
Inform
ation Bottleneck • Bernhard C. Geiger and Gernot Kubin

Information
Bottleneck
Theory and Applications
in Deep Learning

Printed Edition of the Special Issue Published in Entropy

Bernhard C. Geiger and Gernot Kubin
Edited by

Information Bottleneck: Theory and
Applications in Deep Learning

Information Bottleneck: Theory and
Applications in Deep Learning

Editors

Bernhard C. Geiger

Gernot Kubin

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editors

Bernhard C. Geiger

Know-Center GmbH

Austria

Gernot Kubin

Graz University of Technology

Austria

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Entropy (ISSN 1099-4300) (available at: https://www.mdpi.com/journal/entropy/special issues/

information theoretic computational intelligence).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0802-3 (Hbk)

ISBN 978-3-0365-0803-0 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Bernhard C. Geiger and Gernot Kubin

Information Bottleneck: Theory and Applications in Deep Learning
Reprinted from: Entropy 2020, 22, 1408, doi:10.3390/e22121408 . 1

Julius Kunze, Louis Kirsch, Hippolyt Ritter and David Barber

Gaussian Mean Field Regularizes by Limiting Learned Information
Reprinted from: Entropy 2019, 21, 758, doi:10.3390/e21080758 . 5

Tailin Wu, Ian Fischer, Isaac L. Chuang and Max Tegmark

Learnability for the Information Bottleneck
Reprinted from: Entropy 2019, 21, 924, doi:10.3390/e21100924 . 21

Thanh Tang Nguyen and Jaesik Choi

Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks
Reprinted from: Entropy 2019, 21, 976, doi:10.3390/e21100976 . 55

Artemy Kolchinsky, Brendan D. Tracey and David H. Wolpert

Nonlinear Information Bottleneck
Reprinted from: Entropy 2019, 21, 1181, doi:10.3390/e21121181 . 77

Max Tegmark and Tailin Wu

Pareto-Optimal Data Compression for Binary Classification Tasks
Reprinted from: Entropy 2020, 22, 7, doi:10.3390/e22010007 . 93

Borja Rodrı́guez Gálvez, Ragnar Thobaben and Mikael Skoglund

The Convex Information Bottleneck Lagrangian
Reprinted from: Entropy 2020, 22, 98, doi:10.3390/e22010098 . 121

Giulio Franzese, Monica Visintin

Probabilistic Ensemble of Deep Information Networks
Reprinted from: Entropy 2020, 22, 100, doi:10.3390/e22010100 . 149

Hlynur Jónsson, Giovanni Cherubini and Evangelos Eleftheriou

Convergence Behavior of DNNs with Mutual-Information-Based Regularization
Reprinted from: Entropy 2020, 22, 727, doi:10.3390/e22070727 . 167

Slava Voloshynovskiy, Olga Taran, Mouad Kondah, Taras Holotyak and Danilo Rezende

Variational Information Bottleneck for Semi-Supervised Classification
Reprinted from: Entropy 2020, 22, 943, doi:10.3390/e22090943 . 181

Ian Fischer

The Conditional Entropy Bottleneck
Reprinted from: Entropy 2020, 22, 999, doi:10.3390/e22090999 . 215

Ian Fischer and Alexander A. Alemi

CEB Improves Model Robustness
Reprinted from: Entropy 2020, 22, 1081, doi:10.3390/e22101081 . 237

Bernhard C. Geiger and Ian S. Fischer

A Comparison of Variational Bounds for the Information Bottleneck Functional
Reprinted from: Entropy 2020, 22, 1229, doi:10.3390/e22111229 . 253

v

About the Editors

Bernhard C. Geiger (Dipl.-Ing. Dr.) received the Dipl.-Ing. degree in Electrical Engineering

(with distinction) and the Dr. techn. degree in Electrical and Information Engineering (with

distinction) from Graz University of Technology, Austria, in 2009 and 2014, respectively. In 2009,

he joined the Signal Processing and Speech Communication Laboratory, Graz University of

Technology, as a Project Assistant and later accepted a position as Research and Teaching Associate

at the same lab in 2010. He was a Senior Scientist and Erwin Schrödinger Fellow at the Institute

for Communications Engineering, Technical University of Munich, Germany (2014–2017) and

a postdoctoral researcher at the Signal Processing and Speech Communication Laboratory,

Graz University of Technology, Austria (2017–2018). He is currently a Senior Researcher at

Know-Center GmbH, Graz, Austria, where he also leads the Machine Learning Group within the

Knowledge Discovery Area. Dr. Geiger’s research interests cover information theory for machine

learning, theory-assisted machine learning, and information–theoretic model reduction for Markov

chains and hidden Markov models. He is a Senior Member of the IEEE.

Gernot Kubin Gernot Kubin (Dipl.-Ing. Dr.) has been University Professor and Founding

Director of the Signal Processing and Speech Communication Laboratory at TU Graz, Austria, since

2000. He received the Dipl.-Ing. degree in 1982 and Dr. techn. degree (sub auspiciis praesidentis)

in Electrical Engineering in 1990 from TU Vienna, Austria. At TU Graz, he has served as Dean

of Studies in Electrical and Audio Engineering (2004–2007), Coordinator of the Key Research Area

Smart Systems for a Mobile Society (2004–2011), Coordinator of the Field of Expertise Information,

Communications, and Computing (2013–2015), Deputy Chair of the Curricular Committee for

Electrical and Audio Engineering (2004–2008 and 2013–2019), Coordinator of the Doctoral School

in Information and Communications Engineering (2007–now), Member of the Commission for

Scientific Integrity and Ethics (2007–2011 and 2016–now), and Chair of the Senate (2007–2010 and

2013–now). Earlier international appointments include CERN Geneva (1980), TU Vienna (1983–2000),

Erwin Schrödinger Fellow at Philips Research Labs Eindhoven (1985), AT&T Bell Labs Murray Hill

(1992–1993 and 1995), KTH Stockholm (1998), Global IP Sound Stockholm (2000–2001) and San

Francisco (2006), UC San Diego (2006), Danang UT (2009), and TU Munich (2015, 2017, and 2018).

At national level, he has demonstrated leadership in the Vienna Telecommunications Research Centre

FTW (1999–2016), the Christian Doppler Laboratory for Nonlinear Signal Processing (2002–2010), the

Competence Network for Advanced Speech Technologies COAST (2006–2010), the FWF Research

Network on Signal and Information Processing in Science and Engineering SISE (2008–2011),

the COMET Excellence Projects Advanced Audio Processing AAP (2008–2013) and Acoustic Sensing

and Design ASD (2013–2017), the Higher-Education Conference HSK (2016–now), the TU Graz

Excellence Project Dependable Internet of Things (2016–now), the Competence Network for Digital

Humanities KONDE (2017–now), the Complexity Science Hub Vienna (2017–now), the Scientific

Board of the Christian Doppler Forschungsgesellschaft (2020–now), and as Speaker of the Senate

Chairs Conference (SVK) of the Universities of Austria (2019–now). His research interests are in

nonlinear signal processing as well as speech and audio communication. He has co-authored over

180 peer-reviewed publications and advised over 30 PhD students. Dr. Kubin is the recipient of

the 2015 Nikola Tesla medal for the highest number of patents awarded to a TU Graz scientist in

5 years. He has served as a Member of the Board, Austrian Acoustics Association (2000–2015),

vii

as an elected member of the IEEE Speech and Language Processing Technical Committee (2011–2016),

and as an elected member of the Speech Acoustics and Speech Processing committees of the German

Information Technology Society ITG since 2015. He was General Chair for the INTERSPEECH 2019

conference held in Graz, Austria, in September 2019.

viii

entropy

Editorial

Information Bottleneck: Theory and Applications in
Deep Learning

Bernhard C. Geiger 1,*,† and Gernot Kubin 2,†

1 Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria
2 Signal Processing and Speech Communication Laboratory, Graz University of Technology, Inffeldgasse 16c,

8010 Graz, Austria; g.kubin@ieee.org
* Correspondence: geiger@ieee.org
† These authors contributed equally to this work.

Received: 2 December 2020; Accepted: 9 December 2020; Published: 14 December 2020

Keywords: information bottleneck; deep learning; neural networks

The information bottleneck (IB) framework, proposed in [1], describes the problem of representing
an observation X in a lossy manner, such that its representation T is informative of a relevance variable
Y. Mathematically, the IB problem aims to find a lossy compression scheme described by a conditional
distribution PT|X that is a minimizer of the following functional:

min
PT|X

(
I(X; T)− βI(Y; T)

)
(1)

where the minimization is performed over a well-defined feasible set.
The IB framework has received significant attention in information theory and machine learning;

cf. [2,3]. Recently, the IB framework has also gained popularity in the analysis and design of neural
networks (NNs): The framework has been proposed to investigate the stochastic optimization of NN
parameters with information–theoretic quantities, e.g., [4,5], and the IB functional was used as a cost
function for NN training [6,7].

Based on this increased attention, this Special Issue aims to investigate the properties of the IB
functional in this new context and to propose learning mechanisms inspired by the IB framework.
More specifically, we invited authors to submit manuscripts that provide novel insight into the
properties of the IB functional that apply the IB principle for training deep, i.e., multi-layer machine
learning structures such as NNs and that investigate the learning behavior of NNs using the IB
framework. To cover the breadth of the current literature, we also solicited manuscripts that discuss
frameworks inspired by the IB principle, but that depart from them in a well-motivated manner.

In the remainder of this Editorial, we provide a brief summary of the papers in this Special Issue,
in order of their appearance.

• Kunze et al. show that maximizing the evidence lower bound with a factorized Gaussian
approximate posterior effectively limits mutual information between the available data and
the learned parameters [8]. The effect of this tunable “model capacity” is validated in supervised
and unsupervised settings, illustrating intuitive connections with overfitting, the NN architecture,
and the dataset size;

• Wu et al. investigate the learnability within the IB framework. They show that if the parameter β

in (1) falls below a certain threshold β0, then a trivial representation T that is independent of X
and Y minimizes the IB functional [9]. This threshold depends on the joint distribution of X and
Y, and the authors propose an algorithm to estimate β0 for a given dataset;

Entropy 2020, 22, 1408; doi:10.3390/e22121408 www.mdpi.com/journal/entropy1

Entropy 2020, 22, 1408

• Ngyuen and Choi argue that every layer in a feedforward NN should be optimized w.r.t. the IB
functional (1) separately, with the parameter β adapted to the layer index [10]. Proposing a cost
function for this multiobjective optimization problem, a computable variational bound, and a
greedy optimization procedure, they achieve superior accuracy and adversarial robustness in
stochastic binary NNs;

• Kolchinsky et al. propose an NN-based implementation of the IB problem, i.e., the compression
scheme PT|X and conditional distribution PY|T are parameterized by NNs [11]. Acknowledging
the issues in [12], these NNs are trained to minimize an upper bound on (I(X; T))2 − βI(Y; T),
combining variational and non-parametric approaches for bounding. Their experiments yield a
better trade-off between I(X; T) and I(Y; T) and more meaningful latent representations in the
bottleneck layer than a corresponding reformulation of [6];

• Tegmark and Wu investigate binary classification from real-valued observations [13]. They show
that the observations can be compressed to a discrete representation T parameterized by β

in such a way that the Pareto frontier of (1) is swept, essentially characterizing the binary
classification problem. The authors further show that the corner points of this Pareto frontier,
corresponding to a maximization of I(Y; T) for a given alphabet size of T, can be computed
without multiobjective optimization;

• Rodríguez Gálvez et al. discuss the scenario in which the target Y is a deterministic function of X
in [14]. In this case, it is known that sweeping the paramter β in (1) is not sufficient to sweep the
Pareto frontier of optimal (I(X; T), I(Y; T)) pairs [12]. The authors show that this shortcoming can
be removed by optimizing u(I(X; T))− βu I(Y; T) instead, where u is a strictly convex function.
Furthermore, the authors demonstrate that the particular choice of the strictly convex function u
helps to obtain a desired value of I(X; T) over a wide range of parameters βu;

• Franzese and Visintin propose using the IB functional as a cost function to train ensembles of
decision trees for classification [15]. The authors show that these ensembles perform similarly to
bagged trees, while they outperform the naive Bayes and k-nearest neighbor classifiers;

• Jónsson et al. [16] investigate the learning behavior of a high-dimensional VGG-16 convolutional
NN in the information plane. Using MINE [17] to estimate I(X; T) and I(Y; T) throughout
training, the authors observed a separate compression phase, during which the estimate of I(X; T)
decreases, thus aligning with [4]. The authors further show that regularizing NN training via an
MINE-based estimate of the compression term I(X; T) yields improved classification performance;

• Voloshynovskiy et al. propose an IB-based framework for semi-supervised classification,
considering variational bounds both with learned and hand-crafted marginal distributions
and achieving competitive performance [18]. A close investigation of their cost function yields
improved insight into previously proposed approaches to semi-supervised classification;

• Fischer formulates the principle of minimum necessary information and derives from it the
conditional entropy bottleneck functional [19]. This functional is mathematically equivalent to the
IB functional, but uses the chain rule of mutual information to replace I(X; T) in (1) by I(X; T|Y).
This results in different variational bounds, which are shown to yield better classification accuracy,
improved robustness to adversarial examples, and stronger out-of-distribution detection than
deterministic models or models based on variational approximations of (1), cf. [6];

• Fischer and Alemi provide additional empirical evidence for the claims in [19]. Specifically,
they show that optimizing the proposed variational bounds leads to improved robustness against
targeted and untargeted projected gradient descent attacks and to common corruptions (cf. [20]) of
the ImageNet data [21]. Furthermore, the authors indicate that the conditional entropy bottleneck
functional yields improved calibration for both clean and corrupted test data;

• Geiger and Fischer investigate the variational bounds proposed in [6,19]. While the underlying
IB and conditional entropy bottleneck functionals are equivalent, the authors show that the
variational bounds are not; these bounds are generally unordered, but an ordering can be enforced
by restricting the feasible sets appropriately [22]. Their analysis is valid for general optimization
and does not rely on the assumption that the variational bounds are implemented using NNs.

2

Entropy 2020, 22, 1408

We thank all the authors for their excellent contributions and timely submission of their works.
We are looking forward to many future developments that will build on the current bounty of insightful
results and that will make machine learning better explainable.

Funding: The work of Bernhard C. Geiger was supported by the iDev40 project and by the COMET programs
within the Know-Center and the K2 Center “Integrated Computational Material, Process and Product Engineering
(IC-MPPE)” (Project No 859480). The iDev40 project has received funding from the ECSEL Joint Undertaking (JU)
under Grant Agreement No 783163. The JU receives support from the European Union’s Horizon 2020 research
and innovation program. It is co-funded by the consortium members, grants from Austria, Germany, Belgium,
Italy, Spain, and Romania. The COMET programs are supported by the Austrian Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology, the Austrian Federal Ministry of Digital and
Economic Affairs, and by the States of Styria, Upper Austria, and the Tyrol. COMET is managed by the Austrian
Research Promotion Agency FFG.

Acknowledgments: We would like to express our gratitude to the Editorial Assistants of Entropy for their help in
organizing this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the Allerton
Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999; pp.
368–377.

2. Zaidi, A.; Estella-Aguerri, I.; Shamai (Shitz), S. On the Information Bottleneck Problems: Models,
Connections, Applications and Information Theoretic Views. Entropy 2020, 22, 151. [CrossRef] [PubMed]

3. Goldfeld, Z.; Polyanskiy, Y. The Information Bottleneck Problem and Its Applications in Machine Learning.
IEEE J. Sel. Areas Inf. Theory 2020, 1, 19–38. [CrossRef]

4. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,
arXiv:1703.00810.

5. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers—A Review. arXiv 2020,
arXiv:2003.09671.

6. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017 .

7. Achille, A.; Soatto, S. Information Dropout: Learning Optimal Representations Through Noisy Computation.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]

8. Kunze, J.; Kirsch, L.; Ritter, H.; Barber, D. Gaussian Mean Field Regularizes by Limiting Learned Information.
Entropy 2019, 21, 758. [CrossRef] [PubMed]

9. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the Information Bottleneck. Entropy 2019,
21, 924. [CrossRef]

10. Nguyen, T.T.; Choi, J. Markov Information Bottleneck to Improve Information Flow in Stochastic Neural
Networks. Entropy 2019, 21, 976. [CrossRef]

11. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear Information Bottleneck. Entropy 2019, 21, 1181.
[CrossRef]

12. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.
In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA,
6–9 May 2019.

13. Tegmark, M.; Wu, T. Pareto-Optimal Data Compression for Binary Classification Tasks. Entropy 2020, 22, 7.
[CrossRef] [PubMed]

14. Rodríguez Gálvez, B.; Thobaben, R.; Skoglund, M. The Convex Information Bottleneck Lagrangian. Entropy
2020, 22, 98. [CrossRef] [PubMed]

15. Franzese, G.; Visintin, M. Probabilistic Ensemble of Deep Information Networks. Entropy 2020, 22, 100.
[CrossRef] [PubMed]

16. Jónsson, H.; Cherubini, G.; Eleftheriou, E. Convergence Behavior of DNNs with Mutual-Information-Based
Regularization. Entropy 2020, 22, 727. [CrossRef] [PubMed]

3

Entropy 2020, 22, 1408

17. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual Information
Neural Estimation. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm,
Sweden, 10–15 July 2018; pp. 531–540.

18. Voloshynovskiy, S.; Taran, O.; Kondah, M.; Holotyak, T.; Rezende, D. Variational Information Bottleneckfor
Semi-Supervised Classification. Entropy 2020, 22, 943. [CrossRef] [PubMed]

19. Fischer, I. The Conditional Entropy Bottleneck. Entropy 2020, 22, 999. [CrossRef] [PubMed]
20. Hendrycks, D.; Dietterich, T. Benchmarking Neural Networks Robustness to Common Corruptions

and Perturbations. In Proceedings of the International Conference on Learning Representations (ICLR),
New Orleans, LA, USA, 6–9 May 2019.

21. Fischer, I.; Alemi, A.A. CEB Improves Model Robustness. Entropy 2020, 22, 1081. [CrossRef] [PubMed]
22. Geiger, B.C.; Fischer, I.S. A Comparison of Variational Bounds for the Information Bottleneck Functional.

Entropy 2020, 22, 1229. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

4

entropy

Article

Gaussian Mean Field Regularizes by Limiting
Learned Information

Julius Kunze 1,*, Louis Kirsch 1,2, Hippolyt Ritter 1 and David Barber 1,3

1 Computer Science, University College London, London WC1E 6BT, UK
2 The Swiss AI Lab (IDSIA), University of Lugano (USI) & University of Applied Sciences of Southern

Switzerland (SUPSI), 6928 Manno, Switzerland
3 Alan Turing Institute, London NW1 2DB, UK
* Correspondence: juliuskunze@gmail.com

Received: 14 June 2019; Accepted: 1 August 2019; Published: 3 August 2019

Abstract: Variational inference with a factorized Gaussian posterior estimate is a widely-used
approach for learning parameters and hidden variables. Empirically, a regularizing effect can
be observed that is poorly understood. In this work, we show how mean field inference improves
generalization by limiting mutual information between learned parameters and the data through
noise. We quantify a maximum capacity when the posterior variance is either fixed or learned
and connect it to generalization error, even when the KL-divergence in the objective is scaled by
a constant. Our experiments suggest that bounding information between parameters and data
effectively regularizes neural networks on both supervised and unsupervised tasks.

Keywords: information theory; variational inference; machine learning

1. Introduction

Bayesian machine learning is a popular framework for dealing with uncertainty in a principled
way by integrating over model parameters rather than finding point estimates [1–3]. Unfortunately,
exact inference is usually not feasible due to the intractable normalization constant of the posterior.
A popular alternative is variational inference [4], where a tractable approximate distribution is
optimized to resemble the true posterior as closely as possible. Due to its amenability to stochastic
gradient descent [5–8], variational inference is scalable to large models and datasets.

The most common choice for the variational posterior is a factorized Gaussian. Outside of Bayesian
inference, parameter noise has been found to be an effective regularizer [9–11], e.g., for training neural
networks. In combination with L2-regularization, additive Gaussian parameter noise corresponds to
variational inference with a Gaussian approximate posterior with fixed variance. Interestingly, it has
been observed that flexible posteriors can perform worse than simple ones [12–15].

Variational inference follows the Minimum Description Length (MDL) principle [16–18],
a formalization of Occam’s Razor. Loosely speaking, it states that of two models describing the data
equally well, the “simpler” one should be preferred. However, MDL is only an objective for compressing
the training data and the model and makes no formal statement about generalization to unseen data.
Yet, generalization to new data is a key property of a machine learning algorithm.

Recent work [19–22] has proposed upper bounds on the generalization error as a function of
the mutual information between model parameters and training data. It states that the gap between
training and test error can be reduced by limiting the mutual information. However, to the best of our
knowledge, these bounds and specific inference methods have so far not been linked.

In this work, we show that Gaussian mean field inference in models with Gaussian priors
can be reinterpreted as point estimation in corresponding noisy models. This leads to an upper
bound on the mutual information between model parameters and data through the data processing

Entropy 2019, 21, 758; doi:10.3390/e21080758 www.mdpi.com/journal/entropy5

Entropy 2019, 21, 758

inequality. Our result holds for both supervised and unsupervised models. We discuss the connection
to generalization bounds from Xu and Raginsky [19] and Bu et al. [20], suggesting that the Gaussian
mean field aids generalization. In our experiments, we show that limiting model capacity via mutual
information is an effective measure of regularization, further supporting our theoretical framework.

2. Regularization through the Mean Field

In our derivation, we denote a generic model as p(θ, D) = p(θ)p(D | θ) with unobserved variables
θ and data D. We refer to θ as the model parameters; however, in latent variable models, θ can also
include the per-data point latent variables. The model consists of a prior p(θ) and a likelihood p(D | θ).
Ideally, one would like to find the posterior p(θ | D) = p(D | θ)p(θ)/Z, where Z =

∫
p(D | θ)p(θ)dθ

is the normalizer. However, calculating Z is typically intractable. Variational inference finds an
approximation by maximizing the Evidence Lower Bound (ELBO)

log p(D) ≥ log p(D)− DKL (q(θ)||p(θ | D))

= Eq(θ) log p(D | θ)− DKL (q(θ)||p(θ))
(1)

w.r.t. the approximate posterior q(θ). Our focus in this work lies on Gaussian mean field inference,
so q is a fully-factorized normal distribution with a learnable mean μ and variance σ2. The prior is also
chosen to be component-wise independent p(θ) = N

(
0, σ2

p I
)

. The generative and inference models
for this setting are shown in Figure 1a.

μ θ θ D

σ2
pσ2

Inference model Generative model

(a) Original model

μ θ θ θ̃ D

σ2
p σ2

(b) Noisy model: fixed variance

μ θ θ θ̃ D

σ2
p

βσ2 σ2 σ2

(c) Noisy model: learned variance

Figure 1. Gaussian mean field inference on model parameters θ with a Gaussian prior (a) can be
reinterpreted as optimizing a point estimate on a model with injected noise, both when variance is fixed
(b) and learned (c). For the latter case, we show this for the more general case where the complexity
term in the objective is scaled by a constant β > 0, with β = 1 recovering variational inference.

6

Entropy 2019, 21, 758

2.1. Fixed-Variance Gaussian Mean Field Inference

When the variance σ2 of the approximate posterior is fixed, the ELBO can be written as:

Eθ∼N (μ,σ2 I) log p(D | θ)− 1
2σ2

p
∑

i
μ2

i + c (2)

which is optimized with respect to μ. We use i ∈ {1, . . . , K} to denote the parameter index and c for
constant terms.

To show how the Gaussian mean field implicitly limits learned information, we extend the model
with a noisy version of the parameters θ̃ ∼ p(θ̃ | θ) and let the likelihood depend on those noisy
parameters. We choose the noise distribution to be the same as the inference distribution for the
original model and find a lower bound on the log-joint of the noisy model. This leads to the same
objective as mean field variational inference in the original model.

Specifically, we define the noisy model p′(θ, θ̃, D) = p′(θ)p′(θ̃ | θ)p′(D | θ̃) as visualized in
Figure 1b. We use p′ to emphasize the distinction between distributions of the modified noisy model
and the original one. As in the original model, θ ∼ N

(
0, σ2

p I
)

represents the parameters (with the

same prior), i.e., p(θ) = p′(θ). We denote the noisy parameters as θ̃ ∼ N
(
θ, σ2). The likelihood

remains unchanged, i.e., p′(D | θ̃) = p(D | θ), except that it now depends on the noisy parameters
instead of the “clean” ones.

We now show that maximizing a lower bound on the log-joint probability of the noisy model
results in an identical objective as for variational inference in the clean model

log p′(D, θ) (3)

= log
∫

p′(D | θ̃)p′(θ̃ | θ)dθ̃ + log p′(θ) (4)

≥Eθ̃∼N (θ,σ2 I) log p′(D | θ̃)− 1
2σ2

p
∑

i
θ2

i + c (5)

=Eθ̃∼N (μ,σ2 I) log p′(D | θ̃)− 1
2σ2

p
∑

i
μ2

i + c (6)

where Equation (5) follows from Jensen’s inequality as in Equation (1). In the final equation, we have
replaced θ with μ (which is simply a change of names, since we are maximizing the objective over this
free variable) to emphasize that the objective functions are identical.

Since D is independent of θ given θ̃, the joint p(θ, θ̃, D) forms a Markov chain, and the data
processing inequality [23] limits the mutual information I(D, θ) between learned parameters and
data through:

I(D, θ) ≤ I(θ̃, θ) (7)

The upper bound is given by:

I(θ̃, θ) = H(θ̃)− H(θ̃ | θ) =
K
2

log

(
1 +

σ2
p

σ2

)
(8)

where K denotes the number of parameters. Here, we exploit that θ and θ̃ | θ are Gaussian with
H(θ̃) = K

2 log 2πe
(

σ2 + σ2
p

)
and H(θ̃ | θ) = K

2 log 2πeσ2. This quantity is known as the capacity of

channels with Gaussian noise in signal processing [23]. Intuitively, a high prior variance σ2
p corresponds

to a large capacity, while a high noise variance σ2 reduces it. Any desired capacity can be achieved by
simply adjusting the signal-to-noise ratio σ2

p/σ2.

7

Entropy 2019, 21, 758

2.2. Generalization Error vs. Limited Information

Intuitively, we characterize overfitting as learning too much information about the training
data, suggesting that limiting the amount of information extracted from the training data into the
hypothesis should improve generalization. This idea was recently formalized by Xu and Raginsky [19],
Bu et al. [20], Bassily et al. [21], Russo and Zou [22], showing that limiting mutual information between
data and learned parameters bounds the expected generalization error under certain assumptions.

Specifically, their work characterizes the following process: Assume that our training dataset is
sampled from a true distribution pt(D). Based on this training set, a learning algorithm subsequently
returns a distribution over hypotheses given by pt(θ | D). The process defines mutual information
It(D, θ) on the joint distribution pt(D, θ) = pt(D)pt(θ | D). Under certain assumptions on the loss
function, Xu and Raginsky [19] derived a bound on the generalization error of the learning algorithm
in expectation over this sampling process. Bu et al. [20] relaxed the condition on the loss and proved
the applicability to a simple estimation algorithm involving L2-loss.

Exact Bayesian inference returns the true posterior p(θ | D) on a model p(θ, D). The theorem then
states that a bound on I(D, θ) limits the expected generalization error as described in Bu et al. [20]
if the model captures the nature of the generating process in the marginal p(D) =

∫
dθp(θ)p(D | θ).

This is a common assumption necessary to justify any (variational) Bayesian approach.
Exact inference is intractable on deep models, and instead, one typically learns variational or

point estimates for the posterior. That is also true for the objective on the noisy model above, where we
only used a point estimate as given by Equation (6). Therefore, the assumption of exact inference is
not met. Yet, we believe that those bounds motivate the expectation that variational inference aids
generalization by limiting the learned information. If we performed exact inference on the noisy
model in the last section, the given mutual information would imply a bound on generalization error
as implied by Xu and Raginsky [19] and Bu et al. [20]. Therefore, we are optimistic that the gap
between variational inference and those generalization bounds can be closed either by performing
more accurate inference in the noisy model or by taking the dynamics of the training algorithm into
account when bounding mutual information (see Section 5.2 for further discussion).

2.3. Learned-Variance Gaussian Mean Field Inference

The variance in Gaussian mean field inference is typically learned for each parameter [8,24,25].
Similar to when the variance in the approximate posterior is fixed, one can obtain a capacity constraint.
This is the case even for a generalization of the objective from Equation (1) where the divergence
term DKL (q(θ)||p(θ)) is scaled by some factor β > 0. Higgins et al. [26] proposed using β > 1 to
learn “disentangled” representations in variational autoencoders. Further, β is commonly annealed
from 0–1 for expressive models (e.g., Blundell et al. [25], Bowman et al. [27], Sønderby et al. [28].) In
the following, we quantify a general capacity depending on β, where β = 1 recovers the standard
variational objective. For notational simplicity, we here assume a prior variance of σ2

p = 1. It is
straight-forward to adapt the derivation to the general case.

In this case, the objective can be written as:

Eθ∼N (μ,σ2) log p(D | θ) +
β

2 ∑
i

(
log σ2

i − σ2
i − μ2

i − 1
)

(9)

where now, both μ and σ2 represent learned vectors and N
(
μ, σ2) denotes a variable composed of

pairwise independent Gaussian components with means and variances given by the elements of μ

and σ2.
Similar to the previous section, we show a lower bound on the log-joint of a new noisy model to

be identical to Equation (9). Specifically, we define the noisy model p′(θ, σ2, θ̃, D) = p′(θ)p′(σ2)p′(θ̃ |
θ, σ2)p′(D | θ̃) (Figure 1c), with independent priors θi ∼ N

(
0, 1

β

)
and σ2

i ∼ Γ
(

β
2 + 1, β

2

)
, where

8

Entropy 2019, 21, 758

Γ(·, ·) denotes the Gamma distribution. As previously done Section 2.1, we define the noise-injected
parameters as θ̃ ∼ N

(
θ, σ2) and likelihood as p′(D | θ̃) = p(D | θ).

The priors are chosen so that with Jensen’s inequality, we find a lower bound on the log-joint
probability of this model that recovers the objective from Equation (9):

log p′(D, θ, σ2)

= log
∫

p′(D | θ̃)p′(θ̃ | θ, σ2)dθ̃ + log p′(θ) + log p′(σ2)

≥Eθ̃∼N (θ,σ2) log p′(D | θ̃) + ∑
i

(
log p′(θi) + log p′(σ2

i)
)

=Eθ̃∼N (μ,σ2) log p′(D | θ̃) +
β

2 ∑
i

(
log σ2

i − σ2
i − μ2

i

)
+ c

(10)

In the noisy model, the data processing inequality and the independence of dimensions implies
a bound:

I(D, (θ, σ2)) ≤ I(θ̃, (θ, σ2)) = ∑
i

I(θ̃i, (θi, σ2
i)) (11)

where the capacity I(θ̃i, (θi, σ2
i)) per dimension is derived in Appendix A.

Figure 2 shows numerical results for various values of β. Standard variational inference (β = 1)
results in a capacity of 0.45 bits per dimension. We observe that higher β corresponds to smaller
capacity, which is given by the mutual information I(θ̃i, (θi, σ2

i)) between our new latent (θi, σ2
i) and

θ̃i. This formalizes the intuition that a higher weight of the complexity term in our objective increases
regularization by decreasing a limit on the capacity.

Figure 2. Relationship between β and capacity I(θ̃i, (θi, σ2
i)) per parameter dimension in Gaussian

mean field inference with learned variance and the complexity term scaled by β > 0.

2.4. Supervised and Unsupervised Learning

The above derivations apply to any learning algorithm that is purely trained with Gaussian mean
field inference. This covers supervised and unsupervised tasks.

9

Entropy 2019, 21, 758

In supervised learning, the training data typically consist of pairs of inputs and labels, and a loss
is assigned to each pair that depends on the trained model, e.g., neural network parameters. When all
parameters are learned with one of the discussed mean field methods, the given bounds apply.

The derivation also comprises unsupervised methods with per-data latent variables and even
amortized inference such as variational autoencoders [8,24], again as long as all learned variables
are learned via Gaussian mean field inference. While this might be helpful to find generalizing
representations, the focus of the experiments is on validating the generalizing behaviour of the
Bayesian mean field variational approach on neural network parameters for overfitting regimes,
namely a small dataset and complex models.

2.5. Flexible Variational Distributions

The objective function for variational inference is maximized when the approximate posterior is equal
to the true one. This motivates the development of flexible families of posterior distributions [8,29–36].
In the case of exact inference, a bound on generalization as discussed in Section 2.2 only applies if the
model itself has finite mutual information between data and parameters. However, estimating mutual
information is generally a hard problem, particularly in high-dimensional, non-linear models. This makes
it hard to state a generic bound, which is why we focus on the case of Gaussian mean field inference.

3. Related Work

3.1. Regularization in Neural Networks

The Gaussian mean field is intimately related to other popular regularization approaches in deep
learning: As is apparent from Equation (6), the fixed-variance Gaussian mean field applied to training
neural network weights is equivalent to L2-regularization (weight decay) combined with Gaussian
parameter noise [9–11] on all network weights. Molchanov et al. [37] showed that additive parameter
noise results in multiplicative noise on the unit activations. The resulting dependencies between noise
components on the layer output can be ignored without significantly changing empirical results [38].
This is in turn equivalent to scaled Gaussian dropout [24].

3.2. Information Bottlenecks

The information bottleneck principle by Tishby et al. [39], Shamir et al. [40] aims to find a
representation Z of some input X that is most useful to predict an output Y. For this purpose,
the objective is to maximize the amount of information I(Y, Z) the representation contains about the
output under a bounded amount of information I(X, Z) about the input:

max
I(X,Z)<C

I(Y, Z) (12)

They described a training procedure using the softly-constrained objective:

minLIB = min I(X, Z)− βI(Y, Z) (13)

where β > 0 controls the trade-off.
Alemi et al. [41] suggested a variational approximation for this objective. For the task

of reconstruction, where labels Y are identical to inputs X, this results exactly in the β-VAE
objective [42,43]. This is in accordance with our result from Section 2.3 that there is a maximum capacity
per latent dimension that decreases for higher β. Setting β > 1, as suggested by Higgins et al. [26],
for obtaining disentangled representations, corresponds to lower capacity per latent component than
achieved by standard variational inference.

Both Tishby et al. [39] and Higgins et al. [26] introduced β as a trade-off parameter without
a quantitative interpretation. With our information-theoretic perspective, we quantify the implied

10

Entropy 2019, 21, 758

capacity and provide a link to the generalization error. Further, both methods are concerned with
the information in the latent representation. They do not limit the mutual information with the
model parameters, leaving them vulnerable to model overfitting under our theoretical assumptions.
We experimentally validated this vulnerability and explore the effect of filling this gap by applying
Gaussian mean field inference to the model parameters.

3.3. Information Estimation with Neural Networks

Multiple recent techniques [44–46] proposed the use of neural networks for obtaining a lower
bound on the mutual information. This is useful in settings when we want to maximize mutual
information, e.g., between the data and a lower-dimensional representation. In contrast, we show that
Gaussian variational inference on variables with a Gaussian prior implicitly places an upper bound on
the mutual information between these variables and the data and explore its regularizing effect.

4. Experiments

In this section, we analyse the implications of applying Gaussian mean field inference of a fixed
scale to the model parameters in the supervised and unsupervised context. Our theoretical results
suggest that varying the capacity will affect the generalization capability, and we show this effect
on small data regimes and how it changes with the training set size. Furthermore, we investigate
whether capacity is the only predictor for generalization or whether varying priors and architectures
also have an effect. Finally, we demonstrate qualitatively how the capacity bounds are reflected in
Fashion MNIST reconstruction.

4.1. Supervised Learning

We begin with a supervised classification task on the CIFAR10 dataset, training only on a subset of
the first 5000 samples. We used 63 × 3 convolutional layers with 128 channels each followed by a ReLU
activation function, every second of which implemented striding of 2 to reduce the input dimensionality.
Finally, the last layer was a linear projection, which parameterized a categorical distribution. The capacity
of each parameter in this network was set to specific values given by Equation (8).

Figure 3 shows that decreasing the model capacity per dimension (by increasing the noise)
reduced the training log-likelihood and increased the test log-likelihood until both of them meet at
an optimal capacity. One can observe that very small capacities led to a signal that was too noisy,
and good predictions were no longer possible. In short, regimes of underfitting and overfitting were
generated depending on the capacity.

11

Entropy 2019, 21, 758

Figure 3. Classifying CIFAR10 with varying model capacities. Large capacities lead to overfitting,
while small capacities drown the signal in noise. Each configuration was evaluated 5 times; the mean
and standard deviation are displayed.

4.2. Unsupervised Learning

We now evaluate the regularizing effect of fixed-scale Gaussian mean field inference in an
unsupervised setting for image reconstruction on the MNIST dataset. Therefore, we used a VAE [6]
with 2 latent dimensions and a 3-layer neural network parameterizing the conditional factorized
Gaussian distribution. As usual, it was trained using the free energy objective, but different from the
original work, we also used Gaussian mean field inference for the model parameters. Again, we used
a small training set of 200 examples for the following experiments if not denoted otherwise.

4.2.1. Varying Model Capacity and Priors

In our first experiment, we analysed generalization by inspecting the test evidence lower bound
(ELBO) when varying the model capacity, which can be seen in Figure 4a. Similar to the supervised
case, we can observe that there was a certain model capacity range that explained the data very
well, while less or more capacity resulted in noise drowning and overfitting, respectively.In the
same figure, we also investigated whether the information-theoretic model capacity can predict
generalization independently of the specific prior distribution. Since we merely state an upper
bound on mutual information in Section 2.1, the prior may have an effect in practice, which cannot
be explained only by the capacity. Figure 4a shows that indeed, while the general behaviour
remained the same for different model priors, the generalization error was not entirely independent.
Furthermore, the observation that all curves descended with larger capacities, for all priors, suggests
that weight decay [47] of fixed scale without parameters noise was not sufficient to regularize arbitrarily
large networks. In Figure 4b, we investigated the extreme case of dropping the prior entirely and
switching to maximum-likelihood learning instead by using an improper uniform prior. This approach
recovered Gaussian dropout [24,48]. Dropping the prior set the bottleneck capacity to infinity and
should lead to worse generalization. Comparing the test ELBO of this Gaussian dropout variant to
the original Gaussian mean field inference in Figure 4b confirmed this result for larger capacities.
For larger noise scales, generalization was still working well, a result that was not explained in our
information-theoretic framework, but plausible due to the deployed limited architecture.

12

Entropy 2019, 21, 758

(a) (b)

Figure 4. MNIST test reconstruction with a variational autoencoder training on 200 samples for various
capacities and Gaussian priors. (a) The test Evidence Lower Bound (ELBO) is not invariant when
varying the prior on the model parameters. Nevertheless, the first increasing and then decreasing
trend when changing the capacity remains; (b) Using an improper prior, similar to just using Gaussian
dropout on the weights, leads to an accelerated decrease of generalization for smaller noise scales.

4.2.2. Varying Training Set Size

Figure 5a shows how limiting the capacity affects the test ELBO for varying amounts of training
data. Models with very small capacity extracted less information from the data into the model,
thus yielding a good test ELBO somewhat independent of the dataset size. This is visible as a graph
that ascends very little with more training data (e.g., total model capacity of 330 kbits). Note that we
here report the capacity of the entire model, which is the sum of the capacities for each parameter.
In order to improve the test ELBO, more information from the data had to be extracted into the model.
However, clearly, this led to non-generalizing information being extracted when the dataset was small,
leading to overfitting. Only for larger datasets, the extracted information generalized. This is visible as
a strongly-ascending test ELBO with larger dataset sizes and bad generalization for small datasets.
We can therefore conclude that the information bottleneck needs to be chosen based on the amount of
data that are available. Intuitively, when more information is available, the more information should
be extracted into the model.

(a) (b)

Figure 5. MNIST test reconstruction with a VAE; training on varying dataset sizes, architectures,
and model capacities. (a) Varying the number of samples. Depending on the size of the dataset, higher
capacities of the model are required to fit all the data points; (b) Varying architecture. Overfitting
is not getting worse for more layers if the capacity is low enough. More layers do overfit only for
higher capacities.

13

Entropy 2019, 21, 758

4.2.3. Varying Model Size

Furthermore, we inspected how the size of the model (here, in terms of the number of layers)
affected generalization in Figure 5b. Similar to varying the prior distribution, we were interested
in how well the total capacity predicted generalization and the role the architecture plays. It can
be observed that larger networks were more resilient to larger total capacities before they started
overfitting. This indicates that the total capacity was less important than the individual capacity
(i.e., noise) per parameter. Nevertheless, larger networks were more prone to overfitting for very large
model capacities. This makes sense as their functional form was less constrained, an aspect that was
not captured by our theory.

4.2.4. Qualitative Reconstruction

Finally, we plot test reconstruction means for the binarized Fashion MNIST dataset under the same
setup for various capacities in Figure 6. In accordance with the previous experiments, we observed
that if the capacity was chosen too small, the model was not learning anything useful, while too large
capacities resulted in overconfidence. This can be observed in most means being close to either 0–1.
An intermediate capacity, on the other hand, made sensible predictions (given that it was trained only
on 200 samples) with sensible uncertainty, visible through grey pixels that correspond to high entropy.

Figure 6. Test reconstruction means for binarized Fashion MNIST trained on 200 samples with
per-parameter capacities of 5, 2, and 1 bits (top) compared to the true data (bottom).

5. Discussion

In this section, we discuss how the capacity can be set, as well as the effect of the model architecture
and learning dynamics.

5.1. Choosing the Capacity

We have obtained a new trade-off parameter, the capacity, that has a simple quantitative
interpretation: It determines how many bits to extract maximally from the training set. In contrast,
for the β parameter introduced in Tishby et al. [39] and Higgins et al. [26], a clear interpretation is not
known. Yet, it may still be hard to set the capacity optimally. Simple mechanisms such as evaluation
of a validation set to determine its value may be used. We expect that more theoretically-rigorous
methods could be developed.

Furthermore, in this paper, we focused on the regularization that Gaussian mean field inference
implies on the model parameters. The same concept is valid for data-dependent latent variables,
for instance in VAEs, as discussed in Section 2.4. In VAEs, Gaussian mean field inference on the
latent variables leads to a restricted latent capacity, but leaves the capacity of the model unbounded.
This leaves VAEs vulnerable to model overfitting, as demonstrated in the experiments, and setting β as
done in Higgins et al. [26] is not sufficient to control complexity. This motivates the limitation
of capacity between the data and both per-data point latent variables and model parameters.
The interaction between the two is an interesting future research direction.

14

Entropy 2019, 21, 758

5.2. Role of Learning Dynamics and Architecture

As discussed in Section 2.2, it is necessary to perform exact inference in the noisy model for
the bounds on the generalization error to hold. However, this assumption was not met. In practice,
pt(θ | D) encodes the complete learning algorithm, which in deep learning typically includes parameter
initialization and the dynamics of the stochastic gradient descent optimization.

Our experiments confirmed the relevance of the aforementioned factors: L2-regularization works
in practice, even though no noise was added to the parameters. This could be explained by the fact
that noise was already implicitly added through stochastic gradient descent [49] or through the output
distribution of the network. Similarly, Gaussian dropout [9–11] without a prior on the parameters
helped generalization. Again, early stopping combined with a finite reach of gradient descent steps
effectively shaped a prior of finite variance in the parameter space. This could also formalize why
the annealing schedule employed by Blundell et al. [25], Bowman et al. [27] and Sønderby et al. [28]
was effective.

Since these other factors affect generalization, quantifying mutual information It(θ, D) of the
actual distribution due to the learning dynamics might be a promising approach to explain why neural
networks often generalize well on their own. This idea is in accordance with recent work that links the
learning dynamics of small neural networks to generalization behaviour [50].

On the other hand, the architecture choice also had an influence on generalization. This does not
contradict our theory, we since we only formulated an upper bound on mutual information. Tightening
this bound based on the model architecture and output distribution is usually hard, as discussed in
Section 2.5, but might be possible.

Another promising direction would be to sample approximately from the exact posterior
on network parameters (i.e., as done by Marceau-Caron and Ollivier [51]), on a capacity-limited
architecture, instead of the usual approach of point estimation. In the limit of infinite training time,
this would fully realize the discussed bound on the expected generalization error.

6. Conclusions

We explored an information-theoretic perspective on the regularizing effects observed in Gaussian
mean field approaches. The derivation featured a capacity that can be naturally interpreted as a limit
on the amount of information extracted about the given data by the inferred model. We validated its
practicality for both supervised and unsupervised learning.

How this capacity should be set for parameters and latent variables depending on the task and
data is an interesting direction of research. We exploited a theoretical link of mutual information
and generalization error. While this work is restricted to the Gaussian mean field, incorporating the
effect of learning dynamics on mutual information in the future work might allow understanding why
overparameterized neural networks still generalize well to unseen data.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, investigation,
visualization, and writing of the original draft were performed by J.K. and L.K. with supervision by D.B., and
review and editing was done by H.R.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Capacity in Learned-Variance Gaussian Mean Field Inference

The capacity per dimension for the model discussed in Section 2.3 is given by:

I(θ̃i, (θi, σ2
i))

=H(θ̃i)− H(θ̃i | θi, σ2
i)

=−
∫ ∞

−∞
p′(θ̃i) log p′(θ̃i)dθ̃i −

∫ ∞

0
p′(σ2

i)
1
2

log 2πeσ2
i dσ2

i

(A1)

15

Entropy 2019, 21, 758

θ̃i | θi, σ2
i ∼ N

(
θi, σ2

i
)

with θi ∼ N
(

0, 1
β

)
implies θ̃i | σ2

i ∼ N
(

0, σ2
i + 1

β

)
. Together with σ2

i ∼
Γ
(

β
2 + 1, β

2

)
, this implies:

p′(θ̃i) =
∫ ∞

0
dσ2

i p′(σ2
i)p′(θ̃i | σ2

i)

=
∫ ∞

0
dσ2

i
1

Γ
(

β
2

) (β

2
σ2

i e−σ2
i

) β
2
·
(

2π

(
σ2

i +
1
β

))− 1
2

e
− 1

2
(

σ2
i +

1
β

) θ̃2
i (A2)

Numerical results for the capacity I(θ̃i, (θi, σ2
i)) with varying β are given below (see Table A1)

and plotted in Figure 2.

Table A1. Capacity I(θ̃i, (θi, σ2
i)) in learned-variance Gaussian mean field inference with varying factor

β on the divergence term.

β I(θ̃i, (θi, σ2
i))

0.01 0.68 bits
0.1 0.65 bits
1 0.45 bits
10 0.12 bits

100 0.014 bits

References

1. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
2. Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
3. Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452. [CrossRef]

[PubMed]
4. Wainwright, M.J.; Jordan, M.I. Graphical models, exponential families, and variational inference.

Found. Trends Mach. Learn. 2008, 1, 1–305. [CrossRef]
5. Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14,

1303–1347.
6. Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. arXiv 2013, arXiv:1312.6114.
7. Titsias, M.; Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference.

In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014.
8. Rezende, D.J.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the International

Conference on Machine Learning, Lille, France, 6–11 July 2015.
9. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013.

10. Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen, R.Y.; Chen, X.; Asfour, T.; Abbeel, P.;
Andrychowicz, M. Parameter Space Noise for Exploration. In Proceedings of the International Conference
on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

11. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Hessel, M.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.;
Hassabis, D.; et al. Noisy Networks For Exploration. In Proceedings of the International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

12. Turner, R.; Sahani, M. Two problems with variational expectation maximisation for time-series models.
In Bayesian Time Series Models; Cambridge University Press: Cambridge, UK, 2011.

13. Trippe, B.; Turner, R. Overpruning in variational Bayesian neural networks. arXiv 2018, arXiv:1801.06230.
14. Braithwaite, D.; Kleijn, W.B. Bounded Information Rate Variational Autoencoders. arXiv 2018, arXiv:1807.07306.
15. Shu, R.; Bui, H.H.; Zhao, S.; Kochenderfer, M.J.; Ermon, S. Amortized Inference Regularization. arXiv 2018,

arXiv:1805.08913.
16. Rissanen, J. Modeling by shortest data description. Automatica 1978, 14, 465–471. [CrossRef]

16

Entropy 2019, 21, 758

17. Rissanen, J. A universal prior for integers and estimation by minimum description length. Ann. Stat. 1983,
11, 416–431. [CrossRef]

18. Hinton, G.; van Camp, D. Keeping neural networks simple by minimising the description length of weights.
In Computational Learning Theory; ACM Press: New York, NY, USA, 1993.

19. Xu, A.; Raginsky, M. Information-theoretic analysis of generalization capability of learning algorithms.
In Advances in Neural Information Processing Systems; NIPS: Grenada, Spain, 2017.

20. Bu, Y.; Zou, S.; Veeravalli, V.V. Tightening Mutual Information Based Bounds on Generalization Error. arXiv
2019, arXiv:1901.04609.

21. Bassily, R.; Moran, S.; Nachum, I.; Shafer, J.; Yehudayoff, A. Learners that use little information.
In Proceedings of the Algorithmic Learning Theory, Lanzarote, Spain, 7–9 April 2018.

22. Russo, D.; Zou, J. How much does your data exploration overfit? Controlling bias via information usage.
arXiv 2015, arXiv:1511.05219.

23. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2012.
24. Kingma, D.P.; Salimans, T.; Welling, M. Variational dropout and the local reparameterization trick.

In Advances in Neural Information Processing Systems; NIPS: Grenada, Spain, 2015.
25. Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural networks.

In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2015.
26. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. β-VAE:

Learning basic visual concepts with a constrained variational framework. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

27. Bowman, S.R.; Vilnis, L.; Vinyals, O.; Dai, A.M.; Jozefowicz, R.; Bengio, S. Generating sentences from a
continuous space. arXiv 2015, arXiv:1511.06349.

28. Sønderby, C.K.; Raiko, T.; Maaløe, L.; Sønderby, S.K.; Winther, O. Ladder variational autoencoders.
In Advances in Neural Information Processing Systems; NIPS: Grenada, Spain, 2016.

29. Kingma, D.P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improved variational inference
with inverse autoregressive flow. In Advances in Neural Information Processing Systems; NIPS: Grenada, Spain, 2016.

30. Salimans, T.; Kingma, D.; Welling, M. Markov chain Monte Carlo and variational inference: Bridging the
gap. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2015;
pp. 1218–1226.

31. Ranganath, R.; Tran, D.; Altosaar, J.; Blei, D. Operator variational inference. In Advances in Neural Information
Processing Systems; NIPS: Grenada, Spain, 2016.

32. Huszár, F. Variational inference using implicit distributions. arXiv 2017, arXiv:1702.08235.
33. Chen, T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential Equations. arXiv 2018,

arXiv:1806.07366.
34. Vertes, E.; Sahani, M. Flexible and accurate inference and learning for deep generative models. arXiv 2018,

arXiv:1805.11051.
35. Burda, Y.; Grosse, R.; Salakhutdinov, R. Importance weighted autoencoders. arXiv 2015, arXiv:1509.00519.
36. Cremer, C.; Morris, Q.; Duvenaud, D. Reinterpreting importance-weighted autoencoders. In Proceedings of

the International Conference on Learning Representations Workshop, Toulon, France, 24–26 April 2017.
37. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational dropout sparsifies deep neural networks. In Proceedings

of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2498–2507.
38. Wang, S.; Manning, C. Fast dropout training. In Proceedings of the International Conference on Machine

Learning, Atlanta, GA, USA, 16–21 June 2013.
39. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
40. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck.

Theor. Comput. Sci. 2010, 411, 2696–2711. [CrossRef]
41. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. In Proceedings of

the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.
42. Achille, A.; Soatto, S. Emergence of invariance and disentangling in deep representations. arXiv 2017,

arXiv:1706.01350.
43. Alemi, A.; Poole, B.; Fischer, I.; Dillon, J.; Saurous, R.A.; Murphy, K. Fixing a broken ELBO. In Proceedings

of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

17

Entropy 2019, 21, 758

44. Belghazi, I.; Rajeswar, S.; Baratin, A.; Hjelm, R.D.; Courville, A. MINE: Mutual information neural estimation.
In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

45. Van den Oord, A.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018,
arXiv:1807.03748.

46. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Trischler, A.; Bengio, Y. Learning deep
representations by mutual information estimation and maximization. arXiv 2018, arXiv:1808.06670.

47. Krogh, A.; Hertz, J.A. A simple weight decay can improve generalization. In Advances in Neural Information
Processing Systems; NIPS: Grenada, Spain, 1992.

48. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

49. Lei, D.; Sun, Z.; Xiao, Y.; Wang, W.Y. Implicit Regularization of Stochastic Gradient Descent in Natural
Language Processing: Observations and Implications. arXiv 2018, arXiv:1811.00659.

18

Entropy 2019, 21, 758

50. Li, Y.; Liang, Y. Learning overparameterized neural networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing Systems; NIPS: Grenada, Spain, 2018.

51. Marceau-Caron, G.; Ollivier, Y. Natural Langevin dynamics for neural networks. In International Conference
on Geometric Science of Information; Springer: London, UK, 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

19

entropy

Article

Learnability for the Information Bottleneck

Tailin Wu 1,*, Ian Fischer 2, Isaac L. Chuang 1 and Max Tegmark 1

1 Department of Physics, MIT, 77 Massachusetts Ave, Cambridge, MA 02139, USA; ichuang@mit.edu (I.L.C.);
tegmark@mit.edu (M.T.)

2 Google Research, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA; iansf@google.com
* Correspondence: tailin@mit.edu

Received: 1 August 2019; Accepted: 12 September 2019; Published: 23 September 2019

Abstract: The Information Bottleneck (IB) method provides an insightful and principled approach for
balancing compression and prediction for representation learning. The IB objective I(X; Z)− βI(Y; Z)
employs a Lagrange multiplier β to tune this trade-off. However, in practice, not only is β chosen
empirically without theoretical guidance, there is also a lack of theoretical understanding between β,
learnability, the intrinsic nature of the dataset and model capacity. In this paper, we show that if β is
improperly chosen, learning cannot happen—the trivial representation P(Z|X) = P(Z) becomes the
global minimum of the IB objective. We show how this can be avoided, by identifying a sharp phase
transition between the unlearnable and the learnable which arises as β is varied. This phase transition
defines the concept of IB-Learnability. We prove several sufficient conditions for IB-Learnability,
which provides theoretical guidance for choosing a good β. We further show that IB-learnability
is determined by the largest confident, typical and imbalanced subset of the examples (the conspicuous
subset), and discuss its relation with model capacity. We give practical algorithms to estimate the
minimum β for a given dataset. We also empirically demonstrate our theoretical conditions with
analyses of synthetic datasets, MNIST and CIFAR10.

Keywords: learnability; information bottleneck; representation learning; conspicuous subset

1. Introduction

Tishby et al. [1] introduced the Information Bottleneck (IB) objective function which learns a
representation Z of observed variables (X, Y) that retains as little information about X as possible but
simultaneously captures as much information about Y as possible:

min IBβ(X, Y; Z) = min[I(X; Z)− βI(Y; Z)] (1)

I(·) is the mutual information. The hyperparameter β controls the trade-off between compression and
prediction, in the same spirit as Rate-Distortion Theory [2] but with a learned representation function
P(Z|X) that automatically captures some part of the “semantically meaningful” information, where
the semantics are determined by the observed relationship between X and Y. The IB framework has
been extended to and extensively studied in a variety of scenarios, including Gaussian variables [3],
meta-Gaussians [4], continuous variables via variational methods [5–7], deterministic scenarios [8,9],
geometric clustering [10] and is used for learning invariant and disentangled representations in deep
neural nets [11,12].

From the IB objective (Equation (1)) we see that when β → 0 it will encourage I(X; Z) = 0 which
leads to a trivial representation Z that is independent of X, while when β → +∞, it reduces to a
maximum likelihood objective (e.g., in classification, it reduces to cross-entropy loss). Therefore, as we
vary β from 0 to +∞, there must exist a point β0 at which IB starts to learn a nontrivial representation
where Z contains information about X.

Entropy 2019, 21, 924; doi:10.3390/e21100924 www.mdpi.com/journal/entropy21

Entropy 2019, 21, 924

As an example, we train multiple variational information bottleneck (VIB) models on binary
classification of MNIST [13] digits 0 and 1 with 20% label noise at different β. The accuracy vs. β is
shown in Figure 1. We see that when β < 3.25, no learning happens and the accuracy is the same
as random guessing. Beginning with β > 3.25, there is a clear phase transition where the accuracy
sharply increases, indicating the objective is able to learn a nontrivial representation. In general, we
observe that different datasets and model capacity will result in different β0 at which IB starts to learn
a nontrivial representation. How does β0 depend on the aspects of the dataset and model capacity
and how can we estimate it? What does an IB model learn at the onset of learning? Answering these
questions may provide a deeper understanding of IB in particular and learning on two observed
variables in general.

In this work, we begin to answer the above questions. Specifically:

• We introduce the concept of IB-Learnability and show that when we vary β, the IB objective will
undergo a phase transition from the inability to learn to the ability to learn (Section 3).

• Using the second-order variation, we derive sufficient conditions for IB-Learnability, which
provide upper bounds for the learnability threshold β0 (Section 4).

• We show that IB-Learnability is determined by the largest confident, typical and imbalanced subset of
the examples (the conspicuous subset), reveal its relationship with the slope of the Pareto frontier at
the origin on the information plane I(X; Z) vs. I(Y; Z) and discuss its relation to model capacity
(Section 5).

• We prove a deep relationship between IB-Learnability, our upper bounds on β0,
the hypercontractivity coefficient, the contraction coefficient and the maximum correlation
(Section 5).

Figure 1. Accuracy for binary classification of MNIST digits 0 and 1 with 20% label noise and varying
β. No learning happens for models trained at β < 3.25.

We also present an algorithm for estimating the onset of IB-Learnability and the conspicuous
subset, which provide us with a tool for understanding a key aspect of the learning problem (X, Y)
(Section 6). Finally, we use our main results to demonstrate on synthetic datasets, MNIST [13] and
CIFAR10 [14] that the theoretical prediction for IB-Learnability closely matches experiment, and show
the conspicuous subset our algorithm discovers (Section 7).

2. Related Work

The seminal IB work [1] provides a tabular method for exactly computing the optimal encoder
distribution P(Z|X) for a given β and cardinality of the discrete representation, |Z|. They did not
consider the IB learnability problem as addressed in this work. Chechik et al. [3] presents the Gaussian
Information Bottleneck (GIB) for learning a multivariate Gaussian representation Z of (X, Y), assuming

22

Entropy 2019, 21, 924

that both X and Y are also multivariate Gaussians. Under GIB, they derive analytic formula for the
optimal representation as a noisy linear projection to eigenvectors of the normalized regression matrix
Σx|yΣ−1

x and the learnability threshold β0 is then given by β0 = 1
1−λ1

where λ1 is the largest eigenvalue
of the matrix Σx|yΣ−1

x . This work provides deep insights about relations between the dataset, β0 and
optimal representations in the Gaussian scenario but the restriction to multivariate Gaussian datasets
limits the generality of the analysis Another analytic treatment of IB is given in [4], which reformulates
the objective in terms of the copula functions. As with the GIB approach, this formulation restricts the
form of the data distributions—the copula functions for the joint distribution (X, Y) are assumed to be
known, which is unlikely in practice.

Strouse and Schwab [8] present the Deterministic Information Bottleneck (DIB), which minimizes
the coding cost of the representation, H(Z), rather than the transmission cost, I(X; Z) as in IB. This
approach learns hard clusterings with different code entropies that vary with β. In this case, it
is clear that a hard clustering with minimal H(Z) will result in a single cluster for all of the data,
which is the DIB trivial solution. No analysis is given beyond this fact to predict the actual onset of
learnability, however.

The first amortized IB objective is in the Variational Information Bottleneck (VIB) of Alemi et al. [5].
VIB replaces the exact, tabular approach of IB with variational approximations of the classifier
distribution (P(Y|Z)) and marginal distribution (P(Z)). This approach cleanly permits learning
a stochastic encoder, P(Z|X), that is applicable to any x ∈ X , rather than just the particular X seen
at training time. The cost of this flexibility is the use of variational approximations that may be less
expressive than the tabular method. Nevertheless, in practice, VIB learns easily and is simple to
implement, so we rely on VIB models for our experimental confirmation.

Closely related to IB is the recently proposed Conditional Entropy Bottleneck (CEB) [7]. CEB
attempts to explicitly learn the Minimum Necessary Information (MNI), defined as the point in the
information plane where I(X; Y) = I(X; Z) = I(Y; Z). The MNI point may not be achievable even in
principle for a particular dataset. However, the CEB objective provides an explicit estimate of how
closely the model is approaching the MNI point by observing that a necessary condition for reaching
the MNI point occurs when I(X; Z|Y) = 0. The CEB objective I(X; Z|Y)− γI(Y; Z) is equivalent to IB
at γ = β + 1, so our analysis of IB-Learnability applies equally to CEB.

Kolchinsky et al. [9] show that when Y is a deterministic function of X, the “corner point” of the IB
curve (where I(X; Y) = I(X; Z) = I(Y; Z)) is the unique optimizer of the IB objective for all 0 < β′ < 1
(with the parameterization of Kolchinsky et al. [9], β′ = 1/β), which they consider to be a “trivial
solution”. However, their use of the term “trivial solution” is distinct from ours. They are referring
to the observation that all points on the IB curve contain uninteresting interpolations between two
different but valid solutions on the optimal frontier, rather than demonstrating a non-trivial trade-off
between compression and prediction as expected when varying the IB Lagrangian. Our use of “trivial”
refers to whether IB is capable of learning at all given a certain dataset and value of β.

Achille and Soatto [12] apply the IB Lagrangian to the weights of a neural network, yielding
InfoDropout. In Achille and Soatto [11], the authors give a deep and compelling analysis of how
the IB Lagrangian can yield invariant and disentangled representations. They do not, however,
consider the question of the onset of learning, although they are aware that not all models will learn a
non-trivial representation. More recently, Achille et al. [15] repurpose the InfoDropout IB Lagrangian
as a Kolmogorov Structure Function to analyze the ease with which a previously-trained network can
be fine-tuned for a new task. While that work is tangentially related to learnability, the question it
addresses is substantially different from our investigation of the onset of learning.

Our work is also closely related to the hypercontractivity coefficient [16,17], defined as
supZ−X−Y

I(Y;Z)
I(X;Z) , which by definition equals the inverse of β0, our IB-learnability threshold. In [16],

the authors prove that the hypercontractivity cofficient equals the contraction coefficient ηKL(PY|X , PX)

and Kim et al. [18] propose a practical algorithm to estimate ηKL(PY|X , PX), which provides a measure

23

Entropy 2019, 21, 924

for potential influence in the data. Although our goal is different, the sufficient conditions we provide
for IB-Learnability are also lower bounds for the hypercontractivity coefficient.

3. IB-Learnability

We are given instances of (x, y) drawn from a distribution with probability (density) P(X, Y) with
support of X ×Y , where unless otherwise stated, both X and Y can be discrete or continuous variables.
We use capital letters X, Y, Z for random variables and lowercase x, y, z to denote the instance of
variables, with P(·) and p(·) denoting their probability or probability density, respectively. (X, Y) is
our training data and may be characterized by different types of noise. The nature of this training data
and the choice of β will be sufficient to predict the transition from unlearnable to learnable.

We can learn a representation Z of X with conditional probability p(z|x), such that X, Y, Z obey
the Markov chain Z ← X ↔ Y. Equation (1) above gives the IB objective with Lagrange multiplier β,
IBβ(X, Y; Z), which is a functional of p(z|x): IBβ(X, Y; Z) = IBβ[p(z|x)]. The IB learning task is to find
a conditional probability p(z|x) that minimizes IBβ(X, Y; Z). The larger β, the more the objective favors
making a good prediction for Y. Conversely, the smaller β, the more the objective favors learning a
concise representation.

How can we select β such that the IB objective learns a useful representation? In practice,
the selection of β is done empirically. Indeed, Tishby et al. [1] recommends “sweeping β”. In this
paper, we provide theoretical guidance for choosing β by introducing the concept of IB-Learnability
and providing a series of IB-learnable conditions.

Definition 1. (X, Y) is IBβ-learnable if there exists a Z given by some p1(z|x), such that
IBβ(X, Y; Z)|p1(z|x) < IBβ(X, Y; Z)|p(z|x)=p(z), where p(z|x) = p(z) characterizes the trivial representation
where Z = Ztrivial is independent of X.

If (X; Y) is IBβ-learnable, then when IBβ(X, Y; Z) is globally minimized, it will not learn a trivial
representation. On the other hand, if (X; Y) is not IBβ-learnable, then when IBβ(X, Y; Z) is globally
minimized, it may learn a trivial representation.

3.1. Trivial Solutions

Definition 1 defines trivial solutions in terms of representations where I(X; Z) = I(Y; Z) = 0.
Another type of trivial solution occurs when I(X; Z) > 0 but I(Y; Z) = 0. This type of trivial solution
is not directly achievable by the IB objective, as I(X; Z) is minimized but it can be achieved by
construction or by chance. It is possible that starting learning from I(X; Z) > 0, I(Y; Z) = 0 could
result in access to non-trivial solutions not available from I(X; Z) = 0. We do not attempt to investigate
this type of trivial solution in this work.

3.2. Necessary Condition for IB-Learnability

From Definition 1, we can see that IBβ-Learnability for any dataset (X; Y) requires β > 1. In fact,
from the Markov chain Z ← X ↔ Y, we have I(Y; Z) ≤ I(X; Z) via the data-processing inequality.
If β ≤ 1, then since I(X; Z) ≥ 0 and I(Y; Z) ≥ 0, we have that min(I(X; Z) − βI(Y; Z)) = 0 =

IBβ(X, Y; Ztrivial). Hence (X, Y) is not IBβ-learnable for β ≤ 1.
Due to the reparameterization invariance of mutual information, we have the following theorem

for IBβ-Learnability:

Lemma 1. Let X′ = g(X) be an invertible map (if X is a continuous variable, g is additionally required to be
continuous). Then (X, Y) and (X′, Y) have the same IBβ-Learnability.

24

Entropy 2019, 21, 924

The proof for Lemma 1 is in Appendix A.2. Lemma 1 implies a favorable property for any
condition for IBβ-Learnability: the condition should be invariant to invertible mappings of X. We will
inspect this invariance in the conditions we derive in the following sections.

4. Sufficient Conditions for IB-Learnability

Given (X, Y), how can we determine whether it is IBβ-learnable? To answer this question, we
derive a series of sufficient conditions for IBβ-Learnability, starting from its definition. The conditions
are in increasing order of practicality, while sacrificing as little generality as possible.

Firstly, Theorem 1 characterizes the IBβ-Learnability range for β, with proof in Appendix A.3:

Theorem 1. If (X, Y) is IBβ1-learnable, then for any β2 > β1, it is IBβ2 -learnable.

Based on Theorem 1, the range of β such that (X, Y) is IBβ-learnable has the form β ∈ (β0,+∞).
Thus, β0 is the threshold of IB-Learnability.

Lemma 2. p(z|x) = p(z) is a stationary solution for IBβ(X, Y; Z).

The proof in Appendix A.6 shows that both first-order variations δI(X; Z) = 0 and δI(Y; Z) = 0
vanish at the trivial representation p(z|x) = p(z), so δIBβ[p(z|x)] = 0 at the trivial representation.

Lemma 2 yields our strategy for finding sufficient conditions for learnability: find conditions
such that p(z|x) = p(z) is not a local minimum for the functional IBβ[p(z|x)]. Based on the necessary
condition for the minimum (Appendix A.4), we have the following theorem (The theorems in this
paper deal with learnability w.r.t. true mutual information. If parameterized models are used to
approximate the mutual information, the limitation of the model capacity will translate into more
uncertainty of Y given X, viewed through the lens of the model.):

Theorem 2 (Suff. Cond. 1). A sufficient condition for (X, Y) to be IBβ-learnable is that there exists a
perturbation function h(z|x) (so that the perturbed probability (density) is p′(z|x) = p(z|x) + ε · h(z|x))
with

∫
h(z|x)dz = 0, such that the second-order variation δ2IBβ[p(z|x)] < 0 at the trivial representation

p(z|x) = p(z).

The proof for Theorem 2 is given in Appendix A.4. Intuitively, if δ2IBβ[p(z|x)]
∣∣

p(z|x)=p(z) < 0,
we can always find a p′(z|x) = p(z|x) + ε · h(z|x) in the neighborhood of the trivial representation
p(z|x) = p(z), such that IBβ[p′(z|x)] < IBβ[p(z|x)], thus satisfying the definition for IBβ-Learnability.

To make Theorem 2 more practical, we perturb p(z|x) around the trivial solution p′(z|x) =

p(z|x) + ε · h(z|x) and expand IBβ[p(z|x) + ε · h(z|x)]− IBβ[p(z|x)] to the second order of ε. We can
then prove Theorem 3:

Theorem 3 (Suff. Cond. 2). A sufficient condition for (X, Y) to be IBβ-learnable is X and Y are not
independent and

β > inf
h(x)

β0[h(x)] (2)

where the functional β0[h(x)] is given by

β0[h(x)] =
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

Moreover, we have that
(

infh(x) β[h(x)]
)−1

is a lower bound of the slope of the Pareto frontier in the
information plane I(Y; Z) vs. I(X; Z) at the origin.

25

Entropy 2019, 21, 924

The proof is given in Appendix A.7, which also shows that if β > infh(x) β0[h(x)] in
Theorem 3 is satisfied, we can construct a perturbation function h(z|x) = h∗(x)h2(z) with h∗(x) =

arg minh(x) β0[h(x)],
∫

h2(z)dz = 0,
∫ h2

2(z)
p(z) dz > 0 for some h2(z), such that h(z|x) satisfies Theorem 2.

It also shows that the converse is true: if there exists h(z|x) such that the condition in Theorem 2 is true,
then Theorem 3 is satisfied, that is, β > infh(x) β0[h(x)]. (We do not claim that any h(z|x) satisfying
Theorem 2 can be decomposed to h∗(x)h2(z) at the onset of learning. But from the equivalence of
Theorems 2 and 3 as explained above, when there exists an h(z|x) such that Theorem 2 is satisfied,
we can always construct an h′(z|x) = h∗(x)h2(z) that also satisfies Theorem 2.) Moreover, letting the
perturbation function h(z|x) = h∗(x)h2(z) at the trivial solution, we have

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx (3)

where pβ(y|x) is the estimated p(y|x) by IB for a certain β, h
∗
x =

∫
h∗(x)p(x)dx and Cz =

∫ h2
2(z)

p(z) dz > 0
is a constant. This shows how the pβ(y|x) by IB explicitly depends on h∗(x) at the onset of learning.
The proof is provided in Appendix A.8.

Theorem 3 suggests a method to estimate β0: we can parameterize h(x) for example, by a
neural network, with the objective of minimizing β0[h(x)]. At its minimization, β0[h(x)] provides an
upper bound for β0, and h(x) provides a soft clustering of the examples corresponding to a nontrivial
perturbation of p(z|x) at p(z|x) = p(z) that minimizes IBβ[p(z|x)].

Alternatively, based on the property of β0[h(x)], we can also use a specific functional form for
h(x) in Equation (2) and obtain a stronger sufficient condition for IBβ-Learnability. But we want to
choose h(x) as near to the infimum as possible. To do this, we note the following characteristics for the
R.H.S of Equation (2):

• We can set h(x) to be nonzero if x ∈ Ωx for some region Ωx ⊂ X and 0 otherwise. Then we obtain
the following sufficient condition:

β > inf
h(x),Ωx⊂X

Ex∼p(x),x∈Ωx [h(x)2]

(Ex∼p(x),x∈Ωx [h(x)])
2 − 1

∫ dy
p(y)

(
Ex∼p(x),x∈Ωx [p(y|x)h(x)]

Ex∼p(x),x∈Ωx [h(x)]

)2
− 1

(4)

• The numerator of the R.H.S. of Equation (4) attains its minimum when h(x) is a constant within
Ωx. This can be proved using the Cauchy-Schwarz inequality: 〈u, u〉〈v, v〉 ≥ 〈u, v〉2, setting
u(x) = h(x)

√
p(x), v(x) =

√
p(x) and defining the inner product as 〈u, v〉 =

∫
u(x)v(x)dx.

Therefore, the numerator of the R.H.S. of Equation (4) ≥ 1∫
x∈Ωx p(x) − 1 and attains equality when

u(x)
v(x) = h(x) is constant.

Based on these observations, we can let h(x) be a nonzero constant inside some region Ωx ⊂ X
and 0 otherwise and the infimum over an arbitrary function h(x) is simplified to infimum over Ωx ⊂ X
and we obtain a sufficient condition for IBβ-Learnability, which is a key result of this paper:

Theorem 4 (Conspicuous Subset Suff. Cond.). A sufficient condition for (X, Y) to be IBβ-learnable is X
and Y are not independent and

β > inf
Ωx⊂X

β0(Ωx) (5)

where

β0(Ωx) =

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

Ωx denotes the event that x ∈ Ωx, with probability p(Ωx).

26

Entropy 2019, 21, 924

(infΩx⊂X β0(Ωx))
−1 gives a lower bound of the slope of the Pareto frontier in the information plane

I(Y; Z) vs. I(X; Z) at the origin.

The proof is given in Appendix A.9. In the proof we also show that this condition is invariant to
invertible mappings of X.

5. Discussion

5.1. The Conspicuous Subset Determines β0

From Equation (5), we see that three characteristics of the subset Ωx ⊂ X lead to low β0: (1)

confidence: p(y|Ωx) is large; (2) typicality and size: the number of elements in Ωx is large or the
elements in Ωx are typical, leading to a large probability of p(Ωx); (3) imbalance: p(y) is small for the
subset Ωx but large for its complement. In summary, β0 will be determined by the largest confident,
typical and imbalanced subset of examples or an equilibrium of those characteristics. We term Ωx at the
minimization of β0(Ωx) the conspicuous subset.

5.2. Multiple Phase Transitions

Based on this characterization of Ωx, we can hypothesize datasets with multiple learnability
phase transitions. Specifically, consider a region Ωx0 that is small but “typical”, consists of all elements
confidently predicted as y0 by p(y|x) and where y0 is the least common class. By construction, this Ωx0

will dominate the infimum in Equation (5), resulting in a small value of β0. However, the remaining
X −Ωx0 effectively form a new dataset, X1. At exactly β0, we may have that the current encoder,
p0(z|x), has no mutual information with the remaining classes in X1; that is, I(Y1; Z0) = 0. In this case,
Definition 1 applies to p0(z|x) with respect to I(X1; Z1). We might expect to see that, at β0, learning
will plateau until we get to some β1 > β0 that defines the phase transition for X1. Clearly this process
could repeat many times, with each new dataset Xi being distinctly more difficult to learn than Xi−1.

5.3. Similarity to Information Measures

The denominator of β0(Ωx) in Equation (5) is closely related to mutual information. Using the
inequality x− 1 ≥ log(x) for x > 0, it becomes:

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
= Ĩ(Ωx; Y)

where Ĩ(Ωx; Y) is the mutual information “density” at Ωx ⊂ X . Of course, this quantity is also
DKL[p(y|Ωx)||p(y)], so we know that the denominator of Equation (5) is non-negative. Incidentally,
Ey∼p(y|Ωx)

[p(y|Ωx)
p(y) − 1

]
is the density of “rational mutual information” [19] at Ωx.

Similarly, the numerator of β0(Ωx) is related to the self-information of Ωx:

1
p(Ωx)

− 1 ≥ log
1

p(Ωx)
= −log p(Ωx) = h(Ωx)

so we can estimate β0 as:

β0 � inf
Ωx⊂X

h(Ωx)

Ĩ(Ωx; Y)
(6)

Since Equation (6) uses upper bounds on both the numerator and the denominator, it does not give us
a bound on β0, only an estimate.

5.4. Estimating Model Capacity

The observation that a model cannot distinguish between cluster overlap in the data and its own
lack of capacity gives an interesting way to use IB-Learnability to measure the capacity of a set of

27

Entropy 2019, 21, 924

models relative to the task they are being used to solve. For example, for a classification task, we can
use different model classes to estimate p(y|x). For each such trained model, we can estimate the
corresponding IB-learnability threshold β0. A model with smaller capacity than the task needs will
translate to more uncertainty in p(y|Ωx), resulting in a larger β0. On the other hand, models that give
the same β0 as each other all have the same capacity relative to the task, even if we would otherwise
expect them to have very different capacities. For example, if two deep models have the same core
architecture but one has twice the number of parameters at each layer and they both yield the same β0,
their capacities are equivalent with respect to the task. Thus, β0 provides a way to measure model
capacity in a task-specific manner.

5.5. Learnability and the Information Plane

Many of our results can be interpreted in terms of the geometry of the Pareto frontier illustrated
in Figure 2, which describes the trade-off between increasing I(Y; Z) and decreasing I(X; Z). At any
point on this frontier that minimizes IBmin

β ≡ min I(X; Z)− βI(Y; Z), the frontier will have slope β−1

if it is differentiable. If the frontier is also concave (has negative second derivative), then this slope
β−1 will take its maximum β−1

0 at the origin, which implies IBβ-Learnability for β > β0, so that the
threshold for IBβ-Learnability is simply the inverse slope of the frontier at the origin. More generally,
as long as the Pareto frontier is differentiable, the threshold for IBβ-learnability is the inverse of its
maximum slope. Indeed, Theorem 3 and Theorem 4 give lower bounds of the slope of the Pareto
frontier at the origin.

Possible

Im
po

ss
ib

le
fo

r a
ny

 X
, Y

Possible

Im
po

ss
ib

le
fo

r a
ny

 X
, Y

0.0

0.3

0.2

0.1

0.40.0 0.2 0.8 1.00.6
I(X;Z) [bits]

I(
Y;

Z)
 [b

its
]

Impossib
le

Pa
ret

o f
rontier

Figure 2. The Pareto frontier of the information plane, I(X; Z) vs. I(Y; Z), for the binary classification
of MNIST digits 0 and 1 with 20% label noise described in Section 1 and Figure 1. For this problem,
learning happens for models trained at β > 3.25. H(Y) = 1 bit since only two of ten digits are
used and I(Y; Z) ≤ I(X; Y) ≈ 0.5 bits < H(Y) because of the 20% label noise. The true frontier
is differentiable; the figure shows a variational approximation that places an upper bound on both
informations, horizontally offset to pass through the origin.

5.6. IB-Learnability, Hypercontractivity and Maximum Correlation

IB-Learnability and its sufficient conditions we provide harbor a deep connection with
hypercontractivity and maximum correlation:

1
β0

= ξ(X; Y) = ηKL ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (7)

28

Entropy 2019, 21, 924

which we prove in Appendix A.11. Here ρm(X; Y) ≡ max f ,g E[f (X)g(Y)] s.t. E[f (X)] = E[g(Y)] = 0

and E[f 2(X)] = E[g2(Y)] = 1 is the maximum correlation [20,21], ξ(X; Y) ≡ supZ−X−Y
I(Y;Z)
I(X;Z) is

the hypercontractivity coefficient and ηKL(p(y|x), p(x)) ≡ supr(x) �=p(x)
DKL(r(y)||p(y))
DKL(r(x)||p(x)) is the contraction

coefficient. Our proof relies on Anantharam et al. [16]’s proof ξ(X; Y) = ηKL. Our work reveals the
deep relationship between IB-Learnability and these earlier concepts and provides additional insights
about what aspects of a dataset give rise to high maximum correlation and hypercontractivity: the
most confident, typical, imbalanced subset of (X, Y).

6. Estimating the IB-Learnability Condition

Theorem 4 not only reveals the relationship between the learnability threshold for β and the
least noisy region of P(Y|X) but also provides a way to practically estimate β0, both in the general
classification case and in more structured settings.

6.1. Estimation Algorithm

Based on Theorem 4, for general classification tasks we suggest Algorithm 1 to empirically
estimate an upper-bound β̃0 ≥ β0, as well as discovering the conspicuous subset that determines β0.

We approximate the probability of each example p(xi) by its empirical probability, p̂(xi). For
example, for MNIST, p(xi) =

1
N , where N is the number of examples in the dataset. The algorithm

starts by first learning a maximum likelihood model of pθ(y|x), using for example, feed-forward neural
networks. It then constructs a matrix Py|x and a vector py to store the estimated p(y|x) and p(y) for all
the examples in the dataset. To find the subset Ω such that the β̃0 is as small as possible, by previous
analysis we want to find a conspicuous subset such that its p(y|x) is large for a certain class j (to make
the denominator of Equation (5) large) and containing as many elements as possible (to make the
numerator small).

We suggest the following heuristics to discover such a conspicuous subset. For each class j, we
sort the rows of (Py|x) according to its probability for the pivot class j by decreasing order and then
perform a search over ileft, iright for Ω = {ileft, ileft + 1, ..., iright}. Since β̃0 is large when Ω contains

too few or too many elements, the minimum of β̃
(j)
0 for class j will typically be reached with some

intermediate-sized subset and we can use binary search or other discrete search algorithm for the
optimization. The algorithm stops when β̃

(j)
0 does not improve by tolerance ε. The algorithm then

returns the β̃0 as the minimum over all the classes β̃
(1)
0 , ...β̃(N)

0 , as well as the conspicuous subset that
determines this β̃0.

After estimating β̃0, we can then use it for learning with IB, either directly or as an anchor for a
region where we can perform a much smaller sweep than we otherwise would have. This may be
particularly important for very noisy datasets, where β0 can be very large.

29

Entropy 2019, 21, 924

Algorithm 1 Estimating the upper bound for β0 and identifying the conspicuous subset

Require: Dataset D = {(xi, yi)}, i = 1, 2, ...N. The number of classes is C.
Require ε: tolerance for estimating β0
1: Learn a maximum likelihood model pθ(y|x) using the dataset D.
2: Construct matrix (Py|x) such that (Py|x)ij = pθ(y = yj|x = xi).

3: Construct vector py = (py1, .., pyC) such that pyj =
1
N ∑N

i=1(Py|x)ij.
4: for j in {1, 2, ...C}:

5: P(sortj)
y|x ←Sort the rows of Py|x in decreasing values of (Py|x)ij.

6: β̃
(j)
0 , Ω(j) ←Search ileft, iright until β̃

(j)
0 = Getβ(Py|x, py, Ω) is minimal with tolerance ε,

where Ω = {ileft, ileft + 1, ...iright}.
7: end for

8: j∗ ← arg minj{β̃
(j)
0 }, j = 1, 2, ...N.

9: β̃0 ← β̃
(j∗)
0 .

10: P(β̃0)
y|x ← the rows of P(sortj∗)

y|x indexed by Ω(j∗).

11: return β̃0, P(β̃0)
y|x

subroutine Getβ(Py|x, py, Ω):
s1: N ← number of rows of Py|x.
s2: C ← number of columns of Py|x.
s3: n ← number of elements of Ω.
s4: (py|Ω)j ← 1

n ∑i∈Ω(Py|x)ij, j = 1, 2, ..., C.

s5: β̃0 ←
N
n −1

∑j

[(py|Ωx)
2
j

pyj
−1
]

s6: return β̃0

6.2. Special Cases for Estimating β0

Theorem 4 may still be challenging to estimate, due to the difficulty of making accurate estimates
of p(Ωx) and searching over Ωx ⊂ X . However, if the learning problem is more structured, we may
be able to obtain a simpler formula for the sufficient condition.

6.2.1. Class-Conditional Label Noise

Classification with noisy labels is a common practical scenario. An important noise model is
that the labels are randomly flipped with some hidden class-conditional probabilities and we only
observe the corrupted labels. This problem has been studied extensively [22–26]. If IB is applied to this
scenario, how large β do we need? The following corollary provides a simple formula.

Corollary 1. Suppose that the true class labels are y∗ and the input space belonging to each y∗ has no overlap. We
only observe the corrupted labels y with class-conditional noise p(y|x, y∗) = p(y|y∗) and Y is not independent
of X. We have that a sufficient condition for IBβ-Learnability is:

β > inf
y∗

1
p(y∗) − 1

∑y
p(y|y∗)2

p(y) − 1
(8)

We see that under class-conditional noise, the sufficient condition reduces to a discrete formula
which only depends on the noise rates p(y|y∗) and the true class probability p(y∗), which can be
accurately estimated via, for example, Northcutt et al. [26]. Additionally, if we know that the noise is

30

Entropy 2019, 21, 924

class-conditional but the observed β0 is greater than the R.H.S. of Equation (8), we can deduce that
there is overlap between the true classes. The proof of Corollary 1 is provided in Appendix A.10.

6.2.2. Deterministic Relationships

Theorem 4 also reveals that β0 relates closely to whether Y is a deterministic function of X,
as shown by Corollary 2:

Corollary 2. Assume that Y contains at least one value y such that its probability p(y) > 0. If Y is a
deterministic function of X and not independent of X, then a sufficient condition for IBβ-Learnability is β > 1.

The assumption in the Corollary 2 is satisfied by classification and certain regression
problems. (The following scenario does not satisfy this assumption: for certain regression problems
where Y is a continuous random variable and the probability density function pY(y) is bounded, then
for any y, the probability P(Y = y) has measure 0.)This corollary generalizes the result in Reference [9]
which only proves it for classification problems. Combined with the necessary condition β > 1 for any
dataset (X, Y) to be IBβ-learnable (Section 3), we have that under the assumption, if Y is a deterministic
function of X, then a necessary and sufficient condition for IBβ-learnability is β > 1; that is, its β0 is 1.
The proof of Corollary 2 is provided in Appendix A.10.

Therefore, in practice, if we find that β0 > 1, we may infer that Y is not a deterministic function of
X. For a classification task, we may infer that either some classes have overlap or the labels are noisy.
However, recall that finite models may add effective class overlap if they have insufficient capacity for
the learning task, as mentioned in Section 4. This may translate into a higher observed β0, even when
learning deterministic functions.

7. Experiments

To test how the theoretical conditions for IBβ-learnability match with experiment, we apply them
to synthetic data with varying noise rates and class overlap, MNIST binary classification with varying
noise rates and CIFAR10 classification, comparing with the β0 found experimentally. We also compare
with the algorithm in Kim et al. [18] for estimating the hypercontractivity coefficient (=1/β0) via the
contraction coefficient ηKL. Experiment details are in Section A.12.

7.1. Synthetic Dataset Experiments

We construct a set of datasets from 2D mixtures of 2 Gaussians as X and the identity of the
mixture component as Y. We simulate two practical scenarios with these datasets: (1) noisy labels with
class-conditional noise and (2) class overlap. For (1), we vary the class-conditional noise rates. For (2),
we vary class overlap by tuning the distance between the Gaussians. For each experiment, we sweep β

with exponential steps and observe I(X; Z) and I(Y; Z). We then compare the empirical β0 indicated
by the onset of above-zero I(X; Z) with predicted values for β0.

7.1.1. Classification with Class-Conditional Noise

In this experiment, we have a mixture of Gaussian distribution with 2 components, each of which
is a 2D Gaussian with diagonal covariance matrix Σ = diag(0.25, 0.25). The two components have
distance 16 (hence virtually no overlap) and equal mixture weight. For each x, the label y ∈ {0, 1} is
the identity of which component it belongs to. We create multiple datasets by randomly flipping the
labels y with a certain noise rate ρ = P(y = 0|y∗ = 1) = P(y = 1|y∗ = 0). For each dataset, we train
VIB models across a range of β and observe the onset of learning via random I(X; Z) (Observed). To
test how different methods perform in estimating β0, we apply the following methods: (1) Corollary 1,
since this is classification with class-conditional noise and the two true classes have virtually no overlap;
(2) Algorithm 1 with true p(y|x); (3) The algorithm in Kim et al. [18] that estimates η̂KL, provided with

31

Entropy 2019, 21, 924

true p(y|x); (4) β0[h(x)] in Equation (2); (2′) Algorithm 1 with p(y|x) estimated by a neural net; (3′)
η̂KL with the same p(y|x) as in (2′). The results are shown in Figure 3 and in Table 1.

Figure 3. Predicted vs. experimentally identified β0, for mixture of Gaussians with varying
class-conditional noise rates.

Table 1. Full table of values used to generate Figure 3.

(2) Algorithm 1 (3) η̂KL

Noise Rate Observed (1) Corollary 1 True p(y|x) True p(y|x) (4) Equation (2) (2′) Algorithm 1 (3′) η̂KL

0.02 1.06 1.09 1.09 1.10 1.08 1.08 1.10
0.04 1.20 1.18 1.18 1.21 1.18 1.19 1.20
0.06 1.26 1.29 1.29 1.33 1.30 1.31 1.33
0.08 1.40 1.42 1.42 1.45 1.42 1.43 1.46
0.10 1.52 1.56 1.56 1.60 1.55 1.58 1.60
0.12 1.70 1.73 1.73 1.78 1.71 1.73 1.77
0.14 1.99 1.93 1.93 1.99 1.90 1.91 1.95
0.16 2.04 2.16 2.16 2.24 2.15 2.15 2.16
0.18 2.41 2.44 2.44 2.49 2.43 2.42 2.49
0.20 2.74 2.78 2.78 2.86 2.76 2.77 2.71
0.22 3.15 3.19 3.19 3.29 3.19 3.21 3.29
0.24 3.75 3.70 3.70 3.83 3.71 3.75 3.72
0.26 4.40 4.34 4.34 4.48 4.35 4.31 4.17
0.28 5.16 5.17 5.17 5.37 5.12 4.98 4.55
0.30 6.34 6.25 6.25 6.49 6.24 6.03 5.58
0.32 8.06 7.72 7.72 8.02 7.63 7.19 7.33
0.34 9.77 9.77 9.77 10.13 9.74 8.95 7.37
0.36 12.58 12.76 12.76 13.21 12.51 11.11 10.09
0.38 16.91 17.36 17.36 17.96 16.97 14.55 10.49
0.40 24.66 25.00 25.00 25.99 25.01 20.36 17.27
0.42 39.08 39.06 39.06 40.85 39.48 30.12 10.89
0.44 64.82 69.44 69.44 71.80 76.48 51.95 21.95
0.46 163.07 156.25 156.26 161.88 173.15 114.57 21.47
0.48 599.45 625.00 625.00 651.47 838.90 293.90 8.69

From Figure 3 and Table 1 we see the following. (A) When using the true p(y|x), both Algorithm 1
and η̂KL generally upper bound the empirical β0 and Algorithm 1 is generally tighter. (B) When using

32

Entropy 2019, 21, 924

the true p(y|x), Algorithm 1 and Corollary 1 give the same result. (C) Comparing Algorithm 1 and η̂KL

both of which use the same empirically estimated p(y|x), both approaches provide good estimation in
the low-noise region; however, in the high-noise region, Algorithm 1 gives more precise values than η̂KL,
indicating that Algorithm 1 is more robust to the estimation error of p(y|x). (D) Equation (2) empirically
upper bounds the experimentally observed β0 and gives almost the same result as theoretical estimation
in Corollary 1 and Algorithm 1 with the true p(y|x). In the classification setting, this approach does
not require any learned estimate of p(y|x), as we can directly use the empirical p(y) and p(x|y) from
SGD mini-batches.

This experiment also shows that for dataset where the signal-to-noise is small, β0 can be very high.
Instead of blindly sweeping β, our result can provide guidance for setting β so learning can happen.

7.1.2. Classification with Class Overlap

In this experiment, we test how different amounts of overlap among classes influence β0. We use
the mixture of Gaussians with two components, each of which is a 2D Gaussian with diagonal
covariance matrix Σ = diag(0.25, 0.25). The two components have weights 0.6 and 0.4. We vary the
distance between the Gaussians from 8.0 down to 0.8 and observe the β0,exp. Since we do not add
noise to the labels, if there were no overlap and a deterministic map from X to Y, we would have
β0 = 1 by Corollary 2. The more overlap between the two classes, the more uncertain Y is given X.
By Equation (5) we expect β0 to be larger, which is corroborated in Figure 4.

Figure 4. I(Y; Z) vs. β, for mixture of Gaussian datasets with different distances between the two
mixture components. The vertical lines are β0,predicted computed by the R.H.S. of Equation (8).
As Equation (8) does not make predictions w.r.t. class overlap, the vertical lines are always just
above β0,predicted = 1. However, as expected, decreasing the distance between the classes in X space
also increases the true β0.

7.2. MNIST Experiments

We perform binary classification with digits 0 and 1 and as before, add class-conditional noise
to the labels with varying noise rates ρ. To explore how the model capacity influences the onset of
learning, for each dataset we train two sets of VIB models differing only by the number of neurons in
their hidden layers of the encoder: one with n = 512 neurons, the other with n = 128 neurons. As we

33

Entropy 2019, 21, 924

describe in Section 4, insufficient capacity will result in more uncertainty of Y given X from the point
of view of the model, so we expect the observed β0 for the n = 128 model to be larger. This result is
confirmed by the experiment (Figure 5). Also, in Figure 5 we plot β0 given by different estimation
methods. We see that the observations (A), (B), (C) and (D) in Section 7.1 still hold.

(1) Corollary 1

Figure 5. I(Y; Z) vs. β for the MNIST binary classification with different hidden units per layer n and
noise rates ρ: (upper left) ρ = 0.02, (upper right) ρ = 0.1, (lower left) ρ = 0.2, (lower right) ρ = 0.3.
The vertical lines are β0 estimated by different methods. n = 128 has insufficient capacity for the
problem, so its observed learnability onset is pushed higher, similar to the class overlap case.

7.3. MNIST Experiments Using Equation (2)

To see what IB learns at its onset of learning for the full MNIST dataset, we optimize Equation (2)
w.r.t. the full MNIST dataset and visualize the clustering of digits by h(x). Equation (2) can be
optimized using SGD using any differentiable parameterized mapping h(x) : X → . In this
case, we chose to parameterize h(x) with a PixelCNN++ architecture [27,28], as PixelCNN++ is a
powerful autoregressive model for images that gives a scalar output (normally interpreted as log p(x)).
Equation (2) should generally give two clusters in the output space, as discussed in Section 4. In this
setup, smaller values of h(x) correspond to the subset of the data that is easiest to learn. Figure 6
shows two strongly separated clusters, as well as the threshold we choose to divide them. Figure 7
shows the first 5776 MNIST training examples as sorted by our learned h(x), with the examples above
the threshold highlighted in red. We can clearly see that our learned h(x) has separated the “easy” one
(1) digits from the rest of the MNIST training set.

34

Entropy 2019, 21, 924

Figure 6. Histograms of the full MNIST training and validation sets according to h(X). Note that both
are bimodal and the histograms are indistinguishable. In both cases, h(x) has learned to separate most
of the ones into the smaller mode but difficult ones are in the wide valley between the two modes.
See Figure 7 for all of the training images to the left of the red threshold line, as well as the first few
images to the right of the threshold.

Figure 7. The first 5776 MNIST training set digits when sorted by h(x). The digits highlighted in red
are above the threshold drawn in Figure 6.

7.4. CIFAR10 Forgetting Experiments

For CIFAR10 [14], we study how forgetting varies with β. In other words, given a VIB model
trained at some high β2, if we anneal it down to some much lower β1, what I(Y; Z) does the model

35

Entropy 2019, 21, 924

converge to? Using Algorithm 1, we estimated β0 = 1.0483 on a version of CIFAR10 with 20% label
noise, where the Py|x is estimated by maximum likelihood training with the same encoder and classifier
architectures as used for VIB. For the VIB models, the lowest β with performance above chance was
β = 1.048 (Figure 8), a very tight match with the estimate from Algorithm 1. See Appendix A.12
for details.

1.00 1.05 1.10 1.15
¯

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I(
Y
;Z
)

Figure 8. Plot of I(Y; Z) vs. β for CIFAR10 training set with 20% label noise. Each blue cross
corresponds to a fully-converged model starting with independent initialization. The vertical black
line corresponds to the predicted β0 = 1.0483 using Algorithm 1. The empirical β0 = 1.048.

8. Conclusions

In this paper, we have presented theoretical results for predicting the onset of learning and
have shown that it is determined by the conspicuous subset of the training examples. We gave a
practical algorithm for predicting the transition as well as discovering this subset and showed that
those predictions are accurate, even in cases of extreme label noise. We proved a deep connection
between IB-learnability, our upper bounds on β0, the hypercontractivity coefficient, the contraction
coefficient and the maximum correlation. We believe that these results provide a deeper understanding
of IB, as well as a tool for analyzing a dataset by discovering its conspicuous subset and a tool for
measuring model capacity in a task-specific manner. Our work also raises other questions, such as
whether there are other phase transitions in learnability that might be identified. We hope to address
some of those questions in future work.

Author Contributions: Conceptualization, T.W. and I.F.; methodology, T.W., I.F., I.L.C. and M.T.; software, T.W.
and I.F.; validation, T.W. and I.F.; formal analysis, T.W. and I.F.; investigation, T.W. and I.F.; resources, T.W.,
I.F., I.L.C. and M.T.; data curation, T.W. and I.F.; writing–original draft preparation, T.W., I.F., I.L.C. and M.T.;
writing–review and editing, T.W., I.F., I.L.C. and M.T.; visualization, T.W. and I.F.; supervision, I.F., I.L.C. and M.T.;
project administration, I.F., I.L.C. and M.T.; funding acquisition, M.T.

Funding: T.W.’s work was supported by the The Casey and Family Foundation, the Foundational Questions
Institute and the Rothberg Family Fund for Cognitive Science. He thanks the Center for Brains, Minds and
Machines (CBMM) for hospitality.

Acknowledgments: The authors would like to thank the anonymous reviewers for their constructive comments
that contributed to improving the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A

The structure of the Appendix is as follows. In Appendix A.1, we provide preliminaries for
the first-order and second-order variations on functionals. We prove Theorem 1 and Theorem 1 in
Appendixes A.2 and A.3, respectively. In Appendix A.4, we prove Theorem 2, the sufficient condition

36

Entropy 2019, 21, 924

1 for IB-Learnability. In Appendix A.5, we calculate the first and second variations of IBβ[p(z|x)] at
the trivial representation p(z|x) = p(z), which is used in proving Lemma 2 (Appendix A.6) and the
Sufficient Condition 2 for IBβ-learnability (Appendix A.7). In Appendix A.8, we prove Equation (3)
at the onset of learning. After these preparations, we prove the key result of this paper, Theorem 4,
in Section A.9. Then two important Corollaries 1, 2 are proved in Appendix A.10. In Appendix A.11 we
explore the deep relation between β0, β0[h(x)], the hypercontractivity coefficient, contraction coefficient
and maximum correlation. Finally in Appendix A.12, we provide details for the experiments.

Below are some implicit conventions of the paper: for integrals, whenever a variable W is discrete,
we can simply replace the integral (

∫
·dw) by summation (∑w ·).

Appendix A.1. Preliminaries: First-Order and Second-Order Variations

Let functional F[f (x)] be defined on some normed linear space R. Let us add a perturbative
function ε · h(x) to f (x), and now the functional F[f (x) + ε · h(x)] can be expanded as

ΔF[f (x)] = F[f (x) + ε · h(x)]− F[f (x)]

= ϕ1[f (x)] + ϕ2[f (x)] +O(ε3||h||2)

where ||h|| denotes the norm of h, ϕ1[f (x)] = ε
dF[f (x)]

dε is a linear functional of ε · h(x), and is called the

first-order variation, denoted as δF[f (x)]. ϕ2[f (x)] = 1
2 ε2 d2F[f (x)]

dε2 is a quadratic functional of ε · h(x),
and is called the second-order variation, denoted as δ2F[f (x)].

If δF[f (x)] = 0, we call f (x) a stationary solution for the functional F[·].
If ΔF[f (x)] ≥ 0 for all h(x) such that f (x) + ε · h(x) is at the neighborhood of f (x), we call f (x) a

(local) minimum of F[·].

Appendix A.2. Proof of Lemma 1

Proof. If (X, Y) is IBβ-learnable, then there exists Z ∈ Z given by some p1(z|x) such that
IBβ(X, Y; Z) < IB(X, Y; Ztrivial) = 0, where Ztrivial satisfies p(z|x) = p(z). Since X′ = g(X) is a
invertible map (if X is continuous variable, g is additionally required to be continuous), and mutual
information is invariant under such an invertible map [29], we have that IBβ(X′, Y; Z) = I(X′; Z)−
βI(Y; Z) = I(X; Z) − βI(Y; Z) = IBβ(X, Y; Z) < 0 = IB(X′, Y; Ztrivial), so (X′, Y) is IBβ-learnable.
On the other hand, if (X, Y) is not IBβ-learnable, then ∀Z, we have IBβ(X, Y; Z) ≥ IB(X, Y; Ztrivial) = 0.
Again using mutual information’s invariance under g, we have for all Z, IBβ(X′, Y; Z) = IBβ(X, Y; Z) ≥
IB(X, Y; Ztrivial) = 0, leading to that (X′, Y) is not IBβ-learnable. Therefore, we have that (X, Y) and
(X′, Y) have the same IBβ-learnability.

Appendix A.3. Proof of Theorem 1

Proof. At the trivial representation p(z|x) = p(z), we have I(X; Z) = 0, and I(Y; Z) = 0 due to the
Markov chain, so IBβ(X, Y; Z)|p(z|x)=p(z) = 0 for any β. Since (X, Y) is IBβ1 -learnable, there exists
a Z given by a p1(z|x) such that IBβ1(X, Y; Z)|p1(z|x) < 0. Since β2 > β1, and I(Y; Z) ≥ 0, we
have IBβ2(X, Y; Z)|p1(z|x) ≤ IBβ1(X, Y; Z)|p1(z|x) < 0 = IBβ2(X, Y; Z)|p(z|x)=p(z). Therefore, (X, Y) is
IBβ2 -learnable.

Appendix A.4. Proof of Theorem 2

Proof. To prove Theorem 2, we use the Theorem 1 of Chapter 5 of Gelfand et al. [30] which gives a
necessary condition for F[f (x)] to have a minimum at f0(x). Adapting to our notation, we have:

Theorem A1 ([30]). A necessary condition for the functional F[f (x)] to have a minimum at f (x) = f0(x) is
that for f (x) = f0(x) and all admissible ε · h(x),

δ2F[f (x)] ≥ 0.

37

Entropy 2019, 21, 924

Applying to our functional IBβ[p(z|x)], an immediate result of Theorem A1 is that, if at p(z|x) =
p(z), there exists an ε · h(z|x) such that δ2IBβ[p(z|x)] < 0, then p(z|x) = p(z) is not a minimum for
IBβ[p(z|x)]. Using the definition of IBβ learnability, we have that (X, Y) is IBβ-learnable.

Appendix A.5. First- and Second-Order Variations of IBβ[p(z|x)]
In this section, we derive the first- and second-order variations of IBβ[p(z|x)], which are needed

for proving Lemma 2 and Theorem 3.

Lemma A1. Using perturbative function h(z|x), we have

δIBβ[p(z|x)] =
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

δ2IBβ[p(z|x)] =
1
2

[∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)

+ (β− 1)
∫

dxdx′dz
p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]

Proof. Since IBβ[p(z|x)] = I(X; Z)− βI(Y; Z), let us calculate the first and second-order variation
of I(X; Z) and I(Y; Z) w.r.t. p(z|x), respectively. Through this derivation, we use ε · h(z|x) as a
perturbative function, for ease of deciding different orders of variations. We assume that h(z|x) is
continuous, and there exists a constant M such that

∣∣ h(z|x)
p(z|x)

∣∣ < M, ∀(x, z) ∈ X × Z . We will finally
absorb ε into h(z|x).

Denote I(X; Z) = F1[p(z|x)]. We have

F1[p(z|x)] = I(X; Z) =
∫

dxdzp(z|x)p(x)log
p(z|x)
p(z)

In this paper, we implicitly assume that the integral (or summing) are only on the support
of p(x, y, z).

Since
p(z) =

∫
p(z|x)p(x)dx

We have
p(z)|p(z|x)+εh(z|x) = p(z)|p(z|x) + ε

∫
h(z|x)p(x)dx

Expanding F1[p(z|x) + εh(z|x)] to the second order of ε, we have

38

Entropy 2019, 21, 924

F1[p(z|x) + εh(z|x)]

=
∫

dxdzp(x)[p(z|x) + εh(z|x)]log
p(z|x) + εh(z|x)

p(z) + ε
∫

h(z|x′)p(x′)dx′

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
p(z)

(
1 + ε

∫
h(z|x′)p(x′)dx′

p(z)

)
=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

[
p(z|x)
p(z)

(
1 + ε

h(z|x)
p(z|x)

)(
1− ε

∫
h(z|x′)p(x′)dx′

p(z)

+ ε2
(∫

h(z|x′)p(x′)dx′

p(z)

)2)]
+O(ε3)

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

[
p(z|x)
p(z)

(
1 + ε

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)

+ ε2
(∫

h(z|x′)p(x′)dx′

p(z)

)2

− ε2 h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)

)]
+O(ε3)

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

) [
log

p(z|x)
p(z)

+ ε

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)

+ ε2
(∫

h(z|x′)p(x′)dx′

p(z)

)2

− ε2 h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2
ε2
(

h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF1[p(z|x)]

= ε
∫

dxdzp(x)p(z|x)
(

h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε

∫
dxdzp(x)p(z|x) h(z|x)

p(z|x) log
p(z|x)
p(z)

= ε
∫

dxdzp(x)h(z|x)− ε
∫

dx′dzp(x′)h(z|x′) + ε
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

= ε
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

Collecting the second order terms of ε2, we have

δ2F1[p(z|x)]

= ε2
∫

dxdzp(x)p(z|x)
[(∫

h(z|x′)p(x′)dx′

p(z)

)2

− h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)2]

+ ε2
∫

dxdzp(x)p(z|x) h(z|x)
p(z|x)

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)

=
ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

Now let us calculate the first and second-order variation of F2[p(z|x)] = I(Z; Y). We have

F2[p(z|x)] = I(Y; Z) =
∫

dydzp(z|y)p(y)log
p(y, z)

p(y)p(z)
=
∫

dxdydzp(z|y)p(x, y)log
p(y, z)

p(y)p(z)

Using the Markov chain Z ← X ↔ Y, we have

p(y, z) =
∫

p(z|x)p(x, y)dx

Hence
p(y, z)|p(z|x)+εh(z|x) = p(y, z)|p(z|x) + ε

∫
h(z|x)p(x, y)dx

39

Entropy 2019, 21, 924

Then expanding F2[p(z|x) + εh(z|x)] to the second order of ε, we have

F2[p(z|x) + εh(z|x)]

=
∫

dxdydzp(x, y)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

p(y, z)
(

1 + ε
∫

h(z|x′)p(x′ ,y)dx′

p(y,z)

)
p(y)p(z)(1 + ε

∫
h(z|x′′)p(x′′)dx′′

p(z))

=
∫

dxdydzp(x, y)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

) [
log

p(y, z)
p(y)p(z)

+ ε

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)

+ ε2
[(∫

h(z|x′)p(x′)dx′

p(z)

)2

−
∫

h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)
− 1

2

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF2[p(z|x)]

= ε
∫

dxdydzp(x, y)h(z|x)log
p(y, z)

p(y)p(z)
+ ε

∫
dxdydzp(x, y)p(z|x)

∫
h(z|x′)p(x′, y)dx′

p(y, z)

− ε
∫

dxdydzp(x, y)p(z|x)
∫

h(z|x′)p(x′)dx′

p(z)

= ε
∫

dxdydzp(x, y)h(z|x)log
p(y, z)

p(y)p(z)
+ ε

∫
dx′dydzh(z|x′)p(x′, y)− ε

∫
dzh(z|x′)p(x′)dx′

= ε
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

Collecting the second order terms of ε, we have

δ2F2[p(z|x)]

= ε2
∫

dxdydzp(x, y)p(z|x)
[(∫

h(z|x′)p(x′)dx′

p(z)

)2

−
∫

h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)

]

− ε2

2

∫
dxdydzp(x, y)p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)2

+ ε2
∫

dxdydzp(x, y)p(z|x) h(z|x)
p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)

=
ε2

2

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

Finally, we have

δIBβ[p(z|x)] = δF1[p(z|x)]− β · δF2[p(z|x)]

= ε

(∫
dxdzp(x)h(z|x)log

p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

) (A1)

40

Entropy 2019, 21, 924

δ2IBβ[p(z|x)] =δ2F1[p(z|x)]− β · δ2F2[p(z|x)]

=
ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

− βε2
[

1
2

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)− 1
2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)
]

=
ε2

2

[∫
dxdz

p(x)2

p(x, z)
h(z|x)2

− β
∫

dxdx′dydz
p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′) + (β− 1)

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)
]

Absorb ε into h(z|x), we get rid of the ε factor and obtain the final expression in Lemma A1.

Appendix A.6. Proof of Lemma 2

Proof. Using Lemma A1, we have

δIBβ[p(z|x)] =
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

Let p(z|x) = p(z) (the trivial representation), we have that log p(z|x)
p(z) ≡ 0. Therefore, the two integrals

are both 0. Hence,
δIBβ[p(z|x)]

∣∣
p(z|x)=p(z) ≡ 0

Therefore, the p(z|x) = p(z) is a stationary solution for IBβ[p(z|x)].

Appendix A.7. Proof of Theorem 3

Proof. Firstly, from the necessary condition of β > 1 in Section 3, we have that any sufficient condition
for IBβ-learnability should be able to deduce β > 1.

Now using Theorem 2, a sufficient condition for (X, Y) to be IBβ-learnable is that there exists
h(z|x) with

∫
h(z|x)dx = 0 such that δ2IBβ[p(z|x)] < 0 at p(z|x) = p(x).

At the trivial representation, p(z|x) = p(z) and hence p(x, z) = p(x)p(z). Due to the Markov
chain Z ← X ↔ Y, we have p(y, z) = p(y)p(z). Substituting them into the δ2IBβ[p(z|x)] in Lemma A1,
the condition becomes: there exists h(z|x) with

∫
h(z|x)dz = 0, such that

0 > δ2IBβ[p(z|x)] =
1
2

[∫
dxdz

p(x)2

p(x)p(z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y)p(z)

h(z|x)h(z|x′) + (β− 1)
∫

dxdx′dz
p(x)p(x′)

p(z)
h(z|x)h(z|x′)

] (A2)

Rearranging terms and simplifying, we have

∫ dz
p(z)

G[h(z|x)] =
∫ dz

p(z)

[∫
dxh(z|x)2 p(x)− β

∫ dy
p(y)

(∫
dxh(z|x)p(x)p(y|x)

)2

+ (β− 1)
(∫

dxh(z|x)p(x)
)2]

< 0

where

G[h(x)] =
∫

dxh(x)2 p(x)− β
∫ dy

p(y)

(∫
dxh(x)p(x)p(y|x)

)2

+ (β− 1)
(∫

dxh(x)p(x)
)2

Now we prove that the condition that ∃h(z|x) s.t.
∫ dz

p(z)G[h(z|x)] < 0 is equivalent to the
condition that ∃h(x) s.t. G[h(x)] < 0.

If ∀h(z|x), G[h(z|x)] ≥ 0, then we have ∀h(z|x),
∫ dz

p(z)G[h(z|x)] ≥ 0. Therefore, if ∃h(z|x) s.t.∫ dz
p(z)G[h(z|x)] < 0, we have that ∃h(z|x) s.t. G[h(z|x)] < 0. Since the functional G[h(z|x)] does not

41

Entropy 2019, 21, 924

contain integration over z, we can treat the z in G[h(z|x)] as a parameter and we have that ∃h(x) s.t.
G[h(x)] < 0.

Conversely, if there exists an certain function h(x) such that G[h(x)] < 0, we can find some h2(z)

such that
∫

h2(z)dz = 0 and
∫ h2

2(z)
p(z) dz > 0, and let h1(z|x) = h(x)h2(z). Now we have

∫ dz
p(z)

G[h(z|x)] =
∫ h2

2(z)dz
p(z)

G[h(x)] = G[h(x)]
∫ h2

2(z)dz
p(z)

< 0

In other words, the condition Equation (A2) is equivalent to requiring that there exists an h(x)
such that G[h(x)] < 0 . Hence, a sufficient condition for IBβ-learnability is that there exists an h(x)
such that

G[h(x)] =
∫

dxh(x)2 p(x)− β
∫ dy

p(y)

(∫
dxh(x)p(x)p(y|x)

)2

+ (β− 1)
(∫

dxh(x)p(x)
)2

< 0 (A3)

When h(x) = C = constant in the entire input space X , Equation (A3) becomes:

C2 − βC2 + (β− 1)C2 < 0

which cannot be true. Therefore, h(x) = constant cannot satisfy Equation (A3).
Rearranging terms and simplifying, we have

β

[∫ dy
p(y)

(∫
dxh(x)p(x)p(y|x)

)2
−
(∫

dxh(x)p(x)
)2]

>
∫

dxh(x)2 p(x)−
(∫

dxh(x)p(x)
)2

(A4)

Written in the form of expectations, we have

β ·
(
Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2
)
> Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2
(A5)

Since the square function is convex, using Jensen’s inequality on the L.H.S. of Equation (A5),
we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≥
(
Ey∼p(y)

[
Ex∼p(x|y)[h(x)]

])2

=
(
Ex∼p(x)[h(x)]

)2

The equality holds iff Ex∼p(x|y)[h(x)] is constant w.r.t. y, i.e., Y is independent of X. Therefore,
in order for Equation (A5) to hold, we require that Y is not independent of X.

Using Jensen’s inequality on the innter expectation on the L.H.S. of Equation (A5), we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≤ Ey∼p(y)

[
Ex∼p(x|y)[h(x)2]

]
= Ex∼p(x)[h(x)2] (A6)

The equality holds when h(x) is a constant. Since we require that h(x) is not a constant, we have
that the equality cannot be reached.

Similarly, using Jensen’s inequality on the R.H.S. of Equation (A5), we have that

Ex∼p(x)[h(x)2] >
(
Ex∼p(x)[h(x)]

)2

where we have used the requirement that h(x) cannot be constant.

42

Entropy 2019, 21, 924

Under the constraint that Y is not independent of X, we can divide both sides of Equation (A5),
and obtain the condition: there exists an h(x) such that

β >
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

i.e.,

β > inf
h(x)

Ex∼p(x)[h(x)2]−
(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

which proves the condition of Theorem 3.
Furthermore, from Equation (A6) we have

β0[h(x)] > 1

for h(x) �≡ const, which satisfies the necessary condition of β > 1 in Section 3.

Proof of lower bound of slope of the Pareto frontier at the origin: Now we prove the second
statement of Theorem 3. Since δI(X; Z) = 0 and δI(Y; Z) = 0 according to Lemma 2, we have(

ΔI(Y;Z)
ΔI(X;Z)

)−1
=

(
δ2 I(Y;Z)
δ2 I(X;Z)

)−1
. Substituting into the expression of δ2 I(Y; Z) and δ2 I(X; Z) from

Lemma A1, we have

(
ΔI(Y; Z)
ΔI(X; Z)

)−1

=

(
δ2 I(Y; Z)
δ2 I(X; Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x)p(z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′ ,y)

p(y)p(z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

(∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(z|x′)

) ∫ h2(z)2

p(z) dz(∫
dxdx′dy p(x,y)p(x′ ,y)

p(y) h(x)h(z|x′)−
∫

dxdx′p(x)p(x′)h(x)h(z|x′)
) ∫ h2(z)2

p(z) dz

=

∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(z|x′)∫

dxdx′dy p(x,y)p(x′ ,y)
p(y) h(x)h(z|x′)−

∫
dxdx′p(x)p(x′)h(x)h(z|x′)

=
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)
[(

Ex∼p(x|y)[h(x)]
)2]

−
(
Ex∼p(x)[h(x)]

)2

=

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]
Ex∼p(x)[h(x)]

)2]
− 1

= β0[h(x)]

Therefore,
(

infh(x) β0[h(x)]
)−1

gives the largest slope of ΔI(Y; Z) vs. ΔI(X; Z) for perturbation

function of the form h1(z|x) = h(x)h2(z) satisfying
∫

h2(z)dz = 0 and
∫ h2

2(z)
p(z) dz > 0, which is a lower

43

Entropy 2019, 21, 924

bound of slope of ΔI(Y; Z) vs. ΔI(X; Z) for all possible perturbation function h1(z|x). The latter is the
slope of the Pareto frontier of the I(Y; Z) vs. I(X; Z) curve at the origin.

Inflection point for general Z: If we do not assume that Z is at the origin of the information plane,
but at some general stationary solution Z∗ with p(z|x), we define

β(2)[h(x)] =
(

δ2 I(Y; Z)
δ2 I(X; Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x,z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′ ,y)

p(y,z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

∫
dxdz p(x)2

p(x,z)h(z|x)2 −
∫

dxdx′dz p(x)p(x′)
p(z) h(z|x)h(z|x′)∫

dxdx′dydz p(x,y)p(x′ ,y)
p(y,z) h(z|x)h(z|x′)−

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

∫ dz
p(z)

[∫
dx p(x)2

p(x|z)h(z|x)2 − (
∫

dxp(x)h(z|x))2
]

∫ dz
p(z)

[∫ dy
p(y|z) (

∫
dxp(x, y)h(z|x))2 − (

∫
dxp(x)h(z|x))2

]

=

∫ dz
p(z)

[∫
dx p(x)2

p(x|z) h(z|x)2

(
∫

dxp(x)h(z|x))2 − 1

]

∫ dz
p(z)

[∫ dy
p(y|z) (

∫
dxp(x,y)h(z|x))2

(
∫

dxp(x)h(z|x))2 − 1

]

=

∫
dz

[∫
dx p(x)

p(z|x) h(z|x)2

(
∫

dxp(x)h(z|x))2 − 1
p(z)

]

∫
dz

[∫ dy
p(z|y)p(y) (

∫
dxp(x,y)h(z|x))2

(
∫

dxp(x)h(z|x))2 − 1
p(z)

]

=

∫
dz
[∫

dx p(x)
p(z|x)h(z|x)2 − 1

p(z) (
∫

dxp(x)h(z|x))2
]

∫
dz
[∫ dy

p(z|y)p(y) (
∫

dxp(x, y)h(z|x))2 − 1
p(z) (

∫
dxp(x)h(z|x))2

]
which reduces to β0[h(x)] when p(z|x) = p(z). When

β > inf
h(z|x)

β(2)[h(z|x)] (A7)

it becomes a non-stable solution (non-minimum), and we will have other Z that achieves a better
IBβ(X, Y; Z) than the current Z∗.

Appendix A.8. What IB First Learns at Its Onset of Learning

In this section, we prove that at the onset of learning, if letting h(z|x) = h∗(x)h2(z), we have

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx (A8)

where pβ(y|x) is the estimated p(y|x) by IB for a certain β, h∗(x) = infh(x) β0[h(x)], h
∗
x =∫

h∗(x)p(x)dx, Cz =
∫ h2

2(z)
p(z) dz is a constant.

44

Entropy 2019, 21, 924

Proof. In IB, we use pβ(z|x) to obtain Z from X, then obtain the prediction of Y from Z using pβ(y|z).
Here we use subscript β to denote the probability (density) at the optimum of IBβ[p(z|x)] at a specific
β. We have

pβ(y|x) =
∫

pβ(y|z)pβ(z|x)dz

=
∫

dz
pβ(y, z)pβ(z|x)

pβ(z)

=
∫

dz
pβ(z|x)
pβ(z)

∫
p(x′, y)pβ(z|x′)dx′

When we have a small perturbation ε · h(z|x) at the trivial representation, pβ(z|x) = pβ0(z) + ε ·
h(z|x), we have pβ(z) = pβ0(z) + ε ·

∫
h(z|x′′)p(x′′)dx′′. Substituting, we have

pβ(y|x) =
∫

dz
pβ0(z)

(
1 + ε · h(z|x)

pβ0
(z)

)
pβ0(z)

(
1 + ε ·

∫
h(z|x′′)p(x′′)dx′′

pβ0
(z)

) ∫
p(x′, y)pβ0(z)

(
1 + ε · h(z|x′)

pβ0(z)

)
dx′

=
∫

dz
1 + ε · h(z|x)

pβ0
(z)

1 + ε ·
∫

h(z|x′′)p(x′′)dx′′

pβ0
(z)

∫
p(x′, y)pβ0(z)

(
1 + ε · h(z|x′)

pβ0(z)

)
dx′

The 0th-order term is
∫

dzdx′p(x′, y)pβ0(z) = p(y). The first-order term is

δpβ(z|x) =ε ·
∫

dzdx′
(

h(z|x) + h(z|x′)−
∫

h(z|x′′)p(x′′)dx′′
)

p(x′, y)

=ε ·
∫

dx′
(∫

dzh(z|x) +
∫

dzh(z|x′)
)
− ε ·

∫
dx′dx′′p(x′, y)p(x′′)

∫
dzh(z|x′′)

=0− 0

=0

since we have
∫

h(z|x)dz = 0 for any x.
For the second-order term, using h(z|x) = h∗(x)h2(z) and Cz =

∫ dz
pβ0

(z)h2
2(z), it is

δ2 pβ(y|x) =ε2 ·
∫

dz

(∫
h(z|x′′)p(x′′)dx′′

pβ0(z)

)2 ∫
p(x′, y)pβ0(z)dx′

− ε2 ·
∫

dz
h(z|x)

∫
h(z|x′′)p(x′′)dx′′

(pβ0(z))
2

∫
p(x′, y)pβ0(z)dx′

+ ε2
∫

dz
(

h(z|x)−
∫

h(z|x′′)p(x′′)dx
) ∫

p(x′, y)
h(z|x′)
pβ0(z)

dx′

=ε2Cz ·
(∫

h∗(x′′)p(x′′)dx′′
)2

p(y)

− ε2Cz · h∗(x)
∫

h∗(x′′)p(x′′)dx′′p(y)

+ ε2Cz · h∗(x)
∫

p(x′, y)h∗(x′)dx′

− ε2Cz ·
∫

h∗(x′′)p(x′′)dx
∫

p(x′, y)h∗(x′)dx′

=ε2Cz(h∗(x)− h
∗
x)

[(∫
p(x′, y)h∗(x′)dx′

)
− h

∗
x p(y)

]
=ε2Cz(h∗(x)− h

∗
x)
∫

p(x′, y)
(

h∗(x′)− h
∗
x

)
dx′

45

Entropy 2019, 21, 924

where h
∗
x =

∫
h∗(x)p(x)dx. Combining everything, we have up to the second order,

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx

Appendix A.9. Proof of Theorem 4

Proof. According to Theorem 3, a sufficient condition for (X, Y) to be IBβ-learnable is that X and Y
are not independent, and

β > inf
h(x)

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]
Ex∼p(x)[h(x)]

)2]
− 1

(A9)

We can assume a specific form of h(x), and obtain a (potentially stronger) sufficient condition.
Specifically, we let

h(x) =

{
1, x ∈ Ωx

0, otherwise
(A10)

for certain Ωx ⊂ X . Substituting into Equation (A10), we have that a sufficient condition for (X, Y) to
be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1

∫
dyp(y)

(∫
x∈Ωx dxp(x|y)dx

p(Ωx)

)2
− 1

> 0 (A11)

where p(Ωx) =
∫

x∈Ωx
p(x)dx.

The denominator of Equation (A11) is

∫
dyp(y)

(∫
x∈Ωx

dxp(x|y)dx

p(Ωx)

)2

− 1

=
∫

dyp(y)
(

p(Ωx|y)
p(Ωx)

)2

− 1

=
∫

dy
p(y|Ωx)2

p(y)
− 1

= Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
Using the inequality x− 1 ≥ log x, we have

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
≥ 0

Both equalities hold iff p(y|Ωx) ≡ p(y), at which the denominator of Equation (A11) is equal to 0
and the expression inside the infimum diverge, which will not contribute to the infimum. Except this
scenario, the denominator is greater than 0. Substituting into Equation (A11), we have that a sufficient
condition for (X, Y) to be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A12)

46

Entropy 2019, 21, 924

Since Ωx is a subset of X , by the definition of h(x) in Equation (A10), h(x) is not a constant in the
entire X . Hence the numerator of Equation (A12) is positive. Since its denominator is also positive, we
can then neglect the “> 0", and obtain the condition in Theorem 4.

Since the h(x) used in this theorem is a subset of the h(x) used in Theorem 3, the infimum for
Equation (5) is greater than or equal to the infimum in Equation (2). Therefore, according to the second
statement of Theorem 3, we have that the (infΩx⊂X β0(Ωx))

−1 is also a lower bound of the slope for
the Pareto frontier of I(Y; Z) vs. I(X; Z) curve.

Now we prove that the condition Equation (5) is invariant to invertible mappings of X. In fact,
if X′ = g(X) is a uniquely invertible map (if X is continuous, g is additionally required to be
continuous), let X ′ = {g(x)|x ∈ Ωx}, and denote g(Ωx) ≡ {g(x)|x ∈ Ωx} for any Ωx ⊂ X , we have
p(g(Ωx)) = p(Ωx), and p(y|g(Ωx)) = p(y|Ωx). Then for dataset (X, Y), let Ω′

x = g(Ωx), we have

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] =

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A13)

Additionally we have X ′ = g(X). Then

inf
Ω′x⊂X ′

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] = inf

Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A14)

For dataset (X′, Y) = (g(X), Y), applying Theorem 4 we have that a sufficient condition for it to
be IBβ-learnable is

β > inf
Ω′x⊂X ′

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] = inf

Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A15)

where the equality is due to Equation (A14). Comparing with the condition for IBβ-learnability for
(X, Y) (Equation (5)), we see that they are the same. Therefore, the condition given by Theorem 4 is
invariant to invertible mapping of X.

Appendix A.10. Proof of Corollary 1 and Corollary 2

Appendix A.10.1. Proof of Corollary 1

Proof. We use Theorem 4. Let Ωx contain all elements x whose true class is y∗ for some certain y∗,
and 0 otherwise. Then we obtain a (potentially stronger) sufficient condition. Since the probability
p(y|y∗, x) = p(y|y∗) is class-conditional, we have

inf
Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

= inf
y∗

1
p(y∗) − 1

Ey∼p(y|y∗)

[
p(y|y∗)

p(y) − 1
]

By requiring β > infy∗
1

p(y∗)−1

Ey∼p(y|y∗)
[

p(y|y∗)
p(y) −1

] , we obtain a sufficient condition for IBβ learnability.

47

Entropy 2019, 21, 924

Appendix A.10.2. Proof of Corollary 2

Proof. We again use Theorem 4. Since Y is a deterministic function of X, let Y = f (X). By the
assumption that Y contains at least one value y such that its probability p(y) > 0, we let Ωx contain
only x such that f (x) = y. Substituting into Equation (5), we have

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

=

1
p(y) − 1

Ey∼p(y|Ωx)

[
1

p(y) − 1
]

=

1
p(y) − 1

1
p(y) − 1

=1

Therefore, the sufficient condition becomes β > 1.

Appendix A.11. β0, Hypercontractivity Coefficient, Contraction Coefficient, β0[h(x)],
and Maximum Correlation

In this section, we prove the relations between the IB-Learnability threshold β0,
the hypercontractivity coefficient ξ(X; Y), the contraction coefficient ηKL(p(y|x), p(x)), β0[h(x)] in
Equation (2), and maximum correlation ρm(X, Y), as follows:

1
β0

= ξ(X; Y) = ηKL(p(y|x), p(x)) ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A16)

Proof. The hypercontractivity coefficient ξ is defined as [16]:

ξ(X; Y) ≡ sup
Z−X−Y

I(Y; Z)
I(X; Z)

By our definition of IB-learnability, (X, Y) is IB-Learnable iff there exists Z obeying the Markov
chain Z− X−Y, such that

I(X; Z)− β · I(Y; Z) < 0 = IBβ(X, Y; Z)|p(z|x)=p(z)

Or equivalently there exists Z obeying the Markov chain Z− X−Y such that

0 <
1
β
<

I(Y; Z)
I(X; Z)

(A17)

By Theorem 1, the IB-Learnability region for β is (β0,+∞), or equivalently the IB-Learnability
region for 1/β is

0 <
1
β
<

1
β0

(A18)

Comparing Equations (A17) and (A18), we have that

1
β0

= sup
Z−X−Y

I(Y; Z)
I(X; Z)

= ξ(X; Y) (A19)

48

Entropy 2019, 21, 924

In Anantharam et al. [16], the authors prove that

ξ(X; Y) = ηKL(p(y|x), p(x)) (A20)

where the contraction coefficient ηKL(p(y|x), p(x)) is defined as

ηKL(p(y|x), p(x)) = sup
r(x) �=p(x)

DKL(r(y)||p(y))
DKL(r(x)||p(x))

where p(y) = Ex∼p(x)[p(y|x)] and r(y) = Ex∼r(x)[p(y|x)]. Treating p(y|x) as a channel, the contraction
coefficient measures how much the two distributions r(x) and p(x) becomes “nearer" (as measured by
the KL-divergence) after passing through the channel.

In Anantharam et al. [16], the authors also provide a counterexample to an earlier result by
Erkip and Cover [31] that incorrectly proved ξ(X; Y) = ρ2

m(X; Y). In the specific counterexample
Anantharam et al. [16] design, ξ(X; Y) > ρ2

m(X; Y).
The maximum correlation is defined as ρm(X; Y) ≡ max f ,g E[f (X)g(Y)] where f (X) and g(Y) are

real-valued random variables such that E[f (X)] = E[g(Y)] = 0 and E[f 2(X)] = E[g2(Y)] = 1 [20,21].
Now we prove ξ(X; Y) ≥ ρ2

m(X; Y), based on Theorem 3. To see this, we use the alternate
characterization of ρm(X; Y) by Rényi [32]:

ρ2
m(X; Y) = max

f (X):E[f (X)]=0,E[f 2(X)]=1
E[(E[f (X)|Y])2] (A21)

Denoting h = Ep(x)[h(x)], we can transform β0[h(x)] in Equation (2) as follows:

β0[h(x)] =
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

=
Ex∼p(x)[h(x)2]− h

2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
− h

2

=
Ex∼p(x)[(h(x)− h)2]

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)− h]

)2
]

=
1

Ey∼p(y)

[(
Ex∼p(x|y)[f (x)]

)2
]

=
1

E[(E[f (X)|Y])2]

where we denote f (x) = h(x)−h

(Ex∼p(x)[(h(x)−h)2])
1/2 , so that E[f (X)] = 0 and E[f 2(X)] = 1.

Combined with Equation (A21), we have

sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A22)

Our Theorem 3 states that
sup
h(x)

1
β0[h(x)]

≤ 1
β0

(A23)

49

Entropy 2019, 21, 924

Combining Equations (A18), (A22) and Equation (A23), we have

ρ2
m(X; Y) ≤ ξ(X; Y) (A24)

In summary, the relations among the quantities are:

1
β0

= ξ(X; Y) = ηKL(p(y|x), p(x)) ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A25)

Appendix A.12. Experiment Details

We use the Variational Information Bottleneck (VIB) objective from [5]. For the synthetic
experiment, the latent Z has dimension of 2. The encoder is a neural net with 2 hidden layers,
each of which has 128 neurons with ReLU activation. The last layer has linear activation and 4 output
neurons; the first two parameterize the mean of a Gaussian and the last two parameterize the log
variance. The decoder is a neural net with 1 hidden layer with 128 neurons and ReLU activation. Its
last layer has linear activation and outputs the logit for the class labels. It uses a mixture of Gaussian
prior with 500 components (for the experiment with class overlap, 256 components), each of which is
a 2D Gaussian with learnable mean and log variance, and the weights for the components are also
learnable. For the MNIST experiment, the architecture is mostly the same, except the following: (1)
for Z, we let it have dimension of 256. (2) For the prior, we use standard Gaussian with diagonal
covariance matrix.

For all experiments, we use Adam [33] optimizer with default parameters. We do not add any
explicit regularization. We use learning rate of 10−4 and have a learning rate decay of 1

1+0.01×epoch .
We train in total 2000 epochs with mini-batch size of 500.

For estimation of the observed β0 in Figure 3, in the I(X; Z) vs. βi curve (βi denotes the i-th β),
we take the mean and standard deviation of I(X; Z) for the lowest 5 βi values, denoting as μβ, σβ

(I(Y; Z) has similar behavior, but since we are minimizing I(X; Z)− β · I(Y; Z), the onset of nonzero
I(X; Z) is less prone to noise). When I(X; Z) is greater than μβ + 3σβ, we regard it as learning a
non-trivial representation, and take the average of βi and βi−1 as the experimentally estimated onset
of learning. We also inspect manually and confirm that it is consistent with human intuition.

For estimating β0 using Algorithm 1, at step 6 we use the following discrete search algorithm.
We fix ileft = 1 and gradually narrow down the range [a, b] of iright, starting from [1, N]. At each
iteration, we set a tentative new range [a′, b′], where a′ = 0.8a + 0.2b, b′ = 0.2a + 0.8b, and calculate
β̃0,a′ = Getβ(Py|x, py, Ωa′), β̃0,b′ = Getβ(Py|x, py, Ωb′) where Ωa′ = {1, 2, ...a′} and Ωb′ = {1, 2, ...b′}.
If β̃0,a′ < β̃0,a, let a ← a′. If β̃0,b′ < β̃0,b, let b ← b′. In other words, we narrow down the range of iright
if we find that the Ω given by the left or right boundary gives a lower β̃0 value. The process stops
when both β̃0,a′ and β̃0,b′ stop improving (which we find always happens when b′ = a′ + 1), and we
return the smaller of the final β̃0,a′ and β̃0,b′ as β̃0.

For estimation of p(y|x) for (2′) Algorithm 1 and (3′) η̂KL for both synthetic and MNIST
experiments, we use a 3-layer neuron net where each hidden layer has 128 neurons and ReLU activation.
The last layer has linear activation. The objective is cross-entropy loss. We use Adam [33] optimizer
with a learning rate of 10−4, and train for 100 epochs (after which the validation loss does not go down).

For estimating β0 via (3′) η̂KL by the algorithm in [18], we use the code from the GitHub repository
provided by the paper (At https://github.com/wgao9/hypercontractivity), using the same p(y|x)
employed for (2′) Algorithm 1. Since our datasets are classification tasks, we use Aij = p(yj|xi)/p(yj)

instead of the kernel density for estimating matrix A; we take the maximum of 10 runs as estimation
of μ.

50

Entropy 2019, 21, 924

CIFAR10 Details

We trained a deterministic 28 × 10 wide resnet [34,35], using the open source implementation
from Cubuk et al. [36]. However, we extended the final 10 dimensional logits of that model through
another 3 layer MLP classifier, in order to keep the inference network architecture identical between
this model and the VIB models we describe below. During training, we dynamically added label noise
according to the class confusion matrix in Table A1. The mean label noise averaged across the 10
classes is 20%. After that model had converged, we used it to estimate β0 with Algorithm 1. Even with
20% label noise, β0 was estimated to be 1.0483.

Table A1. Class confusion matrix used in CIFAR10 experiments. The value in row i, column j means
for class i, the probability of labeling it as class j. The mean confusion across the classes is 20%.

Plane Auto. Bird Cat Deer Dog Frog Horse Ship Truck

Plane 0.82232 0.00238 0.021 0.00069 0.00108 0 0.00017 0.00019 0.1473 0.00489
Auto. 0.00233 0.83419 0.00009 0.00011 0 0.00001 0.00002 0 0.00946 0.15379

Bird 0.03139 0.00026 0.76082 0.0095 0.07764 0.01389 0.1031 0.00309 0.00031 0
Cat 0.00096 0.0001 0.00273 0.69325 0.00557 0.28067 0.01471 0.00191 0.00002 0.0001

Deer 0.00199 0 0.03866 0.00542 0.83435 0.01273 0.02567 0.08066 0.00052 0.00001
Dog 0 0.00004 0.00391 0.2498 0.00531 0.73191 0.00477 0.00423 0.00001 0
Frog 0.00067 0.00008 0.06303 0.05025 0.0337 0.00842 0.8433 0 0.00054 0

Horse 0.00157 0.00006 0.00649 0.00295 0.13058 0.02287 0 0.83328 0.00023 0.00196
Ship 0.1288 0.01668 0.00029 0.00002 0.00164 0.00006 0.00027 0.00017 0.83385 0.01822

Truck 0.01007 0.15107 0 0.00015 0.00001 0.00001 0 0.00048 0.02549 0.81273

We then trained 73 different VIB models using the same 28 × 10 wide resnet architecture for the
encoder, parameterizing the mean of a 10-dimensional unit variance Gaussian. Samples from the
encoder distribution were fed to the same 3 layer MLP classifier architecture used in the deterministic
model. The marginal distributions were mixtures of 500 fully covariate 10-dimensional Gaussians, all
parameters of which are trained. The VIB models had β ranging from 1.02 to 2.0 by steps of 0.02, plus
an extra set ranging from 1.04 to 1.06 by steps of 0.001 to ensure we captured the empirical β0 with
high precision.

However, this particular VIB architecture does not start learning until β > 2.5, so none of these
models would train as described. (A given architecture trained using maximum likelihood and with no
stochastic layers will tend to have higher effective capacity than the same architecture with a stochastic
layer that has a fixed but non-trivial variance, even though those two architectures have exactly the
same number of learnable parameters.) Instead, we started them all at β = 100, and annealed β down
to the corresponding target over 10,000 training gradient steps. The models continued to train for
another 200,000 gradient steps after that. In all cases, the models converged to essentially their final
accuracy within 20,000 additional gradient steps after annealing was completed. They were stable over
the remaining ∼180,000 gradient steps.

References

1. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
2. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
3. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach.

Learn. Res. 2005, 6, 165–188.
4. Rey, M.; Roth, V. Meta-Gaussian information bottleneck. In Advances in Neural Information Processing Systems;

lNIPS: San Diego, CA, USA, 2012; pp. 1916–1924.
5. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,

arXiv:1612.00410.

51

Entropy 2019, 21, 924

6. Chalk, M.; Marre, O.; Tkacik, G. Relevant sparse codes with variational information bottleneck. In Advances
in Neural Information Processing Systems; NIPS: San Diego, CA, USA, 2016; pp. 1957–1965.

7. Fischer, I. The Conditional Entropy Bottleneck. 2018. Available online: https://openreview.net/forum?id=
rkVOXhAqY7 (accessed on 20 September 2019).

8. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neural Comput. 2017, 29, 1611–1630.
[CrossRef] [PubMed]

9. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.
In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA,
30 April 2019.

10. Strouse, D.; Schwab, D.J. The information bottleneck and geometric clustering. arXiv 2017, arXiv:1712.09657.
11. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach.

Learn. Res. 2018, 19, 1947–1980.
12. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.

IEEE Trans. Pattern Anal. Mach. Intell. 2018. [CrossRef]
13. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
14. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University

of Toronto: Toronto, ON, Canada, 2009.
15. Achille, A.; Mbeng, G.; Soatto, S. The Dynamics of Differential Learning I: Information-Dynamics and Task

Reachability. arXiv 2018, arXiv:1810.02440.
16. Anantharam, V.; Gohari, A.; Kamath, S.; Nair, C. On maximal correlation, hypercontractivity, and the data

processing inequality studied by Erkip and Cover. arXiv 2013, arXiv:1304.6133.
17. Polyanskiy, Y.; Wu, Y. Strong data-processing inequalities for channels and Bayesian networks. In Convexity

and Concentration; Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–249.
18. Kim, H.; Gao, W.; Kannan, S.; Oh, S.; Viswanath, P. Discovering potential correlations via hypercontractivity.

In Advances in Neural Information Processing Systems; NIPS: San Diego, CA, USA, 2017; pp. 4577–4587.
19. Lin, H.W.; Tegmark, M. Criticality in formal languages and statistical physics. arXiv 2016, arXiv:1606.06737.
20. Hirschfeld, H.O. A connection between correlation and contingency. In Mathematical Proceedings of the

Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1935; Volume 31, pp. 520–524.
21. Gebelein, H. Das statistische Problem der Korrelation als Variations-und Eigenwertproblem und sein

Zusammenhang mit der Ausgleichsrechnung. ZAMM-J. Appl. Math. Mech. Für Angew. Math. Und Mech.
1941, 21, 364–379. [CrossRef]

22. Angluin, D.; Laird, P. Learning from noisy examples. Mach. Learn. 1988, 2, 343–370. [CrossRef]
23. Natarajan, N.; Dhillon, I.S.; Ravikumar, P.K.; Tewari, A. Learning with noisy labels. In Advances in Neural

Information Processing Systems; NIPS: San Diego, CA, USA, 2013; pp. 1196–1204.
24. Liu, T.; Tao, D. Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 447–461. [CrossRef] [PubMed]
25. Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image

classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015; pp. 2691–2699.

26. Northcutt, C.G.; Wu, T.; Chuang, I.L. Learning with confident examples: Rank pruning for robust
classification with noisy labels. arXiv 2017, arXiv:1705.01936.

27. van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Kavukcuoglu, K.; Vinyals, O.; Graves, A. Conditional
Image Generation with PixelCNN Decoders. In Advances in Neural Information Processing Systems 29; Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016;
pp. 4790–4798.

28. Salimans, T.; Karpathy, A.; Chen, X.; Kingma, D.P. PixelCNN++: A PixelCNN Implementation with
Discretized Logistic Mixture Likelihood and Other Modifications. In Proceedings of the International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

29. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef]

30. Gelfand, I.M.; Silverman, R.A. Calculus of Variations; Courier Corporation: North Chelmsford, MA, USA, 2000.

52

Entropy 2019, 21, 924

31. Erkip, E.; Cover, T.M. The efficiency of investment information. IEEE Trans. Inf. Theory 1998, 44, 1026–1040.
[CrossRef]

32. Rényi, A. On measures of dependence. Acta Math. Hung. 1959, 10, 441–451. [CrossRef]
33. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
35. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv: 1605.07146.
36. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation policies

from data. arXiv 2018, arXiv:1805.09501.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

53

entropy

Article

Markov Information Bottleneck to Improve
Information Flow in Stochastic Neural Networks

Thanh Tang Nguyen 1,*,† and Jaesik Choi 2,*,‡

1 Applied Artificial Intelligence Institute, Deakin University, Geelong VIC 3220, Australia
2 Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology,

Daejeon 34141, Korea
* Correspondence: thanhnt@deakin.edu.au (T.T.N.); jaesik.choi@kaist.ac.kr (J.C.)
† Part of this work was done at Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.
‡ Part of this work was done at Ulsan National Institute of Science and Technology, Ulsan 44919, Korea;

part of the work was done at KAIST.

Received: 8 September 2019; Accepted: 30 September 2019; Published: 6 October 2019

Abstract: While rate distortion theory compresses data under a distortion constraint, information
bottleneck (IB) generalizes rate distortion theory to learning problems by replacing a distortion
constraint with a constraint of relevant information. In this work, we further extend IB to
multiple Markov bottlenecks (i.e., latent variables that form a Markov chain), namely Markov
information bottleneck (MIB), which particularly fits better in the context of stochastic neural networks
(SNNs) than the original IB. We show that Markov bottlenecks cannot simultaneously achieve their
information optimality in a non-collapse MIB, and thus devise an optimality compromise. With
MIB, we take the novel perspective that each layer of an SNN is a bottleneck whose learning goal is
to encode relevant information in a compressed form from the data. The inference from a hidden
layer to the output layer is then interpreted as a variational approximation to the layer’s decoding
of relevant information in the MIB. As a consequence of this perspective, the maximum likelihood
estimate (MLE) principle in the context of SNNs becomes a special case of the variational MIB. We
show that, compared to MLE, the variational MIB can encourage better information flow in SNNs
in both principle and practice, and empirically improve performance in classification, adversarial
robustness, and multi-modal learning in MNIST.

Keywords: information bottleneck; stochastic neural networks; variational inference; machine learning

1. Introduction

The information bottleneck (IB) principle [1] extracts relevant information about a target variable
Y from an input variable X via a single bottleneck variable Z. In particular, it constructs a bottleneck
variable Z = Z(X) that is a compressed version of X but preserves as much relevant information
in X about Y as possible. This principle of introducing relevant information under compression
finds vast applications in clustering problems [2], neural network compression [3], disentanglement
learning [4–7], and reinforcement learning [8,9]. In addition, there have been many variants of the
original IB principle, such as multivariate IB [10], Gaussian IB [11], meta-Gaussian IB [12], deterministic
IB [13], and variational IB [14]. Despite these vast applications and variants of IB, alongside the
theoretical analysis of the IB principle in neural networks [15,16], the context of stochastic neural
networks in which mutual information can be most naturally well-defined [17] has not been sufficiently
studied from the IB insight. In this work, we are particularly interested in this context in which multiple
stochastic variables are constructed for representation in the form of a Markov chain.

Stochastic neural networks (SNNs) are a general class of neural networks with stochastic
neurons in the computation graph. There has been an active line of research in SNNs, including

Entropy 2019, 21, 976; doi:10.3390/e21100976 www.mdpi.com/journal/entropy55

Entropy 2019, 21, 976

restricted Boltzmann machines (RBMs) [18], deep belief networks (DBNs) [19], sigmoid belief networks
(SBNs) [20], and stochastic feed-forward neural networks (SFFNs) [21]. One of the advantages of SNNs
is that they can induce rich multi-modal distributions in the output space [20] and enable exploration in
reinforcement learning [22]. For learning SNNs (and deep neural networks in general), the maximum
likelihood estimate (MLE) principle (in its various forms, such as maximum log-likelihood or
Kullback–Leibler divergence) has generally been a de-facto standard. The MLE principle maximizes
the likelihood of the model for observing the entire training data. However, this principle is generic
and not specially tailored to the hierarchical structure of neural networks. Particularly, MLE treats the
entire neural network as a whole without considering the explicit contribution of its hidden layers
to model learning. As a result, the information contained within the hidden structure may not be
adequately modified to capture the data regularities reflecting a target variable. Thus, it is reasonable
to ask if the MLE principle effectively and sufficiently exploits a neural network’s representative power,
and whether there is a better alternative.

Contributions. In this paper, (i) we propose Markov information bottleneck (MIB), a variant of
the IB principle for multiple Markov bottlenecks that directly offers an alternative learning principle
for SNNs. In MIB, there are multiple bottleneck variables (as opposed to one single bottleneck variable
in the original IB) that form a Markov chain. These multiple Markov bottlenecks sequentially extract
relevant information for a learning task. From the perspective of MIB, each layer of an SNN is a
bottleneck whose information is encoded from the data via the network parameters connecting the
layer to the data layer. (ii) We show that in a non-collapse MIB, the information optimality is not
simultaneously achievable for all bottlenecks; thus, an optimality compromise is devised. (iii) When
applied to SNNs for a learning task, we interpret the inference from a hidden layer to the output layer
in SNNs as a variational approximation to that layer’s intractable decoding of relevant information.
Consequently, the variational MIB in SNNs generalizes the MLE principle. We demonstrate via a
simple analytical argument and synthetic experiment that MLE is unable to learn a good information
representation, while the variational MIB can. (iv) We then empirically show that MIB improves the
performance in classification, adversarial robust learning, and multi-modal learning in the standard
hand-digit recognition data MNIST [23]. This work is an extended version of our preprint [24] and the
first author’s Master thesis [25].

2. Related Work

There have been many extensions of the original IB framework [1]. One natural consideration
is to extend it to continuous variables, yet under special settings where the optimal information
representation is analytic [11,12]. Another direction uses alternative measures for compression and/or
relevance in IB [13]. Since the optimal information representation in IB is tractable only in limited
settings such as discrete variables [1], Gaussian variables [11], and meta-Gaussian variables [12], scaling
the IB solution using neural networks and variational inference is a very successful extension [14].
The closest extension to our MIB is multivariate IB [10], in which they define multi-information to
capture the dependence among the elements of a multivariate variable. However, in MIB, we do not
focus on capturing such multi-information but rather the optimal information sequentially processed
by a Markov chain of (possibly multivariate) bottleneck variables.

The line of work applying the IB principle to learn information representation in neural networks
is also relevant to our approach. For example, Reference [15] proposes the use of the mutual information
of a hidden layer with the input layer and the output layer to quantify the performance of neural
networks. However, it is not clear as to how the IB information optimality changes in multiple
bottlenecks in a neural network and how we can approximate the IB solutions in this high-dimensional
context. In addition, MLE is a standard learning principle for neural networks. It has been shown that
the IB principle is mathematically equivalent to the MLE principle in the multinomial mixture model
for the clustering problem when the input distribution X is uniform or has a large sample size [26].
However, it is also not clear how these two principles are related to each other in the context of neural

56

Entropy 2019, 21, 976

networks. Moreover, regarding the feasibility of the IB principle for representation learning in neural
networks, Reference [17] analyzes two critical issues of mutual information that representation learning
might suffer from: indefinite in deterministic encoding, and invariant under bijective transformations.
These are inherent properties of mutual information which are also studied in, for example, [7,27,28].
In MIB, we share with [17] the same insight in these caveats by considering only the scenario where
mutual information is well defined. This also explains our rationale in applying MIB to stochastic
neural networks.

Deep learning compression schemes [3,29] loosely bear some similarity with our work. Both of
the directions aim for a more compressed and useful neural networks for given tasks. The critical
distinction is that deep learning compression schemes attempt to produce a smaller-sized neural
network with similar performance of a larger one so that the network can be efficiently deployed in
small devices such as mobile phones. This task therefore involves size-reduction techniques such
as neural network pruning, low-rank factorization, transferred convolution filters and knowledge
distillation [29] . On the other hand, our work asks an important representation learning question that
given a neural network, what learning principles are the best we can do to improve the information
content learned from the data for a given task? In this work, we attempt to address this question via the
perspective that a neural network is a set of stochastic variables that sequentially encode information
into its layers. We then explicitly improve the information flow (in the sense of more compressed but
relevant information) for each layer via our introduced Markov Information Bottleneck framework.

3. Preliminaries

3.1. Notations

We denote random variables (RVs) by capital letters (e.g., X), and their specific realization value
by the corresponding lowercase letter (e.g., x). We write X ⊥ Y (respectively, X �⊥ Y) to indicate that X
and Y are independent (respectively, not independent). We denote a Markov chain by Y → X → Z
, that is, Y and Z are conditionally independent given X, or Y ⊥ Z|X. We use the integral notation
when taking expectation (e.g.,

∫
p(x) f (x)dx) over the distribution of a random variable regardless

of whether the variable is discrete or continuous. We also adopt the following conventions from [27]
for defining entropy (denoted by H), mutual information (denoted by I), and Kullback–Leibler (KL)
divergence (denoted by DKL): 0 log 0

0 = 0, 0 log 0
q = 0, p log p

0 = ∞.

3.2. Information Bottleneck

Given a (possibly unknown) data joint distribution p(X, Y), the IB framework constructs a
bottleneck variable Z = Z(X) that is a compressed version of X but preserves as much relevant
information in X about Y as possible. The compression of the representation Z is quantized by
I(Z; X), the mutual information of Z and X. The relevance in Z, the amount of information
Z contains about Y, is specified by I(Z; Y). The optimal representation Z satisfying a certain
compression–relevance trade-off constraint is then determined via minimization of the following
Lagrangian LIB[p(z|x)] = I(Z; X)− βI(Z; Y), where β is a positive Lagrangian multiplier that controls
the trade-off. Due to the convexity of Lagrangian and constrained conditions with respect to the
encoders {p(z|x)}, the Karush–Kuhn–Tucker (KKT) conditions for this constrained minimization
problem become the sufficient and necessary conditions for finding the optimal encoders {p(z|x)}.
By solving the KKT conditions, we can obtain the optimal encoders which can be expressed in an
energy-based form as the following:

arg min
p(z|x)

LIB[p(z|x)] ∝ p(z) exp (−βDKL [p(Y|x)‖p(Y|z)]) , (1)

where p(z) =
∫

p(z|x)p(x)dx.

57

Entropy 2019, 21, 976

4. Markov Information Bottleneck

Given a data joint distribution p(X, Y) which is possibly only observed via a set of i.i.d. samples
S = {(xi, yi)

N
i=1}, an information representation Z for p(X, Y) is said to be good if it encodes sufficient

relevant information in X about Y in a compressed manner. Ideally, Z summarizes only the relevant
information in X about Y and discards all the irrelevant information; more formally, Z is a minimal
sufficient statistic for Y. Such information representation is desirable because it can capture the
regularities in the data and is helpful for generalization in learning problems [30,31]. Our main interest
is in solving the optimal information representation for a latent variable Z that has Markov structure,
that is, Z = (Z1, Z2, . . . , ZL), where Z1 → Z2 → · · · → ZL. The Markov structure is common in deep
neural networks whose advantage is the powerful modeling capacity coming from multiple layers.
In MIB, each encoder p(zl+1|x) relates the encoders of the previous bottlenecks in the Markov chain
via Bayes’ rule:

p(zl+1|x) =
∫

p(zl+1, z1:l |x)dz1:l =
∫ l+1

∏
i=1

p(zi|zi−1)dz1:l , ∀1 ≤ l ≤ L− 1, (2)

where z1:l := (z1, . . . , zl) and z0 := x. In addition, each encoder p(zl |x) corresponds to a unique decoder,
namely relevance decoder, that decodes the relevant information in x about y from representation zl :

p(y|zl) =
∫

p(x, y)
p(zl |x)
p(zl)

dx. (3)

In MIB, we further introduce a surrogate target variable Ŷ (for the target variable Y) into the
Markov chain: Y → X → Zl → Zl+1 → Ŷ (Figure 1). The purpose of the surrogate target variable
becomes clear in the section on variational MIB.

Figure 1. A directed graphical model for the Markov information bottleneck of two Markov bottlenecks.
In a non-collapse Markov chain Y → X → Z1 → Z2 with 0 < β1, β2 < ∞, the information optimality
in Z1 prevents the information optimality in Z2. Solid lines denote the encoders pθ(zi|x) (for i ∈ {1, 2}),
dashed lines denote the variational approximations pθ(ŷ|zi) to the intractable relevance decoder pθ(y|zi).
The variational relevance decoder pθ(ŷ|zi) encodes the information from zi into a surrogate target
variable ŷ. In the case of stochastic neural networks, zi, θ, and the surrogate target variable represents
the hidden layers, the network weights, and the output layer, respectively.

A trivial solution to the optimal information representation problem for Z is to apply the original
IB principle for Z as a whole by computing the optimal IB solution in Equation (1). However, this
solution ignores the Markov structure of Z. As a principled approach, leveraging the intrinsic structure
of a problem can generally provide a new insight that goes beyond the limitation of the perspective
that ignores such structure. Thus, in Markov information bottleneck (MIB), we explicitly leverage
the Markov structure of Z to derive a principled and tractable approximate solution to the optimal
information representation. We then empirically show that leveraging the intrinsic structure in the
case of MIB is indeed beneficial for learning.

In MIB, we reframe the optimal information representation problem as multiple IB problems for
each of the bottlenecks Zl :

58

Entropy 2019, 21, 976

min
p(zl |x)

Ll [p(zl |x)] := min
p(zl |x)

{I(Zl ; X)− βl I(Zl ; Y)}, (4)

for all 1 ≤ l ≤ L.
This extension is a natural approach for multiple bottlenecks because it aims for each bottleneck

to achieve its own optimal information, and thus allows more relevant but compressed information to
be encoded into Z. Another advantage is that we can leverage our understanding of the IB solution
for each individual IB problem in Equation (4). Though this approach is promising and has good
interpretation, there are two main challenges:

1. The Markov structure among Zl prevents them from achieving their own information optimality
simultaneously in non-trivial cases.

2. The intractability of p(y|zl) in Equation (3) and p(zl |x) in Equation (2) results in intractable
mutual information in MIB.

In what follows, we formally establish and present the first challenge, the conflicting property
of information optimality in Markov structure, in Theorem 1 followed by a simple compromise
to overcome the information conflict. After that, we present variational MIB to address the
second challenge.

Without loss of generality, we consider the case when L = 2 (the result trivially generalizes to
L > 2). We first define the collapse mode of the representation Z to be the two extreme cases in which
Z2 either contains all the information in Z1 about X or simply random noise:

Definition 1 (The collapse mode of MIB). Z = (Z1, Z2) is said to be in the collapse mode if it satisfies either
of the following two conditions:

1. Z2 is a sufficient statistic of Z1 for X and Y (i.e., Y → X → Z2 → Z1);
2. Z2 is independent of Z1.

For example, if Z2 = f (Z1) where f is a deterministic bijection, Z2 is a sufficient statistic for X.
We then establish the conflicting property of information optimality in the Markov representation Z
via the following theorem:

Theorem 1 (Conflicting Markov Information Optimality). Given X, Y, Z1, and Z2 such that Y → X → Z1 →
Z2 and H(Y|X) > 0, consider two constrained minimization problems:

arg min
p(zl |x)

Ll [p(zl |x)] := arg min
p(zl |x)

{I(Zl ; X)− βl I(Zl ; Y)}, l ∈ {1, 2}, (5)

where 0 < β1 < ∞, 0 < β2 < ∞, and p(z2|x) =
∫

p(z2|z1)p(z1|x)dz1. Then, the following two statements
are equivalent:

1. Z is not in the collapse mode;
2. The two optimal solutions to L1 and L2 in (5) are conflicting, that is, there is no single solution that

minimizes L1 and L2 simultaneously.

Theorem 1 suggests that the Markov information optimality conflicts for most cases of interest
(e.g., stochastic neural networks, which we will present in detail in the next section). The values
of β1 and β2 are important to control the ratio of the relevant information versus the irrelevant one
presented in the bottlenecks. These values also determine the conflictability of multiple bottlenecks
on the edge cases. Recall by the data processing inequality (DPI) [27] that for Y → X → Z, we have
0 ≤ I(Z; X) ≤ H(X) and 0 ≤ I(Z; Y) ≤ I(X; Y). If β1 and β2 go to infinity, the optimal bottlenecks

59

Entropy 2019, 21, 976

Z1 and Z2 are both deterministic functions of X and they do not conflict. When β1 = β2 = 0,
the information about Y in X is maximally compressed in Z1 and Z2 (i.e., Z1 ⊥ X, Z2 ⊥ X), and they do
not conflict. The optimal solutions conflict when β1 = 0 and β2 > 0, as the former leads to a maximally
compressed Z1 while the latter prefers an informative Z2 (this contradicts the Markov structure
X → Z1 → Z2, which indicates that maximal compression in Z1 leads to maximal compression in Z2).

We can also easily construct non-conflicting MIBs for 0 < β1, β2 < ∞ that violate the condition.
For example, if X and Y are jointly Gaussian, the optimal bottlenecks Z1 and Z2 are linear transforms of
X and jointly Gaussian with X and Y [11]. In this case, Z2 is a sufficient statistic of Z1 for X. In the case
of neural networks, we can also construct a simple but non-trivial neural network that can obtain
a non-conflicting Markov information optimality. For example, consider a neural network of two
hidden layers Z1 and Z2, where Z1 is arbitrarily mapped from the input layer X but Z2 is a sample mean
of n samples i.i.d. drawn from the normal distribution N (Z1; Σ). This construction guarantees that Z2

is a sufficient statistic of Z1 for X, and thus there is non-conflicting Markov information optimality.
Theorem 1 is a direct result of DPI if βi ∈ {0, ∞}. In the case that 0 < βi < ∞, we trace down

to the Lagrangian multiplier as in the original IB [1] to complete the proof. Formally, before proving
Theorem 1, we first establish the two following lemmas. The first lemma expresses the uncertainty
reduction in a Markov chain.

Lemma 1. Given Y → X → Z1 → Z2, we have

I(Z2; X) = I(Z1; X)− I(Z1; X|Z2) (6)

I(Z2; Y) = I(Z1; Y)− I(Z1; Y|Z2). (7)

Proof. It follows from [27] that I(X; Z1; Z2) = I(X; Z2)+I(X; Z1|Z2)=I(X; Z1)+I(X; Z2|Z1),
but I(X; Z2|Z1)=0 since X �⊥ Z2|Z1, hence Equation (6). The proof for Equation (7) is similar by
replacing variable X with variable Y. (Q.E.D.)

Lemma 2. Given Y → X → Z1 → Z2, 0 < β2 < ∞ and H(X|Y) > 0, let us define the conditional
information bottleneck objective:

Lc := Lc[p(z2|z1), p(z1|x)] := I(Z1; X|Z2)− β2 I(Z1; Y|Z2). (8)

If Z is not in the collapse mode, ∂Lc/∂p(z1|x) depends on {p(z2|z1)}.

Proof. Informally, if Z2 in the conditional information bottleneck objective Lc is not a trivial transform
of the bottleneck variable Z1, Z2 induces a non-trivial topology into the conditional information
bottleneck objective. Formally, by the definition of the conditional mutual information

I(Z1; X|Z2) =
∫ ∫ ∫

p(x, z1, z2) log
p(z1, x|z2)

p(z1|z2)p(x|z2)
dz2dz1dx,

I(Z1; X|Z2) depends on p(x, z1, z2) as long as the presence of Z2 in the conditional information
bottleneck objective does not vanish (we will discuss the conditions for Z2 to vanish in the final
part of this proof). Note that due to the Markov chain X → Z1 → Z2, we have p(x, z1, z2) =

p(x)p(z1|x)p(z2|z1).
Thus, ∂I(Z1; X|Z2)/∂p(z1|x) depends on p(z2|z1) as long as Z2 does not vanish in the objective.

Similarly, the same result also applies to ∂I(Z1; Y|Z2)/∂p(z1|x). Hence, ∂Lc/∂p(z1|x) depends on
{p(z2|z1)} (note that H(X|Y) > 0 prevents the collapse ofLc when summing two mutual informations)
if Z2 does not vanish in the objective.

Now we discuss the vanishing condition for Z2 in the objective. It follows from Lemma 1 that:

60

Entropy 2019, 21, 976

0 ≤ I(Z1; X|Z2) ≤ I(Z1; X), (9)

0 ≤ I(Z1; Y|Z2) ≤ I(Z1; Y). (10)

Note that Z2 vanishes in Lc iff each of the mutual informations in Lc does not depend on Z2 iff
the equality in both (9) and (10) occur. If I(Z1; X|Z2) = 0, we have Y → X → Z2 → Z1 (i.e., Z2 is
a sufficient statistic for X and Y), which also implies that I(Z1; Y|Z2) = 0. Similarly, I(Z1; X|Z2) =

I(Z1; X) implies that Z2 is independent of Z1, which in turn implies that I(Z1; Y|Z2) = I(Z1; Y).
(Q.E.D.)

We now prove Theorem (1) by using Lemma (6) and Lemma (7).

Proof of Theorem 1. (⇐) This direction is obvious. When I(Z2; X) = I(Z1; X) and I(Z2; Y) =

I(Z1; Y), or I(Z2; X) = 0 and I(Z2; Y) = 0, there is effectively only one optimization problem for
L1, and this reduces into the original information bottleneck (with single bottleneck) [1].
(⇒) First we prove that if Z is not in the collapse mode, the constrained minimization problems are
conflicting. Assume, by contradiction, that there exists a solution that minimizes both L1 and L2

simultaneously, that is, ∃p(z1|x), p(z2|z1) s.t. L1 has a minimum at {p(z1|x)} and L2 has a minimum at
{p(z1|x), p(z2|z1)}. Note that {p(z1|x)} and {p(z2|z1)} are independent variables for the optimization.
By introducing Lagrangian multipliers λ1(x) and λ2(x) for the constraint

∫
p(z1|x)dz1 = 1 of L1 and

L2, respectively, the stationarity in the Karush–Kuhn–Tucker (KKT) conditions becomes:

∂L1

∂p(z1|x)
= 0, (11)

∂L2

∂p(z1|x)
= 0, (12)

where L1 and L2 are the Lagrangians:

L1[p(z1|x), λ1] := I(Z1; X)− β1 I(Z1; Y)−
∫ ∫

λ1(x)p(z1|x)dz1dx (13)

L2[p(z1|x), λ2] := I(Z2; X)− β2 I(Z2; Y)−
∫ ∫

λ2(x)p(z1|x)dz1dx. (14)

It follows from Lemma 1 that:

L2 − L1 = (β1 − β2)I(Z1; Y)−Lc −
∫ ∫

(λ2(x)− λ1(x))p(z1|x)dz1dx, (15)

where Lc = I(Z1; X|Z2)− β2 I(Z1; Y|Z2) (defined in Lemma 2). We take the derivative w.r.t. p(z1|x)
both sides of Equation (15) and use Equations (11)–(12):

∂Lc

∂p(z1|x)
= (β1 − β2)

∂I(Z1; Y)
∂p(z1|x)

+ λ1(x)− λ2(x). (16)

Notice that the left hand side of Equation (16) strictly depends on p(z2|z1) (Lemma 2) while
the right hand side is independent of {p(z2|z1)}. This contradiction implies that the initial existence
assumption is invalid, and thus implies the conclusion in Theorem 1. (Q.E.D.)

4.1. Markov Information Optimality Compromise

Due to Theorem 1, we cannot simultaneously achieve the information optimality for all bottlenecks.
Thus, we need some compromised approach to instead obtain a compromised optimality. We propose
two simple compromise strategies, namely, JointMIB and GreedyMIB. JointMIB is a weighted sum of
the IB objectives Ljoint := ∑L

l=0 γlLl where γl ≥ 0. The main idea of JointMIB is to simultaneously

61

Entropy 2019, 21, 976

optimize all encoders. Even though each bottleneck might not achieve its individual optimality, their
joint optimality encourages a joint compromise. On the other hand, GreedyMIB progressively solves
the information optimality for each bottleneck given that the encoders for the previous bottlenecks
are fixed. In other words, GreedyMIB tries to obtain the conditional optimality of a current bottleneck
which is conditioned on the fixed greedy-optimal information of the previous bottlenecks.

4.2. Variational Markov Information Bottleneck

Due to the intractability of encoders in Equation (2) and relevance decoders in Equation (3),
the resulting mutual information in Equation (4) is also intractable. In this section, we present
variational methods to derive a lower bound on mutual information in MIB.

4.2.1. Approximate Relevance

Note that I(Zl ; Y) = H(Y) − H(Y|Zl), where H(Y) = constant, which can be ignored
in the minimization of Ll . It follows from the non-negativity of KL divergence that:

H(Y|Zl) = −
∫

p(y|zl)p(zl) log p(y|zl)dydzl ≤ −
∫

p(y|zl)p(zl) log pv(y|zl)dydzl

= −E(X,Y)EZl |X log pv(Y|Zl) = −E(X,Y)EZl |X log p(Ŷ|Zl) =: H̃(Y|Zl), (17)

where we specifically use the relevance decoder for surrogate target variable pv(y|zl) = p(ŷ|zl)

as a variational distribution to the intractable distribution p(y|zl):

pv(y|zl) := EZL |zl
[p(ŷ|ZL)] . (18)

The variational relevance Ĩ(Zl ; Y) := H(Y)− H̃(Y|Zl) is a lower bound on I(Zl ; Y). This bound
is tightest (i.e., zero gap) when the variational relevance decoder p(ŷ|zl) equals the relevance decoder
p(y|zl). In what follows, we establish the relationship between the variational relevance and the log
likelihood function, thus connecting MIB with the MLE principle:

Proposition 1 (Variational Relevance Inequalities). Given the definition of variational relevance Ĩ(Zl ; Y) =
H(Y)− H̃(Y|Zl) where H̃(Y|Zl) is defined in Equation (17), and Z = (Z1, ..., ZL), we have:

H(Y) +E(X,Y)
[
log p(Ŷ|X)

]
= Ĩ(Z0; Y) ≥ Ĩ(Zl ; Y) ≥ Ĩ(Zl+1; Y) ≥ Ĩ(ZL; Y) = Ĩ(Z; Y), (19)

for all 0 ≤ l ≤ L− 1. where Z = (Z1, ..., ZL).

Proposition 1 suggests that: (i) the log likelihood of p(ŷ|x) (plus the constant output entropy H(Y))
is a special case of the variational relevance at bottleneck Z0 = X; (ii) the log likelihood bound H(Y) +
E(X,Y)

[
log p(Ŷ|X)

]
is an upper bound on the variational relevance for all the intermediate bottlenecks

Zl and for the composite bottleneck Z = (Z1, ..., ZL). Therefore, maximizing the log likelihood, as in
MLE, does not guarantee to increase the variational relevance for all the the intermediate bottlenecks
and the composite bottleneck.

Proof. It follows from Jensen’s inequality and the Markov chain that:

∫
p(zl |x) log p(ŷ|zl)dzl =

∫
p(zl |x) log

(∫
p(ŷ|zl+1)p(zl+1|zl)dzl+1

)
dzl

≥
∫

p(zl |x)
∫

p(zl+1|zl) log p(ŷ|zl+1)dzl+1dzl

=
∫ ∫

p(zl |x)p(zl+1|zl) log p(ŷ|zl+1)dzldzl+1

=
∫

p(zl+1|x) log p(ŷ|zl+1)dzl+1,

62

Entropy 2019, 21, 976

for all 0 ≤ l ≤ L− 1. Thus, we have:

Ĩ(Zl ; Y) = H(Y)− H̃(Y|Zl)

= H(Y) +E(X,Y)EZl |X log p(Ŷ|Zl)

≥ H(Y) +E(X,Y)EZl+1|X log p(Ŷ|Zl+1)

= Ĩ(Zl+1; Y).

It also follows from the Markov chain that:

p(ŷ|z) = p(ŷ|zL, zL−1, ..., z1) = p(ŷ|zL).

Therefore, we have:

Ĩ(Z; Y) = H(Y) +E(X,Y)EZL |ZL−1,...,Z1|Z0
log p(Ŷ|ZL)

= H(Y) +E(X,Y)EZL |X log p(Ŷ|ZL)

= Ĩ(ZL; Y).

Finally, by the definition in Equation (17), we have:

Ĩ(Z0; Y) = H(Y) +E(X,Y)EZ0|X log p(Ŷ|Z0)

= H(Y) +E(X,Y) log p(Ŷ|X).

(Q.E.D.)

4.2.2. Approximate Compression

In practice (e.g., in SNN presented in the next section), we can model the encoding between
consecutive layers p(zl |zl−1) with an analytical form. However, the encoding of non-consecutive
layers p(zl |x) for l > 1 is generally not analytic as it is a mixture of p(zl |zl−1). We thus propose to
avoid directly estimating I(Zl ; X) by instead resorting to its upper bound I(Zl ; Zl−1) as its surrogate
in the optimization. However, I(Zl ; Zl−1) is still intractable as it involves the intractable marginal
distribution p(zl) =

∫
p(zl |x)p(x)dx. We then approximate I(Zl ; Zl−1) using a mean-field (factorized)

variational distribution q(zl) = ∏nl
i=1 q(zl,i) where zl = (zl,1, . . . , zl,nl

):

I(Zl ; X) ≤ I(Zl ; Zl−1) =
∫

p(zl |zl−1)p(zl−1) log
p(zl |zl−1)

p(zl)
dzldzl−1

≤
∫

p(zl |zl−1)p(zl−1) log
p(zl |zl−1)

q(zl)
dzldzl−1 = EZl−1 DKL [p(Zl |Zl−1)||q(Zl)]

= EZl−1

nl

∑
i=1

DKL [p(Zl,i|Zl−1)||q(Zl,i)] =: Ĩ(Zl ; Zl−1). (20)

The mean-field variational inference not only helps derive a tractable approximation but also
encourages distributed representation by constraining each neuron to capture an independent factor of
variation for the data [32]; thus, it can potentially represent an exponential number of concepts using
independent factors.

5. Case Study: Learning Binary Stochastic Neural Networks

In this section, we officially connect the variational MIB in Section 4 to stochastic neural networks
(SNNs). We consider an SNN with L hidden layers (without any feedback or skip connection) where
the input layer X, the hidden layers Zl for 1 ≤ l ≤ L, and the output layer Ŷ are considered as random

63

Entropy 2019, 21, 976

variables. We use the convention that Z0 := X, ZL+1 := Ŷ, and Zl = ∅ for all l /∈ {0, 1, . . . , L, L + 1}.
Without any feedback or skip connection, Y, X, Zl , Zl+1, and Ŷ form a Markov chain in that order.
The output layer Ŷ is the surrogate target variable presented in Section 4. The role of SNNs is therefore
reduced to transforming from one random variable to another via the Markov chain X → Zl →
Zl+1 → Ŷ such that it achieves the good information representation (i.e., the compression–relevance
tradeoff) for each layer. With the MLE principle, the learning in SNNs is performed by maximizing
the log likelihood E(X,Y)

[
log p(Ŷ|X)

]
. However, maximizing the log likelihood does not guarantee to

improve the variational relevance for all the intermediate bottlenecks and the composite bottleneck
(Proposition 1).

Algorithm 1: JointMIB

Input: data S0 ← (xi, yi)
N
i=1 ∼ pD(x, y), layer IB weights γl , information tradeoff βl , number

of particles for Monte Carlo simulation M.
Output: θ

Initialization: θ

1 while not converged do

2 for i = 1 to L do

3 Si ← ∅
4 for zi−1 ∈ Si−1 do

/* Monte Carlo simulates M particles z(k)i given each zi−1 */

5 Si ← Si ∪ {z(k)i : 1 ≤ k ≤ M} where z(k)i ∼ p(zi|zi−1)

6 end

7 end

/* Estimate the variational relevance and compression using Monte Carlo samples */
8 Ĩ(Zl ; Y)← Equation (17) and {Si}L

i=0
9 Ĩ(Zl ; Zl−1)← Equation (20) and {Si}L

i=0
10 L̃joint(θ)← ∑L

l=0 γl
(
− Ĩ(Zl ; Y) + βl Ĩ(Zl ; Zl−1)

)
11 g ← ∂

∂θ
L̃joint(θ) /* Using the Raiko estimator in Binary SNNs */

12

13 θ ← θ − νg /* Update using SGD */
14 end

We here instead combine the variational MIB and the MIB compromise to derive a practical
learning principle that encourages compression and relevance for each layer, improving the information
flow in SNNs. To make it concrete and simple, we consider a simple network architecture: binary
stochastic feed-forward (fully-connected) neural networks (SFNNs). In binary SFNNs, we use
a sigmoid as the activation function: p(zl = 1|zl−1) = σ(Wl−1zl−1 + bl−1), where σ(.) is the
(element-wise) sigmoid function, Wl−1 is the network weights connecting layer l − 1 to layer l, bl−1
is a bias vector, and Zl ∈ {0, 1}nl . Let us define L̃l := − Ĩ(Zl ; Y) + βl Ĩ(Zl ; Zl−1), where Ĩ(Zl ; Y)
and Ĩ(Zl ; Zl−1) are the approximate relevance and compression defined in Equation (17) and (20),
respectively. Note that the position of βl here is slightly different from its position in Equation (4).
In Equation (4), βl is associated with the relevance term to respect the convention of the original IB,
while here it is associated with the compression term for practical reasons. In practice, the contribution
of Ĩ(Zl ; Y) is higher than Ĩ(Zl ; Zl−1). In computing Ĩ(Zl ; Y) and Ĩ(Zl ; Zl−1), any expectation with
respect to p(zl |zl−1) is approximated by Monte Carlo simulation in which we sample M particles

64

Entropy 2019, 21, 976

zl ∼ p(zl |zl−1). Regarding the information optimality compromise, we combine the variational MIB
objectives into a weighted sum in JointMIB:

L̃joint :=
L

∑
l=0

γlL̃l , (21)

where γl ≥ 0. In GreedyMIB, we greedily minimize L̃l for each 0 ≤ l ≤ L. We also make each
q(Zl,i) a learnable Bernoulli distribution. The JointMIB is presented in Algorithm 1. The Monte Carlo
sampling operation of Algorithm 1 in stochastic neural networks precludes the backpropagation in
a computation graph. It becomes even more challenging with binary stochastic neural networks,
as it is not well-defined to compute gradients w.r.t. discrete-valued variables. Fortunately, we can
find approximate gradients, which have been proved to be efficient in practice: the REINFORCE
estimator [33,34], the straight-through estimator [35], the generalized EM algorithm [20], and the
Raiko (biased) estimator [21]. Especially, we found that the Raiko gradient estimator works best in
our specific setting and thus deployed it in this application. In the Raiko estimator, the gradient of a
bottleneck particle zl,i ∼ p(zl,i = 1|zl−1) = σ(a(l)i) is propagated only through the deterministic term

σ(a(l)i): ∂zl,i
∂θ ≈

∂σ(a(l)i)
∂θ .

6. Experimental Evaluation

We evaluated the effectiveness of the MIB framework on binary SNNs in synthetic data and MNIST
hand-digit recognition data [23]. Each data sample in MNIST is a 28× 28 gray-scale image representing
a handwritten digit from 0 to 9. The dataset is split into 60000 training samples and 1000 test samples.
In the synthetic data, we visualized the learning dynamics of the SNNs trained with the variational
MIB variants (i.e., JointMIB and GreedyMIB), and those trained with MLE. In MNIST, we evaluate
the effectiveness of the variational MIB variants by comparing them against the baselines MLE and
VIB [14] in classification, adversarial robustness and multi-modal learning problems. We make the
code for our framework publicly available at https://github.com/thanhnguyentang/pib.

6.1. Synthetic Data: Learning Dynamics of Variational MIB

To better understand how MIB modified the information within the layers during the learning
process, we visualized the compression and relevance of each layer over the course of training of
stochastic feed-forward neural networks (SFNNs) [21], JointMIB, and GreedyMIB in synthetic data.
SFN1N is different from MIB only in the objective functions: SFNN is trained with the negative
log likelihood while MIB is trained with the variational MIB objective. To simplify our analysis,
we considered a binary decision problem where X is 12 binary inputs making up 212 = 4096 equally
likely input patterns and Y is a binary variable equally distributed among 4096 input patterns [16].
The base neural network architecture had 4 hidden layers with widths: 10–8–6–4 neurons. Since
the network architecture was small, we could precisely compute the true compression Ix := I(Zi; X)

and true relevance Iy := I(Zi; Y) over training epochs. We fixed βl = β = 10−4 for both JointMIB,
trained five different randomly initialized neural networks for each comparative model with stochastic
gradient descent (SGD) up to 20, 000 epochs on 80% of the data, and averaged the mutual information.
In JointMIB, we set γl = γ = 1, ∀l.

Figure 2 provides a visualization of the learning dynamics of SFNN versus JointMIB on
the information plane (Ix, Iy). Firstly, we observed a common trend in the learning dynamics of
MLE (in the SFNN model) and JointMIB frameworks. Both principles allow the network to gradually
encode more information about X and the relevant information about Y into the hidden layers at
the beginning as I(Zi; X) and I(Zi; Y) both increase. Intuitively, in order for the representations Zl
to make sense of the task, the representations should encode enough information about X; thus,
I(Zl ; X) should increase. This is especially true for shallow layers because, due to the Markov chain

65

Entropy 2019, 21, 976

property, the shallower a layer, the greater its burden of carrying enough information to make sense
of a task. Especially, we can observe that the increase of I(Zl ; X) slowed down at some point for the
deeper layers for both SFNN and MIB. This slowing effect was especially stronger in MIB where the
compression is explicitly encouraged during the learning. Secondly, MIB was different from MLE in
the maximum level of relevance at each layer and the number of epochs to encode the same level of
relevance. JointMIB at l = 1 needed only about 4.68% of the training epochs to achieve at least the
same level of relevance in all layers of SFNN at the final epoch. In addition, MLE was unable to encode
the network layers to reach the maximum level of relevance enabled by MIB (we also trained SFNN
up to 100,000 epochs and observed that the level of relevance of each layer never reached the value of
0.8 bits).

Figure 2. The learning dynamics of the stochastic feed-forward (fully-connected) neural network
(SFNN) (left) and JointMIB (right). The color indicates the training epochs while each node in a color in
the graph represents (I(Zl ; X), I(Zl ; Y)) at the corresponding epoch. Note that at each epoch, I(Zl ; X) ≥
I(Zl+1; X), ∀l (data processing inequality—DPI). JointMIB jointly encodes relevant information into
every layer of stochastic neural networks (SNNs), while keeping each layer informatively concise.
Compared to maximum likelihood estimation (MLE), the level of relevant information encoded by
JointMIB increased more quickly over training epochs and reached a higher value. MIB: Markov
information bottleneck.

There is also a subtle observation in Figure 2 that the relevance for MIB increased until some
point before decreasing, while the relevance for SFNN increased until some point where the value
almost stayed the same without a noticeable decrease. This could be explained by the fact that that the
MIB objective can eventually allow the encoding of relevant information into each layer to its optimal
information trade-off at some point. After this point, if training is continued, due to the mismatch
between the exact MIB objective and its variational bound, the further minimization of the variational
bound would decrease I(Zl ; Y). Consequently, in order for βl I(Zl ; X)− I(Zl ; Y) to be small, I(Zl ; X)

also needs to decrease after this point to compensate for the decrease in I(Zl ; Y). In the case of SFNN
(trained with MLE), the MLE objective reaches its local minimum before the information of each layer
can even reach its optimal information trade-off (if ever). This also suggests that MIB is better than
MLE in terms of exploiting information for each layer during the learning.

GreedyMIB also obtained the representation of higher relevance as compared to MLE (Figure 3).
GreedyMIB at l = 1 needed only about 17.95% of the training epochs to achieve at least the same level
of relevance in all layers of the SFNN at the final epoch. Recall that in GreedyMIB at l = 1 the MIB
principle is applied only to the first hidden layer. The layer representation at the final epoch gradually
shifts to the left (i.e., more compressed) while not degrading the relevance over the greedy training
from layer 1 to layer 4 in Figure 3.

We also see the compression effect that the compression constraints within the MIB framework
prevented the layer representation from shifting to the right (in the information plane) during the
encoding of relevant information (e.g., it slowed down the increase of I(Zl ; X) during the information

66

Entropy 2019, 21, 976

encoding, keeping the representation more concise). As compared with JointMIB, GreedyMIB also
obtained a comparable information representation.

To conclude, two main advantages of MIB as compared to MLE are: (i) MIB can improve
the information representation in SNNs in terms of higher relevance while keeping the information
in each layer concise during encoding; (ii) MIB uses much fewer training epochs to obtain such
information representation.

(a) (b)

(c) (d)

Figure 3. Subfigures (a), (b), (c), and (d) represent GreedyMIB’s encoding of relevant information into
layers 1 ≤ l ≤ 4, respectively. GreedyMIB greedily encodes relevant information into each layer given
the encoded information of the previous layers. GreedyMIB also achieved a significantly higher level of
relevant information at each layer compared to MLE.

6.2. Image Classification

In this experiment, we compared JointMIB and GreedyMIB with three other comparative models
which used the same network architecture without any explicit regularizer: (1) a standard deterministic
neural network (DET) which simply treated each hidden layer as deterministic; (2) a stochastic
feed-forward neural network (SFNN) [21] which is a binary stochastic neural network as in MIB but
is trained with the MLE principle; and (3) variational information bottleneck (VIB) [14], which uses
the entire deterministic network as an encoder, adds an extra stochastic layer as a out-of-network
bottleneck variable, and is then trained with the IB principle on that single bottleneck layer. The base
network architecture in this experiment had two hidden layers with 512 sigmoid-activated neurons
per layer. These models were trained in MNIST [23].

Adopted from the common practice, we used the last 10,000 images of the training set as a
validation (holdout) set for tuning hyperparameters. We then retrained the models from scratch in
the full training set with the best validated configuration. We trained each of the five models with the
same set of five different initializations and reported the average results over the set. For the stochastic
models (all except DET), we drew M = 32 samples per stochastic layer during both training and
inference, and performed inference 10 times at test time to report the mean classification errors for
MNIST. The value of M = 32 is empirically reasonable in this experiment, as illustrated in Figure 4.

67

Entropy 2019, 21, 976

For JointMIB and GreedyMIB, we set γl = 1 (in JointMIB only) and βl = β, ∀1 ≤ l ≤ L, tuned
β on a linear log scale β ∈ {10−i : 1 ≤ i ≤ 10}. We found β = 10−4 worked best for both models
(Figure 5). For VIB, we found that β = 10−3 worked best on MNIST . We trained all the models on
MNIST with Adadelta optimization [36], except for VIB for which we used Adam optimization [37],
as we found that they worked best in the validation set.

The results are shown in Table 1. It shows that JointMIB substantially outperformed DET,
MLE, and VIB on MNIST while GreedyMIB outperformed only DET and underperformed SFNN.
Though JointMIB and GreedyMIB could have comparable information representation, as illustrated in
the synthetic experiment in Section 6.1, in practice, it can be harder to obtain a comparable information
representation for GreedyMIB. In GreedyMIB, it is necessary to train each layer greedily in order to
obtain its information representation. The greedy nature makes it difficult to determine when would be
a good time to stop the training and conclude the information representation for each layer. In addition,
training greedily is expensive. JointMIB makes it more efficient by jointly obtaining a compromised
information representation in each layer. Thus, it allows the compromised information representations
of all the layers to jointly interact with each other during the learning. In principle, it is also harder to
obtain good information representation in GreedyMIB. Due to the conflicting information optimality in
MIB (Theorem 1), the good encoder for the first layer does not guarantee a good information trade-off
in the the deeper layers. Though JointMIB also suffers from the conflicting information optimality,
jointly and explicitly inducing relevant but compressed information into each layer of a neural network
via MIBs as in JointMIB can make it easier for the training.

Figure 4. The value of M versus validation error. M = 32 gave a reasonably good performance as
compared to other larger values.

68

Entropy 2019, 21, 976

Figure 5. The learning curve of JointMIB and SFNN in the MNIST validation set. Either a too-large
or too-small value of β could hurt the generalization of learning. While a large value of β introduces
aggressive compression, a smaller value allows more irrelevant information into the representation.
In this experiment, we found that β = 10−4 was the best trade-off hyperparameter in JointMIB for
this experiment.

Table 1. The performance of the variational MIB variants (i.e., JointMIB and GreedyMIB) for
classification and adversarial robustness on MNIST in comparison with MLE and variational
information bottleneck (VIB). MIB explicitly induces compression–relevance trade-offs in each layer
during the training, which outperforms and is more adversarially robust than the other models of the
same architecture. DET: deterministic neural network.

Model Classification MNIST (Error %)
Adv. Robustness (%)

Targeted Untargeted

DET 1.73 00.00 00.00
VIB [14] 1.45 83.70 93.10

SFNN [21] 1.44 83.00 95.20
GreedyMIB 1.54 83.21 94.30
JointMIB 1.36 84.16 96.00

6.3. Robustness against Adversarial Attacks

We consider here the adversarial robustness of neural networks trained with MIBs. Neural
networks are prone to adversarial attacks which disturb the input pixels by small amounts that are
imperceptible to humans [38,39]. Adversarial attacks generally fall into two categories: untargeted and
targeted attacks. An untargeted adversarial attack A maps the target model M and an input image
x into an adversarially perturbed image x′: A : (M, x) → x′, and is considered successful if it can
fool the model M(x) �= M(x′). A targeted attack, on the other hand, has an additional target label l:
A : (M, x, l)→ x′, and is considered successful if M(x′) = l �= M(x).

We performed adversarial attacks on the neural networks trained with MLE and MIB, and used the
accuracy on adversarially perturbed versions of the test set to rank a model’s robustness. In addition,
we used the L2 attack method for both targeted and untargeted attacks [40], which has shown to be
the most effective attack algorithm with smaller perturbations. Specifically, we attacked the same four
comparative models described from the previous experiment on the first 1000 samples of the MNIST
test set. For the targeted attacks, we targeted each image into the other 9 labels other than the true

69

Entropy 2019, 21, 976

label of the image. We used the same hyperparameters as in the classification experiment. The value of
β = βl = 10−4 was also reasonable for this adversarial robustness task (Figure 6).

Figure 6. Adversarial robustness of JointMIB for various values of β. Introducing aggressive
compression (i.e., large values of β) reduced adversarial robustness while smaller values of β introduced
comparable robustness. The best information trade-off for targeted attacks was at β = 10−4 in
this experiment.

The results are shown in Table 1. Firstly, it was expected that the adversarial robustness accuracy
in the targeted attacks would be smaller than that in the untargeted attacks because the targeted attacks
are more challenging for the neural networks to overcome than untargeted attacks. This result is
consistent in our experiment. Secondly, the deterministic model DET was totally fooled by all the
attacks. It is known that stochasticity in neural networks improves adversarial robustness, which is
consistent with our experiment as SFNN was significantly more adversarially robust than DET. Thirdly,
VIB had comparable adversarial robustness to SFNN even if VIB had “less stochasticity” than SFNN
(VIB had one stochastic layer while all hidden layers of the SFNN were stochastic). We hypothesize
that this is because VIB performance was compensated with the IB principle for its stochastic layer.
Finally, JointMIB was more adversarially robust than the other models. Again, GreedyMIB was not
very effective in adversarial robustness (it was worse than VIB in the targeted attack and SFNN in
the untargeted attack). We hypothesize that this relates to the difficulty for GreedyMIB to have a
good information representation for all layers. In conclusion, this experiment suggests that explicitly
and jointly inducing compression and relevance into each layer has a good potential of being more
adversarially robust for neural networks.

6.4. Multi-Modal Learning

One of the main advantages of stochastic neural networks is their ability to model structured
output space in which a one-to-many mapping is required. A binary stochastic variable zl of
dimensionality nl can take on 2nl different states, each of which would give a different ŷ. Thus, the
conditional distribution p(ŷ|x) in stochastic neural networks is multi-modal. Hence in this experiment,
we evaluated how MIB affected the multi-modal learning capability of SNNs.

70

Entropy 2019, 21, 976

Figure 7. Samples drawn from the prediction of the lower half of the MNIST test data digits
based on the upper half for JointMIB (right, after 60 epochs) and SFNN (left, after 200 epochs).
The leftmost column is the original MNIST test digit followed by the masked out digits and nine samples.
The rightmost column was obtained by averaging over all generated samples of bottlenecks drawn
from the prediction. The figures illustrate the capability of modeling structured output space using
JointMIB and SFNN. JointMIB generated more recognizable digits within much fewer training epochs.

In this experiment, we followed [21] and predicted the lower half of the MNIST digits using
the upper half as inputs. We used the same neural network architecture of 392–512–512–392 for
JointMIB and SFNN and trained them with SGD with a constant learning rate of 0.01 (due to
the under-performance of GreedyMIB from the previous experiments and its expensive training,
we compared only JointMIB with SFNN in this experiment). We trained the models on the full training
set of 60,000 images and tested with the test set. For JointMIB, we also used βl = β = 10−4. The results
of JointMIB at epoch 60 and MLE at epoch 200 are shown in Figure 7. Firstly, JointMIB could generate
digit variations which were more recognizable than those generated by MLE. In particular, some
samples of digits 2, 4, 5, and 7 generated by MLE were distorted, while all digit samples generated by
JointMIB were recognizable. Secondly, JointMIB used much fewer epochs to achieve good samples.
In JointMIB, we trained only up to 60 epochs while in MLE, we trained up to 200 epochs but did
not observe as good samples in between. This further highlights the advantage of MIB in obtaining
good information representation in much fewer training epochs. Furthermore, we expect that the
advantage of inducing compression and relevance into each layer by JointMIB is particularly helpful
for multi-modal learning because in multi-modal learning, the modes generated in each hidden layer
are critical for representing multiple modes. While MLE ignores the explicit contribution of each layer
to the information representation of the neural network, JointMIB explicitly takes into account the
compression and relevance of each layer.

7. Discussion and Future Work

In this work, we introduce Markov Information Bottleneck, an extension of the original
Information Bottleneck to the context where a representation is multiple stochastic variables that
form a Markov chain. In this context, we show that one cannot simply directly apply the original
IB principle to each variable as their information optimality is conflicting for most of the interesting
cases. We suggest a simple but efficient fix via a joint compromise. In this scheme, we jointly
combine the information trade-offs of each variable into a weighted sum, encouraging the information
trade-offs for all the variables better off during the learning. In particular in the context of Stochastic
Neural Networks, we present the variational inference to estimate the compression and relevance for
each bottleneck. As a result, the variational MIB turns the intractable decoding of each bottleneck
approximately into an efficient inference for that bottleneck. This variational approximation turns
out to generalize the MLE principle in the context of Stochastic Neural Networks. We empirically

71

Entropy 2019, 21, 976

demonstrate the effectiveness of MIB by comparing it with the baselines using MLE principle and
Variational Information Bottleneck in classification, adversarial robustness and multi-modal learning.
The empirical performance supports the potential benefit of explicitly inducing compression and
relevance into each layer (e.g., in a jointly manner), presenting a special link between information
representation and the performance in classification, adversarial robustness and multi-modal learning.

One limitation of our current approach is the number of samples generated via zl ∼ p(zl |zl−1)

used to estimate the variational compression and relevance scales exponentially with the number
of layers. This is however a common drawback for performing inference in fully stochastic neural
networks. This difficulty can be overcome by using partially stochastic neural networks. In addition,
the Monte Carlo sampling to estimate the variational mutual information, though unbiased, is of
high variance and sample inefficiency. This sample inefficiency limitation can be overcome by
resorting to more advanced methods of estimating mutual information such as [41,42]. The MIB
framework also admits several possible future extensions including scaling the framework to bigger
networks and real-valued stochastic neural networks. The extension to real-valued stochastic neural
networks are straightforward by, e.g., constructing a Gaussian layer for modeling p(zl |zl−1) and using
reparameterization tricks [43] to perform back-propagation via sampling. Another dimension of
improvement is to study hyperparameter effect of MIB. This current work only considers equal γl = γ

for JointMIB and equal βl = β, and tuned β via grid search. We can use, e.g., Bayesian optimization
[44] to efficiently tune γl and βl with expandable bounds. In addition, we believe that the challenge
of applying our methods to more advanced datasets such as Imagenet [45] is partly associated with
that of scaling the stochastic neural network as we tend to need more expressive models for more
challenging datasets. Given this perspective, the challenge to scale to large datasets can be partially
addressed with the solutions from scaling stochastic neural networks some of which we suggest
above. Furthermore, we believe that, as one of the main messages from our work, explicitly inducing
compressed and relevant information (e.g., via mutual information as in MIB) into many intermediate
layers can be more beneficial to large-scale tasks than simply resorting to the MLE principle. An
intuition is to think of this as a way for information-theoretic regularization for intermediate layers. Finally,
a followup important question to ask is whether there is any theoretical and stronger empirical link
between an improved information representation (e.g., in the MIB sense) and the generalization of
neural networks. This connection might be intuitively correct but a systematically empirical study or a
theoretical suggestion are an important future research direction.

Author Contributions: Conceptualization by J.C. and T.T.N.; writing and conducting experiments supervised by
J.C.; methodology, software, validation, formal analysis, investigation, visualization, and writing of the original
draft by T.T.N.

Funding: This work was supported by the Institute for Information and Communications Technology Planning
and Evaluation (IITP) grant (No.2017-0-01779, A machine learning and statistical inference framework for
explainable artificial intelligence).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IB Information Bottleneck
MIB Markov Information Bottleneck
SNN Stochastic Neural Network
DPI Data Processing Inequality
MLE Maximum Likelihood Estimation
SGD Stochastic Gradient Descent
SFNN Stochastic Feed-forward Neural Network
VIB Variational Information Bottleneck

72

Entropy 2019, 21, 976

References

1. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the Annual Allerton
Conference on Communication, Control and Computing, Monticello, IL, USA, 22–24 September 1999.

2. Strouse, D.; Schwab, D.J. The Information Bottleneck and Geometric Clustering. Neural Comput. 2019, 31,
doi:10.1162/neco_a_01136. [CrossRef] [PubMed]

3. Dai, B.; Zhu, C.; Guo, B.; Wipf, D.P. Compressing Neural Networks using the Variational Information
Bottleneck. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018)
Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018; pp. 1143–1152.

4. Achille, A.; Soatto, S. Emergence of Invariance and Disentanglement in Deep Representations. J. Mach.
Learn. Res. 2018, 19, 50:1–50:34.

5. Yamada, M.; Heecheol, K.; Miyoshi, K.; Yamakawa, H. FAVAE: Sequence Disentanglement using Information
Bottleneck Principle. arXiv 2019, arXiv:1902.08341 .

6. Jeon, I.; Lee, W.; Kim, G. IB-GAN: Disentangled Representation Learning with Information Bottleneck GAN.
2019. Available online: https://openreview.net/forum?id=ryljV2A5KX (accessed on 25 September 2019)

7. Tschannen, M.; Djolonga, J.; Rubenstein, P.K.; Gelly, S.; Lucic, M. On Mutual Information Maximization for
Representation Learning. arXiv 2019, arXiv:1907.13625.

8. Tishby, N.; Polani, D. Information Theory of Decisions and Actions. In Perception-Action Cycle; Springer:
New York, NY, USA, 2011; pp. 601–636.

9. Goyal, A.; Islam, R.; Strouse, D.; Ahmed, Z.; Larochelle, H.; Botvinick, M.; Levine, S.; Bengio, Y. Transfer and
Exploration via the Information Bottleneck. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

10. Friedman, N.; Mosenzon, O.; Slonim, N.; Tishby, N. Multivariate Information Bottleneck. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intelligence, Seattle, WA, USA, 2–5 August, 2001.

11. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information Bottleneck for Gaussian Variables. J. Mach.
Learn. Res. 2005, 6, 165–188.

12. Rey, M.; Roth, V. Meta-Gaussian Information Bottleneck. In Proceedings of the Annual Conference on
Neural Information Processing Systems, NIPS, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1925–1933.

13. Strouse, D.; Schwab, D.J. The Deterministic Information Bottleneck. In Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence (UAI 2016), New York, NY, USA, 25–29 June 2016;
Ihler, A.T., Janzing, D., Eds.; AUAI Press: Corvallis, OR, USA, 2016.

14. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

15. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the
IEEE Information Theory Workshop (ITW), Jerusalem, Israel , 26 April–1 May 2015; pp. 1–5.

16. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,
arXiv:1703.00810.

17. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using
the Information Bottleneck Principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [CrossRef] [PubMed]

18. Hinton, G.E. Training Products of Experts by Minimizing Contrastive Divergence. Neural Comput. 2002,
14, 1771–1800, doi:10.1162/089976602760128018. [CrossRef] [PubMed]

19. Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006,
18, 1527–1554, doi:10.1162/neco.2006.18.7.1527. [CrossRef] [PubMed]

20. Tang, Y.; Salakhutdinov, R. Learning Stochastic Feedforward Neural Networks. In Advances in Neural
Information Processing Systems 26: Proceedings of the 27th Annual Conference on Neural Information Processing
Systems 2013, Lake Tahoe, NV, USA, 5–10 December 2013; Burges, C.J.C., Bottou, L., Ghahramani, Z.,
Weinberger, K.Q., Eds.; Curran: Norwich, UK, 2013; pp. 530–538.

21. Raiko, T.; Berglund, M.; Alain, G.; Dinh, L. Techniques for Learning Binary Stochastic Feedforward Neural
Networks. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego,
CA, USA, 7–9 May 2015.

22. Florensa, C.; Duan, Y.; Abbeel, P. Stochastic Neural Networks for Hierarchical Reinforcement Learning.
In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France,
24–26 April 2017.

73

Entropy 2019, 21, 976

23. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

24. Nguyen, T.T.; Choi, J. Layer-wise Learning of Stochastic Neural Networks with Information Bottleneck.
arXiv 2017, arXiv:1712.01272.

25. Nguyen, T.T. Parametric Information Bottleneck to Optimize Stochastic Neural Networks. Master’s Thesis,
Ulsan National Institute of Science and Technology, Ulsan, Korea, 2018.

26. Slonim, N. Information Bottleneck Theory and Applications. Ph.D. Thesis, Hebrew University of Jerusalem,
Jerusalem, Israel, 2003.

27. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley Series in Telecommunications and Signal
Processing; Wiley: New York, NY, USA, 2006.

28. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the Information
Bottleneck Theory of Deep Learning. In Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018.

29. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural
Networks. arXiv 2017, arXiv:1710.09282.

30. Rasmussen, C.E.; Ghahramani, Z. Occam’s Razor. In Advances in Neural Information Processing Systems;
MIT Press: Cambridge, MA, USA, 2001, pp. 294–300.

31. Arora, S.; Ge, R.; Neyshabur, B.; Zhang, Y. Stronger generalization bounds for deep nets via a
compression approach. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018; pp. 254–263.

32. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
33. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.

Mach. Learn. 1992, 8, 229–256, doi:10.1007/BF00992696. [CrossRef]
34. Bengio, Y.; Léonard, N.; Courville, A.C. Estimating or Propagating Gradients Through Stochastic Neurons

for Conditional Computation. arXiv 2013, arXiv:1308.3432.
35. Hinton, G. Lecture 9.3—Using Noise as a Regularizer. In Neural Networks for Machine Learning; University of

Toronto: Toronto, ON, USA, 2016.
36. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701,
37. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International

Conference on Learning Representations, ICLR, 2015, San Diego, CA, USA, 7–9 May 2015.
38. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties

of neural networks. In Proceedings of the 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, 14–16 April 2014.

39. Nguyen, A.M.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2015), Boston, MA, USA, 7–12 June 2015; IEEE Computer Society: Washington, DC, USA, 2015;
pp. 427–436, doi:10.1109/CVPR.2015.7298640. [CrossRef]

40. Carlini, N.; Wagner, D.A. Towards Evaluating the Robustness of Neural Networks. In Proceedings of
the 2017 IEEE Symposium on Security and Privacy (SP 2017), San Jose, CA, USA, 22–26 May 2017; IEEE
Computer Society: Washington, DC, USA, 2017; pp. 39–57, doi:10.1109/SP.2017.49. [CrossRef]

41. Lin, X.; Sur, I.; Nastase, S.A.; Divakaran, A.; Hasson, U.; Amer, M.R. Data-Efficient Mutual Information
Neural Estimator. arXiv 2019, arXiv:1905.03319.

42. Belghazi, M. I.; Baratin, A.; Rajeshwar, S.; Baratin, A.; Ozair, S.; Bengio, Y.; Hjelm, R.D.; Courville, A.C.
Mutual Information Neural Estimation. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsässan, Stockholm, Sweden, 10–15 July 2018; pp. 530–539.

43. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.

74

Entropy 2019, 21, 976

44. Ha, H.; Rana, S.; Gupta, S.; Nguyen, T.; Tran-The, H.; Venkatesh, S. Bayesian Optimization with Unknown
Search Space. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2019, Vancouver, BC, Canada, 8–14 December 2019.

45. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami,
Florida, 20–25 June 2009.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

75

entropy

Article

Nonlinear Information Bottleneck

Artemy Kolchinsky 1,*, Brendan D. Tracey 1,2 and David H. Wolpert 1,3,4

1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA; tracey.brendan@gmail.com (B.D.T.);
david.h.wolpert@gmail.com (D.H.W.)

2 Department of Aeronautics & Astronautics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

3 Complexity Science Hub, 1080 Vienna, Austria
4 Center for Bio-Social Complex Systems, Arizona State University, Tempe, AZ 85281, USA
* Correspondence: artemyk@gmail.com

Received: 16 October 2019; Accepted: 28 November 2019; Published: 30 November 2019

Abstract: Information bottleneck (IB) is a technique for extracting information in one random variable
X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed
“bottleneck” random variable M from which Y can be accurately decoded. However, finding the
optimal bottleneck variable involves a difficult optimization problem, which until recently has been
considered for only two limited cases: discrete X and Y with small state spaces, and continuous X
and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are
linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous
X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel
non-parametric upper bound for mutual information. We describe how to implement our method
using neural networks. We then show that it achieves better performance than the recently-proposed
“variational IB” method on several real-world datasets.

Keywords: information bottleneck; mutual information; representation learning; neural networks

1. Introduction

Imagine that one has two random variables, an “input” random variable X and an “output”
random variable Y, and that one wishes to use X to predict Y. In some situations, it is useful to extract
a compressed representation of X that is relevant for predicting Y. This problem is formally considered
by the information bottleneck (IB) method [1–3]. IB proposes to find a “bottleneck” variable M which
maximizes prediction, formulated in terms of the mutual information I(Y; M), given a constraint on
compression, formulated in terms of the mutual information I(X; M). Formally, this can be stated in
terms of the constrained optimization problem

arg max
M∈Δ

I(Y; M) s.t. I(X; M) ≤ R , (1)

where Δ is the set of random variables M that obey the Markov condition Y−X−M [4–6]. This Markov
condition states that M is conditionally independent of Y given X, and it guarantees that any
information that M has about Y is extracted from X. The maximal value of I(Y; M) for each possible
compression value R forms what is called the IB curve [1].

The following example illustrates how IB might be used. Suppose that a remote weather station
makes detailed recordings of meteorological data (X), which are then encoded and sent to a central
server (M) and used to predict weather conditions for the next day (Y). If the channel between the
weather station and server has low capacity, then the information transmitted from the weather station
to the server must be compressed. Minimizing the IB objective amounts to finding a compressed

Entropy 2019, 21, 1181; doi:10.3390/e21121181 www.mdpi.com/journal/entropy77

Entropy 2019, 21, 1181

representation of meteorological data which can be transmitted across a low capacity channel (have
low I(X; M)) and used to optimally predict future weather (have high I(Y; M)). The IB curve specifies
the trade-off between channel capacity and accurate prediction.

Numerous applications of IB exist in domains such as clustering [7,8], coding theory and
quantization [9–12], speech and image recognition [13–17], and cognitive science [18]. Several recent
papers have also drawn connections between IB and supervised learning, in particular, classification
using neural networks [19,20]. In this context, X typically represents input vectors, Y the output
classes, and M the intermediate representations used by the network, such as the activity of hidden
layer(s) [21]. Existing research has considered whether intermediate representations that are optimal in
the IB sense (i.e., close to the IB curve) may be better in terms of generalization error [21–23], robustness
to adversarial inputs [24], detection of out-of-distribution data [25], or provide more “interesting” or
“useful” intermediate representations of inputs [26]. Other related research has investigated whether
stochastic gradient descent (SGD) training dynamics may drive hidden layer representations towards
IB optimality [27,28].

In practice, optimal bottleneck variables are usually not found by solving the constrained
optimization problem of Equation (1), but rather by finding M that maximize the so-called IB
Lagrangian [1,6,22],

LIB(M) := I(Y; M)− βI(X; M). (2)

LIB is the Lagrangian relaxation [29] of the constrained optimization problem of Equation (1), and β

is a Lagrange multiplier that enforces the constraint I(X; M) ≤ R. In practice, β ∈ [0, 1] serves as a
parameter that controls the trade-off between compression and prediction. As β → 1, IB will favor
maximal compression of X; for β = 1 (or any β ≥ 1) the optimal M will satisfy I(X; M) = I(Y; M) = 0.
As β → 0, IB will favor prediction of Y; for β = 0 (or any β ≤ 0), there is no penalty on I(X; M) and
the optimal M will satisfy I(Y; M) = I(X; Y), the maximum possible. It is typically easier to optimize
LIB than Equation (1), since the latter involves a complicated non-linear constraint. For this reason,
optimizing LIB has become standard in the IB literature [1,6,19,20,22,24,30,31].

However, in recent work [32] we showed that whenever Y is a deterministic function of X (or
close to being one), optimizing LIB is not longer equivalent to optimizing Equation (1). In fact, when Y
is a deterministic function of X, the same M will optimize LIB for all values of β, meaning that the IB
curve cannot be explored by optimizing LIB while sweeping β. This is a serious issue in supervised
learning scenarios (as well as some other domains), where it is very common for the output Y to be a
deterministic function of the input X. Nonetheless, the IB curve can still be explored by optimizing the
following simple modification of the IB Lagrangian, which we called the squared-IB Lagrangian [32],

LsqIB(M) := I(Y; M)− βI(X; M)2 (3)

where β ≥ 0 is again a parameter that controls the trade-off between compression and prediction.
Unlike the case for LIB, there is always a one-to-one correspondence between M that optimize LsqIB

and solutions to Equation (1), regardless of the relationship between X and Y. In the language of
optimization theory, the squared-IB Lagrangian is a “scalarization” of the multi-objective problem
{min I(X; M), max I(Y; M)} [33]. Importantly, unlike LIB, there can be non-trivial optimizers of LsqIB

even for β ≥ 1; the relationship between β and corresponding solutions on the IB curve has been
analyzed in [34]. In that work, it was also shown that the objective function of Equation (3) is part of
a general family of objectives I(Y; M)− βF(I(X; M)), where F is any monotonically-increasing and
strictly convex function, all of which can be used to explore the IB curve.

Unfortunately, optimizing the IB Lagrangian and squared-IB Lagrangian remains a difficult
problem. First, both objectives are non-convex, so there is no guarantee that a global optimum can
be found. Second, finding even a local optimum requires evaluating the mutual information terms
I(X; M) and I(Y; M), which can involve intractable integrals. For this reason, until recently IB has
been mainly developed for two limited cases. The first case is where X and Y are discrete-valued and

78

Entropy 2019, 21, 1181

have a small number of possible outcomes [1]. There, one can explicitly represent the full encoding map
(the condition probability distribution of M given X) during optimization, and the relevant integrals
become tractable finite sums. The second case is when X and Y are continuous-valued and jointly
Gaussian. Here, the IB optimization problem can be solved analytically, and the resulting encoding
and decoding maps are linear [31].

In this work, we propose a method for performing IB in much more general settings, which
we call nonlinear information bottleneck, or nonlinear IB for short. Our method assumes that M is a
continuous-valued random variable, but X and Y can be either discrete-valued (possibly with many
states) or continuous-valued, and with any desired joint distribution. Furthermore, as suggested by
the term nonlinear IB, the encoding and decoding maps can be nonlinear.

To carry out nonlinear IB, we derive a lower bound on LIB (or, where appropriate, LsqIB) which
can be maximized using gradient-based methods. As we describe in the next section, our approach
makes use of the following techniques:

• We represent the distribution over X and Y using a finite number of data samples.
• We represent the encoding map p(m|x) and the decoding map p(y|m) as parameterized conditional

distributions.
• We use a variational lower bound for the prediction term I(Y; M), and non-parametric upper

bound for the compression term I(X; M), which we developed in earlier work [35].

Note that three recent papers have suggested other ways of optimizing the IB Lagrangian in
general settings [24,36,37]. These papers use variational upper bounds on the compression term
I(X; M), which is different from our non-parametric upper bound. A detailed comparison is provided
in Section 3. In that section, we also relate our approach to other work in machine learning.

In Section 4, we explain how to implement our approach using standard neural network techniques.
We demonstrate its performance on several real-world datasets, and compare it to the recently-proposed
variational IB method [24].

2. Proposed Approach

In the following, we use H(·) for Shannon entropy, I(·; ·) for mutual information [MI], DKL(·‖·)
for Kullback–Leibler [KL] divergence. All information-theoretic quantities are in units of bits, and all
logs are base-2. We use N (μ, Σ) to indicate the probability density function of a multivariate Gaussian
with mean μ and covariance matrix Σ. We use notation like EP(X)[f (X)] =

∫
P(x) f (x) dx to indicate

expectations, where f (x) is some function and P(x) some probability distribution. We use δ(·, ·) for
the Kronecker delta.

Let the input random variable X and the output random variable Y be distributed according to
some joint distribution Q(x, y), with marginals indicated by Q(y) and Q(x). We assume that we are
provided with a “training dataset” D = {(x1, y1), . . . , (xN , yN)}, which contains N input–output pairs
sampled IID from Q(x, y). Let M indicate the bottleneck random variable, with outcomes in Rd. In the
derivations in this section, we assume that X and Y are continuous-valued, but our approach extends
immediately to the discrete case (with some integrals replaced by sums).

Let the conditional probability Pθ(m|x) indicate a parameterized encoding map from input X to the
bottleneck variable M, where θ is a vector of parameters. Given an encoding map, one can compute
the MI between X and M, Iθ(X; M), using the joint distribution Qθ(x, m) := Pθ(m|x)Q(x). Similarly,
one can compute the MI between Y and M, Iθ(Y; M), using the joint distribution

Qθ(y, m) :=
∫

Pθ(m|x)Q(x, y) dx . (4)

We now consider the IB Lagrangian, Equation (2), as a function of the encoding map parameters,

LIB(θ) := Iθ(Y; M)− βIθ(X; M) . (5)

79

Entropy 2019, 21, 1181

In this parametric setting, we seek parameter values that maximizeLIB(θ). Unfortunately, this optimization
problem is usually intractable due to the difficulty of computing the integrals in Equation (4) and in
the MI terms of Equation (5). Nonetheless, it is possible to carry out an approximate form of IB by
maximizing a tractable lower bound on LIB, which we now derive.

First, consider any conditional probability Pφ(y|m) of outputs given bottleneck variable, where φ

is a vector of parameters, which we call the (variational) decoding map. Given Pφ(y|m), the non-negativity
of KL divergence leads to the following variational lower bound on the first MI term in Equation (5),

Iθ(Y; M) = H(Q(Y))− H(Qθ(Y|M))

≥ H(Q(Y))− H(Qθ(Y|M))− DKL(Qθ(Y|M)‖Pφ(Y|M))

= H(Q(Y)) +EQθ(Y,M)

[
log Pφ(Y|M)

]
, (6)

where in the last line we’ve used the following identity,

−EQθ(Y,M)

[
log Pφ(Y|M)

]
= DKL(Qθ(Y|M)‖Pφ(Y|M)) + H(Qθ(Y|M)). (7)

Note that the inequality of Equation (6) holds for any choice of Pφ(y|m), and becomes an equality when
Pφ(y|m) is equal to the “optimal” decoding map Qθ(y|m) (as would be computed from Equation (4)).
Moreover, the bound becomes tighter as the KL divergence between Pφ(y|m) and Qθ(y|m) gets smaller.
Below, we will maximize the RHS of Equation (6) with respect to φ, thereby bringing Pφ(y|m) closer to
Qθ(y|m).

It remains to upper bound the Iθ(X; M) term in Equation (5). To proceed, we first approximate
the joint distribution of X and Y with the empirical distribution in the training dataset,

Q(x, y) ≈ 1
N ∑

i
δ(xi, x)δ(yi, y). (8)

We then assume that the encoding map is the sum of a deterministic function fθ(x) plus
Gaussian noise,

M = fθ(X) + Z, (9)

where (Z|X = x) ∼ N (fθ(x), Σθ(x)). Note that the noise covariance Σθ(x) can depend both on the
parameters θ and the outcome of X (i.e., the noise can be heteroscedastic). Combining Equation (8)
and Equation (9) implies that the bottleneck variable M will be distributed as a mixture of N equally-
weighted Gaussian components, with component i having distribution N (fθ(xi), Σθ(xi)). We can then
employ the following non-parametric upper bound on MI, which was derived in a recent paper [35]:

Iθ(X; M) ≤ Îθ(X; M) := − 1
N ∑

i
log

1
N ∑

j
e−DKL

[
N (fθ(xi),Σθ(xi))

∥∥N (fθ(xj),Σθ(xj))
]
. (10)

(Note that the published version of [35] contains some typos which are corrected in the latest arXiv
version at arxiv.org/abs/1706.02419.)

Equation (10) bounds the MI in terms of the pairwise KL divergences between the Gaussian
components of the mixture distribution of M. It is useful because the KL divergence between two
d-dimensional Gaussians has a closed-form expression,

DKL
[
N (μ′, Σ′)

∥∥N (μ, Σ)
]
=

1
2

[
ln

det Σ
det Σ′

+ (μ′ − μ)Σ−1(μ′ − μ) + tr(Σ−1Σ′)− d
]

. (11)

80

Entropy 2019, 21, 1181

Furthermore, in the special case when all components have the same covariance and can be grouped
into well-separated clusters, the upper bound of Equation (10) becomes tight [35]. As we will see below,
this special case is a commonly encountered solution to the optimization problem considered here.

Combining Equation (6) and Equation (10) provides the following tractable lower bound for the
IB Lagrangian,

LIB(θ) ≥ L̂IB(θ, φ) := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β Îθ(X; M) (12)

where we dropped the additive constant H(Q(Y)) (which does not depend on the parameter values
and is therefore irrelevant for optimization). We refer to Equation (12) as the nonlinear IB objective.

As mentioned in the introduction, in cases where Y is a deterministic function of X (or close to
being one), it is no longer possible to explore the IB curve by optimizing the IB Lagrangian for different
values of β [19,32,34]. Nonetheless, it is always possible to explore the IB curve by instead optimizing
the squared-IB Lagrangian, Equation (3). The above derivations also lead to the following tractable
lower bound for the squared-IB Lagrangian,

LsqIB(θ) ≥ L̂sqIB(θ, φ) := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β

[
Îθ(X; M)

]2. (13)

Note that maximizing the expectation term EQθ(Y,M)

[
log Pφ(Y|M)

]
is equivalent to minimizing

the usual cross-entropy loss in supervised learning. (Note that mean squared error, the typical loss
function used for training regression models, can also be interpreted as a cross-entropy term [38] (pp.
132–134).) From this point of view, Equation (12) and Equation (13) can be interpreted as adding an
information-theoretic regularization term to the regular objective of supervised learning.

For optimization purposes, the compression term Îθ(X; M) can be computed from data using
Equations (10) and (11), while the expectation term EQθ(Y,M)

[
log Pφ(Y|M)

]
can be estimated as

EQθ(Y,M)

[
log Pφ(Y|M)

]
≈ 1

N ∑i log Pφ(yi|mi), where mi indicates samples from Pθ(m|xi). Assuming
that fθ is differentiable with respect to θ and Pφ is differentiable with respect to φ, the optimal θ and
φ can be selected by using gradient-based methods to maximize Equation (12) or Equation (13), as
desired. In practice, this optimization will typically be done using stochastic gradient descent (SGD),
i.e., by computing the gradient using randomly sampled mini-batches rather than the whole training
dataset. In fact, mini-batching becomes necessary for large datasets, since evaluating Îθ(X; M) involves
O(n2) operations, where n is the number of data points in the batch used to compute the gradient,
which becomes prohibitively slow for very large n. At the same time, Îθ(X; M) is closely related
to kernel-density estimators [35], and it is known that the number of samples required for accurate
kernel-density estimates grows rapidly as dimensionality increases [39]. Thus, mini-batches should
not be too small when d (the dimensionality of the bottleneck variable) is large. In some cases, it
may be useful to estimate the gradient of EQθ(Y,M)

[
log Pφ(Y|M)

]
and the gradient of Îθ(X; M) using

mini-batches of different sizes. More implementation details are discussed below in Section 4.1.
Note that the approach described here is somewhat different (and simpler) than in previous

versions of this manuscript [40,41]. In previous versions, we represented the marginal distribution
Q(x) with a mixture of Gaussians, rather than with the empirical distribution in the training data.
However, we found that this increased complexity but was not necessary for good performance.
Furthermore, we previously focused only on optimizing a bound on the IB Lagrangian, Equation (12).
In subsequent work [32], we showed that the IB Lagrangian is inadequate for many supervised learning
scenarios, including some of those explored in Section 4.2, and that the squared-IB Lagrangian should
be used instead. In this work, we report performance when optimizing Equation (13), a bound on the
squared-IB Lagrangian.

3. Relation to Prior Work

In this section, we relate our proposed method to prior work in machine learning.

81

Entropy 2019, 21, 1181

3.1. Variational IB

Recently, there have been three other proposals for performing IB for continuous and possibly
non-Gaussian random variables using neural networks [24,36,37], the most popular of which is called
variational IB (VIB) [24]. As in our approach, these methods propose tractable lower bounds on the
LIB objective. They employ the same variational bound for the prediction MI term I(Y; M) as our
Equation (6). These methods differ from ours, however, in how they bound the compression term,
Iθ(X; M). In particular, they all use some form of the following variational upper bound,

Iθ(X; M) = DKL(Pθ(M|X)‖R(M))− DKL(Pθ(M)‖R(M)) ≤ DKL(Pθ(M|X)‖R(M)) , (14)

where R is some surrogate marginal distribution over the bottleneck variable M. Combining with
Equation (6) leads to the following variational lower bound for LIB,

LIB(M) ≥ EQθ(Y,M)

[
log Pφ(Y|M)

]
− βDKL(Pθ(M|X)‖R(M)) + const . (15)

The three aforementioned papers differ in how they define the surrogate marginal distribution R.
In [24], R is a standard multivariate normal distribution, N (0, I). In [36], R is a product of Student’s
t-distributions. The scale and shape parameters of each t-distribution are optimized during training,
in this way tightening the bound in Equation (14). In [37], two surrogate distributions are considered,
the improper log-uniform and the log-normal, with the appropriate choice depending on the particular
activation function (non-linearity) used in the neural network.

In addition, the encoding map Pθ(m|x) in [36] and [24] is a deterministic function plus Gaussian
noise, same as in Equation (9). In [37], the encoding map consists of a deterministic function with
multiplicative, rather than additive, noise.

These alternative methods have potential advantages and disadvantages compared to our
approach. On one hand, they are more computationally efficient: Our non-parametric estimator
of Îθ(X; M) requires O(n2) operations per mini-batch (where n is the size of the mini-batch), while the
variational bound of Equation (14) requires O(n) operations. On the other hand, our non-parametric
estimator is expected to give a better estimate of the true MI I(X; M) [35]. We provide a comparison
between our approach and variational IB [25] in Section 4.2.

3.2. Neural Networks and Kernel Density Entropy Estimates

A key component of our approach is using a differentiable upper bound on MI, Îθ(X; M).
As discussed in [35], this bound is related to non-parametric kernel-density estimators of MI. See [42–46]
for related work on using neural networks to optimize non-parametric estimates of information-theoretic
functions. This technique can also be related to kernel-based estimation of the likelihood of held-out
data for neural networks (e.g., [47]). In these later approaches, however, the likelihood of held-out data
is estimated only once, as a diagnostic measure once learning is complete. We instead propose to train
the network by directly incorporating our non-parametric estimator Îθ(X; M) in the objective function.

3.3. Auto-Encoders

Auto-encoders are unsupervised learning architectures that learn to reconstruct a copy of the
input X, while using some intermediate representations (such as a hidden layer in a neural network).
Auto-encoders have some conceptual relationships to IB, in that the intermediate representations are
sometimes restricted in terms of dimensionality, or with information-theoretic penalties on hidden
layer coding length [48,49]. Similar penalties have also been explored in a supervised learning scenario
in [50]. In that work, however, hidden layer states were treated as discrete-valued, limiting the
flexibility and information capacity of hidden representations.

More recently, denoising auto-encoders [51] have attracted attention. Denoising auto-encoders
constrain the amount of information passing from input to hidden layers by injecting noise into the

82

Entropy 2019, 21, 1181

hidden layer activity, similarly to our noisy mapping from the input to the bottleneck layer. Previous
work on auto-encoders has considered either penalizing hidden layer coding length or injecting noise
into the map, rather than combing the two as we do here. Moreover, denoising auto-encoders do not
have a notion of an “optimal” noise level, since less noise will always improve prediction error on the
training data. Thus, they cannot directly adapt the noise level (as done in our method).

Finally, variational auto-encoders [52] [VAEs] are recently-proposed architectures which learn
generative models from unsupervised data (i.e., after training, they can be used to generate new
samples that resemble training data). Interestingly, the objective optimized in VAE training, called
“ELBO”, contains both a prediction term and a compression term and can be seen as a special case of
the variational IB objective [24,37,53,54]. In principle, it may be fruitful to replace the compression
term in the ELBO with our MI estimator Îθ(X; M). Given our reported performance below, this may
result in better compression, though it might also complicate sampling from the latent variable space.
We leave this line of research for future work.

4. Experiments

In this section, we first explain how to implement nonlinear IB using neural network techniques.
We then evaluate its on several datasets, and compare it to the variational IB (VIB) method. We
demonstrate that, compared to VIB, nonlinear IB achieves better performance and uncovers different
kinds of representations.

4.1. Implementation

Any implementation of nonlinear IB requires a way to compute the encoding map Pθ(m|x) and
decoding map Pφ(y|m), as well as a way to choose the parameters of these maps so as to maximize the
nonlinear IB objective. Here we explain how this can be done using standard neural network methods.

The encoding map Pθ(m|x), Equation (9), is implemented in the following way: First, several
neural network layers with parameters θ implement the (possibly nonlinear) deterministic function
fθ(x). The output of these layers is then added to zero-centered Gaussian noise with covariance Σθ(x),
which becomes the state of the bottleneck layer. This is typically done via the “reparameterization
trick” [52], in which samples of Gaussian noise are passed through several deterministic layers (whose
parameters are also indicated by θ) and then added to fθ(x). Note that due to the presence of noise,
the neural network is stochastic: even with parameters held constant, different states of the bottleneck
layer are sampled during different NN evaluations. This stochasticity guarantees that the mutual
information I(X; M) is finite [26,28].

In all of the experiments described below, the encoding map consists of two layers with 128
ReLU neurons each, following by a layer of 5 linear neurons. In addition, for simplicity we use a
simple homoscedastic noise model: Σθ(x) = σ2I, where σ2 is a parameter the sets the scale of the
noise variance. This noise model permits us to rewrite the MI bound of Equation (10) in terms of the
following simple expression,

Îθ(X; M) = − 1
N ∑

i
log

1
N ∑

j
e−

1
2σ2 ‖ fθ(xi)− fθ(xj)‖2

2 . (16)

For purposes of comparison, we use this same homoscedastic noise model for both nonlinear IB and
for VIB (note that the original VIB paper [24] used a heteroscedastic noise model; investigating the
performance of nonlinear IB with heteroscedastic noise remains for future work).

In our runs, the noise parameter σ2 was one of the trainable parameters in θ. The initial value of
σ2 should be chosen with some care. If the initial σ2 is too small, the Gaussian components that make
up the mixture distribution of M will be many standard deviations away from each other and Îθ(X; M)

(as well as I(X; M)) will be exponentially close to the constant log N [35]. In this case, the gradient of
the compression term Îθ(X; M) with respect to θ will also be exponentially small, and the optimizer

83

Entropy 2019, 21, 1181

will not be able to learn to compress. On the other hand, when σ2 is too large, the resulting noise can
swamp gradient information arising from the accuracy (cross-entropy) term, cause the optimizer to
collapse to a “trivial” maximally-compressed model in which I(X; M) ≈ I(Y; M) ≈ 0. Nonetheless,
the optimization is robust to several orders of magnitude of variation of the initial value of σ2. In the
experiments below, we uses the initial value σ2 = 1, which works sufficiently well in practice. (Note
that the scale of the noise can also be trained by changing the parameters of the 5-neuron linear layer;
thus, in our neural network architecture, having a trainable σ2 is not strictly necessary.)

To implement the decoding map Pφ(y|m), the bottleneck layer states are passed through
several deterministic neural network layers with parameters φ. In the experiments described below,
the decoding map is implemented with a single layer with 128 ReLU neurons, followed by a linear
output layer. The log decoding probability (log Pφ(y|m)) is then evaluated using the network output
and an appropriately-chosen cost function: cross-entropy loss of the softmax of the output for
classification, and mean squared error (MSE) of the output for regression.

In the experiments below, we use nonlinear IB to optimize the bound on the “squared-IB
Lagrangian”, Equation (13), rather than the bound on the IB Lagrangian, Equation (12). For comparison
purposes, we also optimize the following “squared” version of the VIB objective, Equation (15),

Lsq-VIB := EQθ(Y,M)

[
log Pφ(Y|M)

]
− β

[
DKL(Pθ(M|X)‖R(M))

]2. (17)

As in the original VIB paper, we take R(m) to be the standard Gaussian N (0, I). We found that
optimizing the squared-IB bounds, Equation (13) and Equation (17), produced quantitatively similar
results to optimizing Equation (12) and Equation (15), but was more numerically robust when exploring
the full range of the IB curve. For an explanation of why this occurs, see the discussion and analysis
in [32]. We report performance of nonlinear IB and VIB when optimizing bounds on the IB Lagrangian,
Equation (12) and Equation (15), in the Supplementary Material.

We use the Adam [55] optimizer with standard TensorFlow settings and mini-batches of size
256. To avoid over-fitting, we use early stopping: we split the training data into 80% actual training
data and 20% validation data; training is stopped once the objective on the validation dataset did not
improve for 50 epochs.

A TensorFlow implementation of our approach is provided at https://github.com/artemyk/

nonlinearIB. An independent PyTorch implementation is available at https://github.com/burklight/

nonlinear-IB-PyTorch.

4.2. Results

We report the performance of nonlinear IB on two different classification datasets (MNIST and
FashionMNIST) and one regression dataset (California housing prices). We also compare it with
the recently-proposed variational IB (VIB) method [24]. Here we focus purely on the ability of
these methods to optimize the IB objective on training and testing data. We leave for future work
comparisons of these methods in terms of adversarial robustness [24], detection of out-of-distribution
data [25], and other desirable characteristics that may emerge from IB training.

We optimize both the nonlinear IB (Equation (13)) and the VIB (Equation (17)) objectives for
different values of β, producing a series of models that explore the trade-off between compression and
prediction. We vary β ∈ [10−3, 2] for classification tasks and β ∈ [10−5, 2] for the regression task. These
ranges were chosen empirically so that the resulting models fully explore the IB curve.

To report our results, we use information plane (info-plane) diagrams [27], which visualize the
performance of different models in terms of the compression term (I(X; M), the x-axis) and the
prediction term (I(Y; M), the y-axis) both on training and testing data. For the info-plane diagrams,
we use Monte Carlo sampling to get an accurate estimate of I(X; M) terms. To estimate the I(Y; M) =

H(Y)− H(Y|M) term, we use two different approaches. For classification datasets, we approximate
H(Y) using the empirical entropy of the class labels in the dataset, and approximate the conditional

84

Entropy 2019, 21, 1181

entropy with the cross-entropy loss, H(Y|M) ≈ −EQθ(Y,M)

[
log Pφ(Y|M)

]
. Note that the resulting

MI estimate is an additive constant away from the cross-entropy loss. For the regression dataset, we
approximate H(Y) via the entropy of a Gaussian with variance Var(Y), and approximate H(Y|M) via
the entropy of a Gaussian with variance equal to the mean-squared-error. This results in the estimate
I(Y; M) ≈ 1

2 log(Var(Y)/MSE). Finally, we also use scatter plots to visualize the activity of the hidden
layer for models trained with different objectives.

We first consider the MNIST dataset of hand-drawn digits, which contains 60,000 training images
and 10,000 testing images. Each image is 28-by-28 pixels (784 total pixels, so X ∈ R784), and is classified
into 1 of 10 classes corresponding to the digit identity (Y ∈ {1, . . . , 10}).

The top row of Figure 1 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB on
the MNIST dataset. As can be seen, nonlinear IB achieves better prediction values at the same level of
compression than VIB, both on training and testing data. The difference is especially marked near the
“corner point” I(X; M) = I(Y; M) ≈ log 10 (which corresponds to maximal compression, given perfect
prediction), where nonlinear IB achieved ≈ 0.1 bits better prediction at the same compression level
(see also Table 1).

Figure 1. Top row: Info-plane diagrams for nonlinear IB and variational IB (VIB) on the MNIST
training (left) and testing (right) data. The solid lines indicate means across five runs, shaded region
indicates the standard error of the mean. The black dashed line is the data-processing inequality bound
I(Y; M) ≤ I(X; M), the black dotted line indicates the value of I(Y; M) achieved by a baseline model
trained only to optimize cross-entropy. Bottom row: Principal component analysis (PCA) projection
of bottleneck layer activity (on testing data, no noise) for models trained with regular cross-entropy
loss (left), VIB (middle), and nonlinear IB (right) objectives. The location of the nonlinear IB and VIB
models shown in the bottom row is indicated with the green vertical line in the top right panel.

Further insight is provided by considering the bottleneck representations found when training with
nonlinear IB versus VIB versus regular cross-entropy loss. To visualize these bottleneck representations,

85

Entropy 2019, 21, 1181

we selected three models: a baseline model trained only to optimize cross-entropy loss, a model trained
with nonlinear IB, and a model trained with VIB (the latter two models were chosen to both have
I(X; M) ≈ log 10). We then measured the activity of their 5-neuron bottleneck hidden layer on the
testing dataset, projected down to two dimensions using principal component analysis (PCA). Figure
1 visualizes these two-dimensional projections for these three models, with colors indicating class
label (digit identity). Training with VIB and nonlinear IB objectives causes inputs corresponding to
different digits to fall into well-separated clusters, unlike training with cross-entropy loss. Moreover,
the clustering is particularly tight for nonlinear IB, meaning that the bottleneck states carry almost
no information about input vectors beyond class identity. Note that in this regime, where Gaussian
components are grouped into tightly separate clusters, our MI upper bound Îθ(X; M) becomes exact [35].

Table 1. Amount of prediction I(Y; M) achieved at compression level I(X; M) = log 10 for both
nonlinear IB and VIB.

Dataset Nonlinear IB VIB

MNIST Training 3.22 3.09
Testing 2.99 2.88

FashionMNIST Training 2.85 2.67
Testing 2.58 2.46

California housing Training 1.37 1.26
Testing 1.13 1.07

In the next experiment, we considered the recently-proposed FashionMNIST dataset. FashionMNIST
has the same structure as the MNIST dataset (28× 28 images grouped into 10 classes, with 60,000
training and 10,000 testing images). Instead of hand-written digits, however, FashionMNIST includes
images of clothes labeled with classes such as “Dress”, “Coat”, and “Sneaker”. This dataset was
designed as a drop-in replacement for MNIST which addresses the problem that MNIST is too easy
for modern machine learning (e.g., it is fairly straightforward to achieve ≈99% test accuracy on
MNIST) [56]. FashionMNIST is a more difficult dataset, with typical test accuracies of ≈90%–95%.

The top row Figure 2 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB on
the FashionMNIST dataset. Compared to VIB, nonlinear IB again achieves better prediction values at
the same level of compression, both on training and testing data. The difficulty of FashionMNIST is
evident in the fact that neither method gets very close to the corner point I(X; M) = I(Y; M) ≈ log 10.
Nonetheless, nonlinear IB performed better than VIB at a range of compression values, often extracting
≈ 0.15 additional bits of prediction at the same compression level (see also Table 1).

As for MNIST, we consider the bottleneck representations uncovered when training on
FashionMNIST with cross-entropy loss only versus nonlinear IB versus VIB (the latter two models
were chosen to have I(X; M) ≈ log 10). We measured the activity of the 5-neuron bottleneck layer
on the testing dataset, projected down to two dimensions using PCA. The bottom row of Figure 2
visualizes these two-dimensional projections for these three models, with colors indicating class label
(digit identity). It can again be seen that models trained with VIB and nonlinear IB map inputs into
separated clusters, but that the clusters are significantly tighter for nonlinear IB.

86

Entropy 2019, 21, 1181

Figure 2. Top row: Info-plane diagrams for nonlinear IB and VIB on the FashionMNIST dataset. Bottom

row: PCA projection of bottleneck layer activations for models trained only to optimize cross-entropy
(left), VIB (middle), and nonlinear IB (right) objectives. See caption of Figure 1 for details.

In our final experiment, we considered the California housing prices dataset. This is a regression
dataset based on the 1990 California census, originally published in [57] (we use the version distributed
with the scikit-learn package [58]). It consists of N = 20, 640 total samples, with one dependent
variable (the house price) and 8 independent variables (such as “longitude”, “latitude”, and “number
of rooms”). We used the log-transformed house price as the dependent variable Y (this made the
distribution of Y closer to a Gaussian). To prepare the training and testing data, we first dropped
992 samples in which the house price was equal to or greater than $500,000 (prices were clipped at
this upper value in the dataset, which distorted the distribution of the dependent variable). We then
randomly split the remaining samples into an 80% training and 20% testing dataset (the training
dataset was then further split into the actual training dataset and a validation dataset, see above).

The top row of Figure 3 shows I(Y; M) and I(X; M) values achieved by nonlinear IB and VIB
on the California housing prices dataset. Nonlinear IB achieves better prediction values at the same
level of compression than VIB, both on training and testing data (see also Table 1). As for the other
datasets, we also show the bottleneck representations uncovered when training on California housing
prices dataset with MSE loss only versus nonlinear IB versus VIB (the latter two models were chosen to
have I(X; M) ≈ log 10). The bottom row of Figure 3 visualizes the two-dimensional PCA projections
of bottleneck layer activity for these three models, with colors indicating the dependent variable
(log housing price). The bottleneck representations uncovered when training with MSE loss only
and when training with VIB were somewhat similar. Nonlinear IB, however, finds a different and
almost perfectly one-dimensional bottleneck representation. In fact, for the nonlinear IB model, the

87

Entropy 2019, 21, 1181

first principal component explains 99.8% of the variance in bottleneck layer activity on testing data.
For the models trained with MSE loss and VIB, the first principal component explains only 76.6%
and 69% of the variance, respectively. The one-dimensional representation uncovered by nonlinear
IB compresses away all information about the input vectors which is not relevant for predicting the
dependent variable.

Figure 3. Top row: Information plane diagrams for nonlinear IB and VIB on the California housing
prices dataset. Bottom row: PCA projection of bottleneck layer activations for models trained only
to optimize mean squared error (MSE) (left), VIB (middle), and nonlinear IB (right) objectives. See
caption of Figure 1 for details.

We finish by presenting some of our numerical results in Table 1. In particular, we quantify the
amount of prediction, I(Y; M), achieved when training with nonlinear IB and VIB at the compression
level I(X; M) = log 10, for training and testing datasets of the three datasets considered above.
Nonlinear IB consistently achieves better prediction at a fixed level of compression.

5. Conclusions

We propose “nonlinear IB”, a method for exploring the information bottleneck [IB] trade-off curve
in a general setting. We allow the input and output variables to be discrete or continuous (though
we assume a continuous bottleneck variable). We also allow for arbitrary (e.g., non-Gaussian) joint
distributions over inputs and outputs and for non-linear encoding and decoding maps. We gain this
generality by exploiting a new tractable and differentiable bound on the IB objective.

We describe how to implement our method using off-the-shelf neural network software, and
apply it to several standard classification and regression problems. We find that nonlinear IB is able to

88

Entropy 2019, 21, 1181

effectively discover the tradeoff curve, and find solutions that are superior compared with competing
methods. We also find that the intermediate representations discovered by nonlinear IB have visibly
tighter clusters in the classification problems. In the regression problem, nonlinear IB discovers a
one-dimensional intermediate representation.

We have successfully demonstrated the ability of nonlinear IB to explore the IB curve. It is possible
that increased compression may lead to other benefits in supervised learning, such as improved
generalization performance or increased robustness to adversarial inputs. Exploring its efficacy in
these domains remains for future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/12/1181/
s1: Figure S1: Performance of nonlinear IB and VIB when optimizing bounds on regular IB objective.

Author Contributions: Conceptualization, A.K.; Funding acquisition, D.H.W.; Software, A.K. and B.D.T.;
Visualization, A.K.; Writing—original draft, A.K.; Writing—review & editing, A.K., B.D.T. and D.H.W.

Funding: This research was funded by National Science Foundation: CHE-1648973; Foundational Questions
Institute: FQXi-RFP-1622; Air Force Office of Scientific Research: A9550-15-1-0038.

Acknowledgments: We thank Steven Van Kuyk and Borja Rodríguez Gálvez for helpful comments. We would
also like to thank the Santa Fe Institute for helping to support this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tishby, N.; Pereira, F.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Annual Allerton
Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999.

2. Dimitrov, A.G.; Miller, J.P. Neural coding and decoding: Communication channels and quantization. Netw.
Comput. Neural Syst. 2001, 12, 441–472. [CrossRef]

3. Samengo, I. Information loss in an optimal maximum likelihood decoding. Neural Comput. 2002, 14, 771–779.
[CrossRef]

4. Witsenhausen, H.; Wyner, A. A conditional entropy bound for a pair of discrete random variables. IEEE
Trans. Inf. Theory 1975, 21, 493–501. [CrossRef]

5. Ahlswede, R.; Körner, J. Source Coding with Side Information and a Converse for Degraded Broadcast
Channels. IEEE Trans. Inf. Theory 1975, 21, 629–637. [CrossRef]

6. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An Information Theoretic Tradeoff between Complexity and
Accuracy. In Learning Theory and Kernel Machines; Goos, G., Hartmanis, J., van Leeuwen, J., Schölkopf, B.,
Warmuth, M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2777, pp. 595–609.

7. Slonim, N.; Tishby, N. Document clustering using word clusters via the information bottleneck method. In
Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Athens, Greece, 24–28 July 2000; pp. 208–215.

8. Tishby, N.; Slonim, N. Data clustering by markovian relaxation and the information bottleneck method.
In Advances in Neural Information Processing Systems 13 (NIPS 2000); MIT Press: Cambridge, MA, USA, 2001;
pp. 640–646.

9. Cardinal, J. Compression of side information. In Proceedings of the 2003 International Conference on
Multimedia and Expo, Baltimore, MD, USA, 6–9 July 2003; pp. 569–572.

10. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. Design of network coding functions in multihop relay networks.
In Proceedings of the 2008 5th International Symposium on Turbo Codes and Related Topics, Lausanne,
Switzerland, 1–5 September 2008; pp. 249–254.

11. Courtade, T.A.; Wesel, R.D. Multiterminal source coding with an entropy-based distortion measure.
In Proceedings of the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, 31
July–5 August 2011; pp. 2040–2044.

12. Lazebnik, S.; Raginsky, M. Supervised learning of quantizer codebooks by information loss minimization.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1294–1309. [CrossRef] [PubMed]

13. Winn, J.; Criminisi, A.; Minka, T. Object categorization by learned universal visual dictionary. In Proceedings
of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21
October 2005; Volume 2, pp. 1800–1807.

89

Entropy 2019, 21, 1181

14. Hecht, R.M.; Noor, E.; Tishby, N. Speaker recognition by Gaussian information bottleneck. In Proceedings of
the 10th Annual Conference of the International Speech Communication Association, Brighton, UK, 6–10
September 2009.

15. Yaman, S.; Pelecanos, J.; Sarikaya, R. Bottleneck features for speaker recognition. In Proceedings of the
Speaker and Language Recognition Workshop, Singapore, 25–28 June 2012.

16. Van Kuyk, S.; Kleijn, W.B.; Hendriks, R.C. On the information rate of speech communication. In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, LA, USA, 5–9 March 2017; pp. 5625–5629.

17. Van Kuyk, S. Speech Communication from an Information Theoretical Perspective. Ph.D. Thesis, Victoria
University of Wellington, Wellington, New Zealand, 2019.

18. Zaslavsky, N.; Kemp, C.; Regier, T.; Tishby, N. Efficient compression in color naming and its evolution.
Proc. Natl. Acad. Sci. USA 2018, 115, 7937–7942. [CrossRef] [PubMed]

19. Rodríguez Gálvez, B. The Information Bottleneck: Connections to Other Problems, Learning and Exploration
of the IB Curve. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, June 2019.

20. Hafez-Kolahi, H.; Kasaei, S. Information Bottleneck and its Applications in Deep Learning. arXiv 2019,
arXiv:1904.03743.

21. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015
IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

22. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck. Theor. Comput.
Sci. 2010, 411, 2696–2711. [CrossRef]

23. Vera, M.; Piantanida, P.; Vega, L.R. The Role of the Information Bottleneck in Representation Learning.
In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA,
17–22 June 2018; pp. 1580–1584.

24. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

25. Alemi, A.A.; Fischer, I.; Dillon, J.V. Uncertainty in the variational information bottleneck. arXiv 2018,
arXiv:1807.00906.

26. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the
Information Bottleneck Principle. arXiv 2018, arXiv:1802.09766.

27. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,
arXiv:1703.00810.

28. Saxe, A.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.; Cox, D. On the information bottleneck
theory of deep learning. In Proceedings of the 6th International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

29. Lemaréchal, C. Lagrangian relaxation. In Computational Combinatorial Optimization; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 112–156.

30. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
31. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach.

Learn. Res. 2005, 6, 165–188.
32. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.

In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018.

33. Miettinen, K. Nonlinear Multiobjective Optimization; Springer: Boston, MA, USA, 1998. [CrossRef]
34. Rodríguez Gálvez, B.; Thobaben, R.; Skoglund, M. The Convex Information Bottleneck Lagrangian. arXiv

2019, arXiv:1911.11000.
35. Kolchinsky, A.; Tracey, B.D. Estimating Mixture Entropy with Pairwise Distances. Entropy 2017, 19, 361.

[CrossRef]
36. Chalk, M.; Marre, O.; Tkacik, G. Relevant sparse codes with variational information bottleneck. In Proceedings

of the 2016 Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10
December 2016; pp. 1957–1965.

37. Achille, A.; Soatto, S. Information Dropout: Learning optimal representations through noise. arXiv 2016,
arXiv:1611.01353.

38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

90

Entropy 2019, 21, 1181

39. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2018.
40. Kolchinsky, A.; Wolpert, D.H. Supervised learning with information penalties. In Proceedings of the 2016

Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016.
41. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear Information Bottleneck. Entropy 2019, 21, 1181.

[CrossRef]
42. Schraudolph, N.N. Optimization of entropy with neural networks. Ph.D. Thesis, University of California,

San Diego, CA, USA, 1995.
43. Schraudolph, N.N. Gradient-based manipulation of nonparametric entropy estimates. IEEE Trans. Neural

Netw. 2004, 15, 828–837. [CrossRef]
44. Shwartz, S.; Zibulevsky, M.; Schechner, Y.Y. Fast kernel entropy estimation and optimization. Signal Process.

2005, 85, 1045–1058. [CrossRef]
45. Torkkola, K. Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res.

2003, 3, 1415–1438.
46. Hlavávcková-Schindler, K.; Palus, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on

information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [CrossRef]
47. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,

Y. Generative adversarial nets. In Proceedings of the 2014 Conference on Neural Information Processing
Systems (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

48. Hinton, G.E.; Zemel, R.S. Autoencoders, minimum description length, and Helmholtz free energy. In Advances
in Neural Information Processing Systems 7 (NIPS 1994); MIT Press: Cambridge, MA, USA, 1994; p 3.

49. Hinton, G.E.; Zemel, R.S. Minimizing Description Length in an Unsupervised Neural Network. Available
online: https://www.cs.toronto.edu/~fritz/absps/mdlnn.pdf (accessed on 30 November 2019).

50. Deco, G.; Finnoff, W.; Zimmermann, H.G. Elimination of Overtraining by a Mutual Information Network.
In ICANN’93; Gielen, S., Kappen, B., Eds.; Springer: London, UK, 1993; pp. 744–749. [CrossRef]

51. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008; pp. 1096–1103.

52. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. In Proceedings of the International Conference
on Learning Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

53. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A.
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Proceedings
of the International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

54. Alemi, A.; Poole, B.; Fischer, I.; Dillon, J.; Saurous, R.A.; Murphy, K. Fixing a Broken ELBO. In Proceedings of
the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 159–168.

55. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

56. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning
algorithms. arXiv 2017, arXiv:1708.07747.

57. Pace, R.K.; Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 1997, 33, 291–297. [CrossRef]
58. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

91

entropy

Article

Pareto-Optimal Data Compression for Binary
Classification Tasks

Max Tegmark * and Tailin Wu

Department of Physics, MIT Kavli Institute & Center for Brains, Minds & Machines, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA; tailin@mit.edu
* Correspondence: Tegmark@mit.edu

Received: 18 October 2019; Accepted: 12 December 2019; Published: 19 December 2019

Abstract: The goal of lossy data compression is to reduce the storage cost of a data set X while
retaining as much information as possible about something (Y) that you care about. For example, what
aspects of an image X contain the most information about whether it depicts a cat? Mathematically,
this corresponds to finding a mapping X → Z ≡ f (X) that maximizes the mutual information
I(Z, Y) while the entropy H(Z) is kept below some fixed threshold. We present a new method
for mapping out the Pareto frontier for classification tasks, reflecting the tradeoff between retained
entropy and class information. We first show how a random variable X (an image, say) drawn
from a class Y ∈ {1, ..., n} can be distilled into a vector W = f (X) ∈ Rn−1 losslessly, so that
I(W, Y) = I(X, Y); for example, for a binary classification task of cats and dogs, each image X
is mapped into a single real number W retaining all information that helps distinguish cats from
dogs. For the n = 2 case of binary classification, we then show how W can be further compressed
into a discrete variable Z = gβ(W) ∈ {1, ..., mβ} by binning W into mβ bins, in such a way that
varying the parameter β sweeps out the full Pareto frontier, solving a generalization of the discrete
information bottleneck (DIB) problem. We argue that the most interesting points on this frontier
are “corners” maximizing I(Z, Y) for a fixed number of bins m = 2, 3, ... which can conveniently
be found without multiobjective optimization. We apply this method to the CIFAR-10, MNIST
and Fashion-MNIST datasets, illustrating how it can be interpreted as an information-theoretically
optimal image clustering algorithm. We find that these Pareto frontiers are not concave, and that
recently reported DIB phase transitions correspond to transitions between these corners, changing
the number of clusters.

Keywords: information; bottleneck; compression; classification

1. Introduction

A core challenge in science, and in life quite generally, is data distillation: Keeping only a
manageably small fraction of our available data X while retaining as much information as possible
about something (Y) that we care about. For example, what aspects of an image contain the most
information about whether it depicts a cat (Y = 1) rather than a dog (Y = 2)? Mathematically,
this corresponds to finding a deterministic mapping X → Z ≡ g(X) that maximizes the mutual
information I(Z, Y) while the entropy H(Z) is kept below some fixed threshold. The tradeoff between
H∗ = H(Z) (bits stored) and I∗ = I(Z, Y) (useful bits) is described by a Pareto frontier, defined as

I∗(H∗) ≡ sup
{g:H[g(X)]≤H∗}

I[g(X), Y], (1)

and illustrated in Figure 1 (this is for a toy example described below; we compute the Pareto frontier
for our cat/dog example in Section 3). The shaded region is impossible because I(Z, Y) ≤ I(X, Y) and

Entropy 2020, 22, 7; doi:10.3390/e22010007 www.mdpi.com/journal/entropy93

Entropy 2020, 22, 7

I(Z, Y) ≤ H(Z). The colored dots correspond to random likelihood binnings into various numbers of
bins, as described in the next section, and the upper envelope of all attainable points define the Pareto
frontier. Its “corners”, which are marked by black dots and maximize I(Z, Y) for M bins (M = 1, 2, ...),
are seen to lie close to the vertical dashed lines H(Z) = log M, corresponding to all bins having
equal size. We plot the H-axis flipped to conform with the tradition that up and to the right are more
desirable. The core goal of this paper is to present a method for computing such Pareto frontiers.

Figure 1. The Pareto frontier (top panel) for compressed versions Z = g(X) of our warmup dataset
X ∈ [0, 1]2 with classes Y ∈ {1, 2}, showing the maximum attainable class information I(Z, Y) for a
given entropy H(Z), mapped using the method described in this paper using the likelihood binning in
the bottom panel.

Objectives and Relation to Prior Work

In other words, the goal of this paper is to analyze soft rather than hard classifiers: not to make
the most accurate classifier, but rather to compute the Pareto frontier that reveals the most accurate
(in an information-theoretic sense) classifier Z given a constraint on its bit content H(Z). These optimal
soft classifiers that we will derive (corresponding to points on the Pareto frontier) are useful for the
same reason that other methods for lossy data compression methods are useful: Overfitting less and
therefore generalizing better, among other things.

This Pareto frontier challenge is thus part of the broader quest for data distillation: Lossy data
compression that retains as much as possible of the information that is useful to us. Ideally, the information
can be partitioned into a set of independent chunks and sorted from most to least useful, enabling us

94

Entropy 2020, 22, 7

to select the number of chunks to retain so as to optimize our tradeoff between utility and data size.
Consider two random variables X and Y which may each be vectors or scalars. For simplicity, consider
them to be discrete with finite entropy. (this discreteness restriction loses us no generality in practice,
since since we can always discretize real numbers by rounding them to some very large number of
significant digits.) For prediction tasks, we might interpret Y as the future state of a dynamical system
that we wish to predict from the present state X. For classification tasks, we might interpret Y as a
class label that we wish to predict from an image, sound, video or text string X. Let us now consider
various forms of ideal data distillation, as summarized in Table 1.

Table 1. Data distillation: The relationship between principal component analysis (PCA), canonical
correlation analysis (CCA), nonlinear autoencoders and nonlinear latent representations.

Random Vectors What Is Distilled?
Probability Distribution

Gaussian Non-Gaussian

1 Entropy PCA Autoencoder
H(X) = ∑i H(Zi) z = Fx Z = f (X)

2 Mutual information CCA Latent reps
I(X, Y) = ∑i I(Zi, Z′i) z = Fx Z = f (X)

z′ = Gy Z′ = g(Y)

If we distill X as a whole, then we would ideally like to find a function f such that the so-called
latent representation Z = f (X) retains the full entropy H(X) = H(Z) = ∑ H(Zi), decomposed
into independent parts with vanishing mutual infomation: I(Zi, Zj) = δijH(Zi). (Note that when
implementing any distillation algorithm in practice, there is always a one-parameter tradeoff between
compression and information retention which defines a Pareto frontier. A key advantage of the latent
variables (or variable pairs) being statistically independent is that this allows the Pareto frontier to
be trivially computed, by simply sorting them by decreasing information content and varying the
number retained.)

For the special case where X = x is a vector with a multivariate Gaussian distribution, the optimal
solution is Principal Component Analysis (PCA) [1], which has long been a workhorse of statistical
physics and many other disciplines: Here f is simply a linear function mapping into the eigenbasis
of the covariance matrix of x. The general case remains unsolved, and it is easy to see that it is hard:
If X = c(Z) where c implements some state-of-the-art cryptographic code, then finding f = c−1

(to recover the independent pieces of information and discard the useless parts) would generically
require breaking the code. Great progress has nonetheless been made for many special cases, using
techniques such as nonlinear autoencoders [2] and Generative Adversarial Networks (GANs) [3].

Now consider the case where we wish to distill X and Y separately, into Z ≡ f (X) and Z′ =
g(Y), retaining the mutual information between the two parts. Then we ideally have I(X, Y) =

∑i I(Zi, Z′i), I(Zi, Zj) = δij H(Zi), I(Z′i , Z′j) = δijH(Z′i), I(Zi, Z′j) = δij I(Zi, Z′j). This problem has
attracted great interest, especially for time series where X = ui and Y = uj for some sequence of
states uk (k = 0, 1, 2, ...) in physics or other fields, where one typically maps the state vectors ui into
some lower-dimensional vectors f (ui), after which the prediction is carried out in this latent space.
For the special case where X has a multivariate Gaussian distribution, the optimal solution is Canonical
Correlation Analysis (CCA) [4]: Here both f and g are linear functions, computed via a singular-value
decomposition (SVD) [5] of the cross-correlation matrix after prewhitening X and Y. The general case
remains unsolved, and is obviously even harder than the above-mentioned 1-vector autoencoding
problem. The recent work [6,7] review the state-of-the art as well as presenting Contrastive Predictive
Coding and Dynamic Component Analysis, powerful new distillation techniques for time series,
following the long tradition of setting f = g even though this is provably not optimal for the Gaussian
case as shown in [8].

95

Entropy 2020, 22, 7

The goal of this paper is to make progress in the lower right quadrant of Table 1. We will first
show that if Y ∈ {1, 2} (as in binary classification tasks) and we can successfully train a classifier that
correctly predicts the conditional probability distribution p(Y|X), then it can be used to provide an
exact solution to the distillation problem, losslessly distilling X into a single real variable W = f (X).
We will generalize this to an arbitrary classification problem Y ∈ {1, ..., n} by losslessly distilling X
into a vector W = f (X) ∈ Rn−1, although in this case, the components of the vector W may not be
independent. We will then return to the binary classification case and provide a family of binnings that
map W into an integer Z, allowing us to scan the full Pareto frontier reflecting the tradeoff between
retained entropy and class information, illustrating the end-to-end procedure with the CIFAR-10,
MNIST and Fashion-MNIST datasets. This is related to the work of [9] which maximizes I(Z, Y) for
a fixed number of bins (instead of for a fixed entropy), which corresponds to the “corners” seen in
Figure 1.

This work is closely related to the Information Bottleneck (IB) method [10], which provides an
insightful, principled approach for balancing compression against prediction [11]. Just as in our work,
the IB method aims to find a random variable Z = f (X) that loosely speaking retains as much
information as possible about Y and as little other information as possible. The IB method implements
this by maximizing the IB-objective

LIB = I(Z, Y)− βI(Z, X) (2)

where the Lagrange multiplier β tunes the balance between knowing about Y and forgetting about X.
Ref. [12] considered the alternative Deterministic Information Bottleneck (DIB) objective

LDIB = I(Z, Y)− βH(Z), (3)

to close the loophole where Z retains random information that is independent of both X and Y. (which
is possible if f is function that contains random components rather than fully deterministic. In contrast,
if Z = f (X) for some deterministic function f , which is typically not the case in the popular variational
IB-implementation [13–15], then H(Z|X) = 0, so I(Z, X) ≡ H(Z)− H(Z|X) = H(Z), which means
the two objectives (2) and (3) are identical.)

However, there is a well-known problem with this DIB objective that occurs when Z ∈ Rn is
continuous [16]: H(Z) is strictly speaking infinite, since it requires an infinite amount of information to
store the infinitely many decimals of a generic real number. While this infinity is normally regularized
away by only defining H(Z) up to an additive constant, which is irrelevant when minimizing
Equation (3), the problem is that we can define a new rescaled random variable

Z′ = aZ (4)

for a constant a �= 0 and obtain
I(Z′, X) = I(Z, X) (5)

and
H(Z′) = H(Z) + n log |a|. (6)

(Throughout this paper, we take log to denote the logarithm in base 2, so that entropy and mutual
information are measured in bits.) The last two equations imply that by choosing |a| � 1, we can make
H(Z′) arbitrarily negative while keeping I(Z′, X) unchanged, thus making LDIB arbitrarily negative.
The objective LDIB is therefore not bounded from below, and trying to minimize it will not produce
an interesting result. We will eliminate this Z-rescaling problem by making Z discrete rather than
continuous, so that H(Z) is always well-defined and finite. Another challenge with the DIB objective
of Equation (3), which we will also overcome, is that it maximizes a linear combination of the two

96

Entropy 2020, 22, 7

axes in Figure 1, and can therefore only discover concave parts of the Pareto frontier, not convex ones
(which are seen to dominate in Figure 1).

The rest of this paper is organized as follows: In Section 2.1, we will provide an exact solution for
the binary classification problem where Y ∈ {1, 2} by losslessly distilling X into a single real variable
Z = f (X). We also generalize this to an arbitrary classification problem Y ∈ {1, ..., n} by losslessly
distilling X into a vector W = f (X) ∈ Rn−1, although the components of the vector W may not be
independent. In Section 2.2, we return to the binary classification case and provide a family a binnings
that map Z into an integer, allowing us to scan the full Pareto frontier reflecting the tradeoff between
retained entropy and class information. We apply our method to various image datasets in Section 3
and discuss our conclusions in Section 4.

2. Method

Our algorithm for mapping the Pareto frontier transforms our original data set X in a series of
steps which will be describe in turn below:

X w�→ W �→ Wuniform �→ Wbinned �→ Wsorted
B�→ Z. (7)

As we will show, the first, second and fourth transformations retain all mutual information with
the label Y, and the information loss about Y can be kept arbitrarily small in the third step. In contrast,
the last step treats the information loss as a tuneable parameter that parameterizes the Pareto frontier.

2.1. Lossless Distillation for Classification Tasks

Our first step is to compress X (an image, say) into W, a set of n− 1 real numbers, in such a way
that no class information is lost about Y ∈ {1, ..., n}.

Theorem 1 (Lossless Distillation Theorem). For an arbitrary random variable X and a categorical random
variable Y ∈ {1, ..., n}, we have

P(Y|X) = P(Y|W), (8)

where W ≡ w(X) ∈ Rn−1 is defined by

wi(X) ≡ P(Y = i|X). (9)

Note that we ignore the nth component since it is redundant: wn(X) = 1−∑n−1
i wi(X).

Proof. Let S denote the domain of X, i.e., X ∈ S, and define the set-valued function

s(W) ≡ {x ∈ S : w(x) = W}.

These sets s(W) form a partition of S parameterized by W, since they are disjoint and

∪W∈Rn−1 s(W) = S. (10)

For example, if S = R2 and n = 2, then the sets s(W) are simply contour curves of the conditional
probability W ≡ P(Y = 1|X) ∈ R. This partition enables us to uniquely specify X as the pair {W, XW}
by first specifying which set s[f (X)] it belongs to (determined by W = f (X)), and then specifying the
particular element within that set, which we denote XW ∈ S(W). This implies that

P(Y|X) = P(Y|W, XW) = P(Y|W), (11)

completing the proof. The last equal sign follows from the fact that the conditional probability P(Y|X)

is independent of XW , since it is by definition constant throughout the set s(W).

97

Entropy 2020, 22, 7

The following corollary implies that W is an optimal distillation of the information X has about Y,
in the sense that it constitutes a lossless compression of said information: I(W, Y) = I(X, Y) as shown,
and the total information content (entropy) in W cannot exceed that of X since it is a deterministic
function thereof.

Corollary 1. With the same notation as above, we have

I(X, Y) = I(W, Y). (12)

Proof. For any two random variables, we have the identity I(U, V) = H(V)−H(V|U), where I(U, V)

is their mutual information and H(V|U) denotes conditional entropy. We thus obtain

I(X, Y) = H(Y)− H(Y|X) = H(Y) + 〈log P(Y|X)〉X,Y

= H(Y) + 〈log P(Y|W)〉W,XW ,Y

= H(Y) + 〈log P(Y|W)〉W,Y

= H(Y)− H(Y|W) = I(W, Y), (13)

which completes the proof. We obtain the second line by using P(Y|X) = P(Y|W) from Theorem 1
and specifying X by W and XW , and the third line since P(Y|W) is independent of XW , as above.

In most situations of practical interest, the conditional probability distribution P(Y|X) is not
precisely known, but can be approximated by training a neural-network-based classifier that outputs
the probability distribution for Y given any input X. We present such examples in Section 3. The better
the classifier, the smaller the information loss I(X, Y)− I(W, Y) will be, approaching zero in the limit
of an optimal classifier.

2.2. Pareto-Optimal Compression for Binary Classification Tasks

Let us now focus on the special case where n = 2, i.e., binary classification tasks. For example, X
may correspond to images of equal numbers of felines and canines to be classified despite challenges
with variable lighting, occlusion, etc., as in Figure 2, and Y ∈ {1, 2} may correspond to the labels “cat”
and “dog”. In this case, Y contains H(Y) = 1 bit of information of which I(X, Y) ≤ 1 bit is contained
in X. Theorem 1 shows that for this case, all of this information about whether an image contains a
cat or a dog can be compressed into a single number W which is not a bit like Y, but a real number
between zero and one.

The goal of this section is find a class of functions g that perform Pareto-optimal lossy compression
of W, mapping it into an integer Z ≡ g(W) that maximizes I(Z, Y) for a fixed entropy H(Z).
(Throughout this paper, we will use the term “Pareto-optimal” or “optimal” in this sense, i.e.,
maximizing I(X, Y) for a fixed H(Z).) The only input we need for our work in this section is the
joint probability distribution fi(w) = P(Y = i, W = w), whose marginal distributions are the discrete
probability distribution for PY

i for Y and the probability distribution f for W, which we will henceforth
assume to be continuous:

f (w) ≡
2

∑
i=1

fi(w), (14)

PY
i ≡ P(Y = i) =

∫ 1

0
fi(w)dw. (15)

98

Entropy 2020, 22, 7

Figure 2. Sample data from Section 3. Images from MMNIST (top), Fashion-MNIST (middle) and
CIFAR-10 are mapped into integers (group labels) Z = f (X) retaining maximum mutual information
with the class variable Y (ones/sevens, shirts/pullovers and cats/dogs, respectively) for 3, 5 and 5
groups, respectively. These mappings f correspond to Pareto frontier “corners”.

99

Entropy 2020, 22, 7

2.2.1. Uniformization of W

For convenience and without loss of generality, we will henceforth assume that f (w) = 1, i.e.,
that W has a uniform distribution on the unit interval [0, 1]. We can do this because if W were not
uniformly distributed, we could make it so by using the standard statistical technique of applying its
cumulative probability distribution function to it

W �→ W ′ ≡ F(W), F(w) ≡
∫ w

0
f (w′)dw′, (16)

retaining all information — I(W ′, Y) = I(W, Y) — since this procedure is invertible almost everywhere.

2.2.2. Binning W

Given a set of bin boundaries b1 < b2 < ... < bn−1 grouped into a vector b, we define the integer-
value contiguous binning function

B(x, b) ≡

⎧⎨
⎩

1 if x < b1
k if bk−1 < x ≤ bk
n if x ≥ bN−1

(17)

B(x, b) can thus be interpreted as the ID of the bin into which x falls. Note that B is a monotonically
increasing piecewise constant function of x that is shaped like an N-level staircase with n− 1 steps at
b1, ..., bN−1.

Let us now bin W into N equispaced bins, by mapping it into an integer W ′ ∈ {1, ..., N} (the bin
ID) defined by

W ′ ≡ Wbinned ≡ B(W, bN), (18)

where b is the vector with elements bj = j/N, j = 1, ..., N − 1. As illustrated visually in Figure 3 and
mathematically in Appendix A, binning W �→ W ′ corresponds to creating a new random variable
for which the conditional distribution p1(w) = P(Y = 1|W = w) is replaced by a piecewise constant
function p̄1(w), replacing the values in each bin by their average. The binned variable W ′ thus
retains only information about which bin W falls into, discarding all information about the precise
location within that bin. In the N → ∞ limit of infinitesimal bins, p̄1(w) → p1(w), and we expect
the above-mentioned discarded information to become negligible. This intuition is formalized by
Theorem A1 in Appendix A, which under mild smoothness assumptions ensuring that p1(w) is not
pathological shows that

I(W ′, Y)→ I(W, Y) as N → ∞, (19)

i.e., that we can make the binned data W ′ retain essentially all the class information from W as long as
we use enough bins.

In practice, such as for the numerical experiments that we will present in Section 3, training data
is never infinite and the conditional probability function p1(w) is never known to perfect accuracy.
This means that the pedantic distinction between I(W ′, Y) = I(W, Y) and I(W ′, Y) ≈ I(W, Y) for very
large N is completely irrelevant in practice. In the rest of this paper, we will therefore work with the
unbinned (W) and binned (W ′) data somewhat interchangeably below for convenience, occasionally
dropping the apostrophy ′ from W ′ when no confusion is caused.

100

Entropy 2020, 22, 7

1 2 6 114 753 1098 12

10 W
0

1

1 2 611 47 531098 12

10 W’

P(
Y=

1|
W

)

Figure 3. Essentially all information about Y is retained if W is binned into sufficiently narrow bins.
Sorting the bins (left) to make the conditional probability monotonically increasing (right) changes
neither this information nor the entropy.

2.2.3. Making the Conditional Probability Monotonic

For convenience and without loss of generality, we can assume that the conditional probability
distribution p̄1(w) is a monotonically increasing function. We can do this because if this were not
the case, we could make it so by sorting the bins by increasing conditional probability, as illustrated
in Figure 3, because both the entropy H(W ′) and the mutual information I(W ′, Y) are left invariant
by this renumbering/relabeling of the bins. The “cat” probability P(Y = 1) (the total shaded area in
Figure 3) is of course also left unchanged by both this sorting and by the above-mentioned binning.

2.2.4. Proof that Pareto Frontier is Spanned by Contiguous Binnings

We are now finally ready to tackle the core goal of this paper: Mapping the Pareto frontier (H∗, I∗)
of optimal data compression X �→ Z that reflects the tradeoff between H(Z) and I(Z, Y). While
fine-grained binning has no effect on the entropy H(Y) and negligible effect on I(W, Y), it dramatically
reduces the entropy of our data, whereas H(W) = ∞ since W is continuous, H(W ′) = log N is finite,
approaching infinity only in the limit of infinitely many infinitesimal bins. (Note that while this
infinity, which reflects the infinite number of bits required to describe a single generic real number,
is customarily eliminated by defining entropy only up to an overall additive constant, we will not
follow that custom here, for the reason explained in the introduction.) Taken together, these scalings
of I and H imply that the leftmost part of the Pareto frontier I∗(H∗), defined by Equation (1) and
illustrated in Figure 1, asymptotes to a horizontal line of height I∗ = I(X, Y) as H∗ → ∞.

To reach the interesting parts of the Pareto frontier further to the right, we must destroy some
information about Y. We do this by defining

Z = g(W ′), (20)

where the function g groups the tiny bins indexed by W ′ ∈ {1, ..., N} into fewer ones indexed by
Z ∈ {1, ..., M}, M < N. There are vast numbers of such possible groupings, since each group
corresponds to one of the 2N − 2 nontrivial subsets of the tiny bins. Fortunately, as we will now prove,
we need only consider the O(NM) contiguous groupings, since non-contiguous ones are inferior and
cannot lie on the Pareto frontier. Indeed, we will see that for the examples in Section 3, M ∼< 5 suffices
to capture the most interesting information.

101

Entropy 2020, 22, 7

Theorem 2 (Contiguous binning theorem). If W has a uniform distribution and the conditional probability
distribution P(W|Y = 1) is monotonically increasing, then all points (H∗, I∗) on the Pareto frontier correspond
to binning W into contiguous intervals, i.e., if

I(H∗) ≡ sup
{g:H[g(W)]≤H∗}

I[g(W), Y], (21)

then there exists a set of bin boundaries b1 < ... < bn−1 such that the binned variable Z ≡ B(W, b) ∈ {1, ..., M}
satisfies H(Z) = H∗ and I(Z, Y) = I∗.

Proof. We prove this by contradiction: we will assume that there is a point (H∗, I∗) on the Pareto
frontier to which we can come arbitrarily close with (H(Z), I(Z, Y)) for Z ≡ g(X) for a compression
function g : R �→ {1, ..., M} that is not a contiguous binning function, and obtain a contradiction
by using g to construct another compression function g′(W) lying above the Pareto frontier,
with H[g′(W)] = H∗ and I[g′(W), Y]) > I∗. The joint probability distribution Pij for the Z and Y
is given by the Lebesgue integral

Pij ≡ P(Z = i, Y = j) =
∫

f jdμi, (22)

where f j(w) is the joint probability distribution for W and Y introduced earlier and μj is the set
μ ≡ {w ∈ [0, 1] : g(w) = i}, i.e., the set of w-values that are grouped together into the ith large bin.
We define the marginal and conditional probabilities

Pi ≡ P(Z = i) = Pi1 + Pi2, pi ≡ P(Y = 1|Z = i) =
Pi1
Pi

. (23)

Figure 4 illustrates the case where the binning function g corresponds to M = 4 large bins,
the second of which consists of two non-contiguous regions that are grouped together; the shaded
rectangles in the bottom panel have width Pi, height pi and area Pij = Pi pi.

According to Theorem A2 in the Appendix B, we obtain the contradiction required to complete
our proof (an alternative compression Z′ ≡ g′(W) above the Pareto frontier with H(Z′) = H∗ and
I(Z′, Y) > I∗) if there are two different conditional probabilities pk �= pl , and we can change g into g′

so that the joint distribution P′ij of Z′ and Y changes in the following way:

1. Only Pkj and Plj change,
2. both marginal distributions remain the same,
3. the new conditional probabilities p′k and p′l are further apart.

Figure 4 shows how this can be accomplished for non-contiguous binning: Let k be a bin with
non-contiguous support set μk (bin 2 in the illustrated example), let l be a bin whose support μl (bin 4
in the example) contains a positive measure subset μmid

l ⊂ μl within two parts μleft
k and μ

right
k of μk,

and define a new binning function g′(w) that differs from g(w) only by swapping a set με ⊂ μmid
l

against a subset of either μleft
k or μ

right
k of measure ε (in the illustrated example, the binning function

change implementing this subset is shown with dotted lines). This swap leaves the total measure of
both bins (and hence the marginal distribution Pi) unchanged, and also leaves P(Y = 1) unchanged.
If pk < pl , we perform this swap between μmid

l an μ
right
k (as in the figure), and if pk > pl , we instead

perform this swap between μmid
l an μleft

k , in both cases guaranteeing that pl and pk move further apart
(since p(w) is monotonically increasing). This completes our proof by contradiction except for the case
where pk = pl ; in this case, we swap to entirely eliminate the discontiguity, and repeat our swapping
procedure between other bins until we increase the entropy (again obtaining a contradiction) or end
up with a fully contiguous binning (if needed, g(w)′ can be changed to eliminate any measure-zero
subsets that ruin contiguity, since they leave the Lebesgue integral in Equation (22) unchanged.)

102

Entropy 2020, 22, 7

W 10

Binning
function

g(W)

P(Y=1|W)

Bin 1 Bin 2
A

Bin 4Bin 3 Bin 2
B

4

2
3

1
0

1

Bin 1 Bin 2 Bin 4Bin 3

decreases

increases

A B

Z

}

Figure 4. The reason that the Pareto frontier can never be reached using non-contiguous bins is that
swapping parts of them against parts of an intermediate bin can increase I(Z, X) while keeping H(Z)
constant. In this example, the binning function g assigns two separate W-intervals (top panel) to the
same bin (bin 2) as seen in the bottom panel. The shaded rectangles have widths Pi, heights pi and
areas Pi1 = Pi p1. In the upper panel, the conditional probabilities pi are monotonically increasing
because they are averages of the monotonically increasing curve p1(w).

2.3. Mapping the Frontier

Theorem 2 implies that we can in practice find the Pareto frontier for any random variable X by
searching the space of contiguous binnings of W = w(X) after uniformization, binning and sorting.
In practice, we can first try the two bin case by scanning the bin boundary 0 < b1 < 1, then trying
the three bin case by trying bin boundaries 0 < b1 < b2 < 1, then trying the four bin case, etc., as
illustrated in Figure 1. Each of these cases corresponds to a standard multi-objective optimization
problem aiming to maximize the two objectives I(Z, Y) and H(Z). We perform this optimization
numerically with the AWS algorithm of [17] as described in the next section.

While the uniformization, binning and sorting procedures are helpful in practice as well as for for
simplifying proofs, they are not necessary in practice. Since what we really care about is grouping into
integrals containing similar conditional probabilities p1(w), not similar w-values, it is easy to see that
binning horizontally after sorting is equivalent to binning vertically before sorting. In other words,
we can eliminate the binning and sorting steps if we replace “horizontal” binning g(W) = B(W, b) by
“vertical” binning

g(W) = B[p1(W), b], (24)

where p1 denotes the conditional probability as before.

103

Entropy 2020, 22, 7

3. Results

The purpose of this section is to examine how our method for Pareto-frontier mapping works
in practice on various datasets, both to compare its performance with prior work and to gain insight
into the shape and structure of the Pareto frontiers for well-known datasets such as the CIFAR-10
image database [18], the MNIST database of hand-written digits [19] and the Fashion-MNIST database
of garment images [20]. Before doing this, however, let us build intuition for how our method
works by testing on a much simpler toy model that is analytically solvable, where the accuracy of all
approximations can be exactly determined.

3.1. Analytic Warmup Example

Let the random variables X = (x1, x2) ∈ [0, 1]2 and Y ∈ {1, 2} be defined by the bivariate
probability distribution

f (X, Y) =
{

2x1x2 if Y = 1,
2(1− x1)(1− x2) if Y = 2,

(25)

which corresponds to x1 and x2 being two independent and identically distributed random variables
with triangle distribution f (xi) = xi if Y = 1, but flipped xi �→ 1− xi if Y = 2. This gives H(Y) = 1 bit
and mutual information

I(X, Y) = 1− π2 − 4
16 ln 2

≈ 0.4707 bits. (26)

The compressed random variable W = w(X) ∈ R defined by Equation (9) is thus

W = P(Y = 1|X) =
x1x2

x1x2 + (1− x1)(1− x2)
. (27)

After defining Z ≡ B(W, b) for a vector b of bin boundaries, a straightforward calculation shows
that the joint probability distribution of Y and the binned variable Z is given by

Pij ≡ P(Z = i, Y = j) = Fj(bi+1)− Fj(bi), (28)

where the cumulative distribution function Fj(w) ≡ P(W<w, Y = j) is given by

F1(w) =
w2 [(2w− 1)(5− 4w) + 2(1− w2) log(w−1 − 1)

]
2(2w− 1)4 ,

F2(w) =
1
2
− F1(1− w). (29)

Computing I(W, Y) using this probability distribution recovers exactly the same mutual information
I ≈ 0.4707 bits as in Equation (26), as we proved in Theorem 1.

3.2. The Pareto Frontier

Given any binning vector b, we can plot a corresponding point (H[Z], I[Z, Y]) in Figure 1 by
computing I(Z, Y) = H(Z) + H(Y)− H(Z, Y), H(Z, Y) = −∑ Pij log Pij, etc., where Pij is given by
Equation (28).

The figure shows 6000 random binnings each for M = 3, ..., 8 bins; as we have proven, the upper
envelope of points corresponding to all possible (contiguos) binnings defines the Pareto frontier.
The Pareto frontier begins with the black dot at (0, 0) (the lower right corner), since M = 1 bin
obviously destroys all information. The M = 2 bin case corresponds to a 1-dimensional closed curve
parametrized by the single parameter b1 that specifies the boundary between the two bins: It runs
from (0, 0) when b1 = 1, moves to the left until H(Z) = 1 when b1 = 0.5, and returns to (0, 0) when
b1 = 1. The b1 < 0.5 and b1 > 0.5 branches are indistinguishable in Figure 1 because of the symmetry

104

Entropy 2020, 22, 7

of our warmup problem, but in generic cases, a closed loop can be seen where only the upper part
defines the Pareto frontier.

More generally, we see that the set of all binnings into M > 2 bins maps the vector b of M− 1 bin
boundaries into a contiguous region in Figure 1. The inferior white region region below can also be
reached if we use non-contiguous binnings.

The Pareto Frontier is seen to resemble the top of a circus tent, with convex segments separated
by “corners” where the derivative vanishes, corresponding to a change in the number of bins. We can
understand the origin of these corners by considering what happens when adding a new bin of
infinitesimal size ε. As long as pi(w) is continuous, this changes all probabilites Pij by amounts
δPij = O(ε), and the probabilities corresponding to the new bin (which used to vanish) will now be
O(ε). The function ε log ε has infinite derivative at ε = 0, blowing up as O(log ε), which implies that
the entropy increase δH(Z) = O(− log ε). In contrast, a straightforward calculation shows that all
log ε-terms cancel when computing the mutual information, which changes only by δI(Z, Y) = O(ε).
As we birth a new bin and move leftward from one of the black dots in Figure 1, the initial slope of the
Pareto frontier is thus

lim
ε→0

δI(Z, Y)
δH(Z)

= 0. (30)

In other words, the Pareto frontier starts out horizontally to the left of each of its corners in Figure 1.
Indeed, the corners are “soft” in the sense that the derivative of the Pareto Frontier is continuous and
vanishes at the corners: For a given number of bins, I(X, Z) by definition takes its global maximum at
the corresponding corner, so the derivative ∂I(Z, Y)/∂H(Z) vanishes also as we approach the corner
from the right. The first corner (the transition from 2 to 3 bins) can nonetheless look fairly sharp
because the 2-bin curve turns around rather abruptly, and the right derivative does not vanish in the
limit where a symmetry causes the upper and lower parts of the 2-bin loop to coincide.

Our theorems imply that in the M → ∞ limit of infinitely many bins, successive corners become
gradually less pronounced (with ever smaller derivative discontinuities), because the left asymptote of
the Pareto frontier simply approaches the horizontal line I∗ = I(Y, Z).

3.2.1. Approximating w(X)

For our toy example, we knew the conditional probability distribution P(Y|X) and could therefore
compute W = w(X) = P(Y = 1|X) exactly. For practical examples where this is not the case, we can
instead train a neural network to implement a function ŵ(X) that approximates P(Y = 1|X). For our
toy example, we train a fully connected feedforward neural network to predict Y from X using
cross-entropy loss; it has two hidden layers, each with 256 neurons with ReLU activation, and a final
linear layer with softmax activation, whose first neuron defines ŵ(X). An illustrated in Figure 5,
the network prediction for the conditional probability ŵ(X) ≡ P(Y = 1) is fairly accurate, but slightly
over-confident, tending to err on the side of predicting more extreme probabilities (further from 0.5).
The average KL-divergence between the predicted and actual conditional probability distribution
P(Y|X) is about 0.004, which causes negligible loss of information about Y.

105

Entropy 2020, 22, 7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

W = 0.1

W = 0.9

Figure 5. Contour plot of the function W(x1, x2) computed both exactly using Equation (27) (solid
curves) and approximately using a neural network (dashed curves).

3.2.2. Approximating f1(W)

For practical examples where the conditional joint probability distribution P(W, Y) cannot be
computed analytically, we need to estimate it from the observed distribution of W-values output
by the neural network. For our examples, we do this by fitting each probability distribution by a
beta-distribution times the exponential of a polynomial of degree d:

f (w, a) ≡ exp

[
d

∑
k=0

akxk

]
xad+1(1− x)ad+2 , (31)

where the coefficient a0 is fixed by the normalization requirement
∫ 1

0 f (w, a)dw = 1. We use this
simple parametrization because it can fit any smooth distribution arbitrarily well for sufficiently large
d, and provides accurate fits for the probability distributions in our examples using quite modest d;
for example, d = 3 gives dKL[f1(w), f (w, a)] ≈ 0.002 for

a ≡ argmin
a′

dKL[f1(w), f (w, a′)] (32)

= (−1.010, 2.319,−5.579, 4.887, 0.308,−0.307),

which causes rather negligible loss of information about Y. For our examples below where we do not
know the exact distribution f1(w) and merely have samples Wi drawn from it, one for each element of
the data set, we instead perform the fitting by the standard technique of minimizing the cross entropy
loss, i.e.,

a ≡ argmin
a′

−
n

∑
k=1

log f (Wk, a′). (33)

Table 2 lists the fitting coefficients used, and Figure 6 illustrates the fitting accuracy.

106

Entropy 2020, 22, 7

Table 2. Fits to the conditional probability distributions P(W|Y) for our experiments, in terms of the
parameters ai defined by Equation (31).

Experiment Y a0 a1 a2 a3 a4 a5 a6

Analytic 1 0.0668 −4.7685 16.8993 −25.0849 13.758 0.5797 −0.2700
2 0.4841 −5.0106 5.7863 −1.5697 −1.7180 −0.3313 −0.0030

Fashion-MNIST Pullover 0.2878 −12.9596 44.9217 −68.0105 37.3126 0.3547 −0.2838
Shirt 1.0821 −23.8350 81.6655 −112.2720 53.9602 −0.4068 0.4552

CIFAR-10 Cat 0.9230 0.2165 0.0859 6.0013 −1.0037 0.8499
0.6795 0.0511 0.6838 −1.0138 0.9061

Dog 0.8970 0.2132 0.0806 6.0013 −1.0039 0.8500
0.7872 0.0144 0.7974 −0.9440 0.7237

MNIST One 3.1188 −65.224 231.4 −320.054 150.779 1.1226 −0.6856
Seven −1.0325 −47.5411 189.895 −269.28 127.363 −0.8219 0.1284

3.3. MNIST, Fashion-MNIST and CIFAR-10

The MNIST database consists of 28 × 28 pixel greyscale images of handwritten digits: 60,000
training images and 10,000 testing images [19]. We use the digits 1 and 7, since they are the two that
are most frequently confused, relabeled as Y = 1 (ones) and Y = 2 (sevens). To increase difficulty,
we inject 30% of pixel noise, i.e., randomly flip each pixel with 30% probability (see examples in
Figure 2). For easy comparison with the other cases, we use the same number of samples for each class.

The Fashion-MNIST database has the exact same format (60,000 + 10,000 28 × 28 pixel greyscale
images), depicting not digits but 10 classes of clothing [20]. Here we again use the two most easily
confused classes: Pullovers (Y = 1) and shirts (Y = 2); see Figure 2 for examples.

We train a neural network classifier on our datasets using the architecture from
https://github.com/pytorch/examples/blob/master/mnist/main.py, changing the number of
outpiut neurons from 10 to 2. We use two convolutional layers (kernel size 5, stride 1, ReLU activation)
with 20 and 50 features, respectively, each of which is followed by max-pooling with kernel size 2.
This is followed by a fully connected layer with 500 ReLU neurons and finally a softmax layer that
produces the predicted probabilities for the two classes. After training, we apply the trained model to
the test set to obtain Wi = P(Y|Xi) for each dataset.

CIFAR-10 [21] is one of the most widely used datasets for machine learning research, and contains
60,000 32× 32 color images in 10 different classes. We use only the cat (Y = 1) and dog (Y = 2) classes,
which are the two that are empirically hardest to discriminate; see Figure 2 for examples. We use a
ResNet18 architecture adapted from https://github.com/kuangliu/pytorch-cifar, for which we use its
ResNet18 model [22]; the only difference in architecture is that we use 2 rather than 10 output neurons.
We train with a learning rate of 0.01 for the first 150 epochs, 0.001 for the next 100, and 0.0001 for the
final 100 epochs; we keep all other settings the same as in the original repository.

Figure 6 shows observed cumulative distribution functions Fi(w) (solid curves) for the Wi =

P(Y = 1|Xi) generated by the neural network classifiers, together with our above-mentioned analytic
fits (dashed curves). Figure 7 shows the corresponding conditional probability curves P(Y = 1|W)

after remapping W to have a uniform distribution as described above. Figure 6 shows that the original
W-distributions are strongly peaked around W ≈ 0 and W ≈ 1, so this remapping stretches the W-axis
so as to shift probability toward more central values.

In the case of CIFAR-10, the observed distribution f (w) was so extremely peaked near the
endpoints that we replaced Equation (31) by the more accurate fit

107

Entropy 2020, 22, 7

f (w) ≡ F′(w), (34)

F(w) ≡
{

aA
0 F∗[w, aA] if w < 1/2,

1− (1− aA
0)F∗[1− w, aB]] otherwise,

(35)

F∗(x) ≡ G
[
(2x)a1

2

]
, (36)

G(x) ≡
[(

x
a2

)a3a4

+ (a5 + a6x)a4

]1/a4

, (37)

a6 ≡ 2
[
(1− (2a2)

−a3a4)1/a4 − a5

]
, (38)

where the parameters vectors aA and aB are given in Table 2 for both cats and dogs. For the cat case,
this fit gives not f (w) but f (1− w). Note that F∗(0) = 0, F∗(1/2) = 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

w

P(
W

 <
 w

 |
Y

)

w

Y=1

Y=2
Analytic toy example
MNIST (ones/sevens)
CIFAR-10 (cats/dogs)

Figure 6. Cumulative distributions Fi(w) ≡ P(W<w|Y = i) are shown for the analytic (blue/dark
grey), Fashion-MNIST (red/grey) and CIFAR-10 (orange/light grey) examples. Solid curves show
the observed cumulative histograms of W from the neural network, and dashed curves show the fits
defined by Equation (31) and Table 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

W

P(
Y=

1
|W

)

Analytic toy example

MNIST (ones/sevens)
CIFAR-10 (cats/dogs)
Fashion MNIST (shirts/pullovers)

Figure 7. The solid curves show the actual conditional probability P(Y = 1|W) for CIFAR-10 (where
the labels Y = 1 and 2 correspond to “cat” and “dog”) and MNIST with 20% label noise (where the
labels Y = 1 and 2 correspond to “1” and “7”), respectively. The color-matched dashed curves show
the conditional probabilities predicted by the neural network; the reason that they are not diagonal
lines P(Y = 1|W) = W is that W has been reparametrized to have a uniform distribution. If the neural
network classifiers were optimal, then solid and dashed curves would coincide.

108

Entropy 2020, 22, 7

The final result of our calculations is shown in Figure 8: The Pareto frontiers for our four datasets,
computed using our method.

3 2 1
Entropy H(Z) [bits]

0
0.0

0.8

0.2

0.6

0.4

1.0
M

ut
ua

l i
nf

or
m

at
io

n
I(

Z,
Y

) [
bi

ts
] I(Z,Y) = H(Z)

Im
possible

Analytic toy example

MNIST (ones/sevens)

CIFAR-10 (cats/dogs)

Fashion MNIST (shirts/pullovers)

95%

50%

70%

80%

90%

100%

99%

Pr
ed

ic
tio

n
ac

cu
ra

cy

Figure 8. The Pareto frontier for compressed versions Z = g(X) of our four datasets X, showing
the maximum attainable class information I(Z, Y) for a given entropy H(Z). The “corners” (dots)
correspond to the maximum I(Z, Y) attainable when binning the likelihood W into a given number of
bins (2, 3, ..., 8 from right to left). The horizontal dotted lines show the maximum available information
I(X, Y) for each case, reflecting that there is simply less to learn in some examples than in others.

3.4. Interpretation of Our Results

To build intuition for our results, let us consider our CIFAR-10 example of images X depicting
cats (Y = 1) and dogs (Y = 2) as in Figure 2 and ask what aspects Z = g(X) of an image X capture
the most information about the species Y. Above, we estimated that I(X, Y) ≈ 0.69692 bits, so what
Z captures the largest fraction of this information for a fixed entropy? Given a good neural network
classifier, a natural guess might be the single bit Z containing its best guess, say “it’s probably a
cat”. This corresponds to defining Z = 1 if P(Y = 1|X) > 0.5, Z = 2 otherwise, and gives the joint
distribution Pij ≡ P(Y = i, Z = j)

P =

(
0.454555 0.045445
0.042725 0.457275

)

corresponding to (Z, Y) ≈ 0.56971 bits. However, our results show that we can improve things in two
separate ways.

First of all, if we only want to store one bit Z, then we can do better, corresponding to the
first “corner” in Figure 8: moving the likelihood cutoff from 0.5 to 0.51, i.e., redefining Z = 1 if
P(Y|X) > 0.51, increases the mutual information to I(Z, Y) ≈ 0.56974 bits.

More importantly, we are still falling far short of the 0.69692 bits of information we had without
data compression, capturing only 88% of the available species information. Our Theorem 1 showed
that we can retain all this information if we instead define Z as the cat probability itself: Z ≡ W ≡
P(Y|X). For example, a given image might be compressed not into “It’s probably a cat” but into “I’m
94.2477796% sure it’s a cat”. However, it is clearly impractical to report the infinitely many decimals
required to retain all the species information, which would make H(Z) infinite. Our results can be
loosely speaking interpreted as the optimal way to round Z, so that the information H(Z) required to
store it becomes finite. We found that simply rounding to a fixed number of decimals is suboptimal;
for example, if we pick 2 decimals and say “I’m 94.25% sure it’s a cat”, then we have effectively binned

109

Entropy 2020, 22, 7

the probability W into 10,000 bins of equal size, even though we can often do much better with bins
of unequal size, as illustrated in the bottom panel of Figure 1. Moreover, when the probability W is
approximated by a neural network, we found that what should be optimally binned is not W but the
conditional probability P(Y = 1|W) illustrated in Figure 7 (“vertical binning”).

It is convenient to interpret our Pareto-optimal data compression X �→ Z as clustering, i.e., as a
method of grouping our images or other data Xi into clusters based on what information they contain
about Y. For example, Figure 2 illustrates CIFAR-10 images clustered by their degree of “cattiness”
into 5 groups Z = 1, ..., 5 that might be nicknamed “1.9% cat”, “11.8% cat”, “31.4% cat”, “68.7% cat”
and “96.7% cat”. This gives the joint distribution Pij ≡ P(Y = i, Z = j) where

P =

(
0.350685 0.053337 0.054679 0.034542 0.006756
0.007794 0.006618 0.032516 0.069236 0.383836

)

and gives I(Z, Y) ≈ 0.6882, thus increasing the fraction of species information retained from 82%
to 99%.

This is a striking result: We can group the images into merely five groups and discard all information
about all images except which group they are in, yet retain 99% of the information we cared about.
Such grouping may be helpful in many contexts. For example, given a large sample of labeled
medical images of potential tumors, they can be used to define say five optimal clusters, after which
future images can be classified into five degrees of cancer risk that collectively retain virtually all the
malignancy information in the original images.

Given that the Pareto Frontier is continuous and corresponds to an infinite family of possible
clusterings, which one is most useful in practice? Just as in more general multi-objective optimization
problems, the most interesting points on the frontier are arguably its “corners”, indicated by dots
in Figure 8, where we do notably well on both criteria. This point was also made in the important
paper [23] in the context of the DIB-frontier discussed below. We see that the parts of the frontier
between corners tend to be convex and thus rather unappealing, since any weighted average of−H(Z)
and I(Z, Y) will be maximized at a corner. Our results show that these corners can conveniently
be computed without numerically tedious multiobjective optimization, by simply maximizing the
mutual information I(Z, Y) for m = 2, 3, 4, ... bins. The first corner, at H(Z) = 1 bit, corresponds to
the learnability phase transition for DIB, i.e., the largest β for which DIB is able to learn a non-trivial
representation. In contrast to the IB learnability phase transition [24,25] where I(Z, Y) increases
continuously from 0, here the I(Y; Z) has a jump from 0 to a positive value, due to the non-concave
nature of the Pareto frontier.

Moreover, all the examples in Figure 8 are seen to get quite close to the m → ∞ asymptote
I(Z, Y) → I(X, Y) for m ∼> 5, so the most interesting points on the Pareto frontier are simply the
first handful of corners. For these examples, we also see that the greater the mutual information is,
the fewer bins are needed to capture most of it.

An alternative way if interpreting the Pareto plane in Figure 8 is as a traveoff between two evils:

Information bloat: H(Z|Y) ≡ H(Z)− I(Z, Y) ≥ 0,

Information loss: ΔI ≡ I(X, Y)− I(Z, Y) ≥ 0.

What we are calling the “information bloat” has also been called “causal waste” [26]. It is simply
the conditional entropy of Z given Y, and represents the excess bits we need to store in order to retain
the desired information about Y. Geometrically, it is the horizontal distance to the impossible region
to the right in Figure 8, and we see that for MNIST, it takes local minima at the corners for both 1
and 2 bins. The information loss is simply the information discarded by our lossy compression of X.
Geometrically, it is the vertical distance to the impossible region at the top of Figure 1 (and, in Figure 8,
it is the vertical distance to the corresponding dotted horizontal line). As we move from corner to
corner adding more bins, we typically reduce the information loss at the cost of increased information

110

Entropy 2020, 22, 7

bloat. For the examples in Figure 8, we see that going beyond a handful of bins essentially just adds
bloat without significantly reducing the information loss.

3.5. Real-World Issues

We just discussed how lossy compression is a tradeoff between information bloat and information
loss. Let us now elaborate on the latter, for the real-world situation where W ≡ P(Y = 1|X) is
approximated by a neural network.

If the neural network learns to become perfect, then the function w that it implements will be
such that W ≡ w(X) satisfies P(Y = 1|W) = W, which corresponds to the dashed curves in Figure 7
being identical to the solid curves. While we see that this is close to being the case for the analytic and
MNIST examples, the neural networks are further from optimal for Fashion-MNIST and CIFAR-10.
The figure illustrates that the general trend is for these neural networks to overfit and therefore be
overconfident, predicting probabilities that are too extreme.

This fact that P(Y = 1|W) �= W probably indicates that our Fashion-MNIST and CIFAR-10
classifiers W = w(X) destroy information about X, but it does not prove this, because if we had a
perfect lossless classifier W ≡ w(X) satisfying P(Y = 1|W) = W, then we could define an overconfident
lossless classifier by an invertible (and hence information-preserving) reparameterization such as
W ′ ≡ W2 that violates the condition P(Y = 1|W ′) = W ′.

So how much information does X contain about Y? One way to lower-bound I(X; Y) uses the
classification accuracy: if we have a classification problem where P(Y = 1) = 1/2 and compress X into
a single classification bit Z (corresponding to a binning of W into two bins), then we can write the joint
probability distribution for Y and the guessed class Z as

P =

(
1
2 − ε1 ε1

ε2
1
2 − ε2

)
.

For a fixed total error rate ε ≡ ε1 + ε2, Fano’s Inequality implies that the mutual information
takes a minimum

I(Z, Y) = 1 + ε log ε + (1− ε) log(1− ε) (39)

when ε1 = ε2 = ε/2, so if we can train a classifier that gives an error rate ε, then the right-hand-side
of Equation (39) places a lower bound on the mutual information I(X, Y). The prediction accuracy
1− ε is shown for reference on the right side of Figure 8. Note that getting close to one bit of mutual
information requires extremely high accuracy; for example, 99% prediction accuracy corresponds to
only 0.92 bits of mutual information.

We can obtain a stronger estimated lower bound on I(X, Y) from the cross-entropy loss function
L used to train our classifiers:

〈L〉 = − 〈log P(Y = Yi|X = Xi)〉 = H(Y|X) + dKL, (40)

where dKL ≥ 0 denotes the average KL-divergence between true and predicted conditional probability
distributions, and 〈·〉 denotes ensemble averaging over data points, which implies that

I(X, Y) = H(Y)− H(Y|X) = H(Y)− 〈L〉 − dKL

≥ H(Y)− 〈L〉. (41)

If P(Y = 1|W) �= W as we discussed above, then dKL and hence the loss can be further reduced be
recalibrating W as we have done, which increases the information bound from Equation (41) up to the
the value computed directly from the observed joint distribution P(W, Y).

Unfortunately, without knowing the true probability p(Y|X), there is no rigorous and practically
useful upper bound on the mutual information other than the trivial inequality I(X, Y) < H(Y) = 1
bit, as the following simple counterexample shows: Suppose our images X are encrypted with some

111

Entropy 2020, 22, 7

encryption algorithm that is extremely time-consuming to crack, rendering the images for all practical
purposes indistinguishable from random noise. Then any reasonable neural network will produce a
useless classifier giving I(W, Y) ≈ 0 even though the true mutual information I(X, Y) could be as large
as one bit. In other words, we generally cannot know the true information loss caused by compressing
X �→ W, so the best we can do in practice is to pick a corner reasonably close to the upper asymptote
in Figure 8.

3.6. Performance Compared with Blahut–Arimoto Method

The most commonly used technique to date for finding the Pareto frontier is the Blahut–Arimoto
(BA) method [27,28] applied to the DIB objective of Equation (3) as described in [12]. Figure 9 and
Table 3 shows the BA method implemented as in [23], applied to our above-mentioned analytic toy
example, after binning using 2000 equispaced W-bins and Z ∈ 1, ..., 8, scanning the β-parameter from
Equation (3) from 10−10 to 1 in 20,000 logarithmically equispaced steps. Our method is seen to improve
on the BA method in two ways. First, our method finds the entire continuous frontier, whereas the BA
method finds only six discrete disconnected points. This is because the BA-method tries to maximize
the the DIB-objective from Equation (3) and thus cannot discover points where the Pareto frontier is
convex as discussed above. Second, our method finds the exact frontier, whereas the BA-method finds
only approximations, which are seen to generally lie below the true frontier.

Table 3. The approximate Pareto frontier points for our analytic example computed with the Blahut–
Arimoto (BA) method compared with the points for those same six H-values computed with our
exact method.

H(Z) I(Z, Y)
BA-Method Our Method

0.0000 0.0000 0.0000
0.9652 0.3260 0.3421
0.9998 0.3506 0.3622
1.5437 0.4126 0.4276
1.5581 0.4126 0.4298
1.5725 0.4141 0.4314

Figure 9. The Pareto frontier our analytic example is computed exactly with our method (solid curve)
and approximately with the Blahut–Arimoto method (dots).

112

Entropy 2020, 22, 7

4. Conclusions and Discussion

We have presented a method for mapping out the Pareto frontier for classification tasks (as in
Figure 8), reflecting the tradeoff between retained entropy and class information. In other words,
we have generalized the quest for maximizing raw classification accuracy to that of mapping the full
Pareto frontier corresponding to the accuracy–complexity tradeoff. The optimal soft classifiers that we
have studied (corresponding to points on the Pareto frontier) are useful for the same reason that the
DIB method is useful, e.g., overfitting less and therefore generalizing better.

We first showed how a random variable X (an image, say) drawn from a class Y ∈ {1, ..., n} can
be distilled into a vector W = f (X) ∈ Rn−1 losslessly, so that I(W, Y) = I(X, Y). For the n = 2 case of
binary classification, we then showed how the Pareto frontier is swept out by a one-parameter family
of binnings of W into a discrete variable Z = gβ(W) ∈ {1, ..., mβ} that corresponds to binning W into
mβ = 2, 3, ..., bins, such that I(Z, Y) is maximized for each fixed entropy H(Z). Our method efficiently
finds the exact Pareto frontier, significantly outperforming the Blahut–Arimoto (BA) method [27,28].
Our MATLAB code for computing the Pareto frontier is freely available here: https://github.com/
tailintalent/distillation.

4.1. Relation to Information Bottleneck

As mentioned in the introduction, the discrete information bottleneck (DIB) method [12]
maximizes a linear combination I(Z, Y)− βH(Z) of the two axes in Figure 8. We have presented a
method solving a generalization of the DIB problem. The generalization lies in switching the objective
from Equation (3) to Equation (1), which has the advantage of discovering the full Pareto frontier in
Figure 8 instead of merely the corners and concave parts (as mentioned, the DIB objective cannot
discover convex parts of the frontier). The solution lies in our proof that the frontier is spanned by
binnings of the likelihood into 2, 3, 4, etc., bins, which enables it to be computed more efficiently than
with the iterative/variational method of [12].

The popular original Information Bottleneck (IB) method [10] generalizes DIB by allowing the
compression function g(X) to be non-deterministic, thus adding noise that is independent of X.
Starting with a Pareto-optimal Z ≡ g(X) and adding such noise will simply shift us straight to the
left in Figure 8, away from the frontier (which is by definition monotonically decreasing) and into the
Pareto-suboptimal region in the I(Y; Z) vs. H(Z) plane. As shown in [12], IB-compressions tend to
altogether avoid the rightmost part of Figure 8, with an entropy H(Z) that never drops below some
fixed value independent of β.

4.2. Relation to Phase Transitions in DIB Learning

Recent work has revealed interesting phase transitions that occur during information bottleneck
learning [12,24,25,29], as well as phase transitions in other objectives, e.g., β-VAE [30], infoDropout [31].
Specifically, when the β-parameter that controls the tradeoff between information retention and model
simplicity is continuously adjusted, the resulting point in the IB-plane can sometimes “get stuck” or
make discontinuous jumps. For the DIB case, our results provide an intuitive understanding of these
phase transitions in terms of the geometry of the Pareto frontier.

Let us consider Figure 1 as an example. The DIB maximiziation of I(Z, Y)− βH(Z) geometrically
corresponds to finding a tangent line of the Pareto frontier of slope −β.

If the Pareto frontier I∗(H) were everywhere continuous and concave, so that I′′∗ (H) < 0, then its
slope would range from some steepest value −β∗ at the right endpoint H = 0 and continuously flatten
out as we move leftward, asymptotically approaching zero slope as H → ∞. The learnability phase
transition studied in [24,25] would then occur when β = β∗: for any β ≥ β∗, the DIB method learns
nothing, e.g., discovers as optimal the point (H, I) = (0, 0) where Z retains no information whatsoever
about Y. As β ≤ β∗ is continuously reduced, the DIB-discovered point would then continuously move
up and to the left along the Pareto frontier.

113

Entropy 2020, 22, 7

This was for the case of an everywhere concave frontier, but Figures 1 and 8 show that actual
Pareto frontiers need not be concave—indeed, none of the frontiers that we have computed are concave.
Instead, they are seen to consist of long convex segments joint together by short concave pieces near
the “corners”. This means that as β is continuously increased, the DIB solution exhibits first-order
phase transitions, making discontinuous jumps from corner to corner at certain critical β-values; these
phase transitions correspond to increasing the number of clusters into which the data X is grouped.

4.3. Outlook

Our results suggest a number of opportunities for further work, ranging from information theory
to machine learning, neuroscience and physics.

As to information theory, it will be interesting to try to generalize our method from binary
classification into classification into more than two classes. Moreover, one can ask if there is a way
of pushing the general information distillation problem all the way to bits. It is easy to show that a
discrete random variable Z ∈ {1, ..., m} can always be encoded as m− 1 independent random bits
(Bernoulli variables) B1, ..., Bm−1 ∈ {0, 1}, defined by

P(Bk = 1) = P(Z = k + 1)/P(Z ≤ k + 1), (42)

while this generically requires some information bloat. The mapping z from bit strings B to integers
Z ≡ z(B) is defined so that z(B) is the position of the last bit that equals one when B is preceded by a
one. For example, for m = 4, the mapping from length-3 bit strings B ∈ {0, 1}3 to integers Z ∈ {1, ..., 4}
is z(001) = z(011) = z(101) = z(111) = 4, z(010) = z(110) = 3, z(100) = 2, z(000) = 1. So in the
spirit of the introduction, is there some useful way of generalizing PCA, autoencoders, CCA and/or
the method we have presented so that the quantities Zi and Z′i in Table 1 are not real numbers but bits?

As to neural networks, it is interesting to explore novel classifier architectures that reduce the
overfitting and resulting overconfidence revealed by Figure 7, as this might significantly increase the
amount of information we can distill into our compressed data. It is important not to complacently
declare victory just because classification accuracy is high; as mentioned, even 99% binary classification
accuracy can waste 8% of the information.

As to neuroscience, our discovery of optimal “corner” binnings begs the question of whether
evolution may have implemented such categorization in brains. For example, if some binary variable
Y that can be inferred from visual imagery is evolutionarily important for a given species (say, whether
potential food items are edible), might our method help predict how many distinct colors m their
brains have evolved to classify hues into? In this example, X might be a triplet of real numbers
corresponding to light intensity recorded by three types of retinal photoreceptors, and the integer Z
might end up corresponding so some definitions of yellow, orange, etc. A similar question can be
asked for other cases where brains define finite numbers of categories, for example categories defined
by distinct words.

As to physics, it has been known even since the introduction of Maxwell’s Demon that a physical
system can use information about its environment to extract work from it. If we view an evolved life
form as an intelligent agent seeking to perform such work extraction, then it faces a tradeoff between
retaining too little relevant infomation (consequently extrating less work) and retaining too much
(wasting energy on information processing and storage). Susanne Still recently proved the remarkable
physics result [32] that the lossy data compression optimizing such work extraction efficiency is
precisely that prescribed by the above-mentioned information bottleneck method [10]. As she puts it,
an intelligent data representation strategy emerges from the optimization of a fundamental physical
limit to information processing. This derivation made minimal and reasonable seeming assumptions
about the physical system, but did not include an energy cost for information encoding. We conjecture
that this can be done such that an extra Shannon coding term proportional to H(Z) gets added to the

114

Entropy 2020, 22, 7

loss function, which means that when this term dominates, the generalized Still criterion would instead
prefer the Deterministic Information Bottleneck or one of our Pareto-optimal data compressions.

While noise-adding IB-style data compression may turn out to be commonplace in many biological
settings, it is striking that the types of data compression we typically associate with human perception
intelligence appears more deterministic, in the spirit of DIB and our work. For example, when we
compress visual input into “this is a probably a cat”, we do not typically add noise by deliberately
flipping our memory to “this is probably a dog”. Similarly, the popular jpeg image compression
algorithm dramatically reduces image sizes while retaining essentially all information that we humans
find relevant, and does so deterministically, without adding noise.

It is striking that simple information-theoretical principles such as IB, DIB and Pareto-optimality
appear relevant across the spectrum of known intelligence, ranging from extremely simple physical
systems as in Still’s work all the way up to high-level human perception and cognition. This motivates
further work on the exciting quest for a deeper understanding of Pareto-optimal data compression
and its relation to neuroscience and physics.

Author Contributions: Conceptualization, resources, supervision, project administration, funding acquisition,
M.T.; methodology, software, validation, formal analysis, investigation, writing—original draft preparation,
writing—review and editing, visualization, M.T. and T.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by The Casey and Family Foundation, the Ethics and Governance of AI Fund,
the Foundational Questions Institute, the Rothberg Family Fund for Cognitive Science and by Theiss Research
through TWCF grant #0322. The opinions expressed in this publication are those of the authors and do not
necessarily reflect the views of the funders.

Acknowledgments: The authors wish to thank Olivier de Weck for sharing the AWS multiobjective optimization
software.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. Binning Can Be Practically Lossless

If the conditional probability distribution p1(w) ≡ P(Y = 1|W = w) is a slowly varying function
and the range of W is divided into tiny bins, then p1(w) will be almost constant within each bin and so
binning W (discarding information about the exact position of W within a bin) should destroy almost
no information about Y. This intuition is formalized by the following theorem, which says that a
random variable W can be binned into a finite number of bins at the cost of losing arbitrarily little
information about Y.

Theorem A1. Binning can be practically lossless: Given a random variable Y ∈ {1, 2} and a uniformly
distributed random variable W ∈ [0, 1] such that the conditional probability distribution p1(w) ≡
P(Y = 1|W = w) is monotonic, there exists for any real number ε > 0 a vector b ∈ RN−1 of bin boundaries
such that the information reduction

ΔI ≡ I[W, Y]− I[B(W, b), Y] < ε,

where B is the binning function defined by Equation (17).

Proof. The binned bivariate probability distribution is

Pij ≡ P(Z = j, Y = i) =
∫ bj

bj−1

pi(w)dw (A1)

with marginal distribution
PZ

j ≡ P(Z = j) = bj − bj−1. (A2)

115

Entropy 2020, 22, 7

Let p̄i(w) denote the piecewise constant function that in the jth bin bj−1 < w ≤ bj takes the
average value of pi(w) in that bin, i.e.,

p̄i(w) ≡ 1
bj − bj−1

∫ bj

bj−1

pi(w)dw =
Pij

PZ
j

. (A3)

These definitions imply that

−
N

∑
j=1

Pij log
Pij

PZ
j

=
∫ 1

0
h [p̄i(w)] dw, (A4)

where h(x) ≡ −x log x. Since h(x) vanishes at x = 0 and x = 1 and takes its intermediate maximum
value at x = 1/e, the function

h∗(x) ≡
{

h(x) if x < e−1,
2h(e−1)− h(x) if x ≥ e−1 (A5)

is continuous and increases monotonically for x ∈ [0, 1], with h′∗ = |h′(x)|. This means that if we
define the non-negative monotonic function

h+(w) ≡ h∗[p1(w)]− h∗[p2(w)],

it changes at least as fast as either of its terms, so that for any w1, w2 ∈ [0, 1], we have

|h [pi(w2)]− h [pi(w1)]| ≤ |h∗ [pi(w2)]− h∗ [pi(w1)]|
≤ |h+(w2)− h+(w1)|. (A6)

We will exploit this bound to limit how much h [pi(w)] can vary within a bin. Since h+(0) ≥ 0
and h+(1) ≤ 2h∗(1) = 4/e ln 2 ≈ 2.12 < 3, we pick N − 1 bins boundaries bk implicitly defined by

h+(bj) = h+(0) + [h+(1)− h+(0)]
j

N
(A7)

for some integer N � 1. Using Equation (A6), this implies that

|h [p̄i(w)]− h [pi(w)]| ≤ h+(1)− h+(0)
N

<
3
N

. (A8)

The mutual information between two variables is given by I(Y, U) = H(Y)− H(Y|U), where the
second term (the conditional entropy is given by the following expressions in the cases that we need:

H(Y|Z) = −
N

∑
i=1

2

∑
j=1

Pij log
Pij

Pi
, (A9)

H(Y|W) = −
2

∑
i=1

∫ 1

0
pi(w) log pi(w)dw. (A10)

The information loss caused by our binning is therefore

116

Entropy 2020, 22, 7

ΔI = I(W, Y)− I(Z, Y) = H(Y|Z)− H(Y|W)

= −
2

∑
i=1

(
N

∑
j=1

Pij log
Pij

PZ
j
+
∫ 1

0
h [pi(w)] dw

)

=
2

∑
i=1

∫ 1

0
(h [p̄i(w)]− h [pi(w)]) dw

≤
2

∑
i=1

∫ 1

0
|h [p̄i(w)]− h [pi(w)]| dw

<
2

∑
i=1

∫ 1

0

3
N

=
6
N

, (A11)

where we used Equation (A4) to obtain the third row and Equation (A8) to obtain the last row.
This means that however small an information loss tolerance ε we want, we can guarantee ΔI < ε by
choosing N > 6/ε bins placed according to Equation (A7), which completes the proof.

Note that the proof still holds if the function pi(w) is not monotonic, as long as the number of
times M that it changes direction is finite: In that case, we can simply repeat the above-mentioned
binning procedure separately in the M + 1 intervals where pi(w) is monotonic, using N > 6/ε bins in
each interval, i.e., a total of N > 6M/ε bins.

Appendix B. More Varying Conditional Probability Boosts Mutual Information

Mutual information is loosely speaking a measure of how far a probability distribution Pij is from
being separable, i.e.,, a product of its two marginal distributions. (specifically, the mutual information
is the Kullback–Leibler divergence between the bivariate probability distribution and the product
of its marginals.) If all conditional probabilities for one variable Y given the other variable Z are
identical, then the distribution is separable and the mutual information I(Z, Y) vanishes, so one may
intuitively expect that making conditional probabilities more different from each other will increase
I(Z, Y). The following theorem formalizes this intuition in a way that enables Theorem 2.

Theorem A2. Consider two discrete random variables Z ∈ {1, ..., n} and Y ∈ {1, 2} and define
Pi ≡ P(Z = i), pi ≡ P(Y = 1|Z = i), so that the joint probability distribution Pij ≡ P(Z = i, Y = j)
is given by Pi1 = Pi pi, Pi2 = Pi(1− pi). If two conditional probabilities pk and pl differ, then we increase the
mutual information I(Y, Z) if we bring them further apart by adjusting Pkj and Plj in such a way that both
marginal distributions remain unchanged.

Proof. The only such change that keeps the marginal distributions for both Z and Y unchanged takes
the form (

P1 p1 · · · Pk pk − ε · · · Pl pl + ε · · ·
P1(1− p1) · · · Pk(1− pk) + ε · · · Pl(1− pl)− ε · · ·

)
where the parameter ε must be kept small enough for all probabilities to remain non-negative.
Without loss of generality, we can assume that pk < pl , so that we make the conditional probabilities

P(Y = 1|Z = k) =
Pk1
Pk

= pk − ε/Pk, (A12)

P(Y = 1|Z = l) =
Pl1
Pl

= pl + ε/Pl (A13)

117

Entropy 2020, 22, 7

more different when increasing ε from zero. Computing and differentiating the mutual information
with respect to ε, most terms cancel and we find that

∂I(Z, Y)
∂ε

∣∣∣∣
ε=0

= log
[

1/pk − 1
1/pl − 1

]
> 0 (A14)

which means that adjusting the probabilities with a sufficiently tiny ε > 0 will increase the mutual
information, completing the proof.

References

1. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos.
Mag. J. Sci. 1901, 2, 559–572. [CrossRef]

2. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008; pp. 1096–1103.

3. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Neural Information Processing Systems 2014, Montreal,
QC, Canada, 8–13 December 2014; pp. 2672–2680.

4. Hotelling, H. Relation between two sets of variates. Biometrica 1936, 28, 321–377. [CrossRef]
5. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218.

[CrossRef]
6. van den Oord, A.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018,

arXiv:1807.03748.
7. Clark, D.G.; Livezey, J.A.; Bouchard, K.E. Unsupervised Discovery of Temporal Structure in Noisy Data

with Dynamical Components Analysis. arXiv 2019, arXiv:1905.09944.
8. Tegmark, M. Optimal Latent Representations: Distilling Mutual Information into Principal Pairs. arXiv 2019,

arXiv:1902.03364.
9. Kurkoski, B.M.; Yagi, H. Quantization of binary-input discrete memoryless channels. IEEE Trans. Inf. Theory

2014, 60, 4544–4552. [CrossRef]
10. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
11. Tan, A.; Meshulam, L.; Bialek, W.; Schwab, D. The renormalization group and information bottleneck:

A unified framework. In Proceedings of the APS Meeting Abstracts, Boston, MA, USA, 4–8 March 2019.
12. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neural Comput. 2017, 29, 1611–1630.

[CrossRef]
13. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,

arXiv:1612.00410.
14. Chalk, M.; Marre, O.; Tkacik, G. Relevant sparse codes with variational information bottleneck. In Proceedings

of the Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016; pp. 1957–1965.
15. Fischer, I. The Conditional Entropy Bottleneck. 2018. Available online: https://openreview.net/forum?id=

rkVOXhAqY7 (accessed on 11 December 2019).
16. Amjad, R.A.; Geiger, B.C. Learning representations for neural network-based classification using the

information bottleneck principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [CrossRef] [PubMed]
17. Kim, I.Y.; de Weck, O.L. Adaptive weighted-sum method for bi-objective optimization: Pareto front

generation. Struct. Multidiscip. Optim. 2005, 29, 149–158. [CrossRef]
18. Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. 2014. Available online: https://www.cs.toronto.

edu/~kriz/cifar.html (accessed on 11 December 2019).
19. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. 2010. Available online: http:

//yann.lecun.com/exdb/mnist (accessed on 11 December 2019).
20. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning

algorithms. arXiv 2017, arXiv:1708.07747.
21. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report TR-2009;

University of Toronto: Toronto, ON, Canada, 2009.

118

Entropy 2020, 22, 7

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Strouse, D.; Schwab, D.J. The information bottleneck and geometric clustering. Neural Comput. 2019, 31, 596–612.
[CrossRef] [PubMed]

24. Wu, T.; Fischer, I.; Chuang, I.; Tegmark, M. Learnability for the information bottleneck. arXiv 2019,
arXiv:1907.07331.

25. Wu, T.; Fischer, I.; Chuang, I.; Tegmark, M. Learnability for the information bottleneck. Entropy 2019, 21, 924.
[CrossRef]

26. Thompson, J.; Garner, A.J.; Mahoney, J.R.; Crutchfield, J.P.; Vedral, V.; Gu, M. Causal asymmetry in a
quantum world. Phys. Rev. X 2018, 8, 031013. [CrossRef]

27. Blahut, R. Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 1972, 18, 460–473.
[CrossRef]

28. Arimoto, S. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans.
Inf. Theory 1972, 18, 14–20. [CrossRef]

29. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach.
Learn. Res. 2005, 6, 165–188.

30. Rezende, D.J.; Viola, F. Taming VAEs. arXiv 2018, arXiv:1810.00597.
31. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach. Learn.

Res. 2018, 19, 1947–1980.
32. Still, S. Thermodynamic cost and benefit of data representations. arXiv 2017, arXiv:1705.00612.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

119

entropy

Article

The Convex Information Bottleneck Lagrangian

Borja Rodríguez Gálvez *,†, Ragnar Thobaben *,† and Mikael Skoglund *,†

Department of Intelligent Systems, Division of Information Science and Engineering (ISE), KTH Royal Institute
of Technology, 11428 Stockholm, Sweden
* Correspondence: borjarg@kth.se (B.R.G.); ragnart@kth.se (R.T.); skoglund@kth.se (M.S.)
† Current address: Malvinas väg 10, 100 44 Stockholm, Sweden

Received: 9 December 2019; Accepted: 8 January 2020; Published: 14 January 2020

Abstract: The information bottleneck (IB) problem tackles the issue of obtaining relevant compressed
representations T of some random variable X for the task of predicting Y. It is defined as a constrained
optimization problem that maximizes the information the representation has about the task, I(T; Y),
while ensuring that a certain level of compression r is achieved (i.e., I(X; T) ≤ r). For practical reasons,
the problem is usually solved by maximizing the IB Lagrangian (i.e., LIB(T; β) = I(T; Y)− βI(X; T))
for many values of β ∈ [0, 1]. Then, the curve of maximal I(T; Y) for a given I(X; T) is drawn and
a representation with the desired predictability and compression is selected. It is known when Y
is a deterministic function of X, the IB curve cannot be explored and another Lagrangian has been
proposed to tackle this problem: the squared IB Lagrangian: Lsq-IB(T; βsq) = I(T; Y)− βsq I(X; T)2.
In this paper, we (i) present a general family of Lagrangians which allow for the exploration of the IB
curve in all scenarios; (ii) provide the exact one-to-one mapping between the Lagrange multiplier
and the desired compression rate r for known IB curve shapes; and (iii) show we can approximately
obtain a specific compression level with the convex IB Lagrangian for both known and unknown IB
curve shapes. This eliminates the burden of solving the optimization problem for many values of the
Lagrange multiplier. That is, we prove that we can solve the original constrained problem with a
single optimization.

Keywords: information bottleneck; representation learning; mutual information; optimization

1. Introduction

Let X ∈ X and Y ∈ Y be two statistically dependent random variables with joint distribution
p(X,Y). The information bottleneck (IB) [1] investigates the problem of extracting the relevant
information from X for the task of predicting Y.

For this purpose, the IB defines a bottleneck variable T ∈ T obeying the Markov chain Y ↔
X ↔ T so that T acts as a representation of X. Tishby et al. [1] define the relevant information as
the information the representation keeps from Y after the compression of X (i.e., I(T; Y)), provided a
certain level of compression (i.e., I(X; T) ≤ r). Therefore, we select the representation which yields the
value of the IB curve that best fits our requirements.

Definition 1 (IB Functional). Let X and Y be statistically dependent variables. Let Δ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then the IB functional is

FIB,max(r) = max
T∈Δ

{I(T; Y)} s.t. I(X; T) ≤ r, ∀r ∈ [0, ∞). (1)

Definition 2 (IB Curve). The IB curve is the set of points defined by the solutions of FIB,max(r) for varying
values of r ∈ [0, ∞).

Entropy 2020, 22, 98; doi:10.3390/e22010098 www.mdpi.com/journal/entropy121

Entropy 2020, 22, 98

Definition 3 (Information Plane). The plane is defined by the axes I(T; Y) and I(X; T).

This method has been successfully applied to solve different problems from a variety of domains.
For example:

• Supervised learning. In supervised learning, we are presented with a set of n pairs of input
features and task outputs instances. We seek an approximation of the conditional probability
distribution between the task outputs Y and the input features X. In classification tasks (i.e.,
when Y is a discrete random variable), the introduction of the variable T learned through the
information bottleneck principle maintained the performance of standard algorithms based on
the cross-entropy loss while providing with more adversarial attacks robustness and invariance
to nuisances [2–4]. Moreover, by the nature of its definition the information bottleneck appears to
be closely related with a trade-off between accuracy on the observable set and generalization to
new, unseen instances (see Section 2).

• Clustering. In clustering, we are presented with a set of n pairs of instances of a random variable
X and their attributes of interest Y. We seek groups of instances (or clusters T) such that the
attributes of interest within the instances of each cluster are similar and the attributes of interest
of the instances of different clusters are dissimilar. Therefore, the information bottleneck can be
employed since it allows us to aim for attribute representative clusters (maximizing the similarity
between instances within the clusters) and enforce a certain compression of the random variable
X (ensuring a certain difference between instances of the different clusters). This has been
successfully implemented, for instance, for gene expression analysis and word, document, stock
pricing, or movie rating clustering [5–7].

• Image segmentation. In image segmentation, we want to partition an image into segments such
that each pixel in a region shares some attributes. If we divide the image into very small regions
X (e.g., each region is a pixel or a set of pixels defined by a grid), we can consider the problem of
segmentation as that of clustering the regions X based on the region attributes Y. Hence, we can
use the information bottleneck so that we seek region clusters T that are maximally informative
about the attributes Y (e.g., the intensity histogram bins) and maintain a level of compression of
the original regions X [8].

• Quantization. In quantization, we consider a random variable X ∈ X such that X is a large or
continuous set. Our objective is to map X into a variable T ∈ T such that T is a smaller, countable
set. If we fix the quantization set size to |T | = �r� and aim at maximizing the information of the
quantized variable with another random variable Y and restrict the mapping to be deterministic,
then the problem is equivalent to the information bottleneck [9,10].

• Source coding. In source coding, we consider a data source S which generates a signal Y ∈ Y ,
which is later perturbed by a channel C : Y → X that outputs X. We seek a coding scheme that
generates a code T ∈ T from the output of the channel X which is as informative as possible
about the original source signal Y and can be transmitted at a small rate I(X; T) ≤ r. Therefore,
this problem is equivalent to the the formulation of the information bottleneck [11].

Furthermore, it has been employed as a tool for development or explanation in other disciplines
like reinforcement learning [12–14], attribution methods [15], natural language processing [16],
linguistics [17] or neuroscience [18]. Moreover, it has connections with other problems such as source
coding with side information (or the Wyner-Ahlswede-Körner (WAK) problem), the rate-distortion
problem or the cost-capacity problem (see Sections 3, 6 and 7 from [19]).

In practice, solving a constrained optimization problem such as the IB functional is challenging.
Thus, in order to avoid the non-linear constraints from the IB functional, the IB Lagrangian is defined.

Definition 4 (IB Lagrangian). Let X and Y be statistically dependent variables. Let Δ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then we define the IB Lagrangian as

122

Entropy 2020, 22, 98

LIB(T; β) = I(T; Y)− βI(X; T). (2)

Here β ∈ [0, 1] is the Lagrange multiplier which controls the trade-off between the information
of Y retained and the compression of X. Note we consider β ∈ [0, 1] because (i) for β ≤ 0 many
uncompressed solutions such as T = X maximize LIB(T; β), and (ii) for β ≥ 1 the IB Lagrangian is
non-positive due to the data processing inequality (DPI) (Theorem 2.8.1 from Cover and Thomas [20])
and trivial solutions like T = const are maximizers with LIB(T; β) = 0 [21].

We know the solutions of the IB Lagrangian optimization (if existent) are solutions of the IB
functional by the Lagrange’s sufficiency theorem (Theorem 5 in Appendix A of Courcoubetis [22]).
Moreover, since the IB functional is concave (Lemma 5 of Gilad-Bachrach et al. [19]) we know they
exist (Theorem 6 in Appendix A of Courcoubetis [22]).

Therefore, the problem is usually solved by maximizing the IB Lagrangian with adaptations of
the Blahut-Arimoto algorithm [1], deterministic annealing approaches [23] or a bottom-up greedy
agglomerative clustering [6] or its improved sequential counterpart [24]. However, when provided
with high-dimensional random variables X such as images, these algorithms do not scale well
and deep learning-based techniques, where the IB Lagrangian is used as the objective function,
prevailed [2,25,26].

Note the IB Lagrangian optimization yields a representation T with a given performance
(I(X; T), I(T; Y)) for a given β. However, there is no one-to-one mapping between β and I(X; T).
Hence, we cannot directly optimize for the desired compression level r but we need to perform several
optimizations for different values of β and select the representation with the desired performance;
e.g., [2]. The Lagrange multiplier selection is important since (i) sometimes even choices of β < 1
lead to trivial representations such that pT|X = pT , and (ii) there exist some discontinuities on the
performance level w.r.t. the values of β [27].

Moreover, recently Kolchinsky et al. [21] showed how in deterministic scenarios (such as many
classification problems where an input xi belongs to a single particular class yi) the IB Lagrangian
could not explore the IB curve. Particularly, they showed that multiple β yielded the same performance
level and that a single value of β could result in different performance levels. To solve this issue,
they introduced the squared IB Lagrangian, Lsq-IB(T; βsq) = I(T; Y)− βsq I(X; T)2, which is able to
explore the IB curve in any scenario by optimizing for different values of βsq. However, even though
they realized a one-to-one mapping between βsq and the compression level existed, they did not find
such mapping. Hence, multiple optimizations of the Lagrangian were still required to find the best
trade-off solution.

The main contributions of this article are:

1. We introduce a general family of Lagrangians (the convex IB Lagrangians) which are able to
explore the IB curve in any scenario for which the squared IB Lagrangian [21] is a particular
case of. More importantly, the analysis made for deriving this family of Lagrangians can serve
as inspiration for obtaining new Lagrangian families that solve other objective functions with
intrinsic trade-offs such as the IB Lagrangian.

2. We show that in deterministic scenarios (and other scenarios where the IB curve shape is known)
one can use the convex IB Lagrangian to obtain a desired level of performance with a single
optimization. That is, there is a one-to-one mapping between the Lagrange multiplier used for the
optimization and the level of compression and informativeness obtained, and we provide the exact
mapping. This eliminates the need for multiple optimizations to select a suitable representation.

3. We introduce a particular case of the convex IB Lagrangians: the shifted exponential IB Lagrangian,
which allows us to approximately obtain a specific compression level in any scenario. This way,
we can approximately solve the initial constrained optimization problem from Equation (1) with
a single optimization.

123

Entropy 2020, 22, 98

Furthermore, we provide some insight for explaining why there are discontinuities in the
performance levels w.r.t. the values of the Lagrange multipliers. In a classification setting, we connect
those discontinuities with the intrinsic clusterization of the representations when optimizing the IB
bottleneck objective.

The structure of the article is the following: In Section 2 we motivate the usage of the IB in
supervised learning settings. Then, in Section 3 we outline the important results used about the IB
curve in deterministic scenarios. Later, in Section 4 we introduce the convex IB Lagrangian and explain
some of its properties like the bijective mapping between Lagrange multipliers and the compression
level and the range of such multipliers. After that, we support our (proved) claims with some empirical
evidence on the MNIST [28] and TREC-6 [29] datasets in Section 5. Finally, in Section 6 we discuss
our claims and empirical results. A PyTorch [30] implementation of the article can be found at
https://github.com/burklight/convex-IB-Lagrangian-PyTorch.

In the Appendices A–F we provide with the proofs of the theoretical results. Then, in
Appendix G we show some alternative families of Lagrangians with similar properties. Later, in
Appendix H we provide with the precise experimental setup details to reproduce the results from
the paper, and further experimentation with different datasets and neural network architectures.
To conclude, in Appendix I we show some guidelines on how to set the convex information bottleneck
Lagrangians for practical problems.

2. The IB in Supervised Learning

In this section, we will first give an overview of supervised learning in order to later motivate the
usage of the information bottleneck in this setting.

2.1. Supervised Learning Overview

In supervised learning we are given a dataset Dn = {(xi, yi)}n
i=1 of n pairs of input features and

task outputs. In this case, X and Y are the random variables of the input features and the task outputs.
We assume xi and yi are sampled i.i.d. from the true distribution p(X,Y) = pY|X pX. The usual aim
of supervised learning is to use the dataset Dn to learn a particular conditional distribution qŶ|X of
the task outputs given the input features, parametrized by θ, which is a good approximation of pY|X .
We use Ŷ and ŷ to indicate the predicted task output random variable and its outcome. We call a
supervised learning task regression when Y is continuous-valued and classification when it is discrete.

Usually, supervised learning methods employ intermediate representations of the inputs before
making predictions about the outputs; e.g., hidden layers in neural networks (Chapter 5 from
Bishop [31]) or transformations in a feature space through the kernel trick in kernel machines like
SVMs or RVMs (Sections 7.1 and 7.2 from Bishop [31]). Let T be a possibly stochastic function of
the input features X with a parametrized conditional distribution qT|X, then, T obeys the Markov
condition Y ↔ X ↔ T. The mapping from the representation to the predicted task outputs is defined
by the parametrized conditional distribution qŶ|T . Therefore, in representation-based machine learning

methods, the full Markov Chain is Y ↔ X ↔ T ↔ Ŷ. Hence, the overall estimation of the conditional
probability pY|X is given by the marginalization of the representations; i.e., qŶ|X = Et∼qT|X

[
qŶ|T=t

]
(The notation qŶ|T=t represents the probability distribution qŶ|T(·|t; θ). For the rest of the text, we
will use the same notation to represent conditional probability distributions where the conditioning
argument is given).

In order to achieve the goal of having a good estimation of the conditional probability distribution
pY|X, we usually define an instantaneous cost function j : X × Y → R. The value of this function
j(x, y; θ) serves as a heuristic to measure the loss of our algorithm, parametrized by θ, obtains when
trying to predict the realization of the task output y with the input realization x.

Clearly, we can be interested in minimizing the expectation of the instantaneous cost function
over all the possible input features and task outputs, which we call the cost function. However, since
we only have a finite dataset Dn we have instead to minimize the empirical cost function.

124

Entropy 2020, 22, 98

Definition 5 (Cost Function and Empirical Cost Function). Let X and Y be the input features and task
output random variables and x ∈ X and y ∈ Y their realizations. Let also j be the instantaneous cost function,
θ the parametrization of our learning algorithm, and Dn = {(xi, yi)}n

i=1 the given dataset. Then, we define:

1. The cost function: J(p(X,Y); θ) = E(x,y)∼p(X,Y)
[j(x, y; θ)] (3)

2. The emprical cost function: Ĵ(Dn; θ) =
1
n

n

∑
i=1

j(xi, yi; θ) (4)

The discrepancy between the normal and empirical cost functions is called the generalization gap
or generalization error (see Section 1 of Xu and Raginsky [32], for instance) and intuitively, the smaller
this gap is, the better our model generalizes; i.e., the better it will perform to new, unseen samples in
terms of our cost function.

Definition 6 (Generalization Gap). Let J(p(X,Y); θ) and Ĵ(Dn; θ) be the cost and the empirical cost functions
as defined in Definition 5. Then, the generalization gap is defined as

gen(Dn; θ) = J(p(X,Y); θ)− Ĵ(Dn; θ), (5)

and it represents the error incurred when the selected distribution is the one parametrized by θ when the rule
Ĵ(Dn; θ) is used instead of J(p(X,Y); θ) as the function to minimize.

Ideally, we would want to minimize the cost function. Hence, we usually try to minimize the
empirical cost function and the generalization gap simultaneously. The modifications to our learning
algorithm which intend to reduce the generalization gap but not hurt the performance on the empirical
cost function are known as regularization.

2.2. Why Do We Use the IB?

Definition 7 (Representation cross-entropy cost function). Let X and Y be two statistically dependent
variables with joint distribution p(X,Y) = pY|X pX. Let also T be a random variable obeying the Markov condition
Y ↔ X ↔ T and qT|X and qŶ|T be the encoding and decoding distributions of our model, parametrized by θ.
Finally, let C(pZ||qZ) = −Ez∼pZ [log(qZ(z))] be the cross entropy between two probability distributions pZ
and qZ. Then, the cross-entropy cost function is

JCE(p(X,Y); θ) = E(x,t)∼qT|X pX

[
C(qY|T=t||qŶ|T=t)

]
= E(x,y)∼p(X,Y)

[jCE(x, y; θ)] , (6)

where jCE(x, y; θ) = −Et∼qT|X=x [qŶ|T=t(y|t; θ)] is the instantaneous representation cross-entropy cost
function and qY|T = Ex∼pX [pY|X=xqT|X=x/qT] and qT = Ex∼pX [qT|X=x].

The cross-entropy is a widely used cost function in classification tasks (e.g., Teahan [8], Krizhevsky
et al. [33], Shore and Gray [34]) which has many interesting properties [35]. Moreover, it is known that
minimizing the JCE(p(X,Y); θ) maximizes the mutual information I(T; Y). That is:

Proposition 1 (Minimizing the Cross Entropy Maximizes the Mutual Information).

Let JCE(p(X,Y); θ) be the representation cross-entropy cost function as defined in Definition 7. Let also I(T; Y)
be the mutual information between random variables T and Y in the setting from Definition 7. Then, minimizing
JCE(p(X,Y); θ) implies maximizing I(T; Y).

The proof of this proposition can be found in Appendix A.

125

Entropy 2020, 22, 98

Definition 8 (Nuisance). A nuisance is any random variable that affects the observed data X but is not
informative to the task we are trying to solve. That is, Ξ is a nuisance for Y if Y ⊥ Ξ or I(Ξ, Y) = 0.

Similarly, we know that minimizing I(X; T) minimizes the generalization gap for restricted
classes when using the cross-entropy cost function (Theorem 1 of Vera et al. [36]), and when
using I(T; Y) directly as an objective to maximize (Theorem 4 of Shamir et al. [37]). Furthermore,
Achille and Soatto [38] in Proposition 3.1 upper bound the information of the input representations,
T, with nuisances that affect the observed data, Ξ, with I(X; T). Therefore, minimizing I(X; T) helps
generalization by not keeping useless information of Ξ in our representations.

Thus, jointly maximizing I(T; Y) and minimizing I(X; T) is a good choice both in terms of
performance in the available dataset and in new, unseen data, which motivates studies on the IB.

3. The Information Bottleneck in Deterministic Scenarios

Kolchinsky et al. [21] showed that when Y is a deterministic function of X (i.e., Y = f (X)), the IB
curve is piecewise linear. More precisely, it is shaped as stated in Proposition 2.

Proposition 2 (The IB Curve is Piecewise Linear in Deterministic Scenarios). Let X be a random
variable and Y = f (X) be a deterministic function of X. Let also T be the bottleneck variable that solves the IB
functional. Then the IB curve in the information plane is defined by the following equation:{

I(T; Y) = I(X; T) if I(X; T) ∈ [0, I(X; Y))
I(T; Y) = I(X; Y) if I(X; T) ≥ I(X; Y)

(7)

Furthermore, they showed that the IB curve could not be explored by optimizing the IB Lagrangian
for multiple β because the curve was not strictly concave. That is, there was not a one-to-one
relationship between β and the performance level.

Theorem 1 (In Deterministic Scenarios, the IB Curve cannot be Explored Using the IB Lagrangian).

Let X be a random variable and Y = f (X) be a deterministic function of X. Let also Δ be the set of random
variables T obeying the Markov condition Y ↔ X ↔ T. Then:

1. Any solution T ∈ Δ such that I(X; T) ∈ [0, I(X; Y)) and I(T; Y) = I(X; T) solves
arg maxT∈Δ{LIB(T; β)} for β = 1. That is, many different compression and performance levels can
be achieved for β = 1.

2. Any solution T ∈ Δ such that I(X; T) > I(X; Y) and I(T; Y) = I(X; Y) solves arg supT∈Δ{LIB(T; β)}
for β = 0. That is, many compression levels can be achieved with the same performance for β = 0.

Note we use the supremum in this case since for β = 0 we have that I(X; T) could be infinite and then the
search set from Equation (1); i.e., {T : Y ↔ X ↔ T} ∩ {T : I(X; T) < ∞} is not compact anymore.

3. Any solution T ∈ Δ such that I(X; T) = I(T; Y) = I(X; Y) solves arg maxT∈Δ{LIB(T; β)} for all
β ∈ (0, 1). That is, many different β achieve the same compression and performance level.

An alternative proof for this theorem can be found in Appendix B.

4. The Convex IB Lagrangian

4.1. Exploring the IB Curve

Clearly, a situation like the one depicted in Theorem 1 is not desirable, since we cannot aim
for different levels of compression or performance. For this reason, we generalize the effort from
Kolchinsky et al. [21] and look for families of Lagrangians which are able to explore the IB curve.
Inspired by the squared IB Lagrangian, Lsq-IB(T; βsq) = I(T; Y) − βsq I(X; T)2, we look at the

126

Entropy 2020, 22, 98

conditions a function of I(X; T) requires in order to be able to explore the IB curve. In this way,
we realize that any monotonically increasing and strictly convex function will be able to do so, and we
call the family of Lagrangians with these characteristics the convex IB Lagrangians, due to the nature
of the introduced function.

Theorem 2 (Convex IB Lagrangians). Let Δ be the set of r.v. T obeying the Markov condition Y ↔ X ↔ T.
Then, if u is a monotonically increasing and strictly convex function, the IB curve can always be recovered by
the solutions of arg maxT∈Δ{LIB,u(T; βu)}, with

LIB,u(T; βu) = I(T; Y)− βuu(I(X; T)). (8)

That is, for each point (I(X; T), I(T; Y)) s.t. dI(T; Y)/dI(X; T) > 0 there is a unique βu for which
maximizing LIB,u(T; βu) achieves this solution. Furthermore, βu is strictly decreasing w.r.t. I(X; T). We call
LIB,u(T; βu) the convex IB Lagrangian.

The proof of this theorem can be found in Appendix C. Furthermore, by exploiting the IB curve
duality (Lemma 10 of Gilad-Bachrach et al. [19]) we were able to derive other families of Lagrangians
which allow for the exploration of the IB curve (Appendix G).

Remark 1. Clearly, we can see how if u is the identity function (i.e., u(I(X; T)) = I(X; T)) then we end up
with the normal IB Lagrangian. However, since the identity function is not strictly convex, it cannot ensure the
exploration of the IB curve.

During the proof of this theorem we observed a relationship between the Lagrange multipliers
and the solutions obtained of the normal IB Lagrangian LIB(T; β) and the convex IB Lagrangian
LIB,u(T; βu). This relationship is formalized in the following corollary.

Corollary 1 (IB Lagrangian and IB convex Lagrangian connection). Let LIB(T; β) be the IB Lagrangian
and LIB,u(T; βu) the convex IB Lagrangian. Then, maximizing LIB(T; β) and LIB,u(T; βu) can obtain the same
point in the IB curve if βu = β/u′(I(X; T)), where u′ is the derivative of u.

This corollary allows us to better understand why the addition of u allows for the exploration
of the IB curve in deterministic scenarios. If we note that for β = 1 we can obtain any point in
the increasing region of the curve, then we clearly see how evaluating u′ for different values of
I(X; T) define different values of βu that obtain such points. Moreover, it lets us see how if for β = 0
maximizing the IB Lagrangian could obtain any point (I(X; Y); I(X; T)) with I(X; T) > I(X; Y), then
the same happens for the IB convex Lagrangian.

4.2. Aiming for a Specific Compression Level

Let Bu denote the domain of Lagrange multipliers βu for which we can find solutions in the IB
curve with the convex IB Lagrangian. Then, the convex IB Lagrangians do not only allow us to explore
the IB curve with different βu. They also allow us to identify the specific βu that obtains a given point
(I(X; T), I(T; Y)), provided we know the IB curve in the information plane. Conversely, the convex IB
Lagrangian allows finding the specific point (I(X; T), I(T; Y)) that is obtained by a given βu.

Proposition 3 (Bijective Mapping between IB Curve Point and Convex IB Lagrange multiplier).

Let the IB curve in the information plane be known; i.e., I(T; Y) = fIB(I(X; T)) is known. Then there is a
bijective mapping from Lagrange multipliers βu ∈ Bu \ {0} from the convex IB Lagrangian to points in the IB
curve (I(X; T), fIB(I(X; T)). Furthermore, these mappings are:

βu =
d fIB(I(X; T))

dI(X; T)
1

u′(I(X; T))
and I(X; T) = (u′)−1

(
d fIB(I(X; T))

dI(X; T)
1

βu

)
, (9)

127

Entropy 2020, 22, 98

where u′ is the derivative of u and (u′)−1 is the inverse of u′.

This is especially interesting since in deterministic scenarios we know the shape of the IB curve
(Theorem 2) and since the convex IB Lagrangians allow for the exploration of the IB curve (Theorem 2).
A proof for Proposition 3 can be found in Appendix D.

Remark 2. Note that the definition from Tishby et al. [1] β = d fIB(I(X; T))/dI(X; T) only allows for a
bijection between β and I(X; T) if fIB is a strictly convex, and known function, and we have seen this is not the
case in deterministic scenarios (Theorem 1).

A direct result derived from this proposition is that we know the domain of Lagrange multipliers,
Bu, which allows for the exploration of the IB curve if the shape of the IB curve is known. Furthermore,
if the shape is not known we can at least bound that range.

Corollary 2 (Domain of Convex IB Lagrange Multiplier with Known IB Curve Shape). Let the IB
curve in the information plane be I(T; Y) = fIB(I(X; T)) and let Imax = I(X; Y). Let also I(X; T) = rmax

be the minimum mutual information s.t. fIB(rmax) = Imax; i.e., rmax = arg infr{ fIB(r)} s.t. fIB(r) = Imax.
Then, the range of Lagrange multipliers that allow the exploration of the IB curve with the convex IB Lagrangian
is Bu = [βu,min, βu,max], with

βu,min = lim
r→r−max

{
f ′IB(r)
u′(r)

}
and βu,max = lim

r→0+

{
f ′IB(r)
u′(r)

}
, (10)

where f ′IB(r) and u′(r) are the derivatives of fIB(I(X; T)) and u(I(X; T)) w.r.t. I(X; T) evaluated at r
respectively. Also, note that there are some scenarios where rmax → ∞ (see, e.g., [39]), in these scenarios
βu,min = limr→∞ { f ′IB(r)/u′(r)} ≥ 0.

Corollary 3 (Domain of Convex IB Lagrange Multiplier Bound). The range of the Lagrange multipliers
that allow the exploration of the IB curve is contained by [0, βu,top] which is also contained by [0, β+

u,top], where

βu,top =
(infΩx⊂X {β0(Ωx)})−1

limr→0+ {u′(r)} , and β+
u,top =

1
limr→0+ {u′(r)} , (11)

where u′(r) is the derivative of u(I(X; T)) w.r.t. I(X; T) evaluated at r, X is the set of possible realizations of
X and β0 and Ωx are defined as in [27] (Note in [27] they consider the dual problem (see Appendix G), so when
they refer to β−1 it translates to β in this article). That is, Bu ⊆ [0, βu,top] ⊆ [0, β+

u,top].

Corollaries 2 and 3 allow us to reduce the range search for β when we want to explore the IB curve.
Practically, infΩx⊂X {β0(Ωx)}might be difficult to calculate so Wu et al. [27] derived an algorithm to
approximate it. However, we still recommend setting the numerator to 1 for simplicity. The proofs for
both corollaries are found in Appendices E and F.

5. Experimental Support

In order to showcase our claims we use the MNIST [28] and the TREC-6 [29] datasets. We
modify the nonlinear-IB method [26], which is a neural network that minimizes the cross-entropy
while also minimizing a differentiable kernel-based estimate of I(X; T) [40]. Then, we used this
technique to maximize a lower bound on the convex IB Lagrangians by applying the functions u to the
I(X; T) estimate.

The network structure is the following: first, a stochastic encoder T = fenc(X; θ) + W with
pW = N (0, Id) such that T ∈ Rd, where d is the dimension of the bottleneck variable (Note that
the encoder needs to be stochastic to (i) ensure a finite and well-defined mutual information [21,41]
and (ii) make gradient-based optimization methods over the IB Lagrangian useful [41]). Second, a

128

Entropy 2020, 22, 98

deterministic decoder qŶ|T = fdec(T; θ). For the MNIST dataset both the encoder and the decoder are
fully-connected networks, for a fair comparison with [26]. For the TREC-6 dataset, the encoder is a
set of convolutions of word embeddings followed by a fully-connected network and the decoder is
also a fully-connected network. For further details about the experiment setup, additional results for
different values of α and η and supplementary experimental results for different datasets and network
architectures, please refer to Appendix H.

In Figure 1 we show our results for two particularizations of the convex IB Lagrangians:

1. the power IB Lagrangians: LIB,pow(T; βpow, α) = I(T; Y)− βpow I(X; T)(1+α), α > 0 (Note when
α = 1 we have the squared IB functional from Kolchinsky et al. [21]).

2. the exponential IB Lagrangians: LIB,exp(T; βexp, η) = I(T; Y)− βexp exp(η I(X; T)), η > 0.

Figure 1. The top row shows the results for the power information bottleneck (IB) Lagrangian with
α = 1, and the bottom row for the exponential IB Lagrangian with η = 1, both in the MNIST dataset.
In each row, from left to right it is shown (i) the information plane, where the region of possible
solutions of the IB problem is shadowed in light orange and the information-theoretic limits are the
dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as a function of βu.
In all plots, the red crosses joined by a dotted line represent the values computed with the training set,
the blue dots the values computed with the validation set and the green stars the theoretical values
computed as dictated by Proposition 3. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10)
in a dashed, orange line. All values are shown in bits.

We can clearly see how both Lagrangians are able to explore the IB curve (first column from
Figure 1) and how the theoretical performance trend of the Lagrangians matches the experimental
results (second and third columns from Figure 1). There are small mismatches between the
theoretical and experimental performance. This is because using the nonlinear-IB, as stated
by Kolchinsky et al. [21], does not guarantee that we find optimal representations due to factors
like (i) inaccurate estimation of I(X; T), (ii) restrictions on the structure of T, (iii) use of an estimation
of the decoder instead of the real one and (iv) the typical non-convex optimization issues that arise
with gradient-based methods. The main difference comes from the discontinuities in performance for
increasing β, which cause is still unknown (cf. Wu et al. [27]). It has been observed, however,
that the bottleneck variable performs an intrinsic clusterization in classification tasks (see, for
instance, [21,26,42] or Figure 2b). We observed how this clusterization matches with the quantized
performance levels observed (e.g., compare Figure 2a with the top center graph in Figure 1); with

129

Entropy 2020, 22, 98

maximum performance when the number of clusters is equal to the cardinality of Y and reducing
performance with a reduction of the number of clusters, which is in line with the concurrent work
from Wu and Fischer [43]. We do not have a mathematical proof for the exact relationship between
these two phenomena; however, we agree with Wu et al. [27] that it is an interesting matter and hope
this observation serves as motivation to derive new theory.

(a) Number of clusters for different βpow. (b) Example of clusters for different βpow.
Figure 2. Depiction of the clusterization behavior of the bottleneck variable for the power IB Lagrangian
in the MNIST dataset with α = 1. The clusters were obtained using the DBSCAN algorithm [44,45].

In practice, there are different criteria for choosing the function u. For instance, the exponential IB
Lagrangian could be more desirable than the power IB Lagrangian when we want to draw the IB curve
since it has a finite range of βu. This is Bu = [(η exp(η Imax))−1, η−1] for the exponential IB Lagrangian
vs. Bu = [((1 + α)Iα

max)
−1, ∞) for the power IB Lagrangian. Furthermore, there is a trade-off between

(i) how much the selected u function resembles a linear function in our region of interest; e.g., with
α or η close to zero, since it will suffer from similar problems as the original IB Lagrangian; and (ii)
how fast it grows in our region of interest; e.g., higher values of α or η, since it will suffer from value
convergence; i.e., optimizing for separate values of βu will achieve similar levels of performance
(Figure 3). Please, refer to Appendix I for a more thorough explanation of these two phenomena.

Figure 3. Example of value convergence with the exponential IB Lagrangian with η = 3. We show
the intersection of the isolines of LIB,exp(T; βexp) for different βexp ∈ Bexp ≈ [1.56× 10−5, 3−1] using
Corollary 2.

Particularly, the value convergence phenomenon can be exploited in order to approximately
obtain a particular level of compression r∗, both for known and unkown IB curves (see Appendix I
or the example in Figure 4). For known IB curves, we also know the achieved predictability I(T; Y)
since it is the same as the level of compression I(X; T). For this exploitation, we can employ the shifted
version of the exponential IB Lagrangian (which is also a particular case of the convex IB Lagrangian):

130

Entropy 2020, 22, 98

• the shifted exponential IB Lagrangians:

LIB,sh-exp(T; βsh-exp, η, r∗) = I(T; Y)− βsh-exp exp(η(I(X; T)− r∗)) , η > 0 , r∗ ∈ [0, ∞).

Figure 4. Example of value convergence exploitation with the shifted exponential Lagrangian with
η = 200. In the top row, for the MNIST dataset aiming for a compression level r∗ = 2 and in the
bottom row, for the TREC-6 dataset aiming for a compression level of r∗ = 16. In each row, from left to
right it is shown (i) the information plane, where the region of possible solutions of the IB problem is
shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y) as
a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses joined
by a dotted line represent the values computed with the training set, the blue dots the values computed
with the validation set and the green stars the theoretical values computed as dictated by Proposition 3.
Moreover, in all plots, it is indicated H(Y) in a dashed, orange line. All values are shown in bits.

For this Lagrangian, the optimization procedure converges to representations with approximately
the desired compression level r∗ if the hyperparameter η is set to a large value.

In Figure 4 we show the results of aiming for a compression level of r∗ = 2 bits in the MNIST
dataset and of r∗ = 16 bits in the TREC-6 dataset, both with η = 200. We can see how for different
values of βsh-exp we can obtain the same desired compression level, which makes this method stable to
variations in the Lagrange multiplier selection.

To sum up, in order to achieve a desired level of performance with the convex IB Lagrangian as
an objective one should:

1. In a deterministic or close to a deterministic setting (see ε-deterministic definition in Kolchinsky
et al. [21]): Use the adequate βu for that performance using Proposition 3. Then if the performance
is lower than desired, i.e., we are placed in the wrong performance plateau, gradually reduce
the value of βu until reaching the previous performance plateau. Alternatively, exploit the value
convergence phenomenon with, for instance, the shifted exponential IB Lagrangian.

2. In a stochastic setting: exploit the value convergence phenomenon with, for instance, the shifted
exponential IB Lagrangian. Alternatively, draw the IB curve with multiple values of βu on the
range defined by Corollary 3 and select the representations that best fit their interests.

131

Entropy 2020, 22, 98

6. Conclusions

The information bottleneck is a widely used and studied technique. However, it is known that
the IB Lagrangian cannot be used to achieve varying levels of performance in deterministic scenarios.
Moreover, in order to achieve a particular level of performance, multiple optimizations with different
Lagrange multipliers must be done to draw the IB curve and select the best traded-off representation.

In this article we introduced a general family of Lagrangians which allow to (i) achieve varying
levels of performance in any scenario, and (ii) pinpoint a specific Lagrange multiplier βu to optimize
for a specific performance level in known IB curve scenarios; e.g., deterministic. Furthermore, we
showed the βu domain when the IB curve is known and a βu domain bound for exploring the IB curve
when it is unknown. This way we can reduce and/or avoid multiple optimizations and, hence, reduce
the computational effort for finding well traded-off representations. Moreover, (iii) when the IB curve
is not known, we saw how we can exploit the value convergence issue of the convex IB Lagrangian
to approximately obtain a specific compression level for both known and unknown IB curve shapes.
Finally, (iv) we provided some insight into the discontinuities on the performance levels w.r.t. the
Lagrange multipliers by connecting those with the intrinsic clusterization of the bottleneck variable.

Author Contributions: Conceptualization, B.R.G. and R.T.; formal analysis, B.R.G.; funding acquisition, M.S.;
methodology, B.R.G. and R.T.; resources, M.S.; software, B.R.G.; supervision, R.T. and M.S.; visualization, B.R.G.;
writing—original draft, B.R.G.; writing—review and editing, B.R.G., R.T. and M.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the Swedish Research Council.

Acknowledgments: We want to thank the anonymous reviewers for their insighful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 1

Proof. We can easily prove this statement by finding I(T; Y) is lower bounded by the γJCE(p(X,Y); θ) +

C where γ < 0 and C does not depend on T. This way maximizing such lower bound would be
equivalent to minimizing JCE(p(X,Y); θ) and, moreover, it would imply maximizing I(T; Y).

We can find such an expression as follows:

I(T; Y) = E(y,t)∼qY|T qT

[
log

(
qY|T=t(y|t; θ)

pY(y)

)]
= H(Y) +E(y,t)∼qY|T qT

[
log(qY|T=t(y|t; θ))

]
(A1)

= H(Y) +Et∼qT

[
DKL

(
qY|T=t||qŶ|T=t

)]
+E(y,t)∼qY|T qT

[
log(qŶ|T(y|t; θ))

]
(A2)

≥ H(Y) +E(x,y,t)∼qY|T qT|X pX

[
log(qŶ|T=t(y|t, θ))

]
= H(Y)−E(x,t)∼qT|X pX

[
C(qY|T=t||qŶ|T=t)

]
(A3)

= H(Y)− JCE(p(X,Y); θ). (A4)

Here, in Equation (A1) we just used the definition of the mutual information between
two random variables, and then we decoupled it using the definition of the entropy of a
variable (Note we used H(·) which is usually employed for discrete variables. However,
in this setting H(·) could also refer to the differential entropy h(·) of a continuous
random variable since we employed the general definition using the expectation). Then, in
Equation (A2) we only multiplied and divided by qŶ|T inside the logarithm and employed the definition
of the Kullback–Leibler divergence. Finally, in Equation (A3) we first used the fact the Kullback–Leibler
divergence is always positive (Theorem 2.6.3 from Cover and Thomas [20]) and then the properties of
the Markov chain T ↔ X ↔ Y.

Therefore, since H(Y) does not depend on T and we have a negative multiplicative term on
JCE(p(X,Y); θ) the proposition is proved.

132

Entropy 2020, 22, 98

Appendix B. Alternative Proof of Theorem 1

Proof. We will proof all the enumerated statements sequentially, since the third one requires from the
two first ones to be proved.

1. Proposition 2 states that the IB curve in the information plane follows the equation I(T; Y) =

I(X; T) if I(X; T) ∈ [0, I(X; Y)). Then, since β = dI(T; Y)/dI(X; T) [1], we know β = 1 in all
these points. Therefore, for β = 1 all points (I(X; T), I(X; T)) such that I(X; T) ∈ [0, I(X; Y)) are
solutions of optimizing the IB Lagrangian.

2. Similarly, Proposition 2 states that the IB curve follows the equation I(T; Y) = I(X; Y) if I(X; T) ≥
I(X; Y). Then, since β = dI(T; Y)/dI(X; T) [1], we know β = 0 in all points such that I(X; T) >
I(X; Y). We cannot ensure it at I(X; T) = I(X; Y) since β = 1 for I(X; T) = limε→0+{I(X; Y)− ε}.

3. Finally, in order to prove the last statement we will first prove that if β ∈ (0, 1) achieves a solution,
it is (I(X; Y), I(X; Y)). Then, we will prove that if the solution (I(X; Y), I(X; Y)) exists, this can
be yield by any β ∈ (0, 1). Hence, the solution (I(X; Y), I(X; Y)) is achieved ∀β ∈ (0, 1) and it is
the only solution achievable.

(a) Since the IB curve is concave we know β is non-increasing in I(X; T) ∈ R+. We also know
β = 1 at the points in the IB curve where I(X; T) ≤ limε→0+{I(X; Y) − ε} and β = 1 at
the points in the IB curve where I(X; T) ≥ limε→0+{I(X; Y) + ε}. Hence, if we achieve a
solution with β ∈ (0, 1), this solution is I(X; T) = I(T; Y) = I(X; Y).

(b) We can upper bound the IB Lagrangian by

LIB(T; β) = I(T; Y)− βI(X; T) ≤ (1− β)I(T; Y) ≤ (1− β)I(X; Y), (A5)

where the first and second inequalities use the DPI (Theorem 2.8.1 from
Cover and Thomas [20]).

Then, we can consider the point of the IB curve (I(X; Y), I(X; Y)). Since the function is concave
a tangent line to (I(X; Y), I(X; Y)) exists such that all other points in the curve lie below this
line. Let β be the slope of this curve (which we know it is from Tishby et al. [1]). Then,

I(X; Y)− βI(X; Y) = (1− β)I(X; Y) ≥ FIB,max(r)− βr, ∀r ∈ [0, ∞). (A6)

As we see, by the upper bound on the IB Lagrangian from Equation (A5), if the point
(I(X; Y), I(X; Y)) exists, any β can be the slope of the tangent line to (I(X; Y), I(X; Y)) that
ensures concavity.

Appendix C. Proof of Theorem 2

Proof. We start the proof by remembering the optimization problem at hand (Definition 1):

FIB,max(r) = max
T∈Δ

{I(T; Y)} s.t. I(X; T) ≤ r (A7)

We can modify the optimization problem by

max
T∈Δ

{I(T; Y)} s.t. u(I(X; T)) ≤ u(r) (A8)

iff u is a monotonically non-decreasing function since otherwise u(I(X; T)) ≤ u(r) would not hold
necessarily. Now, let us assume ∃T∗ ∈ Δ and β∗u s.t. T∗ maximizes LIB,u(T; β∗u) over all T ∈ Δ, and
I(X; T∗) ≤ r. Then, we can operate as follows:

133

Entropy 2020, 22, 98

max
T∈Δ

u(I(X;T))≤u(r)

{I(T; Y)} = max
T∈Δ

u(I(X;T))≤u(r)

{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A9)

≤ max
T∈Δ

{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A10)

= I(T∗; Y)− β∗u(u(I(X; T∗)− u(r) + ξ) = I(T∗; Y). (A11)

Here, the equality from Equation (A9) comes from the fact that since I(X; T) ≤ r, then ∃ξ ≥ 0 s.t.
u(I(X; T))− u(r) + ξ = 0. Then, the inequality from Equation (A10) holds since we have expanded
the optimization search space. Finally, in Equation (A11) we use that T∗ maximizes LIB,u(T; β∗u) and
that I(X; T∗) ≤ r.

Now, we can exploit that u(r) and ξ do not depend on T and drop them in the maximization in
Equation (A10). We can then realize we are maximizing over LIB,u(T; β∗u); i.e.,

max
T∈Δ

u(I(X;T))≤u(r)

{I(T; Y)} ≤ max
T∈Δ

{I(T; Y)− β∗u(u(I(X; T))− u(r) + ξ)} (A12)

= max
T∈Δ

{I(T; Y)− β∗u(I(X; T))} = max
T∈Δ

{LIB,u(T; β∗u)}. (A13)

Therefore, since I(T∗; Y) satisfies both the maximization with T∗ ∈ Δ and the constraint
I(X; T∗) ≤ r, maximizing LIB,u(T; β∗u) obtains FIB,max(r).

Now, we know if such β∗u exists, then the solution of the Lagrangian will be a solution for
FIB,max(r). Then, if we consider Theorem 6 from the Appendix of Courcoubetis [22] and consider the
maximization problem instead of the minimization problem, we know if both I(T; Y) and −u(I(X; T))
are concave functions, then a set of Lagrange multipliers S∗u exists with these conditions. We can make
this consideration because f is concave if − f is convex and max{ f } = min{− f }. We know I(T; Y) is
a concave function of T for T ∈ Δ (Lemma 5 of Gilad-Bachrach et al. [19]) and I(X; T) is convex w.r.t.
T given pX is fixed (Theorem 2.7.4 of Cover and Thomas [20]). Thus, if we want −u(I(X; T)) to be
concave we need u to be a convex function.

Finally, we will look at the conditions of u so that for every point (I(X; T), I(T; Y)) in the IB curve,
there exists a unique β∗u s.t. LIB,u(T; β∗u) is maximized. That is, the conditions of u s.t. |S∗u| = 1. For this
purpose we will look at the solutions of the Lagrangian optimization:

dLIB,u(T; βu)

dT
=

d(I(T; Y)− βuu(I(X; T)))
dT

=
dI(T; Y)

dT
− βu

du(I(X; T))
dI(X; T)

dI(X; T)
dT

= 0 (A14)

Now, if we integrate both sides of Equation (A14) over all T ∈ Δ we obtain

βu =
dI(T; Y)
dI(X; T)

(
du(I(X; T))

dI(X; T)

)−1

=
β

u′(I(X; T))
, (A15)

where β is the Lagrange multiplier from the IB Lagrangian [1] and u′(I(X; T)) is du(I(X;T))
dI(X;T) . Also, if we

want to avoid indeterminations of βu we need u′(I(X; T)) not to be 0. Since we already imposed u to
be monotonically non-decreasing, we can solve this issue by strengthening this condition. That is, we
will require u to be monotonically increasing.

We would like βu to be continuous, this way there would be a unique βu for each value of I(X; T).
We know β is a non-increasing function of I(X; T) (Lemma 6 of Gilad-Bachrach et al. [19]). Hence, if
we want βu to be a strictly decreasing function of I(X; T), we will require u′ to be a strictly increasing
function of I(X; T). Therefore, we will require u to be a strictly convex function.

134

Entropy 2020, 22, 98

Thus, if u is a strictly convex and monotonically increasing function, for each point
(I(X; T), I(T; Y)) in the IB curve s.t. dI(T; Y)/dI(X; T) > 0 there is a unique βu for which maximizing
LIB,u(T; βu) achieves this solution.

Appendix D. Proof of Proposition 3

Proof. In Theorem 2 we showed how each point of the IB curve (I(X; T), I(T; Y)) can be found with a
unique βu maximizing LIB,u(T; βu). Therefore, since we also proved LIB,u(T; βu) is strictly concave
w.r.t. T we can find the values of βu that maximize the Lagrangian for fixed I(X; T).

First, we look at the solutions of the Lagrangian maximization:

dLIB,u(T;βu)
dT = d(fIB(I(X;T))−βuu(I(X;T)))

dT = d fIB(I(X;T))
dT − βu

du(I(X;T))
dI(X;T)

dI(X;T)
dT = 0. (A16)

Then as before we can integrate at both sides for all T ∈ Δ and solve for βu:

βu =
d fIB(I(X; T))

dI(X; T)
1

u′(I(X; T))
. (A17)

Moreover, since u is a strictly convex function it’s derivative u′ is strictly increasing. Hence, u′ is
an invertible function (since a strictly increasing function is bijective and a function is invertible iff it is
bijective by definition). Now, if we consider βu > 0 to be known and I(X; T) to be the unknown we
can solve for I(X; T) and get:

I(X; T) = (u′)−1
(

d fIB(I(X; T))
dI(X; T)

1
βu

)
. (A18)

Note we require βu not to be 0 so the mapping is defined.

Appendix E. Proof of Corollary 2

Proof. We will start the proof by proving the following useful Lemma.

Lemma A1. Let LIB,u(T; βu) be a convex IB Lagrangian, then supT∈Δ{LIB,u(T; 0)} = I(X; Y).

Proof. Since LIB,u(T; 0) = I(T; Y), maximizing this Lagrangian is directly maximizing I(T; Y).
We know I(T; Y) is a concave function of T for T ∈ Δ (Theorem 2.7.4 from Cover and Thomas
[20]); hence it has a supremum. We also know I(T; Y) ≤ I(X; Y). Moreover, we know I(X; Y) can be
achieved if, for example, Y is a deterministic function of T (since then the Markov Chain X ↔ T ↔ Y
is formed). Thus, supT∈Δ{LIB,u(T; 0)} = I(X; Y).

For βu = 0 we know maximizing LIB,u(T; 0) we can obtain the point in the IB curve
(rmax, Imax) (Lemma A1). Moreover, we know that for every point (I(X; T), fIB(I(X; T))) such that
d fIB(I(X; T))/dI(X; T) > 0, ∃!βu s.t. max{LIB,u(T; βu)} achieves that point (Theorem 2). Thus,
∃!βu,min s.t. limr→r−max

(r, fIB(r)) is achieved. From Proposition 3 we know this βu,min is given by

βu,min = lim
r→r−max

{
f ′IB(r)
u′(r)

}
. (A19)

Since we know fIB(I(X; T)) is a concave non-decreasing function in (0, rmax) (Lemma 5 of
Gilad-Bachrach et al. [19]) we know it is continuous in this interval. In addition we know βu is
strictly decreasing w.r.t. I(X; T) (Theorem 2). Furthermore, by definition of rmax and knowing
I(T; Y) ≤ I(X; Y) we know f ′IB(r) = 0, ∀r > rmax. Therefore, we cannot ensure the exploration of the
IB curve for β′u s.t. 0 < β′u < βu,min.

Then, since u is a strictly increasing function in (0, rmax), u′ is positive in that interval. Hence,
taking into account βu is strictly decreasing we can find a maximum βu when I(X; T) approaches to 0.
That is,

135

Entropy 2020, 22, 98

βu,max = lim
r→0+

{
f ′IB(r)
u′(r)

}
, (A20)

Appendix F. Proof of Corollary 3

Proof. If we use Corollary 2, it is straightforward to see that βu ⊆ [L−, L+] if βu,min ≥ L− and
βu,max ≤ L+ for all IB curves fIB and functions u. Therefore, we look at a domain bound dependent on
the function choice. That is, if we can find βmin ≤ f ′IB(r) and βmax ≥ f ′IB(r) for all IB curves and all
values of r, then

Bu ⊆
[

βmin

limr→r−max
{u′(r)} ,

βmax

limr→0+{u′(r)}

]
. (A21)

The region for all possible IB curves regardless of the relationship between X and Y is depicted in
Figure A1. The hard limits are imposed by the DPI (Theorem 2.8.1 from Cover and Thomas [20]) and
the fact that the mutual information is non-negative (Corollary with Equation 2.90 for discrete and first
Corollary of Theorem 8.6.1 for continuous random variables from Cover and Thomas [20]). Hence, a
minimum and maximum values of f ′IB are given by the minimum and maximum values of the slope of
the Pareto frontier. Which means

Bu ⊆
[

0,
1

limr→0+{u′(r)}

]
. (A22)

Note 0/(limr→r−max
{u′(r)}) = 0 since u is monotonically increasing and, thus, u′ will never be 0.

Figure A1. Graphical representation of the IB curve in the information plane. Dashed lines in orange
represent tight bounds confining the region (in light orange) of possible IB curves (delimited by the red
line, also known as the Pareto frontier). Black dotted lines are informative values. In blue we show
an example of a possible IB curve confining a region (in darker orange) of an IB curve that does not
achieve the Pareto frontier. Finally, the yellow star represents the point where the representation keeps
the same information about the input and the output.

Then, we can tighten the bound using the results from Wu et al. [27], where, in Theorem 2, they
showed the slope of the Pareto frontier could be bounded in the origin by f ′IB ≤ (infΩx⊂X {β0(Ωx)})−1.
Finally, we know that in deterministic classification tasks infΩx⊂X {β0(Ωx)} = 1, which aligns with
Kolchinsky et al. [21] and what we can observe from Figure A1. Therefore,

136

Entropy 2020, 22, 98

Bu ⊆
[

0,
(infΩx⊂X {β0(Ωx)})−1

limr→0+{u′(r)}

]
⊆
[

0,
1

limr→0+{u′(r)}

]
. (A23)

Appendix G. Other Lagrangian Families

We can use the same ideas we used for the convex IB Lagrangian to formulate new families of
Lagrangians that allow the exploration of the IB curve. For that, we will use the duality of the IB curve
(Lemma 10 of [19]). That is:

Definition A1 (IB Dual Functional). Let X and Y be statistically dependent variables. Let also Δ be the set
of random variables T obeying the Markov condition Y ↔ X ↔ T. Then the IB dual functional is

FIB,min(i) = min
T∈Δ

{I(X; T)} s.t. I(T; Y) ≥ i, ∀i ∈ [0, I(X; Y)). (A24)

Theorem A1 (IB Curve Duality). Let the IB curve be defined by the solutions of FIB,max(r) for varying
r ∈ [0, ∞). Then,

∀r∃i s.t. (r, FIB,max(r)) = (FIB,min(i), i) (A25)

and

∀i∃r s.t. (FIB,min(i), i) = (r, FIB,max(r)). (A26)

From this definition, it follows that minimizing the dual IB Lagrangian, LIB,dual(T; βdual) =

I(X; T) − βdual I(T; Y), for βdual = β−1 is equivalent to maximizing the IB Lagrangian. In fact,
the original Lagrangian for solving the problem was defined this way [1]. We decided to use the
maximization version because the domain of useful β is bounded while it is not for βdual.

Following the same reasoning as we did in the proof of Theorem 2, we can ensure the IB curve
can be explored if:

1. We minimize the concave IB Lagrangian LIB,v(T; βv) = I(X; T)− βvv(I(T; Y)).
2. We maximize the dual concave IB Lagrangian LIB,v,dual(T; βv,dual) = v(I(T; Y))− βv,dual I(X; T).
3. We minimize the dual convex IB Lagrangian LIB,u,dual(T; βu,dual) = u(I(X; T))− βu,dual I(T; Y).

Here, u is a monotonically increasing strictly convex function, v is a monotonically increasing
strictly concave function, and βv, βv,dual, βu,dual are the Lagrange multipliers of the families of
Lagrangians defined above.

In a similar manner, one could obtain relationships between the Lagrange multipliers of the
IB Lagrangian and the convex IB Lagrangian with these Lagrangian families. For instance, the
convex IB Lagrangian LIB,u(T; βu) is related with the concave IB Lagrangian LIB,v(T; βv) as defined by
Propositon A1.

Proposition A1 (Relationship between the convex and concave IB Lagrangians). Consider the convex
and concave IB Lagrangians LIB,u(T; βu), LIB,v(T; βv). Let the IB curve defined as in Definition 2 be fIB.
Then, if we fix the functions u and v we can obtain the same point in the IB curve (r, fIB(r)) with both
Lagrangians when

β−1
v = f ′IB(r)v

′
(

fIB

(
(u′)−1

(
f ′IB(r)

βu

)))
, (A27)

or equivalently,

β−1
u =

1
f ′IB(r)

u′
(

f−1
IB

(
(v′)−1

(
β−1

v
f ′IB(r)

)))
. (A28)

137

Entropy 2020, 22, 98

Proof. If we proceed like we did in the proof of Proposition 3 we can find the mapping between
I(X; T) and βu and between I(T; Y) and βv. That is,

I(X; T) = (u′)−1
(

d fIB(I(X; T))
dI(X; T)

1
βu

)
and I(T; Y) = (v′)−1

((
d fIB(I(X; T))

dI(X; T)

)−1 1
βv

)
. (A29)

Then, if we recall that I(T; Y) = fIB(I(X; T)), we can directly obtain that

fIB

(
(u′)−1

(
d fIB(I(X; T))

dI(X; T)
1

βu

))
= (v′)−1

((
d fIB(I(X; T))

dI(X; T)

)−1 1
βv

)
. (A30)

Then, if we solve Equation (A30) with a fixed point (I(X; T) = r, I(T; Y) = fIB(r)) for βv we obtain
Equation (A27), and if we solve it for βu we obtain Equation (A28).

Also, one could find a range of values for these Lagrangians to allow for the IB curve exploration
and define a bijective mapping between their Lagrange multipliers and the IB curve. However, (i) as
mentioned in Section 2.2, I(T; Y) is particularly interesting to maximize without transformations
because of its meaning. Moreover, (ii) like βdual, the domain of useful βv and βu,dual is not upper
bounded. These two reasons make these other Lagrangians less preferable. We only include them
here for completeness. Nonetheless, we encourage the curiours reader to explore these families
of Lagrangians too. For example, a possible interesting research would be investigating if some
particularization of the concave IB Lagrangian suffers from an issue like value convergence that can be
exploited for approximately obtaining any predictability level I(T; Y) = i∗ for many values of βv.

Appendix H. Experimental Setup Details and Further Experiments

In order to generate empirical support for our claims, we performed several experiments on
different datasets with different neural network architectures and different ways of calculating the
information bottleneck.

Appendix H.1. Information Bottleneck Calculations

The information bottleneck is calculated modifying either the nonlinear-IB [26]. This method of
calculating the information bottleneck is a neural network that minimizes the cross-entropy while
also miniminizing an upper bound estimate of the mutual information Iθ ≈ I(X; T). The nonlinear-IB
relies on a kernel-based estimate of this mutual information [40]. We modify this calculation method
by applying the function u to the I(X; T) estimate.

For the nonlinear-IB calculations, we estimated the gradients of both Iθ(X; T) and the
cross-entropy with the same mini-batch. Moreover, we did not learn the covariance of the mixture of
Gaussians used for the kernel density estimation of Iθ(X; T) and we set it to (exp(−1))2.

In both methods, and for all the experiments, we assumed a Gaussian stochastic encoder T =

fenc(X; θ) + W with pW = N (0, Id), where d are the number of dimensions of the representations. We
trained the neural networks with the Adam optimization algorithm [46] with a learning rate of 10−4

and a 0.6 decay rate every 10 epochs. We used a batch size of 128 samples and all the weights were
initialized according to the method described by Glorot and Bengio [47] using a Gaussian distribution.

Then, we used the DBSCAN algorithm [44,45] for clustering. Particularly, we used the
scikit-learn [48] implementation with ε = 0.3 and min_samples = 50.

The reader can find the PyTorch [30] implementation in the following link: https://github.com/
burklight/convex-IB-Lagrangian-PyTorch.

138

Entropy 2020, 22, 98

Appendix H.2. The Experiments

We performed experiments in four different datasets:

• A Classification Task on the MNIST Dataset [28] (Figures 1, 2, and A2–A4 and top row from
Figure 3). This dataset contains 60,000 training samples and 10,000 testing samples of hand-written
digits. The samples are 28x28 pixels and are labeled from 0 to 9; i.e., X = R784 and Y = {0, 1, ..., 9}.
The data is pre-processed so that the input has zero mean and unit variance. This is a deterministic
setting, hence the experiment is designed to showcase how the convex IB Lagrangians allow us
to explore the IB curve in a setting where the normal IB Lagrangian cannot and the relationship
between the performance plateaus and the clusterization phenomena. Furthermore, it intends
to showcase the behavior of the power and exponential Lagrangians with different parameters
of α and η. Finally, it wants to demonstrate how the value convergence can be employed to
approximately obtain a specific compression value. In this experiment, the encoder fenc is a three
fully-connected layer encoder with 800 ReLU units on the first two layers and two linear units on
the last layer (T ∈ R2), and the decoder fdec is a fully-connected 800 ReLU unit layers followed
by an output layer with 10 softmax units. The convex IB Lagrangian was calculated using the
nonlinear-IB.

Figure A2. Results for the power IB Lagrangian in the MNIST dataset with α = {0.5, 1, 2}, from top to
bottom. In each row, from left to right it is shown (i) the information plane, where the region of possible
solutions of the IB problem is shadowed in light orange and the information-theoretic limits are the
dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as a function of βu.
In all plots, the red crosses joined by a dotted line represent the values computed with the training set,
the blue dots the values computed with the validation set and the green stars the theoretical values
computed as dictated by Proposition 3. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10)
in a dashed, orange line. All values are shown in bits.

139

Entropy 2020, 22, 98

In Figure A2 we show how the IB curve can be explored with different values of α for the power
IB Lagrangian and in Figure A3 for different values of η and the exponential IB Lagrangian.

Finally, in Figure A4 we show the clusterization for the same values of α and η as in
Figure A2 and A3. In this way the connection between the performance discontinuities and
the clusterization is more evident. Furthermore, we can also observe how the exponential IB
Lagrangian maintains better the theoretical performance than the power IB Lagrangian (see
Appendix I for an explanation of why).

Figure A3. Results for the exponential IB Lagrangian in the MNIST dataset with η = {log(2), 1, 1.5},
from top to bottom. In each row, from left to right it is shown (i) the information plane, where the
region of possible solutions of the IB problem is shadowed in light orange and the information-theoretic
limits are the dashed orange line; (ii) I(T; Y) as a function of βu; and (iii) the compression I(X; T) as
a function of βu. In all plots, the red crosses joined by a dotted line represent the values computed
with the training set, the blue dots the values computed with the validation set and the gren stars
the theoretical values computed as dictated by Proposition 3. Moreover, in all plots, it is indicated
I(X; Y) = H(Y) = log2(10) in a dashed, orange line. All values are shown in bits.

140

Entropy 2020, 22, 98

Figure A4. Depiction of the clusterization behavior of the bottleneck variable in the MNIST dataset.
In the first row, from left to right, the power IB Lagrangian with different values of α = {0.5, 1, 2}.
In the second row, from left to right, the exponential IB Lagrangian with different values of η =

{log(2), 1, 1.5}.

• A Classification Task on the Fashion-MNIST Dataset [49] (Figure A5). As MNSIT, this dataset
contains 60,000 training and 10,000 testing samples of 28x28 pixel images labeled from 0 to 9 and
constitutes a deterministic setting. The difference is that this dataset contains fashion products
instead of hand-written digits and it represents a harder classification task [49]. The data is also
pre-processed so that the input has zero mean and unit variance. For this experiment, the encoder
fenc is composed of a two-layer convolutional neural network (CNN) with 32 filters on the first
layer and 128 filters on the second with kernels of size 5 and stride 2. This CNN is followed by
two fully-connected layers of 128 linear units (T ∈ R128). After the first convolution and the first
fully-connected layer, a ReLU activation is employed. The decoder fdec is a fully-connected 128
ReLU unit layer followed by an output layer with 10 softmax units. The convex IB Lagrangian
was calculated using the nonlinear-IB. Therefore, this experiment intends to showcase how the
convex IB Lagrangian can explore the IB curve for different neural network architectures and
harder datasets.

Figure A5. Results for the exponential IB Lagrangian in the Fashion MNIST dataset with η = 1. From
left to right it is shown (i) the information plane, where the region of possible solutions of the IB problem
is shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y)
as a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses
joined by a dotted line represent the values computed with the training set and the blue dots the values
computed with the validation set. Moreover, in all plots, it is indicated I(X; Y) = H(Y) = log2(10).
All values are shown in bits.

• A Regression Task on the California Housing Dataset [50] (Figure A6). This dataset contains
20,640 samples of 8 real number input variables like the longitude and latitude of the house (i.e.,

141

Entropy 2020, 22, 98

X ∈ R8) and a task output real variable representing the price of the house (i.e., Y ∈ R). We used
the log-transformed house price as the target variable and dropped the 992 samples in which the
house price was equal or greater than $500, 000 so that the output distribution was closer to a
Gaussian as they did in [26]. The input variables were processed so that they had zero mean and
unit variance and we randomly split the samples into a 70% training and 30% test dataset. As
in [40], for regression tasks we approximate H(Y) with the entropy of a Gaussian with variance
Var(Y) and H(Y|T) with the entropy of a Gaussian with variance equal to the mean-squared error
(MSE). This leads to the estimate I(T; Y) ≈ 0.5 log(Var(Y)/MSE). The encoder fenc is a three
fully-connected layer encoder with 128 ReLU units on the first two layers and 2 linear units on the
last layer (T ∈ R2), and the decoder fdec is a fully-connected 128 ReLU unit layers followed by an
output layer with 1 linear unit. The convex IB Lagrangian was calculated using the nonlinear-IB.
Hence, this experiment was designed to showcase the convex IB Lagrangian can explore the IB
curve in stochastic scenarios for regression tasks.

Figure A6. The top row shows the results for the normal IB Lagrangian, and the bottom row for the
exponential IB Lagrangian with η = 1, both in the California housing dataset. In each row, from left to
right it is shown (i) the information plane, where the region of possible solutions of the IB problem is
shadowed in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y)
as a function of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses
joined by a dotted line represent the values computed with the training set and the blue dots the values
computed with the validation set. Moreover, in all plots, it is indicated I(X; Y) as the empirical value
obtained maximizing I(T; Y) without compression limitations as in [26]. All values are shown in bits.

• A Classification Task on the TREC-6 Dataset [29] (Figure A7 and bottom row from Figure 3). This
dataset is the six-class version of the TREC [51] dataset. It contains 5452 training and 500 test
samples of text questions. Each question is labeled within six different semantic categories based
on what the answer is; namely: Abbreviation, description and abstract concepts, entities, human
beings, locations, and numeric values. This dataset does not constitute a deterministic setting
since there are examples that could belong to more than one class and there are examples which
are wrongly labeled (e.g., “What is a fear of parasites?” could belong both to the description and
abstract concept category, however it is labeled into the entity category), and hence H(Y|X) >

0. Following Ben Trevett’s tutorial on Sentiment Analysis [52] the encoder fenc is composed
by a 6 billion token pre-trained 100-dimensional Glove word embedding [53], followed by a
concatenation of three convolutions with kernel sizes 2–4 respectively, and finalized with a
fully-connected 128 linear unit layer (T ∈ R128). The decoder fdec is a single fully-connected

142

Entropy 2020, 22, 98

6 softmax unit layer. The convex IB Lagrangian was calculated using the nonlinear-IB. Thus,
this experiment intends to show an example where the classification task does not convey
a deterministic scenario, that the convex IB Lagrangian can recover the IB curve in complex
stochastic tasks with complex neural network architectures and that the value convergence can
be employed to obtain a specific compression value even in stochastic settings where the IB curve
is unknown.

Figure A7. The top row shows the results for the normal IB Lagrangian, and the bottom row for the
power IB Lagrangian with α = 0.1, both in the TREC-6 dataset. In each row, from left to right it is
shown (i) the information plane, where the region of possible solutions of the IB problem is shadowed
in light orange and the information-theoretic limits are the dashed orange line; (ii) I(T; Y) as a function
of βu; and (iii) the compression I(X; T) as a function of βu. In all plots, the red crosses joined by a
dotted line represent the values computed with the training set and the blue dots the values computed
with the validation set. Moreover, in all plots, it is indicated H(Y) = log2(6). All values are shown
in bits.

Appendix I. Guidelines for Selecting A Proper Function in the Convex IB Lagrangian

When choosing the right u function, it is important to find the right balance between avoiding
value convergence and aiming for strong convexity. Practically, this balance is found by looking at
how much faster u grows w.r.t. the identity function.

When the aim is not to draw the IB curve but to find a specific level of performance, we can exploit
the value convergence phenomenon in order to design a stable performance targeted u function.

Appendix I.1. Avoiding Value Convergence

In order to explain this issue we are going to use the example of classification on MNIST [28],
where I(X; Y) = H(Y) = log2(10), and again the power and exponential IB Lagrangians.

If we use Proposition 3 on both Lagrangians we obtain the bijective mapping between their
Lagrange multipliers and a certain level of compression in the classification setting:

1. Power IB Lagrangian: βpow = ((1 + α)I(X; T)α)−1 and I(X; T) =
(
(1 + α)βpow

)− 1
α .

2. Exponential IB Lagrangian: βexp = (η exp(η I(X; T)))−1 and I(X; T) = − log(ηβexp)/η.

Hence, we can simply plot the curves of I(X; T) vs. βu for different hyperparameters α and η (see
Figure A8). In this way, we can observe how increasing the growth of the function (e.g., increasing α or

143

Entropy 2020, 22, 98

η in this case) too much provokes that many different values of βu converge to very similar values of
I(X; T). This is an issue both for drawing the curve (for obvious reasons) and for aiming for a specific
performance level. Due to the nature of the estimation of the IB Lagrangian, the theoretical and practical
value of βu that yields a specific I(X; T) may vary slightly (see Figure 1). Then if we select a function
with too high growth, a small change in βu can result in a big change in the performance obtained.

Figure A8. Theoretical bijection between I(X; T) and different α from βu,min to 1.5 in the power IB
Lagrangian (top), and different η in the domain Bu in the exponential IB Lagrangian (bottom).

Appendix I.2. Aiming for Strong Convexity

Definition A2 (μ-Strong Convexity). If a function f (r) is twice continuous differentiable and its domain is
confined in the real line, then it is μ-strong convex if f ′′(r) ≥ μ ≥ 0 ∀r.

Experimentally, we observed when the growth of our function u(r) is small in the domain of
interest r > 0 the convex IB Lagrangian does not perform well (see first row of Figures A2 and A3).
Later we realized that this was closely related to the strength of the convexity of our function.

In Theorem 2 we imposed the function u to be strictly convex to enforce having a unique βu for
each value of I(X; T). Hence, since in practice we are not exactly computing the Lagrangian but an
estimation of it (e.g., with the nonlinear IB [26]) we require strong convexity in order to be able to
explore the IB curve.

We now look at the second derivative of the power and exponential function: u′′(r) = (1+ α)αrα−1

and u′′(r) = η2 exp(ηr) respectivelly. Here we see how both functions are inherently 0-strong convex
for r > 0 and α, η > 0. However, values of α < 1 and η < 1 could lead to low μ-strong convexity in
certain domains of r. Particularly, the case of α < 1 is dangerous because the function approaches
0-strong convexity as r increases, so the power IB Lagrangian performs poorly when low α are used to
find high performances.

144

Entropy 2020, 22, 98

Appendix I.3. Exploiting Value Convergence

When the aim is not to draw or explore the IB curve, but to obtain a specific level of performance,
the power of exponential IB Lagrangians aforementioned might not be the best choice due to the
problems with value convergence or non-strong convexity. However, we can exploit the former in
order to design a performance targeted u function.

For instance, if we look at Figure A8 we can see how a modification of the exponential
IB Lagrangian could result in such a function. More precisely, a shifted exponential u(r) =

exp(η(r − r∗)), with η > 0 sufficiently large, converges to the compression level r∗. We can see
this more clearly if we consider the shifted exponential IB Lagrangian LIB,sh-exp(T; βsh-exp, η, r∗) =

I(T; Y)− βsh-exp exp(η(I(X; T)− r∗)), since then the application of Proposition 3 results on I(X; T) =
− log(ηβsh-exp/ f ′IB(I(X; T)))/η + r∗, where f ′IB(I(X; T)) is the derivative of fIB evaluated at I(X; T).
We know f ′IB = 1 in deterministic scenarios (Theorem 2) and that f ′IB < 1 otherwise (see, e.g., [27]).
Then, for large enough η, I(X; T) ≈ r∗ regardless of the value of f ′IB.

For instance, if we consider a deterministic scenario like the MNIST dataset [28] with I(X; Y) =
H(Y) = log2(10), for η = 200 and r∗ = 2 the range of the Lagrange multipliers that allow
the exploration of the IB curve, according to Corollary 2, is βsh-exp ∈ [7.54× 10−178, 2.61× 10171].
Furthermore, I(X; T) is close to 2 for many values of βsh-exp. For instance, I(X; T) = 1.974 for
βsh-exp = 1 and I(X; T) = 1.963 for βsh-exp = 8. This ensures a stability in the performance level
obtained so that small changes in the choice of βsh-exp do not result in significant changes on the
performance (e.g., see top row from Figure 4).

If we now consider a stochastic scenario like the TREC-6 dataset [29] with H(Y) = log2(6), for
η = 200 and r∗ = 16 the range of the Lagrange multipliers that allow the IB curve, according to
Corollary 3, is βsh-exp ∈ [0, 2.76(infΩx⊂X {β0(Ωx)})−1× 101287], where β0 and Ωx are defined as in [27].
Then, unless (infΩx⊂X {β0(Ωx)})−1 is of the order of 10−1287, the range of possible betas is wide.
Moreover, I(X; T) is close to 16 for many values of βsh-exp. For example, I(X; T) = 15.939 if f ′IB = 0.001
at that point and I(X; T) = 15.973 if f ′IB = 0.9 for βsh-exp = 1; and I(X; T) = 15.929 if f ′IB = 0.001 at
that point and I(X; T) = 15.963 if f ′IB = 0.9 for βsh-exp = 8. Hence, as in the deterministic scenario, the
performance level obtained is stable with changes in the choice of βsh-exp (e.g., see bottom row from
Figure 4).

References

1. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
2. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,

arXiv:1612.00410.
3. Peng, X.B.; Kanazawa, A.; Toyer, S.; Abbeel, P.; Levine, S. Variational Discriminator Bottleneck: Improving

Imitation Learning, Inverse RL, and GANs by Constraining Information Flow. In Proceeding of the
International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

4. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]

5. Slonim, N.; Tishby, N. Document clustering using word clusters via the information bottleneck method.
In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, Athens, Greece, 24–28 July 2000.

6. Slonim, N.; Tishby, N. Agglomerative information bottleneck. In Advances in Neural Information Processing
Systems; MIT Press: Cambridge, MA, USA, 2000.

7. Slonim, N.; Atwal, G.S.; Tkačik, G.; Bialek, W. Information-based clustering. Proc. Natl. Acad. Sci. USA 2005,
102, 18297–18302. [CrossRef] [PubMed]

8. Teahan, W.J. Text classification and segmentation using minimum cross-entropy. In Content-Based
Multimedia Information Access; LE CENTRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE
DOCUMENTAIRE: Paris, France, 2000; pp. 943–961.

9. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neur. Comput. 2017, 29, 1611–1630. [CrossRef]

145

Entropy 2020, 22, 98

10. Nazer, B.; Ordentlich, O.; Polyanskiy, Y. Information-distilling quantizers. In Proceedings of the 2017 IEEE
International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June, 2017; pp. 96–100.

11. Hassanpour, S.; Wübben, D.; Dekorsy, A. On the equivalence of double maxima and KL-means for
information bottleneck-based source coding. In Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6.

12. Goyal, A.; Islam, R.; Strouse, D.; Ahmed, Z.; Botvinick, M.; Larochelle, H.; Levine, S.; Bengio, Y. Infobot:
Transfer and exploration via the information bottleneck. arXiv 2019, arXiv:1901.10902.

13. Yingjun, P.; Xinwen, H. Learning Representations in Reinforcement Learning:An Information Bottleneck
Approach. arXiv 2019, arXiv:cs.LG/1911.05695.

14. Sharma, A.; Gu, S.; Levine, S.; Kumar, V.; Hausman, K. Dynamics-Aware Unsupervised Skill Discovery.
In Proceeding of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia,
26–30 April 2020.

15. Schulz, K.; Sixt, L.; Tombari, F.; Landgraf, T. Restricting the Flow: Information Bottlenecks for Attribution.
In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia,
26–30 April 2020.

16. Li, X.L.; Eisner, J. Specializing Word Embeddings (for Parsing) by Information Bottleneck. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 2744–2754.

17. Zaslavsky, N.; Kemp, C.; Regier, T.; Tishby, N. Efficient compression in color naming and its evolution.
Proc. Natl. Acad. Sci. USA 2018, 115, 7937–7942. [CrossRef]

18. Chalk, M.; Marre, O.; Tkačik, G. Toward a unified theory of efficient, predictive, and sparse coding. Proc. Natl.
Acad. Sci. USA 2018, 115, 186–191. [CrossRef]

19. Gilad-Bachrach, R.; Navot, A.; Tishby, N. An information theoretic tradeoff between complexity and accuracy.
In Learning Theory and Kernel Machines; Springer: Berlin, Germany, 2003; pp. 595–609.

20. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
21. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.

In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA,
6–9 May 2019.

22. Courcoubetis, C. Pricing Communication Networks Economics, Technology and Modelling; Wiley Online Library:
Hoboken, NJ, USA, 2003.

23. Tishby, N.; Slonim, N. Data clustering by markovian relaxation and the information bottleneck method.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001; pp. 640–646.

24. Slonim, N.; Friedman, N.; Tishby, N. Unsupervised document classification using sequential information
maximization. In Proceedings of the 25th annual international ACM SIGIR Conference on Research and
Development in Information Retrieval, Tampere, Finland,11–15 August 2002.

25. Chalk, M.; Marre, O.; Tkacik, G. Relevant sparse codes with variational information bottleneck. In Advances
in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016; pp. 1957–1965.

26. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear information bottleneck. Entropy 2019, 21, 1181.
[CrossRef]

27. Wu, T.; Fischer, I.; Chuang, I.; Tegmark, M. Learnability for the Information Bottleneck. In Proceedings of
the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

28. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
In Proceedings of the 1998 IEEE International Frequency Control Symposium, Pasadena, CA, USA, 27–29
May 1998.

29. Li, X.; Roth, D. Learning question classifiers. In Proceedings of the 19th international conference on Computational
linguistics—Volume 1; Association for Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 1–7.

30. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic differentiation in pytorch. In Proceedings of the NIPS Autodiff Workshop, Long Beach,
CA, USA, 9 December 2017.

31. Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science+ Business Media: Berlin,
Germany, 2006.

146

Entropy 2020, 22, 98

32. Xu, A.; Raginsky, M. Information-theoretic analysis of generalization capability of learning algorithms.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; pp. 2524–2533.

33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

34. Shore, J.E.; Gray, R.M. Minimum cross-entropy pattern classification and cluster analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 1982, 1, 11–17. [CrossRef] [PubMed]

35. Shore, J.; Johnson, R. Properties of cross-entropy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 1981,
27, 472–482. [CrossRef]

36. Vera, M.; Piantanida, P.; Vega, L.R. The role of the information bottleneck in representation learning.
In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA,
17–22 June 2018; pp. 1580–1584.

37. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck.
Theor. Comput. Sci. 2010, 411, 2696–2711. [CrossRef]

38. Achille, A.; Soatto, S. Emergence of invariance and disentanglement in deep representations. J. Mach.
Learn. Res 2018, 19, 1947–1980.

39. Du Pin Calmon, F.; Polyanskiy, Y.; Wu, Y. Strong data processing inequalities for input constrained additive
noise channels. IEEE Trans. Inf. Theory 2017, 64, 1879–1892. [CrossRef]

40. Kolchinsky, A.; Tracey, B. Estimating mixture entropy with pairwise distances. Entropy 2017, 19, 361.
[CrossRef]

41. Amjad, R.A.; Geiger, B.C. Learning representations for neural network-based classification using the
information bottleneck principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 1. [CrossRef]

42. Alemi, A.A.; Fischer, I.; Dillon, J.V. Uncertainty in the variational information bottleneck. arXiv 2018,
arXiv:1807.00906.

43. Wu, T.; Fischer, I. Phase Transitions for the Information Bottleneck in Representation Learning.
In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia,
26–30 April 2020.

44. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, Menlo Park, CA, USA, 2–4 August 1996; pp. 226–231.

45. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you
should (still) use DBSCAN. ACM Trans. Database Syst. TODS 2017, 42, 19. [CrossRef]

46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

48. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

49. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv 2017, arXiv:1708.07747.

50. Pace, R.K.; Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 1997, 33, 291–297. [CrossRef]
51. Voorhees, E.M.; Tice, D.M. Building a question answering test collection. In Proceedings of the 23rd Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens,
Greece, 24–28 July 2000.

52. Trevett, Ben. Tutorial on Sentiment Analysis: 5—Multi-class Sentiment Analysis. April 2019. Available online:
https://github.com/bentrevett/pytorch-sentiment-analysis (accessed on 14 January 2020).

53. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1532–1543.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

147

entropy

Article

Probabilistic Ensemble of Deep Information Networks

Giulio Franzese * and Monica Visintin

Electronic and Telecommunications, Politecnico di Torino, 10100 Torino, Italy; monica.visintin@polito.it
* Correspondence: giulio.franzese@polito.it

Received: 22 November 2019; Accepted: 13 January 2020; Published: 14 January 2020

Abstract: We describe a classifier made of an ensemble of decision trees, designed using information
theory concepts. In contrast to algorithms C4.5 or ID3, the tree is built from the leaves instead of the
root. Each tree is made of nodes trained independently of the others, to minimize a local cost function
(information bottleneck). The trained tree outputs the estimated probabilities of the classes given
the input datum, and the outputs of many trees are combined to decide the class. We show that the
system is able to provide results comparable to those of the tree classifier in terms of accuracy, while
it shows many advantages in terms of modularity, reduced complexity, and memory requirements.

Keywords: information theory; information bottleneck; classifier; decision tree; ensemble

1. Introduction

Supervised classification is at the core of many modern applications of machine learning.
The history of classifiers is rich and many variants have been proposed, such as decision trees,
logistic regression, Bayesian networks, and neural networks (for an overview of general methods,
see [1–3]). Despite the power of modern deep learning, for many problems involving categorical
structured datasets, decision trees [4–7] or Bayesian networks [8–10] usually outperform neural
network based approaches.

Decision trees are particularly interesting because they can be easily interpreted. Various types
of tree classifiers can be discriminated according to the metric for the iterative construction and
selection of features [4]: popular tree classifiers are based on information theoretic metrics, such as
ID3 and C4.5 [6,7]. However, it is known that the greedy splitting procedure at each node can be
sub-optimal [11], and that decision trees are prone to overfitting when dealing with small datasets.
When a classifier is not strong enough, there are, roughly speaking, two possibilities: choosing a
more sophisticated classifier or ensembling multiple “weak” classifiers [12,13]. This second approach
is usually called the ensemble method. In the performance tradeoff by using multiple classifiers
simultaneously, we improve classification performance, paying with the loss of interpretability.

The so-called “information bottleneck”, described by Tishby and Zaslavsky [14]
and Tishby et al. [15], was proposed in [16] to build a classifier (Deep Information Network,
DIN) with a tree topology that compresses the input data and generates the estimated class. DINs [16]
are based on the so-called information node that, using the input samples of a feature Xin, generates
samples of a new feature Xout, according to the conditional probabilities P(Xout = j|Xin = i) obtained
by minimizing the mutual information I(Xin; Xout), with the constraint of a given mutual information
I(Xout; Y) between Xout and the target/class Y (information bottleneck [14]). The outputs of two or
more nodes are combined, without information loss, to generate samples of a new feature passed to a
subsequent information node. The final node (root) directly outputs the class of each input datum. The
tree structure of the network is thus built from the leaves, whereas C4.5 and ID3 build it from the root.

We here propose an improved implementation of the DIN scheme in [16] that only requires the
propagation through the tree of small matrices containing conditional probabilities. Notice that the
previous version of the DIN was stochastic, while the one we propose here is deterministic. Moreover,

Entropy 2020, 22, 100; doi:10.3390/e22010100 www.mdpi.com/journal/entropy149

Entropy 2020, 22, 100

we use an ensemble (e.g., [12,13]) of trees with randomly permuted features and weigh their outputs
to improve classification accuracy.

The proposed architecture has several advantages in terms of:

• extreme flexibility and high modularity: all the nodes are functionally equivalent and with a
reduced number of inputs and outputs, which gives good opportunities for a possible hardware
implementation;

• high parallelizability: each tree can be trained in parallel with the others;
• memory usage: we need to feed the network with data only at the first layer and simple

incremental counters can be used to estimate the initial probability mass distribution; and
• training time and training complexity: the locality of the computed cost function allows a

nodewise training that does not require any kind of information from other points of the tree
apart from its feeding nodes (that are usually a very small number, e.g., 2–3).

With respect to the DINs in [16], the main difference is that samples of the random variables
in the inner layers of the tree are never generated, which is an advantage in the case of large
datasets. However, an assumption of statistical independence (see Section 2.3) is necessary to
build the probability matrices and this might be seen as a limitation of the newly proposed method.
However, experimental results (see Section 5) show that this approximation does not compromise
the performance.

We underline similarities and differences of the proposed classifier with respect to the methods
described in [6,7] since they are among the best performing ones. When using decision trees, as
well as DINs, categorical and missing data are easily managed, but continuous random variables
are not: quantization of these input features is necessary in a pre-processing phase, and it can be
performed as in C4.5 [6], using other heuristics, or manually. Concerning differences, instead, the
first one is that normally a hierarchical decision tree is built starting from the root and splitting at
each node, whereas we here propose a way to build a tree starting from the leaves. The topology
of our network implies that, once the initial ordering of the features has been set, there is no need,
after each node is trained, to perform a search of the best possible next node. The second important
difference is that we do not use directly mutual information as a metric for building the tree but we
base our algorithm on the Information Bottleneck principle [14,15,17–21]. This allows us to extract all
the relevant information (the sufficient statistic) while removing the redundant one, which is helpful in
avoiding overfitting. As in [12,13], we use an ensemble method. We choose the simplest possible form
of ensemble combination: we train independently many structurally equivalent networks, using the
same single dataset but permuting the order of the features, and produce a weighted average of the
outputs based on a simple rule described in Section 3.1. Notice that we use a one-shot procedure, i.e.,
we do not iterate more than once over the entire dataset and exploit techniques similarly to [22,23].
We leave the study of more sophisticated techniques to future works.

Sections 2 and 3 more precisely describe the structure of the DIN and how it works, Section 4
gives some insight on the theoretical properties, Section 5 comments the results obtained with standard
datasets. Conclusions are finally drawn in Section 6.

2. The DIN Architecture and Its Training

The information network is made of input nodes (Section 2.1), information nodes (Section 2.2),
and combiners joined together through a tree network described in Section 2.3. Moreover, an ensemble
of Nmach trees is built, based on which the final estimated class is produced (Section 3.1). In [16], the
input nodes are not present, the information node has a slightly different role, the combiners are much
simpler than those described here, and just one tree was considered. As already stated, the new version
of the DIN is more efficient when a large dataset with relatively few features is analyzed.

In the following, it is assumed that all the features take a finite number of discrete values; a case
of continuous random variables is discussed in Section 5.2.

150

Entropy 2020, 22, 100

It is also assumed that Ntrain points are used in the training phase, Ntest points in the testing phase,
and that D features are present. The nth training point corresponds to one of Nclass possible classes.

2.1. The Input Node

Each input node (see Figure 1) has two input vectors:

1. xin of size Ntrain, whose elements take values in a set of cardinality Nin; xin corresponds to one of
the D features of the dataset (typically one column)

2. y of size Ntrain, whose elements take values in a set of cardinality Nclass; y corresponds to the
known classes of the Ntrain points

Input node

xin

Xin

y

Y

Figure 1. Schematic representation of an input node: the inputs are two vectors and the outputs are
matrices that statistically describe the random variables Xin and Y.

The notation we use in the equations below is the following: Y, Xin represent random variables;
y(n) and xin(n) are the nth elements of vectors y and xin, respectively; and 1(c) is equal to 1 if c is
true, and is otherwise equal to 0. Using Laplace smoothing [2], the input node estimates the following
probabilities (the probability mass function of Y in Equation (1) is common to all the input nodes: it
can be evaluated only by the first one and passed to the others):

P̂(Y = m) � 1 + ∑Ntrain−1
n=0 1(y(n) = m)

Ntrain + Nclass
m = 0, . . . , Nclass − 1 (1)

P̂(Xin = i) � 1 + ∑Ntrain−1
n=0 1(xin(n) = i)

Ntrain + Nin
, i = 0, . . . , Nin − 1 (2)

P̂(Y = m, Xin = i) � 1 + ∑Ntrain−1
n=0 1(y(n) = m)1(xin(n) = i)

Ntrain + NclassNin
(3)

From basic application of probability rules, P̂(Y = m|Xin = i) and P̂(Xin = i|Y = m) are then
computed. From now on, for simplicity, we denote all the estimated probabilities P̂ simply as P.

All the above probabilities can be organized in matrices defined as follows:

PY ∈ R1×Nclass , PY(m) = P(Y = m) (4)

PXin ∈ R1×Nin , PXin(i) = P(Xin = i) (5)

PXin |Y ∈ RNclass×Nin , PXin |Y(m, i) = P(Xin = i|Y = m) (6)

PY|Xin
∈ RNin×Nclass , PY|Xin

(i, m) = P(Y = m|Xin = i) (7)

Note that vectors xin and y are not needed by the subsequent elements in the tree; only the input
nodes have access to them.

Notice also that the following equalities hold:

PXin = PYPXin |Y (8)

151

Entropy 2020, 22, 100

PY = PXin PY|Xin
(9)

2.2. The Information Node

The information node is schematically shown in Figure 2: the input discrete random variable
Xin is stochastically mapped into another discrete random variable Xout (see [16] for further details)
through probability matrices:

• The input probability matrices PXin , PXin |Y, PY|Xin
, PY describe the input random variable Xin,

with Nin possible values, and its relationship with class Y.
• The output matrices PXout , PXout |Y, PY|Xout

, PY describe the output random variable Xout, with
Nout possible values, and its relationship with Y.

Compression (source encoding) is obtained by setting Nout < Nin.
In the training phase, the information node generates the conditional probability mass function

that satisfies the following equation (see [14]):

P(Xout = j|Xin = i) =
1

Z(i; β)
P(Xout = j)e−βd(i,j), i = 0, . . . , Nin − 1, j = 0, . . . , Nout − 1 (10)

where

• P(Xout = j) is the probability mass function of the output random variable Xout

P(Xout = j) =
Nin−1

∑
i=0

P(Xin = i)P(Xout = j|Xin = i), j = 0, . . . , Nout − 1 (11)

• d(i, j) is the Kullback–Leibler divergence

d(i, j) =
Nclass−1

∑
m=0

P(Y = m|Xin = i) log2
P(Y = m|Xin = i)
P(Y = m|Xout = j)

= KL(P(Y|Xin = i)||P(Y|Xout = j)) (12)

and

P(Y = m|Xout = j) =
Nin−1

∑
i=0

P(Y = m|Xin = i)P(Xin = i|Xout = j),

m = 0, . . . , Nclass − 1, j = 0, . . . , Nout − 1 (13)

• β is a real positive parameter.
• Z(i; β) is a normalizing coefficient to get

Nout−1

∑
j=1

P(Xout = j|Xin = i) = 1. (14)

The probabilities P(Xout = j|Xin = i) can be iteratively found using the Blahut–Arimoto
algorithm [14,24,25].

Equation (10) solves the information bottleneck: it minimizes the mutual information I(Xin; Xout)

under the constraint of a given mutual information I(Y; Xout). In particular, Equation (10) is the
solution of the minimization of the Lagrangian

L = I(Xin; Xout)− βI(Y; Xout). (15)

If the Lagrangian multiplier β is increased, then the constraint is privileged and the information node
tends to maximize the mutual information between its output Xout and the class Y; if β is reduced, then

152

Entropy 2020, 22, 100

minimization of I(Xin; Xout) is obtained (compression). The information node must actually balance
compression from Xin to Xout and propagation of the information about Y. In our implementation, the
compression is also imposed by the fact that the cardinality of the output alphabet Nout is smaller than
that of the input alphabet Nin.

The role of the information node is thus that of finding the conditional probability matrices

PXout |Xin
∈ RNin×Nout , PXout |Xin

(i, j) = P(Xout = j|Xin = i) (16)

PY|Xout
∈ RNout×Nclass , PY|Xout

(j, m) = P(Y = m|Xout = j) (17)

PXout ∈ R1×Nout , PXout(j) = P(Xout = j) (18)

PY PY |Xin

PXin|Y

PXout

PY

PXin

PY |Xout

PXout|Y

Information

node

Xin, Y

Xout, Y

Figure 2. Schematic representation of an information node, showing the input and output matrices.

2.3. The Combiner

Consider the case depicted in Figure 3, where the two information nodes a and b feed a combiner
(shown as a triangle) that generates the input of the information node c. The random variables Xout,a

and Xout,b, both having alphabet with cardinality N1, are combined together as

Xin,c = Xout,a + N1 Xout,b (19)

that has an alphabet with cardinality N1 × N1.
The combiner actually does not generate Xin,c; it simply evaluates the probability matrices

that describe Xin,c and Y. In particular, the information node c needs PXin,c |Y, which can be
evaluated assuming that Xout,a and Xout,b are conditionally independent given Y (notice that in
implementation [16] this assumption was not necessary):

P(Xin,c = k|Y = m) = P(Xout,a = ka, Xout,b = kb|Y = m)

= P(Xout,a = ka|Y = m)P(Xout,b = kb|Y = m) (20)

where k = ka + N1kb. In particular, the mth row of PXin,c |Y is the Kronecker product of the mth rows of
PXout,a |Y and PXout,b |Y

PXin,c |Y(m, :) = PXout,a |Y(m, :)⊗ PXout,b |Y(m, :) m = 0, . . . , Nclass − 1 (21)

153

Entropy 2020, 22, 100

(here A(m, :) identifies the mth row of matrix A). The probability vector PXin,c can be evaluated
considering that

P(Xin,c = k) =
Nclass−1

∑
m=0

P(Xin,c = k, Y = m) =
Nclass−1

∑
m=0

P(Xin,c = k|Y = m)P(Y = m) (22)

so that
PXin,c = PYPXin,c |Y (23)

At this point, matrix PY|Xin,c
can be evaluated element by element since

P(Y = m|Xin,c = k) =
P(Xin,c = k|Y = m)P(Y = m)

P(Xin,c = k)
,

m = 1, . . . , Nclass − 1, k = 0, . . . , N1 × N1 − 1 (24)

It is straightforward to extend the equations to the case in which Xin,a and Xin,b have
different cardinalities.

c

ba

Xin,a

Xout,a Xout,b

Xin,c

Xout,c

Xin,bN0 N0

N1 N1

N1 ×N1

N2

Figure 3. Sub-network: Xin,a, Xout,a, Xin,b, Xout,b, Xin,c, and Xout,c are all random variables; N0 is the
number of values taken by Xin,a and Xin,b; N1 is the number of values taken by Xout,a and Xout,b; and
N2 is the number of values taken by Xout,c.

2.4. The Tree Architecture

Figure 4 shows an example of a DIN, where we assume that the dataset has D = 8 features
and that training is thus obtained using a matrix Xtrain with Ntrain rows and D = 8 columns, with a
corresponding class vector y. The kth column x(k) of matrix Xtrain feeds, together with vector y, the
input node I(k), k = 0, . . . , D− 1.

154

Entropy 2020, 22, 100

Layer 1

Layer 2

Layer 3

N
(1)
out

N
(2)
in

N
(1)
in

0, 1 1, 1 2, 1 3, 1

0, 3

1, 20, 2

N
(3)
out

N
(2)
out

Layer 0

N
(1)
outN

(1)
out

N
(0)
out N

(0)
out

N
(0)
out N

(0)
out N

(0)
out N

(0)
out

N
(1)
in N

(1)
in N

(1)
in

N
(1)
out

N
(2)
in

N
(2)
out

N
(3)
in

Xin(0, 1)

Xout(1, 1)Xout(0, 1)

Xin(0, 2)

Xout(0, 2) Xout(1, 2)

Xin(0, 3)

Xout(0, 3)

Xin(1, 1)

Xout(0, 0) Xout(1, 0)

I(0)

x(0)

I(1)

x(1)

I(2)

x(2)

I(3)

x(3)

I(4)

x(4)

I(5)

x(5)

I(6)

x(6)

I(7)

x(7)

Xin(0, 0)

0, 0

Xin(1, 0)

1, 0

Xin(2, 0)

2, 0

Xin(3, 0)

3, 0

Xin(4, 0)

4, 0

Xin(5, 0)

5, 0

Xin(6, 0)

6, 0 7, 0

Xin(7, 0)

Xin(1, 2)

Xout(2, 1) Xout(3, 1)

Xout(4, 0) Xout(5, 0)N
(0)
out N

(0)
out

N
(0)
in N

(0)
in

N
(0)
in

Figure 4. Example of a DIN for D = 8: the input nodes are represented as rectangles, the info nodes
as circles, and the combiners as triangles. The numbers inside each circle identify the node (position

inside the layer and layer number), N(k)
in is the number of values taken by the input of the info node

at layer k, and N(k)
out is the number of values taken by the output of the info node at layer k. In this

example, the info nodes at a given layer all have the same input and output cardinalities.

Information node (k, 0) at layer 0 processes the probability matrices generated by the input node
I(k), with N(0)

in possible values of Xin(k, 0), and evaluates the conditional probability matrices with N(0)
out

possible values of Xout(k, 0), using the algorithm described in Section 2.2. The outputs of info nodes
(2k, 0) and (2k + 1, 0) are given to a combiner that outputs the probability matrices for Xin(k, 1), having
alphabet of cardinality N(1)

in = N(0)
out × N(0)

out , using the equations described in Section 2.3. The sequence
of combiners and information nodes is iterated, decreasing the number of information nodes from
layer to layer, until the final root node is obtained. In the previous implementation of the DINs in [16],
the root information node outputs the estimated class of the input and it is therefore necessary that the
output cardinality of the root info node is equal to Nclass. In the current implementation, this cardinality
can be larger than Nclass, since classification is based on the output probability matrix PY|Xout

.
For a number of features D = 2d, the number of layers is d. If D is not a power of 2, then it

is possible to use combiners with 3 or more inputs (the changes in the equations in Section 2.3 are
straightforward, since a combiner with three inputs can be seen as two cascaded combiners with two
inputs each).

155

Entropy 2020, 22, 100

The overall binary topology proposed in Figure 4 requires a number of information nodes equal to

Nnodes = D +
D
2
+

D
4
+ · · ·+ 2 + 1 = 2D− 1 (25)

and a number of combiners equal to

Ncomb =
D
2
+

D
4
+ · · ·+ 2 + 1 = D− 1 (26)

All the info nodes run exactly the same algorithm and all the combiners are equal, apart from the
input/output alphabet cardinalities. If the cardinalities of the alphabets are all equal, i.e., N(i)

in and N(i)
out

do not depend on the layer i, then all the nodes and all the combiners are exactly equal, which might
help in a possible hardware implementation; in this case, the number of parameters of the network is
(Nout − 1)× Nin × Nnodes.

Actually, the network performance depends on how the features are coupled in subsequent layers
and a random shuffling of the columns of matrix Xtrain provides results that might be significantly
different. This property is used in Section 3.1 for building the ensemble of networks.

2.5. A Note on Computational Complexity and Memory Requirements

The modular structure of the proposed method has several advantages in terms of both memory
footprint and computational cost. The considered topology in this explanation is binary, similarly
to what is depicted in Figure 4. We furthermore consider for simplicity cardinalities of the D input
features all equal to Nin and input/output cardinalities of subsequent layers information node to

also be fixed constants N∗in and N∗out =
N∗in
2 , respectively. As we show in the experiment (Section 5),

small values for N∗in and N∗out such as 2, 3, or 4 are sufficient in the considered cases. Straightforward
generalizations are possible when considering inhomogeneous cases.

At the first layer (the input node layer), each of the D input nodes stores the joint probabilities
of the target variable Y and its input feature. Each node thus includes a simple counter that fills
the probability matrix of dimension Nin × Nclass. Both the computational cost and the memory
requirements for this first stage are the same as the Naive Bayes algorithm. Notice that, from the
memory requirements point of view, it is not necessary to store all the training data but just counters
with number of joint occurrences of features/classes. If after training, new data are observed, it is
in fact sufficient to update the counters and properly renormalize the values to obtain the updated
probability matrices. In this paper, we do not cover the topic of online learning as well as possible
strategies to reduce the computational complexity in such a scenario.

At the second layer (the first information node layer), each node receives as input the joint
probability matrix of feature and target variable and performs the Blahut–Arimoto algorithm. The
internal memory requirement of this node is the space needed to store two probability matrices of
dimensions N∗in × Nclass and N∗in × N∗out, respectively. The cost per iteration of Blahut–Aritmoto
depends on matrix multiplication of sizes N∗in × N∗out and N∗in × Nclass, and thus obviously the
complexity scales with the number of classes of the considered classification problem. To the best
of our knowledge, the convergence rate for the Blahut–Arimoto algorithm applied to information
bottleneck problems is unknown. In this study, however, we found empirically that, for the considered
datasets, 5–6 iterations per node are sufficient, as discussed in Section 5.5.

Each combiner process the matrices generated by two information nodes: the memory requirement
is zero and the computational cost is roughly Nclass Kronecker products between rows of probability

matrices. Since for ease of explanation we chose N∗out =
N∗in
2 the output probability matrix have again

dimensions N∗in × Nclass.
The overall memory requirement and computational complexity (for a single DIN) is thus going to

scale as D times the requirements for an input node, 2D− 1 times the requirements for an information
node, and D − 1 times the requirements for a combiner. To complete the discussion, we have to

156

Entropy 2020, 22, 100

remember that a further multiplication factor of Nmach is required to take into account that we are
considering an ensemble of networks (actually, at the first layer, the set of input nodes can be shared by
the different architectures since only the relative position of the input nodes changes , see Section 3.1).

3. The Running Phase

During the running phase, the columns of matrix X with N rows and D columns are used as
inputs. Assume again that the network architecture is that depicted in Figure 4 with D = 8, and
consider the nth input row X(n, :).

In particular, assume that X(n, 2k) = i and X(n, 2k + 1) = j. Then,

1. (a) input node I(2k) passes value i to info node (2k, 0);
(b) input node I(2k + 1) passes value j to info node (2k + 1, 0);

2. (a) info node (2k, 0) passes the probability vector pa = PXout(2k,0)|Xin(2k,0)(i, :) (ith row) to
the combiner; pa stores the conditional probabilities P(Xout(2k, 0) = g|X(n, 2k) = i) for
g = 0, . . . , N(0)

out − 1;
(b) info node (2k + 1, 0) passes the probability vector pb = PXout(2k+1,0)|Xin(2k+1,0)(j, :) (jth row)

to the combiner; pb stores the conditional probabilities P(Xout(2k + 1, 0) = h|X(n, 2k + 1) =
j) for h = 0, . . . , N(0)

out − 1;
3. the combiner generates vector

pc = pa ⊗ pb, (27)

which stores the conditional probabilities P(Xin(k, 1) = s|X(n, 2k) = i, X(n, 2k + 1) = j) for
s = 0, . . . , N(1)

in − 1, where N(1)
in = N(0)

out × N(0)
out ;

4. info node (k, 1) generates the probability vector

pcPXout(k,1)|Xin(k,1), (28)

which stores the conditional probabilities P(Xout(k, 1) = r|X(n, 2k) = i, X(n, 2k + 1) = j) for
r = 0, . . . , N(1)

out
5. in the following layer, each combiner performs the Kronecker product of its two input vectors

and each info node performs the product between the input vector and its conditional probability
matrix PXout |Xin

;
6. the root information node at Layer 3, having the input vector p, outputs

pout(n) = pPXout(0,3)|Xin(0,3)PY|Xout(0,3), (29)

which stores the estimated probabilities P(Y = m|X(n, :)) for m = 0, . . . , Nclass − 1.

According to the MAP criterion, the estimated class of the input point X(n, :) is

Ŷ(n) = arg max pout(n) (30)

but we propose to use an improved method, as described in Section 3.1.

3.1. The DIN Ensemble

At the end of the training phase, when all the conditional matrices have been generated in
each information node and combiner, the network is run with input matrix Xtrain (Ntrain rows and D
columns) and the probability vector pout is obtained for each input point Xtrain(n, :). As anticipated at
the end of Section 2.4, the DIN classification accuracy depends on how the input features are combined
together. By permuting the columns of Xtrain, a different probability vector pout is typically obtained.
We thus propose to generate an ensemble of DINs by randomly permuting the columns of Xtrain, and
then combine their outputs.

157

Entropy 2020, 22, 100

Since in the training phase y(n) is known, it is possible to get for each DIN v the probability
pv

out(n), and ideally pv
out(n, y(n)), the estimated probability corresponding to the true class y(n),

should be equal to one. The weights

wv =
∑Ntrain−1

n=0 pv
out(n, y(n))

∑Ntrain−1
n=0 ∑Nmach−1

j=0 p
j
out(n, y(n))

(31)

thus represent the reliability of the vth DIN.
In the running phase, feeding the Nmach machines each with the correctly permuted vector X(n, :),

the final estimated probability vector is determined as

p̂ens(n) =
Nmach−1

∑
v=0

wvp̂v
out(n) (32)

and the estimated class is
Ŷ(n) = arg max p̂ens(n). (33)

4. The Probabilistic Point of View

This section is intended to underline the difference in probability terms formulation between the
Naive Bayes classifier [2,26] and the proposed scheme, since both use the assumption of conditional
independence of the input features. Both classifiers build in a simplified way the probability matrix
PY|X0,...,XD

with Nclass rows and ∏D−1
i=0 N(i)

in , where N(i)
in is the cardinality for the input feature Xi. In

the next sections, we show the different structure of these two probability matrices.

4.1. Assumption of Conditionally Independent Features

The Naive Bayes assumption allows writing the output estimated probability of the Naive Bayes
classifier as follows:

P(Y = m|x = x0) =
P(x = x0|Y = m)P(Y = m)

P(x = x0)

=

[
∏D−1

k=0 P(Xk = xk0|Y = m)
]

P(Y = m)

∑Nclass
s=0

[
∏D−1

k=0 P(Xk = xk0|Y = s)
]

P(Y = s)
(34)

which is very easily implemented, without the need of generating the tree network. We rewrite this
output probability in a fairly complex way to show the difference between the naive Bayes probability
matrix and the DIN one. Consider the nth feature x(n), which can take values in the set {c0

n, . . . , cDn−1
n }.

Define px(n)|y=m = [P(x(n) = c0
n|Y = m), . . . P(x(n) = cDn−1

n |Y = m)]; then,

PXin |Y(m, :) = ⊗D−1
k=0 px(k)|y=m (35)

and thus obviously

PXin |Y =

⎡
⎢⎢⎢⎢⎣
⊗D−1

k=0 px(k)|y=0
⊗D−1

k=0 px(k)|y=1
...

⊗D−1
k=0 px(k)|y=Nclass

⎤
⎥⎥⎥⎥⎦ (36)

We can write the joint probability matrix as

PXin ,Y = diag(PY)PX|Y (37)

158

Entropy 2020, 22, 100

and the probability matrix of target class given observation as

PY|Xin
= (PXin ,Ydiag(P◦(−1)

Xin
))T (38)

The hypothesis of conditional statistical independence of the features is not always correct and
thus we can incur obvious performance degradation.

4.2. The Overall Probability Matrix

We now instead compute the output estimated probability for the DIN classifier. Consider again
the sub-network in Figure 3 made of info nodes a, b, and c. Info node a is characterized by matrix
Pa, whose element Pa(i, j) is P(Xout,a = j|Xin,a = i); similar definitions hold for Pb and Pc. Note that
Pa and Pb have N0 rows and N1 columns, whereas Pc has N1 × N1 rows and N2 columns; the overall
probability matrix between the inputs Xin,a, Xin,b and the output Xout,c is P̃ with N0 × N0 rows and N2
columns. Then,

P(Xout,c = i|Xin,a = j, Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i, Xout,a = r, Xout,b = s|Xin,a = j, Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i|Xout,a = r, Xout,b = s)P(Xout,a = r|Xin,a = j)P(Xout,b = s|Xin,b = k)

=
N1−1

∑
r=0

N1−1

∑
s=0

P(Xout,c = i|Xout,s = r, Xout,b = s)Pa(j, r)Pb(k, s). (39)

It can be shown that
P̃ = (Pa ⊗ Pb)Pc (40)

where ⊗ identifies the Kronecker matrix multiplication; note that Pa ⊗ Pb has N0 × N0 rows and
N1 × N1 columns. By iteratively applying the above rule, we can get the expression of the overall
matrix P̃ for the exact topology of Figure 4, with eight input nodes and four layers:

P̃ =

[{[
(P0,0 ⊗ P1,0)P0,1

]
⊗
[
(P2,0 ⊗ P3,0)P1,1

]}
P0,2

⊗
{[

(P4,0 ⊗ P5,0)P2,1
]
⊗
[
(P6,0 ⊗ P7,0)P3,1

]}
P1,2

]
P0,3. (41)

The overall output probability matrix PY|X can finally be computed as

PY|Xin
= P̃PY|Xout(0,3). (42)

The DIN then behaves as a one-layer system that generates the output according to matrix PY|Xin
,

whose size might be impractically large. It is also possible to interpret the system as a sophisticated way
of factorizing and approximating the exponentially large true probability matrix. In fact, the proposed
layered structure needs smaller probability matrices, which makes the system computationally efficient.
The equivalent probability matrix is thus different in the DIN (Equation (42)) and Naive Bayes
(Equation (38)) cases.

5. Experiments

In this section, we analyze the results obtained with benchmark datasets. In particular, we
consider the DIN ensemble when: (a) each DIN is based on the probability matrices (the scheme
described in this paper); and (b) each information node of the DIN randomly generates the symbols, as
described in the previous work [16]. We refer to these two variants in captions and labels as DIN(Prob)
and DIN(Gen), respectively. The reason for this comparison is that conditional statistical independence

159

Entropy 2020, 22, 100

is not required in the case DIN(Gen), and the classification accuracy could be different in the two
cases. Note that Franzese and Visintin [16] considered just one DIN, not an ensemble of DINs. In
the following, we introduce three datasets on which we tested the method (Sections 5.1– 5.3) and
propose some examples of DINs architectures. Complete analysis of numerical results is described in
Section 5.4. Sections 5.5 and 5.6 analyze the impact of changing the maximum number of iterations of
Blahut–Arimoto algorithm and Lagrangian coefficient β, respectively. Finally, a synthetic multiclass
experiment is described in Section 5.7. In all experiments, the value of β was optimized similarly to
what is described in Section 5.6 using the training set.

5.1. UCI Congressional Voting Records Dataset

The first experiment on real data was conducted on the UCI Congressional Voting Records
dataset [27], which collects the votes given by each of the U.S. House of Representatives Congressmen
on 16 key laws (in 1985). Each vote can take three values corresponding to (roughly, see [27] for
more details) yes, no, and missing value; each datum belongs to one of two classes (Democrats or
Republican). The aim of the network is, given the list of 16 votes, decide if the voter is Republican
or Democratic. In this dataset, we thus have D = 16 features and 435 data split into Ntrain data for
training and Ntest = 435− Ntrain data for testing. The architecture of the used network is the same as
the one described in Section 2.4, except for the fact that there are 16 input features instead of 8 (the
network has thus one more layer). The input cardinality in the first layer is N(0)

in = 3 (yes/no/missing)

and the output cardinality is set to N(0)
out = 2. From the second layer on, the input cardinality for

each information node is equal to N∗in = 4 and N∗out = 2. In the majority of the cases, the size of the
probability matrices is therefore 4× 2 or 2× 2. In this example, we used Nmach = 30 and Ntrain = 218
(roughly 50% of the data). The value of β was set to 2.2.

5.2. UCI Kidney Disease Dataset

The second considered dataset was the UCI Kidney Disease dataset [28]. The dataset has a total
of 24 medical features, consisting of mixed categorical, integer, and real values, with missing values.
Quantization of non-categorical features of the dataset was performed according to the thresholds in
Appendix A, agreed upon by a medical doctor.

The aim of the experiment is to correctly classify patients affected by chronic kidney disease. We
performed 100 different trials training the algorithms using only Ntrain = 50 out of 400 samples for the
training. Layer zero has 24 input nodes, and then the outputs of layer zero are mixed two at a time to
get 12 information nodes at Layer 1, 6 at Layer 2, and 3 at Layer 3; the last three nodes are combined
into a unique final node. The output cardinality of all nodes is equal to N∗out = 2. The value of β was
set equal to 5.6. In addition, in this case, we used an ensemble of Nmach = 30 DINs.

5.3. UCI Mushroom dataset

The last considered dataset was the UCI Mushroom dataset [29]. This dataset is comprised of
22 categorical features with different cardinalities, which describe some properties of mushrooms,
and one target variable that defines whether the considered mushroom is edible or poisonous/unsafe.
There are 8124 entries in the dataset. We padded the dataset with two null features to reach the
cardinality of 24 and used exactly the same architecture as the kidney disease experiment. We selected
Ntrain = 50, β = 2.7, and number of DINs equal to Nmach = 15.

5.4. Misclassification Probability Analysis

We hereafter report results in terms of misclassification probability between the proposed
method and several classification methods implemented using MATLAB® Classification Learner.
All datasets were randomly split 100 times into training and testing subsets, thus generating 100
different experiments. The proposed method shows competitive results in the considered cases, as can

160

Entropy 2020, 22, 100

be observed in Table 1. It is interesting to compare in terms of performance the proposed algorithm
with respect to the Naive Bayes classifier, i.e., Equation (34), and the Bagged Tree algorithm, which
is the closest algorithm (conceptually) to the one we propose. In general, the two variants of the
DINs perform similarly to the Bagged Trees, while outperforming Naive Bayes. For Bagged Trees and
KNN-Ensemble, the same number of learners as DIN ensembles were used.

Table 1. Mean misclassification probability (over 100 random experiments) for the three datasets with
the considered classifiers.

Classifier Congressional Voting Records Kidney Disease Mushroom

Naive Bayes 0.10894 0.051 g 0.20641
Decision Tree 0.050691 0.062314 0.05505
Bagged Trees 0.043641 0.0268 0.038305

DIN Prob 0.050138 0.037229 0.020796
DIN Gen 0.049447 0.026286 0.022182

Linear Discriminant Classifier 0.059724 0.091029 0.069923
Logistic Regression 0.075161 0.096429 0.07074

Linear SVM 0.063226 0.049914 0.04513
KNN 0.08682 0.11369 0.037018

KNN-Ensemble 0.062811 0.036057 0.043967

5.5. The Impact of Number of Iterations of Blahut–Arimoto on The Performance

As anticipated in Section 2.5, the computational complexity of a single node scales with the number
of iterations of Blahut–Arimoto algorithm. To the best of our knowledge, a provable convergence rate
for the Blahut–Arimoto algorithm in the information nottleneck setting does not exist. We hereafter
(Figure 5) present empirical results on the impact of limiting the number of iterations of Blahut–Arimoto
algorithm (for simplicity, the same bound is applied to all nodes in the networks). When the number
of iterations is too small, there is a drastic decrease in performance because the probability matrices in
the information nodes have not yet converged, while 5–6 iterations are sufficient and a further increase
in the number of iterations is not necessary in terms of performance improvements.

0 5 10 15 20
of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
pr

ob
ab

ili
ty

Congressional Voting records
Kidney disease
Mushroom

Figure 5. Misclassification probability versus number of iterations (average over 10 different trials) for
the considered UCI datasets.

5.6. The Role of β: Underfitting, Optimality, and Overfitting

As usual with almost all machine learning algorithms, the choice of hyperparameters is of
fundamental importance. For simplicity, in all experiments described in the previous sections, we
kept the value of β constant through the network. To gain some intuition, Figure 6 shows the
misclassification probability for different β for the three considered datasets (each time keeping β

161

Entropy 2020, 22, 100

constant through the network). While the three curves are quantitatively different, we can notice
the same qualitative trend: when β is too small, not enough information about the target variable is
propagated, and then by increasing β above a certain threshold, the misclassification probability drops.
Increasing β too much however induces overfitting, as expected, and the classification error (slowly)
increases again. Remember (from Equation (15)) that the Lagrangian we are minimizing is

L = I(Xin; Xout)− βI(Y; Xout).

Information theory tells us that at every information node we should propagate only the sufficient
statistic about the target variable Y. In practice, this is reflected in the role of β: when it is too small,
we neglect the term I(Y; Xout) and just minimize I(Xin; Xout) (that corresponds to underfitting), while
increasing β allows passing more information about the target variable through the bottleneck. It is
important to remember, however, that we do not have direct access to the true mutual information
values but just to an empirical estimate based on a finite dataset. Especially when the cardinalities
of inputs and outputs are high, this translates into an increased probability of spotting spurious
correlations that, if learned by the nodes, induce overfitting. The overall message is that β has an
extremely important role in the proposed method, and its value should be chosen to modulate between
underfitting and overfitting.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y Congressional Voting Records
Kidney Disease
Mushroom

Figure 6. Misclassification probability versus β (average over 20 different trials) for the considered
UCI datasets.

5.7. A Synthetic Multiclass Experiment

In this section we present results on a multiclass synthetic dataset. We generated 64-dimensional
feature vectors z drawn from multivariate Gaussian distributions with mean and covariance depending
on a target class y and a control parameter ρ:

p(z|y = l) = |2πΣl |−
1
2 exp

(
−1

2
(z− μl)

T(ρΣl)
−1(z− μl)

)
l = 1, · · · , Nclass (43)

where for the considered experiment Nclass = 8. The mean μl is sampled from a normal 64-dimensional
random vector and Σl is randomly generated as Σl = AAT (where A is sampled from a matrix normal
distribution) and normalized to have unit norm. The other parameter ρ is inserted to modulate the
signal to noise ratio of the generated samples: a smaller value of ρ corresponds to smaller feature
variances and more distinct, less overlapping, pdfs p(z|y = l), and an easier classification task. We then

162

Entropy 2020, 22, 100

perform quantization of the result using 1 bit, i.e., the input of the ensemble of DINs is the following
random vector:

x = U(z) (44)

where U(·) is the Heaviside step operator. The designed architecture has at the first layer 64 input
nodes, followed by 32, 16, 4, 2, and 1. The output cardinalities are equal to 2 for the first three layers, 4
for the fourth and fifth layer, and 8 at the last layer. We selected Ntrain = 1000, β = 7 (constant trough
the network), and number of DINs equal to Nmach = 10. Figure 7 shows the classification accuracy (on
a test set of 1000 samples) for different values of ρ. As expected, when the value of ρ is small, we can
reach almost perfect classification accuracy, whereas, by increasing it, the performance drops to the
point where the useful signal is completely buried in noise and the classification accuracy reaches the
asymptotic level of 1

8 (that corresponds to random guessing when the number of classes is equal to 8).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Figure 7. Varying of classification accuracy for different values of control parameter ρ.

6. Conclusions

The proposed ensemble Deep Information Network (DIN) shows good results in terms of accuracy
and represents a new simple, flexible, and modular structure. The required hyperparameters are
the cardinality of the alphabet at the output of each information node, the value of the Lagrangian
multiplier β, and the structure of the tree itself (number of input information nodes of each combiner).

Simplistic architecture choices made for the experiments (such as equal cardinality of all node
outputs, β constant through the network, etc.) performed comparably to finely tuned networks.
However, we expect that, similar to what happened in neural network applications, a domain
specific design of the architectures will allow for consistent improvements in terms of performance on
complex datasets.

Despite the local assumption of conditionally independent features, the proposed method always
outperforms Naive Bayes. As discussed in Section 4, the induced equivalent probability matrix is
different in the two cases. Intuitively, we can understand the difference in performance under the point
of view of probability matrix factorization. On the one side, we have the true, exponentially large,
joint probability matrix of all features and target class. On the other side, we have the Naive Bayes one,
which is extremely simple in terms of complexity but obviously less performing. In between, we have
the proposed method, where the complexity is still reasonable but the quality of the approximation is
much better. The DIN(Gen) algorithm does not require the assumption of statistical independence,
but the classification accuracy is very close to that of DIN(Prob), which further suggests that the
assumption can be accepted from a practical point of view.

The proposed method leaves open the possibility of devising a custom hardware implementation.
Differently from classical decision trees, in fact, the execution times of all branches as well as the

163

Entropy 2020, 22, 100

precise number of operations is fixed per datum and known a priori, helping in various system design
choices. In fact, with classical trees, where a node’s utilization depends on the datum, we are forced to
design the system for the worst case, even if in the vast majority of time not all nodes are used. Instead,
with DIN, there is no such a problem.

Finally, a clearly open point is related to the quantization procedure of continuous random
variables. One possible self-consistent approach could be devising an information bottleneck based
method (similar to the method for continuous random variables [20]).

Further studies on extremely large datasets will help understand principled ways of tuning
hyperparameters and architecture choices and their relationship on performance.

Author Contributions: Conceptualization, G.F. and M.V.; methodology, G.F. and M.V.; software, G.F. and M.V.;
validation, G.F. and M.V.; formal analysis, G.F. and M.V.; investigation, G.F. and M.V.; resources, G.F. and M.V.; data
curation, G.F. and M.V.; writing–original draft preparation, G.F. and M.V.; writing–review and editing, G.F. and
M.V.; visualization, G.F. and M.V.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: A special thank to MD Gabriella Olmo who suggested a quantization of the continuous
values of the features in the experiment in Section 5.2, which is correct from a medical point of view.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Quantization

Hereafter, we present the quantization scheme used for the numerical features of chronic kidney
disease dataset.

• Age (Years) {< 10,< 18,< 45,< 70,< 120}
• Blood (mm/Hg) { < 80,< 84,< 89,< 99,< 109,≥ 110}
• Blood Glucose Random (mg/dl) {< 79,< 160,< 200,≥ 200}
• Blood Urea (mg/dl) {< 6,< 20,≥ 20}
• Serum Creatinine (mg/dl) {< 0.5,< 1.2,< 2,≥ 2}
• Sodium (mEq/l) {< 136,< 145,≥ 145}
• Potassium (mEq/l) {< 3.5,< 5,≥ 5}
• Haemoglobin (gm) {< 12,< 17,≥ 17}
• Packed Cell Volume {< 27,< 52,≥ 52}
• White Blood Cell Count (cells/mm3) {< 3500,< 10500,≥ 10500}
• Red Blood Cell (millions/mm3) {< 2.5,< 6,≥ 6}

References

1. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements Of Statistical Learning; Springer: Berlin/Heidelberg,
Germany, 2001. [CrossRef]

2. Murphy, K. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012.
3. Bergman, M.K. A Knowledge Representation Practionary; Springer: Basel, Switzerland, 2018.
4. Rokach, L.; Maimon, O.Z. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore,

2008; Volume 69.
5. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
6. Quinlan, J. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993.
7. Quinlan, J. Improved Use of Continuous Attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [CrossRef]
8. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Elsevie: Burlington, MA,

USA, 2014.
9. Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
10. Jensen, F.V. Introduction to Bayesian Networks; UCL Press: London, UK, 1996; Volume 210.
11. Norouzi, M.; Collins, M.; Johnson, M.A.; Fleet, D.J.; Kohli, P. Efficient Non-greedy Optimization of Decision

Trees. In Proceedings of the 28th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; pp. 1729–1737.

12. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]

164

Entropy 2020, 22, 100

13. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
14. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. arXiv 2015,

arXiv:1503.02406v1.
15. Tishby, N.; Pereira, F.; Bialek, W. The Information Bottleneck method. arXiv 2000, arXiv:physics/0004057v1.
16. Franzese, G.; Visintin, M. Deep Information Networks. arXiv 2018, arXiv:1803.02251v1.
17. Slonim, N.; Tishby, N. Agglomerative information bottleneck. In Proceedings of the 12th International

Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–4 December 1999;
pp. 617–623.

18. Still, S. Information bottleneck approach to predictive inference. Entropy 2014, 16, 968–989. [CrossRef]
19. Still, S. Thermodynamic cost and benefit of data representations. arXiv 2017, arXiv:1705.00612.
20. Chechik, G.; Globerson, A.; Tishby, N.; Weiss, Y. Information bottleneck for Gaussian variables. J. Mach.

Learn. Res. 2005, 6, 165–188.
21. Gedeon, T.; Parker, A.E.; Dimitrov, A.G. The mathematical structure of information bottleneck methods.

Entropy 2012, 14, 456–479. [CrossRef]
22. Freund, Y.; Schapire, R. A short introduction to boosting. Jpn. Soc. Artif. Intell. 1999, 14, 1612.
23. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 785–794.

24. Arimoto, S. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans.
Inf. Theory 1972, 18, 14–20. [CrossRef]

25. Blahut, R. Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 1972,
18, 460–473. [CrossRef]

26. Hand, D.J.; Yu, K. Idiot’s Bayes—Not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398.
27. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer

Sciences. Available online: http://archive.ics.uci.edu/ml (accessed on 30 September 2010).
28. Salekin, A.; Stankovic, J. Detection of chronic kidney disease and selecting important predictive attributes.

In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA,
4–7 October 2016; pp. 262–270.

29. Duch, W.; Adamczak, R.; Grąbczewski, K. Extraction of logical rules from neural networks.
Neural Process. Lett. 1998, 7, 211–219. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

165

entropy

Article

Convergence Behavior of DNNs with
Mutual-Information-Based Regularization

Hlynur Jónsson, Giovanni Cherubini * and Evangelos Eleftheriou

IBM Research Zurich, 8803 Rüschlikon, Switzerland; hlynur4@gmail.com (H.J.); ele@zurich.ibm.com (E.E.)
* Correspondence: cbi@zurich.ibm.com; Tel.: +41-44-724-8518

Received: 17 June 2020; Accepted: 26 June 2020; Published: 30 June 2020

Abstract: Information theory concepts are leveraged with the goal of better understanding and
improving Deep Neural Networks (DNNs). The information plane of neural networks describes
the behavior during training of the mutual information at various depths between input/output
and hidden-layer variables. Previous analysis revealed that most of the training epochs are spent on
compressing the input, in some networks where finiteness of the mutual information can be established.
However, the estimation of mutual information is nontrivial for high-dimensional continuous random
variables. Therefore, the computation of the mutual information for DNNs and its visualization
on the information plane mostly focused on low-complexity fully connected networks. In fact,
even the existence of the compression phase in complex DNNs has been questioned and viewed as an
open problem. In this paper, we present the convergence of mutual information on the information
plane for a high-dimensional VGG-16 Convolutional Neural Network (CNN) by resorting to Mutual
Information Neural Estimation (MINE), thus confirming and extending the results obtained with
low-dimensional fully connected networks. Furthermore, we demonstrate the benefits of regularizing
a network, especially for a large number of training epochs, by adopting mutual information estimates
as additional terms in the loss function characteristic of the network. Experimental results show that
the regularization stabilizes the test accuracy and significantly reduces its variance.

Keywords: deep neural networks; information bottleneck; regularization methods

1. Introduction

Deep Neural Networks (DNNs) have revolutionized several application domains of machine
learning, including computer vision, natural language processing and recommender systems.
Despite their success, the internal learning process of these networks is still an active field of research.
One of the goals of this paper is to leverage information theoretical concepts to analyze and further
improve DNNs. The analysis of DNNs through the information plane, i.e., the plane of mutual
information values that each layer preserves at various learning stages on the input and the output
random variables, was proposed in [1,2]. Previous approaches for the visualization of the information
plane applied non-parametric estimation methods that do not work well with high dimensional
data [2–4], as in this case the estimation of mutual information is nontrivial. The information plane
for small fully connected networks was visualized in [2]. The results in [2] suggested that most of the
training epochs of a DNN, the ”compression phase”, are spent on compressing the input variables
after an initial “fitting phase”. The existence of the compression phase was later questioned in [4–7],
in case the finiteness of the mutual information between input/output and hidden-layer variables
cannot be established. In this paper, we focus on Convolutional Neural Networks (CNNs) with
high complexity. After briefly discussing non-parametric mutual information estimation methods,
we present the convergence of mutual information on the information plane for a high-dimensional
VGG-16 CNN [8] by resorting to Mutual Information Neural Estimation (MINE) [9]. The compression

Entropy 2020, 22, 727; doi:10.3390/e22070727 www.mdpi.com/journal/entropy167

Entropy 2020, 22, 727

phase is evident from the obtained results, which confirm and extend the results previously found
with low-dimensional fully connected networks, where methods with lower computational complexity
were adopted to study the convergence in the information plane.

Furthermore, we consider DNNs with mutual-information-based regularization. The use of the
mutual information between the input and a hidden layer of a DNN as a regularizer was suggested
in [9–11]. The idea is based on the Information Bottleneck (IB) approach [12], which provides a maximally
compressed version of the input random variable, while still retaining as much information as possible
on a relevant random variable. Here we compare the accuracy achieved by a VGG-16 CNN, using
well-known regularization techniques, such as dropout, batch normalization and data augmentation,
with that of the same VGG-16 network that is enhanced by applying mutual-information-based
regularization, by resorting either to MINE or the variational information bottleneck (VIB) technique [10],
and demonstrate the advantages of mutual-information-based regularization, especially for a large
number of training epochs.

The remainder of the paper is structured as follows. Basic definitions of mutual information and
the formulation of the IB approach are recalled in Section 2. Non-parametric methods for the estimation
of mutual information in DNNs are addressed in Section 3. The visualization of DNN convergence
on the information plane using MINE is described in Section 4, whereas the advantages of long-term
DNN regularization using mutual-information-based techniques are presented in Section 5. Finally,
conclusions are given in Section 6.

2. The Information Bottleneck in DNNs

The mutual information is a measure of the mutual dependence of two random variables.
In essence, it measures the relationship between them and may be regarded as the reduction in
uncertainty in a random variable given the knowledge available about another one. The mutual
information between two discrete random variables X and Y is defined as

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability distribution and p(x) and p(y) are the marginal probability
distributions. The mutual information may also be expressed as the Kullback–Leibler (KL) divergence
between the joint distribution and the product of the marginal distributions of the random variables X
and Y

I(X; Y) = DKL (p(x, y)‖p(x)p(y)) (2)

Computing the mutual information of two random variables is in general challenging. Exact computation
can be done in the discrete setting, where the sum in Equation (1) can be calculated exhaustively, or in
the continuous setting, provided the probability distributions are known in advance. Several methods to
estimate the mutual information have been introduced. The most common ones are non-parametric,
including discretizing the values using binning and resorting to non-parametric kernel-density estimators,
as will be discussed in more detail in Section 3.

The IB method was introduced in [12] to find a maximally compressed representation of an input
random variable, X, which is obtained as a function of a relevant random variable, Ψ, such that it
preserves as much information as possible on Ψ. Let us denote X̂ as the compressed version of the input
random variable X parameterized by θ. What the IB method effectively does is to solve the following
optimization problem

min
θ

Iθ(X; X̂)

subject to: Iθ(X̂; Ψ) = Ic ≤ I(X; Ψ)
(3)

168

Entropy 2020, 22, 727

where Ic is the information constraint. In a non-deterministic classification scenario, an equivalent
formulation of the IB problem is obtained by introducing the Lagrangian multiplier β′ ≥ 0, and by
minimizing the Lagrangian

L(θ) = Iθ(X; X̂)− β′ Iθ(X̂; Ψ) (4)

In a deterministic classification scenario, however, where neural networks do not exhibit any
randomization of the hidden layer output variables, the two IB formulations given above are in
general not equivalent, as demonstrated in [13].

The goal of any supervised learning method is to efficiently capture the relevant information about
an input random variable, typically a label for classification tasks, in the output random variable [1].
Let us consider a DNN for image recognition, with input X, output Ŷ, and i-th hidden layer denoted by
hi. The classification task is related to the interpretation of an image that is generated from a relevant
random variable Y.

In case the hidden layer, hi, only processes the output of the previous layer, hi−1, the layers form
a Markov chain of successive internal representations of the input. By applying the Data Processing
Inequality (DPI) [14] to a DNN that consists of L layers, we have

I(X; h1) ≥ I(X; h2) ≥ . . . ≥ I(X; hL) ≥ I(X; Ŷ) (5)

As mentioned in the Introduction, DNNs may be analyzed through mutual information values on the
information plane. However, estimating mutual information across layers in DNNs is a nontrivial task,
as the outputs of the hidden layer neurons are continuous-valued high-dimensional random vectors.

A further difficulty arises if the input X is a continuous random variable and the neural network
is deterministic. In this case, it has been shown, e.g., in [4–6], that I(X; hi) = ∞ for commonly used
activation functions. For the image classification problem considered here, one might argue that the
input random variable is a discrete random variable, where the pixels have a discrete distribution, and
hi is also a discrete random variable given by a deterministic transformation of X via finite-precision
arithmetic. The training and test sets, however, have a cardinality that is typically much lower than the
alphabet size of X , thus rendering the estimation of the mutual information very difficult. To cope
with the challenge of estimating the divergence in Equation (2), we will resort to MINE, as discussed
in Section 4.

3. Non-Parametric Estimation of Mutual Information

As stated in Section 2, the most common methods for the estimation of mutual information
are non-parametric. As our focus is on CNNs, we consider a VGG-16 network [8] to evaluate the
effectiveness of non-parametric estimation methods. The block diagram of a VGG-16 network is
illustrated in Figure 1. The loss function adopted to train the network is the cross-entropy loss obtained
from the softmax output probabilities, that is

LCE =
M

∑
m=1

ym log pm (6)

where ym is the binary value corresponding to the m-th class of a one-hot encoded vector defined by
the class labels, pm is the softmax probability output for class m, and M is the number of classes in
the classification task. In all experiments the dataset considered is CIFAR-10 [15], i.e., M = 10, with a
batch size of 128. CIFAR-10 is a dataset consisting of 60,000 images in 10 classes. Fifty thousand of
those images are used for training and 10,000 for testing. Each image of the dataset is of size 32× 32
with three color channels.

169

Entropy 2020, 22, 727

Figure 1. The Visual Geometry Group (VGG)-16 network [8] architecture from input to predicted
output. CONV-64 is shorthand for a 2D convolutional layer with 64 filters. FC-512 is shorthand for a
fully connected layer with 512 neurons.

3.1. Activation Binning

The mutual-information estimation method adopted in [2] resorts to binning the activations of
each layer into equal-sized bins. Binning ensures that the values are discretized, which allows to
calculate the joint distribution and marginal distributions by counting the activations in each bin.

Despite the promising results reported in [2], this method has a number of limitations as a general
method for mutual-information estimation. Firstly, the experiments in [2] were conducted using a
fully connected network with only a few neurons, which has far fewer synaptic weights and neurons
than typical CNN architectures. Another shortcoming is the usage of the tanh function as a non-linear
activation function, which bounds the activations from −1 to 1. The ReLU activation function [16]
is more commonly used and allows unbounded positive activations. This limitation is pointed out
in [4], where the authors showed counterexamples of the compression phase using ReLU non-linear
activations. Furthermore, in [2] the input is limited to a vector of 12 binary elements and the output is
also binary. In this case binning is convenient because of the low number of dimensions of the input
and output random variables.

We found that the method of binning the activations does not scale well with higher dimensionality.
For example, we experimented with the activations of VGG-16 trained on CIFAR-10. For the
classification of a CIFAR-10 image, the input random variable has a total of 3072 dimensions as
opposed to 12 in [2]. Varying the number of bins where the activations are allocated was also found
not to have a significant impact on the results. The mutual-information estimates for layers with high
input dimensionality turned out not to satisfy the DPI. In addition, the estimates of both I(X; hi) and
I(hi; Y) for the last few CNN layers converged to values close to zero. If I(hi; Y) approximates zero the
accuracy of the model should be roughly the same as for random guessing. This contrasts with the
measured accuracy, which is higher than 90%, compared to 10% for random guessing.

3.2. Non-Parametric Kernel Density Estimation

We also conducted experiments on the kernel-density estimation method described in [4,17].
The assumption made is that the hidden layer activities are distributed as a mixture of Gaussian
random variables with covariance matrix σ2 I. In [4], it is further assumed for analysis purposes that
Gaussian noise is added to each hidden layer Ti, which is expressed as Ti = hi + ε, where ε ∼ N (0; σ2 I).
A mutual information upper bound with respect to the input is proposed as

I(Ti; X) ≤ − 1
P ∑

j
log

1
P ∑

k
exp

(
− 1

2
||hij − hik||22

σ2

)
(7)

where P denotes the number of samples and hij the hidden layer activities of layer i for sample j.
Furthermore, the mutual information with respect to the output random variable is upper bounded
as follows

170

Entropy 2020, 22, 727

I(Ti; Y) ≤ − 1
P ∑

j
log

1
P ∑

k
exp

(
− 1

2
||hij − hik||22

σ2

)

−∑
m

pm

[
− 1

Pm
∑

j,Yj=m
log

1
Pm

∑
k,Yk=m

exp
(
− 1

2
||hij − hik||22

σ2

)] (8)

where Pm is the number of samples with class label m, and pm = Pm/P is the empirical probability of
class m.

The same experiment as in [2] was conducted in [4] by using the non-parametric kernel
density estimation.

We also tested the estimation method by a VGG-16 network, and adopted a variance of σ2 = 0.1,
as in [4]. However, as experienced with the binning method in Section 3.1, we did not find satisfactory
results with a convolutional network of high complexity.

3.3. Rényi’s α-Entropy

A multivariate matrix-based Rényi’s α-entropy method was proposed in [3] for application to
a LeNet-5 network. This approach is suitable for CNN networks, as each CNN layer has several
channels, which all contain some information on the input and output random variables. However,
two distinct channels of a single layer can contain the same information on the input and output
random variables. Therefore, summing up the mutual information estimates between each channel
and the input or output random variable only gives an upper bound on the mutual information that
has little relevance to the true mutual information value. The experiments in [3] for LeNet-5 result in
mutual information estimates for the various layers that satisfy the DPI. However, our experiments for
VGG-16, which has up to 512 channels, did not yield estimates that comply with the DPI.

A method for the estimation of mutual information in complex DNNs was proposed in [18],
which relies on matrix-based Rényi’s entropy and tensor kernels to estimate the mutual information in a
VGG-16 network. The method in [18] augments the multivariate extension of the matrix-based Rényi’s
α-order entropy presented in [19] by introducing tensor kernels. In that manner, the tensor-based
nature of convolutional layers in DNNs is recognized and the numerical difficulties arising by a
straightforward application of the multivariate extension of the matrix-based Rényi’s entropy are
avoided. However, the convergence in the information plane is affected by the overfitting that takes
place when the training is conducted for a large number of epochs. Therefore, the compression phase
needs to be limited by an early stopping technique to prevent overfitting.

4. DNN Convergence Analysis Using MINE

Our goal is to visualize the information plane for networks with high-dimensional variables,
as previous work focuses on networks with much lower complexity [2,4,10]. The methods discussed in
Section 3 for estimating the mutual information do not perform well with high-dimensional random
variables. Furthermore, the existence of a compression phase during training has been disputed in [4]
for networks where the finiteness of the mutual information between input/output and hidden-layer
variables cannot be established. Therefore, to clarify these issues, we consider a VGG-16 network with
ReLU activation function. For the estimation of the mutual information for all layers in the network,
we resort to the MINE method [9].

MINE is a method first proposed in [9] for the estimation of mutual information between
high-dimensional continuous random variables. The method takes advantage of the Donsker–Varadhan
dual representation of the KL-divergence [20] and utilizes the lower bound

DKL (P‖Q) ≥ sup
T∈F

EP[T]− log(EQ[eT]) (9)

where F is any class of functions T : Rd → R such that the two expectations are finite, and P and Q

are probability distributions. The main idea of MINE is to choose T as a function parameterized by a

171

Entropy 2020, 22, 727

deep neural network with parameters θ ∈ Θ. By defining P as the joint probability distribution and Q

as the product of the marginal distributions of the random vectors X and Y, by combining Equations
(9) and (2) we get the MINE lower bound

Î(X; Y) = sup
θ∈Θ

Ep(x,y)[Tθ]− log(Ep(x)p(y)[e
Tθ]) (10)

The lower bound given by Equation (10) is finite, even if the input X is a continuous random
vector and the neural network under investigation is deterministic, for which the mutual information
between the input and a hidden layer I(X; hi) is infinite, as discussed in Section 2. If the mutual
information is not finite, the MINE may nevertheless be regarded as a well-defined estimate of the
statistical divergence between the two probability distributions p(X, hi) and p(X)p(hi) that assume
nonzero (possibly infinite) values over different support. This is analogous to the evaluation of the
optimal cost in applications of the optimal transport theory, which is obtained by resorting to a dual
representation of the original problem, see, e.g., [21].

The expectation over the product of the marginal distributions is estimated by shuffling the samples
from which the empirical joint distribution is obtained. For the estimation of I(X; hi) the samples from
hi are shuffled, whereas for the estimation of I(hi; Y) the samples from Y are shuffled. The objective
function from Equation (10) is adopted and is optimized by gradient ascent. For the visualization of
the information plane for the i-th layer in the network, two estimations are needed, namely those of
I(X; hi) and I(hi; Y). Each of these estimations is parameterized by a separate deep neural network.
As stated in [9], more training samples are needed as the complexity of the MINE network increases.
Therefore, very deep networks with high complexity are infeasible as MINE networks. Here we adopt a
network and an overall training approach capable of accurately estimating mutual information while
resorting to networks with moderate complexity.

For the experiments in this section, we train a VGG-16 network on CIFAR-10 images. Minor data
augmentation is applied in the form of random cropping and randomly flipping the images horizontally.
The size of each CIFAR-10 image is 32× 32 pixels. For random cropping, we pad the original image to
40 × 40 pixels and randomly take a crop of size 32 × 32 pixels. In our experiments, each convolutional
layer has a 3× 3 pixel receptive field. In addition, batch-normalization is used for all convolutional
layers. Furthermore, dropout regularization is applied after all convolutional layers that do not precede
a pooling layer (dropout rate of 0.3) and after the first fully connected layer (dropout rate of 0.5).
The ReLU activation function is adopted for all layers with the exception of the last one, which is a
linear dense layer. The hyperparameters are chosen using a validation set obtained by extracting 10,000
samples from the training set. The MINE loss function used to train each MINE network is defined as

LMINE =
1
n

n

∑
i=1

Tθ(i)− log(
1
n

n

∑
j=1

expTθ(j)) (11)

where n is the batch size and Tθ(i) and Tθ(j) are the individual network outputs referring to the
expectation over the joint distribution and over the product of the marginal distributions (see
Equation (10)), respectively. An illustration of the process, including input and output encoders
and referring to the hidden layer h3 as an example, is shown in Figure 2.

4.1. Visualization of the Information Plane

As discussed above with reference to Equation (10), each estimate of mutual information by MINE
requires a separate neural network to learn both the expectations over the joint distribution and over
the product of the marginal distributions. To characterize the convergence behavior of the VGG-16 on
the information planes, we need to estimate both I(X; hi) and I(hi; Y) for each layer, i.e., a total of 32
networks are needed. Additionally, we adopt two encoders, which are employed across all layers, to
encode the input and output random variables. Each MINE network encodes the respective hidden layer.

172

Entropy 2020, 22, 727

As illustrated in Figure 2, all hidden layer encoders and input/output encoders output a 64-dimensional
vector. The hidden layer encoder output is concatenated with the corresponding encoder output for
the input/output random variable, resulting in a 128-dimensional vector. A fully connected network
takes the concatenated vector as input and outputs a single value, from which the expected value over
either distribution is obtained, depending on whether the input is shuffled or not. The expected values
obtained from the network yield the mutual information estimate by Equation (10). Further details on
the architectures of the experimental MINE networks are given in [22].

Figure 2. Example of the Mutual Information Neural Estimation (MINE) networks considered for both
I(X; h3) and I(h3; Y) in layer 3 of VGG-16. The same input and output encoder are employed for all
layers. The four expectations are applied as indicated in Equation (10) to estimate both I(X; h3) and
I(h3; Y). FC indicates a fully connected layer, whereas CONV indicates a convolutional layer.

An information plane shows the mutual information estimates for all epochs within a certain
layer. To get unbiased estimates for each epoch the training procedure is conducted as follows. Initially,
the VGG-16 network is trained up to a certain epoch. Then all MINE networks are trained for a total
of 1000 epochs. During MINE network training, the MINE networks use the outputs of the hidden
layer neurons of the trained VGG-16 as input, without updating the weights of the VGG-16 through
back-propagation. In this phase, gradient-ascent updating by back-propagation is only performed on
the weights of the MINE networks. After training the MINE network for 1000 epochs, the expectations
are evaluated to find the estimates of mutual information on the information plane. Therefore, each dot
on the information plane of the i-th layer represents the estimates of the MINE networks for I(X; hi)

173

Entropy 2020, 22, 727

and I(hi; Y), for a single epoch of VGG-16, after training the MINE network for 1000 epochs. Each
mutual information estimate shown on the information plane is obtained by the same number of
training iterations. To visualize the information plane, we consider the first 50 epochs of the VGG-16
training phase. The mutual information values do not provide more insight on the compression
phase beyond that point. The above procedure is repeated for all 50 VGG-16 epochs shown in the
information plane.

The information planes of the VGG-16 layers are shown in Figure 3. The mutual information
estimates are expressed in bits. The compression phase is evident especially in the high-order layers,
which is consistent with previous work presented in [2], however for the first time shown in a CNN
with such a high complexity. One further difference with respect to [2] is that for the VGG-16 network
trained on CIFAR-10, the compression phase appears earlier in the training process. We see that I(X; hi)

starts decreasing after the first VGG-16 epoch for the high-order layers and continues to exhibit a
decreasing trend until convergence. The estimation of I(hi; Y), for all layers i = 2, ..., 16, converges
towards the upper bound equal to log2 10, which is the desired value of the mutual information in bits
as CIFAR-10 contains 10 classes. An exception is constituted by the first layer, which seems to slightly
underestimate the mutual information with the output. It can also be seen how the input is compressed
successively in each layer. This behavior is more clear from layer 7 onward, as the estimates of I(X; hi)

decrease between subsequent layers, as demanded by the DPI. While training the MINE networks,
it was observed that the mutual information estimates converged to zero during training for some
VGG-16 epochs. The occurrence of such events was significantly mitigated by lowering the learning
rate. The lower learning rate, however, slows down the training process. Therefore, training over
1000 epochs was needed for MINE to allow the mutual information estimates to reliably converge.
Figure 4 shows the decrease of the mutual information estimates I(X; hi) and I(hi; Y) as a function
of the layer index, for the 1st and the 40th epoch, i.e., towards beginning and end of the considered
training interval, respectively, thus indicating that the DPI is well approximated by the MINE.

Figure 3. Cont.

174

Entropy 2020, 22, 727

Figure 3. Information planes for the VGG-16 layers trained on Canadian Institute for Advanced
Research (CIFAR)-10 image set.

Figure 4. Mutual information estimates as function of the layer index, for the 1st and the 40th epoch.
The subscript n in In(hi; Y) indicates the epoch.

We remark that the results presented in this section are qualitative. Proper quantitative assessment
of the variance in the trajectories and a comparative study of the convergence of DNNs having different
architectures will be the subject of further investigation.

5. Long-Term DNN Regularization

5.1. MINE-Based Regularization

Using MINE as a regularizer was proposed in [9] for a small fully connected network trained on
MNIST. The authors replaced the variational approximation of the mutual information in [10] with a

175

Entropy 2020, 22, 727

MINE network for the mutual information estimate. We also consider a MINE network to estimate
the mutual information, however with a VGG-16 network of significantly higher complexity. In our
experiments, we estimated the mutual information of two layers by applying MINE networks. We
trained a VGG-16 network for a total of 10,000 epochs to investigate how the MINE-based regularizer
affects the test accuracy over the entire training period. An additional loss term was included in
the objective function of the network that represents the estimates of I(X; h14) and I(X; h15) by
MINE. The network parameters of the MINE networks were the same as described in Section 4.1.
We performed gradient descent on the cross-entropy loss with a regularization term that equals the
sum of the mutual information estimations of I(X; h14) and I(X; h15) multiplied by a regularization
coefficient, which was chosen as β = 10−3. The overall loss function is defined as

L = LCE +
L

∑
l=1
LMINE(l) (12)

where LCE and LMINE are defined in Equations (6) and (11), respectively, and L is the number of layers
in the VGG-16 over which the regularization takes place.

The results without and with MINE-based regularizer are shown in Figure 6a,b, respectively.
The test accuracy increases and the variance decreases with respect to the experiments without
MINE-based regularization. The maximum test accuracy achieved with the MINE-based regularizer
is 93.9%, whereas a baseline accuracy for a VGG-16 network is measured as 93.25% in [23], which is
similar to our results shown in Figure 6a.

5.2. VIB-based Regularization

As an alternative mutual-information-based estimation method between consecutive layers in
CNNs, a Variational Information Bottleneck (VIB) method was proposed in [10] for fully connected
networks with low complexity. The VIB technique was also used in [24] to reduce network complexity.
Here we extend VIB-based regularization to CNNs with substantially higher complexity. We investigate
the performance of the regularizer when training a VGG-16 for a large number of training epochs,
up to 10,000, in which case overfitting is a common issue.

We adopt the same formulation of the VIB as in [24]. In a feed-forward neural network like the
VGG-16 network, each hidden layer, hi, takes as input the previous output of the hidden layer, hi−1.
Therefore, each layer only extracts information from the previous layer. The previous layer typically
contains some information that is not relevant to the output. The aim of a VIB-based regularizer is
therefore to reduce the amount of redundant information extracted from the previous layer. This is
accomplished by minimizing the estimated mutual information between subsequent layers, I(hi; hi−1).
The information bottleneck objective then becomes

L =
L

∑
i=1

βi I(hi; hi−1)− I(hi; Y) (13)

where the coefficient βi ≥ 0 represents the strength of the VIB-based regularization in the i-th layer,
and L is the number of layers in the network over which the regularization takes place. An upper
bound on the term given by Equation (13) can be derived as

L̂ =
L

∑
i=1

βiEhi−1∼p(hi−1)
[DKL [p(hi|hi−1)‖ q(hi)]]−Ex,y∼D [log q(y|hL)] (14)

where D denotes the input data distribution and q(hi) and q(y|hL) are variational distributions that
approximate p(hi) and p(y|hL), respectively. To optimize the network, a parametric form of the
distributions p(hi|hi−1), q(hi) and q(y|hL) is specified. In [24], it is assumed that each conditional
distribution p(hi|hi−1) is defined via the relation

176

Entropy 2020, 22, 727

hi = (μi + εi " σi)" fi(hi−1) (15)

where the parameters μi and σi are learnable for each layer where VIB is applied and εi ∼ N (0, I).
The function fi represents the network processing that takes place at the i-th layer, consisting of a
linear transformation or a convolution operation for convolutional layers, plus batch normalization
and a non-linear activation function. Furthermore, the distribution q(hi) is specified as a Gaussian
distribution, such that

q(hi) = N (hi; 0, diag[ξi]) (16)

where ξi is a vector of variances learned from the data.
The process is illustrated in Figure 5. The element-wise multiplications in Equation (15) are

applied differently in fully connected layers and convolutional layers, as the convolutional layers have
several channels. For each convolutional layer the learned parameters, μi and σi, are vectors with
dimensionality equal to the number of channels in the layer. Therefore, we obtain a learned Gaussian
distribution for each channel. The matrix, which is adopted for the element-wise multiplications,
has the same dimensions as the convolutional layer output, and is generated by sampling from the
distribution of each channel n2 times, where n× n is the feature map size. For the fully connected
layers, the vectors of the learned parameters have a dimensionality equal to the number of neurons in
the layer. Accordingly, each element is associated with a separate learned Gaussian distribution. Thus,
the loss function is expressed as

L̂ = γ
L

∑
i=1

βi

ri

∑
j=1

log
(

1 +
μ2

i,j

σ2
i,j

)
−Ex,y∼D [log q(y|hL)] (17)

where ri denotes the number of channels for convolutional layers and neurons for fully connected
layers. The coefficient γ is used to scale the regularizing term. Scaling is crucial in deep networks as
the accumulated loss from every layer may otherwise become too large.

Figure 5. Illustration of how the VIB is incorporated into each layer using the formulation from [24]
using Equation (15), where zi = μi + εi " σi. The noise variable, εi, is sampled randomly from a
Gaussian distribution with zero mean and unit variance.

As in the previous sections, the network adopted in our experiments was a VGG-16, trained on
the CIFAR-10 dataset with the same data augmentation described in Section 4. The regularization
constants were chosen as γ = 10−5, {βi}i=1,...,15 = {2−5, 2−5, 2−4, 2−4, 2−3, 2−3, 2−3, 2−2, 2−2, 2−2,
2−1, 2−1, 2−1, 1, 1}.

177

Entropy 2020, 22, 727

We trained the VGG-16 network without and with the VIB objective and compared the results.
The output of the i-th layer in the experiment with the VIB was calculated as shown in Equation (15).
Both models were trained for a total of 10,000 epochs on the CIFAR-10 dataset. To update the weights
by back-propagation, we used the Adam [25] optimizer with exponential decay rate parameters
βA,1 = 0.9, βA,2 = 0.999 and εA = 10−8. The learning rate was fixed to 0.001. We trained all models
using a mini-batch size of 128. The results without and with the VIB objective are illustrated in
Figure 6a,c, respectively.

The results in Figure 6c show that the test accuracy of the model increases with the additional
VIB-based regularizer, achieving a value of 94.1%. We recall that the baseline accuracy for a VGG-16
network in [23] is 93.25%. Furthermore, the VIB-based regularizer prevents the model from overfitting.
When trained for enough epochs, the model without the VIB-based regularizer eventually starts to
overfit, even though it applies several regularization methods such as dropout, batch normalization
and data augmentation, see Figure 6a. In contrast, the test accuracy exhibits substantially lower
variance if the VIB objective is considered. To obtain the best accuracy from the model trained without
VIB, early stopping is required. In contrast, the test accuracy of the model with VIB is much more
stable and the stability is maintained even after 10,000 epochs of training.

We remark that the results relative to Figure 6a,b are obtained by using the exact same
VGG-16 network architecture depicted in Figure 1. The VIB block illustrated in Figure 5 is added
for regularization into each layer to get the results shown in Figure 6c, resulting in a modification of
the loss function as well as of the overall network architecture. An interesting aspect related to the
application of VIB for regularization is whether the observed improved performance is due to the
modified loss function and architecture, or rather to the injection of noise alone. To investigate this
aspect, we resort to a simpler LeNet-5 network on CIFAR-10. First, a comparison of test accuracy over
400 epochs without mutual-information-based regularizer, with MINE-based regularizer including
the mutual information estimates of I(X; hi), i = 1, ..., 4, and with VIB-based regularizer is shown in
Figure 7. The regularization coefficients for MINE and VIB are chosen similarly to the case of VGG-16.
As observed in the case of VGG-16 on CIFAR-10, a VIB-based regularizer leads to better performance,
albeit significantly lower than that achieved by VGG-16, as LeNet-5 is a much simpler network. For the
same reason, overfitting is generally not an issue for a LeNet-5 network, and therefore the possible
improvements due to regularization are marginal. Second, the performance of a VIB-based regularizer
for LeNet-5 is compared with that achieved by a network where a Gaussian noise signal with zero
mean and fixed standard deviation is added at each hidden layer. The accuracy obtained after 400
training epochs is reported in Table 1 for various values of the Gaussian noise standard deviation
σ, and compared with that achieved by either VIB, MINE, or no regularization. It appears that the
addition of noise alone is not adequate to achieve the same performance as the other regularizers.

Figure 6. Test accuracies over 10,000 epochs for VGG-16 trained on CIFAR-10 (a) without mutual-
information-based regularizer, (b) with MINE-based regularizer and (c) with Variational Information
Bottleneck (VIB)-based regularizer.

178

Entropy 2020, 22, 727

Figure 7. Test accuracies over 400 epochs for LeNet-5 trained on CIFAR-10 (a) without mutual-information-
based regularizer, (b) with MINE-based regularizer and (c) with VIB-based regularizer.

Table 1. Test accuracies for LeNet-5 trained on CIFAR-10 with various regularization methods.

Regularization method VIB MINE none σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

Accuracy (%) 76.9 76.7 75.9 73.8 73.9 72.3 72.3

6. Conclusions

Information theoretic concepts were adopted to analyze and improve high-complexity CNNs.
We demonstrated the convergence of mutual information on the information plane and the existence
of a compression phase for VGG-16, thus extending the results of [1] for fully connected networks
with low-complexity. Furthermore, our experiments highlighted the advantages of regularizing DNNs
by mutual-information-based additional terms in the network loss function. Specifically, mutual-
information-based regularization improves and stabilizes the test accuracy, significantly reduces its
variance, and prevents the model from overfitting, especially for a large number of training epochs.

Author Contributions: All authors collectively conceived the analysis of the convergence behavior of DNNs
with mutual-information-based techniques. H.J. performed the experiments and derived the results under the
supervision of G.C. and E.E. H.J. wrote the manuscript with input from all authors. All authors have read and
agreed to the submitted version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Network
CNN Convolutional Neural Network
MINE Mutual Information Neural Estimation
ReLU Rectified Linear Unit
VGG Visual Geometry Group
IB Information Bottleneck
KL Kullback–Leibler
DPI Data Processing Inequality
CIFAR Canadian Institute for Advanced Research
CONV Convolutional
FC Fully Connected
MaxPool Maximum Pooling
VIB Variational Information Bottleneck

179

Entropy 2020, 22, 727

References

1. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015
IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.

2. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017,
arXiv:1703.00810.

3. Yu, S.; Jenssen, R.; Principe, J.C. Understanding convolutional neural network training with information
theory. arXiv 2018, arXiv:1804.06537.

4. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information
bottleneck theory of deep learning. J. Stat. Mech. Theory Exp. 2019, 12, 124020. [CrossRef]

5. Amjad, R.A.; Geiger, B.C. Learning representations for neural network-based classification using the information
bottleneck principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1–12. [CrossRef] [PubMed]

6. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers—A Review. arXiv 2020, arXiv:2003.09671.
7. Goldfeld, Z.; van den Berg, E.; Greenewald, K. H.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y.

Estimating information flow in deep neural networks. arXiv 2014, arXiv:1810.05728v3.
8. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

2014, arXiv:1409.1556.
9. Belghazi, M.I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, R.D. MINE: Mutual

information neural estimation. arXiv 2018, arXiv:1801.04062.
10. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,

arXiv:1612.00410.
11. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.

IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]
12. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
13. Kolchinsky, A.; Tracey, B.D.; Van Kuyk, S. Caveats for information bottleneck in deterministic scenarios.

In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA,
6–9 May 2019.

14. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
15. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis, University of Toronto,

ON, Canada, 2009.
16. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the

27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814.
17. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear information bottleneck. arXiv 2017, arXiv:1705.02436.
18. Wickstrøm, K.; Løkse, S.; Kampffmeyer, M.; Yu, S.; Principe, J.; Jenssen, R. Information plane analysis of

deep neural networks via matrix-based Renyi’s entropy and tensor kernels. arXiv 2019, arXiv:1909.11396.
19. Yu, S.; Giraldo, L.; Jenssen, R.; Principe, J. Multivariate extension of matrix-based Renyi’s α-order entropy

functional. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1–12. [CrossRef] [PubMed]
20. Donsker, M.D.; Varadhan, S.S. Asymptotic evaluation of certain Markov process expectations for large time,

I. Commun. Pure Appl. Math. 1975, 28, 1–47. [CrossRef]
21. Genevay, A.; Cuturi, M.; Peyré, G.; Bach, F. Stochastic optimization for large-scale optimal transport.

In Proceedings of the 2016 Conference on Neural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 3440–3448.

22. Jónsson, H. Mutual-Information-Based Regularization of DNNs with Application to Abstract Reasoning.
Master’s Thesis, Department of Computer Science, Swiss Federal Institute of Technology, Zurich, Switzerland,
2019.

23. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2017,
arXiv:1608.08710v3.

24. Dai, B.; Zhu, C.; Wipf, D. Compressing neural networks using the variational information bottleneck. arXiv
2018, arXiv:1802.10399.

25. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

180

entropy

Article

Variational Information Bottleneck for
Semi-Supervised Classification

Slava Voloshynovskiy 1,*, Olga Taran 1, Mouad Kondah 1, Taras Holotyak 1

and Danilo Rezende 2

1 Department of Computer Science, University of Geneva, 1227 Carouge, Switzerland;
olga.taran@unige.ch (O.T.); mouad.kondah@etu.unige.ch (M.K.); taras.holotyak@unige.ch (T.H.)

2 DeepMind, London N1C 4AG, UK; danilor@google.com
* Correspondence: svolos@unige.ch; Tel.: +41(22)-379-01-58

Received: 22 July 2020; Accepted: 24 August 2020; Published: 27 August 2020

Abstract: In this paper, we consider an information bottleneck (IB) framework for semi-supervised
classification with several families of priors on latent space representation. We apply a variational
decomposition of mutual information terms of IB. Using this decomposition we perform an analysis
of several regularizers and practically demonstrate an impact of different components of variational
model on the classification accuracy. We propose a new formulation of semi-supervised IB with hand
crafted and learnable priors and link it to the previous methods such as semi-supervised versions of
VAE (M1 + M2), AAE, CatGAN, etc. We show that the resulting model allows better understand the
role of various previously proposed regularizers in semi-supervised classification task in the light of
IB framework. The proposed IB semi-supervised model with hand-crafted and learnable priors is
experimentally validated on MNIST under different amount of labeled data.

Keywords: information bottleneck principle; deep networks; semi-supervised classification;
latent space representation; hand crafted priors; learnable priors; regularization

Notations

We will denote a joint generative distribution as pθ(x, z) = pθ(z)pθ(x|z), whereas marginal
pθ(z) is interpreted as a targeted distribution of latent space and marginal pθ(x) = Epθ(z) [pθ(x|z)] =∫

z pθ(x|z)pθ(z)dz as a generated data distribution with a generative model described by pθ(x|z),
where E stands for the expected value. A joint data distribution qφ(x, z) = pD(x)qφ(z|x), where pD(x)
denotes an empirical data distribution and qφ(z|x) is an inference or encoding model and marginal
qφ(z) denotes a “true” or “aggregated” distribution of latent space data. We will denote parameters
of encoders as φa and φz, and those of decoders as θc and θx. The discriminators corresponding to
Kullback–Leibler divergences are denoted as Dx where the subscript indicates the space to which
this discriminator is applied to. The cross-entropy metrics are denoted as Dxx̂, where the subscript
indicates the corresponding vectors. X denotes random vector, while the corresponding realization is
denoted as x.

1. Introduction

The deep supervised classifiers demonstrate an impressive performance when the amount of
labeled data is large. However, their performance significantly deteriorates with the decrease of
labeled samples. Recently, semi-supervised classifiers based on deep generative models such as VAE
(M1 + M2) [1], AAE [2], CatGAN [3], etc., along with several other approaches based on multi-view
and contrastive metrics just to mention the most recent ones [4,5], are considered to be a solution to
the above problem. Besides the remarkable reported results, the information theoretic analysis of

Entropy 2020, 22, 943; doi:10.3390/e22090943 www.mdpi.com/journal/entropy181

Entropy 2020, 22, 943

semi-supervised classifiers based on generative models and the role of different priors aiming to fulfil
the gap in the lack of labeled data remain little studied. Therefore, in this paper we will try to address
these issues using IB principle [6] and practically compare different priors on the same architecture
of classifier.

Instead of considering the latent space of generative models such as VAE (M1 + M2) [1] and
AAE [2] trained in the unsupervised way as suitable features for the classification, we will depart from
the IB formulation of supervised classification, where we consider an encoder-decoder formulation
of classifier and impose priors on its latent space. Thus, we study an approach to semi-supervised
classification based on an IB formulation with a variational decomposition of IB compression and
classification mutual information terms. To deeper understand the role and impact of different elements
of variational IB on the classification accuracy, we consider two types of priors on the latent space of
classifier: (i) hand-crafted and (ii) learnable priors. Hand-crafted latent space priors impose constraints
on a distribution of latent space by fitting it to some targeted distribution according to the variational
decomposition of the compression term of the IB. This type of latent space priors is well known as an
information dropout [7]. One can also apply the same variational decomposition to the classification
term of the IB, where the distribution of labels is supposed to follow some targeted class distribution
to maximize the mutual information between inferred labels and targeted ones. This type of class label
space regularization reflects an adversarial classification used in AAE [2] and CatGAN [3]. In contrast,
learnable latent space priors aim at minimizing the need in human expertise in imposing priors on the
latent space. Instead, the learnable priors are learned directly from unlabeled data using auto-encoding
(AE) principle. In this way, the learnable priors are supposed to compensate the lack of labeled data
in the semi-supervised learning yet minimizing the need in the hand-crafted control of the latent
space distribution.

We demonstrate that several state-of-the-art models such as AAE [2], CatGAN [3], VAE (M1 +
M2) [1], etc., can be considered to be instances of the variational IB with the learnable priors. At the
same time, the role of different regularizers in the hand-crafted semi-supervised learning is generalized
and linked to known frameworks such as information dropout [7].

We evaluate our model using standard dataset MNIST on both hand-crafted and learnable features.
Besides revealing the impact of different components of variational IB factorization, we demonstrate
that the proposed model outperforms prior works on this dataset.

Our main contribution is three-fold: (i) We propose a new formulation of IB for the semi-supervised
classification and use a variational decomposition to convert it into a practically tractable setup with
learnable parameters. (ii) We develop the variational IB for two classes of hand-crafted and learnable
priors on the latent space of classifier and show its link to the state-of-the-art semi-supervised methods.
(iii) We investigate the role of these priors and different regularizers in the classification, latent and
reconstruction spaces for the same fixed architecture under the different amount of training data.

2. Related Work

Regularization techniques in semi-supervised learning: Semi-supervised learning tries to find
a way to benefit from a large number of unlabeled samples available for training. The most common
way to leverage unlabeled data is to add a special regularization term or some mechanism to
better generalize to unseen data. The recent work [8] identifies three ways to construct such a
regularization: (i) entropy minimization, (ii) consistency regularization and (iii) generic regularization.
The entropy minimization [9,10] encourages the model to output confident predictions on unlabeled
data. In addition, more recent work [3] extends this concept to adversarially generated samples or
fakes for which the entropy of class label distribution was suggested to be maximized. Finally, the
adversarial regularization of label space was considered in [2], where the discriminator was trained
to ensure the labels produced by the classifier follow a prior distribution, which was defined to be
a categorical one. The consistency regularization [11,12] encourages the model to produce the same
output distribution when its inputs are perturbed. Finally, the generic regularization encourages the

182

Entropy 2020, 22, 943

model to generalize well and avoid overfitting the training data. It can be achieved by imposing
regularizers and corresponding priors on the model parameters or feature vectors.

In this work, we implicitly use the concepts of all three forms of considered regularization
frameworks. However, instead of adding additional regularizers to the baseline classifier as suggested
by the framework in [8], we will try to derive the corresponding counterparts from a semi-supervised
IB framework. In this way, we will try to justify their origin and investigate their impact on overall
classification accuracy for the same system architecture.

Information bottleneck: In the recent years, the IB framework [6] is considered to be a theoretical
framework for analysis and explanation of supervised deep learning systems. However, as shown
in [13], the original IB framework faces several practical issues: (i) for the deterministic deep networks,
either the IB functional is infinite for network parameters, that leads to the ill-posed optimization
problem, or it is piecewise constant, hence not admitting gradient-based optimization methods, and
(ii) the invariance of the IB functional under bijections prevents it from capturing properties of the
learned representation that are desirable for classification. In the same work, the authors demonstrate
that these issues can be partly resolved for stochastic deep networks, networks that include a (hard or
soft) decision rule, or by replacing the IB functional with related, but more well-behaved cost functions.
It is important to mention that the same authors also note that rather than trying to repair the inherent
problems in the IB functional, a better approach may be to design regularizers on latent representation
enforcing the desired properties directly.

In our work, we extend these ideas using variational approximation approach suggested in [14]
and that was also applied to unsupervised models in the previous work [15,16]. More particularly,
we extend the IB framework to the semi-supervised classification and as discussed above we will
consider two different ways of regularization of the latent space of classifier, i.e., either using traditional
hand-crafted priors or suggested learnable priors. Although we do not consider the semi-supervised
clustering and conditional generation in this work, the proposed findings can be extended to these
problems in a way similar to prior works such as AAE [2], ADGM [17] and SeGMA [18].

The closest works: The proposed framework is closely related to several families of
semi-supervised classifiers based on generative models. VAE (M1 + M2) [1] combines latent-feature
discriminative model M1 and generative semi-supervised model M2. A new latent representation
is learned using the generative model from M1 and subsequently a generative semi-supervised
model M2 is trained using embeddings from the first latent representation instead of the raw data.
Semi-supervised AAE classifier [2] is based on the AE architecture, where the encoder of AE outputs
two latent representations: one representing class and another style. The latent class representation is
regularized by an adversarial loss forcing it to follow categorical distribution. It is claimed that it plays
an essential role for the overall classification performance. The latent style representation is regularized
to follow Gaussian distribution. In both cases of VAE and AAE, the mean square error (MSE) metric
is used for the reconstruction space loss. CatGAN [3] is an extension of GAN and is based on an
objective function that trades-off mutual information between observed examples and their predicted
categorical class distribution, against robustness of the classifier to an adversarial generative model.

In contrast to the above approaches and following the IB framework, we formulate the
semi-supervised classification problem as a training of classifier that aims at compressing the input x

to some latent data a via an encoding that is supposed to retain only class relevant information that
is controlled by a decoder as shown in Figure 1. If the amount of labeled data is sufficiently large,
the supervised classifier can achieve this goal. However, when the amount of labeled examples is
small such an encoder-decoder pair representing an IB-driven classifier is regularized by a latent space
and adversarial label space regularizers to fill the gap in training data. The adversarial label space
regularization was already used in AAE and CatGAN. The latent space regularization in the scope
of IB framework was reported in [7]. In this paper, we demonstrate that both label and latent space
regularizations are instances of the generalized IB formulation developed in Section 3. At the same
time, in contrast to the hypothesis that the considered label space and latent space regularizations

183

Entropy 2020, 22, 943

are the driving factors behind the success of semi-supervised classifiers, we demonstrate that the
hand-crafted priors considered in these models cannot completely fulfil the lack of labelled data
and lead to relatively poor performance in comparison to a fully supervised system based on a sole
cross-entropy metric. For these reasons, we analyze another mechanism of regularization of latent
space based on learnable priors as shown in Figure 2 and developed in Section 4. Along this line,
we provide an IB formulation of AAE and explain the driving mechanisms behind its success as an
instance of IB with learnable priors. Finally, we present several extensions that explain the IB origin
and role of adversarial regularization in the reconstruction space.

Da x

qφa (a x) a qφa (a)

pθc(c a)
ĉ

I
φa,θc

L (A;C)

c ∼ p(c)c

pθc(c)

Iφa (X;A)

Da x

a ∼ pθa (a)a

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)c

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Figure 1. Classification with the hand-crafted latent space regularization.

qφa (a x)x ∼ pD(x) ax qφa (a)

xm,cm{ }m=1
N

z ∼ pθz(z)

Dz a,c

Dz c

z

x j{ }
j=1

J

pθc(c a) ĉ̂c Dc

Dcĉ

c ∼ p(c)c

pθc(c)

c ∼ p(c)c

pθx (x z,c)

Dx c

qφz(z a ,c) z

qφz(z)

Dxx̂

x ∼ pD(x)

I
φa,φz,θc,θx

L (X;Z C)

Iφa,φz,θc(A,Z | C)

(x,c) ∼ p(x,c)

x̂ ∼ pθx (x)

I
φa,θc

L (A;C)

Figure 2. Classification with the learnable latent space regularization.

Summary: The considered methods of semi-supervised learning can be differentiated based on:
(i) the targeted tasks (auto-encoding, clustering, generation or classification that can be accomplished
depending on available labeled data); (ii) the architecture in terms of the latent space representation (with

184

Entropy 2020, 22, 943

a single representation vector or with multiple representation vectors); (iii) the usage of IB or other
underlying frameworks (methods derived from the IB directly or using regularization techniques); (iv) the
label space regularization (based on available unlabeled data, augmented labeled data, synthetically
generated labeled and unlabeled data, especially designed adversarial examples); (v) the latent space
regularization (hand-crafted regularizers and priors or learnable priors under the reconstruction
and constrastive setups) and (vi) the reconstruction space regularization in case of reconstruction setup
(based on unlabeled and labeled data, augmented data under certain perturbations, synthetically
generated examples).

In this work, our main focus is the latent space regularization for the hand-crafted and learnable
priors under the reconstruction setup within the IB framework. Our main task is the semi-supervised
classification. We will not consider any augmentation and adversarial techniques besides a simple
stochastic encoding based on the addition of data independent noise at the system input or even
deterministic encoding without any form of augmentation. The regularization of the label space
and reconstruction space is solely based on the terms derived from the IB framework and only
includes available labeled and unlabeled data without any form of augmentation. In this way,
we want to investigate the role and impact of the latent space regularization as such in the IB-based
semi-supervised classification. The usage of the above mentioned techniques of augmentation should
be further investigated and will likely provide an additional performance improvement.

3. IB with Hand-Crafted Priors (HCP)

We assume that a semi-supervised classifier has an access to {xm, cm}N
m=1 training labeled samples,

where xm ∈ RD denotes mth data sample and cm corresponding encoded class label from the set
{1, 2, · · · , Mc}, generated from the joint distribution p(c, x), and non-labeled data samples

{
xj
}J

j=1
with J � N. To integrate the knowledge about the labeled and non-labeled data at training, one can
formulate the IB as:

LHCP(φa) = Iφa
(X; A)− βc Iφa

(A; C), (1)

where a denotes the latent representation, βc is a Lagrangian multiplier and the IB terms are defined

as Iφa
(X; A) = Eqφa (x,a)

[
log

qφa (a|x)
qφa (a)

]
and Iφa

(A; C) = Ep(c,x)

[
Eqφa (a|x)

[
log

qφa (c|a)
p(c)

]]
.

According to the above IB formulation the encoder qφa
(a|x) is trained to minimize the mutual

information between X and A while ensuring that the decoder qφa
(c|a) can reliably decide on labels C

from the compressed representation A. The trade-off between the compression and recognition terms
is controlled by βc. Thus, it is assumed that the information retained in the latent representation A

represents the sufficient statistics for the class labels C.
However, since optimal qφa

(c|a) is unknown, the second term Iφa
(A; C) is lower bounded by

Iφa,θc(A; C) using a variational approximation pθc(c|a):

Iφa
(A; C) � Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

p(c)

]]
= Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

p(c)
pθc(c|a)
pθc(c|a)

]]

= Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
+Ep(c,x)

[
Eqφa (a|x)

[
log

qφa
(c|a)

pθc(c|a)

]]

= Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
+Ep(c,x)

[
DKL(qφa

(c|a)||pθc(c|a))
]

≥ Ep(c,x)

[
Eqφa (a|x)

[
log

pθc(c|a)
p(c)

]]
,

(2)

where DKL(qφa
(c|a)||pθc(c|a)) = Eqφa (a|x)

[
log

qφa (c|a)
pθc (c|a)

]
and the inequality follows from the fact that

DKL(qφa
(c|a)||pθc(c|a)) ≥ 0. We denote the term Iφa,θc(A; C) = Ep(c,x)

[
Eqφa (a|x)

[
log pθc (c|a)

p(c)

]]
. Thus,

185

Entropy 2020, 22, 943

Iφa
(A; C) ≥ Iφa,θc(A; C).

Thus, the IB (1) can be reformulated as:

LHCPL(φa, θc) = Iφa
(X; A)− βc Iφa,θc(A; C). (3)

The considered IB is schematically shown in Figure 1 and we will proceed next with the detailed
development of each component of the IB formulation.

3.1. Decomposition of the First Term: Hand-Crafted Regularization

The first mutual information term Iφa
(X; A) in (3) can be decomposed using a factorization by a

parametric marginal distribution pθa(a) that represents a prior on the latent representation a:

Iφa
(X; A) = Eqφa (x,a)

[
log

qφa
(x, a)

qφa
(a)pD(x)

]
= Eqφa (x,a)

[
log

qφa
(a|x)

qφa
(a)

pθa(a)

pθa(a)

]

= EpD(x)
[
DKL

(
qφa

(a|X = x)‖pθa(a)
)]︸ ︷︷ ︸

Da|x

−DKL
(
qφa

(a)‖pθa(a)
)︸ ︷︷ ︸

Da

,
(4)

where the first term denotes the KL-divergence Da|x � DKL
(
qφa

(a|X = x)‖pθa(a)
)

=

Eqφa (a|x)
[
log

qφa (a|x)
pθa (a)

]
and the term denotes the KL-divergence Da � DKL

(
qφa

(a)‖pθa(a)
)

=

Eqφa (a)

[
log

qφa (a)

pθa (a)

]
.

It should be pointed out that the encoding qφa
(a|x) can be both stochastic or deterministic.

Stochastic encoding qφa
(a|x) can be implemented via: (a) multiplicative encoding applied to the input x

as a = fφa
(x" ε) or in the latent space a = fφa

(x)" ε, where fφa
(x) is the output of the encoder, "

denotes the element-wise product and ε follows some data independent or data dependent distribution
as in information dropout [7]; (b) additive encoding applied to the input x as a = fφa

(x + ε) with the
data independent perturbations, e.g., such as in PixelGAN [19], or in the latent space with generally
data-dependent perturbations of form a = fφa

(x) + σφa
(x)" ε, where fφa

(x) and σφa
(x) are outputs

of the encoder and ε is assumed to be a zero mean unit variance vector such as in VAE [1] or
(c) concatenative/mixing encoding a = fφa

([x, ε]) that is generally applied at the input of encoder.
Deterministic encoding is based on the mapping a = fφa

(x), i.e., no randomization is introduced, e.g.,
such as one of encoding modalities of AAE [2].

3.2. Decomposition of the Second Term

In this section, we factorize the second term in (3) to address the semi-supervised training, i.e., to
integrate the knowledge of both non-labeled and labeled data available at training:

Iφa,θc(A; C) � Ep(c,x)

[
Eqφa(a|x)

[
log

pθc(c|a)
p(c)

pθc(c)

pθc(c)

]]

= −Ep(c) [log pθc(c)]−Ep(c)

[
log

p(c)
pθc(c)

]
+Ep(c,x)

[
Eqφa (a|x) [log pθc(c|a)]

]
= H(p(c); pθc(c))− DKL (p(c)‖pθc(c))− Hθc,φa

(C|A),

(5)

with H(p(c); pθ(c)) = −Ep(c) [log pθc(c)] denoting a cross-entropy between p(c) and pθc(c), and

Dc � DKL (p(c)‖pθc(c)) = Ep(c)

[
log p(c)

pθc (c)

]
to be a KL-divergence between the prior class label

distribution p(c) and the estimated one pθc(c). One can assume different forms of labels’ c encoding
but one of the most often used forms is one-hot-label encoding that leads to the categorical distribution
p(c) = cat(c).

186

Entropy 2020, 22, 943

Finally, the conditional entropy is defined as Dcĉ � Hθc,φa
(C|A) =

−Ep(c,x)

[
Eqφa (a|x) [log pθc(c|a)]

]
.

Since H(p(c); pθc(c)) ≥ 0, one can lower bound (5) as Iφa,θc(A; C) ≥ IL
φa,θc

(A; C) where:

IL
φa,θc

(A; C) � −DKL (p(c)‖pθc(c))︸ ︷︷ ︸
Dc

−Hθc,φa
(C|A)︸ ︷︷ ︸
Dcĉ

.
(6)

3.3. Supervised and Semi-Supervised Models with/without Hand-Crafted Priors

Summarizing the above variational decomposition of (3) with the terms (4) and (6), we will
proceed with four practical scenarios.
Supervised training without latent space regularization (baseline): is based on term Dcĉ in (6)

LHCP
S−NoReg(θc, φa) = Dcĉ. (7)

Semi-supervised training without latent space regularization is based on terms Dcĉ and Dc in (6):

LHCP
SS−NoReg(θc, φa) = Dcĉ +Dc. (8)

Supervised training with latent space regularization is based on term Dcĉ in (6) and either term Da|x or Da

or jointly Da|x and Da in (4):

LHCP
S−Reg(θc, φa) = EpD(x)

[
Da|x

]
+Da + βcDcĉ. (9)

Semi-supervised training with latent space regularization deploys all terms in (4) and (6):

LHCP
SS−Reg(θc, φa) = EpD(x)

[
Da|x

]
+Da + βcDcĉ + βcDc. (10)

The empirical evaluation of these setups on MNIST dataset is given in Section 5. The same architecture
of encoder and decoder was used to establish the impact of each term in a function of available
labeled data.

4. IB with Learnable Priors (LP)

In this section, we extend the results obtained for the hand-crafted priors to the learnable priors.
Instead of applying the hand-crafted regularization of the latent representation a as suggested by the
IB (3) and shown in Figure 1, we will assume that the latent representation a is regularized by an
especially designed AE as shown in Figure 2. The AE-based regularization has two components: (i) the
latent space z regularization and (ii) the observation space regularization. The design and training of
this latent space regularizer in a form of the AE is guided by its own IB. In the general case, all elements
of AE, i.e., its encoder-decoder pair, latent and observation space regularizers are conditioned by
the learned class label c. The resulting Lagrangian with the learnable prior is (formally one should
consider Iφa,φz,θc(X; Z|C) for the term A. However, since Iφa,φz,θc(X; Z|C) ≤ Iφa,φz,θc(A; Z|C) due to
the Markovianity of considered architecture, we consider the decomposition starting from A [20],
Data Processing Inequality, Theorem 2.8.1):

LLP(φa, φz, θc, θx) = Iφa,φz,θc(A; Z|C)︸ ︷︷ ︸
A

−βx Iφa,φz,θc,θx(X; Z|C)︸ ︷︷ ︸
B

−βc IL
φa,θc

(A; C)︸ ︷︷ ︸
C

, (11)

where βx is a Lagrangian multiplier controlling the reconstruction of x at the decoder and βc is the
same as in (1).

187

Entropy 2020, 22, 943

The terms A and B, conditioned by the class c, play a role of the latent space regularizer by
imposing the learnable constrains on the vector a. These two terms correspond to the hand-crafted
counterpart Iφa

(X; A) in (3). The term C in the learnable IB formulation corresponds to the classification
part of hand-crafted IB in (3) and can be factorized along the same lines as in (6). Therefore, we will
proceed with the factorization of terms A and B.

One can also consider the following IB formulation with the learnable priors with no conditioning
on c in term A in (11) leading to an unconditional counterpart D below that can be viewed as an IB
generalization of semi-supervised AAE [2]:

LLP
AAE(φa, φz, θc, θx) = Iφa,φz

(A; Z)︸ ︷︷ ︸
D

−βx Iφa,φz,θc,θx(X; Z|C)︸ ︷︷ ︸
B

−βc IL
φa,θc

(A; C)︸ ︷︷ ︸
C

. (12)

4.1. Decomposition of Latent Space Regularizer

We will denote pφa,φz,θc(x, a, c, z) = pD(x)qφa
(a|x)pθc(c|a)qφz

(z|a, c) and decompose the term A
in (11) using variational factorization as:

Iφa,φz,θc(A, Z|C) = Epφa,φz,θc (x,a,c,z)

[
log

qφz
(z|a, c)

qφz
(z|c)

pθz(z)

pθz(z)

]

= EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
DKL

(
qφz

(z|A = a, C = c)‖pθz(z)
)]︸ ︷︷ ︸

Dz|a,c

]]
,

−EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
DKL

(
qφz

(z|C = c)‖pθz(z)
)]︸ ︷︷ ︸

Dz|c

]]
,

(13)

where Dz|a,c � DKL
(
qφz

(z|a, c)‖pθz(z)
)

= Eqφz (z|a,c)

[
log

qφz (z|a,c)
pθz (z)

]
and Dz|c �

DKL
(
qφz

(z|c)‖pθz(z)
)

= Eqφz (z|c)
[
log

qφz (z|c)
pθz (z)

]
denote the KL-divergence terms and qφz

(z|c) =

EpD(x)

[
Eqφa (a|x)

[
qφz

(z|a, c))
]]

.

4.2. Decomposition of Reconstruction Space Regularizer

Denoting pφa,φz,θc,θx(x, a, c, z) = pD(x)qφa
(a|x)pθc(c|a)qφz

(z|a, c)pθx(x|z, c), we decompose the
term B in (11) as:

Iφa,φz,θc,θx(X; Z|C) = Epφa,φz,θc,θc (x,a,c,z)

[
log

pθx(x|z, c)

pD(x|c)
pθx(x)

pθx(x)

]
= Epθc (c)

[H(pD(x|c); pθx(x))]

−Epθc (c)
[DKL (pD(x|C = c)‖pθx(x))]︸ ︷︷ ︸

Dx|c

−Hφa,φz,θc,θx(X|Z, C)︸ ︷︷ ︸
Dxx̂

,
(14)

where pθc(c) = EpD(x)

[
Eqφa

(a|x) [pθc(c|a)]
]
. The terms are defined as H(pD(x|c); pθx(x)) =

−EpD(x|c) [log pθx(x)], Dx|c � DKL (pD(x|C = c)‖pθx(x)) = EpD(x|c)
[
log pD(x|c)

pθx (x)

]
and

Dxx̂ � Hφa,φz,θc,θx(X|Z, C) = −EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Eqφz (z|a,c) [log pθx(x|z, c)]

]]]
. Since

Epθc (c)
[H(pD(x|c); pθx(x))] ≥ 0, we can lower bound Iφa,φz,θc,θx(X; Z|C) ≥ IL

φa,φz,θc,θx
(X; Z|C) �

−Dx|c −Dxx̂.

188

Entropy 2020, 22, 943

4.3. Semi-Supervised Models with Learnable Priors

Summarizing the above variational decomposition of (11) with the terms (13) and (14), we will
consider semi-supervised training with latent space regularization as:

LLP
SS−Reg(θc, θx, φa, φz) = EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Dz|a,c

]]]
+EpD(x)

[
Eqφa (a|x)

[
Epθc (c|a)

[
Dz|c

]]]
+ βxDxx̂ + βxEpθc (c)

[
Dx|c

]
+ βcDcĉ + βcDc.

(15)
To create a link to the semi-supervised AAE [2], we also consider (12), where all latent and
reconstruction space regularizers are independent of c, i.e., do not contain conditioning on c.

Semi-supervised training with latent space regularization and MSE reconstruction based on (12):

LLP
SS−AAE(θc, θx, φa, φz) = Dz + βxDxx̂ + βcDcĉ + βcDc, (16)

where Dz � DKL
(
qφz

(z)‖pθz(z)
)
= Eqφz (z)

[
log

qφz (z)

pθz (z)

]
.

Semi-supervised training with latent space regularization and with MSE and adversarial reconstruction
based on (12) deploys all terms:

LLP
SS−AAEcomplete

(θc, θx, φa, φz) = Dz + βxDxx̂ + βxDx + βcDcĉ + βcDc, (17)

where Dx � DKL (pD(x)‖pθx(x)) = EpD(x)

[
log pD(x)

pθx (x)

]
.

4.4. Links to State-Of-The-Art Models

The considered HCP and LP models can be linked with several state-of-the-art unsupervised
models such VAE [21,22], β-VAE [23], AAE [2] and BIB-AE [15] and semi-supervised models such as
AAE [2], CatGAN [3], VAE (M1 + M2) [1] and SeGMA [18].

4.4.1. Links to Unsupervised Models

The proposed LP model (11) generalizes unsupervised models without the categorical latent
representation. In addition, the unsupervised models in a form of the auto-encoder are used as a latent
space regularizer in the LP setup. For these reasons, we will briefly consider four models of interest,
namely VAE, β-VAE, AAE, and BIB-AE.

Before we proceed with the analysis, we will define an unsupervised IB for these models. We will
assume the fused encoders qφa

(a|x) and qφz
(z|a) without conditioning on c in the inference model

according to Figure 2. We also assume no conditionally on c in the generative model.
The Lagrangian of unsupervised IB is defined according to [15]:

LUL(θx, φz) = Iφz
(X; Z)− βx Iφz,θx(Z; X), (18)

where similarly to the supervised counterpart (4), we define the first term as:

Iφz
(X; Z) = Eqφz (x,z)

[
log

qφz
(x, z)

qφz
(z)pD(x)

]
= Eqφz (x,z)

[
log

qφz
(z|x)

qφz
(z)

pθz(z)

pθz(z)

]
= EpD(x)

[
DKL

(
qφz

(z|X = x)‖pθz(z)
)]︸ ︷︷ ︸

Dz|x

−DKL
(
qφz

(z)‖pθz(z)
)︸ ︷︷ ︸

Dz

,
(19)

and similarly to (14) the second term is defined as:

189

Entropy 2020, 22, 943

Iφz,θx(Z; X) = EpD(x)

[
Eqφz (z|x)

[
log

pθx(x|z)
pD(x)

pθx(x)

pθx(x)

]]
= H(pD(x|c); pθx(x))− DKL (pD(x)‖pθx(x))︸ ︷︷ ︸

Dx

−Hφz,θx(X|Z)︸ ︷︷ ︸
Dxx̂

, (20)

where the definition of all terms should follow from the above equations. Since H(pD(x|c); pθx(x)) ≥ 0,
we can lower bound Iφz,θx(Z; X) ≥ −Dx −Dxx̂.

Having defined the unsupervised IB variational bounded decomposition, we can proceed with an
analysis of the related state-of-the-art methods along the lines of analysis introduced in Summary part
of Section 2.

VAE [21,22] and β-VAE [23]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs two vectors

representing the mean and standard deviation vectors that control a new latent representation
z = fφz

(x) + σφz
(x)" ε, where fφz

(x) and σφz
(x) are outputs of the encoder and ε is assumed

to be a zero mean unit variance Gaussian vector.
3. The usage of IB or other underlying frameworks: both VAE and β-VAE use evidence lower bound

(ELBO) and are not derived from the IB framework. However, it can be shown [15] that the
Lagrangian (18) can be reformulated for VAE and β−VAE as:

Lβ−VAE(θx, φz) = EpD(x)

[
Dz|x

]
+ βxDxx̂, (21)

where βx = 1 for VAE. It can be noted that the VAE and β-VAE are based on an upper bound on

the mutual information term Iφz
(X; Z) ≤ EpD(x)

[
Dz|x

]
, since DKL

(
qφz

(z)‖pθz(z)
)
≥ 0. Similar

considerations apply to the second term since DKL (pD(x)‖pθx(x)) ≥ 0.
4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with Gaussian pdf.
6. The reconstruction space regularization in case of reconstruction loss: is based on the mean square

error (MSE) counterpart of Dxx̂ that corresponds to the Guassian likelihood assumption.

Unsupervised AAE [2]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs one vector in stochastic

or deterministic way as z = fφz
(x).

3. The usage of IB or other underlying frameworks: AAE is not derived from the IB framework. As shown
in [15], the AAE equivalent Lagrangian (18) can be linked with the IB formulation and defined as:

LAAE(θx, φz) = Dz + βxDxx̂, (22)

where βx = 1 in the original AAE formulation. It should be pointed out that the IB formulation
of AAE contains the term Dxx̂, whose origin can be explained in the same way as for the VAE.
Despite the fact that the term Dz indeed appears in (22) with the opposite sign, it cannot be
interpreted either as an upper bound on Iφz

(X; Z) similarly to the VAE or as a lower bound.
The goal of AAE is to minimize the reconstruction loss or to maximize the log-likelihood by
ensuring that the latent space marginal distribution qφz

(z) matches the prior pθz(z). The latter
corresponds to the minimization of DKL

(
qφz

(z)‖pθz(z)
)
, i.e., Dz term.

4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with zero mean unit variance

Gaussian pdf for each dimension.

190

Entropy 2020, 22, 943

6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE.

BIB-AE [15]:

1. The targeted tasks: auto-encoding and generation.
2. The architecture in terms of the latent space representation: the encoder outputs one vector using any

form of stochastic or deterministic encoding.
3. The usage of IB or other underlying frameworks: the BIB-AE is derived from the unsupervised IB (18)

and its Lagrangian is defined as:

LBIB−AE(θx, φz) = EpD(x)

[
Dz|x

]
−Dz + βxDx + βxDxx̂. (23)

4. The label space regularization: does not apply here due to the unsupervised setting.
5. The latent space regularization: is based on the hand-crafted prior with Gaussian pdf applied to

both conditional and unconditional terms. In fact, the prior for Dz can be any but Dz|x requires
analytical parametrisation.

6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE counterpart
of Dxx̂ and the discriminator Dx. This is a disctintive feature in comparison to VAE and AAE.

In summary, BIB-AE includes VAE and AAE as two particular cases. In turns, it should be clear
that the regularizer of semi-supervised model considered in this paper resembles the BIB-AE model
and extends it to the conditional case that will be considered below.

4.4.2. Links to Semi-Supervised Models

The proposed LP model (11) is also related to several state-of-the-art semi-supervised models
used for the classification. As pointed out in the introduction, we only consider available labeled
and unlabeled samples in our analysis. The extension to the augmented samples, i.e., permutations,
syntehtically generated samples, i.e., fakes, and the adversarial examples for both latent space and
label space regularizations can be performed along the line of analysis but it goes beyond the scope
and focus of this paper.

Semi-supervised AAE [2]:

1. The targeted tasks: auto-encoding, clustering, (conditional) generation and classification.
2. The architecture in terms of the latent space representation: the encoder outputs two vectors

representing the discrete class and continuous type of style. The class distribution is assumed to
follow categorical distribution and style Gaussian one. Both constraints on the prior distributions
are ensured using adversarial framework with two corresponding discriminators. In its original
setting, AAE does not use any augmented samples or adversarial examples.

Remark: It should be pointed out that in our architecture we consider the latent space to be
represented by the vector a, which is fed to the classifier and regularizer that gives a natural
consideration of IB and corresponding regularization and priors. In the case of semi-supervised
AAE, the latent space is considered by the class and style representations directly. Therefore,
to make it coherent with our case, one should assume that the class vector of semi-supervised
AAE corresponds to the vector c and the style vector to the vector z.

3. The usage of IB or other underlying frameworks: AAE is not derived from the IB framework. However,
as shown in our analysis the semi-supervised AAE represents the learnable prior case in part
of latent space regularization. The corresponding Lagrangian of semi-supervised AAE is given
by (16) and considered in Section 4.3.

4. The label space regularization: is based on the adversarial discriminator in assumption that the class
labels follow categorical distribution. This is applied to both labeled and unlabeled samples.

5. The latent space regularization: is based on the learnable prior with Gaussian pdf of AE.

191

Entropy 2020, 22, 943

6. The reconstruction space regularization in case of reconstruction loss: is only based on the MSE.

CatGAN [3]: is based on an extension of classical GAN binary discriminator designed to
distinguish between the original images and fake images generated from the latent space distribution to
a multi-class discriminator. The author assumes the one-hot-vector encoding of class labels. The system
is considered for the unsupervised and semi-supervised modes. For both modes the one-hot-vector
encoding is used to encoded class labels. For the unsupervised mode, the system has an access only
to the unlabeled data and the output of the classifier is considered to be a clustering to a predefined
number of clusters/classes. The main idea behind the unsupervised training consists of a training of
the discriminator that any sample from the set of original images is assigned to one of the classes with
high fidelity whereas any fake or adversarial sample is assigned to all classes almost equiprobably.
This corresponds to the fake samples and the regularization in the label space is based on the considered
and extended framework of entropy minimization-based regularization. In the case of absence of
fakes, this regularization coincides with the semi-supervised AAE label space regularization under the
categorical distribution and adversarial discriminator that is equivalent to enforcing the minimum
entropy of label space. However, the encoding of fake samples is equivalent to a sort of rejection
option expressed via the activation of classes that have maximum entropy or uniform distribution over
the classes. Equivalently, the above types of encoding can be considered to be the maximization of
mutual information between the original data and encoded class labels and minimization of mutual
information between the fakes/adversarial samples and the class labels. Semi-supevised CatGAN
model adds a cross-entropy term computed for the true labeled samples.

Therefore, in summary:

1. The targeted tasks: auto-encoding, clustering, generation and classification.
2. The architecture in terms of the latent space representation: there is no encoder as such and instead the

system has a generator/decoder that generates samples from a random latent space a following
some hand-crafted prior. The second element of architecture is a classifier with the min/max
entropy optimization for the original and fake samples. The encoding of classes is assumed to be
a one-hot-vector encoding.

3. The usage of IB or other underlying frameworks: CatGAN is not derived from the IB framework.
However, as shown in [15], one can apply the IB formulation to the adversarial generative models
as in the case of CatGAN assuming that the term Iφa

(X; A) = 0 in (3) due to the absence of
encoder as such. The minimization problem (3) reduces to the maximization of the second term
Iφa,θc(A; C) expressed via its lower bound of variational decomposition (6). The first term Dc

enforces that the class labels of unlabeled samples follow the defined prior distribution p(c) with
the above property of entropy minimization under one-hot-vector encoding whereas the second
term Dcĉ reflects the supervised part for labeled samples. In the original CatGAN formulation,
the author does not use the expression for the mutual information for the decoder/generator
training as it is shown above but instead uses the decomposition of mutual information via the
difference of corresponding entropies (see, first two terms in (9) in [3]). As we have pointed
out, we do not include in our analysis the term corresponding to the fake samples as in original
CatGAN. However, we do believe that this form of regularization does play an important role for
the semi-supervised classification. The impact of this terms requires additional studies.

4. The label space regularization: is based on the above assumptions for labeled samples, which
are included into the cross-entropy term, unlabeled samples included into the entropy
minimization term and fake samples included into the entropy maximization term in the original
CatGAN method.

5. The latent space regularization: is based on the hand-crafted prior.
6. The reconstruction space regularization in case of reconstruction loss: is based on the adversarial

discriminator only.

192

Entropy 2020, 22, 943

SeGMA [18]: is a semi-supervised clustering and generative system with a single latent vector
representation auto-encoder similar in spirit to the unsupervised version of AAE that can be also
used for the classification. The latent space of SeGMA is assumed to follow a mixture of Gaussians.
Using a small labeled data set, classes are assigned to components of this mixture of Gaussians by
minimizing the cross-entropy loss induced by the class posterior distribution of a simple Gaussian
classifier. The resulting mixture describes the distribution of the whole data, and representatives of
individual classes are generated by sampling from its components. In the classification setup, SeGMA
uses the latent space clustering scheme for the classification.

Therefore, in summary:

1. The targeted tasks: auto-encoding, clustering, generation and classification.
2. The architecture in terms of the latent space representation: a single vector representation following

mixture of Gaussians distribution.
3. The usage of IB or other underlying frameworks: SeGMA is not derived from the IB framework

but a link to the regularized ELBO an other related auto-encoders with interpretable latent
space is demonstrated. However, as in previous methods it can be linked to the considered IB
interpretation of the semi-supervised methods with hand-crafted priors (16). An equivalent
Lagrangian of SeGMA is:

LSeGMA(θc, θx, φz) = Dz + βxDxx̂ + βcDcĉ, (24)

where the latent space discriminatorDz is assumed to be the maximum mean discrepancy (MMD)
penalty that is analytically defined for the mixture of Gaussians pdf, Dxx̂ is represented by the
MSE and Dcĉ represents the cross-entropy for the labeled data defined over class labels deduced
from the latent space representation.

4. The label space regularization: is based on the above assumptions for labeled samples, which are
included into the cross-entropy term as discussed above.

5. The latent space regularization: is based on the hand-crafted mixture of Gaussians pdf.
6. The reconstruction space regularization in case of reconstruction loss: is based on the MSE.

VAE (M1 + M2) [1]: is based on the combination of several models. The model M1 represents a
vanilla VAE considered in Section 4.4.1. Therefore, model M1 is a particular case of considered
unsupervised IB. The model M2 is a combination of encoder producing a continuous latent
representation and following Gaussian distribution and a classifier that takes as an input original data
in parallel to the model M1. The class labels are encoded using the one-hot-vector representations and
follow categorical distribution with a hyper-parameter following the symmetric Dirichlet distribution.
The decoder of model M2 takes as an input the continuous latent representation and output of classifier.
The decoder is trained under the MSE distortion metric. It is important to point out that the classifier
works with the input data directly but not with the common latent space such as in the considered
LP model. For this reason, it is an obvious analogy with the considered LP model (11) under the
assumption that a = x and all performed IB analysis directly applies to. However, as pointed by the
authors, the performance of model M2 in the semi-supervised classification for the limited number of
labeled samples is relatively poor. That is why the third hybrid model M1 + M2 is considered when
the models M1 and M2 and used in a stacked way. At the first stage, the model M1 is learned as
the usual VAE. Then the latent space of model M1 is used as an input to the model M2 trained in
a semi-supervised way. Such a two-stage approach closely resembles the learnable prior architecture
presented in Figure 2. However, our model is end-to-end trained with the explainable common latent
space and IB origin, while the model M1 + M2 is trained in two stages with the use of regularized
ELBO for the derivation of model M2.

1. The targeted tasks: auto-encoding, clustering, (conditional) generation and classification.

193

Entropy 2020, 22, 943

2. The architecture in terms of the latent space representation: the stacked combination of models M1
and M2 is used as discussed above.

3. The usage of IB or other underlying frameworks: VAE M1 + M2 is not derived from the IB
framework but it is linked to the regularized ELBO with the cross-entropy for the labeled samples.
The corresponding IB Lagrangian of semi-supervised VAE M1 + M2 under the assumption of
end-to-end training can be defined as:

LLP
SS−VAE M1+M2(θc, θx, φa, φz) = EpD(x)

[
Dz|x

]
+ βxDxx̂ + βcDcĉ + βcDc. (25)

4. The label space regularization: is based on the assumption of categorical distribution of labels.
5. The reconstruction space regularization in case of reconstruction loss: is only based on the MSE.

5. Experimental Results

5.1. Experimental Setup

The tested system is based on (i) the deterministic encoder and decoder, (ii) the stochastic
encoder of type a = fφa

(x + ε) with the data independent perturbations ε and deterministic decoder.
The density ratio estimator [24] is used to measure all KL-divergences. The results of semi-supervised
classification on the MNIST dataset are reported in Table 1, where symbol D indicates the deterministic
setup (i) and symbol S corresponds to the stochastic one (ii). To choose the optimal parameters of
systems, e.g., the Lagrangian multipliers in the considered models, we used 3-run cross-validation
with the randomly chosen labeled examples as shown in Appendices B–G. Once the model parameters
were chosen, we run 10 time cross-validation and the average results are shown in Table 1.

Additionally, we performed a 10-run cross-validation on the SVHN dataset [25]. We used the
same architecture as for MNIST with the same encoders, decoders and discriminators. In contrast to
VAE M1 + M2, we used normalized raw data without any pre-processing. Additionally, in contrast
to AAE, where an extra set of 531,131 unlabeled images was used for the semi-supervised training,
in our experiments only a train set of 73,257 images was used for training. Moreover, the experiments
were performed: (i) for the optimal parameters chosen after 3-run cross-validation for the MNIST
dataset with no special adaption to SVHN dataset and (ii) under the network architectures with exactly
the same number of used filters as given in Appendices B–G for the MNIST dataset. In summary,
our goal is to test the generalization capacity of the proposed approach but not just to achieve the best
performance by fine-tuning of network parameters. The obtained results are represented in Table 1.

We compare the considered architectures with several state-of-the-art semi-supervised methods
such as AAE [2], CatGAN [3], VAE (M1 + M2) [1], IB multiview [5], MV-InfoMax [5] and InfoMax [3]
with 100, 1000 and 60,000 training labeled samples. The expected training times for the considered
models are given in Table 2. The source code is available at https://github.com/taranO/IB-semi-
supervised-classification. The analysis of the latent space of trained models for the MNIST dataset is
given in Appendix A.

5.2. Discussion MNIST

The deterministic and stochastic systems based on the learnable priors clearly demonstrate the
state-of-the-art performance in comparison to the considered semi-supervised counterparts.

Baseline Neural Network (NN): the obtained results allow concluding that, if the amount of labeled
training data is large, as shown in “all” column (Table 1), the latent space regularization has no
practically significant impact on the classification performance for both hand crafted and learnable
priors. The deep classifier is capable of learning a latent representation retaining only sufficient
statistics in the latent space solely based on the cross-entropy component of IB classification term
decomposition as shown in Table A1, row Dcĉ and column “all”. The classes appear to be well
separable under this form of visualization. At the same time, the decrease of number of labeled

194

Entropy 2020, 22, 943

samples leads to the degradation of classification accuracy as show in Table 1 for columns “1000”
and “100”. This degradation is also clearly observed in Table A1, row Dcĉ and column “l00”, where
there is larger overlap between the classes compared to the column “all”. The stochastic encoding
via the addition of noise to the input samples does not enhance the performance with respect to the
deterministic decoding for the small amount of labeled examples. One can assume that the presence
of additive noise is not typical for the considered data, whereas the samples clearly differ in the
geometrical appearance. Therefore, we can only assume that random geometrical permutations would
be a more interesting alternative to the additive noise permutations/encoding.

Table 1. Semi-supervised classification performance (percentage error) for the optimal parameters
(Appendices B–G) defined on the MNIST (D—deterministic; S—stochastic).

MNIST (100) MIST (1000) MNIST (all) SVHN (1000)

NN Baseline (Dcĉ) [D] 26.31 (±0.91) 7.50 (±0.19) 0.68 (±0.05) 36.16 (±0.77)
[S] 26.78 (±1.66) 7.54 (±0.25) 0.70 (±0.05) 36.28 (±0.93)

InfoMax [3] [S] 33.41 21.5 15.86 -
VAE [5] [S] 14.26 8.71 5.02 -
MV-InfoMax [5] [S] 13.22 7.39 6.07 -
IB multiview [5] [S] 3.03 2.34 2.22 -
VAE (M1 + M2) [5] [S] 3.33 (±0.14) 2.40 (±0.02) 0.96 36.02 (±0.10)
CatGAN [S] 1.91 (±0.10) 1.73 (±0.18) 0.91 -
AAE [D] 1.90 (±0.10) 1.60 (±0.08) 0.85 (±0.02) 17.70 (±0.30)

No priors on latent space

Dcĉ +Dc
[D] 20.72 (±1.58) 4.99 (±0.28) 0.69 (±0.04) 25.78 (±0.90)
[S] 19.60 (±1.37) 4.49 (±0.25) 0.67 (±0.05) 26.34 (±0.80)

Hand crafted latent space priors

βcDcĉ +Da
[D] 27.44 (±1.40) 6.77 (±0.34) 0.91 (±0.05) 35.94 (±1.08)
[S] 27.48 (±1.07) 6.91 (±0.45) 0.88 (±0.05) 35.80 (±1.21)

βcDcĉ +Da + βcDc
[D] 12.04 (±4.46) 2.43 (±0.12) 0.81 (±0.05) 24.70 (±0.46)
[S] 11.80 (±3.82) 2.40 (±0.10) 0.82 (±0.04) 24.62 (±0.54)

Learnable latent space priors

βcDcĉ + βcDc +Dz + βxDxx̂
[D] 1.55 (±0.21) 1.25 (±0.10) 0.74 (±0.04) 20.07 (±0.36)
[S] 1.49 (±0.18) 1.43 (±0.06) 0.78 (±0.04) 20.00 (±0.31)

βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx
[D] 1.38 (±0.09) 1.21 (±0.10) 0.77 (±0.06) 19.75 (±0.52)
[S] 1.42 (±0.10) 1.16 (±0.09) 0.79 (±0.02) 19.71 (±0.26)

No priors on latent space: to investigate the impact of unlabeled data, we add the adversarial
regularizer Dc to the baseline classifier based on Dcĉ. The term Dc enforces the distribution of class
labels for the unlabeled samples to follow the categorical distribution. At this stage, no regularization
of latent space is applied. The addition of the adversarial regularizer Dc, see “100” column (Table 1),
allows reducing the classification error in comparison to the baseline classifier. Moreover, the stochastic
encoder slightly outperforms the deterministic one for all numbers of labeled samples. However, the
achieved classification error is far away from the performance of baseline classifier trained on the
whole labeled data set. Thus, the cross-entropy and adversarial classification terms alone can hardly
cope with the lack of labeled data, and proper regularization of the latent space is the main mechanism
capable of retaining the most relevant representation.

Hand crafted latent space priors: along this line we investigate the impact of hand-crafted regularization
in the form of the added discriminator Da imposing Gaussian prior on the latent representation
a. The sole regularization of latent space with the hand-crafted prior on the Gaussianity does not
reflect the complex nature of latent space of real data. As a result the performance of the regularized
classifier βcDcĉ +Da does not lead to a remarkable improvement in comparison to the non-regularized
counterpart Dcĉ for both stochastic and deterministic types of encoding. When in addition the label
space regularization Dc is added to the final classifier βcDcĉ +Da + βcDc, it leads to the factor of 2
classification error reduction over the cross-entropy baseline classifier but it is still far away from the
fully supervised baseline classifier trained on the fully labeled data set. At the same time, there is no
significant difference between the stochastic and deterministic types of encoding.

195

Entropy 2020, 22, 943

Learnable latent space priors: along this line we will investigate the impact of learnable priors by
adding the corresponding regularizations of the latent space of auto-encoder and data reconstruction.
We investigate the role of reconstruction space regularization based on the MSE expressed via Dxx̂ and
joint Dxx̂ and Dx. The addition of discriminator Dx slightly enhances the classification but requires
almost doubled training time as shown in Table 2. The stochastic encoding does not show any obvious
advantage over the deterministic one in this setup. The separability of classes shown in Table A1,
row βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx and column ”l00”, is very close to those of column “all” and
rowDcĉ, i.e., the semi-supervised system with 100 labeled examples is capable of closely approximating
the fully supervised one. We show the t-sne only for this setup since it practically coincides with
βcDcĉ + βcDc + Dz + βxDxx̂. However, it should be pointed out that the learnable priors ensures
the reconstruction of data from the compressed latent space and the learned representation is the
sufficient statistics for the data reconstruction task but not for the classification one. Since the entropy
of the classification task is significantly lower to those of reconstruction, such a learned representation
contains more information than actually needed for the classification task. A fraction of retained
information is irrelevant to the classification problem and might be a potential source of classification
errors. This likely explains a gap in performance between the considered semi-supervised system and
fully supervised one.

Table 2. Execution time (hours) per 100 epochs on one NVIDIA GPU. For the SVHN the models with
the learnable latent space priors were trained with a learning rate 0.0001 that explains the longer time
but without optimization of Lagrangians, i.e., the Lagrangians were re-used from pre-trained MNIST
model. All the others models were trained with a learning rate 0.001.

MNIST SVHN

NN Baseline (Dcĉ) 0.47–0.65 0.85–0.92

No priors on latent space
Dcĉ +Dc 0.47–0.65 0.85–0.92

Hand crafted latent space priors
βcDcĉ +Da 0.47–0.65 1–1.05
βcDcĉ +Da + βcDc 0.97–1.18 1.5–1.6

Learnable latent space priors
βcDcĉ + βcDc +Dz + βxDxx̂ 1.23–1.6 2.25–2.3
βcDcĉ + βcDc +Dz + βxDxx̂ + βxDx 1.98–2.42 3.5–3.55

5.3. Discussion SVHN

In the SVHN test, we did not try to optimize the Lagrangian coefficients as it was done for MNIST.
However, to compensate for a potential non-optimality, we perform the model training with the
reduced learning rate as indicated in Table 2. As a result, the training time on the SVHN dataset is
longer. Therefore, 10-run validation of the proposed framework on the SVHN dataset was done with
the optimal Lagrangian multipliers determined on the MNIST dataset. In this respect, one might
observe a small degradation of the obtained results compared to the state-of-the-art. Additionally,
we did not apply any pre-processing such as PCA that was used in VAE M1 + M2 and we did not use
the extended unlabeled dataset as it was done in case of AAE. One can clearly observe the same behavior
of semi-supervised classifiers as for MNIST data set discussed in Section 5.2. Therefore, we can clearly
confirm the role of learnable priors in the overall performance observed for both datasets.

6. Conclusions and Future Work

We have introduced a novel formulation of variational information bottleneck for semi-supervised
classification. To overcome the problem of original bottleneck and to compensate the lack of labeled
data in the semi-supervised setting, we considered two models of latent space regularization via
hand-crafted and learnable priors. On a toy example of MNIST dataset we investigated how the
parameters of proposed framework influence the performance of classifier. By end-to-end training,

196

Entropy 2020, 22, 943

we demonstrate how the proposed framework compares to the state-of-the-art methods and approaches
the performance of fully supervised classifier.

The envisioned future work is along the lines of providing a stronger compression yet preserving
only classification task relevant information since retaining more task irrelevant information does not
provide distinguishable classification features, i.e., it only ensures reliable data reconstruction. In this
work, we have considered IB for the predictive latent space model. We think that the contrastive
multi-view IB formulation would be an interesting candidate for the regularization of latent space.
Additionally, we did not use the adversarially generated examples to impose the constraint on the
minimization of mutual information between them and class labels or equivalently to maximize
the entropy of class label distribution for these adversarial examples according to the framework
of entropy minimization. This line of “adversarial” regularization seems to be a very interesting
complement to the considered variational bottleneck. In this work, we considered a particular form of
stochastic encoding by the addition of data independent noise to the input with the preservation of the
same class labels. This also corresponds to the consistency regularization when samples can be more
generally permuted including the geometrical transformations. It is also interesting to point out that
the same form of generic permutations is used in the unsupervised constrastive loss-based multi-view
formulations for the continual latent space representation as opposed to the categorical one in the
consistency regularization. Finally, the conditional generation can be an interesting line of research
considering the generation from discrete labels and continuous latent space of the autoencoder.

Author Contributions: Conceptualization, S.V. and O.T.; methodology, O.T., M.K., T.H. and D.R.; software, O.T.;
validation, O.T.; formal analysis, M.K., T.H. and D.R.; investigation, O.T.; writing—original draft preparation, S.V.
and O.T., writing—review and editing, ALL; visualization, S.V. and O.T.; supervision, S.V.; project administration,
S.V., All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss National Science Foundation SNF No. 200021_182063.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IB Information bottleneck
VAE Variational autoencode
AAE Adversarial autoencoder
CatGAN Categorical generative adversarial networks
KL-divergences Kullback–Leibler divergences
MSE Mean squared error
HCP IB with hand-crafted priors
LP IB with learnable priors
NN Neural Network
SS Semi-supervised

197

Entropy 2020, 22, 943

Appendix A. Latent Space of Trained Models

MNIST (100) MIST (1000) MNIST (all)

Dcĉ

Dcĉ +
αcDc

Dcĉ +
αaDa

Dcĉ +
αaDa +
αcDc

Dcĉ +
Dc +
Dz +
Dxx̂ +
αxDx

Figure A1. Latent space a (of size 1024) of classifier.

MNIST (100) MIST (1000) MNIST (all)

Dcĉ +
Dc +
Dz +
Dxx̂ +
αxDx

Figure A2. Latent space z (of size 20) of auto-encoder.

In this section, we consider the properties of classifier’s latent space for both the hand-crafted and
learnable priors under different amount of training samples. Figures A1 and A2 show t-sne plots for
the perplexity 30 for 100, 1000 and 60,000 (“all”) training labels of the MNIST dataset.

The first raw of Figure A1 with the label “Dcĉ” corresponds to the classifier considered in
Appendix B. The latent space a of the classifier with “all” labels demonstrates the perfect separability

198

Entropy 2020, 22, 943

of classes. The classes are far away from each other and there are practically no outliers leading to the
misclassification. The decrease of the number of labels in the supervised setup, see the columns 1000
and 100, leads to a visible degradation of separability between the classes.

The regularization of class label space by the regularizer Dc or by the hand-crafted latent space
regularizer Da shown in raws “Dcĉ + αcDc” considered in Appendix C and “Dcĉ + αaDa” considered
in Appendix D for the small number of training samples equal 100 does not significantly enhance the
class separability with respect to “Dcĉ”.

At the same time, the joint usage of the above regularizers according to the model “Dcĉ + αcDc +

αaDa” according to the model in Appendix E leads to the better separability of classes for 100 labels in
comparison with the previous cases. At the same time, the addition of these regularizers does not have
any impact on the latent space for “all” label case.

The introduction of learnable regularization of latent space along with the class label regularization
according to the model “Dcĉ +Dc +Dz +Dxx̂ + αxDx” considered in Appendix G enhances the class
separability in the latent space of classifier for 100 label case that is also very close to the fully
supervised case.

For the comparison reasons, we also visualize the latent space of the auto-encoder z for the above
model in Figure A2.

Appendix B. Supervised Training without Latent Space Regularization (Baseline)

The baseline architecture is based on the cross-entropy term Dcĉ (7) in the main part of paper and
depicted in Figure A3:

LHCP
S−NoReg(θc, φa) = Dcĉ. (A1)

The parameters of encoder and decoder are shown in Table A1. The performance of baseline
supervised classifier with and without batch normalization corresponds to the parameter αc = 0 in
Table A3 (deterministic scenario) and Table A4 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

pθc(c a)
ĉ

I
φa,θc

L (A;C)

c ∼ p(c)

pθc(c)

Iφa (X;A)
a ∼ pθa (a)

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)c

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

IφI aφ (X;A)

Da x

∼ pθa (a)a

Da

∼ p(c)c

Dc

Figure A3. Baseline classifier based on Dcĉ. The blue shadowed regions are not used.

199

Entropy 2020, 22, 943

Table A1. The network parameters of baseline classifier trained on Dcĉ. The encoder is trained with
and without batch normalization (BN) after Conv2D layers.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Appendix C. Semi-Supervised Training without Latent Space Regularization and with Class
Label Regularizer

This model is based on terms Dcĉ and Dc in (8) in the main part of paper and schematically shown
in Figure A4:

LHCP
SS−NoReg(θc, φa) = Dcĉ + αcDc. (A2)

The parameters of encoder, decoder and discriminator are shown in Table A2. The KL-divergence
term Dc is implemented in a form of density ratio estimator (DRE). In the considered practical
implementation, the parameter αc controls the trade-off between the cross-entropy and class
discriminator terms. The discriminatorDc is trained in an adversarial way based on samples generated
by the decoder and from targeted distribution.

The performance of semi-supervised classifier with and without batch normalization is shown in
Table A3 (deterministic scenario) and Table A4 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

pθc(c a)
ĉ

I
φa,θc

L (A;C)

c ∼ p(c)c

pθc(c)

Iφa (X;A)
a ∼ pθa (a)

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)c

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

IφI aφ (X;A)

Da x

∼ pθa (a)a

Da

Figure A4. Semi-supervised classifier based on the cross-entropyDcĉ and categorical class discriminator
Dc. No latent space regularization is applied. The blue shadowed regions are not used.

200

Entropy 2020, 22, 943

Table A2. The network parameters of semi-supervised classifier trained on Dcĉ and Dc. The encoder is
trained with and without batch normalization (BN) after Conv2D layers.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Table A3. The performance (percentage error) of deterministic classifier based on Dcĉ + αcDc for
the encoder with and without batch normalization as a function of Lagrangian multiplier αc and the
number of labelled examples.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0 26.56 26.24 28.04 26.95 0.96
0.005 20.44 21.93 18.98 20.45 1.48

0.0005 18.55 20.43 20.59 19.86 1.14
1 19.23 22.42 20.57 20.74 1.60

with BN

0 29.37 29.27 30.62 29.75 0.75
0.005 27.97 28.02 26.27 27.42 1.00

0.0005 25.99 23.70 24.47 24.72 1.17
1 27.78 31.98 35.88 31.88 4.05

MNIST 1000

without BN

0 7.74 6.99 6.97 7.23 0.44
0.005 5.62 6.06 5.60 5.76 0.26

0.0005 6.30 6.12 6.02 6.15 0.14
1 5.99 6.27 6.28 6.18 0.16

with BN

0 7.45 6.95 7.52 7.31 0.31
0.005 5.57 5.08 5.22 5.29 0.25

0.0005 5.60 6.05 6.22 5.96 0.32
1 6.05 6.41 5.82 6.09 0.30

201

Entropy 2020, 22, 943

Table A3. Cont.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST all

without BN

0 0.83 0.83 0.74 0.80 0.05
0.005 0.83 0.82 0.88 0.84 0.03

0.0005 0.86 0.92 0.82 0.87 0.05
1 0.72 0.85 0.87 0.81 0.08

with BN

0 0.73 0.67 0.79 0.73 0.06
0.005 0.72 0.73 0.70 0.72 0.02
0.0005 0.75 0.77 0.72 0.75 0.03

1 0.67 0.68 0.73 0.69 0.03

Table A4. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αcDc for the encoder with and without batch
normalization as a function of Lagrangian multiplier αc and the number of labelled examples.

Encoder Model αc
Runs

Mean std
1 2 3

MNIST 100

without BN

0 25.75 26.61 26.59 26.32 0.49
0.005 23.34 21.38 24.37 23.03 1.52

0.0005 19.92 15.83 16.03 17.26 2.31
1 22.51 20.48 21.28 21.42 1.02

with BN

0 30.26 31.24 29.3 30.27 0.97
0.005 21.17 24.41 24.75 23.44 1.98

0.0005 22.97 26.38 24.44 24.60 1.71
1 26.62 30.43 28.44 28.50 1.91

MNIST 1000

without BN

0 7.68 7.30 7.23 7.4 0.24
0.005 5.59 5.16 5.80 5.52 0.33

0.0005 5.59 6 5.84 5.81 0.21
1 6.66 6.8 7.62 7.03 0.52

with BN

0 6.97 7.06 7.66 7.23 0.38
0.005 4.42 4.54 4.08 4.35 0.24

0.0005 5.28 5.56 5.14 5.33 0.21
1 5.77 5.88 5.72 5.79 0.08

MNIST all

without BN

0 0.8 0.91 0.87 0.86 0.06
0.005 0.77 0.82 0.88 0.82 0.06

0.0005 0.86 0.81 0.87 0.85 0.03
1 0.93 0.85 0.92 0.90 0.04

with BN

0 0.65 0.67 0.71 0.68 0.03
0.005 0.69 0.77 0.68 0.71 0.05

0.0005 0.78 0.71 0.74 0.74 0.04
1 0.71 0.64 0.62 0.66 0.05

Appendix D. Supervised Training with Hand Crafted Latent Space Regularization

This model is based on the cross-entropy term Dcĉ and either term Da|x or Da or jointly Da|x and
Da as defined by (9) in the main part of paper. In our implementation, we consider the regularization
based on the adversarial term Da similar to AAE due to the flexibility of imposing different priors
on the latent space distribution. The implemented system is shown in Figure A5 and the training is
based on:

LHCP
S−Reg(θc, φa) = Dcĉ + αaDa, (A3)

202

Entropy 2020, 22, 943

where αa is a regularization parameter controlling a trade-off between the cross-entropy term and
latent space regularization term. We have replaced the Lagrangians above with respect to (9) in the
main part of paper and used it in front of Da in contrast to the original formulation (9). It is done to
keep the term Dcĉ without a multiplier as the reference to the baseline classifier.

The parameters of encoder, decoder and discriminator are summarized in Table A5.
The performance of this classifier without and with batch normalization is shown in Table A6
(deterministic scenario) and Table A7 (stochastic scenario).

Da x

qφa (a x) a qφa (a)

pθc(c a)
ĉ

I
φa,θc

L (A;C)

c ∼ p(c)

pθc(c)

Iφa (X;A)a ∼ pθa (a)a

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)c

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Da x

∼ p(c)c

Dc

Figure A5. Supervised classifier based on the cross-entropy Dcĉ and hand crafted latent space
regularization Da. The blue shadowed parts are not used.

Table A5. The network parameters of supervised classifier trained on Dcĉ and Da. The encoder
is trained with and without batch normalization (BN) after Conv2D layers. Da is trained in the
adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Da

Size Layer

1024 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

203

Entropy 2020, 22, 943

Table A6. The performance (percentage error) of deterministic classifier based on Dcĉ + αaDa for the
encoder with and without batch normalization as a function of Lagrangian multiplier.

Encoder Model αa

Runs
Mean std

1 2 3

MNIST 100

without BN

0 26.79 27.26 27.39 27.15 0.32
0.005 28.05 25.95 30.72 28.24 2.39
0.0005 26.67 27.69 28.46 27.61 0.89

1 33.42 33.05 34.81 33.76 0.92

with BN

0 30.37 29.32 29.82 29.83 0.52
0.005 28.02 31.49 30.80 30.11 1.84
0.0005 34.54 31.92 29.82 31.09 2.36

1 34.43 44.35 44.25 41.01 5.70

MNIST 1000

without BN

0 7.16 8.12 7.55 7.61 0.48
0.005 7.02 6.34 6.59 6.65 0.34
0.0005 6.73 6.34 6.82 6.63 0.26

1 9.49 9.93 10.56 9.99 0.54

with BN

0 7.39 7.83 7.92 7.72 0.28
0.005 7.94 7.15 8.53 7.88 0.69
0.0005 8.00 9.62 9.51 9.05 0.91

1 15.79 14.88 13.71 14.79 1.04

MNIST all

without BN

0 0.76 0.70 0.81 0.76 0.06
0.005 1.07 1.03 1.13 1.08 0.05
0.0005 0.84 0.78 0.89 0.84 0.06

1 4.78 7.24 4.71 5.58 1.44

with BN

0 0.68 0.68 0.69 0.68 0.01
0.005 0.90 0.81 1.12 0.94 0.16
0.0005 0.87 0.80 0.89 0.85 0.05

1 2.37 3.61 4.35 3.44 1.00

Table A7. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αaDa for the encoder with and without batch
normalization as a function of Lagrangian multiplier.

Encoder Model αa

Runs
Mean std

1 2 3

MNIST 100

without BN
0.005 28.13 25.16 29.9 27.73 2.40

0.0005 28.05 30.03 28.11 28.73 1.13
1 32.33 34.09 33.73 33.38 0.93

with BN
0.005 32.25 33.47 26.01 30.58 4.00

0.0005 33.37 36.15 35.65 35.06 1.48
1 33.37 42.37 32.46 36.07 5.48

MNIST 1000

without BN
0.005 7.37 7.17 6.65 7.06 0.37

0.0005 7.48 6.68 6.67 6.94 0.46
1 9.48 9.94 11.61 10.34 1.12

with BN
0.005 7.82 7.97 7.81 7.87 0.09

0.0005 9.5 8.68 9.37 9.18 0.44
1 12.99 10.52 9.98 11.16 1.60

MNIST all

without BN
0.005 1.19 1.09 1.06 1.11 0.07

0.0005 0.79 0.88 0.82 0.83 0.05
1 6.22 4.81 5 5.34 0.77

with BN
0.005 0.94 1.07 1.04 1.02 0.07

0.0005 0.78 0.81 0.78 0.79 0.02
1 4.49 3.35 2.18 3.34 1.16

Appendix E. Semi-Supervised Training with Hand Crafted Latent Space and Class
Label Regularizations

This model is based on the cross-entropy term Dcĉ and either term Da|x or Da or jointly Da|x
and Da and the label class regularizer Dc as defined by (10) in the main part of paper. In our

204

Entropy 2020, 22, 943

implementation, we consider the regularization based on the adversarial term Da only as shown in
Figure A6. The training is based on:

LHCP
S−Reg(θc, φa) = Dcĉ + αcDc + αaDa. (A4)

The parameters of encoder, decoder and both discriminators are shown in Table A8. The performance
of this classifier without and with batch normalization is shown in Table A9 (deterministic scenario)
and Table A10 (stochastic scenario).

Table A8. The network parameters of semi-supervised classifier trained on Dcĉ, Da and Dc. The encoder
is trained with and without batch normalization (BN) after Conv2D layers. Da and Dc are trained in
the adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC

Decoder

Size Layer

1024 Input

500 FC, ReLU

10 FC, Softmax

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Da

Size Layer

1024 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

205

Entropy 2020, 22, 943

Da x

qφa (a x) a qφa (a)

pθc(c a)
ĉ

I
φa,θc

L (A;C)

c ∼ p(c)c

pθc(c)

Iφa (X;A)a ∼ pθa (a)a

xm,cm{ }m=1
N

x j{ }
j=1

J

c ∼ p(c)c

(x,c) ∼ p(x,c)
Da

Dcĉ

Dc

x ∼ pD(x)

Da x

Figure A6. Semi-supervised classifier based on the cross-entropy Dcĉ and hand crafted latent space
regularization Da. The blue shadowed parts are not used.

Table A9. The performance (percentage error) of deterministic classifier based on Dcĉ + αaDa + αcDc

for the encoder with and without batch normalization.

Encoder Model αa αc

Runs
Mean std

1 2 3

MNIST 100

without BN

0.005 0.005 21.39 18.12 18.34 19.28 1.83
0.0005 0.0005 15.33 22.36 13.80 17.16 4.56
0.005 0.0005 25.66 26.25 28.81 26.91 1.67

0.0005 0.005 9.82 13.44 13.06 12.11 1.99

with BN

0.005 0.005 23.45 21.19 28.87 24.50 3.94
0.0005 0.0005 28.57 19.06 26.37 24.67 4.98
0.005 0.0005 26.18 26.18 25.49 25.95 0.40

0.0005 0.005 8.96 13.82 14.76 12.52 3.11

MNIST 1000

without BN

0.005 0.005 3.91 4.21 3.70 3.94 0.26
0.0005 0.0005 3.54 3.72 3.54 3.60 0.10
0.005 0.0005 6.19 5.80 7.31 6.43 0.78

0.0005 0.005 2.80 2.82 2.83 2.82 0.02

with BN

0.005 0.005 3.30 2.94 2.93 3.06 0.21
0.0005 0.0005 2.80 2.53 2.50 2.61 0.17
0.005 0.0005 3.51 3.75 4.12 3.79 0.31

0.0005 0.005 2.58 2.27 2.24 2.37 0.19

MNIST all

without BN

0.005 0.005 1.04 1.07 1.07 1.06 0.02
0.0005 0.0005 0.86 0.90 0.88 0.88 0.02
0.005 0.0005 1.08 0.92 1.09 1.03 0.10

0.0005 0.005 0.85 0.93 0.93 0.90 0.05

with BN

0.005 0.005 1.10 1.01 0.93 1.01 0.09
0.0005 0.0005 0.84 0.88 0.83 0.85 0.03
0.005 0.0005 1.10 1.12 0.93 1.05 0.10

0.0005 0.005 0.76 0.82 0.79 0.79 0.03

206

Entropy 2020, 22, 943

Table A10. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ + αaDa + αcDc for the encoder with and without
batch normalization.

Encoder Model αa αc

Runs
Mean std

1 2 3

MNIST 100

without BN

0.005 0.005 12.4 18.05 16.73 15.73 2.96
0.0005 0.0005 15.01 11.16 14.74 13.64 2.15
0.005 0.0005 23.31 26.61 25.41 25.11 1.67

0.0005 0.005 9.21 9.02 10.12 9.45 0.59

with BN

0.005 0.005 13.55 22.48 14.72 16.92 4.85
0.0005 0.0005 8.37 15.01 26.92 16.77 9.40
0.005 0.0005 32.12 30.27 31.44 31.28 0.94

0.0005 0.005 5.46 17 11.54 11.33 5.77

MNIST 1000

without BN

0.005 0.005 3.9 4.25 4.02 4.06 0.18
0.0005 0.0005 3.64 3.82 4.11 3.86 0.24
0.005 0.0005 6.68 5.34 6.36 6.13 0.70

0.0005 0.005 3.03 2.88 2.66 2.86 0.19

with BN

0.005 0.005 2.96 3.37 2.98 3.10 0.23
0.0005 0.0005 2.87 3.10 2.73 2.90 0.19
0.005 0.0005 3.72 3.8 4.14 3.89 0.22

0.0005 0.005 2.57 2.39 2.28 2.41 0.15

MNIST all

without BN

0.005 0.005 1.05 1.09 1.1 1.08 0.33
0.0005 0.0005 0.94 0.96 0.9 0.93 0.03
0.005 0.0005 1.16 1.14 1.13 1.14 0.02

0.0005 0.005 0.88 0.92 0.91 0.90 0.02

with BN

0.005 0.005 0.98 0.84 0.94 0.92 0.07
0.0005 0.0005 0.79 0.96 0.82 0.86 0.09
0.005 0.0005 1.04 1.05 1.03 1.04 0.01

0.0005 0.005 0.74 0.78 0.84 0.79 0.05

Appendix F. Semi-Supervised Training with Learnable Latent Space Regularization

This model is based on the cross-entropy term Dcĉ, the MSE term representing Dxx̂, the label
class regularizer Dc and either term Dz|x or Dz or jointly Dz|x and Dz as defined by (16) in the main
part of paper. In our implementation, we consider the regularization of the latent space based on the
adversarial term Dz only to compare it with the vanila AAE as shown in Figure A7. The encoder is
also not conditioned on c as in the original semi-supervised AAE. Thus, the tested system is based on:

LLP
SS−AAE(θc, θx, φa, φz) = βcDcĉ + βcDc +Dz + βxDxx̂. (A5)

We set the parameters βx = βc = 1 to compare our system with the vanila AAE. However, these
parameters can be also optimized in practice.

The parameters of encoder and decoder are shown in Table A11. The performance of this classifier
without and with batch normalization is shown in Table A12 (deterministic scenario) and Table A13
(stochastic scenario).

207

Entropy 2020, 22, 943

Table A11. The encoder and decoder of semi-supervised classifier trained based on Dcĉ, Dc and Dz.
The encoder is trained with and without batch normalization (BN) after Conv2D layers. Dc and Dz are
trained in the adversarial way.

Encoder

Size Layer

28 × 28 × 1 * Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

10 10 FC, Softmax FC

Decoder

Size Layer

10 + 10 Input

7 × 7 × 128 FC, Reshape, BN, ReLU

14 × 14 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 64 Conv2DTrans, BN, ReLU

28 × 28 × 1 Conv2DTrans, Sigmoid

Dz

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Table A12. The performance (percentage error) of deterministic classifier based on Dcĉ +Dc +Dz +

Dxx̂ for the encoder with and without batch normalization.

Encoder Model
Runs

Mean std
1 2 3

MNIST 100

without BN 2.15 2.05 1.78 1.99 0.19

with BN 1.57 1.56 1.92 1.68 0.21

MNIST 1000

without BN 1.55 1.47 1.53 1.52 0.04

with BN 1.37 1.34 1.73 1.48 0.22

MNIST all

without BN 0.78 0.7 0.82 0.77 0.06

with BN 0.79 0.77 0.76 0.77 0.02

208

Entropy 2020, 22, 943

Table A13. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based onDcĉ +Dc +Dz +Dxx̂ for the encoder with and without
batch normalization.

Encoder Model
Runs

Mean std
1 2 3

MNIST 100

without BN 1.55 3.19 2.11 2.28 0.83

with BN 1.4 1.33 1.72 1.48 0.21

MNIST 1000

without BN 1.73 1.53 1.6 1.62 0.10

with BN 1.28 1.43 1.2 1.30 0.12

MNIST all

without BN 0.94 0.86 0.86 0.89 0.05

with BN 0.77 0.65 0.84 0.75 0.10

qφa (a x)x ∼ pD(x) ax qφa (a)

xm,cm{ }m=1
N

z ∼ pθz(z)

Dz a

Dz

z

x j{ }
j=1

J

pθc(c a) ĉ̂c Dc

Dcĉ

c ∼ p(c)c

pθc(c)

c ∼ p(c)c

pθx (x z,c)

Dx

qφz(z a) z

qφz(z)

Dxx̂

x ∼ pD(x)
I
φa,φz,θx

L (X;Z)

Iφa,φz,θc(A,Z)
(x,c) ∼ p(x,c)

x̂ ∼ pθx (x)

I
φa,θc

L (A;C)

Dz a

Dx

x ∼ pD(x)

Figure A7. Semi-supervised classifier with learnable priors: the cross-entropy Dcĉ, MSE Dxx̂, class
label Dc and latent space regularization Da. The blue shadowed parts are not used.

Appendix G. Semi-Supervised Training with Learnable Latent Space Regularization and
Adversarial Reconstruction

This model is similar to the previously considered model but in addition to the MSE reconstruction
term representing Dxx̂ it also contains the adversarial reconstruction term Dx as defined by (17) in the
main part of paper. In our implementation, we consider the regularization of the latent space based on
the adversarial term Dz as shown in Figure A8. The training is based on:

LLP
SS−AAE(θc, θx, φa, φz) = Dz +Dxx̂ +Dcĉ +Dc + αxDx. (A6)

The parameters of encoder and decoder are shown in Table A14. The performance of this classifier
without and with batch normalization is shown in Table A15 (deterministic scenario) and Table A16
(stochastic scenario).

209

Entropy 2020, 22, 943

qφa (a x)x ∼ pD(x) ax qφa (a)

xm,cm{ }m=1
N

z ∼ pθz(z)

Dz a

Dz

z

x j{ }
j=1

J

pθc(c a) ĉ̂c Dc

Dcĉ

c ∼ p(c)c

pθc(c)

c ∼ p(c)c

pθx (x z,c)

Dx

qφz(z a) z

qφz(z)

Dxx̂

x ∼ pD(x)
I
φa,φz,θx

L (X;Z)

Iφa,φz,θc(A,Z)
(x,c) ∼ p(x,c)

x̂ ∼ pθx (x)

I
φa,θc

L (A;C)

Dz a

Figure A8. Semi-supervised classifier with learnable priors: the cross-entropy Dcĉ, MSE Dxx̂,
adversarial reconstruction Dx, class label Dc and latent space regularizer Dz. The blue shadowed parts
are not used.

Table A14. The network parameters of semi-supervised classifier trained based on Dcĉ, Dc and Dz.
The encoder is trained with and without batch normalization (BN) after Conv2D layers. Dc and Dz are
trained in the adversarial way.

Encoder

Size Layer

28 × 28 × 1 Input

14 × 14 × 32 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

2048 Flatten

1024 FC, ReLU

10 10 FC, Softmax FC

Dz

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Dc

Size Layer

10 Input

500 FC, ReLU

500 FC, ReLU

1 FC, Sigmoid

Decoder

Size Layer

10 + 10 Input

7 × 7 × 128 FC, Reshape, BN, ReLU

14 × 14 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 128 Conv2DTrans, BN, ReLU

28 × 28 × 64 Conv2DTrans, BN, ReLU

28 × 28 × 1 Conv2DTrans, Sigmoid

210

Entropy 2020, 22, 943

Table A14. Cont.

Dx

Size Layer

28 × 28 × 1 Input

14 × 14 × 64 Conv2D, LeakyReLU

7 × 7 × 64 Conv2D, LeakyReLU

4 × 4 × 128 Conv2D, LeakyReLU

4 × 4 × 256 Conv2D, LeakyReLU

4096 Flatten

1 FC, Sigmoid

Table A15. The performance (percentage error) of deterministic classifier based on Dcĉ +Dc +Dz +

Dxx̂ + αxDx for the encoder with and without batch normalization.

Encoder Model αx

Runs
Mean std

1 2 3

MNIST 100

without BN
0.005 2.85 3.36 2.77 2.99 0.32

0.0005 2.58 2.49 3.08 2.72 0.32
1 19.62 19.96 15.97 18.52 2.21

with BN
0.005 1.56 1.33 1.35 1.41 0.13

0.0005 1.68 1.66 2.02 1.79 0.20
1 20.85 13.6 21.67 18.71 4.44

MNIST 1000

without BN
0.005 2.29 2.35 2.11 2.25 0.12

0.0005 1.69 1.88 2.24 1.94 0.28
1 3.47 3.30 4.12 3.63 0.43

with BN
0.005 1.18 1.21 1.09 1.16 0.06

0.0005 1.44 1.28 1.29 1.34 0.09
1 4.14 2.94 2.48 3.19 0.86

MNIST all

without BN
0.005 0.97 1.01 1.04 1.01 0.04

0.0005 0.88 0.85 0.93 0.89 0.04
1 1.31 1.28 1.47 1.35 0.10

with BN
0.005 0.81 0.83 0.75 0.80 0.04

0.0005 0.73 0.78 0.75 0.75 0.03
1 0.88 0.86 1.27 1.00 0.23

Table A16. The performance (percentage error) of stochastic classifier with supervised noisy data
(noise std = 0.1, # noise realisation = 3) based on Dcĉ +Dc +Dz +Dxx̂ + αxDx for the encoder with
and without batch normalization.

Encoder Model αx

Runs
Mean std

1 2 3

MNIST 100

without BN 0.005 2.45 3.04 2.67 2.72 0.30
0.0005 2.63 2.3 2.45 2.46 0.17

with BN 0.005 1.34 1.21 6.4 2.98 2.96

0.0005 1.35 1.51 1.93 1.60 0.30

MNIST 1000

without BN 0.005 2.31 2.26 2.2 2.26 0.06
0.0005 1.71 2.16 1.86 1.91 0.23

with BN 0.005 1.23 1.31 1.10 1.21 0.11
0.0005 1.42 1.62 1.37 1.47 0.13

MNIST all

without BN 0.005 0.93 1.01 1.05 1.00 0.06
0.0005 0.92 0.83 0.88 0.88 0.05

with BN 0.005 0.88 0.86 0.91 0.88 0.03
0.0005 0.77 0.80 0.80 0.79 0.02

211

Entropy 2020, 22, 943

References

1. Kingma, D.P.; Mohamed, S.; Rezende, D.J.; Welling, M. Semi-supervised learning with deep generative
models. In Advances in Neural Information Processing Systems; MIT Press: Montreal, QC, Canada, 2014;
pp. 3581–3589.

2. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.
3. Springenberg, J.T. Unsupervised and semi-supervised learning with categorical generative adversarial

networks. arXiv 2015, arXiv:1511.06390.
4. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual

representations. arXiv 2020, arXiv:2002.05709.
5. Federici, M.; Dutta, A.; Forré, P.; Kushman, N.; Akata, Z. Learning Robust Representations via Multi-View

Information Bottleneck. arXiv 2020, arXiv:2002.07017.
6. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015

IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.
7. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.

IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]
8. Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.; Oliver, A.; Raffel, C.A. Mixmatch: A holistic approach

to semi-supervised learning. In Advances in Neural Information Processing Systems; MIT Press: Vancouver, BC,
Canada, 2019; pp. 5049–5059.

9. Grandvalet, Y.; Bengio, Y. Semi-supervised learning by entropy minimization. In Advances in Neural
Information Processing Systems; MIT Press: Vancouver, BC, Canada, 2004; pp. 529–536.

10. Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.
In ICML Workshop: Challenges in Representation Learning (WREPL); ICML: Atlanta, GR, USA, 2013; Volume 3.

11. Cirecsan, D.C.; Meier, U.; Gambardella, L.M.; Schmidhuber, J. Deep, big, simple neural nets for handwritten
digit recognition. Neural Comput. 2010, 22, 3207–3220.

12. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation policies
from data. arXiv 2018, arXiv:1805.09501.

13. Amjad, R.A.; Geiger, B.C. Learning representations for neural network-based classification using the
information bottleneck principle. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2225–2239. [CrossRef]
[PubMed]

14. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,
arXiv:1612.00410.

15. Voloshynovskiy, S.; Kondah, M.; Rezaeifar, S.; Taran, O.; Hotolyak, T.; Rezende, D.J. Information bottleneck
through variational glasses. In NeurIPS Workshop on Bayesian Deep Learning; Vancouver Convention Center:
Vancouver, BC, Canada, 2019.

16. Uğur, Y.; Zaidi, A. Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture
Embedding. Entropy 2020, 22, 213. [CrossRef]

17. Maaløe, L.; Sønderby, C.K.; Sønderby, S.K.; Winther, O. Auxiliary deep generative models. arXiv 2016,
arXiv:1602.05473.

18. Śmieja, M.; Wołczyk, M.; Tabor, J.; Geiger, B.C. SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder.
arXiv 2019, arXiv:1906.09333.

19. Makhzani, A.; Frey, B.J. Pixelgan autoencoders. In Advances in Neural Information Processing Systems; MIT
Press: Long Beach, CA, USA, 2017; pp. 1975–1985.

20. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
21. Kingma, D.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
22. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep

generative models. arXiv 2014, arXiv:1401.4082.
23. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-VAE:

Learning Basic Visual Concepts with a Constrained Variational Framework. In Proceedings of the
International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

212

Entropy 2020, 22, 943

24. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Advances in Neural Information Processing Systems; MIT Press: Montreal, QC,
Canada, 2014; pp. 2672–2680.

25. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with
Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning; NIPS
Workshop: Granada, Spain, 2011; Volume 2011, p. 5.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

213

entropy

Article

The Conditional Entropy Bottleneck

Ian Fischer

Google Research, Mountain View, CA 94043, USA; iansf@google.com

Received: 30 July 2020; Accepted: 28 August 2020; Published: 8 September 2020

Abstract: Much of the field of Machine Learning exhibits a prominent set of failure modes, including
vulnerability to adversarial examples, poor out-of-distribution (OoD) detection, miscalibration,
and willingness to memorize random labelings of datasets. We characterize these as failures of
robust generalization, which extends the traditional measure of generalization as accuracy or related
metrics on a held-out set. We hypothesize that these failures to robustly generalize are due to the
learning systems retaining too much information about the training data. To test this hypothesis,
we propose the Minimum Necessary Information (MNI) criterion for evaluating the quality of a model.
In order to train models that perform well with respect to the MNI criterion, we present a new
objective function, the Conditional Entropy Bottleneck (CEB), which is closely related to the Information
Bottleneck (IB). We experimentally test our hypothesis by comparing the performance of CEB models
with deterministic models and Variational Information Bottleneck (VIB) models on a variety of
different datasets and robustness challenges. We find strong empirical evidence supporting our
hypothesis that MNI models improve on these problems of robust generalization.

Keywords: information theory; information bottleneck; machine learning

1. Introduction

Despite excellent progress in classical generalization (e.g., accuracy on a held-out set), the field of
Machine Learning continues to struggle with the following issues:

• Vulnerability to adversarial examples. Most machine-learned systems are vulnerable to
adversarial examples. Many defenses have been proposed, but few have demonstrated robustness
against a powerful, general-purpose adversary. Many proposed defenses are ad-hoc and fail in
the presence of a concerted attacker [1,2].

• Poor out-of-distribution detection. Most models do a poor job of signaling that they have
received data that is substantially different from the data they were trained on. Even generative
models can report that an entirely different dataset has higher likelihood than the dataset they
were trained on [3]. Ideally, a trained model would give less confident predictions for data that
was far from the training distribution (as well as for adversarial examples). Barring that, there
would be a clear, principled statistic that could be extracted from the model to tell whether the
model should have made a low-confidence prediction. Many different approaches to providing
such a statistic have been proposed [4–9], but most seem to do poorly on what humans intuitively
view as obviously different data.

• Miscalibrated predictions. Related to the issues above, classifiers tend to be overconfident in their
predictions [4]. Miscalibration reduces confidence that a model’s output is fair and trustworthy.

• Overfitting to the training data. Zhang et al. [10] demonstrated that classifiers can memorize
fixed random labelings of training data, which means that it is possible to learn a classifier
with perfect inability to generalize. This critical observation makes it clear that a fundamental
test of generalization is that the model should fail to learn when given what we call
information-free datasets.

Entropy 2020, 22, 999; doi:10.3390/e22090999 www.mdpi.com/journal/entropy215

Entropy 2020, 22, 999

We consider these to be problems of robust generalization, which we define and discuss
in Section 2.1. In this work, we hypothesize that these problems of robust generalization all have a
common cause: models retain too much information about the training data. We formalize this by
introducing the Minimum Necessary Information (MNI) criterion for evaluating a learned representation
(Section 2.2). We then introduce an objective function that directly optimizes the MNI, the Conditional
Entropy Bottleneck (CEB) (Section 2.3) and compare it with the closely-related Information Bottleneck (IB)
objective [11] in Section 2.5. In Section 2.6, we describe practical ways to optimize CEB in a variety
of settings.

Finally, we give empirical evidence for the following claims:

• Better classification accuracy. MNI models can achieve superior accuracy on classification
tasks than models that capture either more or less information than the minimum necessary
information (Sections 3.1.1 and 3.1.6).

• Improved robustness to adversarial examples. Retaining excessive information about the
training data results in vulnerability to a variety of whitebox and transfer adversarial examples.
MNI models are substantially more robust to these attacks (Sections 3.1.2 and 3.1.6).

• Strong out-of-distribution detection. The CEB objective provides a useful metric for
out-of-distribution (OoD) detection, and CEB models can detect OoD examples as well or better
than non-MNI models (Section 3.1.3).

• Better calibration. MNI models are better calibrated than non-MNI models (Section 3.1.4).
• No memorization of information-free datasets. MNI models fail to learn in information-free

settings, which we view as a minimum bar for demonstrating robust generalization (Section 3.1.5).

2. Materials and Methods

2.1. Robust Generalization

In classical generalization, we are interested in a model’s performance on held-out data on some
task of interest, such as classification accuracy. In robust generalization, we want: (RG1) to maintain
the model’s performance in the classical generalization setting; (RG2) to ensure the model’s performance in the
presence of an adversary (unknown at training time); and (RG3) to detect adversarial and non-adversarial data
that strongly differ from the training distribution.

Adversarial training approaches considered in the literature so far [12–14] violate (RG1), as they
typically result in substantial decreases in accuracy. Similarly, provable robustness approaches
(e.g., Cohen et al. [15], Wong et al. [16]) provide guarantees for a particular adversary known at training
time, also at a cost to test accuracy. To our knowledge, neither approaches provide any mechanism
to satisfy (RG3). On the other hand, approaches for detecting adversarial and non-adversarial
out-of-distribution (OoD) examples [4–9] are either known to be vulnerable to adversarial attack [1,2],
or do not demonstrate that the approach provides robustness against unknown adveraries, both of
which violate (RG2).

Training on information-free datasets [10] provides an additional way to check if a learning
system is compatible with (RG1), as memorization of such datasets necessarily results in maximally
poor performance on any test set. Model calibration is not obviously a necessary condition for robust
generalization, but if a model is well-calibrated on a held-out set, its confidence may provide some
signal for distinguishing OoD examples, so we mention it as a relevant metric for (RG3).

To our knowledge, the only works to date that have demonstrated progress on robust
generalization for modern machine learning datasets are the Variational Information Bottleneck [17,18]
(VIB), and Information Dropout [19]. Alemi et al. [17] presented preliminary results that VIB improves
adversarial robustness on image classification tasks while maintaining high classification accuracy
((RG1) and (RG2)). Alemi et al. [18] showed that VIB models provide a useful signal, the Rate, R,
for detecting OoD examples ((RG3)). Achille and Soatto [19] also showed preliminary results on
adversarial robustness and demonstrated failure to train on information-free datasets.

216

Entropy 2020, 22, 999

In this work, we do not claim to “solve” robust generalization, but we do show notable
improvement on all three conditions simply by changing the training objective. This evidence supports
our core hypothesis that problems of robust generalization are caused in part by retaining too much
information about the training data.

2.2. The Minimum Necessary Information

We define the Minimum Necessary Information (MNI) criterion for a learned representation in
three parts:

• Information. We would like a representation Z that captures useful information about a
dataset (X, Y). Entropy is the unique measure of information [20], so the criterion prefers
information-theoretic approaches. (We assume familiarity with the mutual information and
its relationships to entropy and conditional entropy: I(X; Y) = H(X) − H(X|Y) = H(Y) −
H(Y|X) [21] (p. 20).)

• Necessity. The semantic value of information is given by a task, which is specified by the set of
variables in the dataset. Here we will assume that the task of interest is to predict Y given X, as in
any supervised learning dataset. The information we capture in our representation Z must be
necessary to solve this task. As a variable X may have redundant information that is useful for
predicting Y, a representation Z that captures the necessary information may not be minimal or
unique (the MNI criterion does not require uniqueness of Z).

• Minimality. Given all representations Z that can solve the task, we require one that retains the
smallest amount of information about the task: infZ∈Z I(Z; X, Y).

Necessity can be defined as I(X; Y) ≤ I(Y; Z). Any less information than that would prevent Z
from solving the task of predicting Y from X. Minimality can be defined as I(X; Y) ≥ I(X; Z). Any more
information than that would result in Z capturing information from X that is either redundant or
irrelevant for predicting Y. Since the information captured by Z is constrained from above and
below, we have the following necessary and sufficient conditions for perfectly achieving the Minimum
Necessary Information, which we call the MNI Point:

I(X; Y) = I(X; Z) = I(Y; Z) (1)

The MNI point defines a unique point in the information plane. The geometry of the information plane
can be seen in Figure 1. The MNI criterion does not make any Markov assumptions on the models or
algorithms that learn the representations. However, the algorithms we discuss here all do rely on the
standard Markov chain Z ← X ↔ Y. See Fischer [22] for an example of an objective that doesn’t rely
on a Markov chain during training.

A closely related concept to Necessity is called sufficiency by Achille and Soatto [19] and
other authors. We avoid the term due to potential confusion with minimum sufficient statistics,
which maintain the mutual information between a model and the data it generates [21] (p. 35).
The primary difference between necessity and sufficiency is the reliance on the Markov constraint to
define sufficiency. Ref. [19] also does not identify the MNI point as an idealized target, instead defining
the optimization problem: minimize I(X; Z) s.t. H(Y|Z) = H(Y|X).

In general it may not be possible to satisfy Equation (1). As discussed in Anantharam et al. [23–25],
for any given dataset (X, Y), there is some maximum value for any possible representation Z:

1 ≥ ηKL = sup
Z←X→Y

I(Y; Z)
I(X; Z)

(2)

with equality only when X → Y is a deterministic map. Training datasets are often deterministic in
one direction or the other. e.g., common image datasets map each distinct image to a single label.

217

Entropy 2020, 22, 999

Thus, in practice, we can often get very close to the MNI on the training set given a sufficiently
powerful model.

Figure 1. Geometry of the feasible regions in the (I(X; Z), I(Y; Z)) information plane for for any
algorithm, with key points and edges labeled. The black edges bound the feasible region for an
(X, Y) pair where H(X|Y) > I(X; Y) > H(Y|X), which would generally be the case in an image
classification task, for example. The gray dashed lines bound the feasible regions when the underlying
model depends on a Markov chain. The I(X; Z) = I(Y; Z) and I(Y; Z) = I(X; Y) lines are the upper
bound for Z ← X ↔ Y. The I(X; Z) = I(Y; Z) and I(X; Z) = I(X; Y) lines are the right bound
for Z ← Y ↔ X. The blue points correspond to the best possible Maximum Likelihood Estimates
(MLE) for the corresponding Markov chain models. The red point corresponds to the maximum
information Z could ever capture about (X, Y). The Minimum Necessary Information (MNI) point is
green. As I(X; Z) increases, Z captures more information that is either redundant or irrelevant with
respect to predicting Y. Similarly, any variation in Y that remains once we know X is just noise as
far as the task is concerned. The MNI point is the unique point that has no redundant or irrelevant
information from X, and everything but the noise from Y.

2.2.1. MNI and Robust Generalization

To satisfy (RG1) (classical generalization), a model must have I(X; Z) ≥ I(X; Y) = I(Y; Z) on

the test dataset. Shamir et al. [26] show that |I(X; Z)− Î(X; Z)| ≈ O
(

2 Î(X;Z)√
N

)
, where Î(·) indicates the

training set information and N is the size of the training set. More recently, Bassily et al. [27] gave a
similar result in a PAC setting. Both results indicate that models that are compressed on the training data
should do better at generalizing to similar test data.

Less clear is how an MNI model might improve on (RG2) (adversarial robustness). In this work,
we treat it as a hypothesis that we investigate empirically rather than theoretically. The intuition behind
the hypothesis can be described in terms of the idea of robust and non-robust features from Ilyas et al. [28]:
non-robust features in X should be compressed as much as possible when we learn Z, whereas robust
features should be retained as much as is necessary. If Equation (1) is satisfied, Z must have “scaled”
the importance of the the features in X according to their importance for predicting Y. Consequently,
an attacker that tries to take advantage of a non-robust feature will have to change it much more in
order to confuse the model, possibly exceeding the constraints of the attack before it succeeds.

For (RG3) (detection), the MNI criterion does not directly apply, as that will be a property of
specific modeling choices. However, if the model provides an accurate way to measure I(X = x; Z = z)
for a particular pair (x, z), Alemi et al. [18] suggests that can be a valuable signal for OoD detection.

2.3. The Conditional Entropy Bottleneck

We would like to learn a representation Z of X that will be useful for predicting Y. We can represent
this problem setting with the Markov chain Z ← X ↔ Y. We would like Z to satisfy Equation (1).

218

Entropy 2020, 22, 999

Given the conditional independence Z � Y|X in our Markov chain, I(Y; Z) ≤ I(X; Y), by the data
processing inequality. Thus, maximizing I(Y; Z) is consistent with the MNI criterion.

However, I(X; Z) does not clearly have a constraint that targets I(X; Y), as 0 ≤ I(X; Z) ≤ H(X).
Instead, we can notice the following identities at the MNI point:

I(X; Y|Z) = I(X; Z|Y) = I(Y; Z|X) = 0 (3)

The conditional mutual information is always non-negative, so learning a compressed
representation Z of X is equivalent to minimizing I(X; Z|Y). Using our Markov chain and the chain
rule of mutual information [21]:

I(X; Z|Y) = I(X, Y; Z)− I(Y; Z) = I(X; Z)− I(Y; Z) (4)

This leads us to the general Conditional Entropy Bottleneck:

CEB ≡ min
Z

I(X; Z|Y)− γI(Y; Z) (5)

= min
Z

H(Z)− H(Z|X)− H(Z) + H(Z|Y)

− γ(H(Y) + H(Y|Z)) (6)

⇔ min
Z
−H(Z|X) + H(Z|Y) + γH(Y|Z) (7)

In line 7, we can optionally drop H(Y) because it is constant with respect to Z. Here, any γ > 0
is valid, but for deterministic datasets (Section 2.2), γ = 1 will achieve the MNI for a sufficiently
powerful model. Further, we should expect γ = 1 to yield consistent models and other values of γ

not to: since I(Y; Z) shows up in two forms in the objective, weighing them differently forces the
optimization procedure to count bits of I(Y; Z) in two different ways, potentially leading to a situation
where H(Z)− H(Z|Y) �= H(Y)− H(Y|Z) at convergence. Given knowledge of those four entropies,
we can define a consistency metric for Z:

CI(Y;Z)(Z) ≡ |H(Z)− H(Z|Y)− H(Y) + H(Y|Z)| (8)

2.4. Variational Bound on CEB

We will variationally upper bound the first term of Equation (5) and lower bound the second
term using three distributions: e(z|x), the encoder which defines the joint distribution we will use
for sampling, p(x, y, z) ≡ p(x, y)e(z|x); b(z|y), the backward encoder, an approximation of p(z|y);
and c(y|z), the classifier, an approximation of p(y|z) (the name is arbitrary, as Y may not be labels).
All of e(·), b(·), and c(·) may have learned parameters, just like the encoder and decoder of a VAE [29],
or the encoder, classifier, and marginal in VIB.

In the following, we write expectations 〈log e(z|x)〉. They are always with respect to the joint
distribution; here, that is p(x, y, z) ≡ p(x, y)e(z|x). The first term of Equation (5):

I(X; Z|Y) =−H(Z|X) + H(Z|Y) = 〈log e(z|x)〉 − 〈log p(z|y)〉 (9)

= 〈log e(z|x)〉 − 〈log b(z|y)〉 − 〈KL[p(z|y)||b(z|y)]〉 (10)

≤ 〈log e(z|x)〉 − 〈log b(z|y)〉 (11)

The second term of Equation (5):

I(Y; Z) = H(Y)− H(Y|Z) ∝ −H(Y|Z) = 〈log p(y|z)〉 (12)

= 〈log c(y|z)〉+ 〈KL[p(y|z)||c(y|z)]〉 (13)

≥ 〈log c(y|z)〉 (14)

219

Entropy 2020, 22, 999

These variational bounds give us a tractable objective function for amortized inference,
the Variational Conditional Entropy Bottleneck (VCEB):

VCEB ≡min
e,b,c

〈log e(z|x)〉 − 〈log b(z|y)〉 − γ 〈log c(y|z)〉 (15)

There are a number of other ways to optimize Equation (5). We describe a few of them in Section 2.6
and Appendices B and C.

2.5. Comparison to the Information Bottleneck

The Information Bottleneck (IB) [11] learns a representation Z from X subject to a soft constraint:

IB ≡ min
Z

I(X; Z)− βI(Y; Z) (16)

where β−1 controls the strength of the constraint. As β → ∞, IB recovers the standard
cross-entropy loss.

In Figure 2 we show information diagrams comparing which regions IB and CEB maximize
and minimize. See Yeung [30] for a theoretical explanation of information diagrams.CEB avoids
trying to both minimize and maximize the central region at the same time. In Figure 3 we show the
feasible regions for CEB and IB, labeling the MNI point on both. CEB’s rectification of the information
plane means that we can always measure in absolute terms how much more we could compress our
representation at the same predictive performance: I(X; Z|Y) ≥ 0. For IB, it is not possible to tell a priori
how far we are from optimal compression.

H(X) H(Y) H(X) H(Y)

IB CEB

Figure 2. Information diagrams showing how IB and CEB maximize and minimize different regions.
regions inaccessible to the objective due to the Markov chain Z ← X ↔ Y. regions being

maximized by the objective (I(Y; Z) in both cases). regions being minimized by the objective.
IB minimizes the intersection between Z and both H(X|Y) and I(X; Y). CEB only minimizes the
intersection between Z and H(X|Y).

IB CEB

Figure 3. Geometry of the feasible regions for IB and CEB, with all points labeled. CEB rectifies IB’s
parallelogram by subtracting I(Y; Z) at every point. Everything outside of the black lines is unattainable
by any model on any dataset. Compare the IB feasible region to the dashed region in Figure 1.

220

Entropy 2020, 22, 999

From Equations (4), (5) and (16), it is clear that CEB and IB are equivalent for γ = β− 1. To simplify
comparison of the two objectives, we can parameterize them with:

ρ = log γ = log(β− 1) (17)

Under this parameterization, for deterministic datasets, sufficiently powerful models will target
the MNI point at ρ = 0. As ρ increases, more information is captured by the model. ρ < 0 may capture
less than the MNI. ρ > 0 may capture more than the MNI.

2.5.1. Amortized IB

As described in Tishby et al. [11], IB is a tabular method, so it is not usable for amortized
inference. The tabular optimization procedure used for IB trivially applies to CEB, just by setting
β = γ + 1. Two recent works have extended IB for amortized inference. Achille and Soatto [19]
presents InfoDropout, which uses IB to motivate a variation on Dropout [31]. Alemi et al. [17] presents
the Variational Information Bottleneck (VIB):

VIB ≡ 〈log e(z|x)〉 − 〈log m(z)〉)− β 〈log c(y|z)〉 (18)

Instead of the backward encoder, VIB has a marginal posterior, m(z), which is a variational
approximation to e(z) =

∫
dx p(x)e(z|x).

Following Alemi et al. [32], we define the Rate (R):

R ≡ 〈log e(z|x)〉 − 〈log m(z)〉 ≥ I(X; Z) (19)

We similarly define the Residual Information (ReX):

ReX ≡ 〈log e(z|x)〉 − 〈log b(z|y)〉 ≥ I(X; Z|Y) (20)

During optimization, observing R does not tell us how tightly we are adhering to the MNI.
However, observing ReX tells us exactly how many bits we are from the MNI point, assuming that our
current classifier is optimal.

For convenience, define CEBx ≡ CEBρ=x, and likewise for VIB. We can compare variational CEB
with VIB by taking their difference at ρ = 0:

CEB0 −VIB0 = 〈log b(z|y)〉 − 〈log m(z)〉 (21)

− 〈log c(y|z)〉+ 〈log p(y)〉 (22)

Solving for m(z) when that difference is 0:

m(z) =
b(z|y)p(y)

c(y|z) (23)

Since the optimal m∗(z) is the marginalization of e(z|x), at convergence we must have:

m∗(z) =
∫

dx p(x)e(z|x) = p(z|y)p(y)
p(y|z) (24)

This solution may be difficult to find, as m(z) only gets information about y indirectly through
e(z|x). For otherwise equivalent models, we may expect VIB0 to converge to a looser approximation
of I(X; Z) = I(Y; Z) = I(X; Y) than CEB. Since VIB optimizes an upper bound on I(X; Z), VIB0 will
report R converging to I(X; Y), but may capture less than the MNI. In contrast, if ReX converges to 0,
the variational tightness of b(z|y) to the optimal p(z|y) depends only on the tightness of c(y|z) to the
optimal p(y|z).

221

Entropy 2020, 22, 999

2.6. Model Variants

We introduce some variants on the basic variational CEB classification model that we will use
in Section 3.1.6.

2.6.1. Bidirectional CEB

We can learn a shared representation Z that can be used to predict both X and Y with the
following bidirectional CEB model: ZX ← X ↔ Y → ZY. This corresponds to the following joint:
p(x, y, zX , zY) ≡ p(x, y)e(zX |x)b(zY|y). The main CEB objective can then be applied in both directions:

CEBbidir ≡ min −H(ZX |X) + H(ZX |Y) + γX H(Y|ZX)

− H(ZY|Y) + H(ZY|X) + γY H(X|ZY) (25)

For the two latent representations to be useful, we want them to be consistent with each other
(minimally, they must have the same parametric form). Fortunately, that consistency is trivial to
encourage by making the natural variational substitutions: p(zY|x)→ e(zY|x) and p(zX |y)→ b(zX |y).
This gives variational CEBbidir:

min 〈log e(zX |x)〉 − 〈log b(zX |y)〉 − γX 〈log c(y|zX)〉
+ 〈log b(zY|y)〉 − 〈log e(zY|x)〉 − γY 〈log d(x|zY)〉 (26)

where d(x|z) is a decoder distribution. At convergence, we learn a unified Z that is consistent with both
ZX and ZY, permitting generation of either output given either input in the trained model, in the same
spirit as Vedantam et al. [33], but without needing to train a joint encoder q(z|x, y).

2.6.2. Consistent Classifier

We can reuse the backwards encoder as a classifier: c(y|z) ∝ b(z|y)p(y). We refer to this as the
Consistent Classifier: c(y|z) ≡ softmax b(z|y)p(y). If the labels are uniformly distributed, the p(y) factor
can be dropped; otherwise, it suffices to use the empirical p(y). Using the consistent classifier for
classification problems results in a model that only needs parameters for the two encoders, e(z|x) and
b(z|y). This classifier differs from the more common maximum a posteriori (MAP) classifier because
b(z|y) is not the sampling distribution of either Z or Y.

2.6.3. CatGen Decoder

We can further generalize the idea of the consistent classifier to arbitrary prediction tasks by
relaxing the requirement that we perfectly marginalize Y in the softmax. Instead, we can marginalize
Y over any minibatch of size K we see at training time, under an assumption of a uniform distribution
over the training examples we sampled:

p(y|z) = p(z|y)p(y)∫
dy′ p(z|y′)p(y′)

(27)

≈ p(z|y) 1
K

∑K
k=1 p(z|yk)

1
K

=
p(z|y)

∑K
k=1 p(z|yk)

(28)

≈ b(z|y)
∑K

k=1 b(z|yk)
≡ c(y|z) (29)

We can immediately see that this definition of c(y|z) gives a valid distribution, as it is just a
softmax over the minibatch. That means it can be directly used in the original objective without
violating the variational bound. We call this decoder CatGen, for Categorical Generative Model because it

222

Entropy 2020, 22, 999

can trivially “generate” Y: the softmax defines a categorical distribution over the batch; sampling from
it gives indices of Y = yj that most closely correspond to Z = zi.

Maximizing I(Y; Z) in this manner is a universal task, in that it can be applied to any paired data
X, Y. This includes images and labels – the CatGen model may be used in place of both c(y|zX) and
d(x|zY) in the CEBbidir model (using e(z|x) for d(x|zY)). This avoids a common concern when dealing
with multivariate predictions: if predicting X is disproportionately harder than predicting Y, it can
be difficult to balance the model [33,34]. For CatGen models, predicting X is never any harder than
predicting Y, since in both cases we are just trying to choose the correct example out of K possibilities.

It turns out that CatGen is mathematically equivalent to Contrastive Predictive Coding (CPC) [35]
after an offset of log K. We can see this using the proof from Poole et al. [36], and substituting log b(z|y)
for f (y, z):

I(Y; Z) ≥ 1
K

K

∑
k=1

E∏j yk ,z∼p(yj)p(xk |yk)e(z|xk)

[
log

e f (yk ,z)

1
K ∑K

i=1 e f (yi ,z)

]
(30)

=
1
K

K

∑
k=1

E∏j yk ,z∼p(yj)p(xk |yk)e(z|xk)

[
log

b(z|yk)
1
K ∑K

i=1 b(z|yi)

]
(31)

The advantage of the CatGen approach over CPC in the CEB setting is that we already have
parameterized the forward and backward encoders to compute I(X; Z|Y), so we don’t need to
introduce any new parameters when using CatGen to maximize the I(Y; Z) term.

As with CPC, the CatGen bound is constrained by log K, but when targeting the MNI, it is more
likely that we can train with log K ≥ I(X; Y). This is trivially the case for the datasets we explore
here, where I(X; Y) ≤ log 10. It is also practical for larger datasets like ImageNet, where models are
routinely trained with batch sizes in the thousands (e.g., Goyal et al. [37]), and I(X; Y) ≤ log 1000.

3. Results

We evaluate deterministic, VIB, and CEB models on Fashion MNIST [38] and CIFAR10 [39].
Our experiments focus on comparing the performance of otherwise identical models when we change
only the objective function and vary ρ. Thus, we are interested in relative differences in performance
that can be directly attributed to the difference in objective and ρ. These experiments cover the three
aspects of Robust Generalization (Section 2.1): (RG1) (classical generalization) in Sections 3.1 and 3.1.6;
(RG2) (adversarial robustness) in Sections 3.1 and 3.1.6; and (RG3) (detection) in Section 3.1.

3.1. (RG1), (RG2), and (RG3): Fashion MNIST

Fashion MNIST [38] is an interesting dataset in that it is visually complex and challenging,
but small enough to train in a reasonable amount of time. We trained 60 different models on Fashion
MNIST, four each for the following 15 types: a deterministic model (Determ); seven VIB models
(VIB−1, ..., VIB5); and seven CEB models (CEB−1, ..., CEB5). Subscripts indicate ρ. All 60 models
share the same inference architecture and are trained with otherwise identical hyperparameters.
See Appendix A for details.

3.1.1. (RG1): Accuracy and Compression

In Figure 4 we see that both VIB and CEB have improved accuracy over the deterministic baseline,
consistent with compressed representations generalizing better. Also, CEB outperforms VIB at every
ρ, which we can attribute to the tighter variational bound given by minimizing ReX rather than R.
In the case of a simple classification problem with a uniform distribution over classes in the training
set (like Fashion MNIST), we can directly compute I(X; Y) = log C, where C is the number of classes.
In order to compare the relative complexity of the learned representations for the VIB and CEB
models, in the second panel of Figure 4 we show the maximum rate lower bound seen during training:

223

Entropy 2020, 22, 999

RX ≡
〈

log e(z|x)
1
K ∑K

k e(z|xk)

〉
≤ I(X; Z) using the encoder’s minibatch marginal for both VIB and CEB.

This lower bound on I(X; Z) is the “InfoNCE with a tractable encoder” bound from Poole et al. [36].
The two sets of models show nearly the same RX at each value of ρ. Both models converge to exactly
I(X; Y) = log 10 ≈ 2.3 nats at ρ = 0, as predicted by the derivation of CEB.

Figure 4. Test accuracy, maximum rate lower bound RX ≤ I(Z; X) seen during training, and robustness
to targeted PGD L2 and L∞ attacks on CEB, VIB, and Deterministic models trained on Fashion MNIST.
At every ρ the CEB models outperform the VIB models on both accuracy and robustness, while having
essentially identical maximum rates. None of these models is adversarially trained.

3.1.2. (RG2): Adversarial Robustness

The bottom two panels of Figure 4 show robustness to targeted Projected Gradient Descent (PGD)
L2 and L∞ attacks [14]. All of the attacks are targeting the trouser class of Fashion MNIST, as that
is the most distinctive class. Targeting a less distinctive class, such as one of the shirt classes,
would confuse the difficulty of classifying the different shirts and the robustness of the model to
adversaries. To measure robustness to the targeted attacks, we count the number of predictions that
changed from a correct prediction on the clean image to an incorrect prediction of the target class
on the adversarial image, and divide by the original number of correct predictions. Consistent with
testing (RG2), these adversaries are completely unknown to the models at training time – none of
these models see any adversarial examples during training. CEB again outperforms VIB at every ρ,
and the deterministic baseline at all but the least-compressed model (ρ = 5). We also see for both
models that as ρ decreases, the robustness to both attacks increases, indicating that more compressed
models are more robust.

Consistent with the MNI hypothesis, at ρ = 0 we end up with CEB models that have hit exactly
2.3 nats for the rate lower bound, have maintained high accuracy, and have strong robustness to both
attacks. Moving to ρ = −1 gives only a small improvement to robustness, at the cost of a large decrease
in accuracy.

3.1.3. (RG3): Out-of-Distribution Detection

We compare the ability of Determ, CEB0, VIB0, and VIB4 to detect four different out-of-distribution
(OoD) detection datasets. U(0, 1) is uniform noise in the image domain. MNIST uses the MNIST
test set. Vertical Flip is the most challenging, using vertically flipped Fashion MNIST test images,
as originally proposed in Alemi et al. [18]. CW is the Carlini-Wagner L2 attack [40] at the default
settings found in Papernot et al. [41], and additionally includes the adversarial attack success rate
against each model.

We use two different metrics for thresholding, proposed in Alemi et al. [18]. H is the classifier
entropy. R is the rate, defined in Section 2.5. These two threshold scores are used with the standard
suite of proper scoring rules [42]: False Positive Rate at 95% True Positive Rate (FPR 95% TPR), Area Under
the ROC Curve (AUROC), and Area Under the Precision-Recall Curve (AUPR).

Table 1 shows that using R to detect OoD examples can be much more effective than using
classifier-based approaches. The deterministic baseline model is far weaker at detection using H than
either of the high-performing stochastic models (CEB0 and VIB4). Those models both saturate detection

224

Entropy 2020, 22, 999

performance, providing reliable signals for all four OoD datasets. However, as VIB0 demonstrates,
simply having R available as a signal does not guarantee good detection. As we saw above, the VIB0

models had noticeably worse classification performance, indicating that they had not achieved the
MNI point: I(Y; Z) < I(X; Z) for those models. These results indicate that for detection, violating
the MNI criterion by having I(X; Z) > I(X; Y) may not be harmful, but violating the criterion in the
opposite direction is harmful.

Table 1. Results for out-of-distribution detection (OoD). Thrsh. is the threshold score used: H is the
entropy of the classifier; R is the rate. Determ cannot compute R, so only H is shown. For VIB and CEB
models, H is always inferior to R, similar to findings in Alemi et al. [18], so we omit it. Adv. Success is
attack success of the CW adversary (bottom four rows). Arrows denote whether higher or lower scores
are better. Bold indicates the best score in that column for that OoD dataset.

OoD Model Thrsh. FPR @ 95% TPR ↓ AUROC ↑ AUPR In ↑ Adv. Success ↓

U(0,1)

Determ H 35.8 93.5 97.1 N/A

VIB4 R 0.0 100.0 100.0 N/A

VIB0 R 80.6 57.1 51.4 N/A

CEB0 R 0.0 100.0 100.0 N/A

MNIST

Determ H 59.0 88.4 90.0 N/A

VIB4 R 0.0 100.0 100.0 N/A

VIB0 R 12.3 66.7 91.1 N/A

CEB0 R 0.1 94.4 99.9 N/A

Vertical Flip

Determ H 66.8 88.6 90.2 N/A

VIB4 R 0.0 100.0 100.0 N/A

VIB0 R 17.3 52.7 91.3 N/A

CEB0 R 0.0 90.7 100.0 N/A

CW

Determ H 15.4 90.7 86.0 100.0%

VIB4 R 0.0 100.0 100.0 55.2%

VIB0 R 0.0 98.7 100.0 35.8%

CEB0 R 0.0 99.7 100.0 35.8%

3.1.4. (RG3): Calibration

A well-calibrated model is correct half of the time it gives a confidence of 50% for its prediction.
In Figure 5, we show calibration plots at various points during training for four models. Calibration
curves help analyze whether models are underconfident or overconfident. Each point in the plots
corresponds to a 5% confidence bin. Accuracy is averaged for each bin. All four networks move from
under- to overconfidence during training. However, CEB0 and VIB0 end up only slightly overconfident,
while ρ = 2 is already sufficient to make VIB and CEB (not shown) nearly as overconfident as the
deterministic model.

3.1.5. (RG1): Overfitting Experiments

We replicate the basic experiment from Zhang et al. [10] by using the images from Fashion MNIST,
but replacing the training labels with fixed random labels. This dataset is information-free because
I(X; Y) = 0. We use that dataset to train multiple deterministic models, as well as CEB and VIB
models at ρ from 0 through 7. We find that the CEB and VIB models with ρ < 6 never learn, even after
100 epochs of training, but the deterministic models always learn. After about 40 epochs of training they
begin to memorize the random labels, indicating severe overfitting and a perfect failure to generalize.

225

Entropy 2020, 22, 999

(a) (b)

(c) (d)

Figure 5. Calibration plots with 90% confidence intervals for four of the models after 2000 steps,
20,000 steps, and 40,000 steps (left, center, and right of each trio): (a) is CEB0; (b) is VIB0; (c) is VIB2;
(d) is Determ. Perfect calibration corresponds to the dashed diagonal lines. Underconfidence occurs when
the points are above the diagonal. Overconfidence is below the diagonal. The ρ = 0 models are nearly
perfectly calibrated still at 20,000 steps, but even at ρ = 2, the VIB model is almost as overconfident
as Determ.

3.1.6. (RG1) and (RG2): CIFAR10 Experiments

For CIFAR10 [39] we trained the largest Wide ResNet [43] we could fit on a single GPU with a
batch size of 250. This was a 62×7 model trained using AutoAugment [44]. We trained 3 CatGen
CEBbidir models each of CEB0 and CEB5 and then selected the two models with the highest test accuracy
for the adversarial robustness experiments. We evaluated the CatGen models using the consistent
classifier, since CatGen models only train e(z|x) and b(z|y). CEB0 reached 97.51% accuracy. This result
is better than the 28×10 Wide ResNet from AutoAugment by 0.19 percentage points, although it
is still worse than the Shake-Drop model from that paper. We additionally tested the model on the
CIFAR-10.1 test set [45], getting accuracy of 93.6%. This is a gap of only 3.9 percentage points, which is
better than all of the results reported in that paper, and substantially better than the Wide ResNet
results (but still inferior to the Shake-Drop AutoAugment results). The CEB5 model reached 97.06%
accuracy on the normal test set and 91.9% on the CIFAR-10.1 test set, showing that increased ρ gave
substantially worse generalization.

To test robustness of these models, we swept ε for both PGD attacks (Figure 6). The CEB0

model not only has substantially higher accuracy than the adversarially-trained Wide ResNet
from Madry et al. [14] (Madry), it also beats the Madry model on both the L2 and the L∞ attacks
at almost all values of ε. We also show that this model is even more robust to two transfer attacks,
where we used the CEB5 model and the Madry model to generate PGD attacks, and then test them on
the CEB0 model. This result indicates that these models are not doing “gradient masking”, a failure
mode of some attempts at adversarial defense [2], since these are black-box attacks that do not rely on
taking gradients through the target model.

226

Entropy 2020, 22, 999

Figure 6. Left: Accuracy on untargeted L∞ attacks at different values of ε for all 10,000 CIFAR10 test
set examples. CEB0 is the model with the highest accuracy (97.51%) trained at ρ = 0. CEB5 is the model
with the highest accuracy (97.06%) trained at ρ = 5. Madry is the best adversarially-trained model
from Madry et al. [14] with 87.3% accuracy (values provided by Aleksander Madry). CEB5 ⇒CEB0

is transfer attacks from the CEB5 model to the CEB0 model. Madry ⇒CEB0 is transfer attacks from
the Madry model to the CEB0 model. Madry was trained with 7 steps of PGD at ε = 8 (grey dashed
line). Chance is 10% (grey dotted line). Right: Accuracy on untargeted L2 attacks at different values of
ε. All values are collected at 7 steps of PGD. CEB0 outperforms Madry everywhere except the region of
L∞ε ∈ [2, 7]. Madry appears to have overfit to L∞, given its poor performance on L2 attacks relative to
either CEB model. None of the CEB models are adversarially trained.

4. Conclusions

We have presented the Conditional Entropy Bottleneck (CEB), motivated by the Minimum
Necessary Information (MNI) criterion and the hypothesis that failures of robust generalization are
due in part to learning models that retain too much information about the training data. We have
shown empirically that simply by switching to CEB, models may substantially improve their robust
generalization, including (RG1) higher accuracy, (RG2) better adversarial robustness, and (RG3)

stronger OoD detection. We believe that the MNI criterion and CEB offer a promising path forward
for many tasks in machine learning by permitting fast amortized inference in an easy-to-implement
framework that improves robust generalization.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Alex Alemi and Kevin Murphy for valuable discussions in the
preparation of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Model Details

Here we collect a number of results that are not critical to the core of the paper, but may be of
interest to particular audiences.

Appendix A.1. Fashion MNIST

All of the models in our Fashion MNIST experiments have the same core architecture: A 7× 2
Wide Resnet [43] for the encoder, with a final layer of D = 4 dimensions for the latent representation,
followed by a two layer MLP classifier using ELU [46] activations with a final categorical distribution
over the 10 classes.

The stochastic models parameterize the mean and variance of a D = 4 fully covariate multivariate
Normal distribution with the output of the encoder. Samples from that distribution are passed into
the classifier MLP. Apart from that difference, the stochastic models don’t differ from Determ during

227

Entropy 2020, 22, 999

evaluation. None of the five models uses any form of regularization (e.g., L1, L2, DropOut [31],
BatchNorm [47]).

The VIB models have an additional learned marginal, m(z), which is a mixture of 240 D = 4 fully
covariate multivariate Normal distributions. The CEB model instead has the backward encoder, b(z|y)
which is a D = 4 fully covariate multivariate Normal distribution parameterized by a 1 layer MLP
mapping the label, Y = y, to the mean and variance. In order to simplify comparisons, for CEB we
additionally train a marginal m(z) identical in form to that used by the VIB models. However, for CEB,
m(z) is trained using a separate optimizer so that it doesn’t impact training of the CEB objective in any
way. Having m(z) for both CEB and VIB allows us to compare the rate, R, of each model except Determ.

Appendix A.2. CIFAR-10

For the 62×7 CEB CIFAR-10 models, we used the AutoAugment policies for CIFAR-10. We trained
the models for 800 epochs, lowering the learning rate by a factor of 10 at 400 and 600 epochs. We trained
all of the models using Adam [48] at a base learning rate of 10−3.

Appendix A.3. Distributional Families

Any distributional family may be used for the encoder. Reparameterizable distributions [29,49]
are convenient, but it is also possible to use the score function trick [50] to get a high-variance estimate
of the gradient for distributions that have no explicit or implicit reparameterization. In general, a good
choice for b(z|y) is the same distributional family as e(z|x), or a mixture thereof. These are modeling
choices that need to be made by the practitioner, as they depend on the dataset. In this work, we chose
normal distributions because they are easy to work with and will be the common choice for many
problems, particularly when parameterized with neural networks, but that choice is incidental rather
than fundamental.

Appendix B. Mutual Information Optimization

As an objective function, CEB is independent of the methods used to optimize it. Here we focus
on variational objectives because they are simple, tractable, and well-understood, but any approach to
optimize mutual information terms can work, so long as they respect the side of the bounds required
by the objective. For example, both Oord et al. [35], Hjelm et al. [51] could be used to maximize I(Y; Z).

Appendix B.1. Finiteness of the Mutual Information

The conditions for infinite mutual information given in Amjad and Geiger [52] do not apply to
either CEB or VIB, as they both use stochastic encoders e(z|x). In our experiments using continuous
representations, we did not encounter mutual information terms that diverged to infinity, although it
is possible to make modeling and data choices that make it more likely that there will be numerical
instabilities. This is not a flaw specific to CEB or VIB, however, and we found numerical instability
to be almost non-existent across a wide variety of modeling and architectural choices for both
variational objectives.

Appendix C. Additional CEB Objectives

Here we describe a few more variants of the CEB objective.

Appendix C.1. Hierarchical CEB

Thus far, we have focused on learning a single latent representation (possibly composed of
multiple latent variables at the same level). Here, we consider one way to learn a hierarchical model
with CEB.

Consider the graphical model Z2 ← Z1 ← X ↔ Y. This is the simplest hierarchical supervised
representation learning model. The general form of its information diagram is given in Figure A1.

228

Entropy 2020, 22, 999

H(X) H(Y)

H(Z1)

H(Z2)

Figure A1. Information diagram for the basic hierarchical CEB model, Z2 ← Z1 ← X ↔ Y.

The key observation for generalizing CEB to hierarchical models is that the target mutual
information doesn’t change. By this, we mean that all of the Zi in the hierarchy should cover I(X; Y) at
convergence, which means maximizing I(Y; Zi). It is reasonable to ask why we would want to train
such a model, given that the final set of representations are presumably all effectively identical in
terms of information content. Doing so allows us to train deep models in a principled manner such
that all layers of the network are consistent with each other and with the data. We need to be more
careful when considering the residual information terms, though – it is not the case that we want to
minimize I(X; Zi|Y), which is not consistent with the graphical model. Instead, we want to minimize
I(Zi−1; Zi|Y), defining Z0 = X.

This gives the following simple Hierarchical CEB objective:

CEBhier ≡min ∑
i

I(Zi−1; Zi|Y)− I(Y; Zi) (A1)

⇔min ∑
i
−H(Zi|Zi−1) + H(Zi|Y) + H(Y|Zi) (A2)

Because all of the Zi are targetting Y, this objective is as stable as regular CEB.

Appendix C.2. Sequence Learning

Many of the richest problems in machine learning vary over time. In Bialek et al. [53], the authors
define the Predictive Information:

I(Xpast, X f uture) =

〈
log

p(xpast, x f uture)

p(xpast)p(x f uture)

〉

This is of course just the mutual information between the past and the future. However, under an
assumption of temporal invariance (any time of fixed length is expected to have the same entropy),
they are able to characterize the predictive information, and show that it is a subextensive quantity:
limT→∞ I(T)/T → 0, where I(T) is the predictive information over a time window of length 2T
(T steps of the past predicting T steps into the future). This concise statement tells us that past
observations contain vanishingly small information about the future as the time window increases.

The application of CEB to extracting the predictive information is straightforward. Given
the Markov chain X<t → X≥t, we learn a representation Zt that optimally covers I(X<t, X≥t) in
Predictive CEB:

CEBpred ≡min I(X<t; Zt|X≥t)− I(X≥t, Zt) (A3)

⇒min−H(Zt|X<t) + H(Zt|X≥t) + H(X≥t|Zt) (A4)

Given a dataset of sequences, CEBpred may be extended to a bidirectional model. In this case,
two representations are learned, Z<t and Z≥t. Both representations are for timestep t, the first
representing the observations before t, and the second representing the observations from t onwards.

229

Entropy 2020, 22, 999

As in the normal bidirectional model, using the same encoder and backwards encoder for both parts of
the bidirectional CEB objective ties the two representations together.

Appendix C.2.1. Modeling and Architectural Choices

As with all of the variants of CEB, whatever entropy remains in the data after capturing the
entropy of the mutual information in the representation must be modeled by the decoder. In this
case, a natural modeling choice would be a probalistic RNN with powerful decoders per time-step to
be predicted. However, it is worth noting that such a decoder would need to sample at each future
step to decode the subsequent step. An alternative, if the prediction horizon is short or the predicted
data are small, is to decode the entire sequence from Zt in a single, feed-forward network (possibly
as a single autoregression over all outputs in some natural sequence). Given the subextensivity of
the predictive information, that may be a reasonable choice in stochastic environments, as the useful
prediction window may be small.

Likely a better alternative, however, is to use the CatGen decoder, as no generation of the long
future sequences is required in that case.

Appendix C.2.2. Multi-Scale Sequence Learning

As in WaveNet [54], it is natural to consider sequence learning at multiple different temporal
scales. Combining an architecture like time-dilated WaveNet with CEB is as simple as combining
CEBpred with CEBhier (Appendix C.1). In this case, each of the Zi would represent a wider time dilation
conditioned on the aggregate Zi−1.

Appendix C.3. Unsupervised CEB

For unsupervised learning, it seems challenging to put the decision about what information
should be kept into objective function hyperparameters, as in the β VAE and penalty VAE [32]
objectives. That work showed that it is possible to constrain the amount of information in the
learned representation, but it is unclear how those objective functions keep only the “correct” bits
of information for the downstream tasks you might care about. This is in contrast to supervised
learning while targeting the MNI point, where the task clearly defines the both the correct amount of
information and which bits are likely to be important.

Our perspective on the importance of defining a task in order to constrain the information in
the representation suggests that we can turn the problem into a data modeling problem in which the
practitioner who selects the dataset also “models” the likely form of the useful bits in the dataset for
the downstream task of interest.

In particular, given a dataset X, we propose selecting a function f (X) → X′ that transforms X
into a new random variable X′. This defines a paired dataset, P(X, X′), on which we can use CEB
as normal. Note that choosing the identity function for f results in maximal mutual information
between X and X′ (H(X) nats), which will result in a representation that is far from the MNI for
normal downstream tasks.

It may seem that we have not proposed anything useful, as the selection of f (.) is unconstrained,
and seems much more daunting than selecting β in a β VAE or σ in a penalty VAE. However, there is a
very powerful class of functions that makes this problem much simpler, and that also make it clear
using CEB will only select bits from X that are useful. That class of functions is the noise functions.

Appendix C.3.1. Denoising CEB Autoencoder

Given a dataset X without labels or other targets, and some set of tasks in mind to be solved by a
learned representation, we may select a random noise variable U, and function X′ = f (X, U) that we
believe will destroy the irrelevant information in X. We may then add representation variables ZX , ZX′

to the model, giving the joint distribution p(x, x′, u, zX , zX′) ≡ p(x)p(u)p(x′| f (x, u))e(zX |x)b(zX′ |x′).
This joint distribution is represented in Figure A2.

230

Entropy 2020, 22, 999

ZX X X′

U

ZX′

Figure A2. Graphical model for the Denoising CEB Autoencoder.

Denoising Autoencoders were originally proposed in Vincent et al. [55]. In that work, the authors
argue informally that reconstruction of corrupted inputs is a desirable property of learned
representations. In this paper’s notation, we could describe their proposed objective as min H(X|ZX′),
or equivalently min 〈log d(x|zX′ = f (x, η))〉x,η∼p(x)p(θ) .

We also note that, practically speaking, we would like to learn a representation that is consistent
with uncorrupted inputs as well. Consequently, we are going to use a bidirectional model.

CEBdenoise ≡min I(X; ZX |X′)− I(X′; ZX) (A5)

+ I(X′; ZX′ |X)− I(X; ZX′) (A6)

⇒min−H(ZX |X) + H(ZX |X′) + H(X′|ZX) (A7)

− H(ZX′ |X′) + H(ZX′ |X) + H(X|ZX′) (A8)

This requires two encoders and two decoders, which may seem expensive, but it permits a
consistent learned representation that can be used cleanly for downstream tasks. Using a single
encoder/decoder pair would result in either an encoder that does not work well with uncorrupted
inputs, or a decoder that only generates noisy outputs.

If you are only interested in the learned representation and not in generating good reconstructions,
the objective simplifies to the first three terms. In that case, the objective is properly called a Noising
CEB Autoencoder, as the model predicts the noisy X′ from X:

CEBnoise ≡min I(X; ZX |X′)− I(X′; ZX) (A9)

⇒min−H(ZX |X) + H(ZX |X′) + H(X′|ZX) (A10)

In these models, the noise function, X′ = f (X, U) must encode the practitioner’s assumptions
about the structure of information in the data. This obviously will vary per type of data, and even per
desired downstream task.

However, we don’t need to work too hard to find the perfect noise function initially. A reasonable
choice for f is:

f (x, η) = clip(x + η,D) (A11)

η ∼ λU(−1, 1) ∗ D (A12)

D =domain(X) (A13)

In other words, add uniform noise scaled to the domain of X and by a hyperparameter λ, and clip
the result to the domain of X. When λ = 1, X′ is indistinguishable from uniform noise. As λ → 0,
this maintains more and more of the original information from X in X′. For some value of λ > 0,
most of the irrelevant information is destroyed and most of the relevant information is maintained,
if we assume that higher frequency content in the domain of X is less likely to contain the desired
information. That information is what will be retained in the learned representation.

231

Entropy 2020, 22, 999

Theoretical Optimality of Noise Functions

Above we claimed that this learning procedure will only select bits that are useful for the
downstream task, given that we select the proper noise function. Here we prove that claim
constructively. Imagine an oracle that knows which bits of information should be destroyed, and which
retained in order to solve the future task of interest. Further imagine, for simplicity, that the task
of interest is classification. What noise function must that oracle implement in order to ensure that
CEBdenoise can only learn exactly the bits needed for classification? The answer is simple: for every
X = xi, select X′ = x′i uniformly at random from among all of the X = xj that should have the same
class label as X = xi. Now, the only way for CEB to maximize I(X; ZX′) and minimize I(X′; ZX′) is
by learning a representation that is isomorphic to classification, and that encodes exactly I(X; Y) nats
of information, even though it was only trained “unsupervisedly” on X, X′ pairs. Thus, if we can
choose the correct noise function that destroys only the bits we don’t care about, CEBdenoise will learn
the desired representation and nothing else (caveated by model, architecture, and optimizer selection,
as usual).

References

1. Carlini, N.; Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection methods.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA,
10–17 August 2017; pp. 3–14.

2. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning
(ICML), Stockholm, Sweden, 10–15 July 2018.

3. Nalisnick, E.; Matsukawa, A.; Teh, Y.W.; Gorur, D.; Lakshminarayanan, B. Do deep generative models
know what they don’t know? In Proceedings of the International Conference on Learning Representations,
New Orleans, LA, USA, 6–9 May 2019.

4. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On Calibration of Modern Neural Networks. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

5. Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.; Garnett, R., Eds.; MIT Press: Cambridge, MA, USA,
2017; pp. 6402–6413; Available online: https://papers.nips.cc/paper/7219-simple-and-scalable-predictive-
uncertainty-estimation-using-deep-ensembles (accessed on 7 September 2020).

6. Hendrycks, D.; Gimpel, K. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural
Networks. In Proceedings of the International Conference on Learning Representations, Toulon, France,
24–26 April 2017.

7. Liang, S.; Li, Y.; Srikant, R. Enhancing The Reliability of Out-of-distribution Image Detection in Neural
Networks. In Proceedings of the International Conference on Learning Representations, Vancouver,
BC, Canada, 30 April–3 May 2018.

8. Lee, K.; Lee, H.; Lee, K.; Shin, J. Training Confidence-calibrated Classifiers for Detecting
Out-of-Distribution Samples. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

9. Devries, T.; Taylor, G.W. Learning Confidence for Out-of-Distribution Detection in Neural Networks. arXiv
2018, arXiv:1802.04865.

10. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking
generalization. In Proceedings of the International Conference on Learning Representations, Toulon, France,
24–26 April 2017.

11. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37th annual
Allerton Conference on Communication, Control, and Computing, Allerton, IL, USA, 22–24 September 1999;
pp. 368–377.

12. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014,
arXiv:1412.6572. Available online: https://arxiv.org/abs/1412.6572 (accessed on 7 September 2020).

232

Entropy 2020, 22, 999

13. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. In Proceedings of the
International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

14. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant
to Adversarial Attacks. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

15. Cohen, J.M.; Rosenfeld, E.; Kolter, J.Z. Certified adversarial robustness via randomized smoothing.
arXiv 2019, arXiv:1902.02918.

16. Wong, E.; Schmidt, F.; Metzen, J.H.; Kolter, J.Z. Scaling provable adversarial defenses. In Advances in Neural
Information Processing Systems; NIPS: La Jolla, CA, USA, 2018; Available online: https://papers.nips.cc/
paper/8060-scaling-provable-adversarial-defenses (accessed on 7 September 2020).

17. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

18. Alemi, A.A.; Fischer, I.; Dillon, J.V. Uncertainty in the Variational Information Bottleneck. arXiv 2018,
arXiv:1807.00906. Available online: https://arxiv.org/abs/1807.00906 (accessed on 7 September 2020).

19. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]

20. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
21. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006.
22. Fischer, I. Bounding the Multivariate Mutual Information. Information Theory and Machine Learning

Workshop. 2019. Available online: https://drive.google.com/file/d/17lJiJ4v_6h0p-ist_jCrr-o1ODi7yELx/
view (accessed on 7 September 2020).

23. Anantharam, V.; Gohari, A.; Kamath, S.; Nair, C. On hypercontractivity and a data processing inequality.
In Proceedings of the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA,
29 June–4 July 2014; pp. 3022–3026.

24. Polyanskiy, Y.; Wu, Y. Strong data-processing inequalities for channels and Bayesian networks. In Convexity
and Concentration; Springer: New York, NY, USA, 2017; pp. 211–249.

25. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the Information Bottleneck. Entropy 2019,
21, 924.10.3390/e21100924. [CrossRef]

26. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the information bottleneck.
Theor. Comput. Sci. 2010, 411, 2696–2711. [CrossRef]

27. Bassily, R.; Moran, S.; Nachum, I.; Shafer, J.; Yehudayoff, A. Learners that Use Little Information.
In Proceedings of the Machine Learning Research, New York, NY, USA, 23–24 February 2018; Janoos, F.,
Mohri, M., Sridharan, K., Eds.; 2018; Volume 83, pp. 25–55; Available online: http://proceedings.mlr.press/
v83/bassily18a.html (accessed on 7 September 2020)

28. Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; Madry, A. Adversarial examples are not bugs,
they are features. In Advances in Neural Information Processing Systems; NIPS: La Jolla, CA, USA, 2019;
pp. 125–136; Available online: https://papers.nips.cc/paper/8307-adversarial-examples-are-not-bugs-they-
are-features (accessed on 7 September 2020).

29. Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference
on Learning Representations, Banff, AB, Canada, 14–16 April 2014.

30. Yeung, R.W. A new outlook on Shannon’s information measures. IEEE Trans. Inf. Theory 1991, 37, 466–474.
[CrossRef]

31. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

32. Alemi, A.A.; Poole, B.; Fischer, I.; Dillon, J.V.; Saurous, R.A.; Murphy, K. Fixing a Broken ELBO.
In ICML2018. 2018. Available online: https://icml.cc/Conferences/2018/ScheduleMultitrack?event=2442
(accessed on 7 September 2020).

33. Vedantam, R.; Fischer, I.; Huang, J.; Murphy, K. Generative Models of Visually Grounded Imagination.
In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018.

34. Higgins, I.; Sonnerat, N.; Matthey, L.; Pal, A.; Burgess, C.P.; Bošnjak, M.; Shanahan, M.; Botvinick, M.;
Hassabis, D.; Lerchner, A. SCAN: Learning Hierarchical Compositional Visual Concepts. arXiv 2018,
arXiv:1707.03389.

233

Entropy 2020, 22, 999

35. Oord, A.V.D.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018,
arXiv:1807.03748.

36. Poole, B.; Ozair, S.; van den Oord, A.; Alemi, A.A.; Tucker, G. On Variational Bounds of Mutual Information.
In Proceedings of the ICML2019, Long Beach, CA, USA, 9–15 June 2019.

37. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677 .

38. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv 2017, arXiv:1708.07747.

39. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features From Tiny Images; Technical Report; University
of Toronto: Toronto, ON, USA, 2009; Available online: https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf (accessed on 7 September 2020).

40. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.

41. Papernot, N.; Faghri, F.; Carlini, N.; Goodfellow, I.; Feinman, R.; Kurakin, A.; Xie, C.; Sharma, Y.; Brown, T.;
Roy, A.; et al. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library. arXiv 2018,
arXiv:1610.00768.

42. Lee, K.; Lee, K.; Lee, H.; Shin, J. A Simple Unified Framework for Detecting Out-of-Distribution Samples
and Adversarial Attacks. In Advances in Neural Information Processing Systems 31; Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; NIPS: La Jolla, CA, USA, 2018; pp. 7167–7177;
Available online: https://papers.nips.cc/paper/7947-a-simple-unified-framework-for-detecting-out-of-
distribution-samples-and-adversarial-attacks (accessed on 7 September 2020).

43. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference
(BMVC), York, UK, 9–12 September 2019; Richard, C., Wilson, E.R.H., Smith, W.A.P., Eds.; BMVA Press:
London, UK, 2016; pp. 87.1–87.12; Available online: http://www.bmva.org/bmvc/2016/papers/paper087/
(accessed on 7 September 2020).

44. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies
From Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019.

45. Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv 2018,
arXiv:1806.00451.

46. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential
linear units (elus). In Proceedings of the International Conference on Learning Representations Workshop,
San Juan, Puerto Rico, 2–4 May 2016.

47. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the Machine Learning Research, Lille, France, 7–9 July 2015; Bach, F.,
Blei, D., Eds.; PMLR: Lille, France, 2015; Volume 37, pp. 448–456; Available online: http://proceedings.mlr.
press/v37/ioffe15 (accessed on 7 September 2020).

48. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations, San Diego, CA, USA, 4–8 May 2015.

49. Figurnov, M.; Mohamed, S.; Mnih, A. Implicit Reparameterization Gradients. In Advances in Neural
Information Processing Systems 31; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R., Eds.; NIPS: La Jolla, CA, USA, 2018; pp. 441–452; Available online: https://papers.nips.cc/
paper/7326-implicit-reparameterization-gradients (accessed on 7 September 2020).

50. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 1992, 8, 229–256. [CrossRef]

51. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y.
Learning deep representations by mutual information estimation and maximization. In Proceedings
of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

52. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the
Information Bottleneck Principle. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2225–2239. [CrossRef]
[PubMed]

53. Bialek, W.; Nemenman, I.; Tishby, N. Predictability, complexity, and learning. Neural Comput. 2001, 13.
[CrossRef] [PubMed]

234

Entropy 2020, 22, 999

54. Van Den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.;
Senior, A.W.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.
Available online: https://arxiv.org/abs/1609.03499 (accessed on 7 September 2020).

55. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

235

entropy

Article

CEB Improves Model Robustness

Ian Fischer * and Alexander A. Alemi

Google Research, Mountain View, CA 94043, USA; alemi@google.com
* Correspondence: iansf@google.com

Received: 31 July 2020; Accepted: 21 September 2020; Published: 25 September 2020

Abstract: Intuitively, one way to make classifiers more robust to their input is to have them
depend less sensitively on their input. The Information Bottleneck (IB) tries to learn compressed
representations of input that are still predictive. Scaling up IB approaches to large scale image
classification tasks has proved difficult. We demonstrate that the Conditional Entropy Bottleneck
(CEB) can not only scale up to large scale image classification tasks, but can additionally improve
model robustness. CEB is an easy strategy to implement and works in tandem with data augmentation
procedures. We report results of a large scale adversarial robustness study on CIFAR-10, as well as
the ImageNet-C Common Corruptions Benchmark, ImageNet-A, and PGD attacks.

Keywords: information theory; information bottleneck; machine learning

1. Introduction

We aim to learn models that make meaningful predictions beyond the data they were trained
on. Generally we want our models to be robust. Broadly, robustness is the ability of a model to
continue making valid predictions as the distribution the model is tested on moves away from the
empirical training set distribution. The most commonly reported robustness metric is simply test set
performance, where we verify that our model continues to make valid predictions on what we hope
represents valid draws from the same data generating procedure as the training set.

Adversarial attacks test robustness in a worst case setting, where an attacker [1] makes limited
targeted modifications to the input that are as fooling as possible. Many adversarial attacks have
been proposed and studied (e.g., Szegedy et al. [1], Carlini and Wagner [2,3], Kurakin et al. [4],
Madry et al. [5]). Most machine-learned systems appear to be vulnerable to adversarialexamples.
Many defenses have been proposed, but few have demonstrated robustness against a powerful,
general-purpose adversary [3,6]. Recent discussions have emphasized the need to consider forms
of robustness besides adversarial [7]. The Common Corruptions Benchmark [8] measures image
models’ robustness to more mild real-world perturbations. Even these modest perturbations can fool
traditional architectures.

One general-purpose strategy that has been shown to improve model robustness is data
augmentation [9–11]. Intuitively, by performing modifications of the inputs at training time, the model
is prevented from being too sensitive to particular features of the inputs that do not survive
the augmentation procedure. We would like to identify complementary techniques for further
improving robustness.

One approach is to try to make our models more robust by making them less sensitive to the inputs
in the first place. The goal of this work is to experimentally investigate whether, by systematically
limiting the complexity of the extracted representation using the Conditional Entropy Bottleneck
(CEB), we can make our models more robust in all three of these senses: test set generalization
(e.g., classification accuracy on “clean” test inputs), worst-case robustness, and typical-case robustness.

This paper is primarily empirical. We demonstrate:

• CEB models are easy to implement and train.

Entropy 2020, 22, 1081; doi:10.3390/e22101081 www.mdpi.com/journal/entropy237

Entropy 2020, 22, 1081

• CEB models show improved generalization performance over deterministic baselines on
CIFAR10 and ImageNet.

• CEB models show improved robustness to untargeted Projected Gradient Descent (PGD) attacks
on CIFAR10.

• CEB models trained on ImageNet show improved robustness on the ImageNet-C Common
Corruptions Benchmark, the ImageNet-A Benchmark, and targeted PGD attacks.

• CEB models trained on ImageNet show improved calibration on the ImageNet validation set
and on ImageNet-C.

We also show that adversarially-trained models fail to generalize to attacks they were not trained
on, by comparing the results on L2 PGD attacks from Madry et al. [5] to our results on the same baseline
architecture. This result underscores the importance of finding ways to make models robust that do
not rely on knowing the form of the attack ahead of time. Finally, for readers who are curious about
theoretical and philosophical perspectives that may give insights into why CEB improves robustness,
we recommend Fischer [12], which introduced CEB, as well as Achille and Soatto [13], Achille and
Soatto [14], and Pensia et al. [15].

2. Materials and Methods

2.1. Information Bottlenecks

The Information Bottleneck (IB) objective [16] aims to learn a stochastic representation Z ∼ p(z|x)
of some input X that retains as much information about a target variable Y while being as compressed
as possible. The objective:

IB ≡ max
p(z|x)

I(Z; Y)− σ(−ρ)I(Z; X), (1)

uses a Lagrange multiplier σ(−ρ) to trade off between the relevant information (I(Z; Y)) and
complexity of the representation (I(Z; X)). The IB objective is ordinarily written with a Lagrange
multiplier β ≡ σ(−ρ) with a natural range from 0 to 1. Here we use the sigmoid function:
σ(−ρ) ≡ 1

1+eρ to reparameterize in terms of a control parameter ρ on the whole real line. As ρ → ∞
the bottleneck turns off.

Because Z depends only on X (Z ← X ↔ Y), Z and Y are independent given X:

I(Z; X, Y) =I(Z; X)+�����I(Z; Y|X)

=I(Z; Y) + I(Z; X|Y). (2)

This allows us to write Equation (1) in an equivalent form:

max
Z

I(Z; Y)− e−ρ I(Z; X|Y). (3)

Just as the original IB objective (Equation (1)) admits a natural variational lower bound [17], so does
this form. We can variationally lower bound the mutual information between our representation and
the targets with a variational decoder q(y|z):

I(Z; Y) =Ep(x,y)p(z|x)

[
log

p(y|z)
p(y)

]
≥H(Y) +Ep(x,y)p(z|x) [log q(y|z)] . (4)

While we may not know H(Y) exactly for real world datasets, in the IB formulation it is a constant
outside of our control and so can be dropped in our objective. We can variationally upper bound our
residual information:

238

Entropy 2020, 22, 1081

I(Z; X|Y) =Ep(x,y)p(z|x)

[
log

p(z|x, y)
p(z|y)

]

≤Ep(x,y)p(z|x)

[
log

p(z|x)
q(z|y)

]
, (5)

with a variational class conditional marginal q(z|y) that approximates
∫

dx p(z|x)p(x|y). Putting both
bounds together gives us the Conditional Entropy Bottleneck objective [12]:

min
p(z|x)

Ep(x,y)p(z|x)

[
− log q(y|z) + e−ρ log

p(z|x)
q(z|y)

]
. (6)

Compare this with the Variational Information Bottleneck (VIB) objective [17]:

min
p(z|x)

Ep(x,y)p(z|x)

[
− log q(y|z)− σ(−ρ) log

p(z|x)
q(z)

]
. (7)

The difference between CEB and VIB is the presence of a class conditional versus unconditional
variational marginal. As can be seen in Equation (5), using an unconditional marginal provides
a looser variational upper bound on I(Z; X|Y). CEB (Equation (6)) can be thought of as a tighter
variational approximation than VIB (Equation (7)) to Equation (3). Since Equation (3) is equivalent to
the IB objective (Equation (1)), CEB can be thought of as a tighter variational approximation to the IB
objective than VIB.

2.2. Implementing a CEB Model

In practice, turning an existing classifier architecture into a CEB model is very simple. For the
stochastic representation p(z|x) we simply use the original architecture, replacing the final softmax
layer with a dense layer with d outputs. These outputs are then used to specify the means of a
d-dimensional Gaussian distribution with unit diagonal covariance. That is, to form the stochastic
representation, independent standard normal noise is simply added to the output of the network
(z = x + ε). For every input, this stochastic encoder will generate a random d-dimensional output
vector. For the variational classifier q(y|z) any classifier network can be used, including just a linear
softmax classifier as done in these experiments. For the variational conditional marginal q(z|y) it
helps to use the same distribution as output by the classifier. For the simple unit variance Gaussian
encoding we used in these experiments, this requires learning just d parameters per class. For ease
of implementation, this can be represented as a single dense linear layer mapping from a one-hot
representation of the labels to the d-dimensional output, interpreted as the mean of the corresponding
class marginal.

In this setup the CEB loss takes a particularly simple form:

E

[
wy · (f (x) + ε)− log ∑

y′
ewy′ ·(f (x)+ε) − e−ρ

2
(f (x)− μy)

(
f (x)− μy + 2ε

)]
. (8)

The first two terms of Equation (8) are the usual softmax classifier loss, but acting on our stochastic
representation z = f (x) + ε, which is simply the output of our encoder network f (x) with additive
Gaussian noise. The wy is the yth row of weights in the final linear layer outputting the logits. μy are
the learned class conditional means for our marginal. ε are standard normal draws from an isotropic
unit variance Gaussian with the same dimension as our encoding f (x). The last term of Equation (8) is
a stochastic sampling of the KL divergence between our encoder likelihood and the class conditional
marginal likelihood. ρ controls the strength of the bottleneck and can vary on the whole real line.
As ρ → ∞ the bottleneck is turned off. In practice we find that ρ values near but above 0 tend to work
best for modest size models, with the tendency for the best ρ to approach 0 as the model capacity
increases. Notice that in expectation the second term in the loss is (f (x)− μy)2, which encourages

239

Entropy 2020, 22, 1081

the learned means μy to converge to the average of the representations of each element in the class.
During testing we use the mean encodings and remove the stochasticity.

In its simplest form, training a CEB classifier amounts to injecting Gaussian random noise in the
penultimate layer and learning estimates of the class-averaged output of that layer. In Appendix B
we show simple modifications to the TPU-compatible ResNet implementation available on GitHub
from the Google TensorFlow Team [18] that produce the same core ResNet50 models we use for our
ImageNet experiments.

2.3. Consistent Classifier

An alternative classifier to the standard linear layer described in Section 2.2 performs the Bayesian
inversion on the true class-conditional marginal:

p(y|z) = p(z|y)p(y)
∑y′ p(z|y′)p(y′)

. (9)

Substituting q(z|y) and using the empirical distribution over labels, we can define our variational
classifier as:

q(y|z) ≡ softmaxy(q(z|y)p(y)) (10)

In the case that the labels are uniformly distributed, that further simplifies to q(y|z) ≡ softmaxy(q(z|y)).
We call this the consistent classifier because it is Bayes-consistent with the variational conditional
marginal. This is in contrast to the standard feed-forward classifier, which may choose to classify a
region of the latent space differently from the highest density class given by the conditional marginal.

2.4. Adversarial Attacks and Defenses

2.4.1. Attacks

The first adversarial attacks were proposed in Szegedy et al. [1], Goodfellow et al. [19]. Since those
seminal works, an enormous variety of attacks has been proposed (Carlini and Wagner [2], Kurakin et al. [4],
Madry et al. [5], Kurakin et al. [20], Moosavi-Dezfooli et al. [21], Eykholt et al. [22], Baluja and Fischer [23],
etc.). In this work, we will primarily consider the Projected Gradient Descent (PGD) attack [5], which is
a multi-step variant of the early Fast Gradient Method [19]. The attack can be viewed as having four
parameters—p, the norm of the attack (typically 2 or ∞), ε, the radius the the p-norm ball within which the
attack is permitted to make changes to an input, n, the number of gradient steps the adversary is permitted
to take, and εi, the per-step limit to modifications of the current input. In this work, we consider L2 and L∞

attacks of varying ε and n, and with εi =
4
3

ε
n .

2.4.2. Defenses

A common defense for adversarial examples is adversarial training. Adversarial training was
originally proposed in Szegedy et al. [1], but was not practical until the Fast Gradient Method was
introduced. It has been studied in detail, with varied techniques [5,20,24,25]. Adversarial training
can clearly be viewed as a form of data augmentation [26], where instead of using some fixed set
of functions to modify the training examples, we use the model itself in combination with one or
more adversarial attacks to modify the training examples. As the model changes, the distribution of
modifications changes as well. However, unlike with non-adversarial data augmentation techniques,
such as AutoAugment (AutoAug) [9], adversarial training techniques considered in the literature
so far cause substantial reductions in accuracy on clean test sets. For example, the CIFAR10 model
described in Madry et al. [5] gets 95.5% accuracy when trained normally, but only 87.3% when trained
on L∞ adversarial examples. More recently, Xie et al. [25] adversarially trains ImageNet models with

240

Entropy 2020, 22, 1081

impressive robustness to targeted PGD L∞ attacks, but at only 62.32% accuracy on the non-adversarial
test set, compared to 78.81% accuracy for the same model trained only on clean images.

2.5. Common Corruptions

The Common Corruptions Benchmark [8] offers a test of model robustness to common image
processing pipeline corruptions. ImageNet-C modifies the ImageNet test set with the 15 corruptions
applied at five different strengths. Within each corruption type we evaluate the average error at each
of the five levels (Ec =

1
5 ∑5

s=1 Ecs). To summarize the performance across all corruptions, we report
both the average corruption error (avg = 1

15 ∑c Ec) and the Mean Corruption Error (mCE) [8]:

mCE =
1
15 ∑

c

∑5
s=1 Ecs

∑5
s=1 EAlexNet

cs
. (11)

The mCE weights the errors on each task against the performance of a baseline AlexNet model. Slightly
different pipelines have been used for the ImageNet-C task [10]. In this work we used the AlexNet
normalization numbers and data formulation from Yin et al. [11].

2.6. Natural Adversarial Examples

The ImageNet-A Benchmark [27] is a dataset of 7500 naturally-occurring “adversarial” examples
across 200 ImageNet classes. The images exploit commonly-occurring weaknesses in ImageNet models,
such as relying on textures often seen with certain class labels.

2.7. Calibration

One approach to estimating a model’s robustness is to look at how well calibrated the model is.
The Expected Calibration Error (ECE) [28] gives an intuitive metric of calibration:

ECE ≡
S

∑
s=1

|Bs|
N
|acc(Bs)− conf(Bs)|, (12)

where S is the number of confidence bins (30 in our experiments), N is the number of examples
(50,000 for ImageNet and for each ImageNet-C corruption), |Bs| is the number of examples in the sth
bin, acc(Bs) is the mean accuracy in the sth bin, and conf(Bs) is the mean confidence of the model’s
predictions in the sth bin. The ECE ranges between 0 and 1. A perfectly calibrated model would have
an ECE of 0. See Ovadia et al. [29] for further details.

3. Results

3.1. CIFAR10 Experiments

We trained a set of 25 28× 10 Wide ResNet (WRN) CEB models on CIFAR10 at ρ ∈ [−1,−0.75, . . . , 5],
as well as a deterministic baseline. They trained for 1500 epochs, lowering the learning rate by a factor
of 0.3 after 500, 1000, and 1250 epochs. This long training regime was due to our use of the original
AutoAug policies, which requires longer training. The only additional modification we made to the basic
28× 10 WRN architecture was the removal of all Batch Normalization [30] layers. Every small CIFAR10
model we have trained with Batch Normalization enabled has had substantially worse robustness to L∞

PGD adversaries, even though typically the accuracy is much higher. For example, 28× 10 WRN CEB
models rarely exceeded more than 10% adversarial accuracy. However, it was always still the case that
lower values of ρ gave higher robustness. As a baseline comparison, a deterministic 28×10 WRN with
BatchNorm, trained with AutoAug reaches 97.3% accuracy on clean images, but 0% accuracy on L∞ PGD
attacks at ε = 8 and n = 20. Interestingly, that model was noticeably more robust to L2 PGD attacks
than the deterministic baseline without BatchNorm, getting 73% accuracy compared to 66%. However,

241

Entropy 2020, 22, 1081

it was still much weaker than the CEB models, which get over 80% accuracy on the same attack (Figure 1).
Additional training details are in Appendix A.1.

Figure 1 demonstrates the adversarial robustness of CEB models to both targeted L2 and L∞

attacks. The CEB models show a marked improvement in robustness to L2 attacks compared to
an adversarially-trained baseline from Madry et al. [5] (denoted Madry). The attack parameters
were selected to be about equally difficult for the adversarially-trained WRN 28 × 10 model
from Madry et al. [5] (grey dashed and dotted lines in Figure 1). The deterministic baseline (Det.) only
gets 8% accuracy on the L∞ attacks, but gets 66% on the L2 attack, substantially better than the 45.7%
of the adversarially-trained model, which makes it clear that the adversarially-trained model failed
to generalize in any reasonable way to the L2 attack. The CEB models are always substantially more
robust than Det., and many of them outperform Madry even on the L∞ attack the Madry model was
trained on, but for both attacks there is a clear general trend toward more robustness as ρ decreases.
Finally, the CEB and Det. models all reach about the same accuracy, ranging from 93.9% to 95.1%,
with Det. at 94.4%. In comparison, Madry only gets 87.3%.

Figure 2 shows the robustness of five of those models to PGD attacks as ε is varied. We selected
the four CEB models to represent the most robust models across most of the range of ρ we trained.
All values in the figure are collected at 20 steps of PGD. The Madry model [5] was trained with 7 steps
of L∞ PGD at ε = 8 (grey dashed line in the figure). All of the CEB models with ρ ≤ 4 outperform
Madry across most of the values of ε, even though they were not adversarially-trained. It is interesting
to note that the Det. model eventually outperforms the CEB5 model on L2 attacks at relatively high
accuracies. This result indicates that the CEB5 model may be under-compressed.

Of the 25 CEB models we trained, only the models with ρ ≥ 1 successfully trained. The remainder
collapsed to chance performance. This is something we observe on all datasets when training models
that are too low capacity. Only by increasing model capacity does it become possible to train at low
ρ. Note that this result is predicted by the theory of the onset of learning in IB and its relationship to
model capacity from Wu et al. [31].

We additionally tested two models (ρ = 0 and ρ = 5) on the CIFAR10 Common Corruptions
test sets. At the time of training, we were unaware that AutoAug’s default policies for CIFAR10
contain brightness and contrast augmentations that amount to training on those two corruptions from
Common Corruptions (as mentioned in Yin et al. [11]), so our results are not appropriate for direct
comparison with other results in the literature. However, they still allow us to compare the effect of
bottlenecking the information between the two models. The ρ = 5 model reached an mCE of 61.2.
The ρ = 0 model reached an mCE of 52.0, which is a dramatic relative improvement. Note that the
mCE is computed relative to a baseline model. We use the baseline model from Yin et al. [11].

Figure 1. Conditional Entropy Bottleneck (CEB) ρ vs. test set accuracy, and L2 and L∞ Projected
Gradient Descent (PGD) adversarial attacks on CIFAR10. None of the CEB models is adversarially trained.

242

Entropy 2020, 22, 1081

Figure 2. Untargeted adversarial attacks on CIFAR10 models showing both strong robustness to PGD
L2 and L∞ attacks, as well as good test accuracy of up to 95.1%. (Left): Accuracy on untargeted L∞

attacks at different values of ε for all 10,000 test set examples. (Right): Accuracy on untargeted L2

attacks at different values of ε. Note the switch to log scale on the x axis at L2ε = 100. 28× 10 indicates
the Wide ResNet size. CEBx indicates a CEB model trained at ρ = x. Madry is the adversarially-trained
model from Madry et al. [5] (values provided by Aleksander Madry). None of the CEB models is
adversarially-trained.

3.2. ImageNet Experiments

To demonstrate CEB’s ability to improve robustness, we trained four different ResNet architectures
on ImageNet at 224×224 resolution, with and without AutoAug, using three different objective
functions, and then tested them on ImageNet-C, ImageNet-A, and targeted PGD attacks.

As a simple baseline we trained ResNet50 with no data augmentation using the standard
cross-entropy loss (XEnt). We then trained the same network with CEB at ten different values of
ρ = (1, 2, . . . , 10). AutoAug [9] has previously been demonstrated to improve robustness markedly
on ImageNet-C, so next we trained ResNet50 with AutoAug using XEnt. We similarly trained these
AutoAug ResNet50 networks using CEB at the same ten values of ρ. ImageNet-C numbers are also
sensitive to the model capacity. To assess whether CEB can benefit larger models, we repeated the
experiments with a modified ResNet50 network where every layer was made twice as wide, training
an XEnt model and ten CEB models, all with AutoAug. To see if there is any additional benefit or cost
to using the consistent classifier (Section 2.3), we took the same wide architecture using AutoAug and
trained ten consistent classifier CEB (cCEB) models. Finally, we repeated all of the previous experiments
using ResNet152: XEnt and CEB models without AutoAug; with AutoAug; with AutoAug and twice as
wide; and cCEB with AutoAug and twice as wide. All other hyperparameters (learning rate schedule,
L2 weight decay scale, etc.) remained the same across all models. All of those hyperparameters
where taken from the ResNet hyperparameters given in the AutoAug paper. In total we trained
86 ImageNet models: 6 deterministic XEnt models varying augmentation, width, and depth; 60 CEB
models additionally varying ρ; and 20 cCEB models also varying ρ. The results for the ResNet50
models are summarized in Figure 3. For ResNet152, see Figure 4. See Table 1 for detailed results across
the matrix of experiments. Additional experimental details are given in Appendix A.2.

243

Entropy 2020, 22, 1081

Figure 3. Summary of the ResNet50 ImageNet-C experiments. Lower is better in all cases. In the
main part of the figure (in blue), the average errors across corruption magnitude are shown for 33
different networks for each of the labeled Common Corruptions, ImageNet-A, and targeted PGD
attacks. The networks come in paired sets, with the vertical lines denoting the baseline XEnt network’s
performance, and then in the corresponding color the errors for each of 10 different CEB networks
are shown with varying ρ = [1, 2, . . . , 10], arranged from 10 at the top to 1 at the bottom. The light
blue lines indicate ResNet50 models trained without AutoAug. The blue lines show the same network
trained with AutoAug. The dark blue lines show ResNet50 AutoAug networks that were made twice
as wide. For these models, we display cCEB rather than CEB, which gave qualitatively similar but
slightly weaker performance. The figure separately shows the effects of data augmentation, enlarging
the model, and the additive effect of CEB on each model. At the top in red are shown the same data for
three summary statistics. clean denotes the clean top-1 errors of each of the networks. mCE denotes the
AlexNet regularized average corruption errors. avg shows an equally-weighted average error across
all common corruptions. The dots denote the value for each CEB network and each corruption at ρ∗,
the optimum ρ for the network as measured in terms of clean error. The values at these dots and the
baseline values are given in detail in Table 1. Figure 4 show the same data for the ResNet152 models.

244

Entropy 2020, 22, 1081

Figure 4. Replication of Figure 3 but for ResNet152. Lower is better in all cases. The light blue lines
indicate ResNet152 models trained without AutoAug. The blue lines show the same network trained
with AutoAug. The dark blue lines show ResNet152 AutoAug networks that were made twice as wide.
As in Figure 3, we show the cCEB models for the largest network to reduce visual clutter. The deeper
model shows marked improvement across the board compared to ResNet50, but the improvements
due to CEB and cCEB are even more striking. Notice in particular the adversarial robustness to L∞

and L2 PGD attacks for the CEB models over the XEnt baselines. The L∞ baselines all have error rates
above 99%, so they are to the right edge of the figure. See Table 1 for details of the best-performing
models, which correspond to the dots in this figure.

The CEB models highlighted in Figures 3 and 4 and Table 1 were selected by cross validation.
These were values of ρ that gave the best clean test set accuracy. Despite being selected for classical
generalization, these models also demonstrate a high degree of robustness on both average- and
worst-case perturbations. In the case that more than one model gets the same test set accuracy,
we choose the model with the lower ρ, since we know that lower ρ correlates with higher robustness.

245

Entropy 2020, 22, 1081

The only model where we had to make this decision was for ResNet152 with AutoAug, where five
models all were within 0.1% of each other, so we chose the ρ = 3 model, rather than ρ ∈ {5 . . . 8}.

Table 1. Baseline and cross-validated CEB values for the ImageNet experiments. cCEB uses the
consistent classifier. XEnt is the baseline cross entropy objective. “-aa” indicates AutoAug is not used
during training. “x2” indicates the ResNet architecture is twice as wide. The CEB values reported here
are denoted with the dots in Figures 3 and 4. Lower values are better in all cases, and the lowest value
for each architecture is shown in bold. All values are percentages.

Architecture ResNet152x2 ResNet152 ResNet152-aa ResNet50x2 ResNet50 ResNet50-aa

Objective cCEB CEB XEnt CEB XEnt CEB XEnt cCEB CEB XEnt CEB XEnt CEB XEnt

ρ 2 2 NA 3 NA 3 NA 4 3 NA 6 NA 4 NA
Clean 19.1 19.3 20.7 19.9 20.7 21.6 22.4 20.0 20.2 21.8 21.9 22.5 22.8 24.0
mCE 52.6 53.2 57.8 55.0 57.4 65.7 71.9 57.9 57.8 62.0 62.1 64.4 72.0 77.0

Average CE 41.4 41.8 45.5 43.3 45.2 51.9 56.8 45.6 45.5 48.9 49.0 50.8 56.9 60.9

Gauss. Noise 38.5 40.1 44.7 41.2 43.7 55.3 62.5 44.8 43.9 48.3 48.0 50.7 59.6 67.3
Shot Noise 38.5 40.3 45.0 41.2 43.8 56.5 63.7 44.5 43.9 48.4 47.8 50.7 61.2 68.8

Impulse Noise 41.9 43.6 50.5 44.5 46.6 57.9 66.8 48.7 48.1 53.1 51.3 54.8 64.8 72.7
Defocus Blur 49.6 48.8 54.5 51.3 52.1 57.7 58.3 54.4 54.2 57.3 57.4 58.8 61.5 62.7

Glass Blur 57.4 56.7 60.1 56.9 59.4 66.2 67.7 59.9 61.0 62.6 64.2 64.9 71.5 72.3
Motion Blur 48.5 51.4 55.0 53.7 57.8 55.6 59.7 57.0 56.6 59.5 60.0 62.3 62.7 68.1

Zoom Blur 54.5 54.7 57.3 56.8 57.9 56.6 59.8 58.6 58.0 61.3 62.5 64.8 61.8 63.7
Snow 46.6 46.6 51.9 48.4 51.8 57.6 64.2 51.4 50.9 55.9 55.7 58.8 63.1 68.7
Frost 43.2 43.9 46.3 45.9 47.2 53.2 57.6 47.1 47.1 50.7 51.0 52.7 57.6 61.7

Fog 28.7 28.7 31.4 29.9 31.5 39.1 43.3 30.6 30.2 33.9 33.9 34.8 42.3 47.0
Brightness 22.5 22.6 24.5 23.6 24.4 28.4 30.8 23.8 24.1 26.3 26.4 26.8 30.3 33.4

Contrast 38.0 37.7 39.5 40.0 39.9 54.0 58.7 42.0 42.4 44.9 46.7 47.6 58.5 62.8
Elastic Trans. 45.0 45.3 46.6 46.9 47.8 49.2 51.4 49.0 48.8 52.4 51.7 53.7 53.0 56.0

Pixelate 36.0 35.2 40.5 36.2 38.8 53.4 64.9 37.3 37.9 41.1 40.8 42.8 63.1 64.6
JPEG Comp. 31.9 31.8 34.9 32.9 34.5 38.0 43.0 34.7 35.1 37.4 37.0 37.9 41.8 43.5

ImageNet-A 81.8 82.0 84.6 86.5 87.1 91.5 93.4 86.8 88.1 89.8 92.0 94.2 94.9 96.8

PGD L2 68.5 68.0 99.1 69.1 99.2 70.9 99.4 86.6 84.5 99.8 89.7 99.7 80.2 99.7
PGD L∞ 79.7 79.3 99.3 83.8 99.4 83.8 99.4 95.1 93.2 99.4 97.3 99.4 91.0 99.5

3.2.1. Accuracy, ImageNet-C, and ImageNet-A

Increasing model capacity and using AutoAug have positive effects on classification accuracy,
as well as on robustness to ImageNet-C and ImageNet-A, but for all three classes of models CEB
gives substantial additional improvements. cCEB gives a small but noticeable additional gain for all
three cases (except indistinguishable performance compared to CEB on ImageNet-A with the wide
ResNet152 architecture), indicating that enforcing variational consistency is a reasonable modification
to the CEB objective. In Table 1 we can see that CEB’s relative accuracy gains increase as the architecture
gets larger, from gains of 1.2% for ResNet50 and ResNet152 without AutoAug, to 1.6% and 1.8% for the
consistent wide models with AutoAug. This indicates that even larger relative gains may be possible
when using CEB to train larger architectures than those considered here. We can also see that for the
XEnt 152x2 and 152 models, the smaller model (152) actually has better mCE and equally good top-1
accuracy, indicating that the wider model may be overfitting, but the 152x2 CEB and cCEB models
substantially outperform both of them across the board. cCEB gives a noticeable boost over CEB for
clean accuracy and mCE in both wide architectures.

3.2.2. Targeted PGD Attacks

We tested on the random-target version of the PGD L2 and L∞ attacks [4]. The L∞ attack used
ε = 16, n = 10, and εi = 2, which is considered to be a strong attack still [25]. The L2 attack used
ε = 200, n = 10, and εi = 220. Those parameters were chosen by attempting to match the baseline
XEnt ResNet50 without AutoAug model’s performance on the L∞ attack—the performance of the
CEB models were not considered when selecting the L2 attack strength. Interestingly, for the PGD
attacks, AutoAug was detrimental—the ResNet50 models without AutoAug were substantially more
robust than those with AutoAug, and the ResNet152 models without AutoAug were nearly as robust
as the AutoAug and wide models, in spite of having much worse test set accuracy. The ResNet50

246

Entropy 2020, 22, 1081

CEB models show a dramatic improvement over the XEnt model, with top-1 accuracy increasing
from 0.3% to 19.8% between the XEnt baseline without AutoAug and the corresponding ρ = 4 CEB
model, a relative increase of 66 times. Interestingly, the CEB ResNet50 models without AutoAug are
much more robust to the adversarial attacks than the AutoAug and wide ResNet50 models. As with
the accuracy results above, the robustness gains due to CEB increase as model capacity increases,
indicating that further gains are possible.

3.2.3. Calibration and ImageNet-C

Following the experimental setup in Reference [29], in Figure 5 we compare accuracy and ECE on
ResNet models for both the clean ImageNet test set and the collection of 15 ImageNet-C corruptions
at each of the five different corruption intensities. It is easy to see in the figure that the CEB models
always have superior mean accuracy and ECE for all six different sets of test sets.

Figure 5. Comparison of accuracy and Expected Calibration Error (ECE) between Xent baseline models
and corresponding CEB models at the value of ρ that gives the closest accuracy to the XEnt baseline.
Higher is better for accuracy; lower is better for ECE. The box plots show the minimum, 25th percentile,
mean, 75th percentile, and maximum values across the 15 different ImageNet-C corruptions for the
given shift intensity. XEnt baseline models are always the lighter color, with the corresponding CEB
model having the darker color.

Because accuracy can have a strong impact on ECE, we use a different model selection procedure
than in the previous experiments. Rather than selecting the CEB model with the highest accuracy,
we instead select the CEB model with with the closest accuracy to the corresponding XEnt model.
This resulted in selecting models with lower ρ than in the previous experiments for four out of the
six CEB model classes. We note that by selecting models with lower ρ (which are more compressed),
we see more dramatic differences in ECE, but even if we select the CEB models with highest accuracy

247

Entropy 2020, 22, 1081

as in the previous experiments, all six CEB models outperform the corresponding XEnt baselines on all
six different sets of test sets.

4. Conclusions

The Conditional Entropy Bottleneck (CEB) provides a simple mechanism to improve robustness
of image classifiers. We have shown a strong trend toward increased robustness as ρ decreases in the
standard 28× 10 Wide ResNet model on CIFAR10, and that this increased robustness does not come
at the expense of accuracy relative to the deterministic baseline. We have shown that CEB models at
a range of ρ outperform an adversarially-trained baseline model, even on the attack the adversarial
model was trained on, and have incidentally shown that the adversarially-trained model generalizes
to at least one other attack less well than a deterministic baseline. Finally, we have shown that on
ImageNet, CEB provides substantial gains over deterministic baselines in validation set accuracy,
robustness to Common Corruptions, Natural Adversarial Examples, and targeted Projected Gradient
Descent attacks, and gives large improvements to model calibration, all without any change to the
inference architecture. We hope these empirical demonstrations inspire further theoretical and practical
study of the use of bottlenecking techniques to encourage improvements to both classical generalization
and robustness.

Author Contributions: Conceptualization, I.F.; methodology, I.F. and A.A.A.; software, I.F.; validation, I.F.
and A.A.A.; formal analysis, A.A.A. and I.F.; investigation, I.F.; writing—original draft preparation, I.F. and A.A.A.;
writing—review and editing, I.F. and A.A.A.; visualization, I.F. and A.A.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Justin Gilmer for helpful conversations on the use of ImageNet-C.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Experiment Details

Here we give additional technical details for the CIFAR10 and ImageNet experiments.

Appendix A.1. CIFAR10 Experiment Details

We trained all of the models using Adam [32] at a base learning rate of 10−3. We lowered the
learning rate three times by a factor of 0.3 each time. The only additional trick to train the CIFAR10
models was to start with ρ = 100, anneal down to ρ = 10 over 2 epochs, and then anneal to the target
ρ over one epoch once training exceeded a threshold of 20%. This jump-start method is inspired by
experiments on VIB in Wu et al. [31]. It makes it much easier to train models at low ρ, and appears to
not negatively impact final performance.

Appendix A.2. ImageNet Experiment Details

We follow the learning rate schedule for the ResNet 50 from Cubuk et al. [9], which has a top
learning rate of 1.6, trains for 270 epochs, and drops the learning rate by a factor of 10 at 90, 180,
and 240 epochs. The only difference for all of our models is that we train at a batch size of 8192 rather
than 4096. Similar to the CIFAR10 models, in order to ensure that the ImageNet models train at low ρ,
we employ a simple jump-start. We start at ρ = 100 and anneal down to the target ρ over 12,000 steps.
The first learning rate drop occurs a bit after 14,000 steps. Also similar to the CIFAR10 28× 10 WRN
experiments, none of the models we trained at ρ = 0 succeeded, indicating that ResNet50 and wide
ResNet50 both have insufficient capacity to fully learn ImageNet. We were able to train ResNet152
at ρ = 0, but only by disabling L2 weight decay and using a slightly lower learning rate. Since that
involved additional hyperparameter tuning, we do not report those results here, beyond noting that it
is possible, and that those models reached top-1 accuracy around 72%.

248

Entropy 2020, 22, 1081

Appendix B. CEB Example Code

In Listings 1 to 3 we give annotated code changes needed to make ResNet CEB models, based on
the TPU-compatible ResNet implementation from the Google TensorFlow Team [18].

Listing 1. Modifications to the model.py file.

In model.py:

def resnet_v1_generator(block_fn, layers, num_classes, ...):

def model(inputs, is_training):

Build the ResNet model as normal up to the following lines:

inputs = tf.reshape(

inputs, [-1, 2048 if block_fn is bottleneck_block else 512])

Now, instead of the final dense layer, just~return inputs,

which for ResNet50 models is a [batch_size, 2048] tensor.

return inputs

Listing 2. Modification to the head of resnet_main.py.

In resnet_main.py add the following imports and functions:

import tensorflow_probability as tfp

tfd = tfp.distributions

def ezx_dist(x):

"""Builds the encoder distribution, e(z|x)."""

dist = tfd.MultivariateNormalDiag(loc=x)

return dist

def bzy_dist(y, num_classes=1000, z_dims=2048):

"""Builds the backwards distribution, b(z|y)."""

y_onehot = tf.one_hot(y, num_classes)

mus = tf.layers.dense(y_onehot, z_dims, activation=None)

dist = tfd.MultivariateNormalDiag(loc=mus)

return dist

def cyz_dist(z, num_classes=1000):

"""Builds the classifier distribution, c(y|z)."""

For the classifier, we~are using exactly the same dense layer

initialization as was used for the final layer that we removed

from model.py.

logits = tf.layers.dense(

z, num_classes, activation=None,

kernel_initializer=tf.random_normal_initializer(stddev=.01))

return tfd.Categorical(logits=logits)

def lerp(global_step, start_step, end_step, start_val, end_val):

"""Utility function to linearly interpolate two values."""

interp = (tf.cast(global_step - start_step, tf.float32)

/ tf.cast(end_step - start_step, tf.float32))

interp = tf.maximum(0.0, tf.minimum(1.0, interp))

return start_val * (1.0 - interp) + end_val * interp

249

Entropy 2020, 22, 1081

Listing 3. Modifications to resnet_model_fn in resnet_main.py.

Still in resnet_main.py, modify resnet_model_fn as follows:

def resnet_model_fn(features, labels, mode, params):

Nothing changes until after the definition of build_network:

def build_network():

Elided, unchanged implementation of build_network.

if params['precision'] == 'bfloat16':

build_network now returns the pre-logits, so~we'll change

the variable name from logits to net.

with tf.contrib.tpu.bfloat16_scope():

net = build_network()

net = tf.cast(net, tf.float32)

elif params['precision'] == 'float32':

net = build_network()

Get the encoder, e(z|x):

with tf.variable_scope('ezx', reuse=tf.AUTO_REUSE):

ezx = ezx_dist(net)

Get the backwards encoder, b(z|y):

with tf.variable_scope('bzy', reuse=tf.AUTO_REUSE):

bzy = bzy_dist(labels)

Only sample z during training. Otherwise, just~pass through

the mean value of the encoder.

if mode == tf.estimator.ModeKeys.TRAIN:

z = ezx.sample()

else:

z = ezx.mean()

Get the classifier, c(y|z):

with tf.variable_scope('cyz', reuse=tf.AUTO_REUSE):

cyz = cyz_dist(z, params)

cyz.logits is the same as what the unmodified ResNet model would return.

logits = cyz.logits

Compute the individual conditional entropies:

hzx = -ezx.log_prob(z) # H(Z|X)

hzy = -bzy.log_prob(z) # H(Z|Y) (upper bound)

hyz = -cyz.log_prob(labels) # H(Y|Z) (upper bound)

I(X;Z|Y) = -H(Z|X) + H(Z|Y)

>= -hzx + hzy =: Rex, the~residual information.

rex = -hzx + hzy

rho = 3.0 # You should make this a hyperparameter.

rho_to_gamma = lambda rho: 1.0 / np.exp(rho)

gamma = tf.cast(rho_to_gamma(rho), tf.float32)

Get the global step now, so~that we can adjust rho dynamically.

global_step = tf.train.get_global_step()

anneal_rho = 12000 # You should make this a hyperparameter.

if anneal_rho > 0:

Anneal rho from 100 down to the target rho

over the first anneal_rho steps.

gamma = lerp(global_step, 0, aneal_rho,

rho_to_gamma(100.0), gamma)

Replace all the softmax cross-entropy loss computation with the following line:

loss = tf.reduce_mean(gamma * rex + hyz)

The rest of resnet_model_fn can remain unchanged.

References

1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties
of neural networks. arXiv 2013, arXiv:1312.6199.

2. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 25 May 2017; pp. 39–57.

250

Entropy 2020, 22, 1081

3. Carlini, N.; Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection methods.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA,
3 November 2017; pp. 3–14.

4. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. In Proceedings of the
ICLR Workshop, International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

5. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to
Adversarial Attacks. In Proceedings of the International Conference on Learning Representations, Vancouver,
BC, Canada, 30 April–3 May 2018.

6. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholm Sweden, 10–15 July 2018.

7. Engstrom, L.; Gilmer, J.; Goh, G.; Hendrycks, D.; Ilyas, A.; Madry, A.; Nakano, R.; Nakkiran, P.; Santurkar, S.; Tran,
B.; et al. A Discussion of ’Adversarial Examples Are Not Bugs, They Are Features’. Distill 2019. Available online:
https://distill.pub/2019/advex-bugs-discussion (accessed on 24 September 2020). [CrossRef]

8. Hendrycks, D.; Dietterich, T. Benchmarking Neural Network Robustness to Common Corruptions and
Perturbations. In Proceedings of the International Conference on Learning Representations, New Orleans,
LA, USA, 6–9 May 2019.

9. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies
From Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019.

10. Lopes, R.G.; Yin, D.; Poole, B.; Gilmer, J.; Cubuk, E.D. Improving Robustness Without Sacrificing Accuracy
with Patch Gaussian Augmentation. arXiv 2019, arXiv:1906.02611.

11. Yin, D.; Gontijo Lopes, R.; Shlens, J.; Cubuk, E.D.; Gilmer, J. A Fourier Perspective on Model Robustness
in Computer Vision. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2019; pp. 13276–13286.

12. Fischer, I. The Conditional Entropy Bottleneck. Entropy 2020, 22, 999. [CrossRef]
13. Achille, A.; Soatto, S. Emergence of Invariance and Disentanglement in Deep Representations. J. Mach.

Learn. Res. 2018, 19, 1–34.
14. Achille, A.; Soatto, S. Information dropout: Learning optimal representations through noisy computation.

IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]
15. Pensia, A.; Jog, V.; Loh, P.L. Extracting robust and accurate features via a robust information bottleneck.

IEEE J. Select. Areas Inf. Theory 2020. [CrossRef]
16. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37th annual

Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999;
pp. 368–377.

17. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of
the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

18. Google TensorFlow Team. Cloud TPU ResNet Implementation. 2019. Available online: https://github.com/
tensorflow/tpu/tree/master/models/official/resnet (accessed on 30 September 2019).

19. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples; ICLR, 2015; Available
online: http://arxiv.org/abs/1412.6572 (accessed 7 September 2020).

20. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. In Proceedings of the
International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

21. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016, pp. 2574–2582.

22. Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D.
Robust physical-world attacks on deep learning models. arXiv 2017, arXiv:1707.08945.

23. Baluja, S.; Fischer, I. Learning to Attack: Adversarial Transformation Networks. In Proceedings of the
AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

251

Entropy 2020, 22, 1081

24. Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; Madry, A. Adversarial Examples Are Not Bugs,
They Are Features. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2019; pp. 125–136.

25. Xie, C.; Wu, Y.; Maaten, L.V.D.; Yuille, A.L.; He, K. Feature denoising for improving adversarial robustness.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 501–509.

26. Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; Madry, A. Robustness May Be at Odds with Accuracy.
In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA,
6–9 May 2019.

27. Hendrycks, D.; Zhao, K.; Basart, S.; Steinhardt, J.; Song, D. Natural adversarial examples. arXiv 2019,
arXiv:1907.07174.

28. Naeini, M.P.; Cooper, G.; Hauskrecht, M. Obtaining Well Calibrated Probabilities Using Bayesian Binning.
In AAAI Conference on Artificial Intelligence; Association for the Advancement of Artificial Intelligence:
Menlo Park, CA, USA, 2015.

29. Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.; Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; Snoek, J.
Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In Advances
in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 13991–14002.

30. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of Machine Learning Research; Bach, F., Blei, D., Eds.; PMLR: Lille, France, 2015;
Volume 37, pp. 448–456.

31. Wu, T.; Fischer, I.; Chuang, I.L.; Tegmark, M. Learnability for the Information Bottleneck. Entropy 2019,
21, 924. [CrossRef]

32. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference
on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

252

entropy

Article

A Comparison of Variational Bounds for the
Information Bottleneck Functional

Bernhard C. Geiger 1,* and Ian S. Fischer 2

1 Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria
2 Google Research, Mountain View, CA 94043, USA; iansf@google.com
* Correspondence: geiger@ieee.org

Received: 24 September 2020; Accepted: 20 October 2020; Published: 29 October 2020
��������	
�������

Abstract: In this short note, we relate the variational bounds proposed in Alemi et al. (2017) and
Fischer (2020) for the information bottleneck (IB) and the conditional entropy bottleneck (CEB)
functional, respectively. Although the two functionals were shown to be equivalent, it was empirically
observed that optimizing bounds on the CEB functional achieves better generalization performance
and adversarial robustness than optimizing those on the IB functional. This work tries to shed light on
this issue by showing that, in the most general setting, no ordering can be established between these
variational bounds, while such an ordering can be enforced by restricting the feasible sets over which
the optimizations take place. The absence of such an ordering in the general setup suggests that the
variational bound on the CEB functional is either more amenable to optimization or a relevant cost
function for optimization in its own regard, i.e., without justification from the IB or CEB functionals.

Keywords: information bottleneck; deep learning; neural networks

1. Introduction

The celebrated information bottleneck (IB) functional [1] is a cost function for supervised
lossy compression. More specifically, if X is an observation and Y a stochastically related random
variable (RV) that we associate with relevance, then the IB problem aims to find an encoder eZ|X,
i.e., a conditional distribution of Z given X, that minimizes

LIB := I(X; Z)− βI(Y; Z). (1)

In (1), I(X; Z) and I(Y; Z) denote the mutual information between observation X and
representation Z and between relevant variable Y and representation Z, respectively, and β is a
Lagrangian parameter. The aim is to obtain a representation Z that is simultaneously compressed
(small I(X; Z)) and informative about the relevant variable Y (large I(Y; Z)), and the parameter β

trades between these two goals.
Recently, Fischer proposed an equivalent formulation, termed the conditional entropy bottleneck

(CEB) [2]. While the IB functional inherently assumes the Markov condition Y − X − Z, the CEB is
motivated from the principle of Minimum Necessary Information, which lacks this Markov condition
and which aims to find a representation Z that compresses a bi-variate dataset (X; Y) while still
being useful for a given task. Instantiating the principle of Minimum Necessary Information induces
then a Markov condition. For example, the task of finding a representation Z that makes X and Y
conditionally independent induces the Markov condition X− Z−Y, and the representation optimal
w.r.t. the principle of Minimum Necessary Information turns out to be arg infX−Z−Y I(X, Y; Z), i.e., it is
related to Wyner’s common information [3]. The task relevant in this work—estimating Y from a
representation Z that is obtained exclusively from X—induces the Markov condition Y− X− Z and

Entropy 2020, 22, 1229; doi:10.3390/e22111229 www.mdpi.com/journal/entropy253

Entropy 2020, 22, 1229

the constraint I(Y; Z) ≥ I(X; Y). A Lagrangian formulation of the constrained optimization problem
infI(Y;Z)≥I(X;Y) I(X; Z), where the infimum is taken over all encoders eZ|X that take only X as input,
yields the CEB functional (see Section 2.3 of [2])

LCEB := I(X; Z|Y)− γI(Y; Z). (2)

Due to the chain rule of mutual information [4] (Theorem 2.5.2), (2) is equivalent to (1) for
γ = β− 1. Nevertheless, (2) has additional appeals. To this end, note that I(X; Z|Y) captures the
information about X contained in the representation Z that is redundant for the task of predicting the
class variable Y. In the language of [5], which essentially also proposed (2), I(X; Z|Y) thus quantifies
class-conditional compression. Minimizing this class-conditional compression term I(X; Z|Y) is not
in conflict with maximizing I(Y; Z), whereas minimizing I(X; Z) is (see Figure 2 in [2] and Section 2
in [5]). At the same time, as stated in [2] (p. 6), I(X; Z|Y) allows to “measure in absolute terms how
much more we could compress our representation at the same predictive performance”, i.e., by how
much I(X; Z|Y) could potentially be further reduced without simultaneously reducing I(Y; Z).

Aside from these theoretical considerations that make the CEB functional preferable over the
equivalent IB functional, it has been shown that minimizing variational bounds on the former achieve
better performance than minimizing variational bounds on the latter [2,6]. More specifically, it was
shown that variational CEB (VCEB) achieves higher classification accuracy and better robustness
against adversarial attacks than variational IB (VIB) proposed in [7].

The exact underlying reason why VCEB outperforms VIB is currently still being investigated.
Comparing these two bounds at β− 1 = γ = 1, Fischer suggests that “we may expect VIB to converge
to a looser approximation of I(X; Z) = I(Y; Z) = I(X; Y)”, where the later equation corresponds to
the Minimum Necessary Information point (see Section 2.5.1 of [2]). Furthermore, Fischer and Alemi
claim that VCEB “can be thought of as a tighter variational approximation to the IB objective than
VIB” (see Section 2.1 of [6]). Nevertheless, the following question remains: Does VCEB outperform VIB
because the variational bound of VCEB is tighter, or because VCEB is more amenable to optimization
than VIB?

To partly answer this question, we compare the optimization problems corresponding to VCEB
and VIB. Rather than focusing on actual (commonly neural network-based) implementations of
these problems, we keep an entirely mathematical perspective and discuss the problem of finding
minimizers within well-defined feasible sets (see Section 3). Our main result in Section 4 shows that the
optimization problems corresponding to VCEB and VIB are indeed ordered if additional constraints
are added: If VCEB is constrained to use a consistent classifier-backward encoder pair (see Definition 1
below), then (unconstrained) VIB yields a tighter approximation of the IB functional. In contrast, if VIB
is constrained to use a consistent classifier-marginal pair, then (constrained and unconstrained) VCEB
yields a tighter approximation. If neither VCEB nor VIB are constrained, then no ordering can be
shown between the resulting optimal variational bounds. Taken together, these results indicate that
the superiority of VCEB over VIB observed in [2,6] cannot be due to VCEB better approximating the IB
functional. Rather, we conclude in Section 5 that the variational bound provided in [2] is either more
amenable to optimization, at least when the variational terms in VCEB and VIB are implemented using
neural networks (NNs), or a successful cost function for optimization in its own regard, i.e., without
justification from the IB or Minimum Necessary Information principles.

Related Work and Scope. Many variational bounds for mutual information have been
proposed [8], and many of these bounds can be applied to the IB functional. Both the VIB and
VCEB variational bounds belong to the class of Barber & Agakov bounds, cf. Section 2.1 of [8].
As an alternative example, the authors of [9] bounded the IB functional using the Donsker–Varadhan
representation of mutual information. Aside from that, the IB functional has been used for NN training
also without resorting to purely variational approaches. For example, the authors of [10] applied the
Barber & Agakov bound to replace I(Y; Z) by the standard cross-entropy loss of a trained classifier,
but used a non-parametric estimator for I(X; Z). Rather than comparing multiple variational bounds

254

Entropy 2020, 22, 1229

with each other, in this work we focus exclusively on the VIB [7] and VCEB [2] bounds. The structural
similarity of these bounds allows a direct comparison and still yields interesting insights that can
potentially carry over to other variational approaches.

We finally want to mention two works that draw conclusions similar to ours. First, Achille and
Soatto [11] pointed to the fact that their choice of injecting multiplicative noise to neuron activations is
not only a restriction of the feasible set over which the optimization is performed, but it can also be
interpreted as a means of regularization or as an approach to perform optimization. Thus, the authors
claim, there is an intricate connection between regularization (i.e., the cost function), the feasible
set, and the method of optimization (see Section 9 of [11]); this claim resonates with our Section 5.
Second, Wieczorek and Roth [12] investigate the difference between IB and VIB: While IB implicitly
assumes the Markov condition Y − X − Z, the variational approach taken in VIB assumes that an
estimate of Y is obtained from the representation Z, i.e., X− Z−Y. Dropping the former assumption
allows to express the difference between the VIB bound and the IB functional via mutual and lautum
information, which, taken together, measure the violation of the condition Y − X − Z. The authors
thus argue that dropping this condition enables VIB and similar variants to optimize over larger sets
of joint distributions of X, Y, and Z. In this work, we take a slightly different approach and argue that
the posterior distribution of Y given Z is approximated by a classifier with input Z that responds with
a class estimate Ŷ. Thus, we stick to the Markov condition inherent to IB and extend it by an additional
variable, resulting in Y − X − Z− Ŷ. As a consequence, our variational approach does not assume
that X − Z − Y holds, which also leads to a larger set of joint distributions of X, Y, and Z. Finally,
while [12] compares the IB functional with the VIB bound, in our work we compare two variational
bounds on the IB functional with each other.

Notation. We consider a classification task with a feature RV X on Rm and a class RV Y on the
finite set Y of classes. We assume that the joint distribution of X and Y is denoted by pXY. In this work
we are interested in representations Z of the feature RV X. This (typically real-valued) representation
Z is obtained by feeding X to a stochastic encoder eZ|X , and the representation Z can be used to infer
the class label by feeding it to a classifier cŶ|Z. Note that this classifier yields a class estimate Ŷ that
need not coincide with the class RV Y. Thus, the setup of encoder, representation, and classifier yields
the following Markov condition: Y− X− Z− Ŷ. We abuse notation and abbreviate the conditional
probability (density) pW|V=v(·) of a RV W given that another RV V assumes a certain value v as
pW|V(·|v). For example, the probability density of the representation Z for an input X = x is induced
by the encoder eZ|X and is given as eZ|X(·|x).

We obtain encoder, classifier, and eventual variational distributions via solving a constrained
optimization problem. For example, mineZ|X∈E J minimizes the objective J over all encoders eZ|X
from a given family E . In practice, encoder, classifier, and variational distributions are parameterized
by (stochastic) feed-forward NNs. The chosen architecture has a certain influence on the feasible set;
e.g., E may denote the set of encoders that can be parameterized by a NN of a given architecture.

We assume that the reader is familiar with information-theoretic quantities. More specifically,
we let I(·; ·) and D (·‖·) denote mutual information and Kullback–Leibler divergence, respectively.
The expectation w.r.t. to a RV W drawn from a distribution pW is denoted as EW∼pW [·].

2. Variational Bounds on the Information Bottleneck Functional

We consider the IB principle for NN training. Specifically, we are interested in a (real-valued)
representation Z, obtained directly from X, that minimizes the following functional:

LIB(β) := I(X; Z)− βI(Y; Z) = I(X; Z|Y)− (β− 1)I(Y; Z) =: LCEB(β− 1) (3)

Rather than optimizing (3) directly (which was shown to be ill-advised at least for deterministic
NNs in [13]), we rely on minimizing variational upper bounds. More specifically, the authors of [7]
introduced the following variational bound on LIB:

255

Entropy 2020, 22, 1229

LVIB(β) := EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(4)

where eZ|X, cŶ|Z, and qZ are called the encoder, classifier, and marginal. The classifier is used as a
variational approximation to the distribution pY|Z. The marginal qZ is a learned distribution that aims
to marginalize out the encoder eZ|X . As such, this distribution is conceptually different from a fixed
(unlearned) prior distribution in a Bayesian framework as in, e.g., the variational auto-encoder [14].

As an alternative and motivated by the principle of Minimum Necessary Information, the author
of [2] proposed the variational bound on the CEB functional:

LVCEB(β) := EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(5)

where bZ|Y is called the backward encoder, which is a variational approximation to the
distribution pZ|Y.

3. Variational IB and Variational CEB as Optimization Problems

While it is known that LIB(β) ≤ LVIB(β) and LIB(β) ≤ LVCEB(β− 1) for all possible pXY and
all choices of eZ|X , bZ|Y, cŶ|Z, and qZ, it is not obvious how LIB(β) and LVCEB(β− 1) compare during
optimization. In other words, we are interested in determining whether there is an ordering between

min
eZ|X ,cŶ|Z ,qZ

LVIB(β) (6a)

and
min

eZ|X ,cŶ|Z ,bZ|Y
LVCEB(β− 1). (6b)

Since we will always compare variational bounds for equivalent parameterization, i.e., compare
LVIB(β) with LVCEB(β− 1), we will drop the arguments β and β− 1 for the sake of readability.

For a fair comparison, we need to ensure that both cost functions are optimized over comparable
feasible sets E , C, B, andQ for the encoder, classifier, the backward encoder, and the marginal. We make
this explicit in the following assumption.

Assumption 1. The optimizations of VCEB and VIB are performed over equivalent feasible sets. Specifically,
the families E and C from which VCEB and VIB can choose encoder eZ|X and classifier cŶ|Z shall be the
same. Depending on the scenario, we may require that the optimization over the marginal qZ is able to
choose from the same mixture models as are induced by VCEB. I.e., if bZ|Y(·|y) is a feasible solution of
LVCEB, then qZ(·) = ∑y bZ|Y(·|y)pY(y) shall also be a feasible solution for LVIB; we thus require that
Q ⊇ {qZ : qZ(z) = ∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}. Depending on the scenario, we may require that every
feasible solution for the marginal qZ shall be achievable by selecting feasible backward encoders; we thus require
that B ⊇ {bZ|Y : qZ(z) = ∑y bZ|Y(z|y)pY(y), qZ ∈ Q}. If both conditions are fulfilled, then we write that
B ↔ Q.

We furthermore need the following definition:

Definition 1. In the optimization of LVCEB, we say that backward encoder bZ|Y and classifier cŶ|Z are a
consistent pair if

cŶ|Z(y|z) =
pY(y)bZ|Y(z|y)

∑y′ pY(y′)bZ|Y(z|y′)
=

pY(y)bZ|Y(z|y)
q′Z(z)

(7)

256

Entropy 2020, 22, 1229

holds. In the optimization of LVIB, we say that marginal qZ and classifier cŶ|Z are a consistent pair if

pY(y) = ∑
z

cŶ|Z(y|z)qZ(z) (8)

holds.

The restriction to consistent pairs restricts the feasible sets. For example, for VCEB, if C is large
enough to contain all classifiers consistent with backward encoders in B, i.e., if C ⊇ {cŶ|Z : cŶ|Z(y|z) ∝
pY(y)bZ|Y(z|y), bZ|Y(·|y) ∈ B}, then the triple minimization

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB (9)

is reduced to the double minimization

min
eZ|X∈E ,bZ|Y∈B

LVCEB. (10)

Equivalently, one can write the joint triple minimization as a consecutive double minimization
and a single minimization, where the inner minimization runs over all backwards encoders consistent
with the classifier chosen in the outer minimization (where the minimization over an empty set
returns infinity):

min
eZ|X∈E ,cŶ|Z∈C

⎡
⎢⎢⎢⎣ min

bZ|Y∈B∩
{

b′Z|Y :
pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′) =cŶ|Z(y|z)
}LVCEB

⎤
⎥⎥⎥⎦ . (11)

Similar considerations hold for VIB.

4. Main Results

Our first main result is negative in the sense that it shows LVIB and LVCEB cannot be ordered in
general. To this end, consider the following two examples.

Example 1 (VIB < VCEB). In this example, let B ↔ Q, where B and Q are constrained, and let C be
unconstrained, thus mincŶ|Z∈C −EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
= H(Y|Z). Suppose further that we have

selected a fixed encoder eZ|X that induces the marginal and conditional distributions pZ and pZ|Y, respectively.
With this, we can write

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]

= I(X; Z|Y) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bZ|Y(·|Y)
)]

(12a)

and
EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
= I(X; Z) + D (pZ‖qZ) . (12b)

Suppose that bVCEB
Z|Y is a minimizer of (12a) over B and that qVCEB

Z (z) = ∑y pY(y)bVCEB
Z|Y (z|y). By the chain

rule of of Kullback–Leibler divergence [4] (Th. 2.5.3) and with bVCEB
Y|Z (y|z) = pY(y)bVCEB

Z|Y (z|y)/qVCEB
Z (z),

we can expand

257

Entropy 2020, 22, 1229

D
(

pZY‖bVCEB
Z|Y pY

)
= D

(
pZ‖qVCEB

Z

)
+ EZ∼pZ

[
D
(

pY|Z(·|Z)‖bVCEB
Y|Z (·|Z)

)]
︸ ︷︷ ︸

≥0

= D (pY‖pY)︸ ︷︷ ︸
=0

+EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]

thus
EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]
≥ D

(
pZ‖qVCEB

Z

)
.

Suppose that eZ|X is such that the inequality above is strict. Then,

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB(β− 1)

= I(X; Z|Y) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bVCEB
Z|Y (·|Y)

)]
− (β− 1)I(Y; Z)

> I(X; Z|Y) + D
(

pZ‖qVCEB
Z

)
− (β− 1)I(Y; Z)

= I(X; Z) + D
(

pZ‖qVCEB
Z

)
− βI(Y; Z)

≥ min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB(β)

where the last inequality follows because qVCEB
Z may not be optimal for the VIB cost function.

Example 2 (VIB > VCEB). Let B ↔ Q, where Q and B are unconstrained, thus with (12) we have

min
bZ|Y∈B

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]

= I(X; Z|Y)

and min
qZ∈Q

EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
= I(X; Z).

Suppose further that C is such that mincŶ|Z∈C −EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
= H(Y|Z) + ε, where ε > 0.

It then follows that

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB(β) = I(X; Z)− βI(Y; Z) + βε

> I(X; Z|Y)− (β− 1)I(Y; Z) + (β− 1)ε = min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB(β− 1).

In both of these examples we have ensured that the comparison is fair in the sense of Assumption 1.
Aside from showing that VIB and VCEB in general allow no ordering, additional interesting insights
can be gleaned from Examples 1 and 2. First, whether VIB or VCEB yield tighter approximations of the
IB and CEB functionals for a fixed encoder depends largely on the feasible sets C and B: Constraints
on C cause disadvantages for VIB, while constraints on B lead to the VCEB bound becoming looser.
Second, for fixed encoders, the tightness of the respective bounds and the question which of the
bounds is tighter do not depend on how well the IB and CEB objectives are met: These objectives are
functions only of the encoder eZ|X , whereas the tightness of the variational bounds depends on C, B,
and Q. (Of course, the tightness of the respective bounds after the triple optimization in (6) depends
also on E , as the optimization over B and Q in Example 1 and over C in Example 2 interacts with the
optimization over E in a non-trivial manner.)

Our second main result, in contrast, shows that the variational bounds can indeed be ordered
if additional constraints are introduced. More specifically, if the variational bounds are restricted to

258

Entropy 2020, 22, 1229

consistent pairs as in Definition 1, then the following ordering can be shown. The proof of Theorem 1
is deferred to Section 6.

Theorem 1. If VCEB is constrained to a consistent classifier-backward encoder pair, and if Q ⊇ {qZ : qZ(z) =
∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}, then

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB ≤ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB. (13a)

If VIB and VCEB are constrained to a consistent classifier–marginal and classifier-backward encoder pair,
respectively, and if B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C}, then

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB ≥ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB. (13b)

A fortiori, (13b) continues to hold if VCEB is not constrained to a consistent classifier-backward encoder pair.

Theorem 1 thus relates the cost functions of VIB and VCEB in certain well-defined scenarios,
contingent on the size of the feasible sets B and Q. If the variational approximations are implemented
using NNs, then these bounds are thus contingent on the capacity of the NNs trained to represent the
backward encoder in case of VCEB and the marginal in the case of VIB. A few clarifying statements
are now in order.

First, it is easy to imagine scenarios in which the inequalities are strict. Trivially, this is the case
for (13a) if C and B, and for (13b) if C and Q do not contain a consistent pair. Furthermore, if the set
relations in the respective conditions do not hold with equality, the optimization over the strictly larger
set of, e.g., marginals in (13a), may yield strictly smaller values for the cost function LVIB.

Second, the condition that B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C} is
less restrictive than the condition stated in Assumption 1. This is because every backward encoder
that is written as bZ|Y(z|y) = c′

Ŷ|Z(y|z)q
′
Z(z)/pY(y) for q′Z ∈ Q and c′

Ŷ|Z ∈ C satisfies trivially that

∑y b′Z|Y(z|y)pY(y) = q′Z(z). Thus, if one accepts Assumption 1 as reasonable for a fair comparison
between VCEB and VIB, then one must also accept that the ordering provided in the theorem is mainly
a consequence of the restriction to consistent pairs, and not to one of the optimization problems having
access to a significantly larger feasible set.

Finally, if C, B, and Q are sufficiently large, i.e., if the NNs implementing the classifier, backward
encoder, and marginal are sufficiently powerful, then both VCEB and VIB can be assumed to yield
equally good approximations of the IB functional. To see this, let pZ, pZ|Y, and pY|Z denote the
marginal and conditional distributions induced by eZ|X and note that with (12) we get

LVIB(β) = LIB(β) + D (pZ‖qZ) + βEZ∼pZ

[
D
(

pY|Z(·|Z)‖cŶ|Z(·|Z)
)]

(14a)

and

LVCEB(β− 1)

= LIB(β) + EY∼pY

[
D
(

pZ|Y(·|Y)‖bZ|Y(·|Y)
)]

+ (β− 1)EZ∼pZ

[
D
(

pY|Z(·|Z)‖cŶ|Z(·|Z)
)]

. (14b)

Large B and Q render the second terms in both equations close to zero for all choices of eZ|X
(see Example 2), while large C renders the last terms close to zero (see Example 1). Thus, in this
case not only do we have LVIB(β) ≈ LVCEB(β− 1) ≈ LIB(β), but we also have that VCEB employs a
consistent classifier-backward encoder pair by the fact that bZ|Y ≈ pZ|Y and cŶ|Z ≈ pY|Z. Thus, one may

259

Entropy 2020, 22, 1229

argue that if the feasible sets are sufficiently large, the restriction to consistent pairs may not lead to
significantly looser bounds.

5. Discussion

In this note we have compared the IB and CEB functionals and their respective variational
approximations. While IB and CEB are shown to be equivalent, the variational approximations VIB
and VCEB yield different results after optimization. Specifically, it was observed that using VCEB as a
training objective for stochastic NNs outperforms VIB in terms of accuracy, adversarial robustness,
and out-of-distribution detection (see Section 3.1 of [2]). In our analysis we have observed that,
although in general there is no ordering between VIB and VCEB (Examples 1 and 2), the optimal values
of the cost functions can be ordered if additional restrictions are imposed (Theorem 1). Specifically,
if VCEB is constrained to a consistent classifier-backward encoder pair, then its optimal value cannot
fall below the optimal value of VIB. If, in contrast, VIB is constrained, then the optimal value of VIB
cannot fall below the optimal value of VCEB (constrained or unconstrained). Thus, as expected, adding
restrictions weakens the optimization problem w.r.t. the unconstrained counterpart.

These results imply that the superiority of VCEB is not caused by enabling a tighter bound on the
IB functional than VIB does. Furthermore, it was shown in Table 1 of [6] that VCEB, constrained to a
consistent classifier-backward encoder pair, yields better classification accuracy and robustness against
corruptions than the unconstrained VCEB objective. Since obviously

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB ≥ min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LVCEB (15)

the achievable tightness of a variational bound on the IB functional appears to be even negatively
correlated with generalization performance in this set of experiments. (We note that [6] only reports
constrained VCEB results for the largest NN models, and the constrained models perform slightly
worse on robustness to adversarial examples than the unconstrained VCEB models of the same size.)

One may hypothesize, though, that VCEB is more amenable to optimization, in the sense that it
achieves a tighter bound on the IB functional when encoder, classifier, and variational distributions are
implemented and optimized using NNs. However, optimizing VCEB and VIB was shown to yield
very similar results in terms of a lower bound on I(X; Z) for several values of β, cf. Figure 4 of [2],
which seems not to support above hypothesis.

We therefore conclude that the superiority of (constrained) VCEB is not due to it better
approximating the IB functional. While the hypothesis that the optimized VCEB functional
approximates the optimized IB functional better cannot be ruled out, we will now formulate an
alternative hypothesis. Namely, that the VCEB cost function itself instills desirable properties in
the encoder that would otherwise not be instilled when relying exclusively on the IB functional,
cf. Section 5.4 of [13]. For example, neither IB nor the Minimum Necessary Information principle
include a classifier cŶ|Z in their formulations. Thus, by the invariance of mutual information under
bijections, there may be many encoders eZ|X in the feasible set E that lead to representations Z
equivalent in terms of (1) and (2). Only few of these representations are useful in the sense that the
information about the class Y can be extracted “easily”. The variational approach of using a classifier to
approximate I(Y; Z), however, ensures that, among all encoders eZ|X that are equivalent under the IB
principle, one is chosen such that there exists a classifier cŶ|Z in C that allows inferring the class variable
Y from Z with low entropy: While the IB and Minimum Necessary Information principles ensure that
Z is informative about Y, the variational approaches of VIB and VCEB ensure that this information
can be accessed in practice. Regarding the observed superiority of VCEB over VIB, one may argue
that a variational bound relying on a backward encoder instills properties in the latent representation
Z that are preferable over those that are achieved by optimizing a variational bound relying on a
marginal only.

260

Entropy 2020, 22, 1229

In other words, VCEB and VIB are justified as cost functions for NN training even without
recourse to the IB and Minimum Necessary Information principles. This does not say that the concept
of compression, inherent in both of these principles, is not a useful guidance—whether compression
and generalization are causally related is the topic of an ongoing debate to which we do not want to
contribute in this work. Rather, we claim that variational approaches may yield desirable properties
that go beyond compression and that may be overlooked when too much focus is put on the functionals
that are approximated with these variational bounds.

In combination with the variational approach, the selection of feasible sets can also have
profound impact on the properties of the representation Z. A representation Z is called disentangled
if its distribution pZ factorizes. Disentanglement can thus be measured by total correlation,
i.e., the Kullback–Leibler divergence between pZ and the product of its marginals Section 5 of the [11].
Achille and Soatto have shown that selecting Q in the optimization of VIB as a family of factorized
marginals is equivalent to adding a total correlation term to the IB functional, effectively encouraging
disentanglement, cf. Proposition 1 in [11]. Similarly, Amjad and Geiger note that selecting B in the
optimization of VCEB as a family of factorized backward encoders encourages class-conditional
disentanglement; i.e., it enforces a Naive Bayes structure on the representation Z, cf. Corollary 1 &
Section 3.1 of [5]. To understand the implications of these observations, it is important to note that
neither disentanglement nor class-conditional disentanglement are encouraged by the IB or CEB
functionals. However, by appropriately selecting the feasible sets of VIB or VCEB, disentanglement
and class-conditional disentanglement can be achieved. While we leave it to the discretion of the reader
to decide whether disentanglement is desirable or not, we believe that it is vital to understand that
disentanglement is an achievement of optimizing a variational bound over an appropriately selected
feasible set, and not one of the principles based on which these variational approaches are motivated.

6. Proof of Theorem 1

We start with the first assertion. Assume that eVCEB
Z|X , bVCEB

Z|Y , and cVCEB
Ŷ|Z are the optimal encoder,

backward encoder, and classifier in terms of the VCEB cost function under the assumption of
consistency, i.e.,

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB = EXY∼pXY

[
D
(

eVCEB
Z|X (·|X)‖bVCEB

Z|Y (·|Y)
)]

− (β− 1)H(Y)− (β− 1)EXYZ∼pXYeVCEB
Z|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(16)

where

cVCEB
Ŷ|Z (y|z) =

pY(y)bVCEB
Z|Y (z|y)

∑y′ pY(y′)bVCEB
Z|Y (z|y′) =

pY(y)bVCEB
Z|Y (z|y)

q′Z(z)
. (17)

Certainly, if C and B are such that they do not admit a consistent pair, then this minimum is infinity
and the inequality holds trivially.

261

Entropy 2020, 22, 1229

For the VIB optimization problem, we obtain

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

LVIB

= min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q

EX∼pX

[
D
(

eZ|X(·|X)‖qZ

)]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(a)
= min

eZ|X∈E ,cŶ|Z∈C,qZ∈Q
EXZ∼pXeZ|X

[
log

eZ|X(Z|X)

qZ(Z)

]
− βH(Y)− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]

(b)
= min

eZ|X∈E ,cŶ|Z∈C,qZ∈Q
EXYZ∼pXYeZ|X

⎡
⎣log

eZ|X(·|X)cVCEB
Ŷ|Z (Y|Z)

qZ(Z)cVCEB
Ŷ|Z (Y|Z)

⎤
⎦− βH(Y)

− βEXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(c)
≤ min

eZ|X∈E ,qZ∈Q
EXYZ∼pXYeZ|X

⎡
⎣log

eZ|X(·|X)cVCEB
Ŷ|Z (Y|Z)

qZ(Z)cVCEB
Ŷ|Z (Y|Z)

⎤
⎦− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(d)
≤ min

eZ|X∈E
EXYZ∼pXYeZ|X

⎡
⎣log

eZ|X(Z|X)cVCEB
Ŷ|Z (Y|Z)

pY(Y)bVCEB
Z|Y (Z|Y)

⎤
⎦− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(e)
= min

eZ|X∈E
EXY∼pXY

[
D
(

eZ|X(·|X)‖bVCEB
Z|Y (·|Y)

)]
+ EXYZ∼pXYeZ|X

⎡
⎣log

cVCEB
Ŷ|Z (Y|Z)

pY(Y)

⎤
⎦

− βH(Y)− βEXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(f)
= min

eZ|X∈E
EXY∼pXY

[
D
(

eZ|X(·|X)‖bVCEB
Z|Y (·|Y)

)]
− (β− 1)H(Y)

− (β− 1)EXYZ∼pXYeZ|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

(g)
≤ EXY∼pXY

[
D
(

eVCEB
Z|X (·|X)‖bVCEB

Z|Y (·|Y)
)]
− (β− 1)H(Y)− (β− 1)EXYZ∼pXYeVCEB

Z|X

[
log cVCEB

Ŷ|Z (Y|Z)
]

= min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B

LCEB

where

• (a) follows by writing the KL divergence as an expectation of the logarithm of a ratio;
• (b) follows by multiplying both numerator and denominator in the first term with cVCEB

Ŷ|Z ;

• (c) is because of the (potential) suboptimality of cVCEB
Ŷ|Z for the VIB cost function;

• (d) is because Q ⊇ {qZ : qZ(z) = ∑y bZ|Y(z|y)pY(y), bZ|Y ∈ B}, thus we may choose qZ = q′Z
where q′Z is defined in (17); and because this particular choice may be suboptimal for the VIB
cost function;

• (e) follows by splitting the logarithm
• (f) follows by noticing that EXYZ∼pXYeZ|X [log pY(Y)] = −H(Y)

• (g) follows because eVCEB
Z|X may be suboptimal for the VIB cost function.

Comparing the last line with (16) completes the proof of the first assertion.
We next turn to the second assertion. Assume that eVIB

Z|X, cVIB
Ŷ|Z, and qVIB

Z are the optimal encoder,
classifier, and marginal in terms of the VIB cost function under the assumption of consistency, i.e.,

min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB := EX∼pX

[
D
(

eVIB
Z|X(·|X)‖qVIB

Z

)]
− βH(Y)− βEXYZ∼pXYeVIB

Z|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(18)

262

Entropy 2020, 22, 1229

where
pY(y) = ∑

z
cVIB

Ŷ|Z(y|z)q
VIB
Z (z). (19)

Again, if C and Q are such that they do not admit a consistent pair, then this minimum is infinity and
the inequality holds trivially.

For the VCEB optimization problem, we obtain

min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

LVCEB + (β− 1)H(Y)

= min
eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

EXY∼pXY

[
D
(

eZ|X(·|X)‖bZ|Y(·|Y)
)]
− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]

(a)
= min

eZ|X∈E ,cŶ|Z∈C,bZ|Y∈B
(cŶ|Z ,bZ|Y) consistent

EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Y|Z)

]
− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]

(b)
= min

eZ|X∈E ,cŶ|Z∈C
min

bZ|Y∈B∩
{

b′Z|Y :
pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′) =cŶ|Z(y|z)
} EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Y|Z)

]

− (β− 1)EXYZ∼pXYeZ|X

[
log cŶ|Z(Y|Z)

]
(c)
≤ min

eZ|X∈E
min

bZ|Y∈B∩
{

b′Z|Y :
pY (y)b′Z|Y (z|y)

∑y′ pY (y′)b′Z|Y (z|y′) =cVIB
Ŷ|Z(y|z)

} EXYZ∼pXYeZ|X

[
log

eZ|X(Z|X)

bZ|Y(Z|Y)

]

− (β− 1)EXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(d)
≤ min

eZ|X∈E
EXYZ∼pXYeZ|X

⎡
⎣log

eZ|X(Z|X)

cVIB
Ŷ|Z(Y|Z)q

VIB
Z (Z)

⎤
⎦− H(Y)− (β− 1)EXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

= min
eZ|X∈E

EXZ∼pXeZ|X

[
log

eZ|X(Z|X)

qVIB
Z (Z)

]
− H(Y)− βEXYZ∼pXYeZ|X

[
log cVIB

Ŷ|Z(Y|Z)
]

(e)
≤ EXZ∼pXeVIB

Z|X

[
log

eVIB
Z|X(Z|X)

qVIB
Z (Z)

]
− H(Y)− βEXYZ∼pXYeVIB

Z|X

[
log cVIB

Ŷ|Z(Y|Z)
]

= min
eZ|X∈E ,cŶ|Z∈C,qZ∈Q
(cŶ|Z ,qZ) consistent

LVIB + (β− 1)H(Y)

where

• (a) follows by writing the KL divergence as an expectation of the logarithm of a ratio;
• (b) follows by the assumption that the VCEB problem is constrained to a consistent

classifier-backward encoder pair, and from (11);
• (c) is because of the (potential) suboptimality of cVIB

Ŷ|Z for the VCEB cost function;

• (d) follows by adding and subtracting H(Y); by choosing bVIB
Z|Y = cVIB

Ŷ|ZqVIB
Z /pY, which is possible

because B ⊇ {bZ|Y : bZ|Y(z|y) = cŶ|Z(y|z)qZ(z)/pY(y), qZ ∈ Q, cŶ|Z ∈ C}; and by the fact that
this particular choice may be suboptimal for the VCEB cost function;

• (e) follows because eVIB
Z|X may be suboptimal for the VCEB cost function.

This completes the proof.

263

Entropy 2020, 22, 1229

Author Contributions: Conceptualization, formal analysis, validation, writing: B.C.G. and I.S.F.; Proof of
Theorem 1: B.C.G. Both authors have read and agreed to the published version of the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: The work of Bernhard C. Geiger was supported by the iDev40 project. The iDev40 project has received
funding from the ECSEL Joint Undertaking (JU) under grant agreement No 783163. The JU receives support
from the European Union’s Horizon 2020 research and innovation programme. It is co-funded by the consortium
members, grants from Austria, Germany, Belgium, Italy, Spain and Romania. The information and results set
out in this publication are those of the authors and do not necessarily reflect the opinion of the ECSEL Joint
Undertaking. The Know-Center is funded within the Austrian COMET Program-Competence Centers for Excellent
Technologies - under the auspices of the Austrian Federal Ministry for Climate Action, Environment, Energy,
Mobility, Innovation and Technology, the Austrian Federal Ministry of Digital and Economic Affairs, and by the
State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tishby, N.; Pereira, F.C.; Bialek, W. The Information Bottleneck Method. In Proceedings of the Allerton
Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999;
pp. 368–377.

2. Fischer, I. The Conditional Entropy Bottleneck. Entropy 2020, 22, 999. [CrossRef]
3. Wyner, A. The common information of two dependent random variables. IEEE Trans. Inf. Theory 1975,

21, 163–179. [CrossRef]
4. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 1st ed.; John Wiley & Sons, Inc.: New York, NY,

USA, 1991.
5. Amjad, R.A.; Geiger, B.C. Class-Conditional Compression and Disentanglement: Bridging the Gap between

Neural Networks and Naive Bayes Classifiers. arXiv 2019, arXiv:1906.02576.
6. Fischer, I.; Alemi, A.A. CEB Improves Model Robustness. Entropy 2020, 22, 1081. [CrossRef]
7. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep Variational Information Bottleneck. In Proceedings of

the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
8. Poole, B.; Ozari, S.; van den Oord, A.; Alemi, A.A.; Tucker, G. On Variational Bounds of Mutual Information.

In Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA,
10–15 June 2019; pp. 5171–5180.

9. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual Information
Neural Estimation. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm,
Sweden, 10–15 July 2018; pp. 531–540.

10. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear Information Bottleneck. Entropy 2019, 21, 1181.
[CrossRef]

11. Achille, A.; Soatto, S. Information Dropout: Learning Optimal Representations Through Noisy Computation.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2897–2905. [CrossRef] [PubMed]

12. Wieczorek, A.; Roth, V. On the difference between the Information Bottleneck and the Deep Information
Bottleneck. Entropy 2020, 22, 131. [CrossRef]

13. Amjad, R.A.; Geiger, B.C. Learning Representations for Neural Network-Based Classification Using the
Information Bottleneck Principle. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2225–2239. [CrossRef]
[PubMed]

14. Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference
on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

264

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-0802-3

	Blank Page

