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University. He received his Master’s and Ph.D. degrees in physics at the Leningrad State University

in Leningrad (1983 and 1987, respectively, supervisor prof. A.N. Vasil’ev) and the highest scientific

degree, Doctor of Science (Dr.Sc.), at the Comenius University in Bratislava (2007). His scientific

interests are in quantum field theory methods, including their application in complex systems of

classical physics (critical and stochastic dynamics, percolation, developed turbulence). He supervised

12 successfully defended Ph.D. students. He is a co-author of more than 150 scientific publications,

including more than 80 in WOS or SCOPUS indexed international journals. He is participating in

long-term successful international collaboration with colleagues from Helsinki University, Finland;

Sankt-Petersburg State University, Russia; Joint Institute for Nuclear Research Dubna, Russia;

and Uzhhorod National University, Ukraine.
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until now he has worked at the Institute of Experimental Physics (IEP), SAS, in Košice (Slovakia).
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Preface to ”Symmetry in Particle Physics”

This Special Issue of Symmetry contains seven articles dedicated to solving urgent problems of

modern particle physics. In one way or another, they consider the problems associated with different

symmetries and their violations in high energy physics.

Two of them are topical reviews and give a general idea of the experimental and theoretical status

in the study of exotic quark states (Stanislav Dubnička et al.) and top quark physics (Roman Lysak).

The standard bound states predicted by QCD as colorless are composed of two (mesons) and

three quarks (baryons). However, modern theoretical concepts do not exclude the possibility of the

existence of more complex multiquark states. The authors of the review focused on the theoretical

description of the decays of five exotic XYZ states within the framework of the closed covariate

quark model.

The heaviest top quark, the last of the six quarks described by the Standard Model and acting

in the three-generation scheme, was experimentally discovered relatively recently by the CDF and

D0 collaborations (1995). One of the co-discoverers of the top quark is the editor of this Special Issue

(Dr. Jaroslav Antoš). The author of the review, Roman Lysak, joined CDF after the discovery of the top

quark and was very active in the experimental study of top quark properties. In the review, the main

focus is on the current state of the experimental and theoretical studies of charge asymmetry in the

formation of top anti-top pairs, since the explanation of such asymmetry may lead beyond the limits

of the Standard Model.

A special branch in the physics of elementary particles is the study of the properties of neutrinos,

primarily associated with the possibility of their mixing due to their nonzero masses. Many ongoing

and planned experiments are aimed at measuring their masses and mixing angles (for example, Juno,

Baikal). The authors of two articles on neutrinos (Fedor Simkovic et al. and Dimitrii Naumov et al.)

are leading experts in neutrino physics and are members of the aforementioned collaborations on the

experimental study of neutrinos. It is also known that the study of the fundamental properties of

atmospheric, solar, and cosmic neutrinos can help to find the direction along which the expansion of

the Standard Model should go.

To study the physical properties of neutrinos, Fedor Simkovic et al. proposed a scenario

in which the Dirac–Majorana mass term in the corresponding Lagrangian is dominated by Dirac

masses. By assuming a single small Majorana component of neutrino masses, oscillation probabilities

and quantities measured in single and double beta decay experiments and in cosmology have

been determined.

The article by Dimitrii Naumov et al. investigates a very important experimental aspect:

propagation of high-energy neutrinos in a dense environment with accounting for neutrino masses,

mixing, CP violation, refraction, and absorption.

Andrey Abruzov et al. presented results for plain QED, weak, and complete electroweak

radiative corrections to various asymmetries in processes of electron–positron annihilation to be

measured in future colliders. Asymmetries in electron–positron annihilation processes provide a

powerful tool to verify the lepton universality hypothesis at a new level of precision. The results

reveal an interplay between the weak and QED contributions to asymmetries, indicating the necessity

of always considering these contributions in a combined way.

Vladimir Vechernin and Svetlana Belokurova investigated how fixing the number of quark–

gluon strings affects long-range correlations between observables under the assumption of the

ix



existence of translational invariance in the rapidity space. Knowledge of this relationship is important

when processing experimental data in modern collider experiments, such as those of the Relativistic

Heavy Ion Collider (RHIC) or the Large Hadron Collider (LHC).

Oleg Teryaev studied the momentum energy tensor for hadrons described by QCD in the

presence of classical gravity and inertia. He found the relation between the general space-time

symmetry responsible for interactions of hadrons with gravity and the specific QCD dynamics.

We express our deep gratitude to all authors for their articles, which made up the content of

the Special Issue. We are confident that the high professional level of their scientific research and the

published results will raise the scientific standard of the Symmetry journal.

Michal Hnatič, Jaroslav Antoš, Juha Honkonen

Editors
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Abstract: We review the existing results on the exotic XYZ states and their decays obtained within
the confined covariant quark model. This dynamical approach is based on a non-local Lagrangian
of hadrons with quarks, has built-in quark confinement, and is suited well for the description of
different multiquark states, including the four quark ones. We focus our analysis on the various decay
modes of five exotic states, X(3872), Zc(3900), Y(4260), Zb(10610), and Z′

b(10650), aiming to clarify
their internal quark structures. By considering mostly branching fractions and decay widths using
the molecular-type or the tetraquark-type interpolating currents, conclusions about the nature of
these particles are drawn: the molecular structure is favored for Zc(3900), Zb(10610), and Z′

b(10650)
and the tetraquark for X(3872) and Y(4260).

Keywords: exotic states; confined covariant quark model; strong and radiative decays

1. Introduction

The concept of multiquark states composed of more then three quarks hypothesized decades
ago [1] was for the first time confirmed in 2003 where multiquark state candidates were measured
by the BES [2], BaBar [3], and Belle [4] experiments. The latter observation, seen in the π+π− J/ψ

invariant mass spectrum, was the first observation of a charmonium-like state X(3872), which did
not fit expectations of existing quark models for any conventional hadronic particle. The reason was
mainly its measured mass 3872 MeV, not predicted by models, and also the difficulty in interpreting
it as an excited charmonium ψ′: its eventual decay into ρJ/ψ is strongly suppressed because of
isospin violation. In the following years, other heavy quarkonium-like states X, Y, Z were discovered,
where Y usually denotes electrically neutral exotic (i.e., non-cc̄) charmonia having quantum numbers
JPC = 1−−, Z is used for charged states, and X labels any non-Y and non-Z cases. With the aim to
report on the results and achievements of the confined covariant quark model, we narrow our review
of experimental outcomes to a relevant subset of the whole exotic meson family.

The first observation of the X(3872) mentioned in the previous paragraph was later confirmed in
the pp̄ collisions by the CDF [5] and D0 [6] experiments in 2004, by the LHCb experiment [7] in 2011,
and also by the BESIIIcollaboration [8] in 2014. Further experimental investigations [9–12] increased
the mass measurement precision, established the quantum numbers, and put limits on several decay
related observables. As of now [13], X(3872) is a particle with the mass mX(3872) = 3871.69 ± 0.17 MeV,
width ΓX(3872) < 1.2 MeV, and quantum numbers IG(JPC) = 0+(1++), mostly decaying to

D∗ 0
(→ D0

π0)D0.
Charmonium-like state Y(4260) was for the first time observed by the BaBar experiment [14] in

2005 in the J/ψπ+π− mass distribution. Its existence was further confirmed by the CLEO [15] (2006),

Symmetry 2020, 12, 884; doi:10.3390/sym12060884 www.mdpi.com/journal/symmetry1
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Belle [16] (2007), and BESII [17] (2013) collaborations. Later investigations by BaBar [18] and
BESIII [19] provided further updates on the mass and width parameters. With mass above the
DD̄ threshold, the Y(4260) was also searched for in the open charm decay channels, however with
negative results [20–24]. The Y(4260) is [13] an IG(JPC) = 0−(1−−) state with the mass and width
mY(4260) = 4230 ± 8 MeV, ΓY(4260) = 55 ± 19 MeV.

The study of the Y(4260) decay channel J/ψπ+π− by BESII [17] and Belle [25] in 2013 led
to the discovery of the charged Zc(3900) resonance in the invariant mass distribution of J/ψπ±.
The Z±

c particle was in the same year observed also by the CLEO-c detector [26]. In addition,
the latter experiment provided the first evidence of the neutral member of the Zc isotriplet, the Z0

c
state, discovered in the π0 J/ψ channel. A state Zc(3885) was seen in the DD̄∗ spectrum of the
e+e− → π±(DD̄∗)∓ reaction at BESIII in 2014 [27]. Assuming it can be identified with the Zc(3900)
particle, the measurement provided arguments in favor of JP = 1+ quantum numbers. The same
experiment reaffirmed in 2015 the existence of the neutral Zc state [28], in 2017 confirmed with high
significance the JP = 1+ assignment [29], and in 2019 provided the evidence for the ρ±ηc decay
channel [30]. The D0 collaboration published the observation of the Zc(3900) state in pp̄ collision
data in 2018 [31] and studied its mass and width in [32] (2019). The current Zc parameters are [13]
mZc(3900) = 3887.2 ± 2.3 MeV, ΓZc(3900) = 28.2 ± 2.6 MeV and IG(JPC) = 1+(1+−). Zc(3900) as a
charmonium-like state with an electric charge is a prominent candidate for an exotic multiquark state
and is largely discussed in the existing literature.

Two narrow bottomonium-like four quark state candidates were detected in the Belle detector [33]
in 2012. They were labeled Zb(10610) and Z′

b(10650) and were observed as peaks in the mass spectra
of π±Υ(ns), (n = 1, 2, 3) and π±hb(ms), (m = 1, 2). The same experiment published two other
papers dedicated to these exotics. In [34], the evidence was given for the quantum number assignment
IG(JP) = 1+(1+) for both of the states. In [35], they were observed in different decay channels
Zb(10610) → [BB̄∗ + cc]± and Z′

b(10650) → [B∗ B̄∗ + cc]±, where one can notice the proximity of
the two states to the corresponding B(∗) B̄∗ thresholds. These decays dominated the studied final
states, which besides two bottom mesons, included also a pion and for which the Born cross-section
was given. The decay into BB̄ was found to be suppressed with respect to the two previous final
states, and an upper limit was given. The masses and widths are mZ±

b (10610) = 10,607.2 ±2.0 MeV,
mZ′

b(10650) = 10,652.2 ±1.5 MeV, ΓZ±
b (10610) = 18.4 ± 2.4 MeV, and ΓZ′

b(10650) = 11.5 ± 2.2 MeV.
Growing evidence suggests that the mentioned and also other, unmentioned exotic heavy

quarkonium-like states observed since 2003 cannot be described as simple hadrons in the usual quark
model. The effort to understand their nature combined with the non-applicability of the perturbative
approach in the low energy domain of quantum chromodynamics (QCD) resulted in a large number
of more or less model dependent strategies. In existing reviews [36–49], different ideas are analyzed.
The proximity of the X, Y, Z masses to meson pair thresholds naturally leads to a popular concept of
the hadronic molecule, more closely reviewed in different contexts. In [50], the authors studied the
implications of the heavy quark flavor symmetry on molecular states. The authors of [51] argued in
favor of a molecular picture using an isospin-exchange model, and a nice review of the molecular
approach was given in [52]. A frequent treatment of four quark states is represented also by QCD
sum rules [53–55] and different quark models. A dynamical approach based on a relativistic quark
model with a diquark-antidiquark assumption was proposed in [56,57], where tetraquark masses were
computed. A non-relativistic screened potential model, presented in [58], was used to compute the
masses, electromagnetic decays, and E1 transitions of charmonium states. Treatment of tetraquarks as
compact dynamical diquark-antidiquark systems in [59] had the ambition to explain why some of the
exotic states preferred to decay into excited charmonia. Several hypotheses (molecular description,
tetraquark description, hadro-charmonium picture) for different exotic states were investigated
in [60] using tools based on the heavy quark spin symmetry: besides drawing conclusions for some
XYZparticles, also possible discovery channels were given. The hybrid and tetraquark interpretation
for several exotic states were discussed in paper [61] using the Born–Oppenheimer approximation.
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A very complete review of exotic states with some emphasis on the chromomagnetic interaction was
provided in a recent publication [62]. The ideas of coupled channels ([63]) and heavy quark limit ([64])
are also often seen in the context of the exotic quarkonia. Finally, one has to mention the possibility of
peaks in invariant mass distributions being explained by the kinematic effect. This was investigated in
detail in a recent text [65]. The arguments for X, Y, and Z states not being purely kinematic effects
were given in [66].

In the present paper, we want to review the description of the exotic heavy quarkonia-like states
by the confined covariant quark model (CCQM). The model [67–69] was proposed and developed
as a practical and reliable tool for the theoretical description of exclusive reactions involving the
mesons, baryons, and other multiquark states. It was based on a non-local interaction Lagrangian,
which introduces a coupling between a hadron and its constituent quarks. The Lagrangian guarantees
a full frame independence and the computations relay on standard quantum field theory techniques
where matrix elements are given by the set of quark-loop Feynman diagrams according to the 1/Nc

expansion. Earlier, a confinement was not implemented in the model, and thus, it was not suited
for heavy particles (with baryon mass exceeding those of the constituent quarks summed). This was
changed in [69], where a smart cutoff was introduced for integration over the space of Schwinger
parameters. Since then, arbitrary heavy hadrons could be treated by the CCQM. The CCQM represents
a framework where the hadron and the quarks coexist, which raises questions about the proper
description of bound states and the double counting. They are solved using a so-called compositeness
condition. It guarantees, by setting the hadron renormalization constant ZH to zero, that the dressed
state and the bare one have a vanishing overlap. In order to describe radiative decays, one also needs to
introduce gauge fields properly in a non-local theory such as CCQM. This was done by the formalism
developed in [70] where the path integral of gauge field appeared in the quark-field transformation
exponential. One should also mention that the model had no gluons: their dynamics was effectively
taken into account by the quark-hadron vertex functions, which depended on one hadron size related
parameter. The model has a limited number of free parameters; besides the hadron related ones, it has
six “global” parameters: five constituent quark masses and one universal cutoff. The model was
applied to with success light and heavy mesons and baryons (e.g., [71–76]) and also to exotic four
quark states [77–83]. The latter will be reviewed in the rest of this article.

All sketched features of the CCQM (interaction Lagrangian, confinement, compositeness
condition, implementation of electromagnetic interaction) are addressed in more detail in Section 2.
Section 3 is dedicated to the X(3872) state and its decays to J/ψ + ρ and D̄ + D∗. Its radiative decays
are analyzed in Section 4. In Section 5, molecular and tetraquark hypotheses for the nature of Zc(3900)
are put in place and the results compared with experimental data. The exotic to exotic reaction
Y(4260) → Zc(3900)± + π∓ and the decay of Y(4260) to open charm are presented in Section 6.
Decays of the bottomonium-like states Zb(10610) and Z′

b(10650) to several different final states are
studied within the molecular picture in Section 7. We close the text by a summary and conclusion
given in Section 8.

2. Confined Covariant Quark Model

2.1. Interaction Lagrangian

The dynamical description of hadrons in the CCQM follows from the interaction Lagrangian:

Lint = gH · H(x) · JH(x), (1)

where the hadronic field is coupled to a non-local quark current. The latter takes different forms for
different hadrons:

JM(x) =
∫

dx1

∫
dx2 FM(x; x1, x2) · q̄a

1(x1) ΓM qa
2(x2)

3
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for the mesons,

JB(x) =
∫

dx1

∫
dx2

∫
dx3 FB(x; x1, x2, x3) · Γ1 qa1

1 (x1)
(

qa2
2 (x2)C Γ2 qa3

3 (x3)
)
· εa1a2a3

for the baryons, and

Jμ
T(x) =

∫
dx1 . . .

∫
dx4 FT(x; x1, . . . , x4) ·

(
qa1

1 (x1)CΓ1 qa2
2 (x2)

)
·
(

q̄a3
3 (x3) Γ2C q̄a4

4 (x4)
)
· εa1a2cεa3a4c

for the tetraquarks. Here, C stands for the charge conjugation matrix C = γ0γ2 with C = C† =

C−1 = −CT and Γ is an appropriate Dirac matrix (or string of Dirac matrices) to describe the spin
quantum numbers of the hadron. One has CΓTC−1 = Γ for the (pseudo)scalar and axial-vector
fields and CΓTC−1 = −Γ for vectors and tensors. The color indices are denoted by superscripts ai,
and FH(x; x1, . . . , xn) represents a non-local vertex function, which characterizes the quark distribution
inside the hadron. We assume it takes the form:

FH(x; x1, . . . , xn) = δ(4)

(
x −

n

∑
i=1

wixi

)
ΦH

(
∑
i<j

(xi − xj)
2

)
, where wi =

mi

∑n
i=1 mi

. (2)

The first factor reflects the natural expectation that the barycenter of the quark system corresponds to
the position of the hadron, and the second term has a general form dependent on the relative quark
coordinates. Obviously, the vertex function is invariant under translations:

FH(x + a; x1 + a, . . . , xn + a) = FH(x; x1, . . . , xn)

for any four-vector a. In principle, any form of the function ΦH is allowed as long as it has
an appropriate fall-off behavior in the Euclidean momentum space to guarantee the ultraviolet
convergence of the Feynman diagrams. Various alternatives of the vertex function for non-local
quark currents were analyzed in [84], and it was found that the dependence of the observables on
different choices was small. Because of convenience of performing calculations, the exponential form
for the Fourier transform of the function ΦH was adopted:

Φ̃H(−K2) = exp

(
K2

Λ2
H

)
(3)

where K2 is the combination of the loop and external momenta. The minus sign indicates that we are
working in the Minkowski space, and the wicked-rotated argument K2 → −K2

E makes explicit the
appropriate fall-off behavior in the Euclidean region. ΛH is an adjustable parameter of the CCQM,
which can be related to the hadron size. Additional free parameters are the constituent quark masses
and a universal infrared cutoff (discussed in more detail later). Their values, summarized in Table 1,
were determined by adjusting the model predictions to experimental data.

Table 1. Constituent quark masses and universal cutoff λ in GeV.

mu,d ms mc mb λ

0.241 0.428 1.67 5.04 0.181

2.2. Compositeness Condition

In the Lagrangian of the CCQM, quarks and hadrons are treated equally. However in nature,
hadrons are made of quarks. Therefore, questions about an appropriate description of the bound
states and double counting arise. The issue is resolved by imposing the so-called compositeness
condition [85,86], which requires the renormalization constant of the hadron field to vanish. Since the

4
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renormalization constant Z1/2
H can be interpreted as the matrix element between the physical state and

the corresponding bare state, Z1/2
H = 0 implies that the physical state has no overlap with the bare state

and is therefore described as a bound state. For a spin-one particle, the compositeness condition reads:

ZH = 1 − g2
HΠ′

H(m
2
H) = 0, (4)

where Π′
H is the derivative of the scalar part of the vector-meson mass operator:

Πμν
H (p) = gμνΠH(p2) + pμ pνΠ(1)

H (p2),

ΠH(p2) =
1
3

(
gμν −

pμ pν

p2

)
Πμν

H (p).

The condition Z1/2
H = 0 also effectively removes the constituent degrees of freedom from the space of

physical states and so eliminates the double counting. A general tetraquark self-energy diagram to be
used for the compositeness condition is show in Figure 1.

One should also notice that the application of the compositeness condition lowers the number of
model parameters because its fulfillment is reached by tuning the coupling constant value. Equation (4)
thus fixes the coupling and increases the predictive power of the CCQM over the wide range of
hadronic data. The determination of gH for all participating hadrons by means of the compositeness
condition is the first step in the application of the CCQM. It should be remarked that the compositeness
condition can be interpreted also in terms of the normalization of the electric form factor at q2 = 0,
as shown in [69].

Figure 1. General confined covariant quark model (CCQM) tetraquark self-energy diagram.

2.3. Infrared Confinement

If the mass of a hadron reaches the limit defined by the sum of the masses of constituent quarks,
then in a model without a confinement, the hadron becomes unstable and decays into its constituents.
In order to correct this unphysical behavior and enlarge the applicability of the model also to the
(increasing) experimental data on heavy hadrons, the confinement of quarks was introduced in [69].
Its implementation assumes the Schwinger representation of quark propagators:

S(k) =
(m + �k)
m2 − k2 = (m + �k)

∞∫
0

dβ exp{−β(m2 − k2)} (5)

with the subsequent cutoff in the upper integration limit applied, in a clever way, to the whole
structure of a Feynman diagram. The latter, containing l loops, m vertices, and n propagators, can be
schematically written as:

Π(p1, . . . , pm) =
∫
(d4k)l

m

∏
i=1

Φi+n

{
− ∑

j
(κ

(j)
i+n + v(j)

i+n)
2
}
·

n

∏
k=1

Sk(κk + vk)

=

∞∫
0

dnβ F(β1, . . . , βn), (6)

5



Symmetry 2020, 12, 884

where Φ symbolizes vertex functions, p denotes external momenta, v linear combinations of external
momenta, k represents loop momenta, and κ linear combinations of the latter. The expression in curly
brackets is the argument of the vertex function in the momentum representation. The second line makes
explicit the integration over the space of the Schwinger parameters with the whole structure of the first
line catch in the F symbol. The next step is to go from the integration over the Schwinger parameters
to the integration over the n − 1 simplex of the dimensionless Feynman parameters combined with
a one-dimensional integral over a dimension variable t by using the simple insertion of unity in the
above expression:

1 =

∞∫
0

dtδ

(
t −

n

∑
i=1

βi

)
.

One has:

Π =

∞∫
0

dt tn−1
∫

dnα δ

(
1 −

n

∑
i=1

αi

)
F(tα1, . . . , tαn). (7)

Note that a dimension variable t is analogous of the Fock–Schwinger proper time. By performing an
analytical continuation of the kinematical variables to the Minkowski space, one can encounter the
branch points, which, in particular, correspond to the quark unitary thresholds. The appearance of the
imaginary parts in Equation (7) is witnessed on the quark production in the physical spectrum, i.e.,
on the absence of the quark confinement. One possibility to resolve this problem is to cut the upper limit
of the integration over the proper time t, i.e., ∞ → 1/λ2 with λ being the “infrared” cutoff parameter.
This allows one to remove all singularities of the diagram related to the local quark propagators.
The integral becomes smooth and always convergent. For clarity, one can demonstrate the approach
on a scalar one-loop two-point function. One starts with the loop integral in the Euclidean space:

Π(p2) =
∫ d4kE

π2
exp(−sk2

E)

[m2 + (kE + pE/2)2][m2 + (kE − pE/2)2]
. (8)

By using the above transformations, one gets:

Π(p2) =

∞→ 1
λ2∫

0

dt
t

(s + t)2

∫ 1

0
dαe−t[m2−α(1−α)p2]+ st

s+t (α−1/2)2 p2
, (9)

where p2 = −p2
E. The expression has a branch point at p2 = 4m2 as follows from the vanishing of the

first term inside the exponential at α = 1/2. However, this singularity is removed by the cutoff.
We take the value of the cutoff parameter λ presented in Table 1 as universal for all processes

we describe.

2.4. Electromagnetic Interactions

Inclusion of the electromagnetic (EM) interaction into the non-local CCQM in a gauge invariant
way requires a dedicated approach. Our main interest will be in the radiative decays of neutral particles
(i.e., the X(3872) tetraquark; see [79]), and so, we will focus on the EM interactions of quarks. The free
part of the quark Lagrangian is gauged using the standard minimal coupling prescription:

∂μq → (∂μ − ieq Aμ)q, ∂μ q̄ → (∂μ + ieq Aμ)q̄, (10)

with eu = 2/3, ed = −1/3 in units of the proton charge. This defines the first part of the interaction
Lagrangian of quarks with photons:

LEM(1)
int = ∑

q
eq Aμ(x)Jμ

q (x), with Jμ
q (x) = q̄(x)γμq(x). (11)

6
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A second term comes from gauging the non-local quark-hadron interaction Lagrangian (1).
First, one multiplies each quark field by an exponential expression, which depends on the gauge field:

q(xi) → exp{−ieq I(xi, x, P) }q(xi), q̄(xi) → exp{ ieq I(xi, x, P) }q̄(xi), (12)

with I being defined as the integral:

I(xi, x, P) =
∫ xi

x
Aμ(z)dzμ

over the path that connects the hadron and quark positions. It can be readily seen that the local
gauge transformations:

q(xi) → exp{ ieq f (xi) }q(xi), q̄(xi) → exp{−ieq f (xi) }q̄(xi),

Aμ(z) → Aμ(z) + ∂μ f (z), (13)

leave the Lagrangian unchanged for any arbitrary function f . Indeed, the gauge field induced
modification of the path integral I(xi, x, P) → I(xi, x, P) + f (xi)− f (x) is canceled by the contribution
coming from the quark transformations. The exact form of the gauged non-local Lagrangian LEM(2)

depends on the quark current structure (i.e., hadron quantum numbers), and we will write down an
explicit form of it in the dedicated section. To use the gauged Lagrangian in perturbative calculations,
one expands the gauge exponentials into the powers of the coupling constant (and thus, powers of Aμ)
up to a desired order. The expansion contains only the derivatives of the path integral I, and using the
approach proposed in [70,87], one can define them in a path independent manner:

lim
dxμ→0

dxμ ∂

∂xμ I(x, y, P) = lim
dxμ→0

[
I(x + dx, y, P′)− I(x, y, P)

]
. (14)

Here, P′ denotes a path derived from P by extending P from its endpoint by dx. This definition gives:

∂

∂xμ I(x, y, P) = Aμ(x), (15)

where the independence of the derivative on the path P becomes explicit.

2.5. Selected Computational Aspects

To proceed with the calculations, it is convenient to use the following representation for the
correlation function:

ΦX

(
∑

1≤i<j≤4
(xi − xj)

2

)
=
[ 3

∏
n=1

∫ dqn

(2π)4

]
e
−i

3
∑

i=1
qi(xi−x4)

Φ̃X

(
− 1

2 ∑
1≤i<j≤3

qiqj

)
. (16)

It may be easily obtained by using the Jacobi coordinates. The Gaussian function form of the
correlation function Φ̃X in Equation (3) can be joined with the exponents coming from the Schwinger
representation of quark propagators given by Equation (5) into a single exponential function.
Its argument takes a Gaussian form in loop momenta:

exp(kak + 2kr + R), (17)

where a is a 3× 3 matrix, r = (r1, r2, r3) is a vector constructed from external momenta, and the constant
R behaves as a quadratic form of external momenta. As a result, one observes that, with respect to
loop momenta, the general expression (6) is a product of a polynomial P (originating from evaluation

7



Symmetry 2020, 12, 884

of traces) with an exponential function. The tensorial loop momenta integration is then performed
using the differential identity:

P
(

kμ
i

)
e2kr = P

(
1
2

∂

∂riμ

)
e2kr, (18)

which allows us the move the k independent differential operator in front of the integral. The action
of the latter operator on the result of the integration is further simplified by applying a second
operator identity:

P
(

1
2

∂

∂ri

)
e−ra−1r = e−ra−1rP

(
1
2

∂

∂ri
− [a−1r]i

)
, (19)

which permits commuting the differential operator with the exponential. The next steps are automated
using a FORM program [88]. It repeatedly performs the differentiation using the chain rule,
thus effectively commuting the differential operator to the right (and eventually making it vanish by
acting on a constant).

At last, one is left with an integral over the space of the Schwinger parameters (see Section 2.3).
The latter is computed numerically with the help of a FORTRAN code. Most of the time, one is
interested in the q2 dependent hadronic form factors: for the purposes of this text, the CCQM should
be seen as a smart and effective tool that provides these form factors from the assumed quark currents
as inputs.

3. Strong Decays of X(3872)

3.1. Decays X → D∗ 0(→ D0π0)D̄0, X → ρ0(→ π+π−) J̄/ψ, and X → ω(→ π+π−π0) J̄/ψ

The controversy raised by the discovery of the X(3872) state can be best seen in the large number of
publications it provoked (with many different interpretations). The proximity of the D∗0 D0 threshold:

MX(3872) − (MD∗0 + MD0) = −0.30 ± 0.40 MeV (20)

naturally suggests the idea of a loosely bound charm meson molecule. This idea was studied in several
texts: implications of the molecular hypothesis for interference and binding effects were discussed
in [89]; the authors of [90] found support for the molecular interpretation within a non-relativistic quark
model; a published text [91] analyzed the molecular assumption in an effective field theory approach;
and further works [92–94] based their analyses on an effective field theory with pion exchange,
Monte Carlo simulations, and heavy quark spin symmetry. A rather strong support for the molecular
picture was given in [95] (line shapes study) and [96] (potential model). The lattice study [97] found an
explanation for X(3872) in both the molecular and tetraquark scenario. An important group of analyses
focused on charmonium [98–100] or mixed charmonium [101–104] explanations. Further arguments
in favor of a charmonium structure followed from the Flatté analysis performed in [105], and both
molecular and charmonium hypotheses were discussed in [106]. Several works [107–110] disfavored
the molecular description. The authors of [107] based their conclusion on a non-relativistic quark model
with the pion exchange, and the analysis presented in [108] favored the charmonium picture instead,
while the conclusions in [109] were based on the pion and sigma exchange model. More rare were
approaches based on the glueball picture [111] and chromomagnetic interaction [112]. The authors
of [113] put in question the existence of a bound state at all. A hybrid hypothesis was considered
in [114] and [115] (here, together with the molecular and charmonium one). Lattice computations
in relation to X(3872) were used in [116,117], QCD sum rules in [118,119], and the coupled channel
approach in [120–122]. One should also mention the studies based on quark models [56,123,124] and
other strategies [125–127].

The description of the X(3872) state by the CCQM was presented in [78]. There, one assumed
a tetraquark structure, and within this assumption, decays X → J/ψ + 2π(3π) and X → D̄0 + D0 +

8
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π0, proceeding through the off-shell ρ/ω and D∗ states respectively, were computed. In addition,
possible implications of the X(3872) dominance in the s-channel dissociation of J/ψ were discussed.

When describing the X(3872) state, one follows the suggestions of [123,128], where a symmetric
spin distribution of this JPC = 1++ state was proposed:

[cq]S=0[c̄q̄]S=1 + [cq]S=1[c̄q̄]S=0 (q = u, d). (21)

A non-local generalization of this diquark-antidiquark current is written as:

Jμ
Xq
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x −

4

∑
i=1

wixi

)
ΦX

(
∑
i<j

(xi − xj)
2
)

Jμ
4q(x1 . . . , x4) ,

Jμ
4q = 1√

2
εabcεdec

{
[qa(x4)Cγ5cb(x1)][q̄d(x3)γ

μCc̄e(x2)] + (γ5 ↔ γμ)
}

, (22)

with simplified weights resulting from only two quark flavors being present:

w1 = w2 = wc =
mc

2(mq + mc)
, w3 = w4 = wq =

mq

2(mq + mc)
. (23)

The strong isospin violation observed by comparing the ρ and ω vector meson mediated decays:

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.0 ± 0.4(stat)± 0.3(syst) (24)

experimentally established by Belle [129] suggested a mixed nature of the physical states Xl , Xh:

Xl ≡ Xlow = Xu cos θ + Xd sin θ,

Xh ≡ Xhigh = −Xu sin θ + Xd cos θ,

where θ is the mixing angle. The state Xu breaks the isospin symmetry maximally:

Xu =
1√
2

{ Xu + Xd√
2︸ ︷︷ ︸

I=0

+
Xu − Xd√

2︸ ︷︷ ︸
I=1

}
.

The mixing angle is to be adjusted to fit the branching fraction ratio (24).
The first step in our calculation is to determine the coupling constant gX by using the so-called

compositeness condition discussed before. The derivative of the tetraquark mass operator needed for
this can be written as:

Π′
X(p2) =

1
2p2 pα ∂

∂pα
ΠX(p2) (25)

=
2 g2

X
3 p2

(
gμν −

pμ pν

p2

) 3

∏
i=1

∫ d4ki
(2π)4i

Φ̃2
X

(
− K2

)
×
{

−wctr
[
S[12]

c �pS[12]
c γ5S[2]

q γ5
]

tr
[
S[3]

c γμS[13]
q γν

]
+ wqtr

[
S[12]

c γ5S[2]
q �pS[2]

q γ5
]

tr
[
S[3]

c γμS[13]
q γν

]
−wctr

[
S[12]

c γ5S[2]
q γ5

]
tr
[
S[3]

c �pS[3]
c γμS[13]

q γν
]
+ wqtr

[
S[12]

c γ5S[2]
q γ5

]
tr
[
S[3]

c γμS[13]
q �pS[13]

q γν
] }

,

9



Symmetry 2020, 12, 884

where the short notations for the quark propagators and loop momenta are:

S[12]
c = Sc(k1 + k2 − wc p), S[3]

c = Sc(k3 − wc p),

S[2]
q = Sq(k2 + wq p), S[13]

q = Sq(k1 + k3 + wq p),

K2 =
1
2 ∑

i≤j
kikj.

The evaluation of this expression is related to the determination of the size parameter ΛX value and
allows us to study the ΛX dependence of the results.

Because the X(3872) mass lies close to the studied thresholds:

mX − (mJ/ψ + mρ) = −0.90 ± 0.41 MeV,

mX − (mD0 + mD∗ 0) = −0.30 ± 0.34 MeV,

the off-mass-shell character of the ρ, ω, and D∗ vector mesons has to be taken into account when
evaluating the transition amplitudes X → J/ψ + ρ(ω) and X → D∗0D̄0. The Feynman diagrams to be
considered within the CCQM are depicted in Figure 2.

Figure 2. Feynman diagrams describing the decays X → J/ψ + ρ(ω) and X → D + D̄∗.

In what follows, we use the notation for the light vector mesons v0 = ρ, ω. The amplitude of the
decay Xu → D̄ + D∗ is written as:

Mμν
(

Xu(p, μ) → D̄(q1) + D∗(q2, ν)
)
= 3

√
2 gX gD gD∗

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

2

)
× Φ̃D

(
− (k1 + wcq1)

2
)

Φ̃D∗
(
− (k2 + wcq2)

2
)

× tr
[
γ5Sc(k1)γ

5Su(k1 + q1)γ
μSc(k2)γ

νSu(k2 + q2)
]
+ (mu ↔ mc, wu ↔ wc)

= gμν M(1)
XDD∗ + qμ

1 qν
1 M(2)

XDD∗ + qμ
1 qν

2 M(3)
XDD∗ + qμ

2 qν
1 M(4)

XDD∗ + qμ
2 qν

2 M(5)
XDD∗ (26)

where the argument of the X-vertex function is equal to:

K2
2 = 1

8 (k1 − k2)
2 + 1

8 (k1 − k2 + q1 − q2)
2 + 1

4 (k1 + k2 + wc p)2.

10
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The amplitude of the decay Xu → J/ψ + v0 is written as:

Mμνρ
(

Xu(p, μ) → J/ψ(q1, ν) + v0(q2, ρ)
)
= 6 gX gJ/ψ gv0

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

1

)
× Φ̃J/ψ

(
− (k1 +

1
2 q1)

2
)

Φ̃v0

(
− (k2 +

1
2 q2)

2
)

× tr
[
iγ5Sc(k1)γ

νSc(k1 + q1)γ
μSu(k2)γ

ρSu(k2 + q2)
]

= εq1q2μνqρ
1 M(1)

XJv + εq1q2μνqρ
2 M(2)

XJv + εq1q2μρqν
2 M(3)

XJv + εq1q2νρqμ
1 M(4)

XJv

+ εq1μνρ M(5)
XJv + εq2μνρ M(6)

XJv + εq1q2μρqν
1 M(7)

XJv + εq1q2νρqμ
2 M(8)

XJv (27)

where the argument of the X-vertex function is equal to:

K2
1 = 1

2 (k1 +
1
2 q1)

2 + 1
2 (k2 +

1
2 q2)

2 + 1
4 (wuq1 − wcq2)

2.

In the latter expression, the number of Lorentz structures is reduced to six when X and J/ψ are on the
mass-shell because, in that case, one has εμ(q

μ
1 + qμ

2 ) = 0 and ενqν
1 = 0.

Obvious relations:

M(Xd → J/ψ + ρ) = − M(Xu → J/ψ + ρ), M(Xd → J/ψ + ω) = M(Xu → J/ψ + ω)

allow expressing all amplitudes of physical states transitions in terms of the Xu ones:

M(X�/h → J/ψ + ω) = (cos θ ± sin θ) M(Xu → J/ψ + ω),

M(X�/h → J/ψ + ρ) = (± cos θ − sin θ) M(Xu → J/ψ + ρ).

The differential decay rate in the narrow-width approximation is written as [130]:

dΓ(X → J/ψ + nπ)

dq2 =
1

8 m2
X π

· 1
3
|MXJv|2

Γv0 mv0

π

p∗(q2)

(m2
v0 − q2)2 + Γ2

v0 m2
v0

B(v0 → nπ), (28)

1
3
|MXJv|2 =

1
3 ∑

pol
|εμ

X εν
J/ψ ε

ρ

v0 Mμνρ|2,

where p∗(q2) = λ1/2(m2
X , m2

J/ψ, q2)/2mX is the momentum of the v0 in the X rest frame. The allowed
kinematic range is given by:

(n mπ)
2 ≤ q2 ≤ (mX − mJ/ψ)

2,

where n = 2 for the ρ meson and n = 3 for the ω meson. The masses, decay widths, and branching
fractions appearing in (28) were taken from PDG [13]. In addition to the model parameter values
presented in Table 1, further model parameters are needed, namely the size parameters of the appearing
mesons. Their values have been settled earlier and are presented in Table 2.

Table 2. Size parameters for selected mesons in GeV.

Λπ Λρ/ω ΛD ΛD∗ ΛJ/ψ Ληc

0.711 0.295 1.4 2.3 3.3 3.0

Two adjustable parameters remain, the size parameter ΛX and the mixing angle θ. It was found
out that the dependence of the branching fraction:

Γ(Xu → J/ψ + 3 π)

Γ(Xu → J/ψ + 2 π)
≈ 0.25 (29)

11
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on the size parameter Λx is in the CCQM small and close to 1/4. Using this observation and the central
value of the experimental ratio in Equation (24), one can deduce the mixing angle from:

Γ(Xl,h → J/ψ + 3 π)

Γ(Xl,h → J/ψ + 2 π)
≈ 0.25 ·

(1 ± tan θ

1 ∓ tan θ

)2
≈ 1. (30)

The latter equation yields θ ≈ 18.4◦ for Xl and θ ≈ −18.4◦ for Xh. When not considering the ratio,
the sensitivity of the decay widths on the size parameter is more important. One may expect the
size parameter value to be close to those of the charmonia ΛJ/ψ and Ληc , i.e., to be in the range
3 GeV < ΛX < 4 GeV. This range was scanned, and the behavior of the decay width is depicted in
Figure 3.

2.5 3 3.5 4
Λ

X
 (GeV)

0

0.5

1

1.5

Γ(X -> D
0
 + D

0
 + π

0
),  MeV

Γ(X -> J/ψ + nπ),  MeV

Figure 3. The dependence of the decay widths Γ(Xl → D̄0D0π0) and Γ(X → J/ψ + nπ) on the size
parameter ΛX .

One can conclude that the predicted values in the interval 2.5 ≤ q2 ≤ 3.5 GeV lie in the range
0.05 MeV < ΓX(3872) < 0.23 MeV, which is in agreement with the upper limit of 1.2 MeV.

The differential rate of the decay X(3872) → D̄0D0π0 in the narrow-width approximation is
written as:

dΓ(Xu → D̄0D0π0)

dq2 =
1

2m2
Xπ

· 1
3
|MXDD∗ |2 · ΓD∗ 0 mD∗ 0

π

p∗(q2)B(D∗ 0 → D0π0)

(m2
D∗ 0 − q2)2 + Γ2

D∗ 0 m2
D∗ 0

, (31)

1
3
|MXDD∗ |2 =

1
3 ∑

pol
|εμ

X εν
D∗ 0 Mμν|2 ,

where p∗(q2) = λ1/2(m2
X, m2

D0 , q2)/2mX is the momentum of D∗ 0 in the X rest frame. The matrix
element Mμν was defined above by Equation (26). One has to note that the allowed kinematic range:

3.99928 GeV2 ≈ (mD0 + mπ0)2 ≤ q2 ≤ (mX − mD0)2 ≈ 4.02672 GeV2

is very narrow. Taking the masses, widths, and branching fractions of appearing D∗ mesons
from [13,89,131–134], we can calculate the decay width:

Γ(Xl → D̄0D0π0) = cos2 θ Γ(Xu → D̄0D0π0)

12
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and study its dependence on the size parameter ΛX. This is shown in Figure 3. By using the
experimental data from PDG [13] for the ratio:

105B(B± → K±X) · B(X → J/ψπ+π−) = 0.95 ± 0.19,

105B(B± → K±X) · B(X → D0D̄0π0) = 10.0 ± 4.0, (32)

one finds:
Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)
= 10.5 ± 4.7. (33)

The latter is to be compared to the CCQM prediction:

Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)

∣∣∣
CCQM

= 6.0 ± 0.2 , (34)

where the uncertainty of the result reflects the uncertainty on ΛX . One can see that the two numbers
agree within errors.

3.2. Implications of X(3872) in the Charm Dissociation Process by Light Mesons

It is interesting to check the significance of X(3872) in the reaction of the charm dissociation
process J/ψ+ ρ (ω) → X(3872) → D̄D∗, which plays an important role in heavy ion physics. This state
will contribute to the s channel of the process. The X-addition to the full cross-section is written as:

σ(J/ψ + v0 → D(D̄) + D̄∗(D∗)) = 2 (cos θ ∓ sin θ)2 σ(J/ψ + v0 → Xu → D̄ + D∗), (35)

σ(J/ψ + v0 → Xu → D̄ + D∗) =
1

16 π s
λ1/2(s, m2

D, m2
D∗)

λ1/2(s, m2
J/ψ, m2

v0)
· 1

9 ∑
pol

|A|2
(s − m2

X)
2 + Γ2

Xm2
X

,

A = εν
J/ψε

ρ

v0 Mμνρ

(
− gμα +

pμ pα

m2
X

)
ε

β
D∗ Mαβ ,

where p = p1 + p2 = q1 + q2. The ∓ sign in the first equation is negative for the ρ meson and positive
for ω. A Breit–Wigner propagator is used with ΓX = 1 MeV, and the size parameter value is fixed to
ΛX = 3.5 GeV. With this setting, the dependence of the cross-section on the energy E =

√
s is shown

in Figure 4.
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Figure 4. The cross-sections of the processes J/ψ + v0 → X → D + D∗. Charged D-mesons in left
panel; neutral D-mesons in the right panel.

One can compare the predicted behavior to available results for the charged D-mesons:
At E = 4.0 GeV, a theoretical evaluation [135] predicts σ(J/ψ + π → D + D̄∗) = 0.9 mb, and the
work in [136] predicted σ(J/ψ + ρ → D + D̄∗) = 2.9 mb at E = 3.9 GeV. In the case of X(3872),
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the cross-section reaches the maximum of approximately 0.32 mb at E = 3.88 GeV, and one can
conclude that the expected contribution of X(3872) in the charm dissociation is non-negligible.

4. Radiative Decays of X(3872)

The first experimental evidence for the radiative decay of the X(3872) particle was given in [129]
by the Belle experiment. From the measured branching fraction product:

B(B → XK) · B(X → γ + J/ψ) = (1.8 ± 0.6 (stat)± 0.1 (syst))× 10−6 (36)

the partial width ratio was deduced:

Γ(X → γ + J/ψ)

Γ(X → π+π− J/ψ)
= 0.14 ± 0.05. (37)

This finding was supported by the BaBar observation [137]:

B(B+ → XK+) · B(X → γ + J/ψ) = (3.3 ± 1.0 (stat)± 0.3 (syst))× 10−6 (38)

which had a limited significance of 3.4 σ. The same experiment reaffirmed the observation in 2009 [138]
with smaller errors:

B(B± → XK±) · B(X → γ + J/ψ) = (2.8 ± 0.8 (stat)± 0.1 (syst))× 10−6 (39)

from which one can deduce [36]:

Γ(X → γ + J/ψ)

Γ(X → π+π− J/ψ)
= 0.22 ± 0.06. (40)

BaBar also presented a result related to ψ(2s):

B(B± → XK±) · B(X → γ + ψ(2S)) = (9.5 ± 2.7 (stat)± 0.6 (syst))× 10−6. (41)

In 2011, the Belle collaboration published measurements with J/ψ and ψ(2s) in the final state [139]:

B(B± → XK±) · B(X → γ + J/ψ) = (1.78+0.48
−0.44 (stat)± 0.12 (syst))× 10−6,

B(B± → XK±) · B(X → γ + ψ(2S)) < 3.45 × 10−6. (42)

The first result was in good agreement with the previous one from the same experiment (36);
however, the second number brought some tension when compared to BaBar and a later LHCb
measurement [140]:

Γ(X → ψ(2s) + γ)

Γ(X → J/ψ + γ)
=

⎧⎪⎪⎨⎪⎪⎩
3.4 ± 1.4 BaBar

< 2.0 (90% CL) Belle

2.46 ± 0.64 (stat) ± 0.29 (sys) LHCb

. (43)

The theoretical study of radiative X(3872) decays includes several different approaches.
Such decays were analyzed in [98] in the charmonium picture. The authors studied excited 1D and
2P states and their decays in relation with the electric dipole radiation and provided implications for
quantum number assignments. The molecular hypothesis was considered in [106]. There, the authors
argued that the validity of the molecular picture could be determined from the study of several
X(3872) decay channels (including some with the photon emission). The work in [141] was dedicated
to radiative decays with two D mesons in the final state. It was claimed that the discrimination
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between the molecular and charmonium picture could be obtained via analysis of the photon
spectrum. Several decay modes, which also included J/ψ + γ, were examined in [142] within
a phenomenological Lagrangian approach. The predicted value of the radiative decay width
depended on the model parameters and varied from 125 KeV to 250 KeV. In [143], X(3872) was
described as a mixture of charmonium and exotic molecular states and treated using QCD sum
rules. The predicted radiative decay width ratio ΓX(J/ψγ)/ΓX(J/ψπ+π−) = 0.19 ± 0.13 was in
agreement with experimental measurements. The excited charmonium hypothesis and study of E1
decay widths within the relativistic Salpeter method was presented in [144]. A description based
on a charmonium-like picture with high spin 2−+ using a light front quark model was proposed
in [145]. Later works [146–149] were mostly interested in the puzzling ΓX(ψ(2s)γ)/ΓX(J/ψγ) ratio (43)
and analyzed it with different approaches (quark potential model, single-channel approximation,
coupled-channel approach, charmonium-molecule hybrid model, and an effective theory framework).

Here, we focus on the J/ψ decay channel, which was studied using the CCQM in [79].
The non-local quark current for the X(3872) hadron was given in the previous section; see Equation (22).
The J/ψ quark current is written as:

Jμ
J/ψ(y) =

∫
dy1

∫
dy2 δ

(
y − 1

2
(y1 + y2)

)
× ΦJ/ψ

(
(y1 − y2)

2
)

c̄a(y1)γ
μca(y2). (44)

The related size parameter was established in earlier works and has the value of ΛJ/ψ = 1.738 GeV.
The knowledge of the quark currents enables us to give more details concerning the interaction
with photons, addressed before in Section 2.4. The second part of the electromagnetic interaction
Lagrangian stands:

LEM(2)
int (x) = gX Xq μ(x) · Jμ

Xq−em(x) + gJ/ψ J/ψμ(x) · Jμ
J/ψ−em(x), (q = u, d)

Jμ
Xq−em =

∫
d�ρ ΦX(�ρ

2) Jμ
4q(x1, . . . , x4)

{
ieq [I

x3
x − Ix4

x ] + iec [I
x2
x − Ix1

x ]
}

,

Jμ
J/ψ−em =

∫
dρ ΦJ/ψ(ρ

2) Jμ
2q(x1, x2) iec [I

x1
x − Ix2

x ], Ixi
x ≡ I(xi, x, P).

where Jμ
4q and Jμ

2q correspond to the parts of usual currents (22), (44) not containing the vertex function.
In order to make use of the definition (15), it is convenient to switch to the Fourier transforms of the
vertex functions and quark fields:

ΦX(�ρ
2) =

∫ d4�ω

(2π)4 Φ̃X(−�ω 2)e−i�ρ�ω = Φ̃X(�∂
2
ρ ) δ(4)(�ρ),

ΦJ/ψ(ρ
2) =

∫ d4ω

(2π)4 Φ̃J/ψ(−ω 2)e−iρω = Φ̃J/ψ(∂
2
ρ ) δ(4)(ρ),

q(xi) =
∫ d4 pi

(2π)4 e−ipixi q̃(pi), q̄(xi) =
∫ d4 pi

(2π)4 eipixi ˜̄q(pi) ,

so that the differential operator can be placed in front of the path integrals:

Jμ
Xq−em =

4

∏
i=1

∫ d4 pi

(2π)4 J̃μ
4q(p1, . . . , p4)

∫
d�ρ δ(4)(�ρ)Φ̃X(�∂

2
ρ )e

−i(p1x1−p2x2−p3x3+p4x4) · QX

=
4

∏
i=1

∫ d4 pi

(2π)4 J̃μ
4q(p1, . . . , p4)e−i(p1−p2−p3+p4)x

∫
d�ρ δ(4)(�ρ)e−i�ρ�ωΦ̃X(�D 2

ρ ) · QX

QX = ieq [I
x3
x − Ix4

x ] + iec [I
x2
x − Ix1

x ],
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Jμ
J/ψ−em =

2

∏
i=1

∫ d4 pi

(2π)4 J̃μ
2q(p1, p2)

∫
dρ δ(4)(ρ)Φ̃J/ψ(∂

2
ρ) ei(p1x1−p2x2) · QJ/ψ

=
2

∏
i=1

∫ d4 pi

(2π)4 J̃μ
2q(p1, p2)ei(p1−p2)x

∫
dρ δ(4)(ρ)eipρΦ̃J/ψ(D2

ρ) · QJ/ψ

QJ/ψ = iec [I
x1
x − Ix2

x ],

where the long derivatives are defined as Dμ
ρi = ∂

μ
ρi − iωμ

i and Dμ
ρ = ∂

μ
ρ + ipμ, p = 1

2 (p1 + p2) with ωi
being combinations of the integration four-vectors pi and mass parameters wq and wc. Next, the identity
involving the operator function action on the path integral [150] is applied:

F(D2
ρj
)Ixi

x =

1∫
0

dτF′(τD2
ρj
− (1 − τ)ω2

j )wij ·
(

∂ν
ρj

Aν(xi)− 2 i ων
j Aν(xi)

)
+ F(−ω2

j )Ixi
x . (45)

Its validity extends to all functions F analytic at zero. The result for X(3872) reads:

Jμ
Xq−em(x) =

4

∏
i=1

∫
d4xi

∫
d4y Jμ

4q(x1, . . . , x4) Aρ(y) · Eρ
X(x; x1, . . . , x4, y), (46)

Eρ
X(x; x1, . . . , x4, y) =

4

∏
i=1

∫ d4 pi
(2π)4

∫ d4r
(2π)4 e−ip1(x−x1)+ip2(x−x2)+ip3(x−x3)−ip4(x−x4)−ir(x−y) Ẽρ

X(p1, . . . , p4, r),

Ẽρ
X(p1, . . . , p4, r) =

1∫
0

dτ
3

∑
j=1

{
ec

[
−Φ̃′

X(−z1j) lρ
1j + Φ̃′

X(−z2j) lρ
2j

]
+eq

[
−Φ̃′

X(−z4j) lρ
4j + Φ̃′

X(−z3j) lρ
3j

] }
,

lij = wij (wijr + 2 ωj), (i = 1, . . . , 4; j = 1, . . . , 3),

zi1 = τ (wi1r + ω1)
2 + (1 − τ)ω2

1 + ω2
2 + ω2

3,

zi2 = (wi1r + ω1)
2 + τ (wi2r + ω2)

2 + (1 − τ)ω2
2 + ω2

3,

zi3 = (wi1r + ω1)
2 + (wi2r + ω2)

2 + τ (wi3r + ω3)
2 + (1 − τ)ω2

3.

For J/ψ, one obtains:

Jν
J/ψ−em(y) =

∫
d4y1

∫
d4y2

∫
d4z Jν

2q(y1, y2) Aρ(z) Eρ
J/ψ(y; y1, y2, z), (47)

Eρ
J/ψ(y; y1, y2, z) =

∫ d4 p1

(2π)4

∫ d4 p2

(2π)4

∫ d4q
(2π)4 e−ip1(y1−y)+ip2(y2−y)+iq(z−y)Ẽρ

J/ψ(p1, p2, q) ,

Ẽρ
J/ψ(p1, p2, q) = ec

1∫
0

dτ
{
− Φ̃′

J/ψ(−z−) lρ
− − Φ̃′

J/ψ(−z+) lρ
+

}
,

z∓ = τ (p ∓ 1
2 q)− (1 − τ) p2, l∓ = p ∓ 1

4 q, p = 1
2 (p1 + p2) .

The amplitude evaluation requires evaluation of four Feynman diagrams displayed in Figure 5.
The corresponding expression stands:

M(Xq(p) → J/ψ(q1) γ(q2)) = i(2π)4δ(4)(p − q1 − q2) ε
μ
X ε

ρ
γ εν

J/ψ Tμρν(q1, q2) , (48)

where Tμρν(q1, q2) can be expanded in terms of appropriate Lorentz structures. Using the on-mass shell
condition, gauge invariance, and Schouten identities [151], one can show that only two independent
structures remain:

Tμρν = WA εq1q2μρq2ν + WB εq1q2νρq1μ. (49)
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The functions WA/B are to be extracted from the expression following from the CCQM computation:

Tμρν(q1, q2) = ∑
i=a,b,c,d

T(i)
μρν(q1, q2) , (50)

where the separate contributions are written down:

T(a)
μρν = 6

√
2 gX gJ/ψ eq

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

a

)
Φ̃J/ψ

(
− (k1 +

1
2 q1)

2
)

× 1
2 tr

[
γ5Sc(k1)γνSc(k1 + q1)γμSq(k2)γρSq(k2 + q2)− (γ5 ↔ γμ)

]
,

K2
a = 1

2 (k1 +
1
2 q1)

2 + 1
2 (k2 +

1
2 q2)

2 + 1
4 (wqq1 − wcq2)

2 ,

T(b)
μρν = 6

√
2 gX gJ/ψ

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃J/ψ

(
− (k2 +

1
2 q1)

2
)

ẼX ρ(p1, . . . , p4, r)

× 1
2 tr

[
γ5Sq(k1)γμSc(k2)γνSc(k2 + q1)− (γ5 ↔ γμ)

]
,

p1 = k2, p2 = k2 + q1, p3 = p4 = −k1, r = −q2 ,

T(c)
μρν = 6

√
2 gX gJ/ψ ec

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

c

)
Φ̃J/ψ

(
− (k2 + q2 +

1
2 q1)

2
)

× 1
2 tr

[
γ5Sq(k1)γμSc(k2)γρSc(k2 + q2)γνSc(k2 + p)− (γ5 ↔ γμ)

]
,

K2
c = 1

2 k2
1 +

1
2 (k2 +

1
2 p)2 + 1

4 w2
q p2 ,

T(d)
μρν = 6

√
2 gX gJ/ψ ec

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃X

(
− K2

c

)
ẼJ/ψ ρ(p1, p2, q)

× 1
2 tr

[
γμSq(k1)γ5Sc(k2)γνSc(k2 + p)− (γ5 ↔ γμ)

]
,

p1 = −k2 − p, p2 = −k2, q = −q2 .

One evaluates the traces and the loop momenta integrals, and the expression is re-arranged in two
terms following the mentioned Lorentz structure. The behavior of coefficient functions WA/B is
predicted using a numerical integration over the Schwinger parameters:

WA,B =

∞∫
0

dt
1∫

0

d3β FA,B(t, β1, β2, β3) . (51)

The decay width is expressed as:

Γ(X → γ J/ψ) =
1

12π

|�q2|
m2

X

(
|HL|2 + |HT |2

)
, (52)

where Hi denote the helicity amplitudes:

HL = i
m2

X
mJ/ψ

|�q2|2WA , HT = −imX |�q2|2WB (53)
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with |�q2| =
(

m2
X − m2

J/ψ

)
/(2mX). The dependence of the predicted decay width on the size parameter

ΛX is shown in Figure 6.

Figure 5. Four Feynman diagrams describing the decay X → γ + J/ψ. One with the photon emission
form the light quark line (a) and three bubble graphs (b–d).
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Λ

X
 (GeV)
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Γ(X -> J/ψ + 2π),  MeV

Γ(X -> J/ψ + γ),  MeV

Figure 6. The dependence of the decay widths Γ(Xl → γ + J/ψ) and Γ(Xl → J/ψ 2π) on the size
parameter ΛX .

If we follow the approach from the previous section and take ΛX = 3.0 ± 0.5 GeV, then the
model predicts:

Γ(Xl → γ + J/ψ)

Γ(Xl → J/ψ + 2π)

∣∣∣
CCQM

= 0.15 ± 0.03 , (54)
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which is to be compared with the experimental results Equation (37) and Equation (40). One may
conclude that the bound-tetraquark description of the X(3872) state by the CCQM is in an agreement
with the experimental observations.

5. Nature of Zc(3900)

As stated in the Introduction, the detected Zc(3900) decays include both the π± J/ψ and D∗D
final states (assuming Zc(3885) and Zc(3900) are the same particle). The ratio of the decay widths of
these two channels was measured by BESIII [27]:

Γ(Zc → DD̄∗)
Γ(Zc → π J/ψ)

= 6.2 ± 1.1(stat)± 2.7(syst) (55)

and represents a quantitative observation to be explained by the theorists. There are many different
theoretical approaches that are trying to understand the nature of this state.

The tetraquark interpretation was intensively discussed within QCD sum rules [152–154] and also
in the color flux-tube model [155]. The molecular scenario seems to be more abundant in the literature
and is discussed or preferred in several theoretical frameworks. A light front theory description was
presented in [156]; an effective field theory description was proposed in [157]; and QCD sum rules
were used in [158,159]. The molecular interpretation was also supported by the quark model developed
in [160]. The authors of [161] made a proposal for BESIII and forthcoming Belle II measurements by
using also the molecular scenario. Further molecular picture oriented works can be found in [162]
(constituent quark model, coupled channels) and in [163] (quark interchange model). It is interesting
to note that most of the lattice QCD based studies obtained different results from previous ones:
some did not see (within the approach they used) a bound state at all [164–167], invoked a threshold
cusp explanation [168,169], or indicated that the understanding of Zc within the lattice QCD was
only approaching [170]. For completeness, one can mention the charmonium hybrid interpretation
studied in [171], the hadro charmonium picture presented in [172] with the tetraquark and molecular
interpretation and the color magnetic interaction [173]. Further ideas can be found in [174–184].

The description of Zc(3900) in the framework of the CCQM was presented in [80]. Two options were
tested: the molecular interpretation and the tetraquark hypothesis. For each option, the strong decays
into J/ψπ+, ηcρ+, D̄0D∗+, and D̄∗0D+ were computed and compared to available experimental data.
First, we investigate the tetraquark hypothesis. In this scenario, the non-local Zc current is written as:

Jμ
Zc
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x −

4

∑
i=1

wixi

)
· ΦZc

(
∑
i<j

(xi − xj)
2
)

Jμ
4q(x1, . . . , x4), (56)

Jμ
4q =

i√
2

εabcεdec

{
[ua(x4)Cγ5cb(x1)][d̄d(x3)γ

μCc̄e(x2)]− (γ5 ↔ γμ)
}

.

The tetraquark mass operator looks like:

Πμν
Zc
(p) = 6

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zc

(
− �ω 2

)
(57)

×
{

tr
(

S4(k̂4)γ5S1(k̂1)γ5

)
tr
(

S3(k̂3)γ
μS2(k̂2)γ

ν
)

+ tr
(

S4(k̂4)γ
νS2(k̂2)γ

μ
)

tr
(

S3(k̂3)γ5S(
1k̂1)γ5

) }
,

where the momenta are defined by:

k̂1 = k1 − w1 p, k̂2 = k2 − w2 p, k̂3 = k3 + w3 p, k̂4 = k1 + k2 − k3 + w4 p,

�ω 2 = 1/2 (k2
1 + k2

2 + k2
3 + k1k2 − k1k3 − k2k3).
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The matrix elements of the decays Z+
c → J/ψ + π+ and Z+

c → ηc + ρ+ are written down:

Mμν
(

Zc(p, ε
μ
p) → J/ψ(q1, εν

q1
) + π+(q2)

)
=

6√
2

gZc gJ/ψgπ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�η 2

)
Φ̃J/ψ

(
− (k1 + v2q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S4(k2)γ5S3(k2 + q2)γ
μS2(k1)γ

νS1(k1 + q1)) + (γ5 ↔ γμ)
}

= AJ/ψπ gμν + BJ/ψπ qμ
1 qν

2 , (58)

Mμα
(

Zc(p, ε
μ
p) → ηc(q1) + ρ(q2, εα

q2
)
)
=

6√
2

gZc gηc gρ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�η 2

)
Φ̃ηc

(
− (k1 + v2q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr [γ5S4(k2)γ
αS3(k2 + q2)γ

μS2(k1)γ5S1(k1 + q1)] + (γ5 ↔ γμ)
}

= Aηcρ gμα − Bηcρ qμ
2 qα

1 , (59)

where the argument of the Zc-vertex function is given by:

η1 = 1
2
√

2
(2k1 + (1 − w1 + w2)q1 − (w1 − w2)q2) ,

η2 = 1
2
√

2
(2k2 − (w3 − w4)q1 + (1 − w3 + w4)q2) ,

η3 = 1
2 ((w3 + w4)q1 − (w1 + w2)q2) , �η 2 = η2

1 + η2
2 + η2

3.

The notations used are as follows: m1 = m2 = mc, m3 = m4 = md = mu, v1 = m1/(m1 + m2),
v2 = m2/(m1 + m2), u3 = m3/(m3 + m4), and u4 = m4/(m3 + m4).

The amplitudes of the Z+
c → D̄0 + D∗+ and Z+

c → D̄∗ 0 + D+ decays are:

Mμν
(

Zc(p, ε
μ
p) → D̄0(q1) + D∗+(q2, εν

q2
)
)
=

6√
2

gZc gDgD∗

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�δ 2

)
Φ̃D

(
− (k2 + v2q2)

2
)

Φ̃D∗
(
− (k1 + u1q2)

2
)

×
{

tr (γ5S4(k2 + q1)γ5S1(k1)γ
νS3(k1 + q2)γ

μS2(k2))− (γ5 ↔ γμ)
}

= AD̄D∗ gμν − BD̄D∗ qμ
2 qν

1 , (60)

Mμα
(

Zc(p, ε
μ
p) → D̄∗ 0(q1, εα

q1
) + D+(q2, )

)
=

6√
2

gZc gD∗ gD

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�δ 2

)
Φ̃D∗

(
− (k1 + v̂1q1)

2
)

Φ̃D

(
− (k2 + û4q2)

2
)

×
{

tr (S4(k2 + q1)γ5S1(k1)γ5S3(k1 + q2)γ
μS2(k2)γ

α)− (γ5 ↔ γμ)
}

= AD∗D gμα + BD∗D qμ
1 qα

2 , (61)
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with the argument of the Zc-vertex function being:

δ1 = − 1
2
√

2
(k1 − k2 + (w1 − w2)(q1 + q2)) ,

δ2 = + 1
2
√

2
(k1 − k2 − (1 + w3 − w4)q1 + (1 − w3 + w4)q2) ,

δ3 = − 1
2 (k1 + k2 + (w1 + w2)(q1 + q2)) , �δ 2 = δ2

1 + δ2
2 + δ2

3. (62)

Now, the notation used is m1 = m2 = mc, m3 = m4 = md = mu, v̂2 = m2/(m2 + m4),
v̂4 = m4/(m2 + m4), û1 = m1/(m1 + m3), and û3 = m3/(m1 + m3).

The decay width for the 1+(p) → 1−(qv) + 0−(qs) transition is given by:

Γ =
1

8π

1
2s + 1

|qv|
m2 (|H+1+1|2 + |H−1−1|2 + |H00|2), (63)

where H denotes the helicity amplitudes and qv is the three-momentum of the final state vector particle
qμ

v = (Ev, 0, 0, |qv|). The helicity amplitudes can be related to the invariant amplitudes A1 and A2,
which parametrize the matrix element in terms of the Lorentz structures:

M = A1 m gμρ +A2
1
m

qμ
1 qρ

2 (64)

by means of the relations:

H00 = − m
m1

Ev A1 −
1

m1
|qv|2 A2, H+1+1 = H−1−1 = −mA1.

From the comparison of Equation (64) with Equations (58)–(61), one can express A1,2 as a function
of Axy, Bxy. The results are importantly influenced by the fact that the amplitudes AD̄D∗ and
AD∗D (Formulas (60) and (61)) vanish exactly within the CCQM description AD̄D∗ = AD∗D = 0,
and the contributions from the non-zero B amplitudes are strongly suppressed by the |qv|5 factor.
Before arriving at the numerical predictions, the size parameters need to be specified, and a strategy
with respect to the choice of ΛZc value has to be settled. The numerical values of the size parameters
were in [80] (i.e., the herein presented Zc analysis) re-adjusted with respect to those in [78] and are
shown in Table 3.

Table 3. The size parameters for selected mesons in GeV used in the Zc(3900) analysis.

Λπ Λρ/ω ΛD ΛD∗ ΛJ/ψ Ληc

0.711 0.295 1.4 2.3 3.3 3.0

As concerns the ΛZc parameter, first, it is taken as ΛZc = 2.24 ± 0.10 GeV to make the predicted
value of the decay width Γ(Z+

c → J/ψ + π+) close to the one from [152,176]. One obtains:

Γ(Z+
c → J/ψ + π+) = (27.9+6.3

−5.0)MeV , Γ(Z+
c → D̄0 + D∗+) ∝ 10−8 MeV ,

Γ(Z+
c → ηc + ρ+) = (35.7+6.3

−5.2)MeV , Γ(Z+
c → D̄∗ 0 + D+) ∝ 10−8 MeV . (65)

These outputs contradict the experimental number (see Equation (55)), which indicates a larger
coupling to DD∗ than to the J/ψπ mode. If trying to adjust the ΛZc parameter to a more realistic value,
the results do not become any better. Assuming ΛZc = 3.3 ± 1.1 GeV, one gets:

Γ(Z+
c → J/ψ + π+) = (4.3+0.7

−0.6)MeV , Γ(Z+
c → D̄0 + D∗+) ∝ 10−9 MeV ,

Γ(Z+
c → ηc + ρ+) = (8.0+1.2

−1.0)MeV , Γ(Z+
c → D̄∗ 0 + D+) ∝ 10−9 MeV . (66)
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These predictions suggest that the tetraquark picture is not appropriate for the Zc(3900) state.

The molecular description of Zc(3900) appears as a natural alternative. In such a scenario,
the non-local interpolation quark current is written as [53]:

Jμ
4q =

1√
2

{
(d̄(x3)γ5c(x1))(c̄(x2)γ

μu(x4)) + (d̄(x3)γ
μc(x1))(c̄(x2)γ5u(x4))

}
. (67)

By using similar steps as in the tetraquark analysis, one writes down the Fourier transformed Zc mass
operator in the form:

Πμν
Zc
(p) =

9
2

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zc

(
− �ω 2

)
(68)

×
{

tr
[
γ5S1(k̂1)γ5S3(k̂3)

]
· tr

[
γμS4(k̂4)γ

νS2(k̂2)
]

+tr
[
γμS1(k̂1)γ

νS3(k̂3)
]
· tr

[
γ5S4(k̂4)γ5S2(k̂2)

] }
in order to pin down the ΛZc dependence of the coupling gZc . Next, the transition amplitudes
are constructed:

Mμν
(

Zc(p, ε
μ
p) → J/ψ(q1, εν

q1
) + π+(q2)

)
=

3√
2

gZc gJ/ψgπ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�η 2

)
Φ̃J/ψ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S1(k1)γ
νS2(k1 + q1)γ

μS4(k2)γ5S3(k2 + q2)) + (γ5 ↔ γμ)
}

= AJ/ψπ gμν + BJ/ψπ qμ
1 qν

2 . (69)

Mμα
(

Zc(p, ε
μ
p) → ηc(q1) + ρ(q2, εα

q2
)
)
=

3√
2

gZc gηc gρ

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�η 2

)
Φ̃ηc

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr (γ5S1(k1)γ5S2(k1 + q1)γ
μS4(k2)γ

αS3(k2 + q2)) + (γ5 ↔ γμ)
}

= Aηcρ gμα − Bηcρ qμ
2 qα

1 , (70)

Mμν
(

Zc(p, ε
μ
p) → D̄0(q1) + D∗+(q2, εν

q2
)
)
=

9√
2

gZc gDgD∗

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�δ 2

)
Φ̃D

(
− (k2 + v4q1)

2
)

Φ̃D∗
(
− (k1 + u1q2)

2
)

× tr (γμS1(k1)γ
νS3(k1 + q2)) · tr (γ5S4(k2)γ5S2(k2 + q1))

= AD̄D∗ gμν − BD̄D∗ qμ
2 qν

1 , (71)
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Mμα
(

Zc(p, ε
μ
p) → D̄∗ 0(q1, εα

q1
) + D+(q2)

)
=

9√
2

gZc gD∗ gD

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zc

(
−�δ 2

)
Φ̃D∗

(
− (k1 + v̂1q1)

2
)

Φ̃D

(
− (k2 + û4q2)

2
)

× tr (γ5S1(k1)γ5S3(k1 + q2)) · tr (γμS4(k2)γ
αS2(k2 + q1))

= AD∗D gμα + BD∗D qμ
1 qα

2 , (72)

where the argument of the function Φ̃Zc is given by:

δ1 = − 1
2
√

2
(k1 + k2 + (1 + w1 − w2)q1 + (w1 − w2)q2)) ,

δ2 = + 1
2
√

2
(k1 + k2 − (w3 − w4)q1 + (1 − w3 + w4)q2) ,

δ3 = + 1
2 (−k1 + k2 + (1 − w1 − w2)q1 − (w1 + w2)q2)) , �δ 2 = δ2

1 + δ2
2 + δ2

3. (73)

The meaning of all other letters and symbols is the same as was in the previous paragraph dedicated
to the tetraquark description. The decay widths are also evaluated in a fully analogous way.
However, the parameter ΛZc needs to be adjusted independently. Tuning its value in such a way so as
to provide the best description of the BESIII measurement [27], one gets ΛZc = 3.3 ± 1.1 GeV with the
following values for the decay widths:

Γ(Z+
c → J/ψ + π+) = (1.8 ± 0.3)MeV , Γ(Z+

c → D̄0 + D∗+) = (10.0+1.7
−1.4)MeV ,

Γ(Z+
c → ηc + ρ+) = (3.2+0.5

−0.4)MeV , Γ(Z+
c → D̄∗ 0 + D+) = (9.0+1.6

−1.3)MeV. (74)

One can see that the obtained results at this time are in agreement with the experimental observations
by showing an enhancement of the DD∗ sector and are in agreement with the observed branching
fraction ratio in Equation (55) within the errors. One can conclude that the CCQM supports the
molecular picture of the Zc(3900) state.

6. The Nature of Y(4260)

The distinctive characteristics of the Y(4260) are its mass, which does not fit any charmonium in
the same mass region, the suppression of open charm decays with respect to the J/ψπ+π− final state,
and the appearance of the exotic charmonium Zc(3900) among its decay products. This interesting
mix of properties is addressed in quite a few theoretical works, and like in other cases, the molecular,
tetraquark, and several other explanations are invoked.

A support for the molecular picture was provided by the QCD lattice computations in [185],
by QCD sum rules in [186], by a meson exchange model in [187], and also by the authors of [188],
which favored it over the hadro-charmonium interpretation. Further arguments for Y(4260) being
a molecule were based on the line shape study in [189], and the authors of [190] proposed an
unconventional state with a large, but not completely dominant molecular component. An interesting
paper [191] came up with a baryonic molecule concept, and the molecular hypothesis was also analyzed
in [192–195].

On the contrary, the molecular scenario is strongly disfavored in [196] because of reasons
related to the heavy quark spin symmetry and the molecular scenario was rejected in [197] in
favor of a charmonium hybrid one. Here, the crux of the argument lies in an important separation
between Y(4260) mass and its decay threshold. Further arguments to support the charmonium or
hybrid-charmonium picture were given in the publications [198–200].

One should also mention different quark models [201–204] with some of them favoring the
tetraquark description of Y(4260). The tetraquark hypothesis was also analyzed in the QCD sum rules
study [205], and the coupled channels approach combined with the three-particle Faddeev equations
was used to describe Y(4260) in [206].
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The analysis of Y(4260) is within the CCQM [207] done in a similar way to the Zc case: its decay
modes are analyzed in both the molecular and tetraquark scenario. With quantitative measurements
related to Y(4260) not being very numerous, one can analyze the partial decay widths to J/ψπ+π−

and open charm final states and see whether the latter ones are suppressed. The Feynman diagrams
describing the studied transitions are drawn in Figure 7. The considered open charm final states
include DD̄, DD̄∗, D∗D̄, and D∗D̄∗. As follows from the previous section, Zc(3900) is described as a
molecular state (67).

(a)

Y

D

D̄

Y Zc

π

(b)

Figure 7. Feynman diagrams of the Y(4260) decay to open charm (a) and Zcπ (b).

The molecular-type non-local interpolating current for Y(4260) is written as:

Jμ

Ymol(x) =
∫

dx1 . . .
∫

dx4 δ

(
x −

4

∑
i=1

wixi

)
Φ Y

(
∑
i<j

(xi − xj)
2
)

Jμ

Ymol; 4q(x1, . . . , x4), (75)

Jμ

Ymol; 4q = 1√
2

{
(q̄(x3)γ5c(x1)) · (c̄(x2)γ

μγ5q(x4))− (γ5 ↔ γμγ5)
}

, (q = u, d)

with:
w1 = w2 =

mc

2(mq + mc)
, w3 = w4 =

mq

2(mq + mc)
.

The matrix element corresponding to the open charm production is given by:

M
(

Yu(p, ε
μ
p) → D0

1(p1) + D̄0
2(p2)

)
=

9√
2

gYgD1 gD2 (76)

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Y

(
−Ω 2

q

)
Φ̃D1

(
− �2

1

)
Φ̃D2

(
− �2

2

)
×

{
tr (γ5Sc(k1)Γ2Su(k3)) tr (γμγ5Su(k2)Γ1Sc(k4))− (γ5 ↔ γμγ5)

}
,

where:

Γ1 ⊗ Γ2 =

⎧⎪⎨⎪⎩
γ5 ⊗ γ5 for DD̄
ε∗ν1

γν1 ⊗ γ5 for D∗D̄
ε∗ν1

γν1 ⊗ ε∗ν2
γν2 for D∗D̄∗

(77)

and the momenta are defined as:

Ω2
q =

1
2 ∑

i≤j
qiqj, q1 = −k1 − wY

1 p, q2 = k4 − wY
2 p, q3 = k3 − wY

3 p,

�1 = k2 + wD
u p1, �2 = −k1 − wD

c p2, k3 = k1 + p2, k4 = k2 + p1.
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The decay into Zc + π involves a three-loop diagram, and the corresponding matrix element is:

M
(
Yu(p, εμ) → Z+

c (p1, εν) + π−) = 9
2

gYgZc gπ (78)

×
3

∏
j=1

[ ∫ d4kj

(2π)4i

]
Φ̃Y

(
−Ω 2

q

)
Φ̃Zc

(
−Ω2

r

)
Φ̃π

(
− �2

)
εμ(p)ε∗ν(p1)

× ∑
Γ

tr (Γ1Sc(k1)Γ2Su(k2)) tr (Γ3Su(k3)Γ4Sd(k4)Γ5Sc(k5)) ,

where:

∑
Γ
[Γ1 ⊗ Γ2] · [Γ3 ⊗ Γ4 ⊗ Γ5] = [γ5 ⊗ γ5] · [γμγ5 ⊗ γ5 ⊗ γν]

− [γμγ5 ⊗ γν] · [γ5 ⊗ γ5 ⊗ γ5]− [γμγ5 ⊗ γ5] · [γ5 ⊗ γ5 ⊗ γν]

and the momenta are defined as:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = k5 − wY
2 p, q3 = k2 − wY

3 p,

Ω2
r =

1
2 ∑

i≤j
rirj; r1 = −k5 + wZ

1 p1, r2 = k1 + wZ
2 p1, r3 = k4 − wZ

3 p1,

� = k3 + wπ
u p2, k4 = k3 + p2, k5 = k1 − k2 + k3 + p.

In the tetraquark scenario, the non-local Y(4260) current takes the form:

Jμ

Ytet(x) =
∫

dx1 . . .
∫

dx4 δ

(
x −

4

∑
i=1

wY
i xi

)
Φ Y

(
∑
i<j

(xi − xj)
2
)

Jμ

Ytet; 4q(x1, . . . , x4), (79)

Jμ

Ytet;4 q = 1√
2

εabcεdec

{
(qa(x4)Cγ5cb(x1))(q̄d(x3)γ

μγ5Cc̄e(x2))− (γ5 ↔ γμγ5)
}

. (80)

The matrix element of the decay into DD̄ is expressed as:

M
(

Ytet
u (p, ε

μ
p) → D0

1(p1) + D̄0
2(p2)

)
=

6√
2

gYgD1 gD2 (81)

×
∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Y

(
−Ω 2

q

)
Φ̃D1

(
− �2

1

)
Φ̃D2

(
− �2

2

)
×

{
tr
(

γ5Sc(k1)ΓD
2 Su(k3)γ

μγ5Sc(k2)ΓD
1 Su(k4)

)
− (γ5 ↔ γμγ5)

}
,

with the momenta:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = −k2 − wY
2 p, q3 = k3 − wY

3 p,

�1 = −k2 − wD
c p1, �2 = −k1 − wD

c p2, k3 = k1 + p2, k4 = k2 + p1.

The matrix element of the decay into Zcπ is given by:

M
(
Ytet

u (p, εμ) → Z+
c (p1, εν) + π−(p2)

)
= 3 gYgZc gπ (82)

×
3

∏
j=1

[ ∫ d4kj

(2π)4i

]
Φ̃Y

(
−Ω 2

q

)
Φ̃Zc

(
−Ω2

r

)
Φ̃π

(
− �2

)
× εμ(p)ε∗ν(p1)∑

Γ
tr
[
ΓY

1 Sc(k1)ΓZ
2 Su(k2)ΓY

2 Sc(k3)Γ̄Z
1 Sd(k4)γ5Su(k5)

]
,
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with the momenta:

Ω2
q =

1
2 ∑

i≤j
qiqj; q1 = −k1 − wY

1 p, q2 = −k3 − wY
2 p, q3 = k2 − wY

3 p,

Ω2
r =

1
2 ∑

i≤j
rirj; r1 = k3 + wZ

1 p1, r2 = k1 + wZ
2 p1, r3 = −k4 + wZ

3 p1,

� = −k4 − wπ
d p2, k4 = k1 − k2 + k3 + p1, k5 = k1 − k2 + k3 + p.

Here, the summation over Γ is defined by:

∑
Γ

= [γ5 ⊗ γμγ5 − γμγ5 ⊗ γ5]
Y ⊗ [γ5 ⊗ γν − γν ⊗ γ5]

Z .

The considered decays comprise different combinations of pseudoscalar, vector, and axial-vector
particles in the final state. The relevant expressions for the matrix elements and decay widths are
written down:

M(V(p) → P(p1) + P(p2)) = ε
μ
VqμGVPP , q = p1 − p2,

Γ(V → PP) =
|p1|3
6πm2 G2

VPP,

M(V(p) → A(p1) + P(p2)) = ε
μ
Vε∗ ν

A
(

gμν A + p1 μ pνB
)

,

Γ(V → AP) =
|p1|

24πm2

{(
3 +

|p1|2
m2

1

)
A2 +

m2

m2
1
|p1|4B2 +

m2 + m2
1 − m2

2
m2

1
|p1|2 AB,

M(V(p) → V(p1) + P(p2)) = ε
μ
Vε∗ ν1

V εμν1αβ pα pβ
1 GVVP,

Γ(V → VP) =
|p1|3
12π

G2
VVP,

M(V(p) → V(p1) + V(p2)) = ε
μ
Vε∗ ν1

V ε∗ ν2
V

{
p1 μ p1 ν2 p2 ν1 A + gμν1 p1 ν2 B + gμν2 p2 ν1 C + gν1ν2 p1 μD

}
,

Γ(V → V1V2) =
|p1|3

24πm2
1m2

2

{
m2|p1|4 A2 + [|p1|2 − 3m2

1]B
2 + [|p1|2 + 3m2

2]C
2

+ [|p1|2 + 3
m2

1m2
2

m2 ]D2 + |p1|2[m2 + m2
1 − m2

2]AB + |p1|2[−m2 + m2
1 − m2

2]AC

+ |p1|2[m2 − m2
1 − m2

2]AD + [2|p1|2 − m2 + m2
1 + m2

2]BC + [2|p1|2 + m2
1 +

m2
1

m2 (m
2
2 − m2

1)]BD

+ [−2|p1|2 − m2
2 +

m2
2

m2 (m
2
2 − m2

1)]CD
}

.

The value of ΛZc is set to 3.3 GeV, and guided by our experience, we assume that ΛY(4260) = 3.3± 0.1 GeV.
The numerical evaluation leads to the results presented in Table 4.

In both scenarios, the open charm decays are suppressed with respect to the J/ψπ decay channel.
The discrimination between them is provided by the total decay width Γ[Y(4260)] = 55 ± 19 MeV,
which is in contradiction with the molecular description. Thus, one can conclude that the CCQM
approach favors the tetraquark structure of Y(4260).
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Table 4. Decay widths of the selected Y(4260) transition in MeV.

Mode Molecular-Type Current Tetraquark Current

Y → Z+
c + π− 146 ± 13 5.77 ± 0.39

Y → D0 + D̄0 11 ± 2 (0.42 ± 0.16) · 10−3

Y → D∗ 0 + D̄0 (0.39 ± 0.14) · 10−2 0.32 ± 0.09
Y → D∗ 0 + D̄∗ 0 0 (0.19 ± 0.08) · 10−3

7. Bottomonium-Like States Zb(10610) and Z′
b(10650)

Exotic quarkonia states appear also in the bottomonium sector: Zb(10610) and Z′
b(10650) are

two examples. Even though the exotic bottomonia masses tend to be significantly higher than the
charmonia ones, the underlying dynamics is similar, and one finds the molecular, tetraquark, and other
hypotheses in theoretical approaches that describe them.

Zb(10610) and Z′
b(10650) were seen as molecules in the boson exchange model of [208],

and the molecular picture was also favored in [209], where the spin structure of these two
particles was analyzed. Further support of the molecular scenario came from the quark model
based on a phenomenological Lagrangian used by the authors of [210] and also from other analyses
preformed in [211] (QCD multipole expansion), [212] (effective field theory), [213] (pion exchange
model), [214] (QCD sum rules, only Z′

b(10650) included), [215] (heavy quark spin symmetry and
coupled channels analysis),and [216] (coupled channels approach with pion exchange model).
A different set of works supports, with various intensity, the tetraquark structure of the two bottomonia
states. In [217], the conclusion followed from an effective diquark-antidiquark Hamiltonian combined
with meson-loop induced effects. The authors of [218] based their analysis on the QCD sum rules
and interpreted Zb and Z′

b as axial-vector tetraquarks. The two works [219,220] also drew their
conclusions from the QCD sum rules and allowed the tetraquark and molecular scenario. The former
work suggested that Zb and Z′

b could have both the diquark-antidiquark and molecular components
(following from a mixed interpolating current). The latter one excluded neither the tetraquark
nor molecular the interpretation of Zb(10610), and the idea of a mixed current appeared also.
The mentioned analyses could be supplemented by numerous other works [221–241] where further
ideas and approaches were exploited.

The theoretical analysis of the Zb(10610) and Z′
b(10650) states by the CCQM was performed

in [81]. The work assumed a molecular-type interpolating current, which is favored by most theoretical
approaches when interpreting the experimental results. It is a natural choice reflecting the proximity
of the particle masses to the corresponding thresholds:

m(Z+
b ) = 10607.2 ± 2.0 MeV, m(B∗ B̄) = 10604 MeV,

m(Z′+
b ) = 10652.2 ± 1.5 MeV, m(B∗ B̄∗) = 10649 MeV.

The quantum numbers of the two states IG(JPC) = 1+(1+−) lead to the choice of (local)
interpolating currents:

Jμ

Z+
b

= 1√
2

[
(d̄γ5b)(b̄γμu) + (d̄γμb)(b̄γ5u)

]
, (83)

Jμν

Z′+
b

= εμναβ(d̄γαb)(b̄γβu), (84)

which guarantees that, when considering the transitions into B(∗) B̄(∗), the Zb state can decay only to
the [B̄∗B + c.c.] pair, while the Z′

b state can decay only to a B̄∗B∗ pair. Decays into the BB channels are
not allowed.

Further decay channels include a bottomonium particle accompanied with a charged light
meson. Taking into account the G parity, which is conserved in strong interactions and kinematic
considerations, only three possible bottomonium-meson decay channels are available: Z+

b → Υ + π+,
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Z+
b → hb + π+ and Z+

b → ηb + ρ+. All mentioned Z+
b transition can be arranged into three groups

with respect to the spin kinematics:

1+ → 1− + 0− : Z+
b → Υ + π+, Z+

b → [B̄∗ 0B+ + c.c.], Z+
b → ηb + ρ+ ,

1+ → 1+ + 0− : Z+
b → hb + π+ ,

1+ → 1− + 1− : Z+
b → B̄∗ 0B∗+ .

The classification of the bottomonia particles based on their quantum numbers is shown in Table 5.

Table 5. The bottomonium states 2S+1L J . We use the notation
↔
∂=

→
∂ −

←
∂ .

Quantum Number IG(JPC) Name Quark Current Mass (MeV)

0+(0−+) (S = 0, L = 0) 1S0 = ηb(1S) b̄ iγ5 b 9399.00 ± 2.30
0−(1−−) (S = 1, L = 0) 3S1 = Υ b̄ γμ b 9460.30 ± 0.26
0+(0++) (S = 1, L = 1) 3P0 = χb0 b̄ b 9859.44 ± 0.52
0+(1++) (S = 1, L = 1) 3P1 = χb1 b̄ γμγ5 b 9892.72 ± 0.40

0−(1+−) (S = 0, L = 1) 1P1 = hb(1P) b̄
↔
∂

μ
γ5 b 9899.30 ± 0.80

The expressions for matrix elements and decay widths depend on the spin structure and are for
the three cases as follows.

• For 1+ → 1− + 0− transitions, the matrix element can be parameterized with two
Lorentz structures:

〈1−(q1; δ), 0−(q2)| T |1+(p; μ)〉 = (A gμδ + B qμ
1 qδ

2) εμ ε∗1δ. (85)

The invariant amplitudes A and B can be combined into the helicity amplitudes:

H00 = − E1

M1
A − M

M1
|q1|2 B , H+1+1 = H−1−1 = − A,

which are practical to express the decay width. For the derivation of the latter, it is useful
to work in the rest frame of the initial particle, where |q1| = λ1/2(M2, M2

1, M2
2)/2M is the

three-momentum and E1 = (M2 + M2
1 − M2

2)/2M is the energy of the final state vector.
Furthermore, the on-mass-shell character of the initial and final state particles is taken into
account by p2 = M2, q2

1 = M2
1, q2

2 = M2
2, and pμεμ = 0. One arrives at:

Γ =
|q1|

24πM2

{
|H+1+1|2 + |H−1−1|2 + |H00|2

}
. (86)

• The matrix element for the 1+ → 1+ + 0− transitions is expressed through one covariant term only:

〈1+(q1; δ), 0−(q2)| T |1+(p; μ)〉 = C q1αq2β
εαβμδ εμ ε∗1δ . (87)

The decay with the formula can be written as:

Γ =
|q1|3

12πM2 C2 , (88)

where one can note the p-wave suppression factor |q1|3.
• As shown in [81], the matrix element for 1+ → 1− + 1− decay can be parameterized using

three amplitudes:

〈1−(q1; δ), 1−(q2; ρ)| T |1+(p; μ)〉 =
(

B1 εq1q2ρδ qμ
1 + B2 εq1μρδ + B3 εq2μρδ

)
εμεδερ . (89)
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The relation between the helicity amplitudes Hλ;λ1λ2 (λ = λ1 − λ2) and the invariant amplitudes
can be shown to be:

H 0;+1+1 = −H0;−1−1 = − E1 A1 − E2 A2 − M|q1|2 A5 ,

H+1;+1 0 = −H−1;−1 0 =
(E1M − M2

1)

M2
A1 + M2 A2 −

M2

M2
|q1|2 A4 ,

H−1; 0+1 = −H+1; 0−1 = M1 A1 +
(E1M − M2

1)

M1
A2 −

M2

M1
|q1|2 A3 . (90)

The rate of the decay 1+(p) → 1−(q1) + 1−(q2), finally, reads:

Γ =
|q1|

24πM2 · 2
{
|H 0;+1+1|2 + |H+1;+1 |2 + |H−1; 0+1 |2

}
. (91)

Coming back to the CCQM description, one can write the non-local versions of Equations (83) and (84)
as follows:

Jμ

Z+
b
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x −

4

∑
i=1

wixi

)
ΦZb ; Zb ; Zb

(
∑
i<j

(xi − xj)
2
)

Jμ
4q(x1, . . . , x4), (92)

Jμ
Zb ; 4q = 1√

2

{
(d̄(x3)γ5b(x1))(b̄(x2)γ

μu(x4)) + (d̄(x3)γ
μb(x1))(b̄(x2)γ5u(x4))

}
,

Jμν

Z′+
b
(x) =

∫
dx1 . . .

∫
dx4 δ

(
x −

4

∑
i=1

wixi

)
ΦZb

(
∑
i<j

(xi − xj)
2
)

Jμν

Z′
b ; 4q(x1, . . . , x4), (93)

Jμν

Z′
b ; 4q = εμναβ (d̄(x3)γαb(x1))(b̄(x2)γβu(x4)),

The interaction Lagrangian is constructed in the usual way for Zb; in the case of Z′
b, the stress

tensor of the field is introduced Z′
b, μν = ∂μZ′

b, ν − ∂νZ′
b, μ:

Lint,Zb = gZb Zb, μ(x) · Jμ
Zb
(x) + H.c. , (94)

Lint,Z′
b

=
gZ′

b

2MZ′
b

Z′
b, μν(x) · Jμν

Z′
b
(x) + H.c.. (95)

The factor 2MZ′
b

is put into the denominator in order to preserve the same physical dimensions of
the gZb and gZ′

b
couplings. The link between these couplings and the size parameters is done via the

compositeness condition, which is based on the evaluation of hadronic mass operators. The latter are
written in the momentum space as:

Π̃μν
Zb
(p) =

9
2

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Zb

(
− �ω 2

)
(96)

×
{

tr
[
γ5S1(k̂1)γ5S3(k̂3)

]
tr
[
γμS4(k̂4)γ

νS2(k̂2)
]

+tr
[
γμS1(k̂1)γ

νS3(k̂3)
]

tr
[
γ5S4(k̂4)γ5S2(k̂2)

] }
,

Π̃μν

Z′
b
(p) = − 9

εμpαβ ενpρσ

M2
Z′

b

3

∏
i=1

∫ d4ki

(2π)4i
Φ̃2

Z′
b

(
− �ω 2

)
(97)

× tr
[
γρS1(k̂1)γαS3(k̂3)

]
tr
[
γβS4(k̂4)γσS2(k̂2)

]
,
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where �ω 2 = 1/2 (k2
1 + k2

2 + k2
3 + k1k2 − k1k3 − k2k3) and:

k̂1 = k1 − w1 p , k̂2 = k2 − w2 p , k̂3 = k3 + w3 p,

k̂4 = k1 + k2 − k3 + w4 p , εμpαβ = pν εμναβ .

A list of matrix elements for different decay reactions as predicted by the CCQM is given in what
follows. For each element, we provide, in the last line of the corresponding expression, the form
factor parametrization of the matrix element to be compared with the appropriate expression from
Equations (85), (87), and (89). Beforehand, let us also define the argument of Φ̃Zb(�η

2). One has:

�η 2 =
3

∑
i=1

η2
i η1 = + 1

2
√

2
(2k1 + (1 + w1 − w2)q1 + (w1 − w2)q2) ,

η2 = +
1

2
√

2
(2k2 − (w3 − w4)q1 + (1 − w3 + w4)q2) ,

η3 = +
1
2
((1 − w1 − w2)q1 − (w1 + w2)q2) ,

where wi denotes four body reduced masses wi = mi/
4
∑

j=1
mj and quarks are indexed as q1 = q2 = b,

q3 = q4 = d = u.

• 1+ → 1− + 0− matrix elements parametrized as in Equation (85):

Mμδ
(
Zb(p, μ) → Υ(q1, δ) + π+(q2)

)
=

3√
2

gZb gΥgπ (98)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−�η 2

)
Φ̃Υ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr
[
γ5S1(k1)γ

δS2(k1 + q1)γ
μS4(k2)γ5S3(k2 + q2)

]
+ tr

[
γμS1(k1)γ

δS2(k1 + q1)γ5S4(k2)γ5S3(k2 + q2)
] }

= AZbΥπ gμδ + BZbΥπ qμ
1 qδ

2 ,

Mμδ
(
Z′

b(p, μ) → Υ(q1, δ) + π+(q2)
)
= 3 gZ′

b
gΥgπ

iεμpαβ

MZ′
b

(99)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′

b

(
−�η 2

)
Φ̃Υ

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ

δS2(k1 + q1)γβS4(k2)γ5S3(k2 + q2)
]

= AZ′
bΥπ gμδ + BZ′

bΥπ qμ
1 qδ

2 ,

30



Symmetry 2020, 12, 884

Mμρ (Zb(p, μ) → ηb(q1) + ρ(q2, ρ)) =
3√
2

gZb gηb gρ (100)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−�η 2

)
Φ̃ηb

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

×
{

tr [γ5S1(k1)γ5S2(k1 + q1)γ
μS4(k2)γ

ρS3(k2 + q2)]

+ tr [γμS1(k1)γ5S2(k1 + q1)γ5S4(k2)γ
ρS3(k2 + q2)]

}
= AZbηbρ gμρ − BZbηbρ qμ

2 qρ
1 ,

Mμρ
(
Z′

b(p, μ) → ηb(q1) + ρ(q2, ρ)
)
= 3 gZ′

b
gηb gρ

iεμpαβ

MZ′
b

(101)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′

b

(
−�η 2

)
Φ̃ηb

(
− (k1 + v1q1)

2
)

Φ̃ρ

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ5S2(k1 + q1)γβS4(k2)γ

ρS3(k2 + q2)
]

= AZ′
bηbρ gμρ − BZ′

bηbρ qμ
2 qρ

1 .

• 1+ → 1+ + 0− matrix elements parametrized as in Equation (87):

Mμδ
(
Z+

b (p, μ) → hb(q1, δ) + π+(q2)
)
=

3√
2

gZb ghb
gπ (102)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−�η 2

)
Φ̃hb

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

×
{

tr
[
γ5S1(k1)γ5 · (2kδ

1)S2(k1 + q1)γ
μS4(k2)γ5S3(k2 + q2)

]
+tr

[
γμS1(k1)γ5 · (2kδ

1)S2(k1 + q1)γ5S4(k2)γ5S3(k2 + q2)
] }

= εμδq1q2 AZbhbπ ,

Mμδ
(
Z′

b(p, μ) → hb(q1, δ) + π+(q2)
)
= 3 gZ′

b
ghb

gπ
iεμpαβ

MZ′
b

(103)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′

b

(
−�η 2

)
Φ̃hb

(
− (k1 + v1q1)

2
)

Φ̃π

(
− (k2 + u4q2)

2
)

× tr
[
γαS1(k1)γ5 · (2kδ

1)S2(k1 + q1)γβS4(k2)γ5S3(k2 + q2)
]

= εμδq1q2 AZ′
bhbπ .

The matrix elements describing decays to a pair of B mesons can be also listed within two groups
depending on the quantum numbers. The argument of the Zb-vertex function �δ2 is defined as:

�δ 2 =
3

∑
i=1

δ2
i ; δ1 = − 1

2
√

2
(k1 + k2 + (w1 − w2)q1 + (1 + w1 − w2)q2)) ,

δ2 = + 1
2
√

2
(k1 + k2 + (1 − w3 + w4)q1 − (w3 − w4)q2) ,

δ3 = +
1
2
(k1 − k2 + (w1 + w2)q1 − (1 − w1 − w2)q2)) . (104)
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The quark indices are similar to the previous case q1 = q2 = b, q3 = q4 = d = u, v̂2 = m2/(m2 + m4),
v̂4 = m4/(m2 + m4), û1 = m1/(m1 + m3), and û3 = m3/(m1 + m3).

• 1+ → 1− + 0− matrix elements parametrized as in Equation (85):

Mμρ
(

Z+
b (p, μ) → B̄0(q1) + B∗+(q2, ρ)

)
=

9√
2

gZb gBgB∗ (105)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−�δ 2

)
Φ̃B

(
− (k2 + v4q1)

2
)

Φ̃B∗
(
− (k1 + u1q2)

2
)

× tr [γμS1(k1)γ
ρS3(k1 + q2)] tr [γ5S4(k2)γ5S2(k2 + q1)]

= AZbB̄B∗ gμρ − BZbB̄B∗ qμ
2 qρ

1 ,

Mμα
(

Z+
b (p, μ) → B̄∗ 0(q1, δ) + B+(q2)

)
=

9√
2

gZb gB∗ gB (106)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Zb

(
−�δ 2

)
Φ̃B∗

(
− (k1 + v̂1q1)

2
)

Φ̃B

(
− (k2 + û4q2)

2
)

× tr [γ5S1(k1)γ5S3(k1 + q2)] tr
[
γμS4(k2)γ

δS2(k2 + q1)
]

= AZbB∗B gμδ + BZbB∗B qμ
1 qδ

2 .

• 1+ → 1− + 1− matrix elements parametrized as in Equation (89):

Mμδρ(Z′+
b (p, μ) → B∗0(q1, δ) + B̄∗+(q2, ρ)) = 9 gZ′

b
gB∗ gB∗

εμpαδ

MZ′
b

(107)

∫ d4k1

(2π)4i

∫ d4k2

(2π)4i
Φ̃Z′

b

(
−�δ 2

)
Φ̃B∗

(
− (k1 + v̂1q1)

2
)

Φ̃B∗
(
− (k2 + û4q2)

2
)

× tr
[
γαS1(k1)γ

δS3(k1 + q1)
]

tr
[
γβS4(k2)γ

ρS2(k2 + q2)
]

= B1qμ
1 εq1q2ρδ + B2εq1μρδ + B3εq2μρδ .

With all the above theoretical expressions, one can proceed to the numerical evaluation of the decay
widths. The first step is the adjustment of the size parameters ΛZ and Λ′

Z. They are tuned so as to
respect the observables measured by the Belle collaboration [35]:

ΓZb(BB∗π) = (25 ± 7)MeV , B(Z+
b → [B+ B̄∗ 0 + B̄0B∗+]) = 85.6+1.5+1.5

−2.0−2.1 % ,

ΓZ′
b
(B∗B∗π) = (23 ± 8)MeV , B(Z′+

b → B̄∗+B∗ 0) = 73.7+3.4+2.7
−4.4−3.5 % , (108)

leading to:
ΛZb = 3.45 ± 0.05 GeV ΛZ′

b
= 3.00 ± 0.05 GeV . (109)

With the decays into B pairs dominating all other decay channels, we approximate the total decay
width as the sum of all herein evaluated channels. The CCQM gives:

ΓZb = 30.9+2.3
−2.1 MeV , ΓZ′

b
= 34.1+2.8

−2.5 MeV , (110)

which is in fair agreement with (108). The predicted partial decay widths of Zb(10610) and Z′
b(10650)

particles are summarized in Table 6.
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Table 6. Particle decay widths for the Z+
b (10610) and Z+

b (10650).

Channel Widths, MeV
Zb(10610) Zb(10650)

Υ(1S)π+ 5.9 ± 0.4 9.5+0.7
−0.6

hb(1P)π+ (0.14 ± 0.01) · 10−1 0.74+0.05
−0.04 · 10−3

ηbρ+ 4.4 ± 0.3 7.5+0.6
−0.5

B+ B̄∗0 + B̄0B∗+ 20.7+1.6
−1.5 −

B∗+ B̄∗0 − 17.1+1.5
−1.4

The Zb and Z′
b decays are dominated [13] by ΓZb(B

+B∗0
+B∗+B0

) = (85.6+2.1
−2.9)% and

ΓZ′
b
(B∗+B∗0

) = (74+4
−6)%, respectively, meaning that the bottomonia modes should not exceed 15

and 25 percent. This is observed for the hb(1P)π+ final state; the other bottomonia channels are
suppressed, but not so much as seen in the data:

Γ (Zb → Υ(1S)π)

Γ (Zb → BB̄∗ + c.c.)
≈ 0.29 ,

Γ (Zb → ηbρ)

Γ (Zb → BB̄∗ + c.c.)
≈ 0.21 ,

Γ
(
Z′

b → Υ(1S)π
)

Γ
(
Z′

b → B∗ B̄∗) ≈ 0.56 ,
Γ
(
Z′

b → ηbρ
)

Γ
(
Z′

b → B∗ B̄∗) ≈ 0.44 .

The model also allows us to make predictions:

RΥ(1S)π =
Γ(Zb → Υ(1S)π)

Γ(Z′
b → Υ(1S)π)

= 0.62 ± 0.06 , Rηbρ =
Γ(Zb → ηbρ)

Γ(Z′
b → ηbρ)

= 0.59 ± 0.06 . (111)

One can conclude that the CCQM provides, within a molecular picture, a fair description
of Zb(10610)/Z′

b(10650) states and related decay observables and catches the tendencies seen in
experimental data. Some deviations are observed when the fraction of bottomonium in final states
is considered.

8. Summary and Conclusions

The confined covariant quark model is an approach based on a non-local interaction Lagrangian
of quarks and hadrons. It has many appealing features: a full Lorentz invariance, confinement,
large applicability range (from mesons to exotic hadrons), inclusion of the electromagnetic interaction,
and a limited number of free parameters. As a practical tool, it allows overcoming the difficulties
related to the non-applicability of the perturbative approach for bound states in QCD. In this text,
we used it to describe four quark exotic states X(3872), Zc(3900), Y(4260), Zb(10610), and Z′

b(10650).
We demonstrated that the CCQM had enough predictive power to make the distinctions between
various hypothesis, with respect to the exotic quarkonia mostly related to their structure (molecular
versus tetraquark one). At the same time, the model provides a good description of experimental
data without large deviations and predictions for future measurements. Concerning the structure of
the studied particles, the molecular picture is favored for Zc(3900), Zb(10610), and Z′

b(10650) and
the tetraquark one for X(3872) and Y(4260). These conclusions follow from the measured decay
characteristics of the considered exotic states and the related model description: with the expected
increase in the number and quality of experimental data, one may hope the quarkonia-structure puzzle
will be solved in the years to come.
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Abstract: The top quark is the heaviest elementary particle known. It has been proposed many times
that new physics beyond the current theory of elementary particles may reveal itself in top quark
interactions. The charge asymmetry in the pair production of a fermion and its antiparticle has been
known for many decades. Early measurements of such asymmetry in top quark pair production
showed a disagreement with the prediction by more than 3 standard deviations. Many years of
an effort on both experimental and theoretical side have allowed to understand the top quark pair
charge asymmetry better and to bring back the agreement between the measurements and the theory.
In this article, these efforts are reviewed together with the discussion about a potential future of
such measurements.

Keywords: top quark; pair production; charge asymmetry; forward–backward asymmetry

1. Introduction

The Standard Model (SM) of particles is a quantum field theory which describes strong and
electroweak interactions [1–3]. During the past about 40 years, it has been successfully tested in
a large number of experiments which performed numerous measurements. However, the SM has
its shortcomings. For example, it has too many free parameters, there is an absence of the explanation
for the observed amount of dark matter [4], and the prediction for the matter–antimatter asymmetry
is way too low compared to the observation [5]. There have been many theoretical attempts to overcome
SM shortcomings. On the other hand, the experimentalists have been trying to find a discrepancy
between predictions and measurements. This would serve as a hint for a more complex theory going
beyond the Standard Model (BSM) framework.

The top quark is one of the fundamental fermions, spin-half particles, in the SM. It has a large
mass (mt = 173 ± 0.4 GeV [6]), much larger than a mass of any other quark or lepton (the next
heaviest quark, b quark is about 40 times lighter). This means the top quark may play a special role
in BSM theories or the BSM physics may reveal first in the interactions involving the top quark [7,8].
Another consequence of its large mass is that it has a very short lifetime so it has no time to hadronize.
Top quark properties are thus transferred to its decay products. From an experimental point of view,
it is important that top quark properties can be studied without a complication from the hadronization,
unlike with any other quark.

The top quark has been observed in the experiments at only two accelerators: in proton–antiproton
(pp̄) collisions at the Tevatron in Fermilab, USA and in proton–proton (pp) collisions at the Large
Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland.
The top quark was observed for the first time in 1995 at the Tevatron in a data taking period called
‘Run I’ at a center-of-mass energy of interactions of

√
s = 1.8 TeV by CDF and D0 experiments [9,10].

The Run I took place during 1992–1996 and the amount of data collected per experiment corresponded
to about 100 pb−1 of the integrated luminosity. Only a few tens of top–antitop (tt̄) pair candidate events
were collected at both experiments. The second data period (Run II) at the Tevatron happened during
2001–2011 at a bit larger energy of

√
s = 1.96 TeV. Overall, about a hundred times more data (10 fb−1)
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were collected by each experiment. This amount of data allowed detailed measurements of top quark
properties although a lot of the measurements have been statistically limited. The LHC started its
operation in 2008, but after the incident a few days later, the first collisions at

√
s = 7 TeV happened

only in 2010. The center-of-mass energy of pp collisions (and the luminosity) has gradually risen from√
s = 7 TeV in 2010 (5 fb−1) to

√
s = 8 TeV in 2011–2012 (20 fb−1) and

√
s = 13 TeV in 2015–2018

(150 fb−1) with the shutdown happening in 2013–2014. The data taking period from 2010–2012 is called
“Run 1” while the second data taking period between 2015–2018 is called “Run 2”. At present, there is
another accelerator shutdown which is planned for years 2019–2021. Given the much higher energy of
interactions and much larger luminosity at the LHC compared to the Tevatron, many more top quarks
have been produced which allowed for much more detailed measurements of top quark properties.

One of the top quark properties which has been studied is a charge asymmetry in the top quark
pair production. This means there is a difference in the angular distribution for top and antitop quarks
with respect to a given direction. It is a small effect in the SM [11–32] which could be greatly enhanced
by various BSM models [33–39]. The initial measurements at the Tevatron observed larger asymmetries
than predicted by the SM at that time [40–44]. A few deviations larger than two standard deviations
(SD) were observed by both experiments, with the largest deviation of more than 3 SD observed by the
CDF experiment at a large invariant mass of the top quark pair [42].

The unexpectedly large measured charge asymmetries started a huge interest in both theoretical
and experimental communities in studying this effect in a much more detail. Theoretical physicists
calculated the asymmetry more precisely within the SM [17–22,24–26,28–32] and also tried to explain
it with many new BSM models, see Refs. [45,46] and references therein. A few years ago the
full next-to-next-leading order (NNLO) prediction in quantum chromodynamics (QCD) for the
top quark pair production [47,48] and later for the tt̄ charge asymmetry became available [30–32].
The experiments studied the underlying effect at both the Tevatron and the LHC, using different
channels, studying various observables, and measuring the asymmetry in more detail differentially.
The experiments at the Tevatron and the LHC are complementary. They can not measure the exact
same asymmetry, rather two different observables based on the same underlying cause. There are
advantages and disadvantages to perform the measurements at both colliders. The advantage at the
Tevatron is that the predicted asymmetry (≈10%) is about an order of magnitude larger compared to
the LHC (≈1%). On the other hand, the disadvantage at the Tevatron compared to the LHC is a limited
data statistics. The non-zero forward–backward asymmetry has been already observed (≥5 SD) at the
Tevatron a few years ago [49], while one of the LHC experiments, A Toroidal LHC Apparatus (ATLAS),
has been able to see the evidence (≥3 SD) for a non-zero charge asymmetry for the first time only the
last year [50].

Given that large theoretical and experimental progress in the tt̄ charge asymmetry during the
past more than 10 years, the review of these studies is in order which this article tries to address. In the
next section, the basic description of the top quark charge asymmetry and its various definitions are
provided. Section 3 gives a brief overview of theoretical predictions for the charge asymmetry expected
in the SM at various orders in the perturbative theory and also for various BSM models. In Section 4,
the review of both Tevatron and LHC measurements is presented. In Section 5 follows a discussion
of current results and the outlook for next measurements at the LHC and future colliders with the
conclusion being in Section 6.

2. Charge Asymmetry in tt̄ Production

In this section, the top quark production within the SM is described. Afterwards, the charge
asymmetry is discussed within the quantum electrodynamics (QED), the electroweak (EW) theory,
the quantum chromodynamics, and specifically in the top quark pair production. Finally, a few
different definitions of the asymmetry will be mentioned which have been used in the measurements
and theoretical predictions.
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2.1. Top Quark Production in the SM at Hadron Colliders

At hadron colliders, the dominant production of the top quark is via the top–antitop (tt̄) pair
production through strong interactions described by QCD. At the lowest, leading order (LO) of the
perturbative QCD, the top-quark pair (when talking about the top quark pair, it is always assumed
the top–antitop pair, unless stated otherwise) production is possible through the quark–antiquark
annihilation (qq̄ → tt̄) or the gluon fusion (gg → tt̄). Feynman diagrams of the LO tt̄ production are
shown in Figure 1. At higher orders, e.g., next-to-leading (NLO) or next-to-next-to-leading (NNLO),
the tt̄ production is possible also through the quark–gluon interaction (gq → tt̄ or gq̄ → tt̄).

Figure 1. The Feynman diagrams of leading order processes contributing to the top quark pair
production at hadron colliders.

The top (antitop) quark alone can not be produced in QCD due to the flavour conservation.
However, the flavour is not conserved in weak interactions. Therefore, a single top quark can be
produced, see Figure 2. Since the strong coupling constant αs is the largest of all couplings, the tt̄ pair
production has a cross-section larger than the single-top production even though there are two top
quarks produced.

 

 

(a)

 

(b)

 

(c)

Figure 2. The Feynman diagrams for the single-top quark production: (a) s-channel, (b) t-channel,
and (c) Wt-channel.

The tt̄ pair production mechanism is quite different at the Tevatron and at the LHC. In pp̄ collisions
at the Tevatron in Run II at

√
s = 1.96 TeV, the dominant tt̄ production is through the qq̄ annihilation

(85% qq̄ and 15% gg at LO in QCD [6]). At the LHC in pp interactions, it is almost opposite. The gluon
fusion production channel is dominant, being about 80–90% at LO when going from

√
s = 7 TeV

to
√

s = 14 TeV [6].
There are a few tt̄ inclusive cross-section predictions available at NNLO or higher in

QCD. The initial NNLO calculation became available in Ref. [47]. This included later the
higher-order soft-gluon corrections through the resummation at the next-to-next-leading-logarithm
(NNLL) accuracy, see [48] and references therein. Based on the above NNLO calculation and
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adding next-to-next-to-next-to-leading-order (N3LO) soft-gluon corrections by applying a different
method, the approximate N3LO (aN3LO) prediction became available [51]. Recently, there was
performed another independent calculation of the tt̄ production at NNLO QCD using the MATRIX

framework [52–54].
The cross-section predictions of the tt̄ pair production are shown in Table 1 for both the Tevatron

and the LHC, for different center-of-mass energies, and for different calculations. The values are very
similar and consistent between different calculations although different parton distribution function
(PDF) sets were used for different predictions. The comparison of measured tt̄ inclusive cross-sections
at the Tevatron and at the LHC with the NNLO + NNLL theoretical predictions is shown in Figure 3.
The agreement between predictions and measurements is excellent.

Table 1. The predicted next-to-next-to-leading order (NNLO) tt̄ production cross-sections in pb
for various energies at the Tevatron and at the Large Hadron Collider (LHC) and for different
available calculations. The uncertainties include the factorization and renormalization scale and parton
distribution function (PDF)+αs uncertainties. The assumed top quark mass is always mt = 173.3 GeV
except for NNLO + next-to-next-leading-logarithm (NNLL) prediction at the LHC where it is
mt = 173.2 GeV.

Collider
√

s [TeV] NNLO + NNLL [48] aN3LO [51] NNLO [54]

Tevatron 1.96 7.16+0.20
−0.23 7.37 ± 0.39

LHC 7 174+10
−11 174+11

−12
LHC 8 248+13

−14 248+14
−15

LHC 13 816+39
−45 810+38

−36 794+28
−45

≤

μ
μ

μ
μ

μ
μ

μ
μτ

α

Figure 3. Measured inclusive cross-sections at the Tevatron and at the LHC compared to NNLO + NNLL
predictions [55].

The top quark decays almost always into t → W + b. The tt̄ decay channels are thus characterized
by decays of W boson which could be leptonic W → �ν or hadronic W → qq̄′. The tt̄ decay
chain is shown in Figure 4. There are three decay channels according to the number of charged
leptons (the inclusion of the charge-conjugate mode is implied): the dilepton (tt̄ → �+νb�−ν̄b̄) (11%),
lepton+jets (�+jets, tt̄ → �+νbqq̄′ b̄) (44%), and all-hadronic channel (tt̄ → qq̄′bqq̄′ b̄) (44%). The quark
is color particle which hadronize to create a spray of colorless final state particles (mostly hadrons)
flying in about the same direction, a jet.
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Figure 4. The top–antitop quark pair decay chain.

2.2. Charge Asymmetry in QED and EW Theory

The angular asymmetry in the differential cross-section of the pair production is the difference
in production rates for a fermion and an antifermion flying along a given direction. In QED, it was
noticed and calculated a long time ago for e.g., the e+e− → μ+μ− production [56]. At LO in QED,
the μ+μ− pair production is symmetric under the transformation μ+ ↔ μ−, i.e., under the charge
conjugation (C), with respect to the incoming e+ and e− beams. The asymmetry is present at NLO
due to the interference of processes that differ under C-conjugation, i.e., between the lowest order
and two-photon box graphs and between C-odd and C-even breamshtrahlung diagrams, see Figure 5.
The overall effect is that the positive muons μ+ fly a little bit more often in the same direction as
incoming positive electrons e+ while negative μ− fly preferentially in the direction of negative e−.
It should be stressed that no parity-violating interactions are involved. The QED asymmetry prediction
has been confirmed in the experiment [57], see Figure 6.

(a) (b)

(c) (d)

Figure 5. Diagrams of processes contributing to the quantum electrodynamic (QED) charge asymmetry
for the e+e− → μ+μ− production: the box diagram in (a) interfering with the leading order (LO)
diagram in (b), and breamshtrahlung diagrams with C-odd in (c) and C-even state in (d) [56].
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Figure 6. The measured angular distribution for the e+e− → μ+μ− production together with the
QED prediction [57]. The angle θ is the angle between the incoming e+ direction and the outgoing
μ+ direction.

In the electroweak theory, the angular asymmetry is already predicted at LO due to the Z-boson
axial-vector coupling to fermions [58]. It was precisely measured at LEP experiments for e+e− → qq̄,
q = c, b reactions [59].

2.3. Charge Asymmetry in QCD

Similarly to QED, there is no charge asymmetry at LO in the QCD production of qq̄ → QQ̄
while it is expected at NLO [60]. The asymmetry is thus of the order of αs relative to the dominant
production process. The corresponding QCD diagrams similar to QED diagrams contribute and again
the asymmetry is induced through the interference between the amplitudes which are relatively odd
under the t ↔ t̄, i.e., the interference of box and LO Born diagrams and the interference of final-state
and initial-state radiation diagrams, see Figure 7. The interference of virtual (box) diagrams and LO
(Born) diagrams (Figure 7) contributes to a positive asymmetry while the interference of the diagrams
with real-corrections has a negative asymmetry with the former to be dominant. The overall net effect
is thus a positive asymmetry.

(c) (d)

(b)(a)

q

q

Q

Q

Figure 7. The diagrams contributing to the QCD charge asymmetry in the production of heavy quarks
at hadron colliders: interference of final-state (a) with initial-state (b) gluon breamshtrahlung plus
interference of the box (c) with the Born diagram (d) [13].

50



Symmetry 2020, 12, 1278

The asymmetry is present in the production for all quark pairs, not only top quark pairs. For light
quarks (u, d) when the initial and outgoing quark is the same, the t-channel qq̄ → qq̄ must be considered
too [60]. The charge asymmetry in the pp → bb̄ production was measured at the LHC by the LHCb
experiment [61], while the forward–backward asymmetry in the pp̄ → bb̄ production was measured
at the Tevatron by the CDF experiment [62,63] and by the D0 experiment in the production of B±

mesons [64]. At the Tevatron, the bb̄ production is dominated by the gg fusion unlike the top quark
pair production due to the much lower b-quark mass. Therefore, the asymmetry is expected to be much
smaller for bb̄ compared to tt̄. The AFB measurement was performed at the CDF experiment at both
low and high mbb̄, see Figure 8. Both CDF measurements and also LHCb measurement are consistent
with the SM predictions, although typically with quite large uncertainties. The D0 measurement shows
the discrepancy of about 3 SD between the measurement and the NLO QCD estimate from MC@NLO

with a large theoretical uncertainty for the prediction which suggests that more precise prediction is
needed to interpret this result.
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Figure 8. The bb̄ forward–backward asymmetry measured by the CDF experiment at low (left) and
high (right) invariant mass of bb̄ pair [62,63].

2.4. Top Quark Pair Charge Asymmetry

From the above description in Section 2.3, it follows that the qq̄ → tt̄ production is charge
symmetric at LO and becomes asymmetric at NLO, i.e., the production of the top and antitop quark
along a given direction is different. For the gg → tt̄ production, the initial state is symmetric and thus
no asymmetry is predicted. For the qg(q̄g) → tt̄ production, the asymmetry is also expected due to
interference terms.

Moreover, there is an asymmetry already at LO in the EW production of the top quark pair qq̄ →
γ∗/Z → tt̄. In addition, QCD–EW interference terms contribute to the asymmetry. However, since the
EW production of the tt̄ pair is small compared to the QCD production, its contribution to the charge
asymmetry is subdominant although important as it will be seen later.

The fraction of gg → tt̄ is increasing with increasing of the energy
√

s. Therefore, the overall
asymmetry in pp or pp̄ collisions is decreasing as energy of collisions is increasing.

The tt̄ charge asymmetry is quite different at the Tevatron and at the LHC. As mentioned above,
qq̄ is the dominant production process at the Tevatron, and it is pp̄ collider, so the axis of initial quark
largely coincides with the axis of initial proton. The asymmetry in qq̄ → tt̄ is thus largely preserved in
pp̄ → tt̄ collisions. At the LHC, the dominant production process is gg → tt̄ which has no asymmetry.
Therefore, the charge asymmetry is largely suppressed. Moreover, since pp is a charge symmetric
initial state, there is no overall charge asymmetry in pp → tt̄. However, the interacting initial quark
is a valence quark, so it has in average a larger longitudinal momentum compared to an antiquark
from the sea of quarks in the proton. Since top quarks fly a bit more often in the quarks direction,
as a consequence, the top quarks will fly more in forward/backward direction compared to more
central antitops.
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2.5. Asymmetry Definitions

In general, it is important to state how the asymmetry is defined, in which frame and which
observable is used for the definition.

As was already mentioned, the charge asymmetry present in a process qq̄ → tt̄ means that in the
center-of-mass frame, the number of top quarks flying in a certain direction is different compared to
the number of antitop quarks. Therefore, the asymmetry can be defined as

Att̄
C(cos θ) =

Nt(cos θ)− Nt̄(cos θ)

Nt(cos θ) + Nt̄(cos θ)
, (1)

where Nt(cos θ) and Nt̄(cos θ) are the number of top quarks and antitop quarks flying along cos θ

direction, where θ is computed with respect to the direction of the initial quark (and not the antiquark)
in both cases. Since the asymmetry is defined as the ratio of two numbers, it is often quoted as
a percentage. Such convention is adopted also in this article.

Assuming CP-invariance in strong interactions, Nt̄(cos θ) = Nt(− cos θ), and the charge
asymmetry definition in Equation (1) can be rewritten using only the top quark without a need
for the antitop quark:

Att̄
C(cos θ) =

Nt(cos θ)− Nt(− cos θ)

Nt(cos θ) + Nt(− cos θ)
. (2)

This can be then used to define the inclusive charge asymmetry by summing events from opposite
hemispheres and it becomes forward–backward asymmetry:

Att̄
FB =

N(cos θ > 0)− N(cos θ < 0)
N(cos θ > 0) + N(cos θ < 0)

, (3)

where N(cos θ > 0) is the number of events with the top quark fulfilling condition cos θ > 0.
The experiments at the Tevatron and at the LHC use a right-handed coordinate system with

its origin at the nominal interaction point in the center of the detector and the z-axis along the beam
pipe. At the Tevatron experiments, the z-axis points along the proton direction, while the y-axis points
vertically upward and the x-axis points radially outwards. At LHC experiments, the x-axis points
radially inward toward the center of the LHC, while the y-axis points vertically upward. Cylindrical
coordinates (r; φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe.
The polar angle is calculated with respect to z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln(tan θ/2), while the rapidity y is defined as y = 1/2 ln[(E + pz)/(E − pz)].

Instead of cos θ, other observables can be also used to define the asymmetry, for example the
rapidity (yt) or the pseudorapidity (ηt) of the top quark, or Δytt̄ = yt − yt̄. Clearly, the inclusive
forward–backward asymmetry stays the same in qq̄ center-of-mass frame independently of which
variable is used.

Experimentally, the top and antitop quark are reconstructed using their decay products registered
within a detector. There are numerous methods which have been developed for such task in the
past [65–74]. For charge asymmetry measurements, it is needed to determine which of them is the
top quark and the antitop quark. In the dilepton channel, it is relatively simple. The quark which
decay has assigned the positive lepton is labeled as the top quark while the quark which has assigned
negative lepton is labeled as the antitop quark. In the �+jets channel, there is just one final state lepton.
After the tt̄ reconstruction, the hadronic (th) and leptonic (t�) top quark is labeled depending on which
one has the hadronic and leptonic decay assigned, respectively. If the final state lepton has a positive
electromagnetic charge, the leptonic top quark is labeled as the top quark and the hadronic top quark
as the antitop quark. If the final state lepton has a negative charge, the leptonic top quark is labeled as
the antitop quark.

Asymmetries can be measured also for decay products of top quarks. They will carry the
information about a direction of flight of the top quarks due to the boost given by top quarks, but the
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direction will not be 100% correlated. Therefore, the asymmetry in decay products will be a little bit
diluted. The potential decay products are W bosons, b quarks, light quarks, or charged leptons and
neutrinos from W boson decay. The good candidates must have a well reconstructed direction of
flight and an electromagnetic charge must be well measured for them. The light quarks are almost
hopeless since they are reconstructed as jets which direction is not precisely measured and more
importantly the charge determination is very hard. Better candidates would be b-jets since there
are methods to measure the b-jet charge [75–77] but these are not very precise. The W boson is also
not particularly good object because it can be reconstructed from either jets (hard to get a charge)
or from the charged lepton and the neutrino (hard to precisely measure a direction). Therefore, the best
candidates for measuring the asymmetry are charged leptons, since the reconstruction of both their
charge and direction is excellent. This is also reason why the all-hadronic channel is not used for
charge-asymmetry measurements.

Similarly as for the top quark, more variables can be used to define the leptonic asymmetry.
Typically, only electrons and muons are used in measurements since the τ lepton reconstruction is
more complicated. For these leptons, the pseudorapidity is used rather then the rapidity since it is
easier to be measured. For practical purposes, the values are the same, given their large energies
compared to their mass. Therefore, the η of leptons or Δη = η�+ − η�− are used in the definition of
the asymmetry.

2.5.1. Asymmetry Definitions for Tevatron

At the Tevatron pp̄ collider, where qq̄ → tt̄ is the dominant production process, the valence
quark from the proton interacts with the valence antiquark from the antiproton most of the time.
Therefore, the charge and forward–backward asymmetry in qq̄ → tt̄ is mostly preserved in the pp̄ → tt̄
production although it is a little bit smaller due to a symmetric contribution of the gg fusion.

The Tevatron measurements are performed in the laboratory frame (pp̄ center-of-mass frame) or in
the tt̄ rest frame. There are advantages and disadvantages for both frames. The advantage of the tt̄ rest
frame is that the asymmetry is larger than the asymmetry in the laboratory frame. At the Tevatron
in Run II, the laboratory frame asymmetry is diluted by 30% [42]. That is because in a given qq̄ → tt̄
interaction, the interacting quark and antiquark has in general a different longitudinal momentum
in the laboratory frame which will give a boost to the tt̄ system. It can then happen that even that
the top quark flies in the forward direction in the tt̄ rest frame, it will fly in the backward direction
in the laboratory frame. For that reason, there is an advantage to use the Δytt̄ variable. It is a Lorentz
invariant, so it is independent of the tt̄ longitudinal motion and it is simply related to the top quark
rapidity in the tt̄ rest frame: ytt̄

t = 1/2Δy. The advantage of the laboratory frame is that it can be
defined to rely only on the measured hadronically decaying top quark rapidity yth which has a much
better resolution compared to the leptonically decaying top quark which includes only indirectly and
partially (no z component) measured neutrino. Consequently, the statistical precision of AFB is better
in the pp̄ frame.

The forward–backward asymmetry in the laboratory frame is usually defined using the rapidity
of the top quark in the laboratory (pp̄) frame, yt:

App̄
FB =

N(yt > 0)− N(yt < 0)
N(yt > 0) + N(yt < 0)

=
N(−q�y(th) > 0)− N(−q�y(th) < 0)
N(−q�y(th) > 0) + N(−q�y(th) < 0)

, (4)

where the rapidity of the hadronic top y(th) is used. This has the advantage that it has a
better resolution than Δy, but the disadvantage is that it measures the diluted laboratory frame
asymmetry. Similarly, another variable can be used in the forward–backward asymmetry definition:
cos θ = q� · cos αp is used, where θ is the polar angle between the top quark and the proton beam while
αp is the polar angle between the hadronic top quark and the proton beam.
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The tt̄ rest frame asymmetry is defined using Δy = yt − yt̄

Att̄
FB =

N(Δy > 0)− N(Δy < 0)
N(Δy > 0) + N(Δy < 0)

=
N(q� · (yt� − yth) > 0)− N(q� · (yt� − yth) < 0)
N(q� · (yt� − yth) > 0) + N(q� · (yt� − yth) < 0)

, (5)

where q� is the electric charge of the lepton, and yt� , yth is the rapidity of the hadronically,
leptonically decaying top, or antitop quark. The disadvantage is that Δy has a worse resolution
compared to th since it combines the uncertainties of both quark reconstructions, including neutrino-related
complications of the t� quark system.

For the leptonic defined asymmetry in the laboratory frame, the asymmetry is usually defined as:

A�
FB =

N(q�η� > 0)− N(q�η� < 0)
N(q�η� > 0) + N(q�η� < 0)

. (6)

Similarly to the top quark asymmetry in the tt̄ rest frame defined using Δy, the asymmetry in the
dilepton channel can be defined this way:

A��
FB =

N(Δη�� > 0)− N(Δη�� < 0)
N(Δη�� > 0) + N(Δη�� < 0)

=
N(η�+ − η�− > 0)− N(η�+ − η�− < 0)
N(η�+ − η�− > 0) + N(η�+ − η�− < 0)

. (7)

The A�
FB is related to App

FB but the effect is smaller thanks to the dilution due to leptons not
following the top quark direction precisely, which in turn is smaller than Att̄

FB. The A��
FB is related to

Att̄
FB but a bit smaller due to the same reason. Therefore, there is an advantage in using A��

FB since its
value is not diluted by laboratory frame. However, the disadvantage is that A��

FB can be measured only
in the dilepton channel, which has the smallest statistics.

2.5.2. Asymmetry Definitions for LHC

As it was already pointed out above, top quarks are more often produced in the forward/
backward direction while antitops are produced more often in the central region. This can be explored
to define the edge-central charge asymmetry, which will be called just simply the charge asymmetry in
the following. Most often, the variable Δ|y| = |yt| − |yt̄| is used to define the charge asymmetry:

AC =
N(Δ|y| > 0)− N(Δ|y| < 0)
N(Δ|y| > 0) + N(Δ|y| < 0)

. (8)

For leptons, Δ|η| = |η�+| − |η�−| is used instead to define the dileptonic asymmetry:

A��
C =

N(Δ|η| > 0)− N(Δ|η| < 0)
N(Δ|η| > 0) + N(Δ|η| < 0)

. (9)

3. Theory Overview

The overview of theoretical predictions of the charge asymmetry in the top quark pair production
at hadron colliders is presented. In the first part, the evolution of SM predictions is described while
in the second part are mentioned various BSM models which could affect the tt̄ charge asymmetry.

3.1. SM Predictions

First, it should be noted that two charge asymmetry definitions are used in theoretical calculations.
In the first calculation (unexpanded), the most precise calculation available for the numerator and
the denominator in the asymmetry definition is used. In such case, the denominator is effectively
calculated at the higher order than the numerator since the asymmetry is non-zero starting only at
NLO. For example, using the NLO calculation, the total cross-section (denominator) is at NLO while
the numerator is effectively at LO. Therefore, it has been argued that it is better to define the charge
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asymmetry in a way that both the numerator and the denominator are at the same order, e.g., using the
expansion in αs (expanded definition). For example, use the LO cross-section in the denominator for
the asymmetry calculation at NLO. In such way, uncalculated higher-order corrections should be at
about the same level in both the numerator and the denominator. Using these two definitions provide
quite different predictions for the asymmetry at NLO which is due to the large change between the
LO and NLO cross-section. However, at NNLO, these definitions already provide very similar values,
therefore it does not matter much which definition is used.

The initial attempt at predicting the forward–backward asymmetry in the pair production of top
quarks was made more than 30 years ago even before the top quark was discovered [11]. The top
quark mass used in the calculation was 45 GeV. In this calculation, only contributions from the initial
and final state gluon radiation interference were considered, i.e., only the asymmetry in the tt̄+jet
process at LO was calculated. This was not the full NLO QCD correction to the inclusive tt̄ asymmetry.
This calculation required the introduction of cuts on the energy and the rapidity of gluons to avoid
singularities. The predicted asymmetry was negative: up to about −2% for a given kinematic criteria
on heavy quarks and gluons.

After the discovery of the top quark, but well before first measurements became available,
the charge asymmetry was studied in a more detail using the full NLO QCD prediction [12,13].
This means including the interference terms of Born and virtual box corrections. It turned out that
these contributions to the asymmetry were larger than the initial and final state radiation interference
and they were in the opposite direction. The overall prediction for the forward–backward asymmetry
thus changed the sign compared to the first partial NLO prediction and was positive. At the Tevatron
and

√
s = 1.8 TeV, the asymmetry was predicted to be up to 15% in qq̄ → tt̄ process in certain

kinematic regions while the integrated forward–backward asymmetry was about 7–8% in the tt̄ rest
frame, see Figure 9, and about 4–5% in the pp̄ laboratory frame.
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Figure 9. The differential charge asymmetry (left) in the tt̄ pair production qq̄ → tt̄ for the fixed
partonic center-of-mass energy

√
ŝ = 400 GeV. The integrated charge asymmetry (right) for qq̄ → tt̄ as

a function of
√

ŝ [12].

As it was mentioned already, the asymmetry appears first at NLO in the inclusive tt̄ production.
This means that using the NLO QCD prediction, the asymmetry is known only at leading
order accuracy since numerator has only the leading order contribution. In the tt̄+jet production,
the asymmetry is already present at LO QCD. Therefore, the NLO calculation of such process provides
a true NLO prediction of the asymmetry. It was shown that NLO QCD contributions to the tt̄+jet
production provide very large corrections to the tt̄+jet asymmetry which is then drastically reduced
from about –8% at LO to about –2% at NLO for jet pT > 20 GeV for the Tevatron Run II [14,15].
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It was not clear at that time whether a similar shift would not happen for the inclusive tt̄ prediction.
Therefore, the NNLO prediction for the inclusive tt̄ process was highly desirable.

It was believed for quite some time that EW corrections are small similarly as EW corrections
to the inclusive cross-section are small due to αs � α. It turned out this was not the case. It was
found that EW corrections of the order O(α2) and O(αα2

s ) have a surprisingly large effect. In general,
about 20% of the enhancement with respect to the NLO QCD prediction is observed when including
EW corrections [20,21,24,25]. Similarly, leptonic and dileptonic asymmetries were computed for the
Tevatron and for the LHC too [23,24].

Furthermore, the higher-order corrections from the soft gluon QCD resummation have been
studied at various accuracies. Initially, the soft gluon corrections at next-to-leading-logarithm
(NLL) level were computed [16]. It was found that the asymmetry is stable with respect to these
corrections: the inclusive asymmetry changed from 6.7% to 6.6% at the Tevatron Run II. Later on,
the next-to-next-to-leading logarithm (NNLL) corrections were computed in [18,19]. Here, the change
in the inclusive asymmetry is from (7.4+0.7

−0.6)% at NLO to (7.3+1.1
−0.7)% in Ref. [19], so again negligible

change, while a modest change from 4.0% to 5.2% was found in Ref. [18].
Moreover, further understanding of soft-gluon emissions came from parton shower studies. It was

shown that a coherent QCD radiation in the tt̄ production leads to a forward–backward asymmetry
that grows more negative with the increasing transverse momentum of the pair [78].

Finally, full NNLO QCD corrections were calculated [30]. These provided large, 27%, increase
relative to the NLO QCD prediction for the inclusive asymmetry. The evolution of various calculations
is shown in Figure 10. The EW contributions considered here are O(α2

s α) and O(α2). The detailed
studies of NNLO QCD predictions for various kinematic distributions have been presented in Ref. [31].
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Figure 10. Various levels predictions of the inclusive forward–backward asymmetry at the Tevatron
compared to the CDF and D0 measurements. Capital letters (NLO, NNLO) correspond to the
unexpanded definition, while small letters (nlo, nnlo) to the expanded definition [30].

Later on, the ’complete NLO’ corrections were added to the NNLO QCD prediction [32].
The complete NLO contributions include NLO QCD corrections at O(α3

s ), the NLO EW at O(α2
s α)

as well as contributions at O(αsα2) and O(α3) together with LO corrections at O(αsα) and O(α2).
The comparison of various predictions of the charge asymmetry AC with the experiments for the LHC
at

√
s = 8 TeV is shown in Figure 11.
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Similarly as for the inclusive cross-section, the calculation of N3LO soft-gluon contributions
together with the inclusion of above NNLO QCD calculation allowed to obtain the aN3LO prediction
of AFB [29]. The increase in the AFB at the Tevatron due to N3LO soft-gluon contributions is about 5%
compared to the pure NNLO QCD calculation.

As it was already mentioned above, the independent NNLO QCD prediction for the tt̄ process has
become available recently with the MATRIX program which provides fully differential tt̄ predictions.
The Δy distribution was obtained and the forward–backward asymmetry for the Tevatron calculated
for the following set of parameters: mt = 172.5 GeV, μR = μF = mt, NNPDF3.1 NNLO with
αs(MZ) = 0.118 parton distribution function [79]. The result is: Att̄

C = (7.4+0.3
−0.8)%. It should be

noted that the uncertainty estimated here is only approximate since the MATRIX program provides
only minimal and maximal deviations in the cross-section for scale variations for a given bin and
the maximal potential difference to estimate the scale uncertainty was used. Nevertheless, the result
is in excellent agreement with the above mentioned pure NNLO QCD prediction (7.49+0.49

−0.86)% from
Ref. [30]. Similarly, the charge asymmetry at the LHC

√
s = 7 TeV was calculated AC = (0.95 ± 0.08)%.

The usual theoretical predictions set a renormalization and factorization scale to some value
typical for the process, e.g., for the tt̄ process it is typically a top quark mass. The uncertainty is
then evaluated by changing the renormalization and factorization scale by a factor of two which is
essentially just a consensus within the theoretical community, but has no deep foundation within
the theory. The alternative calculation of the charge asymmetry is based on the Principle of
Maximum Conformality (PMC) scale-setting approach where the renormalization scale is automatically
determined and the corresponding uncertainty is essentially eliminated [80,81]. The PMC predictions
were computed at NLO QCD with partial NNLO terms and also including NLO EW corrections
(aNNLO + NLO EW). They were computed for the Tevatron and for the LHC [26–28]. The large
difference between the PMC prediction and the conventional scale-setting NNLO prediction is seen
for the Tevatron AFB(mtt̄ > 450 GeV) where the PMC predicts AFB(mtt̄ > 450 GeV) = 29.9% which is
much larger compared to the NNLO prediction AFB(mtt̄ > 450 GeV) ≈ 11% [31]. It should be noted
that the PMC method has a residual scale dependence due to the unknown perturbative terms which
could be relatively large in the tt̄ pair production [82] while the updates of the PMC method try to
overcome this limitation [83,84].
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When the direct theoretical prediction is not available, e.g., in a specific fiducial phase space,
the charge asymmetry predictions are calculated using Monte Carlo (MC) programs or generators
of particle collisions. Such programs have typically only NLO QCD corrections implemented,
e.g., MC@NLO [85], POWHEG [86], or MCFM [87].

Summary of SM Predictions

The SM inclusive predictions at various orders, in various frames, and using different definitions
are shown in Tables 2 and 3. At the Tevatron, the predictions have increased significantly by almost
factor of two when going from NLO in the laboratory frame to NNLO QCD + NLO EW in the tt̄ frame.
At the LHC, the charge asymmetry decreases with the increase of the energy of interactions due to the
increase of the symmetric gg production process fraction.

Table 2. The summary of Standard Model (SM) predictions for tt̄ and leptonic forward–backward
asymmetries at the Tevatron at various levels of the perturbation theory. Some predictions are in the
laboratory frame (lab) while some are in the tt̄ rest frame (tt̄). Some of the predictions are using the
unexpanded definition while the others use the expanded (ex) definition.

Prediction Att̄
FB [%] A�

FB [%] A��
FB [%]

NLO QCD [12,13] 4–5 (lab)

NLO QCD [30] 5.89+2.70
−1.40 (tt̄)

NLO QCD [30] 7.34+0.68
−0.58 (tt̄, ex)

NLO QCD [23] 4.9+0.5
−0.4 (lab, ex)

NLO QCD [23] 7.6+0.8
−0.5 (tt̄, ex)

NLOW [23] 5.1+0.5
−0.3 (lab, ex)

NLOW [23] 8.0+0.7
−0.5 (tt̄, ex)

NLO QCD + EW [20,21,24,25] 5–6 (lab)

NLO QCD [24] 3.1 ± 0.3 (lab, ex) 4.0 ± 0.4 (ex)

NLO QCD + EW [24] 5.77+0.40
−0.31 (lab, ex) 3.8 ± 0.3 (lab, ex) 4.8 ± 0.4 (ex)

NLO QCD + EW [24] 8.75+0.58
−0.48 (tt̄, ex)

NLO QCD + NNLL [30] 7.24+1.04
−0.67 (tt̄, ex)

NNLO [30] 7.49+0.49
−0.86 (tt̄)

NNLO(MATRIX) 7.4+0.3
−0.8 (tt̄)

NNLO [30] 8.28+0.27
−0.26 (tt̄, ex)

aN3LO QCD [29] 8.7 ± 0.2 (tt̄, ex)

NNLO QCD + EW [30] 9.5 ± 0.7 (tt̄, ex)

aN3LO QCD + EW [29] 10.0 ± 0.6 (tt̄, ex)

PMC [28] 12.5 (tt̄, ex)
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Table 3. The summary of SM predictions for charge asymmetry at various levels of perturbation
theory at the LHC for different center-of-mass energies. All of these predictions are in the laboratory
frame. Some of the predictions are using the unexpanded definition while the others use the expanded
(ex) definition.

Prediction
√

s [TeV] Att̄
C [%] A��

C [%]

NLO [24] 7 1.07 ± 0.04 (ex) 0.61 ± 0.03

NLO+EW [24] 7 1.23 ± 0.05 (ex) 0.70 ± 0.03

NLO+EW [21] 7 1.15 ± 0.06 (ex)

NLO+EW (Δ|η|) [21] 7 1.36 ± 0.08 (ex)

NNLO (MATRIX) 7 0.95 ± 0.08

PMC [27] 7 1.15+0.01
−0.03 (ex)

NLO [24] 8 0.96 ± 0.04 (ex) 0.55 ± 0.03

NLO+EW [24] 8 1.11 ± 0.04 (ex) 0.64 ± 0.03

NLO [32] 8 0.73+0.23
−0.13

NLO [32] 8 0.96+0.11
−0.09 (ex)

NLO+EW [32] 8 0.86+0.25
−0.14

NLO+EW [32] 8 1.13+0.10
−0.08 (ex)

NNLO [32] 8 0.83+0.03
−0.06

NNLO [32] 8 0.85+0.02
−0.04 (ex)

NNLO+EW [32] 8 0.95+0.05
−0.07

NNLO+EW [32] 8 0.97+0.02
−0.03 (ex)

PMC [27] 8 1.03+0.01
−0.00 (ex)

NLO+EW [25] 13 0.75+0.04
−0.05 (ex) 0.55 ± 0.03 (ex)

NNLO+EW [88] 13 0.64+0.06
−0.05

NLO [24] 14 0.58 ± 0.03 (ex) 0.36 ± 0.02 (ex)

NLO+EW [24,25] 14 0.66+0.05
−0.04 (ex) 0.43 ± 0.02 (ex)

PMC [27] 14 0.62+0.00
−0.02(ex)

It was realized already very early in the initial predictions [11–13,60] that the charge asymmetry
depends on the initial/final state gluon radiation due to the interference of these diagrams contributing
to the asymmetry. It is therefore expected the asymmetry depends on pT of the final-state jet which is
related to pT,tt̄ (the size of pT of the jet will be the same as pT of tt̄, the direction will be opposite in
the transverse plane). The contribution from such interference to the asymmetry is negative, so the
larger pT the more negative asymmetry is expected. The variable |ytt̄| is sensitive to the ratio of the
contributions from the qq̄ and gg initial states. The charge-symmetric gg initial state produces more
central tt̄ events while qq̄ contributes more in the forward direction. Therefore, it is expected the
asymmetry will rise with the increasing value of Δy. The charge asymmetry is expected to also rise for
the mtt̄ variable since the qq̄ initial state is enhanced for larger values of this variable. Finally, the charge
asymmetry is expected to rise steeply for high boost of the tt̄ system along the longitudinal axis [33].
It is due to the much higher average momentum fractions for quarks than for antiquarks in pp collisions.
Requiring the high boost of tt̄ system thus increases the qq̄ fraction and consequently also the charge
asymmetry. As a consequence, the predictions of differential asymmetries as a function of the above
mentioned variables were calculated (and also measured), see Figure 12.
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Figure 12. The NNLO predictions for the differential charge asymmetry as a function of mtt̄ in (a), ytt̄
in (b), pT,tt̄ in (c), and βz,tt̄ in (d) at the LHC at

√
s = 8 TeV [32].

3.2. BSM Models

After CDF claimed an evidence for 3 SD deviation from the SM prediction at that time in one of
their AFB measurements (for large mtt̄ > 450 GeV), there have been lots of new physics BSM models
proposed to explain such measurement, see Refs. [33–39,45,46].

The BSM models also give us a strong reason to measure all different combinations of asymmetries,
e.g., AC, AFB, A�

FB. While in the SM, the AFB and AC have the same underlying cause and there is
a specific relation between AFB and AC, this relation can be largely changed in BSM models. It was
shown that using for example the axigluon model, it is possible to obtain a negative AC at the LHC
for positive AFB asymmetry at the Tevatron [36,37]. The correlation between AFB and A�

FB is given in
the SM. It is due to the fact that there is about zero top quark polarization in tt̄ events, i.e., there is
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an equal number of positive and negative helicity top quarks produced. Models with different top
quark polarization could change the AFB and A�

FB relations in both directions. This was studied in
Refs. [46,89] for axigluon and W ′ models, where it was shown that for the same AFB there was different
A�

FB predicted.
There are a few models which can change the charge asymmetry [34,35]:

• axigluons (a color octet vector Gμ): massive gluons with axial currents (’axigluons’). Similarly to
EW theory with the axial current which has a massless photon and a massive Z boson and there is
an asymmetry due to the γ − Z interference already at LO, the interference between gluon and
axigluon in the s-channel mediating qq̄ → tt̄ process produces a charge asymmetry;

• Z′ (a neutral vector boson Bμ): a flavour violating Z’ exchanged in the t-channel in uū → tt̄;
• W ′ (a charged boson B1

μ): a boson with right-handed couplings exchanged in the t-channel in
dd̄ → tt̄;

• ω4 (color-triplet scalar): a color triplet with right-handed flavour-violating tu couplings exchanged
in the u-channel in uū → tt̄;

• Ω4 (color-sextet scalar): similarly as above, a color sextet with right-handed flavour-violating
t − u couplings exchanged in the u-channel. There may be diagonal uu, tt couplings, in contrast
with the ω4 triplet above;

• φ (scalar isodoublet): a color-singlet Higgs-like isodoublet, which contains neutral and charged
scalars, coupling the top quark to the first generation and exchanged in the t-channel.

The diagrams showing potential contributions from BSM models are shown in Figure 13.
The potential values of the charge asymmetry at the LHC and the forward–backward asymmetry at the
Tevatron for the above models with various parameters are shown in Figure 14.
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Figure 13. The interference of various beyond the Standard Model (BSM) particles which contribute to
the charge asymmetry with the gluons [90].
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4. Experimental Measurements

The measurements performed at the Tevatron and at the LHC are reviewed in this section. At the
Tevatron, being the pp̄ collider, it was possible to measure forward–backward asymmetry. At the LHC,
being pp collider, the edge–central charge asymmetry AC has been measured.

All AFB measurements at the Tevatron were performed in Run II data taking period.
Two general-purpose experiments were collecting the data: CDF [92] and D0 [93]. The charge
asymmetry measurements at the LHC have been performed in both the Run 1 and Run 2 data
taking periods by both general-purpose experiments, ATLAS [94] and the Compact Muon Solenoid
(CMS) [95].

At the LHC, there are more experiments running. The LHCb experiment, designed to study
b-quark interactions, is one of them and it also observed the top quark [96]. However, up to now,
only cross-section measurements of the top quark have been performed at the LHCb and no tt̄ charge
asymmetry related studies.

As it was mentioned above, it is important to measure all possible combinations of the
asymmetries, i.e., measure both AFB at the Tevatron and AC at the LHC and also both tt̄ and leptonic
asymmetries, since the relation between them is model dependent. Experiments at the Tevatron and
at the LHC therefore performed full set of these measurements where possible, in both �+jets and
dilepton channels.

Most of the measurements follow this typical procedure. First, selection criteria are applied
to select the sample which is enhanced in tt̄ events. The backgrounds are estimated using MC
or data driven methods. For the tt̄ asymmetry, the kinematic reconstruction of top and antitop quark
4-momenta is performed using the measured top quark decay products. For lepton-based asymmetries,
this is not needed. The kinematic variable which is used to define the asymmetry is calculated. At the
Tevatron, this is mostly Δy (for the top quark asymmetry), η� (for the lepton-based asymmetry),
and Δη�� (for the dileptonic asymmetry). At the LHC, this is mostly Δ|y| (for the top quark asymmetry)
and Δ|η| (for the dileptonic asymmetry). The kinematic distribution of the observable of interest is
plotted for data, see e.g., Figure 15a. This corresponds to ’reco level’ before the background subtraction.
Subsequently, the expected distribution for the background process is subtracted from the distribution
in data, corresponding to ’reco level’ after background subtraction, see e.g., Figure 15b. The resulting
distribution is assumed to correspond to the tt̄ distribution after the reconstruction and event selection.

The ‘reco level’ has a disadvantage that it includes detector resolution and acceptance effects,
so such results can be only compared to MC generator predictions which pass detector simulation
and reconstruction and can not be directly compared to results from other experiments nor to the
direct theoretical predictions. In order to be able to compare to the latest, most precise predictions,
such distribution needs to be corrected for detector resolution effects and for the event selection
acceptance and inefficiency. This correction is typically performed by the procedure of unfolding.
Removing the detector effects brings the distributions to the ‘parton’ or ‘particle’ level, see e.g.,
Figure 15c. When extrapolating to the full phase space and to the level of top quarks, it is called a
parton level. This allows to compare experimental results directly to theoretical calculations or to
other experiments. Most of the results from the experiments are at parton level and it will be not
mentioned unless it is otherwise. When unfolding to the level of final state stable particles and typically
requiring some fiducial cuts on final state particles such as pTor |η| which are similar to event selection
criteria, it is called a particle level. The advantage of the ‘particle fiducial level’ is that there is a much
smaller degree of the extrapolation to an unmeasured phase-space compared to the parton level and
consequently modeling uncertainties are typically smaller. Moreover, it is less ambiguous than the
parton level, since the ‘top quark’ definition can differ between different MC generators which are
necessary when performing the unfolding. However, not many predictions are available at such level.
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(a)
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(b)
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Figure 15. The Δy distribution at the reco level in (a), at the reco level after the background subtraction
in (b), and at the parton level in (c), compared to the prediction [97].

The asymmetry can be calculated at each level by counting the events at positive and negative side
of the x-axis with the statistical uncertainty properly calculated taking into account possible correlations
between the bins which arise due to e.g., systematic uncertainties of the unfolding procedure. Since the
asymmetry is expected to depend on a few different observables within the SM and even differently
in BSM models, the experiments also performed lots of differential measurements of the asymmetry
mostly as a function of mtt̄,pT,tt̄, Δytt̄, and βz,tt̄.

There are also some measurements which use different methods to obtain the asymmetry and
these will be mentioned later when describing a specific measurement.

4.1. Forward–Backward Asymmetry Measurements at the Tevatron

The CDF and D0 experiments started to perform measurements of AFB from the beginning of Run
II. The initial measurements at the Tevatron were performed in the �+jets channel with about 10–20%
of eventual Run II statistics [40,41]. The next set of measurements were performed with about half of
full Run II statistics by both CDF [42] and D0 [43,44]. These already included also the measurement of
leptonic asymmetries.

Both CDF and D0 collaborations performed the full set of measurements in both �+jets and
dilepton channels with full Run II statistics [72,97–103]. Moreover, there was performed the
combination of the CDF and D0 measurements [49].

All these measurements will be described in the following.

4.1.1. Initial Measurements

The first measurement related to the charge asymmetry in the top quark pair production was
performed by the D0 experiment using 0.9 fb−1 of the integrated luminosity [40]. It was performed
only at reco level in the tt̄ rest frame using Δy. The inclusive asymmetry was not measured, only the
AFB as a function of the number of reconstructed jets. The measured values are listed in Table 4 together
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with predictions from MC@NLO generator where events passed the full simulation and reconstruction
as data.

Table 4. The MC@NLO predictions and measured forward–backward asymmetries at reco level as a
function of the number of jets in the D0 measurement using 0.9 fb−1 [40].

Number of Jets Att̄
FB(MC@NLO) [%] Att̄

FB(data) [%]

≥4 0.8 ± 1.0 12 ± 8(stat.)± 1(syst.)
4 2.3 ± 1.0 19 ± 9(stat.)± 2(syst.)
≥5 −4.9 ± 1.1 −16+15

−17(stat.)± 3(syst.)

In the CDF measurement using 1.9 fb−1 [41], the acceptance and reconstruction effects were
already corrected for and parton-level asymmetries were measured. The asymmetry was measured
using two observables, −q� · cos θp and Δy, which measured the asymmetry in pp̄ and tt̄ rest frame,
respectively. Measured distributions for these variables are shown in Figure 16. Inclusive asymmetries
were measured to be App̄

FB = (17 ± 7(stat.) ± 4(syst.))% = (17 ± 8)% in the pp̄ frame and Att̄
FB =

(24 ± 13(stat.)± 4(syst.))% = (24 ± 14)% in the tt̄ frame. These asymmetries were still consistent
(within 2 SD) with at that time available NLO QCD prediction of about 5% in pp̄ frame and about 30%
higher prediction in tt̄ frame. Asymmetries were also measured as a function of the number of jets
at reco level, similarly as in the above D0 measurement.

Figure 16. The production angle cos θ (left) and Δy (right) distribution at the reco level for the
AFB measurements in the pp̄ and tt̄ frame, respectively. The solid line is the prediction for tt̄ with
MC@NLO generator and σtt̄ = 8.2 pb, plus the expected non-tt̄ backgrounds. The dashed curve shows
the prediction when tt̄ is reweighted according to the form 1 + AFB cos α using measured values of
AFB [41].

To summarize these initial Tevatron measurements: only the tt̄ forward–backward asymmetry
was measured in the �+jets channel only. Both experiments showed larger than at that time and
even presently predicted asymmetries although they were really limited by a small data sample and
so still consistent with the predictions. The CDF results pointed to the expected frame dependence.
The measurement as a function of the number of jets in both CDF and D0 pointed to the expected trend
of decreasing asymmetry with the increase in the number of jets.

4.1.2. Measurements with Half of Run II Statistics

Both CDF and D0 performed the measurement of the tt̄ asymmetry with about a half of the full
Run II statistics. CDF performed only the tt̄ asymmetry measurement in the �+jets channel while D0
performed the measurement of Att̄

FB, A�
FB, and A��

FB in the �+jets and dilepton channel.
The CDF measurement [42] was performed with 5.3 fb−1 in both laboratory and tt̄ rest frames

using yt and Δy, respectively. The distributions at the reco level are shown in Figure 17 where data
are compared to MC@NLO generator predictions. The inclusive measurements at different levels are
summarized in Table 5. The measured App̄

FB asymmetry exceeds the MC@NLO prediction by more than
two standard deviations at all correction levels. The Att̄

FB asymmetries are similar in a magnitude to the
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App̄
FB but they are less significant because of the larger relative uncertainties. The Att̄

FB is also measured
as a function of Δy and mtt̄ in two bins, see Figure 18. At high values of Δy and mtt̄, the asymmetries
are higher than predictions available at that time. While the difference was less than 2 SD for high
Δy, it was about 3.4 SD for high mtt̄ bin ((47.5 ± 10.1(stat.)± 4.9(syst.))% = (47.5 ± 11.4)% in data,
while (8.8 ± 1.3)% for NLO QCD in MCFM). It should be noted that in this measurement, CDF also
tested the CP-invariance assumption by calculating charge separated asymmetries. The asymmetries
in both laboratory and tt̄ rest frame are equal and opposite within uncertainties, as expected.

Figure 17. The Δy (left) and yt (right) distribution at the reco level corresponding to the CDF
measurement performed in the �+jets channel using 5.3 fb−1 [42].

Table 5. The summary of inclusive asymmetries in tt̄ and pp̄ rest frames at the reco level with and
without including the background, and at the parton level corresponding to the CDF measurement
using 5.3 fb−1. Uncertainties include statistical, systematic, and theoretical uncertainties [42].

Sample Level Att̄
FB [%] App̄

FB [%]

data reco (with background) 5.7 ± 2.8 7.3 ± 2.8
MC@NLO reco (with background) 1.7 ± 0.4 0.1 ± 0.3

data reco (without background) 7.5 ± 3.7 11.0 ± 3.9
MC@NLO reco (without background) 2.4 ± 0.5 1.8 ± 0.5

data parton 15.8 ± 7.4 15.0 ± 5.5
MCFM parton 5.8 ± 0.9 3.8 ± 0.6
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Figure 18. Parton level asymmetries as a function of Δy (left) and mtt̄ (right) compared to the SM
prediction of MCFM. The negative going uncertainty for Δy < 1.0 is suppressed [42].

D0 performed a similar measurement in the �+jets channel using 5.4 fb−1 [43]. Both tt̄ and leptonic
asymmetries are measured using Δy and q · y� distributions, respectively, see Figure 19. The measured
inclusive asymmetry is Att̄

FB = (19.6 ± 6.5)% and A�
FB = (15.2 ± 4.0)% which disagree with the NLO

QCD prediction from MC@NLO (AFB = (5.0 ± 0.1)% and A�
FB = (2.1 ± 0.1)%) by about 2.4 SD and

3.2 SD, respectively. The differential tt̄ asymmetry measured as a function of mtt̄ and Δy only at the
reco level is summarized in Table 6.
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Figure 19. The reconstructed Δy (left) and the charge-signed lepton rapidity (right) corresponding to
the D0 measurement in the �+jets channel [43].

Table 6. The reco level Att̄
FB by subsample in the D0 �+jets measurement using 5.4 fb−1 [43].

Subsample Att̄
FB (data) [%] Att̄

FB (MC@NLO) [%]

mtt̄ < 450 GeV 7.8 ± 4.8 1.3 ± 0.6
mtt̄ > 450 GeV 11.5 ± 6.0 4.3 ± 1.3
|Δy| < 1.0 6.1 ± 4.1 1.4 ± 0.6
|Δy| > 1.0 21.3 ± 9.7 6.3 ± 1.6

In the dilepton channel, the leptonic and dileptonic asymmetry is measured by D0 using
5.4 fb−1 [44]. The leptonic asymmetry is measured to be A�

FB = (5.8 ± 5.1(stat.)± 1.3(syst.))% while
the dileptonic asymmetry is A��

FB = (5.3 ± 7.9(stat.)± 2.9(syst.))%. The combination with the result in
the �+jets channel yields A�

FB = (11.8 ± 3.2)%.
To summarize mid-term measurements: these measurements were performed in both �+jet and

dilepton channels and both tt̄ and leptonic based asymmetries were measured. Moreover, the tt̄
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asymmetry is measured as a function of mtt̄ and Δy. The inclusive tt̄ asymmetry is observed by
both CDF and D0 to be larger than the predictions available at that time by 1.4 − 2.2 SD depending
on the experiment, the frame, and the prediction. The tt̄ asymmetry at high ytt̄ and mtt̄ region was
measured by CDF to be larger than predicted by up to 3.4 SD at high mtt̄ values while D0 did not see any
significant disagreement. The leptonic asymmetry was measured only by D0 and was again higher than
the prediction available at that time, mostly for the �+jets channel where the deviation is in between 2.6
and 3.3 SD depending on the prediction ( (2.1± 0.1)% in MC@NLO and (4.7± 0.1)% in MC@NLO + NLO
EW corrections, see [43,44]). Moreover, A��

FB was also measured to be consistent with the prediction,
but with significant uncertainties. The dominant uncertainty in these measurements was still the
statistical uncertainty. Although the amount of data analyzed increased by factor 3–6, the systematic
uncertainties were largely improved by about factor of two. It was clear that the progress on both the
experimental side, to improve the statistical precision, and on the theory side, to make more reliable
uncertainties, was needed.

4.1.3. Measurements with Full Statistics

The measurements with the full Tevatron Run II statistics were performed by CDF and D0 in both
�+jets and dilepton channels and for the whole set of Att̄

FB, A�
FB, and A��

FB asymmetries.
CDF measured tt̄ asymmetry in the �+jets channel using 9.4 fb−1 [97] and in the dilepton

channel using 9.1 fb−1 [72]. The Δy distribution in the �+jets channel is plotted in Figure 15 where
also the inclusive asymmetry measurements are summarized at various levels. The measured
inclusive asymmetry in the dilepton channel is Att̄

FB = (12 ± 11(stat.) ± 7(syst.))% = (12 ± 13)%.
The asymmetry is also measured as a function of |Δy|, and mtt̄ in the �+jets channel, see Figure 20.
The dependencies on these kinematic variables are linear and the slope is higher by 2.8 SD and
2.4 SD than expected from the NLO QCD prediction by POWHEG. In the dilepton channel, only the
differential asymmetry as a function of Δy is measured in two bins (Att̄

FB(|Δy < 0.5|) = (12 ± 3.9)%
and Att̄

FB(|Δy > 0.5|) = (13 ± 17)%).

Figure 20. The forward–backward asymmetry as a function of |Δy| (left) and mtt̄ (right) with a best-fit
line superimposed. The shaded region represents the theoretical uncertainty on the slope of the
prediction [97].

D0 measured the tt̄ asymmetry in the �+jets channel using full Run II statistics of 9.7 fb−1 [102].
The inclusive asymmetry is measured Att̄

FB = (10.6 ± 3.0)%. The dependence of the asymmetry on the
|Δy| and mtt̄ was also measured, see Figure 21. The linear fit is performed to these dependencies and
the slope is measured to be 15.4 ± 4.3 and 3.9 ± 4.4 × 10−4, respectively.
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Figure 21. The AFB dependence on |Δy| (left) and on mtt̄ (right). The dashed line shows the fit to the
data with the dotted lines indicating the fit uncertainty. The x coordinate of each datum point is the
observed average of |Δy| in the corresponding bin [102].

In the dilepton channel, D0 measured simultaneously Att̄
FB and the top quark polarization using

9.7 fb−1 [103]. If the top quark polarization is fixed to its expected SM value, the measured value of
asymmetry is Att̄

FB = (17.5 ± 5.6(stat.)± 3.1(syst.))%.
In order to study the source of unexpectedly large forward–backward asymmetry in more detail,

CDF measured the cross-section as a function of the top quark production angle dσ/d cos θt [98].
The shape of such differential distribution is characterized by Legender polynomials and the Legender
moments a1 − a8 are measured. For the qq̄ → tt̄ process at LO, it is expected that there are non-zero
a0 and a2 moments. gg → tt̄ is expected to add only small contributions to all even-degree Legender
moments. The measured Legender moments a1 − a4 are shown in Figure 22, the remaining ones are
consistent with zero within large uncertainties. A good agreement within the uncertainties with the
NLO SM prediction is observed for the moments a2 − a8, but a1 showed an excess with respect to the
prediction: a1 = 0.40 ± 0.12 vs. NLO SM: 0.15+0.07

−0.03. It means the excess was observed in the differential
cross-section in the term linear in cos θ.
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Figure 22. Measured Legendre moments a1 − a4, with various theory predictions overlaid [98].

The leptonic measurements have been performed in both �+jets and dilepton channels by both
CDF and D0 experiments. In the �+jets channel, the leptonic asymmetry is measured by CDF using
9.4 fb−1 [99] while D0 uses 9.7 fb−1 [104]. Both CDF and D0 measure the single-leptonic asymmetry
using the charge-weighted rapidity qy�. The CDF measurement separates the rapidity distribution
into symmetric part, which is largely independent on the model, and the antisymmetric part which
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encapsulates the possible variation between the modes. The inclusive asymmetry is measured to
be A�

FB = (10.5 ± 2.4(stat.)+2.2
−1.7(syst.))% = (10.5+3.2

−2.9)% which is 2.3 SD away from the NLO QCD +
NLO EW prediction ((3.8 ± 0.3)%). D0 measured the asymmetry in restricted region of |y�| < 1.5:
A�

FB = (4.2+2.9
−3.0)%. The asymmetry is measured also as a function of pT of lepton and |yt|.

In the dilepton channel, both CDF using 9.1 fb−1 [100] and D0 using 9.7 fb−1 [101] measure both
single-lepton and dilepton asymmetries using qη� and Δη�, respectively. In the CDF measurement,
similarly to previous measurement in the �+jets channel, the pseudorapidity distributions are splitted into
symmetric and antisymmetric parts. The results are A�

FB = (7.2± 5.2(stat.)± 3.0(syst.))% = (7.2± 6.0)%
and A��

FB = (7.6± 7.2(stat.)± 3.9(syst.))% = (7.6± 8.2)%. D0 measured the inclusive asymmetries using
the distributions shown in Figure 23. The measured values are A�

FB = (4.4± 3.7(stat.)± 1.1(syst.))%
and A��

FB = (12.3± 5.4(stat.)± 1.5(syst.))%. The dependence of asymmetries on |qη�| and |Δη�| is also
measured but only in the fiducial parton level phase-space (leptons must have |η| < 2 and |Δη| < 2.4).
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Figure 23. The reco level distribution of q · η (left) and Δη = η�+ − η�− (right). The error bars indicate
the statistical uncertainty on the data [101].

4.1.4. Full Dataset Combinations

Both CDF and D0 performed individual combinations of their tt̄ and single-lepton asymmetry
measurements from both �+jets and dilepton channels using the full Run II data statistics of the actual
experiment [72,100,103,104]. Moreover, they performed together the Tevatron combinations of all their
results from both channels [49].

CDF combined inclusive tt̄ asymmetry is Att̄
FB = (16.0 ± 4.5(stat. + syst.))% while the D0

combination is Att̄
FB = (11.8 ± 2.5(stat.) ± 1.3(syst.))%. The combined single-leptonic asymmetry

at CDF is A�
FB = (9.0+2.8

−2.6(stat. + syst.))% while the D0 combination is (4.7 ± 2.3(stat.)± 1.5(syst.))%.
For the differential Att̄

FB as a function of Δy, rather then combining the data, the combined fit of the
slope to both CDF �+jets and dilepton data was performed. The result is α = 0.227 ± 0.057 which is
2 SD larger than the NNLO QCD prediction of 0.114+0.006

−0.012 [31].
The Tevatron combination of the CDF and D0 inclusive tt̄ forward–backward asymmetry is

Att̄
FB = (12.8 ± 2.1(stat.)± 1.14(syst.))% = (12.8 ± 2.5)%. The precision of the combination is such

that the AFB is measured with a significance of 5 SD from zero asymmetry. The combined inclusive
single-lepton asymmetry is A�

FB = (7.3 ± 1.6(stat.)± 1.12(syst.))%, while the combined dileptonic
asymmetry is A��

FB = (10.8 ± 4.3(stat.)± 1.6(syst.))%. All inclusive combined measurements together
with the individual measurements used as the inputs to the combination and the theoretical predictions
are summarized in Figure 24.

Differential measurements of Att̄
FB as a function of mtt̄ were measured only in the �+jets channel

and combined together, see Figure 25. For the combination, the data are fitted by a linear function.
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The obtained slope of 9.71± 3.28× 10−4 GeV−1 is compatible with NNLO QCD + NLO EW prediction
of 5.11+0.42

−0.64 × 10−4 GeV−1 at the level of 1.3 SD. The differential tt̄ asymmetry as a function of Δy
is available from CDF for both �+jets and dilepton channels, and from D0 for the �+jets channel,
see Figure 25. Since the choice of the binning differs for these measurements, the simultaneous fit
to a linear function with zero offset was performed for all available measurements employing the
correlations. The slope parameter is measured to be 0.187± 0.038 which is compatible with NNLO QCD
+ NLO EW prediction of 0.129+0.006

−0.012 at the level of 1.5 SD. The individual CDF and D0 measurements
of A�

FB as a function of |q�η�| together with the individual measurements of A��
FB as a function of |Δη|

are shown in Figure 26 without any quantitative comparison to the prediction. Looking at the plots,
there can not be seen any striking disagreement with NLO QCD + NLO EW prediction.
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Figure 24. Summary of inclusive forward–backward asymmetries used in the Tevatron combination
together with their combination [49].
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Figure 26. The individual CDF and D0 measurements of A�
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FB
as a function of |Δη| (right) together with the NLO QCD prediction [49].

4.1.5. Summary and Discussion of Tevatron Measurements

All inclusive Tevatron measurements of forward–backward asymmetry at the parton level in the tt̄
rest frame are summarized in Table 7. These should be compared to the latest NNLO QCD + EW prediction
of AFB = (9.5± 0.7)% [30] and the aN3LO QCD + EW prediction of AFB = (10.0± 0.6)% [29], while for
the leptonic and dileptonic asymmetries only NLO QCD + EW predictions exist: A�

FB = (3.8± 0.3)% and
A��

FB = (4.8± 0.4)% [24].
The inclusive Att̄

FB are all consistent between them for different channels and experiments, and are
consistent with both NNLO QCD + EW and aN3LO QCD + EW predictions. The maximum deviation
is 1.6 SD for D0 �+jets measurement using 5.4 fb−1 while the final Tevatron combination is 1.3 SD
higher when compared to NNLO QCD + EW prediction. Similar conclusions hold also for the inclusive
dileptonic asymmetry A��

FB with the maximum deviation at 1.3 SD in the D0 dileptonic measurement
using 9.7 fb−1. However, it should be noted that all measurements are consistently higher than
both NNLO QCD + EW and aN3LO QCD + EW predictions. For the inclusive leptonic asymmetry
A�

FB again all measurements are higher than the prediction. The biggest deviation is for the D0
measurement in the �+jets channel using 5.4 fb−1 at the level of 2.8 SD, while this has been lowered
significantly with the full Run II statistics. The final Tevatron combination is only about 1.7 SD higher
than prediction. It should be also noted that the prediction here is only at NLO QCD + EW level,
so with the potential NNLO it is expected the deviation will be even lower. The dominant uncertainty
in inclusive measurements is the statistical uncertainty.
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Table 7. Summary of Tevatron measurements of inclusive forward–backward asymmetries. For a given
measurement, if there is just one uncertainty, it is combined statistical and systematic uncertainty. If there
are two uncertainties, the first one is always statistical and the second one is systematic uncertainty.

Experiment, Channel L[fb−1] Att̄
FB[%] A�

FB[%] A��
FB[%]

CDF, �+jets 1.9 24 ± 13 ± 4
CDF, �+jets 5.3 15.8 ± 7.4
D0, �+jets 5.4 19.6 ± 6.5 15.2 ± 4.0
D0, dilepton 5.4 5.8 ± 5.1 ± 1.3 5.3 ± 7.9 ± 2.9
D0, combination 5.4 11.8 ± 3.2
CDF, �+jets 9.4 16.4 ± 3.9 ± 2.6 10.5+3.2

−2.9
CDF, dil 9.1 12 ± 11 ± 7 7.2 ± 5.2 ± 3.0 7.6 ± 7.2 ± 3.9
D0, �+jets 9.7 10.6 ± 3.0 5.0+3.4

−3.7
D0, dil 9.7 17.5 ± 5.6 ± 3.1 4.4 ± 3.7 ± 1.1 12.3 ± 5.4 ± 1.5
CDF, combination 9.7 16.0 ± 4.5 9.0+2.8

−2.6
D0, combination 9.7 11.8 ± 2.5 ± 1.3
Tevatron, combination 9.7 12.8 ± 2.1 ± 1.4 7.3 ± 1.6 ± 1.2 10.8 ± 4.3 ± 1.6

The forward–backward asymmetry differential measurements at the Tevatron were performed as
a function of mtt̄ and rapidity related observable |Δytt̄|, |y�|, and Δη��. The mtt̄ and |Δytt̄| dependencies
are a bit stronger than expected but the agreement is within 2 SD.

4.2. LHC Measurements

Both ATLAS and CMS experiments started to perform the measurements of the charge asymmetry
from the beginning of Run 1 at the energy

√
s = 7 TeV. Initially, only the measurements in the �+jets

channel and with a small luminosity of about 1 fb−1 were performed by ATLAS [65] and CMS [69].
Next measurements at

√
s = 7 TeV were performed with the full statistics of 2011 year (≈5 fb−1)

in both �+jets and dilepton channels by both ATLAS [105,106] and CMS collaborations [107,108].
Afterwards, the measurements with about four times larger statistics (full 2012 year, ≈20 fb−1) at√

s = 8 TeV were again performed in both dilepton and �+jets channels and by both ATLAS [109–111]
and CMS [112–114] collaborations.

In Run 2 at
√

s = 13 TeV, CMS performed the measurement in both �+jets [115] and dilepton [116]
channels using partial dataset (2015+2016 years, ≈36 fb−1). On the other hand, ATLAS performed
the measurement in the �+jets channel with the full Run 2 statistics (years 2015–2018, ≈140 fb−1) [50].
However, it is for now only the preliminary measurement.

Moreover, ATLAS and CMS combined their measurements from Run 1 at
√

s = 7 TeV and√
s = 8 TeV [91]. In the following, all these measurements will be briefly described.

4.2.1. Measurements at
√

s = 7 TeV

The initial LHC measurement of AC was performed by CMS using 1.09 fb−1 of luminosity [69].
The Att̄

C was measured using distribution Δ|η| = |ηt|− |ηt̄| and Δy2 = (yt − yt̄)(yt + yt̄) shown in Figure 27.
Using 12,757 data events with the expected background of 2520± 246 events, the inclusive asymmetry
is measured to be Att̄,η

C = (−1.7± 3.2(stat.)+2.5
−3.6(syst.))%, and Att̄,y

C = (−1.3± 2.8(stat.)+2.9
−3.1(syst.))%,

consistent with the QCD NLO + EW predictions of (1.36± 0.08)% and (1.15± 0.06)% [21], respectively.

72



Symmetry 2020, 12, 1278

Figure 27. Reconstructed Δ|η| (left) and Δy2 (right) distributions for the �+jets channel. The outermost
bins include the overflows [69].

Similarly, the initial ATLAS measurement of the charge asymmetry was performed using 1.04 fb−1

of luminosity [65]. The measured inclusive asymmetry is Att̄
C = (−1.9± 2.8(stat.)± 2.4(syst.))% which

is consistent with the NLO QCD + NLO EW prediction AC = (1.23 ± 0.05)% [24]. The differential
measurement of the asymmetry as a function of mtt̄ was measured only in two bins and had
large uncertainties.

The measurements at
√

s = 7 TeV using full statistics were performed by both ATLAS and CMS
in both �+jets and dilepton channels. In the �+jets channel, both ATLAS using 4.7 fb−1 [105]
and CMS using 5.0 fb−1 [107] measure the asymmetry inclusively and and also differentially as
a function of mtt̄, ytt̄, pT,tt̄. The inclusive results are Att̄

C = (0.6 ± 1.0(stat. + syst.))% for ATLAS
and Att̄

C = (0.4 ± 1.0(stat.)± 1.1(syst.))% for CMS. The differential asymmetries are shown in
Figures 28 and 29.
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Figure 28. Distributions of AC as a function of mtt̄ in (a), pT,tt̄ in (b), and ytt̄ in (c). The measured
AC values are compared with the NLO QCD + EW predictions (SM) [24] and the predictions for a
color-octet axigluon [105].
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(a) (b)

(c) (d)

Figure 29. The unfolded Δ|y| distribution in (a), the charge asymmetry as a function of ytt̄ in (b),
pT,tt̄ in (c), and mtt̄ in (c). The measured values are compared to NLO QCD + EW calculations of
Ref. [21], and to the predictions of a model featuring an effective axial-vector coupling of the gluon
(EAG) [117]. The error bars on the differential asymmetry values indicate the statistical and total
uncertainties [107].

In the dilepton channel, both ATLAS using 4.6 fb−1 [106] and CMS using 5.0 fb−1 [108]
measure the tt̄ and dileptonic asymmetry inclusively: Att̄

C = (2.1 ± 2.5(stat.) ± 1.7(syst.))%,
A��

C = (2.4 ± 1.5(stat.) ± 0.9(syst.))% in ATLAS while Att̄
C = (−1.0 ± 1.7(stat.) ± 0.8(syst.))%,

A��
C = 0.9 ± 1.0(stat.)± 0.6(syst.))% in CMS. The comparison of the inclusive ATLAS Att̄

C and A��
C

measurements to the theory prediction is shown in Figure 30. CMS also measured the dileptonic
asymmetry as a function of tt̄ mass, rapidity, and transverse momentum, see Figure 31.
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Figure 30. The comparison of correlated inclusive A��
C and Att̄

C measurements to the NLO QCD+EW
prediction [24] and the prediction of the POWHEG+ PYTHIA generator [106].
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(a) (b)

(c)

Figure 31. The dependence of A��
C on mtt̄ in (a), ytt̄ in (b), and pT,tt̄ in (c). The inner and outer error bars

represent the statistical and total uncertainty, respectively [108].

To summarize the measurements at
√

s = 7 TeV: both ATLAS and CMS measurements are
in agreement with predictions. The most precise measurement of the tt̄ charge asymmetry has a total
uncertainty of 1.0%. The initial measurements with partial statistics had large (≈3%) and about the
same statistical and systematic uncertainties. This is a bit different to the Tevatron measurements
where statistical uncertainty was dominant in most of the measurements. This is mostly due to the
large tt̄ sample already available for initial measurements and the fact these were measurements at
the very early of the LHC running, so the detectors were not well understood yet. The full statistics
measurements improved both statistical and systematic precision considerably. They are now mostly
limited by the statistical uncertainty, especially dilepton measurements. The differential measurements
are also in agreement with the predictions, they are mostly statistically limited and not really even able
to disfavor BSM models.

4.2.2. Measurements at
√

s = 8 TeV

The measurements at
√

s = 8 TeV with the full statistics were performed by both ATLAS and
CMS in both �+jets and dilepton channels.

ATLAS performed two measurements in the �+jets channel using 20.3 fb−1 [109,110]. In the
first analysis, the asymmetry is measured inclusively (AC = (0.9 ± 0.5(stat. + syst.))%) and also
differentially as a function of mtt̄, ytt̄, pT,tt̄, and βz,tt̄, see Figure 32 using standard unfolding
procedure [109]. The inclusive measurement is compatible with the NNLO QCD + NLO EW prediction
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(0.97+0.02
−0.03)%. The second measurement focused on a large tt̄ invariant mass region (mtt̄ > 0.75 TeV,

another requirement is |Δ|y|| < 2) using reconstruction techniques specifically designed for the
decay topology of highly boosted top quarks. In such cases, hadronicaly decaying top quarks
are reconstructed as single large-radius jets with a specific jet substructure. In such phase space,
the asymmetry is measured to be Att̄

C = (4.2 ± 3.2(stat. + syst.))%. A differential measurement as
a function of mtt̄is also performed, see Figure 33.

(a) (b)

(c)

Figure 32. Measured AC values as a function of mtt̄ in (a), βz,tt̄ in (b), and pT,tt̄ in (c), compared with
NLO QCD + NLO EW predictions [24] and with the right-handed color octets with masses below the tt̄
threshold [109].
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Figure 33. A summary of the charge asymmetry measurements for different ranges of mtt̄. The error
bars on the data indicate the modeling and unfolding systematic uncertainties, shown as the inner bar,
and the total uncertainty [110].
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CMS also performed two measurements in the �+jets channel using 19.7 fb−1 [112] and
19.6 fb−1 [113], respectively. In the first measurement [112], the asymmetry is measured inclusively
(Att̄

C = (0.10 ± 0.68(stat.) ± 0.37(syst.))%) and also differentially as a function of mtt̄, ytt̄, and pT,tt̄.
Moreover, CMS performed here the first LHC measurement at the particle level in the fiducial phase
space mimicking the selection criteria. The inclusive fiducial (Att̄, f id

C = (−0.35 ± 0.72 ± 0.31)%) and
differential measurements as a function of mtt̄, ytt̄, and pT,tt̄, see Figure 34, are consistent with NLO
QCD + EW prediction (inclusive prediction is (1.01 ± 0.10)%).

(a) (b)

(c)

Figure 34. The charge asymmetry as a function of ytt̄ in (a), pT,tt̄ in (b), and mtt̄ in (c) measured at the
particle level in the fiducial phase space. The inner bars indicate the statistical uncertainties, while the
outer bars represent the statistical and systematic uncertainties added in quadrature [112].

The second CMS measurement in the �+jets channel used a template method [113]. In this method,
templates based on the SM were created for symmetric and antisymmetric components of the measured
distribution (Υtt̄ = tanh Δ|y|) for various tt̄ production processes, see Figure 35. Fitting data to these
templates, see Figure 36, the inclusive asymmetry was measured: Att̄

C = (0.33 ± 0.26 ± 0.33)% which
was the most precise measurement of AC at that time. However, the disadvantage of this measurement
was that it was more model dependent on SM predictions compared to usual unfolding measurements.
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Figure 35. The symmetric (left) and antisymmetric (right) components of the binned probability
distributions in the observable Υtt̄, constructed using POWHEG generator for different tt̄ initial
processes [113].

Figure 36. The antisymmetric tt̄ contribution is measured in the Υrec
tt̄ distribution. The antisymmetric

component of the Υrec
tt̄ distribution is shown here. The thick line shows the antisymmetric component

of the fit model. The measurements are performed independently in the e+jets (left) and μ+jets (right)
channels [113].

In the dilepton channel using 20.3 fb−1, ATLAS measured the tt̄ and dileptonic asymmetry
at parton level in the full phase space and at the particle level in the fiducial phase
space [111]. Both, the inclusive measurements at parton level (Att̄

C = (2.1 ± 1.6(stat. + syst.))%,
A��

C = (0.8 ± 0.6(stat. + syst.))%) and particle level (Att̄
C = (1.7 ± 1.8(stat. + syst.))%,

A��
C = (0.6 ± 0.5(stat. + syst.))%) are consistent with the predictions. The differential measurements

in two bins were measured as a function of mtt̄, pT,tt̄, and βz,tt̄ for both Att̄
C and A��

C in both full and
fiducial phase spaces. The summary of dileptonic asymmetry measurements in the fiducial phase
space is in Figure 37. The difference between the results at the parton and particle level is small given
that the tt̄ modeling systematics is not a dominant uncertainty.
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Figure 37. Summary of the measurements for the dileptonic asymmetry in the fiducial volume.
The predictions shown in blue are obtained using POWHEG + PYTHIA at NLO [111].

CMS also measured the asymmetry in the dilepton channel using 19.5 fb−1 [114]. It measured
the tt̄ and dileptonic asymmetry inclusively (Att̄

C = (1.1 ± 1.1(stat.) ± 0.7(syst.))%, A��
C = (0.3 ±

0.6(stat.)± 0.3(syst.))%) and also differentially as a function of mtt̄, ytt̄, and pT,tt̄.
ATLAS and CMS combined their measurements performed at

√
s = 7 TeV and

√
s = 8 TeV [91].

Only measurements of the tt̄ asymmetry in the �+jets channel are combined. The measurements
in the dilepton channel were statistically limited and their inclusion would not improve the overall
uncertainty. The combination of inclusive measurements at

√
s = 7 TeV and

√
s = 8 TeV yielded

Att̄
C = (0.5 ± 0.7(stat.) ± 0.6(syst.))% and Att̄

C = (0.55 ± 0.23(stat.) ± 0.25(syst.))%, respectively.
The CMS template measurement at

√
s = 8 TeV [113] was used in the combination for the

inclusive measurement while CMS unfolding measurement at
√

s = 8 TeV [112] was used for the
combination of differential measurements as a function of mtt̄. The summary of the inclusive Tevatron
forward–backward and LHC 8 TeV charge asymmetry measurements together with the predictions
of various BSM models is shown in Figure 14. The combined ATLAS+CMS charge asymmetry as
a function of the invariant mass of the tt̄ system in comparison with theoretical predictions for the SM
and two versions of a color-octet model is shown in Figure 38.

Figure 38. The combined ATLAS+CMS charge asymmetry as a function of mtt̄ in comparison with
theoretical predictions for the SM [24,32] and two versions of a color-octet model [91].
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In summary, the measurements at
√

s = 8 TeV provided a significant progress compared
to

√
s = 7 TeV measurements. The measurements still agree with the SM prediction. Both the

statistical and systematic uncertainties decreased almost at the same rate. The most precise individual
inclusive measurement had an uncertainty of about 0.42% while the combined 8 TeV measurement
had a precision of 0.33%. For the first time, the statistical uncertainty was no longer dominating the
uncertainty in all measurements. The systematic uncertainties were smaller or similar to the statistical
ones in the CMS template measurement, most of the ATLAS dilepton measurements, the ATLAS high
mtt̄ measurement, and the LHC combination at

√
s = 8 TeV. The first fiducial level measurements at

particle level were performed although their advantage was not yet much visible due to the fact that tt̄
modeling systematics were still not dominant uncertainties. In addition, a specific measurement at
high mtt̄ was performed.

4.2.3. Measurements at
√

s = 13 TeV

CMS performed already two measurements at
√

s = 13 TeV using a partial Run 2 dataset
of 35.9 fb−1.

In the dilepton channel [116], the normalized distribution of Δ|y|tt̄ is measured at parton
and particle level while the distribution of Δ|η|�� is measured at particle level, see Figure 39.
Using these distributions, charge asymmetries are obtained: Att̄

C(parton) = (1.0 ± 0.9(stat. + syst.))%,
Att̄

C(particle) = (0.8± 0.9(stat. + syst.))%, and A��
C (particle) = (−0.5± 0.4(stat. + syst.))%, which are

compared to various SM predictions in Figure 40.

Figure 39. The normalized differential tt̄ production cross-section as a function of Δ|y| at the parton
level in the full phase space (left) and as a function of Δ|η| in the fiducial phase space at the particle
level (right) [116].
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Figure 40. The results of the AC extraction from integrating normalized parton level and particle level
differential cross-section measurements as a function of Δ|y| and Δ|η| are shown [116].

CMS also measured the forward–backward asymmetry in the �+jets channel at
√

s = 13 TeV
using 35.9 fb−1 [115]. This is a bit different measurement compared to all the other LHC measurements.
The approximate forward–backward asymmetry A(1)

FB is determined instead of edge–central charge
asymmetry as measured in all the other LHC measurements. The template method is used based on mtt̄,
xF = 2pL/

√
s, and cos θ∗ variables, where pL is the scaled longitudinal momentum pL of the tt̄ system

in the laboratory frame, and θ∗ is the production angle of the top quark relative to the direction of the
initial-state parton in the tt̄ center-of-mass frame. The qq̄ → tt̄ differential cross-section in cos θ can be
expressed as a linear combination of symmetric and antisymmetric functions, where the antisymmetric
function can be approximated as a linear function of cos θ and parameter A(1)

FB . Such approximation
describes the LO terms and interference terms expected from an s-channel resonance with chiral
couplings. In such approximation, AFB = A(1)

FB . The generator level distributions for the above
mentioned variables for the tt̄ production initiated by different processes are shown in Figure 41.
The application of fitting procedure yields A(1)

FB = (4.8+9.5
−8.7(stat.)+2.0

−2.9(syst.))%. The result is consistent
with the NLO QCD [13,21,118] and NNLO QCD prediction [32], although the statistical uncertainty is
quite large.
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(a) (b)

(c)

Figure 41. The generator-level cos θ (labeled here as c∗) in (a), xF in (b), and mtt̄ normalized distributions
in (c) for the subprocesses qq̄, qg, and gg. These distributions correspond to the CMS measurement in
the �+jets channel performed at

√
s = 13 TeV using 35.9 fb−1 [115].

ATLAS already performed a preliminary AC measurement in the �+jets channel using the
full Run 2 statistics (139 fb−1) [50]. Altogether, more than four millions of tt̄ candidates were
selected in data events with the expected background of about 15%. The asymmetry is measured
to be AC = (0.60 ± 0.15(stat. + syst.))%, consistent with the NNLO QCD + NLO EW prediction
of (0.64+0.05

−0.06)%. Differential measurements in mtt̄ and βz,tt̄ were also performed, see Figure 42.
Moreover, the charge asymmetry measurement was interpreted in the framework of an effective
field theory (EFT). In EFT formalism the SM Lagrangian is extended with operators that encode the
new physics phenomena. The Warsaw basis includes a complete set of dimension-six operators [119].
The charge asymmetry is affected by the difference C− = C1 − C2, where C1 = C1

u = C1
d and

C2 = C2
u = C2

d are Wilson coefficients which are obtained from seven four-fermion operators in
Warsaw basis by using a flavour-specific linear combination [120]. The constrains on C− are shown in
Figure 43.
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Figure 42. Differential charge asymmetry measurements as a function of βz,tt̄ (left) and mtt̄ (right) [50].

Figure 43. Constraints on linear combination C−/Λ2 of Wilson coefficients of dimension 6 operators
from inclusive and mtt̄ differential charge asymmetry measurements [50].

4.2.4. Summary of LHC Measurements

All inclusive charge asymmetry measurements performed at the LHC are summarized in
Table 8. The Att̄

C asymmetries should be compared with NLO QCD including electroweak corrections
prediction [24] (1.23 ± 0.05)% at

√
s = 7 TeV, NNLO QCD + NLO EW prediction [32] (0.97+0.02

−0.03)%
at

√
s = 8 TeV and (0.64+0.06

−0.05)% at
√

s = 13 TeV. The A��
C asymmetries should be compared with NLO

QCD + EW prediction (0.70 ± 0.03)% at
√

s = 7 TeV [24], (0.64 ± 0.03)% at
√

s = 8 TeV [24], and NLO
QCD + EW prediction (0.55 ± 0.03)% at

√
s = 13 TeV [25].

All LHC measurements at all energies are well within 2 SD consistent with the SM prediction.
The measurements at

√
s = 7 TeV are limited by the statistics with all of them at least to have the

absolute uncertainty of 1%. The exception is the combination of ATLAS and D0 in the �+jets channel
which has the total uncertainty of about 0.9%. At

√
s = 8 TeV, there are already many measurements

which have comparable statistical and total systematic uncertainty. The most precise is the combination
of the ATLAS and CMS �+jets channel measurements which has the overall uncertainty of about 0.34%
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with the dominant systematic uncertainties due to calibration of jets and signal modeling. Finally at√
s = 13 TeV, the full statistics measurement are not yet available except for the preliminary ATLAS

�+jets measurement. This measurement is already very precise at the absolute level of 0.15%, very well
consistent with NNLO QCD + NLO EW prediction, and differs from zero by 4 standard deviations.
This is the first evidence for non-zero charge asymmetry at the LHC. The early measurements are
not precise enough to be able to observe the expected decrease of the asymmetry with the energy
of interactions.

The leptonic asymmetries have for now uncertainties larger than 0.4% (particle level) and are all
consistent with SM predictions.

The differential measurements are also consistent with the SM prediction. Most of the time,
the statistical uncertainties are dominant, although in the latest ATLAS measurement at

√
s = 13 TeV

the total systematic uncertainties are comparable to statistical uncertainties except for high mtt̄ bins.

Table 8. Summary of inclusive tt̄ and leptonic charge asymmetry measurements performed at the LHC.
For a given measurement, if there is just one uncertainty, it is combined statistical and systematical
uncertainty. If there are two uncertainties, the first one is statistical and the second one is systematic
uncertainty. All measurements used Δ|y| variable except for the measurement with ∗ which used Δ|η|.
All measurements were performed at the parton level except for the measurement with ∗∗ which was
performed at particle level.

Experiment, Channel
√

s [TeV] L [fb−1] Att̄
C [%] A��

C [%]

CMS, �+jets 7 1.1 −1.7 ± 3.2+2.5
−3.6

∗

ATLAS, �+jets 7 1.1 −1.9 ± 2.8 ± 2.4
CMS, �+jets 7 5.0 0.4 ± 1.0 ± 1.1
CMS, dil 7 5.0 −1.0 ± 1.7 ± 0.8 0.9 ± 1.0 ± 0.6
ATLAS, �+jets 7 4.7 0.6 ± 1.0
ATLAS, dil 7 4.6 2.1 ± 2.5 ± 1.7 2.4 ± 1.5 ± 0.9
LHC, combination 7 5.0 0.5 ± 0.7 ± 0.6

CMS, �+jets 8 19.7 0.10 ± 0.68 ± 0.37
CMS, �+jets(template) 8 19.6 0.33 ± 0.26 ± 0.33
CMS, dil 8 19.5 1.1 ± 1.1 ± 0.7 0.3 ± 0.6 ± 0.3
ATLAS, �+jets 8 20.3 0.9 ± 0.5
ATLAS, dil 8 20.3 2.1 ± 1.6 0.8 ± 0.6
LHC, combination 8 20.3 0.55 ± 0.23 ± 0.25

CMS, dilepton 13 35.9 1.0 ± 0.9 −0.5 ± 0.4 ∗∗

ATLAS, �+jets 13 139 0.60 ± 0.15

5. Discussion and Outlook

It is clear from the description in Sections 3 and 4 that the long path and large effort in improving
the theory and experiments has paid off. Although, some may be unhappy that tensions between
theoretical calculations and experimental measurements mostly disappeared, the understanding of the
tt̄ charge asymmetry is much better now.

On the theoretical side, the progress has been enormous from only a partial NLO prediction
for AFB at the Tevatron which predicted negative asymmetry, through the full NLO prediction
in the laboratory frame of about 5%, to the latest full NNLO QCD + NLO EW prediction for
both AFB at the Tevatron and AC at the LHC and the aN3LO QCD + NLO EW prediction at the
Tevatron. At the Tevatron, the predicted asymmetry is about 10% while it is around 1% at the LHC.
Moreover, differential asymmetries have been also calculated at NNLO QCD + NLO EW too as a
function of many variables such as mtt̄, Δy, pT,tt̄, βz,tt̄, and cos θ. The leptonic asymmetry has been
calculated at NLO+EW order.

On the experimental side, there has been performed a full set of measurements for various
observables. The very early measurements were performed just at the reco level. Later, this has been
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improved to perform measurements at the parton level and lately also at the particle level. There are
now available not only inclusive measurements of both forward–backward and charge asymmetries,
but also detailed differential measurements as a function of a few variables such as mtt̄, pT,tt̄, Δy, βz,tt̄.
All inclusive tt̄ asymmetry measurements of CDF, D0, ATLAS, CMS show a very good agreement
with the NNLO QCD + NLO EW prediction with the largest disagreement of about 1.6 SD. The
leptonic asymmetry measurements with the full Tevatron dataset and at the LHC also agree with
the NLO QCD + EW prediction with the largest disagreement of about 2.3 SD for the CDF leptonic
asymmetry measurement. However, it should be mentioned that all inclusive Tevatron measurements
are higher than the NNLO QCD + NLO EW prediction, so it is possible that some non-negligible
correction is still not calculated. At the LHC, the asymmetries both higher and lower compared to the
best prediction have been measured. At the Tevatron, the non-zero forward–backward asymmetry
(δAFB/AFB = 20%) has been observed now (with a significance of about 5 SD) and the leptonic
asymmetry is measured with the relative precision of about 26%. For AC at the LHC at

√
s = 13 TeV,

the evidence (significance of at least 3 SD) of non-zero charge asymmetry has been obtained and
the relative precision is about 25%. Given that the dileptonic asymmetry has not been measured yet
with the full LHC Run 2 statistics, the fact that dileptonic asymmetry is supposed to be smaller than
AC, and the fact it can be measured only in the dilepton channel, its relative precision is for now
only around 80%. Most of the inclusive measurements at both the Tevatron and the LHC have been
statistically limited although the statistical and total systematic uncertainties are about the same in
the LHC combination at

√
s = 7 TeV and

√
s = 8 TeV and in the latest measurement at

√
s = 13 TeV.

The AFB and AC asymmetries and their leptonic versions have been measured also differentially as a
function of a few variables. Most of the measurements have been statistically limited, but this starts to
change with the full LHC Run 2 statistics. The Tevatron results are very probably final, since the data
taking finished already in 2011.

The LHC running will continue, mostly at the energy of
√

s = 14 TeV and about 20 times more
data (3000 fb−1) are expected to be delivered by the end of the LHC lifetime. This will allow to
improve the statistical uncertainty by at least a factor of 4–5 and the systematic uncertainties will
become dominant. Based on the ATLAS measurement at

√
s = 13 TeV, it can be expected the dominant

systematic uncertainties will be the tt̄ modeling, the jet energy calibration related uncertainties and
the W+jets background modeling. These systematic uncertainties will become dominant also for
differential measurements and this will allow to measure them in a more detail using more bins and
the larger range. Eventually, the dileptonic asymmetry should be more precisely measured because
the leptons are more precisely measured than top quarks and typically have smaller systematic related
uncertainties. Moreover, it is expected that another LHC experiment, the LHCb, will be able to observe
a non-zero tt̄ charge asymmetry at the high-luminosity LHC [121]. Additionally, there is a possibility
to measure different types of asymmetries, such as energy asymmetry between the top and antitop
quarks [122].

At the potential Future Circular Collider (FCC) in pp collisions at
√

s = 100 TeV, the charge
asymmetry is greatly diluted by the dominance of the gg initial state. The SM expected value is
AC = 0.12% [123] which will make it very hard to measure. However, the asymmetry is enhanced in
associated processes tt̄ + Z, tt̄ + γ and mainly in tt̄ + W, where the asymmetry is enhanced by about
a factor of ten due to the tt̄ + W process being dominated by a qq̄ initial state [123,124]. A relative
statistical precision of about 3% is expected in the determination of AC in the tt̄ + W process [124].

At the linear e+e− collider, the EW based forward–backward asymmetry in e+e− → tt̄
is expected [125,126]. The preliminary studies for the potential International Linear Collider at√

s = 500 GeV show that for the large asymmetry of about 40% (depending on the polarization of the
beams), the expected relative precision of about 2% can be achieved [125].

The asymmetry measurements should also help in the model independent search for a new BSM
physics within the effective field theory approach by constraining the EFT coefficients related to the
top quark production.
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6. Conclusions

As the heaviest known elementary particle, the top quark and studies of its properties is
a promising portal to the new physics beyond the Standard Model. The charge asymmetry in the tt̄
production is the effect which is predicted to be present at higher orders in perturbative quantum
chromodynamics and by necessity to be small, but it is highly enhanced in various theories beyond
the Standard Model.

After unexpectedly large values of the forward–backward asymmetry in the top quark pair
production were observed in initial measurements at the Tevatron, a lot of attention has been paid to
it by the experimental and theoretical community. This allowed to perform precise and detailed tests
of the SM at high energies. At present, the prediction is known at full next-to-next-to-leading order
in perturbative QCD with complete next-to-leading order electroweak corrections. The full statistics
Tevatron forward–backward and the LHC charge asymmetry results for the inclusive and differential
measurements agree with the predictions very well, mostly within two standard deviations, with the
largest deviation of about 2.3 standard deviation. The predicted forward–backward asymmetry at the
Tevatron of about 10% is now measured with a relative precision of 20%. At the LHC, although the
effect is much smaller (≈1%), the relative precision of the latest measurement is already at the level of
about 25%.

In the coming years at the LHC and potential future colliders, it can be expected that more
measurements will be performed at higher energies and in the processes like tt̄ + W boson where
the relative precision at the level of a few percent can be potentially achieved. Moreover, there is
a possibility to measure a very large tt̄ asymmetry in electroweak interactions at the lepton collider in
polarized beams with a relative precision of a couple of percent. This will allow to precisely test the
present theory at high energies and to potentially observe the presence of BSM effects or to constrain the
BSM physics either by excluding particular models or by constraining parameters of effective theories.
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Abstract: Processes of electron–positron annihilation into a pair of fermions were considered.
Forward–backward and left–right asymmetries were studied, taking into account polarization of
initial and final particles. Complete 1-loop electroweak radiative corrections were included. A wide
energy range including the Z boson peak and higher energies relevant for future e+e− colliders was
covered. Sensitivity of observable asymmetries to the electroweak mixing angle and fermion weak
coupling was discussed.

Keywords: high energy physics; electron–positron annihilation; forward–backward asymmetry;
left–right asymmetry
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1. Introduction

Symmetries play a key role in the construction of physical theories. In fact, they allow us to
describe a huge variety of observables by means of compact formulae. We believe that the success
of theoretical models based on symmetry principles is due to the presence of the corresponding
properties in Nature. The Standard Model (SM) is the most successful physical theory ever.
Its predictions are in excellent agreement with practically all experimental results in particle physics.
The renormalizability of the model allows us to preserve unitarity and provide finite verifiable results.
Both phenomenological achievements and nice theoretical features of the SM are mainly due to the
extended usage of symmetries in its construction. The model is based on several symmetries of different
type, including the Lorentz (Poincaré) symmetry, the gauge SU(3)C × SU(2)L × U(1)Y symmetries,
the CPT symmetry, the spontaneously broken global SU(2)L × SU(2)R symmetry in the Higgs sector,
etc. Some symmetries of the model are exact (or seem to be exact within the present precision) while
others are spontaneously or explicitly broken. In particular, the nature of the symmetry among the
three generations of fermions is one of the most serious puzzles in the SM and verification of the lepton
universality hypothesis is on the task list of modern experiments.

Despite the great successes of the SM, we can hardly believe that it is the true fundamental theory
of Nature. Most likely, it is an effective model with a limited applicability domain. The search for the
upper energy limit of the SM applicability is the actual task at all high-energy colliders experiments.
Up to now, all direct attempts to find elementary particles and interactions beyond the Standard Model
have failed. The accent of experimental studies has shifted towards accurate verification of the SM
features. Deep investigation of the SM symmetries is an important tool in this line of research.
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Asymmetries form a special class of experimental observables. First of all, they explicitly access the
breaking of a certain symmetry in Nature. Second, they are usually constructed as a ratio of observed
quantities, in which the bulk of experimental and theoretical systematic uncertainties is canceled out.
So the asymmetries provide independent additional information on particle interactions. They are
especially sensitive to non-standard weak interactions including contributions of right currents and
new intermediate Z′ vector bosons, see e.g., [1].

The physical programs of future (super) high-energy electron–positron colliders such as CLIC [2],
ILC [3–5], FCC-ee [6], and CEPC [7] necessarily include accurate tests of the SM. Studies of polarization
effects and asymmetries will be important to probe of the fundamental properties of Higgs boson(s)
and, in particular, in the process of annihilation into top quarks [8–10]. The future colliders plan to
start operation in the so-called GigaZ mode at the Z peak and improve upon the LEP both in statistical
and systematical uncertainties in tests of the SM [11] by at least one order of magnitude. Among these
collider projects, the FCC-ee one has the most advanced program of high-precision measurements of
SM processes at the Z peak. Such tests have been performed at LEP and SLC and they have confirmed
the validity of the SM at the electroweak (EW) energy scale of about 100 GeV [12,13]. During the LEP
era, extensive experimental and theoretical studies of asymmetries made an important contribution
to the overall verification of the SM, see review [14] and references therein. The new precision level
of future experiments motivates us to revisit the asymmetries and scrutinize the effects of radiative
corrections (RCs) to them. In the analysis of LEP data, semi-analytic computer codes like ZFITTER [15]
and TOPAZ0 [16] were extensively used. The forthcoming new generation of experiment requires more
advanced programs, primarily Monte Carlo event generators.

The article is organized as follows. The next section contains preliminary remarks and the general
notations. Section 3 is devoted to the left–right asymmetry. The forward–backward asymmetry is
considered in Section 4. Discussion of the left–right forward–backward asymmetry is presented in
Section 5. In Section 6, we provide results related to the final state fermion polarization. Section 7
contains a discussion and conclusions.

2. Preliminaries and Notations

In the recent paper [17] by the SANC group, high-precision theoretical predictions for the process
e+e− → l+l− (l = μ or τ) were presented. With the help of computer system SANC [18], we calculated
the complete 1-loop electroweak radiative corrections to these processes, taking into account possible
longitudinal polarization of the initial beams. The calculations were performed within the helicity
amplitude formalism, taking into account the initial and final state fermion masses. So, the SANC system
provides a solid framework to access asymmetries in e+e− annihilation processes and to study various
relevant effects. In particular, the system allows us to separate effects due to quantum electrodynamics
(QED) and weak radiative corrections.

The focus of this article is on the description and assessment of the asymmetry
family: the left–right asymmetry ALR, the forward–backward asymmetry AFB, the left–right
forward–backward asymmetry ALRFB, and the final state fermion polarization Pτ in collisions of
high-energy polarized or unpolarized e+e− beams. The main aim was to verify the effect of
radiative corrections on the extraction of the SM parameters from the asymmetries and to analyze the
corresponding theoretical uncertainty.

We performed calculations for polarized initial and final state particles. Beam polarizations play
an important role:

• They improve the sensitivity to CP-violating anomalous couplings or form factors, which are
measurable even with unpolarized beams through the forward–backward asymmetry.

• With the polarization of both beams, the sensitivity to the new physics scale can be increased by a
factor of up to 1.3 with respect to the case with only polarized electrons [1].

• A high-luminosity at the GigaZ stage of a collider running at the Z boson resonance with
positron polarization allows us to improve the accuracy of the determination of sin2 ϑW (ϑW is
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the electroweak mixing angle) by an order of magnitude, through studies of the left–right
asymmetry [1].

Numerical illustrations for each asymmetry are given in two energy domains: the wide
center-of-mass energy range 20 ≤ √

s ≤ 500 GeV and the narrow one around the Z resonance
(70 ≤ √

s ≤ 100 GeV), where a peculiar behavior of observables can be seen. All results were produced
with the help of the e+e− branch [19] of the MCSANC Monte Carlo integrator [20].

Let us introduce the notation. First of all, we define quantities A f ( f = e, μ, τ) which are often
used for description of asymmetries at the Z peak:

A f ≡ 2
gV f gA f

g2
V f

+ g2
A f

=
1 − (gR f /gL f )

2

1 + (g2
R f

/g2
L f
)2

, (1)

where the vector and axial-vector coupling constants of the weak neutral current of the fermion f with
the electromagnetic charge q f (in the units of the positron charge e) are

gV f ≡ I3
f − 2q f sin2 ϑW , gA f ≡ I3

f . (2)

The corresponding left and right fermion couplings are

gL f ≡ I3
f − q f sin2 ϑW , gR f ≡ −q f sin2 ϑW . (3)

The neutral current couplings gL f and gR f quantify the strength of the interaction between the Z
boson and the given chiral states of the fermion.

We claim that there are sizable corrections to all observable asymmetries due to radiative
corrections which affect simple Born-level analytic formulae relating the asymmetries with electroweak
parameters. It is especially interesting to consider the behavior of asymmetries in different EW schemes:
α(0), α(M2

Z), and Gμ, see their definitions below. We also will compare the results in the Born and
1-loop approximation. The latter means inclusion of 1-loop radiative corrections of one of the following
types: pure QED photonic RCs (marked as “QED”), weak RCs (marked as “weak”), and the complete
1-loop electroweak RCs (marked as “EW”):

σEW = σBorn + σQED + σweak.

The weak part in our notation includes 1-loop self-energy corrections to photon and Z boson
propagators. In our notation, higher-order effects due to interference of pure QED and weak
contributions are a part of σweak.

The cross section of a generic annihilation process of longitudinally polarized e+ and e− with
polarization degrees Pe+ and Pe− can be expressed as follows:

σ(Pe− , Pe+) = (1 + Pe−)(1 + Pe+)σRR + (1 − Pe−)(1 + Pe+)σLR

+ (1 + Pe−)(1 − Pe+)σRL + (1 − Pe−)(1 − Pe+)σLL. (4)

Here σab = ∑ij(k)|Habij(k)|2 are the 2 → 2(3) helicity amplitudes of the reaction, (ab = RR, RL, LR, LL)
with right-handed R=”+” or left-handed L=“−” initial particles.

It is convenient to combine the electron Pe− and positron Pe+ polarizations into the effective quantity

Peff =
Pe− − Pe+

1 − Pe−Pe+
. (5)

In the case when only the electron beam is polarized, the effective polarization coincides with the
electron one.

To investigate theoretical uncertainties, we use the following three EW schemes:
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1. the α(0) scheme in which the fine-structure constant α(0) is used as input. The contribution
of RCs in this scheme is enhanced by the large logarithms of light fermion masses via
α(0) ln(s/m2

f ) terms.

2. The α(M2
Z) scheme in which the effective electromagnetic constant α(M2

Z) is used at Born
level while virtual 1-loop and real photon bremsstrahlung contributions are proportional to
α2(M2

Z)α(0). In this scheme the virtual RCs receive contributions from the quantity Δα(M2
Z)

which describes the evolution of the electromagnetic coupling from the scale Q2 = 0 to the
Q2 = M2

Z one and cancels the large terms with logarithms of light fermion masses.
3. the Gμ scheme in which the Fermi coupling constant Gμ, extracted from the muon life time,

is used at the Born level while the virtual 1-loop and real photon bremsstrahlung contributions
are proportional to G2

μα(0). The virtual RCs receive contributions from the quantity Δr. Since the
expression for Δr contains the Δα(M2

Z), the large terms with logarithms of the light masses are
also canceled. The quantity Δr rules the Gμ and α(0) relation in this scheme.

Results of fixed-order perturbative calculations in these schemes differ due to missing higher-order
effects. In what follows, numerical calculations are performed in the α(0) EW scheme if another choice
is not explicitly indicated.

3. Left–Right Asymmetry ALR

A scheme to measure the ALR polarization asymmetry at the Z peak was suggested in [21]. It was
shown that this observable can be used as for extraction of electroweak couplings as well as for a
polarimeter calibration.

If we neglect the initial electron masses, the polarized cross-section can be rewritten in the
following form:

σ(Pe− , Pe+) = (1 − Pe−Pe+)[1 − Peff ALR]σ0, (6)

where σ0 is the unpolarized cross-section.
The left–right asymmetry in the presence of partially polarized (|Peff| < 1) initial beams is

defined as

ALR =
1

Peff

σ(−Peff)− σ(Peff)

σ(−Peff) + σ(Peff)
, (7)

where σ is the cross-section with polarization Peff.
In the case of fully polarized initial particles (|Pe± | = 1) the definition (7) becomes:

ALR =
σLe − σRe

σLe + σRe

, (8)

where Le and Re refer to the left and right helicity states of the incoming electron.
Equations (6) and (7) show that ALR does not depend on the degree of the initial beam polarization.
This type of asymmetry is sensitive to weak interaction effects in the initial vertex. In the Born

approximation at energies close to the Z resonance, it is directly related to the electron coupling:

ALR ≈ Ae. (9)

The left–right asymmetry ALR as a function of the center-of-mass system (c.m.s.) energy in the
ranges 20 ≤ √

s ≤ 500 GeV (Left) and 70 ≤ √
s ≤ 110 GeV (Right) is shown in Figure 1. We explore

ALR in different approximations and the corresponding shifts ΔALR between the Born level and 1-loop
corrected approximations taking into account either pure QED, or weak, or complete EW effects:
ΔALR=ALR(1-loop corrected)-ALR(Born). The right figure shows the behavior of ALR near the Z
resonance, and the value Ae at

√
s = MZ is indicated by a black dot (see (9)).
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One can notice that although the total 1-loop EW corrections to the process cross-section are
equal to the sum of the pure QED and weak ones, the corresponding shifts ΔALR are not additive.
That is because the asymmetry is defined as a ratio and the corrections affect both the numerator
and denominator.

In Figure 2 we show ALR for the Born and weak 1-loop corrected levels of accuracy in different
EW schemes and the corresponding shifts ΔALR=ALR(weak, some EW scheme)-ALR(Born). We see that
the effects due to weak corrections in different EW schemes behave in a similar way. Nevertheless the
scheme dependence is visible within the expected precision of future measurements. The deviations
between the results in different schemes can be treated as a contribution into the theoretical uncertainty
due to missing higher order corrections.
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Figure 1. (Left) The ALR asymmetry in the Born and 1-loop (weak, pure quantum electrodynamics
(QED), and electroweak (EW)) approximations and ΔALR vs. center-of-mass system (c.m.s.) energy in
a wide range; (Right) the same for the Z peak region.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

         

A
LR

Born
weak, α(0)
weak, G

μ

weak, α(MZ
2)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

70 75 80 85 90 95 100 105 110

Δ
 A

LR

√s, GeV

Figure 2. The ALR asymmetry at the Born level and with 1-loop weak radiative corrections (RCs);
the corresponding shifts ΔALR within α(0), Gμ, and α(M2

Z) EW schemes vs. c.m.s. energy in the peak region.

The impact of 1-loop EW contributions to ΔALR is of the order −0.1 in the resonance region,
but at energies above

√
s = 200 GeV there are considerable cancellations between weak and QED

effects so that the combined EW corrections becomes small (but still numerically important for
high-precision measurements).
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Summary for ALR

The left–right asymmetry ALR is almost insensitive to the details of particle detection since the
corresponding experimental uncertainties tend to cancel out in the ratio (7). It (almost) does not
depend on the final state fermion couplings in the vicinity of the Z boson peak and can be measured
for any final state with a large gain in statistics. For this reasons it is appropriate for extraction of the
sin2 ϑeff

W value.
We observe that the values ΔALR due to weak and pure QED 1-loop corrections are very significant

at high energies in general, but in the resonance region impact of QED is small, while the weak
contribution to ΔALR reaches 0.07. Therefore, it is necessary to evaluate all possible radiative correction
contributions to the weak parts of RCs carefully and thoroughly.

4. Forward–Backward Asymmetry AFB

The forward–backward asymmetry is defined as

AFB =
σF − σB

σF + σB
,

σF =

1∫
0

dσ

d cos ϑ f
d cos ϑ f , σB =

0∫
−1

dσ

d cos ϑ f
d cos ϑ f , (10)

where ϑ f is the angle between the momenta of the incoming electron and the outgoing negatively
charged fermion. It can be measured in any e+e− → f f̄ channels but for precision test the most
convenient channels are f = e, μ. The channels with production of τ leptons, b or c quarks are very
interesting as well.

At the Born level, this asymmetry is proportional to the product of initial and final state couplings
and is caused by parity violation at both production and decay vertices:

AFB ≈ 3
4

Ae A f . (11)

In the case of partially polarized initial beams the condition (11) reduces to the following one

AFB ≈ 3
4

Ae − Peff
1 − AePeff

A f . (12)

In Figure 3 we show the behavior of the AFB asymmetry in the Born and 1-loop approximations
(with weak, pure QED, or complete EW contributions) and the corresponding ΔAFB for c.m.s. energy
range 20 ≤ √

s ≤ 500 GeV in the left plot and for the Z peak region of c.m.s. energy 70 ≤ √
s ≤ 110 GeV

in the right one. As in the previous case of ALR, we indicate by a black dot the value AFB ≈ 3/4Ae Aμ at
the resonance. We observe that the weak contribution to AFB is small and practically does not depend
on energy. The shift ΔAFB changes the sign at the resonance and tends to a constant value (∼−0.3)
above 200 GeV. The huge magnitude of the shift ΔAFB out of the Z resonance region is coming mainly
from the pure QED corrections. In particular, above the peak the effect due to radiative return to the
resonance is very important.

Figure 4 shows the dependence of AFB for different levels of accuracy (Born and 1-loop weak) on
the EW scheme choice: either α(0), or Gμ, or α(M2

Z). The corresponding shifts ΔAFB between the Born
and the 1-loop weak corrected approximations are shown in the lower plot.
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Figure 3. (Left) The AFB asymmetry in the Born and 1-loop (weak, QED, EW) approximations and the
corresponding shifts ΔAFB for a wide c.m.s. energy range; (Right) the same for the Z peak region.
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Figure 4. The AFB asymmetry and ΔAFB in the Born and complete 1-loop EW approximations within
the α(0), Gμ, and α(M2

Z) EW schemes vs. the c.m.s energy.

Below we investigate two sets of polarization degree Pi = (Pe− , Pe+):

P1 = (−0.8, 0.3) and P2 = (0.8,−0.3). (13)

In Figure 5 we compare the values of AFB asymmetry and the corresponding shifts due to EW
corrections for the unpolarized case and two choices of polarized beams defined in the above equation.
One can see that a combination of polarization degrees of initial particles can either increase or decrease
the magnitude of the AFB asymmetry with respect to the unpolarized case.

There is an interesting idea [22] to use the AFB asymmetry at the FCC-ee in order to directly
access the value of QED running coupling at MZ. This idea was supported in [23] where it was
demonstrated that higher-order QED radiative corrections to AFB are under control. Our results show
that higher-order effects due to weak interactions are not negligible in this observable; further studies
are required.
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At the Born level there are contributions suppressed by the small factor m2
f /s with the fermion

mass squared. It is interesting to note that in 1-loop radiative corrections there are contributions of the
relative order α · m f /

√
s with the fermion mass to the first power [24], which are numerically relevant

at high energies especially for the b quark channel.
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Figure 5. The AFB asymmetry at the Born level (upper panel) and the corresponding ΔAFB in the
1-loop EW approximation (bottom panel) for unpolarized and polarized cases with degrees of beam
polarizations P1,2 (13) vs. c.m.s. energy in the Z peak region. The constants C(P1,2) stand for the
expression (12) with polarization degrees (13).

Summary for AFB

The weak 1-loop contribution ΔAFB is rather small for the whole energy range, see Figure 3.
Nevertheless in this asymmetry the difference between the pure QED and the complete 1-loop
approximations near the resonance is numerically important. The dependence on the EW scheme
choice, see Figure 4, is small but still relevant for high-precision measurements. The dependence of
this asymmetry on polarization is very significant.

5. Left–Right Forward–Backward Asymmetry ALRFB

In order to measure the weak couplings of the final state fermions, it was suggested to analyze
the so-called left–right forward–backward asymmetry [25]:

ALRFB =
(σLe − σRe)F − (σLe − σRe)B
(σLe + σRe)F + (σLe + σRe)B

, (14)

where σL and σR are the cross sections with left and right handed helicities of the initial electrons.
From the definition (14) it follows that ALRFB partially inherits the properties of the ALR and,

in particular, does not depend on the degree of the initial beam polarizations.
In the case of unpolarized beams on the Z resonance peak, the Born-level asymmetry is

ALRFB ≈ 3
4

A f . (15)

In Figure 6 we present the predictions for the ALRFB asymmetry in several approximations,
namely at the Born level and with 1-loop weak, pure QED, and complete EW contributions.
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Figure 6. (Left) The ALRFB asymmetry in the Born and 1-loop (weak, QED, EW) approximations and
ΔALRFB for c.m.s. energy range; (Right) the same for the Z peak region.

Next, we repeat the study of the ALRFB asymmetry behavior in different EW schemes. We have
illustrated the energy dependence of the ALRFB asymmetry in α(0), Gμ, and α(M2

Z) schemes and the
corresponding ΔALRFB in Figure 7. The impact of weak corrections on ALRFB is large. For example,
the Born-level value of ALRFB at the Z peak is about 0.17, while accounting for the weak RCs
contribution reduces the asymmetry value down to ∼0.11.
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Figure 7. The ALRFB asymmetry in the Born and 1-loop EW approximations and ΔALRFB within α(0),
Gμ, and α(M2

Z) EW schemes vs. c.m.s. energy in the Z peak region.

Summary for ALRFB

We would like to emphasize that the above Formula (15) appears to be a rather rough
approximation since radiative corrections shift the observable value of ALRFB quite a lot. Apparently
the ALRFB asymmetry is more affected by weak corrections than ALR. The shifts ΔALRFB only slightly
depend on an EW scheme choice. The ALRFB asymmetry at the Z boson peak depends on the final
lepton coupling that could be used to measure the μ and τ weak couplings and their difference from
the initial lepton (electron) one.
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6. Final-State Fermion Polarization Pf

The polarization of a final-state fermion Pf=μ,τ can be expressed as the ratio between the difference
of the cross sections for right and left handed final state helicities and their sum

Pf =
σR f − σL f

σR f + σL f

. (16)

In an experiment, it can be measured for the τ+τ− channel by reconstructing the τ polarization
from the pion spectrum in the decay τ → πν. Details of the analysis of Pτ measurements at LEP are
described in [13]. Computer programs TAOLA [26] and KORALZ [27,28] were applied for this analysis.
Estimated improvement for Pτ and τ decay products over LEP time in ILC in the GigaZ program was
done in [5].

In the case for unpolarized beams in the vicinity of the Z peak, the expression for channel
e+e− → τ+τ− is simplified to

Pτ(cos ϑτ) ≈ −
Aτ +

2 cos ϑτ

1 + cos2 ϑτ
Ae

1 +
2 cos ϑτ

1 + cos2 ϑτ
Ae Aτ

. (17)

From this observable, one can extract information on the couplings Aτ and Ae, simultaneously.
In Figure 8 (left) we show the distribution of Pτ in the cosine of the scattering angle at the Z

peak in the Born and 1-loop (weak, QED, and EW) approximations. The same conventions as in
previous sections are applied for the shifts ΔPτ . The shift due to pure QED RCs is approximately
a constant close to zero. But one can see that this observable is very sensitive to the presence of
weak-interaction corrections.

In the presence of initial beams polarization the expression depends on Peff:

Pτ(cos ϑ) ≈ −
Aτ(1 − AePeff) +

2 cos ϑτ

(1 + cos2 ϑτ)
(Ae − Peff)

(1 − AePeff) +
2 cos ϑτ

(1 + cos2 ϑτ)
Aτ(Ae − Peff)

. (18)

which can be reduced to the short form neglecting the Ae Aτ and AePeff terms:

Pτ(cos ϑτ) ≈ −Aτ −
2 cos ϑτ

(1 + cos2 ϑτ)
(Ae − Peff). (19)

The influence of the initial particle polarization on Pτ at the Z peak is demonstrated in the Figure 8
(right). For comparison the unpolarized and two polarized cases (13) as functions of cos ϑτ are shown.
It is seen that the behavior of Pτ depends on the polarization set choices very much, note that it even
changes the sign for the P2 case. The corresponding shifts ΔPτ also strongly depend on the initial beam
polarization degrees and change the shape accordingly (note the maximum for P1).

In Figure 9 we show the dependence of Pτ on the c.m.s. energy in the Born and 1-loop
approximations (weak, QED, and EW). We see that at energies above the Z resonance, both weak
and QED radiative corrections to Pτ are large and considerable cancellations happen between their
contributions. Note that theoretical uncertainties in weak and QED RCs are not correlated, so it is
necessary to take into account higher-order effects to reduce the resulting uncertainty in the complete
1-loop result for Pτ at high energies.
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Figure 8. (Left) The Pτ polarization in the Born and 1-loop (weak, pure QED, and EW) approximations
as a function of cos ϑτ at

√
s = MZ. (Right) The Pτ polarization for unpolarized and polarized cases

with (13) degrees of initial beam polarizations in the Born and EW 1-loop approximations vs. cosine of
the final τ lepton scattering angle at the Z peak.
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Figure 9. (Left) The Pτ polarization in the Born and 1-loop (weak, pure QED, and EW) approximations
and ΔPτ vs. c.m.s. energy in a wide range; (Right) the same for the Z peak region. The black dot
indicates the value Pτ at the Z resonance.

In Figure 10 we show Pτ in the Born and 1-loop EW approximations for different sets of beam
polarization degrees in a narrow bin around the Z resonance. The beam polarizations sets P1 and
P2 are defined in Equation (13). One can see that the energy dependence of Pτ is strongly affected
by a beam polarization choice outside the Z peak region. The same concerns the size of radiative
corrections to Pτ , which are represented on the lower plot.

Summary for Pτ

The Pτ asymmetry is very sensitive to weak-interaction corrections and to the polarization degrees
of the initial beams. Near the Z resonance the value of theoretical uncertainty of Pτ is determined by
the interplay of uncertainties of rather large contributions pure QED and weak radiative corrections.
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Figure 10. The Pτ polarization for (13) degrees of the initial beam polarizations in the Born and 1-loop
EW approximations vs. c.m.s. energy in the Z peak region.

7. Conclusions

New opportunities of the future e+e− colliders: GigaZ options and new energy scale up to several
TeV require modern tools for high-precision theoretical calculations of observables. We investigated
ALR, AFB and ALRFB for e+e− → μ+μ− channel and polarization Pτ for the final state in e+e− → τ+τ−

channel on the Z resonance and in the high energy region up to 500 GeV by using MCSANC. We evaluated
the resulting shifts of asymmetries at the Born and EW levels of accuracy in different EW schemes.
The numerical results presented above for pure QED, weak, and complete EW radiative corrections
show an interplay between the weak and QED contributions to asymmetries. This fact indicates the
necessity to consider those contributions always in combined way.

Asymmetries in e+e− annihilation processes provide a powerful tool for investigation of
symmetries between three fermion generations. By studying all available asymmetries, one can extract
parameters of weak interactions in the neutral current for all three charged leptons. So, by comparing
the parameters it will be possible to verify the lepton universality hypothesis at a new level of precision.

Hypothetical extra neutral Z′ vector bosons [29] can contribute to the processes of e+e−

annihilation. For example, effects of Kaluza–Klein excited vector bosons in the gauge Higgs unification
on e+e− annihilation cross sections were considered in [30,31]. Since the new bosons can have
couplings to left and right fermions being different from the SM ones, the asymmetries (especially
with polarized beams) can help a lot in search for such Z′ bosons.

At the FCC-ee we have experimental precision tag in the sin2 ϑeff
W measurement of the order of

5 × 10−6, which means more than a thirty-fold improvement with respect to the current precision of
1.6 × 10−4. This is due to a factor of several hundred improvement on statistical errors and because of
a considerable improvement in particle identification and vertexing. In order to provide theoretical
predictions for the considered asymmetries with sufficiently small uncertainties which would not spoil
the precision of the future experiments besides the complete 1-loop EW radiative corrections presented
here we need:
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• higher order pure QED corrections preferably with resummation;
• higher order (electro)weak corrections;
• taking into account perturbative and nonperturbative quantum chromodynamics (QCD) effects

in RCs;
• Monte Carlo event generators and integrators which ensure the required technical precision.

Challenges in calculations of higher order QED effects for FCC-ee were discussed in Ref. [32].
The complete two-loop electroweak corrections in the vicinity of the Z boson peak have been presented
in [33]. More details on challenges for high-precision theoretical calculations for future e+e− colliders
can be found in [34,35].
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Abstract: We estimate the impact of the fixation of the total number of sources (quark–gluon
strings) on the long-range rapidity correlations between different observables. In our approach
this condition models the fixation of the collision centrality class, what is the usual practice in
modern collider experiments, like Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider
(LHC) and so on. The estimates are obtained under the assumption of the translational invariance
in rapidity, which is usually assumed in mid-rapidity region at high energies. Based on these
assumptions, we are developing a technique for the analytical calculation of various average values
of extensive and intense variables at high string densities on the transverse lattice, taking into account
the effects of string fusion, leading to the formation of string clusters. Using this technique we
calculate the asymptotes of the correlations coefficients both between the multiplicities and between
the multiplicity and the event-mean transverse momentum of particles in two separated rapidity
intervals. As a result, we found that fixing the total number of strings has a significant effect on the
behavior of both types of correlations, especially in the case of a uniform distribution of strings in the
transverse plane.

Keywords: strong interaction; high energy; multiparticle production; multiplicity; transverse
momentum; forward-backward correlations; long-range rapidity correlations; translation invariance
in rapidity; quark-gluon strings; string fusion

1. Introduction

In modern particle physics, one of the urgent tasks is to extract information about the initial stage
of high-energy hadronic interactions. The valuable source of such information can be the experimental
and theoretical studies of the long-range correlations (LRCs) between observables in two separated
rapidity windows usually refereed as forward (F) and backward (B) [1]. In this approach one suggests
that at the initial stage of the strong interaction at high energy the formation of boost invariant flux
tubes of color fields take place between colliding hadrons. It is important that the long-range rapidity
correlations originating to the formation of the color flux tubes persist during the evolution of the
Quark Gluon Plasma formed later in the collision and hence can be observed experimentally as the
LRC between produced particles.

In the framework of the similar approach, rather long ago, in paper [2] the study of the long-range
forward–backward correlations between multiplicities (n) in two separated rapidity intervals has been
proposed with the aim to find signatures of the string fusion and percolation phenomenon [3–6] in
ultrarelativistic heavy ion collisions. It was found later that the investigations of the FB correlations
involving along with extensive, n, also intense observables e.g., such as the event-mean transverse
momentum [7–18],

pt =
1
n

n

∑
i=1

|pi
t| , (1)
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or going to more sophisticated correlation variables, e.g., to the so-called strongly intensive
quantities [19–23], enable us to obtain a clearer signal about the initial stage of hadronic interaction,
including the process of string fusion, compared to usual FB multiplicity correlations. In the present
paper we estimate the impact of the fixing of the total number of sources (quark-gluon strings) on the
value of LRC both between the multiplicities in the forward (nF) and backward (nB) rapidity windows
and between the multiplicity (nF) in the forward window and the event-mean transverse momentum
(ptB) in the backward one. In our approach the fixing of the total number of strings models the fixation
of the event centrality class, what is currently a widespread practice in analyzing experimental data in
modern collider experiments (Relativistic Heavy Ion Collider—RHIC, Large Hadron Collider—LHC
and so on).

The estimates are obtained under the assumption of validity of the translational (boost) invariance
in rapidity, which is usually assumed in the central rapidity region for symmetric reactions at high
energies. This assumption implies the uniform rapidity distribution of multiplicity and the dependence
of the two-particle correlation function C2(y1, y2) only on the difference Δy = y1−y2 of the particle
rapidities y1 and y2 [24].

For symmetric reactions the uniformity of the rapidity distribution of multiplicity is approximately
fulfilled at |y| < 1 and |y| < 2 for the RHIC and LHC energies correspondingly (see e.g., [25–27]).
Referring to the ALICE data, [26,27]), one must to take into account that in these papers the distributions
are presented in pseudorapidity not in rapidity, what leads to the characteristic kinematical drop of
the spectra in the vicinity of y = 0, which is absent in the rapidity distributions. The dependence
of the two-particle correlation function C2(y1, y2) only on the difference Δy = y1−y2 of the particle
rapidities in the central region is also commonly used when extracting this correlation function from
experimental data both at RHIC and LHC energies (see e.g., [28–30]).

Note that for asymmetric reactions, like the proton-nucleus and deuteron-nucleus interactions,
the boost invariance in rapidity is absent even in the central region. The rapidity distribution of
multiplicity is not uniform at mid-rapidities [31,32] and basically one must to take into account the
dependence of the two-particle correlation function C2(y1, y2) both on y1 and y2 in this case (see
e.g., discussion in paper [33]).

Calculations of the asymptotes of the correlation coefficients are carried out by introducing a
lattice (grid) in the impact parameter plane, which enables effectively to take into account the influence
of the color string fusion processes, leading to the formation of string clusters in ultra relativistic heavy
ion collisions. We present in details the developed methods for the analytical calculation of various
average values of extensive and intensive variables at high string densities on the transverse lattice,
what was announced in our short note [34], published as the proceedings of the WPCF Conference.

Basing on the averages found with high accuracy we calculate the strength of the LRC between
the multiplicities (nB-nF) and between the multiplicity and the event-mean transverse momentum
(ptB-nF) in the FB observation windows. It turns out that the fixation of the total number of strings,
has a significant impact on the behavior of the both type of the correlations.

The paper organized as follows. In Section 2 we introduce the definitions of the n-n and
pt-n FB correlation coefficients and briefly describe our model with a lattice in transverse plane,
which enables to take into account the string fusion effects on the correlation strength. Section 3
presents the developed method for the analytical calculation of various averages at high string densities
on a transverse lattice. In Section 4 basing on the calculated averages we found the covariances
cov(nB, nF) and cov(ptB, nF) determining the LRC coefficients, bnn and bptn, for the cases of uniform
and non-uniform distribution of strings in the transverse plane. In Section 5 we summarize the
influence of the fixation of the total number of strings (imitating in our approach the fixation of the
collision centrality) on the behavior of the asymptotes of the LRC n-n and pt-n coefficients at high
string density.
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2. The Model with the String Fusion on a Transverse Lattice

To quantify the strength of the FB correlations between observables measured in two separated
rapidity intervals δyF and δyB it is convenient to use the correlation coefficients defined between
the so-called relative variables n/〈n〉 and pt/〈pt〉 (see [24,35]). Therefore for the n-n correlation
between multiplicities nF and nB in forward and backward rapidity intervals we will use the
following definition:

bnn ≡ 〈nF〉
〈nB〉

cov(nB, nF)

DnF

=
〈nF〉
〈nB〉

〈nBnF〉 − 〈nB〉〈nF〉
〈n2

F〉 − 〈nF〉2
, (2)

where DnF
is the variance of the nF. Correspondingly, for the pt-n correlation between the multiplicity,

nF, in the forward window and the event-mean transverse momentum of the particles observed and in
the backward window, ptB, we will use the similar definition:

bptn ≡ 〈nF〉
〈ptB〉

cov(ptB, nF)

DnF

=
〈nF〉
〈ptB〉

〈ptBnF〉 − 〈ptB〉〈nF〉
〈n2

F〉 − 〈nF〉2
. (3)

One can find the value of these correlations considering the effects from the interaction between
strings in the framework of the models with string fusion and percolation [3–6]. In the present paper
we will take these effects into account in simplified form, by introducing the finite lattice (the grid) in
the transverse plane of the collision. This approach was suggested in paper [8]. Later, it was used for a
description of various phenomena in ultra relativistic nuclear collisions (azimuthal flows, correlations,
the ridge) [9–18,36–40].

In this approach we split the transverse plane into M cells. The area of each cell is equal to
the transverse area of a single string. Then we consider that all initial strings, which centers occur
in a given cell, merge into one string cluster. In this simplified model each string configuration is
completely specified by the set of integers: Cη = {η1, ..., ηM}, where ηi is a number of initial strings
merged in a given i-th cell.

In fact, in this approach, the transverse plane is divided into cells with different, fluctuating values
of the color field inside them. That is similar to the considering the color field density variation in the
impact parameter plane in models based on the Color Glass Condensate (CGC) approach [1,41].

So we will suppose that in each cell the ηi fluctuates around some average, ηi, with a scaled
variance ω. Physically the ηi are determined by the geometry of a hadronic collision at given value of
the impact parameter. Then in accordance with the string fusion prescriptions [5,6] the mean number
of charged particles in given observation rapidity window δy, produced from the fragmentation of a
string cluster in the i-th cell, and their mean transverse momentum are given by the expressions:

ni = μ
√

ηi , pi
t = p0 4

√
ηi , (4)

where μ and p0 is the average multiplicity and the average transverse momentum for particles formed
in the decay of a single string.

Note that we assume the translational invariance of the string picture in rapidity, originating from
the locality of the strong interaction in the rapidity space, which is usually assumed in the central
rapidity region at LHC energies. This translational invariance in rapidity corresponds to the boost
invariance of the flux tubes in CGC models [1]. It leads to the independence of the ni and pi

t on a
rapidity for a given string configuration Cη in our model.

We will also assume independent fragmentation of each string cluster into acceptances of the
forward and backward windows, because in the present work we are only interested in studying
long-range correlations, i.e., we will suppose that the nF

i and nB
i fluctuates independently around their

mean values with some scaled variance ωμ. One can find a more detailed description of the model
in [8,14,16].
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In the present paper for simplicity we will restrict ourselves to the case of a symmetric reaction
and symmetric windows, δyF = δyB ≡ δy. For this case in definitions (2) and (3) of the FB correlation
coefficients we have μF = μB ≡ μ, 〈nF〉 = 〈nB〉 ≡ 〈n〉, DnF

= DnB
≡ Dn, 〈ptF〉 = 〈ptB〉 ≡ 〈pt〉, and so

on. Due to mentioned translation invariance in rapidity these quantities do not depend on rapidity.
In this case one can also show, [16], that for the LRC:

〈n2
F〉 = 〈n2

B〉 = 〈n2〉 =
M

∑
i=1

dni + 〈nFnB〉 = ωμ〈n〉+ 〈nFnB〉 . (5)

In the last transition we have used the assumption that the variance dni ≡ 〈n2
i 〉 − 〈ni〉2 of the

number of particles, ni, produced in any rapidity window from string cluster decay in i-th lattice cell,
is proportional to their mean multiplicity, dni = ωμ〈ni〉, with the same factor ωμ. Then

DnF
= DnB

= Dn = 〈n2〉 − 〈n〉2 = ωμ〈n〉+ cov(nF, nB) . (6)

Hence we can find the LRC coefficients using the formula

bnn =
cov(nB, nF)

ωμ〈n〉+ cov(nB, nF)
, bptn =

〈n〉
〈pt〉

cov(ptB, nF)

ωμ〈n〉+ cov(nB, nF)
. (7)

instead of the general definitions (2) and (3). So to find these correlation coefficients we need to
calculate only the following averages: 〈n〉, 〈pt〉, 〈nBnF〉 and 〈ptBnF〉.

As was shown in [8,9,11,12,14,16] in this model with Gaussian distributions one can find the
asymptotes of the long-range FB correlation coefficients at large string density in an explicit analytical
form. In all these papers we supposed that the number of strings, ηi, in each cell fluctuates around
their mean values ηi independently. In the present work we impose the additional condition fixing
the total number of initial strings, N, in each event and study its impact on the LRC coefficients in the
asymptotic regime of high string density.

For this purpose in present analysis we use the following event-by-event string distribution:

P(η1, ..., ηM) =
√

2πωN δ(N − N)
M

∏
i=1

1√
2πωηi

e−
(ηi−ηi)

2

2ωηi , (8)

where N = ∑M
i=1ηi and N = ∑M

i=1ηi. At high string density we can consider ηi, as continuous
variables [8,14,16]. So the distribution (8) is normalized as follows∫

P(η1, ..., ηM) dη1...dηM = 1 .

Below we will denote by 〈...〉 the averages over string configurations, calculated with this
distribution. One can easy check that the mean number of strings in each cell 〈ηi〉 is equal to the
parameter ηi, 〈ηi〉=ηi. In the following consideration the important role will play the variables

νi = ηi − ηi , (9)

characterizing the deviation of ηi from ηi. One can easily verify that for the string distribution (8) we
have the following exact relations:

〈1〉 = 1 , 〈νk〉 = 0 , 〈ν2
k 〉 = ηkω

(
1 − ηk

N

)
, 〈ν4

k 〉 = 3η2
kω2

(
1 − ηk

N

)2
, (10)

〈νkνm〉 = −ηkηm
ω

N
, 〈νkν3

m〉 = −3ηkη2
m

ω2

N

(
1 − ηm

N

)
, 〈νiνkν2

m〉 = −ηiηkηm
ω2

N

(
1 − 3

ηm
N

)
,
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〈ν2
k ν2

m〉 = ηkηmω2
(

1 − ηk
N

− ηm
N

+ 3
ηkηm

N2

)
, 〈νiνjνkνm〉 = 3ηiη jηkηm

ω2

N2 .

If α ≡ ∑n
i=1 αi is odd, then we have

〈να1
i να2

j να3
k ...〉 = 0 , at α ≡

n

∑
i=1

αi = 2l + 1 . (11)

We note that the relations (10) are valid only if i �= j �= k �=m. Really, we see that 〈νkνm〉|k=m �=〈ν2
k 〉,

〈νkν3
m〉
∣∣
k=m �=〈ν4

k 〉 and so on. That is a consequence of the correlations between fluctuations of the ηi in
different cells arising due to the conservation of the total number of strings (see [34]).

Use of the relations (10) and (11) enables drastically simplify the calculation of various averages
in this model, because all integrations over the ηi come down to using these simple rules.

We will calculate the asymptotes of the LRC coefficients (7) at high string density supposing that
all ηi � 1. We will also suppose that M � 1, because as it was discussed in [15,16] with a realistic
string radius rstr = 0.2 ÷ 0.3 fm we need lattices with a large number of cells M ∼ 102 and 104 for a
description of pp and AA collisions correspondingly.

3. Averaging over String Configurations

We will demonstrate the technique of the analytical calculation of the different lattice averages
with the distribution (8) by using as example the most complicated calculation of the mean value of
the intensive variable—the mean transverse momentum of the produced particles, 〈pt〉.

Regarding the accuracy of the calculation, we need to take into account the terms of the order
1/η, 1/η2, 1/(Mη) and 1/(Mη2). Because, as we will see later, the terms of the leading order in
M (the 1/η and 1/η2 in the case of 〈pt〉 calculation) are cancelled when calculating the covariances
entering expressions (7) for the LRC coefficients bnn and bptn. Moreover, in the case of homogeneous
string spreading in transverse plane, when all ηi = η, we have additional mutual cancellation of
the contributions of the order of 1/(Mη) to the LRC coefficients calculated with the distribution (8)
corresponding to a fixed total number of initial strings. In last case the only contribution to the LRC
coefficient originates from the terms of the order of 1/(Mη2).

As was shown in [16] with the prescriptions (4) we can find 〈pt〉 by calculating the following
average over string configurations:

〈ptB〉
p0

=

〈
∑M

i=1η
3
4
i

∑M
k=1η

1
2
i

〉
≡ 〈YZ〉 . (12)

Here we introduce the following notations

Y ≡
M

∑
i=1

η
3
4
i , Z ≡

(
M

∑
i=1

η
1
2
i

)−1

. (13)

Taking into account the definition (9) we can present the Y with the accuracy up to ν4
i as follows

Y = M S3/4

[
1 +

1
MS3/4

M

∑
i=1

η
3
4
i

(
3νi
4ηi

− 3ν2
i

32η2
i
+

15ν3
i

384η3
i
− 45ν4

i

2048η4
i

)]
, (14)

where we have introduced the following convenient notation

Sβ ≡ 1
M

M

∑
i=1

η
β
i . (15)
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To calculate the Z with the same accuracy we at first have to use the expansion

M

∑
i=1

η
1
2
i = M S1/2

[
1 +

1
MS1/2

M

∑
i=1

η
1
2
i

(
νi

2ηi
− ν2

i

8η2
i
+

ν3
i

16η3
i
− 5ν4

i

128η4
i

)]
≡ MS1/2[1 + a] , (16)

where

a =
1

MS1/2

M

∑
i=1

η
1
2
i

(
νi

2ηi
− ν2

i

8η2
i
+

ν3
i

16η3
i
− 5ν4

i

128η4
i

)
. (17)

Then we can write

Z ≡ 1
MS1/2[1 + a]

=
1

MS1/2
[1 − a + a2 − a3 + a4] (18)

Multiplying Y by Z and taking into account only the terms να1
i να2

j να3
k να4

m , satisfying the conditions
α = ∑i αi = 2 or 4 (see Formulas (10) and (11)), we find

YZ =
S3/4

S1/2
[1 + A1 + A2 + B1 + B2 + C] . (19)

Here the A1 and A2 collects four terms with α = 2:

A1 =
1

8MS1/2

M

∑
i=1

ν2
i

η3/2
i

− 3
32MS3/4

M

∑
i=1

ν2
i

η5/4
i

, (20)

A2 =
1

4M2S 2
1/2

M

∑
i,j

νiνj

η1/2
i η1/2

j

− 3
8M2S1/2S3/4

M

∑
i,j

νiνj

η1/2
i η1/4

j

(21)

and the B1, B2 and the C collect12 terms with α = 4:

B1 =
5

128MS1/2

M

∑
i=1

ν4
i

η7/2
i

− 45
2048MS3/4

M

∑
i=1

ν4
i

η13/4
i

(22)

+
1

64M2S 2
1/2

M

∑
i,j

ν2
i ν2

j

η3/2
i η3/2

j

− 3
256M2S1/2S3/4

M

∑
i,j

ν2
i ν2

j

η3/2
i η5/4

j

,

B2 =
1

16M2S 2
1/2

M

∑
i,j

νiν
3
j

η1/2
i η5/2

j

− 5
256M2S1/2S3/4

M

∑
i,j

νiν
3
j

η1/2
i η9/4

j

− 3
64M2S1/2S3/4

M

∑
i,j

νiν
3
j

η1/4
i η5/2

j

(23)

− 3
32M3S 3

1/2

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/2

j η3/2
k

− 3
128M3S 2

1/2S3/4

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/2

j η5/4
k

− 3
32M3S 2

1/2S3/4

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/4

j η3/2
k

,

C =
1

16M4S 4
1/2

M

∑
i,j,k,m

νiνjνkνm

η1/2
i η1/2

j η1/2
k η1/2

m

− 3
32M4S 3

1/2S3/4

M

∑
i,j,k,m

νiνjνkνm

η1/2
i η1/2

j η1/2
k η1/4

m

. (24)

We will see below that the leading contributions to 〈pt〉 originating from the terms A1, A2, B1, B2

and C are of the following order:

A1 ∼ 1
η

, A2 ∼ 1
Mη

, B1 ∼ 1
η2 , B2 ∼ 1

Mη2 , C ∼ 1
M2η2 . (25)

So, taking into account the remark in the beginning of the present Section in the leading
approximation we can do not take the C contribution into consideration.
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Now to calculate the 〈pt〉 by (12) we need to average the expression (19) over string fluctuations,
given by the distribution (8):

〈pt〉
p0

= 〈YZ〉 = S3/4

S1/2
[1 + 〈A1〉+ 〈A2〉+ 〈B1〉+ 〈B2〉+ 〈C〉] . (26)

We can do this using the rules (10) and (11) obtained above. At that we have to take into account
that these rules are valid only for non coinciding arguments (see the remark after the Formula (11)).
So, at first we must express all sums entering the Formulas (20)–(24) through the sums with non
coinciding arguments. We can do it easily using the following obvious relations:

∑
i,j

= ∑
i �=j

+∑
i=j

, ∑
i,j,k

= ∑
i �=j �=k

+ ∑
i=j �=k

+ ∑
i �=j=k

+ ∑
i=k �=j

+ ∑
i=j=k

, (27)

and so on. Then for terms of the general form we have

∑
i,j

〈να1
i να2

j 〉
η

β1
i η

β2
j

= ∑
i �=j

〈να1
i να2

j 〉
η

β1
i η

β2
j

+ ∑
i

〈να1+α2
i 〉

η
β1+β2
i

, ∑
i,j,k

〈να1
i να2

j να3
k 〉

η
β1
i η

β2
j η

β3
k

(28)

= ∑
i �=j �=k

〈να1
i να2

j να3
k 〉

η
β1
i η

β2
j η

β3
k

+ ∑
i �=k

〈να1+α2
i να3

k 〉
η

β1+β2
i η

β3
k

+ ∑
i �=j

〈να1
i να2+α3

j 〉
η

β1
i η

β2+β3
j

+ ∑
i �=j

〈να1+α3
i να2

j 〉
η

β1+β3
i η

β2
j

+ ∑
i

〈να1+α2+α3
i 〉

η
β1+β2+β3
i

.

After that, using the rules (10) and (11) and taking also into account that N = M S1, we find the
answer for 〈pt〉 as the linear combination of the sums of the following type:

∑
i

η
β
i = M Sβ , ∑

i �=j
η

β
i η

γ
j , ∑

i �=j �=k
η

β
i η

γ
j ηδ

k , (29)

and so on. Now to express all these sums through the Sβ, defined by (15), we have to use the relations
inverse to (27):

∑
i �=j

η
β
i η

γ
j = ∑

i,j
η

β
i η

γ
j − ∑

i=j
η

β
i η

γ
j =

(
∑

i
η

β
i

)⎛⎝∑
j

η
γ
j

⎞⎠− ∑
i

η
β+γ
i = M2SβSγ − M Sβ+γ , (30)

∑
i �=j �=k

η
β
i η

γ
j ηδ

k = ∑
i,j,k

η
β
i η

γ
j ηδ

k − ∑
i=j,k

η
β
i η

γ
j ηδ

k − ∑
i,j=k

η
β
i η

γ
j ηδ

k − ∑
i=k,j

η
β
i η

γ
j ηδ

k + 2 ∑
i=j=k

η
β
i η

γ
j ηδ

k

= M3SβSγSδ − M2SβSγ+δ − M2SγSβ+δ − M2SδSβ+γ + 2M Sβ+γ+δ .

Using this technique we can easily check that the leading orders of the terms in the A1, A2, B1, B2

and the C are given by (25). Then, applying this approach and taking into account only the terms of
the order 1/η, 1/η2, 1/(Mη) and 1/(Mη2) in the contributions A1, A2, B1, B2 (see the remark in the
beginning of the present Section) we find

〈pt〉
p0

= 〈YZ〉 = S3/4

S1/2

{
1 + ω

(
S−1/2

8 S1/2
− 3 S−1/4

32 S3/4

)
+ ω2

(
S 2
−1/2

64 S 2
1/2

− 3 S−1/2S−1/4

256 S1/2S3/4
(31)

+
15 S−3/2

128 S1/2
− 135 S−5/4

2048 S3/4

)
+

1
M

[
ω

(
3

32 S1
+

1
4 S 2

1/2
− 3 S1/4

8 S1/2S3/4

)
+ ω2

(
7 S−1

32 S 2
1/2

− 3 S−1/2

32 S 3
1/2

− 29 S−1/2

256 S1S1/2
− 3 S1/4S−1/2

32 S 2
1/2S3/4

+
231 S−1/4

1024 S1S3/4
− 3 S−1/4

128 S 2
1/2S3/4

− 57 S−3/4

256 S1/2S3/4

)]}
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4. Calculation of the Long-Range Correlation Coefficients

Using the methods developed in Section 3 with the example of the 〈pt〉 calculation, we can now
easily find all other averages entering the correlation coefficients bnn and bptn defined by (7) with
necessary accuracy.

In accordance with the prescriptions (4), taking into account (16) and applying the developed
technique we find

〈n〉
μ

= 〈
M

∑
i=1

η
1
2
i 〉 = M S1/2

{
1 − ω

S−1/2

8 S1/2
− ω2 15 S−3/2

128 S1/2
+

1
M

[
ω

1
8 S1

+ ω2 15 S−1/2

64 S1S1/2

]}
. (32)

Using the general expression for 〈ptBnF〉:

〈ptBnF〉
p0μ

= 〈
M

∑
i=1

η
3
4
i 〉 , (33)

obtained in [16] for the LRC, and the Formula (14) we also find that in the framework of the
developed approach:

〈ptBnF〉
p0μ

= M S3/4

{
1 − ω

3 S−1/4

32 S3/4
− ω2 135 S−5/4

2048 S3/4
+

1
M

[
ω

3
32 S1

+ ω2 135 S−1/4

1024 S1S3/4

]}
. (34)

Finally by this technique taking into account the Formula (16) we find for the contribution of the
LRC to 〈nBnF〉 the following expression:

〈nBnF〉
μ2 = 〈

M

∑
i=1

η
1
2
i

M

∑
j=1

η
1
2
j 〉 = M2S 2

1/2

{
1 − ω S−1/2

4 S1/2
− ω2

64 S1/2

(
S 2
−1/2

S1/2
− 15 S−3/2

)
(35)

+
1
M

[
ω

4 S 2
1/2

+
ω2

4 S1/2

(
7 S−1
8 S1/2

+
S−1/2

S1

)]}
.

Now we can calculate the covariances (the correlators) entering the correlation coefficients bnn
and bptn (see the Formula (7)):

cov(nB, nF)

μ2 =
〈nBnF〉 − 〈n〉2

μ2 = M

[
ω

4

(
1 −

S 2
1/2

S1

)
+

ω2

32

(
7S−1 − 6

S1/2S−1/2

S1

)]
, (36)

cov(ptB, nF)

p0μ
=

〈ptBnF〉 − 〈pt〉〈n〉
p0μ

=
ω

4

(
3S1/4

2S1/2
− S3/4

S 2
1/2

− S3/4

2S1

)
(37)

+
ω2

8

(
57 S−3/4

32 S1/2
− 21 S−1/4

32 S1
+

3 S−1/4

16 S 2
1/2

− 7 S3/4S−1

4 S 2
1/2

+
3 S1/4S−1/2

8 S 2
1/2

+
S3/4S−1/2

S 3
1/2

− S3/4S−1/2

S1S1/2

)
.

We really see that all terms proportional M2 in Formula (35) for 〈nBnF〉 are cancelled by the terms
of this order in 〈n〉2. similarly, all terms proportional M in Formula (34) for 〈ptBnF〉 are cancelled by
the terms of this order in the product 〈pt〉〈n〉, given by the Formulas (31) and (32).

Moreover if we will go to the case with a homogenous string distribution in the transverse plane
with some mean string density, corresponding to the same mean number, η, of initial strings in a lattice
(grid) cell, when all ηi = η, then we will have

Sβ ≡ 1
M

M

∑
i=1

η
β
i = η β . (38)
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In this case all contributions proportional to ω in Formulas (35) and (34) for the correlators
(covariances) cov(nB, nF) and cov(ptB, nF) are also mutually cancelled and only the contributions of
the terms of the order ω2 survive. In this simple case the formula for the correlators (covariances)
reduce to

cov(nB, nF)

μ2 = M
ω2

32 η
, (39)

cov(ptB, nF)

p0 μ
= − ω2

128 η2 . (40)

This leads to the proportionality of the the bnn and bptn correlation coefficients (7) at large string
density to 1/η3/2 in this case, instead of 1/

√
η that took place in the case without the fixation of the

total string number [8,9,11,14].
At that by (39) and (40) we see that in this case the bptn correlation coefficient is negative,

whereas the bnn correlation coefficient is positive. Note that without imposing this additional condition,
fixing the total number of strings, both bnn and bptn correlation coefficients were always positive for a
homogeneous string distribution in the transverse plane [8,9,11,14].

5. Summary

We present the developed technique for the analytical calculation of various average values of
extensive and intensive variables at high string densities on the transverse lattice with taking into
account the string fusion effects leading to the formation of string clusters. Using this technique
we calculate the asymptotes of the LRC coefficients between the multiplicities, bnn, and between the
multiplicity and the event-mean transverse momentum, bptn, in two separated rapidity intervals at
high string density and with the fixation of the total number of initial strings. This last condition
models in our approach the fixation of the collision centrality class, which is the usual practice of
analyzing experimental data in modern collider experiments, like RHIC, LHC and so on.

As a result we found that the fixation of the total number of strings has a significant impact on
the behavior of the both type of the correlations, especially in the case of uniform string distribution
in transverse plane. In this case at large string density the bnn and bptn LRC coefficients become
proportional to 1/η3/2 instead of 1/

√
η that took place without the fixation of the total number of

strings [8,9,11,14].
We also found that in this case the correlation coefficient bptn always has a negative value,

while the correlation coefficient bnn is positive. Whereas without fixing the total number of strings
both correlation coefficients bnn and bptn were always positive for a homogeneous distribution of the
strings in the transverse plane [8,9,11,14].

In general, the proposed lattice approach to the analysis of correlations between various extensive
and intense observables can be useful for modeling the magnitude of these correlations under
developing of various detecting systems aimed to study these effects, in particular, in the design
and construction of vertex detectors for the NICA accelerator complex.
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Abstract: The extension of the Standard model by three right-handed neutrino fields exhibit
appealing symmetry between left-handed and right-handed sectors, which is only violated by
interactions. It can accommodate three flavor quasi-Dirac neutrino mixing scheme, which allows
processes with violation of both lepton flavor and total lepton number symmetries. We propose
a 6 × 6 unitary matrix for parameterizing the mixing among three flavors of quasi-Dirac neutrino.
This mixing matrix is constructed by two 3 × 3 unitary matrices that diagonalizes the Dirac mass
term in the Lagrangian. By only assuming the Standard Model V − A weak interaction, it is
found that probabilities of neutrino oscillations among active flavor states and effective masses
measured by single beta decay, by neutrinoless double-beta decay and by cosmology only depend
on single 3 × 3 unitary matrix relevant to mixing of active neutrino flavors. Further, by considering
1σ and 3σ uncertainties in the measured oscillation probability of electron antineutrino from
reactor, derivation of the constraint on the Majorana neutrino mass component is demonstrated.
The consequence for effective Majorana neutrino mass governing the neutrinoless double-beta decay
is discussed.

Keywords: quasi-Dirac; neutrino oscillation; Majorana neutrino mass; neutrinoless double beta decay

1. Introduction

The discovery of neutrino oscillations in experiments with atmospheric, solar, reactor,
and accelerator neutrinos have provided compelling evidence that flavor neutrinos oscillate from
one flavor (electron-, muon-, and tau-) to another due to neutrino mixing and that neutrinos possess
nonzero masses [1], which offer an insight on new physics beyond the Standard Model (SM) [2].

The data from all neutrino oscillation experiments are well described by the three-neutrino mixing:

ναL =
3

∑
j=1

UαjνjL (α = e, μ, τ), (1)

where νj is the field of the neutrino with mass mj and Uαj are the elements of the
Pontecorvo-Maki-Nakagawa-Sakata unitary neutrino matrix [3,4].

The observation of neutrino oscillations implies that the flavor lepton numbers Le, Lμ , and Lτ are
not conserved, which follows from the presence of flavor-mixing neutrino mass term in Lagrangian of
the theory. If the total lepton number L = Le + Lμ + Lτ is conserved, neutrinos with definite masses νj
are Dirac particles (i.e., different from their antiparticle). The theoretical expectation is that L is not
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conserved and, consequently, neutrinos are Majorana particles (i.e., identical to its own antiparticle).
The fundamental problem of nature of neutrinos, which is directly related with the origin of neutrino
masses and mixing, can be experimentally solved by the observation of the L violating processes,
e.g., neutrinoless double-beta (0νββ) decay [5,6].

In the case of the most general Dirac-Majorana mass term, fields of neutrinos with definite masses
are of Majorana nature and their number depends on number of sterile fields (not entering in the
gauge interaction Lagrangian of the SM) and is larger than three [7]. The Dirac-Majorana mass term
can accommodate the seesaw scenario [8–11], which helps to understand the smallness of the neutrino
masses constrained by laboratory and cosmological measurements. In the classical realization of the
seesaw scenario with three right-handed neutrino fields, the Dirac-Majorana mass term is dominated
by the lepton-number-violating right-handed neutrino Majorana masses giving rise to three light and
active neutrinos, and three very heavy sterile neutrinos. Out of these, only the three active neutrinos
participate in solar, atmospheric, and terrestrial neutrino flavor oscillations.

The goal of this paper is to discuss an opposite scenario, in which the Dirac-Majorana mass term
is dominated by the Dirac masses. Such a scenario, in general, leads to six Majorana neutrino states
with pairwise quasi-degenerate masses, referred to as quasi-Dirac neutrinos, see, e.g., [12–15] and
references therein. Here, all six states participate in neutrino flavor oscillations providing much richer
oscillation phenomenology. The tiny neutrino masses can be ascribed to the smallness of neutrino
Yukawa couplings with difficulty to explain why the fermion masses span twelve orders of magnitude.
The solution to this problem can be inspired by extra-dimensional models [16] or can be due a radiative
mechanism for neutrino mass generation [17]. Once the right-handed neutrino fields are accepted in
the theory, it is mandatory to also investigate the quasi-Dirac neutrino regime of the Dirac-Majorana
mass term. The quasi-Dirac neutrinos are distinct from, so called, pseudo-Dirac neutrinos [7,18],
which also exhibit quasi-degenerate mass spectrum, however they are composed exclusively of active
neutrino flavors.

In this paper, a special form of mixing matrix corresponding to this case, which is constructed
with two 3 × 3 unitary matrices, will be presented and motivated. By assuming single small Majorana
component of neutrino masses, the oscillation probabilities and quantities measured in single and
0νββ-decay experiments and in cosmology will be determined. Further, restriction on this parameter
coming from oscillations of electron antineutrinos will be studied and consequences for observation of
the 0νββ-decay will be given.

2. Theory

The quasi-Dirac (QD) neutrino scenario requires a number NR of right-handed neutrino fields
added into the SM Lagrangian, which mix with the SM left-handed neutrino fields via both the Dirac
mass matrix MD and the Majorana mass matrices ML,R, as opposed to the older idea of pseudo-Dirac
neutrinos [7]. In this work, we limit ourselves to the natural case of NR = 3. In that case, the neutrino
Dirac–Majorana mass term in Lagrangian is given as

Lm =
1
2

(
νL νc

R

)
M

(
νc

L
νR

)
+ h.c. , (2)

where the mass matrix M is a 6 × 6 symmetric matrix

M =

(
ML MD
MT

D MR

)
, (3)

where MD is a 3 × 3 complex matrix parametrized by 18 real numbers, and ML,R are 3 × 3 complex
symmetric matrices parametrized by 12 real numbers each. Altogether, it makes 42 real parameters,
out of which six are mass eigenvalues and six are phases absorbed by three left-handed and three
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right-handed neutrino fields. One is left with 15 angles and 15 phases of the 6 × 6 unitary mixing
matrix U , which diagonalizes the mass matrix M according to

UTM̃U = M , (4)

where M̃ is a diagonal mass matrix, which, in general, is given by three Dirac masses mi and 3 mass
splittings εi, so that six neutrino mass eigenvalues m±

i are parametrized as

m±
i = ±mi + εi . (5)

The QD neutrino regime is defined by hierarchy mi � εi. This can be achieved in two different
regimes: (A) |MD| � |ML,R|, or (B) |ML| ≈ |MR|. In order to get the QD mass spectrum within the
regime (B), extreme fine-tuning of elements of ML and MR is required, so that large contributions to
the mass splitting cancel out. Clearly, some symmetry would be needed to make it natural. In what
follows, the subject of our interest is regime (A).

A general parametrization of the 6× 6 unitary diagonalization matrix can be introduced according
to Xing [19] as a product of three unitary matrices (Here, we are using just slightly different
parametrization from that used in [19], Û = A · X · S . The difference is in the ordering of matrices in
the product).

Û = X · A · S , (6)

where A and S mix exclusively active or sterile neutrino flavors, νL or νR, respectively,

A ≡
(

UT 0
0 11

)
and S ≡

(
11 0
0 V†

)
, (7)

each containing three angles and three phases. The remaining nine angles and nine phases are included
in the matrix X , for which the perturbative expansion up to the linear order in the mixing angles
gathered in the general 3 × 3 matrix X is

X =

(
11 X†

−X 11

)
+O(X2) . (8)

For the purpose of the QD scenario, it is useful to reproduce the pure Dirac case for X = 0. This can
be done by inserting a constant unitary matrix T into the definition of the QD unitary diagonalization
matrix U

U = X · T · A · S , (9)

where

T ≡ 1√
2

(
11 −11
11 11

)
. (10)

The expansion of the matrix U up to first order in X is then given as

U =
1√
2

(
(11 + X†)UT −(11 − X†)V†

(11 − X)UT (11 + X)V†

)
+O(X2) . (11)

From that, it can be seen that for X = 0 the unitary matrix diagonalizing the pure Dirac mass term
is reproduced,

M̃(εi=0) = U∗
(X=0)M(ML,R=0)U †

(X=0) , (12)
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provided that the Dirac mass matrix MD is diagonalized by a bi-unitary transformation

M̃ = U† MDV ≡

⎛⎜⎝ m1 0 0
0 m2 0
0 0 m3

⎞⎟⎠ , (13)

U†U = 11 = V†V , (14)

where the tilde denotes that the 3 × 3 matrix M̃ is diagonalized with the eigenvalues of MD on
its diagonal.

The elements of the matrix X are actually calculable perturbatively from the known entries of the
neutrino mass matrix, MD and ML,R, under the assumption that the X is just small perturbation of the
Dirac diagonalization matrix at the same level as the Majorana masses ML,R are small perturbations of
the purely Dirac mass matrix M(ML,R=0), i.e., under the assumption

|X| ∼ |ML,R|/|MD| . (15)

The perturbative diagonalization of the Dirac–Majorana mass matrix (3) to the first order gives
the relation between X and ML,R, dependent on MD and its bi-unitary diagonalization,

X∗M̃ + M̃X = −1
2
[
U† MLU∗ − VTMRV

]
, (16)

which is obtained by the requirement that the off-diagonal blocks of U∗MU † vanish to the first order
in X and ML,R. Simultaneously, the perturbative expressions for diagonal blocks M± of QD mass
matrix after the block-diagonalization to the first order in X and ML,R is given as

M± = ±M̃ +
1
2
[
U† MLU∗ + VTMRV

]
+ . . . , (17)

which should be further diagonalized in order to come to the mass eigenvalues (5). Interestingly, the X
does not enter the first-order expression for the block-diagonalized masses.

The Equations (11) and (17) are the three-flavor generalization of the toy one-flavor QD neutrino
case discussed in [14,15]. It exhibits the same feature that the mass splitting and mixing angles X are
two independent sets of beyond-Dirac parameters. In the special case, when

U† MLU∗ = −VTMRV (18)

we encounter the analogous situation to the pseudo-Dirac neutrinos that are described in [18]. In that
case, the neutrino mass matrix provides three pairs of eigenvalues ±M̃ii degenerate in magnitude,
which correspond to three Dirac neutrinos. The lepton number violating masses MLR are, however,
non-zero, as well as the beyond-Dirac mixing angles X. These new Dirac neutrinos carry a new lepton
number L̂, which is, however, explicitly broken by weak interactions. Weak interactions generate tiny
mass splitting [18] (One should be careful here, as the condition (18) is derived from the perturbative
expressions linear in ML and MR. It is expected that higher-order terms also lift the degeneracy).

In the analysis within the present work, we will use just simplified model, which is exclusively
focused on studying the effects of neutrino mass splitting. Therefore, we set all beyond-Dirac mixing
angles to zero, i.e.,

X = 0 . (19)

As a consequence, the first order expression for the block-diagonalized masses (17) becomes exact.
On top of that, again for simplicity, we choose ML and MR in such way that

1
2
[
U† MLU∗ + VTMRV

]
= ε11 , (20)
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leading to the simplified QD neutrino mass spectrum with a universal Majorana mass splitting ε

m±
i = ±mi + ε , ε > 0 . (21)

As a result of these assumptions, it is the matrix

UQD =
1√
2

(
U U

−V∗ V∗

)
, (22)

which plays the role of the QD 6 × 6 generalization of the PMNS mixing matrix.

3. Consequences of Our Specific QD Scenario for Processes Measuring Neutrino Masses

The general formula for probabilities of neutrino oscillations from flavor α to flavor β for our
specific scenario that is given by (21) and (22) can be written as

Pαβ =

∣∣∣∣∣ 6

∑
i=1

U∗
QD,αiUQD,βie−iM̃2

ii L/2E

∣∣∣∣∣
2

. (23)

From here, it can be clearly seen that, if α and β takes value only for active neutrino flavors, i.e.,
α, β = 1, 2, 3, only the matrix U, and not V, is entering the oscillation probabilities. For the matrix U,
we take the standard parmetrization

U =

⎛⎜⎝ c12c13 s12c13 e−iδs13

−s12c23 − eiδc12s13s23 c12c23 − eiδs12s13s23 s23c13

s12s23 − eiδc12s13c23 −c12s23 − eiδs12s13c23 c13c23

⎞⎟⎠
⎛⎜⎝ 1 0 0

0 eiα21 0
0 0 ei(α31+δ)

⎞⎟⎠ , (24)

where
cij ≡ cos θij , sij ≡ sin θij , (25)

θ12, θ13 and θ23 are three mixing angles, δ is the CP violating Dirac phase and α21 and α31 are two CP
violating Majorana phases. In terms of U, the oscillation probabilities among active neutrinos under
our assumptions (19) and (20) are given by,

Pαβ = δαβ −
3

∑
i=1

|Uαi|2|Uβi|2 sin2 miε

E
L −

3

∑
i>j=1

Re(U∗
αi Uβi UαjU∗

βj)
(

sin2
Δm2

ij + 2εΔmij

4E
L

+ sin2
Δm2

ij − 2ε Σmij

4E
L + sin2

Δm2
ij + 2ε Σmij

4E
L + sin2

Δm2
ij − 2εΔmij

4E
L
)

+
1
2

3

∑
i>j=1

Im(U∗
αi Uβi UαjU∗

βj)
(

sin
Δm2

ij + 2εΔmij

2E
L + sin

Δm2
ij − 2ε Σmij

2E
L

+ sin
Δm2

ij + 2ε Σmij

2E
L + sin

Δm2
ij − 2εΔmij

2E
L
)

(26)

The matrix V enters the probability for oscillations, in which sterile neutrino flavors, νR,
are involved. With ε = 0, Equation (26) reproduces the well known expression of oscillation probability
for three-neutrino mixing.

The oscillation probabilities are functions of 15 mass-squared differences. Among them, just five
are independent and are expressed in terms of 6 parameters, either m±

i , or mi and εi. Within our
constrained neutrino mass spectrum (21), εi = ε, they are explicitly given as

(m±
i )

2 − (m±
j )

2 = Δm2
ij ± 2εΔmij, (m±

i )
2 − (m∓

j )
2 = Δm2

ij ± 2ε Σmij (27)
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for i < j = 1, 2, 3, and for i = j = 1, 2, 3

(m+
i )

2 − (m−
i )

2 = 4εΔmij . (28)

There are just four parameters, mi and ε. These can be traded for another set of four parameters,
Δm2

21, Δm2
31, m1 and ε, as we can write

Δm2
32 = Δm2

31 − Δm2
21 , Δmij = mi − mj , Σmij = mi + mj ,

m2 =
√

Δm2
21 + m2

1 , m3 =
√

Δm2
31 + m2

1 . (29)

As a result, due to the additional assumption (21), εi = ε, we can completely fix the neutrino
mass spectrum, including its absolute mass scale by fitting all oscillation frequencies given by five
independent mass-squared differences. This is, of course, not possible in general case with three
independent mass splittings εi, as fixing of the five independent mass-squared differences is not
enough to determine six mass parameters, mi and εi.

The amplitude for the 0νββ decay is given by the effective Majorana neutrino mass defined as

mββ =
[
ML

]
ee =

[
UQDM̃UT

QD
]

ee . (30)

For our constrained case εi = ε and X = 0, it reduces to the expression

mββ =

∣∣∣∣∣ 3

∑
i=1

U2
eiε

∣∣∣∣∣ = ε
∣∣∣c2

12c2
13 + e2iα21 c2

13s2
12 + e2iα31 s2

13

∣∣∣ . (31)

It means that the effective neutrino mass for 0νββ decay is, in our scenario, directly proportional
to the mass splitting ε with the factor of proportionality of the order of ∼O(1) given the best fit values
for θ12 and θ13, and for marginalized values of the Majorana phases α21 and α31.

The effective electron neutrino mass for single beta decay is in our case

mβ =

√√√√ 6

∑
i=1

∣∣UQD,ei
∣∣2 M̃2

ii =

√√√√ 3

∑
i=1

|Uei|2 (m2
i + ε2)

=
√

m2
1c2

12c2
13 + m2

2c2
13s2

12 + m2
3s2

13 + ε2 = m(0)
β

(
1 +

1
2

(
ε/m(0)

β

)2
+ . . .

)
, (32)

where m(0)
β ≡ mβ

∣∣
ε=0 is the effective neutrino mass for standard three neutrino mixing case.

The sum of the six QD neutrino mass eigenvalues is the parameter relevant for cosmology. It turns
out trivially that the cosmology is insensitive to the universal mass splitting ε used in our simplified
model as long as mi > ε:

1
2

6

∑
i=1

∣∣M̃ii
∣∣ = 3

∑
i=1

mi . (33)

The factor of 1
2 reflects the QD (or Dirac) nature of neutrinos, in which case, effectively, only two

out of their four states are kept in equilibrium with cosmological plasma of the early Universe by the
V − A interactions of the SM.

4. The Survival Probabilities of Electron Antineutrino

In this section, we discuss the survival probability (Pν̄e→ν̄e ) of electron antineutrino produced at
the reactor with energy E and detected at the detector after traversing a baseline L. In three-flavor
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model of neutrino oscillation, the well-known expression of Pν̄e→ν̄e , which can be obtained by putting
ε = 0 in Equation (26), is given by

Pν̄e→ν̄e(ε = 0) = 1 − 4 c4
13s2

12c2
12 sin2 Δm2

21L
4E

− 4 s2
13c2

13

(
c2

12 sin2 Δm2
31L

4E
+ s2

12 sin2 Δm2
32L

4E

)
. (34)

In above equation, Δm2
21 and Δm2

31 are solar and atmospheric mass-squared differences,
respectively. The parameter θ12 and θ13 are mixing angles that are related to our matrix U [3,4].
One can see that the ν̄e survival probability is a function of mass-squared differences, and does not
depend on the absolute mass scale of neutrino. In case of quasi-Dirac nature of neutrino, ε �= 0, and the
mixing among active and sterile neutrinos modifies the neutrino oscillation probabilities. For ε �= 0,
we obtain the expression of ν̄e survival probability from Equation (26), as follows,

Pν̄e→ν̄e(ε �= 0) = 1 − P1 − 4 c4
13c2

12s2
12F21 − 4 s2

13c2
13(c

2
12F31 + s2

12F32) , (35)

with
P1 = c4

13c4
12 sin2 m1εL

E
+ c4

13s4
12 sin2 m2εL

E
+ s4

13 sin2 m3εL
E

, (36)

Fij =
1
4

(
sin2

Δm2
ij + 2εΔmij

4E
L + sin2

Δm2
ij − 2εΔmij

4E
L

+ sin2
Δm2

ij + 2ε ∑ mij

4E
L + sin2

Δm2
ij − 2ε ∑ mij

4E
L
)

. (37)

For very small ε, with an approximation of εΔmij � Δm2
ij, Equation (37) boils down to the

following simplified expression of survival probability of ν̄e,

Pν̄e→ν̄e(ε �= 0) = Pν̄e→ν̄e(ε = 0)− ε2L2

E2

[
c4

13c4
12m2

1 + c4
13s4

12m2
2 + s4

13m2
3

]
− ε2L2

4E2

[
4 c4

13s2
12c2

12Σm2
21 cos

Δm2
21L

2E
+ 4s2

13c2
13c2

12Σm2
31 cos

Δm2
31L

2E

+4 s2
13c2

13s2
12Σm2

32 cos
Δm2

32L
2E

]
+O(ε4) , (38)

where Σm2
ij ≡ m2

i + m2
j . Using this simple expression, we can explain the following features of ν̄e

survival probability with a small value of ε.

• We see that Pν̄e→ν̄e(ε �= 0)− Pν̄e→ν̄e(ε = 0) is directly proportional to L/E ratio multiplied with ε.
Thus, as we go to higher L/E, the effect of ε becomes larger.

• Since θ13 is very small when compared to θ12, the term m2
3 sin4 θ13 in second part of Equation (38)

becomes negligible as compared to two other terms containing m1 and m2, respectively. As a result,
the second part of Equation (38) in the case of NO (m1 < m2 < m3) is always smaller than that in
IO scenario (m3 < m1 < m2). Therefore, we expect the modification in survival probability due to
non-zero ε to be smaller when the mass pattern is NO than that for IO.

In Figure 1, we show the survival probabilities of electron antineutrino as a function of energy
for 1.5 km (top panels), 53 km (middle panels), and 180 km (bottom panels) baselines—relevant for
short, medium, and long-baseline reactor neutrino oscillation experiments, respectively. We show
the probabilities for three cases: (i) ε = 0, 3ν mixing case, (ii) ε = 10−4 eV, and (iii) ε = 2 × 10−4

with black, green, and red lines, respectively. The plots shown in left (right panels) are with normal
(inverted) ordering for which m1 (m3) is lightest Dirac mass. Here, for cases (ii) and (iii), lightest Dirac
mass is assumed to be 0.01 eV. The value of oscillation parameters that we use in this study are given
in Table 1. These values are similar as obtained in the global fit to neutrino oscillation data [20–22].
Note that, if the neutrino oscillation data are fitted in the current framework with six quasi-Dirac
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neutrinos, the best-fit value of mixing angles and mass-squared difference may be slightly different than
that we use. However, we expect that these values will not be beyond the current 3σ allowed range,
as obtained in the global fit of neutrino data in three-flavor Dirac neutrino mixing framework [20–22].
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Figure 1. The survival probabilities of ν̄e as the functions of energy E for 1.5 km (upper panel), 53 km
(middle panel), and 180 km (lower panel) baselines. The plots in left and right panels are with NO and
IO as mass orderings, respectively. The probabilities are shown for three cases: (i) ε = 0, 3ν mixing case,
(ii) ε = 10−4 eV, and (iii) ε = 2× 10−4 eV, with black, green, and red lines, respectively. In cases (ii) and
(iii), the lightest Dirac mass is 0.01 eV. The cyan bands represent ν̄e survival probabilities in three-flavor
neutrino oscillation framework with 3σ allowed range of oscillation parameters. The benchmark values
of oscillation parameters along and their 3σ allowed ranges, as used in this study, are given in Table 1.

The common feature that emerges from all of the panels of Figure 1 is the larger effect of non-zero
ε in ν̄e survival probabilities for IO than NO. The reason behind this is already discussed while using
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Equation (37). In case of L = 1.5 km baseline, the survival probability of ν̄e shown in red and green
lines (cases ii and iii) are exactly same as black line (with ε = 0), as can be seen from top panels of
Figure 1. This is true for both the mass orderings, NO and IO. From this observation, one can infer that
the short-baseline experiments will not be able to see the signal for the quasi-Dirac nature of neutrino
if ε is of the order of 10−4 eV. For baseline L = 53 km (see middle panels of Figure 1), ν̄e survival
probabilities with cases (ii) and (iii) are similar to case (i), except a small difference at E ≈ 1.8 MeV if
mass ordering is NO. However, with IO, ν̄e survival probabilities get modified by a large amount in
the whole range of E (1 MeV to 10 MeV) due to non-zero ε considered here. This proves that medium
baseline neutrino oscillation experiment, like JUNO, will be able to see the signal for quasi-Dirac
nature of neutrino with ε ∼ 10−4 eV only if mass ordering is IO. As we go to higher L, for an example
L = 180 km (see bottom panels of Figure 1), ν̄e survival probabilities with ε ∼ 10−4 eV (green and red
lines) are significantly different than that of the three-flavor. Thus, we expect that long-baseline reactor
neutrino experiments are suitable for providing better constraint on ε.

Table 1. The benchmark values of the oscillation parameters and their 1σ and 3σ allowed ranges that
we use in this paper. These values are similar, as obtained in the global fit to neutrino oscillation
data [20–22].

Parameters Best Fit Values 1σ Range 3σ Range

θ12 (◦) 34 [33.1, 34.6] [31, 37]

θ13 (◦) 8.5 [8.48, 8.74] [40, 53]

|Δm2
31/10−3| (eV2) 2.5 [2.49, 2.55] [2.4, 2.6]

Δm2
21/10−5 (eV2) 7.5 [7.2,7.6] [6.7, 8.0]

5. Constraints on Majorana Component of Neutrino Masses

A preliminary idea about the allowed values of lightest Dirac mass and ε can be achieved from
ν̄e survival probabilities for a fixed neutrino energy and baseline. Keeping the oscillation parameters
fixed at the benchmark values, we scan the lightest Dirac mass (m1 for NO and m3 for IO) and
ε in the range of 10−5 eV to 0.1 eV to reproduce the ν̄e survival probabilities in the range that is
allowed by the three-flavor neutrino oscillation framework and the current 1σ or 3σ uncertainties of
oscillation parameters.

Figure 2 presents the allowed region in the plane of lightest Dirac mass and ε which we obtain
following the above mentioned method for 1.5 km baseline and two fixed energies 4 MeV (top panels)
and 8 MeV (bottom panels) for demonstration purpose. We present these limits with benchmark
values (green line), 1σ (pink and red lines) and 3σ (cyan and blue lines) allowed range of oscillation
parameters. The limits in the case of IO (right panels) is more stringent than that for NO (left panels)
for both of the energies due to a larger effect of ε in ν̄e survival probabilities for IO, which is explained
in Section 4.

If we ignore the small features above ε > 0.01 eV, which are expected to have just a small chance
to survive after the full oscillation data analysis of the QD scenario, one may say that the region below
the cyan line in all of the panels Figure 2 are allowed by 3σ uncertainty of oscillation parameters.
Here, we do not demand that these limits are final since the detailed statistical analysis with spectral
information of events with detector properties would give the concrete results. Our attempt here
is to demonstrate the validity of the theory that we propose based on the oscillation probabilities
in a simplified manner. The study of quasi-Dirac neutrino with detailed analysis of events at the
neutrino oscillation experiments to constraint the lightest Dirac mass and ε in this framework would
be interesting for future study.

Obviously, Figure 2 shows larger region of ε-m1(m3) parametric space than corresponding to QD
scenario defined by mi � ε. Namely, the additional regions lie around and above the diagonal axis,
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where the lightest Dirac mass gets comparable and smaller to ε, respectively. The allowed region,
below the cyan line, however still guarantees that at least the heaviest pair of neutrinos is of QD nature.

  

  

Figure 2. The top (bottom) panels show the allowed ranges of lightest Dirac mass and ε that are
obtained using 1.5 km baseline and 4 MeV (8 MeV) energy. The left and right panels are obtained with
NO and IO, respectively. In all of the panels, pink (cyan) and red (blue) lines correspond to minimum
and maximum ν̄e survival probabilities, respectively, allowed in three-flavor neutrino oscillation
picture with 1σ (3σ) uncertainty of oscillation parameters. The green line corresponds to ν̄e survival
probability in 3ν framework with the benchmark value of oscillation parameters. For details, see text.
The benchmark values of oscillation parameters along with their 1σ and 3σ allowed ranges, used in
this study, are given in Table 1.

If the limits that are given by the cyan lines (3σ) in the Figure 2 will be approved by the future full
analysis, the conservative limits on the effective neutrino Majorana mass within our simplified QD
model will be

mββ � 30 meV for NO,

� 1 meV for IO. (39)

As seen from Equation (31), the mββ represents linear effect of ε, in contrast to the correction to
the effective electron mass for single-beta decay mβ given in Equation (32), which is quadratic in ε.
Therefore, the effect of ε on the single-beta decay within our simplified QD model is expected to be,
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at most, at the level of few percent, as long as m1 > ε in NO or m3 > ε in IO. The cosmology is in this
regime even completely insensitive to ε, see Equation (33).

The above conclusions are valid for the universal Majorana mass contribution ε to neutrino
masses. More comprehensive analysis with non-universal εi (i = 1 to 3) and mixing angles as free
parameters could modify this conclusion about mββ and its dependence on Dirac component of lightest
neutrino mass via neutrino oscillation analysis. Recall that the oscillation probabilities of neutrinos
depend on both Dirac mi and Majorana εi masses.

6. Conclusions

The quasi-Dirac neutrino mixing scheme incorporating three pairs of Majorana neutrinos with
quasi-degenerate masses was analyzed. The diagonalization of the Dirac-Majorana mass term with
6 × 6 unitary neutrino mixing matrix, which is generally parametrized with 15 mixing angles and
15 CP-violating phases, was discussed. By exploiting the limiting case of three Dirac neutrinos and
assuming a small Majorana component in neutrino masses, the quasi-Dirac 6 × 6 neutrino mixing
matrix UQD constructed with two 3 × 3 unitary mixing matrices, each of them incorporating three
mixing angles and three phases, was proposed. For the sake of simplicity, only left-handed weak
interaction of the SM was assumed. It was found that probabilities for oscillations of 3 flavor neutrinos
(νe, νμ, ντ) can be described with eight parameters, namely three angles (θ12, θ13, and θ23) and one
Dirac CP phase δ having origin in a single unitary matrix, two mass squared differences (Δm2

21 and
Δm2

31), the lightest neutrino mass (m1 for normal ordering and m3 for inverted ordering of Dirac
neutrino masses), and a small Majorana neutrino mass parameter ε. Recall that, within the commonly
considered mixing scheme of three neutrinos, the required number of parameters is only two less
(three mixing angles, one phase, and two mass squared differences). Further, it was established that
the effective Majorana mass entering the 0νββ-decay rate is proportional to ε, the sum of neutrino
masses measured by cosmology only contains contributions of Dirac masses m1, m2, and m3, and that
the effective neutrino mass measured in tritium β-decay is practically not affected by ε as long as it is
a small quantity when compared to the Dirac masses, ε < mi.

The first simplified analysis of parameters of 3+3 quasi-Dirac neutrino mixing scheme was
performed by exploiting the 1σ and 3σ uncertainty of measured probability of νe oscillations from
a reactor. The mixing angles θ12, θ13, and mass squared differences Δm2

21 and Δm2
31 were considered

to be those that were determined within the PMNS unitary mixing scheme with three neutrinos.
The lightest Dirac neutrino mass and ε were considered to be free parameters. It was manifested that
a tiny value of ε below 1 MeV is not affecting the current phenomenology representing, e.g., by the
Daya–Bay experiment, but they can have significant impact on the JUNO experiment registering
oscillations of antineutrinos at significantly larger distance. A detailed study on restriction of
ε, which depends on the considered value of lightest neutrino mass and ordering of neutrinos
(normal or inverted) was presented. We keep our study simplified to have better insight. For this,
in this paper, we study the consequences of quasi-Dirac scenario in neutrino oscillation when only
considering the reactor experiments, since the oscillation channel that governs the disappearance
of reactor ν̄e is independent of Dirac CP phase as well as same as vacuum oscillation probabilities.
It goes without saying that a more comprehensive analysis covering oscillations of atmospheric, solar,
and terrestrial neutrinos in which all involved parameters are assumed to be free are a subject of interest.
The three Majorana constituents of the neutrino mass would be considered as a free parameters and
a comprehensive study of all parameters of this model would be performed by considering data of all
types of neutrino oscillations experiments. It might be that due to a large number of degrees of freedom
some unconventional solutions could be found, which will require additional neutrino oscillations
experiments with different baselines, energy, and high statistics of data. Of course, this task is beyond
the scope of the present article.
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10. Mohapatra, R.N.; Senjanović, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett.

1980, 44, 912–915. [CrossRef]
11. Schechter, J.; Valle, J.W.F. Neutrino masses in SU(2)

⊗
U(1) theories. Phys. Rev. D 1980, 22, 2227–2235.

[CrossRef]
12. Valle, J.W.F. Neutrinoless double-β decay with quasi-Dirac neutrinos. Phys. Rev. D 1983, 27, 1672–1674.

[CrossRef]
13. de Gouvêa, A.; Huang, W.C.; Jenkins, J. Pseudo-Dirac neutrinos in the new standard model. Phys. Rev. D

2009, 80, 073007. [CrossRef]
14. Anamiati, G.; Fonseca, R.M.; Hirsch, M. Quasi-Dirac neutrino oscillations. Phys. Rev. D 2018, 97, 095008. [CrossRef]
15. Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C.A.; Tórtola, M. Quasi-Dirac neutrino oscillations at DUNE

and JUNO. Phys. Rev. D 2019, 100, 035032. [CrossRef]
16. Dienes, K.R.; Dudas, E.; Gherghetta, T. Neutrino oscillations without neutrino masses or heavy mass scales:

A Higher dimensional seesaw mechanism. Nucl. Phys. B 1999, 557, 25–59. [CrossRef]
17. Cai, Y.; Herrero-García, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. From the trees to the forest: A review of

radiative neutrino mass models. Front. Phys. 2017, 5, 63. [CrossRef]
18. Wolfenstein, L. Different Varieties of Massive Dirac Neutrinos. Nucl. Phys. B 1981, 186, 147–152. [CrossRef]
19. Xing, Z.Z. A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy

sterile neutrinos. Phys. Rev. D 2012, 85, 013008. [CrossRef]
20. Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Addendum to:

Global constraints on absolute neutrino masses and their ordering. arXiv 2020, arXiv:2003.08511.
21. De Salas, P.; Gariazzo, S.; Mena, O.; Ternes, C.; Tórtola, M. Neutrino Mass Ordering from Oscillations and

Beyond: 2018 Status and Future Prospects. Front. Astron. Space Sci. 2018, 5, 36-1–36-50. [CrossRef]
22. Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of

three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass
ordering. JHEP 2019, 1, 106. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

132



symmetryS S

Article

Rephasing Invariant for Three-Neutrino Oscillations
Governed by a Non-Hermitian Hamiltonian

Dmitry V. Naumov, Vadim A. Naumov * and Dmitry S. Shkirmanov

JINR, Dubna 141980, Russia; dnaumov@jinr.ru (D.V.N.); shkirmanov@theor.jinr.ru (D.S.S.)
* Correspondence: vnaumov@theor.jinr.ru

Received: 18 June 2020; Accepted: 13 July 2020; Published: 3 August 2020

Abstract: Time-reversal symmetry is broken for mixed and possibly unstable Dirac neutrino propagation
through absorbing media. This implies that interplay between the neutrino mixing, refraction, absorption
and/or decay can be described by non-Hermitian quantum dynamics. We derive an identity which sets
up direct connection between the fundamental neutrino parameters (mixing angles, CP-violating phase,
mass-squared splittings) in vacuum and their effective counterparts in matter.

Keywords: neutrino oscillations in matter; rephasing invariant; neutrino absorption

1. Introduction

High-energy neutrinos, unique messengers of the most violent processes that occurred during
the evolution of the Universe, are under extensive study by the modern neutrino telescopes
(see reference [1] for a comprehensive recent review and further references). The propagation of
these particles through dense matter requires a theoretical consideration accounting for two major
phenomena. (i) The quantum coherence and decoherence, most clearly manifested in the neutrino
oscillation phenomenon, firmly established experimentally [2–10]. The corresponding theoretical
approaches rely on either quantum mechanical [11–13] or quantum field theory [14–20] considerations.
(ii) Neutrino production, inelastic interactions, and possible decays, typically considered by the
classical transport theory [21–23].

In this paper we consider a more particular aspect of the full problem—propagation of high-energy
neutrinos in dense environment with accounting for neutrino masses, mixing, CP violation, refraction,
and absorption. We do not consider neutrino energy loss through neutral-current (NC) interactions
and charged-current (CC) induced reaction chains, but of course we take into account disappearance
of the neutrinos due to all these processes. In other words, the formalism does not predict the
energy spectrum transformation due to the energy losses. This is acceptable in the case of sufficiently
narrow boundary energy spectrum or nearly-monochromatic neutrino source, when we are interested
in the flavor evolution at the same energy as on the boundary or in the source (e.g., annihilating
non-relativistic WIMS). Since, in this statement of the problem, neutrinos simply disappear with time
(due to both CC and NC interactions), the time-reversal symmetry is broken and the neutrino flavor
evolution can be described within a non-Hermitian formulation of quantum mechanics. The inclusion
of the neutrino energy loss effects is of course very important in more general and practically interesting
conditions, but it will also require the more universal formalism, like quantum kinetic equations or a
hybrid (approximate) technique based on the non-Hermitian dynamics and classical transport theory.
One of the simplest realization of the hybrid approach is in the replacement of the mean free paths Λα

(see Section 2) to effective functions Λ̃α derived from solution of the classical transport equations [22]
for the given initial spectrum/source and given profiles of density and composition of the medium
along the neutrino beam direction. Such a method conserves the generic results of the present study.
The approach based on the the non-Hermitian dynamics has been considered earlier in reference [24],
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for a generic three-level system and latter in reference [25], for a simplified two-flavor mixing model,
which included either the mixing between the active (standard) or active and sterile neutrinos; see also
references [26,27] for recent developments and further references. Here we follow these studies and
consider the Standard Model’s three-neutrino species.

Consideration of the neutrino oscillation phenomenon in the simplest adiabatic regime usually
requires a diagonalization of the corresponding Hamiltonian. The instantaneous eigenstates are
defined not uniquely but up to certain (“rephasing”) transformations, keeping the observable
transition and survival probabilities Pαβ ≡ Pνα→νβ

invariant. This is discussed in greater details
in Section 3. An important class of observables invariant under the same transformations is known as
flavor-symmetric Jarlskog invariants, introduced by Jarlskog [28] for quarks. In the three-generation
case, the nine Jarlskog invariants are equal and uniquely determine the amount of CP violation in the
quark sector of the Standard Electroweak Model. Similar rephasing invariants determine the amount
of CP violation in the lepton sector. In present work, we found an extension of the Jarlskog invariants
for the dissipating three-neutrino system; this is one of the results of this study.

As was first pointed out by Wolfenstein [29], the neutrino mixing is modified when neutrinos
propagate through normal C-asymmetric matter, owing to the CC forward scattering of electron
neutrinos on electrons in matter. In some circumstances, these ghostly interactions may drastically
modify the neutrino oscillation pattern [30,31]. It is however interesting that a nontrivial
observable proportional to the Jarlskog invariant, J, is also a “matter invariant”. More precisely,
in references [32,33] (see also reference [34] for a relevant result), an identity has been found which
relates the products of J and neutrino squared-mass splittings, Δmij = m2

i − m2
j , in vacuum and

in matter:
JΔm2

23Δm2
31Δm2

12 = J̃Δm̃2
23Δm̃2

31Δm̃2
12. (1)

Here tilde marks the quantities perturbed by the matter. This identity has proved to be useful
in various phenomenological and mathematical aspects of the oscillating neutrino propagation in
matter [35–80]. The main result of the present work is a generalization of the identity (1) to the case of
the neutrino propagation in absorbing media, which can be described by non-Hermitian dynamics.
Since the quantities in the RHS of Equation (1) are defined as instantaneous functions, the adiabaticity
conditions are not formally essential (so we do not study the corresponding constraints). However,
the actual usage of the generalized identity is mainly reasonable in the environments where the
neutrino flavors evolve adiabatically or quasi-adiabatically. It is also pertinent to note that the adiabatic
solution can be adapted to form the basis of a numerical method: by dividing the medium into a
number of layers with slowly varying densities, the solution is obtained as chronological product of
the (non-unitary) evolution operators for each layer [25]. Though, our primary interest is motivated by
the neutrino oscillation phenomenon, the obtained identity has a much wider range of applicability
relevant to arbitrary quantum three-level system governed by a non-Hermitian Hamiltonian.

The paper is organized as follows. The master equation and appropriate theoretical framework
are considered in Section 2. In Section 3 we introduce two “mixing matrices” for a generic
three-level quantum dissipative system, describing, in particular, the neutrino mixing, refraction,
decay, and absorption due to standard or nonstandard inelastic neutrino-matter interactions. We show
that these matrices are not uniquely defined. In Section 4 we study the generalized “rephasing” and
“dynamic” invariants constructed from the elements of the mixing matrices and of the Hamiltonian
matrix, respectively. Then we put forward the relation generalizing the identity (1). The proof of
this relation is delivered in Appendix A. Finally, we draw the summary in Section 5. Some auxiliary
information is summarized in Appendix B.

2. Master Equation

The Schrödinger equation

i
d
dt
|ν f (t)〉 = H(t)|ν f (t)〉 (2)
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describes the time evolution of the three-neutrino state

|ν f (t)〉 =
(
|νe(t)〉, |νμ(t)〉, |ντ(t)〉

)T (3)

governed by a Hamiltonian H(t). The bold face is used for matrices in what follows. The flavor να

(α = e, μ, τ) and mass νi (i = 1, 2, 3) eigenstates are related to each other as

|να〉 =
3

∑
i=1

Vαi|νi〉. (4)

This definition differs from that used in quantum filed theoretical (QFT) description.
Their relationship is given by VQFT = V∗

QM. Since the observables are flavor changing probabilities
Pαβ(t) = |〈νβ|να(t)〉|2, it is convenient to rewrite Equation (2) as one for the corresponding amplitudes

Sβα(t) = 〈νβ|να(t)〉 (5)

as follows
i

d
dt

S(t) = H(t)S(t) =
[
VH0V† + W(t)

]
S(t), (S(0) = 1) , (6)

where S(t) is a matrix with elements Sαβ(t) (evolution operator), V is the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix with elements Vαi, H0, and W(t)
are the free and neutrino-matter interaction Hamiltonians, respectively,

H0 =

⎛⎜⎝E1 0 0
0 E2 0
0 0 E3

⎞⎟⎠ , W(t) = −pν

⎛⎜⎝ne(t)− 1 0 0
0 nμ(t)− 1 0
0 0 nτ(t)− 1

⎞⎟⎠ , (7)

Ei =
√

p2
ν + m2

i � pν + m2
i /2pν and mi are, respectively, the total energies and masses of the

neutrino mass eigenstates, and nα(t) are the complex indices of refraction; where we assume, as usual,
that neutrinos are ultrarelativistic, p2

ν � E2
ν � max

(
m2

i
)
. In normal matter, the functions nα are linear

with respect to the densities of scatterers. The same is also true for hot media under the assumption that
introduction of a finite temperature does not break the coherent condition [81]. With these assumptions

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑
k

Yk(t) fναk(0), (8)

where N0 = 6.022 × 1023 cm−3, fναk(0) is the amplitude for the να zero-angle scattering from particle k
(k = e, p, n, . . .), ρ(t) is the density of the matter (in g/cm3) and Yk(t) is the number of particles k per
AMU in the point t of the medium. The optical theorem says (see, e.g., reference [82]):

Im [ fναk(0)] =
pν

4π
σtot

ναk (pν) , (9)

where σtot
ναk (pν) is the total cross section for ναk scattering due to both CC and NC interactions.

This implies that

pνIm [nα(t)] =
N0ρ(t)

2 ∑
k

Yk(t)σtot
ναk (pν) =

1
2Λα(t)

, (10)

where Λα(t) is the (energy dependent) mean free path of neutrino να in the point t of the medium.
It is convenient to transform Equation (6) into the one with a traceless Hamiltonian. For this

purpose we define the matrix

S̃(t) = exp
{

i
3

∫ t

0
Tr
[
H0 + W(t′)

]
dt′

}
S(t). (11)
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After substituting Equation (11) into Equation (6), we have

i
d
dt

S̃(t) = H(t)S̃(t), S̃(0) = 1, (12)

where

H(t) =

⎛⎜⎝ We − qe Hτ H∗
μ

H∗
τ Wμ − qμ He

Hμ H∗
e Wτ − qτ

⎞⎟⎠ . (13)

The constants Wα and Hα are determined by the elements of the PMNS matrix, V = ‖Vαi‖, and
by the neutrino masses mi:

Wα = ∑
i
|Vαi|2Δi, Hα = ∑

i
η

βγ
α VβiV∗

γiΔi,

Δi =
m2

i − 〈m2〉
2pν

, 〈m2〉 = 1
3 ∑

i
m2

i .
(14)

The PMNS matrix is usually parameterized in terms of three mixing angles and the CP-violating
(Dirac) phase (see Appendix B); the two additional phases present in the Majorana case do not affect
the neutrino oscillation pattern in matter. Here and below, the symbol η

βγ
α is defined to be 1 if the

triplet (α, β, γ) is a cyclic permutation of the indices (e, μ, τ) and zero otherwise.
The traceless Hamiltonian (13) depends on the distance L = t through the set of optical potentials,

q = (qe, qμ, qτ), related to the neutrino indices of refraction, nα(t), for a given medium:

qα(t) = pν[nα(t)− 〈n(t)〉], 〈n(t)〉 = 1
3 ∑

α

nα(t). (15)

It is seen from Equation (15) that evolution of the neutrino flavors in arbitrary medium depends
on no more than two independent potentials qα(t) due to the identity

∑
α

qα(t) = 0.

In general, the indices of refraction nα(t) and thus optical potentials qα(t) are complex functions
(see below). Owing to radiative electroweak contributions, the real parts of the potentials for different
neutrino flavors α differ in magnitude, in both normal cold media [83,84] and hot CP-symmetric
plasma (such as the early Universe) [81]. The imaginary parts of the potentials are given by

Im qα(t) =
1
2

[
1

Λα(t)
− 1

Λ(t)

]
,

1
Λ(t)

=
1
3 ∑

α

1
Λα(t)

, (16)

and are in general nonzero functions of neutrino energy and distance. This makes the Hamiltonian (13)
non-Hermitian.

The neutrino flavor changing oscillation probabilities are just the squared absolute values of the
elements of the evolution matrix S(t),

P [να(0) → να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 . (17)

Taking into account Equations (7), (10), (11) and (17) yields

Pαα′(t) = A(t)
∣∣∣S̃α′α(t)

∣∣∣2 , (18)
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where

A(t) = exp
[
−
∫ t

0

dt′

Λ(t′)

]
. (19)

This factor accounts for the attenuation (due to inelastic scattering) of all flavors in the mean.
It is apparent that in the absence of mixing and refraction (that is an appropriate approximation at
superhigh energies),

S̃α′α = δα′α exp
[
−
∫ t

0
Im qα(t′)dt′

]
and, according to Equations (18) and (19), the survival and transition probabilities reduce to the
“classical limit”:

Pαα′(t) = δαα′ exp
[
−
∫ t

0

dt′

Λα(t′)

]
.

Owing to the complex potentials qα, the Hamiltonian in Equation (13) is non-Hermitian and
the evolution matrix S̃(t) is non-unitary. It is apparent that the matrix H(t) becomes Hermitian
when one neglects differences in the mean free paths of neutrinos of different flavors. In this
case, Equation (12) reduces to one describing the standard Mikheev–Smirnov–Wolfenstein (MSW)
mechanism [29–31]. Clearly, this approximation may not be good for very thick environments and/or
very high neutrino energies.

At essentially all energies, the CC total cross sections for e or μ production in the neutrino and
antineutrino interaction with nucleons are well above the one for the τ-lepton production,

σCC
νe,μ N > σCC

ντ N , σCC
νe,μ N > σCC

ντ N .

This is because of large value of the τ-lepton mass, mτ , which leads to several consequences (see,
e.g., references [85,86] and references therein):

(i) high neutrino energy threshold for τ production;
(ii) sharp shrinkage of the phase spaces for the CC interactions of ντ and ντ with protons, neutrons,

and nuclei;
(iii) kinematic correction factors (∝ m2

τ) to the nucleon structure functions (the corresponding
structures are negligible for the electron production and small for the muon production);

(iv) the differences σCC
νe,μ N − σCC

ντ N and σCC
νe,μ N − σCC

ντ N are relatively slow varying functions of
(anti)neutrino energy, having gently sloping maxima in the range of 10–100 PeV and vanishing at
super-high energies.

Since the Standard Model NC interactions are universal for all neutrino flavors, it is clear from
Equation (16), that the NC contributions to the total cross sections are canceled out from Im qα and
thus Im

(
qe,μ − qτ

)
> 0 at all energies. However, nonstandard NC interactions may be in general

different for different flavors and thus contribute to both real and imaginary parts of the potentials
qα. Moreover, flavor-changing interactions (see, e.g., references [87,88] and references therein) would
contribute to the non-diagonal elements of the Hamiltonian making these t-dependent.

Similar situation, although in different and rather narrow energy range, holds for νe interaction
with electrons. This is a particular case for the C-asymmetric media (planets, stars, astrophysical jets,
etc.) because of the W-boson resonance formed in the neighborhood of Eres

ν = m2
W/2me ≈ 6.33 PeV

through the reactions

νee− → W− → hadrons and νee− → W− → ν��
− (� = e, μ, τ).

Just at the resonance peak, σtot
νee ≈ 250 σtot

νe N (see, e.g., references [89–91] and references therein).
We conclude this section by explicitly emphasizing that the master equation to be solved is given

by Equation (12) and the relevant definitions are given by Equations (8) and (13)–(15).
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3. Mixing Matrices In Matter

Solution of the master equation (12) in adiabatic approximation has been found in reference [24].
In the present study we do not use the explicit form of that solution. Moreover, below we will
consider an abstract Hamiltonian, which is a 3 × 3 complex matrix H describing a generic 3-level
quantum system with dissipation (through absorption, friction, decay, etc.); such a Hamiltonian
may, in particular, be used to describe the nonstandard neutrino interactions and decay. Below,
keeping in mind our particular problem (3ν oscillation in absorbing matter) we will use specific
notation. In the most general case the Hamiltonian H depends on time through a set of real parameters
(x1(t), . . . , xs(t)) ≡ x(t). We define these parameters in such a way that xk(t) = 0 in vacuum; in our
particular case, x = q and this condition holds automatically.

Let us now define the two “mixing matrices” V(m)(x) and V(m)(x) by the equations

H(x)V(m)(x) = V(m)(x)E(x), H†(x)V(m)(x) = V(m)(x)E†(x), (20)

with
E(x) = diag

(
EN1(x), EN2(x), EN3(x)

)
. (21)

The solution to Equations (20) can be found in two steps. First, one have to find the eigenvalues
and eigenvectors of the matrices H and H†,

H(x)|N; x〉 = EN(x)|N; x〉, H†(x)|N; x〉 = E∗
N(x)|N; x〉, (22)

where

|N; x〉 =

⎛⎜⎝UNe(x)

UNμ(x)

UNτ(x)

⎞⎟⎠ , |N; x〉 =

⎛⎜⎝UNe(x)

UNμ(x)

UNτ(x)

⎞⎟⎠ , (23)

with N = −1, 0,+1 or simply −, 0,+. For simplicity we will neglect possible degeneracy of the energy
levels. Then the eigenvectors form a complete biorthonormal set:

〈N′; x|N; x〉 = δNN′ , ∑
N
|N; x〉〈N; x| = I, (24)

or, in the component-wise notation,

∑
α

U ∗
N′α(x)UNα(x) = δNN′ , ∑

N
U ∗

Nα(x)UNβ(x) = δαβ. (25)

Second, from simple algebra it follows that the matrices

U(x) ≡ ‖Uαj(x)‖ = (|N1; x〉, |N2; x〉, |N3; x〉) ,

U(x) ≡ ‖Uαj(x)‖ =
(
|N1; x〉, |N2; x〉, |N3; x〉

)
,

(26)

satisfy Equations (20) and thus diagonalize the Hamiltonian matrix H.
The solutions (26) are not however unique. In most general case, the following products

V(m)(x) = U(x)D†(x), V(m)(x) = U(x)D(x),

with arbitrary diagonal and nonsingular matrices D(x) and D(x), also satisfy Equation (20).
This freedom implies that not all elements of the mixing matrices V(m)(x) and V(m)(x) are physically
observable. Recall that the eigenvectors have been built so that

U(0) = U(0) = V
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and the following obvious conditions are assumed: Uiα(0) = UNiα(0) = Uiα(0) = UNiα(0) = Viα.
Equations (20) and (21) are universal, i.e., they are hold true for any medium and for any value of the
neutrino momentum. In particular, they are hold for vacuum. Therefore

V(m)(0) = V(m)(0) = V, (27)

where V is the vacuum mixing matrix (“correspondence principle”). Hence, according to Equation (27),
the matrices D(x) and D(x) must satisfy the condition

D(0) = D(0) = I.

As a less trivial limiting case, let us consider a medium, where the imaginary part of the optic
potentials can be neglected (this standard approximation is true in essence for any media if its thickness
is much smaller than the neutrino mean free path). In this case the eigenvalues EN(x) are real and the
following inequalities are valid [32]:

E−(x) ≤ E0(x) ≤ E+(x).

Considering these limiting cases one finds that the numeration of the diagonal elements in (21)
(i.e., the one-to-one congruence Ni ⇔ i) is given by the neutrino mass hierarchy. For example, N1 = −1,
N2 = 0, N3 = +1 for the “natural hierarchy”, m2

1 > m2
2 > m2

3 but N1 = +1, N2 = 0, N3 = −1 for
the following case: m2

3 < m2
2 < m2

1; other cases can be derived similarly. Thus, to simplify formulas,
we will use the notation ENi (x) = Ei(x), when it is suitable.

According to Equations (25) and (26)

∑
α

U∗
αiUαj = ∑

α

U∗
αiUαj = δij, (28)

or, equivalently,
U†(x)U(x) = U†(x)U(x) = I. (29)

It is reasonable to impose the same constraint on the mixing matrices:[
V(m)(x)

]†
V(m)(x) =

[
V(m)(x)

]†
V(m)(x) = I.

Then
D†(x)D(x) = D†(x)D†(x) = I

and therefore

D(x) = diag
(

e−a1+ib1 , e−a2+ib2 , e−a3+ib3
)

,

D(x) = diag
(

e+a1+ib1 , e+a2+ib2 , e+a3+ib3
)

,

where ak = ak(x) and bk = bk(x) are arbitrary real functions which vanish at x = 0.
As is generally known (see for example [92]), the vacuum mixing matrix for Majorana neutrinos

may be written in the form VDM, where

DM = diag
(

eiδM
1 , eiδM

2 , eiδM
3

)
and δM

k are the (real) CP-violating parameters (strictly speaking, in the three-neutrino case only
two ”Majorana parameters” δM

k are independent [92,93]). By analogy, one may call the functions
δk(x) = bk(x) + iak(x) and δk(x) = bk(x)− iak(x) the Majorana phases in matter. Just as in the vacuum
case, these phases play no part in neutrino oscillations at relativistic energies [92,93]. Here they merely
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show the ambiguity in the definition of the mixing matrices in matter. The additional CP-violating
Majorana phases are always associated with effects whose magnitude is suppressed by the factor(
mM

i /Eν

)2, where Eν is the neutrino energy in the relevant process and mM
i is the mass of the Majorana

neutrino taking part in the process [93,94].

4. Rephasing Invariant In Matter

Let us introduce two sets of functions

J±αi (x) =
1
2

η
βγ
α η

jk
i V(m)

βj (x)V(m)
γk (x)

[
V(m)

βk (x)V(m)
γj (x)

]∗
± 1

2
η

βγ
α η

jk
i V(m)

βj (x)V(m)
γk (x)

[
V(m)

βk (x)V(m)
γj (x)

]∗
,

which provide the straightforward generalization of the rephasing invariants considered in
references [32,33,95,96] (see also reference [34,97] for the Dirac neutrino case or in reference [94]
for the Majorana neutrino case (Cheng [94] considered so called second-class rephasing invariant
which contains the Majorana phases).

First of all, the functions J±αi(x) are independent of the Majorana phases, δk(x), δk(x),
i.e., these functions are independent of the D(x) and D(x) matrices. This fact elucidates the term
“rephasing invariant”. Therefore the functions J±αi(x) can be rewritten as

J±αi (x) =
1
2

η
βγ
α η

jk
i Uβj(x)Uγk(x)U

∗
βk(x)U

∗
γj(x)

± 1
2

η
βγ
α η

jk
i Uβj(x)Uγk(x)U∗

βk(x)U
∗
γj(x). (30)

Let us rewrite Equation (29) in the form

U†(x) = U−1(x), U†(x) = U−1(x),

or, in terms of the matrix elements,

U∗
αi(x) = |U|−1η

βγ
α η

jk
i

(
UβjUγk − UβkUγj

)
,

U∗
αi(x) = |U|−1η

βγ
α η

jk
i

(
UβjUγk − UβkUγj

)
.

(31)

Using these identities, one finds from Equation (30) that the real functions

ReJ−αi (x) = +
1
2

Re
(

Ue1Uμ2Uτ3|U†| − Ue1Uμ2Uτ3|U†|
)
≡ R(x),

ImJ+αi (x) = −1
2

Im
(

Ue1Uμ2Uτ3|U†|+ Ue1Uμ2Uτ3|U†|
)
≡ I(x),

(32)

as well as their complex combination

J(x) = I(x) + iR(x) (33)

are independent of indices α and i. Clearly, in the Hermitian case J−αi = 0 and therefore
J = I = −Im

(
Ue1Uμ2Uτ3|U†|

)
.

We consider now the following constructions:

J (x) =
1
2i

[
∏

α

η
βγ
α Hβγ(x)− ∏

α

η
βγ
α Hγβ(x)

]
, (34)
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P(x) = ∏
α

η
βγ
α |Hβγ(x)|, P(x) = ∏

α

η
βγ
α |Hγβ(x)|, (35)

ϕ(x) = ∑
α

η
βγ
α arg Hβγ(x), ϕ(x) = ∑

α

η
βγ
α arg H∗

γβ(x). (36)

It is easy to show that
J (x) = �(x) + i�(x),

where

�(x) = 1
2
[
P(x) sin ϕ(x) + P(x) sin ϕ(x)

]
,

�(x) = 1
2
[
P(x) cos ϕ(x)−P(x) cos ϕ(x)

]
.

In the absence of flavor-changing neutral currents the off-diagonal matrix elements of the
Hamiltonian are time independent and thus J is a complex constant (“dynamic invariant”). In the
most general case the following theorem holds true:

J (x) = ςJ(x)∏
L

ηMN
L [EM(x)− EN(x)] , (37)

where ς is the parity of the cyclic permutation

(
−1 0 +1
N1 N2 N3

)
. The proof of this theorem is given

in Appendix A. The obtained identity is very general and does not depend on explicit form of the
eigenvalues and eigenvectors, but the full the derivation of these quantities is discussed in detail in
reference [24].

To gain a further insight into the identity (37), it is instructive to consider an example
of neutrino propagation in matter governed by the Hamiltonian (7). Then, it is seen that
P(q) = P(q), ϕ(q) = ϕ(q) and these quantities are time independent:

P(q) = P(q) =

∣∣∣∣∣∑i
VμiV∗

τiΔi

∣∣∣∣∣ ·
∣∣∣∣∣∑i

VeiV∗
μiΔi

∣∣∣∣∣ ·
∣∣∣∣∣∑i

VτiV∗
eiΔi

∣∣∣∣∣ ,

ϕ(q) = ϕ(q) = arg ∑
i

(
VμiV∗

τi + VeiV∗
μi + VτiV∗

ei

)
Δi.

Therefore, � = 0 and J = � = P sin ϕ in this case. It can be verified that the LHS of Equation (37)
is exactly the product the Jarlskog invariant (see Appendix B)

J0 = J(0) =
1
8

sin δ cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 (38)

and the factor

∏
i

η
jk
i

m2
j − m2

k

2pν
= ∏

i
η

jk
i

Δm2
jk

2pν
.

Let us define the effective (complex) masses m̃i = m̃i(q) of the neutrino mass eigenstates in matter
by

Ei = ENi
def
=

m̃2
i − 〈m̃2〉

2pν
, 〈m̃2〉 = 1

3 ∑
i

m̃2
i ,

where we used the obvious identity ∑i Ei = 0 and analogy with the vacuum case (see Equation (14)).
Then Equation (37) can be written as

J(0)Δm2
23Δm2

31Δm2
12 = J(q)Δm̃2

23(q)Δm̃2
31(q)Δm̃2

12(q). (39)
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The obtained identity is evidently a generalization of the relation (1) to the case of
neutrino-absorbing environments. Remarkably that the effective masses are complex functions but the
RHS of Equation (39) is proved to be real. The form of Equation (39) confirms that Equations (32) and
(33) provide a non-Hermitian extension of the usual rephasing invariant.

5. Summary

In this paper we considered three-neutrino oscillations in thick (including neutrino opaque)
media by using the non-Hermitian quantum dynamics framework, which describes the interplay
between neutrino mixing, refraction and absorption. We proved an identity which relates (through
a product of splitting of the complex energy levels) a rephasing invariant in vacuum and absorbing
matter. These findings might be of certain interest in studies of soft-spectrum, high-energy neutrino
propagation through Earth or astrophysical objects (jets, blast waves, etc.) whose thickness along the
neutrino beam is comparable to or larger than the neutrino mean free path.
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Abbreviations

The following abbreviations are used in this manuscript:

PMNS Pontecorvo-Maki-Nakagawa-Sakata (mixing matrix)
MSW Mikheev-Smirnov-Wolfenstein (mechanism, equation)
KM Kobayashi-Maskawa (representation of mixing matrix)
CK Chau-Keung (representation of mixing matrix)
CC Charged Current
NC Neutral Current
AMU Atomic Mass Unit
CP Charge Parity
LHS Left-Hand Side
RHS Right-Hand Side
QED Quod Erat Demonstrandum (Lat.)

Appendix A. Proof of The Theorem

Using the definitions for the mixing matrices one can easily show that

J =
1
2i ∏

α

η
βγ
α ∑

i
UβiU

∗
γiEi −

1
2i ∏

α

η
βγ
α ∑

i
U∗

βiUγiEi,

where we omitted argument x for short. Denote

Gijk = UeiUμjUτk, Gijk = UeiUμjUτk.

Then J can be written as

1
2i ∑

ijk
EiEjEk

(
GijkG∗

kij − G∗
ijkGkij

)
.

It can be shown from here that

J =
1
2i ∑

i
η

jk
i E2

i

(
Cj

i Ej + Ck
i Ek

)
, (A1)
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where
Cj

i = GiijG
∗
jii + GijiG

∗
iij + GjiiG

∗
iji − G∗

iijGjii − G∗
ijiGiij − G∗

jiiGiji

and the coefficients Ck
i are defined in a similar way. To derive Equation (A1) it has been taken into

account that the terms in the sum over i, j, k with i = j = k, as well as with the i, j, and k which unequal
to each other, are vanish. This statement is apparent for the term

1
2i ∑

i
E3

i

(
GiiiG

∗
iii − G∗

iiiGiii

)
.

As regards the term
1
2i ∑ijk

′EiEjEk

(
GijkG∗

kij − G∗
ijkGkij

)
(where prime indicates that all indices are different), it can be rewritten in the following form:

− i
2
|H|∑

i
η

jk
i

(
GijkG∗

kij + GikjG
∗
jik − G∗

ijkGkij − G∗
ikjGjik

)
, (A2)

where it is taken into account that

E1E2E3 = E−E0E+ = |H|

By applying sequentially the identities (31), one can transform the term (A2) to the following
form:

− i
2
|H|∑

i
η

jk
i

(
Gijk|U|∗ − G∗

ijk|U|
) (

Uτ jU∗
τ j − UτkU∗

τk

)
,

However, according to Equation (32),

1
2

η
jk
i

(
Gijk|U|∗ − G∗

ijk|U|
)
= R − iI = −i J.

Hence the term (A2) vanishes.
Next, using the identities (28), (31), and definition (32) yields

η
jk
i Cj

i = −2i J, η
jk
i Ck

i = 2i J.

Direct substituting into Equation (A1) then gives

J = −J ∑
i

η
jk
i E2

i (Ej − Ek) = J ∏
i

η
jk
i (Ej − Ek) = ςJ ∏

L
ηMN

L (EM − EN) .

QED.

Appendix B. Rephasing Invariant In Vacuum

The imaginary part of the rephasing invariant in vacuum (Jarlskog invariant) may be written
in terms of the mixing angles and CP-violating Dirac phase dependent of the parametrization of the
PMNS mixing matrix. For example, in the Kobayashi–Maskawa (KM) representation [98],

V(KM) =

⎛⎜⎝ c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

−s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞⎟⎠
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(where si = sin θi and ci = cos θi for i = 1, 2, 3; 0 < θi < π/2, −π < δ ≤ π, det V(KM) = −eiδ),

J(KM)
0 = sin δ sin θ1 ∏

i
sin 2θi

In the now more conventional Chau–Keung (CK) representation [99],

V(CK) =

⎛⎜⎝ c12c31 s12c31 s31e−iδ

−s12c23 − c12s23s31eiδ c12c23 − s12s23s31eiδ s23c31

s12s23 − c12c23s31eiδ −c12s23 − s12c23s31eiδ c23c31

⎞⎟⎠
(where sjk = sin θjk and cjk = cos θjk for j, k = 1, 2, 3; 0 < θjk < π/2 (θjk ≡ θjk), 0 ≤ δ < 2π,
det V(CK) = 1),

J(CK)
0 = sin δ cos θ31 ∏

i
η

jk
i sin 2θjk

Here the symbol η
jk
i has the same sense as η

βγ
α . Details about the interconnection between the KM

and CK representations can be found in references [99–101].
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Abstract: The energy-momentum relocalization in classical and quantum theory is addressed with
specific impact on non-perturbative QCD and hadronic structure. The relocalization is manifested in
the existence of canonical and symmetric (Belinfante and Hilbert) energy momentum tensors (EMT).
The latter describes the interactions of hadrons with classical gravity and inertia. Canonical EMT,
in turn, is naturally emerging due to the translation invariance symmetry and appears when spin
structure of hadrons is considered. Its relation to symmetric Hilbert and Belinfante EMTs requires
the possibility to neglect the contribution of boundary terms for the classical fields. For the case of
quantum fields this property corresponds to the absence of zero-momentum poles of matrix element
of the axial current dual to the spin density. This property is satisfied for quarks manifesting the
symmetry counterpart of UA(1) problem and may be violated for gluons due to QCD ghost pole.

Keywords: gravity; relocalization; topology; boundary; poles

1. Introduction

The space-time symmetry related to the energy-momentum and angular momentum conservation
is manifested in field theory as the appearance of energy-momentum and spin currents (see [1] and
Ref. therein). Their definition is not unique. The structure of Lagrangian immediately defines, after the
application of the Noether theorem, the canonical densities. Passing to the quantum operators and
their matrix elements one may analyse how the fundamental fields are manifested in the spin structure
of elementary particles.

From the other side, the interaction of particles with gravity involves the symmetruc Hilbert
tensor resulting from the variation with respect to metric and the symmetry property naturally emerges
after the absorption of spin density to the orbital one using the Belinfante procedure [1].

The interplay of both forms of Energy-Momentum Tensor (EMT) is especially important for
hadrons, as in the absence of mathematically rigorous confinement theory their spin structure is an
important problem of non-perturbative Quantum Chromodynamics (QCD). The same non-perturbative
effects are responsible for the most of the visible mass of the Universe, and, therefore, for its
gravitational interaction.

These interactions of hadrons with gravity (and inertia, due to equivalence principle) are encoded
in their gravitational formfactors [2–6] (see also [7] and Ref. therein). They define the macrospic
properties of all objects, and, as it appeared more recently, the responce of hadrons to fastest ever
rotation and acceleration emerging in heavy-ion collisions (see [8] and Ref. therein). Indeed, the angular
velocity of quark-gluon matter in the non-central heavy-ion collisions corresponds to the change of the
velocity of the order of speed of light c at the distance of order of Compton wavelength lC, ω ∼ c/lC,
which is some 25 orders of magnitude larger than angular velocity of Earth rotation. By coincidence,
the acceleration a of this matter which is of the order of a ∼ c2/lC is larger than Earth’s gravity g by
almost the same factor.

Symmetry 2020, 12, 1409; doi:10.3390/sym12091409 www.mdpi.com/journal/symmetry149
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One may wonder, why the highly non-inertial frame formed by quark-gluon matter in heavy-ion
collisions can have any impact on the observables measured by the detector located in the laboratory
frame. The non-inertial matter will play a role if its interaction with hadrons may be considered
as a quantum measurement which is certainly true if particle spin (essentially quantum object!)
or Hawking–Unruh radiation [8] are considered. Let us also note here that the main outcome of
equivalence principle (EP) for spin motion in the gravitational field, the equality of classical and
quantum rotators (orbital and spin angular momenta) precession frequencies (see [7] and Ref. therein),
becomes trivial for the rotating frame (like Earth) if spin is considered just as some vector remaining
constant [9] in the inertial frame and rotating in the frame of the Earth like Foucault pendulum.
The non-trivial meaning would emerge if the quantum measurement of the spin in the rotating
frame is considered and its similarity to pendulum and orbital angular momentum (AM) is the
manifestation of EP.

The interaction with gravity, as it was already mentioned, is described by the symmetric Hilbert
EMT representing (like Belinfante and any symmetric EMT) the angular momentum (AM) as the orbital
one. This form of AM allows one to derive the EP as low-energy theorem (see [7] and Ref. therein) by
making use of momentum and angular momentum conservation. Like in QED, the global symmetry
puts the restrictions for the interaction (defined by local one) for small momenta. In distinction from
QED, where only terms of zero order in momenta are fixed, while the linear ones (momenta) are
dynamical, in gravity, because of more complicated gauge group, the momenta are also fixed and
anomalous gravitomagnetic moment is absent, which is another formulation [2] of EP.

At the same time, in the analysis of hadronic spin structure the canonical expressions naturally
appear. The spin of fundamental fields plays the special role in the physical interpretation of QCD
hadronic structure. The interplay of various forms of EMT and AM are discussed in detail in the
problems of hadronic structure [10] and heavy-ion collisions [11].

The procedure of relocalization [1] changing the local quantities but preserving the conserved
(angular) momenta, requires the possibility to discard the surface terms, which is usually assumed.
At the same time, their consideration when generalized to the case of quantum operators was earlier
found [12–14] to lead to some non-trivial constraints for matrix elements of axial currents. Here we
develop these ideas and put them into modern context. As a result, we find the constraints for the
zero-mass poles in matrix elements of singlet axial current (dual to quark spin desnity) leading to an
amazing interplay between general symmetry properties of relocalization and very specific topologocal
QCD dynamics.

2. Boundary Terms in Coordinate and Momentum Space

Let us start with the following expression for the quark–gluon angular momentum density

Mμ,νρ =
1
2

εμνρσ J5,σ + xνTμρ − xρTμν. (1)

The first term in the right hand side (r.h.s.) is just the canonical quark spin tensor dual to
singlet axial current. Note that the energy–momentum tensor here accumulates also the quark orbital
momentum as well as the total gluon angular momentum. We may proceed further along this way and
express the quark spin in the orbital form with the simultaneous change of the energy–momentum
tensor to the one suggested by Belinfante long ago

Mμ,νρ
B = xνTμρ

B − xρTμν
B . (2)

As the conservation of the angular momentum

∂μ Mμ,νρ
B = 0 (3)
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immediately leads to the symmetry of Tμρ (so that symmetric Hilbert tensor may also be considered in
such a role), the latter implies that

εμνρα Mμ,νρ
B = 0. (4)

One might conclude that the totally antisymmetric quark spin tensor is somehow cancelled and
does not contribute to the total angular momentum [15]. This is also the manifestation of the general
belief that axial current and angular momentum represent the different aspects of spin structure. Still,
it appears possible to extract some quantitative information about their interplay.

The Belinfante (and Hilbert) EMT lead to the same AM as canonical one so that:∫
d3xM0,νρ

B =
∫

d3xM0,νρ. (5)

We assume (which was done only tacitly in [12]) that also the stronger condition is valid∫
d3xMμ,νρ

B =
∫

d3xMμ,νρ, (6)

so that
εμνρα

∫
d3xMμ,νρ = 0. (7)

Substituting here the definition (1) one get∫
d3x(3Jα

5 (x) + 2εμνραxνTA.μα(x)) = 0, (8)

where Tμα
A = (Tμα − Tαμ)/2 is the antisymmetric part of energy momentum tensor responsible for the

separate non-conservation of orbital and spin AM. The conservation of total AM results in the relation

1
4

εμνρσ∂μ J5
σ = Tρν

A . (9)

Note that we consider the weak gravitational fields and the derivatives, as well as quantum
states in what follows, correspond to flat space. The consideration of strong fields may be achieved by
applying the Dirac equation in curved space (see [7] and Ref. therein).

Set of Equations (8) and (9) allows one to exclude either spin (J5) or orbital (TA) AM. The latter
is easier, as one can use the local Equation (9). Furthermore, axial current operator is related to
many observables.

Excluding EMT antisymmetric part by making use of the conservation of AM density (9), one get
in the case of classical fields:

(gρνgαμ − gρμgαν)
∫

d3x∂ρ(Jα
5 xν) = 0. (10)

This is in fact the way to represent the surface terms whose neglect is necessary to apply the
Belinfante procedure.

Passing to the most interesting case of quantum operators one should switch the Equations (8)
and (after incorporating the AM conservation at operator level) (10) between particle (nucleon) states
with the momenta P and P + q.

(gρνgαμ − gρμgαν)
∫

d3x〈P|∂ρ(Jα
5 xν)|P + q〉 = 0. (11)

Expressing the local operator Jα
5 (x) = exp(iP̂x)Jα

5 (0)exp(−iP̂x) by action of shift operator
exp(iP̂x) allows one to perform the integration resulting in appearance of δ(�q). Now ∂

∂xμ is substituted
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by −iqμ and xμ by i ∂
qμ

acting on that δ3(�q). The latter is, by definition, equal, up to a sign, to the
derivative acting on the matrix element. As a result, one obtains the following constraint:

qμ ∂

∂qα
|0〈P|Jα

5 |P + q〉 = qα ∂

∂qα
|0〈P|Jμ

5 |P + q〉. (12)

It is a quantum counterpart of (10) and it is natural that surface terms in coordinate space
correspond to zero momenta. To make it more clear, let us multiply both sides by qμ:

q2 ∂

∂qα
〈P|Jα

5 |P + q〉 = (qβ ∂

∂qβ
− 1)qγ〈P|Jγ

5 |P + q〉. (13)

This equality is obviously valid up to the second and higher powers of q. Note that the differential
operator in the r.h.s. subtracts the terms linear in q from the divergence matrix element proportional to
sq for the pure kinematical reasons.

What can be dangerous is the pole for q2 → 0 which naturally appears for anomalous axial
current already in perturbation theory for massless fermions [16]. For massless quarks, due to t’Hooft
consistency principle, in the case of non-singlet currents these poles correspond to the exchange of the
massless Goldstone mesons.

The exception is provided by singlet channel where η
′

remains massive manifesting the famous
UA(1) problem and the correspondent pole is absent (see, e.g., [17] and Ref. therein):

〈P, S|J5,μ(0)|P + q, S〉 = 2MSμG1 + qμ(Sq)G2, (14)

q2G2|0 = 0. (15)

The G2 pole term, if present, would provide a contribution linear in q to the l.h.s.
Therefore, solution of UA(1) problem provides simulatenously the necessary dynamical

mechanism for relocalization of massless quarks spin. This, in turn, leads to relation of conservation
laws and canonical EMT with Belinfante and Hilbert EMT, supporting the emergence of equivalence
principle as low-energy theorem [7].

3. Problems with Relocalization for Gluons

The situation is changed in the case of gluons. The relevant matrix element of topological current

〈P, S|K5
μ(0)|P + q, S〉 = 2MSμG̃1(q2) + qμ(Sq)G̃2(q2), (16)

q2G̃2(q2)|0 �= 0, (17)

contains the contribution G̃2 of the relevant Kogut–Susskind ghost (or instanton [18]) pole [19] which is
fully responsible [20] for the value of the forward matrix element of anomaly-free quark gluon current
Jμ
5 − Kμ.

The consideration of topological current as dual to spin is naturally supported by the studies of
bosonic anomalies in gravitational field [21] which may be relevant also for consideration of rotating
quark-gluon matter in heavy-ion collisions [22]. Therefore one has a contradiction between kinematics
of Relocalization Invariance (RI) requiring the absence of surface terms (corresponding to zero-mass
poles of matrix elements) and instanton-type dynamics requiring their presence. The possible outcomes
are the following

(i) If RI is indeed violated the coupling of nucleons to gravity (described by the formfactors of
Belinfante EMT [13,23]) may be unconstrained by the form of conservation laws in terms of
canonical EMT. In extreme case, assuming that just the canoncical form is related to translational
invariance, this might result in the violation of Equivalence Principle for nucleons at several
percent level which may be tested experimentally and is probably already excluded by the data.
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(ii) One may assume “Hadronic censorship” leading to the absence of the ghost pole: in this case the
matrrix element

< P, S|Jμ
5 − Kμ|P, S >= 0

in the chiral limit. Bearing in mind the smallness of gluon spin one should mostly attribute the
quark spin to the (predominantly strange) quark mass. This may explain the relative smallness
of quark spin (“Spin Crisis”) and may be checked, say, by lattice calculations of pseudoscalar
quark densities.

(iii) The simplest solution would be the impossibility to separate spin and orbital momenta of gluons
in the meaningful way.

4. Discussion

We found the relation between general space-time symmetry responsible for interactions of
hadrons with gravity and the specific QCD dynamics. As a result, the quark spin relocalization is
supported by solution of UA(1) problem and the same non-perturbative dynamics may spoil the
extraction of totally antisymmetric gluon spin density.

The future studies, besides the exploration of mentioned in the previous section alternatives may
include following developments:

(i) investigation of boundary terms in hydrodynamic approximation;
(ii) exploration of the role of boundary terms (spoiling the transition of spin to orbital AM) for twisted

states, which might be obtained also at high energies (see [24] and Ref. therein) and provide the
complementary description of Transverse Momentum Dependent parton correlators.
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