaching its highest
accuracy, in subsequent iterations the accuracy remains relatively stable. From the above results,
the ELP not only achieves a better correction result but also avoids causing obvious classification
accuracy reductions from performing too many iterations. In end-to-end application scenarios where
no samples participate in the result evaluation, we cannot know when the highest correction result
has been reached; thus, the ideal method of termination conditions are also unknown. Specifying
a too-small distance parameter will cause under-correction, while a too-large parameter will cause
over-correction. The relatively stable characteristics and greater accuracy of ELP clearly allow it to
achieve better processing results than those of CRF.

3.1.4. Correction Results Comparison

The correction results of the CRF method are shown in Figure 8.
As shown in Figure 8, for images 1 and 3, because the classification accuracy is relatively high,

less room exists for correction, and the resulting images change only slightly. For images 2, 4, and 5,
although the large errors and holes are corrected, numerous incorrect borders are present, pixels appear
at shadowed parts of the ground objects, and many small objects (e.g., cars or trees) are erased by
larger objects (e.g., impervious surfaces or low vegetation). For ELP, the correction results are shown
in Figure 9.
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Figure 8. CRF correction results.

As Figure 9 shows, ELP also corrects the large errors and holes but does not produce overcorrection
errors in the shadowed parts of the ground objects, and small objects are not erased. Therefore, in general,
the correction results of ELP are better than those of CRF. Correction accuracy comparisons of the two
algorithms are shown in Table 4.

Table 4. Correction accuracy comparisons of CRF and ELP.

Model

Classification Accuracy of Study Images (%)

1 2 3 4 5

CRF ELP CRF ELP CRF ELP CRF ELP CRF ELP

FCN8s 97.91 97.88 84.72 88.32 97.31 97.02 81.24 85.47 82.81 85.87
FCN16s 97.41 97.37 83.33 87.61 96.94 97.11 80.57 84.67 84.02 85.82
FCN32s 97.67 97.62 84.90 87.32 96.71 96.31 82.02 84.89 83.02 85.70
SegNET 97.89 97.94 80.98 86.51 96.44 97.03 80.07 84.51 80.05 85.01

U-Net 97.95 97.98 85.07 88.91 97.42 97.47 81.53 86.93 83.12 86.07
Average

Improvement
0.30 0.29 2.84 6.78 1.16 1.19 2.88 7.09 2.74 5.83
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Figure 9. ELP correction results.

As shown in Table 3, for study images 1 and 3, because the original classification accuracy is
high, the correction results of CRF and ELP are similar to the original classification result, and the
improvements are limited. On study images 2, 4, and 5, the ELP’s average improvements are 6.78%,
7.09%, and 5.83%, respectively, while the corresponding CRF improvements are only 2.84%, 2.88%,
and 2.74%. Thus, ELP’s correction ability is significantly better than that of CRF.

3.2. Comparison of Multiple Post-Processing Methods on Potsdam Dataset

3.2.1. Test Images and Methods

This study introduces four images from the Potsdam dataset, which are listed in Table 5.

Table 5. Four study images from the Potsdam dataset.

Image Name Filename Size

Training image 1 top_potsdam_2_10_RGBIR 6000 × 6000
Training image 2 top_potsdam_3_10_RGBIR 6000 × 6000
Testing image 1 top_potsdam_2_12_RGBIR 6000 × 6000
Testing image 2 top_potsdam_3_12_RGBIR 6000 × 6000
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We selected two images as training data and the other two images as test data. Three bands
(red (R), green (G), blue (B)) of images were selected. These images contain six categories: impervious
surfaces (I), buildings (B), low vegetation (LV), trees (T), cars (C), and clutter/ background (C/B).
The study images and their corresponding ground truth images are shown in Figure 10.

Figure 10. The study images and their corresponding ground truth from the Potsdam dataset.

To further evaluate ELP’s ability, this paper compares four methods:
(1) U-Net + CRF: Use U-Net to classify an image and use CRF to perform post-processing.
(2) U-Net +MRF: Use U-Net to classify an image and use the Markov random field (MRF) to

perform post-processing.
(3) DeepLab: Adopt DeepLab v1 model; in the DeepLab v1, the model has a built-in CRF as the

last processing component, and this model can obtain a more accurate boundary than a model without
the CRF component.

(4) U-Net + ELP: Use U-Net to classify an image and use ELP to perform post-processing.

3.2.2. Process Results of Four Methods

For the two testing images, the final process results of the four methods are illustrated in Figure 11.
As can be seen in Figure 11, because U-Net + CRF uses a global CRF processing strategy, there are

many overcorrection areas, and some objects in the result image contain chaotic wrongly classified
pixels. For the U-Net +MRF, the majority of noise pixels are removed, but the correction effects are not
obvious. DeepLab’s CRF is performed on image patch, not the whole image, so the overcorrection
phenomenon is less than that of U-Net + CRF to some extent. U-Net + ELP obtained the best
classification among all of the methods. The classification accuracies of the four methods are presented
in Table 6.

Table 6. Classification accuracies of the four methods.

Image File
Classification Accuracy of the Four Methods (%)

U-Net + CRF U-Net +MRF DeepLab U-Net + ELP

Testing image 1 81.67 78.45 82.85 85.31
Testing image 2 80.49 76.33 83.57 86.58
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Figure 11. Results of the four methods.

As shown in Table 6, U-Net +MRF achieves the lowest classification accuracy, U-Net + CRF and
DeepLab are higher than U-Net +MRF, and U-Net + ELP achieves the best classification accuracy.

3.2.3. Analysis of computational complexity

To analyze the computational complexity of the methods, we use four methods to process the
testing image 1 and run the process five times. The experiments are performed on a computer (i9
9900k/64 GB/RTX 2080ti 11G), and the average process times are listed in Table 7.

Table 7. Process time of four methods.

Methods

Process Time of Each Step (Seconds)
Overall Time

(Seconds)Image
Separate

Patches
Classification

Patches
Combination

Post-Processing

U-Net + CRF 7.52 45.84 8.32 216.34 278.02
U-Net +MRF 7.43 45.67 8.51 170.97 232.58

DeepLab 7.61 232.98 8.45 \ 249.04
U-Net + ELP 7.57 46.02 8.77 506.45 568.81

As shown in Table 7, because the U-Net model can make full use of the graphics processing
unit (GPU), and the processing speed of CRF and MRF on the whole image is also fast, U-Net + CRF
and U-Net + MRF obtain results in a short time. DeepLab performs CRF after each image patch
classification, so it does not need the post-processing stage, but the patch-based CRF process needs
additional data access time and duplicate pixels at the patches’ border, so its process time is similar to
that of U-Net +CRF and U-Net +MRF. Since U-Net + ELP adopts the same deep model, its process time
of the first three steps is similar to that of U-Net + CRF and U-Net +MRF, but at the post-processing
stage, it needs a much longer time than the other methods.

For the ELP algorithm, the HList is updated at each iteration, and the suspicious areas marked by
HList will change constantly. Each suspicious area needs to be processed by the CRF method, so the
processing complexity of the ELP will vary along with the complexity of the image content. Although
each suspicious area is small, ELP’s greater amount of iterations, localization process, and result image
update mechanism will introduce an additional computational burden, so ELP needs more process
time than traditional methods.
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3.2.4. Analysis of Different Threshold Parameter Values of ELP

The threshold value α of ELP will determine the choice of suspicious areas. To test the influence
of this parameter, we chose UNet + ELP to process testing image 1, and set α in the range 0, 0.01, 0.02,
. . . , 0.09, which can vary from 0 to 0.09 with an interval of 0.01. The classification accuracy is shown
in Table 8.

Table 8. Classification accuracy comparison of different threshold values α.

Method
Classification Accuracy at Different Threshold Parameter Value (%)

0.00 0.01 0.02 0.03 0.04. 0.05 0.06 0.07 0.08 0.09

U-Net + ELP 84.97 85.40 85.01 85.07 85.37 85.31 84.87 83.13 81.29 80.46

As can be seen from Table 8, when α is less than 0.6, the classification accuracy does not change
significantly; when α is larger than 0.7, the classification accuracy is decreased. The main reason for this
phenomenon is that when α is small, ELP will be more sensitive to the discovery of suspicious areas;
however, too many suspicious areas merely increase the computational burden without contributing
to obvious changes in accuracy. In contrast, when α is larger, ELP will have a diminished capability to
discover suspicious areas, and many suspicious areas that need correction will be omitted, which will
cause a decrease in accuracy. At the same time, we can see from Table 8 that in a large range (0.0 to
0.6), the accuracy of ELP does not change greatly, which reveals that ELP has good stability with the
threshold value α.

3.2.5. Analysis of Different Segmentation Number of ELP

The ELP method adopts the SLIC algorithm as the segmentation method, and an important
parameter of the SLIC algorithm is Nsegment which decides the number of segments after the algorithm
performed. When the Nsegment is assigned an overly small value, under-segmentation may appear;
conversely, when Nsegment is assigned an overly large value, over-segmentation may appear. To test the
influence of this parameter on the ELP, we set Nsegment = 1000, 2000, . . . , 10,000 and allowed Nsegment to
vary from 1000 to 10,000 with an interval of 1000. The classification accuracy of testing image 1 by
U-Net + ELP is shown in Table 9.

Table 9. Classification accuracy comparison of different segment number.

Method
Classification Accuracy at Different Segment Number (%)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

U-Net + ELP 81.75 82.02 83.21 85.22 85.31 85.52 85.67 85.23 82.22 80.32

It can be seen from Table 9 that when Nsegment = 1000 to 3000, because the image is large (6000 ×
6000) and the segment number is relatively small, the image is under-segmented, and each segmentation
may contain pixels with a different color or brightness. This situation makes it difficult for ELP to
focus on suspicious areas, and the classification accuracy is low. When Nsegment = 9000 to 10,000,
the image is obviously over-segmented, and the segmentations are too small. This situation leads ELP
to have a small update size in its LocalizedCorrection algorithm and leads to ELP’s poor performance.
For Nsegment = 4000 to 8000, the classification accuracy of ELP does not vary greatly, which indicates
that ELP does not have restrictive requirements for the segment parameter; as long as the segment
method can correctly separate the regions with similar colors/brightness and the segment size is not
too small, ELP can achieve satisfactory results.
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4. Conclusions

Deep semantic segmentation neural networks are powerful end-to-end remote sensing image
classification tools that have achieved successes in many applications. However, it is difficult to
construct a training set that thoroughly exhausts all the pixel segmentation possibilities for a specific
ground area; in addition, spatial information loss occurs during the network training and inference
stages. Consequently, the classification results of DSSNNs are usually not perfect, which introduces a
need to correct the results.

Our experiments demonstrate that when faced with complicated remote sensing images, the CRF
algorithm often has difficulty achieving a substantially improved correction effect; without restricting
the mechanism by using additional samples, the CRF may overcorrect, leading to a decrease in the
classification accuracy. Our approach improves on the traditional CRF global processing effects by
offering two advantages:

(1) End-to-end: ELP identifies which locations of the result image are highly suspected of
containing errors without requiring samples; this characteristic allows ELP to be used in an end-to-end
classification process.

(2) Localization: Based on the suspect areas, ELP limits the CRF analysis and update area
within a small range and controls the iteration termination condition; these characteristics avoid the
overcorrections caused by the global processing of the CRF.

The experimental results also show that the ELP achieves a better correction result, is more stable,
and does not require training samples to restrict the iterations. The above advantages ensure that ELP
is better able to adapt to correct the classification results of remote sensing images and provides it with
a higher degree of automation.

The typical limitation of ELP is that, in comparison with the traditional CRF, the additional
iterations, the localization process, and the update mechanism of the result image will introduce an
additional computational burden. Consequently, ELP is much slower than the traditional CRF method.
Fortunately, the localization process also ensures that different parts of areas do not affect each other,
which makes ELP easier to parallelize. In further research, we will adjust the processing structure of
ELP, facilitating a GPU implementation that enables ELP to execute faster. For semantic segmentation
neural networks, differences in the training set size can cause various degrees of errors in the resulting
image, which has an apparent influence on the post-processing task. In future research, to construct
a more adaptive post-processing method, we will study the relationship between training/testing
dataset size and the post-processing methods used and consider the problems faced by post-processing
methods in more complex application scenarios.
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Abstract: In this paper, we investigate the feasibility of automatic small object detection, such
as vehicles and vessels, in satellite imagery with a spatial resolution between 0.3 and 0.5 m. The
main challenges of this task are the small objects, as well as the spread in object sizes, with objects
ranging from 5 to a few hundred pixels in length. We first annotated 1500 km2, making sure to
have equal amounts of land and water data. On top of this dataset we trained and evaluated four
different single-shot object detection networks: YOLOV2, YOLOV3, D-YOLO and YOLT, adjusting
the many hyperparameters to achieve maximal accuracy. We performed various experiments to
better understand the performance and differences between the models. The best performing model,
D-YOLO, reached an average precision of 60% for vehicles and 66% for vessels and can process an
image of around 1 Gpx in 14 s. We conclude that these models, if properly tuned, can thus indeed
be used to help speed up the workflows of satellite data analysts and to create even bigger datasets,
making it possible to train even better models in the future.

Keywords: satellite; object detection; neural networks; single-shot

1. Introduction

Historically, spaceborne remote sensing has been an industry for governments and some
heavyweight corporations. However, recent advancements, like the ability to use cost-effective
off-the-shelf components (COTS) for cubesats, or the downstream opportunities created by the
European Union Copernicus program, have radically changed the industry [1]. This has given
rise to new businesses emerging and taking advantage of this geospatial data. To process these
huge quantities of data coming from satellites, the space industry needs to speed up and automate
workflows, which are traditionally handled by manual operators. Artificial intelligence (AI), being
very good at general pattern recognition, lends itself to being a great contender for these tasks.

Imagery intelligence (IMINT) is a discipline which collects information through aerial and satellite
means, allowing the monitoring of agricultural crop growth [2], performance of border and maritime
surveillance [3,4] and inference of land changes [5] for other applications. Recent advances in computer
vision, using deep learning techniques, already allow successful automation of IMINT cases on aerial
images [6–8]. Furthermore, locating and segmenting larger objects, e.g., buildings, in satellite imagery
is something that is already being used presently [9]. However, detecting smaller objects like vehicles
and vessels at these spatial resolutions remains a challenging topic. In this paper, we investigate how
different object detection networks handle the task of vehicle and vessel detection and classification
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in satellite imagery with a spatial resolution between 0.3 and 0.5 m, where objects appear only a few
pixels large in the image.

Traditionally, computer vision algorithms used handcrafted features as an input to a machine
learning classifier, in combination with a sliding window approach, in order to perform various
tasks like object detection and classification [10–12]. However, with the rise of convolutional neural
networks (CNN), deep learning has outperformed these traditional techniques by a significant margin.
For the specific case of object detection, there are two different and commonly used approaches:
two-stage and single-shot detectors. Two-staged methods like the R-CNN detector [13] will first
generate several bounding boxes around potential objects, called region proposals. Each of these
proposals will then be run through a classifier to determine whether it actually is an object and what
class of object it is. Because they need to run each potential object through a classification algorithm,
these techniques are quite slow. Therefore, optimizations have been made in fast R-CNN [14] to share
computations between both stages. Faster R-CNN [15] improved upon this even further, by using a
deep-learned approach to generate the box proposals, reducing the number of false positive boxes
and thus increasing the runtime speeds even further. However, these techniques remain orders of
magnitude slower than single-shot detectors. Single-shot detectors [3,4,16–18] are faster because they
only process the images through a single neural network, detecting and classifying multiple objects at
the same time. Because these detectors work on the entire image at once, they should also be able to
use contextual visual information, to detect and classify objects. For the specific case of vessel detection,
this means that these single-shot detectors can recognize the structures of sea waves, shorelines, ports,
etc. and use that contextual information around the vessels to correctly detect and classify them.

In this paper, we will take a look at the YOLO (You Only Look Once) detector, a well-known and
high-performing single-shot detector, and assess its performance for our use case of vehicle and vessel
detection in satellite imagery. More specifically, we will compare the YOLOV2 [17] and YOLOV3 [18]
detectors, as well as some variations of these, YOLT [3] and D-YOLO [4], which were specifically
engineered for aerial object detection in remote sensing applications. We will train these four detectors
on our custom dataset for vehicle and vessel detection and will perform various experiments, to assess
the strengths and weaknesses of each detector.

In the remainder of this paper, we will first discuss the labeling of ground truth data and how we
trained and evaluated the different models (Section 2). Afterwards, in Section 3, we will report various
experiments we conducted to assess and understand the performance of the different models. Finally,
we will conclude our paper by formulating an answer to the following questions (Section 4):

• Which model is best suited for satellite vehicle and vessel detection?
• What are the different trade-offs between the models?
• Can we consider the problem of automatic satellite object detection solved?

2. Materials and Methods

In this section, we will discuss the creation of our dataset (Section 2.1), the different models we
used (Section 2.2) and how we trained them (Section 2.3).

2.1. Ground Truth Acquisition

To train and assess the performance of our algorithms, we need labeled data. In this paper, we
collected images from four different optical satellites (i.e., WorldView-2 and -3, GeoEye and Pleiades),
typically used to perform IMINT tasks for security applications. The images were acquired under
various acquisition angles varying from 7 to 36 degrees, resulting in different spatial resolutions
between 0.3 m and 0.5 m. The images were delivered in 3-band true-color RGB (see Figure 1). We take
three images of each type of satellite (further referred to as WV, GE and PL), totaling in nine annotated
images, covering around 1500 km2. The entire dataset contains around 53% land and 47% water data.
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Figure 1. Example image crops taken from the training dataset. Vehicles are shown in red, vessels
in green.

As not to miss any object during annotation, we decided to split the images in overlapping
patches of around 500 × 500 pixels. Since annotating the image dataset is a time-consuming and
demanding task, we first defined land and water regions in our images. This allows us to only process
land region patches during vehicle annotation and water region patches for vessels, speeding up the
annotation process. These regions later prove to be beneficial for training and testing our detectors as
well. There is little use in training and running a vehicle detector on water bodies and vice-versa for
vessel detectors. Doing so will only make it harder for the detector to converge towards an optimal
solution and with datasets like the Global Surface Water Explorer [19], which provide water coverage
maps with a ground resolution of 30 m, it is possible to automatically create these regions, providing a
scene constraint that will increase the performance of a detector.

Figure 2 shows the width and length of the manually annotated vehicles and vessels. This graph
shows the two main difficulties detectors will have to cope with, namely that vehicles are only around
10 × 10 pixels big and vessels have a huge spread in size, between 5 and almost 500 pixels long. To
both train and test the detectors, we split our dataset in a training and testing set, picking two images
at random from each type of satellite for training and the remaining image for testing. The number of
annotations of each type can be found in Table 1.
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Figure 2. Length and Width properties for vehicles and vessels in the annotated dataset.

Table 1. Number of annotations in our dataset.

Satellite
Vehicles Vessels

Train Test Total Train Test Total

WV 1477 323 1800 252 97 349
GE 413 220 633 301 50 351
PL 1318 358 1676 184 211 395
Total 3208 901 4109 737 358 1095

Detecting vehicles and vessels for operational IMINT purposes can be a useful task, when
deployed in large satellite image datasets. However, the value of automation can be considerably
higher if the detections can be further classified or labeled on certain categories. The classification
scheme adopted in this study, for both vehicles and vessels, considers semantic requirements coming
from the IMINT domain (see left columns in Figure 3). For this reason, it includes classes which rarely
appear in most vessel detection studies, which focus their research on the detection of larger ships [20].
On the contrary, this study considers also smaller vessels, such as e.g., inflatable rubber boats and
skiffs, which can be as small as 3–6 m in length.

Patrol boat
Naval ship
In atable Rubber boat
Ski
Fishing vessel
Yacht
Sailing vessel
Cargo
Tug

Small (length < 20m)
Medium (20m length < 50m)
Large (50m length)

Light vehicle
Machinery
Bus
Tanker
Truck
Large truck

Light vehicle
Machinery
Bus

Truck

Vehicles Vessels

Figure 3. Initially defined labels vs. simplified labels.

However, after labeling the vehicles and comparing the labels of two independent researchers,
we concluded that the originally defined labels were too specific compared to the spatial resolution of
the data. Table 2 shows that there is a huge annotator bias (e.g., when is something considered a truck
or a large truck; is any vehicle located in fields to be considered machinery?).

In some cases, due to the semantic or structural similarities existing between the classes (e.g., a
sailing vessel vs. a yacht) or due to the limited spatial resolution of some images, the labeling task
becomes challenging even for experienced image analysts. In these cases, analysts usually consult
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collateral sources of information to assign a label, using Automatic Identification System (AIS) tracking
data for vessels or generic contextual information (e.g., port type, or vessel location at port etc.). The
scheme was further simplified, to avoid the aforementioned semantic bias and improve the quality of
the annotated dataset. Figure 3 shows the original and simplified labels and Table 3 shows the number
of objects for each of the simplified labels in our dataset. To decrease the complexity further, we decided
to train separate models for the case of vehicle and vessel detection. We will first look at single-class
detectors, which are only able to detect vehicles or vessels, but not label them further. Afterwards, we
will also train multi-class detectors, which are capable of both detection and classification of our objects.

Table 2. Classification differences between two annotators for the original vehicle classes.

Annotator 1
Annotator 2

Light Vehicle Machinery Bus Tanker Truck Large Truck

Light vehicle 1386 35 9 4 90 25
Machinery 31 7 0 1 3 2
Bus 24 1 4 1 0 1
Tanker 4 2 0 0 1 2
Truck 179 6 1 0 32 4
Large truck 47 22 0 8 14 18

Table 3. Number of annotations per label in the dataset.

Dataset Light Vehicle Machinery Bus Truck Small Vessel Medium Vessel Large Vessel

Train 2561 44 106 497 404 258 75
Test 690 26 16 169 246 93 19
Total 3251 70 122 666 650 351 94

2.2. Network Architectures

In this paper, we compare the YOLOV2 [17], YOLOV3 [18], YOLT [3] and D-YOLO [4] network
architectures. All networks were re-implemented with PyTorch [21] and are available in our
open-source library Lightnet [22]. This section will provide a quick overview of the different
architectures and talk about key differences between them. For a more detailed explanation of
each network, we refer to the original research papers.

In 2017 Redmon & Farhadi released YOLOV2 [17], a general-purpose single-shot object detector
based on the Darknet19 classification network (see Figure 4a). The network is fully convolutional
and concatenates fine-grained features from an earlier feature map in the network to increase the
detection accuracy on smaller objects. To be able to combine these feature maps with different spatial
resolutions, they invented a reorganization scheme that transforms the higher resolution map into a
smaller resolution by dividing it and stacking in the depth dimension.

In 2018 they released an improvement of this network, called YOLOV3 [18]. This network is based
on the Darknet53 classification network and is thus much deeper (see Figure 4b). Taking inspiration
from feature pyramid networks [23], they concatenate fine-grained features twice, upsampling the
lower resolution feature map rather than reorganizing the higher resolution one, and perform
predictions from different spatial resolutions as well. These changes resulted in a network that
performs better—mostly on smaller objects—but takes a longer time to run.

In 2018, Van Etten released the YOLT model [3], a variation of YOLOV2 that is especially
engineered to increase the performance on remote sensing object detection. He noted that YOLOV2 had
trouble detecting small objects and thus tried to solve this issue by having less maxpool subsampling
operations. Van Etten’s network is also slightly smaller (see Figure 4c), to make up for the fact that the
reduced maxpool operations increase the number of computations and thus slow down the network.

Lastly, in 2018, Acatay et al. released their model D-YOLO [4], which is a variation of YOLOV2 as
well. Trying to solve the same issue as YOLT, they instead opt to take inspiration from feature pyramid
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networks [23], with deconvolution operations instead of upsampling (see Figure 4d). This means that
all layers except the last 3 operate at the same spatial resolution as YOLOV2, resulting in runtime
speeds much closer to it than YOLT.
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7 Conv
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(b) YOLOV3
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(d) D-YOLO

Figure 4. Different network architectures.

2.3. Training on Satellite Imagery

Satellite images are considerably large (average width-height in our dataset: 34,060 × 34,877 pixels)
and can thus not be processed by off-the-shelf detectors at once, as the computed feature maps would
be too big to fit in GPU memory. Therefore, the images were cut into patches of 416 × 416 pixels, with a
10% horizontal and vertical overlap, which get processed individually by the detection networks.
Of course, these settings are quite arbitrary and are in fact hyperparameters, which one can tune,
depending on the application and the size of the objects that need to be detected. One can then consider
the collection of all these patches as the entire training dataset, but filtering the patches and only
keeping those which actually contain objects to detect, will increase the performance of the detectors.
Indeed, every part of a patch that does not contain an object is already providing a negative example
for the detector to train on. This number of negative examples has empirically showed to be enough
to successfully train a model and as such we do not need more negative examples by adding these
empty patches. However, to correctly evaluate the performance of the different models, we do need to
include all patches during the testing phase of the detectors. Because we allow for overlap between the
different patches, the non-maximal suppression post-processing step should be used after combining
the bounding boxes of the different patches, to remove duplicate detections.

When training a network, one needs to set up some parameters which influence how the model
trains. These are called hyperparameters and correctly fine-tuning them makes the difference between
a good and a bad model. Moreover, these hyperparameters need to be tweaked for every new use
case and can differ wildly, depending on the dataset, model, etc. Hyperparameters like learning rate,
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momentum, training time, etc. have a big influence on the training outcome and were thus tweaked
manually, by trial and error (combined with the researcher’s experience and insights), to try and
achieve the best performance. However, we observed that some lesser known hyperparameters that
influence the yolo-specific loss function, had a significant impact on the achievable accuracy of the
models as well. Indeed, if we break down what single-shot detection networks need to predict, we can
find three distinct tasks: detecting objects, finding bounding box coordinates and optionally classifying
these objects. These three different tasks each have a different loss function, which get combined by
taking the weighted sum of these different sub-losses. The task of detecting objects can be further
broken down into two parts, namely how important it is to predict a high confidence when there is an
object and how important it is to predict a low confidence when there is no object. When training a
model, one can change the weight of each of these four sub-losses, effectively modifying the relative
importance of these different parts and thus the final behavior of the model.

Care must be taken not to overfit a model on the testing dataset when selecting these
hyperparameters, and to that end we chose to tune our parameters on a subset of our data. We
thus trained and evaluated the four different models on the GE subset of our data and tweaked the
hyperparameters in order to achieve the highest possible average precision at an IoU threshold of 50%
(see Table 4). Once we found these hyperparameters, we used these exact values for the remainder of
our experiments.

Table 4. Manually tuned hyperparameters for the different models on the GE subset of our data. Please
note that not all hyperparameters are shown.

Hyperparameter
Vehicles Vessels

YOLOV2 YOLOV3 YOLT D-YOLO YOLOV2 YOLOV3 YOLT D-YOLO

Learning rate 0.001 with division by factor 10 after 4000, 7000, 10,000 batches
Momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Batch size 32 32 32 32 32 32 32 32
Max batches 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000
Object Scale 5.0 7.0 6.0 10.0 5.0 5.0 5.0 5.0
No-Object Scale 1.0 3.0 1.5 3.0 1.0 2.0 2.5 2.0
Coordinate Scale 2.0 1.0 2.0 1.0 1.5 1.5 1.0 1.0
Classification Scale 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3. Results

In this section, we will discuss the experiments we ran with our trained networks, to better
understand the strengths and weaknesses of each detection model for satellite object detection.

3.1. Precision–Recall

The first and most obvious way to compare object detection networks is to use Precision (P)
Recall (R) curves and the Average Precision (AP) metric. These metrics have been a standard for object
detection for a long time and provide an easy way to compare different architectures, as well as giving
an insight into different working points for using these detectors.

Looking at the AP of the four detectors on the entire dataset (see Figure 5), we can see that for the
case of satellite object detection, YOLOV2 has a 20–30% lower AP than the other detectors. For the
specific case of vessel detection, the YOLT detector seems to have a really interesting performance,
beating both D-YOLO and YOLOV3 by over 4% and 8% respectively. These results can also be seen on
the qualitative examples in Figure 6.
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Figure 5. PR-curves of our detectors for vehicles and vessels. The IoU threshold was set at 50%. AP
values are written in the legend.

(a) Annotation bounding boxes

Figure 6. Cont.

148



Remote Sens. 2020, 12, 1217

(b) YOLT detection bounding boxes

(c) D-YOLO detection bounding boxes

(d) YOLOV2 detection bounding boxes

(e) YOLOV3 detection bounding boxes
Figure 6. Qualitative comparison of our models. Darker colors mean higher confidences. Please note
that we only show detections with a confidence higher than 10%. Please note that these images are
small crops, taken from the full satellite images, to be able to show the objects that need to be detected.
(a) Annotation; (b) YOLT; (c) D-YOLO; (d) YOLOV2; (e) YOLOV3.

3.2. Localization Error

Traditional PR/AP metrics work at an Intersection over Union (IoU) threshold of 50%, meaning
they count a detection as a true positive as long as it overlaps with a ground truth object with an IoU
of at least 50%. This means that these metrics do not allow you to assess exactly how accurate the
bounding boxes from a detector are aligned with the ground truth. One way to be able to compare
the localization accuracy of different detectors is to compute the AP of these detectors at different IoU
thresholds, which is what we did in Figure 7.
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Figure 7. Average Precision of the different detectors at increasing IoU thresholds.

These figures show that D-YOLO and YOLOV3 provide the most accurate bounding boxes, as they
relatively maintain their AP levels, for increasing values of IoU threshold. While YOLT seems to be on
par with D-YOLO and YOLOV3 for vessels, this graph shows that for vehicles, YOLT has difficulties to
accurately define bounding boxes. As vehicles are considerably smaller targets, this probably indicates
that we are reaching the limits in terms of bounding box localization for YOLT.

It also shows that YOLOV2 performs considerably good at finding objects, but it demonstrates
difficulty to accurately delineate them in bounding boxes. Indeed, when comparing the detectors with
a lower IoU threshold of 10%, we find that YOLOV2 only has a 10–15% accuracy drop compared to the
other detectors and when comparing at a threshold of 60%, this difference increases to 20–35%.

3.3. Pretrained Weights

When training neural networks for a certain task like object detection, it is known to be beneficial
to start from pretrained weights from a similar network, which might have been trained for a different
task. This is done to cut the training times and size of the dataset needed to train a network. In our
case we start from weights from a classification network (i.c. Darknet19, Darknet53) trained on the
ImageNet dataset [24].

However, the difference between the ImageNet dataset and the satellite images used in this study
is significant, as the first is based on “natural” real-world images, while the latter depicts the world
from a different view—from several kilometers above the Earth. Still, certain studies suggest that
the low- and mid-level features extracted from ImageNet-trained CNNs have high potential in other
tasks [25].

To evaluate the impact of pretrained weights, we compare training the networks from pretrained
ImageNet weights and from pretrained weights originating from the Dataset for Object Detection in
Aerial Images (DOTA) [6]. While the objects from DOTA and our dataset are not the same and not of
the same size, it is highly likely that the pretrained weights from DOTA should be more attuned to
satellite footage. Moreover, DOTA being an object detection dataset, these weights should also be more
geared towards detection, compared to the weights from ImageNet, which is a classification dataset.
However, only the first few layers can be loaded with pretrained weights from the ImageNet-trained
classification networks, as they are the only that remain the same between the classification and
detection networks (e.g., until the 23th layer for Darknet19/YOLOV2). To be able to compare our
results, only those layers were loaded with pretrained weights from DOTA as well.

Comparing the graphs in Figure 8 with the previous ones (Figures 5 and 7), one can infer that
using pretrained weights from a similar domain does offer advantages over weights from a different
domain like ImageNet. Furthermore, the D-YOLO architecture seems to be outperforming YOLT
in these experiments for both tasks of vehicle (+7.3%) and vessel detection (+4%), indicating that
this network is more capable than YOLT, but might need more training data when starting with
ImageNet weights.
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Figure 8. PR-curves and AP-IoU graphs of the different detectors trained starting from DOTA
pretrained weights. Please note that the YOLOV3 network is not shown, as we could not find pretrained
DOTA weights for this network.
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3.4. Image Variation

Our dataset consists of images from 3 different types of satellite: WorldView (WV), GeoEye (GE)
and Pleiades (PL). To test whether the different models can cope with the variation in spatial resolution,
we performed an ablation study, training and testing on only subsets of our data containing certain
types of satellite imagery. Bear in mind that for these training routines, we did not modify any of the
hyperparameters, still using the ones adapted on only the images from the GE subset.

The results suggest that our models can cope with imagery from different sources and varying
qualities (see Figures 9 and 10). When comparing the AP of our models when using the entire dataset
(last row: WV+GE+PL) with the AP of a single type of satellite (first three rows: WV, GE and PL),
we can see a general trend where the performance increases when we use the combined data. This
indicates that there is a bigger advantage in using more images, compared to the disadvantage of
added complexity, brought by combining images from different types of satellites. Thus, training on
our entire dataset results in more robust detection models.

Figure 9. Average Precision of the different vehicle detectors for different subsets of our data.

Figure 10. Average Precision of the different vessel detectors for different subsets of our data.

3.5. Multi-Label Detection

Besides being able to detect vehicles and vessels, we are also interested to know what kind of
vehicle or vessel is found at a certain location. However, the problem of classifying vehicles at these
resolutions remains a very challenging task even for image analysts, who use additional data or context
to successfully label several object categories.

Nevertheless, we wanted to investigate whether our chosen algorithms could differentiate
between these different types, solely based on visual information. Because single-shot detectors are
also capable of performing classification, the most straight-forward approach was to train a multi-class
detector. In this experiment, we chose the best performing detectors on the entire dataset (YOLT for
vessels and D-YOLO for vehicles) and fine-tuned their training to perform multi-class detection.
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Figure 11 shows the PR-curve of our single-class and multi-class detectors, when disregarding the
class labels. These graphs clearly demonstrate that adding a classification task to these networks does
not deteriorate their detection capabilities, but even marginally increases their detection performance.

Figure 11. PR-curves of our multi-class detectors. AP values are written in the legend. Please note that
for these curves, we disregard the labels, to only measure the detection accuracy.

Looking at the top-1 classification accuracy (see Table 5), the results seem promising and useful at
a first glance. However, when we analyze the confusion matrices more closely (see Table 6), we can see
that for the case of vehicle detection our classification pipeline just labels most of the objects as light
vehicles. Our annotation statistics (see Table 3) show that there is a huge class imbalance between the
different categories, with light vehicles being by far the biggest category. The detector thus learned to
classify most of the objects as light vehicles, as this indeed gives the best results overall. This can also
be seen when plotting the individual PR-curves of the different classes (see Figure 12).
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Table 5. Top-1 accuracy of our multi-class detectors.

Vehicle Vessel

Top-1 (%) 58.86 68.72

Table 6. Confusion matrix of the classification results of our multi-class detectors.

Annotation
Detection

Light Vehicle Machinery Bus Truck False Negative

Light vehicle 452 2 8 77 147
Machinery 4 4 2 3 13
Bus 3 0 4 8 1
Truck 47 8 11 68 35
False positive 14,653 3020 1428 6395

Annotation
Detection

Small Vessel Medium Vessel Large Vessel False Negative

Small vessel 169 12 0 65
Medium vessel 17 64 0 12
Large vessel 0 4 13 2
False positive 1535 703 352

The results for multi-class vessel detection are more promising, with most of the misclassification
errors made among the small and medium vessels. As the classes were arbitrarily defined at 20 m in
length, it is possible that the detector faces difficulties in classifying vessels that are around that length.
The individual PR-curves of the different vessel classes are also closer to one another, demonstrating
that a more balanced dataset is key to achieving good overall results.

Please note that our confusion matrices contain an extra ‘False positive’ row and ‘False negative’
row. This is because we are working with detectors and thus, they indicate erroneous and missing
detections, respectively. The confidence threshold of the detectors was set to 0.1%, resulting in a lot of
false positives, but we believe this is the best for showing the classification potential. Indeed, setting
the threshold higher could result in an object that was correctly classified, to be discarded because its
confidence value is not high enough.
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Figure 12. PR-curves per label of our multi-class detectors. AP values are written in the legend.
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3.6. Speed

Besides performance, speed is another important factor which impacts the operational use of the
detectors. As the current trend of satellite on-board processing is developing [26], it is important that
the AI algorithms are adapted to use few resources and run in a timely fashion on the constrained
hardware. Speed is also important when running the detectors in e.g., a datacenter, solely because of
the sheer amount of data that needs to be processed.

To measure the speed of a detector, we need to choose a working point at which it will operate
and thus we have to select a threshold to filter which bounding boxes get accepted and which do
not. This has a significant influence on the post-processing time and as such it is important to set this
up correctly. Because we have no specific precision or recall constraints for this study, we use the
threshold with the highest F1-score of our precision and recall (see Figure 13).

Figure 14 shows the inference time for both the network and post-processing on a 416 × 416
image patch and was measured by averaging the time of running through the entire test set. The
first things to note are that the tests give similar results for both vehicles and vessels and that the
post-processing time can be neglected compared to the runtime of the network. When comparing the 4
different networks, we can clearly see that D-YOLO and YOLOV2 are the fastest, with an inference
time of about 4 ms per patch. YOLT is slightly slower with 6 ms per patch and finally YOLOV3 is the
slowest, taking twice as long to process a patch with 8 ms per patch.

The average timings of a single patch might appear to be insignificant. However, one needs to
take into account that typical satellite images as the ones used in this study consist of 3500 patches on
average. As a result, the processing time of one image for D-YOLO and YOLOV3 can be around 14
and 28 s respectively, which is significant and can be a determining factor for choosing one model over
the other, seeing as the AP is similar for the different models (see Figure 15).

Figure 13. F1-curves of our detectors.

Figure 14. Inference timing results of our models with their threshold set at the best F1 value, averaged
for a 416 × 416 pixel patch. This test was measured on the entire test dataset with an Nvidia GTX 1080
Ti GPU.

156



Remote Sens. 2020, 12, 1217

Figure 15. Speed vs. accuracy on the test set of our data. Accuracy is measured from the models with
pretrained weights from ImageNet.

4. Discussion

In this study, we performed a practical implementation and experimental comparison on detection
and classification of vehicles and vessels using optical satellite imagery with spatial resolutions of
0.3–0.5 m. A series of experiments was performed to understand the advantages and weaknesses of
each one of the tested models.

In general, terms, YOLOV2 appears to be the less accurate to deal with the detection of small
objects, while the three other networks seem to reach more similar performance (see Table 7). One
remarkable finding is that for the specific case of vessel detection, YOLT outperforms both YOLOV3
and D-YOLO by a significant margin; however for vehicle detection it is the exact opposite. When
looking at the accuracy of the models with pretrained DOTA weights, we can see that this difference
has disappeared. This can be explained by looking at the different network architectures. The YOLT
network is smaller and thus needs less data to properly train, while D-YOLO is deeper. The results
from DOTA do show that with more data, D-YOLO seems to be a more capable network, reaching
significantly better results than YOLT for both cases of vehicle and vessel detection. The dataset
ablation study seems to support this hypothesis, as more data generally leads to better results in that
experiment as well. In the future it might be interesting to also train YOLOV3 on the DOTA dataset
and use those weights, as YOLOV3 is an even deeper network which might benefit from more data as
well. Another alternative is to simply annotate more satellite images, creating a bigger dataset, thus
eliminating the need for pretrained DOTA weights, which cannot be used outside of academic research.

Table 7. Overview of the speed and accuracy of the different models, measured on the entire test set.
Speed is measured per 416 × 416-pixel patch.

Vehicles Vessels

YOLT D-YOLO YOLOV2 YOLOV3 YOLT D-YOLO YOLOV2 YOLOV3

APImageNet (%) 50.29 54.23 21.80 54.80 62.70 58.27 36.73 54.33
APDOTA (%) 52.22 59.52 22.41 - 62.02 66.02 46.57 -
Speed per patch (ms) 6.98 4.53 4.74 9.01 6.20 4.16 4.46 8.82

When we observe that both YOLOV3 and D-YOLO achieve a similar performance, the deciding
factor might be inference time. When comparing runtime speeds, D-YOLO outperforms YOLOV3
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by a factor of two and is thus a better fit for the task of satellite-based vehicle and vessel detection.
This counters the general belief that deeper networks are better, as D-YOLO has significantly less
convolutional layers and still reaches the same or a better accuracy in our experiments.

One might wonder whether we trained the networks properly and although we did fine-tune the
hyperparameters to the best of our ability, the fact that we tuned those hyperparameters on the GE
subset of our data, might not give the best results overall. We do believe this decision to be justified as
it introduces less bias in the experiments, but investigating the influence of tweaking on a subset of
data is something that needs more research in the future. Performing a full exhaustive search on the
hyperparameters—while taking a long time—might also prove to be beneficial to reach even better
accuracy, but care must be taken not to overfit the test set, which might result in a lower real accuracy.

For the case of multi-label detection, we conclude that this task is rather challenging for the
detectors examined in this study. It is noted, however, that the classification scheme used here is
very demanding, as regards the size of the minimum detectable object with respect to the spatial
resolution of the dataset. In addition, there is a class imbalance, which makes training on specific
classes very difficult, therefore a bigger dataset might be necessary to create useful results. Another
issue to consider is annotator bias. This dataset was created by a single person and is thus possibly
biased towards that person’s background (i.c. computer vision engineer). While this problem is not
so bad for the detection part, as vehicles and vessels are usually clearly distinguishable in this data,
correctly classifying these objects has proven to be really challenging. Besides increasing the size of
this dataset, it might be necessary to have these objects labeled by multiple experienced image analysts
and to average the different results together. One final note about this is that while deep learning can
achieve impressive results and even outperform humans at specific tasks, it cannot detect things that
are completely undetectable by humans in any way. Indeed, a lot of satellite analysts use external
information, like port locations or even GPS data of vessels, to label them. While this might be nice to
speed up the annotation process and generate objectively better labels, there must still be some kind of
visual clue the detector can exploit, to correctly classify these objects. Another approach might be to
perform some kind of data fusion, combining e.g., GPS localization data with our image data, in order
to create a better classification model.

5. Conclusions

The main contributions of this work are that we demonstrated the feasibility of vehicle and
vessel detection in optical satellite imagery with a variable spatial resolution between 0.3 and 0.5 m,
in which these objects are down to a few pixels in size. We selected four single-shot detection network
architectures for their fast execution time and compared these, in the meantime optimizing the many
hyperparameters for such a case of small object detection in large images. We empirically showed
that there is a need to tune the hyperparameters differently for satellite object detection, to reach
a good accuracy. A good understanding of the different hyperparameters is primordial for such a
task, and thus we explained some of the hyperparameters specific to the loss function of single-shot
detection networks. The implementation of these four models can be found in our open-source
Lightnet library [22].

From our results, we can conclude that D-YOLO seems to be the most optimal detector,
reaching the highest accuracy (APvehicle: 60%, APvessel: 66%) and fastest runtime speeds (±4 ms
per 416 × 416 patch). While our best results might not be good enough for fully automated detection
pipelines, they can already be deployed as a tool for helping data analysts, speeding up their workflow
tremendously. It is in this setting that the speed of our networks is primordial, as it promotes a
convenient and fast workflow for data analysts and allows them to keep on working with the tool
without long waiting times.

The problem of automatic satellite object detection can certainly not be considered solved. There
is a dire need for bigger datasets with lots of variability, and even more so for the step of fine-grained
classification, where we also need a more balanced dataset, which has multiple examples of each class
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of vehicle and vessel. The aforementioned technique of using already existing object detection models,
such as the ones presented in this paper, but keeping a human in the loop as supervisor could prove
to be a valuable tool in order to more easily scale up datasets, after which we might be able to create
stronger models, capable of fully automatic small object detection in satellite imagery.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AIS Automatic Identification System
AP Average Precision
CNN Convolutional Neural Network
COTS Commercial Off-The-Shelf components
D-YOLO Deconvolutional YOLO; A variation of the YOLOV2 detector
DOTA Dataset for Object Detection in Aerial images
GPS Global Positioning System
GPU Graphics Processing Unit
IMINT Image Intelligence
IoU Intersection over Union
PR Precision-Recall curve
RGB Red–Green–Blue; channels of an image
R-CNN Regions with CNN features; An example of a two-staged detector
YOLO You Only Look Once; An example of a single-shot detector
YOLT You Only Look Twice; A variation of the YOLOV2 detector
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Abstract: One of the fundamental tasks in remote sensing is the semantic segmentation on the
aerial and satellite images. It plays a vital role in applications, such as agriculture planning, map
updates, route optimization, and navigation. The state-of-the-art model is the Enhanced Global
Convolutional Network (GCN152-TL-A) from our previous work. It composes two main components:
(i) the backbone network to extract features and (ii) the segmentation network to annotate labels.
However, the accuracy can be further improved, since the deep learning network is not designed
for recovering low-level features (e.g., river, low vegetation). In this paper, we aim to improve the
semantic segmentation network in three aspects, designed explicitly for the remotely sensed domain.
First, we propose to employ a modern backbone network called “High-Resolution Representation
(HR)” to extract features with higher quality. It repeatedly fuses the representations generated by
the high-to-low subnetworks with the restoration of the low-resolution representations to the same
depth and level. Second, “Feature Fusion (FF)” is added to our network to capture low-level features
(e.g., lines, dots, or gradient orientation). It fuses between the features from the backbone and the
segmentation models, which helps to prevent the loss of these low-level features. Finally, “Depthwise
Atrous Convolution (DA)” is introduced to refine the extracted features by using four multi-resolution
layers in collaboration with a dilated convolution strategy. The experiment was conducted on three
data sets: two private corpora from Landsat-8 satellite and one public benchmark from the “ISPRS
Vaihingen” challenge. There are two baseline models: the Deep Encoder-Decoder Network (DCED)
and our previous model. The results show that the proposed model significantly outperforms all
baselines. It is the winner in all data sets and exceeds more than 90% of F1: 0.9114, 0.9362, and 0.9111
in two Landsat-8 and ISPRS Vaihingen data sets, respectively. Furthermore, it achieves an accuracy
beyond 90% on almost all classes.

Keywords: deep learning; convolutional neural network; global convolution network; feature fusion;
depthwise atrous convolution; high-resolution representations; ISPRS vaihingen; Landsat-8
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1. Introduction

Semantic segmentation in a medium resolution (MR) image, e.g., a Landsat-8 (LS-8) image,
and very high resolution (VHR) images, e.g., aerial images, is a long-standing issue and problem
in the domains of remote sensing-based information. Natural objects such as roads, water, forests,
urban, and agriculture fields regions are operated in various tasks such as route optimization to create
imperative remotely sensed applications.

Deep learning, especially the Deep Convolutional Neural Network (CNN), is an acclaimed
approach for automatic feature learning. In previous research, CNN-based segmentation approaches
are proposed to perform semantic labeling [1–5]. To achieve such a challenging task, features from
various levels are fused together [5–7]. Specifically, a lot of approaches fuse low-level and high-level
features together [5–9]. In remote sensing corpora, ambiguous human-made objects need high-level
features for a more well-defined recognition (e.g., roads, building roofs, and bicycle runways), while
fine-structured objects (e.g., low vegetations, cars, and trees) could benefit from comprehensive
low-level features [10]. Consequently, the performance will be affected by the different numbers of
layers and/or different fusion techniques of the deep learning model.

In recent years, the Global Convolutional Network (GCN) [11], the modern CNN, has been
introduced, in which the valid receptive field and large filter enable dense connections between
pixel-based classifiers and activation maps, which enhances the capability to cope with different
transformations. The GCN is aimed at addressing both the localization and segmentation problems for
image labeling and presents Boundary Refinement (BR) to refine the object boundaries further as well.
Our previous work [12] extended the GCN by enhancing three approaches as illustrated in Figures 1
and 2. First, “Transfer Learning” [13–15] was employed to relieve the shortage problem. Next, we
varied the backbone network using ResNet152, ResNet101, and ResNet50. Last, “Channel Attention
Block” [16,17] was applied to allocate CNN parameters for the output of each layer in the front-end of
the deep learning architecture.

Nevertheless, our previous work still disregards the local context, such as low-level features in
each stage. Moreover, most feature fusion methods are just a summation of the features from adjacent
stages and they do not consider the representations of diversity (critical for the performance of the
CNN). This leads to unpredictable results that suffer from measuring the performance such as the F1
score. This, in fact, is the inspiration for this work.

In summary, although the current enhanced Global Convolutional Network (GCN152-TL-A)
method [12] has achieved significant breakthroughs in semantic segmentation on remote sensing
corpora, it is still laborious to manually label the MR images in river and pineapple areas and the
VHR images in low vegetation and car areas. The two reasons are as follows: (i) previous approaches
are less efficient to recover low-level features for accurate labeling, and (ii) they ignore the low-level
features learned by the backbone network’s shallow layers with long-span connections, which is
caused by semantic gaps in different-level contexts and features.

In this paper, motivated by the above observation, we propose a novel Global Convolutional
Network (“HR-GCN-FF-DA”) for segmenting multi-objects from satellite and aerial images,
as illustrated in Figure 3. This paper aims to further improve the state-of-the-art on semantic
segmentation in MR and VHR images. In this paper, there are three contributions, as follows:

• Applying a new backbone called “High-Resolution Representation (HR)” to GCN for the
restoration of the low-resolution representations of the same depth and similar level.

• Proposing the “Feature Fusion (FF)” block into our network to fuse each level feature from the
backbone model and the global model of GCN to enrich local and global features.

• Proposing “Depthwise Atrous Convolution (DA)” to bridge the semantic gap and implement
durable multi-level feature aggregation to extract complementary information from very
shallow features.
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Figure 1. An overview of enhanced GCN (Global Convolution Network [11]) with transfer learning
and attention mechanism (GCN152-TL-A) [12].

Figure 2. An Attention Mechanism (A) block (left) and the Transfer Learning (TL) approach (right)
transfer knowledge (from pre-trained weights) across two corpora—medium and very high resolution
images from [12].

The experiments were conducted using the widespread aerial imagery, ISPRS (Stuttgart)
Vaihingen [18] data set and GISTDA (Geo-Informatics and Space Technology Development Agency
(Public Organization)), organized by the government in our country, data sets (captured by the
Landsat-8 satellite). The results revealed that our proposed method surpasses the two baselines: Deep
Convolutional Encoder-Decoder Network (DCED) [19–21] and the enhanced Global Convolutional
Network (GCN152-TL-A) method [12] in terms of F1 score.

The remainder of this paper is organized as follows: Section 2 discusses related work. Our
proposed methods are detailed in Section 3. Next, Section 4 provides the details on remote sensing
corpora. Section 5 presents our performance evaluation. Then, Section 6 reports the experimental
results, and Section 7 is the discussion. Last, we close with the conclusions in Section 8.
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Figure 3. The HR-GCN-FF-DA: an enhanced GCN architecture with feature fusion and depthwise
atrous convolution.

2. Related Work

The CNN has been outstandingly utilized for the data analysis of remote sensing domains,
in particular, land cover classification or segmentation of agriculture or forest districts [10,12,22–26].
It has rapidly become a successful method for accelerating the process of computer vision tasks,
e.g., image classification, object detection, or semantic segmentation with high precision results [4,27–33]
and is a fast-growing area.

It is separated into two subsections: (i) we demonstrate modern CNN architectures for semantic
labeling on both traditional computer vision and remote sensing tasks and (ii) the novel techniques of
deep learning, especially playing with images, are discussed.

2.1. Modern CNN Architecture for Semantic Labeling

In early research, several DCED-based approaches have obtained a high performance in the
various baseline corpora [16,19–21,26,34–36]. Nevertheless, most of them also struggle with issues with
performance accuracy. Consequently, much research on novel CNN architectures has been introduced,
such as a high-resolution representation [37,38] network that supports high-resolution representations
in all processes by connecting high-to-low and low-to-high-resolution convolutions to keep high and
low-resolution representations. CSRNet [8] proposed an atrous (dilated) CNN to comprehend highly
congested scenes through crowd counting and generating high-quality density maps. They deployed
the first ten layers from VGG-16 as the backbone convolutional models and dilated convolution layers
as the backend to enlarge receptive fields and extract deeper features without losing resolutions.
SeENet [6] enhanced shallow features to alleviate the semantic gap between deep features and shallow
features and presented feature attention, which involves discovering complementary information from
low-level features to enhance high-level features for precise segmentation. It also was constructed
with the parallel pyramid to implement precise semantic segmentation. ExFuse [7] proposed to boost
the feature fusion by bridging the semantic and resolution gap between low-level and high-level
feature maps. They proposed more semantic information into low-level features with three aspects:

166



Remote Sens. 2020, 12, 1233

(i) semantic supervision, (ii) semantic embedding branch, and (iii) layer rearrangement. They also
embeded spatial information into high-level features. In the remote sensing corpus, ResUNet [25]
proposed a trustworthy structure for performance effects for the job of image labeling of aerial images.
They used a VGG16 network as a backbone, combined with the pyramid scene parsing pooling
and dilated deep neural network. They also proposed a new generalized dice loss for semantic
segmentation. TreeUNet (also known as adaptive tree convolutional neural networks) [24] proposed
a tree-cutting algorithm and an adequate deep neural network with inadequate binary links to
increase the classification percentage at the pixel level for subdecimeter aerial imagery segmentation,
by sending kernel maps within concatenating connections and fusing multi-scale features. From the
ISPRS Vaihingen Challenge and Landsat-8 corpus, the enhanced Global Convolutional Network (also
known as “GCN152-TL-A”), illustrated in Figure 1, Panboonyuen et al. (2019) [12] presented an
enhanced GCN for semantic labeling with three main contributions. First, “Domain-Specific Transfer
Learning” (TL) [13–15], illustrated in Figure 2 (right), aims to restate the weights obtained from distinct
fields’ inputs. It is currently prevalent in various tasks, such as Natural Language Processing (NLP),
and has also become popular in Computer Vision (CV) in the past few years. It allows you to reach a
deep learning model with comparatively inadequate data. They prefaced to relieve the lack of issue
on the training set by appropriating other remote sensing data sets with various satellites with an
essentially pre-trained weight. Next, “Channel Attention”, shown in Figure 2 (left), proposed with
their network to select the most discriminative kernels (feature maps). Finally, they enhanced the
GCN network by improving its backbone by using “ResNet152”. “GCN152-TL-A” has surpassed
state-of-the-art (SOTA) approaches and become the new SOTA. Hence, “GCN152-TL-A” is selected as
our baseline in this work.

2.2. Modern Technique of Deep Learning

A novel technique of deep learning is an essential agent for improving the precision of deep
learning, especially the CNN. While the most prevalent contemporary designs tick all the boxes
for image labeling responsibilities, e.g., the atrous convolution (also known as dilated convolution),
channel attention mechanism, refinement residual block, and feature fusion, and have been utilized to
boost the performance of the deep learning model.

Atrous convolution [5,6,9,39,40], also known as multi-scale context aggregation, is proposed to
regularly aggregate multi-scale contextual information devoid of losing resolution. In this paper, we
use the technique of “Depthwise Atrous Convolution (DA)” [6] to extract complementary information
from very shallow features and enhance the deep features for improving feature fusion from our
feature fusion step.

The channel attention mechanism [16,17] generates a one-dimensional tensor for allowed feature
maps, which is activated by the softmax function. It focuses on global features found in some feature
maps and has attracted broad interest in extracting rich features in the computer vision domain and
offers great potential in improving the performance of the CNN. In previous work, GCN152-TL-A [12],
the self attention and utilize channel attention modules are applied to pick the features similar to [16].

Refinement residual block [16] is part of the enhanced CNN model with ResNet-backbones,
e.g., ResNet101 or ResNet152. This block is used after the GCN module and during the deconvolution
layer. It is used to refine the object boundaries further. In our previous work, GCN152-TL-A [12],
we employed the boundary refinement block (BR) that is based on the“Refinement Residual Block”
from [11].

Feature fusion [7,41–44] is regularly manipulated in semantic labeling for different purposes
and concepts. It presents a concept that combines multiplied, added, or concatenate CNN layers for
improving a process of dimensionality reduction to recover and/or prevent the loss of some important
features such as low-level features (e.g., lines, dots, or gradient orientation with the content of an image
scene). In another way, it can also recover high-level features by using the technique of “high-to-low
and low-to-high” [37,38] to produce high-resolution representations.
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3. Proposed Method

Our proposed deep learning architecture, “HR-GCN-FF-DA”, is demonstrated in an overview
architecture in Figure 3. The network, based on GCN152-TL-A [12], consists primarily of three parts: (i)
changing the backbone architecture (the P1 block in Figure 3), (ii) implementing the “Feature Fusion”
(the P2 block in Figure 3), and (iii) using the concept of “Depthwise Atrous Convolution” (the P3 block
in Figure 3).

3.1. Data Preprocessing and Augmentation

In this work, three benchmarks were used with the experiments, these were the (i) Landsat-8w3c,
(ii) Landsat-8w5c, and (iii) ISPRS Vaihingen (Stuttgart) Challenge data sets. Before a discussion about
the model, it is important to deploy a data preprocessing, e.g., pixel standardization, scale pixel
values (to have unit variance), and a zero mean into the data sets. In the image domain, the mean
subtraction, calculated by the per-channel mean from the training set, is executed in order to improve
the model convergence.

Furthermore, a data augmentation (also known as the “ImageDataGenerator” function in
TensorFlow/Keras library) is employed, since it can help the model to avoid an overfitting issue
and somewhat enlarge the training data—a strategy used to increase the amount of data. To augment
the data, each image is width and height-shifted and flipped horizontally and vertically. Then,
unwanted outer areas are removed into 512 × 512 pixels with a resolution of 81 cm2/pixel in the ISPRS
and 900 m2/pixel in the Landsat-8 data set.

3.2. The GCN with High-Resolution Representations (HR) Front-End

The GCN152-TL-A [12], as shown in Figure 1, is our prior attempt that surpasses a traditional
semantic segmentation model, e.g., deep convolutional encoder-decoder (DCED) networks [19–21].
By using GCN as our core model, our previous work was improved in three aspects. First, its
backbone was revised by varying ResNet-50, ResNet-101, and ResNet-152 networks, as shown in M1
in Figure 1. Second, the “Channel Attention Mechanism” was employed (shown in M2 in Figure 1).
Third, the “Domain-Specific Transfer Learning” (TL) was employed to reuse the pre-trained weights
obtained from training on other data sets in the remote sensing domain. This strategy is important
in the deep learning domain to overcome the limited amount of training data. In our work, there are
two main data sets: Landsat-8 and ISPRS. To train the Landsat-8 model, the pre-trained network is
obtained by utilizing the ISPRS data. This can also be explained conversely—the pre-trained network
can be obtained by Landsat-8 data.

Although the GCN152-TL-A network has determined an encouraging forecast performance,
it can still be possible to improve it further through changing the frontend using high-resolution
representation (HR) [37,38] instead of ResNet-152 [25,45]. HR has surpassed all existing deep
learning methods on semantic segmentation, multi-person pose estimation, object detection, and pose
estimation tasks in the COCO, which is large-scale object detection, segmentation, and captioning
corpora. It is a parallel structure to enable the deep learning model to link multi-resolution
subnetworks in an effective and modern way. HR connects high-to-low subnetworks in parallel.
It maintains high-resolution representations through the whole process for a spatially precise
heatmap estimation. It creates reliable high-resolution representations through repeatedly fusing
the representations generated by the high-to-low subnetworks. It introduces “exchange units” which
shuttle across different subnetworks, enabling each one to receive information from other parallel
subnetworks. Representations of HR can be obtained by repeating this process. There are four stages
as the 2nd, 3rd, 4th, and 5th stages are formed by repeating modularized multi-resolution blocks.
A multi-resolution block consists of a multi-resolution group convolution and a multi-resolution
convolution, which is illustrated as P1 in Figure 3 (backbone model) and this proposed method is
named the “HR-GCN” method.
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3.3. Feature Fusion

Inspired by the idea of feature fusion [41–44] that integrates multiplication, additional,
or concatenate layers. Convolution with 1 × 1 filters is used to transform features with different
dimensions into the shape, which can be fused. The fusion method contains an addition process. Each
layer of the backbone network such as VGG, Inception, ResNet, or HR creates the feature map for
specific. We proposed to combine output with low-level features (front-end network) with the deep
model and refine the feature information.

As shown in Figure 4, the kernel maps after fusing will be calculated as Equation (1) :

Zadd = X1 ⊕ X2 ⊕ X3 · · · ⊕Xi · · · ⊕Xj (1)

where j adverts to the index of the layer, Xk is a set of output activation maps of one layer and ⊕
adverts to element-wise addition.

Hence, the nature of the addition process encourages essential information to build classifiers to
comprehend the feature details. It denotes all bands of Zadd to hold more feature information.

Figure 4. The framework of our feature fusion strategy.

Equation (2) shows the relationship between input and output. Thus, we take the fusion activation
map into the model again, it can be performed as Equation (4):

ȳi = ReLU(wTxi + b) (2)

where x is the input and output of layer of the convolution recorded as yi; b and w refer to bias and
weight. The cost function in this work is demonstrated via Equation (3).

J(w, b) = − 1
m

× [(1 − y(i))log(1 − ȳ(i) + (y(i)log(ȳ(i))] (3)
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where y refers to segmentation target of input (each image) and J, w, and b are the loss, weight, and bias
value, respectively.

Yadd = f (WkZadd + Bk) (4)

The feature fusion procedure always transforms into the same thing when using additional
procedures. In this work, we use addition fusion elements, as shown in Figure 4.

3.4. Depthwise Atrous Convolution (DA)

Depthwise Atrous Convolution (DA) [6,9,39] is presented to settle the contradictory requirements
between the larger region of the input space that affects a particular unit of the deep network (receptive
fields) and activation map resolution.

DA is a robust operation to reduce the number of parameters (weights) in the layer of the
CNN while maintaining a similar performance that includes the computation cost and tunes the
kernel’s field-of-view in order to capture a generalized standard convolution operation and multi-scale
information. An atrous filter can be a dilated kernel in varied rates, e.g., rate = 1, 2, 4, 8, by inserting
zeros into appropriate positions in the kernel mask.

Basically, the DA module uses atrous convolutions to aggregate multi-scale contextual information
without dissipating resolution orderly in each layer. It generalizes “Kronecker-factored” convolutional
kernels, and it allows for broad receptive fields, while only expanding the number of weights
logarithmically. In other words, DA can apply the same kernel at distinct scales using various
atrous factors.

Compared to the ordinary convolution operator, atrous (dilated) convolution is able to achieve a
larger receptive field size without increasing the numbers of kernel parameters.

Our motivation is to apply DA to solve challenging scale variations and to trade off precision in
aerial and satellite images, as shown in Figure 5.

In a one-dimensional (1D) case, let x[i] denote input signal, and y[i] denote output signal.
The dilated convolution is formulated as Equation (5):

y[i] =
J

∑
j=1

x[i + a · k] · w[j] (5)

where a is the atrous (dilated) rate, w[j] denotes the j-th parameter of the kernel, and J is the filter size.
This equation reduces to a standard convolution when d = 1, 2, 4, and 8, respectively.

In the cascading mode from DeepLabV3 [46,47] and Atrous Spatial Pyramid Pooling (ASPP) [9],
multi-scale contextual information can be encoded by probing the incoming features with dilated
convolution to capture sharper object boundaries by continuously recovering the spatial characteristic.
DA has been applied to increase the computational ability and achieve the performance by factorizing
a traditional convolution into a depth-wise convolution followed by a point-wise convolution, such as
1 × 1 convolution (it is often applied on the low-level attributes to decrease the whole of the bands
(kernel maps)).

To simplify notations, HJ,a(x) is term of a dilated convolution, and ASPP can be performed as
Equation (6).

y = H3,1(x) + H3,2(x) + H3,4(x) + H3,8(x) (6)

To improve the semantics of shallow features, we apply the idea of multiple dilated convolution
with different sampling rates to the input kernel map before continuing with the decoder network
and adjusting the dilation rates (1, 2, 4, and 8) to configure the whole process of our proposed method
called “HR-GCN-FF-DA”, shown in P3 in Figures 3 and 5.
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Figure 5. The Depthwise Atrous Convolution (DA) module in the proposed parallel pyramid method
for improving feature fusion.

4. Remote Sensing Corpora

In our experiments, there are two main sources of data: public and private corpora. The private
corpora is the medium resolution imagery received from the satellite “Landsat-8” used by the
government organization in Thailand called GISTDA. Since there are two variations of annotations,
the Landsat-8 data is considered as two data sets: one with three classes and the other with five
classes, as shown in Table 1. The public corpora is very high-resolution imagery from the standard
benchmark called “ISPRS Vaihingen (Stuttgart)”. Evaluations based on classification/segmentation
metrics, e.g., F1 Score, Precision, Recall and Average Accuracy are deployed with all experiments.

Table 1. Abbreviations on our Landsat-8 corpora.

Abbreviation Description

Landsat-8w3c corpus Landsat-8 corpus with 3 classes
Landsat-8w5c corpus Landsat-8 corpus with 5 classes

4.1. Landsat-8w3c Corpus

For this corpus, there is a new benchmark that differs from our previous work. All images are
taken in the area of the northern provinces (Changwat) of Thailand. The data set is made from the
Landsat-8 satellite consisting of 1420 satellite images, some samples are shown in Figure 6. This data
set contains a massive collection of medium resolution imagery of (20,921 × 17,472) pixels. There are
three classes: para rubber (red), pineapple (green), and corn (yellow). From a total of 1390 images,
the images are separated into 1000 training and 230 validation images, as well as 190 test images to
compare with other baseline methods.
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4.2. Landsat-8w5c Corpus

This data set is the same corpus from Landsat-8, but it is annotated with five class labels:
agriculture, forest, miscellaneous (misc), urban, and water as shown in Figure 7. There are 1012
medium resolution satellite images of 17,200 × 16,300 pixels. From the total 1039 images, the images
are separated into 700 training and 239 validation images, as well as 100 test images to comparison to
other baseline methods.

Figure 6. The example of satellite images from the Landsat-8w3c corpus, northern province (left) and
target image (right). The ground-truth of the medium resolution data set includes three classes: para
rubber (red), pineapple (green), and corn (Yellow).

Figure 7. The example of satellite images from Landsat-8w5c corpus, northern province (left) and
target image (right). The ground-truth of medium resolution data set includes five classes: urban (red),
forest (green), water (blue), agriculture or harvested area (yellow), and miscellaneous or misc (brown).
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4.3. ISPRS Vaihingen Corpus

The challenge of ISPRS semantic segmentation at Vaihingen (Stuttgart) [18] (Figures 8 and 9) is
used to be our standard corpus. They were captured over Vaihingen in Germany. The data set is a
subset of the data used for the test of digital aerial cameras carried out by the German Association of
Photogrammetry and Remote Sensing (DGPF).

Figure 8. ISPRS 2D Vaihingen segmentation corpus (33 scenes).

Figure 9. Sample of input scene from Figure 8 (left) and target image (right). The annotated Vaihingen
corpus has five categories: tree (green), building (blue), clutter/background (red), low vegetation or LV
(greenish-blue), and impervious surface or imp surf (white)
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It consists of three spectral bands such as NDSM, DSM, near-infrared bands, red, and green data.
For our work, NDSM and DSM data are not used in this corpus. They provide 33 images of about 2500
× 2000 pixels of about 9 cm of resolution. Following other methods, four scenes such as scene 5, 7, 23,
and 30 are removed from the training set as a validation set. All experimental results are announced
on the validation set if not specified.

5. Performance Evaluation

The performance of “HR-GCN-FF-DA” is evaluated in all corpora for F1 and AverageAccuracy.
To assess class-specific performance, the F1, precision, recall, and AverageAccuracy metric are used.
It is computed as the symphonious average between recall and precision. We carry precision, recall,
and F1 as fundamental metrics and also incorporate the AverageAccuracy, which calculates the
number of correctly classified positions and divides it by the total number of the reference positions.
The AverageAccuracy and F1 metrics can be assessed using Equations (7)–(10).

The confusion matrix for pixel-level classification [18] and the false positive (denoted as FP) are
computed from the summation of the column. In contrast, the false negative (denoted as FN) is the
summation of the horizontal axis, excluding the principal diagonal factor. Next, the true positive
(denoted as TP) is the value of the identical oblique elements, and the true negative (denote as TN)
contrasts TP.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2×Precision×Recall

Precison + Recall
(9)

AverageAccuracy =
TP + TN

TP ++FP + FN + TN
(10)

6. Experimental Results

For a python deep learning framework, we use “Tensorflow (TF)” [48], an end-to-end open source
platform for deep learning. The whole experiment was implemented on servers with Intel® 2066 core
I9-10900X, 128 GB of memory, and the NVIDIA RTX™ 2080Ti (11 GB) x 4 cards.

For the training phrase, the adaptive learning rate optimization algorithm (extension to the
stochastic gradient descent (SGD)) [49] and batch normalization [50], a technique for improving the
performance, stability, and speed of deep learning, were applied and standardized to ease the training
in every experiment.

For the learning rate schedules tasks, [9,16,32], we selected the polylearning rate policy. As shown
in Equation (11), the learning rate is scheduled by multiplying a decaying factor to the initial learning
rate (4 × 10−3).

learning rate = init_learning rate × (1 − epoch
MaxEpoch

)0.9 (11)

All deep CNN models are trained for 30 epochs on the Landsat-8w3c corpus and ISPRS Vaihingen
data sets. It is increased to be 50 epochs for the Landsat-8w5c data set. Each image is resized to
521 × 521 pixels along with augmented data using a randomly cropping strategy. Weights are updated
using the mini-batch of 4.

This section explains the elements of our experiments. The proposed CNN architecture is based on
the victor from our previous work called “GCN152-TL-A” [12]. In our work, there are three proposed
improvements: (i) adjusting backbones using high-resolution representations, (ii) the feature fusion
module, and (iii) depthwise atrous convolution. From all proposed policies, there are four acronyms
of procedures, as shown in Table 2.
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Table 2. Acronyms of our proposed deep learning approaches.

Acronym Representation

A Channel Attention Block
DA Depthwise Atrous Convolution
FF Feature Fusion
HR High-Resolution Representations

There are three subsections to discuss the experimental results of each data set: (i) Landsat-8w3c,
(ii) Landsat-8w5c, and (iii) ISPRS Vaihingen data sets.

There are two baseline models of the semantic labeling task in the domains of remote
sensing-based information on the computer vision. The first baseline is DCED, which is commonly
used in much segmentation work [19–21]. The second baseline is the winner of our previous work
called “GCN152-A-TL” [12]. Note that “GCN-A-TL” is abbreviated using just “GCN”, since we always
employ the attention and transfer-learning strategies into our proposed models.

Each proposed tactic can elevate the completion of the baseline approach shown via the whole
experiment. First, the effect of our new backbone (HRNET) is investigated by using HRNET on the
GCN framework called “HR-GCN”. Second, the effect of our feature fusion is shown by adding it into
our model, called “HR-GCN-FF”. Third, the effect of the depthwise atrous convolution is explained by
using it on top of a traditional convolution mechanism, called “HR-GCN-FF-DA”.

6.1. The Results of Landsat-8w3c Data Set

The Landsat-8w3c corpus was used in all experiments. We distinguished between the alterations
of the proposed approaches and CNN baselines. “HR-GCN-FF-DA”, the full proposed method, is the
winner with F1 of 0.9114. Furthermore, it is also the winner of all classes. More detailed results are
given in the next subsection. Presented in Tables 3 and 4 are the results of this corpus, Landsat-8w3c.

6.1.1. HR-GCN Model: Effect of Heightened GCN with High-Resolution Representations
on Landsat-8w3c

The previous enhanced GCN network is improved to increase the F1 score by using the
High-Resolution Representations (HR) backbone instead of the ResNet-152 backbone (best frontend
network from our previous work). F1 of HR-GCN (0.8763) outperforms that of the baseline methods.
DCED (0.8114) and GCN152-TL-A (0.8727) refer to Tables 3 and 4. The result returns a higher F1 at
6.50% and 0.36%, respectively. Hence, it means the features extracted from HRNET are better than
those from ResNet-152.

For the analysis of each class, HR-GCN achieved an average accuracy on para rubber, pineapple,
and corn for 0.8371, 0.8147, and 0.8621, consecutively. Compared to DCED, it won in two classes:
para rubber and corn. However, it won against our previous work (GCN152-TL-A) only in the
pineapple class.

6.1.2. HR-GCN-FF Model: Effect of Using “Feature Fusion” on Landsat-8w3c

Next, we apply “Feature Fusion” to capture low-level features to decorate the feature information
of CNN. HR-GCN-FF (0.8852) is higher than that of HR-GCN (0.8763), GCN152-TL-A (0.8727),
and DCED (0.8113), shown in Tables 3 and 4. It gives a higher F1 score at 0.89%, 1.26%,
and 7.39%, consecutively.

It is interesting that the FF module can really improve the performance in all classes, especially in
the para rubber and pineapple classes. It outperforms both HR-GCN and all baselines in all classes.
To further investigate the results, Figures 10e and 11e show that the model with FF can capture
pineapple (green area) surrounded in para rubber (red area).
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Table 3. Effects on the testing set of the Landsat-8w3c data set.

Pretrained Frontend Model Precision Recall F1

Baseline - VGG16 DCED [19–21] 0.8546 0.7723 0.8114
TL Res152 GCN-A [12] 0.8732 0.8722 0.8727

Proposed

Method

TL HRNET GCN-A 0.8693 0.8836 0.8764
TL HRNET GCN-A-FF 0.8797 0.8910 0.8853
TL HRNET GCN-A-FF-DA 0.8999 0.9233 0.9114

Table 4. Effects on the testing set of the Landsat-8w3c data set among each class with our proposed
procedures in terms of AverageAccuracy.

Model Para Rubber Pineapple Corn

Baseline DCED [19–21] 0.8218 0.8618 0.8084
GCN152-TL-A [12] 0.9127 0.7778 0.8878

Proposed Method HR-GCN 0.8371 0.8147 0.8621
HR-GCN-FF 0.9179 0.8689 0.8989

HR-GCN-FF-DA 0.9386 0.8881 0.9184

Figure 10. Comparisons between “HR-GCN-FF-DA” and other published methods of the Landsat-8w3c
corpus testing set.
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Figure 11. Comparisons between “HR-GCN-FF-DA” and beyond baseline methods of the
Landsat-8w3c corpus testing set.

6.1.3. HR-GCN-FF-DA Model: Effect of Using “Depthwise Atrous Convolution” on Landsat-8w3c

The last strategy aims to use an approach of “Depthwise Atrous Convolution” (details in
Section 3.4) by extracting complementary information from very shallow features and enhancing
the deep features for improving feature fusion of the Landsat-8w3c corpus. The “HR-GCN-FF-DA”
method is the victor. F1 is obviously more distinguished than DCED at 10.00% and GCN152-TL-A (the
best benchmark) at 3.87%, as shown in Tables 3 and 4.

For an analysis of each class, our model is clearly the winner in all classes with an accuracy beyond
90% in two classes: para rubber and corn. Figures 10 and 11 show twelve sample outputs from our
proposed methods (column (d to f )) compared to the baseline (column (c)) to expose improvements
in its results. From our investigation, we found that the dilated convolutional concept can make our
model have better overview information, so it can capture larger areas of data.

There is a lower discrepancy (peak) in the validation data of “HR-GCN-FF-DA”, Figure 12a,
than that in the baseline, Figure 13a. Moreover, Figures 13b and 12b show three learning graphs such
as precision, recall, and F1 lines. The loss graph of the “HR-GCN-FF-DA” model seems flatter (very
smooth) than the baseline in Figure 13a. The epoch at number 27 was selected to be a pre-trained
model for testing and transfer learning procedures.
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(a) (b)

Figure 12. Graph (learning curves) of the Landsat-8w3c data set of the proposed approach,
“HR-GCN-FF-DA”; x refers to epochs, and y refers to different measures (a) Plot of model loss
(cross-entropy) on training and validation corpora; (b) performance plot on the validation corpus.

(a) (b)

Figure 13. Graph (learning curves) of the Landsat-8w3c data set of the baseline approach,
GCN152-TL-A; x refers to epochs, and y refers to different measures (a) Plot of model loss
(cross-entropy) on training and validation corpora; (b) performance plot on the validation corpus. [12].

6.2. The Results on Landsat-8w5c Data Set

In this subsection, the Landsat-8w5c corpus was conducted on all experiments. We compare
“HR-GCN-FF-DA” network (column ( f )) to CNN baselines via Tables 5 and 6. “HR-GCN-FF-DA” is
the winner with a F1 of 0.9111. Furthermore, it is also the winner in all classes especially water and
urban class that are composed with low-level features. More detailed results are described in the next
subsection and are presented in Tables 5 and 6 for the results of this data set, Landsat-8w5c.

6.2.1. HR-GCN Model: Effect of Heightened GCN with High-Resolution Representations
on Landsat-8w5c

The F1 score of HR-GCN (0.8897) outperforms that of baseline methods: DCED (0.8505) and
GCN152-TL-A (0.8791); F1 at 3.92% and 1.07% respectively. The main reason is due to both higher
recall and precision. This can imply that features extracted from HRNET are also better than those
from ResNet-152 on Landsat-8 images as well, shown in Tables 5 and 6.
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Table 5. Effects on the testing set of Landsat-8w5c data set.

Pre-trained Frontend Model Precision Recall F1

Baseline - VGG16 DCED [19–21] 0.8571 0.8441 0.8506
TL Res152 GCN-A [12] 0.8616 0.8973 0.8791

Proposed

Method

TL HRNET GCN-A 0.8918 0.8877 0.8898
TL HRNET GCN-A-FF 0.9209 0.9181 0.9195
TL HRNET GCN-A-FF-DA 0.9338 0.9385 0.9362

Table 6. Effects on the testing set of Landsat-8w5c data set among each class with our proposed
procedures in terms of AverageAccuracy.

Model Agriculture Forest Misc Urban Water

Baseline DCED [19–21] 0.9819 0.9619 0.7628 0.8538 0.7250
GCN152-TL-A [12] 0.9757 0.9294 0.6847 0.9288 0.7846

Proposed Method HR-GCN 0.9755 0.9501 0.8231 0.9133 0.7972
HR-GCN-FF 0.9741 0.9526 0.8641 0.9335 0.8282

HR-GCN-FF-DA 0.9856 0.9531 0.9176 0.9561 0.8437

For the analysis on each class, HR-GCN achieved an averaging accuracy in agriculture, forest,
miscellaneous, urban, and water for 0.9755, 0.9501, 0.8231, 0.9133, and 0.7972, consecutively. Compared
to DCED, it won in three classes: forest, miscellaneous and water. However, it won against our
previous work (GCN152-TL-A) in the pineapple class, and it showed about the same performance in
the agriculture class.

6.2.2. HR-GCN-FF Model: Effect of Using “Feature Fusion” on Landsat-8w5c

The second mechanism focuses on utilizing ‘Feature Fusion” to fuse each level feature for
enriching the feature information. From Tables 5 and 6, the F1 of HR-GCN-FF (0.9195) is greater
than that of HR-GCN (0.8897), GCN152-TL-A (0.8791), and DCED (0.8505). It produces a more precise
F1 score at 2.97%, 4.04%, and 6.89%.

To further analyze the results, Figures 14e and 15e show that the FF module can better capture
low-level details. Especially in the water class, it can recover the missing water area, resulting in an
improvement of accuracy from 0.7972 to 0.8282 (3.1%).

6.2.3. HR-GCN-FF-DA Model: Effect of Using “Depthwise Atrous Convolution” on Landsat-8w5c

The last policy points to the performance of the method of “Depthwise Atrous Convolution” by
enhancing the features of CNN for improving the previous step. The F1 score of the “HR-GCN-FF-DA”
approach is the conqueror. It is more eminent than DCED and GCN152-TL at 8.56% and 5.71%,
consecutively, shown in Tables 5 and 6.

In the dilated convolution, filters are boarder, which can capture better overview details resulting
in (i) larger coverage areas and (ii) connected small areas together.

For an analysis of each class, our final model is clearly the winner in all classes with an accuracy
beyond 95% in two classes: agriculture and urban classes. Figures 14 and 15 show twelve sample
outputs from our proposed methods (column (d to f )) compared to the baseline (column (c)) to expose
improvements in its results and that founds that Figures 14f and 15f are likewise to the ground images.
From our investigation, we found that the dilated convolutional concept can make our model have
better overview information, so it can capture larger areas of data.
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Figure 14. Comparisons between “HR-GCN-FF-DA” and beyond baseline methods on the
Landsat-8w5c corpus testing set.

Considering the loss graphs, our model in Figure 16a can learn smoother than the baseline (our
previous work) in Figure 17a, since the discrepancy (peak) in the validation error (green line) is lower in
our model. There is a lower discrepancy (peak) in the validation data of “HR-GCN-FF-DA”, Figure 16a,
than that in the baseline, Figure 17a. Moreover, Figures 17b and 16b show three learning graphs such
as precision, recall, and F1 lines. The loss graph of the “HR-GCN-FF-DA” model seems flatter (very
smooth) than the baseline in Figure 17a and the epoch at number 40 out of 50 was selected to be a
pre-trained model for testing and transfer learning procedures.
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Figure 15. Comparisons between “HR-GCN-FF-DA” and beyond baseline methods on the
Landsat-8w5c corpus testing set.

(a) (b)

Figure 16. Graph (learning curves) on Landsat-8w5c data set of the proposed approach,
“HR-GCN-FF-DA”; x refers to epochs, and y refers to different measures (a) Plot of model loss
(cross-entropy) on training and validation corpora; (b) performance plot on the validation corpus.
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(a) (b)

Figure 17. Graph (learning curves) on Landsat-8w5c data set of the baseline approach, GCN152-TL-A [12];
x refers to epochs, and y refers to different measures (a) Plot of model loss (cross-entropy) on training and
validation corpora; (b) performance plot on the validation corpus.

6.3. The Results in ISPRS Vaihingen Challenge Data Set

In this subsection, the ISPRS Vaihingen (Stuttgart) Challenge corpus was used in all experiments.
The “HR-GCN-FF-DA” is the winner with F1 of 0.9111. Furthermore, it is also the winner of all classes.
More detailed results will be provided in the next subsection, and the consequences of our proposed
method with CNN baselines for this data set are shown in Tables 7 and 8.

6.3.1. HR-GCN Model: Effect of Heightened GCN with High-Resolution Representations in
ISPRS Vaihingen

The F1 score of HR-GCN (0.8701) exceeds that of the baseline methods: DCED (0.8580) and
GCN152-TL-A (0.8620). It complies a higher F1 at 1.21% and 0.81%, respectively. This shows that the
enhanced GCN with HR backbone is also more significantly streamlined than the GCN152-TL-A style,
shown in Tables 7 and 8.

The goal of the HR module is to help prevent the loss of some important features, such as low-level
features, so it can significantly improve the accuracy of the car class from 0.8034 to 0.8202 (1.68%) and
the building class from 0.8725 to 0.9282 (5.57%).

Table 7. Effects on the testing set of ISPRS Vaihingen (Stuttgart) challenge data set.

Pre-trained Frontend Model Precision Recall F1

Baseline - VGG16 DCED [19–21] 0.8672 0.8490 0.8580
TL Res152 GCN-A [12] 0.8724 0.8520 0.8620

Proposed

Method

TL HRNET GCN-A 0.8717 0.8686 0.8701
TL HRNET GCN-A-FF 0.8981 0.8812 0.8896
TL HRNET GCN-A-FF-DA 0.9228 0.8997 0.9111

Table 8. Effects on the testing set of ISPRS Vaihingen (Stuttgart) challenge data set among each class
with our proposed procedures in terms of AverageAccuracy.

Model IS Buildings LV Tree Car

Baseline DCED [19–21] 0.8721 0.8932 0.8410 0.9144 0.8153
GCN152-TL-A [12] 0.8758 0.8725 0.8567 0.9534 0.8034

Proposed Method HR-GCN 0.8864 0.9282 0.8114 0.8945 0.8202
HR-GCN-FF 0.8279 0.9458 0.9264 0.9475 0.8502

HR-GCN-FF-DA 0.9075 0.9589 0.9266 0.9299 0.8710
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6.3.2. HR-GCN-FF Model: Effect of Using “Feature Fusion” on ISPRS Vaihingen

Next, we propose “Feature Fusion” to fuse each level feature for enriching the feature information.
From Tables 7 and 8, the F1 of HR-GCN-FF (0.8895) is greater than that of HR-GCN (0.8701),
GCN152-TL-A (0.8620), and DCED (0.8580). It also returns a higher F1 score at 1.95%, 2.76%, and 3.16%,
respectively.

The goal of the FF module is to capture low-level features, so it can significantly improve the
accuracy of the low vegetation class (LV) from 0.8114 to 0.9264 (11.5%), the accuracy of the tree class
from 0.8945 to 0.9475 (5.3%), and the accuracy of the car class from 0.8202 to 0.8502 (3%). This finding
is shown in Figures 18e and 19e.

6.3.3. HR-GCN-FF-DA Model: Effect of Using “Depthwise Atrous Convolution” on ISPRS Vaihingen

Finally, our last approach is to apply “Depthwise Atrous Convolution” to intensify the deep
features from the previous step. From Tables 7 and 8 we see that the F1 of the “HR-GCN-FF-DA”
method is also the conqueror in this data set. The F1 score of “HR-GCN-FF-DA” is also more precise
than the DCED and GCN152-TL-A at 5.31% and 4.96%, consecutively.

Figure 18. Comparisons between “HR-GCN-FF-DA” and beyond baseline methods on the ISPRS
Vaihingen (Stuttgart) challenge corpus testing set.

183



Remote Sens. 2020, 12, 1233

Figure 19. Comparisons between “HR-GCN-FF-DA” and beyond baseline methods on the ISPRS
Vaihingen (Stuttgart) challenge corpus testing set.

It is very impressive that our model with all its strategies can improve the accuracy in almost
all classes to be greater than 90%. Although the accuracy of car is 0.8710, it improves on the baseline
(0.8034) by 6.66%.

7. Discussion

In the Landsat-8w3c corpus, for an analysis of each class, our model is clearly the winner in all
classes with an accuracy beyond 90% in two classes: para rubber and corn. Figures 10 and 11 show
twelve sample outputs from our proposed methods (column (d to f )) compared to the baseline (column
(c)) to expose improvements in its results and shows that Figures 10f and 11f are similar to the target
images. From our investigation, we found that the dilated convolutional concept can make our model
have better overview information, so it can capture larger areas of data.

There is a lower discrepancy (peak) in the validation data of “HR-GCN-FF-DA” Figure 12a than
that in the baseline Figure 13a. Moreover, Figures 13b and 12b show three learning graphs such as
precision, recall, and F1 lines. The loss graph of the “HR-GCN-FF-DA” model seems flatter (very
smooth) than the baseline in Figure 13a. The epoch at number 27 was selected to be a pre-trained
model for testing and transfer learning procedures.
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In the Landsat-8w5c corpus, for an analysis of each class, our final model is clearly the winner
in all classes with an accuracy beyond 95% in two classes: agriculture and urban classes. Figures 14
and 15 show twelve sample outputs from our proposed methods (column (d to f )) compared to the
baseline (column (c)) to expose improvements in its results and shows that Figures 14f and 15f are
similar to the ground images. From our investigation, we found that the dilated convolutional concept
can make our model have better overview information, so it can capture larger areas of data.

Considering the loss graphs, our model in Figure 16a can learn smoother than the baseline (our
previous work) in Figure 17a, since the discrepancy (peak) in the validation error (green line) is lower in
our model. There is a lower discrepancy (peak) in the validation data of “HR-GCN-FF-DA”, Figure 16a,
than that in the baseline Figure 17a. Moreover, Figures 17b and 16b show three learning graphs such
as precision, recall, and F1 lines. The loss graph of the “HR-GCN-FF-DA” model seems flatter (very
smooth) than the baseline in Figure 17a. The epoch at number 40 out of 50 was selected to be the
pre-trained model for testing and transfer-learning procedures.

In the ISPRS Vaihingen corpus, for an analysis of each class, our model is clearly the winner in all
classes with an accuracy beyond 90% in four classes: impervious surface, building, low vegetation,
and trees. Figure 18 shows twelve sample outputs from our proposed methods (column (d to f ))
compared to the baseline (column (c)) to expose improvements in its results and shows that Figures 18f
and 19f are similar to the target images. From our investigation, we found that the dilated (atrous)
convolutional idea can make our deep CNN model have better overview learning, so that it can capture
more ubiquitous areas of data.

For the loss graph, it is similar to the results in our previous experiments. There is a lower
discrepancy (peak) in the validation data of our model (Figure 20a) than that in the baseline (Figure 21a).
Moreover, Figures 21b and 20b explicate a trend that represents a high-grade model performance.
Lastly, the epoch at number 26 (out of 30) was selected to be a pre-trained model for testing and transfer
learning procedures.

(a) (b)

Figure 20. Graph (learning curves) on ISPRS Vaihingen data set of the proposed approach,
“HR-GCN-FF-DA”; x refers to epochs, and y refers to different measures (a) Plot of model loss
(cross-entropy) on training and validation corpora; (b) performance plot on the validation corpus.
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(a) (b)

Figure 21. Graph (learning curves) in ISPRS data set of the baseline approach, GCN152-TL-A [12]; x
refers to epochs, and y refers to different measures (a) Plot of model loss (cross-entropy) on training
and validation corpora; (b) performance plot on the validation corpus.

8. Conclusions

We propose a novel CNN architecture to achieve image labeling on remote-sensed images. Our
best-proposed method, “HR-GCN-FF-DA”, delivers an excellent performance in regards to three
aspects: (i) modifying the backbone architecture with “High-Resolution Representations (HR)”, (ii)
applying the “Feature Fusion (FF)”, and (iii) using the concept of “Depthwise Atrous Convolution
(DA)”. Each proposed strategy can really improve F1-results by 4.82%, 4.08%, and 2.14% by adding
HR, FF, and DA modules, consecutively. The FF module can really capture low-level features, resulting
in a higher accuracy of river and low-vegetation classes. The DA module can refine the features and
provide more coverage areas, resulting in a higher accuracy of pineapple and miscellaneous classes.
The results demonstrate that the “HR-GCN-FF-DA” model significantly exceeds all baselines. It is the
victor in all data sets and exceeds more than 90% of F1: 0.9114, 0.9362, and 0.9111 of the Landsat-8w3c,
Landsat-8w5c, and ISPRS Vaihingen corpora, respectively. Moreover, it reaches an accuracy surpassing
90% in almost all classes.
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A Channel Attention
BR Boundary Refinement
DA Depthwise Atrous Convolution
DSM Digital Surface Model
FF Feature Fusion
HR High-Resolution Representations
IS Impervious Surfaces
Misc Miscellaneous
NDSM Normalized Digital Surface Mode
LV Low Vegetation
TL Transfer Learning
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Abstract: The detection performance of small objects in remote sensing images has not been
satisfactory compared to large objects, especially in low-resolution and noisy images. A generative
adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) showed
remarkable image enhancement performance, but reconstructed images usually miss high-frequency
edge information. Therefore, object detection performance showed degradation for small objects on
recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced
GAN (EEGAN) and ESRGAN, we applied a new edge-enhanced super-resolution GAN (EESRGAN)
to improve the quality of remote sensing images and used different detector networks in an end-to-end
manner where detector loss was backpropagated into the EESRGAN to improve the detection
performance. We proposed an architecture with three components: ESRGAN, EEN, and Detection
network. We used residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for
the detector network, we used a faster region-based convolutional network (FRCNN) (two-stage
detector) and a single-shot multibox detector (SSD) (one stage detector). Extensive experiments
on a public (car overhead with context) dataset and another self-assembled (oil and gas storage
tank) satellite dataset showed superior performance of our method compared to the standalone
state-of-the-art object detectors.

Keywords: object detection; faster region-based convolutional neural network (FRCNN);
single-shot multibox detector (SSD); super-resolution; remote sensing imagery; edge
enhancement; satellites

1. Introduction

1.1. Problem Description and Motivation

Object detection on remote sensing imagery has numerous prospects in various fields, such as
environmental regulation, surveillance, military [1,2], national security, traffic, forestry [3], oil and gas
activity monitoring. There are many methods for detecting and locating objects from images, which are
captured using satellites or drones. However, detection performance is not satisfactory for noisy and
low-resolution (LR) images, especially when the objects are small [4]. Even on high-resolution (HR)
images, the detection performance for small objects is lower than that for large objects [5].

Remote Sens. 2020, 12, 1432; doi:10.3390/rs12091432 www.mdpi.com/journal/remotesensing191



Remote Sens. 2020, 12, 1432

Current state-of-the-art detectors have excellent accuracy on benchmark datasets, such as
ImageNet [6] and Microsoft common objects in context (MSCOCO) [7]. These datasets consist of
everyday natural images with distinguishable features and comparatively large objects.

On the other hand, there are various objects in satellite images like vehicles, small houses, small oil
and gas storage tanks etc., only covering a small area [4]. The state-of-the-art detectors [8–11] show
a significant performance gap between LR images and their HR counterparts due to a lack of input
features for small objects [12]. In addition to the general object detectors, researchers have proposed
specialized methods, algorithms, and network architectures to detect particular types of objects from
satellite images such as vehicles [13,14], buildings [15], and storage tanks [16]. These methods are
object-specific and use fixed resolution for feature extraction and detection.

To improve detection accuracy on remote sensing images, researchers have used deep
convolutional neural network (CNN)-based super-resolution (SR) techniques to generate artificial
images and then detect objects [5,12]. Deep CNN-based SR techniques such as single image
super-resolution convolutional networks (SRCNN) [17] and accurate image super-resolution using
very deep convolutional networks (VDSR) [18] showed excellent results on generating realistic
HR imagery from LR input data. Generative Adversarial Network (GAN)-based [19] methods
such as super-resolution GAN (SRGAN) [20] and enhanced super-resolution GAN (ESRGAN) [21]
showed remarkable performance in enhancing LR images with and without noise. These models
have two subnetworks: a generator and a discriminator. Both subnetworks consist of deep CNNs.
Datasets containing HR and LR image pairs are used for training and testing the models. The generator
generates HR images from LR input images, and the discriminator predicts whether generated image is
a real HR image or an upscaled LR image. After sufficient training, the generator generates HR images
that are similar to the ground truth HR images, and the discriminator cannot correctly discriminate
between real and fake images anymore.

Although the resulting images look realistic, the compensated high-frequency details such as
image edges may cause inconsistency with the HR ground truth images [22]. Some works showed that
this issue negatively impacts land cover classification results [23,24]. Edge information is an important
feature for object detection [25], and therefore, this information needs to be preserved in the enhanced
images for acceptable detection accuracy.

In order to obtain clear and distinguishable edge information, researchers proposed several
methods using separate deep CNN edge extractors [26,27]. The results of these methods are sufficient
for natural images, but the performance degrades on LR and noisy remote sensing images [22].
A recent method [22] used the GAN-based edge-enhancement network (EEGAN) to generate a visually
pleasing result with sufficient edge information. EEGAN employs two subnetworks for the generator.
One network generates intermediate HR images, and the other network generates sharp and noise-free
edges from the intermediate images. The method uses a Laplacian operator [28] to extract edge
information and in addition, it uses a mask branch to obtain noise-free edges. This approach preserves
sufficient edge information, but sometimes the final output images are blurry compared to a current
state-of-the-art GAN-based SR method [21] due to the noises introduced in the enhanced edges that
might hurt object detection performance.

Another important issue with small-object detection is the huge cost of HR imagery for large
areas. Many organizations are using very high-resolution satellite imagery to fulfill their purposes.
When it comes to continuous monitoring of a large area for regulation or traffic purposes, it is costly to
buy HR imagery frequently. Publicly available satellite imagery such as Landsat-8 [29] (30 m/pixel)
and Sentinel-2 [30] (10 m/pixel) are not suitable for detecting small objects due to the high ground
sampling distance (GSD). Detection of small objects (e.g., oil and gas storage tanks and buildings)
is possible from commercial satellite imagery such as 1.5-m GSD SPOT-6 imagery but the detection
accuracy is low compared to HR imagery, e.g., 30-cm GSD DigitalGlobe imagery in Bing map.

We have identified two main problems to detect small-objects from satellite imagery.
First, the accuracy of small-object detection is lower compared to large objects, even in HR imagery

192



Remote Sens. 2020, 12, 1432

due to sensor noise, atmospheric effects, and geometric distortion. Secondly, we need to have access
to HR imagery, which is very costly for a vast region with frequent updates. Therefore, we need a
solution to increase the accuracy of the detection of smaller objects from LR imagery. To the best of our
knowledge, no work employed both SR network with edge-enhancement and object detector network
in an end-to-end manner, i.e., using joint optimization to detect small remote sensing objects.

In this paper, we propose an end-to-end architecture where object detection and super-resolution
is performed simultaneously. Figure 1 shows the significance of our method. State-of-the-art detectors
miss objects when trained on the LR images; in comparison, our method can detect those objects.
The detection performance improves when we use SR images for the detection of objects from two
different datasets. Average precision (AP) versus different intersection over union (IoU) values
(for both LR and SR) are plotted to visualize overall performance on test datasets. From Figure 1,
we observe that for both the datasets, our proposed end-to-end method yields significantly better IoU
values for the same AP. In Section 4.2, we discuss AP and IoU in more detail and these results are
discussed in Section 4.
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(I) LR image (II) SR image (III) AP vs IoU curves

Figure 1. Detection on LR (low-resolution) images (60 cm/pixel) is shown in (I); in (II), we show
the detection on generated SR (super-resolution) images (15 cm/pixel). The first row of this figure
represents the COWC (car overhead with context) dataset [31], and the second row represents the
OGST (oil and gas storage tank) dataset [32]. AP (average precision) values versus different IoU
(intersection over union) values for the LR test set and generated SR images from the LR images are
shown in (III) for both the datasets. We use FRCNN (faster region-based CNN) detector on LR images
for detection. Then instead of using LR images directly, we use our proposed end-to-end EESRGAN
(edge-enhanced SRGAN) and FRCNN architecture (EESRGAN-FRCNN) to generate SR images and
simultaneously detect objects from the SR images. The red bounding boxes represent true positives,
and yellow bounding boxes represent false negatives. IoU = 0.75 is used for detection.

1.2. Contributions of Our Method

Our proposed architecture consists of two parts: EESRGAN network and a detector network.
Our approach is inspired by EEGAN and ESRGAN networks and showed a remarkable improvement
over EEGAN to generate visually pleasing SR satellite images with enough edge information.
We employed a generator subnetwork, a discriminator subnetwork, and an edge-enhancement
subnetwork [22] for the SR network. For the generator and edge-enhancement network, we used
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residual-in-residual dense blocks (RRDB) [21]. These blocks contain multi-level residual networks
with dense connections that showed good performance on image enhancement.

We used a relativistic discriminator [33] instead of a normal discriminator. Besides GAN loss
and discriminator loss, we employed Charbonnier loss [34] for the edge-enhancement network.
Finally, we used different detectors [8,10] to detect small objects from the SR images. The detectors
acted like the discriminator as we backpropagated the detection loss into the SR network and,
therefore, it improved the quality of the SR images.

We created the oil and gas storage tank (OGST) dataset [32] from satellite imagery (Bing map),
which has 30 cm and 1.2 m GSD. The dataset contains labeled oil and gas storage tanks from the
Canadian province of Alberta, and we detected the tanks on SR images. Detection and counting of
the tanks are essential for the Alberta Energy Regulator (AER) [35] to ensure safe, efficient, orderly,
and environmentally responsible development of energy resources. Therefore, there is a potential use
of our method for detecting small objects from LR satellite imagery. The OGST dataset is available on
Mendeley [32].

In addition to the OGST dataset, we applied our method on the publicly available car overhead
with context (COWC) [31] dataset to compare the performance of detection for varying use-cases.
During training, we used HR and LR image pairs but only required LR images for testing. Our method
outperformed standalone state-of-the-art detectors for both datasets.

The remainder of this paper is structured as follows. We discuss related work in Section 2.
In Section 3, we introduce our proposed method and describe every part of the method. The description
of datasets and experimental results are shown in Section 4, final discussion is stated in Section 5 and
Section 6 concludes our paper with a summary.

2. Related Works

Our work consists of an end-to-end edge enhanced image SR network with an object detector
network. In this section, we discuss existing methods related to our work.

2.1. Image Super-Resolution

Many methods were proposed on SR using deep CNNs. Dong et al. proposed super-resolution
CNN (SRCNN) [17] to enhance LR images in an end-to-end training outperforming previous SR
techniques. The deep CNNs for SR evolved rapidly, and researchers introduced residual blocks [20],
densely connected networks [36], and residual dense block [37] for improving SR results. He et al. [38]
and Lim et al. [39] used deep CNNs without the batch normalization (BN) layer and observed
significant performance improvement and stable training with a deeper network. These works were
done on natural images.

Liebel et al. [40] proposed deep CNN-based SR network for multi-spectral remote sensing
imagery. Jiang et al. [22] proposed a new SR architecture for satellite imagery that was based on
GAN. They introduced an edge-enhancement subnetwork to acquire smooth edge details in the final
SR images.

2.2. Object Detection

Deep learning-based object detectors can be categorized into two subgroups, region-based CNN
(R-CNN) models that employ two-stage detection and uniform models using single stage detection [41].
Two-stage detectors comprise of R-CNN [42], Fast R-CNN [43], Faster R-CNN [8] and the most used
single stage detectors are SSD [10], You only look once (YOLO) [11] and RetinaNet [9]. In the first stage
of a two-stage detector, regions of interest are determined by selective search or a region proposal
network. Then, in the second stage, the selected regions are checked for particular types of objects
and minimal bounding boxes for the detected objects are predicted. In contrast, single-stage detectors
omit the region proposal network and run detection on a dense sampling of all possible locations.
Therefore, single-stage detectors are faster but, usually less accurate. RetinaNet [9] uses a focal loss
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function to deal with the data imbalance problem caused by many background objects and often
showed similar performance as the two-stage approaches.

Many deep CNN-based object detectors were proposed on remote sensing imagery to detect and
count small objects, such as vehicles [13,44,45]. Tayara et al. [13] introduced a convolutional regression
neural network to detect vehicles from satellite imagery. Furthermore, a deep CNN-based detector was
proposed [44] to detect multi oriented vehicles from remote sensing imagery. A method combining
a deep CNN for feature extraction and a support vector machine (SVM) for object classification was
proposed [45]. Ren et al. [46] modified the faster R-CNN detector to detect small objects in remote
sensing images. They changed the region proposal network and incorporated context information into
the detector. Another modified faster R-CNN detector was proposed by Tang et al. [47]. They used
a hyper region proposal network to improve recall and used a cascade boosted classifier to verify
candidate regions. This classifier can reduce false detection by mining hard negative examples.

An SSD-based end-to-end airplane detector with transfer learning was proposed,
where, the authors used a limited number of airplane images for training [48]. They also
proposed a method to solve the input size restrictions by dividing a large image into smaller tiles.
Then they detected objects on smaller tiles and finally, mapped each image tile to the original image.
They showed that their method performed better than the SSD model. In [49], the authors showed that
finding a suitable parameter setting helped to boost the object detection performance of convolutional
neural networks on remote sensing imagery. They used YOLO [11] as object detector to optimize the
parameters and infer the results.

In [3], the authors detected conifer seedlings along recovering seismic lines from drone imagery.
They used a dataset from different seasons and used faster R-CNN to infer the detection accuracy.
There is another work [50] related to plant detection, where authors detected palm trees from satellite
imagery using sliding window techniques and an optimized convolutional neural network.

Some works produced excellent results in detecting small objects. Lin et al. [51] proposed feature
pyramid networks, which is a top-down architecture with lateral connections. The architecture could
build high-level semantic feature maps at all scales. These feature maps boosted the object detection
performance, especially for small object detection, when used as a feature extractor for faster R-CNN.
Inspired by the receptive fields in human visual systems, Liu et al. [52] proposed a receptive field block
(RFB) module that used the relationship between the size and eccentricity of receptive fields to enhance
the feature discrimination and robustness. Hence, the module increased the detection performance of
objects with various sizes when used as the replacement of the top convolutional layers of SSD.

A one-stage detector called single-shot refinement neural network (RefineDet) [53] was proposed
to increase the detection accuracy and also enhance the inference speed. The detector worked well
for small object detection. RefineDet used two modules in its architecture: an anchor refinement
module to remove negative anchors and an object detection module that took refined anchors as the
input. The refinement helped to detect small objects more efficiently than previous methods. In [54],
feature fusion SSD (FSSD) was proposed where features from different layers with different scales
were concatenated together, and then some downsampling blocks were used to generate new feature
pyramids. Finally, the features were fed to multibox detector for prediction. The feature fusion in FSSD
increased the detection performance for both large and small objects. Zhu et al. [55] trained single-shot
object detectors from scratch and obtained state-of-the-art performance on various benchmark datasets.
They removed the first downsampling layer of SSD and introduced root block (with modified
convolutional filters) to exploit more local information from an image. Therefore, the detector was able
to extract powerful features for small object detection.

All of the aforementioned works were proposed for natural images. A method related to small
object detection on remote sensing imagery was proposed by Yang et al. [56]. They used modified
faster R-CNN to detect both large and small objects. They proposed rotation dense feature pyramid
networks (R-DFPN), and the use of this network helped to improve the detection performance of
small objects.
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There is an excellent review paper by Zhao et al. [57], where the authors showed a thorough review
of object detectors and also showed the advantages and disadvantages of different object detectors.
The effect of object size was also discussed in the paper. Another survey paper about object detection
in remote sensing images by Li et al. [58] showed review and comparison of different methods.

2.3. Super-Resolution Along with Object Detection

The positive effects of SR on object detection tasks was discussed in [5] where the authors used
remote sensing datasets for their experiments. Simultaneous CNN-based image enhancement with
object detection using single-shot multibox detector (SSD) [10] was done in [59]. Haris et al. [60]
proposed a deep CNN-based generator to generate a HR image from a LR image and then used a
multi-task network as a discriminator and also for localization and classification of objects. These
works were done on natural images, and LR and HR image pairs were required. In another work [12],
a method using simultaneous super-resolution with object detection on satellite imagery was proposed.
The SR network in this approach was inspired by the cycle-consistent adversarial network [61].
A modified faster R-CNN architecture was used to detect vehicles from enhanced images produced by
the SR network.

3. Method

In this paper, we aim to improve the detection performance of small objects on remote sensing
imagery. Towards this goal, we propose an end-to-end network architecture that consists of two
modules: A GAN-based SR network and a detector network. The whole network is trained in an
end-to-end manner and HR and LR image pairs are needed for training.

The SR network has three components: generator (G), discriminator (DRa), and edge-enhancement
network (EEN). Our method uses end-to-end training as the gradient of the detection loss from the
dectector is backpropagated into the generator. Therefore, the detector also works like a discriminator
and encourages the generator G to generate realistic images similar to the ground truth. Our entire
network structure can also be divided into two parts: A generator consisting of the EEN and a
discriminator, which includes the DRa and the detector network. In Figure 2, we show the role of the
detector as a discriminator.

Figure 2. Overall network architecture with a generator and a discriminator module.
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The generator G generates intermediate super-resolution (ISR) images, and then final SR images
are generated after applying the EEN network. The discriminator (DRa) discriminates between ground
truth (GT) HR images and ISR. The inverted gradients of DRa are backpropagated into the generator
G in order to create SR images allowing for accurate object detection. Edge information is extracted
from ISR, and the EEN network enhances these edges. Afterwards, the enhanced edges are again
added to the ISR after subtracting the original edges extracted by the Laplacian operator and we get
the output SR images with enhanced edges. Finally, we detect objects from the SR images using the
detector network.

We use two different loss functions for EEN: one compares the difference between SR and ground
truth images, and the other compares the difference between the extracted edge from ISR and ground
truth. We also use the VGG19 [62] network for feature extraction that is used for perceptual loss [21].
Hence, it generates more realistic images with more accurate edge information. We divide the whole
pipeline as a generator, and a discriminator, and these two components are elaborated in the following.

3.1. Generator

Our generator consists of a generator network G and an edge-enhancement network EEN. In this
section, we describe the architectures of both networks and the corresponding loss function.

3.1.1. Generator Network G

We use the generator architecture from ESRGAN [21], where all batch normalization (BN) layers
are removed, and RRDB is used. The overall architecture of generator G is shown in Figure 3, and the
RRDB is depicted in Figure 4.

Inspired by the architecture of ESRGAN, we remove BN layers to increase the performance of the
generator G and to reduce the computational complexity. The authors of ESRGAN also state that the
BN layers tend to introduce unpleasant artifacts and limit the generalization ability of the generator
when the statistics of training and testing datasets differ significantly.

We use RRDB as the basic blocks of the generator network G that uses a multi-level residual
network with dense connections. Those dense connections increase network capacity, and we also use
residual scaling to prevent unstable conditions during the training phase [21]. We use the parametric
rectified linear unit (PReLU) [38] for the dense blocks to learn the parameter with the other neural
network parameters. As discriminator (DRa), we employ a relativistic average discriminator similar to
the work represented in [21].

In Equations (1) and (2), the relativistic average discriminator is formulated for our architecture.
Our generator G depends on the discriminator DRa, and hence we briefly discuss the discriminator
DRa here and then, describe all details in Section 3.2. The discriminator predicts the probability that a
real image (IHR) is relatively more realistic than a generated intermediate image (IISR).

DRa(IHR, IISR) = σ(C(IHR)−EIISR [C(IISR)]) −→ 1 More Realistic than fake data? (1)

DRa(IISR, IHR) = σ(C(IISR)−EIHR [C(IHR)]) −→ 0 Less realistic than real data? (2)

In Equations (1) and (2), σ, C(·) and EIISR represents the sigmoid function, discriminator output
and operation of calculating mean for all generated intermediate images in a mini-batch. The generated
intermediate images are created by the generator where IISR = G(ILR). It is evident from Equation (3)
that the adversarial loss of the generator contains both IHR and IISR and hence, it benefits from the
gradients of generated and ground truth images during the training process. The discriminator loss is
depicted in Equation (4).

LRa
G = −EIHR [log(1 − DRa(IHR, IISR))]−EIISR [log(DRa(IISR, IHR))] (3)

LRa
D = −EIHR [log(DRa(IHR, IISR))]−EIISR [log(1 − DRa(IISR, IHR))] (4)
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We use two more losses for generator G: one is perceptual loss (Lpercep), and another is content loss
(L1) [21]. The perceptual loss is calculated using the feature map (vgg f ea(·)) before the activation layers
of a fine-tuned VGG19 [62] network, and the content loss calculates the 1-norm distance between IISR
and IHR. Perceptual loss and content loss is shown in Equations (5) and (6).

Lpercep = EILR ||vgg f ea(G(ILR)− vgg f ea(IHR)||1 (5)

L1 = EILR ||G(ILR)− IHR||1 (6)

Figure 3. Generator G with RRDB (residual-in-residual dense blocks), convolutional and
upsampling blocks.

(a) RRDB from generator.

(b) Dense block from RRDB.

Figure 4. Internal diagram of RRDB (residual-in-residual dense blocks).
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3.1.2. Edge-Enhancement Network EEN

The EEN network removes noise and enhances the extracted edges from an image. An overview
of the network is depicted in Figure 5. In the beginning, Laplacian operator [28] is used to extract
edges from the input image. After the edge information is extracted, it is passed through convolutional,
RRDB, and upsampling blocks. There is a mask branch with sigmoid activation to remove edge noise
as described in [22]. Finally, the enhanced edges are added to the input images where the edges
extracted by the Laplacian operator were subtracted.

The EEN network is similar to the edge-enhancement subnetwork proposed in [22] with two
improvements. First, we replace the dense blocks with RRDB. The RRDB shows improved performance
according to ESRGAN [21]. Hence, we replace the dense block for improved performance of the EEN
network. Secondly, we introduce a new loss term to improve the reconstruction of the edge information.

Figure 5. Edge-enhancement network where input is an ISR (intermediate super-resolution) image and
output is a SR (super-resolution) image.

In [22], authors extracted the edge information from IISR and enhanced the edges using an
edge-enhancement subnetwork which is afterwards added to the edge-subtracted IISR. To train the
network, [22] proposed to use Charbonnier loss [34] between the IISR and IHR. This function is
called consistency loss for images (Limg_cst) and helps to get visually pleasant outputs with good edge
information. However, sometimes the edges of some objects are distorted and produce some noises and
consequently, do not give good edge information. Therefore, we introduce a consistency loss for the
edges (Ledge_cst) as well. To compute Ledge_cst we evaluate the Charbonnier loss between the extracted
edges (Iedge_SR) from ISR and the extracted edges (Iedge_HR) from IHR. The two consistency losses
are depicted in Equations (7) and (8) where ρ(·) is the Charbonnier penalty function [63]. The total
consistency loss is finally calculated for both images and edges by summing up the individual loss.
The loss of our EEN is shown in Equation (9).

Limg_cst = EISR [ρ(IHR − ISR)] (7)

Ledge_cst = EIedge_SR [ρ(Iedge_HR − Iedge_SR)] (8)

Leen = Limg_cst + Ledge_cst (9)

Finally, we get the overall loss for the generator module by adding the losses of the generator G
and the EEN network. The overall loss for the generator module is shown in Equation (10) where λ1,
λ2, λ3, and λ4 are the weight parameters to balance different loss components. We empirically set the
values as λ1 = 1, λ2 = 0.001, λ3 = 0.01, and λ4 = 5.

LG_een = λ1Lpercep + λ2LRa
G + λ3L1 + λ4Leen (10)

199



Remote Sens. 2020, 12, 1432

3.2. Discriminator

As described in the previous section, we use the relativistic discriminator DRa for training
the generator G. The architecture of the discriminator is taken from ESRGAN [21] which employs
the VGG-19 [62] architecture. We use Faster R-CNN [8] and SSD [10] for our detector networks.
The discriminator (DRa) and the detector network jointly act as discriminator for the generator module.
We briefly describe these two detectors in the next two sections.

3.2.1. Faster R-CNN

The Faster R-CNN [8] is a two-stage object detector and contains two networks: a region proposal
network (RPN) to generate region proposals from an image and another network to detect objects
from these proposals. In addition, the second network also tries to fit the bounding boxes around the
detected objects.

The task of the RPN is to return image regions that have a high probability of containing an
object. The RPN network uses a backbone network such as VGG [62], ResNet, or ResNet with feature
pyramid network [51]. These networks are used as feature extractors, and different types of feature
extractors can be chosen based on their performance on public datasets. We use ResNet-50-FPN [51] as
a backbone network for our faster R-CNN. We use this network because it displayed a higher precision
than VGG-19 and ResNet-50 without FPN (especially for small object detection) [51]. Even though the
use of a larger network might lead to a further performance improvement, we chose ResNet-50-FPN
due to its comparably moderate hardware requirements and more efficient convergence times.

After the RPN, there are two branches for detection: a classifier and a regressor. The classification
branch is responsible for classifying a proposal to a specific object, and the regression branch finds
the accurate bounding box of the object. In our case, both datasets contain objects with only one class,
and therefore, our classifier infers only two classes: the background class and the object class.

3.2.2. SSD

The SSD [10] is a single-shot multibox detector that detects objects in a single stage.
Here, single-stage means that classification and localization are done in a single forward pass through
the network. Like Faster R-CNN, SSD also has a feature extractor network, and different types of
networks can be used. To serve the primary purpose of SSD, which is speed, we use VGG-16 [62]
as a feature extractor network. After this network, SSD has several convolutional feature layers of
decreasing sizes. This representation can seem like a pyramid representation of images at different
scales. Therefore, the detection of objects happens in every layer, and finally, we get the object detection
output as class values and coordinates of bounding boxes.

3.2.3. Loss of the Discriminator

The relativistic discriminator loss (LRa
D ) is already described in the previous section and depicted

in Equation (4). This loss is added to the detector loss to get the final discriminator loss.
Both Faster R-CNN and SSD have similar regression/localization losses but different classification

losses. For regression/localization, both use smooth L1 [8] loss between detected and ground truth
bounding box coordinates (t∗). Classification (Lcls_ f rcnn) and regression loss (Lreg_ f rcnn) and overall
loss (Ldet_ f rcnn) of Faster R-CNN are given in the following:

Lcls_ f rcnn = EILR [− log(Detcls_ f rcnn(GG_een(ILR)))] (11)

Lreg_ f rcnn = EILR [smoothL1(Detreg_ f rcnn(GG_een(ILR)), t∗)] (12)

Ldet_ f rcnn = Lcls_ f rcnn + λLreg_ f rcnn (13)
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Here, λ is used to balance the losses, and it is set to 1 empirically. Detcls_ f rcnn and Detreg_ f rcnn are
the classifier and regressor for the Faster R-CNN. Classification (Lcls_ssd), regression loss (Lreg_ssd) and
overall loss (Ldet_ssd) of SSD are as following:

Lcls_ssd = EILR [− log(so f tmax(Detcls_ssd(GG_een(ILR))))] (14)

Lreg_ssd = EILR [smoothL1(Detreg_ssd(GG_een(ILR)), t∗)] (15)

Ldet_ssd = Lcls_ssd + αLreg_ssd (16)

Here, α is used to balance the losses, and it is set to 1 empirically. Detcls_ssd and Detreg_ssd are the
classifier and regressor for the SSD.

3.3. Training

Our architecture can be trained in separate steps or jointly in an end-to-end way. We discuss the
details of these two types of training in the next two sections.

3.3.1. Separate Training

In separate training, we train the SR network (generator module and discriminator DRa)
and the detector separately. Detector loss is not backpropagated to the generator module.
Therefore, the generator is not aware of the detector and thus, it only gets feedback from the
discriminator DRa. For example, in Equation (11), no error is backpropagated to the GG_een network
(the network is detached during the calculation of the detector loss) while calculating the loss Lcls_ f rcnn.

3.3.2. End-to-End Training

In end-to-end training, we train the whole architecture end-to-end that means the detector loss is
backpropagated to the generator module. Therefore, the generator module revceives gradients from
both detector and discriminator DRa. We get the final discriminator loss (LD_det) as following:

LD_det = LRa
D + ηLdet (17)

Here, η is the parameter to balance the contribution of the detector loss and we empirically set
it to 1. Detection loss from SSD or Faster R-CNN is denoted by Ldet. Finally, we get an overall loss
(Loverall) for our architecture as follows.

Loverall = LG_een + LD_det (18)

4. Experiments

As mentioned above, we trained our architecture separately and in an end-to-end manner.
For separate training, we first trained the SR network until convergence and then trained the detector
networks based on the SR images. For end-to-end training, we also employed separate training as
pre-training step for weight initialization. Afterwards SR and object detection networks were jointly
trained, i.e., the gradients from the the object detector were propagated into the generator network.

In the training process, the learning rate was set to 0.0001 and halved after every 50 K iterations.
The batch size was set to 5. We used Adam [64] as optimizer with β1 = 0.9, β2 = 0.999 and updated the
whole architecture weights until convergence. We used 23 RRDB blocks for the generator G and five
RRDB blocks for the EEN network. We implemented our architecture with the PyTorch framework [65]
and trained/tested using two NVIDIA Titan X GPUs. The end-to-end training with COWC took 96 h for
200 epochs. The average inference speed using faster R-CNN was approximately four images/second
and seven images/second for SSD. Our implementation can be found in GitHub [66].
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4.1. Datasets

4.1.1. Cars Overhead with Context Dataset

Cars overhead with context (COWC) dataset [31] contains 15 cm (one pixel cover 15 cm distance at
ground level) satellite images from six different regions. The dataset contains a large number of unique
cars and covers regions from Toronto in Canada, Selwyn in New Zealand, Potsdam and Vaihingen in
Germany, Columbus and Utah in the United States. Out of these six regions, we used the dataset from
Toronto and Potsdam. Therefore, when we refer to the COWC dataset, we refer to the dataset from
these two regions. There are 12,651 cars in our selected dataset. The dataset contains only RGB images,
and we used these images for training and testing.

We used 256-by-256 image tiles, and every image tile contains at least one car. The average length
of a car was between 24 and 48 pixels, and the width was between 10 and 20 pixels. Therefore, the area
of a car was between 240 and 960 pixels, which can be considered as a small object relative to the other
large satellite objects. We used bi-cubic downsampling to generate LR images from the COWC dataset.
The downscale factor was 4×, and therefore, we had 64 pixels to 64 pixels size for LR images. We had
a text file associated with each image tile containing the coordinates of the bounding box for each car.

Our experiments considered the dataset having only one class, car, and did not consider any
other type of object. Figure 6 shows examples from the COWC dataset. We experimented with
a total of 3340 tiles for training and testing. Our train/test split was 80%/20%, and the training
set was further divided into a training and a validation set by an 80% to 20% ratio. We trained
our end-to-end architecture with an augmented training dataset with random horizontal flips and
ninety-degree rotations.

(a) LR image (b) HR image (c) GT image

Figure 6. COWC (car overhead with context) dataset: LR-HR (low-resolution and high-resolution)
image pairs are shown in (a,b) and GT (ground truth) images with bounding boxes for cars are in (c).
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4.1.2. Oil and Gas Storage Tank Dataset

The oil and gas storage tank (OGST) dataset has been complied in Alberta Geological Survey
(AGS) [67], a branch of the Alberta Energy Regulatory (AER) [35]. AGS provides geoscience
information and support to AER’s regulatory functions on energy developments to be carried out in a
manner to ensure public and environmental safety. To assist AER with sustainable land management
and compliance assurance [68], AGS is utilizing remote sensing imagery for identifying the number of
oil and gas storage tanks inside well pad footprints in Alberta.

While the SPOT-6 satellite imagery at 1.5 m pixel resolution provided by the AGS has sufficient
quality and details for many regulatory functions, it is difficult to detect small objects within well
pads, e.g., oil and gas storage tanks with ordinary object detection methods. The diameter of a typical
storage tank is about 3 m and their placements are usually vertical and side-by-side with less than
2 m. To train our architecture for this use-case, we needed a dataset for providing pairs of low and
high-resolution images. Therefore, we have created the OGST dataset using free imagery from the
Bing map [69].

The OGST dataset contains 30 cm resolution remote sensing images (RGB) from the Cold Lake Oil
Sands region of Alberta, Canada where there is a high level of oil and gas activities and concentration
of well pad footprints. The dataset contains 1671 oil and gas storage tanks from this area.

We used 512-by-512 image tiles, and there was no image without any oil and gas storage tank in
our experiment. The average area covered by an individual tank was between 800 and 1600 pixels.
Some industrial tanks were large, but most of the tanks covered small regions on the imagery.
We downscaled the HR images using bi-cubic downsampling with the factor of 4×, and therefore,
we got a LR tile of size 128-by-128 pixels. Every image tile was associated with a text file containing
the coordinates of the bounding boxes for the tanks on a tile. We have showed examples from the
OGST dataset in Figure 7.

(a) LR image (b) HR image (c) GT image

Figure 7. OGST (oil and gas storage tank) dataset: LR-HR (low-resolution and high-resolution) image
pairs are shown in (a,b) and GT (ground truth) images with bounding boxes for oil and gas storage
tanks are in (c).
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As with the COWC dataset, our experiments considered one unique class here, tank, and we had a
total of 760 tiles for training and testing. We used a 90%/10% split for our train/test data. The training
data was further divided by 90%/10% for the train/validation split. The percentage of training data
was higher here compared to the previous dataset to increase the training data because of the smaller
size of the dataset. The dataset is available at [66].

4.2. Evaluation Metrics for Detection

We obtained our detection output as bounding boxes with associated classes. To evaluate
our results, we used average precision (AP), and calculated intersection over union (IoU),
precision, and recall for obtaining AP.

We denote the set of correctly detected objects as true positives (TP) and the set of falsely detected
objects of false positives (FP). The precision is now the ratio between the number of TPs relative to all
predicted objects:

Precision =
|TP|

|TP|+ |FP| (19)

We denote the set of objects which are not detected by the detector as false negatives (FN).
Then, the recall is defined as the ratio of detected objects (TP) relative to the number of all objects in
the data set:

Recall =
|TP|

|TP|+ |FN| (20)

To measure the localization error of predicted bounding boxes, IoU computes the overlap between
two bounding boxes: the detected and the ground truth box. If we take all the boxes that have an
IoU ≥ τ as TP and consider all other detections as FP, then we get the precision at τ IoU. If we now
vary τ from 0.5 to 0.95 IoU with a step size of 0.05, we receive ten different precision values which
can be combined into the average precision (AP) at IoU = 0.5:0.95 [8]. Let us note that in the case of
multi-class classification, we would need to compute the AP for object each class separately. To receive
a single performance measure for object detection, the mean AP (mAP) is computed which is the most
common performance measure for object detection quality.

In this paper, both of our datasets only contain single class, and hence, we used AP as our
evaluation metric. We mainly showed the results of AP at IoU = 0.5:0.95 as our method performed
increasingly better compared to other models when we increased the IoU values for AP calculation.
We show this trend in Section 4.3.4.

4.3. Results

4.3.1. Detection without Super-Resolution

We ran the two detectors to document the object detection performance on both LR and HR
images. We used SSD with vgg16 [62] network and Faster R-CNN (FRCNN) with ResNet-50-FPN [51]
detector. We trained the two models with both HR and 4×-downscaled LR images. Testing was also
done with both HR and LR images.

In Table 1, we show the results of the detection performance of the detectors with different
train/test combinations. When we only used LR images for both training and testing, we observed
64% AP for Faster R-CNN. When training on HR images and testing with LR images, the accuracy
dropped for both detectors. We also added detection results (using LR images for training/testing) for
both the datasets using SSD with RFB modules (SSD-RFB) [52], where accuracy slightly increased from
the base SSD.

The last two rows in Table 1 depict the accuracy of both detectors when training and testing on
HR images. We have achieved up to 98% AP with the Faster R-CNN detector. This, shows the large
impact of the resolution to the object detection quality and sets a natural upper bound on how close a
SR-based method can get when working on LR images. In the next sections, we demonstrate that our
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approaches considerably improve the detection rate on LR imagery and get astonishingly close to the
performance of directly working on HR imagery.

Table 1. Detection on LR (low-resolution) and HR (high-resolution) images without using
super-resolution. Detectors are trained with both LR and HR images and AP (average precision)
values are calculated using 10 different IoUs (intersection over union).

Model
Training Image
Resolution-Test

Image Resolution

COWC Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-15 cm)

OGST Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-30 cm)

SSD
LR-LR 61.9% 76.5%

HR-LR 58% 75.3%

FRCNN
LR-LR 64% 77.3%

HR-LR 59.7% 75%

SSD-RFB LR-LR 63.1% 76.7%

SSD HR-HR 94.1% 82.5%

FRCNN HR-HR 98% 84.9%

4.3.2. Separate Training with Super-Resolution

In this experiment, we created 4× upsampled images from the LR input images using bicubic
upsampling and different SR methods. Let us note that no training was needed for applying bicubic
upsampling since it is a parameter free function. We used the SR images as test data for two types
of detectors. We compared three GAN architectures for generating SR images, our new EESRGAN
architecture, ESRGAN [21] and EEGAN [22]. Each network was trained separately on the training
set before the object detector was trained. For the evaluation, we again compared detectors being
trained on the SR images from the particular architecture and detectors being directly trained on the
HR images.

In Table 2, the detection output of the different combinations of SR methods and detectors is shown
with the different combinations of train/test pairs. As can be seen, our new EESRGAN architecture
displayed the best results already getting close to the detection rates which could be observed when
working with HR images only. However, after training EESRGAN can be directly applied to LR
imagery where no HR data is available and still achieved very good results. Furthermore, we could
observe that other SR methods EEGAN and ESRGAN have already improved the AP considerably
when used for preprocessing of LR images. However, for both data sets, EESRGAN have outperformed
the other two methods.

Table 2. Detection on SR (super-resolution) images with separately trained SR network. Detectors are
trained with both SR and HR (high-resolution) images and AP (average precision) values are calculated
using 10 different IoUs (intersection over union).

Model
Training Image
Resolution-Test

Image Resolution

COWC Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-15 cm)

OGST Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-30 cm)

Bicubic + SSD
SR-SR 72.1% 77.6%

HR-SR 58.3% 76%

Bicubic + FRCNN
SR-SR 76.8% 78.5%

HR-SR 61.5% 77.1%
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Table 2. Cont.

Model
Training Image
Resolution-Test

Image Resolution

COWC Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-15 cm)

OGST Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-30 cm)

EESRGAN + SSD
SR-SR 86% 80.2%

HR-SR 83.1% 79.4%

EESRGAN + FRCNN
SR-SR 93.6% 81.4%

HR-SR 92.9% 80.6%

ESRGAN + SSD
SR-SR 85.8% 80.2%

HR-SR 82.5% 78.9%

ESRGAN + FRCNN
SR-SR 92.5% 81.1%

HR-SR 91.8% 79.3%

EEGAN + SSD
SR-SR 86.1% 79.1%

HR-SR 83.3% 77.5%

EEGAN + FRCNN
SR-SR 92% 79.9%

HR-SR 91.1% 77.9%

4.3.3. End-to-End Training with Super-Resolution

We trained our EESRGAN network and detectors end-to-end for this experiment.
The discriminator (DRa), and the detectors jointly acted as a discriminator for the entire architecture.
Detector loss was backpropagated to the SR network, and therefore, the loss contributed to the
enhancement of LR images. At training time, LR-HR image pairs were used to train the EEGAN part,
and then the generated SR images were sent to the detector for training. At test time, only the LR
images were fed to the network. Our architecture first generated a SR image of the LR input before
object detection was performed.

We also compared our results with different architectures. We used ESRGAN [21] and EEGAN [22]
with the detectors for comparison. Table 3 clearly shows that our method delivers superior results
compared to others.

Table 3. Detection with end-to-end SR (super-resolution) network. Detectors are trained with SR images
and AP (average precision) values are calculated using 10 different IoUs (intersection over union).

Model
Training Image
Resolution-Test

Image Resolution

COWC Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-15 cm)

OGST Dataset
(Test Results)

(AP at IoU = 0.5:0.95)
(Single Class-30 cm)

EESRGAN + SSD SR-SR 89.3% 81.8%

EESRGAN + FRCNN SR-SR 95.5% 83.2%

ESRGAN + SSD SR-SR 88.5% 81.1%

ESRGAN + FRCNN SR-SR 93.6% 82%

EEGAN + SSD SR-SR 88.1% 80.8%

EEGAN + FRCNN SR-SR 93.1% 81.3%
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4.3.4. AP Versus IoU Curve

We have calculated the AP values on different IoUs. In Figure 8, we plot the AP versus IoU curves
for our datasets. The performance of EESRGAN-FRCNN, end-to-end EESRGAN-FRCNN, and FRCNN
is shown in the figure. The end-to-end EESRGAN-FRCNN network has performed better than the
separately trained network. The difference is most evident for the higher IoUs on the COWC dataset.

Our results indicate excellent performance compared to the highest possible AP values obtained
from standalone FRCNN (trained and tested on HR images).

The OGST dataset has displayed less performance variation compared to the COWC dataset.
The object size of the OGST dataset is larger than that of the COWC dataset. Therefore, the performance
difference was not similar to the COWC dataset when we compared between standalone FRCNN and
our method on the OGST dataset. To conclude, training our new architecture in an end-to-end manner
has displayed an improvement for both the datasets.
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(a) COWC dataset
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Figure 8. AP-IoU (average precision-intersection over union) curves for the datasets. Plotted results
show the detection performance of standalone faster R-CNN on HR (high-resolution) images and our
proposed method (with and without end-to-end training) on SR (super-resolution) images.

4.3.5. Precision Versus Recall

In Figure 9, precision-recall curves are shown for both of our datasets. The precision-recall curve
for COWC dataset is depicted in Figure 9a,b represents the curve for OGST dataset. For each dataset,
we plot the curves for standalone faster R-CNN with LR training/testing images, and our method
with/without end-to-end training. We used IoU = 0.5 to calculate precision and recall.

The precision-recall curves for both datasets show that our method has higher precision values
in higher recall values compared to the standalone faster R-CNN models. Our models with
end-to-end training performed better than our models without the end-to-end training. In particular,
the end-to-end models have detected more than 99% of the cars with 96% AP in the COWC dataset.
For the OGST dataset, our end-to-end models have detected more than 81% of the cars with 97% AP.

4.3.6. Effects of Dataset Size

We trained our architecture with different training set sizes and tested with a fixed test set.
In Figure 10, we plot the AP values (IoU = 0.5:0.95) against different numbers of labeled objects for both
of our datasets (training data). We used five different dataset sizes: {500, 1000, 3000, 6000, 10, 000 (cars)}
and {100, 200, 400, 750, 1491 (tanks)} to train our model with and without the end-to-end setting.
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Figure 9. Precision-recall curve for the datasets. Plotted results show the detection performance of
standalone faster R-CNN on LR (low-resolution) images and our proposed method (with and without
end-to-end training) on SR (super-resolution) images.

We got the highest AP value of 95.5% with our full COWC training dataset (10,000 cars), and we
used the same test dataset (1000 cars) for all combinations of the training dataset (with end-to-end
setting). We also used another set of 1000 labeled cars for validation. Using 6000 cars, we got an AP
value near to the highest AP, as shown with the plot of AP versus dataset size (COWC). The AP value
decreased significantly when we used only 3000 labeled cars as training data. We got the lowest AP
using only 500 labeled cars, and the trend of AP was further decreasing as depicted in Figure 10a.
Therefore, we can infer that we needed around 6000 labeled cars to get precision higher than 90% for
the COWC dataset. We observed slightly lower AP values for all sizes of COWC datasets when we did
not use the end-to-end setting, and we observed higher differences between the two settings (with and
without end-to-end) when we used less than 6000 labeled cars.
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Figure 10. AP (average precision) with varying number of training sets from the datasets. Plotted
results show the detection performance of our proposed method (with and without end-to-end training)
on SR (super-resolution) images.

The OGST dataset gave 83.2% AP (with end-to-end setting) using the full training dataset
(1491 tanks), and we used 100 labeled tanks as test and same amount as validation data for all
combinations of the training dataset. We got high AP values with 50% of our full training dataset
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as depicted in Figure 10b. AP values dropped below 80% when we further decreased the training
data. Similar to the COWC datasets, we also got comparatively lower AP values for all sizes of
OGST datasets. We observed slightly higher differences between the two settings (with and without
end-to-end) when the dataset consisted of less than 400 labeled tanks, as shown in the plot of AP
versus dataset size (OGST dataset).

We used 90% of the OGST dataset for training while we used the 80% of the COWC dataset for
the same purpose. The accuracy of the testing data (OGST) slightly increased when we added more
training data, as depicted in Figure 10b. Therefore, we used a larger percentage of training data for the
OGST dataset than for the COWC dataset, and it slightly helped to improve the relatively low accuracy
of the OGST test data.

4.3.7. Enhancement and Detection

In Figure 11, we have shown our input LR images, corresponding generated SR image,
enhanced edge information and final detection. The image enhancement has helped the detectors to
get high AP values and also makes the images visually good enough to identify the objects easily. It is
evident from the figure that the visual quality of the generated SR images is quite good compared to
the corresponding LR images, and the FRCNN detector has detected most of the objects correctly.

(a) Input LR image (b) Generated SR image (c) Enhanced edge (d) Detection

Figure 11. Examples of SR (super-resolution) images that are generated from input LR (low-resolution)
images are shown in (a,b). The enhanced edges and detection results are shown in (c,d).
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4.3.8. Effects of Edge Consistency Loss (Ledge_cst)

In EEGAN [22], only image consistency loss (Limg_cst) was used for enhancing the edge
information. This loss generated edge information with noise, and as a result, the final SR images
became blurry. The blurry output with noisy edge using only Limg_cst loss is shown in Figure 12a.
The blurry final images gave lower detection accuracy compared to sharp outputs.

Therefore, we have introduced edge consistency loss (Ledge_cst) in addition to Limg_cst loss that
gives noise-free enhanced edge information similar to the edge extracted from ground truth images
and the effects of the Ledge_cst loss is shown in Figure 12b. The ground truth HR image with extracted
edge is depicted in Figure 12c.

(a) Final SR image
and enhanced edge
with Limg_cst loss

(b) Final SR image
and enhanced edge
with Limg_cst and
Ledge_cst losses

(c) Ground truth
HR image with
extracted edge

Figure 12. Effects of edge consistency loss (Ledge_cst) on final SR (super-resolution) images and
enhanced edges compared to the extracted edges from HR (high-resolution) images.

5. Discussion

The detection results of our method presented in the previous section have indicated that our
end-to-end SR-detector network improved detection accuracy compared to several other methods.
Our method outperformed the standalone state-of-the-art methods such as SSD or faster R-CNN when
implemented in low-resolution remote sensing imagery. We used EESRGAN, EEGAN, and ESRGAN
as the SR network with the detectors. We showed that our EESRGAN with the detectors performed
better than the other methods and the edge-enhancement helped to improve the detection accuracy.
The AP improvement was higher in high IoUs and not so much in the lower IoUs. We have also
showed that the precision increased with higher resolution. The improvement of AP values for the
OGST dataset was lower than that for the COWC dataset because the area covered by a tank was
slightly bigger than that of a car, and tanks sizes and colors were less diverse than the cars.

Our experimental results indicated that AP values of the output could be improved slightly with
the increase of training data. The results also demonstrated that we could use less training data for
both the datasets to get a similar level of accuracy that we obtained from our total training data.
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The faster R-CNN detector gave us the best result, but it took a longer time than an SSD detector.
If we need detection results from a vast area, then SSD would be the right choice sacrificing some
amount of accuracy.

We had large numbers of cars from different regions in the COWC dataset, and we obtained
high AP values using different IoUs. On the other hand, the OGST dataset needed more data to get
a general detection result because we used data from a specific area and for a specific season and
this was one of the limitations of our experiment. Most likely, more data from different regions and
seasons would make our method more robust for the use-case of oil and gas storage tank detection.
Another limitation of our experiment was that we showed the performance of the datasets that contain
only one class with less variation. We would be looking forward to exploring the performance of our
method on a broader range of object types and landscapes from different satellite datasets.

We have used LR-HR image pairs to train our architecture, and the LR images were generated
artificially from the HR counterparts. To our knowledge, there is no suitable public satellite dataset
that contains both real HR and real LR image pairs and ground truth bounding boxes for detecting
small objects. Therefore, we have created the LR images which do not precisely correspond to true
LR images. However, improvement of resolution through deep learning always improved object
detection performance on remote sensing images (for both artificial and real low-resolution images),
as discussed in the introduction and related works section of this paper [5]. Impressive works [61,70]
exist in literature to create realistic LR images from HR images. For future work, we are looking
forward to exploring the works to create more accurate LR images for training.

6. Conclusions

In this paper, we propose an end-to-end architecture that takes LR satellite imagery as input
and gives object detection results as outputs. Our architecture contains a SR network and a detector
network. We have used a different combination of SR systems and detectors to compare the AP
values for detection using two different datasets. Our experimental results show that the proposed
SR network with faster R-CNN has yielded the best results for small objects on satellite imagery.
However, we need to add more diverse training data in the OGST dataset to make our model robust
in detecting oil and gas storage tanks. We also need to explore diverse datasets and the techniques
to create more realistic LR images. In conclusion, our method has combined different strategies to
provide a better solution to the task of small-object detection on LR imagery.
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Abbreviations

The following acronyms are used in this paper:

SRCNN Single image Super-Resolution Convolutional Neural Network
VDSR Very Deep Convolutional Networks
GAN Generative Adversarial Network
SRGAN Super-Resolution Generative Adversarial Network
ESRGAN Enhanced Super-Resolution Generative Adversarial Network
EEGAN Edge-Enhanced Generative Adversarial Network
EESRGAN Edge-Enhanced Super-Resolution Generative Adversarial Network
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RRDB Residual-in-Residual Dense Blocks
EEN Edge-Enhancement Network
SSD Single-Shot MultiBox Detector
YOLO You Only Look Once
CNN Convolutional Neural Network
R-CNN Region-based Convolutional Neural Network
FRCNN Faster Region-based Convolutional Neural Network
VGG Visual Geometry Group
BN Batch Normalization
MSCOCO Microsoft Common Objects in Context
OGST Oil and Gas Storage Tank
COWC Car Overhead With Context
GSD Ground Sampling Distance
G Generator
D Discriminator
ISR Intermediate Super-Resolution
SR Super-Resolution
HR High-Resolution
LR Low-Resoluton
GT Ground Truth
FPN Feature Pyramid Network
RPN Region Proposal Network
AER Alberta Energy Regulator
AGS Alberta Geological Survey
AP Average Precision
IoU Intersection over Union
TP True Positive
FP False Positive
FN False Negative
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16. Ok, A.O.; Başeski, E. Circular oil tank detection from panchromatic satellite images: A new automated
approach. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1347–1351. [CrossRef]

17. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [CrossRef] [PubMed]

18. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 26 June–1 July 2016. [CrossRef]

19. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

20. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017. [CrossRef]

21. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution
Generative Adversarial Networks. In Proceedings of the Computer Vision—ECCV 2018 Workshops,
Munich, Germany, 8–14 September 2018; pp. 63–79._5. [CrossRef]

22. Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-Enhanced GAN for Remote Sensing Image
Superresolution. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5799–5812. [CrossRef]

23. Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral Image Classification in the Presence of Noisy
Labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 851–865. [CrossRef]

24. Tong, F.; Tong, H.; Jiang, J.; Zhang, Y. Multiscale union regions adaptive sparse representation for
hyperspectral image classification. Remote Sens. 2017, 9, 872. [CrossRef]

25. Zhan, C.; Duan, X.; Xu, S.; Song, Z.; Luo, M. An improved moving object detection algorithm based on
frame difference and edge detection. In Proceedings of the Fourth International Conference on Image and
Graphics (ICIG 2007), Sichuan, China, 22–24 August 2007; pp. 519–523.

26. Mao, Q.; Wang, S.; Wang, S.; Zhang, X.; Ma, S. Enhanced image decoding via edge-preserving generative
adversarial networks. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo
(ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6.

27. Yang, W.; Feng, J.; Yang, J.; Zhao, F.; Liu, J.; Guo, Z.; Yan, S. Deep Edge Guided Recurrent Residual Learning
for Image Super-Resolution. IEEE Trans. Image Process. 2017, 26, 5895–5907. [CrossRef] [PubMed]

28. Kamgar-Parsi, B.; Kamgar-Parsi, B.; Rosenfeld, A. Optimally isotropic Laplacian operator. IEEE Trans.
Image Process. 1999, 8, 1467–1472. [CrossRef]

29. Landsat 8. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-8 (accessed on 11
February 2020).

30. Sentinel-2. Available online: http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-
2 (accessed on 11 February 2020).

213



Remote Sens. 2020, 12, 1432

31. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A large contextual dataset for classification,
detection and counting of cars with deep learning. In European Conference on Computer Vision; Springer:
Cham, Switzerland, 2016; pp. 785–800.

32. Rabbi, J.; Chowdhury, S.; Chao, D. Oil and Gas Tank Dataset. In Mendeley Data, V3; 2020. Available online:
https://data.mendeley.com/datasets/bkxj8z84m9/3 (accessed on 30 April 2020). [CrossRef]

33. Jolicoeur-Martineau, A. The Relativistic Discriminator: A Key Element Missing from Standard GAN. arXiv
2018, arXiv:1807.00734.

34. Charbonnier, P.; Blanc-Féraud, L.; Aubert, G.; Barlaud, M. Two deterministic half-quadratic regularization
algorithms for computed imaging. Proc. Int. Conf. Image Process. 1994, 2, 168–172.

35. Alberta Energy Regulator. Available online: https://www.aer.ca (accessed on 5 February 2020).
36. Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings

of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
[CrossRef]

37. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018. [CrossRef]

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015. [CrossRef]

39. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image
Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

40. Liebel, L.; Körner, M. Single-image super resolution for multispectral remote sensing data using
convolutional neural networks. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 883–890.
[CrossRef]

41. Tayara, H.; Chong, K. Object detection in very high-resolution aerial images using one-stage densely
connected feature pyramid network. Sensors 2018, 18, 3341. [CrossRef]

42. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 24–27 June 2014. [CrossRef]

43. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015. [CrossRef]

44. Li, Q.; Mou, L.; Xu, Q.; Zhang, Y.; Zhu, X.X. R3-Net: A Deep Network for Multioriented Vehicle Detection in
Aerial Images and Videos. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5028–5042. [CrossRef]

45. Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M. Deep learning approach for car
detection in UAV imagery. Remote Sens. 2017, 9, 312. [CrossRef]

46. Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical remote sensing images via modified faster R-CNN.
Appl. Sci. 2018, 8, 813. [CrossRef]

47. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle detection in aerial images based on region convolutional
neural networks and hard negative example mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]

48. Chen, Z.; Zhang, T.; Ouyang, C. End-to-end airplane detection using transfer learning in remote sensing
images. Remote Sens. 2018, 10, 139. [CrossRef]

49. Radovic, M.; Adarkwa, O.; Wang, Q. Object recognition in aerial images using convolutional neural networks.
J. Imaging 2017, 3, 21. [CrossRef]

50. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for
high-resolution remote sensing images. Remote Sens. 2017, 9, 22. [CrossRef]

51. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object
Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

52. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.

214



Remote Sens. 2020, 12, 1432

53. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 4203–4212.

54. Li, Z.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960.
55. Zhu, R.; Zhang, S.; Wang, X.; Wen, L.; Shi, H.; Bo, L.; Mei, T. ScratchDet: Training single-shot object

detectors from scratch. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; pp. 2268–2277.

56. Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic ship detection in remote sensing
images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks.
Remote Sens. 2018, 10, 132. [CrossRef]

57. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural
Netw. Learn. Syst. 2019, 30, 3212–3232. [CrossRef]

58. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey
and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

59. Bai, Y.; Zhang, Y.; Ding, M.; Ghanem, B. Sod-mtgan: Small object detection via multi-task generative
adversarial network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 206–221.

60. Haris, M.; Shakhnarovich, G.; Ukita, N. Task-driven super resolution: Object detection in low-resolution
images. arXiv 2018, arXiv:1803.11316.

61. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 2223–2232.

62. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

63. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017. [CrossRef]

64. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
65. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E.,
Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035.

66. Rabbi, J. Edge Enhanced GAN with Faster RCNN for End-to-End Object Detection from Remote Sensing
Imagery. 2020. Available online: https://github.com/Jakaria08/Filter_Enhance_Detect (accessed on 28
April 2020).

67. Alberta Geological Survey. Available online: https://ags.aer.ca (accessed on 5 February 2020).
68. Chowdhury, S.; Chao, D.K.; Shipman, T.C.; Wulder, M.A. Utilization of Landsat data to quantify

land-use and land-cover changes related to oil and gas activities in West-Central Alberta from 2005 to
2013. GISci. Remote Sens. 2017, 54, 700–720. [CrossRef]

69. Bing Map. Available online: https://www.bing.com/maps (accessed on 5 February 2020).
70. Bulat, A.; Yang, J.; Tzimiropoulos, G. To learn image super-resolution, use a gan to learn how to do

image degradation first. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 185–200.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

215





remote sensing 

Article

Deep Open-Set Domain Adaptation for Cross-Scene
Classification based on Adversarial Learning and
Pareto Ranking

Reham Adayel, Yakoub Bazi *, Haikel Alhichri and Naif Alajlan

Computer Engineering Department, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; 437204127@student.ksu.edu.sa (R.A.); hhichri@ksu.edu.sa (H.A.);
najlan@ksu.edu.sa (N.A.)
* Correspondence: ybazi@ksu.edu.sa; Tel.: +966-114696297

Received: 28 April 2020; Accepted: 25 May 2020; Published: 27 May 2020

Abstract: Most of the existing domain adaptation (DA) methods proposed in the context of remote
sensing imagery assume the presence of the same land-cover classes in the source and target domains.
Yet, this assumption is not always realistic in practice as the target domain may contain additional
classes unknown to the source leading to the so-called open set DA. Under this challenging setting,
the problem turns to reducing the distribution discrepancy between the shared classes in both
domains besides the detection of the unknown class samples in the target domain. To deal with
the openset problem, we propose an approach based on adversarial learning and pareto-based
ranking. In particular, the method leverages the distribution discrepancy between the source and
target domains using min-max entropy optimization. During the alignment process, it identifies
candidate samples of the unknown class from the target domain through a pareto-based ranking
scheme that uses ambiguity criteria based on entropy and the distance to source class prototype.
Promising results using two cross-domain datasets that consist of very high resolution and extremely
high resolution images, show the effectiveness of the proposed method.

Keywords: scene classification; open-set domain adaptation; adversarial learning; min-max entropy;
pareto ranking

1. Introduction

Scene classification is the process of automatically assigning an image to a class label that describes
the image correctly. In the field of remote sensing, scene classification gained a lot of attention and
several methods were introduced in this field such as bag of word model [1], compressive sensing [2],
sparse representation [3], and lately deep learning [4]. To classify a scene correctly, effective features
are extracted from a given image, then classified by a classifier to the correct label. Early studies
of remote sensing scene classification were based on handcrafted features [1,5,6]. In this context,
deep learning techniques showed to be very efficient in terms compared to standard solutions based
on handcrafted features. Convolutional neural networks (CNN) are considered the most common
deep learning techniques for learning visual features and they are widely used to classify remote
sensing images [7–9]. Several approaches were built around these methods to boost the classification
results such as integrating local and global features [10–12], recurrent neural networks (RNNs) [13,14],
and generative adversarial networks (GANs) [15].

The number of remote sensing images has been steadily increasing over the years. These images
are collected using different sensors mounted on satellites or airborne platforms. The type of the
sensor results in different image resolutions: spatial, spectral, and temporal resolution. This leads
to huge number of images with different spatial and spectral resolutions [16]. In many real-world
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applications, the training data used to learn a model may have different distributions from the data
used for testing, when images are acquired over different locations and with different sensors. For
such purpose, it becomes necessary to reduce the distribution gap between the source and target
domains to obtain acceptable classification results [17]. The main goal of domain adaptation is to learn
a classification model from a labeled source domain and apply this model to classify an unlabeled
target domain. Several methods have been introduced related to domain adaptation in the field of
remote sensing [18–21].

The above methods assume that the sample belongs to one of a fixed number of known classes.
This is called a closed set domain adaptation, where the source and target domains have shared classes
only. This assumption is violated in many cases. In fact, many real applications follow an open
set environment, where some test samples belong to classes that are unknown during training [22].
These samples are supposed to be classified as unknown, instead of being classified to one of the
shared classes. Classifying the unknown image to one of the shared classes leads to negative transfer.
Figure 1 shows the difference between open and closed set classification. This problem is known in
the community of machine learning as open set domain adaptation. Thus, in an open set domain
adaptation one has to learn robust feature representations for the source labeled data, reduce the
data-shift problem between the source and target distributions, and detect the presence of new classes
in the target domain.

 

Figure 1. (a) Closed set domain adaptation: source and target domains share the same classes. (b) Open
set domain adaptation: target domain contains unknown classes (in the grey boxes).

Open set classification is a new research area in the remote sensing field. Few works have
introduced the problem of open set. Anne Pavy and Edmund Zelnio [23] introduced a method to
classify Synthetic Aperture Radar (SAR) images in the test samples that are in the training samples and
reject those not in the training set as unknown. The method uses a CNN as a feature extractor and
SVM for classification and rejection of unknowns. Wang et al. [24] addressed the open set problem in
high range resolution profile (HRRP) recognition. The method is based on random forest (RF) and
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extreme value theory, the RF is used to extract the high-level features of the input image, then used as
input to the open set module. The two approaches use a single domain for training and testing.

To the best of our knowledge, no previous works have addressed the open-set domain adaptation
problem for remote sensing images where the source domain is different from the target domain.
To address this issue, the method we propose is based on adversarial learning and pareto-based ranking.
In particular, the method leverages the distribution discrepancy between the source and target domain
using min-max entropy optimization. During the alignment process, it identifies candidate samples of
the unknown class from the target domain through a pareto-based ranking scheme that uses ambiguity
criteria based on entropy and the distance to source class porotypes.

2. Related Work on Open Set Classification

Open set classification is a more challenging and more realistic approach, thus it has gained a lot
of attention by researchers lately and many works are done in this field. Early research on open set
classification depended on traditional machine learning techniques, such as support vector machines
(SVMs). Scheirer et al. [25] first proposed 1-vs-Set method which used a binary SVM classifier to
detect unknown classes. The method introduced a new open set margin to decrease the region of
the known class for each binary SVM. Jain et al. [26] invoked the extreme value theory (EVT) to
present a multi-class open set classifier to reject the unknowns. The authors introduced the Pi-SVM
algorithm to estimate the un-normalized posterior class inclusion likelihood. The probabilistic open set
SVM (POS-SVM) classifier proposed by Scherreik et al. [27] empirically determines the unique reject
threshold for each known class. Sparse representation techniques were used in open set classification,
where the sparse representation based classifier (SRC) [28] looks for the sparest possible representation
of the test sample to correctly classify the sample [29]. Bendale and Boult [30] presented the nearest
non-outlier (NNO) method to actively detect and learn new classes, taking into account the open space
risk and metric learning.

Deep neural networks (DNNs) were very interesting in several tasks lately, including open set
classification. Bendale and Boult [31] first introduced OpenMax model, which is a DNN to perform
open set classification. The OpenMax layer replaced the softmax layer in a CNN to check if a given
sample belongs to an unknown class. Hassen and Chan [32] presented a method to solve the open
set problem, by keeping instances belonging to the same class near each other, and instances that
belong to different or unknown classes farther apart. Shu et al. [33] proposed deep open classification
(DOC) for open set classification, that builds a multi-class classifier which used instead of the last
softmax layer a 1-vs-rest layer of sigmoids to make the open space risk as small as possible. Later,
Shu et al. [34] presented a model for discovering unknown classes that combines two neural networks:
open classification network (OCN) for seen classification and unseen class rejection, and a pairwise
classification network (PCN) which learns a binary classifier to predict if two samples come from the
same class or different classes.

In the last years generative adversarial networks (GANs) [35] were introduced to the field
of open set classification. Ge et al. [36] presented the Generative OpenMax (G-OpenMax) method.
The algorithm adapts OpenMax to generative adversarial networks for open set classification. The GAN
trained the network by generating unknown samples, then combined it with an OpenMax layer to
reject samples belonging to the unknown class. Neal et al. [37] proposed another GAN-based algorithm
to generate counterfactual images that do not belong to any class; instead are unknown, which are
used to train a classifier to correctly classify unknown images. Yu et al. [38] also proposed a GAN that
generated negative samples for known classes to train the classifier to distinguish between known and
unknown samples.

Most of the previous studies mentioned in the literature of scene classification assume that one
domain is used for both training and testing. This assumption is not always satisfied, due to the
fact that some domains have images that are labeled, on the other hand many new domains have
shortage in labeled images. It will be time-consuming and expensive to generate and collect large
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datasets of labeled images. One suggestion to solve this issue is to use labeled images from one
domain as training data for different domains. Domain adaptation is one part of transfer learning
where transfer of knowledge occurs between two domains, source and target. Domain adaptation
approaches differ from each other in the percentage of labeled images in the target domain. Some
works have been done in the field of open set domain adaptation. First, Busto et al. [22] introduced
open set domain adaptation in their work, by allowing the target domain to have samples of classes
not belonging to the source domain and vice versa. The classes not shared or uncommon are joined as
a negative class called “unknown”. The goal was to correctly classify target samples to the correct class
if shared between source and target, and classify samples to unknown if not shared between domains.
Saito et al. [39] proposed a method where unknown samples appear only in the target domain, which
is more challenging. The proposed approach introduced adversarial learning where the generator can
separate target samples to known and unknown classes. The generator can decide to reject or accept
the target image. If accepted, it is classified to one of the classes in the source domain. If rejected it is
classified as unknown.

Cao et al. [40] introduced a new partial domain adaptation method, they assumed that the
target dataset contained classes that are a subset of the source dataset classes. This makes the
domain adaptation problem more challenging due to the extra source classes, which could result in
negative transfer problems. The authors used a multi-discriminator domain adversarial network,
where each discriminator has the responsibility of matching the source and target domain data after
filtering unknown source classes. Zhang et al. [41] also introduced the problem of transferring
from big source to target domain with subset classes. The method requires only two domain
classifiers instead of multiple classifiers one for each domain as shown by the previous method.
Furthermore, Baktashmotlagh et al. [42] proposed an approach to factorize the data into shared
and private sub-spaces. Source and target samples coming from the same, known classes can be
represented by a shared subspace, while target samples from unknown classes were modeled with a
private subspace.

Lian et al. [43] proposed Known-class Aware Self-Ensemble (KASE) that was able to reject
unknown classes. The model consists of two modules to effectively identify known and unknown
classes and perform domain adaptation based on the likeliness of target images belonging to known
classes. Lui et al. [44] presented Separate to Adapt (STA), a method to separate known from unknown
samples in an advanced way. The method works in two steps: first a classifier was trained to measure
the similarity between target samples and every source class with source samples. Then, high and
low values of similarity were selected to be known and unknown classes. These values were used
to train a classifier to correctly classify target images. Tan et al. [45] proposed a weakly supervised
method, where the source and target domains had some labeled images. The two domains learn from
each other through the few labeled images to correctly classify the unlabeled images in both domains.
The method aligns the source and target domains in a collaborative way and then maximizes the
margin for the shared and unshared classes.

In the contest of remote sensing, open set domain adaptation is a new research field and no
previous work was achieved.

3. Description of the Proposed Method

Assume a labeled source domain Ds =
{(

X(s)
i , y(s)i

)}ns

i=1
composed of X(s)

i images and their

corresponding class labels y(s)i ∈ {1, 2, . . . , K}, where ns is the number of images and K is the number

of classes. Additionally, we assume an unlabeled target domain Dt =
{(

X(t)
j

)}nt

j=1
with nt unlabeled

images. In an open set setting, the target domain contains K + 1 classes, where K classes are shared
with the source domain, and an addition unknown class (can be many unknown classes but grouped
in one class). The objective of this work is twofold: (1) reduce the distribution discrepancy between
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the source and target domains, and (2) detect the presence of the unknown class in the target domain.
Figure 2 shows the overall description of the proposed adversarial learning method, which relies on the
idea of min-max entropy for carrying out the domain adaptation and uses an unknown class detector
based on pareto ranking.

Figure 2. Proposed open-set domain adaptation method.

3.1. Network Architecture

Our model uses EfficientNet-B3 network [46] from Google as a feature extractor although other
networks could be used as well since the method is independent of the pre-trained CNN. The choice
of this network is motivated by its ability to generate high classification accuracies but with reduced
parameters compared to other architectures. EfficientNets are based on the concept of scaling up CNNs
by means of a compound coefficient, which jointly integrates the width, depth, and resolution. Basically,
each dimension is scaled in a balanced way using a set of scaling coefficients. We truncate this network
by removing its original ImageNet-based softmax classification layer. For computation convenience,

we set
{
h(s)i

}ns

i=1
and
{
h(t)j

}nt

j=1
as the feature representations for both source and target data obtained at

the output of this trimmed CNN (each feature is a vector of dimension 1536). These features are further
subject to dimensionality reduction via a fully-connected layer F acting as a feature extractor yielding

new feature representations
{
z(s)i

}ns

i=1
and
{
z(t)j

}nt

j=1
each of dimension 128. The output of F is further

normalized using l2 normalization and fed as input to a decoder D and similarity-based classifier C.
The decoder D has the task to constrain the mapping spaces of F with reconstruction ability

to the original features provided by the pre-trained CNN in order to reduce the overlap between
classes during adaptation. On the other side, the similarity classifier C aims to assign images to the
corresponding classes including the unknown one (identified using ranking criteria) by computing the
similarity measure of their related representations to its weight W = [w1, w2, . . . , wK, wK+1]. These
weights are viewed as estimated porotypes for the K-source classes and the unknown class with index
K + 1.

3.2. Adversarial Learning with Reconstruction Ability

We reduce the distribution discrepancy using an adversarial learning approach with reconstruction
ability based on min-max entropy optimization [47]. To learn the weights of F, C, and D we use both
labeled sources and unlabeled target samples. We learn the network to discriminate between the
labeled classes in the source domain and the unknown class samples identified iteratively in the target
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domain (using the proposed pareto ranking scheme), while clustering the remaining target samples to
the most suitable class prototypes. For such purpose, we jointly minimize the following loss functions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LF = Ls
(
y(s), ŷ(s)

)
+ LK+1

(
y(t), ŷ(t)

)
+ λH

(
ŷ(t)
)

LC = Ls
(
y(s), ŷ(s)

)
+ LK+1

(
y(t), ŷ(t)

)
− λH

(
ŷ(t)
)

LD = 1
ns

∑ns
i=1 ‖h

(s)
i − ĥ(s)i ‖2 + 1

nt

∑nt
j=1 ‖h

(t)
i − ĥ(t)i ‖2

(1)

where λ is a regulalrization parameter which controls the contribution of the entropy to the total loss.
Ls is the categorical cross-entropy loss computed for the source domain:

Ls
(
y(sk), ŷ(sk)

)
= − 1

nsk

∑nsk

i=1

∑K

k=1
1
(
k = y(sk)

ik

)
log
(
ŷ(sk)

ik

)
(2)

LK+1 is the cross-entropy loss computed for the samples iteratively identified as unknown class:

LK+1
(
y(tK+1), ŷ(tK+1)

)
= − 1

ntk+1

∑ntK+1

j=1
y(tK+1)

j log
(
ŷ(tK+1)

j

)
(3)

H
(
ŷ(t)
)

is the entropy computed for the samples of the target domain:

H
(
ŷ(t)
)
= − 1

nt

∑nt

i=1

∑K+1

k=1
1
(
k = ŷ(t)ik

)
log
(
ŷ(t)ik

)
(4)

and LD is the reconstruction loss.
From Equation (1), we observe that both C and F are used to learn discriminative features for

the labeled samples. The classifier C makes the target samples closer to the estimated prototypes
by increasing the entropy. On the other side, the feature extractor F tries to decrease it by assigning
the target samples to the most suitable class prototype. On the other side, the decoder D constrains
the projection to the reconstruction space to control the overlap between the samples of the different
classes. In the experiments, we will show that this learning mechanism allows to boost the classification
accuracy of the target samples. In practice, we use a gradient reversal layer to flip the gradients of
H
(
ŷ(tk)
)

between C and F. To this end, we use a gradient reverse layer [48] between C and F to flip the
sign of gradient to simplify the training process. The gradient reverse layer aims to flip the sign of the
input by multiplying it with a negative scalar in the backpropagation, while leaving it as it is in the
forward propagation.

Pareto Ranking for Unknown Class Sample Selection

During the alignment of the source and target distributions, we strive for detecting the most r < nt

ambiguous samples and assign a soft label to them (unknown class K+1). Indeed, the adversarial
learning will push the target samples to the most suitable class prototypes in the source domain, while
the most ambiguous ones will potentially indicate the presence of a new class. In this work, we use the
entropy measure and the distance from the class prototypes as a possible solution for identifying these
samples. In particular, we propose to rank the target samples using both measures.

An important aspect of pareto ranking is the concept of dominance widely applied in
multi-objective optimization, which involves finding a set of pareto optimal solutions rather than a
single one. This set of pareto optimal solutions contains solutions that cannot be improved on one of
the objective functions without affecting the other functions. In our case, we formulate the problem
as finding a sub-set P from the unlabeled samples that maximizes the two objective functions f1 and
f2, where

f j
1 = cosine

(
z(t)j , z(s)k

)
, j = 1, . . . , nt (5)
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f j
2 = − 1

nt

∑nt

i=1

∑K+1

k=1
1
(
k = ŷ(t)ik

)
log
(
ŷ(t)ik

)
(6)

where f j
1 is the cosine distance of the representation z(t)j of the target sample X(t)

j with respect to the

class porotypes z(s)k = 1
nsk

∑nsk
i=1 zik of each source class, and f j

2 is the cross-entropy loss computed for
the samples of the target domain.

Many samples in Figure 3 are considered undesirable choices due to having low values of
entropy and distance which should be dominated by other points. The samples of the pareto-set P
should dominate all other samples in the target domain. Thus, the samples in this set are said to be
non-dominated and forms the so-called Pareto front of optimal solutions.

Figure 3. Pareto-front samples potentially indicating the presence of the unknown class.

The following Algorithm 1 provides the main steps for training the open-set DA with its
nominal parameters:

Algorithm 1: Open-Set DA

Input: Source domain: Ds =
{(

X(s)
i , y(s)i

)}ns

i=1
, and target domain: Dt =

{
X(t)

j

}nt

j=1
Output: Target labels
1: Network parameters:

• Number of iterations num_iter = 100
• Mini-batch size: b = 100
• Adam optimizer: learning rate: 0.0001, exponential decay rate for the first and second moments

β1 = 0.9, β2 = 0.999 and epsilon=1e−8

2: Get feature representations from EfficientNet-B3: h(s)i = Net
(
X(s)
)

and h(t)i = Net
(
X(t)
)

3: Train the extra network on the source domain only by optimizing the loss Ls
(
y(sk), ŷ(sk)

)
for num_iter

4: Classify the target domain and get r samples forming the pareto set P and assign them to class K+1
5: for epoch = 1 : num_iter

5.1: Shuffle the labeled samples and organize them into rb = ns+r
b groups each of size b

5.2: for k = 1 : rb

• Pick minibatch k from these labeled samples referred as h(s)k

• Pick randomly another minibatch of size b from the target domain h(t)k
• Update the parameters of the network by optimizing the loss in (1)

5.3: Feed the target domain samples to the network and form a new pareto set P
6: Classify the target domain data.
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4. Experimental Results

4.1. Dataset Description

To test the performance of the proposed architecture, we used two benchmark datasets. The first
dataset consists of very high resolution (VHR) images customized from three well-known remote
sensing datasets, which is the Merced dataset [1] consisting of 21 category classes each with 100 images.
This dataset contains images with size of 256 × 256 pixels and with 0.3-m resolution. The AID dataset
contains a large number of images more than 10,000 images of size 600 × 600 pixels with a pixel
resolution varying from 8 m to about 0.5 m per pixel [49]. The images are classified to different
30 classes. The NWPU dataset contains images of size of 256 × 256 pixels with spatial resolutions
varying from resolution 30 to 0.2 m per pixel [50]. These images correspond to 45 category classes
with 700 images for each. From these three heterogonous datasets, we build cross-domain datasets,
by extracting 12 common classes (see Figure 4), where each class contains 100 images.

Figure 4. Example of samples from cross-scene dataset 1 composed of very high resolution
(VHR) images.
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The second dataset consists of extremely high resolution (EHR) images collected by two different
Aerial Vehicle platforms. The Vaihingen dataset was captured using a Leica ALS50 system at an
altitude of 500 m over Vaihingen city in Germany. Every image in this dataset is represented by three
channels: near infrared (NIR), red (R), and green (G) channels. The Trento dataset contains unmanned
aerial vehicles (UAV) images acquired over Trento city in Italy. These images were captured using
a Canon EOS 550D camera with 2 cm resolution. Both datasets contain seven classes as shown in
Figure 5 with 120 images per class.

 

Figure 5. Example of samples from cross-scene dataset 2 composed of extremely high resolution
(EHR) images.

4.2. Experiment Setup

For training the proposed architecture, we used the Adam optimization method with a fixed
learning rate of 0.001. We fixed the mini-batch size to 100 samples and we set the regularization
parameter of the reconstruction error and entropy terms to 1 and 0.1, respectively.

We evaluated our approach using three proposed ranking criteria for detecting the samples of
the unknown class including entropy, cosine distance, and the combination of both measures using
pareto-based ranking.

We present the results in terms of (1) closed set (CS) accuracy related to the shared classes between
the source and target domains, which is the number of correctly classified samples divided by the
total number of tested samples of the shared classes only; (2) the open set accuracy (OS) including
known and unknown classes; (3) the accuracy of the unknown class itself termed as (Unk); which is
the number of correctly classified unknown samples divided by the total number of tested samples of
the unknown class only, and (4) the F-measure, which is the harmonic mean of Precision and Recall:

F = 2× Precision×Recall
Precision + Recall

(7)

where Recall is calculated as
Recall =

TP
TP + FN

(8)
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and Precision is calculated as
Precision =

TP
TP + FP

(9)

where TP, FN, and FP are for true positive, false negative, and false positive, respectively. F-measure
gives a value between 0 and 1. High F-measure values result in better performance for the image
classification system.

For the openness measure, which is the percentage of classes that appear in the target domain and
are not known in the source domain, we define it as

openness = 1− CS
Cs + Cu

(10)

where CS is the number of classes in the source domain shared with the target domain and Cu is the
number of unknown classes in the target domain. Thus, when removing three classes from the source
domain this leads to nine classes in the source (Cs = 9). The number of unknown classes Cu is 3, which
leads to an openness of 1− 9

9+3 = 0.25. Increasing the value of the openness leads to increasing the
number of unknown classes in the target domain that are not shared by the source domain. Setting the
openness to 0 is similar to the closed set architecture where all the classes are shared between source
and target domains with no unknown classes in the target domain.

4.3. Results

As we are dealing with open set domain adaptation, we propose in this first set of experiments
to remove three classes from each source dataset corresponding to an openness of 25%. This means
that the source dataset contains nine classes while the target dataset contains 12 classes (three are
unknown). Figure 6 shows the selection of the pareto-samples from the target set for the scenario
AID→Merced and AID→NWPU during the adaptation process for the first and last iterations. Here
we recall that the number of selected samples is automatically determined by the ranking process.

As can be seen from Tables 1–3, the proposed approach exhibits promising results in leveraging
the shift between the source and target distributions and detecting the presence of samples belonging
to the unknown class. Table 1 shows the results when the Merced dataset is the target and the AID and
NWPU are the sources, respectively. The results show that applying the domain adaptation always
increases the accuracy for all scenarios, for example in the AID →Merced, the closed set accuracy (CS)
79.11% is lower than the results when applying the domain adaptation in all the three approaches,
distance 97.77%, entropy 94.55%, and the Pareto approach 96.66%. The open set accuracy (OS) also
achieves better results when the domain adaptation is applied with a minimum of 28.88% increase in
the accuracy.

(a) 

Figure 6. Cont.
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(b) 

Figure 6. Pareto set selection from the target domain: (a) Merced→AID, and (b) AID-NWPU.

The unknown accuracy is always 0 for all the scenarios without domain adaptation due to the
negative transfer problem. The F-measure value for the AID →Merced scenario shows a degrade when
no domain adaptation is applied with a minimum percentage of 34.97% from all other approaches.
For the first scenario AID →Merced, the highest closed set accuracy (CS) 97.77% is achieved by the
distance approach, which also gives the better open set accuracy (OS) 90.75% and F-measure value
88.31%. For the same scenario, the entropy approach results the highest unknown accuracy (Unk)
71.66%. Among the proposed selection criteria, the Pareto-based ranking achieves highest accuracies
for all four metrics CS, OS, the unknown class, and the F-measure compared to other approaches in
the scenario NWPU →Merced. The accuracy of all classes including the unknown class (OS) for this
scenario is 85.08%.

Table 2 shows two scenarios where the AID dataset is the target and the Merced and NWPU are
the sources, respectively. The Pareto approach gives an 88.33%, 93.44%, and 85.22% for the OS, CS, and
the F-measure value, respectively, in the Merced→AID scenario. For the same scenario, the highest
unknown accuracy (Unk) 86% is achieved by the entropy approach. The Pareto approach achieves
highest accuracies in the NWPU →AID scenario for the OS, Unk, and the F-measure, while the best
CS accuracy is resulted from the distance method. Table 3 shows the results of the two scenarios
Merced→ NWPU and AID→ NWPU. The Pareto method can achieve higher results for the CS
and OS 72.77% and 67.75%, respectively, for the Merced→ NWPU scenario, while the best unknown
accuracy 65.66% is achieved by the entropy method. The AID→ NWPU scenario shows different
results with different values of the metrics for the methods. The Pareto approach results the best
unknown accuracy 68.33%, while the highest CS 89.44% is achieved by the distance approach. For the
same scenario, the entropy method gives the better results for the OS and F-measure, with the values
79.41% and 72.83%, respectively. Compared to the base non-adaptation method, the Pareto approach
achieves better results in all for metrics for both scenarios.

Table 1. Classification results obtained for the scenarios: AID→ Merced and NWPU→ Merced for an
openness = 25%.

Target: Merced

Source: AID Source: NWPU

CS OS Unk F CS OS Unk F

No adapt. 79.11 59.33 0 51.81 80.33 60.25 0 53.57
Distance 97.77 90.75 69.66 88.31 97.55 73.16 0 76.25
Entropy 94.55 88.83 71.66 86.88 97.66 77.41 16.66 80.81
Pareto 96.66 88.21 62.83 86.78 97.77 85.08 47 84.48
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Table 2. Classification results obtained for the scenarios: Merced→ AID and NWPU→ AID for an
openness = 25%.

Target: AID

Source: Merced Source: NWPU

CS OS Unk F CS OS Unk F

No adapt. 71.55 53.66 0 46.76 89.77 67.33 0 63.9
distance 87.44 83.25 70.66 74.89 98.66 83.91 39.66 82.44
Entropy 78.77 80.58 86 73.58 92.33 81.08 47.33 78.81
Pareto 93.44 88.33 73 85.22 94.66 87.33 67.33 85.07

Table 3. Classification results obtained for the scenarios: Merced→ NWPU and AID→ NWPU for an
openness = 25%.

Target: NWPU

Source: Merced Source: AID

CS OS Unk F CS OS Unk F

No adapt. 70.08 53.16 0 45.52 85 63.75 0 56.91
distance 69.88 61.75 37.33 55.03 89.44 74.25 28.66 68.14
Entropy 62.55 63.33 65.66 54.78 85.79 79.41 60.66 72.83
Pareto 72.77 67.75 52.66 57.6 82.77 79.16 68.33 72.22

The Pareto method shows better results in most of the scenarios. Table 4 gives the results of
the average accuracy (AA) for all six scenarios in Tables 1–3. The highest average accuracy for the
OS is 82.64% given by the Pareto method, while for the CS is 90.12% given by the distance method
which is near the 89.68% accuracy resulted by the Pareto method. The Pareto approach achieves
61.86% in the average score of unknown class. This is 3.87% higher than other methods. The Pareto
approach also achieves the highest F-measure value among all other methods with an accuracy of
78.56%. The average results in Table 4 shows the effectiveness of the proposed method compared to
the non-adaptation method, where the values of all four metrics in the non-adaptation method are
increased by at least 10.37% in the proposed Pareto method.

Table 4. Average performances obtained for the VHR dataset.

CS OS Unk F

No adapt. 79.31 59.58 0 53.08
Distance 90.12 77.85 40.99 74.18
Entropy 85.28 78.44 57.99 74.62
Pareto 89.68 82.64 61.86 78.56

For the EHR dataset, we tested two datasets, Vaihingen and Trento. Tables 5 and 6 show the
results of the scenarios Trento→Vaihingen and Vaihingen→Trento, respectively. For the first scenario,
the highest open set accuracy (OS) is 82.02% achieved by the Pareto approach, which also results in the
highest closed set accuracy (CS) and F-measure values of 98.66% and 82.22%, respectively. The highest
unknown accuracy (Unk) 51.66% is achieved by the distance approach for this scenario. The proposed
Pareto method achieves better results in all four metrics compared to the base non-adaptation method.
The Pareto approach achieves the highest results in all four metrics in the second scenario as shown in
Table 6. The average accuracy (AA) for the two scenarios in Table 7 show that the Pareto approach
achieves the best accuracies among all other approaches with an average OS accuracy 80.27%. The same
method also results in the better percentage in all other three metrics used for evaluation. The average
results for the two scenarios show that the proposed approach achieves a 40.52% higher open set
accuracy (OS) compared to the approach where no domain adaptation is applied.
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Table 5. Classification results obtained for the scenario Trento→ Vaihingen.

CS OS Unk F

No adapt. 55.16 39.4 0 29.17
Distance 65.5 61.54 51.66 54.96
Entropy 97.5 71.19 5.41 72.16
Pareto 98.66 82.02 40.41 82.22

Table 6. Classification results obtained for the scenario Vaihingen→ Trento.

CS OS Unk F

No adapt. 56.16 40.11 0 33.89
Distance 77.83 60 15.41 52.29
Entropy 68.83 67.38 63.75 65.29
Pareto 81.33 78.52 71.66 67.65

Table 7. Average performances obtained for the EHR dataset.

CS OS Unk F

No adapt. 55.66 39.75 0 31.53
Distance 71.66 60.77 33.53 53.62
Entropy 83.16 69.28 34.58 68.72
Pareto 89.99 80.27 56.04 74.93

5. Discussion

5.1. Effect of the Openness

In this section, we compare the robustness of the proposed Pareto approach over several openness
values. The performance of the method was measured with different numbers of classes between
the source and domain. As the value of openness increased, the number of unknown samples also
increased which was more difficult for the classifier, compared to classifying only shared classes in the
closed set classification. Table 8 shows the results obtained using different openness values for the
VHR dataset. In the first scenario, we removed three classes from each source dataset corresponding
to an openness of 25%. This means that the source dataset contained nine classes while the target
dataset contained 12 classes (three were unknown). The highest OS accuracy was 88.33% achieved by
the Merced→ AID scenario, while the lowest accuracy 67.75% achieved by the Merced→ NWPU
scenario, which was 14.59% higher than the non-adaptation approach for the same scenario. The second
scenario we removed four classes from the source dataset, which led to eight classes in the source
dataset and 12 classes in the target dataset (four were unknown). In this scenario, the value of the
accuracy degraded, resulting in 80.58% as the highest from the Merced→ AID scenario and 69.91% as
the lowest accuracy from the AID→ NWPU scenario. The third and fourth scenario, we removed five
and six classes, respectively. The results showed that although the accuracy decreased in both scenarios,
the results were still better than the non-adaptation approach. When computing the average accuracy
for all six scenarios, the Pareto method achieved higher accuracy than the approach with no adaptation
in all values of openness, even with an openness of 50% the Pareto method achieved an average of
63.80% accuracy with a 24.65% increase than the non-adaptation method for the same openness.
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Table 8. Sensitivity analysis with respect to the openness for the VHR dataset. Results are expressed in
terms of open set accuracy (OS) (%) and average accuracy (AA) (%).

Datasets Openness (Number of Classes Removed)

25% (3) 33.3% (4) 41.6% (5) 50% (6)
No

Adapt.
Pareto

No
Adapt.

Pareto
No

Adapt.
Pareto

No
Adapt.

Pareto

AID→Merced 59.33 88.21 50.83 79.91 47.08 61.75 38.16 61.91
NWPU →Merced 60.25 85.08 50.25 79.75 44.41 78.58 39.25 66.83

Merced→AID 53.66 88.33 47.75 80.58 44.5 77.58 33.0 55.33
NWPU→AID 67.33 87.33 56.16 76.58 46.33 73.91 44.75 76.08

Merced→NWPU 53.16 67.75 49.25 71.41 46.41 71.58 36.16 50.16
AID→NWPU 63.75 79.16 55.75 69.91 46.5 69.75 43.58 72.5

AA (%) 59.58 82.64 51.66 76.35 45.87 72.19 39.15 63.80

The results of the EHR dataset, shown in Table 9 were achieved using different openness values.
In the first scenario, we removed three classes from the source domain while the target domain
contained seven classes leading to an openness of 42.85%. The scenario Trento→Vaihingen resulted
in 82.02% accuracy higher than the Vaihingen→Trento which resulted in 78.52% for the openness of
42.85%. For this scenario, the Pareto approach was 40.52% higher in accuracy than the non-adaptation
method which resulted in an average 39.75% accuracy for the 42.85% openness. For the second scenario
we removed four classes from the source dataset. The accuracy degraded in this scenario to the values
of 60.11% and 48.33% for the two scenarios, respectively. The third scenario, we removed five classes
from the source dataset, resulting in an openness of 71.14%. The results of the accuracy decreased to
51.66% achieved by the Trento→Vaihingen scenario. As a conclusion, we found that the proposed
approach outperforms the accuracy of the non-adaptation method for different values of openness
with at least 20.18%.

Table 9. Sensitivity analysis with respect to the openness for the EHR dataset. Results are expressed in
terms of OS (%) and AA (%).

Datasets Openness (Number of Classes Removed)

42.85% (3) 57.14% (4) 71.42% (5)
No Adapt. Pareto No Adapt. Pareto No Adapt. Pareto

Trento →Vaihingen 39.4 82.02 36.19 60.11 20.71 51.66
Vaihingen →Trento 40.11 78.52 31.90 48.33 20.35 31.90

AA (%) 39.75 80.27 34.04 54.22 20.53 41.78

5.2. Effect of the Reconstruction Loss

Table 10 shows the results of the proposed method with setting the regularization parameter λ to
different values in the range [0,1] for the VHR dataset. We made three scenarios with regularization
parameter values of 0, 0.5, and 1. For the first scenario, the λwas set to 0, which corresponds to the
removal of the decoder part. The average accuracy dropped to 78.94%, which indicated the importance
of the decoder part in the proposed method. As we can see from Table 10, setting the regularization
parameter to 1 resulted in the best accuracy percentage for all scenarios except the NWPU→ AID
which gave the highest accuracy 89.5%, when the regularization parameter was set to 0.5. The average
accuracy (AA) results in Table 10 suggested that setting the regularization parameter to 1 gives better
accuracy results.
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Table 10. Sensitivity analysis with respect to the regularization parameter for the VHR dataset. Results
are expressed in terms of OS (%) and AA (%).

Datasets Regularization Parameter λ

0 0.5 1

AID→Merced 83.91 84.08 88.21
NWPU →Merced 83.25 84.16 85.08

Merced→AID 79.25 80.36 88.33
NWPU→AID 84.58 89.5 87.33

Merced→NWPU 66.5 66.9 67.75
AID→NWPU 76.16 69.75 79.16

AA (%) 78.94 79.12 82.64

The results in Table 11 show the effect of setting the regularization parameter λ to different
values in the range [0,1] for the EHR dataset. We made three scenarios with regularization parameter
values of 0, 0.5, and 1. The first scenario, we removed the decoder part by setting the regularization
parameter λ to 0. The second and third scenario, the regularization parameter was set to 0.5 and
1, respectively. For the Trento→Vaihingen scenario, removing the decoder resulted in an accuracy
of 66.54%, which was a noticeable decrease from the highest accuracy 82.02% achieved when the
regularization parameter was set to 1. The second scenario Vaihingen→Trento also resulted in the
better accuracy with the regularization parameter 1, while setting the regularization to 0.5 resulted in
the worst accuracy of 51.30%. From the results shown in Table 11, setting the regularization parameter
to 1 gave better accuracy results.

Table 11. Sensitivity analysis with respect to the regularization parameter for the EHR dataset. Results
are expressed in terms of OS (%) and AA (%).

Datasets Regularization Parameter λ

0 0.5 1

Trento→Vaihingen 66.54 76.90 82.02
Vaihingen→Trento 59.88 51.30 78.52

AA (%) 63.21 64.1 80.27

6. Conclusions

In this paper, we addressed the problem of open-set domain adaptation in remote sensing imagery.
Different to the widely known closed set domain adaptation, open set domain adaptation shares a
subset of classes between the source and target domains, whereas some of the target domain samples
are unknown to the source domain. Our proposed method aims to leverage the domain discrepancy
between source and target domains using adversarial learning, while detecting the samples of the
unknown class using a pareto-based raking scheme, which relies on the two metrics based on distance
and entropy. Experiment results obtained on several remote sensing datasets showed promising
performance of our model, the proposed method resulted an 82.64% openset accuracy for the VHR
dataset, outperforming the method with no-adaptation by 23.06%. In the EHR dataset, the pareto
approach resulted an 80.27% accuracy for the openset accuracy. For future developments, we plan to
investigate other criteria for identifying the unknown samples to improve further the performance of
the model. In addition, we plan to extend this method to more general domain adaptation problems
such as the universal domain adaptation.
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Abstract: The availability of free and open data from Earth observation programmes such as
Copernicus, and from collaborative projects such as Open Street Map (OSM), enables low cost artificial
intelligence (AI) based monitoring applications. This creates opportunities, particularly in developing
countries with scarce economic resources, for large–scale monitoring in remote regions. A significant
portion of Earth’s surface comprises desert dune fields, where shifting sand affects infrastructure
and hinders movement. A robust, cost–effective and scalable methodology is proposed for road
detection and monitoring in regions covered by desert sand. The technique uses Copernicus Sentinel–1
synthetic aperture radar (SAR) satellite data as an input to a deep learning model based on the U–Net
architecture for image segmentation. OSM data is used for model training. The method comprises
two steps: The first involves processing time series of Sentinel–1 SAR interferometric wide swath (IW)
acquisitions in the same geometry to produce multitemporal backscatter and coherence averages.
These are divided into patches and matched with masks of OSM roads to form the training data,
the quantity of which is increased through data augmentation. The second step includes the U–Net
deep learning workflow. The methodology has been applied to three different dune fields in Africa
and Asia. A performance evaluation through the calculation of the Jaccard similarity coefficient was
carried out for each area, and ranges from 84% to 89% for the best available input. The rank distance,
calculated from the completeness and correctness percentages, was also calculated and ranged from
75% to 80%. Over all areas there are more missed detections than false positives. In some cases,
this was due to mixed infrastructure in the same resolution cell of the input SAR data. Drift sand
and dune migration covering infrastructure is a concern in many desert regions, and broken segments
in the resulting road detections are sometimes due to sand burial. The results also show that, in most
cases, the Sentinel–1 vertical transmit–vertical receive (VV) backscatter averages alone constitute
the best input to the U–Net model. The detection and monitoring of roads in desert areas are key
concerns, particularly given a growing population increasingly on the move.

Keywords: synthetic aperture radar; SAR; Sentinel–1; Open Street Map; deep learning; U–Net; desert;
road; infrastructure; mapping; monitoring

1. Introduction

The mapping and monitoring of roads in desert regions are key concerns. Population growth
and an increase in the development of urban centres have led to a corresponding expansion of
transportation networks [1,2]. These networks are constantly evolving [1,3]. An awareness of
the location and state of road systems is important to help monitor human activity and to identify any
maintenance that may be required for the infrastructure. In many desert regions, roads and tracks are

Remote Sens. 2020, 12, 2274; doi:10.3390/rs12142274 www.mdpi.com/journal/remotesensing235



Remote Sens. 2020, 12, 2274

used for illicit activities, such as smuggling [4]. Sand drift and dune migration can rapidly bury roads,
thus necessitating intervention [5–7].

Ground techniques used for surveying and monitoring road networks are expensive and time
consuming [2]. This is especially true for desert regions, given the extensive areas involved, the often
inhospitable landscapes, and, in some cases, the political instability [8,9]. Remote sensing techniques
have the ability to acquire information over large areas simultaneously, at frequent intervals, and at
a low cost [10,11]. The application of emerging technologies, such as big data, cloud computing,
interoperable platforms and artificial intelligence (AI), have opened new scenarios in different geospatial
domains [12], such as the monitoring of critical infrastructure, i.e., roads.

Previously developed algorithms to automatically extract road features using techniques such as
classification, segmentation, edge and line detection and mathematical morphology are summarised in
a number of review papers, such as [13–16]. Since deep convolutional neural networks proved their
effectiveness in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), deep learning
has significantly gathered pace. Among the first to apply deep learning for road extraction were
Mnih and Hinton [17]. Saito and his colleagues later achieved even better results with convolutional
neural networks (CNNs) [18]. Techniques using CNNs are now considered to be standard for
image segmentation [19] with many studies proposing different CNN architectures for road detection
and monitoring, e.g., [1,3,20–24]. This is a fast evolving domain, and new research is regularly
published on architectures and methods to address some of the limitations of CNNs. These include, for
example, the significant computing and memory requirements [25], the fact that much training data is
often needed, and the difficulty in adapting models to varying conditions [26]. A particularly effective
CNN model for semantic segmentation is the U–Net architecture. Devised by Ronneberger and his
colleagues for medical image segmentation [27], U–Net has become a standard technique for semantic
segmentation in many applications since it won the IEEE International Symposium on Biomedical
Imaging (ISBI) cell tracking challenge in 2015 by a large margin. The popularity of this architecture,
which consists of a contracting path to capture the context and a symmetric expanding path that enables
precise localisation, is due partly to its speed, and its ability to be trained end–to–end with very few
images [27]. Many have applied variations of U–Net for road detection, e.g., [2,3,22–24], the majority
basing their models on dedicated benchmark datasets of optical images for road identification, such as
the Massachusetts roads data, created by Mihn and Hinton [17].

Most remote sensing based techniques for road detection and monitoring have relied on very high
resolution (VHR) optical data [13]. However, in desert regions the spectral signatures of roads are often
similar to the surrounding landscape, making them difficult to distinguish. Synthetic aperture radar
(SAR) data has characteristics which make it efficient in the retrieval of roads in desert regions [9,28].
These include the sensitivity of the radar to surface roughness and the relative permittivity of targets,
and the fact that SAR is a coherent system [29]. Dry sand usually has a very low relative permittivity
and is therefore not a high reflector of microwave radiation. Sand covered areas are thus usually
characterised by a very low SAR backscatter. Roads on the other hand may display a very different
type of backscatter, which can contrast highly with the surrounding sand, even if the roads are
significantly narrower than the SAR resolution cell [9]. These characteristics can be exploited to
retrieve roads from SAR amplitude data. SAR coherence can also help to detect roads in desert regions.
The low relative permittivity of dry sand causes the transmission of the microwave SAR signal into
the sand volume [30,31]. Coherence is rapidly lost in such areas due to volume decorrelation [32].
This low coherence may contrast with the higher coherence of roads, often made from materials with
a higher relative permittivity, such as asphalt, tarmac, or gravel, which therefore are not affected by
volume decorrelation.

Some studies nonetheless have demonstrated methodologies for road detection and monitoring
using SAR data. A good review of many of these is provided by [14]. More recently, a few studies have
successfully applied deep learning techniques for SAR based road detection, e.g., [1,2,21], but these
have mainly focused on relatively small, local areas, in developed landscapes, where good ground
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truth and training data have been available. Some have also used SAR for detecting roads and tracks
in desert regions, e.g., Abdelfattah and his colleagues proposed a semi–automatic technique for SAR
based road detection over a local area in the Tunisian–Libyan border [4], but again, this was applied to
a specific area, and was not fully automatic.

Robust methodologies are required for operational road detection and monitoring in desert
regions over large areas without the need to acquire expensive reference data. Many desert areas are
situated in developing countries, such as in North Africa, where accurate and abundant training data
are not available, and budgets for infrastructure surveying are low.

The work presented in this paper aims to demonstrate a methodology for road detection
and monitoring in desert regions, using free input and reference data that can be scaled to desert
regions globally. This approach takes input SAR data from the free and open Copernicus Sentinel–1
satellite constellation over the area to be surveyed. The input data comprises both the amplitude
and coherence averages from a time series of around two and a half months acquired in the same
geometry (around seven scenes). The time series average contributes to removing image speckle
and improves the model performance. The reference data on the other hand includes freely available
Open Street Map (OSM) data. The combined use of OSM and Earth observation (EO) data in semantic
segmentation has been much discussed, e.g., [33–35], but in most cases it has been used either with very
high resolution (VHR) EO data, or for general classes with much less class imbalance than the road,
no–road distinction. Roads are then extracted using a version of U–Net. With its architecture consisting
of a contracting path to capture the context and a symmetric expanding path that enables precise
localisation, U–Net has the well–known advantages that it can be trained end–to–end with very few
images, and is fast [27]. This makes it suitable for cases where abundant, high quality reference data
may not be available. One of the many versions of this architecture adapted to Earth observation data
includes one proposed by Jerin Paul that was previously applied successfully to VHR optical data [36].
This was the version adopted in this methodology. Despite the fact that it was developed for use with
optical data, it performed well on SAR based inputs with similar class imbalance. This U–Net model
is trained with SAR amplitude and coherence averages, with OSM reference masks, for each desert
region. The model is then applied to detect roads in each of the desert areas for which is was trained.

The method proposed here for SAR based deep learning segmentation, trained on OSM data, has
been applied to a number of test areas in various deserts in Africa and Asia. The high accuracy of
the results suggests that a robust methodology involving the use of freely available input and reference
data could potentially be used for operational road network mapping and monitoring.

This study has been carried out in the framework of a joint collaboration between the European
Space Agency (ESA) Φ–Lab, and the European Union Satellite Centre (SatCen) Research, Technology
Development and Innovation (RTDI) Unit. The ESA Φ–Lab carries out research in transformative
technologies that may impact the future of EO. The SatCen RTDI Unit provides new solutions
supporting the operational needs of the SatCen and its stakeholders by looking at the whole EO
data lifecycle.

2. Materials and Methods

This section presents the methodology for road detection and monitoring using free and open
data. The process can be divided into two steps: The first is a SAR pre–processing step, to obtain
temporal averages of the calibrated backscatter amplitude and consecutive coherence for each time
series, over each area. The second is the deep learning workflow. In this second step, the input SAR
layers are divided into adjacent, non–overlapping patches of 256 × 256 pixels. Each patch is matched
with a corresponding mask of the same resolution and dimension showing the location of any OSM
roads. In these masks, pixels coinciding with roads have a value of 1, while all other pixels have a value
of 0. All SAR patches, which included OSM roads in their corresponding masks, were used to train
the U–Net model, initiated with random weights, using the OSM data as a reference. Subsequently,
the model was applied to all patches in each area of interest (AOI) to extract the roads not included
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in the OSM dataset. The AOIs included three areas in three different desert environments in Africa
and Asia, each the size of one Sentinel–1 IW scene (250 × 170 km).

While the OSM was used as the reference for model training, a more precise dataset was needed
for an accuracy assessment. The reference masks only recorded roads present in the OSM dataset.
The possibility existed that roads were present in the coverage of any given reference mask patch, but
not included in the OSM. Moreover, due to the varying quality of the OSM and the varying width of
roads, precise overlap between the model detected roads and OSM reference masks was difficult to
achieve. To maintain automation and ensure the scalability of the method, there was no manual editing
of these patches. Nonetheless, for the purpose of model training, the procedure to use the OSM as
the reference worked well. For a reliable accuracy assessment however, a more rigorous technique was
adopted: a subset area was randomly selected in each desert region in which all roads were manually
digitised. These data were then used as the reference for a more precise accuracy assessment.

2.1. Areas of Interest (AOIs)

Three AOIs in different types of sand covered deserts were chosen to apply the method. These
include most of the North Sinai Desert of Egypt, a large part of the Grand Erg Oriental in the Algerian
and Tunisian Sahara, and the central part of the Taklimakan Desert of China (see Figure 1). The size of
each of these three areas corresponds to the extent of one Sentinel–1 interferometric wide swath (IW)
scene: 250 × 170 km, covering an area of 47,500 km2 in each desert region. They were chosen for their
geographic and morphological variety, each having very different sand dune forms and local conditions.

Map of AOIs 

 
Figure 1. Map showing the location of areas of interest (AOIs) on an ENVISAT MERIS true colour
mosaic, in a geographic latitude, longitude map system, World Geodetic System 1984 (WGS84) datum.
Insets show a close–up of the AOIs. Each AOI and inset has the dimension of one Sentinel–1 IW footprint
(250 km East–West, 170 km North–South). Credits: CHELYS srl for the world map and the European
Space Agency (ESA) GlobCover for insets.

The North Sinai Desert, in the north of the Sinai Peninsula, is composed mainly of aeolian sand
dune fields and interdune areas. The sand dunes include barchan, seif or longitudinal linear dunes
trending east–west, transverse and star dunes [37]. Linear dunes are the main aeolian form in North
Sinai [5]. The climate of the study area is arid. The average annual rainfall is about 140 mm at El
Arish [38], but drops in the south, where it does not exceed 28 mm per year [5].
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The Grand Erg Oriental is a sand dune field in the Sahara desert, mainly in Algeria, but with its
north–eastern edge in Tunisia. It is characterised by four large–scale dune pattern types with gradual
transitions between them. These include large, branching linear dunes; small and widely spaced star
and dome dunes; a network type created mostly from crescentic dunes; and large, closely spaced star
dunes [39]. The average annual rainfall does not exceed 70 mm [40].

The Taklimakan Desert is the world’s second–largest shifting sand desert, located in China, in
the rain shadow of the Tibetan Plateau [41]. Three types of sand dunes exist in the Taklimakan Desert:
compound, complex crescent dunes and crescent chains; compound dome dunes; and compound,
complex linear dunes [42]. The mean annual precipitation varies between 22 and 70 mm [43].

2.2. SAR and OSM Data

To achieve the objective of demonstrating a robust and cost–effective methodology that can
be applied globally, it was decided to exploit the Copernicus Sentinel–1 archive. The Sentinel–1
data are acquired at regular intervals worldwide and are available under a free and open access
policy [44]. Over each of the AOIs, a time series was obtained of 7 images acquired every 12 days over
an approximately two–and–a–half–month period (June/July to August/September 2019). The images
were all interferometric wide swath (IW), all in ascending geometry and dual polarisation: vertical
transmit–vertical receive, and vertical transmit–horizontal receive (VV and VH, respectively). In order
to explore the use of both amplitude and coherence in road detection, the time series over each
area was obtained in both ground range detected (GRD) and single look complex (SLC) formats.
The spatial resolution of the Sentinel–1 IW data is approximately 20 × 20 metres for the GRD and 5 ×
20 metres for the SLC. The pixel spacing of the GRD data is 10 × 10 metres. Table 1 shows the details
of the Sentinel–1 data used in each AOI. All GPT graphs and bash scripts are available on Github
(A Github repository has been created which contains all scripts that were used in this research,
including the Bash files and GPT graphs for the Sentinel–1 data processing, and the Python code for
the deep learning workflow available in a Jupyter Notebook. In this repository are also results in
a shapefile format of the road detections over each of the AOIs. Supplementary data—Available online:
https://github.com/ESA-PhiLab/infrastructure) [45].

Table 1. Details of the Sentinel–1 time series used in each of the AOIs.

AOI Orbit Polarisation Time Series Length

North Sinai Desert Ascending VV/VH 7 scenes acquired from 4 July
to 14 September 2019

Grand Erg Oriental Ascending VV/VH 7 scenes acquired from 4 June to 15 August 2019

Taklimakan Desert Ascending VV/VH 7 scenes acquired from 11 June
to 22 August 2019

OSM data, including all roads, was downloaded at continental scale. From the original XML
formatted osm files, they were converted to vector shapefiles; subsequently, the OSM data were
subset for each AOI and attribute fields were reduced to the sole roads identification, in order to limit
the file size.

2.3. SAR Pre–Processing

Given that roads in desert areas can be distinguished in both SAR amplitude and coherence, it
was decided to include both as inputs to the U–Net model. A virtual machine (VM), with Ubuntu
as the operating system, was used for the Sentinel–1 pre–processing. This VM was connected to
the CreoDIAS cloud environment, containing archive Sentinel–1 data. Processing was carried out
automatically on the cloud using the command line graph processing tool (GPT) of the open source
ESA Sentinel application platform (SNAP) software. Two GPT graphs, including all steps of each of
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the SLC and GRD processing chains, were applied in batch to the time series of data over each area
using Linux bash scripts.

2.3.1. Amplitude Processing

For the amplitude processing, each Sentinel–1 scene, in a GRD format, was calibrated to σ0

backscatter. The calibrated data was then terrain corrected to the European Petroleum Survey Group
(EPSG) 4326 map system, i.e., geographic latitude and longitude with the World Geodetic System
1984 (WGS84) datum. The topographic distortion was corrected with the aid of the shuttle radar
topography mission (SRTM) 3 s global digital elevation model (DEM). The output pixel spacing
was 10 m. The stack of calibrated and terrain corrected scenes was then co–registered using cross
correlation. The co–registered stack was averaged into one scene to reduce speckle. This average was
finally converted from the linear backscatter scale to logarithmic decibel, to improve visualisation
and facilitate further pre–processing during the deep learning workflow.

Some very good multitemporal speckle filters exist that preserve the spatial resolution while also
keeping the temporal backscatter differences, such as the De Grandi speckle filter [46]. This allows for
the monitoring of temporal intervals of less than the length of the time series. However, the emphasis
of the study was to demonstrate a robust methodology that uses open data and tools. The most
effective way to sufficiently reduce speckle while completely preserving the spatial resolution using
the tools available was to average the data. Figure 2 shows the steps of the processing chain applied
automatically to the time series of the Sentinel–1 GRD data.

Sentinel–1 intensity processing chain 

Figure 2. The intensity processing chain applied automatically to the Sentinel–1 data in the CreoDIAS
cloud environment. The numbers below show how the time series of seven images are reduced to one
layer for each area in which the model is applied.

2.3.2. Coherence Processing

For the coherence processing, the interferometric coherence was calculated for each consecutively
acquired Sentinel–1 image pair in SLC format. For a time series of seven images therefore, six coherence
images were obtained. These were then averaged to reduce clutter and better distinguish roads from
the surrounding sand.

The steps in the coherence generation workflow began with the calculation of precise orbits.
The three subswaths of each pair were then split to enable back–geocoding, coherence generation
and TOPSAR–debursting to be carried out per subswath. These were then merged, before the coherence
for each full scene pair was terrain corrected, to the same map system as used for the amplitude data
processing. All terrain corrected coherences were co–registered, using a cross correlation, and averaged
by taking the mean coherence for each pixel. The coherence average was finally resampled to
the same pixel spacing as the amplitude average for each area, to enable the simultaneous (amplitude
and coherence) input to the U–Net model. Figure 3 shows the main steps of the processing chain
applied automatically to the time series of Sentinel–1 SLC data.
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Sentinel–1 coherence processing chain 

 
Figure 3. The main steps of the coherence processing chain applied automatically to the Sentinel–1 data
in the CreoDIAS cloud environment. The numbers below show how the time series of seven images
are reduced to one layer for each area in which the model is applied.

2.4. Deep Learning Workflow

The output of the Sentinel–1 pre–processing included three separate backscatter and coherence
averages for each of the three desert areas, each covering the extent of one Sentinel–1 IW footprint
(250 × 170 km). These, together with the OSM ancillary data, comprised the input to the second part of
the methodology, which included the deep learning workflow. This second part was developed in
a sandbox environment for AI projects, called Sandy, belonging to the ESA Advanced Concepts Team.
It includes 10 NVIDIA GTX1080 Ti graphics processing units (GPUs), suitable for training deep neural
networks, although only one GPU was necessary for the model training. The deep learning workflow
was implemented in Python 3, with Keras and Tensorflow. This Jupyter Notebook is available on
Github (Supplementary data—Available online: https://github.com/ESA-PhiLab/infrastructure) [45].

2.4.1. OSM and SAR Data Preparation for Deep Learning

For each backscatter and coherence scene average, a corresponding mask was produced of
the same extent and spatial resolution, in which pixels overlapping with OSM roads have a value of 1,
and all other pixels have a value of 0. These masks were created by converting the OSM road vectors
to raster.

Each SAR derived scene average and corresponding OSM mask were split into 256 × 256 adjacent,
non–overlapping patches, and the SAR patches were normalised to contain pixel values from 0 to 1.

2.4.2. Data Augmentation

Those SAR and mask patches in which OSM roads were present, comprised the samples to
train the U–Net model. The number of such patches per AOI varied from around 400 to 800. Data
augmentation was therefore used to increase the number of training samples. The data augmentation
included a random rotation through a 360–degree range. It also included a horizontal and vertical
flip. These random transformations were chosen as they preserve exactly the width and backscatter
characteristics of roads and surrounding features, while changing only their orientation. This was
considered the best choice given that roads may feasibly have any orientation, while it is uncertain
as to how much their width and backscatter properties may vary. To fill gaps in the image patches
following transformation, a reflect mode was selected, i.e., any blank areas, e.g., corners of patches
following rotation, are converted to the mirror image of the same number of non–blank pixels on
the other side of the dividing line. This was the best possible fill mode given that the lines are not
broken, but continue as would be expected with the roads. Figure 4 shows an example of random data
augmentation for an input SAR patch and its corresponding OSM derived reference mask.

The data augmentation was implemented through an instance of the image data generator class
of the Keras library for Python 3.7.
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Data augmentation. 

Figure 4. An example of data augmentation for an input synthetic aperture radar (SAR) patch (upper
leftmost) and its corresponding reference mask (lower leftmost). Note how the augmented versions
continue segments without breaking lines, using the “reflect” mode to fill gaps following rotation.
Contains modified Copernicus Sentinel–1 data 2020.

2.4.3. U–Net Model

The deep learning model for image segmentation that was chosen is the modified U–Net
architecture proposed by Jerin Paul [36]. This architecture has 58 layers, divided into a downsampling
encoder and upsampling decoder parts, which are connected via skip connections. The convolution
layers are all 3 × 3, with exponential linear units as the activation and He normal initialiser. The only
exception to this is the last output layer, which is a 1 × 1 convolution layer with sigmoid activation.
In between the convolution layers, batch normalisation, max pooling and data dropout layers were
included. The data dropout layers applied a dropout rate varying from 0.1 to 0.3. The total number of
parameters were 1,946,993. The trainable parameters were 1,944,049. All models were initiated with
random weights.

The input to the network included up to three layers of average backscatter intensity in VV
and VH, and average coherence. The models returned segmented images for each input patch, with
pixels ranging in value from 0 to 1. Values closer to 0 have a high prediction probability of belonging
to the class of non–roads, while values closer to 1 have a high probability of being a road.

2.4.4. Loss Function and Performance Metric

Road detection in desert regions is an unbalanced segmentation task, since in any given scene there
are many more pixels falling into the non–road category than into the road category. The loss function
applied during model training, and the accuracy metric to assess the performance of the model, need
to take into account this class imbalance. The loss function that was applied in this case is the soft Dice
loss. Based on the Dice coefficient, the soft Dice loss normalises for class imbalance. For the accuracy
metric, it was decided to use the Jaccard index, also known as the Jaccard similarity coefficient, or
intersection over union (IoU), which likewise considers class imbalance [47].

The formulae for soft Dice loss and the Jaccard index for a model predicted class (A) and a known
class (B) are the following:

Soft Dice Loss = 1− 2|A∩ B|
|A |+ |B| (1)

Jaccard index =
|A∩ B|
|A∪ B| (2)
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2.4.5. Hyperparameters and Model Training

Different approaches were attempted for the model training. One approach was to include
the available training data from all areas with the aim of training one model applicable to every sand
covered desert landscape with characteristics similar to those of the test areas. It was soon apparent
that this was not feasible, due mainly to the greatly varying sand dune forms between different desert
environments. This led to systematic false detections and almost no positive road detections over any
area. Another approach was to choose one model, which would be trained for each specific desert
region, with the available training data from that area. With this approach, even with much less
training data, the model performed much better.

In addition to experimenting with the geographic coverage, different types of Sentinel–1 input
were tested. Various combinations of the VV and VH backscatter and coherence were included as
inputs to the model, from individual bands, to combinations of two, or all three.

The model hyperparameters are listed in Table 2. After testing different values for each parameter,
these provided the best results for all the regions in which the method was applied, and with all
the options for the SAR inputs. The only area specific parameter to be adjusted is the number of steps
per epoch, which depends on the amount of training samples over a given region. Apart from the steps
per epoch, these are the same hyperparameters as is in the model of Jerin Paul [36].

Table 2. Model hyperparameters.

Model Hyperparameters

Epochs 100

Steps per epoch Training samples/Batch size, (minimum of 50)

Learning rate 0.0001

Batch size 16

After randomly shuffling all samples, 10 percent were set aside for validation to assess
the performance of the model during training, and another 10 percent for testing. After a review of
this, a second round of training was carried out using all available data. Given the incompleteness of
the OSM data in any given area, and the poor overlap between the OSM and detected roads discussed
above, a more reliable accuracy assessment was carried out with the test data comprising manually
digitised roads over subset areas. This is described in Section 2.5 below.

2.4.6. Post–Processing and Final Map Generation

Over each area, having trained the model with the image patches containing the available OSM
data, the model was applied to predict the presence of roads in all patches. The pixels in the resulting
segmented patches ranged from 0 to 1. Values closer to 0 represented a high probability of belonging
to the no–road class, while those closer to 1 were considered likely to be roads. To create binary masks,
all pixels with a value of less than 0.5 were converted to 0, and those greater than or equal to 0.5 were
converted to 1. The patches were then put together to reconstruct the original image scene. Finally,
the resulting single raster mask was converted to a vector layer containing all the predicted roads as
polygon vectors in one shapefile.

2.5. Performance Evaluation

A performance evaluation of the methodology was carried out by manually digitising all the roads
in subset areas within each AOI, and comparing these with the model detections through the calculation
of the Jaccard similarity coefficient and the rank distance. The rank distance in turn is a measure which
combines the completeness (percentage of reference data covered by model detections), and correctness
(percentage of model detections covered by reference data) [48]. A performance evaluation with
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manually digitised reference data was necessary given the following limitations of using the OSM data
as a reference.

1. The quality of the OSM data varied, in some cases road meanders were represented by straight
lines (see Figure 5). This caused a misregistration between actual and OSM roads. In these cases,
the U–Net model could still associate the same roads in the SAR and OSM masks by downscaling
through layers of convolution filters, but for the automatically calculated IoU, the misregistration
could mean no overlap (unless large buffers are used), and hence the SAR and OSM roads would
not match.

2. In addition to the misregistration between the modelled and reference data, another challenge
was the missing roads in the OSM data. The intention of the methodology was to detect roads
unrecorded in the OSM dataset, but in the same geographic area. The chances of roads being
missed in many of the reference OSM mask patches was therefore high. In the interest of
demonstrating a robust and scalable methodology, manual editing to improve the mask patches
was avoided.

Discrepancy between OSM, detected and true roads

Figure 5. Above: mask of detected roads. Below: Sentinel–2 image. Red line shows the Open Street
Map (OSM) road data overlaid. The yellow arrows highlight the misregistration between the OSM
road and both detected (mask) and actual (Sentinel–2) roads. Green arrows show roads which are not
in the OSM dataset. Blue arrows point to a road which was neither in the OSM data, nor detected by
the model. Contains modified Copernicus Sentinel–2 data 2020.

Figure 5 demonstrates the success in using, in some cases, low quality OSM data to train
the U–Net model (accurate detections despite misregistration of the OSM with actual roads), while
also highlighting the various problems with using OSM data as a reference for performance evaluation:
the varying width of roads, missing roads in the OSM data, misregistration of the OSM. The top part of
this figure shows the mask of detected roads over a part of the North Sinai AOI, while the lower part is
a true colour Sentinel–2 image acquired on 2 August 2019 (roughly in the middle of the Sentinel–1 time
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series used as an input to the model). White lines in the mask correspond with road detections. In this
case the model detected the correct location of the road despite the misregistration of the OSM, which
was used to train the model. Roads branching off the main road segment are not in the OSM dataset,
but have been detected by the model (apart from one branch which was not detected).

These challenges resulted in the automatically calculated Jaccard index rarely exceeding 0.5
during model training, and the loss function seldom dropping below 0.3. As a relative assessment of
performance, this was sufficient for model training and validation. For a more accurate quantitative
assessment of results however, this was not sufficient, and a more thorough technique was adopted.

For a more robust accuracy assessment, the following was carried out: For each area, a 0.2 × 0.2
degree image subset was randomly selected. To avoid subsets with sparse detections, a threshold was
applied to enable only those with at least 7000 road pixels to be considered. In the selected subsets, all
roads were manually digitised as vectors, using the Sentinel–1 data and Sentinel–2 data from the same
date range as the references. The model detected roads for the same area were similarly digitised.
The resulting vector layers were visually inspected and the model detected vector components were
assigned labels for true or false positives. All vector layers were converted to raster (one pixel width).
A confusion matrix was created by quantifying the true and false positives and negatives. Based
on this confusion matrix, the Jaccard index was calculated. Any OSM roads present in the selected
subsets were discarded from the analysis since these had been used for training. While this method
was suitable for quantifying true or false positives and negatives, another metric was required to
assess the positional accuracy of the detections. For this, buffers of a two pixel width (40 m) were first
created around both the reference and model detections. The percentage of reference data covered by
model detections (completeness) and the percentage of model detections covered by the reference data
(correctness) were calculated [15]. From these, the rank distance was derived, using the formula [47]:

Rank Distance ≡
√

% Complete2 + % Correct2

2
(3)

The two pixel buffer was necessary to account for the varying width of roads and errors in manual
digitising, but is a reasonable value when compared to other studies, e.g., [4].

The manually digitised reference subsets in each AOI could have been used to assess the accuracy
of the OSM data. However, each validation subset only had a small quantity of OSM roads—in
the Taklimakan Desert subset there were none at all (the minimum 7000 road pixel threshold applied only
to model detected roads). An assessment of the accuracy of these would not have been representative.
Moreover, there have been several dedicated studies on the accuracy of OSM data, e.g., [49–51].

3. Results

The model performed well in all areas, despite the diverse landscape forms and road conditions
encountered in each. Especially in VV polarisation, many sand dunes produced a high backscatter.
This is typical when the incidence angle of the SAR system equals the angle of repose of sand dunes [52].
The model proved nonetheless capable of distinguishing roads from sand dunes, rock formations
and other natural features with similar backscatter characteristics as roads.

Of the various SAR input data types, the VV backscatter average alone proved the most effective
for both the North Sinai Desert and Grand Erg Oriental. Only for the Taklimakan Desert site did
all three layers of coherence, VV backscatter and VH backscatter yield the best results. Table 3 lists
the IoU accuracies for each of the single SAR input layers, and for all three input layers for each of
the AOIs. The fact that the use of all the input layers improved the results in only one area shows that
more information provided to a model is not necessarily better. The decreased accuracy caused by
the inclusion of the VH backscatter and coherence is perhaps due to the increase in speckle in these
layers. This may have hindered the models in distinguishing particularly challenging roads, such as
those that may be narrow, unpaved, or partially buried. The VV backscatter return over this type
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of landscape is generally much stronger than the VH backscatter, and enables a clearer distinction
of roads. The exception of the Taklimakan desert is perhaps due to the predominant type of road
surface and surrounding context of sand dunes. The results for each area are discussed in more detail
in the subsections below.

Table 3. Intersection over union (IoU) accuracy of road detection models with different SAR input
types. The best results for each area are highlighted in bold.

SAR Input to U–Net Model
IoU Accuracy (in %)

North Sinai Grand Erg Oriental Taklimakan Desert

VV 89 84 68

VH 65 57 77

Coherence 64 66 71

VV + VH + Coherence 74 66 89

3.1. North Sinai Desert

Figure 6 shows roads detected by the model over a part of the North Sinai AOI. The area
includes the location of the randomly selected subset (0.2 × 0.2 degree area) in which a more accurate
performance evaluation was carried out. This subset is shown in more detail in Figure 7. Figure 8 shows
the corresponding area of the SAR layer used as a model input, which was the Sentinel–1 multitemporal
backscatter average of the VV polarisation only. Figure 9 shows a Sentinel–2 true colour image of the subset
with the available OSM data for this area overlaid. The Sentinel–2 image was acquired on 2 August 2019,
which is approximately in the middle of the Sentinel–1 time series (see Table 1).

The confusion matrix for the accuracy assessment is shown in Table 4. Table 5 shows the values
of various accuracy indices. The average Jaccard similarity coefficient is 89% and the rank distance
is 80%. There were few false positives, i.e., non–roads classified as roads, despite the many natural
features of high backscatter that could have been misinterpreted by the model as roads, such as sand
dune ridges. However, there were many more false negatives, i.e., undetected road segments. In some
cases, the broken segments shown in the mask were correct in that the actual road was partially buried
in segments (see Figure 10 and arrows in Figures 7–9).

The VH backscatter over the entire area was much lower, and road features much less clearly
defined, particularly those that were unpaved and partially sand covered. This may be the reason
why the VH backscatter input degraded the results. The coherence layer highlighted very clearly
the roads, but overall had much more speckle, which is possibly why this also reduced the quality of
the detection.

Table 4. Confusion matrix for true and detected roads, with only the VV backscatter as input, calculated
for the same area as in Figures 7–9.

North Sinai Desert Confusion Matrix Predicted Roads Predicted Non–Roads

True roads 7671 2060

True non–roads 218 4,881,581

Table 5. Accuracy indices calculated for the North Sinai results.

IoU Accuracy Rank Distance Completeness Correctness

89% 80% 71% 88%
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Detected roads for part of North Sinai AOI. 

 

Figure 6. Detected roads for part of the North Sinai AOI. The yellow rectangle shows a 0.2 × 0.2 degree
subset over which roads were manually digitised and a performance evaluation carried out. This area
is shown in more detail in Figure 7.

Detected roads for randomly selected subset of North Sinai AOI 

 

Figure 7. Detected roads for a randomly selected 0.2× 0.2 degree subset over the North Sinai area. White
lines correspond with detected roads. The red arrow points to an example of a buried road segment.
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Sentinel–1 VV backscsatter average input to North Sinai model 

 
Figure 8. The Sentinel–1 average vertical transmit–vertical receive (VV) backscatter used as an input to
the model for North Sinai. The area is the same as that of Figure 7. Contains modified Copernicus
Sentinel–1 data 2020.

Sentinel–2 image of North Sinai AOI subset 

 
Figure 9. Sentinel–2 image of the same area as in Figure 7. The image was acquired on 2 August 2019
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red,
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green, and blue, respectively. Overlaid in red are the available OSM roads for this area. Contains
modified Copernicus Sentinel–2 data 2020.

Detail of partially buried road 

 
Figure 10. Close–up of the buried road segment shown in the very high resolution (VHR) optical data
available on Google Earth Pro. The area corresponds with that shown by the red arrow in Figures 7–9.
The imagery date is reported to be 5 May 2010.

3.2. Grand Erg Oriental

Figure 11 shows the roads detected by the model over a part of the Grand Erg Oriental AOI.
The area includes the location of the randomly selected subset (0.2 × 0.2 degree area) in which a more
accurate performance evaluation was carried out. This subset is shown in more detail in Figure 12.
Figure 13 displays the Sentinel–1 input (VV backscatter) of the same area, and Figure 14 the Sentinel–2
image with the location of OSM roads overlaid. The Sentinel–2 image was acquired on 23 July 2019,
which is roughly in the middle of the Sentinel–1 time series (see Table 1).

The confusion matrix for the accuracy assessment is shown in Table 6. Table 7 shows the values of
various accuracy indices. The average Jaccard similarity coefficient calculated is 84% and the rank
distance is 76%. As with the North Sinai evaluation, there were a few false positives, but many more
false negatives. However, the evaluation subset area contains infrastructure in addition to roads.
A large segment of missed detections, for example, includes a road running parallel with a large
infrastructure installation (see Figure 15). Given the width of the structure, in particular as it appears
on the Sentinel–1 data (Figure 13), the model may have misinterpreted it as a natural feature.

As with the North Sinai area, the VH backscatter over the entire area was much lower, with road
features less clearly defined, while the coherence layer had greater speckle. These may be the reasons
why the results were better with the VV backscatter alone.

Table 6. Confusion matrix for true and detected roads calculated for same area as in Figures 12–14.

Grand Erg Oriental Confusion Matrix Predicted Roads Predicted Non–Roads

True roads 14,692 6430

True non–roads 282 4,929,956

Table 7. Accuracy indices calculated for the Grand Erg Oriental results.

IoU Accuracy Rank Distance Completeness Correctness

84% 76% 64% 86%
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Detected roads for part of Grand Erg Oriental AOI 

Figure 11. Detected roads for part of the Grand Erg Oriental AOI. The yellow rectangle shows a 0.2 ×
0.2 degree subset over which roads were manually digitised and a performance evaluation carried out.
This area is shown in more detail in Figure 12.

Detected roads for randomly selected subset of Grand Erg Oriental AOI 

Figure 12. Detected roads for a randomly selected 0.2 × 0.2 degree subset over the Grand Erg Oriental
AOI. White lines correspond with detected roads. The red arrow points to an example of a missed
detection, perhaps due to mixed infrastructure.
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Sentinel–1 VV backscsatter average input to Grand Erg Oriental model 

Figure 13. The Sentinel–1 average VV backscatter used as an input to the model for the Grand Erg
Oriental. The area is the same as that of Figure 12. Contains modified Copernicus Sentinel–1 data 2020.

Sentinel–2 image of Grand Erg Oriental AOI subset 

Figure 14. Sentinel–2 image of the same area as in Figure 12. The image was acquired on 23 July 2019
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red,
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green, and blue, respectively. Overlaid in yellow are the available OSM roads for this area. Contains
modified Copernicus Sentinel data 2020.

Detail of mixed infrastructure 

 
Figure 15. Close–up of a road segment in VHR optical data available on Google Earth Pro. The area
corresponds with that shown by the red arrow in Figures 12–14. The road segment was not detected by
the model. As evident in the figure, the road runs parallel with other infrastructure, which may have
affected the ability of the model to correctly interpret the scene. The imagery date is reported to be
13 September 2013.

3.3. Taklimakan Desert

Figure 16 shows roads detected by the model over a part of the Taklimakan Desert AOI. The area
includes the location of the randomly selected subset (0.2 × 0.2 degree area) in which a more
accurate performance evaluation was carried out. This subset is shown in more detail in Figure 17.
Figure 18 shows the Sentinel–1 input as a red, green, and blue combination of VH and VV backscatter
and coherence averages, respectively. Figure 19 shows a Sentinel–2 image of the same area. In this
subset there were no OSM roads. The Sentinel–2 image was acquired on 31 July 2019, approximately
in the middle of the Sentinel–1 time series (see Table 1).

The confusion matrix for the accuracy assessment is shown in Table 8. Table 9 shows the values of
various accuracy indices. The average Jaccard similarity coefficient calculated is 89% and the rank
distance is 75%. As with the other areas, there were more false negatives than false positives. Compared
to the other areas, there appear to be more paved roads, with straighter paths. The sand dunes are
larger and do not have the characteristic lines of high backscatter apparent in the other two areas,
although some sparse misclassifications still arise over natural features.

This was the only area where the best results were obtained with all three SAR input layers of
coherence, VV backscatter and VH backscatter. The backscatter over sand dunes is much lower in VH
than VV, while the road features are still clearly defined, perhaps due to the high relative permittivity
of the paved roads. This may be the added value of the VH layer. The coherence layer still displayed
much speckle over the sand dunes, but the roads were very clearly defined, perhaps again due to
the material of their construction.

Sand drift encroachment on roads in the Taklimakan desert is a serious problem and many efforts
have been made to mitigate the issue [7,53,54]. Figure 20 shows a road segment of the subset in
VHR optical data available on Google Earth Pro, the date of which is reported to be 26 October 2014.
The road is partially buried in this image, but the model output shows a continuous, unbroken line. It
would seem that maintenance had been carried out on this road in between the date of the VHR optical
image acquisition and the date range of the Sentinel–1 time series used as an input to the model.
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Detected roads for part of Taklimakan Desert AOI 

 
Figure 16. Detected roads for part of the Taklimakan Desert AOI. The yellow rectangle shows a 0.2 ×
0.2 degree subset over which roads were manually digitised and a performance evaluation carried out.
This area is shown in more detail in Figure 17.

Detected roads for randomly selected subset of Taklimakan Desert AOI 

 
Figure 17. Detected roads for a randomly selected 0.2 × 0.2 degree subset over the Taklimakan Desert
AOI. White lines correspond with detected roads. The red arrow points to an example of a formerly
buried road segment.
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Sentinel–1 VH, VV and Coherence input to Taklimakan Desert model 

Figure 18. Sentinel–1 colour composite of time series averages of the VH backscatter in red, VV backscatter in
green, and coherence in blue. This comprised the input to the model for the Taklimakan Desert area. The extent
is the same as that for Figure 17. Contains modified Copernicus Sentinel data 2020.

Sentinel–2 image of Taklimakan Desert AOI subset 

Figure 19. Sentinel–2 image of the same area as in Figure 17. The image was acquired on 31 July 2019
(roughly in the middle of the Sentinel–1 time series). It is displayed in true colour, bands 4,3,2 as red,
green, and blue, respectively. Contains modified Copernicus Sentinel data 2020.
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Table 8. Confusion matrix for true and detected roads calculated for the same area as in Figures 17–19.

Taklimakan Desert Confusion Matrix Predicted Roads Predicted Non–Roads

True roads 11,077 2622

True non–roads 428 4,940,949

Table 9. Accuracy metrics calculated for the Taklimakan Desert results.

IoU Accuracy Rank Distance Completeness Correctness

89% 75% 69% 81%

Detail of partially buried road 

 
Figure 20. Close–up of a road segment in VHR optical data available on Google Earth Pro. The area
corresponds with that shown by the red arrow in Figures 17–19. The road appears to be partially buried,
while the output of the model shows a continuous line. It would appear the road was cleared some
time between the acquisition of this image and the date range of the Sentinel–1 time series used as
the model input. The imagery date is reported to be 26 October 2014.

4. Discussion

The road detection methodology proposed here aims above all to demonstrate the potential
for low cost, but reliable mapping and monitoring of road networks, that can easily be adapted
and transferred to extensive regions. It has been applied to three desert areas, each covering around
47,500 km2, each corresponding to the footprint of one Sentinel–1 IW scene. The results over all three
areas have achieved an IoU accuracy of over 80%. This accuracy metric takes into account the class
imbalance, which is typically the case for road detection in satellite imagery, where in any given area
the non–road pixels are expected to greatly outnumber the road pixels. The rank distance is over
75% in all the areas tested, which demonstrates the proximity (in completeness and correctness space)
between the reference and model detected roads. The recent study of Abdelfattah and Chokmani [4],
who also used Sentinel–1 for road detection over a similar area, could be considered a benchmark
to assess the performance of the methodology described here. The correctness and completeness
of detections reported in their study are at least 10 percentage points below those described in this
paper, for each of the AOIs, and despite the fact that the buffers surrounding the reference objects
and detections were larger (three pixels as opposed to two pixels in the study reported here). However,
the authors did focus on smaller roads and tracks, while the research of this paper includes major
roads in addition to smaller unpaved tracks, so this comparison needs to be treated with caution.
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Each desert area in which the methodology was tested has different characteristics, such as diverse
sand dune forms, varying predominant road types, and the presence of other infrastructure. Despite
these differences, the algorithm performs well and therefore demonstrates robustness. Moreover,
all the required input is free and open, including the satellite data from which roads are detected,
and the OSM reference data. The methodology is hence cost–effective. To scale to other areas,
the model does require training. Attempts to apply pre–trained models to the other AOIs resulted in
a poor performance, probably due in large part to the greatly varying sand dune morphology in each
area. However, the U–Net model architecture is particularly efficient, and training with one NVIDIA
GTX1080 Ti GPU never took more than around 25 min. The capability of the algorithm to work well
over multiple areas with the available OSM data, without manual intervention for reference dataset
cleaning, demonstrates scalability.

Despite the success of the model there are some limitations. While there were few false positives,
a significantly higher number of false negatives were encountered, where the algorithm failed to
detect roads. This was consistent across all test areas. Many of these false positives were due to
the complexity of the context in which the road was situated. Some roads, for example, ran alongside
other infrastructure, which in the resolution cell of the SAR input data could be misinterpreted as
natural or other non–road features. A possible solution to mitigate these missed detections could be
to expand the training set to include more OSM training samples over a wider area, or to include
additional classes with a mixed infrastructure.

Another limitation is related to the required input data. In order to reduce speckle while preserving
the spatial resolution, speckle filtering was carried out in the temporal domain. This requires processing
of a time series, which is computationally expensive, especially for the average coherence generation
with SLC format data. However, in most cases it was demonstrated that the VV average backscatter
alone produces the best results. Only in one case did the coherence improve the results of the detection,
but not significantly. The added value of the coherence is perhaps in those cases where there is a high
proportion of roads made from material characterised by a high coherence, i.e., those that have a stable
surface, such as paved roads. These would contrast highly with the surrounding sand, where volume
decorrelation causes low coherence. In cases where roads are unpaved, or partially sand covered,
the coherence is perhaps too noisy, despite the multitemporal averaging, and may degrade the results.
Particularly in less developed areas, where there may be fewer paved roads, the coherence processing
could therefore be discarded in the interest of a more computationally efficient algorithm.

The VH backscatter over all sites was much weaker than the VV. As with the coherence, the VH
backscatter input only improved the detection results over the Taklimakan Desert site. Here, the VH
backscatter was less pronounced over sand dunes, while still high enough over roads to enable their
distinction. This may have helped reduce the ambiguity between the high backscatter encountered
in the VV polarisation at certain sand dune inclinations with roads. Again, the unique suitability of
the VH channel in this area alone may be due to the high relative permittivity of the roads, causing
a high enough backscatter even in the weak cross polarisation channel. Elsewhere, however, the low
backscatter return of the VH over less reflective roads may have contributed to the degradation of
the results.

In terms of the utility of the algorithm for operational road detection in desert areas, the low
number of false positives are advantageous in any alert system. Committing resources to detect human
activity in remote areas is expensive and time consuming, especially in developing countries such as in
North Africa where the means for such activities may be limited. As a monitoring system, the chosen
time series length constrains the maximum frequency of monitoring to at least two and a half months.
It may be possible to reduce this and still achieve good results. However, any changes significant
enough to be observed at the spatial scale of the model are unlikely to occur at temporal frequencies
significantly higher than this.

The algorithm proposed here is only a prototype. Improvements could be made for example to
reduce the number of missed detections in challenging areas, perhaps by expanding the training set,
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and including other classes. It could be interesting also to assess the extent to which the Sentinel–1
stripmap (SM) mode may improve detections. While the higher resolution SM mode (around 10 × 10 m
in GRD format) is not as systematically available as the Sentinel–1 IW mode, it may nonetheless be useful
to detect smaller roads and tracks that may not be resolved in IW mode. This is particularly relevant
for security applications [4]. However, the methodology applied with Sentinel–1 IW data nonetheless
demonstrates the potential for regular and large–scale mapping and monitoring of desert roads.

5. Conclusions

The methodology proposed here for road detection in desert areas, using Sentinel–1 SAR data as
an input and OSM data for training, has the potential to provide a robust, cost–effective and scalable
solution for the mapping and monitoring of road networks in desert areas. This methodology is still
a prototype that has been tested in three areas, each the size of one Sentinel–1 IW scene. More work is
required to test its performance over a wider area and over different desert landscape types. Possible
improvements with the Sentinel–1 SM mode could be explored. While the accuracy assessments
over the AOIs resulted in Jaccard similarity coefficients above 84% and rank distances of over 75%,
more work still needs to be done to improve the accuracy, in particular to reduce the number of
missed detections. Future improvements may include the addition of other infrastructure classes, or
mixed classes, to account for roads in the proximity of other structures. The methodology may be
further tested to quantify model improvement according to the quantity of training data. Additionally,
more experimentation can be carried out with additional data augmentation techniques, such as
those that modify the intensity of pixels, rather than their spatial position alone. More importantly,
the utility of the system needs to be tested by real end users. Its success should be measured against
the available systems already in place. Such pre–existing systems are likely to vary between different
users and geographic regions. Any improvements should be tailored to meet specific user requirements.
The objective of the work presented here is to assess the benefits of EO and open data in combination
with deep learning for cost–effective and large–scale monitoring. The ambition is to ultimately improve
operational road detection and monitoring to support decision–making. With an increasing global
population, dynamic migration patterns, and with expanding and evolving road networks, the need
for efficient monitoring systems is ever more critical.
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Abstract: For efficient building outline extraction, many algorithms, including unsupervised or
supervised, have been proposed over the past decades. In recent years, due to the rapid development
of the convolutional neural networks, especially fully convolutional networks, building extraction
is treated as a semantic segmentation task that deals with the extremely biased positive pixels.
The state-of-the-art methods, either through direct or indirect approaches, are mainly focused on
better network design. The shifts and rotations, which are coarsely presented in manually created
annotations, have long been ignored. Due to the limited number of positive samples, the misalignment
will significantly reduce the correctness of pixel-to-pixel loss that might lead to a gradient explosion.
To overcome this, we propose a nearest feature selector (NFS) to dynamically re-align the prediction
and slightly misaligned annotations. The NFS can be seamlessly appended to existing loss functions
and prevent misleading by the errors or misalignment of annotations. Experiments on a large scale
aerial image dataset with centered buildings and corresponding building outlines indicate that the
additional NFS brings higher performance when compared to existing naive loss functions. In the
classic L1 loss, the addition of NFS gains increments of 8.8% of f1-score, 8.9% of kappa coefficient,
and 9.8% of Jaccard index, respectively.

Keywords: deep convolutional networks; outline extraction; misalignments; nearest feature selector

1. Introduction

The rooftops of buildings are dominant features in urban satellite or aerial imagery. For many
remote sensing applications, such as slum mapping [1], urban planning [2], and solar panel capacity
analysis [3], the spatial distributions and temporal renews of buildings are critical. These information
are collected from labor-intensive and time-consuming field surveys [4]. For analyses in the city or
country scale, especially in developing countries, a robust and cost-efficient method for automatic
building extraction is preferred.

Over the past decades, many algorithms have been proposed [5]. These methods are verified
by datasets of various types (e.g., imagery or point cloud), scales (e.g., city or country), resolutions
(e.g., centimeter or meter), or spectrums (e.g., visible light, or multispectral) [6–10]. Based on whether
sampled ground truths are required, existing building outline extraction methods can be classified into
two categories: (i) unsupervised and (ii) supervised methods.

1.1. Unsupervised Methods

For most unsupervised methods, building outlines are extracted using thresholding pixel values
or histograms [11], edge detectors [12], and region techniques [13,14]. Because of their simplicity,
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these methods do not require additional training data and are fast. However, when applied to residential
areas with complex backgrounds, some artifacts and noises are inevitable in the extracted building outlines.

1.2. Supervised Methods

Unlike unsupervised methods, supervised methods extract building outlines from the images
through patterns learned from ground truths. By learning from correct examples, supervised methods
typically performed better in terms of both generalization and precision [15–17].

In the early stages, a two-stage approach that combines handcrafted descriptors for feature
extraction [18–21] and classifiers for categorizing [22–24] are adopted in supervised methods.
Because of the separation, an optimal combination of both the feature descriptor and classifier is
difficult to achieve. Rather than the two-stage approach, convolutional neural network (CNN) methods
enable a unified feature extraction and classification through sequential convolutional and fully
connected layers [25,26]. Initially, CNN-based methods are constructed in a patch-by-patch manner
that predicts the class of a pixel through the surrounding patch [27]. Subsequently, fully convolutional
networks (FCNs) are introduced to reduce memory costs and improve computational efficiency through
sequential convolutional, subsampling, and upsampling operations [28,29]. Because of information
loss caused by subsampling and upsampling operations, the prediction results of classic FCN models
often present blurred edges. Hence, advanced FCN-based methods using various strategies have been
proposed, such as unpooling [30], deconvolution [31], skip connections [32,33], multi-constraints [34],
and stacking [35]. Among FCN-based methods, two different approaches exist: (a) indirect and
(b) direct approaches.

1.2.1. Indirect Approach

In the indirect approach, instead of extracting the building outline directly from the input aerial
or satellite image, semantic maps are first generated. The outlines on top of those maps are computed
consequently. Because the outlines are derived from segmentation output, the final accuracy relies
significantly on the robustness of semantic segmentation.

In principle, all FCN-based methods mentioned above can be used for indirect building outline
extraction. However, owing to the sensitivity of the outline/boundary, training with only semantic
information typically results in an inconsistent outline or boundary. To prevent this, BR-Net [36]
utilizes a modified U-Net, and a multitask framework to generate predictions for semantic maps and
building outlines based on a consistent feature representation from a shared backend.

1.2.2. Direct Approach

Unlike the indirect approach, the direct approach extracts the building outlines directly from the
input aerial or satellite images. Compared with the indirect approach, the direct approach learns the
extraction pattern directly from the ground truth outline that preserves a higher fidelity. In the direct
approach, building outline extraction is considered a segmentation or pixel-level classification problem
that involves extremely biased data [37]. In recent years, some advanced FCN-based models, such as
RSRCNN [38], ResUNet [39], and D-LinkNet [40] have been proposed for better outline extractions.

However, these models focus on deeper network architectures to better utilize the feature
representation capability of hidden layers. Furthermore, regardless of how these models generate
predictions, their loss functions are computed directly from the pixel-to-pixel similarity of the ground
truth. Owing to the extremely biased distribution of positive and negative pixels, the gradient explosion
during training becomes a severe problem. Additionally, because of occasional human errors, several or
tens of pixel misalignments will inevitably occur between the annotation and the corresponding aerial
image. Owing to the much fewer positive pixels of the building outline, the pixel-to-pixel losses are
extremely sensitive to these misalignments.

Hence, we propose a nearest feature selector (NFS) module, enabling a dynamic re-alignment
between the ground truth and prediction. A dynamic matching between the ground truth and
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prediction is performed at every iteration to determine the matched position. Subsequently,
the overlapped areas of both the ground truth and prediction are used for further loss computation.
Because the NFS is used for the upper stream, it can be seamlessly integrated into all existing
loss functions. The effectiveness of the proposed NFS module is demonstrated using a VHR image
dataset [36] located in New Zealand (see Section 2.1). In comparative experiments, under different
loss functions, the addition of the NFS indicates significantly higher values of the f1-score, Jaccard
index [41], and kappa coefficient [42].

The main contributions of this study can are as follows:

• We design a fully convolutional network framework for direct building outline extraction from
aerial imagery.

• We propose the nearest feature selector(NFS) module to dynamically re-align the prediction and
annotation to avoid misleading by slightly misaligned annotations.

• We analyze the effectiveness of the NFS with different loss functions to understand its effects on
the performances of deep CNN models.

The rest of the paper is organized as follows: At first, we introduce the materials and methods
used for this research in the Section 2. Then, we present the learning curves and quantitative and
qualitative results in the Section 3. Subsequently, we illustrate our discussion and conclusion in the
Sections 4 and 5, respectively.

2. Material and Method

2.1. Data

To evaluate the performance of different methods, a research area located in Christchurch,
New Zealand, is selected. The original aerial imagery, as well as annotated building polygons,
are hosted by the Land Information of New Zealand (LINZ) (https://data.linz.govt.nz/layer/53413-
nz-building-outlines-pilot/). The aerial images are in a spatial resolution of 0.075. Prior to performing
our experiments, we evenly partition the study area into two areas for training (i.e., Figure 1a, left) and
testing (i.e., Figure 1a, right), respectively. The original annotations provided by the LINZ are registered
to the corresponding building grounds instead of rooftops (confirmed by visual interpretation uisng
QGIS GUI (https://qgis.org/)). For accurate outline extraction, we manually adjust vectorized building
outlines to ensure that all building polygons and aerial rooftops are roughly registered (i.e., Figure 1b).
Because of the huge amount of buildings and occasional human errors, sub-pixel or several pixel
misalignments will be inevitable. Thus, we have to train the models with imperfect “ground truth”.

        Im
age                 O

utline

(a) Study area                                                        

(b) Manual adjustment  

(c) Sample data        

Figure 1. (a) Aerial imagery of the study area ranging from 172◦33′E to 172◦40′E and 43◦30′S to 43◦32′S,
encompassing approximately 32 km2. (b) Manual adjustment of provided annotation (e.g., from Red to
Green polygon). (c) Sample pairs of the extracted patches.
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As shown in Figure 1a, the study area is covered mainly by residential buildings with sparsely
distributed factories, trees, and lakes. From training and testing areas, 16,635 and 14,834 patches are
extracted. The size of the patch is 224 × 224 pixels. As shown in Figure 1c, within each pair of the
patches, there are buildings in the center area.

2.2. Methodology

In this study, we are expected to correctly train and evaluate a model using imperfect annotation.
Due to the inevitable misalignments, values of the loss functions or metrics, which are directly
computed by the pixel-to-pixel comparison of the prediction and annotation, are inaccurate. To avoid
this, we introduce the nearest feature selector (NFS) module to perform similarity selection during
training and testing stages.

As shown in Figure 2, at the training phase, the NFS is applied to prediction and imperfect
annotation to generate aligned prediction and annotation for accurate loss estimation and proper
back-propagation. As for the testing phase, the NFS is applied to prediction and imperfect annotation
to generate aligned prediction and annotation that can be used for reliable accuracy analysis. Since the
NFS is applied to select the most paired overlap, it can avoid misalignments in the ground truth and
produce a more reliable accuracy or prediction error.

Figure 2. Experimental design for model training and evaluation under imperfect annotation.
The proposed nearest feature selector(NFS) is applied to perform similarity selection during training
and testing stages.

Figure 3 presents the workflow for building outline extraction. The aerial images and their
corresponding building outlines are partitioned into two sets for training and testing. Through several
cycles of training and validation, the hyperparameters, including batch size, the number of iterations,
random seed, and initial learning rate were determined and optimized using the basic model
(i.e., SegNet + L1 loss). Subsequently, the predictions generated by the optimized models are evaluated
using the patches within the test set. For performance evaluations, we select three typically used
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balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient. These metrics are computed
before the post-processing operations [43,44].

Figure 3. Experimental workflow for buidling outline extraction. Existing loss functions and proposed
nearest feature selector are trained and evaluated using 224 × 224 image patches extracted from
original dataset.

2.2.1. Data Preprocessing

According to the location and extent of every building polygon, a square window is applied to
the centroid of the polygon to extract the corresponding image patch. Later, all patches are resized
as 224 × 224 pixels. After data preprocessing, there are 16,635 and 14,834 image patches extracted
from training and testing area, respectively. Since we have carefully checked the annotations, there are
no negative patches to be discarded. Then, the image patches within the training area are shuffled
and partitioned into two groups: training (70%), and validation (30%). Subsequently, the number of
patches used for training, validation, and testing are 11,644, 4990, and 14,834, respectively.

2.2.2. Proposed Model

For an efficient building outline extraction, we utilize a modified SegNet [30] for feature extraction
and the NFS to achieve a dynamic alignment between the ground truth and prediction (see Figure 4).

Prediction
Ground truth

Nearest Feature 
Selector (NFS)

Conv Block 
Max-pooling 
Unpooling 
Indices 

224x224x24
112x112x48

56x56x96
28x28x192224x224x3

14x14x384

224x224x1

112x112x48

56x56x96

28x28x192

Figure 4. Overview of the proposed model. The model consists of a modified SegNet for feature
extraction and the nearest feature selector (NFS) module for dynamic alignment.
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• Feature extraction

In this study, we utilize a modified SegNet for effective feature extraction from very-high-resolution
aerial images. As shown in Figure 4, the modified SegNet comprises sequential operation layers, including
convolution, nonlinear activation, batch normalization, subsampling, and unpooling operations.

The convolution operation is an element-wise multiplication within a two-dimensional kernel
(e.g., 3 × 3, or 5 × 5). The size of the kernel determines the receptive field and computational efficiency
of the convolution operation. Owing to the complexity of the task, we set the number of kernels of
the corresponding convolutional layers to [24, 48, 96, 192, 384, 192, 96, 48, 24] [34]. Subsequently,
the convolution output is managed using a rectified linear unit [45], which treats all values less than
zero as zeros. To accelerate network training, a batch normalization [46] layer was appended to every
activation function except for the final layer. Max-pooling [47] and the corresponding unpooling [30]
were used to reduce and upsample the width and height of intermediate features, respectively.

• Nearest Feature Selector(NFS)

Figure 5 shows the mechanisms of the NFS. The center area of the ground truth slides over the
corresponding prediction along both the X- and Y-axes to generate overlaps of Xi,jXi,jXi,j and YcYcYc, respectively,
where i and j are the distances from the initial position. To obtain a balance between the computational
efficiency and sliding field, we set the maximum values of both i and j to five. Subsequently, they were
used for similarity estimation through different criteria according to the number of channels of
the output.

For the prediction and ground truth containing a single channel, the classic L1 distance is used.
Thus, the distance of the (i,j) overlap can be formulated as:

Di,jDi,jDi,j =
1

W × H

W

∑
i=1

H

∑
j=1

||XXXi,j −YYYc|| (1)

where XXX is the prediction, and YYY is the corresponding ground truth. Both XXX and YYY are ∈ RRRW×H . W and
H are the width and height of the corresponding output, respectively.

Nearest Feature Selector (NFS)

x-axis 
shifting 
(stride=1)

Similarity 
selection

y-axis 
shifting 
(stride=1)

Xi,j

Yc

…

Figure 5. Overview of the nearest feature selector (NFS) module. The center area of ground truth slides
over prediction along X- and Y-axes to generate overlaps that are used for similarity selection.
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For the prediction and ground truth containing multiple channels, the average cosine similarity
along the channels will be calculated. In such cases, the distance of overlaps can be formulated as:

Di,jDi,jDi,j = 1 − 1
W × H

W

∑
i=1

H

∑
j=1

XXXi,j ·YYYc

||XXXi,j|| × ||YYYc|| (2)

From all overlaps, location indices of the one with the closest distance to the ground truth is
determined as:

(imin, jmin)(imin, jmin)(imin, jmin) = argmin
i,j

DDD (3)

The nearest overlap (Ximin ,jmin
Ximin ,jminXimin ,jmin ) and corresponding ground truth (YcYcYc) are selected for further

final loss estimation. Four well-known loss functions, namely, L1, mean square error (MSE), binary
cross-entropy (BCE) [48], and focal loss [49], are chosen in this study.

LL1LL1LL1 =
1

W × H

W

∑
m=1

H

∑
n=1

||ym,n − gm,n|| (4)

LMSELMSELMSE =
1

W × H

W

∑
m=1

H

∑
n=1

(ym,n − gm,n)
2 (5)

where W and H represent the width and hight of the nearest overlap (Ximin ,jmin
Ximin ,jminXimin ,jmin ) and corresponding

ground truth (YcYcYc). The values of ym,n and gm,n are the predicted probability and ground
truth, respectively.

For notational convenience, we define pm,n:

pm,n =

{
ym,n, if gm,n = 1

1 − ym,n, if gm,n = 0
(6)

As compared with traditional cross-entropy, focal loss introduces a scaling factor (γ) to focus on
difficult samples. Mathematically, the BCE and focal loss can be formulated as:

LBCELBCELBCE = − 1
W × H

W

∑
m=1

H

∑
n=1

log(pm,n) (7)

L f ocalL f ocalL f ocal = − 1
W × H

W

∑
m=1

H

∑
n=1

(1 − pm,n)
γlog(pm,n) (8)

Because the NFS is computed dynamically, it can be seamlessly integrated into the existing loss
without further modification.

Three typically used balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient,
are used for the quantitative evaluation. Compared with unbalanced metrics such as precision and
recall, the selected metrics provide a more generalized accuracy level by considering both precision
and recall.

F1 − scoreF1 − scoreF1 − score =
2 × TP

2 × TP + (FP + FN)
(9)

JaccardJaccardJaccard =
TP

TP + FP + FN
(10)

Pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

(TP + FP + FN + FN)× (TP + FP + FN + FN)
(11)

Po =
TP + TN

TP + FP + FN + FN
(12)

KappaKappaKappa =
Po − Pe
1 − Pe

(13)
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where TP, FP, FN, and TN represent the number of true positives, false positives, false negatives,
and true negatives, respectively.

3. Results

Four well-known loss functions, i.e., L1, mean square error (MSE), binary cross-entropy (BCE) [48],
and focal loss [49] are used in this study. The L1 and MSE can be regarded as the most classic and
typically used criteria for pixel-to-pixel comparisons. The BCE is a typical loss function that increases
or decreases exponentially for binary classification. The focal loss introduces a scale factor to the BCE
to reduce the importance of the easy example. These loss functions were trained either with or without
the NFS, separately. All experiments were performed on the same dataset and processing platform.

Three typically used balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient,
are used for the quantitative evaluation. Compared with unbalanced metrics such as precision and
recall, the selected metrics provide a more generalized accuracy level by considering both precision
and recall.

3.1. Learning Curves

Figure 6 shows the relative values of loss from different loss functions under the validation dataset.
Among all the loss functions (i.e., L1, MSE, BCE, and focal), the loss with the NFS (i.e., +NFS) indicated
a faster converging speed than those without (i.e., −NFS).

Figure 6. Trends in validation loss values over different iterations.

Figure 7 shows the trend of kappa coefficient values over various iterations from four different
loss functions under the validation dataset. Among all the conditions, the focal loss trained with the
proposed NFS (i.e., focal + NFS) indicates the highest kappa coefficient values in most of the iterations.
By contrast, the L1 loss trained without the NFS (i.e., L1 − NFS) indicated the lowest kappa coefficient
values for almost every iteration.
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Figure 7. Trends in validation accuracy values over different iterations.

3.2. Quantitative Results

Figure 8a shows the relative performances of different loss functions under the test dataset.
Among all loss functions (i.e., L1, MSE, BCE, and focal), the loss with the NFS indicates the higher
values for all evaluation metrics.

Figure 8b shows the corresponding values of the evaluation metrics over various loss functions.
Among four loss functions, regardless of with or without the NFS, the focal loss is generally better than
BCE, MSE, and L1 loss. L1 loss without NFS (L1 − NFS) indicates the lowest values for all metrics
in all conditions. The best performance is achieved by focal loss with NFS, i.e., 0.651 for f1-score,
0.490 for the Jaccard index, and 0.626 for the kappa coefficient. Under all loss functions, the addition
of the NFS results in significantly higher values for all evaluation metrics. The result indicates that
the proposed NFS can effectively manage the slight misalignments from the annotation and achieve
better performance. Interestingly, on the weakest L1 loss, the addition of the NFS results in the most
significant increments among the three evaluation metrics. The increments of the f1-score, kappa
coefficient, and Jaccard index reached 8.8%, 8.9%, and 9.8%, respectively.

3.3. Qualitative Results

Figure 9 presents six representative results of outlines extracted from the model trained by L1
loss with/without the NFS under test dataset. The backgrounds, red lines, and green circles represent
the aerial input, predicted outline, and focused area. In general, the addition of the NFS yields a
better building outline extraction, particularly on shadowed areas (e.g., green circles in a, b, and e) and
turning corners (e.g., green circles in d and f). Additionally, the model trained with the NFS yields a
more intact outline (e.g., green circles in c).

Figure 10 shows six representative groups of building outlines extracted from the model trained
by the MSE loss with/without the NFS. Generally, the addition of the NFS yields a slightly better
building outline extraction. Using the NFS, the extracted outlines contain fewer false positives within
buildings (e.g., green circles in a and b) and fewer breakpoints (e.g., green circles c, d, e, and f).

Figure 11 shows six representative groups of outlines extracted from the model trained by BCE
loss with or without the NFS. The backgrounds, red lines, and green circles represent the aerial input,
predicted outline, and focused area, respectively. As shown in the figure, the addition of the NFS yields
a slightly better line extraction at areas shadowed by surrounding trees (e.g., green circles of column a,
e, and f). Moreover, the additional NFS results in better line continuity around corners of the buildings
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(e.g., green circles of column b, c, and d). In general, using the proposed NFS, the building outline
extracted from the aerial image is more intact, particularly on building corners and shadowed areas.

Loss Condition F1-score Jaccard Index Kappa coefficient

L1 − NFS 0.524 0.503 0.382
L1 + NFS 0.571 0.548 0.419

MSE − NFS 0.596 0.573 0.445
MSE + NFS 0.611 0.587 0.458

BCE − NFS 0.596 0.573 0.444
BCE + NFS 0.613 0.589 0.459

Focal − NFS 0.618 0.588 0.459
Focal + NFS 0.624 0.597 0.468

(a) Bar chart 

(b) Table
Figure 8. Performances of different losses, either with or without nearest feature selector (NFS). (a) Bar
chart for comparison of relative performances (b) Table of performances under different loss functions.
For each loss function, the highest values are highlighted in bold.

                 a                             b                             c                              d                            e                             f       

        G
round truth             L1 (-N

FS)              L1 (+N
FS)    

Figure 9. Representative results of extracted outlines from model trained by L1 loss with/without
nearest feature selector (NFS). Backgrounds, red lines, and green circles represent aerial input, predicted
outline, and focused area, respectively. Selected results are denoted as (a–f).
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                 a                             b                             c                              d                            e                             f       

        G
round truth            M

SE (-N
FS)         M

SE (+N
FS)    

Figure 10. Representative results of outlines extracted from model trained by mean square error (MSE)
loss with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles represent
aerial input, predicted outline, and focused area, respectively.Selected results are denoted as (a–f).

                 a                             b                             c                              d                            e                             f       

        G
round truth            B

C
E (-N

FS)          B
C

E (+N
FS)    

Figure 11. Representative results of outlines extracted from model trained by binary cross-entropy
(BCE) loss with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles
represent aerial input, predicted outline, and focused area, respectively.Selected results are
denoted as (a–f).

Figure 12 presents six representative pairs of building outlines extracted from the model trained
with the focal loss with or without the NFS. Owing to the robustness of the focal loss, even without
the NFS, the model successfully recognizes and extracts the major parts of the building outline from
the aerial input (e.g., b, c, and f). However, with the additional NFS, the generated outlines contain
fewer false positives around corners with complicated backgrounds (e.g., a, d and e). Compared with
L1 loss, the addition of NFS imposes a less significant effect on the model trained with focal loss.
This observation is consistent with the quantitative result shown in Figure 8b.
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                 a                             b                             c                              d                            e                             f       

        G
round truth            Focal (-N

FS)        Focal(+N
FS)    

Figure 12. Representative results of outlines extracted from model trained by focal loss with/without
nearest feature selector (NFS). Backgrounds, red lines, and green circles represent aerial input, predicted
outline, and focused area, respectively.Selected results are denoted as (a–f).

Figure 13 presents four representative pairs of failure cases from the model trained with the loss
function that combines with or without the nearest feature selector (NFS). As compared with the model
trained without NFS, the addition of NFS might lead to un-expected misclassification around corners.

                 L1                             MSE                             BCE                             Focal                     G
round truth                -N

FS                      +N
FS    

Figure 13. Representative failure cases of outlines extracted from model trained by four losses
with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles represent
aerial input, predicted outline, and focused area, respectively.

3.4. Computational Efficiency

All experiments are trained and tested on a Sakura “koukakuryoku” Server (https://www.sakura.
ad.jp/koukaryoku/) equipped with a 4times NVIDIA Tesla V100 GPU (https://www.nvidia.com/
en-us/data-center/tesla-v100/) and installed with 64-bit Ubuntu 16.04 LTS. The original SegNet
is implemented on Caffe [50] and trained on multi-class scene segmentation tasks, CamVid road
scene segmentation [51] and SUN RGB-D indoor scene segmentation [52]. The stochastic gradient
descent (SGD) with a fixed learning rate of 0.1 and a momentum of 0.9 is applied to train the
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model. The implementation of the modified SegNet is based on geoseg (https://github.com/
huster-wgm/geoseg) [53], which is built on top of Pytorch(version ≥ 0.4.1). To avoid interference
by other hyperparameters, all models are trained with a fixed batch size (i.e., 24) and a constant
iteration (i.e., 10,000). The Adam stochastic optimizer, which operates at default settings (lr = 2−4,
betas = [0.9, 0.999]), is used for training different models.

Table 1 shows the computing speeds of the methods in frames per second (FPS). Among all the
loss functions, the additional NFS results in slightly longer processing time during both training and
testing. However, the decline in PFS is not significant.

Table 1. Comparison of the computational efficiencies of different loss functions under conditions that
with or without NFS.

Loss Condition Training FPS Testing FPS

L1 −NFS 102.3 264.4
L1 +NFS 98.5 236.1

MSE −NFS 101.9 265.9
MSE +NFS 98.4 236.2

BCE −NFS 102.1 266.8
BCE +NFS 98.7 236.6

Focal −NFS 101.6 268.5
Focal +NFS 97.9 236.3

4. Discussion

4.1. Regarding the NFS

In recent years, fully convolutional networks have demonstrated their ability in automatically
extracting line features, including roads and building outlines [36,39,54]. However, those studies mainly
focused on designing deeper or more complex network architectures to enhance the representation
capability for better predictions. The loss functions of fully convolutional networks cannot handle
misalignments or rotations between inputs and manually created annotations. Because the building
outline occupies a small portion of pixels, misalignments and rotations will severely interfere with the
building outline extraction accuracy.

Herein, we propose the NFS module to dynamically re-align the prediction and corresponding
annotation. The proposed framework can be easily appended into existing loss functions, such as L1,
MSE, and focal loss. Through a dynamic re-alignment, the addition of NFS enables the correct position
of the annotation to be located for an appropriate loss calculation. Qualitative and quantitative results
based on the testing data demonstrated the effectiveness of our proposed NFS.

4.2. Accuracies, Uncertainties, and Limitations

Among all methods, the focal loss with NFS indicates the highest values for all evaluation metrics.
Its values of the f1-score, Jaccard index, and kappa coefficient are 0.624, 0.597, and 0.468. Compared
with the naive L1 loss, the addition of the NFS results in significant increments in all evaluation metrics.
The increments of the f1-score, kappa coefficient, and Jaccard index reach 8.8%, 8.9%, and 9.8%,
respectively. As it is arguable that the kappa coefficient is unsuitable in the assessment and comparison
of the accuracy [55], the actual performance gained from the NFS might be less significant (i.e., less than
9.8%). For robust loss functions (e.g., focal, and BCE loss), the improvement afforded by the NFS is
less significant (see details in Figure 8b). Owing to the sliding-and-matching mechanism, the proposed
NFS cannot be applied to annotations that require rotation correction. Since the methods are designed
and trained on image patches with dense buildings, the trained model is not appropriate for evaluating
the entire study area where buildings are sparsely presented.
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We observe a slight decrease in processing speed when the NFS is applied through the analysis
of computational efficiency. Considering the performance gain by the NFS, computational efficiency
degradation is negligible. Because the NFS is independent of the aerial characteristic, in principle,
it should apply for not only aerial images, but also other data sources (e.g.satellite, SAR, and UAV).
The effectiveness of the NFS will be further estimated using publicly available datasets from
various sources [56].

Because of the extremely biased negative/positive ratio, complete building outline extraction
is still challenging. With the current classification-based scheme, the model is trained to generate
pixel-to-pixel prediction using features extracted from sequential convolutional layers. The predicted
pixels of the building outline lack of internal connectivity that some pixels might be misclassified as
non-outline (e.g., 2nd and 3rd rows in Figure 9).

5. Conclusions

For an accurate building outline extraction, we design a nearest feature selector (NFS) module to
dynamically re-align predictions and slightly misaligned annotations. The proposed module can be
easily combined with existing loss functions to manage subpixel or pixel-to-level misalignments of
the manually created annotations more effectively. For all loss functions, the addition of the proposed
NFS yielded significantly better performances in all the evaluation metrics. For the classic L1 loss,
the increments gained by using the additional NFS are 8.8%, 8.9%, and 9.8% for the f1-score, kappa
coefficient, and Jaccard index, respectively. We plan to improve the similarity selection mechanism
and apply it to other data sources to achieve better generalization capacity for large-scale applications.
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Abstract: In this paper, we propose a high performance Two-Stream spectral-spatial Residual
Network (TSRN) for hyperspectral image classification. The first spectral residual network (sRN)
stream is used to extract spectral characteristics, and the second spatial residual network (saRN)
stream is concurrently used to extract spatial features. The sRN uses 1D convolutional layers to fit
the spectral data structure, while the saRN uses 2D convolutional layers to match the hyperspectral
spatial data structure. Furthermore, each convolutional layer is preceded by a Batch Normalization
(BN) layer that works as a regularizer to speed up the training process and to improve the accuracy.
We conducted experiments on three well-known hyperspectral datasets, and we compare our results
with five contemporary methods across various sizes of training samples. The experimental results
show that the proposed architecture can be trained with small size datasets and outperforms the
state-of-the-art methods in terms of the Overall Accuracy, Average Accuracy, Kappa Value, and
training time.

Keywords: hyperspectral image classification; two stream residual network; deep learning;
Batch Normalization

1. Introduction

Hyperspectral imaging has received much attention in recent years due to its ability to capture
spectral information that is not detected by the naked human eye [1]. Hyperspectral imaging
provides rich cues for numerous computer vision tasks [2] and a wide range of application areas,
including medical [1], military [3], forestry [4], food processing [5], and agriculture [6].

One of the main challenges when analyzing Hyperspectral Images (HSIs) lies in extracting
features, which is challenging due to the complex characteristics, i.e., the large size and the large
spatial variability of HSIs [7]. Furthermore, HSI is composed of hundreds of spectral bands, in which
wavelengths are very close, resulting in high redundancies [7,8]. Traditional machine learning methods
are less suitable for HSI analysis because they heavily depend on hand-crafted features, which are
commonly designed for a specific task, and are thus not generalizable [9]. In contrast, deep learning
techniques can capture characteristic features automatically [9,10], thus constituting a promising
avenue for HSI analysis.

Remote Sens. 2020, 12, 3137; doi:10.3390/rs12193137 www.mdpi.com/journal/remotesensing279



Remote Sens. 2020, 12, 3137

Several deep learning architectures have been proposed to classify HSIs. Many architectures, such
as one-dimensional convolutional neural network (1D-CNN) [11,12], one-dimensional generative
adversarial network (1D-GAN) [13,14], and recurrent neural network (RNN) [15,16], have been
proposed to learn spectral features. Other works, e.g., Reference [17–19], have shown that adding
spatial features can improve the classification performance. Numerous spectral-spatial network
architectures have been proposed for HSIs [19–28].

A number of methods argue that extracting the spectral and spatial features in two separate
streams can produce more discriminative features [25,29,30]. Examples of such methods include
stacked denoising autoencoder (SdAE) and 2D-CNN [30], plain 1D-CNN and 2D-CNN [25],
spectral-spatial long short-term memory (SSLSTMs) [27], and a spectral-spatial unified network
(SSUN) [23]. In terms of the spectral stream, the work of Reference [27] used a LSTM, which considers
the spectral values of the different channels as a sequence. However, using LSTM on hundreds of a
sequence of channels is complex; thus, [23] tried to simplify the sequence by grouping them. One of the
grouping strategies is dividing the adjacent band into the same sequence following the spectral orders.
The work in Reference [30] considered spectral values as a vector with noise and used a denoising
technique, SdAE, to encode the spectral features. These networks, based on LSTM and SdAE, are
all shallow. To increase the accuracy, Reference [25] tried to make a deeper network by employing a
simpler layer, based on 1D convolution. The work in Reference [31] considered that the HSI bands
have a different variance and correlation. Hence, they cluster the bands into some groups based on
their similarity, then extracted the spectral features of each cluster using 1D convolution. Different
from Reference [31], the study in Reference [32] considered that different objects have different spectral
reflection profiles; hence, they used 2D convolution with a kernel size of 1x1 to extract the spectral
features. For the spatial stream, Reference [27] also used LSTM, and due to its complexity, thus used
a shallow network. Other approaches [23,25,30] used 2D convolution with a plain network, which
could be made deeper, while Reference [31,32] used 2D convolution with a multi-scale input to extract
multi-scale spatial features.

Other works claim that extracting spectral and spatial features directly using a single stream
network can be more beneficial as it leverages the joint spectral-spatial features [28,33,34]. Most that
adopt this approach utilize 3D convolutional layers [12,19,34,35] because they are naturally suited
to the 3D cube data structure of HSIs. Reported experiments show that deep 3D-CNN produces
better performance compared with 2D-CNN [18]. However, 3D-CNN requires large memory size and
expensive computation cost [36]. Moreover, 3D-CNN faces over-smoothing phenomena because it fails
to take the full advantage of spectral information, which results in misclassification for small objects
and boundaries [23]. In addition, the labeling process of HSIs is labor-intensive, time-consuming,
difficult, and thus expensive [37]. Using a complex deep learning architecture, in which parameters
are in the millions, to learn from a small labeled dataset may also lead to over-fitting [38]. Moreover,
adjusting millions of parameters during the deep-learning training process consumes a lot of time.
Devising a deep learning architecture, which can work well on complex data of HSI, in which labeled
datasets are small, is desirable.

Another issue with HSI classification based on deep learning is the depth of the network.
The deeper the layer is, the richer the features will be, where the first layer of the deep network extracts
general characteristics, and the deeper layers extract more specific features [39,40]. However, such
deep networks are prone to the vanishing/exploding gradient problem, which occurs when the layers
are deeper [41,42]. To solve this problem, Reference [40] reformulated the layers as learning residual
functions with reference to the layer inputs. This approach is called a residual network (ResNet),
which has become popular because of its remarkable performance on image classification [43]. For HSI
classification, a single stream ResNet has been used by Reference [19,44–46].

Another problem related to HSI feature extraction is that the spectral values are prone to noise [47].
However, most of the previous research, which focus on the extraction of spectral features with
deep-networks, have not taken noise into account. They usually use a pixel vector along the spectral
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dimension directly as their spectral network input [23,25,27,29,30], without considering that noise can
worsen the classification performance.

Considering the aforementioned challenges and the limitations of existing network architectures,
associated with HSI feature extraction and classification, we propose an efficient yet high performance
two-stream spectral-spatial residual network. The spectral residual network (sRN) stream uses 1D
convolutional layers to fit the spectral data structure, and the spatial residual network (saRN) uses 2D
convolutional layers to fit the spatial data structure. The residual connection in the sRN and saRN
can solve the vanishing/exploding gradient problem. Since proceeding the convolutional layer with
Batch Normalization (BN) layer and full pre-activation rectified linear unit (ReLU) generalizes better
than the original ResNet [48], in each of our residual unit, we use BN layer and ReLU layer before the
convolutional layer. We then combine our sRN and saRN in a parallel pipeline. As shown in Figure 1,
given a spectral input cube Xs

ij of a pixel xij, the sRN extracts its spectral features. Concurrently,
given a spatial input cube Xsa

ij of a pixel xij, the saRN will extract its spatial characteristics. Since the
sRN and the saRN use different input sizes and different types of convolution layers, they produce
different sizes of feature maps. The gap between the number of spectral feature maps and the number
of spatial feature maps can worsen the classification accuracy. To make the number of feature maps
in each network proportional, we add an identical fully connected layer at the end of each network.
Subsequently, we employ a dense layer to fuse the spectral features and the spatial features. Finally,
we classify the joint spectral-spatial features using a softmax layer (Figure 1).

In summary, the main contributions of this research are:

• We propose TSRN, a Two-Stream Spectral-Spatial network with residual connections, to extract
spectral and spatial features for HSI classification. The identity shortcut in the residual-unit is
parameter-free, thus adding shortcut connections into a residual-unit does not increase the number
of parameters. Furthermore, the use of 1D convolutional layers in the sRN and 2D convolutional
layers in the saRN results in few trainable parameters. We can, therefore, construct a deeper and
wider network with fewer parameters, making it particularly suitable for HSI classification when
the amount of available labeled data is small.

• We achieve the state-of-the-art performance on HSI classification with various sizes of training
samples (4%, 6%, 8%, 10%, and 30%). Moreover, compared to networks based on 3D convolutional
layers, our proposed architecture is faster.

PCA

spectral Residual 
Network (sRN)

spatial Residual Network 
(saRN)

Softmax Class 
Probability

Spectral 
features

Spatial 
features

Concatenate 
spectral-spatial feature

Dense

(a)

(b)

a × b × c
a × b × K

3 × 3 × K

n × n × K

Mean
1 × K

Xij Xijsa

Xijs

Figure 1. Proposed Two-Stream Spectral-Spatial Residual Network (TSRN) architecture. The details
of spectral residual network (sRN) and spatial residual network (saRN) sub-networks are shown in
Figure 2.
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Figure 2. The detailed network of the (a) sRN, (b) saRN, and (c) the detail process of 2D convolution
on 3D input.

2. Technical Preliminaries

2.1. CNN

Convolutional Neural Networks (CNNs) have been increasingly used for HSI analysis. A number
of works aimed at improving the performance of Deep CNNs (DCNNs) have focused on different
aspects, e.g., the network architecture, the type of nonlinear activation function, supervision methods,
regularization mechanisms, and optimization techniques [4,49,50]. Based on the network architecture,
specifically on the convolutional layers, there are different types of CNNs, namely 1D-CNN, 2D-CNN,
and 3D-CNN. The 1D-CNN has one-dimensional filters in its convolutional layers which are naturally
fit to the spectral data structure. Consider the case when the size of the input is K × 1, and the
kernel size is B × 1, with K representing the number of HSI bands, B is the kernel size, and B << K.
Wei Hu et al. [11] used 1D convolutional layers to extract the spectral features of HSI. Their network
input is an HSI pixel vector, with size (K, 1). This research initiated the use of multiple convolutional
layers for HSI classification. Compared to 2D convolution and 3D convolution, the process of 1D
convolution, which is shown in Equation (1), is the simplest one.
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A 2D-CNN has two-dimensional filters in its convolutional layers. It has been widely used to
solve several computer vision problems, such as object detection [51], scene recognition [52], and image
classification [51], because of its ability to extract features from a raw image directly. For the HSI
classification problem, 2D convolutions have been used to extract spatial features [25,30]. In contrast to
RGB images, HSI has a much larger number of channels. Applying 2D convolutions along the hundreds
of channels results in more learned parameters [18]; hence, several studies on HSIs, which employ 2D
convolutions, do not use all of the channels. Most of them use a dimensionality reduction technique as
a preprocessing step with their network [53–55] or use the average of all the images over the spectral
bands of the HSI [25].

A 3D-CNN employs 3D convolutions in its convolutional layers. 3D-CNNs are popular for
video classification [36], 3D object reconstruction [56], and action recognition [57]. For the case of
HSIs, the form of the 3D filter suits the data structure of the HSI cube. Some research papers on
HSI classification use 3D convolutional layers to extract the spectral-spatial features directly [18,33].
Their research shows that 3D-CNN outperforms both 1D-CNN and 2D-CNN. However, as shown in
Equation (3), the process of 3D convolution requires more parameters, more memory, and requires
a higher computational time and complexity compared to 1D convolution in Equation (1) and 2D
convolution in Equation (2).

vz
ij = f (∑

m

Bi−1

∑
b=0

kb
ijmvz+b

(i−1)m + rij), (1)

vxy
ij = f (∑

m

Hi−1

∑
h=0

Wi−1

∑
w=0

kwh
ijmv(x+h)(y+w)

(i−1)m + rij), (2)

vxyz
ij = f (∑

m

Bi−1

∑
b=0

Hi−1

∑
h=0

Wi−1

∑
w=0

kwhb
ijm v(x+h)(y+w)(z+b)

(i−1)m + rij), (3)

where: i is the layer under consideration, m is the index of feature map, z is the index that corresponds
to the spectral dimension, vz

ij is the output of the ith layer and the jth feature map at position z ,

kb
ijm is the kernel value at index b on the layer i and feature map j, rij is the bias at layer i and feature

map j. For the 1D convolution in Equation (1), Bi is the size of the 1D filter in layer i, while, for the 3D
convolution in Equation (3), Bi is the depth of 3D kernel. Wi and Hi are the width and height of the
kernel, respectively, for both 2D and 3D convolutions.

The expensive computational cost and memory demand of 3D convolution has led studies to
investigate alternative network architectures based on (2D + 1D) convolutions. For instance, in the
case of action recognition, a study in Reference [58] proposed to replace 3D convolution with m
parallel streams of n 2D and one 1D convolution. This study empirically showed that their network,
which is based on (2D + 1D) convolution, achieves around 40% reduction in model size and yields
a drastic reduction in the number of learning parameters compared to another network with 3D
convolution. In Reference [36], a simplified 3D convolution was implemented using 2D and 1D
convolutions in three different blocks: 2D followed by 1D, 2D and 1D in parallel, and 2D followed
by 1D with skip connections. These blocks were subsequently interleaved using a sequence network.
The proposed architecture has a depth of 199 and a model size of 261 MB, which is much lighter
compared to the 3D-CNN, in which model size is 321 MB when the depth is 11. The architecture
was also shown to be faster than its 3D-CNN counterpart [36]. Using (2D + 1D) convolutions
instead of 3D convolutions allows the network to be deeper without significantly increasing the
number of parameters. Such deep networks can extract richer features and have been shown to
outperform 3D-CNN architectures [36,58,59]. Because the model size and the number of parameters
grow dramatically as the network becomes deeper, the training of deep 3D-CNNs is extremely difficult
with the risk of overfitting.

283



Remote Sens. 2020, 12, 3137

2.2. Residual Network

Deeper CNN can extract richer features [39]. In some cases, when the networks are deeper, their
accuracy degrades because of the vanishing/exploding gradients problem [60]. Hence, He et al. [40]
proposed to use a shortcut connection to perform identity mapping without adding extra parameters
or extra computational time. The shortcut connection outputs are added to the output of the stacked
layers, and a ReLU is applied as the activation function. This network is named ResNet. It has
achieved outstanding classification accuracy on some image benchmark datasets, such as ImageNet,
ILSVRC 2015, and CIFAR-10.

He et al. [48] followed up their work on ResNet by analyzing the propagation formulation
behind the residual unit. Their analysis has shown that a “clean” information path in the skip
connection results in the lowest training loss compared to those with scaling, gating, and convolution.
Regarding the position of the ReLU activation function in the residual building blocks, they proved
that putting ReLU and BN before the add function (full pre-activation) generalizes better than the
original ResNet [40], which used ReLU after the add function (post-activation). The difference between
pre-activation and post-activation in the residual building blocks is shown in Figure 3.

+
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Conv

BN
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ReLU

+

Conv

BN
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BN

Xi

Xi+1
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Dropout
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Xi
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Figure 3. (a) Original residual unit with clear short-cut connection. (b) rectified linear unit (ReLU)-only
pre-activation with dropout short-cut connection. (c) Full pre-activation with clear short-cut connection.

For the use of ResNet for HSI classification, Zhong et al. [44] proved that with the same
size of convolutional layers, ResNet achieves better recognition accuracy than a plain CNN. Then,
they explored ResNet by applying more various kernel sizes to sequentially extract the spectral features
and the spatial features [19]. Roy et al. [61] used 3D convolutional layers followed by 2D convolutional
layers in their residual network. Their network achieved high performance with 30% training samples.
Meanwhile, Reference [45] explored ResNet by implementing a variable number of kernels in each
convolutional layer. The kernel number was set to increase gradually in all convolutional layers like a
pyramid to increase the diversity of the spectral-spatial features. In contrast to Reference [19,45,61],
which focus on exploring the convolutional layer, Reference [46] improved the ResNet architecture by
combining it with a dense convolutional network, which helps the ResNet to explore new features.
These various works all improve ResNet performance by using a single network to extract both spectral
and spatial features. Our proposed architecture extracts the spectral and spatial features from two
separate stream networks to produce distinctive spectral and spatial features.

3. Proposed TSRN Network

The flowchart of the proposed TSRN is displayed in Figure 1. From the diagram, we can see that
TSRN has two important residual network streams: a sRN and a saRN. Since the number of bands in
the spectral dimension is very large (hundreds of channels), and thus comprises much redundancy,
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we first apply PCA to extract the first K principal components. Then, for each pixel, we take a 3 × 3
cube alongside the spectral direction, which is centered at that pixel, as the input of the sRN stream to
learn the spectral features. Similarly, we take an n × n × K cube and feed it to the saRN streams to
extract the spatial features. In this method, we propose to use the same number of spectral and spatial
features. Hence, we need to ensure that their feature map sizes at the output of the sRN and the saRN
networks are the same. To this end, we have applied a dense layer with the same number of units
in each stream. Then, we apply a fully connected layer to fuse the spectral features and the spatial
features. Finally, we use a softmax layer to classify the features. In the next subsection, we will explain
in more detail both spectral and spatial networks.

3.1. Spectral Residual Network

Although we have minimized the data redundancy of the HSI by using PCA, the spectral values
can still be noisy. In the sRN, we propose to compute the mean of the reflectance in each spectral
band before inputting the spectral cube into the sRN to minimize the effects of the noise. Given a
pixel xij, we choose a spectral cube Xs

ij ∈ R3×3×K, which is centered at xij and K is the number of PCA
components. Then, we compute the mean reflectance of each band by using Equation (4), where k ∈ K,
Xs

ij = {xs
ij1, xs

ij2, ..., xs
ijK}, and Xs

ij ∈ R1xK .

xs
ijk =

∑
h=j+1
h=j−1 ∑

g=i+1
g=i−1 xs

g,h,k

9
. (4)

Then, we input the mean of the spectral value (Xs
ij) into the sRN. In this proposed architecture,

we use three full pre-activation with clear skip connection residual units inspired by Reference [48]. It
has been shown that these residual units are better than the traditional residual units. These residual
units consist of three different layers.

• One-dimensional convolutional layers, which perform a dot product between every small window
of input data (1 × Bi) and the kernel’s weights and biases (see Equation (1)).

• BN layer that normalizes the layer inputs of each training mini-batch to overcome the internal
covariate shift problem [62]. The internal covariate shift problem is a condition which occurs
when the distribution of each layer’s inputs in deep-network changes due to the change of the
previous layer’s parameters. This situation slows down the training. Normalizing the layer’s
inputs stabilizes its distribution and thus speeds up the training process.

• ReLU is an activation function, which learns the non-linear representations of each feature map’s
components [63].

In the full pre-activation residual unit, the BN layer and the ReLU activation layer are established
before the convolution layer, as shown in Figure 2a. From that figure, we can see that an Average
Pooling layer, a Dropout layer, and a Dense layer have been applied at the end of the sRN. The Average
Pooling layer and the Dropout layer are used as a regularizer to minimize the over-fitting problem
due to the small number of training samples, while the Dense layer is used to perform the high-level
reasoning to produce 128 spectral features.

3.2. Spatial Residual Network

The saRN is devised to extract the spatial features of a pixel xij. The input is an n × n × K cube,
centered at pixel xij. Then, the input is processed by the full pre-activation residual unit. As shown in
Figure 2b, the rest of the layers architecture of this saRN are similar to those of sRN. The main difference
between them is that the saRN uses 2D convolutional layers, while the sRN uses 1D convolutional
layers. In the end of this network, 128 spatial features are extracted.

Figure 2c illustrates the 2D convolution process with a spatial cube in which size is n × n × K,
where K is the number of channels or the input depth. Since the input is 3D then the kernel is also 3D,
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i.e., the kernel depth must be the same as the input depth. Hence, in this case, the kernel depth must
be K. So, we can only select the kernel width and height. The convolution process is performed along
the x and y-direction and produces a 2D matrix as output [64].

Given a pixel xij, the spectral features Fs
ij produced by sRN and the spatial features Fsa

ij produced
by saRN are given by Equations (5) and (6), respectively.

Fs
ij = sRN(Xs

ij), (5)

Fsa
ij = saRN(Xsa

ij ). (6)

Using Fs
ij and Fsa

ij , we implement a fully connected layer to obtain the joint spectral-spatial features

Fssa
ij using the formula in Equation (7), where W f cl and b f cl are the weight vector and the bias of the

fully connected layer, respectively, and ⊕ is the concatenation operation.

Fssa
ij = f (W f cl · {Fs

ij ⊕ Fsa
ij }+ b f cl). (7)

After obtaining the joint spectral-spatial feature Fssa
ij , we use a softmax regression layer (SRL) to

predict the class probability distribution of the pixel xij by using Equation (8). Here, N is the number
of classes, and P(xij) is a vector consisting of the probability distribution of each class on pixel xij. In
the end, the label of the pixel xij is decided using Equation (9).
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1
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n=1 ewsrl

n .Fssa
ij

⎡
⎢⎢⎢⎢⎣

ewsrl
1 .Fssa

ij

ewsrl
2 .Fssa

ij

:

ewsrl
N .Fssa

ij ,

⎤
⎥⎥⎥⎥⎦ (8)

label(xij) = argmaxP(xij). (9)

4. Experiments

4.1. Experimental Datasets

We evaluated the proposed architecture on three publicly available HSI datasets, which are
frequently used for pixel-wise HSI classification. These datasets are Indian Pine (IP), Pavia University
(PU), and Kennedy Space Center (KSC). These datasets were captured by different sensors, thus
having different spatial resolutions and a different number of bands. Each dataset has a different
category (class), and each class has a different number of instances. The details of the datasets are
provided below:

1. IP Dataset: IP dataset was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral sensor data on 12 June 1992, over Purdue University Agronomy farm and nearby
area, in Northwestern Indiana, USA. The major portions of the area are Indian Creek and
Pine Creek watershed; thus, the dataset is known as the Indian Pine dataset. The captured
scene contains 145 × 145 pixels with a spatial resolution of 20 meters per pixel. In other words,
the dataset has 21,025 pixels. However, not all of the pixels have ground-truth information.
Only 10,249 pixels are categorized between 1 to 16 (as shown in Table 1a), and the remaining pixels
remain unknown (labeled with zero in the ground truth). Regarding the spectral information, the
entire spectral band of this dataset is 224, with wavelengths ranging from 400 to 2500 nm. Since
some of the bands cover the region of water absorption, (104–108), (150–163), and 220, they are
removed, so only 200 bands remain Reference [65].

2. KSC Dataset: Same as the IP dataset, the KSC dataset was also collected by AVIRIS sensor in 1996
over the Kennedy Space Center, Florida, USA. Its size is 512 × 614; thus, this dataset consists of
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314,368 pixels, but only 5122 pixels have ground-truth information (as shown in Table 1b). The
dataset’s spatial resolution is 18 meters per pixel, and its band number is 174.

3. PU Dataset: The PU dataset was gathered during a flight campaign over the campus in Pavia,
Northern Italy, using a Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral
sensor. The dataset consists of 610 × 610 pixels, with a spatial resolution 1.3 meters per pixel.
Hence 207,400 pixels are available in this dataset. However, only 20% of these pixels have
ground-truth information, which are labeled into nine different classes, as shown in Table 1c. The
number of its spectral bands is 103, ranging from 430 to 860 nm.

Table 1. Detailed categories and number of instances of Indian Pines dataset (The colours represent the
colour labels that are used in the figures of Section 4.3).

Label Category Name # Pixel

(a) Indian Pines Dataset

C1 Alfafa 46
C2 Corn-notil 1428
C3 Corn-mintill 830
C4 Corn 237
C5 Grass-pasture 483
C6 Grass-trees 730
C7 Grass-pasture-mowed 28
C8 Hay-windrowed 478
C9 Oats 20
C10 Soybean-notil 972
C11 Soybean-mintill 2455
C12 Soybean-clean 593
C13 Wheat 205
C14 Woods 1265
C15 Building-Grass-Tress 386
C16 Stone-Steel-Towers 93

(b) KSC Dataset

C1 Scrub 761
C2 Willow swamp 253
C3 Cabbage palm hammock 256
C4 Cabbage palm 252
C5 Slash pine 161
C6 Oak 229
C7 Hardwood swamp 105
C8 Graminoid marsh 431
C9 Spartina marsh 520
C10 Cattail marsh 404
C11 Salt marsh 419
C12 Mud flats 503
C13 Water 927

(c) Pavia University Dataset

C1 Asphalt 6631
C2 Meadows 18,649
C3 Gravel 2099
C4 Trees 3064
C5 Painted metal sheets 1345
C6 Bare soil 5029
C7 Bitumen 1330
C8 Self-Blocking Bricks 3682
C9 Shadows 947

4.2. Experimental Configuration

In our proposed model, we do standardization (a technique to rescale the data to have a
mean of 0 and a standard deviation of 1) in advance, before dividing the data into training and
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testing. Hyperparameters are initialized based on previous research or optimized during experiments.
We initialized the convolution kernel by using the “He normal optimizer” [66] and applied l2 (0.0001)
for the kernel regularizer. We use 1D convolutional kernels of size 5 in the sRN sub-network and 2D
convolutional kernels of size 3 × 3 in the saRN sub-network. For the number of filters, we use the
same size of filters in each convolution layer, 24. We apply 1D average pooling layer with pool size 2
and 2D average pooling layer with pool size 5 × 5 in the sRN and saRN, respectively. Furthermore,
a 50% dropout is applied in both sub-networks. Then, we trained our model using Adam optimizer
with a learning rate of 0.0003 [67].

Regarding batch-size, a constant batch-size sometimes results in a tiny mini-batch (see Figure 4a).
Meanwhile, in a network with BN layers, there is dependency between the mini-batch elements
because BN uses mini-batch statistics to normalize the activations during the learning process [68].
This dependency may decrease the performance if the mini-batch is too small [68,69]. Some approaches
can be applied to overcome this problem. The first is to ignore the samples in the last mini-batch.
This approach is not viable for the IP dataset because the number of training samples in a category
can be very small; for example, with 10% training samples, we only have two training samples in
Oats category. Performance will be badly affected if the removed samples are from this category
(see Figure 4a). The second approach is by copying other samples from the previous mini-batch.
This technique will make some samples appear twice in the training process, and these samples will
have more weight. Another approach is by dividing the training size over the intended batch number.
For example, if we intend to have three batches so the batch size = training size/3. However, when the
training sample is too large, the batch size will be large and thus prone to an out of memory problem.
If the training size is too small, the batch size will also be small, having a tiny batch size can decrease
the performance. Therefore, in our experiment, we used Equation (10) to compute the batch-size prior
to the training process to prevent the occurrence of a tiny mini-batch, where sb is the standard batch, tr
is the training size, and th is the threshold (the allowed smallest mini-batch, see Figure 4b). We used
sb = 256 and th = 64 in this paper.

batchsize =

⎧⎨
⎩

sb, if tr mod sb > th.

sb +
tr mod sb

int( tr
sb
)

, otherwise.
(10)

(a) (b)

Figure 4. Example condition when the batch size cannot divide the training size evenly: (a) the latest
mini-batch size is one, and (b) the latest mini-batch size is more than threshold (if the threshold
is seven).

In the sRN, we used a 3 × 3 spectral cube and computed its mean instead of using a pixel vector
directly to minimize the effect of spectral noise. In contrast to sRN, saRN focus is to get the spatial
features; hence, the region size of the input cube gives an impact on the spatial feature representation.
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In this research, in order to find the optimum saRN input region size, n, we experiment on a variable
set of n {21, 23, 25, and 27} with the number of PCA components set to 30 by using 10% random
training samples and repeat the experiment 10 times. Table 2 shows the results of the Overall Accuracy
mean and standard deviation, and from this table, we can conclude that each dataset has a different
optimum number n. For the PU, IP, and KSC dataset, the optimum n is 21, 25, and 27, respectively.

We then use the optimum value of n to find the optimum number of PCA components,
K. We experiment with different size of K {25, 30, 35, and 40}. The Overall Accuracy (OA)-mean
with different values of K and 10% training samples are shown in Table 3. The table shows that the
optimum K of KSC dataset is 25, while, for the IP dataset and PU dataset, the optimum K is 35.

Table 2. Overall Accuracy of each dataset based on various patch sizes (SoP). The number in bold is
the best Overall Accuracy.

SoP 21 23 25 27

IP 98.73 ± 0.22 98.66 ± 0.29 98.77 ± 0.32 98.75 ± 0.16
KSC 97.73 ± 0.47 97.95 ± 1.12 96.74 ± 1.43 98.51 ± 0.31
PU 99.87 ± 0.06 99.46 ± 0.02 99.65 ± 1.28 99.82 ± 0.39

Table 3. Overall Accuracy based on PCA number. The number in bold is the best Overall Accuracy.

nPCA 25 30 35 40

IP 98.74 ± 0.24 98.77 ± 0.32 98.82 ± 0.38 98.80 ± 0.15
KSC 99.15 ± 0.18 98.51 ± 0.31 98.29 ± 0.82 98.10 ± 0.88
PU 99.72 ± 0.50 99.87 ± 0.06 99.91 ± 0.02 99.72 ± 0.47

Given the optimal parameters for our proposed method, we perform two experiments to
understand the impact of each module of our proposed architecture. The first is an experiment
to discover the effect of using the mean in the sRN sub-network. Second, we perform an experiment to
evaluate the performance of sRN, saRN, and our proposed architecture.

To demonstrate the effectiveness of our proposed method, we compare our method with
the state-of-the-art architectures, which focus on exploring the spectral-spatial features of HSI,
namely 3D-CNN [34], SSLSTMs [27], SSUN [23], spectral-spatial residual network (SSRN) [19], and
hybrid spectral convolutional neural network (HybridSN) [61]. The SSLSTMs and the SSUN explore
the spectral and the spatial features using two different streams, while the 3D-CNN, the SSRN,
and the HybridSN extract features using a single stream network based on 3D convolutional layer.
The implementation codes of the 3D-CNN (https://github.com/nshaud/DeepHyperX), the SSUN
(https://github.com/YonghaoXu/SSUN), the SSRN (https://github.com/zilongzhong/SSRN), and
the HybridSN (https://github.com/gokriznastic/HybridSN) are publicly available, letting us execute
the codes to produce the classification results with all datasets. For the SSLSTMs, even though
the implementation code is not accessible, we wrote the code based on their paper architecture and
parameters. To confirm that our implemented code is correct, we tested it on 10% of the training dataset
and verified our results with the work of Reference [27]. All experiments except the 3D-CNN were
conducted on X299 UD4 Pro desktop computer with the GeForce RTX 2080 Ti Graphical Processing
Unit (GPU). The experiment of the 3D-CNN was conducted on Google Colab server because 3D-CNN
used the Pytorch framework.

To validate the performance of the proposed model with respect to the training size of each
compared model, we performed three different experiments. In all of these experiments, we used
10-fold cross-validation. To guarantee that all of the techniques use the same training indices and
testing indices, we created a module to generate the training indices and testing indices by using
StratifiedShuffleSplit function available in Keras. The input of this function is the training size
percentage and the number of the fold/group (k). The output is k fold training indices and testing
indices, where each fold is made by preserving the percentage of samples for each class. We then
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saved the training indices and testing indices of each fold in a file. Those files were read by each
method during the experiment. Following the protocol in Reference [19], we use the same number of
training epoch, 200, for all of the experiments. Regarding the hyperparameters, we used the optimum
parameter of each model that has been provided in their respective paper. For the hyperparameters
of this proposed approach, we used the optimum settings that have been optimized on 10% training
samples, which were provided by Tables 2 and 3.

In conclusion, we divided the experiments into two groups. The first group (experiments 1
and 2) is an ablation analysis to understand the impact of using the mean, and concatenating sRN and
saRN in the proposed method with respect to the overall performance accuracy. The second group
(experiments 3, 4, and 5) are experiments to understand the effectiveness of the proposed method
compared to other previous studies. The details of these experiments are as follows:

1. To evaluate the effect of the mean operation in the sRN sub-network input, we performed
experiments on our proposed architecture with two case scenarios. First, the sRN input is the
mean of a 3 × 3 spectral cube. Second, the sRN input is a spectral vector of a pixel xij without the
mean operation. We performed experiments with 4%, 6%, 8%, 10%, and 30% training samples for
IP dataset, PU dataset, and KSC dataset. We use the rest of the data that is not used in training
for testing. In each run, we use the same data points for the training of both “with mean” and
“without mean” setups.

2. To discover the concatenation effect of the sRN sub-network and the saRN sub-network on
the performance accuracy, we performed experiments on three different architectures, the sRN
network only, the saRN network only, and our proposed method with 30%, 10%, and 4% training
samples. Here, we divided the data into a training set (30%) and a testing set (70%). Then, from
the training set, we used all, one-third, and one-seventh point five for training. For testing, in all
experiments in this part, we used all data in the testing set. The examples of train and test split
on IP dataset with various percentage training samples are shown in Figure 5.

(a) (b) (c) (d)

Figure 5. (a–c) The train split with 30%, 10%, and 4% training size on Indian Pine (IP) dataset (d) the
test split.

3. In our third experiment, this proposed approach is compared to 3D-CNN, SSLSTMs, SSUN,
SSRN, and HybridSN by using 10% training samples. We chose 10% training samples because
the SSLSTMs and other experiments on SSUN, SSRN, and HybridSN have also been conducted
using 10% training samples.

4. In our fourth experiment, we compared all of those methods on the smaller training samples, 4%,
6%, and 8%. Besides, because 3D-CNN has been tested using 4% training samples, the use of
small labeled samples during training can be used to investigate over-fitting issues.

5. In the last experiment, we compared all of those methods on large training samples, 30%. Not only
because HybridSN [61] had been tested on 30% training samples but also to investigate
under-fitting issues with large training samples.
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4.3. Experimental Results

Experiment 1: Table 4 shows the OA-mean and standard deviation of this proposed architecture
in two different cases. In the first case, the sRN input of our network is a 3 × 3 cube followed by
mean operations (with mean), and the second case, the sRN input of our network is a spectral vector,
which was not followed by mean operations (without mean). From the table, we can see that, in
11 cases out of 15, the “with mean” slightly outperform the “without mean”. We also found that, in
10 cases out of 15, the “with mean” is more stable than “without mean”.

Table 4. Comparison between with mean and without mean in our proposed network (Bold represents
the best results in the experiment setup).

Training Percentage Indian Pines Pavia University KSC

with Mean w\o Mean with Mean w\o Mean with Mean w\o Mean

4% 95.40 ± 0.79 95.07 ± 0.81 99.85 ± 0.06 99.62 ± 0.55 96.97 ± 0.86 95.32 ± 1.16
6% 97.38 ± 0.58 97.37 ± 0.63 99.44 ± 1.54 99.93 ± 0.03 98.04 ± 0.65 96.62 ± 1.46
8% 98.24 ± 0.50 98.14 ± 0.43 99.78 ± 0.55 99.94 ± 0.05 99.36 ± 0.31 99.02 ± 0.28

10% 98.70 ± 0.26 98.81 ± 0.24 99.86 ± 0.27 99.67 ± 0.74 99.48 ± 0.34 99.20 ± 0.42
30% 99.70 ± 0.10 99.75 ± 0.15 99.89 ± 0.20 99.03 ± 3.04 99.96 ± 0.02 99.93 ± 0.06

Experiment 2: Table 5 displays the OA-mean and standard deviation of sRN, saRN, and TSRN
with various training samples, where the best performance is shown in bold. The table shows that
with 30% training data, saRN’s performance is slightly better than others. With 10% training samples,
TSRN’s performance starts to exceed saRN’s performance. TSRN’s superiority is clearly shown in
4% training samples. When the training size is large (30%), and the train and test sets are sampled
randomly over the whole image, the possibility of the training samples become the testing samples’
neighbor is high. Other spatial features, such as line and shape, are clear, too. See Figure 5a, suppose the
center of the red window is the testing sample, we can easily predict its label by seeing its spatial
features. However, with 10% training samples, predicting the pixel’s label only by using its spatial
features is slightly difficult (see Figure 5b). The prediction problems are more complicated when the
training size is 4%. Figure 5c shows that the spatial features (e.g., neighborhood, shape, line) alone
cannot perform well. Therefore, with 4% training samples, the TSRN, which also use spectral features,
produces much better performance then saRN. Meanwhile, the low performance of sRN on IP dataset
and KSC dataset probably because IP and KSC dataset have significantly low spatial resolution 20 m
per pixel and 18 m per pixel, respectively. For example, in IP dataset, where most classes are vegetation,
one pixel corresponds to the average reflectance of vegetation in 400 m2, which results in a mixture
of ground materials. As a consequence, classifying the objects based on spectral information only
is difficult.

Table 5. Comparison between sRN, saRN, and Proposed (TSRN) with 30%, 10%, and 4%
training samples (Bold represents the best results in the experiment setup).

Training 30% 10% 4%

Dataset sRN saRN TSRN sRN saRN TSRN sRN saRN TSRN

IP 92.16 ± 0.66 99.75 ± 0.18 99.69 ± 0.15 86.61 ± 0.86 98.44 ± 0.26 99.03 ± 0.24 79.94 ± 1.54 94.20 ± 0.43 95.50 ± 0.87
PU 98.96 ± 0.08 99.97 ± 0.02 99.95 ± 0.13 98.05 ± 0.19 99.84 ± 0.05 99.93 ± 0.10 96.68 ± 0.14 99.56 ± 0.11 99.82 ± 0.10

KSC 95.55 ± 0.77 100 ± 0.02 99.95 ± 0.05 92.52 ± 0.86 99.55 ± 0.2 99.52 ± 0.29 82.42 ± 3.48 94.60 ± 1.25 95.62 ± 1.27

Experiment 3: Tables 6–8 show the quantitative evaluations of those compared models with
10% training samples. The tables present three generally used quantitative metrics, i.e., Overall
Accuracy (OA), Average Accuracy (AA), Kappa coefficient (K), and the classification accuracy of
each class. The first three rows show the OA, AA, and K of each method. The following rows show
the classification accuracy of each class. The numbers indicate the mean, followed by the standard
deviation of each evaluation with a 10-fold cross-validation. The bold, the underlined, and the
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italic numbers represent the first-best performance, the second-best, and the third-best performance,
respectively. Subsequently, Figures 6–8 display the false-color image, the ground-truth image, and the
classification map of each method on Indian Pine, Pavia University and KSC datasets.

Table 6. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on IP dataset when using 10% training samples. The best performance is
in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 85.29 ± 7.24 94.65 ± 0.72 96.79 ± 0.36 98.24 ± 0.29 97.36 ± 0.82 98.70 ± 0.25
AA 81.11 ± 0.12 94.47 ± 1.77 95.78 ± 2.97 91.69 ± 3.46 95.70 ± 1.08 98.71 ± 0.61

K × 100% 83.20 ± 0.08 93.89 ± 0.82 96.33 ± 0.41 97.99 ± 0.32 96.99 ± 0.93 98.52 ± 0.28
C1 68.70 ± 0.28 99.32 ± 2.05 99.51 ± 0.98 100 ± 0 97.80 ± 3.53 98.72 ± 3.83
C2 84.30 ± 0.17 93.09 ± 1.71 94.65 ± 1.33 98.63 ± 0.82 96.76 ± 1.44 98.02 ± 1.08
C3 75.50 ± 0.11 86.37 ± 1.81 96.09 ± 1.87 96.82 ± 0.70 96.27 ± 2.58 97.08 ± 1.72
C4 74.50 ± 0.09 89.35 ± 4.41 94.65 ± 4.90 99.20 ± 1.37 96.67 ± 2.44 99.16 ± 1.22
C5 88.80 ± 0.07 93.69 ± 3.10 94.89 ± 2.09 96.95 ± 2.27 94.57 ± 3.93 99.41 ± 0.36
C6 96.00 ± 0.02 95.46 ± 0.92 99.06 ± 0.78 98.19 ± 1.17 98.48 ± 0.70 99.76 ± 0.26
C7 61.90 ± 0.27 99.22 ± 1.57 93.20 ± 4.75 70 ± 45.83 88.80 ± 13.24 99.15 ± 1.71
C8 96.80 ± 0.02 98.16 ± 1.73 99.81 ± 0.49 99.15 ± 2.13 99.81 ± 0.39 99.98 ± 0.07
C9 60.00 ± 0.24 90.70 ± 19.01 86.67 ± 13.19 20.00 ± 40.00 86.11 ± 14.33 98.50 ± 4.50
C10 82.70 ± 0.08 96.50 ± 1.42 95.18 ± 1.92 97.35 ± 1.55 97.34 ± 1.29 98.19 ± 1.10
C11 87.30 ± 0.07 96.73 ± 0.85 98.13 ± 0.38 98.65 ± 0.40 98.22 ± 0.89 99.32 ± 0.46
C12 77.40 ± 0.11 88.92 ± 1.58 92.85 ± 4.39 95.51 ± 1.28 93.82 ± 2.73 97.87 ± 1.82
C13 97.70 ± 0.02 93.83 ± 4.27 99.57 ± 0.22 98.21 ± 2.38 99.02 ± 0.94 98.76 ± 2.15
C14 95.30 ± 0.03 98.07 ± 1.03 98.66 ± 0.54 99.57 ± 0.42 99.39 ± 0.40 98.98 ± 0.91
C15 69.30 ± 0.05 96.63 ± 3.98 97.32 ± 2.91 99.34 ± 0.82 95.48 ± 2.81 98.44 ± 1.74
C16 81.50 ± 0.28 95.48 ± 4.10 92.26 ± 6.74 99.48 ± 0.85 92.74 ± 4.95 98.11 ± 1.20

Table 7. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on Pavia University (PU) dataset with 10% training samples. The best
performance is in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 94.07 ± 0.86 98.58±0.23 99.53 ± 0.09 99.59 ± 0.72 99.73 ± 0.11 99.86 ± 0.26
AA 96.54 ± 0.01 98.65 ± 0.16 99.18 ± 29.9 99.31 ± 1.48 99.43 ± 0.23 99.77 ± 0.54

K × 100% 92.30 ± 0.01 98.11 ± 0.31 99.38 ± 0.12 99.46 ± 0.95 99.65 ± 0.15 99.82 ± 0.34
C1 96.50 ± 0.01 97.47 ± 0.46 99.29 ± 0.22 99.85 ± 0.17 99.91 ± 0.18 99.94 ± 0.07
C2 95.20 ± 0.01 98.95 ± 0.34 99.91 ± 0.04 99.93 ± 0.07 100 ± 0.01 99.94 ± 0.06
C3 92.20 ± 0.03 98.80 ± 0.59 97.67 ± 0.74 99.56 ± 0.56 99.22 ± 0.81 98.56 ± 4.09
C4 97.20 ± 0.01 98.43 ± 0.46 99.36 ± 0.29 99.66 ± 0.33 98.4 ± 0.96 99.99 ± 0.03
C5 99.90 ± 0 99.87 ± 0.15 99.93 ± 0.07 99.91 ± 0.08 99.97 ± 0.06 99.84 ± 0.10
C6 97.60 ± 0.02 98.92 ± 0.51 99.89 ± 0.12 99.99 ± 0.05 99.99 ± 0.01 100 ± 0
C7 95.50 ± 0.02 98.36 ± 1.03 97.87 ± 1.64 95.67 ± 12.94 100 ± 0 99.73 ± 0.75
C8 95.40 ± 0.02 97.67 ± 0.60 99.19 ± 0.36 99.28 ± 1.11 99.41 ± 0.45 99.92 ± 0.08
C9 99.40 ± 0.01 99.44 ± 0.50 99.54 ± 0.35 99.92 ± 0.12 97.98 ± 0.95 100 ± 0
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Table 8. Overall Accuracy, Average Accuracy, Kappa Value, and Class Wise Accuracy of our proposed
method versus other methods on Kennedy Space Center (KSC) dataset with 10% training samples. The
best performance is in bold, the second-best performance is underlined, and the third-best is in italic.

Label 3D-CNN [34] SSLSTMs [27] SSUN [23] SSRN [19] HybridSN [61] Proposed

OA 82.21 ± 2.96 97.51 ± 0.63 96.22 ± 0.86 98.77 ± 0.75 91.72 ± 1.52 99.48 ± 0.32
AA 71.68 ± 0.12 97.36 ± 0.69 94.65 ± 2.87 98.10 ± 1.13 88.94± 1.53 99.04 ± 0.46

K × 100% 80.20 ± 0.03 97.22 ± 0.71 95.79 ± 0.96 98.63 ± 0.83 90.77 ± 1.69 99.42 ± 0.36
C1 92.40 ± 0.03 96.65 ± 1.73 97.12 ± 0.98 100 ± 0 95.68 ± 4.17 100 ± 0
C2 84.20 ± 0.08 97.57 ± 2.39 94.25 ± 4.04 96.90 ± 7.10 76.99 ± 5.48 99.77 ± 0.43
C3 43.00 ± 0.27 96.75 ± 2.76 95.05 ± 3.41 100 ± 0 90.35 ± 3.60 97.17 ± 4.41
C4 33.50 ± 0.16 98.41 ± 1.38 89.08 ± 5.15 88.86 ± 11.12 70.40 ± 5.30 98.39 ± 2.69
C5 34.70 +- 0.19 97.55 ± 2.52 89.93 ± 8.78 96.66 ± 5.93 97.24 ± 3.26 97.91 ± 4.81
C6 40.90 ± 0.22 97.82 ± 2.84 79.56 ± 3.851 99.90 ± 0.30 81.89 ± 6.60 99.19 ± 1.42
C7 59.30 ± 0.31 96.34 ± 4.93 98.19 ± 1.43 93.56 ± 10.79 82.23 ± 6.73 96.02 ± 4.26
C8 75.60 ± 0.08 95.27 ± 2.83 93.61 ± 2.73 99.54 ± 0.76 93.40 ± 3.81 99.62 ± 0.35
C9 84.10 ± 0.09 96.93 ± 2.34 98.25 ± 2.60 100 ± 0 88.29 ± 4.40 99.62 ± 0.42
C10 94.40 ± 0.04 97.28 ± 3.23 96.95 ± 2.45 100 ± 0 90.08 ± 4.19 99.89 ± 0.33
C11 97.70 ± 0.02 98.21 ± 1.35 98.86 ± 1.11 99.92 ± 0.24 97.19 ± 2.55 99.90 ± 0.32
C12 92.10 ± 0.02 97.06 ± 1.52 99.56 ± 0.83 99.93 ± 0.20 92.50 ± 3.78 100 ± 0
C13 99.90 ± 0 99.88 ± 0.14 100 ± 0 100 ± 0 100 ± 0 100 ± 0

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The classification map of IP dataset. (a) False color image, (b) Ground truth, and (c–h)
Prediction classification maps of 3D-Convolutional Neural Network (CNN) (85.29%), spectral-spatial
long short-term memory (SSLSTMs) (95%), spectral-spatial unified network (SSUN) (97.24%), SSRN
(98.29%), HybridSN (97.38%), and our proposed architecture (98.69%).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The classification map of Pavia University dataset. (a) False color image, (b) Ground truth,
(c–h) Prediction classification maps of 3D-CNN (94.07%), SSLSTMs (98.50%), SSUN (99.52%), SSRN
(99.88%), HybridSN (99.85%), and our proposed architecture (99.94%).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The classification map of KSC dataset. (a) False color image, (b) Ground truth, (c–h) Prediction
classification maps of 3D-CNN (82.21%), SSLSTMs (97%), SSUN (97.10%), SSRN (99.27%), HybridSN
(87.46%), and our proposed architecture (99.61%).
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Experiment 4: Figure 9 presents the graphic of AO-mean obtained from our fifth experiment,
where all of those methods are trained on smaller training samples 4%, 6%, and 8%. In the figure,
we include the results of our first experiment, where those methods are trained on the 10% samples.
The performances of all of the compared methods are displayed using a dotted line, while our proposed
method is displayed with a solid line.

(a) (b) (c)

Figure 9. Overall accuracy of each method for different training data sizes of: (a) Indian Pine dataset,
(b) KSC dataset, and (c) Pavia University dataset.

Experiment 5: Tables 9–11 show the OA, AA, and K of each method with 30% training samples.
On large training samples, almost all of the compared methods produce a high accuracy. The difference
is small. Hence, in the table, we report the comparison on each fold for a more detailed comparison.
The bold numbers are the best accuracies produced by these methods.

Table 9. Fold Overall Accuracy, Average Accuracy, and Kappa Value on IP dataset with 30% training
data. The best performance is in bold, the second-best performance is underlined, and the third-best is
in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.80 99.71 99.61 99.72 99.57 99.54 99.69 99.85 99.68 99.79 99.70 ± 0.10
HybridSN 99.53 99.71 99.57 99.61 99.68 99.75 99.83 99.53 99.67 99.64 99.65 ± 0.09
SSRN 98.89 99.79 99.53 99.26 99.50 99.68 99.04 99.33 99.46 99.48 99.40 ± 0.26
SSUN 99.60 99.48 99.57 99.46 99.57 99.46 99.67 99.61 99.74 99.55 99.57 ± 0.09
SSLSTMs 99.16 99.19 99.07 99.15 98.94 99.23 97.09 98.91 99.4 99.32 98.95 ± 0.64
3D-CNN 95.15 95.89 92.42 95.47 94.51 95.55 95.86 95.26 95.41 95.33 95.09 ± 0.96

AA

Proposed 99.89 99.66 99.68 99.73 99.61 99.58 99.77 99.82 99.65 99.58 99.70 ± 0.10
HybridSN 99.04 99.50 98.82 99.44 99.62 99.69 99.71 99.03 99.61 99.07 99.35 ± 0.31
SSRN 80.29 99.64 92.98 91.55 93.18 93.20 86.22 91.96 92.79 97.99 91.98 ± 5.19
SSUN 99.60 99.14 99.47 99.26 99.34 99.50 99.24 99.61 99.50 99.53 99.42 ± 0.15
SSLSTMs 99.04 99.12 98.26 99.34 98.77 97.10 97.66 98.65 99.55 99.31 98.68 ± 0.75
3D-CNN 96.57 97.33 94.04 95.42 95.20 96.75 97.02 96.81 96.57 96.01 96.17 ± 0.96

K × 100%

Proposed 99.78 99.67 99.56 99.68 99.51 99.48 99.65 99.83 99.63 99.76 99.66 ± 0.11
HybridSN 99.46 99.67 99.51 99.56 99.63 99.71 99.81 99.46 99.62 99.59 99.60 ± 0.11
SSRN 98.73 99.76 99.46 99.16 99.43 99.63 98.90 99.24 99.38 99.41 99.31 ± 0.30
SSUN 99.54 99.41 99.51 99.38 99.51 99.38 99.62 99.56 99.70 99.49 99.51 ± 0.10
SSLSTMs 99.05 99.08 98.94 99.03 98.79 99.13 96.68 98.76 99.32 99.22 98.80 ± 0.73
3D-CNN 94.49 95.33 91.40 94.85 93.75 94.95 95.29 94.61 94.78 94.69 94.41 ± 1.09
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Table 10. Fold Overall Accuracy, Average Accuracy, and Kappa Value on PU dataset with 30% training
data. The best performance is in bold, the second-best performance is underlined, and the third-best is
in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.96 99.96 99.98 99.98 99.99 99.84 99.34 99.99 99.92 99.95 99.89 ± 0.19
HybridSN 99.97 99.96 99.97 99.96 99.99 100 99.96 99.97 99.92 99.98 99.97 ± 0.02
SSRN 99.93 99.83 99.83 99.92 99.81 99.89 99.82 99.86 97.44 99.58 99.59 ± 0.72
SSUN 99.94 99.95 99.92 99.91 99.91 99.94 99.9 99.91 99.94 99.96 99.93 ± 0.02
SSLSTMs 99.85 99.80 99.83 99.76 99.72 99.79 99.68 99.86 99.70 99.82 99.78 ± 0.06
3D-CNN 95.76 95.80 95.80 95.30 95.75 95.76 94.75 95.94 95.92 94.06 95.48 ± 0.58

AA

Proposed 99.96 99.94 99.94 99.97 100 99.77 98.70 99.99 99.95 99.97 99.82 ± 0.38
HybridSN 99.97 99.93 99.95 99.94 99.97 100 99.93 99.95 99.81 99.96 99.94 ± 0.05
SSRN 99.93 99.74 99.85 99.86 99.81 99.92 99.84 99.74 94.88 99.48 99.31 ± 1.48
SSUN 99.90 99.91 99.81 99.84 99.82 99.92 99.82 99.79 99.87 99.94 99.86 ± 0.05
SSLSTMs 99.88 99.74 99.81 99.79 99.68 99.73 99.66 99.86 99.67 99.85 99.77 ± 0.08
3D-CNN 97.46 97.69 97.54 97.00 97.68 97.54 96.91 97.77 97.79 94.80 97.22 ± 0.86

K × 100%

Proposed 99.95 99.94 99.97 99.98 99.99 99.78 99.12 99.98 99.90 99.93 99.85 ± 0.25
HybridSN 99.96 99.94 99.96 99.95 99.98 100 99.94 99.96 99.90 99.97 99.96 ± 0.03
SSRN 99.91 99.78 99.77 99.90 99.75 99.85 99.77 99.81 96.62 99.45 99.46 ± 0.95
SSUN 99.92 99.93 99.89 99.88 99.88 99.92 99.87 99.88 99.92 99.95 99.90 ± 0.03
SSLSTMs 99.80 99.74 99.77 99.68 99.63 99.72 99.58 99.82 99.60 99.77 99.71 ± 0.08
3D-CNN 94.46 94.50 94.51 93.87 94.45 94.47 93.19 94.69 94.66 92.25 94.11 ± 0.75

Table 11. Fold Overall Accuracy, Average Accuracy, and Kappa Value on KSC dataset with
30% training data. The best performance is in bold, the second-best performance is underlined,
and the third-best is in italic.

Fold 1 2 3 4 5 6 7 8 9 10 OA-Mean and Std

OA

Proposed 99.95 99.97 100 99.95 99.97 99.97 99.92 99.95 99.92 99.95 99.96 ± 0.02
HybridSN 99.01 99.37 99.23 99.48 98.96 98.93 98.85 98.96 99.59 99.26 99.16 ± 0.24
SSRN 99.67 100 100 100 99.84 99.37 98.27 100 99.97 99.64 99.68 ± 0.51
SSUN 99.10 99.31 99.67 98.68 99.56 99.31 99.29 99.29 99.01 99.40 99.26 ± 0.27
SSLSTMs 99.78 99.95 99.56 99.73 99.95 99.10 99.78 99.42 99.26 99.78 99.63 ± 0.27
3D-CNN 94.60 95.39 94.76 95.34 91.89 94.24 94.57 95.45 94.46 93.15 94.39 ± 1.05

AA

Proposed 99.95 99.97 100 99.96 99.97 99.97 99.90 99.95 99.92 99.96 99.96 ± 0.03
HybridSN 98.36 99.18 98.63 99.17 98.33 98.31 98.38 98.42 99.35 98.92 98.71 ± 0.39
SSRN 99.51 100 100 100 99.75 99.09 97.97 100 99.96 99.44 99.57 ± 0.61
SSUN 98.25 98.73 99.27 97.59 99.28 98.61 98.43 98.98 98.26 99.03 98.64 ± 0.50
SSLSTMs 99.74 99.85 99.44 99.62 99.95 98.95 99.66 99.49 99.34 99.78 99.58 ± 0.28
3D-CNN 92.57 93.37 92.01 92.70 87.23 91.71 91.82 93.09 91.58 89.46 91.55 ± 1.77

K × 100%

Proposed 99.94 99.97 100 99.94 99.97 99.97 99.91 99.94 99.91 99.94 99.95 ± 0.03
HybridSN 98.90 99.30 99.15 99.42 98.84 98.81 98.72 98.84 99.54 99.18 99.07 ± 0.27
SSRN 99.63 100 100 100 99.82 99.30 98.08 100 99.97 99.60 99.64 ± 0.57
SSUN 98.99 99.24 99.63 98.53 99.51 99.24 99.21 99.21 98.90 99.33 99.18 ± 0.30
SSLSTMs 99.76 99.94 99.51 99.69 99.94 98.99 99.76 99.36 99.18 99.76 99.59 ± 0.30
3D-CNN 93.99 94.88 94.18 94.81 90.98 93.60 93.97 94.94 93.85 92.39 93.76 ± 1.17

4.4. Discussion

According to the highlighted results in Section 4.3, one of the first apparent points is that the
proposed method is able to produce a high performance for all ranges of training sizes (4%, 6%,
8%, 10%, and 30% training samples). Its OA, AA, and K values are higher compared to 3D-CNN,
SSLSTMs, SSUN, SSRN, and HybridSN. The differences get higher as the training sample size is
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reduced. With large training samples, e.g., 30% training samples, the performances of these methods
are similar.

The quantitative evaluation of those models with 10% training samples are reported in Tables 6–8.
These tables show three standard quantitative metrics, i.e., OA, AA, K; and the classification accuracy of
each class. More specifically, on Indian Pines dataset (see Table 6), in which class sizes are imbalanced,
our proposed method produces the highest OA, AA, and K value, and the proposed approach yields
OA 0.46% higher than the second-best method, SSRN. Considering the AA, the difference between
the proposed architecture and SSRN is much higher, more than 7%. From Table 6, we can see that
TSRN tries to optimize the recognition of each class even though the number of instances in the
class is tiny. Hence, it achieves a high accuracy compared to the other methods when classifying C9
(Oats), in which number of instances is 20, which means C9 training samples is 2. For more detailed
classification accuracy of each class, TSRN yields the best recognition on eight classes out of 16 classes.
Its recognition for the other five classes and two classes are the second- and third-best, respectively.

The results are consistent on the Pavia University dataset, in which characteristics are different
from the Indian Pine dataset. In the PU dataset, the number of data for each class is large, with the
minimum number of instances on Shadows category equal to 947. As shown in Table 7, our proposed
method attains the best OA, AA, and K compared to the other architectures, albeit insignificant
disparity. The small gap between TSRN and the second-best method, HybridSN, shows that those
methods are very competitive for large training samples. For class recognition, the proposed method
achieves the highest accuracy on five out of nine classes in the PU dataset, with an improvement of
less than 1%.

In contrast to the IP and PU datasets, the total number of instances of KSC dataset is relatively
small. From Table 8, we can see that our proposed approach achieves the best performance. Its OA,
AA, and K is ± 0.71, ± 0.94, and ± 0.79 higher compared to the second-best method, SSRN. In contrast,
HybridSN yields performance that is not as good as its performance on IP and PU dataset.

The comparison between the proposed architecture and other methods on smaller training
samples for IP, KSC, and PU dataset is demonstrated in Figure 9a–c, respectively. These figures reveal
that the proposed method achieves the best accuracy even with smaller training samples. The accuracy
gap between our method and the second-best method is high on KSC dataset. With 4% training data,
our method achieves OA ± 2% higher than the second-best method, SSRN. The difference is smaller
on IP dataset and is extremely small on PU dataset. The reason is that the size of the KSC dataset is the
smallest compared to other datasets. Four percent training samples in the experiment correspond to
208 training instances on KSC dataset, 410 instances on IP dataset, and 1711 samples on PU dataset.

The performance of TSRN and the other methods with larger training samples, 30%, is shown
in Tables 9–11 for IP dataset, PU dataset, and KSC dataset, respectively. In IP dataset, out of ten
folds, the proposed method achieves the best OA and K on five-folds, and the best AA on eight
folds. Our method also outperforms HybridSN, which presents the best OA on three folds. In PU
dataset (see Table 10), the HybridSN shows a slightly better OA than the proposed architecture.
HybridSN produces the best OA on six-folds while TSRN produces the best performance within
five-folds. In the 2nd fold and 5th fold, their OA is precisely the same. Regarding AA, the proposed
method achieves the best AA on six-folds when HybridSN achieves the best AA on four-folds. In terms
of K, those two methods yield the best value on five-folds. The same with the result from IP dataset,
with KSC dataset, our proposed approach also produces the best performance or the second-best
performance in each fold (see Table 11). From these results, we can conclude that on large training
samples, those approaches, i.e., TSRN, SSUN, HybridSN, SSRN, SSLSTMs, are very competitive.

Table 12 presents the number of parameters, the model size, the depth, the training time, and the
testing time of the other methods with 10% training samples from IP dataset. We do not report the time
complexity of 3D-CNN because 3D-CNN was tested on a different machine. However, Reference [61]
has shown that 3D-CNN is less efficient compared to HybridSN. Moreover, from Table 12, we perceive
that the proposed method is more efficient than HybridSN. In other words, we can conclude that TSRN
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is much more efficient than 3D-CNN. Compared to 3D convolution-based SSRN [19] and (3D + 2D)
convolution-based HybridSN [61], our proposed network has a faster training time and fewer learning
parameters (Table 12). Our network model size, in which depth is 24, is 3.3 MB. The size is smaller
compared to 61.5 MB of a 7-layer HybridSN and more effective compared to 2.9 MB of a 9-layer SSRN.
Note that an increase in the network depth results in a model size increase. From Table 12, we can
see that our network, which uses (2D+1D) convolution, can be deeper without increasing the number
of parameters by a large number. Such a deeper network can extract richer features. On the other
hand, for 3D convolution, the model size and the number of parameters will grow dramatically as the
network becomes deeper. As a result, training on very deep 3D-CNN becomes challenging with the
risk of overfitting. Our network yields a smaller number of learnable parameters, making it less prone
to the overfitting problem especially when small samples are used for training.

Table 12. Number of parameters, model size, depth, training time, and testing time on IP dataset on
different methods with 10% training samples.

Method SSLSTMs SSUN SSRN HybridSN Proposed

# parameters 343,072 949,648 346,784 5,122,176 239,672
Model Size 6.7 MB 9.6 MB 2.9 MB 61.5 MB 3.3 MB
Depth 4 10 9 7 24
Training Time 300 s 66 s 150 s 120 s 60 s
Testing Time 5.3 s 3.03 s 4.1 s 2.57 s 3.1 s

5. Conclusions

The paper presents a novel two-streams residual network architecture for the classification of
hyperspectral data. Our network improves the spectral and the spatial feature extraction by applying
a full pre-activation sRN and saRN separately. These two networks are similar in their structure but
use a different type of convolutional layer. The convolutional layer of sRN is based on 1D convolution,
which best fits the spectral data structure, while the saRN is based on 2D convolution, which best fits
the spatial data structure of HSI.

Our experiments were conducted on three well-known hyperspectral datasets, versus five
different methods, as well as various sizes of training samples. One of the main conclusions
that arises from our experiments is that our proposed method can provide a higher performance
versus state-of-the-art classification methods, even with various training samples proportion from
4% training samples up to 30% training samples. The high accuracy of our proposed method on
small training samples, 4%, shows that this method does not overfit. Otherwise, the competitive
accuracy of our proposed method with large training samples, 30%, explains that this architecture is
not under-fitting either.
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Abstract: Vine pathologies generate several economic and environmental problems, causing serious
difficulties for the viticultural activity. The early detection of vine disease can significantly improve
the control of vine diseases and avoid spread of virus or fungi. Currently, remote sensing and
artificial intelligence technologies are emerging in the field of precision agriculture. They offer
interesting potential for crop disease management. However, despite the advances in these
technologies, particularly deep learning technologies, many problems still present considerable
challenges, such as semantic segmentation of images for disease mapping. In this paper, we present
a new deep learning architecture called Vine Disease Detection Network (VddNet). It is based
on three parallel auto-encoders integrating different information (i.e., visible, infrared and depth).
Then, the decoder reconstructs and retrieves the features, and assigns a class to each output pixel.
An orthophotos registration method is also proposed to align the three types of images and enable the
processing by VddNet. The proposed architecture is assessed by comparing it with the most known
architectures: SegNet, U-Net, DeepLabv3+ and PSPNet. The deep learning architectures were trained
on multispectral data from an unmanned aerial vehicle (UAV) and depth map information extracted
from 3D processing. The results of the proposed architecture show that the VddNet architecture
achieves higher scores than the baseline methods. Moreover, this study demonstrates that the
proposed method has many advantages compared to methods that directly use the UAV images.

Keywords: plant disease detection; precision agriculture; UAV multispectral images; machine
learning; orthophotos registration; 3D information; orthophotos segmentation

1. Introduction

In agricultural fields, the main causes of losing quality and yield of harvest are virus, bacteria,
fungi and pest [1]. To prevent these harmful pathogens, farmers generally treat the global crop to
prevent different diseases. However, using a large amount of chemicals has a negative impact on
human health and ecosystems. This constitutes a significant problem to be solved; precision agriculture
presents an interesting alternative.

In recent decades, the precision agriculture [2,3] has introduced many new farming methods to
improve and optimize crop yields, constituting a research field in continuous evolution. New sensing
technologies and algorithms have enabled the development of several applications such as water stress
detection [4], vigour evaluation [5], estimation of evaporate-transpiration and harvest coefficient [6],
weed localization [7,8], and disease detection [9,10].

Disease detection in vine is an important topic in precision agriculture [11–22]. The aim is to
detect and treat the infected area at the right place and the right time, and with the right dose of
phytosanitary products. At the early stage, it is easier to control diseases with small amounts of
chemical products. Indeed, intervention before infection spreads offers many advantages, such as
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preservation of vine, grap production and environment, and reducing the economics losses. To achieve
this goal, frequent monitoring of the parcel is necessary. Remote sensing (RS) methods are among the
most widely used for that purpose and essential in the precision agriculture. RS images can be obtained
at leaf- or parcel-scale. At the leaf level, images are acquired using a photo sensor, either held by a
person [23] or mounted on a mobile robot [24]. At the parcel level, satellite was the standard RS imaging
system [25,26]. Recently, drones or UAVs have gained popularity due to their low cost, high-resolution
images, flexibility, customization and easy data access [27]. In addition, unlike satellite imaging,
UAV does not have the cloud problem, which has helped to solve many remote sensing problems.

Parcels monitoring generally requires orthophotos building from geo-referenced visible and
infrared UAV images. However, two separated sensors generate a spatial shift between images of the
two sensors. This problem also occurred after building the orthophotos. It has been established that
it is more interesting to combine the information from the two sensors to increase the efficiency of
disease detection. Therefore, image registration is required.

The existent algorithms of registration rely on an approach based on either the area or feature
methods. The most commonly used in the precision agriculture are feature-based methods, which are
based on matching features between images [28]. In this study, we adopted the feature-based approach
to align orthophotos of the visible and infrared ranges. Then, the two are combined for the disease
detection procedure, where the problem consists of assigning a class-label to each pixel. For that
purpose, the deep learning approach is currently the most preferred approach for solving this type
of problem.

Deep learning methods [29] have achieved a high level of performance in many applications, in
which different network architectures have been proposed. For instance, R-CNN [30], Siamese [31],
ResNet [32], SegNet [33] are architectures used for object detection, tracking, classification and
segmentation, respectively, which operate in most cases in visible ranges. However, in certain
situations, the input data are not only visible images but can be combined with multispectral or
hyperspectral images [34], and even depth information [35]. In these contexts, the architectures
can undergo modification for improving the methods [36]. Thus, in some studies [37–40],
depth information is used as input data. These data generally provide precious information about
scene or environment.

Depth or height information is extracted from the 3D reconstruction or photogrammetry
processing. In UAV remote sensing imagery, the photogrammetry processing can to build a digital
surface model (DSM) before creating the orthophoto. The DSM model can provide much information
about the parcel, such as the land variation and objects on its surface. Certain research works have
shown the ability to extract vinerows by generating a depth map from the DSM model [41–43].
These solutions have been proposed to solve the vinerows misextraction resulting from the NDVI
vegetation index. Indeed, in some situations, the NDVI method cannot be used to extract vinerows
when the parcel has a green grassy soil. The advantage of the depth map is its ability to separate areas
above-ground from the ground, even if the color is the same for all zones. To date, there has been no
work on the vine disease detection that combines depth and multispectral information with a deep
learning approach.

This paper presents a new system for vine disease detection using multispectral UAV images.
It combines a highly accurate orthophotos registration method, a depth map extraction method and a
deep learning network adapted to the vine disease detection data.

The article is organized as follows. Section 2 presents a review of related works. Section 3
describes the materials and methods used in this study. Section 4 details the experiments. Section 5
discusses the performances and limitations of the proposed method. Finally, Section 6 concludes the
paper and introduces ideas to improve the method.
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2. Related Work

Plant disease detection is an important issue in precision agriculture. Much research has been
carried out and a large survey has been realised by Mahlein (2016) [44], Kaur et al. (2018) [45],
Saleem et al. (2019) [46], Sandhu et al. (2019) [47] and Loey et al. (2020) [48]. Schor et al. (2016) [49]
presented a robotic system for detecting powdery mildew and wilt virus in tomato crops. The system
is based on an RGB sensor mounted on a robotic arm. Image processing and analysis were
developed using the principal component analysis and the coefficient of variation algorithms.
Sharif et al. (2018) [50] developed a hybrid method for disease detection and identification in citrus
plants. It consists of lesion detection on the citrus fruits and leaves, followed by a classification of the
citrus diseases. Ferentinos (2018) [51] and Argüeso et al. (2020) [52] built a CNN model to perform plant
diagnosis and disease detection using images of plant leaves. Jothiaruna et al. (2019) [53] proposed a
segmentation method for disease detection at the leaf scale using a color features and region-growing
method. Pantazi et al. (2019) [54] presented an automated approach for crop disease identification
on images of various leaves. The approach consists of using a local binary patterns algorithm for
extracting features and performing classification into disease classes. Abdulridha et al. (2019) [55]
proposed a remote sensing technique for the early detection of avocado diseases. Hu et al. (2020) [56]
combined an internet of things (IoT) system with deep learning to create a solution for automatically
detecting various crop diseases and communicating the diagnostic results to farmers.

Disease detection in vineyards has been increasingly studied in recent years [11–22]. Some works
are realised at the leaf scale, and others at the crop scale. MacDonald et al. (2016) [11] used a Geographic
Information System (GIS) software and multispectral images for detecting the leafroll-associated virus
in vine. Junges et al. (2018) [12] investigated vine leaves affected by the esca in hyperspectral ranges
and di Gennaro et al. (2016) [13] worked at the crop level (UAV images). Both studies concluded
that the reflectance of healthy and diseased leaves is different. Albetis et al. (2017) [14] studied the
Flavescence dorée detection in UAV images. The results obtained showed that the vine disease
detection using aerial images is feasible. The second study of Albetis et al. (2019) [15] examined of
the UAV multispectral imagery potential in the detection of symptomatic and asymptomatic vines.
Al-Saddik has conducted three studies on vine disease detection using hyperspectral images at the leaf
scale. The aim of the first one (Al-Saddik et al. 2017) [16] was to develop spectral disease indices able to
detect and identify the Flavescence dorée on grape leaves. The second one (Al-Saddik et al. 2018) [17]
was performed to differentiate yellowing leaves from leaves diseased by esca through classification.
The third one (Al-saddik et al., 2019) [18] consisted of determining the best wavelengths for the
detection of the Flavescence dorée disease. Rançon et al. (2019) [19] conducted a similar study for
detecting esca disease. Image sensors were embedded on a mobile robot. The robot moved along
the vinerows to acquire images. To detect esca disease, two methods were used: the scale Invariant
Feature Transform (SIFT) algorithm and the MobileNet architecture. The authors concluded that
the MobileNet architecture provided a better score than the SIFT algorithm. In the framework of
previous works, we have realized three studies on vine disease detection using UAV images. The first
one (Kerkech et al. 2018) [20] was devoted to esca disease detection in the visible range using the
LeNet5 architecture combined with some color spaces and vegetation indices. In the second study
(Kerkech et al. 2019) [21], we used near-infrared images and visible images. Disease detection was
considered as a semantic segmentation problem performed by the SegNet architecture. Two parallel
SegNets were applied for each imaging modality and the results obtained were merged to generate
a disease map. In (Kerkech et al. 2020) [22], a correction process using a depth map was added to
the output of the previous method. Post-processing with these depth information demonstrated the
advantage of this approach in reducing detection errors.

3. Materials and Methods

This section presents the materials and each component of the vine disease detection system.
Figure 1 provides an overview of the methods. It includes the following steps: data acquisition,
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orthophotos registration, depth map building and orthophotos segmentation (disease map generation).
The next sections detail these different steps.

Figure 1. The proposed vine disease detection system.

3.1. Data Acquisition

Multispectral images are acquired using a quadricopter UAV that embeds a MAPIR Survey2
camera and a Global Navigation Satellite System (GNSS) module. This camera integrates two sensors
in the visible and infrared ranges with a resolution of 16 megapixels (4608 × 3456 pixels). The visible
sensor captures the red, green, and blue (RGB) channels and the infrared sensor captures the red,
green, and near-infrared (R-G-NIR) channels. The wavelength of the near-infrared channel is 850 nm.
The accuracy of the GNSS module is approximately 1 m.

The acquisition protocol consists of a drone flying over vines at an altitude of 25 m and at an
average speed of 10 km/h. During flights, the sensors acquire an image every 2 s. Each image has
a 70% overlap with the previous and the next ones. Each point of the vineyard has six different
viewpoints (can be observed on six different images). The flight system is managed by a GNSS module.
The flight plans include topographic monitoring aimed at guaranteeing a constant distance from the sol.
Images are recorded with their GNSS position. Flights are performed at the zenith to avoid shadows,
and with moderate weather conditions (light wind and no rain) to avoid UAV flight problems.

3.2. Orthophotos Registration

The multispectral acquisition protocol using two sensors causes a shift between visible and
infrared images. Hence, a shift in multispectral images automatically implies a shift in orthophotos.
Usually, the orthophotos registration is performed manually using the QGIS software. The manual
method is time-consuming, requires a high focus to select many key points between visible and
infrared orthophotos, and the result is not very accurate. To overcome this problem, a new method for
automatic and accurate orthophotos registration is proposed.

The proposed orthophotos registration method is illustrated in Figure 2 and is divided into
two steps. The first one concerns the UAV multispectral images registration and the second permits
the building of registered multispectral orthophotos. In this study, the first step uses the optimized
multispectral images registration method proposed in [21]. Based on the Accelerated-KAZE (AKAZE)
algorithm, the registration method uses feature-matching between visible and infrared images to
match key points extracted from the two images and compute the homographic matrix for geometric
correction. In order to increase accuracy, the method uses an iterative process to reduce the Root Mean
Squared Error (RMSE) of the registration. The second step consists of using the Agisoft Metashape
software to build and obtain the registered visible and infrared orthophotos. The Metashape software
is based on the Structure from motion (SfM) algorithm for the photogrammetry processing. Building
orthophotos requires the UAV images and the digital surface model (DSM). To obtain this DSM
model, the software must go through a photogrammetry processing and perform the following steps:
alignment of the images to build a sparse point cloud, then a dense point cloud, and finally the DSM.
The orthophotos building is carried out by the option “build orthomosaic” process in the software.
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To build the visible orthophotos, it is necessary to use the visible UAV images and the DSM model,
while, to build a registered infrared orthophoto, it is necessary to use the registered infrared UAV
images and the same DSM model of the visible orthophoto. The parameters used in the Metashape
software are detailed in Table 1.

Figure 2. The proposed orthophotos registration method.

3.3. Depth Map

The DSM model previously built in the orthophotos registration process is used here to obtain the
depth map. In fact, the DSM model represents the terrain surface variation and includes all objects found
here (in this case, objects are vine trees). Therefore, some processings are required to determine only the
vine height. To extract the depth map from the DSM, the method proposed in [41] is used. It consists of
applying the following processings: the DSM is first filtered using a low-pass filter of size 20 × 20; this
filter is chosen to smooth the image and keep only the terrain surface variations, also called the digital
terrain model (DTM). The DTM is thereafter subtracted from the DSM to eliminate the terrain variations
and retain only the vine height. Due to the weak contrast of the result, an enhancement processing was
necessary. The contrast is enhanced here by using a histogram-based (histogram normalization) method.
The obtained result is an image with a good difference in grey levels between vines and non-vines.
Once the contrast is corrected, an automatic thresholding using the Otsu’s algorithm is applied to obtain
a binary image representing the depth map.

3.4. Segmentation and Classification

The last stage of the vine disease detection system concerns the data classification. This step
is performed using a deep learning architecture for segmentation. Deep learning has proven its
performance in numerous research studies and in various domains. Many architectures have been
developed, such as SegNet [33], U-Net [57], DeepLabv3+ [58], and PSPNet [59]. Each architecture
can provide good results in a specific domain and be less efficient in others. These architectures are
generally used for the segmentation of complex indoor/outdoor scenes, medical ultrasound images,
or even in agriculture. One channel is generally used for greyscale medical imaging or three channels
for visible RGB color images. Hence, they are not always adapted to a specific problem. Indeed,
for this study, multispectral and depth map data offer additional information. This can improve the
segmentation representation and the final disease map result. For this purpose, we have designed our
deep learning architecture adapted to the vine disease detection problem, and we have compared it to
the most well known deep learning architectures. In the following sections, we describe the proposed
deep learning architecture and the training process.

3.4.1. VddNet Architecture

Vine Disease Detection Network (VddNet), Figure 3 is inspired by VGG-Net [60], SegNet [33],
U-Net [57] and the parallel architectures proposed in [37,61–63]. VddNet is a parallel architecture
based on the VGG encoder; it has three types of data as inputs: visible a RGB image, a near-infrared
image and a depth map. VddNet is dedicated to segmentation, so the output has the same input,
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with a number of channels equal to the number of classes (4). It is designed with three parallel
encoders and one decoder. Each encoder can typically be considered as a convolutional neural network
without the fully connected layers. The convolutional operation is repeated twice using a 3 × 3 mask,
a rectified linear unit (ReLU), a batch normalization and a subsampling using a max pooling function
of 2 × 2 size and a stride of 2. The number of feature map channels is doubled at each subsampling
step. The idea of VddNet is to encode each type of data separately and, at the same time, concatenate
the near-infrared and the features map of the depth map with the visible features map before each
subsampling. Hence, the central encoder preserves the features of the near-infrared and the depth map
data merged with the visible features map, and concatenated at the same time. The decoder phase
consists of upsampling and convolution with a 2 × 2 mask. It is then followed by two convolution
layers with a 3 × 3 mask, a rectified linear unit, and a batch normalization. In contrast to the encoder
phase, after each upsampling operation, the number of features map channels is halved. Using the
features map concatenation technique of near-infrared and depth map, the decoder retrieves features
lost during the merging and the subsample process. The decoder follows the same steps until it reaches
the final layer, which is a convolution with a 1 × 1 mask and a softmax providing classes probabilities,
at pixel-wise.

Figure 3. VddNet architecture.

3.4.2. Training Dataset

In this study, one crop is used for model training and validation, and two crops for testing. To build
the training dataset, four steps are required: data source selection, classes definition, data labelling,
and data augmentation.

The first step is probably the most important one. Indeed, to allow a good learning, the data
source for feeding models must represent the global data in terms of richness, diversity and classes.
In this study, a particular area was chosen that contains a slight shadow area, brown ground (soil) and
a vine partially affected by mildew.

Once the data source has been selected, it is necessary to define the different classes present in
these data. For that purpose, each type of data (visible, near-infrared and depth map) is important
in this step. In visible and near-infrared images, four classes can be distinguished. On the other
hand, the depth map contains only two distinct classes, which are the vine canopy and the non-vine.
Therefore, the choice of classes must match all data types. Shadow is the first class; it is any dark
zone. It can be either on the vine or on the ground. This class was created to avoid confusion and
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misclassification on a non-visible pattern. Ground is the second class; from one parcel to another,
ground is generally different. Indeed, the ground can have many colors: brown, green, grey, etc.
To solve this color confusion, the ground is chosen as any pixels in the non-vine zone from the depth
map data. Healthy vine is the third class; it is the green leaves of the vine. Usually, it is easy to classify
these data, but when ground is also green, this leads to confusion between vine and ground in 2D
images. To avoid that, the healthy class is defined as the green color in the visible spectrum and
belonging to the vine canopy according to the depth map. The fourth and last class corresponds to
diseased vine. Disease symptoms can present several colors in the visible range: yellow, brown, red,
golden, etc. In the near-infrared, it is only possible to differentiate between healthy and diseased
reflectances. In general, diseased leaves have a different reflectance than healthy leaves [17], but some
confusion between disease and ground classes may occur when the two colors are similar. Ground must
also be eliminated from the disease class using the depth map.

Data labelling was performed with the semi-automatic labelling method proposed in [21].
The method consists of using automatic labelling in a first step, followed by manual labelling in
a second step. The first step is based on the deep learning LeNet-5 [64] architecture, where the
classification is carried out using a 32 × 32 sliding window and a 2 × 2 stride. The result is equivalent
to a coarse image segmentation which contains some misclassifications. To refine the segmentation,
output results were manually corrected using the Paint.Net software. This task was conducted based on
the ground truth (realized in the crop by a professional reporting occurred diseases), and observations
in the orthophotos.

The last stage is the generation of a training dataset from the labelled data. In order to enrich
the training dataset and avoid an overfitting of networks, data augmentation methods [65] are used
in this study. A 256 × 256 pixels patches dataset is generated from the data source matrix and its
corresponding labelled matrix. The data source consists of multimodal and depth map data and has a
size of 4626 × 3904 × 5. Four data augmentation methods are used: translation, rotation, under and
oversampling, and brightness variation. Translation was performed with an overlap of 50% using a sliding
window in the horizontal and vertical displacements. The rotation angle was set at 30◦, 60◦ and 90◦.
Under- and oversampling were parametrized to obtain 80% and 120% of the original data size. Brightness
variation is only applied to multispectral data. Pixel values are multiplied by the coefficients of 0.95 and
1.05, which introduce a brightness variation of ±5%. Each method brings an effect on the data (translation,
rotation, etc.), allowing the networks to learn, respectively, transition, vinerows orientations, acquisition
scale variation and weather conditions. At the end, the data augmentation generated 35.820 patches.

4. Experimentations and Results

This section presents the different experimental devices, as well as qualitative and quantitative
results. The experiments are performed on Python 2.7 software, using the Keras 2.2.0 library for
the development of deep learning architectures, and GDAL 3.0.3 for the orthophotos management.
The Agisoft Metashape software version 1.6.2 is also used for photogrammetry processing. The codes
were developed under the Linux Ubuntu 16.04 LTS 64-bits operating system and run on a hardware
with an Intel Xeon 3.60 GHz × 8 processor, 32 GB RAM, and a NVidia GTX 1080 Ti graphics card with
11 GB of internal RAM. The cuDNN 7.0 library and the CUDA 9.0 Toolkit are used for deep learning
processing on GPU.

4.1. Orthophotos Registration and Depth Map Building

To realize this study, multispectral and depth map orthophotos were required. Two parcels were
selected and data were aquired at two different times to construct the orthophotos dataset. Each parcel
had one or more of the following characteristics: with or without shadow, green or brown ground,
healthy or partially diseased. Registered visible and infrared orthophotos were built from multispectral
images using the optimized image registration algorithm [21] and the Agisoft Metashape software
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version 1.6.2. Orthophotos were saved in the geo-referenced file format “TIFF”. The parameters used
in the Metashape software are listed in Table 1.

To evaluate the registration and depth map quality, we chose a chessboard test pattern. Figure 4
presents an example of visible and infrared orthophotos registration. As can be seen, the alignment
between the two orthophotos is accurate. The registration of the depth map with the visible range also
provides good results (Figure 6).

Table 1. The parameters used for the orthophotos building process in the Agisoft Metashape software.

Sparse point cloud

Accuracy : High
Image pair selection : Ground control

Constrain features by mask : No
Maximum number of feature points : 40,000

Dense point cloud

Quality : High
Depth filtering : Disabled

Digital Surface Model

Type : Geographic
Coordinate system : WGS 84 (EPSG::4326)

Source data : Dense cloud

Orthomosaic

Surface : DSM
Blending mode : Mosaic

4.2. Training and Testing Architectures

In order to determine the best parameters for each deep learning architecture, four
cross-optimizers with two loss functions were compared. Architectures were compiled using either
the loss function “cross entropy” or “mean squared error”, and with one among the four optimizers:
SGD [66], Adadelta [67], Adam [68], or Adamax [69]. Once the best parameters were defined for each
architecture, a final fine-tuning was performed on the “learning rate” parameter to obtain the best
results (to achieve a good model without overfitting). The best parameters found for each architecture
are presented in Table 2.

Table 2. The parameters used for the different deep learning architectures. LR means learning rate.

Network Base Model Optimizer Loss Function LR Learning Ate Decrease Parameters

SegNet VGG-16 Adadelta Categorical cross entropy 1.0 rho = 0.95, epsilon = 1 × 10−7

U-Net VGG-11 SGD Categorical cross entropy 0.1 decay = 1 × 10−6, momentum = 0.9
PSP-Net ResNet-50 Adam Categorical cross entropy 0.001 beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−7

DeepLabv3+ Xception Adam Categorical cross entropy 0.001 beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−7

VddNet Parallel VGG-13 SGD Categorical cross entropy 0.1 decay = 1 × 10−6, momentum = 0.9

For training the VddNet model, data from visible, near-infrared and depth maps were incorporated
separately in the network inputs. For the other architectures, a multi-data matrix consists of five channels
with a size of 256 × 256. The first three channels correspond to the visible spectrum, the 4th channel to
the near-infrared data and the 5th channel to the depth map. Each multi-data matrix has a corresponding
labelled matrix. Models training is an iterative process that is fixed at 30.000 epochs for each model.
For each iteration, a batch of five multi-data matrices with their corresponding labelled matrices are
randomly selected from the dataset and sent to feed the model. In order to check the convergence of the
model, a test using validation data is performed each 10 iterations.

A qualitative study was conducted for determining the importance of depth map information.
For this purpose, an experience was conducted by training the deep learning models with only
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multispectral data and with a combination of both (multispectral and depth maps). The comparison
results are shown in Figures 7 and 8.

To test the deep learning models, test areas are segmented using a 256 × 256 sliding window
(without overlap). For each position of the sliding window, the visible, near-infrared and depth maps
are sent to the network inputs (respecting the data order for each architecture) in order to perform
segmentation. The output of the networks is a matrix of size of 256 × 256 × 4. The results are saved
after an application of the Argmax function. They are then stitched together to obtain the original size
of the orthophoto tested data.

4.3. Segmentation Performance Measurements

Segmentation performance measurements are expressed in terms of recall, precision,
F1-Score/Dice and accuracy (using Equations (1)–(5)) for each class (shadow, ground, healthy and
diseased) at grapevine-scale. Grapevine-scale assessment was chosen because pixel-wise evaluation
is not suitable for providing disease information. Moreover, imprecision of the ground truth,
small surface of the disease and difference of deep learning segmentation results do not allow for a
good evaluation of the different architectures, at pixel-wise. These measurements use a sliding window
equivalent to the average size of a grapevine (in this study, approximatively 64 × 64 pixels). For each
step of the sliding window, the class evaluated is the dominant class in the ground truth. The window
is considered “true positive” if the dominant class is the same as the ground truth, otherwise it is a
“false positive”. The confusion matrix is updated for each step. Finally, the score is given by

Recall = TP
TP+FN (1)

Precision = TP
TP+FP (2)

F1-Score = 2 Recall×Precision
Recall+Precision = 2TP

FP+2TP+FN (3)

Dice = 2|X∩Y|
|X|+|Y| =

2(TP)
(FP+TP)+(TP+FN)

= 2TP
FP+2TP+FN (4)

Accuracy = TP+TN
TP+TN+FP+FN (5)

where TP, TN, FP and FN are the number of samples for “true positive”, “true negative”, “false positive”
and “false negative”, respectively. Dice equation is defined by X (set of ground truth pixels) and Y (set
of the classified pixels).

5. Discussion

To validate the proposed vine disease detection system, it is necessary to evaluate and
compare qualitative and quantitative results for each block of the whole system. For this purpose,
several experiments were conducted at each step of the disease detection procedure. The first
experience was carried out on the multimodal orthophotos registration. Figure 4 shows the obtained
results. As can be seen, the continuity of the vinerows is highly accurate and the continuity is respected
between the visible and infrared ranges. However, if image acquisition is incorrectly conducted,
this results in many registration errors. To avoid these problems, two rules must be followed. The first
one regards the overlapping between visible and infrared images acquired in the same position,
which must be greater than 85%. The second rule is that the overlapping between each acquired image
must be greater than 70%; this rule must be respected in both ranges. Non-compliance with the first
rule affects the building of the registered infrared orthophoto. Indeed, this latter may present some
black holes (this means that there are no data available to complete these holes). Non-compliance
with the second rule affects the photogrammetry processing and the DSM model. This can lead to
deformations in the orthophoto patterns (as can be seen on the left side of the visible and infrared
orthophotos in Figure 5). In case the DSM model is impacted, the depth map automatically undergoes
the same deformation (as can be seen in the depth map in Figure 5). The second quality evaluation is
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the building of the depth map (Figure 6). Despite the slight deformation in the left side of the parcel,
the result of the depth map is consistent and well aligned with the visible orthophotos, and can be
used in the segmentation process.

Figure 4. Qualitative results of orthophotos registration using a chessboard pattern.

Figure 5. Qualitative results of orthophotos and depth map.
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Figure 6. Evaluation of the depth map alignment using a chessboard pattern.

In order to assess the added value of depth map information, two training sessions were
performed on the SegNet [33], U-Net [57], DeepLabv3+ [58] and PSPNet [59] networks. The first
training session was conducted only on multispectral data, and the second one on multispectral data
combined with depth map information. Figures 7 and 8 illustrate the qualitative test results of the
comparison between the two trainings. The left side of Figure 7 shows an example of a parcel with a
green ground. The center of the figure presents the segmentation result of the SegNet model trained
only on multispectral data. As can be seen, in some areas of the parcel, it is difficult to dissociate
vinerows. The right side of the figure depicts the segmentation result of the SegNet model trained on
multispectral data combined with depth map information. This result is better than the previous one
and it can easily separate vinerows. This is due to additional depth map information that allows a
better learning of the scene environment and distinction between classes. Figure 7 illustrates other
examples realised under the same conditions as above. On the first row, we observe an area composed
of green ground. The segmentation results using the first and second models are displayed in the
centre and on the right side, respectively. We can notice in this example a huge confusion between
ground and healthy vine classes. This is mainly due to the fact that the ground color is similar to
the healthy vine one. This problem has been solved by adding depth map information in the second
model, the result of which is shown on the right side. The second row of Figure 8 presents an example
of a partially diseased area. The first segmentation result reveals the detection of the disease class on
the ground. The brown color (original ground color) merged with a slight green color (grass color)
on the ground confused the first model and led it to misclassifying the ground. This confusion does
not exist in the second segmentation result (right side). From these results, it can be concluded that
the second model learned that the diseased vine class could not be detected on “no-vine” when this
one was trained on multispectral and depth map information. Based on these results, the following
experiments were conducted using multispectral data and the depth map information.
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Figure 7. Difference between a SegNet model trained only on multispectral data and the same
trained on multispectral data combined with depth map information. The presented example is on an
orthophoto of a healthy parcel with a green ground.

Figure 8. Difference between a SegNet model trained only on multispectral data and the same trained
on multispectral data combined with depth map information. Two examples are presented here,
the first row is an example on a healthy parcel with a green ground. The second one is an example on a
partially diseased parcel with a brown ground.

In order to validate the proposed architecture, a comparative study was conducted on the most
well-known deep learning architectures, SegNet [33], U-Net [57], DeepLabv3+ [58] and PSPNet [59].
All architectures were trained and tested on the following classes: shadow, ground, healthy and
diseased, with the same data (same training and test). Table 3 lists the segmentation results of the
different architectures. The quantitative evaluations are based on the F1-score and the global accuracy.
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As can be seen, the shadow and ground classes have obtained an average scores of 94% and 95%,
respectively, with all architectures. The high scores are due to the easy detection of these classes.
The healthy class scored between 91% and 92% for VddNet, SegNet, U-Net and DeepLabv3+. However,
PSPNet obtained the worst result of 73.96%, due to a strong confusion between the ground and healthy
classes. PSPNet was unable to generate a good segmentation model although the training dataset was
rich. The diseased vine class is the most important class in this study. VddNet obtained the best result
for this class with a score of 92.59%, followed by SegNet with a score of 88.85%. The scores of the
other architectures are 85.78%, 81.63% and 74.87% for U-Net, PSPNet and DeepLabv3+, respectively.
VddNet achieved the best result because the feature extraction was performed separately. Indeed, in [21]
it was proven that merging visible and infrared segmentations (with two separate trained models)
provides a better detection than visible or infrared separately. The worst result of the diseased class
was obtained with DeepLabv3+; this is due to a insensibility in the color variation. In fact, the diseased
class can correspond to the yellow, brown or golden color and these colors are usually between the
green color of healthy neighbour leaves. This situation led classifiers to be insensitive to this variation.
The best global segmentation accuracy was achieved by VddNet, with an accuracy of 93.72%. This score
can be observed on the qualitative results of Figures 9 and 10. Figure 9 presents an orthophoto of a
parcel (on the left side) partially contaminated with mildew. The right side shows the segmentation
result by VddNet. It can be seen that it correctly detects the diseased areas. Figure 10 is an example of
parcel without disease; here, VddNet also performs well in detecting true negatives.

Figure 9. Qualitative result of VddNet on a parcel partially contaminated with mildew and with green
ground. The visible orthophoto of the healthy parcel is in the left side, and its disease map in the
right side.
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6. Conclusions

The main goal of this study is to propose a new method that improves vine disease detection in
UAV images. A new deep learning architecture for vine disease detection (VddNet), and automatic
multispectral orthophotos registration have been proposed. UAV images in the visible and
near-infrared spectra are the input data of the detection system for generating a disease map. UAV input
images were aligned using an optimized multispectral registration algorithm. Aligned images were
then used in the process of building registered orthophotos. During this process, a digital surface
model (DSM) was generated to built a depth map. At the end, VddNet generated the disease map
from visible, near-infrared and depth map data. The proposed method brought many benefits to the
whole process. The automatic multispectral orthophotos registration provides high precision and
fast processing compared to conventional procedures. A 3D processing enables the building of the
depth map, which is relevant for the VddNet training and segmentation process. Depth map data
reduce misclassification and confusion between close color classes. VddNet improves disease detection
and global segmentation compared to the state-of-the-art architectures. Moreover, orthophotos are
georeferenced with GNSS coordinates, making it easier to locate diseased vines for traitment. In future
work, it would be interesting to acquire new multispectral channels to enhance disease detection and
improve the VddNet architecture.
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Abstract: To minimize the damage caused by wildfires, a deep learning-based wildfire-detection
technology that extracts features and patterns from surveillance camera images was developed.
However, many studies related to wildfire-image classification based on deep learning have
highlighted the problem of data imbalance between wildfire-image data and forest-image data.
This data imbalance causes model performance degradation. In this study, wildfire images were
generated using a cycle-consistent generative adversarial network (CycleGAN) to eliminate data
imbalances. In addition, a densely-connected-convolutional-networks-based (DenseNet-based)
framework was proposed and its performance was compared with pre-trained models. While training
with a train set containing an image generated by a GAN in the proposed DenseNet-based model,
the best performance result value was realized among the models with an accuracy of 98.27% and
an F1 score of 98.16, obtained using the test dataset. Finally, this trained model was applied to
high-quality drone images of wildfires. The experimental results showed that the proposed framework
demonstrated high wildfire-detection accuracy.

Keywords: wildfire detection; convolutional neural networks; densenet; generative adversarial
networks; CycleGAN; data augmentation

1. Introduction

Wildfires cause significant harm to humans and damage to private and public property; they pose
a constant threat to public safety. More than 200,000 wildfires occur globally every year, with a
combustion area of 3.5–4.5 million km2 [1]. In addition, climate change is gradually accelerating the
effects of these wildfires; there is thus considerable interest in wildfire management [2–4]. As wildfires
are difficult to control once they spread over a certain area, early detection is the most important
factor in minimizing wildfire damage. Traditionally, wildfires were primarily detected by human
observers, but a deep learning-based automatic wildfire detection system with real-time surveillance
cameras has the advantage of the possibility of constant and accurate monitoring, compared to
human observers. The available methods for the early detection of wildfires can be categorized as a
sensor-based technology and image-processing-based technology, using a camera. Sensors that detect
changes in smoke, pressure, humidity, and temperature are widely used for fire detection. However,
this method has several disadvantages, such as high initial cost and high false-alarm rates, as the
performance of sensors is significantly affected by the surrounding environment [5–7].

With the rapid development of digital-cameras and image-processing technologies, traditional
methods are replaced by video- and image-data-based methods [8]. Using these methods, a large area
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of a forest can be monitored, where fires and smoke can be detected immediately after the outbreak of a
wildfire. In addition, owing to intelligent image-analysis technology, image-based methods can be used
to address the problem of the inflexibility of sensing technology to new environments [9]. Such early
approaches include the use of support vector machines (SVM) [10,11] for classifying wildfire images,
and fuzzy c-means clustering [12] for identifying potential fire regions. Recently, convolutional neural
networks (CNNs), which provide excellent image classification and object detection by extracting
features and patterns from images, made many contributions to the wildfire-detection field [13–16].
CNN is one of the most popular neural networks and was successfully used in many research and
industry applications, such as computer vision and image processing [17,18]. These networks were
developed and successfully applied to many challenging image-classification problems, such as for
improving a model’s performance [19,20]. Muhammad et al. [21] developed a modified model from
GoogleNet Architecture for fire detection, to increase the model’s accuracy, and proposed a framework
for fire detection in closed-circuit television surveillance systems. Jung et al. [22] developed a decision
support system concept architecture for wildfire management and evaluated CNN-based fire-detection
technology from the Fire dataset. As noted by Jain et al. in their review of machine-learning applications
in wildfire detection [23], Zhang et al. found that CNN outperforms the SVM-based method [24],
and Cao et al. reported a 97.8% accuracy rate for smoke detection, using convolutional layers [25].
Recently, advances in mobile communication technology made it possible to use unmanned aerial
vehicles (UAVs), which are more flexible than fixed fire-monitoring towers; images obtained from
UAVs are used to learn fire-detection models [26,27].

Despite the contributions of these successful studies, some issues still need to be resolved in
order to apply this technology in the field. Mountain-image data are easy to obtain, owing to the
availability of various built-up datasets. However, not only is there a dearth of fire or smoke images of
wildfires in datasets, but such data are also relatively difficult to obtain because they require the use
of installed surveillance cameras or operational drones at the site of the wildfire [28,29]. Therefore,
research on damage detection is frequently faced with a data imbalance problem, which causes
overfitting; overfitting results in the deterioration of the model performance [30]. In order to solve
this data imbalance problem, in a recent study, synthetic images were generated and used to expand
the fire/smoke dataset [24,31]. In early studies, the data were increased using indoor artificially
generated smoke and flames or artificial images that comprised cut-and-pasted images of flames in
their background. However, this requires considerable manpower, and it is difficult to emulate the
characteristics of wildfire images using indoor images. Generative adversarial networks (GANs) [32]
are models that create new images using two networks—a generator and a discriminator. The generator
creates similar data using the training set, and the discriminator distinguishes between the real data
and the fake data created by the generator. The image rotation and image cropping data augmentation
method can also be used to expand the training dataset; however, GANs can be used to increase
dataset diversity as well as to increase the amount of data. They recently exhibited impressive
photorealistic-image-creation results [33–36]. GANs were proven to improve performance when
learning the classifier, mainly in areas where it is difficult to obtain damage data [37–39]. However,
there are relatively few related studies in the field of wildfire detection. Namozov et al. used GANs to
create fire photographs with winter and evening backgrounds in the original photographs, and added
a variety of seasons and times [28]. However, it is difficult to provide various types of fire scenarios in
various places as the resultant image retains not only the background of the original photo, but also the
shape of the flame and smoke. To apply the early wildfire detection model to the field, it is necessary
to learn various types of wildfire images using new backgrounds, such that wildfire detection can be
actively performed even in a new environment.

With the development of the CNN model and the deepening of neural networks, problems such
as vanishing gradients arise, which causes overfitting and deterioration of the model performance.
An algorithm constructed using the latest neural network architecture of DenseNet [40] could be used
to address this issue. DenseNet improves the performance of a model by connecting the feature maps
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of the previous layers to the inputs of the next layer using concatenation to maximize the information
flow between layers.

Inspired by recent works, we generated synthetic wildfire images using GANs to change the
image of a fire-free mountain to that of a mountain with a wildfire. The k-folds (k = 5) cross validation
scheme was used on the models, and the train set was separated, train sets A and B, consisting of
only the original images and of the original and generated images, respectively. Each dataset was
divided to obtain the training data and test data, and was used to train a model that was developed
based on DenseNet; this facilitated the comparison of the performance with two pre-trained models,
VGG-16 [19] and ResNet-50 [20]. This paper is organized as follows. Section 2 describes the architecture
of cycle-consistent adversarial networks (CycleGANs) [41], which is one of the main GANs algorithms
used for data augmentation, and DenseNet [40], which is used for wildfire-image classification (wildfire
detection). The experiment results obtained using both the models and the classification performance
comparison with those of the pre-trained models are presented in Section 3. Section 4 presents the
conclusion of this study.

2. Materials and Methods

2.1. Data Collection

The wildfire and non-fire images that were used for training the GAN model and CNN classification
models were collected. The mountain datasets were obtained from eight scene-categories databases [42]
and a Korean tourist spot database [43]. However, there is no open data benchmark available for
fire or smoke images of wildfires [28]. The collection was, thus, solely obtained using web crawling;
this limitation resulted in a data imbalance. Considering that the early fire-detection model is intended
for application in drones and surveillance cameras for the purpose of monitoring, both categories of
datasets were crawled from images or videos obtained using a drone. The sample of the dataset is
presented in Figure 1. A total of 4959 non-wildfire images and 1395 wildfire images were set up in our
original dataset and resized to 224 × 224 for the network input.

(a) (b) (c) (d) (e) 

Figure 1. Sample mountain and wildfire images from conducted data collection. (a) Mountain
images from eight scene categories database. (b) Mountain images from Korean tourist spot database.
(c) Drone-captured mountain images obtained via web image crawling. (d) Drone-captured wildfire
images obtained via web image crawling. (e) Drone-captured wildfire images obtained via web
video crawling.
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2.2. CycleGAN Image-to-Image Translation

To generate wildfire images, CycleGAN [41] was used, which is a method used for image-to-image
translation from the reference image domain (X) to the target image domain (Y), without relying on
paired images. As illustrated in Figure 2, in the CycleGAN, two loss functions called the adversary
loss [33] and cycle-consistency loss [41] were used.

Figure 2. Architecture of CycleGAN; mapping between two image domains x and y. The model
training is performed as the forward and inverse mappings are learned simultaneously using the
adversarial loss and cycle-consistency loss.

Our objective was to train Gx→y such that the discriminator Dy cannot distinguish the image data
distribution from Gx→y and the image data distribution from domain Y. This objective can be written
as follows:

L GAN
(
Gx→y, DY, X, Y

)
= Ey∼pdata(y)[logDY(y)] +Ex∼pdata(x)

[
log(1−DY(Gx→y(x)))

]
. (1)

LGAN
(
Gy→x, Dx, X, Y

)
= Ex∼pdata(x)[logDx(x)] +Ey∼pdata(y)

[
log(1−Dx(Gy→x(y)))

]
. (2)

However, in a general GAN, the model is not trained over the entire distribution of actual data;
it is only trained for reducing the loss. Therefore, a mode collapsing problem occurs in which the
optimization fails, as the generator cannot find the entire data distribution, and all input images are
mapped to the same output image. To solve this problem, in the CycleGAN, inverse mapping and
cycle-consistency loss (Lcyc) were applied to Equations (1) and (2), respectively, and various outputs
were thus produced. The equations of the cycle-consistency loss were as follows:

Lcyc
(
Gx→y, Gy→x

)
= Ex∼pdata(x)

[
‖Gy→x

(
Gx→y(x)

)
− x‖

1

]
+Ey∼pdata(y)

[
‖Gx→y

(
Gy→x(y)

)
− y‖

1

]
. (3)

In addition, by converting the X domain into Gy→x while adding an identity loss (Lim) that
regularized the generator, such that the calculated output was the same as the input, the converted
image could be generated, while minimizing the damage to the original image.

Lim
(
Gx→y, Gy→x

)
= Ey∼pdata(y)

[
‖Gx→y(y) − y‖1

]
+Ex∼pdata(x)

[
‖Gy→x(x) − x‖1

]
. (4)

The final loss combined with all losses was as follows. Using CycleGAN with this method, it was
possible to create various wildfire images, while maintaining the shape and background color of the
forest site.

L
(
Gx→y, Gy→x, Dx, Dy

)
= LGAN

(
Gx→y, D, X, Y

)
+ LGAN

(
Gy→x, D, X, Y

)
+

λLcyc
(
Gx→y, Gy→x

)
+Lim

(
Gx→y, Gy→x

)
.

(5)
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2.3. DenseNet

The early wildfire-detection algorithm was constructed using the state-of-the-art net architecture,
DenseNet, which is known to perform well in wildfire detection, while alleviating the vanishing
gradient problem and reducing the training time [40]. It is a densely connected CNN structure that
has a connection strategy. Figure 3 illustrates the original dense block architecture. The network
comprises layers, each of which contain a non-linear transformation, and includes functions such
as batch normalization, rectified linear unit (ReLU), and convolution. X0 is a single image, and the
network output of the (l− 1)th layer after passing through a convolution is Xl−1. The lth layer receives
the feature maps of all preceding layers as its input (Equation (6)).

Xl = Hl([X0, X1, X2, . . . , Xl−1]) (6)

Figure 3. Architecture of five-layer densely connected convolution networks.

2.4. Performance Evaluation Metrics

To compare the performance of the models, five commonly used metrics were calculated—accuracy,
precision, sensitivity, specificity, and F1-Score [44–46]. Accuracy is the ratio of accurately predicted
observations to the total number of observations and is the most intuitive performance measurement.
Precision is the ratio of correctly predicted positive observations to the total predicted positive
observations. Sensitivity is the ratio of correctly predicted positive observations to the actual
true observations. Specificity is the ratio of correctly predicted negative observations to the total
number of predicted negative observations. The F1 score is the harmonic average of precision and
sensitivity, which is generally useful for determining the performance of a model in terms of accuracy.
The expressions for the evaluation metrics are presented as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

Precision =
TP

TP + FP
. (8)

Sensitivity =
TP

TP + FN
. (9)

Specificity =
TN

TN + FP
. (10)

F1− score =
2 × precision × Sensitivity

precision + Sensitivity
. (11)

In the aforementioned equations, the number of true positives that the model predicts,
i.e., the number of wildfire images predicted as wildfires and the number of true negatives that
model the predicts, i.e., the number of non-fire images identified as non-fire, are denoted by true
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positive (TP) and true negative (TN), respectively. In addition, the number of false positives that the
model predicts, i.e., the non-fire images predicted as wildfires, and the number of false negatives that
model predicts, i.e., the wildfire images predicted as non-fire, are denoted as false positive (FP) and
false negative (FN), respectively. These four types of data are defined using a confusion matrix in the
binary classification. The overall performance-evaluation metrics were evaluated using the wildfire
and non-wildfire testing sets.

3. Experimental Results

The following sections present the obtained results of the dataset balancing and wildfire detection
models. The experiment environment was CentOS (Community enterprise operating system) Linux
release 8.2.2004, which was constructed as an artificial intelligence server. The hardware configuration
of the server consists of an Intel(R) Xeon(R) Gold 6240 central processing unit, 2.60 GHz, with an Nvidia
Tesla V100 GPU, 32 GB memory. The experiences were conducted using the PyTorch deep learning
framework [47] with Python language. The result and the example experiment code is available online
at Github repository (https://github.com/pms5343/pms5343-WildfireDetection_by_DenseNet).

3.1. Dataset Augmentation Using GAN

To alleviate the data imbalance of the collected images, new wildfire images were generated using
the CycleGAN as a data augmentation strategy. The objective of using the image-generation model
is to convert non-wildfire images from a part of the collected data into wildfire images. A total of
1294 wildfire images (Domain A) and 2311 non-wildfire images (Domain B) from our original dataset
were used.

As can be observed from Figure 4, the training was performed by increasing the number of epochs
until there was a slight change in each loss, in order to improve the model. The generator loss was
learned in the direction of increasing loss as the number of epochs increased because the objective of
the generators was to create a fake image such that the discriminator could not determine whether
the generated image was real or fake. Conversely, the discriminator losses were trained to reduce the
loss, in order to distinguish between the generated and original images. Figure 4b shows that the
cycle consistency loss added for the purpose of increasing the diversity of the generated image and
the identity mapping loss added for the purpose of minimizing changes in the background of the
generated image were also trained in the direction of decreasing exposure. After 650 epochs, there was
no significant change in loss, and the training was thus terminated.

  
(a) (b) 

Figure 4. Training loss curve of CycleGAN-based non-fire–wildfire image converter. (a) Adversarial
loss curve for generator and discriminator by the number of epochs. (b) Cycle-consistency and identity
mapping loss curve by the number of epochs.

Figure 5 illustrates the overall process of the model and an example of when the images of domains
A and B undergo the model-training process. The mountain image without a fire in domain B was
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converted into a wildfire image through the generator GBA and then compared with the image of domain
A (original wildfire image), by discriminator A (DA) ( 1�→ 2�→ 3� process in Figure 5). The converted
image was the image reconstructed by generator GAB, and the result was not significantly different
from that of domain B ( 1�→ 2�→ 4� process in Figure 5). In addition, it was confirmed that there was
no difference in the image converted by generator GAB from domain B ( 1�→ 5� process in Figure 5).
Conversely, the process was conducted in the same manner, and 1195 new 224 × 224-pixel fire images
were created from domain B (Figure 6) and included in the wildfire dataset.

Figure 5. CycleGAN-based wildfire-image-generation architecture.

 

 

Figure 6. Sample of the wildfire images converted from non-fire mountain images.

3.2. Wildfire Detection

The wildfire detection was realized through the use of a DenseNet-based classification
network model consisting of three dense blocks and two transition layers to identify the fire with
224 × 224-pixel-size image inputs. The architecture of the simple network is illustrated in Figure 7.

The dense block included a two-kernel filter. One filter was a 1 × 1 size convolution, which was
used to decrease the number of input feature map channels, and the other was a 3 × 3 size convolution.
After the dense block, the feature maps passed through a phase layer consisting of batch normalization,
ReLU, 1 × 1 convergence, and 2 × 2 average pooling, which reduced the width and length of the feature
map and the number of feature maps. Finally, after three dense block sessions, the result was drawn
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after the linear layer at the end, after passing through the global average pooling and softmax classifier
sequentially, as in the case of a traditional CNN.

 

Figure 7. DenseNet-based wildfire-detection architecture.

The following section presents the results of the wildfire-detection performance obtained using
the deep learning classification model based on DenseNet, as compared to the pre-trained model.
Two results were derived for each model—one for train set A and the other for train set B.

3.2.1. Dataset Partition

The train and test set partition are specified in the following section. From the collected original
dataset, several images were used to generate new images. The forest image used as the GAN domain
was deleted from the dataset for the classification model; however, the wildfire domain was not
eliminated because it was used as a reference; it was thus not deleted from the dataset. A total
of horizontal flip and random crop (by 200 pixel) were used to expand the number of samples of
the training sets. The train sets were divided into trainset A, consisting only of photographs taken,
and trainset B, consisting of wildfire images generated by the GAN. Many precedent research showed
that accuracy becomes lower when the number of data points is imbalanced [48]. In order to avoid the
disadvantages of already well-known data imbalances, Train set A kept the data ratio between the two
classes similar, even if the total number of data is set less than B. The test set only contains the original
photograph and not the generated image. Twenty percent of the total collected original image dataset
was selected as the test dataset. Partition of the datasets are shown in Table 1.

Table 1. Image datasets for wildfire-detection model.

Original
Non-Fire Images

Original
Wildfire Images

Generated
Wildfire Images

Train set A
[Real database] 3165 2427

Train set B
[Real + synthetic database] 6309 2427 3585

Test set 545 486

3.2.2. Model Training and Comparison of the Models

To demonstrate the performance of the proposed method, two train sets were used in the
proposed model and well-known pre-trained models, ResNet-16 and VGG-50, for the performance
evaluation. To improve the models’ performance of each model, the learning rate and optimizer were
tested. Ten values of the initial learning rate between 0.1 and 0.00001 were tested, while changing
three representative optimizers—stochastic gradient descent (SGD), Adam [49], and PMSprop [50].
The number of epochs was fixed at 250, and batch size was fixed at 64. The best hyperparameter
combination was found based on the average accuracy from the k-folds (k = 5) cross-validation process;
presented in Table 2.
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Table 2. Selected hyperparameters for CNN architectures.

VGG-16 ResNet-50 DenseNet

Batch Size 60 60 60
Initial Learning Rate 0.0002 0.0002 0.01

Number of Training Epochs 250 250 250
Optimizer Adam Adam SGD

The training process of each model using the selected hyperparameter combination is illustrated
in Figure 8. The training accuracy curve obtained as the number of epochs increased is presented in
Figure 8a. The accuracy of the six models increased most significantly between epochs 1 and 10 and
then increased steadily until epoch 250.

  
(a) (b) 

Figure 8. Learning curve of training process over epochs. (a) Accuracy curve. Final accuracy: VGG-16,
trainset A (0.954); VGG-16, trainset B (0.969); ResNet-50, trainset A (0.989); ResNet-50, trainset B (0.995);
DenseNet trainset A (0.985); and DenseNet trainset B (0.995). (b) Loss curve. Final loss: VGG-16,
trainset A (0.123); VGG-16 trainset B (0.085); ResNet-50, trainset A (0.028); ResNet-50, trainset B (0.016);
DenseNet, trainset A (0.0003; SGD); and DenseNet, trainset B (0.00006; SGD).

The DenseNet-based proposed model demonstrated the highest training accuracy, with an
approximate accuracy of 99% in the final learning approach, followed by ResNet-50 and then VGG-16.
In addition, it was demonstrated that the accuracy performance of trainset B, which included generated
images, was greater than that of trainset A for all three models. The training loss curve obtained as the
number of epochs increased is presented in Figure 8b. The DenseNet and ResNet-16 losses rapidly
decreased until epoch 20, whereas the loss of VGG-16 continued to decrease steadily. The training loss
also exhibited a better performance for trainset B than that for trainset A in the case of both the initial
and final losses.

The classifier models were evaluated based on the performance results, using the five metrics
presented in Table 3. DenseNet yielded the best results in terms of all five metrics. Although the
VGG-50 model exhibited a slightly lower accuracy, sensitivity, and F1-score, the results obtained on
using trainset B were at a similar level as (or better than) those obtained with trainset A. For example,
in the case of DenseNet, the accuracy increased from 96.734% to 98.271%, the precision increased from
96.573% to 99.380%, sensitivity increased from 96.573% to 96.976, specificity increased from 96.881% to
99.450%, and the F1-score increased from 96.573 to 98.163. The experimental results showed that a new
image created by changing a normal image of a mountain into an image of a mountain on which a fire
had occurred could maintain the performance of the CNN and also improve the model performance
via the input of various data as training.

329



Remote Sens. 2020, 12, 3715

Table 3. Comparisons of performance evaluation.

VGG-16 ResNet-50 Proposed Method

Train Set A Train Set B Train Set A Train Set B Train Set A Train Set B

Accuracy (%) 93.756 93.276 96.734 96.926 96.734 98.271
Precision (%) 93.890 97.973 97.727 97.934 96.573 99.380

Sensitivity (%) 92.944 87.702 95.363 95.565 96.573 96.976
Specificity (%) 94.495 98.349 97.982 98.165 96.881 99.450

F1-Score 93.414 92.553 96.531 96.735 96.573 98.163

The bold is the best result among other methods.

3.2.3. Influence of Data Augmentation Methods

In this section, proposed model performance is compared with and without using CycleGAN-based
data augmentation, to verify the influence of the proposed method. Horizontal flip, random zoom
(200 pixel), rotation (original images were rotated by 10◦ and 350◦), and random brightness (two values
were selected arbitrarily from lmin = 0.8 to lmax = 1.2) methods were used in this section, as traditional
data augmentation without GAN. The F1-score was obtained from a combination of training sets
consisting of various augmentation methods.

Based on the experimental results, it could be seen that data augmentation from CycleGAN
improved the accuracy of wildfire detection models. As can be seen from Table 4, the F1 score trained
from data combination including the GAN method was higher by 1.154, 0.902, and 0.821, respectively,
than the model trained from traditional method without GAN.

Table 4. F1-scores for model trained by various combination sets.

Data Augmentation Method Training Images F1-Score

Original + GAN + Horizontal flip + Zoom (200) 6312 98.163
Original + GAN + Rotation (10◦ and 350◦) 6312 97.911

Original + GAN + Random brightness (from lmin to lmax) 6312 97.830
Original + Traditional augmentation (Without GAN) 6363 97.009

3.2.4. Visualization of the Contributed Features

In order to visualize the output result of the model that exhibits the best performance, a class
activation map (CAM) [51] was used to determine the features of the image that were extracted to
detect the wildfire. As can be observed from the example of the CAM results in Figure 9, the detection
was made primarily based on the presence of smoke or flames in the image, and the elements used
for the classification as wildfires were found even in the early stages of the fire, with no flame and
little smoke.

 

Figure 9. Sample of CAM results of the wildfire images.
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The smoke in the part of the image that comprises the forest could be detected well, but the smoke
in the part that comprises sky was not judged as a factor. It is hypothesized that this occurred because
the model confused smoke with clouds or fog, and the smoke near the sky background could thus not
be treated as a powerful factor for classifying the features.

3.3. Model Application

To apply the learned model to on-site drones or surveillance cameras used to monitor forests,
a method of application for higher-resolution images than the model input-image size (224 × 224)
is required. There is also a method used for resizing a remote camera image to a lower resolution;
however, the method proposed in this study comprises cropping high-resolution images at regular
intervals—considering that surveillance cameras are generally used to observe large areas—to derive
the result values for each image.

Figures 10–12 present an example of a model application based on a drone-tested forest video [52].
This is a 1280 × 720-size drone video of a wildfire that occurred in Daejeon, Korea, in 2015. The white
and jade green boxes denote the cropped areas of size 224 × 224 and are indicated in alternate colors
for visualization convenience. The cropped images were cut to overlap each other at a certain interval,
and 28 images per video frame were cut and input to the classification model. The text in the square
box indicates the value derived from the softmax layer of the model, which was the final layer of the
model (as it was trained using two classes; if the softmax value of the model was greater than 0.5,
it was determined that the range comprised a fire, otherwise, it was determined that the range did not
comprise a fire.)

Figure 10. Example of model application with softmax result for early wildfire (with error).

Figure 10 presents the result of the application of the model to the image captured approximately
1 min after the wildfire occurred. The photos include not only the forest, but also parts of the nearby
villages. The model detected the smoke generated in the forest and determined the location at which
the fire had occurred. However, a greenhouse at the bottom right of the photo was falsely detected as a
wildfire (0.829). It was suggested that this was a problem caused by the error of not properly taking
into consideration specific images like cities, roads, and farmland, when training the initial model.
This phenomenon was also found when applied to other sites.
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Figure 11. Example of model application with softmax result for non-wildfire (with error).

Figure 12. Example of model application with softmax result after 10-min wildfire progress.

As can be seen from the class activation map in Figure 11, the model mistook the building feature.
Although it could not be judged that this was falsely detected by all artifacts, it was confirmed that false
positives might occur when more than half of the cropped images were not natural objects. Conversely,
there were no false positives caused by natural objects, such as confusion of distinguishing between
clouds and smoke.

Figure 12 presents the result of the application of the model, approximately 10 min after the
wildfire progression. As the fire was accompanied by flames after the fire had grown to some extent,
the softmax layer provided a prediction with 100% probability, and the fire could be detected more
easily than at the beginning of the fire. After applying the method of cropping without resizing the
image, damaging the original image becomes unnecessary. As each cropped image is discriminated
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individually, the location of the fire can be tracked, while continuously obtaining real-time video
footage, using a surveillance camera.

4. Conclusions

With the development of remote camera sensing technology, many researchers attempted to
improve existing wildfire-detection systems using CNN-based deep learning. In the damage-detection
field, it is difficult to obtain a sufficient amount of the necessary data for training models; data imbalance
or overfitting problems have thus caused the deterioration of the models’ performance. To solve
these problems, traditional image transformation methods such as image rotation were primarily
used. A method of increasing the learning data was also adopted, wherein the flame image was
artificially cut and pasted over a forest background. However, these two methods have their
respective weaknesses—failure to increase the diversity of images and the necessity of manual labor,
while providing unnatural images. The results of this study addressed this issue.

Our study had several advantages. First, a data augmentation method based on the same rules as
those of artificial intelligence was used. It could also generate data while requiring minimal manpower.
Using adversary, cycle-consistency, and identity losses, the optimized model could be used to produce
various flame scenarios. The model could also be pre-trained for various wildfire scenarios in new
environments, prior to the management of the forest; higher detection accuracy could, thus, be expected.
Second, we improved the detection accuracy by applying a dense block based on DenseNet in the
model. The training history and test results showed that the proposed methods facilitated good model
performance. Third, it was proposed that the model could be applied to high-resolution images to
overcome the limitations that depend primarily on the use of small-sized images, as inputs to the model.
This allows us to identify the approximate location of the wildfire from a wide range of photographs.

There were also several limitations to our study. The model training was conducted using a limited
forest class. Although during the experiment conducted with drone images the model identified the
cloud and wildfire areas well (the upper part of the cropped photos in Figure 11), the smoke in the
part of the image comprising the sky was not captured as a feature when the test data was obtained
using CAM. This could be adjusted by increasing the class range or by learning additional models
using images that are likely to confuse the model. Another potential problem was that the model
performance for detection of wildfires in the nighttime was not considered. This temporal variable
was excluded from the study because the purpose of this study was to check the efficiency of the
data augmentation from artificial intelligence method and the efficiency of dense block in wildfire
detection models. However, these details should be considered in further studies because of the
different characteristics in the nighttime detection and in the day-time detection.

By improving upon the achievements and limitations of this study, in a future study, we intend to
implement a forest-fire detection model in the field, by installing real-time surveillance cameras in
Gangwon-do, Korea, which is exposed to the risk of wildfires every year.

In addition, by developing a technology that calculates the location of fires using image processing
to measure fire area distance from camera and displays it on a map user interface, we intend to provide
disaster-response support information for decision makers to realize a quick response in the event of
the occurrence of a wildfire.
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Abstract: Pavement markings play a critical role in reducing crashes and improving safety on public
roads. As road pavements age, maintenance work for safety purposes becomes critical. However,
inspecting all pavement markings at the right time is very challenging due to the lack of available
human resources. This study was conducted to develop an automated condition analysis framework
for pavement markings using machine learning technology. The proposed framework consists of
three modules: a data processing module, a pavement marking detection module, and a visibility
analysis module. The framework was validated through a case study of pavement markings training
data sets in the U.S. It was found that the detection model of the framework was very precise,
which means most of the identified pavement markings were correctly classified. In addition, in the
proposed framework, visibility was confirmed as an important factor of driver safety and maintenance,
and visibility standards for pavement markings were defined.

Keywords: pavement markings; deep learning; visibility; framework

1. Introduction

Pavement markings play a critical role in reducing crashes and improving safety on public
roads. They do not only convey traffic regulations, road guidance, and warnings for drivers, but also
supplement other traffic control devices such as signs and signals. Without good visibility conditions
of pavement markings, the safety of drivers is not assured. Therefore, it is important for transportation
agencies and other stakeholders to establish a systematic way of frequently inspecting the quality of
pavement markings before accidents occur.

State highway agencies in the U.S. invest tremendous resources to inspect, evaluate, and repair
pavement markings on nearly nine million lane-miles [1]. One of the challenges in pavement
marking inspection and maintenance is the variable durability of pavement markings. Conditions
of pavement markings vary even if they were installed at the same time. Such conditions are highly
dependent on the material characteristics, pavement characteristics, traffic volumes, weather conditions,
etc. Unfortunately, inspecting all pavement markings at the right time is very challenging due to the lack
of available human resources. Hence, an automated system for analyzing the condition of pavement
markings is critically needed. This paper discusses a study that developed an automated condition
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analysis framework for pavement markings using machine learning technology. The proposed
framework consists of three modules: a data processing module, a pavement marking detection
module, and a visibility analysis module. The data processing module includes data acquisition and
data annotation, which provides a clear and accurate dataset for the detection module to train. In the
pavement marking detection module, a framework named YOLOv3 is used for training to detect
and localize pavement markings. For the visibility analysis module, the contour of each pavement
marking is clearly marked, and each contrast intensity value is also provided to measure visibility.
The framework was validated through a case study of pavement markings training data sets in the U.S.

2. Related Studies

With the remarkable improvements in cameras and computers, pavement conditions can now
be analyzed remotely using image processing technologies. Unlike traditional manual inspection,
remote analysis does not require on-site operations and closed traffic, yet has high inspection accuracy
and efficiency, which greatly reduces the management costs of the government’s transportation
department. With the continuous development of computer vision technology, more and more
researchers are exploring how to use videos or images to complete the analysis of pavement systems.
Ceylan et al. summarized the recent computer vision-based pavement engineering applications into
seven categories: estimation of pavement conditions and performance, pavement management and
maintenance, pavement distress prediction, structural evaluation of pavement systems, pavement
image analysis and classification, pavement materials modeling, and other transportation infrastructure
applications [2,3]. The increasing number of publications and technologies in these fields in recent
years undoubtedly demonstrates that more and more researchers are interested in exploring the use of
computer vision technology to study pavement engineering problems [4–10].

A complete pavement system consists mainly of the pavement and the painted markings or
lanes. Intuitively, most studies of pavement systems focused on analyzing the pavements and
markings. Regarding pavements, researchers pay more attention to exploring how to efficiently and
precisely detect cracks on roads. Traditional techniques start mainly from pattern matching or texture
analysis to help locate cracks. However, due to the diversity of cracks and their unfixed shapes,
such traditional techniques have been found wanting. Studies have been conducted on the automatic
identification of pavement cracks using neural network algorithms, due to their powerful learning and
representing capabilities. In this new technique, the characteristic information on the road images
is first extracted, and then the neural network is trained to recognize it. For sample pavements with
known characteristics, the neural network can automatically learn and memorize them, whereas
for unknown pavement samples, the neural network can automatically make inferences based on
previously learned information.

Meignen et al. directly flattened all the pixels of each image into one-dimensional feature vectors,
which were taken as the inputs to a neural network [11]. This method did not work very well, as different
roads had different crack characteristics, and the training input data set was too large. Therefore, it is
wise to first extract the features that are meaningful for recognizing pavement cracks, and then process
the features using a neural network. Xu et al. proposed a modified neural network structure to improve
the recognition accuracy [8]. First, the collected pavement images were segmented into several parts,
after which the features were extracted from each part. For each segment, the probability that it could
have cracks was inferred with the neural network model. The regional division strategy reduced the
differences between the samples and effectively improved the performance of the network. Zhang et
al. trained a supervised convolutional neural network (CNN) to decide if a patch represents a crack
on a pavement [10]. The authors used 500 road system images taken with a low-cost smartphone to
inspect the performance of the proposed model. The experiment results showed that the automatically
learned features of the deep CNN provided a superior crack recognition capability compared with the
features extracted from the hand-craft approaches. Li et al. explored the possibility that the size of
the reception field in the CNN structure influences its performance [6]. They trained four CNNs with
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different reception field sizes and compared them. The results showed that the smaller reception fields
had slightly better model accuracy, but also had a more time-consuming training process. Therefore,
a good trade-off between effectiveness and efficiency was needed. In the study of Zhang et al.,
a recurrent neural network (RNN) named CrackNet-R was modeled to perform automatic pixel-wise
crack detection for three-dimensional asphalt pavements [12]. In this model, the authors applied a
new structure, a gated recurrent multilayer perceptron network, which showed a better memorization
ability than other recurrent schemes. Relying on such a memorization ability, the CrackNet-R first
searched the image sequence with the highest probability of having a crack pattern. Then an output
layer was adopted to transform the timely probabilities of the sequence into pixel-wise probabilities.
This novel pixel-wise pavement crack detection model provided a new orientation for the development
of the field.

For pavement markings, many publications have also focused on the detection and classification
of road signs or lanes, which is an important task for pavement system maintenance or autonomous
driving. Most previous studies on this problem were developed with the image processing theory
and the hand-craft pattern functions, which made it very difficult to generalize in various situations.
Chen et al. proposed a two-stage framework for road markings detection and classification based on
machine learning [13]. The first-stage detection model was carried out with the binarized normed
gradient (BING) approach, and the second-stage classification model was realized with the principal
component analysis network (PCANet). Both BING and PCANet are popular techniques in the field of
machine learning. Yamamoto et al. adopted a simple neural network to recognize pavement markings
on road surfaces [9]. The authors first extracted the candidate road areas based on the edge information,
and then fed them to the neural network to accomplish the recognition. Gurghian et al. proposed a
novel method called DeepLanes to directly estimate, from images taken with a side-mounted camera,
the position of the lanes using a deep neural network [14]. Besides the ability of the proposed model to
determine the existence of lane markings, it could also predict the position of the lane markings with
an average speed of 100 frames per second at the centimeter level, without any auxiliary processing.
This algorithm can provide significant support for the driver-assistant system that depends on the
lanes. The aforementioned models mainly treated pavement markings and lanes as different objects
for processing and analysis, until the emergence of the vanishing point guided network (VPGNet),
which Lee et al. proposed [15]. VPGNet was an end-to-end deep CNN inspired by the multi-task
network structure that can simultaneously detect road markings and lanes. It introduced the vanishing
point prediction task into the network to guide lane detection, which improved the performance of the
network in some bad situations such as rainy days or at night. The authors also provided a public
image dataset for lane and road marking detection tasks with pixel-wise annotations.

3. Methodology

Figure 1 shows an overview of the proposed framework with its three modules: a data processing
module, a pavement marking detection module, and a visibility analysis module.

 

Figure 1. Overview of the Framework for Condition Analysis of Pavement Markings.
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3.1. Data Processing Module

3.1.1. Data Acquisition

Since deep learning is a kind of data-driven algorithm, a training dataset must be prepared for the
network model. Due to the quick development of autonomous driving, many public datasets for each
driving situation have been collected, such as BDD100K, KITTI, Caltech Lanes, and VPGNet [15–18].
However, these datasets mainly focus on lane detection rather than the pavement markers. The VPGNet
dataset provides annotations for lanes and pavement markers, but its pixel-wise annotations are
inappropriate for the detection module used in this study. Thus, a system for automatically gathering
images or videos of pavement systems must be set up. An action camera mounted behind the front
windshield of a car driving on the roadways of Indianapolis, U.S.A. was used to record high-definition
(HD) videos. Generally, the camera can capture 90% of the view in front of the moving vehicle,
including pavements, transportation systems, and nearby street views, but only the data on pavements
were used in this study. For this study, several trips were taken to record plenty of video data.
The collected dataset covered various weather conditions, such as daytime, nighttime, sunny days,
and rainy days, and different regions such as highways and urban areas. After screening all the video
data, more than 1000 high-quality pictures were intercepted, of which about 200 were used for testing,
and the remaining pictures were used for training, which maintained a good training-testing ratio.

3.1.2. Data Annotation

Since the primary goal of this study was to make the computer recognize the pavement markings
in the road view videos or images, a labeled dataset had to be prepared for the model training process.
After comparing multiple open-source labeling software, the visual object tagging tool (VoTT) was
chosen to perform the data annotation. VoTT is a powerful open-source labeling software released by
Microsoft [19]. This software provides a technique for automatic labeling based on the pre-trained
network, which can significantly reduce the workload for annotations. It also supports many formats of
the exported annotation results, which make the labeled sample set suitable for various deep learning
development frameworks. Figure 2 shows an example of the labeling process.

 

Figure 2. The software interface for data annotation tasks.

The VOC XML file format was chosen to generate annotations for each imported image. The key
step in this procedure is to develop categories for the pavement markings. This study mainly focused
on arrow-like pavement markings, such as those for left turn, right turn, etc. However, up to 10
categories of pavement markings were additionally captured with rectangular boxes for future research.
Those categories are described in Figure 3. The annotated data were divided into a training dataset
and a testing dataset at a ratio of 0.9:0.1.
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Figure 3. Types of labeled pavement markings.

3.2. Pavement Markings Detection Module

In the field of computer vision, many novel object recognition frameworks have been studied in
recent years. Among these frameworks, the most studied frameworks are deep learning-based models.
Generally, according to the recognition principle, existing object detection models can be divided into
two categories: two-stage frameworks and one-stage frameworks [20].

In two-stage frameworks, the visual target is detected in mainly two steps. First, abundant
candidate regions that can possibly cover the targets are proposed, and then the validity of such regions
is determined. R-CNN, Fast-RCNN, and Faster-RCNN are the representative two-stage frameworks,
all of which have high a detection precision [21–23]. However, since they take time to generate
candidate regions, their detection efficiency is relatively unpromising, which makes them unsuitable for
real-time applications. To make up for this deficiency, researchers proposed the one-stage framework.

Compared to the two-stage framework, the one-stage framework gets rid of the phase for
proposing candidate regions, and simultaneously performs localization and classification by treating
the object detection task as a regression problem. Moreover, with the help of CNN, the one-stage
framework can be constructed as an end-to-end network so that inferences can be made with simple
matrix computations. Although this type of framework is slightly inferior to the two-stage framework
in detection accuracy, its detection speed is dozens of times better. One of the representative one-stage
frameworks, You Only Look Once (YOLO), achieves a balance between detection accuracy and
speed [24]. After continuous updating and improvement, the detection accuracy of YOLOv3 has
already caught up with that of most two-stage frameworks. This is why YOLOv3 was chosen as the
pavement markings detection model in this study.

3.2.1. Demonstration of the YOLO Framework

Previous studies, such as on Region-CNN (R-CNN) and its derivative methods, used multiple steps
to complete the detection, and each independent stage had to be trained separately, which slowed down
the execution and made optimizing the training process difficult. YOLO uses an end-to-end design
idea to transform the object detection task into a single regression problem, and directly obtains the
coordinates and classification probabilities of the targets from raw image data. Although Faster-RCNN
also directly takes the entire image as an input, it still uses the idea of the proposal-and-classifier
of the R-CNN model. The YOLO algorithm brings a new solution to the object detection problem.
It only scans the sample image once and uses the deep CNNs to perform both the classification and the
localization. The detection speed of YOLO can reach 45 frames per second, which basically meets the
requirement of real-time video detection applications.

YOLO divides the input image into S ∗ S sub-cells, each of which can detect objects individually.
If the center point of an object falls in a certain sub-cell, the possibility of including the object in
that sub-cell is higher than the possibility of including it in the adjacent sub-cells. In other words,
this sub-cell should be responsible for the object. Each sub-cell needs to predict B bounding boxes
and the confidence score that corresponds to each bounding box. In detail, the final prediction is a
five-dimensional array, namely, (x, y, w, h, c)T, where (x, y) is the offset that compares the center
point of the bounding box with the upper left corner of the current sub-cell; (w, h) is the aspect ratio of
the bounding box relative to the entire image; and c is the confidence value. In the YOLO framework,
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the confidence score has two parts: the possibility that there is an object in the current cell, and the
Intersection over Union (IoU) value between the predicted box and the reference one. Suppose the
possibility of the existence of the object is Pr(Obj), and the IoU value between the predicted box and
the reference box is IoU(pred, truth), the formula for the confidence score is shown as Equation (1).

Con f idence = Pr(Obj) ∗ IoU(pred, truth) (1)

Suppose that boxp is the predicted bounding box, and boxt is the reference bounding box. Then the
IoU value can be calculated using the following formula.

IoUt
p =

boxp ∩ boxt

boxp ∪ boxt
(2)

In addition, YOLO outputs the individual conditional probability of C object categories for each
cell. The final output of the YOLO network is a vector with S ∗ S ∗ (5 ∗ B + C) nodes.

YOLO adopted the classic network structure of CNN, which first extracted spatial features
through convolutional layers, and then computed predictions by fully connected layers. This type
of architecture limits the number of predictable target categories, which makes the YOLO model
insufficient for multi-object detection. Moreover, since YOLO randomly selects the initial prediction
boxes for each cell, it cannot accurately locate and capture the objects. To overcome the difficulties
of YOLO and enhance its performance, Redmon et al. further modified its structure, applied novel
features, and proposed improved models such as YOLOv2 and YOLOv3 [25,26].

The YOLOv2 network discarded the fully connected layers of YOLO, transformed YOLO into a
fully convolutional network, and used the anchor boxes to assist in the prediction of the final detection
bounding boxes. It predefined a set of anchor boxes with different sizes and aspect ratios in each cell to
cover different positions and multiple scales of the entire image. These anchor boxes were used as
initial candidate regions, which were distinguished according to the presence or absence of the targets
inside them through the network. The position of the predicted bounding boxes was also continuously
fine-tuned [27]. To fit the characteristics of the training samples, YOLOv2 used the k-means clustering
algorithm to automatically learn the best initial anchor boxes from the training dataset. Moreover,
YOLOv2 applied the Batch Normalization (B.N.) operation to the network structure. B.N. decreased
the shift in the unit value in the hidden layer, and thus improved the stability of the neural network [28].
The B.N. regularization can prevent overfitting of the model, which makes the YOLOv2 network easier
to converge.

Compared to YOLOv2, YOLOv3 mainly integrated some advanced techniques. While maintaining
the fast detection, it further improved the detection accuracy and the ability to recognize small targets.
YOLOv3 adopted a novel framework called Darknet-53 as its main network. Darknet-53 contained a
total of 53 convolutional layers and adopted the skip-connection structure inspired by ResNet [29].
The much deeper CNN helped improve feature extraction. Motivated by the idea of multilayer feature
fusion, YOLOv3 used the up-sampling method to re-extract information from the previous feature
maps, and performed feature fusion with different-scale feature maps. In this way, more fine-grained
information can be obtained, which improved the accuracy of the detection of small objects.

3.2.2. Structure of YOLOv3

Figure 4 shows the YOLOv3 network structure, which has two parts: Darknet-53 and the
multi-scale prediction module. Darknet-53 is performed to extract features from the input image,
the size of which is set at 416 × 416. It consists of two 1 ∗ 1 and 3 ∗ 3 convolutional layers, without
any fully connected layers. Each convolutional layer is followed by a B.N. layer and a LeakyReLU
activation function, which is regarded as the DBL block. In addition, Darknet-53 applies residual
blocks in some layers. The main distinction of the residual block is that it adds a direct connection from
the block entrance to the block exit, which helps the model to converge more easily, even if the network
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is very deep. When the feature extraction step is completed, feature maps are used for multi-scale
object detection. In this part, YOLOv3 extracts three feature maps of different scales in the middle,
middle-bottom, and bottom layers. In these layers, the concatenation operations are used to fuse the
multi-scale features. In the end, three predictions of different scales will be obtained, each of which
will contain the information on the three anchor boxes. Each anchor box is represented as a vector of
(5 + numclass) dimensions, in which the former five values indicate the coordinates and the confidence
score, and numclass refers to the category number of the objects. In this study, five kinds of arrow-like
pavement markings were considered.

 
Figure 4. Structure of the YOLOv3 network. (https://plos.figshare.com/articles/YOLOv3_architecture_
/8322632/1).

3.3. Visibility Analysis Module

After the data collected by the dashboard camera are labeled, a YOLOv3-based pavement marking
detection module can be constructed and trained. The target pavement markings can be extracted and
exported as small image patches. Thus, the next step is to design a visibility analysis module to help
determine the condition of the pavement markings.

Pavement markings are painted mainly to give notifications to drivers in advance. As such,
a significant property of pavement markings is their brightness. However, brightness is an absolute
value affected by many factors, such as the weather and the illumination. Since the human visual
system is more sensitive to contrast than to absolute luminance, the intensity contrast is chosen as the
metric for the visibility of pavement markings [30]. In this study, contrast was defined as the difference
between the average intensity of the pavement marking and the average intensity of the surrounding
pavement. The main pipeline of this visibility analysis module is shown in Figure 5.

Figure 5. A demonstration of the pipeline of the visibility analysis module.

3.3.1. Finding Contours

As the pavement markings are already exported as image patches, the first step is to separate the
pavement markings from the pavement. Since only arrow-like markings were considered in this study,
the portion with the marking can be detached easily from the image, for as long as the outer contour of
the marking is found. The contour can be described as a curve that joins all the continuous points
along the boundary with the same color or intensity.

The contour tracing algorithm used in this part was proposed by Suzuki et al. [30] It was one of
the first algorithms to define the hierarchical relationships of the borders and to differentiate the outer
bounders from the hole bounders. This method has been integrated into the OpenCV Library [31].
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The input image should be a binary image, which means the image has only two values: 0 and 1, with 0
representing the black background, and 1, the bright foreground or object. Thus, the border should
mainly serve as the edge.

Assume that pij denotes the pixel value at position (i, j) in the image. Two variables, Newest
Border Number (NBD), Last Newest Border Number (LNBD), are created to record the relationship
between the pixels during the scanning process. The algorithm uses the row-by-row and left-to-right
scanning schemes to process each NBD and LNBD, where pij > 0.

Step 1. If pij = 1 and pi, j−1 = 0, which indicate that this point is the starting point of an outer border,
increment NBD by 1 and set (i2, j2)← (i, j− 1) . If pij ≥ 1 and pi, j+1 = 0, which means it
leads a hole border, increment NBD by 1 and set (i2, j2)← (i, j + 1) and LNBD ← pij in case
pij > 1. Otherwise, jump to Step 3.

Step 2. From this starting point (i, j), perform the following operations to trace the border.

2.1. Starting from pixel (i2, j2), traverse the neighborhoods of pixel (i, j) in a clockwise direction.
In this study, the 4-connected case is selected to determine the neighborhoods, which means
only the points connected horizontally and vertically are regarded as the neighborhoods. If a
non-zero value exists, denote such pixel as (i1, j1). Otherwise, let pij = −NBD and jump to
Step 3.

2.2. Assign (i2, j2)← (i1, j1) and (i3, j3)← (i, j) .
2.3. Taking pixel (i3, j3) as the center, traverse the neighborhoods in a counterclockwise direction

from the next element (i2, j2) to find the first non-zero pixel, and assign it as (i4, j4).
2.4. Update the value pi3, j3 according to Step 2.4 in Figure 6.
2.5. If pi3, j3+1 = 0, update pi3, j3 ← −NBD .
2.6. If pi3, j3+1 � 0 and pi3, j3 = 1, update pi3, j3 ← NBD .
2.7. If the current condition satisfies (i4, j4) = (i, j) and (i3, j3) = (i1, j1), which means it goes back

to the starting point, jump to Step 3. Otherwise, assign (i2, j2)← (i3, j3) and (i3, j3)← (i4, j4)
and return to Sub-step 2.3.

Step 3. If pij � 1, update LNBD ←
∣∣∣pij
∣∣∣ . Let (i, j)← (i, j + 1) and return to Step 1 to process the next

pixel. This algorithm stops after the most bottom-right pixel of the input image is processed.

 
Figure 6. The introduction of Step 1, 2.1–2.4 and the introduction of the final output to the contour
tracing algorithm.

Figure 6 show the contour tracing algorithm. By using this approach, the outer border or the
contour of the arrow-like pavement marking can be found. However, due to uneven lighting or faded
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markings, the detected contours are not closed curves, as shown in Figure 7b. The incomplete contours
cannot help separate the pavement marking portion. To solve this problem, the dilation operation is
performed before the contours are traced.

Figure 7. Results of the visibility analysis module. (a) Original patch, including the pavement marking;
(b) Found contours without the dilation operation; (c) Found contours with the dilation operation;
(d) Generated image mask for the marking; and (e) Generated image mask for the pavement.

Dilation is one of the morphological image processing methods, opposite to erosion [32]. The basic
effect of the dilation operator on a binary image is the gradual enlargement of the boundaries of the
foreground pixels so that the holes in the foreground regions would become smaller. The dilation
operator takes two pieces of data as inputs. The first input is the image to be dilated, and the second
input is a set of coordinate points known as a kernel. The kernel determines the precise effect of
the dilation on the input image. It presumes that the kernel is a 3 × 3 square, with the origin at its
center. To compute the dilation output of a binary image, each background pixel (i.e., 0-value) should
be processed in turns. For each background pixel, if at least one coordinate point inside the kernel
coincides with a foreground pixel (i.e., 1-value), the background pixel must be flipped to the foreground
value. Otherwise, the next background pixel must be continually processed. Figure 8 shows the effect
of a dilation using a 3× 3 kernel. By using the dilation method before detecting the contours for the
pavement marking patches, the holes in the markings are significantly eliminated, and the outer border
becomes consistent and complete, which can be easily observed in Figure 7b,c.

Figure 8. An example of the effect of the dilation operation (https://homepages.inf.ed.ac.uk/rbf/HIPR2/
dilate.htm).

3.3.2. Construct Masks

Once the complete outer border of the pavement marking is obtained, the next step is to detach
the pavement marking from the surrounding pavement. In practical scenarios, the pavement marking
cannot be physically separated from the image patch due to its arbitrary shape. The most common
way to achieve the target is to use masks to indicate the region segmentation. Since there are only two
categories of objects, i.e., the pavement markings and the pavement, in this study, two masks had to be
generated for each image patch.

Image masking is a non-destructive process of image editing that is universally employed in
graphics software such as Photoshop to hide or reveal some portions of an image. Masking involves
setting some of the pixel values in an image to 0 or another background value. Ordinary masks have
only 1 and 0 values, and areas with a 0 value should be hidden (i.e., masked). Examples of masks
generated for pavement markings are shown in Figure 7d,e.

345



Remote Sens. 2020, 12, 3837

3.3.3. Computing the Intensity Contrast

According to the pipeline of the visibility analysis module, the final step is to calculate the
contrast between the pavement markings and the surrounding pavement. The straightforward way to
determine the contrast value is to simply compute the difference between the average intensities of the
markings and the pavement. However, this procedure does not adapt to the changes in the overall
luminance. For instance, a luminance difference of 60 grayscales in a dark scenario (e.g., at night)
should be more significant than the same luminance difference in a bright scenario (e.g., a sunny day).
The human eyes sense brightness approximately logarithmically over a moderate range, which means
the human visual system is more sensitive to intensity changes in dark circumstances than in bright
environments [33]. Thus, in this study, the intensity contrast was computed using the Weber contrast
method, the formula for which is:

Contrast(M, P) =
IM − IP

IP
, IM =

∑
v∈Marking Iv

NMarking
, IP =

∑
v∈Pavement Iv

NPavement
(3)

where IM and IP are the average intensity values of the pavement marking and the surrounding
pavement, respectively, and the Nregion is the number of pixels in the specific region.

4. Experimental Validation of the Framework

4.1. Experiment Settings

Regarding the pavement marking detection model, it needs to be trained with a labelled dataset
to enhance its performance. In this study, a Windows 10 personal computer with an Nvidia GeForce
RTX 2060 Super GPU and a total memory of 16 GB was used to perform the training and validation
procedures. The deep learning framework that was used to build, train, and evaluate the detection
network is the TensorFlow platform, which is one of the most popular software libraries used for
machine learning tasks [34].

On actual roads, left-turn markings are much more common than right-turn markings. This leads
to an imbalanced ratio of the proportions of these two kinds of pavement markings in the training
dataset. If a classification network is trained without fixing this problem, the model could be completely
biased [35]. Thus, in this study, data augmentation was performed before the model was trained.
Specifically, for each left-turn (right-turn) marking, the image was flipped along the horizontal axis to
make the left-turn (right-turn) marking a new right-turn (left-turn) marking. By applying this strategy
to the whole training dataset, the numbers of the two markings should be the same. An example of
this data augmentation method is shown in Figure 9.

 

Figure 9. An example of data augmentation.

4.2. Model Training

The neural network is trained by first calculating the loss through a forward inference, and then
updating related parameters based on the derivative of loss to make the predictions as accurate as
possible. Therefore, the design of loss functions is significant. In the YOLOv3 algorithm, the loss
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function has mainly three parts: the location offset of the predicted boxes, the deviation of the target
confidence score, and the target classification error. The formula for the loss function is:

L(l, g, O, o, C, c) = λ1Lloc(l, g) + λ2Lcon f (o, c) + λ3Lcla(O, C), (4)

where λ1 ∼ λ3 refers to the scaling factors.
The location loss function uses the sum of the square errors between the true offset and the

predicted offset, which is formulated as:

Lloc(l, g) =
∑

m∈{x,y,w,h}
(l̂m − ĝm)

2
(5)

where l̂ and ĝ represent the coordinate offsets of the predicted bounding box and the referenced
bounding box, respectively. Both l̂ and ĝ have four parameters: x for the offset along the x-axis, y for
the offset along the y-axis, w for the box width, and h for the box height.

The target confidence score indicates the probability that the predicted box contains the target,
which is computed as:

Lcon f (o, c) = −
∑

(oiln(ĉi) + (1− oi)ln(1− ĉi)). (6)

The function Lcon f uses the binary cross-entropy loss, where oi ∈ {0, 1} indicates whether the target
actually exists in the predicted rectangle i. The 1 value means yes, and the 0 value means no. ci ∈ [0, 1]
denotes the estimated probability that there is a target in the rectangle i.

The formulation of the target classification error in this study slightly differs from that in the
YOLOv3 network. In the YOLOv3 network, the authors still used the binary cross-entropy loss
function, as the author thought the object was possibly classified into more than one category in
complicated reality scenes. However, in this study, the categories of the pavement markings were
mutually exclusive. Thus, the multi-class cross-entropy loss function was used to measure the target
classification error, the mathematical expression of which is:

Lcla(O, C) = −
∑
i∈pos

∑
j∈cla

(Oijln(Ĉi j) + (1−Oij)ln(1− Ĉi j)), (7)

where Oij ∈ {0, 1} indicates if the predicted box i contains the object j, and Ĉi j ∈ [0, 1] represents the
estimated probability occurring in the aforementioned event.

Pan and Yang (2010) found that in the machine learning field, the knowledge gained while
solving one problem can be applied to another different but related problem, which is called transfer
learning [36]. For instance, the knowledge obtained while learning to recognize cars could be useful
for recognizing trucks. In this study, the pavement marking detection network was not trained from
scratch. Instead, a pre-trained model learning to recognize objects in the MS COCO dataset was
used for the initialization. The MS COCO dataset, published by Lin et al., contains large-scale object
detection data and annotations [37]. The model pre-trained from the COCO dataset can provide
the machine with some general knowledge on object detection tasks. Starting from the pre-trained
network, a fine-tuned procedure is conducted by feeding the collected data to the machine to make it
capable of recognizing pavement markings. The total training process runs for a total of 50 epochs.

With the help of the TensorBoard integrated into the TensorFlow platform, users can monitor the
training progress in real time. It can export figures to indicate the trends of specific parameters or
predefined metrics. Figure 10 shows the trend of three different losses during the training process.
The figure shows a decreasing trend for all the losses.
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Figure 10. The trends of various loss functions during the training process monitored by TensorBoard.

4.3. Model Inference and Performance

After the training, the produced model is evaluated on the testing dataset. At the end of each
training epoch, the network structure and the corresponding parameters are stored as the checkpoint
file. For the evaluation, the checkpoint file with the least loss is chosen to be restored. The testing
sample images are directly fed to the model as the inputs, and then the machine will automatically
detect and locate the pavement markings in the image. Once the arrow-like pavement markings are
recognized in the image, the detected areas are extracted to perform the visibility analysis. In this
study, the function of the visibility analysis module was integrated into the evaluation of the pavement
marking detection module. Thus, for each input image, the model drew the predicted bounding boxes,
and added text to indicate the estimated category, the confidence score, and the contrast score on the
image. Some examples of the evaluation of testing images are shown in Figure 11.

 

Figure 11. Visual results were evaluated on the testing samples.

From the figure, it can be seen that most of the pavement markings are correctly located and
classified, and the contrast value provides a good measure of the visibility of the markings. The two
subfigures on the left belong to the cloudy scenario, and the two on the right represent the sunny
case. The pavements in the two subfigures on the left are both dark; but due to the poor marking
condition, the contrast values of the top subfigure (i.e., 1.0, 0.4) are much lower than those at the
bottom (i.e., 2.1, 1.9, 2.3). It can be observed that the pavement markings in the bottom subfigure
are much more recognizable than those in the top subfigure, which validates the effectiveness of the
contrast value for analyzing the visibility of pavement markings. Similarly, for the two subfigures on
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the right, all the detected pavement markings are in good condition; nevertheless, the contrast value of
the bottom subfigure (i.e., 0.9, 1.1) is higher than that of the top subfigure (i.e., 0.2, 0.3), because the
pavement in the bottom image is darker. This means the markings in the bottom-right subfigure are
easier to identify than those in the top-right subfigure. The high brightness of the pavement could
reduce the visibility of the markings on it, as the markings are generally painted white.

For the quantitative evaluation of the performance of the pavement marking detection model in
this study, the mean average precision (mAP) was used. The results of the object detection system
were divided into the following four categories by comparing the estimation with the reference label:
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Table 1 defines
these four metrics.

Table 1. Four categories of the metrics.

Positive Predication Negative Prediction

Positive Label TP FN
Negative Label FP TN

The precision refers to the proportion of the correct results in the identified positive samples,
and the recall denotes the ratio of the correctly identified positive samples to all the positive samples.
The formulas for these two metrics are as follows.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(8)

To determine if a prediction box correctly located the target, an IoU threshold was predefined
before the model was evaluated. For as long as the IoU value between the estimated bounding box
and the ground truth was bigger than the threshold, this prediction was considered a correct detection.
When the threshold value was adjusted, both the precision and the recall changed. As the threshold
decreased, the recall value continued to increase, and the accuracy decreased after reaching a certain
level. According to this pattern, the precision-recall curve, i.e., the PR curve, was drawn [38]. The AP
value refers to the area under the PR curve, and the mAP value indicates the average AP among the
multiple categories.

Figure 12 shows the results of the quantitative validation of the detection model on the testing
dataset. As shown in the top-left subfigure, there are 203 sample images and 223 pavement marking
objects included in the evaluation dataset. It can be seen that the distribution of different pavement
markings is imbalanced. Thus, collecting more images and enlarging the dataset are the future
study orientations for this proposal. The bottom-left subfigure demonstrates the number of true/false
predictions upon the testing samples for each category, where the red portion represents the false
predictions and the green potion refers to the true predictions. Given the number shown in the figure,
it can be surmised that the detection model is working properly since most of the identified pavement
markings were correctly classified. The right subfigure provides the average precision values for
each category. The mAP value can reflect the overall performance of the detection module. However,
the low mAP value indicates that there are some spaces to further improve the model.

From the validation results on testing samples, it is observed that some left-turn and right-turn
markings are misclassified as the other category. By exploring the whole project, the reason causing this
issue is finally found: a code issue. Since YOLOv3 is a representative framework in the object detection
field, there are many open-source implementation codes. In this project, the detection model upon
pavement markings is also trained with the open-source codes. Within the data preprocessing step of
the codes, the author randomly chooses some training samples and flips them horizontally to enhance
the diversity of the training data. Actually, this is a common and useful operation to achieve data
augumentation. However, it does not fit for this pavement marking detection task. For general objects,
the horizontal flipping would not change its category so that this operation is valid. But in terms of
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pavement markings, the flip process may transform the marking into another type, e.g., left-turn to
right-turn. Thus, the flip operation within the codes generates wrong training samples, misleads the
machine and hinders the performance of the model.

Figure 12. The quantitative evaluation information on the testing dataset of the trained model.

By removing the codes and re-training the model, the new quantitative validation results are
shown in Figure 13. Comparing the Figures 12 and 13, the performance of the model is greatly
enhanced, i.e., there is a 24% increment on the mAP value. The evaluation results fully prove the
effectiveness of the YOLOv3 model in the pavement marking recognition task.

Figure 13. The quantitative evaluation information on the testing dataset of the improved model.
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5. Conclusions

To identify issues with the detection and visibility of pavement markings, relevant studies were
reviewed. The automated condition analysis framework for pavement markings using machine
learning technology was proposed. The framework has three modules: a data processing module,
a pavement marking detection module, and a visibility analysis module. The framework was validated
through a case study of pavement marking training data sets in the U.S. From the quantitative results
in the experimental section, the precision of the pavement marking detection module was pretty high,
which fully validates the effectiveness of the YOLOv3 framework. Meanwhile, observing the visual
results, all the pavement markings are correctly detected with the rectangle boxes and classified with
the attached text in the road-scene images. In addition, the visibility metric of pavement markings was
defined and the visibility within the proposed framework was confirmed as an important factor of
driver safety and maintenance. The computed visibility values were also attached besides the detected
pavement markings in the images. If the proposed study is used properly, pavement markings can be
detected accurately, and their visibility can be analyzed to quickly identify places with safety concerns.

From the distribution of the testing samples, it can be inferred that the proportions of the straight
markings, the right straight markings, and the left straight markings could be very low. Enlarging and
enriching the training dataset could be a goal for future research.
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Abstract: The application of deep learning techniques, especially deep convolutional neural networks
(DCNNs), in the intelligent mapping of very high spatial resolution (VHSR) remote sensing images
has drawn much attention in the remote sensing community. However, the fragmented distribution
of urban land use types and the complex structure of urban forests bring about a variety of challenges
for urban land use mapping and the extraction of urban forests. Based on the DCNN algorithm,
this study proposes a novel object-based U-net-DenseNet-coupled network (OUDN) method to
realize urban land use mapping and the accurate extraction of urban forests. The proposed OUDN
has three parts: the first part involves the coupling of the improved U-net and DenseNet architectures;
then, the network is trained according to the labeled data sets, and the land use information in the
study area is classified; the final part fuses the object boundary information obtained by object-based
multiresolution segmentation into the classification layer, and a voting method is applied to optimize
the classification results. The results show that (1) the classification results of the OUDN algorithm are
better than those of U-net and DenseNet, and the average classification accuracy is 92.9%, an increase
in approximately 3%; (2) for the U-net-DenseNet-coupled network (UDN) and OUDN, the urban
forest extraction accuracies are higher than those of U-net and DenseNet, and the OUDN effectively
alleviates the classification error caused by the fragmentation of urban distribution by combining
object-based multiresolution segmentation features, making the overall accuracy (OA) of urban land
use classification and the extraction accuracy of urban forests superior to those of the UDN algorithm;
(3) based on the Spe-Texture (the spectral features combined with the texture features), the OA of the
OUDN in the extraction of urban land use categories can reach 93.8%, thereby the algorithm achieved
the accurate discrimination of different land use types, especially urban forests (99.7%). Therefore,
this study provides a reference for feature setting for the mapping of urban land use information
from VHSR imagery.

Keywords: urban forests; OUDN algorithm; deep learning; object-based; high spatial resolution
remote sensing
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1. Introduction

Urban land use mapping and the information extraction of urban forest resources are significant,
yet challenging tasks in the field of remote sensing and have great value for urban environment
monitoring, planning, and designing [1–3]. In addition, smart cities are now an irreversible trend in
urban development in the world, and urban forests constitute “vital,” “green,” and indispensable
infrastructure in cities. Therefore, the intelligent mapping of urban forest resources from remote
sensing data is an essential component of smart city construction.

Over the past few decades, multispectral (such as the Thematic Mapper (TM)) [4–7], hyperspectral,
and LiDAR [8–10] techniques have played important roles in the monitoring of urban forest resources.
Currently, with the rapid development of modern remote sensing technologies, a very large amount
of VHSR remotely sensed imagery (such as WorldView-3) is commercially available, creating new
opportunities for the accurate extraction of urban forests at a very detailed level [11–13]. The application
of VHSR images in urban forest resource monitoring has attracted increasing attention because of
the rich and fine properties in these images. However, the ground objects of VHSR images are
highly complex and confusing. For one thing, numerous land use types (such as Agricultural
Land and grassland) have the same spectrum and texture characteristics [14], resulting in strong
homogeneity in different categories [15], that is, the phenomenon of “same spectrum with different
objects.” For another, rich detailed information gives similar objects (such as building composed of
different construction materials) strong heterogeneity in the spectral and structural properties [16],
resulting in the phenomenon of “same object with different spectra”. In addition, traditional statistical
classification methods encounter these problems in the extraction of urban forests from VHSR remote
sensing images. Additionally, urban forests with fragmented distributions are composed of scattered
trees, street trees, and urban park forest vegetation. This also creates very large challenges for urban
land use classification and the accurate mapping of urban forests [17].

Object-based classification first aggregates adjacent pixels with similar spectral and texture
properties into complementary and overlapping objects through the image segmentation method to
achieve image classification, and the processing units are converted from conventional pixels to image
objects [18]. This classification method is based on homogeneous objects. In addition to applying the
spectral information of images, this method fully exploits spatial features such as geometric shapes
and texture details. The essence of object-based classification is to break through the limitations of
traditional pixel-based classification and reduce the phenomena of the “same object with different
spectra” and the “salt-and-pepper” phenomenon caused by distribution fragmentation. Therefore,
object-based classification methods often yield better results than traditional pixel-based classification
methods [19]. Recently, the combination of object-based and machine learning (ML) is widely used
to detect features in the forest such as damage detection, landslide detection, and insect-infested
forests [20–23]. In terms of ML, deep learning (DL) uses a large amount of data to train the model
and can simulate and learn high-level features [24], making deep learning a new popular topic in the
current research on the intelligent extraction of VHSR remote sensing information [15,25,26].

For DL, DCNNs and semantic segmentation algorithms are widely used in the classification
of VHSR images, providing algorithmic support for accurate classification and facilitating great
progress [27–38]. Among them, DCNNs are the core algorithms for the development of deep
learning [39]. These networks learn abstract features through multiple layers of convolutions,
conduct network training and learning, and finally, classify and predict images. DenseNet is a
classic convolutional neural network framework [40]. This network can extract abstract features
while combining the information features of all previous layers, so it has been widely applied in
the classification of remote sensing images [41–44]. However, this network has some problems such
as the limited extraction of abstract features. Semantic segmentation places higher requirements
on the architectural design of convolutional networks, classifying each pixel in the image into a
corresponding category, that is, achieving pixel-level classification. A typical representation of semantic
segmentation is U-net [45], which combines upsampling with downsampling. U-net can not only
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extract deeper features but also achieve accurate classification [46,47]. Therefore, U-net and DenseNet
can be integrated to address the problem of the limited extraction of abstract features in DenseNet,
and this combination may facilitate more accurate extraction from VHSR images.

In summary, object-based multiresolution segmentation offers obvious advantages in dealing with
the problems of “same object with different spectra” and the “salt-and-pepper” phenomenon caused
by distribution fragmentation [48–53], and deep learning is an important method for the intelligent
mapping of VHSR remote sensing images. Consequently, this research proposes the novel classification
method of the object-based U-net-DenseNet-coupled network (OUDN) to realize the intelligent and
accurate extraction of urban land use and urban forest resources. This study takes subregion of the
Yuhang District of Hangzhou City as the study area, with WorldView-3 images as the data source. First,
the DenseNet and U-net network architectures are integrated; then, the network is trained according
to the labeled data sets, and land use classification results are obtained based on the trained model.
Finally, the object boundaries derived by object-based multiresolution segmentation are combined
with the classification results of deep learning to optimize the classification results with the majority
voting method.

2. Materials and Methods

2.1. Study Area

In this research, a subregion of the Yuhang District (YH) of Hangzhou, in Zhejiang Province in
Southeast China, was chosen as the study area (Figure 1). WorldView-3 images of the study area were
captured on 28 October 2018. The images contain four multispectral bands (red, green, blue, and near
infrared (NIR)) with a spatial resolution of 2 m and a panchromatic band with a spatial resolution
of 0.5 m. According to the USGS land cover classification system [54] and the FROM-GLC10 [55,56],
the land use categories were divided into six classes, including Forest, Built-up, Agricultural Land,
Grassland, Barren Land, and Water. As shown in Figure 1b, due to shadows in VHSR image, this study
added a class of Others, including Shadow of trees and buildings. The detailed descriptions of each
land use class and its corresponding subclasses are listed in Table 1.

Figure 1. Location of the study area: (a) Zhejiang Province, and the blue polygons represent Hangzhou,
(b) the subregion of the Yuhang District (YH) of Hangzhou.
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Table 1. The urban land use classes and the corresponding subclass components.

Land Use Classes Subclass Components

Forest Deciduous Forest, Evergreen Forest
Build-up Residential, Commercial and Services, Industrial, Transportation

Agricultural Land Cropland, Nurseries, Other Agricultural Land
Grassland Nature Grassland, Managed Grassland

Barren Land Dry Salt Flats, Sandy Areas other than Beaches, Bare Exposed Rock
Water Streams, River, Pond
Others Shadow of trees and buildings

2.2. Data Processing

The image preprocessing including radiation correction and atmosphere correction was first
performed using ENVI 5.3. Then, this label maps of the actual land use categories were made by
eCognition software based on the results of the field survey combined with the method of visual
interpretation. Due to the limitations on the size of the processed images from the GPU as well as
to obtain more training images and to better extract image features, this study used the overlapping
cropping method (Figure 2) to segment the images in the sample set into 4761 subimage blocks using
128 × 128 pixel windows for the minibatch training of the DL algorithms.

Figure 2. The overlapping cropping method for training the deep learning (DL) network. The size of
the cropping windows is set to 128 × 128 pixels, where n is defined as half of 128.

2.3. Feature Setting

In this study, the classification features are divided into three groups: (1) the original R, G,
B, and NIR bands, namely, the spectral features (Spe), the spectral features combined with the
vegetation index features (Spe-Index), and the spectral features combined with the texture features
(Spe-Texture). Based on these three groups of features, the performance of the OUDN algorithm
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in the mapping of urban land use and urban forest information is evaluated. Descriptions of the
spectral features, vegetation index, and texture are given in Table 2. The texture features based on the
gray-level co-occurrence matrix (GLCM) [57] include mean, variance, entropy, angular second moment,
homogeneity, contrast, dissimilarity, and correlation [58–60] with different calculation windows (3 × 3,
5 × 5, 7 × 7, 9 × 9, 11 × 11 and 13 × 13) [61].

Table 2. All the involved features are listed in detail in this paper, including original bands of
WorldView-3 data, vegetation indices, and texture features based on the gray-level co-occurrence
matrix (GLCM).

Feature Types Feature Names Details Remarks

Original bands

Blue band (B) 450−510 nm

WorldView-3 data
Green band (G) 510−580 nm

Red band (R) 630−690 nm
Near infrared band (NIR) 770−1040 nm

Vegetation
indices

Difference vegetation index (DVI) NIR − R

X take value for 0.16
L take value for 0.5 [62]

Ratio vegetation index (RVI) NIR/R
Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R)

Optimized soil adjusted vegetation index (OSAVI) (NIR − R)/(NIR + R + X)
Soil adjusted vegetation index (SAVI) (NIR − R) (1 + L)/(NIR + R + L)

Triangular vegetation index (TVI) 0.5 [120 (NIR − G) – 200 (R − G)]

Texture features
based on the

gray-level
co-occurrence

matrix (GLCM)

Mean (ME) N−1∑
i=0

N−1∑
j=0

iP(i, j) P(i, j) =

V(i, j)/
N−1∑
i = 0

N−1∑
j = 0

V(i, j)

V(i, j) is the ith row of the
jth column in the Nth

moving window

ux =

N−1∑
j = 0

j
N−1∑
i = 0

P(i, j)

uy =

N−1∑
i = 0

i
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j = 0

P(i, j)
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j = 0
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(
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)2 N−1∑
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Variance (VA) N−1∑
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(i−mean)2P(i, j)

Entropy (EN) −N−1∑
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P(i, j) log(P(i, j))

Angular second moment (SE) N−1∑
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P(i, j)
1+(i− j)2

Contrast (CON) N−1∑
|i− j|=0

∣∣∣i− j
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2.4. Methodology

The DenseNet architecture takes the output of all the previous layers as input and combines the
previous information features to extract abstract features that are fairly limited. U-net performs deep
feature extraction on the basis of the previous layer. Therefore, this study first improves the U-net and
DenseNet networks and deeply couples them into the U-net-DenseNet-coupled network (UDN). Then,
this network is combined with object-based multiresolution segmentation methods to construct the
OUDN algorithm for intelligent and accurate extraction of urban land use and urban forest resources
from VHSR images. The following introduces the DL algorithms in detail based on a brief introduction
of DCNNs.

2.4.1. Brief Introduction of CNNs

Convolutional neural networks (CNNs) are the core algorithms of DL in the field of computer
vision (CV) applications (such as image recognition) because of their ability to obtain hierarchically
abstract representations with local operations [63]. This network structure was first inspired by
biological vision mechanisms. There are four key ideas behind CNNs that take advantage of the
properties of natural signals: local connections, shared weights, pooling, and the use of many layers [24],
which are fully utilized.

As shown in Figure 3, the CNN structure consists of four basic processing layers: the convolution
layer (Conv), nonlinear activation layer (such as ReLU), normalization layer (such as batch normalization
(BN)), and pooling layer (Pooling) [63,64]. The first few layers are composed of two types of layers:
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convolutional layers and pooling layers. The units in a convolutional layer are organized in feature
maps, within which each unit is connected to local patches in the feature maps of the previous layer
through a set of weights called a filter bank, and all units in a feature map share the same filter
bank. Different feature maps in every layer use different filter banks, so different features can be
learned. The result of this local weighted sum is then passed through a nonlinear activation function
such as a ReLU, and the output results are pooled and nonlinearly processed through normalization
(such as BN). In addition, nonlinear activation and nonlinear normalization are nonlinear blocks
of processing that leads to a bigger boost in model training, so they play a significant role in CNN
architecture. After multiple convolutions (combining a convolutional layer and a pooling layer is
called a convolution), the results are flattened as the input of the fully connected layer, namely, the
artificial neural network (ANN). Thus, the prediction result is finally obtained. Specifically, the major
operations performed in the CNNs can be summarized by Equations (1)–(5):

S[l] = poolp
(
ϕ
(
S[l−1] ∗W[l] + b[l]

))
(1)

ϕ(Z) = R =

{
Z; i f Z ≥ 0
0; Z < 0

(2)

μ =
1
m

m∑
i = 1

R(i) (3)

σ2 =
1
m

m∑
i = 1

(
R(i) − μ

)2
(4)

R(i)
norm =

R(i) − μ√
σ2 + ε

, (5)

where S[l] indicates the feature map at the lth layer [25], S[l−1] denotes the input feature map to the
lth layer, and W[l] and b[l] represent the weights and biases of the layer, respectively, that convolve
the input feature map through linear convolution ∗. These steps are often followed by a max-pooling
operation with p × p window size (poolp) to aggregate the statistics of the features within specific
regions, which forms the output feature map S[l]. The ϕ(Z), R, indicates the nonlinearity function
outside the convolution layer and corrects the convolution result of each layer, Z denotes the result of
the convolution operation by calculating S[l−1] ∗W[l] + b[l], m represents the batch size (the number of
samples required for a single training iteration), μ represents the mean, σ2 represents the variance, ε is a
constant set to keep the value stable to prevent

√
σ2 + ε from being 0, and R(i)

norm is the normalized value.

Figure 3. The classical structure of convolutional neural networks (CNNs). Batch normalization (BN)
is a technique for accelerating network training by reducing the offset of internal covariates.
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2.4.2. DL Algorithms

Improved DenseNet (D): DenseNet is based on ResNet [65], and its most important characteristic
is that the feature maps of all previous networks are used as input for each layer of the network.
Additionally, the feature maps are used as input by the following network layer, so the problem of
gradient disappearance can be alleviated and the number of parameters can be reduced. The improved
DenseNet network structure in this study is shown in Figure 4. Figure 4a is the complete structure,
which adopts 3 Dense Blocks and 2 Translation layers. Before the first Dense Block, two convolutions
are used. In this study, the bottle layer (1 × 1 convolution) in the Translation layer is converted to a 3 × 3
convolution operation, followed by an upsampling layer and finally the prediction result. The specific
Dense Block structure is shown in Figure 4b and summarized by Equation (6):

X� = H�
(
[X0 , X1 , . . . , X�−1

])
, (6)

where [X0 , X1 , . . . , X�−1

]
denotes the feature maps with layers of X0, X1 . . . , X�−1 and

H�
(
[X0 , X1 , . . . , X�−1

])
indicates that the � layer takes all feature maps of the previous layers (X0,

X1 . . . , X�−1) as input. In this study, all the convolution operations in the Dense Block use 3 × 3
convolution kernels, and the number of output feature maps (K) in each layer is set to 32.

Figure 4. The improved DenseNet structure composed of three dense blocks: (a) the complete structure
and (b) the Dense Block composed of five feature map layers.

Improved U-net (U): U-net is an improved fully convolutional network (FCN) [66]. This network
has attracted extensive attention because of its clear structure and excellent performance on small
data sets. U-net is divided into a contracting path (to effectively capture contextual information)
and an expansive path (to achieve a more precise position for the pixel boundary). Considering the
characteristics of urban land use categories and the rich details of WorldView-3 images, the improved
structure in this study mainly increases the number of network layers to 11 layers, and each layer
increases the convolution operations, thereby obtaining increasingly abstract features. The network is
constructed around convolution filters to obtain images with different resolutions, so the structural
features of the image can be detected on different scales. More importantly, BN is performed before the
convolutional layer and pooling layer, and the details are shown in Figure 5.

(1) The left half of the bottom layer is the contracting path. With the input of a 128 × 128 image,
each layer uses three 3 × 3 convolution operations. After each convolution, followed by the
ReLU activation function, max-pooling with a step of 2 is applied for downsampling. In each
downsampling stage, the number of feature channels is doubled. Five downsamplings are
applied, followed by two 3 × 3 convolutions in the bottom layer of the network architecture.
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The size of the feature maps is eventually reduced to 4 × 4 pixels, and the number of feature map
channels is 1024.

(2) The right half of the network, that is, the expansive path, mainly restores the feature information
of the original image. First, a deconvolution kernel with a size of 2 × 2 is used to perform
upsampling. In this process, the number of the feature map channels is halved, while the feature
maps of the symmetrical position generated by the downsampling and the upsampling are
merged; then, three 3 × 3 convolution operations are performed on the merged features, and the
above operations are repeated until the image is restored to the size of input image; ultimately,
four 3 × 3 and one 1 × 1 convolution operations and a Softmax activation function are used to
complete the category prediction of each pixel in the image. The Softmax activation function is
defined as Equations (7):

pk(X) =
exp(ak(X))(∑K

k′=1 exp(ak′(X))
) , (7)

where ak(X) represents the activation value of the kth channel at the position of pixel X. K indicates
the number of categories, and pk(X) denotes the function with the approximate maximum
probability. If ak(X) is the largest activation value in the kth channel, pk(X) is approximately
equal to 1; in contrast, pk(X) is approximately equal to zero for other k values.

UDN: The detailed coupling process of the improved U-net and DenseNet is shown in Figure 6.
(a) The first two layers use the same convolutional layer and pooling layer to obtain abstract feature maps;
(b) then, the feature maps obtained by the above operations are input into the Combining Block structure
to realize the coupling of the convolution results from the two structures. After two convolution
operations are performed on the coupling result, max-pooling is used to perform downsampling,
followed by two Combining Block operations; (c) after the downsampling, two convolutions are
performed on the coupling result to obtain 1024 feature maps of 4 × 4; (d) the smallest feature
maps (4 × 4 × 1024) are restored to the size of the original image after 5 upsamplings; (e) finally,
the classification result is output based on the front feature maps through the 1 × 1 convolution
operations and the Softmax function.

Figure 5. The improved U-net structure is composed of eleven convolution layers.

OUDN: The boundary information of the categories is the basis of the accurate classification
of VHSR images. In this study, the OUDN algorithm combines the category objects obtained by
object-based multiresolution segmentation [18] with the classification results of the UDN algorithm
to constrain and optimize the classification results. Four multispectral bands (red, green, blue, and
near infrared) together with vegetation indices and texture features, useful for differentiating urban
land use objects with complex information, are incorporated as multiple input data sources for the
image segmentation using eCognition software. Then, all the image objects are transformed into GIS
vector polygons with distinctive geometric shapes, which are combined with the classification results
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of the UDN algorithm. Based on the Spatial Analysis Tools of ArcGIS, the category with the largest
statistics is taken as the category of the object by counting the number of pixels in each object and using
the majority voting method. Thereby, final classification results of the OUDN algorithm are obtained.
The segmentation scale directly affects the boundary accuracy of the categories. Therefore, according to
the selection method of the optimal segmentation scale [67], this study gains the segmentation results
by setting different segmentation scales, and determines the final segmentation scale 50.

Figure 6. The network structure of the UDN algorithm, where NF represents the number of convolutional
filters. (a) The first two layers (Level1 and Level2) including convolutional layers and pooling layers;
(b) the coupling of U-net and DenseNet algorithms; (c) the bottom layer of the network; (d) Upsampling
layers; (e) predicted classification result.

Finally, the template for training the minibatch neural network based on the above algorithms
in this research is shown in Algorithm 1 [68]. The network uses the loss function of categorical cross
entropy and the adaptive optimization algorithm of Adam. Additionally, the number of iterations is
set to 50, and the learning rate (lr) is set to 0.0001. In each iteration, b images are sampled to compute
the gradients, and then the network parameters are updated. The training of the network stops after K
passes through the data set.

Algorithm 1 Train a neural network with the minibatch Adam optimization algorithm.

initialize (net)
for epoch = 1, . . . , K do

for batch = 1, . . . , # images/b do
images ← uniformly sample batch− size images
X, y ← preprocess(images)
z ← forward (net, X)
l ← loss (z, y)
lr, grad ← background (l)
update (net, lr, grad)

end for

end for

2.5. Experiment Design

The flowchart of steps is shown in Figure 7. The WorldView-3 image with 15.872 × 15.872 pixels
is first preprocessed by image fusion, radiometric calibration, and atmospheric correction (Figure 7a).
According to this preprocessed image, a 3968 × 3968 pixel subimage with various categories is cropped
for model prediction, and other representative subimages are cropped as the sample set including
training set and validation set for model training; then, labeled maps are made based on the sample set,
followed by image cropping (Figure 7b); the cropped original images and the corresponding labeled
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maps are used to train the DL models (Figure 7c); the image with 3968 × 3968 pixels is classified by the
trained model (Figure 7d); finally, objects of multiresolution segmentation are applied to optimize the
classification results of the UDN algorithm to obtain the classification results of the OUDN, followed by
detailed comparisons of the results from all algorithms including U, D, UDN, and OUDN (Figure 7e).

Figure 7. A flowchart of the experimental method in this paper, including five major steps: (a) image
preprocessing; (b) image labeling and image cropping; (c) model training; (d) model prediction;
(e) object-based optimization of the UDN results and comparisons of the results from all algorithms.

3. Results and Analysis

The tests of the proposed OUDN algorithm were presented in this section, and the classification
results are compared with those of UDN, improved U-net (U), and improved DenseNet (D). To evaluate
the proposed algorithm, the classification results in this study were assessed with the overall accuracy
(OA), kappa coefficient (Kappa), producer accuracy (PA), and user accuracy (UA) [69]. The detailed
results and analysis of the model training and classification results are clarified as follows.

3.1. Training Results of U, D and UDN Algorithms

There were a total of 4761 image blocks with 128 × 128 pixels in the sample set. Additionally,
3984 of these blocks were selected for the training, and the remaining blocks were used for the validation.
Then, the cropped original image blocks and the corresponding labeled maps were used to train the
minibatch network model according to the template of Algorithm 1. Based on the three feature groups
of Spe, Spe-Index, and Spe-Texture, the overall model accuracies including training accuracy (TA) and
validation accuracy (VA) of the U, D, and UDN algorithms were demonstrated in Table 3. In all feature
combinations, the UDN algorithm obtained the highest training accuracies (98.1%, 98%, and 98.4%).
However, for the U and U algorithms, the training accuracies of the Spe-Texture were the lowest (96.3%
and 96%) compared with those of the Spe and Spe-Index. The UDN algorithm achieved the highest
model accuracies (TA of 98.4% and VA of 93.8%, respectively) based on Spe-Texture.
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Table 3. The overall training and validation accuracies of the improved U-net (U), improved DenseNet
(D), and U-net-DenseNet-coupled network (UDN) algorithms based on the three feature groups
of Spe, Spe-Index, and Spe-Texture. The algorithms in this table did not include object-based
U-net-DenseNet-coupled network (OUDN), since the OUDN algorithm was based on UDN algorithm
to optimize classification results.

Feature TA VA

U D UDN U D UDN

Spe 0.975 0.971 0.981 0.914 0.923 0.936
Spe-Index 0.969 0.977 0.980 0.935 0.916 0.920

Spe-Texture 0.963 0.960 0.984 0.927 0.929 0.938

3.2. Classification Results

3.2.1. Classification Results Based on Four Algorithms

The classification accuracies of the U, D, UDN, and OUDN algorithms on the three feature
groups of Spe, Spe-Index, and Spe-Texture are demonstrated in Tables 4–6, respectively. In general,
among the three feature combinations, the U and D algorithms yielded the lowest OA and Kappa,
followed by UDN; in contrast, the OUDN algorithm achieved the highest OA (92.3%, 92.6%, and
93.8%) and Kappa (0.910, 0.914, and 0.928). The average accuracy of the OUDN algorithm was much
higher (approximately 3%) than those of the U and D algorithms. As shown in Table 4, the UDN
algorithm obtained better accuracies for Agricultural Land and Grassland than the U and D algorithms.
For example, the PA values of Agricultural Land were 89%, 88%, and 90.3% for the U, D, and UDN
algorithms, respectively, and the PA values of Grassland were 64.3%, 73%, and 74%, respectively.
Compared with those of the UDN algorithm, the OUDN algorithm obtained better PA values for
Agricultural Land, Grassland, Barren Land, and Water. Table 5 shows that the PA of Agricultural Land
of the UDN algorithm was 5% and 3.3% higher than those of the U and D algorithms, respectively.
In addition, the OUDN algorithm mainly yielded improvements in the PA values of Forest, Built-up,
Agricultural Land, Grassland, and Barren Land. As shown in Table 6, the UDN algorithm yielded
higher accuracies for Forest, Built-up, Grassland, Barren Land, and Water than the U and D algorithms,
and in particular, the PA value of Grassland was significantly higher, by 15.6% and 17.3%, respectively.
Meanwhile, the OUDN algorithm yielded the accuracies superior to those of the UDN algorithm in
some categories. In summary, the OUDN algorithm obtained high extraction accuracies for urban land
use types, and coupling object-based segmentation effectively addressed the fragmentation problem
of classification with high-resolution images, thereby improving the image classification accuracy.
Therefore, the OUDN algorithm offered great advantages for urban land-cover classification.

Table 4. The classification accuracies of the U, D, UDN, and OUDN algorithms based on the Spe, including
the accuracies (user accuracy (UA) and producer accuracy (PA)) of every class, overall accuracy (OA)
and kappa coefficient (Kappa).

Algorithms OA Kappa Forest Build-UP
Agricultural

Land
Grassland

Barren
Land

Water Others

U 0.903 0.887
UA 0.834 0.892 0.756 0.951 0.963 0.997 0.990
PA 0.990 0.963 0.890 0.643 0.873 0.987 0.973

D 0.905 0.889
UA 0.863 0.855 0.781 0.920 0.975 0.997 0.993
PA 0.990 0.980 0.880 0.730 0.787 0.990 0.983

UDN 0.920 0.907
UA 0.908 0.910 0.755 0.961 0.973 1.000 0.987
PA 0.990 0.980 0.903 0.740 0.853 0.987 0.993

OUDN 0.923 0.910
UA 0.911 0.909 0.767 0.958 0.974 0.993 0.993
PA 0.990 0.970 0.910 0.753 0.857 0.993 0.990
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Table 5. The classification accuracies of the U, D, UDN, and OUDN algorithms based on the Spe-Index,
including the accuracies (UA and PA) of every class, OA and Kappa.

Algorithms OA Kappa Forest Build-Up
Agricultural

Land
Grassland

Barren
Land

Water Others

U 0.913 0.899
UA 0.878 0.872 0.809 0.930 0.977 1.000 0.958
PA 0.983 0.977 0.873 0.757 0.867 0.950 0.987

D 0.917 0.903
UA 0.870 0.857 0.842 0.927 0.977 0.997 0.980
PA 0.983 0.980 0.890 0.760 0.850 0.973 0.983

UDN 0.923 0.910
UA 0.891 0.892 0.817 0.957 0.978 0.997 0.958
PA 0.983 0.963 0.923 0.750 0.883 0.960 0.997

OUDN 0.926 0.914
UA 0.892 0.901 0.822 0.974 0.982 0.997 0.955
PA 0.987 0.973 0.937 0.753 0.887 0.957 0.990

Table 6. The classification accuracies of the U, D, UDN, and OUDN algorithms based on the Spe-Texture,
including the accuracies (UA and PA) of every class, OA and Kappa.

Algorithms OA Kappa Forest Build-Up
Agricultural

Land
Grassland

Barren
Land

Water Others

U 0.898 0.881
UA 0.864 0.840 0.787 0.914 0.955 1.000 0.961
PA 0.993 0.963 0.860 0.677 0.857 0.947 0.987

D 0.897 0.879
UA 0.897 0.824 0.750 0.943 0.980 0.993 0.971
PA 0.987 0.970 0.930 0.660 0.797 0.943 0.990

UDN 0.932 0.921
UA 0.857 0.873 0.913 0.954 0.985 1.000 0.970
PA 0.997 0.983 0.877 0.833 0.873 0.977 0.983

OUDN 0.938 0.928
UA 0.877 0.866 0.932 0.970 0.985 1.000 0.967
PA 0.997 0.987 0.913 0.853 0.857 0.973 0.987

The classification maps of the four algorithms based on the Spe, Spe-Index, and Spe-Texture
are presented in Figures 8–10, respectively, with the correct or incorrect classification results marked
in black or red circles, respectively. In general, the classification results of the UDN and OUDN
algorithms were better than those of the other methods, and there was no obvious “salt-and-pepper”
effect in the classification results of the four algorithms. However, due to the splicing in the U, D, and
UDN algorithms, the ground object boundary exhibited discontinuities, whereas the proposed OUDN
algorithm addressed this problem to a certain extent.

Classification maps of different algorithms based on Spe: Based on the Spe, the proposed
method in this paper better identified the ground classes that are difficult to distinguish, including
Built-up, Barren Land, Agricultural Land, and Grassland. However, the recognition effect of the U
and D algorithms was undesirable. As shown in Figure 8, the U and D algorithms confused Built-up
and Barren Land (red circle (1)), while the UDN and OUDN algorithms correctly distinguished them
(black circle (1)); for the U algorithm, Built-up was misclassified as Barren Land (red circle (2)), while the
other algorithms accurately identified these classes (black circle (2)); the D algorithm did not identify
Barren Land (red circle (3)), in contrast, the recognition effect of the other methods was favorable
(black circle (3)); for the U and D algorithms, Grassland was misclassified as Agricultural Land (red
circle (4)), while other algorithms precisely distinguished them (black circle (4)); the four algorithms
mistakenly classified some Agricultural Land as Grassland and confused them (red circle (5)).

Classification maps of different algorithms based on Spe-Index: Based on the Spe-Index,
the proposed method in this paper better recognized Built-up, Barren Land, Agricultural Land,
and Grassland. However, the recognition effect of the U and D algorithms was poor. As demonstrated
by Figure 9, U and D algorithms confused Built-up and Barren Land (red circle (1)), whereas the UDN
and OUDN algorithms correctly distinguished them (black circle (1)); the U algorithm incorrectly
identified Barren Land (red circle (2)), while the classification results of other algorithms were superior
(black circle (2)); the U and D algorithms mistakenly classified Barren Land as Agricultural Land
(red circle (3)), in contrast, the UDN and OUDN better identified them (black circle (3)); for all four
algorithms, some Agricultural Land was misclassified as Grassland (red circle (4)).
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Figure 8. (a) Original image; (b) the classification map of the U algorithm based on the Spe; (c) the
classification map of the D algorithm based on the Spe; (d) the classification map of the UDN algorithm
based on the Spe; (e) the classification map of the OUDN algorithm based on the Spe; and the red and
black circles denote incorrect and correct classifications, respectively.

Figure 9. (a) Original image; (b) the classification map of the U algorithm based on the Spe-Index;
(c) the classification map of the D algorithm based on the Spe-Index; (d) the classification map of the
UDN algorithm based on the Spe-Index; (e) the classification map of the OUDN algorithm based on the
Spe-Index; and the red and black circles denote incorrect and correct classifications, respectively.
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Figure 10. (a) Original image; (b) the classification map of the U algorithm based on the Spe-Texture;
(c) the classification map of the D algorithm based on the Spe-Texture; (d) the classification map of the
UDN algorithm based on the Spe-Texture; (e) the classification map of the OUDN algorithm based on
the Spe-Texture; and the red and black circles denote incorrect and correct classifications, respectively.

Classification maps of the different algorithms based on Spe-Texture: Based on the Spe-Texture,
the proposed method in this paper better identified each category, especially Grassland, yielding
the best recognition result; nevertheless, the recognition effect of the U and D algorithms was worse.
As shown in Figure 10, the U and D algorithms incorrectly classified much Barren Land as Agricultural
Land (red circle (1)), whereas the UDN and OUDN algorithms identified these types better (black circle
(1)); the D algorithm confused Built-up and Barren Land (red circle (2)), while the other algorithms
better distinguished them (black circle (2)); the extraction effects for Grassland of the UND and OUDN
algorithms (black circle (3)) were better than those of the U and D algorithms (red circle (3)); all the
algorithms mistakenly classified some Agricultural Land as Grassland (red circle (4)).

3.2.2. Extraction Results of Urban Forests

This section focuses on the analysis of urban forest extraction based on the Spe, Spe-Index,
and Spe-Texture with the four algorithms. As shown in Tables 4–6, the PA values of the urban forest
information extraction for all algorithms were above 98%, which indicated that the DL algorithms
used in this study offered obvious advantages in the extraction of urban forests. Additionally, for the
OUDN algorithm, the average PA (99.1%) and UA (89.3%) of urban forest extraction were better than
those of the other algorithms based on the three groups of features. This demonstrated that the OUDN
algorithm exhibited fewer errors from urban forest leakage and misclassification errors between urban
forests and other land use types.

The classification results for urban forests, including scattered trees and street trees, of the different
algorithms based on the Spe-Texture are presented in Figure 11. In this study, two representative
subregions (subset (1) and subset (2)) were selected for the analysis of the results of the different
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algorithms, with the correct or incorrect classification results marked in black or blue circles, respectively.
In general, the urban forest extraction effect of the OUDN algorithm was the best. According to the
classification results of subset (1), the U and D algorithms mistakenly identified some street trees
(blue circles), while UDN and OUDN better extracted these trees (black circles). As shown in the
results of subset (2), the extraction results for some scattered trees of the U and D algorithms were not
acceptable (blue circles); nevertheless, UDN and OUDN accurately distinguished them (black circles).
Additionally, the U and D algorithms misclassified some Forest as Grassland and Built-up (blue circles),
whereas UDN and OUDN correctly identified the urban forests (black circles).

Figure 11. There are two subsets (Subset (1) and Subset (2)) dominated by urban forests. (a) the classification
maps of the U algorithm in the subsets; (b) the classification maps of the D algorithm in the subsets;
(c) the classification maps of the UDN algorithm in the subsets; and (d) the classification maps of the
OUDN algorithm in the subsets.

3.2.3. Result Analysis

According to the classification results of the four algorithms on the Spe, Spe-Index, and Spe-Texture,
a confusion matrix is constructed, which is shown in Figure 12. In general, regardless of the feature
combinations, the classification accuracies of each algorithm for Forest, Built-up, Water, and Others
were relatively high, and the recognition accuracy was above 95%. In particular, the classification
accuracy of the Forest was above 98%, whereas the classification accuracies of the other categories
varied greatly. As demonstrated by Figure 12, (1) based on the Spe, the extraction accuracies of the
OUDN algorithm for Agricultural Land and Grassland were significantly superior to those of the U
and D algorithms, whereas the U and D algorithms misclassified Agricultural Land and Grassland as
Forest at a higher rate. Compared with that of the U algorithm, the OUDN algorithm yielded better
Grassland classification accuracy (75%, an increase in 11%) while optimizing the extraction accuracy
of UDN (74%). The D algorithm misclassified 15% of the Barren Land as Built-up, whereas only
8% was incorrectly predicted by the UDN and OUDN algorithms. Therefore, the OUDN algorithm
offered obvious advantages in urban land-cover classification. (2) For the Spe-Index, compared with
those of the U and D algorithms (87% and 89%, respectively), the OUDN algorithm yielded higher
extraction accuracies of Agricultural Land (94%) and optimized the classification accuracy of UDN
(92%). The U and D algorithms misclassified 12% of the Barren Land as Built-up, whereas only 11%
and 10% were incorrectly predicted by the UDN and OUDN algorithms, so the OUDN algorithm
captured the best classification effect. (3) For the Spe-Texture, the extraction accuracies of the UDN
and OUDN algorithms for Grassland were very high (83% and 85%, respectively), and the accuracies
were the highest among all the Grassland classification results. Compared with the classification
accuracies of the U and D algorithms (68% and 66%), the accuracies of UDN and OUDN were 15–19%
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higher. Figure 12 showed that the U and D algorithms misclassified 21% and 25% of the Grassland as
Agricultural Land, respectively, whereas the misclassification rates of UDN and OUDN were fairly low
(7% and 6%, respectively).

Figure 12. (a1) Confusion matrix of U algorithm based on Spe; (b1) Confusion matrix of U algorithm
based on Spe-Index; (c1) Confusion matrix of U algorithm based on Spe-Texture; (a2) Confusion matrix
of D algorithm based on Spe; (b2) Confusion matrix of D algorithm based on Spe-Index; (c2) Confusion
matrix of D algorithm based on Spe-Texture; (a3) Confusion matrix of UDN algorithm based on Spe;
(b3) Confusion matrix of UDN algorithm based on Spe-Index; (c3) Confusion matrix of UDN algorithm
based on Spe-Texture; (a4) Confusion matrix of OUDN algorithm based on Spe; (b4) Confusion matrix of
OUDN algorithm based on Spe-Index; (c4) Confusion matrix of OUDN algorithm based on Spe-Texture.
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For urban forests, as demonstrated by Figure 12, (1) based on the Spe, the extraction accuracy
of urban forests was 99% for each algorithm, however, these algorithms misclassified Agricultural
Land and Grassland as Forest generally. Compared with those of the U and D algorithms, OUDN’s
rate of misclassification of Agricultural Land and Grassland as Forest was the lowest (5% and 4%);
(2) based on the Spe-Index, the OUDN algorithm obtained the highest urban forest extraction accuracy
(99%) and the lowest rate of Agricultural Land and Grassland misclassified as Forest (4% and 7%);
(3) based on the Spe-Texture, the urban forest extraction accuracy of the OUDN algorithm was the
highest (approximately 100%).

Through the above analysis, it was concluded that (1) the classification results of the OUDN
algorithm were significantly better than those of the other algorithms for confusing ground categories
(such as Agricultural Land, Grassland, and Barren Land); (2) the accuracy of the UDN algorithm was
improved through object constraints; (3) especially for Spe-Texture, the OUDN algorithm achieved the
highest OA (93.8%), which was 4% and 4.1% higher than those of the U and D algorithms, respectively;
(4) the UDN and OUDN algorithms had obvious advantages regarding the accurate extraction of urban
forests, and they not only accurately extracted the street trees but also identified the scattered trees
ignored by the U and D algorithms.

4. Discussion

The UDN and OUDN algorithms constructed by this study achieved higher accuracies in the
extraction of urban land use information from VHSR imagery than the U and D algorithms. The UDN
algorithm applied the coupling of the improved 11-layer U-net network and the improved DenseNet
to train the network and realize prediction using the learned deep level features. With the advantages
of both networks, the accurate extraction of urban land use and urban forests was ensured. Meanwhile,
the UDN algorithm addressed the problems of common misclassifications and omissions in the
classification process (Tables 4–6) and dealt with the confusion of Agricultural Land, Grassland, Barren
Land and Built-up (Figure 12), thereby improving the classification accuracies of urban land use and
urban forest. In all feature combinations, especially for the Spe-Texture, the classification accuracies of
the UDN algorithm were 3.4% and 3.5% higher than those of the U and D algorithms, respectively.
This study chose 50 as the optimal segmentation scale, and the phenomenon of misclassification with
UDN was corrected by the constraints of the segmentation objects (Tables 4–6). The OUDN algorithm
not only alleviated the distribution fragmentation of ground objects and the common “salt-and-pepper”
phenomenon in the classification process but also dealt with the problem of discontinuous boundaries
during the splicing process of the classification results of segmented image blocks (Figures 8–10).
Compared with previous studies about classifications using U-net and DenseNet [41,46], this study
fully combined the advantages of U-net and DenseNet network and achieved more high classification
accuracies. Compared with previous object-based DL classification methods [49], in this study,
object-based multiresolution segmentations were used to constrain and optimize the UND classification
results and not used to participate in the UND classification. It is necessary to further study in
this respect.

The overall classification accuracies (OA) of different features based on different algorithms are
shown in Figure 13. (1) In terms of the UDN and OUDN algorithms, accuracies of the Spe-Texture were
the highest (93.2% and 93.8%), followed by those of the Spe-Index (92.3% and 92.6%). As demonstrated
by Figure 12, for Grassland, Built-up and Water, the classification accuracies of the Spe-Texture
were significantly higher than those of the Spe-Index. For example, the Grassland accuracies of the
Spe-Texture were 8% and 10% higher than those of the Spe-Index, and the Built-up accuracies of the
Spe-Texture were 2% and 2% higher than those of the Spe-Index. It can be concluded from Table 3 that
the TA and VA of Spe-Texture are higher. Thus, the classification results of the Spe-Texture were better
than those of the Spe-Index and Spe. (2) In terms of the U and D algorithms, classification accuracies of
the Spe-Texture were the lowest, 21%, 25% of the Grassland, and 13% and 17% of the Barren Land
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were misclassified as Forest and Built-up, respectively. In contrast, the accuracies of Spe-Index were
the highest.

Figure 13. Overall classification accuracies (OA) of different features based on different algorithms.

For urban forests, after texture was added to the Spe, that is, based on the Spe-Texture, the UDN and
OUDN algorithms achieved the highest classification accuracies (approximately 100%) for extracting
the information of urban forests from VHSR imagery. Similarly, the U and D algorithms also offered
relatively obvious advantages for extracting urban forest information based on the feature. As shown
in Figure 12, (1) for the U algorithm, the Spe-Index yielded the lowest urban forest extraction
accuracy. However, based on Spe-Texture, the accuracy is the highest (99%), and the ratio of Grassland
misclassified as Forest was lower (10%) than that of Spe (12%), so the Spe-Texture offered advantages
in the extraction of urban forests. (2) For the D algorithm, the urban forest extraction accuracy with the
Spe-Texture, compared with those with the Spe and Spe-Index features, was the highest; meanwhile,
the ratios of Agricultural Land and Grassland misclassified as Forest were the lowest (2% and 8%).
(3) For the UDN and OUDN algorithms, although the urban forest extraction accuracy based on the
Spe-Texture was the highest, the ratios of Agricultural Land and Grassland that were misclassified as
Forest, compared with those of the other features, were the highest (5% and 8%), thereby resulting in
confusion between urban forests and other land use categories.

5. Conclusions

Urban land use classification using VHSR remotely sensed imagery remains a challenging task
due to the extreme difficulties in differentiating complex and confusing land use categories. This paper
proposed a novel OUDN algorithm for the mapping of urban land use information from VHSR imagery,
and the information of urban land use and urban forest resources was extracted accurately. The results
showed that the OA of the UDN algorithm for urban land use classification was substantially higher
than those of the U and D algorithms in terms of Spe, Spe-Index, and Spe-Texture. Object-based image
analysis (OBIA) can address the problem of the “salt-and-pepper” effect encountered in VHSR image
classification to a certain extent. Therefore, the OA of urban land use classification and the urban
forest extraction accuracy were improved significantly based on the UDN algorithm combined with
object-based multiresolution segmentation constraints, which indicated that the OUDN algorithm
offered dramatic advantages in the extraction of urban land use information from VHSR imagery.
The OA of spectral features combined with texture features (Spe-Texture) in the extraction of urban
land use information was as high as 93.8% with the OUDN algorithm, and different land use classes
were identified accurately. Especially for urban forests, the OUDN algorithm achieved the highest
classification accuracy of 99.7%. Thus, this study provided a reference for the feature setting of urban
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forest information extraction from VHSR imagery. However, for the OUDN algorithms, the ratios of
Agricultural Land and Grassland misclassified as Forest were higher based on Spe-Texture, which
led to confusion between urban forests and other categories. This issue will be further studied in
future research.
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Abstract: We present an unsupervised deep learning approach for post-disaster building
damage detection that can transfer to different typologies of damage or geographical locations.
Previous advances in this direction were limited by insufficient qualitative training data. We propose
to use a state-of-the-art Anomaly Detecting Generative Adversarial Network (ADGAN) because
it only requires pre-event imagery of buildings in their undamaged state. This approach aids the
post-disaster response phase because the model can be developed in the pre-event phase and rapidly
deployed in the post-event phase. We used the xBD dataset, containing pre- and post- event satellite
imagery of several disaster-types, and a custom made Unmanned Aerial Vehicle (UAV) dataset,
containing post-earthquake imagery. Results showed that models trained on UAV-imagery were
capable of detecting earthquake-induced damage. The best performing model for European locations
obtained a recall, precision and F1-score of 0.59, 0.97 and 0.74, respectively. Models trained on
satellite imagery were capable of detecting damage on the condition that the training dataset was
void of vegetation and shadows. In this manner, the best performing model for (wild)fire events
yielded a recall, precision and F1-score of 0.78, 0.99 and 0.87, respectively. Compared to other
supervised and/or multi-epoch approaches, our results are encouraging. Moreover, in addition to
image classifications, we show how contextual information can be used to create detailed damage
maps without the need of a dedicated multi-task deep learning framework. Finally, we formulate
practical guidelines to apply this single-epoch and unsupervised method to real-world applications.

Keywords: deep learning; Generative Adversarial Networks; post-disaster; building damage
assessment; anomaly detection; Unmanned Aerial Vehicles (UAV); satellite; xBD

1. Introduction

Damage detection is a critical element in the post-disaster response and recovery phase [1].
Therefore, it has been a topic of interest for decades. Recently, the popularity of deep learning has
sparked a renewed interest in this topic [2–4].

Remote sensing imagery is a critical tool to analyze the impacts of a disaster in both the
pre- and post-event epoch [4]. Such imagery can be obtained from different platforms: satellites,
Unmanned Aerial Vehicles (UAV’s) and manned aircrafts [5,6]. Each contains characteristics that
need to be considered before deciding on which to use for disaster analysis. Manned airplanes or
UAV’s can be flexibly deployed and fly at relatively low heights compared to satellites and, therefore,
have relatively small ground sampling distances (GSD) [7]. UAV’s can fly lower than manned airplanes
and in addition, depending on the type of drone, they can hover and maneuver in between obstacles.
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Both platforms can be equipped with a camera in oblique mounts, meaning that vital information
can be derived from not only the top but also the sides of objects [8]. However, data acquisitions
using these platforms have to be carried out and instigated by humans, which makes them time and
resource costly. The spatial coverage of these platforms is also typically restricted to small areas of
interests (AIO) and biased towards post-event scenarios when new information is required. Therefore,
pre-event data from UAV or aerial platforms are less likely to exist. Satellites on the other hand,
depending on the type of satellite, have a high coverage and return rate, especially of build-up areas.
Therefore, pre-event data from satellites are more likely to exist. Moreover, satellite systems that
provide information to Emergency Mapping Services are able to (re)visit the disaster location only
hours after an event, enabling fast damage mapping [9]. A disadvantage of satellite imagery is that it
has larger GSD footprints. Moreover, excluding the ones that are freely available, obtaining satellite
imagery is generally more costly than UAV imagery.

Damage mapping using Earth observation imagery and automatic image analysis is still a challenge
for various reasons despite decades of dedicated research. Traditional image analysis remains sensitive
to imaging conditions. Shadows, varying lighting conditions, temporal variety of objects, camera angles
or distortions of 3D objects that have been reduced to a 2D plane have made it difficult to delineate
damage. Moreover, the translation of found damage features to meaningful damage insights have
prevented many methods from being implemented in real-world scenarios. Deep learning has
made a major contribution towards solving these challenges by allowing the learning of damage
features instead of handcrafting them. Several studies have been carried out on post-disaster
building damage detection using remote sensing imagery and deep learning [6,10–13]. Adding 3D
information, prior cadastral information or multi-scale imagery has contributed towards some of these
challenges [11,14–16]. Despite these efforts, persistent problems related to vegetation, shadows or
damage interpretation remain. More importantly, a lesser addressed aspect of deep learning-based
post-disaster damage detection remains—the transferability of models to other locations or disasters.
Models that can generalize and transfer well to other tasks constitute the overarching objective for
deep learning applications. Specifically, in the post-disaster management domain, such a model would
remove the need to obtain specific training data to address detection tasks for a particular location or
disaster. By removing this time-costly part of post-disaster damage detection, resources are saved and
fast post-disaster response and recovery is enabled. However, a persisting issue keeping this goal out
of reach is the availability of sufficient qualitative training data [13].

Because disasters affect a variety of locations and objects, damage induced by disasters similarly
shows a large variety in visual appearances [13]. Obtaining a number of images that sufficiently cover
the range of visual appearances is difficult and impractical. In fact, it is impossible to sample the never
before seen damage, making supervised deep learning models inherently ad hoc [17]. Moreover, it is
challenging to obtain qualitative annotations. Ideally, images are labelled by domain experts. However,
the annotation process is time-costly, which critical post-disaster scenarios cannot tolerate. Finally,
the process is subjective. Especially in a multi-classification task, two experts are unlikely to annotate
all samples with the same label [18]. Questionable quality of the input data makes it difficult to trust
the resulting output. The problem of insufficient qualitative training data drives most studies to make
use of data from other disaster events with damage similar to the one of interest, to apply transfer
learning or to apply unsupervised learning [19].

Most unsupervised methods for damage detection are not adequate for post-disaster applications
where time and data are scarce. Principal Component Analysis (PCA) or multi-temporal deep learning
frameworks are used for unsupervised change detection [20,21]. Besides the disadvantage of PCA that it
is slow and yields high computational overhead, a major disadvantage of change detection approaches
in general is that pre-event imagery is required, which is not always available in post-disaster scenarios.
Methods such as One-Class Support Vector Machines (OCSVM) make use of a single epoch; however,
these methods cannot be considered unsupervised because the normal class, in this case the undamaged
class, still needs to be annotated in order to distinguish anomalies such as damage [22]. Moreover,
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earlier work has shown that OCSVM underperforms in the building damage detection task compared
to supervised methods [23].

Anomaly detecting Generative Adversarial Networks (ADGANs), a recently proposed
unsupervised deep learning principle used for anomaly detection, have the potential to overcome
the aforementioned limitations and, therefore, to improve model transferability. ADGANs have
been applied to detect anomalies in images that are less varied in appearance to address problems
in constrained settings. For example, reference [17], reference [24] and reference [25] have applied
ADGANs to detect prohibited items in x-rays of luggage. Reference [26] and reference [27] have
applied ADGANs to detect masses in ultrasounds or disease markers in retina images. Until recently,
ADGANs had not been applied to detect anomalies in images that are visually complex, such as remote
sensing images, to address a problem that exists in a variety of settings, such as damage detection from
remote sensing images.

The fundamental principle of an ADGAN is to view the damaged state as anomalous, and the
undamaged state as normal. It only requires images that depict the normal, undamaged state.
This principle poses several advantages. First, obtaining images from the undamaged state is less
challenging, assuming that this state is the default. Second, data annotations are not required,
thus eliminating the need of qualitative annotated training data. Finally, the never before seen damage
is inherently considered since it deviates from the norm. This makes ADGAN an all-encompassing
approach. The aforementioned advantages have made ADGANs appealing for a variety of applications,
and especially appealing for post-disaster damage detection. The main advantage for post-disaster
applications is that a model can be trained pre-disaster using only pre-event imagery. It can be instantly
applied after the occurrence of a disaster using post-event imagery and thus aid post-disaster response
and recovery. ADGANs output binary damage classifications and, therefore, a disadvantage is that
they are unable to distinguish between damage severity levels. However, we argue that the practical
advantages listed above outweigh this disadvantage, especially considering how the method provides
rapid information to first responders in post-disaster scenes.

In earlier work, we showed how an ADGAN could be used under certain pre-processing constraints
to detect post-earthquake building damage from imagery obtained from a manned aircraft [23].
Considering these results, and in addition the characteristics of the different remote sensing platforms
explained above, we extend the preliminary work by investigating the applicability of ADGAN to
detect damage from different remote sensing platforms. By training the ADGAN on a variety of
pre-disaster scenes, we expect it to transfer well to different geographical locations or typologies of
disasters. Special attention is given to satellite imagery because of its advantages explained above.
We aim to provide practical recommendation on how to use this method in operational scenarios.

The contribution of this paper is threefold:

• First, we show how an ADGAN can be applied in a completely unsupervised manner to
detect post-disaster building damage from different remote sensing platforms using only
pre-event imagery.

• Second, we show how sensitive this method is against different types of pre-processing or data
selections to guide practical guidelines for operational conditions.

• Lastly, we show whether this method can generalize over different typologies of damage or
locations to explain the usability of the proposed method to real world scenarios.

The goal of this research is the fast detection of damage enabling fast dissemination of information
to end-users in a post-disaster scenario. Therefore, it is beyond the scope of this study to examine the
link between the proposed method and pre-event building vulnerability estimations or fragility curves.
Our main aim is to investigate the applicability of ADGANs for unsupervised damage detection.
Based on our results, we present a conclusion regarding the applicability and transferability of this
method from an end-user’s perspective.
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Related work can be found in Section 2; the experiments are detailed in Section 3; results are
described in Section 4; the discussion and conclusion can be found in Sections 5 and 6, respectively.

2. Related Work

2.1. Deep Learning for Post-disaster Damage Detection

Deep learning using optical remote sensing imagery has been a widely researched topic to
address various aspects in the post-disaster research domain. Reference [2] used a SqueezeNet based
Convolutional Neural Net (CNN) to make a distinction between collapsed and non-collapsed buildings
after an earthquake event. Reference [28] addressed the combined use of satellite and airborne imagery
at different resolutions to improve building damage detection. Reference [12] proposed a method to
detect different proxies of damage, such as roof damage, debris, flooded areas, by using transfer learning
and airborne imagery. Similarly, Reference [3] aimed to detect blue tarp covered buildings, a proxy for
building damage, by utilizing aerial imagery and building footprints. Various researchers focused
on utilizing pre- and post-event imagery to its best advantage. Reference [29] showed how fusion of
multi-temporal features improved damage localization and classification. Similarly, reference [30]
aimed to detect different building damage degrees by evaluating the use of popular CNNs and
multi-temporal satellite imagery. Reference [11] proposed an efficient method to update building
databases by using pre-disaster satellite imagery and building footprints to train a CNN, which was
fine-tuned using post-disaster imagery. Reference [31] proposed a U-Net-based segmentation model to
segment roads and buildings from pre- and post-disaster satellite imagery, specifically to update road
networks. Progress has also been made towards real-time damage detection. Reference [32] made
use of a lightweight CNN that was placed on board an UAV to detect forest fires in semi-real time.
Reference [7] developed a similar near-real time low-cost UAV-based system which was able to stream
building damage to end-users on the ground. Their approach was one of the first to validate such
a system in large-scale projects. Finally, reference [14] showed how adding 3D information to UAV
imagery aided the detection of minor damage on building facades from oblique UAV imagery.

Most deep learning methods towards post-disaster damage mapping, including the ones
mentioned above, are supervised. However, a persistent issue in supervised learning is the lack
of labelled training data [4]. The issue of unbalanced datasets or the lack of qualitative datasets is
mentioned by most [2,12,28–30]. As mentioned earlier, researchers bypass this issue by using training
datasets from other projects that resembles the data that are needed for the task-at-hand, or by applying
transfer learning to boost performance. Despite these solutions, the main weakness of these solutions
is that these models generally do not transfer well to other datasets. Reference [13] compared the
transferability of different CNNs that were trained on UAV and satellite data from different geographic
locations, and concluded that the data used for training a model strongly influences the model its
ability to transfer to other datasets. Therefore, especially in data scarce regions, the application of
damage detection methodologies in operative scenarios remains limited.

2.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) were developed by reference [33] and gained popularity
due to their applicability in a variety of fields. Applications include augmented reality, data generation
and data augmentation [34–36]. A comprehensive review of research towards GANs from recent years
can be found in reference [37].

A GAN consists of two Convolutional Neural Nets (CNNs): the Generator and the Discriminator.
The Generator receives as input an image dataset with data distribution pdata. The Generator aims to
produce a new image (x̂) that fits within the distribution pdata. Therefore, the Generator aims to learn a
distribution of pg that approaches pdata. The Discriminator receives as input an image (x) from the
original dataset as well as the image (x̂) generated by the Generator. The goal of the Discriminator is to
distinguish the generated images from the original input data. If the Discriminator wins, the Generator

380



Remote Sens. 2020, 12, 4193

loses and vice versa [33]. The Generator (G) and Discriminator (D) are locked in the two-player
zero-sum principle. The discriminator aims to minimize the function D(G(x)) and the Generator tries
to maximize it according to the function log(1−D(G(x))).

2.3. Anomaly detecting Generative Adversarial Networks.

GANs are also applied to detect defects or damage in the medical or manufacturing domain.
Similar to post-disaster damage detection, a common limitation for these kind of applications is
data imbalance. Therefore, GANs are used to synthesize more data of the underrepresented class.
Reference [38] synthesized medical imagery to boost liver lesion detection and reference [39] synthesized
road defects samples, which led to a F1-score increase of up to 5 percent. The main limitation of
synthesizing data is that examples are required. Moreover, it is unclear to what extent the generated
samples are restricted to the data distribution of the input data, inhibiting diversity of the generated
images [40,41]. ADGANs provide a better solution, since no examples are needed.

ADGANs are only trained using normal, non-damaged input data. The resulting trained model is
proficient in reproducing images that do not show damage, and less proficient in reproducing images
that depict damage. Therefore, the distance between the input image and the generated image is large
when inference is done using an image that contains damage, which subsequently can be used to
produce anomaly scores [24].

The first examples of ADGANs are Efficient GAN-Based Anomaly Detection (EGBAD), which was
developed using curated datasets such as MNIST, and AnoGAN, which was geared towards anomaly
detection in medical imagery [27,42]. Reference [26] applied an EGBAD-based method to detect malign
masses in mammograms. The main limitation in AnoGAN was its low inference speed. This was
resolved in f-AnoGAN [43]. The latter was outperformed by GANomaly, which successfully detected
prohibited items in x-rays of luggage [17], although it was shown to be less capable of reconstructing
visually complex images [23,44]. Using a U-Net as the Generator, the reconstruction of complex
imagery was resolved by its successor Skip-GANomaly [24]. Both f-AnoGAN and Skip-GANomaly
serve as the basis for ongoing developments [25,44–46].

Considering that Skip-GANomaly outperformed f-AnoGAN, and in addition, how it is proficient
in generating visually complex imagery, this architecture was used in this research.

3. Materials and Methods

3.1. ADGAN

The architecture of Skip-GANomaly is shown in Figure 1. The Generator and the Discriminator
consist of a U-net and an encoder architecture, respectively [47]. In earlier work, we showed
how substituting the Generator for an encoder–decoder architecture without skip-connections—e.g.,
GANomaly [17]—does not always result in well-reconstructed fake images from Earth observation
imagery [23]. The encoder–decoder architecture of Skip-GANomaly, in combination with the
skip-connections, makes it efficient in recreating even complex remote sensing imagery.

Figure 1. Skip-GANomaly architecture. Adapted from [24].
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Skip-GANomaly makes use of three distinctive losses to guide its training, called the latent loss
(Llat), the adversarial loss (Ladv) and the contextual loss (Lcon). Ladv accounts for the correctness of the
classification (fake or real). Lcon accounts for the generated image, and steers the model to create fake
images that are contextually sound, i.e., images that look realistic. Llat is a loss that steers the encoders
inside the Generator and Discriminator to create similar representations of the image latent vector
z [24]. Each loss contributes to the overall loss according to their corresponding weight (w). The losses
are described in the following equations:

Ladv = ‖ f (x) − f (x̂)‖2 (1)

where,
f (.) = Ex∼px [log D(.)] (2)

Lcon = ‖x− x̂‖1 (3)

Llat = ‖z− ẑ‖2 (4)

The overall loss is described as follows:

L = wadvLadv + wconLcon + wlatLlat (5)

Several hyper-parameters influence the performance of the model. Besides the general parameters
such as batch size, learning rate or decay rate, model specific parameters include loss weights, the size
of the latent vector z, and the number of encoder layers inside the Generator and Discriminator.
Details on how these parameters are tuned can be found in Section 3.4.

A modification was made to the network. In the original network, after each epoch of training,
the Area Under the Curve (AUC) score was calculated using the validation dataset. After training
finished, a model for inference was selected based on the epoch in which it obtained the highest AUC
score [24]. This makes the original implementation not a truly unsupervised approach, since a validation
dataset is still required (i.e., examples of damage are still needed). Therefore, we choose to save the best
performing model when the lowest Generator loss was found. This ensures that the model is chosen
that is best able to generate fake images, which is the main principle of Skip-GANomaly. We verified
that this approach yielded performance comparable to the original implementation, without the need
of annotated test samples.

During inference, each image is classified as either damaged or undamaged by obtaining anomaly
scores. Per-pixel anomaly scores are derived by simple image differencing between the input and
the generated image. Each corresponding channel is subtracted from each other and averaged per
pixel to obtain per-pixel anomaly scores. An image anomaly score is obtained by averaging the
per-pixel anomaly scores. The closer to one, the higher the probability that the image is anomalous.
After obtaining anomaly scores for all test samples, a classification threshold was determined in order
to classify the images. This threshold is characterized as the intersection between the distribution
of anomaly scores of normal and abnormal samples. Any sample with an anomaly score below the
threshold was classified as normal and any value above the threshold as abnormal. Ideally, a model with
a high descriptive value should result in non-overlapping distributions of the normal and abnormal
samples with a clear threshold.

Finally, alterations and additions were applied to Skip-GANomaly in an attempt to boost results
for the satellite imagery dataset. First, with the idea of weighing the generation of building pixels more
than other pixels, we attempted to direct the attention of Skip-GANomaly by adding building masks
as input in an approach similar to the one described in [48]. Furthermore, with the idea of utilizing the
building information in the multiple epochs, similar to the approach described in [16], we stacked
pre- and post-imagery into a 6-channel image and implemented an early, late or full feature fusion
approach. These additions only provided marginal improvements. Our findings for stacking pre-
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and post-imagery were in line with those found in [29]. The goal of this study was to investigate the
applicability of ADGANs for building damage detection. Considering that improvements of the model
were beyond our scope of work and only marginal, these lines of investigation were not explored any
further and the original implementation was maintained.

3.2. Data

As mentioned earlier, a satellite and an UAV dataset were used in this research. This section will
describe both datasets.

3.2.1. xBD Dataset

We made use of the xBD satellite imagery dataset [49]. It was created with the aim of aiding the
development of post-disaster damage and change detection models. It consists of 162.787 pre- and
post-event RGB satellite images from a variety of disaster events around the globe. These include floods,
(wild)fire, hurricane, earthquake, volcano and tsunami. The resolution of the images is 1024 × 1024,
the GSD ranges from 1.25 m to 3.25 m and annotated building polygons were included. The original
annotations contained both quantitative and qualitative labels: 0—no damage, 1—minor damage,
2—major damage and 3—destroyed [50]. The annotation and quality control process is described
in [50]. The dataset contained neither structural building information nor disaster metrics such as
flood levels or peak ground acceleration (PGA). Figure 2 shows example pre- and post-event images
of a location where a volcanic eruption took place. The color of the building polygons indicates
the building damage level. For our purpose, all labels were converted to binary labels. All images
with label 0 received the new label 0—undamaged, and the ones with label 1, 2 or 3 received the
label 1—damaged. We note that even though damage is labelled under the umbrella-label of the
event that caused it, damage is most often induced by secondary events such as for example debris
flow, pyroclastic flow or secondary fires. For the sake of clarity, we will refer to the umbrella-label
when referring to induced damage. Example imagery of each event can be found in Figure 3a–j.
This dataset was used in the Xview2 challenge where the objective was to localize and classify building
damage [51]. The ranked top-3 submissions reported amongst others an overall F1-score of 0.738 using
a multi-temporal fusion approach [29].

Figure 2. Example from the xBD dataset showing pre- and post-event satellite images from a location
where a volcanic eruption took place. Several buildings and sport facilities are visible. The post-event
image shows damage induced by volcanic activity. The buildings are outlined and the damage level is
depicted by the polygon color. The scale bars are approximate.
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(a)  (b)  (c)  

(d)  (e)  (f)  

(g)  (h)  (i)  

(j)  (k)  (l)  

(m)  (n)  (o)  

Figure 3. Examples of Satellite imagery used for testing: (a) Hurricane Florence (USA), (b) Hurricane
Michael (USA), (c) Hurricane Harvey (USA), (d) Hurricane Mathew (Haiti), (e) Volcano (Guatemala),
(f) Earthquake (Mexico), (g) Flood (Midwest), (h) Tsunami (Palu, Indonesia), (i) Wildfire (Santa-Rosa
USA) and (j) Fire (Socal, USA). Examples of UAV imagery used for testing: (k) Earthquake (Pescara del
Tronto, Italy), (l) Earthquake (L’Aquila, Italy), (m) Earthquake (Mirabello, Italy), (n) Earthquake
(Taiwan) and (o), Earthquake (Nepal). The scale bars are approximate.
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3.2.2. UAV Dataset

The UAV dataset was constructed manually from several datasets that depict the aftermath of
several earthquake events. Examples can be found in Figure 3k–o. The UAV images were collected for
different purposes and, therefore, the image resolution and the GSD vary and range around 6000 × 4000
pixels and from 0.02 to 0.06 m, respectively [13]. Moreover, the camera angle differed between nadir
and oblique view. The UAV dataset contained no pre-event imagery and, therefore, the undamaged
patches were obtained from undamaged sections in the images (see Section 3.3). Finally, the dataset
contained neither structural building information nor PGA values.

3.3. Data Pre-Processing and Selection

Before the experiments were executed, the datasets were first treated to create different data-subsets.
This section describes the different data treatments, while the next section describes how they were used
in different experiments. The data treatments can be summarized into three categories: (i) varying patch
size, (ii) removal of vegetation and shadows, and (iii) selection of data based on location or disaster
type. For each dataset, we experimented with different cropping sizes. The rationale behind this
step was that the larger the image, the more area is covered. Therefore, especially in satellite imagery
where multiple objects are present, larger images often contain a high visual variety. As explained
earlier, the Generator attempts to learn the image distribution, which is directly influenced by the
visual variety contained in the images. When the learned image distribution is broad, a building
damage has more chance to fall within this distribution, resulting in a reconstructed image that closely
resembles the input image. The resulting distance between the input and generated images would
be small and, therefore, the sample is expected to be misclassified as undamaged. We expected that
restricting the patch size creates a more homogeneous and less visually varied scene. Especially
cropping images around buildings would steer the Generator to learn mainly the image distribution of
buildings. Therefore, any damage to buildings was expected to fall more easily outside the learned
distribution, resulting in accurate damage detections and thus an increase in true positives.

The satellite imagery was cropped into patches of 256 × 256, 64 × 64 and 32 × 32 (Figure 4).
By dividing the original image in a grid of four by four, patches of 256 × 256 could be easily obtained.
However, the visual variety in these patches was likely still high. Smaller sizes of 64 × 64 or
32 × 32 would reduce this variety. However, simply dividing the original image systematically into
patches of 64 × 64 or 32 × 32 resulted in a large amount of training patches that did not contain
buildings. These patches did not contribute to learning the visual distribution of buildings. Therefore,
the building footprints were used to construct 32 × 32 and 64 × 64 patches only around areas that
contained buildings. To achieve this, the central point of each individual building polygon was
selected and a bounding box of the correct size was constructed around this central point. We note
that in real-world application, building footprints are not always available; however, this step is not
necessarily required considering that it only intends to reduce the number of patches containing no
buildings, even though there are various ways to derive building footprints. Open source repositories
such as OpenStreetMap provide costless building footprints for an increasing number of regions,
and supervised or unsupervised deep learning are proficient in extracting building footprints from
satellite imagery [52–54]. Therefore, the proposed cropping strategy and subsequent training can be
completely unsupervised and automated.
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Figure 4. Illustration of different cropping strategies for the xBD dataset from the original patch size of
1024 × 1024 to 256 × 256, 64 × 64 and 32 × 32. The scale bars are approximate.

The UAV images were cropped in sizes of 512 × 512, 256 × 256 and 64 × 64. Larger patch sizes
were chosen than for the xBD dataset to compensate for the difference in image resolution. More detail
could be observed in larger sized UAV patches. Compare, for example, the amount of detail that can be
observed in the smallest patches of Figures 4 and 5. Unlike for the xBD dataset, building footprints were
not available. In general, building footprints for UAV imagery are difficult to obtain from open sources
because, compared with satellite imagery, they are not necessarily georeferenced. Moreover, footprints
would be difficult to visualize because of the varying perspectives and orientation of buildings in UAV
imagery. Therefore, the 512 × 512 patches were extracted and labelled manually. Because of varying
camera angles, patches displayed both facades and rooftops. Since no pre-event imagery was available,
undamaged patches were obtained by extracting image patches from regions where no damage was
visible. Binary labels were assigned to each image: 0—undamaged, or 1—damaged. The cropping
strategy for the smaller sizes consisted of simply cropping around the center pixel (Figure 5).

Figure 5. Illustration of cropping strategies for the UAV dataset from the original patch size of
4000 × 6000 to 512 × 512, 256 × 256 and 64 × 64. The scale bars are approximate and refer to the front of
the scene.

Next, the cropped patches were pre-processed. In order to investigate how sensitive this method
is against different pre-processing, images were removed from the dataset based on the presence of
vegetation or shadows. Vegetation and shadows remain challenging in deep learning-based remote
sensing applications. Shadows obscure objects of interest, but also introduce strong variation in
illumination [55]. Depending on the varying lighting conditions, vegetation is prone to produce
shadows and, therefore, varying Red, Green, Blue and illumination values [56]. Therefore, the image
distribution learned by the Generator is expected to be broad. This means that any damage found
on buildings is more likely to fall within this learned image distribution and, therefore, to be well
reconstructed in the fake image. A well-reconstructed damage leads to lower anomaly scores,
which is not the objective. We showed in [23] how removing these visually complex patches from the
training set improve damage classification because the learned image distribution was expected to be
narrower. Therefore, we created data subsets for training following the same procedure, using the
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Shadow Index (SI; Equation (6)) and the Green–Red Vegetation Index (GRVI; Equation (7)) [57,58].
Images containing more than 75 or 10 percent vegetation and/or shadows, respectively, were removed
from the original dataset. Using these datasets, we showed how increasingly stricter pre-processing,
and thus decreasingly visually complex patches, influences performance. Removing images from
a dataset is not ideal since it limits the practicality of the proposed methodology because it reduces the
proportion of patches on which it can do inference (see Figure 6). The test dataset in the novegshad@10%
data subset is 8 percent of the original test dataset. Therefore, we further experimented with masking the
pixels that contain vegetation and shadow in an attention-based approach, as explained in Section 3.1.
However, this was not considered as a further line of investigation since results did not improve.

SI =
√
(256− Blue) ∗ (256−Green) (6)

GRVI =
ρgreen − ρred

ρgreen + ρred
(7)

Figure 6. Number of samples in each data subset. Original refers to the complete un-preprocessed
dataset. Y-axis is in log-scale.

Only the satellite patches of size 64× 64 and 32× 32 were pre-processed in this manner. Even though
these sizes were already constrained to display maximum buildings and minimal surroundings using
cropping techniques, some terrain and objects were often still present (see Figure 4). Satellite patches
of size 256 × 256 were not pre-processed in this manner. Satellite images of this size usually contained
more than 75 percent vegetation and/or shadow and, therefore, removing these images resulted in
data subsets for training that were too small. UAV patches were also not pre-processed this way,
since careful consideration was taken during manual patch extraction to ensure they do not contain
vegetation or shadows.

Finally, selections of UAV and satellite patches were made based on the image location and the
continent of the image location. Here the assumption was made that buildings were more similar in
appearance if located in the same continent or country. Trained models were expected to transfer well
to other locations if the buildings looked similar. Additionally, satellite patch selections were made
based on the disaster type in order to investigate whether buildings affected by the same disaster type
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could yield a high performance. Here we consider that end-users might already possess a database
of pre-event imagery of the same disaster of different locations around the globe, while they are not
in possession of pre-event imagery of the country or continent that appears similar to the location of
interest. Table 1 shows a summary of all the resulting satellite and UAV data subsets.

Table 1. Overview of the data subsets used in this research. Data subsets were created based on
(1) resolutions and (2) data selections, which include pre-processing (removal vegetation and/or
shadows), disaster-event location, disaster-event continent and disaster-type. * Not for satellite patches
of size 256 × 256.

Dataset Satellite (xBD) UAV

Resolutions 256 × 256 / 64 × 64 / 32 × 32 512 × 512 / 256 × 256 / 64 × 64

Category
Data

Pre-Processing

Data
Selection:
Location

Data
Selection:
Continent

Data
Selection:
Disaster

Data
Selection:
Location

Data
Selection:
Continent

← Category
values

No
vegetation
(<75%) *

Guatemala
(volcano) North-America Flood

Pescara del
Tronto (Italy;
earthquake)

Asia

No
vegetation
(<10%) *

Florence
(USA;

hurricane)
Mid-America Wildfire

Kathmandu
(Nepal;

earthquake)
Europe

No shadow
(<75%) *

Harvey
(USA;

hurricane)

South East
Asia Volcano

L’Aquila
(Italy;

earthquake)
South-America

No shadow
(<10%) *

Matthew
(Haiti;

hurricane)
Hurricane

Portoviejo
(Ecuador;

earthquake)

No
vegetation

and shadow
(<75%) *

Michael
(USA;

hurricane)
Earthquake

Mirabello
(Italy;

earthquake)

No
vegetation

and shadow
(<10%) *

Mexico City
(Mexico;

earthquake)
Tsunami

Taiwan
(China;

earthquake)

Midwest
(USA; flood)

Palu
(Indonesia;
tsunami)

Santa-Rosa
(USA;

wildfire)

Socal (USA;
fire)

Each data subset was divided into a train and test set. Figure 6 shows the sample size of each
subset. The train-set only consisted of undamaged images, and the test set contained both undamaged
and damaged samples. For the satellite imagery, the undamaged samples in the train set came from the
pre-event imagery, whereas the undamaged samples in the test set came from the post-event imagery.
For the UAV imagery, the undamaged samples both came from the post-event imagery. The samples
were divided over the train and test set in an 80 and 20 percent split. The original baseline dataset
denotes the complete UAV or complete satellite dataset.
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We note that the UAV dataset size was relatively low. However, the authors of [44] found that
the ability of an ADGAN to reproduce normal samples was still high when trained on a low amount
of training samples. We verified that low number of samples had no influence on the ability of
Skip-GANomaly to produce realistic output imagery, and thus we conclude that the Generator was
able to learn the image distribution well, which was the main goal. For the reasons explained above,
these numbers of UAV samples were deemed acceptable.

3.4. Experiments

The experiments were divided into two parts. Part one showed whether the method is
applicable and/or sensitive to preprocessing. The experiments consisted of training and evaluating
Skip-GANomaly models using the different pre-processed data subsets from Table 1, described in
Section 3.3. Part two showed whether the method can be transferred to different geographic locations or
disasters. The experiments consisted of training and testing a Skip-GANomaly model on the different
location, continent and disaster data subsets. Each trained model, including the ones trained in part
one, was cross-tested on the test set of each other data subset.

The training procedure maintained for part one and part two can be described as follows:
A Skip-GANomaly model was trained from scratch using the train-set. Before training, the model
was tuned for the hyper-parameters, wadv, wcon, wlat, learning rate and batch size, using grid-search.
When the best set of hyper-parameters was found, the model was retrained from scratch using
these parameter values for 30 epochs, after which it did not improve further. As explained earlier,
using a modification, during training the best performing model was saved based on the lowest
generator loss value. After training was completed, the model was evaluated on the test set. Training
and evaluation ran on a desktop with a dual Intel Xeon Gold (3.6GHz) 8-cores CPU and a Titan XP
GPU (12GB). Training for 30 epochs took approximately 8 hours using patches of 64 × 64 and a batch
size of 64. Inference on a single image of 64 × 64 took approximately 3.9 ms.

For part two of the experiments, the transferability was analyzed by testing each of the previously
trained models on the test set of all other data subsets. For example, all trained UAV models were
evaluated on the UAV-imagery of all patch sizes from all locations and continents. All trained satellite
models were evaluated on satellite-imagery of all patch sizes, from all locations and continents and from
all pre-processing manners. To deal with different patch sizes, the images were up- or down-sampled
during testing. Finally, transferability was not only analyzed intra-platform, but also cross-platform.
This means that all models trained on different subsets of satellite imagery were also evaluated on the
test set of all different subsets of UAV imagery and vice versa.

The F1-score, recall, precision and accuracy were used to describe performance. A high recall
is important, because it shows that most instances of damage are indeed recognized as damage.
In practice, this means that it can be trusted that no damage goes unnoticed. A high precision is
also important, because it shows that from all the recognized instances of damage, most are indeed
damage. Moreover, this means that it can be trusted that all the selected instances of damage are
indeed damaged, and no time has to be spent on manually filtering out false positives. The F1-score
represents the balance between recall and precision.

3.5. Comparison Against State-of-the-Art

In order to investigate how close our results can get to those of supervised methods, we compared
the results of our experiments against results obtained using supervised deep learning approaches.
In earlier work, we showed how unsupervised methods drastically underperformed compared to
our method and, therefore, unsupervised methods such as One Class Support Vector Machine are
left out of the comparison [23]. In order to make a fair comparison, we considered approaches that
made use of a single epoch and, ideally, datasets that resemble ours in GSD, resolution, location and
disaster-types. Therefore, we compared the results obtained using satellite-based models against
the xView2 baseline model, and ranked competitors in the xView2 competition [29]. The xView2
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baseline model first trained a U-Net architecture to extract building polygons. Afterwards, they used
a Resnet50 architecture pre-trained on ImageNet to classify different degrees of building classifications.
The ranked contenders [29] used a multi-temporal approach where both localization and classification
was learned simultaneously by feeding the pre- and post-disaster images into two architectures with
shared weights. The architectures consisted of ResNet50, which was topped with Feature Pyramid
Heads, and were pre-trained on ImageNet. Finally, we compared the results obtained using UAV-based
models with results obtained by [13]. Here, comparable UAV-images were used from post-earthquake
scenes to train an adapted DenseNet121 network with and without fine-tuning. The authors carried
out several cross-validation tests where each time a different dataset was used for testing, to investigate
the influence of training data on performance.

4. Results

This section will describe the performance of Skip-GANomaly to detect building damage from
satellite and UAV imagery. We show the more interesting results to avoid lengthy descriptions of
all tests that were carried out. In addition, we present a closer look at the cases in which the model
succeeded or failed to detect damage, and show how anomaly scores could be used to map damage.
Additionally, the cross-test results are presented, which offer insight into the transferability of this
method. Finally, a comparison between our results and supervised method is presented.

4.1. Performance of Skip-GANomaly on Satellite Imagery

First, we examined the performance of Skip-GANomaly on satellite imagery when using different
data pre-processing techniques on the baseline dataset (all disasters combined). The main result showed
that, especially when strict pre-processing was applied, e.g., removing all patches that contained more
than 10 percent of vegetation or shadow (novegshad@10%), performance improved compared to
baseline, although it only reached a recall value of 0.4 (Figure 7). A similar trend was found for aerial
imagery in an earlier work [23]. Their performance improved the most when the novegshad@10% rule
was applied. Finally, contrary to expectations and excluding the performance of novegshad@10% on
32 × 32 patches, no clear trend was observed for specific patch sizes. In some cases, the smaller sizes
performed well and the larger size did not, and vice versa.

Figure 7. Performance of Skip-GANomaly on pre-processed satellite patches of size 256×256 (only baseline)
64 × 64 and 32 × 32.
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Next, we examined the performance of Skip-GANomaly on satellite imagery when pre-selected by
disaster type and without any pre-processing. Overall, we found that the performance of disaster-based
models improved compared to baseline. Earlier, we found evidence that pre-processing improved
performance. Therefore, in addition we tested the performance of disaster-based models when the
training subsets of size 32 × 32 were pre-processed according to the novegshad@10% rule. The rule
was not applied to subsets of size 256 × 256 or 64 × 64 because this resulted in subset sizes too small
for training. The difference in performance is shown in Table 2. Again, we observed that performance
improved for each individual disaster case.

Table 2. Difference in performance of Skip-GANomaly disaster-based models when trained on 32 × 32
satellite patches when (not) pre-processed based on the novegshad@10% rule. The grey background
indicates the pre-processed values and bold values indicates which model performs best.

Model Pre-processed Recall Precision F1-score

Earthquake No 0.110 0.212 0.022
Yes 0.333 0.111 0.167

Flooding No 0.455 0.555 0.500
Yes 0.500 0.500 0.500

Hurricane
No 0.143 0.643 0.234
Yes 0.325 0.662 0.436

Tsunami
No 0.040 0.365 0.073
Yes 0.141 0.926 0.245

Wildfire
No 0.321 0.855 0.467
Yes 0.778 0.989 0.871

We noted interesting differences between the performances of different disaster-based models
(Table 2). Because a secondary damage induced by hurricanes is floods, it was expected that the
performance for flood- and hurricane-based models would be comparable. However, this was not the
case. In fact, it was observed that for the disaster types Hurricane and Tsunami (Table 2) and for the
corresponding locations in Table 3, recall tended to be low compared to precision. We argue that this
can be attributed to several reasons related to context, which will be explained in Section 4.3.

Finally, we examined the performance of Skip-GANomaly on satellite imagery when pre-selected
based on location or continent location. In addition, the performance was examined when
pre-processing according to the novegshad@10% rule was applied to patches of size 32 × 32. Again,
we found that pre-processing improved the performance in a similar way, as was shown for the
disaster-based models (Table 3).

4.2. Performance of Skip-GANomaly on UAV Imagery

Figure 8 shows the performance of UAV-based models. The main results show that the performance
of UAV-based models was generally higher than that of the satellite-based models. Moreover, similar to
the findings for satellite location-based models, we observed that the performance of UAV location-based
models improved compared to baseline (all UAV-patches combined), with the exception of Asian
locations (Nepal and Taiwan). Europe obtained a recall, precision and F1-score of 0.591, 0.97 and
0.735, respectively. As expected, UAV location-based models with similar building characteristics
performed comparably. For example, models trained on location in Italy performed similarly (L’Aquila
and Pescara del Tronto). This time, we did observe a pattern in performance of different patch sizes.
Generally, models trained using the larger images size of 512 × 512 performed poorly, compared to
models trained on smaller patch sizes. Especially for the Asian location-based models, the smaller
sizes perform better. In the next section, we explain why context is likely the biggest influencer for the
difference in performances.
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Table 3. Difference in performance of Skip-GANomaly location-based models when trained on 32 × 32
satellite patches when (not) pre-processed based on the novegshad@10% rule. Locations that are not
listed did not have sufficient training samples. The grey background indicates the pre-processed values
and bold values indicates which model performs best.

Model Pre-processed Recall Precision F1-score

Harvey (USA; hurricane)
No 0.019 0.719 0.036
Yes 0.198 0.800 0.317

Matthew (Haiti; hurricane)
No 0.144 0.625 0.234

Yes 0.053 1.00 0.100

Michael (USA; hurricane) No 0.291 0.800 0.427

Yes 0.286 0.421 0.340

Mexico City (Mexico;
earthquake)

No 0.055 0.002 0.005
Yes 0.333 0.111 0.167

Midwest (USA; flood)
No 0.470 0.570 0.515
Yes 0.750 0.600 0.667

Palu (Indonesia; tsunami)
No 0.099 0.393 0.158
Yes 0.141 0.926 0.245

Santa-Rosa (USA; wildfire)
No 0.303 0.856 0.448
Yes 0.684 0.985 0.807

Socal (USA; fire)
No 0.087 0.329 0.137
Yes 0.538 0.667 0.596

North-America
No 0.099 0.718 0.175
Yes 0.652 0.970 0.780

Mid-America
No 0.162 0.024 0.041
Yes 0.333 0.100 0.154

South East Asia
No 0.031 0.366 0.058
Yes 0.099 0.854 0.177

Figure 8. Performance of Skip-GANomaly on UAV imagery of size 512 × 512, 256 × 256 and 64 × 64 for
different locations.

4.3. The Importance of Context

We investigated whether the characteristics of the different satellite data sources, especially for
different disaster events, could explain why the method worked better for some disasters than
the other. Certain disasters, such as floods or fires, induced both building damage and damage
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to their surroundings. Other disasters such as earthquakes mainly induced damage to buildings
only. Large-scale damage can be better detected from satellite imagery than small-scale damage,
because satellite imagery contains inherently coarse resolutions. Most likely, the ADGAN is more
efficient in detecting building damage from large-scale disasters by considering the surroundings of
the building.

To investigate this idea, we aimed at understanding how the anomaly score distribution
corresponds to the large-scale or small-scale damage pattern, by plotting the anomaly scores over the
original satellite image. High anomaly scores on pixels indicate that the model considered these pixels
to be the most anomalous. These pixels weigh more towards classification.

Figure 9 shows multiple houses destroyed by a wildfire. The image was correctly classified as
damaged for all patch sizes. However, it seems that context contributed to the correct classification for
the larger scale image (256 × 256), because the burned building surroundings resulted in high anomaly
scores, whereas the buildings itself obtained lower scores. This suggested that, for this particular
patch size, the surroundings have more discriminative power to derive correct classifications than the
building itself. For smaller patch sizes, as explained in Section 3.3, the assumption was made that the
smaller the patch size, the more adept the ADGAN would be in learning the image distribution of
the building characteristics, instead of its surroundings. For the example in Figure 9, this seemed to
hold true. In the patches of size 64 × 64 and 32 × 32, high anomaly scores were found all throughout
the image, including the damaged building itself. This suggested that our assumption was correct.
In short, the large-scale damage pattern of wildfire, plus the removal of vegetation, resulted in a high
performing model. This example suggests that our method is capable of recognizing and mapping
large-scale disaster induced damage.

Figure 9. Post-wildfire satellite imagery from the USA showing multiple damaged buildings overlaid
with anomaly scores and building polygon. The classification, classification threshold and anomaly
scores are indicated (TP = True positive). The scale bars are approximate. High anomaly scores on
burnt building surroundings and smaller patch sizes lead to correct classifications.

Another example of the influence of context can be seen in Figure 10. Here, a building was
completely inundated during a flood event in the Midwest (USA), meaning that its roof and outline
were not visible from the air. Even though, for all patch sizes, the image was correctly classified as
damaged. We noticed how the anomaly scores were mostly located in the regions that were inundated.
The anomaly scores on the unperceivable building itself naturally did not stand out. This suggests that
the correct classifications were mostly derived from contextual information. No evidence of a better
understanding of building damage could be observed for the smaller patch sizes (unlike for the wildfire
example), because the building and its outline were not visible. Still, a correct classification was made
due to the contextual information in these patch sizes. This example shows that the model was still
adept in making correct inferences on buildings obscured by a disaster. Although removing vegetation
generally improved classifications (Figure 7), for floods in particular performance only changed
marginally (Table 2). Most of the flooded regions coincided with vegetated regions, which suggests
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that the large-scale damage patterns induced by floods are of strong descriptive power and weigh up
against the negative descriptive power of vegetation.

Figure 10. Post-flood satellite imagery from the USA showing a damaged building, overlaid with
anomaly scores and building polygons. The classification, classification threshold and anomaly scores
are indicated (TP = True positive). The scale bars are approximate. High anomaly scores on flooded
areas resulted in correct classifications, regardless of patch size.

The examples above showed how context contributed to correct building damage classifications
in cases where disasters clearly induced large-scale damage or changes to the surroundings. However,
in cases where no clear damage was induced in the surroundings, context was shown to contribute
negatively to classifications. Figure 11 shows an example of the Mexico earthquake event that
spared multiple buildings. The patches of all sizes were wrongly classified as damaged, even though
no large-scale damage was visible in its surroundings. The high anomaly scores in the 256 × 256
image were shown to exist all throughout the image, and to a lesser degree on the buildings itself.
This example suggests that the context was visually too varied, which resulted in many surrounding
pixels to obtain a high anomaly score. Moreover, unlike for the flood example, no clear damage
pattern is present to counterbalance the visual variety of vegetation. As explained in Section 3.3,
the variance could stem from vegetation. However, removing vegetation resulted in only modest
improvements (Table 2). Therefore, the variation is also suspected to result from the densely built-up
nature of the location. See for example Figure 3f, where a densely built-up region in Mexico without
vegetation is visible. Even at the smaller patch sizes, the surroundings are varied, making it difficult
to understand what is damaged and what is not. This example showed that context is less useful to
derive earthquake-induced damage.

Figure 11. Post-earthquake satellite scene from Mexico showing undamaged buildings overlaid with
anomaly scores and building polygons. The classification, classification threshold and anomaly scores
are indicated (FP = False positive). The scale bars are approximate. High anomaly scores induced by
varying building surroundings resulted in false positives, regardless of the patch size.
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We argue that the examples shown so far could explain why recall for hurricane- and tsunami-based
models was low (Tables 2 and 3). Where for flood events damage largely coincided with homogeneous
flood patterns, the damage pattern for hurricanes and tsunamis was heterogeneous (Figure 3a–d,h).
Large-scale floods and small-scale debris are the main indicators of damage. In addition, the locations
suffer from a mixture between dense and less dense built-up areas. We suspect that when a mixture
of damage patterns and inherently heterogeneous built-up area is present, lower performance and
therefore a low recall value can be expected.

The examples shown above for satellite imagery can be used to illustrate the observed difference
in performance for UAV location-based models, where smaller patch sizes were shown to perform
better, particularly for the Asian locations (Nepal and Taiwan). Similar to the Mexico earthquake,
Nepal and Taiwan are densely built-up. Moreover, the earthquakes in Nepal and Taiwan did not induce
large-scale damage in the surroundings, meaning that the surroundings do not carry any descriptive
power. However, unlike the Mexican imagery, due to the larger GSDs retained in the UAV imagery,
reducing the patch size does result in less visual variety retained in smaller images. Therefore, similar to
the wildfire event, and according to our previously stated assumption, smaller patch sizes result in
a better understanding of the image distribution of buildings. Therefore, smaller images obtained
higher anomaly scores on the building itself, instead of its surroundings, leading to performance
improvements. See, for example, Figure 12.

Figure 12. Earthquake UAV scene from Nepal showing a damaged building overlaid with anomaly
scores. The classification, classification threshold and anomaly scores are indicated (TP = True positive,
FN = False Negative). The scale bars are approximate. The 64 × 64 patch yielded a correct classification
due to a better understanding of the building image distribution.

In summary, the presented examples showed how context is important for damage detections.
Particularly, we found that both the scale of the induced damage and the GSD of the imagery decide
whether context plays a significant role. One added benefit observed from these results is that in cases
where context does play a role, the derived anomaly maps can be used to map damage. These damage
maps are useful to first responders in order to quickly allocate relief resources.

4.4. Cross-Tests

Finally, we evaluated the performance of trained UAV- and satellite-based models on the test set
of other data subsets to find out how transferable our proposed method is.

First, we highlight a couple of general findings for satellite-based cross-tests. In general,
a heterogeneous pattern in performance was found when a trained satellite-based model was tested
on the test-set of another satellite data subset. In some cases performance increased compared to the
dataset on which it was trained, while for others it decreased. Overall, no noteworthy improvements
in performance were observed. Second, we observed that satellite-based models did not transfer well
to image datasets that had different patch sizes than the ones on which they were trained. For example,
satellite-based models trained on patches of size 32 × 32 performed worse when tested on patches of
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other sizes. This could be caused by context and GSD, as explained in Section 4.3. Finally, in some
cross-tests, instead of the model, the dataset seemed to be the driving factor behind systematically
high performances. For example, the flooding data subset yielded on average a F1-score of 0.62 for all
patch sizes combined. This was systematically higher than for all other datasets. We expect that these
results were driven by the flood-induced damage pattern, as explained in Section 4.3.

Next, we examined the cross-test results for UAV-based models. Again, general findings are
highlighted. First, we observed that UAV-based models trained on specific patch sizes transferred well
to patches of other sizes. A model trained on 32 × 32 patches from L’Aquila performed equally well on
64 × 64 patches from L’Aquila. We expect that this can be explained by the level of detail that is retained
in UAV patches when the image is up- or down sampled during inference. Second, contrary to the
findings for satellite imagery, no dataset seemed to drive the performance of datasets in a specific way.

Finally, we examined cross-platform transferability where we observed the performance of
trained UAV or satellite models that were tested against the test set of either UAV or satellite imagery.
The immediate observation is that the proposed method cannot be transferred cross-platform.

In summary, the models showed to transfer well if the test buildings look similar to the ones
on which they were trained. Contrary to the desired outcome, transferability to buildings that are
different in style was not unilaterally shown. We argue that the range of building appearances is
yet too large for the Generator to learn an image distribution that is narrow enough to distinguish
damaged buildings. Moreover, it is learned that no assumption can be made on the visual likeliness
of buildings based on geographic appearance. However, we argue that transferability is less of an
issue compared to traditional supervised methods considering that our method can be trained using
pre-event data for the location of interest, which is often easily achieved.

4.5. Comparison Against State-of-the-Art

Table 4 shows how our proposed method compares against other state-of-of the art methods.
Before comparing results for satellite-based models, we note that the xView2 baseline and the ranked
contenders scores in the first and second row were based on the combined localization and multi-class
classification F1-scores [29]. The third row shows the classification F1-score of the ranked contenders [29].
Our score is based on the binary classification F1-score. Because the supervised approaches considered
all disasters at once, our reported F1-score is the average of F1-scores obtained using the pre-processed
methods using patches of 32× 32, which were reported in Table 2. Our method improved on the xView2
baseline but performed lower than the supervised method of the ranked contenders. Considering that
our method is unsupervised, uses only pre-event imagery, makes no use of building footprints during
damage detection training and is not pre-trained to boost performance, our results are encouraging
and show that reasonable results can be obtained with minimal effort.

Table 4. Performance differences between our proposed method and comparable supervised
CNN approaches.

Method Recall Precision F1-score

Satellite

Supervised—localization
and classification

(xView2 baseline [29])

- - 0.265

Supervised—localization
and classification

(Ranked contenders [29])

- - 0.741

Supervised—classification
(Ranked contenders [29])

- - 0.697

Ours—classification - - 0.444

UAV

Supervised—no fine-tuning [13] 0.538–0.814 0.741–0.934 0.623–0.826
Supervised—fine-tuning [13] 0.651–0.969 0.803–0.933 0.725–0.915

Ours 0.591 0.97 0.735

396



Remote Sens. 2020, 12, 4193

Before comparing results for UAV-based models, we note that the supervised results are reported
as ranges, considering how different cross validation experiments were carried and reported in the
original paper [13]. Our results are derived from our best performing European-based model using
patches of 64 × 64 (Figure 8). Our results perform on par with the supervised approach without
fine-tuning. In fact, our precision value exceeds the highest precision value found by the supervised
methods. Our F1-score is constantly within the range of values found for the supervised method.
Our recall score comes close to the lower range of recall values obtained using supervised methods.
This suggested that, as can be expected, supervised methods outperform our unsupervised method.
Moreover, it suggests that having examples of damage of interest are of benefit to recall values.
Nonetheless, our method is more practical considering that it is unsupervised, and only requires single
epoch imagery and, therefore, can be directly applied in post-disaster scenarios.

Finally, we note how the recall values for both the supervised and our method were always lower
than the precision values, suggesting that building damage detection remains a difficult task despite
using supervised methods.

5. Discussion

5.1. Applicability and Sensitivity of Skip-GANomaly

First, the applicability and sensitivity of satellite-based models are discussed. Satellite imagery is
generally a difficult data type for unsupervised damage detection tasks due to their visual complexity,
which is subject to temporal variety, and due to large GSDs, which make it difficult to detect detailed
damage. This difficulty is reflected by the baseline results obtained using our proposed method.
However, we showed how performance can be improved. In line with the results found for aerial
imagery [23], reducing the complexity of the baseline dataset, e.g., removing vegetation and shadowed
patches, improved performances, especially for the 32× 32 novegshad@10% based model. Cropping the
training patch sizes in order to reduce the visual complexity did not always yield better performances.
We argued in Section 4.3 that context is suspected to play a role. Comparing the performance of our best
scoring pre-processed model, a F1-score of 0.556, to the F1-score of 0.697 obtained by ranked contenders
in the Xview2 contest for damage classification, our results are encouraging [29]. This is especially
so considering that our method was unsupervised and only used a single epoch, whereas their
methodology was supervised and multi-epoch.

We conclude that satellite-based ADGANs are sensitive to pre-processing, and reducing the
complexity of the training data by applying pre-processing helps to improve performance. This finding
is not necessarily novel. However, our specific findings on how reducing the complexity for specific
disaster-types influences performance has provided insight on the importance of context, and allowed
us to define practical guidelines that can be applied by end users. As an example, for disasters such as
floods and fires, pre-processing is not strictly necessary to obtain good results. However, for other
disasters, a downside of this method is that, once stricter pre-processing rules are applied, the numbers
of samples on which the model can conduct inference declines. Future research can look into other
ways to deal with vegetation or shadows. The idea of weighing these objects differently during training
can be the focus, which, as explained in Section 3.1, was explored in early phases of this research.

Next, the applicability of UAV-based models will be discussed. We found that the UAV-based
baseline model performed generally better than satellite-based baseline models. Location-based
UAV models surpassed the performance of all satellite-based models, with the F1-score reaching
0.735. These results are satisfactory when compared to the F1-score of 0.931 obtained by [13],
who used a supervised CNN to detect building damage from similar post-event UAV datasets. Again,
considering our unsupervised and single-epoch approach, which only makes use of undamaged
buildings for training, our method showed to be promising.

The importance of contextual information was explained in Section 4.3. We showed how flood
or fire-induced building damage was likely deduced from contextual information, rather than from
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the building itself. The contextual information has a negative influence towards the classification in
disaster events where the damage is small-scale and the affected area is densely built-up. These findings
suggest that, in practice, each event has to be approached case by case. However, we are able to provide
broad practical guidelines: when the disaster has the characteristic of inducing large-scale damage to
the terrain such as floods, the image training size can be 256 × 256.

Finally, we showed in Section 4.3 how detailed damage maps can be derived using simple image
differencing between the original and generated image. As of yet, we are not aware of any other
method that can produce both image classifications and damage segmentations without explicitly
working towards both these tasks using dedicated supervised deep learning architectures and training
schemes. Our method, therefore, shows a practical advantage compared to other methods.

Future work can focus consider the following: the rationale behind our sensitivity analysis was
that reducing the visual information being fed to the Generator steers the Generators inability to
recreate damaged scenes, which in turn helps the Discriminator distinguish fake from real. As an extra
measure, future work can focus on strengthening the discriminative power of the Discriminator earlier
on in the training process, by allowing it to train more often than the Generator, thus increasing its
strength while not limiting the reconstructive capabilities of the Generator. Future work can also
investigate the potential of alternative image distancing methods to obtain noiseless anomaly scores.
The log-ratio operator for example, often used to difference synthetic aperture radar (SAR) imagery,
considers the neighborhood pixels to determine whether a pixel has changed [59]. It is expected that
such a differencing method lead to a decrease of noisy anomaly scores, and thus a better ability to
distinguish between anomalous and normal samples.

5.2. Transferability

In general, a heterogeneous performance was observed for satellite-based models when tested on
test-sets of other satellite sub-sets. Performance fluctuated for the different datasets and regardless
of whether the model tested well on the dataset for which it was trained. This suggests that
satellite-based models do not transfer well to other geographic locations or other typologies of disasters.
This finding is in contrast with one specific finding from our preliminary work. There, we found that
aerial-based models, trained on patches that were pre-processed according to the novegshad@10%
rule, transferred well to other datasets [23]. We did not observe the same for the satellite-based model
novegshad@10%. A possible explanation can be that the novegshad@10% model was not able to find
the normalcy within other datasets, because the amount of training samples is small (see Figure 6).
Therefore, the learned image distribution is too narrow. This could have led to an overestimation of
false positives once this model was tested on other datasets.

Contrastingly, a homogeneous performance was observed for UAV-based models when tested
on test-sets of other UAV sub-sets. Consistent performance was observed when models were tested
on different datasets or different patch sizes. In addition, the model performance stayed high if the
performance was high for the dataset on which it was trained. Specifically, we found that models
transferred well if the buildings on which the model was tested looked similar to the buildings on
which it was trained. For example, locations in Italy (L’Aquila and Pescara del Tronto) looked similar
and were shown to transfer well. Locations in Asia (Taiwan and Nepal) looked very dissimilar in
appearance and did not transfer well. Similar conclusions for the transferability of Italian locations
were found in [13]. In line with the conclusion drawn in [13], we agree that the transferability of
a model depends on whether the test data resemble the data on which it was trained. A model that
cannot find the normalcy in other datasets is likely to overestimate damage in this dataset. Therefore,
our previously stated assumption that buildings in the same geographic region look alike is not
always valid. In future approaches, attention should be given to how geographic regions are defined.
Categorizing buildings not based on the continent in which they are located, but on lower geographic
units such as municipalities or provinces, might lead to a better approximation by the AGDAN of what
constitutes a normal building in that geographic unit.
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5.3. Practicality in Real-world Operations

The general conclusion is drawn that ADGANs can be used for damage detection from satellite
images on the condition that the imagery is pre-processed to contain minimal vegetation and shadows.
Considering how pre-processing is largely automated, this step is not a limitation. Nonetheless,
cases were found where models yielded high performance, regardless of the presence of vegetation
and shadows. The performance of satellite-based models trained on original imagery from flood and
fire disasters was high and, therefore, these datasets do not have to be pre-processed, thus saving time.

We showed that damage maps could be constructed in the cases where context provides a significant
contribution. These show, in detail, where damage is located. During inference, these maps can be
created instantly, and they can therefore provide valuable information in the post-disaster response
and recovery phase.

As stated in the introduction, a main limitation of UAV-based models is that UAV-based imagery
needs to be collected in the pre-event stage. Considering how UAV-imagery collection is still
a human-driven task, this might be difficult to achieve. However, the advantage is that data
acquisitions can take place any time during the pre-event stage. Therefore, practical advice to end-users
who wish to apply this methodology is to collect UAV-imagery of buildings in the pre-event stage
in advance.

A final note of consideration is the following: the assumption is made that the normal dataset is
free of anomalies. However, day-to-day activities such as constructions can result in visual deviations
from normal that are not strictly damage [45]. In practice, care has to be taken to make the distinction
between what is damaged and what is simply an anomaly.

6. Conclusions

In this paper, we proposed the use of a state of the art ADGAN, Skip-GANomaly, for unsupervised
post-disaster building damage detection, using only imagery of undamaged buildings from the
pre-epoch phase. The main advantage of this method is that it can be developed in the pre-event stage
and deployed in the post-event stage, thus aiding disaster response and recovery. Special attention
was given to the transferability of this method to other geographic regions or other typologies of
damage. Additionally, several Earth observation platforms were considered, since they offer different
advantages for data variety and data availability. Specifically, we investigated (1) the applicability of
ADGANs to detect post-disaster building damage from different remote sensing platforms, (2) the
sensitivity of this method against different types of pre-processing or data selections, and (3) the
generalizability of this method over different typologies of damage or locations.

In line with earlier findings, we found that the satellite-based models were sensitive against the
removal of objects that contained a high visual variety: vegetation and shadows. Removing these
objects resulted in an increase in performance compared to the baseline. Additionally, in order to
reduce the visual variety in the original images, experiments were conducted with varying image patch
sizes. No clear difference in performance of different patch sizes was observed. UAV-based models
yielded high performance when detecting earthquake-induced damage. Contrary to satellite-based
models, UAV-based models trained on smaller patches obtained higher scores.

UAV imagery contained small GSDs and showed damage in high detail. Therefore, models based
on UAV-imagery transferred well to other locations, which is in line with earlier findings. Models based
on satellite-imagery did not transfer well to other locations. The results made it evident that image
characteristics (patch size and GSD), and the characteristics of the disaster induced damage (large-scale
and small-scale), play a role in the ability of satellite-based models to transfer to other locations.

Compared to supervised approaches, the obtained results are good achievements, especially
considering the truly unsupervised and single-epoch nature of the proposed method. Moreover,
the limited time needed for training in the pre-event stage and for inference in the post-event stage
(see Section 3.4) make this method automatic and fast, which is essential for its practical application in
post-disaster scenarios.
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Abstract: Generative adversarial networks (GANs) are a type of neural network that are characterized
by their unique construction and training process. Utilizing the concept of the latent space and
exploiting the results of a duel between different GAN components opens up interesting opportunities
for computer vision (CV) activities, such as image inpainting, style transfer, or even generative art.
GANs have great potential to support aerial and satellite image interpretation activities. Carefully
crafting a GAN and applying it to a high-quality dataset can result in nontrivial feature enrichment.
In this study, we have designed and tested an unsupervised procedure capable of engineering new
features by shifting real orthophotos into the GAN’s underlying latent space. Latent vectors are a
low-dimensional representation of the orthophoto patches that hold information about the strength,
occurrence, and interaction between spatial features discovered during the network training. Latent
vectors were combined with geographical coordinates to bind them to their original location in the
orthophoto. In consequence, it was possible to describe the whole research area as a set of latent
vectors and perform further spatial analysis not on RGB images but on their lower-dimensional
representation. To accomplish this goal, a modified version of the big bidirectional generative
adversarial network (BigBiGAN) has been trained on a fine-tailored orthophoto imagery dataset
covering the area of the Pilica River region in Poland. Trained models, precisely the generator and
encoder, have been utilized during the processes of model quality assurance and feature engineering,
respectively. Quality assurance was performed by measuring model reconstruction capabilities
and by manually verifying artificial images produced by the generator. The feature engineering
use case, on the other hand, has been presented in a real research scenario that involved splitting
the orthophoto into a set of patches, encoding the patch set into the GAN latent space, grouping
similar patches latent codes by utilizing hierarchical clustering, and producing a segmentation map
of the orthophoto.

Keywords: machine learning; generative adversarial networks; feature engineering; orthophoto;
unsupervised segmentation

1. Introduction

There is no doubt that aerial imagery is a source of valuable information about
geographical space. The rapid development of remote sensing technology supported by
a significant improvement in access to remote sensing imagery [1] led to an increased
interest in the potential use of the collected material among academia, government, and
private sector representatives in areas such as urban planning, agriculture, transport,
etc. Substantial quantities of image data have become available in recent years thanks to
opening public access to images acquired by satellites such as Landsat 8 [2], Sentinel-2
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A/B [3], and Pléiades [4]. Furthermore, due to the epidemiological situation in Poland, the
government decided to open access to national orthophoto resources [5]. Access to high-
quality and properly curated image repositories undoubtedly promotes the development
of new ideas and contributes to the emergence of various methods and techniques for
analyzing collected data.

The use of aerial and satellite images in the basic task of remote sensing that deals with
land cover and land use classification is indisputable. At an early stage of remote sensing
development, the possibility of distinguishing certain spatial units by interpreting the
spectral, textural, and structural features of the image was indicated. Olędzki postulated
extracting homogenous fragments of satellite images called photomorphic units. These
units were similar in terms of structure and texture and originated from natural processes
and man-made transformations of the environment [6,7]. Descriptive definitions of image
features were soon replaced by mathematical formulas [8]. Further development has led to
the introduction of object classification procedures, in which, in addition to the brightness
parameters of the image pixels, their neighborhood and the shape and size of the distin-
guished objects were taken into account [9]. Object-oriented analysis is based on databases
and fuzzy logic. Probably the most popular implementation of this paradigm in remote
sensing applications is in the one originally developed in eCognition [10]. These techniques
have been successfully applied to research on landscape structure and forestry [11]. Re-
ferring to division units used in physico-geographic regionalization [12,13], Corine Land
Cover [14,15], or for the purposes of ecological research [16,17], an additional meaning and
hierarchical structure [18,19] can be also given to units distinguished from the landscape.
At the same time, it is important to properly take care of the appropriate adjustments of
the scale of the study and data relevant for the analyzed problem, so as not to overlook im-
portant features of the area that may affect the reliability of the analysis, i.e., to mitigate the
issues connected with spatial object scaling and the scale problem [20]. What is important
is that the separation of landscape units cannot be based only on image data [21]. It is also
necessary to take into account data on lithology, morphogenesis, terrain, geodiversity [22],
water, and vegetation. The latter is interesting due to the fact that vegetation is represented
in remote sensing imagery to the greatest extent both in terms of properties and structure.
Therefore, it has great potential for being utilized in landscape quantification [23]. It should
be mentioned that the process of identifying landscape units is also affected by human ac-
tivity and created by the cultural landscape. Another major achievement in remote sensing
image classification is the introduction of algorithms based on neural networks [24].

The influence of machine learning and deep learning on contemporary remote sensing
techniques and their support in geographical space analysis is undeniable [25]. There
are multiple fascinating applications of machine learning (ML) and deep learning (DL)
in the remote sensing domain like land use classification [26], forest area semantic seg-
mentation [27], species detection [28], recognition of patches of alpine vegetation [29,30],
classification of urban areas [31], roads detection [32], etc.

What a significant part of these studies have in common is the focus on utilizing
convolutional neural network (CNN) architectures capable of solving problems that can
be brought down to traditional computer vision (CV) tasks like semantic segmentation,
instance segmentation, or classification. This is directly associated with the underlying
mechanism that enables the network to encode complex image features. CNN’s convo-
lutional filters are gradually trained to gain the ability to detect the presence of specific
patterns. Frequently, the training routine is performed in a supervised manner. The model
is presented with target data and uses it to learn the solution. Supervised learning is
capable of achieving extraordinary results but at the same time relies on access to manually
labeled data. Another incredibly interesting approach is to train the neural network without
any pre-existing labels to let it discover the patterns on its own. Although unsupervised
learning algorithms like clustering are well-known among remote sensing researchers,
utilizing convolutional neural networks is still to gain trust. The way of training a neural
network can be even more intriguing when you exchange human supervision with machine
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supervision, and let multiple neural networks control their learning progress and work
like adversaries.

Generative adversarial networks (GANs) are constructed from at least one discrimina-
tor and one generator network. The main goal of these two networks is to compete with
each other in the form of a two-player minimax game [33]. The generator tries to deceive
the discriminator by producing artificial samples, and the discriminator assesses whether it
is dealing with real or generator-originating samples. The generator network is producing
samples from a specified data distribution by transforming vectors of noise [34]. This
technique was successfully applied in multiple remote sensing activities from upsampling
satellite imagery [35], deblurring [36] to artificial sample generation [37]. GANs’ artificial
data creation capabilities are not the only aspect that makes them interesting for remote
sensing. When exploring the theory behind GANs, one should observe that, to perform
its work, the generator retains all the information needed to produce a complex sample
using only a much simpler representation called the latent code [33]. In terms of spatial
analysis, this means that the network is able to produce a realistic image of an area using
only a handful of configuration parameters as input. In the classic approach to GANs, this
image recipe is reserved only for artificially generated samples. It was the introduction of
bidirectional GANs and adversarial feature learning [38] that allowed to extract the latent
code from ground truth (real) samples. The novelty of this approach when applied to aerial
imagery is that it allows performing advanced spatial analysis using lower-dimensional
representations of the orthophoto computed by a state-of-the-art neural network rather
than utilizing raw image data. This method resembles algorithms like principal component
analysis (PCA) but, instead of treating the image on the pixel level, it operates on the
spatial features level and, therefore, offers a richer analysis context. The projection, a latent
vector, serves as a lightweight representation of the image and holds information about
the strength, occurrence, and interaction between spatial features discovered during the
network training. This interesting capability opens up new possibilities for geographical
space interpretation such as

• extracting features to fit in a variety of machine learning and spatial analysis algo-
rithms like geographically weighted regression, support vector machines, etc.;

• minimizing resource consumption when processing large areas;
• discovering new features of analyzed areas by carefully exploring the network la-

tent space.

The principal goal of our study is to evaluate the potential of bidirectional generative
adversarial networks in remote sensing feature engineering activities and unsupervised
segmentation. Therefore, the following hypotheses have been defined:

1. The image reconstruction process is strong enough to produce artificial images that
closely resemble the original;

2. Similar orthophoto patches can produce latent space codes that are close to each other
in the network latent space, therefore, preserving the similarity after encoding;

3. Latent codes enhanced by geographical coordinates can serve as artificial features
used during geographical space interpretation by classical algorithms such as agglom-
erative clustering.

2. Materials and Methods

Figure 1 presents an overview of the proposed procedure composed of the following
steps: preparing an orthophoto patches dataset, training the big bidirectional generative
adversarial network (BigBiGAN), utilizing the network encoding module to convert or-
thophoto patches to their latent codes, enriching the data with geographical coordinates,
and performing geospatial clustering on enriched latent codes.
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Figure 1. Investigation overview.

2.1. Research Area

To be able to produce precise results, generative models need to be trained on high-
quality datasets. The dataset needs to be large enough to cover the variety of spatial
features that the encoder will be able to utilize when interpreting the input image. The
authors decided to utilize RGB orthophotos of the Pilica River and Sulejowski Reservoir
regions in Poland. The area from which the samples have been obtained includes the Plica
River valley between Maluszyn and Tomaszów Mazowiecki together with adjacent areas
(see Figure 2).

According to the physico-geographical regionalization of Poland [13], the southern
and eastern parts of the area are located in the province of Polish Uplands, the macrore-
gion of the Przedbórz Upland, the mesoregions of Włoszczowa Basin, Radomsko Hills,
Przedbórz-Małogoszcz Range, and Opoczno Hills. The northwestern part is located in the
mesoregions of the Piotrków Plain and the Białobrzegi Valley, which are part of the South
Mazovian Hills macroregion in the Central European Lowland Province. The consequence
of the location in the border zone of the Polish Uplands and the Central European Low-
land is the interpenetration of features characteristic of both provinces and the relative
diversification of the natural environment of the area.

According to the tectonic regionalization [39], a fragment of the area located south
of Przedbórz includes the Szczecin–Miechów Synclinorium, constructed mainly from
Cretaceous rock formations. The rest of the area belongs to the Mid-Polish Anticlinorium,
dominated by Jurassic carbonate rocks.

The axis of the selected area is the Pilica River valley. The chosen section of the valley
is in a natural condition. The Pilica River flows in an unregulated, sinuous to a meandering
channel that is not embanked along its entire length from Maluszyn to the vicinity of
Sulejów. There, it reaches the Smardzewice dam waters of the Sulejowski Reservoir. The
valley floor descends from 211 m above sea level in the south to 154 m above sea level in
the north, and the stream gradient equals 0.51%. The width of the valley varies from about
300 m in the vicinity of Sulejów and Przedbórz to over 3 km near Łęg Ręczyński. It reaches
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its greatest width in places of well-formed levels of over-flood terraces occurring on both
sides of the floodplain.

Figure 2. Research area, source: own elaboration based on physico-geographical regionalization of
Poland [13] and Head Office of Geodesy and Cartography data [40]. Mesoregions codes are consistent
with those introduced in the referenced paper and therefore enable precise localization of the research
area within Polish mesoregions.

The valley cuts down the adjacent plain and undulating moraine uplands to about
20–25 m. These landforms were formed in the Quaternary, mainly during the Pleistocene
glaciations of the Middle Polish Complex. Within the uplands on both sides of the Pilica
River, the thickness of Quaternary sediments decreases from the north to the south. The
surface area of Mesozoic outcrops increases, which is a result of the weakening of the
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landforming capacity of the ice sheets as they entered the uplands. Absolute heights
of culminations, in the form of isolated hills built of Mesozoic Jurassic and Cretaceous
rocks within the Radomsko and Opoczno Hills, are also increasing, e.g., Diabla Góra
272 m, Czartoria Range 267 m, Bąkowa Góra 282 m, the form of ridges in the Przedbórz–
Małogoszcz Range exceeding 300 m above sea level, or Bukowa Góra 336 m.

The varied topography and the near-surface geological structures, in addition to the
humidity conditions, shape the mosaic of land cover types. The area is poorly urbanized.
The ground moraine plateaus are dominated by arable land, fluvioglacial plains, and
other sandy areas largely occupied by forests and abandoned arable lands. In the valley,
the over-flood terraces are characterized by complex systems of arable land, fallow land,
forests, and meadows. The floodplain is dominated by meadows and pastures, in many
places overgrown with shrubs and trees after their agricultural use ceased [41].

2.2. Dataset

The Pilica River region dataset covers the area of 691.86 km2 and was generated using
138 orthophoto sheets that intersect with a 4 km buffer around the Pilica River from Sulejów
to Maluszyn and Sulejowski Reservoir in Łódź Voivodeship in Poland. All orthophotos
were acquired using GEOPORTAL2 [42] and possess three channels—R-red, G-green, and
B-blue with 25 cm pixel ground sample distance (see Figure 3).

 

Figure 3. Examples of the Pilica River region dataset samples (512 px × 512 px patches). From the
upper left corner: forest and a barely visible forest path outline, farmlands cut by a sandy road
planted with trees, forest with an adjacent land abandonment, forest, farmlands, river valley, forest
and an overgrown meadow, forest with clearly outlined shadow and a dirt road, farmlands, water
reservoir, forest cut by a road, recently plowed farmland with balks, and a young forest.

During the preprocessing phase each image was split into 128 px × 128 px, 256 px
× 256 px, 512 px × 512 px, and 1024 px × 1024 px patches. This step was crucial for
electing the optimal image size and resizing approach to satisfy the requirements of the
chosen neural network architecture and its internal complexity. The choice of image size
directly influences hardware requirements, the ability of the neural network to learn image
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features needed during the assessment of the reconstruction process, and, important from
a GAN perspective, overall dataset size. It was highly important to utilize the patches large
enough to be described by complete and interpretable spatial features. Image size also
affects the size of the input and output tensors and the handful of technical parameters
that a processing unit can handle. The authors decided that, during the research, a single
GPU (Nvidia Titan RTX in US) and CPU (AMD Threadripper 1950 in US) will be used, and
all computations have to fit their representative capacity. This is due to ensuring that the
results can be reproduced without using a multi-GPU cluster. In consequence, the authors
decided to utilize:

• A series of 256 px × 256 px patches for encoder input, which were resized from 512 px
× 512 px patches using bilinear interpolation. Although 256 px × 256 px is either the
network nor hardware limit, it gives the opportunity to choose a larger batch, which
significantly affects BigBiGAN performance. Furthermore, 512 px × 512 px (128 m ×
128 m) patch is richer in spatial information;

• A series of 128 px × 128 px patches for image discriminator input, explicitly defined
by BigBiGAN architecture for 256 px × 256 px encoder input;

• A series of 128 px × 128 px patches for generator output, which were the minimal
interpretable patch size.

Geographical references of each patch and source image metadata have been preserved
to enable reprojecting the results back to their original location. Patches acquired from
137 images were divided, in accordance with the established practice of machine learning,
into two subsets of 512 px × 512 px images in the following proportions 0.95 and 0.05,
forming a training set (39826 patches) and validation set (2096 patches). Remaining images
were also processed and formed two test sets—one containing 1224 (256 px × 256 px)
patches and another containing 306 (512 px × 512 px) patches. The authors introduced
an additional test set of 256 px × 256 px patches that were smaller than the defined
training size to verify whether the solution is capable of handling input material potentially
containing less spatial information than it was trained on.

Afterward, a data augmentation procedure was defined to increase the diversity
of managed datasets by applying specified image transformations in a random manner.
Augmentation of the dataset is important from the point of view of GAN because the
network has a higher chance to adapt to different conditions such as lighting or spatial
feature shape changes, and at the same time, less data is needed for the network to converge.
The authors decided to utilize basic post-processing computer vision techniques, such as
adding or subtracting a random value to all pixels in an image, blurring the image using
gaussian kernels, applying random four-point perspective transformations, rotating with
clipping, or flipping the image. What is important, each transformation was applied only
during the training phase and the decision of whether to apply it was random. Finally, a
TensorFlow data processing pipeline(US; Mountain View; California) was implemented to
ensure that reading and augmenting the data would efficiently utilize all computational
resources. The main goal was to support the GPU with constant data flow orchestrated by
the CPU and enable shuffling across batches, which turned out to be crucial when working
with complex network architectures and utilizing a relatively small batch size, i.e., below
128 samples.

2.3. Generative Adversarial Network

The authors decided to use the bidirectional generative neural network (BiGAN) [38]
architecture as a starting point and gradually updated its elements to end up with the
final solution closely resembling BigBiGAN. An interesting, proven property of these
architectures is the ability to perform the inverse mapping from input data to the latent
representation. This makes BiGAN and BigBiGAN great candidates to address the research
problem, i.e., finding a transformation capable of mapping a multichannel image to a fixed
size vector representation. BigBiGAN can be used to shift a real image to the latent space
using the encoder network.
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The resulting latent space code can be then utilized as generator input to reconstruct
an image similar to the original encoder input. Achieving the same input and output is
hard or even impossible due to the fact that the pixel-wise reconstruction quality is not
even a task for bidirectional GANs, and therefore, there is no loss function assigned to
assess it. One can think of reconstruction as a process of enabling a mechanism of lossy
image compression and decompression that operates—not on pixel level—but feature
level. The similarity measure can be chosen arbitrarily but has to have sufficient power to
reliably score the resemblance of the input and output images passed through the encoder
and generator. A high-quality encoder is powerful enough to store information regarding
crucial spatial features of the input image, thus making it a great candidate for the main
module in an automatic feature engineering mechanism to automatically generate large
numbers of candidate properties and selecting the best by their information gain [43].

To avoid recreating an existing solution, the authors decided to focus on reusing the
BigBiGAN design and adjusting it to processing orthophoto images (see Figure 4). BigBi-
GAN consists of five neural networks—a generator and an encoder, which are accompanied
by discriminators that assess their performance in producing respectively artificial images
and latent codes. Results from both intermediate discriminators are then combined by the
main discriminator. In the research, a modification of BigBiGAN was utilized to tackle the
problem of encoding orthophoto patches to the network underlying latent space. Although
the generator and main discriminator architectures have been preserved, the encoder and
intermediate discriminators went through a minor modification. As suggested in a study
on the BigBiGAN [44], the RevNet model was simplified to reduce the number of parame-
ters needed to train the encoder. Intermediate discriminators contained fewer multilayer
perceptron modules (MLP), which were composed of smaller numbers of neurons. In
consequence, this enabled the use of slightly bigger batches and, therefore, yielded better
results at the cost of a training time increase. The final architecture was implemented in
TensorFlow 2 and Keras. Figure 4 presents the final model training sequence blueprint.

2.4. Hierarchical Clustering

Latent space code is a 120-dimensional vector of real numbers produced by applying
a GAN encoder on an orthophoto patch. Such code contains information regarding spatial
features present in the scope of the encoded patch. Each part of the code controls the
strength and occurrence of one or more spatial features discovered during the neural
network training. One of the important features of the latent space is that codes that are
closer to each other in terms of the Euclidean distance (L2 norm) are more similar in terms
of the represented features, i.e., two forest area patches will be closer in the latent space
than a forest area and farmland patches [45].

Furthermore, each patch holds information regarding its georeferences. To simplify
further analyses, georeferences were expressed as the location of the patch center. Patch
center geographical coordinates were preserved during the computation and combined
with corresponding latent codes. This opened the possibility to describe a larger area, com-
posed of multiple patches, in the form of a 120-dimensional point cloud where each point
holds the information regarding its original location. The combination of georeferences
and latent space code is called a georeferenced latent space for the purpose of this research
(see Figure 5).

The similarity between patches, precisely between their encodings, and informa-
tion regarding geographical location can serve as input for methods and techniques of
geospatial clustering. During their research, the authors focused on utilizing hierarchical
clustering to discover a predefined number of clusters in a patch dataset describing a single
test orthophoto. Hierarchical clustering is a general family of clustering algorithms that
build nested clusters by successively merging or splitting them [46]. The metric used for
the merge strategy is determined by the linkage strategy. For the purpose of clustering
the georeferenced latent space, Ward’s linkage method [47] was used. Ward’s method
minimizes the sum of squared differences within all clusters. It is a variance-minimizing
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approach and, in this sense, is similar to the k-means objective function but tackled with an
agglomerative hierarchical approach. The connectivity matrix has been calculated using
the k-nearest neighbors algorithm (k-NN).

Figure 4. Big bidirectional generative adversarial network (BigBiGAN) training process.
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Figure 5. Latent space enhanced with geographical coordinates. The simplified image presents an example of encoding of
the nine orthophoto patches (right) to a three-dimensional latent space (left) illustrated as a three-dimensional Cartesian
coordinate system. Each latent code (a point in the latent space) carries additional information regarding georeferences
that enables tracking its origin. Points that are closer in the three-dimensional latent space refer to patches that are visually
similar. In the research, a 120-dimension latent space was trained.

3. Results

3.1. Model Training

Multiple model training session revealed that tackling the objective of training an
orthophoto patch encoder is inseparably related to preparing generator and discriminator
neural networks that are complex enough to learn all the features present in the input
orthophoto. The networks have to be able to produce high-quality artificial images and
determine whether the image is artificially generated or not, respectively. This directly
influences the following:

• The overall size of the neural network, which is crucial due to GPU memory limitations
and affects training duration;

• Maximum patch size that can be used as input during training and inference phases
and is related to the level of detail offered in the processed dataset;

• Batch size, which has a significant influence on the stability and quality of generative
adversarial models [44].

Initially chosen BiGAN architecture utilizes many concepts from previously designed
networks such as deep convolutional GAN (DCGAN) [48] that, due to their simplicity,
are not suitable for processing complex or large images. Therefore, their usefulness in the
analysis of aerial imagery is limited. Although BiGAN offered all of the required earlier
features, it was not capable of processing an orthophoto patch of size exceeding 32 pixels in
both dimensions. This was a huge limitation due to the fact that, with a given 25 cm pixel
ground sample distance, this method covered roughly the area of 64 m2. In consequence,
the processed patch did not carry enough details to allow a reliable assessment of the
similarity between real and artificial images. Attempts to increase the maximum processed
input size led to swapping default BiGAN generator and discriminator models with other
network types based on deep residual blocks [49] and inception modules [50]. The overall
architecture of the generator and discriminator pair resembled BigGAN [51].
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After multiple experiments, the authors confirmed that, despite the ability to gen-
erate images up to 512 px × 512 px, the network was not capable of learning a reliable
bidirectional mapping between the image and the latent space. This was due to the fact
that the encoder architecture was lacking in comparison with its powerful counterparts.
This problem has been addressed and mitigated in the paper describing large adversarial
features learning and the big bidirectional generative adversarial network (BigBiGAN) [44]
by introducing intermediate discriminators and proposing a stronger encoder model (Sup-
plementary Materials).

3.2. Reconstruction

BigBiGAN neural network was trained for 200,000 steps with a batch containing
32 randomly picked patches from the training set. The trained model was saved during
each reconstruction period that occurred every 1000 steps. During this period, patches from
the validation set were fed, in inference time, to the encoder and generator to measure their
power in creating artificial samples and close to the inversible encoding in terms of spatial
features. Three types of metrics were calculated for each saved model to evaluate the
reconstruction quality—pixel-wise mean absolute error (MAE) of image values normalized
between –1 and 1, Fréchet inception distance (FID) [52] on a pre-trained InceptionV3 model,
and by performing perceptual evaluation similar to that presented in the Human Eye
Perceptual Evaluation (HYPE) paper [53]. MAE above 0.5 was used to discard low-quality
models that were not able to effectively reconstruct input images in the early stages of the
training. Then, FID values of all preserved models were compared and 20 with the highest
score were selected. The average FID score was equal to 86.36 ± 7.28 in contrast to the
state-of-the-art BigBiGAN baseline FID, which was equal to 31.19 ± 0.37.

The final model was selected by comparing the results of human evaluation of 21 arbi-
trarily chosen samples from the validation dataset with their reconstructed counterparts
created by the network for each model. The human reader had an objective to assess
whether each of the 42 images is real or artificial. The last verification phase resulted in
selecting the model from the 170th reconstruction period, which yielded the least accuracy
during human perceptual evaluation (accuracy: 59.5%, f-score: 0.6663). Samples and their
reconstruction results are presented in Figure 6.

The overall quality of the reconstruction was assessed as sufficient during both quanti-
tative and qualitative verification. For the selected model evaluated on non-scaled images
(pixel values between 0 and 255), MAE was 27.213, structural similarity index (SSIM) [54]
was 0.942, and peak signal-to-noise ratio (PSNR) [55] was equal to 42.731. From the analysis
of human reader’ misclassifications, it was clear that the chosen model is exceptionally
good in reproducing areas like forests, land abandonment, and farmlands. The characteris-
tic spatial features are preserved after encoding. Shadows cast by trees are consistent and
natural. In the majority of cases, artificial and real images are indistinguishable. Mediocre
results were achieved for urbanized areas. Reconstructed roads keep their linear character
and surface type information. Although the model is capable of generating buildings, due
to the high variety of housing types present in the research area and possible undersam-
pling, the results are far from realistic. It is interesting that the link between residential
areas and roads was maintained in multiple samples. Unfortunately, the generator is
not capable of serving samples that contain water areas such as rivers or lakes. From all
analyzed images from the training and validation set only a few presented water, which
indicates weak encoding capabilities. Furthermore, all were significantly disrupted. The
authors confirmed that this is related to undersampling and the insufficient information
present in the RGB orthophoto. To tackle this issue, access to rich, multispectral imagery or
digital terrain model (DTM) is required, or the model itself needs to be enriched to utilize
additional class embeddings that could be derived from existing thematic maps or projects
like Geoportal TBD [56].
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Figure 6. Reconstruction result of 21 validation samples. Ground truth is represented by real tile
images placed on the left. Images on the right were reconstructed by the generator from real images
latent codes acquired through the encoder.

3.3. Feature Engineering

BigBiGAN encoder possesses an interesting capability that enables it to shift the input
image into the latent space constructed during network training. The encoding, a 120-
dimensional vector, should be considered simultaneously a compressed version of the
input orthophoto and a recipe for generating a similar artificial image in terms of spatial
features. The latter phenomenon is called representation learning. What is important, due
to the nature of latent space, similar data points, i.e., those that were encoded from similar
images, are closer to each other. This opens an interesting possibility to understand the
structural similarity between images by performing the analysis not on the raw image
input but only using latent codes.
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In the research, the authors utilized the trained encoder to perform inference on a
set of 256 px × 256 px test patches (see Figure 7). The 1224 test patches were converted
into their latent space codes and represented as a geopandas [57] data frame containing
1224 rows, 120 encoding value columns, identifier, and a geometry column. Afterward,
distance weights between patch centroids were calculated utilizing the k-NN algorithm [58].
The data frame and distance weights served as input parameters to the agglomerative
clustering algorithm. Figure 8 represents the results for a specified number of clusters.

 

Figure 7. Test area 72961_840430_M-34-40-B-a-2-3 [42].

Simultaneously, ground truth segmentation masks were prepared by manually divid-
ing the test image into a fixed number of regions. For the number of clusters between 2 and
10, there was an average of 17.97% ± 8.7% patch-wise difference between ground truth
and the unsupervised approach results. The more clusters were predicted the difference
was larger. Figure 9 represents the best result, which was acquired for six clusters where
the unsupervised approach misclassified 6% of patches.
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Figure 8. Agglomerative clustering of 72961_840430_M-34-40-B-a-2-3 sample encoded patches using different cluster numbers.
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Figure 9. Clustering results of sample orthophoto (72961_840430_M-34-40-B-a-2-3 [42]) patches for
fixed number of clusters (n clusters = 6). Each color represents a different cluster. Filled squares are
the result of latent space clustering. The line pattern indicates the difference between the latent space
clustering results and ground truth prepared by manual annotation.

4. Discussion

Utilizing a neural network as a key element of a feature engineering pipeline is a
promising idea. The concept of learning the internal representation of data is not new
and was extensively studied after the introduction of autoencoders (AE) [59]. Unlike
regular autoencoders, bidirectional GANs do not make assumptions about the structure or
distribution of the data making them agnostic to the domain of the data [38]. This makes
them perfectly suited for use beyond working with RGB images and opens the opportunity
to apply them in remote sensing where processing hyperspectral imagery is a standard
use case.

One of the main challenges when utilizing a GAN is determining how big a research
dataset is needed to feed the network to obtain the required result. The performance of
the generator and, therefore, the overall quality of the reconstruction process and network
encoding capabilities are tightly coupled with the input data. To be able to properly encode
an image, BigBiGAN needs to learn different types of spatial features and discover how
they interact with each other. In the early stages of the research, we identified that the
size of the dataset had a positive influence on reconstruction quality. We initially worked
with around 10% of the final dataset in order to rapidly prototype the solution. The results
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were not satisfying, i.e., we were not able to produce artificial samples that resembled
ground truth data. This prompted us to gradually increase the dataset’s size. Authors are
far from estimating the correct size of the dataset that could yield the best possible result
for a specific research area. We are sure that addressing this issue will be important in the
future development of this method.

The method of measuring the training progression of generative models still remains
a problematic issue. The standard approach of monitoring the loss value during training
and validation is not applicable due to the fact that all GAN components interact with each
other, and the loss value is calculated against a specific point in time during the training
process and, therefore, is ephemeral and incomparable with previous epochs. There are
multiple ways of controlling how the training should progress, e.g., by using Wasserstein
loss [60], applying gradient penalty [61], or spectral normalization [62]. Nevertheless, it is
difficult to make a clear statement of what loss value identifies a perfectly trained network.
Furthermore, applying GAN to tackle the problems within the remote sensing domain
is still a novelty. It is difficult to find references in the scientific literature or open-source
projects that could be helpful in determining the proper course of model training.

Although nontrivial, measuring the quality of bidirectional GAN image reconstruction
capabilities seems to be a valid approach to the task of model quality assurance. An encoder,
by design, always yields a result. It is just as true for a state-of-the-art model and its poorly
trained counterparts. Encoder output cannot be directly interpreted, which makes it hard
to evaluate its quality. The generator, on the other hand, produces a visible result that can
be measured. According to the assumptions of bidirectional models, the encoding and
decoding process should to some extent be reversible [38]. Hence, the artificially produced
image should resemble, in terms of features, its reconstruction origin, i.e., the real image
in which latent code was used to create an artificial sample. In other words, checking
generator results operating on strictly defined latent codes determines the quality of the
entire GAN.

A naive method of verification of the degree to which an orthophoto generated image
looks realistic would be to directly compare it to its reconstruction origin. Pixel-wise mean
absolute error (MAE) or a similar metric can give the researchers insight, to a limited
extent, regarding the quality of produced samples. Unfortunately, this technique only
allows getting rid of obvious errors such as a significant mistake in the overall color of
the land cover. This is due to MAE not promoting textural and structural correctness,
which may lead to poor diagnostic quality in some conditions [63]. One can approach a
similar problem when using PNSR. To some extent, SSIM addresses the issue of measuring
absolute errors by analyzing structural information. On the other hand, this method is
not taking into account the location of spatial features. BigBiGAN reconstruction process
only preserves features and their interaction not their specific placement in the analyzed
image. Inception score (IS) and Fréchet inception distance (FID) address this problem by
measuring the quality of the artificial sample by scoring the GAN capability to produce
realistic features [34]. The main drawback of the IS is that it can be misinterpreted in case
of mode collapse [64], i.e., the generator is able to produce only a single sample despite
the latent code used as input. FID is much stronger in terms of assessing the quality of the
generator. What is important, both metrics utilize a pre-trained Inception classifier [50]
to capture relevant image features and therefore are dependent on its quality. There are
multiple pre-trained models of Inception available. Many of them were created using
large datasets such as ImageNet [65]. The authors are not aware of whether a similar
dataset for aerial imagery exists. The use of FID is advisable and, as confirmed during
the research, it is valuable in proving the capabilities of the generator, but it needs an
Inception network trained on a dedicated aerial imagery dataset to be reliable. This way,
the score calculated would depend on real spatial features existing in the geographical
space. What is more, this approach is only applicable to RGB images. To perform FID
calculation for hyperspectral images, a fine-tailored classifier should be trained. Not
surprisingly, one of the most effective ways of verifying the quality of artificial images is
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through human judgment. This takes on even greater importance when approaching the
research subject requires specialized knowledge and skills, as exemplified by the analysis
of aerial or satellite imagery. Unfortunately, qualitative verification is time-consuming and
has to be supported by a quantitative method, which can aid in preselecting potentially
good samples.

BigBiGAN accompanied by hierarchical clustering can be effectively used as a building
block of an unsupervised orthophoto segmentation pipeline. The results of performing
this procedure on a test orthophoto (see Figure 9) proves that the solution is powerful
enough to divide the area into a meaningful predefined number of regions. Particularly
noteworthy is the precise separation of forests, arable lands, and build-up areas. There is
also room for improvement. Currently, the network is not capable of segmenting out tree
felling areas located in the northwest and the river channel, which would be very beneficial
from the point of view of landscape analysis. Furthermore, it also incorrectly combined
pastures and arable lands. The main drawback of this method is the need to predefine
the number of clusters. What is more, when increasing the number of clusters, artifacts
started to occur, and the algorithm predicted small areas that were not identified as distinct
regions in the ground truth image (Figure 8, n clusters = 7–10). Further analysis of latent
codes and features that they represent is needed to understand the origin of this issue.

BigBiGAN clustering procedure results resemble, to some extent, the segmentation
of the area performed during the Corine Land Cover project in 2018 (Figure 10). It is
interesting that the proposed GAN procedure shows a better fit with the boundaries
of individual areas than CLC. Nevertheless, CLC has a great advantage over the result
generated using GAN, i.e., each tile possesses information about the land cover types that it
represents. CLC land cover codes are consistent across all areas involved in the study, which
makes this dataset very useful in terms of even sophisticated analysis. This does not mean,
however, that the GAN cannot be rearmed to carry information about the land cover types.
In the initial BigGAN paper, the authors proposed a solution to enrich each part of the
neural network with a mechanism that would enable working with class embeddings [44].
The authors did not use the aforementioned solution to maintain the unsupervised nature
of the procedure. An interesting solution would be to compare the latent codes of patches
located within different regions to check how similar they are and use this information to
join similar, distant regions. To achieve this, a more advanced dataset is needed to cover a
larger area and prevent undersampling of occurring less frequently but spatially significant
features. Comparison with CLC is also interesting due to the differences in the creation
of both sets. CLC is prepared using a semi-supervised procedure that involves multiple
different information sources. In contrast, the GAN approach utilizes only orthophotos and
is fully unsupervised. Another interesting approach would be to utilize Corine Land Cover
(CLC) as the source of model labels and retrain the network to also possess the notion
of land cover types. This way, we would gain an interesting solution that would offer a
way of producing CLC-like annotations in different precision levels and using different
data sources.
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Figure 10. Orthophoto sheet 72961_840430_M-34-40-B-a-2-3 and Corine Land Cover Project (2018)
segmentation [66].

5. Conclusions

Generative adversarial networks are a powerful tool that definitely found their place
in both geographical information systems (GIS) and machine learning toolboxes. In the
case of remote sensing imagery processing, they provide a data augmentation mechanism
of creating decent quality artificial data samples, enhancing, or even fixing existing images,
and also can actively participate in feature extraction. The latter gives the researchers access
to new information encoded in the latent space. During the research, authors confirmed
that the bidirectional generative adversarial network (BigBiGAN) encoder module can be
successfully used to compress RGB orthophoto patches to lower-dimensional latent vectors.

The encoder performance was assessed indirectly by evaluating the network recon-
struction capabilities. Pixel-wise comparison between ground truth and reconstruction
output yielded the following results: mean absolute error (MAE) 27.213, structural simi-
larity index (SSIM) 0.942, peak signal-to-noise ratio (PSNR) 42.731, and Fréchet inception
distance (FID) 86.36 ± 7.28. Furthermore, the encoder was tested by utilizing output
latent vectors to perform geospatial clustering of a chosen area from the Pilica River region
(94% patch-wise accuracy against manually prepared segmentation mask). The case study
proved that orthophoto latent vectors, combined with georeferences, can be used during
spatial analysis, e.g., in region delimitation or by producing reliable segmentation masks.
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The main advantage of the proposed procedure is that the whole training process is
unsupervised. The utilized neural network is capable of discovering even complex spatial
features and code them in the network underlying latent space. In addition, handling
relatively lightweight latent vectors during analysis rather than raw orthophoto proved
to significantly facilitate the study. During processing and analysis, there was no need to
possess a real image (37MB) but only a recipe to compute in on the fly (3MB). The authors
think this feature has great potential in the commercial application of the procedure
to lower disk space and network transfer requirements when processing large remote
sensing datasets.

On the other hand, the presented method is substantially difficult to implement,
configure, and train; it is prone to errors and is demanding in terms of computation costs. To
achieve a decent result, one must be ready for a long run of trials and errors mainly related
to tuning the model and estimating the required dataset size. Regarding latent vectors,
authors have identified a major flaw related to the lack of possibility to precisely describe
the meaning of each dimension. The main disadvantage of the proposed procedure is that
the majority of steps during the evaluation of the model involves human engagement.

The authors are certain that utilizing BigBiGAN on a more robust and rich dataset, like
multispectral imagery, backed by digital terrain model (DTM) and at the same time working
on reducing the internal complexity of the network to enable processing larger patches
will result in a handful of valuable discoveries. The main focus of the research team in the
future will be the verification of the proposed method on a greater scale. Future work will
involve performing geospatial clustering of latent codes acquired for all Polish geographic
regions and presenting the comparison between classically distinguished regions and their
automatically generated counterparts.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/2/306/s1. Encoder model in h5 format with sample data is available on github.com
(maciej-adamiak/bigbigan-feature-engineering).
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R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of
contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [CrossRef]
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