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With the increase in data processing and storage capacity, a large amount of data is available. Data
without analysis does not have much value. Thus, the demand for data analysis is increasing daily,
and the consequence is the appearance of a large number of jobs and published articles in this area.

Data science has emerged as a multidisciplinary field to support data-driven activities,
integrating and developing ideas, methods and processes to extract information from data. There are
methods built from different areas of knowledge: Statistics, Computer Science, Mathematics, Physics,
Information Science and Engineering, among others. This mixture of areas gave rise to what we call
Data Science.

New solutions to new problems have been proposed rapidly for large volumes of data.
Current and future challenges require greater care in creating new solutions that satisfy the rationality
of each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning
and Artificial Intelligence are demanding more sophistication in their foundations and in the way they
are being applied. This point highlights the importance of building the foundations of Data Science.

This Special Issue is dedicated to solutions and discussions of measuring uncertainties in data
analysis problems. The twelve articles in this edition discuss data science problems. The articles
consider the reasoning behind their proposed solutions and illustrate how to apply them either in a
real dataset or simulated dataset.

As stated earlier, multidisciplinarity is an important feature of data science, and this is clearly presented
in this Special Issue. Ref. [1] proposes a new method for modelling problems and a data-clustering
framework, and ref. [2] considers the estimation of the probability density function. In terms of the
stochastic process, ref. [3] considers the fundamental properties of Tensor Markov Fields. Under a Bayesian
paradigm of Statistical Inference, ref. [4] proposes a solution to classification problems.

Time series is one of the most prominent areas in data science, and some of the articles published
here propose solutions with practical motivations in this area [5–8]. As mentioned before, this Special
Issue encouraged articles on the foundations of measuring uncertainty [9–12].

The first article of this Special Issue was published on 30 October 2019, and the last on 26 October
2020. The articles are briefly discussed below, in order of the date of submission.

Due to its flexibility for treating heterogeneous populations, mixture models have been
increasingly considered in modelling problems, and it provides a better cluster interpretation under a
data-clustering framework [13].

In the traditional literature solutions, the results of the mixture model fit are highly dependent
on the choice of the number of components fixed a priori. Thus, selecting an incorrect number of
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mixture components may cause the non-convergence of the algorithm and/or a short exploration of
the clusterings [1].

Ref. [1] is the first published article in this issue. The authors propose an integrated approach
that jointly selects the number of clusters and estimates the parameters of interest, without needing
to specify (fix) the number of components. The authors developed the ISEM (integrated stochastic
expectation maximisation) algorithm where the allocation probabilities depend on the number of
clusters, and they are independent of the number of components of the mixture model.

In addition to theoretical development and evaluation of the proposed algorithm through
simulation studies, the authors analyse two datasets. The first one refers to velocity in km/s of
82 galaxies from 6 well-separated conic sections of an unfilled survey of the Corona Borealis region;
this is well-known Galaxy data in the literature. The second dataset refers to an acidity index measured
in a sample of 155 lakes in central-north Wisconsin.

By considering the estimation of the probability density function (pdf), ref. [2] presented a wide
range of applications for pdf estimation are provided, exemplifying its ubiquitous importance in data
analysis. They discuss the need for developing universal measures to quantify error and uncertainties
to enable comparisons across distribution classes, by establishing a robust distribution-free method to
make estimates rapidly while quantifying the error of an estimate.

The authors consider a high-throughput, non-parametric maximum entropy method that employs
a log-likelihood scoring function to characterise uncertainty in trial probability density estimates
through a scaled quantile residual (SQR). This work is based on [14]. The SQR for the true probability
density has universal sample size invariant properties equivalent to the sampled uniform random
data (SURD).

Several alternative scoring functions that use SQR were considered, and they compared
the sensitivity in quantifying the quality of a pdf estimate. The scoring function must exhibit
distribution-free and sample size invariant properties so that it can be applied to any random sample
of a continuous random variable. It is worth noting that all the scoring functions presented in the
article exhibit desirable properties with similar or greater efficacy than the Anderson Darling scoring
function and all are useful for assessing the quality of density estimates.

They present a numerical study to explore different types of measures for SQR quality. The initial
emphasis was on constructing sensitive quality measures that are universal and sample size invariant.
These scoring functions based on SQR properties can be applied to quantifying the “goodness of fit” of
a pdf estimate created by any methodology, without knowledge of the true pdf.

The scoring function effectiveness is evaluated using receiver operator characteristics (ROC) to
identify the most discriminating scoring function, by comparing overall performance characteristics
during density estimation across a diverse test set of known probability distributions.

Integer-valued time series are relevant to many fields of knowledge, and an extensive number
of models has been proposed, such as the first-order integer-valued autoregressive (INAR(1)) model.
Ref. [5] considered a hierarchical Bayesian version of the INAR(p) model with variable innovation
rates clustered according to a Pitman–Yor process placed at the top of the model hierarchy.

Using the full conditional distributions of the innovation rates, they inspected the behaviour of the
model as concentrating or spreading the mass of the Pitman–Yor base measure. Then, they presented
a graphical criterion that identified an elbow in the posterior expectation of the number of clusters
as varying the hyperparameters of the base measure. The authors investigated the prior sensitivity
and found ways to control the hyperparameters in order to achieve robust results. A significant
contribution is a graphical criterion, which guides the specification of the hyperparameters of the
Pitman–Yor process base measure.

Besides the theoretical development, the proposed graphical criterion was evaluated in simulated
data. Considering a time series of yearly worldwide earthquakes events of substantial magnitude
(equal or greater than 7 points on the Richter scale) from 1900 to 2018, they compared the forecasting
performance of their model against the original INAR(p) model. Ref. [6] considered the problem of
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model fit and model forecasting in time series. For that, the authors considered the singular spectrum
analysis (SSA), that is a powerful non-parametric technique to decompose the original time series
into a set of components that can be interpreted, such as trend components, seasonal components,
and noise components. They proposed a robust SSA algorithm by replacing the standard least-squares
singular value decomposition (SVD) by a robust SVD algorithm based on the L1 norm and a robust
SSA algorithm. The robust SVD was based on the Huber function. Then, a forecasting strategy was
presented for the robust SSA algorithms, based on the linear recurrent SSA forecasting algorithm.

Considering a simulation example and time-series data from investment funds, the algorithms
were compared to other versions of the SSA algorithm and classical ARIMA. The comparisons
considered the computational time and the accuracy for model fit and model forecast. Ref. [9]
presented a discussion about hypothetical judgment and measures to evaluate that, and exemplified
it using a diagnostic of the infection of the Coronavirus Disease (COVID-19). Their purposes are
(1) to distinguish channel confirmation measures that are compatible with the likelihood ratio and
prediction confirmation measures that can be used to assess probability predictions, and (2) to use a
prediction confirmation measure to eliminate the Raven Paradox and to explain that confirmation and
falsification may be compatible.

They consider the measure F, that is one of few confirmation measures which possess the
desirable properties as identified by many authors: symmetries and asymmetries, normalisation,
and monotonicity. Also, the measure b∗, the degree of belief, was considered and optimised with a
sampling distribution seen as a confirmation measure, which is similar to the measure F and also
possesses the above-mentioned desirable properties.

From the diagnosis of the infection of the COVID-19, they show that only measures that are
functions of the likelihood ratio, such as F and b∗, can help to diagnose the infection or choose a better
result that can be accepted by the medical society. However, measures F and b∗ do not reflect the
probability of the infection. Furthermore, using F or b∗ is still difficult to eliminate the Raven Paradox.

The measures F and b∗ indicate how good a hypothesis test of means is compared to the
probability predictions. Hence, the authors proposed a measure c∗ that can indicate how good a
probability prediction is. c∗ is called the prediction confirmation measure and b∗ is the channel
confirmation measure. The measure c∗ accords to the Nicod criterion and undermines the Equivalence
Condition, and hence can be used to eliminate the Raven Paradox. Ref. [3] presented the definitions
and properties of Tensor Markov Fields (random Markov fields over tensor spaces). The author shows
that tensor Markov fields are indeed Gibbs fields whenever strictly positive probability measures are
considered. It is also proved how this class of Markov fields can be built based on statistical dependency
structures inferred on information-theoretical grounds over empirical data. The author discusses how
the Tensor Markov Fields described in the article can be useful for mathematical modelling and data
analysis due to their intrinsic simplicity and generality. Ref. [4] proposed a variational approximation
on probit regression models with intrinsic priors to deal with a classification problem. Some of
the authors’ motivations to combine intrinsic prior methodology and variational inference are to
automatically generate a family of non-informative priors; to apply intrinsic priors on inference
problems; intrinsic priors have flat tails that prevent finite sample inconsistency; for inference problems
with a large dataset, variational approximation methods are much faster than MCMC-based methods.

The proposed method is applied to the LendingClub dataset (https://www.lendingclub.com).
The LendingClub is a peer-to-peer lending platform that enables borrowers to create unsecured
personal loans between $1000 and $40,000. Investors can search and browse the loan listings on the
LendingClub website and select loans that they want to invest in. In addition, the information about
the borrower, amount of loan, loan grade, and loan purpose was provided to them. The variable loan
status (paid-off or charged-off) is the target variable, and [4] considers a set of predictive covariates,
as loan term in months, employment length in years, annual income, among others. [10] constructed
a decision-making model based on intuitionistic fuzzy cross-entropy and a comprehensive grey
correlation analysis algorithm. Their motivation is the fact that despite the fact that intuitionistic fuzzy
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distance measurement is an effective method to study multi-attribute emergency decision-making
(MAEDM) problems, the traditional intuitionistic fuzzy distance measurement method cannot
accurately reflect the difference between membership and non-membership data, where it is easy to
cause information confusion.

The intuitionistic fuzzy cross-entropy distance measurement method was introduced, which can
not only retain the integrity of decision information but also directly reflect the differences between
intuitionistic fuzzy data. Focusing on the weight problem in MAEDM, the authors analysed and
compared the known and unknown attribute weights, which significantly improved the reliability and
stability of decision-making results. The intuitionistic fuzzy cross-entropy and grey correlation analysis
algorithm were introduced into the emergency decision-making problems such as the location ranking
of shelters in earthquake disaster areas, which significantly reduced the risk of decision-making.
The validity of the proposed method was verified by comparing the traditional intuitionistic fuzzy
distance to the intuitionistic fuzzy cross-entropy.

The authors highlight that the proposed method applies to emergency decision-making problems
with certain subjective preference. In addition to the theoretical approach and highlighting the
importance to deal with disasters motivations, the authors took the Wenchuan Earthquake on May
12th 2008 as a case of study, constructing and solving the ranking problem of shelters.

Motivated by time series problems, ref. [7] reviewed the shortcomings of unit root and cointegration
tests. They proposed a Bayesian approach based on the Full Bayesian Significance Test (FBST), a procedure
designed to test a sharp or precise hypothesis.

The importance of studying this is justified by the fact that one should be able to assess if a
time series present deterministic or stochastic trends to perform statistical inference. For univariate
analysis, one way to detect stochastic trends is to test if the series has unit-roots (unit root tests).
For multivariate studies, determining stationary linear relationships between the series, or if they
cointegrate (cointegration tests) are important.

The Augmented Dickey–Fuller test is one of the most popular tests used to assess if a time
series has a stochastic trend or if they have a unit root for series described by auto-regressive models.
When one is searching for long-term relationships between multiple series, it is crucial to know if there
are stationary linear combinations of these series, i.e., if the series are cointegrated. One of the most
used tests is the maximum eigenvalue test.

Besides proposing the method considering FBST, the authors also compared its performance
with the most used frequentist alternatives. They have shown that the FBST works considerably well
even when one uses improper priors, a choice that may preclude the derivation of Bayes Factors,
a standard Bayesian procedure in hypotheses testing. Ref. [11] considered a Kalman filter and a Rényi
entropy. The Rényi entropy was employed to measure the uncertainty of the multivariate Gaussian
probability density function. The authors proposed calculation of the temporal derivative of the Rényi
entropy of the Kalman filter’s mean square error matrix, which provided the optimal recursive solution
mathematically and was minimised to obtain the Kalman filter gain.

One of the findings of this manuscript was that, from the physical point of view, the continuous
Kalman filter approached a steady state when the temporal derivative of the Rényi entropy was equal
to zero, which means that the Rényi entropy remained stable.

A numerical experiment of falling body tracking in noisy conditions with radar using the
unscented Kalman filter, and a practical experiment of loosely-coupled integration, are provided
to demonstrate the effectiveness of the above statements and to show the Rényi entropy truly stays
stable when the system becomes steady.

The knowledge about future values and the stock market trend has attracted the attention of
researchers, investors, financial experts, and brokers. Ref. [8] proposed a stock trend prediction model
by utilising a combination of the cloud model, Heikin–Ashi candlesticks, and fuzzy time series in a
unified model.
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By incorporating probability and fuzzy set theories, the cloud model can aid the required
transformation between the qualitative concepts and quantitative data. The degree of certainty
associated with candlestick patterns can be calculated through repeated assessments by employing the
normal cloud model. The hybrid weighting method comprising the fuzzy time series, and Heikin–Ashi
candlestick was employed for determining the weights of the indicators in the multi-criteria
decision-making process. The cloud model constructs fuzzy membership functions to deal effectively
with uncertainty and vagueness of the historical stock data to predict the next open, high, low, and close
prices for the stock.

The objective of the proposed model is to handle qualitative forecasting and not quantitative
only. The experimental results prove the feasibility and high forecasting accuracy of the constructed
model. Ref. [12] uses the maximum entropy principle to provide an equation to calculate the
Lagrange multipliers. Accordingly, an equation was developed to predict the bank profile shape
of threshold channels.

The relation between ratio with the entropy parameter and the hydraulic and geometric
characteristics of channels was evaluated. The Entropy-based Design Model of Threshold Channels
(EDMTC) for estimating the shape of banks profiles and the channel dimensions was designed
based on the maximum entropy principle in combination with the Gene Expression Programming
regression model.

The results indicate that the entropy model is capable of predicting the bank profile shape trend
with acceptable error. The proposed EDMTC can be used in threshold channel design and for cases
when the channel characteristics are unknown.

It is our understanding that this Special Issue contributes to increasing knowledge in the
data science field, by fostering discussions of measuring uncertainties in data analysis problems.
The discussion of foundations/theoretical aspects of the methods is essential to avoid the use of
black-box procedures, as well as the presentation of the methods in real problem data. Theory and
application are both important to the development of data science.
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Abstract: This paper presents an integrated approach for the estimation of the parameters of a
mixture model in the context of data clustering. The method is designed to estimate the unknown
number of clusters from observed data. For this, we marginalize out the weights for getting allocation
probabilities that depend on the number of clusters but not on the number of components of the
mixture model. As an alternative to the stochastic expectation maximization (SEM) algorithm,
we propose the integrated stochastic expectation maximization (ISEM) algorithm, which in contrast
to SEM, does not need the specification, a priori, of the number of components of the mixture.
Using this algorithm, one estimates the parameters associated with the clusters, with at least two
observations, via local maximization of the likelihood function. In addition, at each iteration of the
algorithm, there exists a positive probability of a new cluster being created by a single observation.
Using simulated datasets, we compare the performance of the ISEM algorithm against both SEM
and reversible jump (RJ) algorithms. The obtained results show that ISEM outperforms SEM and RJ
algorithms. We also provide the performance of the three algorithms in two real datasets.

Keywords: model-based clustering; mixture model; EM algorithm; integrated approach

1. Introduction

Recently, there has been increasing interest in modeling using mixture models. This is mainly
due to the flexibility for treating heterogeneous populations. Under a data-clustering framework,
this model has the advantage of being probabilistic, and then the obtained clusters can have a better
interpretation from a statistical point of view [1]. This contrasts with usual methods, such as k-means
or hierarchical clustering, in which clusters are not statistically based, as discussed by [2].

From a frequentist viewpoint, the standard method to get the maximum likelihood estimates
for the parameters of a mixture model is based on the use of the Expectation Maximization (EM)
algorithm [3]. However, for the use of this algorithm, the number of components k of the mixture
model needs to be known a priori. As the resulting model is highly dependent on the choice of
this value, the main question is how to set the k value. Selecting an erroneous k value may cause
the non-convergence of the algorithm and/or a low exploration of the clusterings. In addition,
depending on the k value chosen we may have empty components, and therefore, there are no
maximum likelihood estimates for these components.

Entropy 2019, 21, 1063; doi:10.3390/e21111063 www.mdpi.com/journal/entropy7



Entropy 2019, 21, 1063

An approach frequently used to determine the best k value among a fixed set of values is the use
of the stochastic version of the EM algorithm (SEM) with some model selection criterion, such as the
Akaike information criterion (AIC) [4,5] or the BIC [6]. In this approach, models are fitted for a set of
predefined k values, and the best model is the one that has the smallest AIC or BIC value.

However, as discussed by [7], to adjust several models for a predefined set of values for the
number of the cluster and compare them using some model selection criterion is not a practical and
efficient procedure. Therefore, it is desirable to have an efficient algorithm to calculate the optimal
number of clusters together with the estimation of the parameters of each mixture component. In this
scenario, the Bayesian approach was successfully performed considering the Markov chain Monte
Carlo (MCMC) algorithm with reversible jumps, described by [8] in the context of univariate normal
mixture models. On the other hand, a difficulty often encountered in implementing a reversible
jump algorithm (RJ) is the construction of efficient transition proposals that lead to a reasonable
acceptance rate.

Following in the line of MCMC algorithms, [9] proposes a split–merge MCMC procedure for the
conjugated Dirichlet process mixture model using a restricted Gibbs sampling scan to determine a split
proposal, where the number of scans (tuning parameter) must be previously fixed by the user, and [10]
extend their method to a nonconjugated Dirichlet process mixture model. [11] proposes a data-driven
split-and-merge approach. In this proposal, the number of clusters is updated according to the creation
of a new component based on a single observation and using a split–merge strategy, developed based
on the use of the Kullback–Leibler divergence. A difficulty encountered for implementing this
algorithm is the obtaining of the mathematical expression for the Kullback–Leibler divergence,
which does not always have known analytical expression. In addition, the sequential allocation
used in the split–merge strategy of these three works may make the algorithm slow when the sample
size is great, and the computation implementation of these methods is not so simple.

The present work proposes an integrated approach that, in a joint way, selects the number of
clusters and estimates the parameters of interest. With this approach, the mixture weights are integrated
out to obtain allocation probabilities that depend on the number of clusters (nonempty components)
but do not depend on the number of components k. In addition, considering k tending to infinity,
this procedure introduces a positive probability of a new cluster being created by a single observation.
When a new cluster is created, the parameters associated with it are generated from its posterior
distribution. We then developed the ISEM (integrated stochastic expectation maximization) algorithm
to estimate the parameters of interest. This algorithm configures a setting for latent allocation variables
c according to allocation probabilities, and then the cluster parameters are updated conditionally
on c as follows: for clusters with at least two observations, the parameter values are the maximum
likelihood estimates; for the clusters with only one observation, the parameter values are generated
from their posterior distribution.

In order to illustrate the computation implementation of the method and verify its performance,
we have considered a specific model in which data are generated from mixtures of univariate normal
distributions. This model allows us to avoid the label switching problem by considering the labeling
of the components according to the increasing order of the component averages, as done by [8,11–13],
among others. But we emphasize that our algorithm is not restricted to this particular model.
For instance, for the multivariate case, we may consider the labeling of the components according to
the eigenvalues of the current covariance matrix, as done by [14]. However, a detailed discussion of
the multivariate case will be done in a future paper.
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We also compare the performance of the ISEM with both SEM and RJ algorithms. The criteria
used to compare the methods are the estimated probability of the number of clusters, convergence
of the sampled values, mixing, autocorrelation, and computation time. We also applied the three
algorithms to two real datasets. The first is the well-known Galaxy data, and the second is a dataset
on Acidity.

The remainder of the paper is as follows. Section 2 describes the mixture model and the estimation
process based on the SEM algorithm. Section 3 develops the integrated approach and describes the
ISEM algorithm. Section 4 shows how we applied the algorithm to simulated datasets in order to
assess its performance. Section 5 describes the application of the three algorithms to two real datasets.
Section 6 is about our final remarks. Additional details are in the Supplementary Material, which is
referred to as “SM” in this paper. Table 1 presents the main notations used throughout the article.

Table 1. Main mathematical notation used throughout the paper.

Notation Description

k Number of components
kc Number of clusters
θj Parameter of the j-th component, for j = 1, . . . , k

θk = (θ1, . . . , θk) The whole vector of parameters
wj Weight of the j-th component, for j = 1, . . . , k
Yi The i-th sampled value, for i = 1, . . . , n
ci The i-th indicator variable, for i = 1, . . . , n

y = (y1, . . . , yn) The vector of independent observations
c = (c1, . . . , cn) The vector of latent indicator variables

kc−i Number of clusters excluding the i-th observation
nj,−i Number of observations assigned to the j-th component, excluding the i-th observation

2. Mixture Model and SEM Algorithm

Let y = (y1, . . . , yn) be a vector of independent observations from a mixture model with k
components, i.e.,

f (yi|w, θk, k) =
k

∑
j=1

wj f (yi|θj), (1)

where f (yi|θj) is the density of a family of parametric distributions with parameters θj (scalar or
vector), θk = (θ1, . . . , θk) are the parameters of the components, and w = (w1, . . . , wk), wj > 0 and

∑k
j=1 wj = 1 are component weights.

The log-likelihood function for (θk, w) is given by

l(θk, w|y, k) = log

{
n

∏
i=1

[
k

∑
j=1

wj f (yi|θj)

]}
=

n

∑
i=1

log

{[
k

∑
j=1

wj f (yi|θj)

]}
.

The mathematical notation l(θk, w|y, k) is given as in the book of Casella and Berger (2002).
The usual procedure to obtain the maximum likelihood estimators consists of getting partial

derivatives of l(θk, w|y) in relation to θj and then equalizing the result to zero, i.e.,

dl(θk, w|y)
dθj

=
n

∑
i=1

wj f (yi|θj)

k
∑

j=1
wj f (yi|θj)

d log
[

f (yi|θj)
]

dθj
= 0, (2)

for j = 1, . . . , k.

9
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But, note that in (2), the maximization procedure consists of a weighted maximization process
of the log-likelihood function with each observation yi having a weight associated to component j
given by

w∗
ij =

wj f (yi|θj)

k
∑

j=1
wj f (yi|θj)

, (3)

for i = 1, . . . , n and j = 1, . . . , k. However, these weights depend on the parameters that we are trying
to estimate. In this way, we cannot obtain a “closed” mathematical expression that allows the direct
maximization of the log-likelihood function. Due to this, the mixture problem is reformulated as a
complete-data problem [12,15].

Complete-Data Formulation

Consider associated to each observation yi a latent indicator variable ci not known, so that if
ci = j, then yi is from component j, for i = 1, . . . , n and j = 1, . . . , k. The probability of ci = j is wj,
P(ci = j|w, k) = wj, for i = 1, . . . , n and j = 1, . . . , k. Letting nj be the number of observations from
component j (i.e., the number of cis equals to j), the joint probability for c = (c1, . . . , cn) given w and
k is

π(c|w, k) =
k

∏
j=1

w
nj
j . (4)

The distribution of the number of observations assigned to each component, n1, . . . , nk, called the
occupation number, is multinomial, (n1, . . . , nk|n, w) ∼ Multinomial(n, w), where n = n1 + . . . + nk.

Thus, under this augmented framework, we have that

(1) the probability of ci = j, conditional on observation yi and on component parameters θk, is w∗
ij,

i.e., P(ci = j|yi, θk, k) = w∗
ij, for w∗

ij given in Equation (3), for i = 1, . . . , n and j = 1, . . . , k. That is,
although the indicator variables are nonobservable, they are implicitly present in the estimation
procedure given in Equation (2).

(2) the log-likelihood function for (θk, w), conditional on complete data (y, c), is given by

l(θk, w|y, c) = log

{
k

∏
j=1

w
nj
j L(θj|y)

}
=

k

∑
j=1

[
nj log(wj) + l(θj|y)

]
,

where l(θj|y) = log
[
L(θj|y)

]
is the log-likelihood function for component j, for j = 1, . . . , k.

Thus, the estimation procedure of the k component parameters reduce to k independent problems
of estimation. For example, for a normal mixture model, the maximum likelihood estimates for
component parameters θj = (μj, σ2

j ) is θ̂j = (μ̂j, σ̂2
j ) = (yj, s2

j ), where yj and s2
j are, respectively,

the average and variance of the observations allocated to component j, for j = 1, . . . , k.

From this complete-data formulation, the estimation procedure is given by an iterative process
with two steps. In the first one, the allocation indicator variables are updated conditional on component
parameters, and in the subsequent step, the component parameters are updated conditional on
configuration of the allocation indicator variables.

The usual algorithm used to implement these two steps is the EM algorithm [3]. The stochastic
version of the EM algorithm (SEM) can be implemented according to Algorithm 1.

10
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Algorithm 1 SEM Algorithm

1: Initialize the algorithm with a configuration c(0) =
(

c(0)1 , . . . , c(0)n

)
for allocation indicator variables.

2: procedure For the s-th iteration of the algorithm, s = 1, . . .
3: get the maximum likelihood estimates θ̂

(s)
k =

(
θ̂
(s)
1 , . . . , θ̂

(s)
k

)
and ŵ(s) =

(
ŵ(s)

1 , . . . , ŵ(s)
k

)
conditional on configuration c(s−1);

4: if

∣∣∣∣∣ l
(

θ̂
(s)
k ,ŵ(s) |y

)
−l
(

θ̂
(s−1)
k ,ŵ(s−1) |y

)
l
(

θ̂
(s−1)
k ,ŵ(s−1) |y

)
∣∣∣∣∣ < ε, where ε is a threshold value previously fixed, then stop

the algorithm. Otherwise, go to item (iii);
5: conditional on θ̂

(s)
k and ŵ(s), update c = (c1, . . . , cn) as follows. For i = 1, . . . , n and j = 1, . . . , k

do the following:

6: Let zi = (zi1, . . . , zik) be a indicator vector, so that zij = 0 or zij = 1;

7: Generate zi ∼ Multinomial(1, w∗
i ), where w∗

i = (w∗
i1, . . . , w∗

ik) and w∗
ij is obtained from

Equation (3) doing θj = θ̂j and wj = ŵj. If zij = 1, then do ci = j;
8: Do s = s + 1 and return to step (3).

Although it is simple to implement computationally, the SEM algorithm may present some
practical problems. As discussed by [16], the algorithm may present a slow convergence. Due to
this, some authors, such as [17,18], discuss how to set up the start values in order to increase the
convergence. In addition, [15] discusses the non-existence of the global maximum estimator.

Moreover, in this algorithm, the k value must be known previously. For the cases in which k
is an unknown quantity, the best k value is chosen by fitting a set of models associated with a set
of predefined k values and comparing them according to AIC [4,5] or BIC [6] criteria. Furthermore,
given a sample of size n and fixed a k value, there exists a positive probability, given by (1 − wj)

n �= 0,
of the j-th component not having observations allocated in an iteration of the algorithm. In this
case, we have an empty component, and the maximum likelihood estimates cannot be calculated for
these components. Thus, in order to avoid the practical problems presented by the EM algorithm,
we propose an integrated approach.

3. Integrated Approach

We start our integrated approach linking data clustering to a mixture model. For this, consider a
sampling process from a heterogeneous population that is subdivided into k sub-populations. Thus,
it is natural to assume that the sampling process consists of the realization of the following steps:

(i) choose a sub-population j with probability wj, where wj is the relative frequency of the j-th
sub-population in relation to the overall population;

(ii) sample a Yi value of this sub-population,

for i = 1, . . . , n and j = 1, . . . , k, where n is the sample size.
Let (Yi, ci) be a sample unit, where ci is an indicator allocation variable that assumes a value of

the set {1, . . . , k} with probabilities {w1, . . . , wk}, respectively. Thus, assuming that subpopulation j is
modeled by a probability distribution F(θj) indexed by parameter θj (scalar or vector), we have that

(Yi|ci = j, θj) ∼ F(θj) and P(ci = j|w) = wj,

for i = 1, . . . , n and j = 1, . . . , k.
However, in clustering problems, the ci’s values are non-observable. Thus, the probability of

ci = j is wj, and the marginal probability density function for Yi = yi is given by Equation (1).
In addition, as the model in Equation (1) is a population model; so there exists a non-null

probability (1 − wj)
n that the j-th component is an empty component. Thus, the number of clusters
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(i.e., non-empty components) is smaller than the number of components k. As viewed in the description
of the EM algorithm, the number of clusters is defined by the configuration of the latent allocation
variables c; thus hereafter, we will denote the number of clusters by kc, for kc ≤ k.

Since the interest lies in the configuration of c, let us marginalize out the weights of the mixture
model. Thus, integrating density (4) with respect to the prior Dirichlet

( γ
k , . . . , γ

k
)

distribution of the
weights, denoted by (w1, . . . , wk)|k, γ ∼ Dirichlet

( γ
k , . . . , γ

k
)
, the joint probability for c is given by (see

Appendix 3 of the SM)

π(c|γ, k) =
Γ(γ)

Γ(n + γ)

k

∏
j=1

Γ(nj +
γ
k )

Γ
( γ

k
) . (5)

Similarly, the conditional probability for ci = j given c−i = (c1, . . . , ci−1, ci+1, . . . , cn), is given by

π(ci = j|c−i, γ, k) =
nj,−i +

γ
k

n + γ − 1
, (6)

where nj,−i is the number of observations allocated to the j-th component, excluding the i-th
observation, for i = 1, . . . , n and j = 1, . . . , k.

As the main interest is in kc and not k, we remove k from Equation (6) by letting k tend to infinity.
Under this assumption, the probability reaches the following limit:

π(ci = j|c−i, γ) =
nj,−i

n + γ − 1
, (7)

when nj,−i > 0, for i = 1, . . . , n and j = 1, . . . , kc, where kc is the number of clusters defined by
configuration c. In addition, we now have a probability of the i-th observation being allocated to one
of the other infinite components, which is given by

π(ci = j∗|c−i, γ) =
γ

n + γ − 1
, (8)

for j∗ /∈ {1, . . . , kc}. This is the probability of the observation yi creating a new cluster, for i = 1, . . . , n.
The probabilities in (7) and (8) are equivalent to the update probabilities of a Dirichlet process mixture
model. See, for example, [19–21].

Given yi, the conditional probability for ci = j, such that nj,−i > 0, is

πij = π(ci = j|yi, θj, c−i, γ) =
nj,−i

n + γ − 1
f (yi|θj), (9)

for i = 1, . . . , n and j = 1, . . . , kc−i
, where kc−i is the number of clusters excluding the i-th observation.

At this point, it is important to note that if an observation yi is allocated to a component j, ci = j,
and nj > 1, then nj,−i ≥ 1 and kc−i = kc. But if ci = j and nj = 1, then nj,−i = 0 and kc−i = kc − 1.

In order to define the conditional probability of the i-th observation creating a new cluster j∗,
we integrate parameters out for this case, for j∗ = kc−i + 1. This was done because that probability
does not depend on the parameter value θj∗ . Thus, the conditional posterior probability for Ci = j∗ is

πij∗ = π(ci = j∗|yi, c−i, γ) =
γ

n + γ − 1
I(yi), (10)

where I(yi) =
∫

f (yi|θj∗)π(θj∗)dθj∗ and π(θj∗) is the density of the prior distribution for θj∗ , for i =
1, . . . , n.

As is known from the literature, the likelihood function for a mixture model is non-identifiable,
i.e., any permutation of the components’ labels lead to the same likelihood function (see,
for example, [8,11,22–24]). Thus, in order to get identifiability, we assume that μ1, . . . , μkc

are the
component means for clusters and that μ1 < . . . < μkc

. However, it does not prevent the algorithm
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described in the next Section from being applicable to another labeling criterion. Additional discussion
about label switching can be found in [22,23].

3.1. Integrated SEM Algorithm

Using probabilities given in Equations (9) and (10), we update the allocation indicator variables
according to Algorithm 2.

Conditional on a configuration c, we have kc clusters. So, we update parameters of interest
according to Algorithm 3. We then join Algorithms 2 and 3 to get the Algorithm 4.

After the S iterations, we discard the first B iterations as a burn-in. In the following, we also
consider “jumps” of size h, i.e., only one draw every h is extracted from the original sequence in order
to obtain a sub-sequence of size H = (S − B)/h to make inferences. Denote this sub-sequence by
S(H).

Consider Nkc
(j) to be the number of times that kc = j in S(H), for j ∈ {1, . . . , Kmax}, where Kmax

is the maximum kc value sampled in the course of iterations. Thus, P̃(kc = j) = Nkc (j)
H is the estimated

probability for kc = j. We then consider

k̃c = argmax
1≤j≤Kmax

(
P̃(kc = j)

)
as being the estimates for the number of components kc.

Appendix 1 of the SM presents the mathematical expression used to determine a configuration
for c and estimates for the parameters of the clusters, conditional on the estimate k̃c.

Algorithm 2 Updating c

1: Let c = (c1, . . . , cn) be the current configuration for latent allocation variables. Then, update c as
follows.

2: procedure For i = 1, . . . , n:

3: Remove ci from the current state c, obtaining c−i and kc−i ;

4: Generate a variable Zi =
(
Zi1, . . . , Zikc

) ∼ Multinomial(1, Pi), where Pi = (πi1, . . . , πikc−i
, πij∗)

for πij given in (9) and πij∗ given in (10), for j = 1, . . . , kc−i and j∗ = kc−i + 1;

5: If Zij = 1, for j ∈ {1, . . . , kc−i}, set up ci = j and do nj = nj,−i + 1;

6: If Zij∗ = 1, do nj∗ = 1 and kc = kc−i + 1. As this new cluster has just one observation allocated,
set as component parameter θj∗ = θ

g
j , where θ

g
j is a value generated from posterior distribution

π(θj∗ |yi) ∝ f (yi|θj∗)π(θj∗), where f (yi|θj∗) is the probability density function for yi conditional
on θj∗ and π(θj∗) is the density of the prior distribution for θj∗ . Relabel the kc clusters in order to
maintain the adjacency condition. If the component mean μj∗ of the new cluster is such that:

7: μj∗ = min
1≤j≤kc

μj, then do j∗ = 1 and relabel all other clusters doing j + 1;

8: μj∗ = max
1≤j≤kc

μj, then do j∗ = kc and keep all other clusters labels;

9: μj < μj∗ < μj+1, for j �= {1, kc}, then do j∗ = j + 1 and relabel all other clusters j′ ≥ j + 1 doing
j′ = j′ + 1.

13



Entropy 2019, 21, 1063

Algorithm 3 Updating cluster parameters

1: Let θkc
= (θ1, . . . , θkc

) be the current parameter values of the clusters. Conditional on configuration

c, get θ
updated
kc

= (θ
updated
1 , . . . , θ

updated
kc

) as follows:

2: if cluster j is such that nj > 1, then do θ
updated
j = θ̂j, where θ̂j are the maximum likelihood estimates

of the j-th cluster;
3: if cluster j is such that nj = 1, then generate θ

g
j from conditional posterior distribution π(θ|yi) and

set θ
updated
j = θ

g
j ;

4: Do θk = θ
updated
k only if the adjacency condition μ

updated
1 < . . . < μ

updated
kc

is met. Otherwise, keep
θkc

as the current value.

Algorithm 4 ISEM Algorithm

1: Initialize the algorithm with a configuration c(0) =
(

c(0)1 , . . . , c(0)n

)
for allocation indicator variables.

2: procedure For the s-th iteration of the algorithm, s = 1, . . . , S, do the following.
3: Conditional on c(s−1), update the parameters of the clusters according to algorithm 3 ;
4: Obtain a new configuration c(s) for the allocation of indicator variables using algorithm 2.

4. Simulation Study

In this section, we describe the results from a simulation study carried out to verify the
performance of the proposed algorithm. To generate the artificial datasets, we considered univariate
normal mixture models. We set up the number of clusters and parameter values according to the
specified values in Table 2. We also fixed the sample size equal to n = 200.

Table 2. Number of clusters and parameter values used for simulating the datasets.

Artificial
Dataset

Number of
Clusters

Parameter Values

A1 kc = 2
μ1 = 0, μ2 = 3,
σ2

1 = 1, σ2
2 = 1,

w1 = 0.80, w2 = 0.20,

A2 kc = 3
μ1 = −6, μ2 = 0, μ3 = 4
σ2

1 = 3, σ2
2 = 2, σ2

3 = 1
w1 = 0.50, w2 = 0.30, w3 = 0.20

A3 kc = 4
μ1 = −6, μ2 = 0, μ3 = 7, μ4 = 14
σ2

1 = 1, σ2
2 = 2, σ2

3 = 2, σ2
4 = 1

w1 = 0.10, w2 = 0.40, w3 = 0.40, w4 = 0.10

A4 kc = 5
μ1 = −13, μ2 = 7, μ3 = 0, μ4 = 6, μ5 = 11

σ1 = 1, σ2 = 2, σ3 = 3, σ4 = 2, σ5 = 1
w1 = 0.15, w2 = 0.20, w3 = 0.30, w4 = 0.20, w5 = 0.15,

The procedure for generating the datasets is given by the following steps:

(i) For i = 1, . . . , n, generate Ui ∼ U (0, 1); if
j−1
∑

j′=1
wj < ui ≤

j
∑

j′=1
wj, generate Yi ∼ N

(
μj, σ2

j

)
,

with fixed parameter values according to Table 2, for w0 = 0 and j = 1, . . . , kc.
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(ii) In order to record from which component each observation is generated, we define G =

(G1, . . . , Gn) such that Gi = j if Yi ∼ N
(

μj, σ2
j

)
, for i = 1, . . . , n and j = 1, . . . , kc.

Having generated the datasets, we need to define the the probability of creating a new cluster and
the posterior distribution for θj∗ =

(
μj∗ , σ2

j∗
)

given yi, for i = 1, . . . , n. For this, consider the following

conjugated prior distributions for component parameters θj =
(

μj, σ2
j

)
:

μj|σ2
j , μ0, λ ∼ N

(
μ0,

σ2
j

λ

)
and σ−2

j |α, β ∼ Γ(α, β),

where μ0, λ, α, and β are hyperparameters. The parametrization of the gamma distribution is such
that the mean is α/β and the variance is α/β2.

Following [11,24], we consider the following procedure to define the values for the
hyperparameters. Let R be the observed variation interval of the data and ε its midpoint. Then,
we set up μ0 = ε and E(σ−2

j ) = R−2. Thus, we obtain β = αR2, and we fix α = 1. In addition,

to obtain a prior distribution with a large variance, we fixed λ = 10−2, and for the hyperparameter γ,
we consider the value 0.1, γ = 0.1.

Thus, the probability of creating a new cluster is given by Equation (10), in which

I(yi) =

[
λ

2βπ(1 + λ)

] 1
2 Γ(α + 1)

Γ(α)

[
1 +

y2
i + λμ2

0
2β

− (yi + λμ0)
2

2β(1 + λ)

]−(α+ 1
2 )

, (11)

and j∗ = kc + 1, for i = 1, . . . , n.
When a new cluster is created, the new parameter values θj∗ = (μj∗ , σ2

j∗) are generated from the
following conditional posterior distributions,

μj∗ |σ2
j∗ , yi, c, μ0, λ ∼ N

(
yi + λμ0

1 + λ
,

σ2
j

1 + λ

)
(12)

and

σ−2
j∗ |yi, c, τ, β ∼ Γ

(
α + 1, β +

y2
i + λμ2

0
2

− (yi + λμ0)
2

2(1 + λ)

)
, (13)

for j∗ = kc−i + 1.
We run the ISEM algorithm for S = 55,000, B = 5000, and h = 10. From these values, we got

a sub-sequence S(H) of size 5000 to make inferences. The algorithm was initialized with kc = 1
and parameter values μ1 = y and σ2

1 = s2, the sample mean and variance of the generated
dataset, respectively.

We also apply to the generated datasets the SEM algorithm, as describe in Section 2, and the RJ
algorithm as proposed by [8]. In order to choose the number of clusters using the SEM algorithm,
we consider the AIC and BIC model selection criteria. In addition, the algorithm was initialized using
a configuration c(0) obtained via the k-means algorithm [25]. As stop criterion, we set up the threshold
ε = 0.001. For the RJ algorithm, we consider the same number of iterations, burn-in, and thin value
used in the ISEM algorithm.

In order to compare the three algorithms in terms of the estimation of the number of clusters, we
consider M = 500 simulated datasets. Table 3 shows the proportion of times that the ISEM and RJ
algorithms put the highest estimated probability on the kc values presented. This table also show the
proportion of times that the AIC and BIC indicated the kc value as the best among the tested values.
The values highlighted in bold are the proportions on the kc true value. As one can note, the ISEM
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shows a better performance, i.e., higher proportion of the kc true value than the other two algorithms,
especially in relation to the SEM algorithm with the selection of kc via the AIC and BIC. The results
also show that the AIC and BIC model selection criteria have a low success ratio, with a proportion of
the kc true value smaller than 0.50.

Table 3. Proportion of times the algorithms chose the kc values as the number of clusters.

Data Set ktrue
c kc

P̃(kc = j·)
AIC BIC Data Set ktrue

c kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

A1 2

1 0.014 0.002 0.050 0.210

A2 3

1 0.000 0.000 0.000 0.004
2 0.976 0.972 0.294 0.448 2 0.276 0.094 0.104 0.438
3 0.010 0.026 0.238 0.224 3 0.720 0.672 0.304 0.384

4 0.000 0.000 0.152 0.082 4 0.004 0.232 0.262 0.138
5 0.000 0.000 0.148 0.028 5 0.000 0.002 0.184 0.028
6 0.000 0.000 0.118 0.008 6 0.000 0.000 0.146 0.008

A3 4

1 0.000 0.000 0.000 0.000

A4 5

1 0.000 0.000 0.000 0.000
2 0.000 0.004 0.000 0.000 2 0.006 0.000 0.000 0.006
3 0.000 0.000 0.010 0.066 3 0.006 0.000 0.000 0.018
4 0.956 0.476 0.226 0.450 4 0.218 0.010 0.038 0.210
5 0.044 0.474 0.252 0.296 5 0.682 0.509 0.322 0.446

6 0.000 0.044 0.214 0.122 6 0.028 0.442 0.246 0.222
7 0.000 0.000 0.184 0.056 7 0.000 0.039 0.210 0.072
8 0.000 0.002 0.114 0.010 8 0.000 0.000 0.184 0.026

4.1. Results from a Single Simulated Data Set

We also analyze the results from a single dataset selected at random from the M = 500 generated
datasets in each situation A1 to A4. Then, we discuss the convergence of the ISEM and RJ algorithms
based on the sample generated across iterations, using graphical tools. In general, the graphical tools
show whether the simulated chain stabilizes in some sense and provide useful feedback about the
convergence [26].

Table 4 shows the estimated probabilities of kc obtained with ISEM and RJ and the AIC and BIC
values from the SEM algorithm for the selected dataset. In this table, the values highlighted in bold are
the highest estimated probabilities and the smallest AIC and BIC values. As we can note, the ISEM
algorithm set up a maximum probability for the kc true value for the four simulated cases.

The RJ algorithm puts a higher probability on the kc true value for datasets A1 and A2. However,
the probability on the kc true value is smaller than that estimated by ISEM. This indicates a higher
precision for the ISEM algorithm. For datasets A3 and A4, the RJ attributes maximum probability to
the wrong values, kc = 5 and kc = 6, respectively. Moreover, the probabilities estimated by RJ do
not evidence a single value for kc as being the best value since there are different values for kc with
similar probabilities. For example, for dataset A2, the maximum is at kc = 3 with P(kc = 3|·) = 0.3836,
but one can argue that the estimated probabilities favor kc = 3 or kc = 4. For dataset A3, there is
similar support for kc between 4 and 7, and for A4 between 5 and 7.

Analogously to ISEM and RJ, the AIC and BIC model selection criteria indicate the kc true value
as the best value for datasets A1 and A2. For dataset A3, similar to the RJ, the AIC indicates the wrong
value kc = 5 as the best value, while the BIC indicates the kc true value as the best value. For dataset
A4, the AIC and BIC indicate the wrong value kc = 6 as the best model.

4.2. An Empirical Check of the Convergence

We now empirically check the convergence of the sequence of the probability for kc across
iterations, the capacity to move for different values of kc in the course of the iterations, and the
estimated autocorrelation function the (acf) for the ISEM and RJ algorithms.
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Table 4. Estimated probability for kc.

Data Set ktrue
c kc

P̃(kc = j·)
AIC BIC Data Set ktrue

c kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

A1 2

1 0.0000 0.0000 786.7166 793.3133

A2 3

1 0.0000 0.0004 1160.758 1167.355
2 0.9006 0.5252 762.5204 779.0120 2 0.0122 0.0136 1129.981 1146.472
3 0.0962 0.2862 764.1440 790.5305 3 0.8694 0.3836 1114.024 1140.411

4 0.0032 0.1138 769.2648 805.5463 4 0.1124 0.3140 1118.789 1155.070
5 0.0000 0.0466 768.0492 814.2256 5 0.0058 0.1716 1120.108 1166.284
6 0.0000 0.0160 775.1082 831.1796 6 0.0002 0.0744 1130.558 1186.630
≥7 0.0000 0.0122 - - ≥7 0.0000 0.0424 - -

A3 4

1 0.0000 0.0000 1273.886 1280.482

A4 5

1 0.0000 0.0002 1416.124 1422.721
2 0.0000 0.0000 1276.281 1292.773 2 0.0000 0.0004 1388.738 1405.230
3 0.0000 0.0002 1251.357 1277.743 3 0.0000 0.0028 1358.474 1384.861
4 0.8412 0.1696 1188.470 1224.751 4 0.0014 0.0114 1357.037 1393.318
5 0.1500 0.3014 1186.075 1232.252 5 0.8340 0.2788 1355.922 1402.098
6 0.0088 0.2400 1191.747 1247.818 6 0.1520 0.3004 1325.927 1381.998

7 0.0000 0.1632 1197.028 1262.995 7 0.0124 0.2224 1331.940 1397.907
8 0.0000 0.0816 1200.337 1276.199 8 0.0002 0.0186 1331.352 1407.213
≥9 0.0000 0.0440 - - ≥9 0.0000 0.0750 - -

Figure 1a,d,g,j presents the graphics of the probability for kc in the course of the iterations, for the
four simulated datasets. To maintain a better visualization, we plot in these graphics only the three
higher P(kc|·) estimates. Observing at these figures, it can be seen that the L iterations and the
burn-in value B used were adequate to achieve stability for P(kc|·). In addition, Figure 1b,e,h,k shows
that the ISEM algorithm mixes well over kc, i.e., “visits” mixture models with different values of
kc across iterations. As shown by Figure 1c,f,i,l, the sampled kc values also do not have significant
autocorrelation function (ACF). Thus, based on these graphical tools, there is no evidence against the
convergence of the generated values by the ISEM algorithm.

Figure 2 shows the performance of the RJ algorithm. The probabilities of kc present a satisfactory
stability. The sampled kc values have a satisfactory mix, and the estimated autocorrelation is
non-significant. In addition, as can be noted in Figure 2, probabilities for the number of clusters do not
differentiate a value of kc in order to be chosen as the better value, as done by ISEM. This may happen
due the fact that the performance of the RJ depends on the choice of the transition functions to do
“good” jumping, meaning that a transition function that is adequate for one dataset may be not for
another one. As the ISEM algorithm does not need the specification of transition functions to propose
a change of the kc value, these results shows us that ISEM may be an effective alternative in relation to
RJ and SEM algorithms for the joint estimation of kc and the cluster parameters of a mixture model.

Figure 1 in Appendix 2 of the SM shows the generated values for datasets A1 to A4. This Figure
also shows the clusters identified by the ISEM algorithm. As can be seen, clusters are satisfactorily
identified by the proposed algorithm.

We also compare ISEM and RJ algorithms in terms of CPU computation time. The simulations
were realized on a MacBook Pro, 2.5 GHz Intel Core i5 dual core, 4 Gb MHz DDR3. Table 5 shows
a summary of the times of iterations for the ISEM and RJ algorithms. The column denoted by s.d.
presents the standard deviation values. For dataset A1, the average time that RJ takes to run one
iteration is 1.8491 times greater than the average time that ISEM takes to run an iteration. For datasets
A2, A3, and A4, the average time that RJ needs to run one iteration is 1.8175, 2.3239, and 1.8932 times
greater than the average time that ISEM takes to run an iteration, respectively. These results show a
better performance of the ISEM algorithm. The higher iteration times of the RJ algorithm are mainly
due to the split–merge step used to increase the mixing of the Markov chain in relation to the number
of clusters.
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Figure 1. Performance of the ISEM algorithm across iterations.
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Figure 2. Performance of the RJ algorithm across iterations.
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The results from these simulated datasets show that the ISEM algorithm may be an effective
alternative to the RJ and SEM algorithms for data clustering in situations where the number of clusters
is a unknown quantity.

Table 5. Times of the iterations, in seconds.

Artificial
Dataset

Algorithm
Summary

Min 1o Q. Med. Mean 3o Q. Max. s.d.

A1
ISEM 0.0064 0.0082 0.0091 0.0109 0.0105 0.4987 0.0107

RJ 0.0032 0.0137 0.0158 0.0208 0.0202 0.3855 0.0174

A2
ISEM 0.0055 0.0100 0.0114 0.0137 0.0146 0.3806 0.0108

RJ 0.0032 0.0169 0.0196 0.0249 0.0243 0.7709 0.0181

A3
ISEM 0.0059 0.0112 0.0123 0.0142 0.0139 0.4951 0.0100

RJ 0.0020 0.0218 0.0255 0.0330 0.0320 0.4785 0.0239

A4
ISEM 0.0059 0.0130 0.0146 0.0179 0.0187 0.5149 0.0108

RJ 0.0026 0.0232 0.0266 0.0339 0.0323 0.5490 0.0231

5. Application

The three algorithms are now applied to two real datasets. The first real dataset refers to velocity
in km/s of n = 82 galaxies from 6 well-separated conic sections of an unfilled survey of the Corona
Borealis region. This dataset is known in the literature as the Galaxy data and has already been analyzed
by [8,13,22,27], among others. This dataset is available in the R software. The second real dataset refers
to an acidity index measured in a sample of n = 155 lakes in central-north Wisconsin. This dataset was
downloaded from the website https://people.maths.bris.ac.uk/$\sim$mapjg/mixdata.

For application of ISEM and RJ algorithms, we consider the same number L = 5500, B = 5000,
and h = 10. Table 6 shows the estimated probabilities for kc obtained with ISEM and RJ and the AIC
and BIC values from EM algorithm for each dataset. The maximum probability from ISEM and RJ and
the minimum AIC and BIC values are highlighted in bold.

Table 6. Estimated probabilities for kc, real datasets.

Data Set kc
P̃(kc = j·)

AIC BIC Data Set kc
P̃(kc = j·)

AIC BIC
ISEM RJ ISEM RJ

Galaxy

1 0.0000 0.0000 484.6819 489.4954

Acidity

1 0.0000 0.0000 455.5740 461.6608
2 0.0000 0.0008 451.0018 463.0354 2 0.7194 0.0502 380.3449 395.5620

3 0.7024 0.1200 426.7421 445.09959 3 0.2638 0.3164 382.7395 407.0869
4 0.2748 0.2530 427.4915 453.9654 4 0.0152 0.3040 382.3660 415.8437
5 0.0222 0.2592 410.3666 444.0607 5 0.0016 0.1724 391.7630 434.3709
6 0.0006 0.1848 413.7755 454.6897 6 0.0000 0.0832 386.1420 437.8802
7 0.0000 0.1084 422.1793 470.3137 7 0.0000 0.0452 388.1296 448.9981
8 0.0000 0.0472 423.5542 478.9088 8 0.0000 0.0186 395.3957 465.3945
≥9 0.0000 00226 - - ≥9 0.0000 0.0010 - -

For the Galaxy dataset, the ISEM and RJ algorithms put highest probability on kc = 3 and kc = 5,
respectively. However, analogously to the simulation study, the probabilities estimated by RJ do not
evidence a single value for kc as being the best value. For this dataset, the estimated probabilities
indicate a kc value between 3 and 7. The AIC and BIC also indicate kc = 5 as the best value. For the
Acidity dataset, ISEM, AIC, and BIC indicate kc = 2 as the best value. The probabilities estimated by
RJ attribute similar values for kc = 3 and kc = 4.
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Figures 3 and 4 show the performance of the ISEM and RJ algorithms across iterations for
the Galaxy and Acidity datasets. The values sampled by the ISEM algorithm present satisfactory
stability for estimated probability across iterations, mix well among different kc values, and present no
significant autocorrelation. That is, we do not have evidence against the convergence of the generated
chain by the ISEM algorithm. In relation to the RJ, the sampled values mix well and do not present
significant autocorrelation. However, although the values sampled by RJ present stability for P(kc),
the estimated probabilities do not differentiate a value of kc in order to be chosen as the better value,
as done by ISEM. This result shows the need to run RJ for a greater number of iterations. With this,
we have that for both real datasets, ISEM presents faster convergence than the RJ algorithm.

Table 7 shows a summary of the iteration times for the ISEM and RJ algorithms. For the Galaxy
data, the average time that ISEM takes to run an iteration is 0.0053 s; while the average time for RJ is
0.0098 s. That is, the average time that RJ takes to run one iteration is 1.8491 times greater than the
average time that ISEM takes to run an iteration. For the Acidity data, the average times that the ISEM
and RJ algorithms take to run an iteration are 0.0085 and 0.0180 s, respectively. For this dataset, the
average time that RJ needs to run an iteration is 2.2118 times greater than the average time that ISEM
runs. Similarly to results from the simulation study, ISEM presents better results, i.e., a shorter time to
run the iterations.
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Figure 3. Performance of the ISEM and RJ algorithms for the Galaxy data.
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Figure 4. Performance of the RJ algorithm across iterations for the Acidity data.

Table 7. Iteration times in seconds.

Artificial
Dataset

Algorithm
Summary

Min 1o Q. Med. Mean 3o Q. Max. s.d.

Galaxy
ISEM 0.0023 0.0038 0.0045 0.0053 0.0054 0.2468 0.0062

RJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Acidity
ISEM 0.0055 0.0100 0.0114 0.0137 0.0146 0.3806 0.0108

RJ 0.0046 0.0128 0.0149 0.0188 0.0180 0.4588 0.0160

6. Final Remarks

This article presents a discussion of how to estimate the parameters of a mixture model in the
context of data clustering. We propose an alternative algorithm to the EM algorithm called ISEM.
This algorithm was developed through an integrated approach in order to allow kc to be estimated
jointly with the other parameters of interest. In the ISEM algorithm, the allocation probabilities depend
on the number of clusters kc and are independent of the number of components k of the mixture model.

In addition, there exists a positive probability of a new cluster being created by a single observation.
This is an advantage of the algorithm because it creates a new cluster without the need to specify
transition functions. In addition, the cluster parameters are updated according to the number of
allocated observations. For the clusters with at least two of these observations, the values of the
parameters are taken by the maximum likelihood estimates. For a cluster with just one observation,
the parameter values are generated from the posterior distribution.

In order to illustrate the performance of the ISEM algorithm, we developed a simulation study.
In this simulation study, we considered four scenarios with artificial data generated from Gaussian
mixture models. In addition, each one of the four scenarios was replicated M = 500 times, and the
proportion of times that ISEM put a higher probability on the kc true value was recorded. We applied
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this same procedure to the EM algorithm, choosing the number of clusters kc via the AIC and BIC,
and to the RJ algorithm. Then, the three algorithms were compared in terms of proportion of times that
the kc true value was selected as the best value. The results obtained show that the ISEM algorithm
outperforms the RJ and SEM algorithms. Moreover, the results also show that the AIC and BIC model
selection criteria should not be used to determine the number of clusters in a mixture model due to a
low success rate.

We also compared the performance of ISEM and RJ in terms of empirical convergence of the
sequence of values generated using graphical tools. For this, we selected at random an artificial
dataset from each scenery, and then we plotted the probability estimates for kc across iterations, the
generated kc values, and the estimated autocorrelation of the sampled values (see Figures 1 and 2).
Again, the results show a better performance for the ISEM algorithm. While ISEM presents satisfactory
stability for the probability of kc and differentiates the true kc as the best value, the probabilities
estimated by RJ do not differentiate a value of kc in order to be chosen as the better value.

In order to illustrate the practical use of the proposed algorithm and compare its performance
with the SEM and RJ algorithms, we applied the three algorithms to two real datasets: the Galaxy and
Acidity datasets. For the Galaxy dataset, ISEM indicates kc = 3 with probability P(kc = 3|·) = 0.7024,
while the RJ algorithm, the AIC, and the BIC indicate kc = 5. However, as shown in Figure 3d, the RJ
algorithm again does not differentiate a value of kc, while ISEM differentiates the kc = 3 value, and the
generated values across iterations present satisfactory stability. For the Acidity dataset, the ISEM, AIC,
and BIC indicate kc = 2 as the best value, while RJ attributes similar probabilities for kc = 3 and kc = 4.

As mentioned in the Introduction, the generalization of the proposed algorithm for the
multivariate case is the next step of our research. The simulation study and the application were done
in R software, and the computational codes can be obtained by emailing the authors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/11/1063/
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Abstract: Previously, we developed a high throughput non-parametric maximum entropy method
(PLOS ONE, 13(5): e0196937, 2018) that employs a log-likelihood scoring function to characterize
uncertainty in trial probability density estimates through a scaled quantile residual (SQR). The SQR
for the true probability density has universal sample size invariant properties equivalent to
sampled uniform random data (SURD). Alternative scoring functions are considered that include
the Anderson-Darling test. Scoring function effectiveness is evaluated using receiver operator
characteristics to quantify efficacy in discriminating SURD from decoy-SURD, and by comparing
overall performance characteristics during density estimation across a diverse test set of known
probability distributions.

Keywords: density estimation; distribution free; non-parametric statistical test; decoy distributions;
size invariance; scaled quantile residual; maximum entropy method; scoring function; outlier
detection; overfitting detection

1. Introduction

The rapid and accurate estimate of the probability density function (pdf) for a random variable is
important in many different fields and areas of research [1–6]. For example, accurate high throughput
pdf estimation is sought in bioinformatics screening applications and in high frequency trading to
evaluate profit/loss risks. In the era of big data, data analytics and machine learning, it has never been
more important to strive for automated high-quality pdf estimation. Of course, there are numerous
other traditional areas of low throughput applications where pdf estimation is also of great importance,
such as damage detection in engineering [7], isotope analysis in archaeology [8], econometric data
analysis in economics [9], and particle discrimination in high energy physics [10]. The wide range
of applications for pdf estimation exemplifies its ubiquitous importance in data analysis. However,
a continuing objective regarding pdf estimation is to establish a robust distribution free method to
make estimates rapidly while quantifying error in an estimate. To this end, it is necessary to develop
universal measures to quantify error and uncertainties to enable comparisons across distribution
classes. To illustrate the need for universality, the pdf and cumulative distribution function (cdf) for
four distinctly different distributions are shown in Figure 1a,b. Comparing the four cases of pdf and
cdf over the same sample range, it is apparent that the data are distributed very differently.

Entropy 2019, 21, 1120; doi:10.3390/e21111120 www.mdpi.com/journal/entropy25
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Figure 1. Examples of four distribution types in the form of (a) pdf and corresponding (b) cdf.

The process of estimating the pdf for a given sample of data is an inverse problem. Due to
fluctuations in a sample of random data, many pdf estimates will be able to model the data sample
well. If additional smoothness criteria are imposed, many proposed pdf estimates can be filtered out.
Nevertheless, a pdf estimate will carry intrinsic uncertainty along with it . The development of a
scoring function to measure uncertainty in a pdf estimate without knowing the form of the true pdf is
indispensable in high throughput applications where human domain expertise cannot be applied to
inspect every proposed solution for validity. Moreover, it is desirable to remove subjective bias from
human (or artificial intelligence) intervention. Automation can be achieved by employing a scoring
function that measures over-fitting and under-fitting quantitatively based solely on mathematical
properties. The ultimate limit is set by statistical resolution, which depends on sample size.

Solving the inverse problem becomes a matter of optimizing a scoring function, which breaks
down into two parts—first, developing a suitable measure that resists under- and over-fitting to the
sampled data, which is the focus of this paper. Second, developing an efficient algorithm to optimize
the score while adaptively constructing a non-parametric pdf. The second part will be accomplished
by an algorithm involving a non-parametric maximum entropy method (NMEM) that was recently
developed by JF and DJ [11] and implemented as the “PDFestimator.” Similar to a traditional parametric
maximum entropy method (MEM), NMEM employs Lagrange multipliers as coefficients to orthogonal
functions within a generalized Fourier series. The non-parametric aspect of the process derives from
employing a data driven scoring function to select an appropriate number of orthogonal functions, as
their Lagrange multipliers are optimized to accurately represent the complexity of the data sample
that ultimately determines the features of the pdf. The resolution of features that can be uncovered
without over-fitting naturally depends on the sample size.

Some important results in statistics [12] that are critical to obtain universality in a scoring function
are summarized here. For a univariate continuous random variable, X, the cdf is given by FX(x),
which is a monotonically increasing function of x and, irrespective of the domain, the range of FX(x) is
on the interval (0, 1). A new random variable, R, that spans the interval (0, 1) is obtained through the
mapping r = FX(x). The cdf for the random variable R can be determined as follows,

F(r) = P(R ≤ r) = P(FX(x) ≤ r) = P(X ≤ F−1
X (r)) = FX(F−1

X (r)) = r (1)

Since the pdf for the random variable R is given as f (r) = dF(r)
dr = 1 it follows that R has a

uniform pdf on the interval (0, 1). Furthermore, due to the monotonically increasing property of FX(x)
it follows that a sort ordered set of N random numbers {xk}N maps to the transformed set of random
numbers {rk}N in a 1 to 1 fashion, where k is a labeling index that runs from 1 to N. In particular,
for an index k′ > k, it is the case that rk′ ≥ rk. The 1 to 1 mapping that takes X → R has important
implications for assessing the quality of a pdf estimate. The universal nature of this approach is that,
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for a given sample of random data and no a priori knowledge of the underlying functional form of the
true pdf, an evaluation can be made of the transformed data.

Given a high-quality pdf estimate from an estimation method, f̂X(x), the corresponding estimated
cdf, F̂X(x), will exhibit sampled uniform random data (SURD). Conversely, for a given sample from the
true pdf, a poor trial estimate, f̂X(x) , will yield transformed random variables that deviate from SURD.
The objective of this work is to consider a variety of measures that can be used as a scoring function to
quantify the uncertainty in how close the estimate f̂X(x) is to the true pdf based on how closely the sort
order statistics of F̂X({xk}) matches with the sort order statistics of SURD. The powerful concept of
using sort order statistics to quantify the quality of density estimates [13] will be leveraged to construct
universal scoring functions that are sample size invariant.

The strategy employed in the NMEM is to iteratively perturb a trial cdf and evaluate it with
a scoring function. By means of a random search using adaptive perturbations, the trial cdf with
the best score is tracked until the score reaches a threshold where optimization terminates. At this
point, the trial cdf is within an acceptable tolerance to the true cdf and constitutes the pdf estimate.
Different outcomes are possible since the method is based on a random fitness-selection process to solve
an inverse problem. The role of the scoring function in the NMEM includes defining the objective target
for optimizing the Lagrange multipliers, providing stopping criteria for adding orthogonal functions
in the generalized Fourier series expansion and marking a point of diminishing returns where further
optimizing the Lagrange multipliers results in over-fitting to the data. Simply put, the scoring function
provides a means to quantify the quality of the NMEM density estimate. Optimizing the scoring
function in NMEM differs from traditional MEM approaches that minimize error in estimates based on
moments of the sampled data. Note that the universality of the scoring function eliminates problems
with heavy tailed distributions that have divergent moments. Nevertheless, Lagrange multipliers are
determined based on solving a well defined extremum problem in both cases.

Before tackling how to evaluate the efficacy of scoring functions, a brief description is given here
on how the quality of a pdf estimate can be assessed without knowing the true pdf. Visualizing a
quantile-quantile plot (QQ-plot) is a common approach in determining if two random samples come
from the same pdf. Given a set of N sort ordered random variables {xk}N that are monotonically
increasing, along with a cdf estimate, the corresponding empirical quantiles are determined by the
mapping {rk}N = F̂X({xk}N) as described above. It is not necessary to have a second data set to
compare. As described previously [11], the empirical quantile can be plotted on the y-axis versus
the theoretical average quantile for the true pdf plotted on the x-axis. From single order statistics
(SOS) the expectation value of rk is given by μk = k/(N + 1) for k = 1, 2, ...N, which gives the mean
quantile. Figure 2a illustrates the QQ plot for the distributions shown in Figure 1. The benefit of the
QQ plot is that it is a universal measure. Unfortunately, for large sample sizes, the plot is no longer
informative because all curves approach a perfect straight line as random fluctuations decrease with
increasing sample size. A quantile residual (QR) allows deviations from the mean quantile to be readily
visualized when one sample size is considered. However, as illustrated in Figure 2b, the residuals in a
QR-plot decrease as sample size increases. Hence, the quantile residual is not sample size invariant.

The QR-plot is scaled [11] in such a way as to make the scaled quantile residual (SQR) sample
size invariant. From SOS, the standard deviation for the empirical quantile to deviate from the mean
quantile is well-known to be σk =

√
μk(1 − μk)/

√
N + 2 where k is the sort order index. Interestingly,

all fluctuations regardless of the value for the mean quantile scale with sample size as 1/
√

N + 2.
Sample size invariance is achieved by defining SQR as

√
N + 2(rk − μk) and, when plotted against μk,

one obtains a SQR-plot. Figure 2c shows an SQR-plot for three different sample sizes for each of the
four distributions considered in Figure 1. It is convenient to define contour lines using the formula
s f
√

μ(1 − μ), where the scale factor, s f , can be adjusted to control how frequently points on the SQR
plot will fall within a given contour. In particular, 99% of the time the SQR points will fall within the
boundaries of the oval when bounded by ±2.58

√
μ(1 − μ). Scale factors of 1.65, 1.96, 2.58 and 3.40

lead to 90%, 95%, 99% and 99.9% of SQR points falling within the oval based on numerical simulation.
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Interestingly, the scale factors of 1.65, 1.96, 2.58 and 3.40 respectively correspond to the z-values of a
Gaussian distribution at the 90%, 95%, 99% and 99.9% confidence levels.
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Figure 2. For each of the four distributions shown in Figure 1 and for sample sizes N = 50, 500, 5000
shown in all panels with same distinct colors, an empirical quantity is plotted as a function of the
theoretical average quantile. The panels show (a) QQ-plot, (b) QR-plot and (c) SQR-plot. Only the
SQR-plot is sample size invariant. As an illustration of universality in all panels, any of the colored
lines could represent any one of the four distributions.

The SQR-plot provides a distribution free visualization tool to assess the quality of a cdf estimate
in three ways. First, when the SQR falls appreciably within the oval that encloses 99% of the residual,
it is not possible to reject the null hypothesis. Second, when the SQR exhibits non-random patterns,
this is an indication of systematic error introduced by the estimator method. Finally, when the SQR
has suppressed random fluctuations such that it is close to 0 for an extended interval, this indicates
that the pdf estimate is over-fitting to the sample data. In general, over-fitting is hard to quantify [14].
As the graphical abstract shows, it is possible to plot the SQR against the original random variable x
instead of the mean quantile. Doing this deforms the oval or "lemon drop" shape of the SQR-plot but
it directly shows where problems in the estimate are locally occurring in relation to the pdf estimate.
The aim of this paper is to quantify these salient features of an SQR-plot using a scoring function.

This work was motivated by the concern that different scoring functions will likely perform
differently in terms of speed and accuracy in NMEM. The scoring function that was initially considered
was constructed from the natural logarithm of the product of probabilities for each transformed random
variable, given by F̂X({xk}). This log-likelihood scoring function provides one way to measure the
quality of a proposed cdf. Interestingly, the log-likelihood scoring function has a mathematical
structure similar to the commonly employed Anderson-Darling (AD) test [15,16]. As such, the current
study considers several alternative scoring functions that use SQR and compares how sensitive
they are in quantifying the quality of a pdf estimate. Other types of information measures that
use cumulative relative entropy [17] or residual cumulative Kullback–Leibler information [18,19]
are possible. However, these alternatives are outside the scope of this study, which focuses on
leveraging SQR properties. The scoring function must exhibit distribution free and sample size
invariant properties so that it can be applied to any sample of random data of a continuous variable
and also to sub-partitions of the data when employed in the PDFestimator. It is worth noting that
all the scoring functions presented in this paper exhibit desirable properties with similar or greater
efficacy than the AD scoring function and all are useful for assessing the quality of density estimates.

In the remainder of this paper, a numerical study is presented to explore different types of
measures for SQR quality. The initial emphasis is on constructing sensitive quality measures that are
universal and sample size invariant. These scoring functions based on SQR properties can be applied
to quantifying the accuracy (or ‘’goodness of fit”) of a pdf estimate created by any methodology,
without knowledge of the true pdf. The SQR is readily calculated from the cdf which is obtained
by integrating the pdf. To determine which scoring function best distinguishes between good and
poor cdf estimates, the concept of decoy SURD is introduced. Once decoys are generated, Receiver
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Operator Characteristics (ROC) are employed to identify the most discriminating scoring function [17].
In addition to ROC evaluation, performance of the PDFestimator for different plugged in scoring
functions is evaluated. This benchmark is important because the scoring function is expected to affect
the rate of convergence toward a satisfactory pdf estimate using the NMEM approach. After discussing
the significance of the results, several conclusions are drawn from an extensive body of experiments.

2. Results

2.1. Sample Size Invariant Scoring Functions

Seven scoring functions are defined in Table 1. At the moment, the input to these scoring functions
is SURD of sample size N. Specifically, N random numbers are independently and identically drawn
uniformly on the interval (0,1) and then sort ordered to give SOS represented by the set {rk}N where
0 < rk ≤ rk+1 < 1 ∀ k = 1, 2, ...N. For sample size, N, a scoring function of type t is evaluated as
St({rk}N), which defines a new random variable that is simply denoted as St(N). A scoring function
is scale invariant if the probability density for St(N) is independent of sample size, which typically
holds only for large N. However, finite size corrections are made for each scoring function and are
listed in Table 1. In all cases, the finite size corrections are empirically determined based on numerical
simulation to achieve approximate scale invariance for N ≥ 9. In all coefficients reported, there is a (3)
error in the last significant figure, such as 0.406(3) or 11.32(3).

Table 1. Scoring function definitions and finite size corrections.

Anderson-Darling (AD)
SAD = 1

N ∑N
k=1(1− 2k)[ log(rk)+ log(1− rn+1−k)]

S′
AD = SAD − So

AD
μ′

AD = 1 − 0.250/
√

N − 0.667/N
σ′

AD = 0.761 + 0.025/
√

N

Log-Likelihood (LL)

SLL = 1
N ∑N

k=1 log
[

N!
(k−1)!(N−k)! (rk)

k−1(1 − rk)
N−k

]
S′

LL = SLL − So
LL

μ′
AD = 1 − 0.297/

√
N − 5.180/N + 7.56/N1.5

σ′
AD = 0.761 − 0.120/

√
N − 0.351/N

mean variance (VAR)
SVAR = 1

N ∑N
k=1 z2

k
μVAR = 1 − 0.003/

√
N

σVAR = 0.757 + 0.312/
√

N + 0.406/N

generalized moment (S0.5)

S0.5 =
(

1
N ∑N

k=1 |zk|0.5
)2

μ0.5 = 0.704 − 0.008/
√

N + 0.009/N + 0.52/N1.5

σ0.5 = 0.302 + 0.000/
√

N + 0.313/N

root mean square of log-ratio (RMSLR)

RMSLR =

[
1
R ∑∀(i,j)

(
Sij

LR

)2
] 1

2

where R = Nb(Nb − 1)/2 for distinct pairs.
Nb= number of blocks.

generalized moment (S4)

S4 =
(

1
N ∑N

k=1 |zk|4
)0.25

μ4 = 1.153 + 0.129/
√

N − 1.630/N + 2.20/N1.5

σ4 = 0.345 + 0.303/
√

N + 0.762/N − 2.56/N1.5

mean log-ratio (SLR)

Sij
LR = 1

m−1 ∑m−1
k=1 log

(
δi

k

δ
j
k

)
where m = block size for both the i-th and j-th blocks being compared.

μLR = 0 Let x = (Np − 1)/(N − 1) to account for the number of subsamples within partition, p.

σLR =
√

2
m

{
1 + 0.1888x + 1.754x2 − 13.71x3 + 44.49x4 − 47.01x5, x < 1/2
−4.952 + 29.12x − 50.52x2 + 38.95x4 − 11.32x4, x ≥ 1/2

As defined in Table 1, the proposed scoring functions include the relevant part of the
Anderson-Darling (AD) measure [15], denoted as SAD, and the quasi log-likelihood formula [11],
denoted as SLL. Note that SLL = log [∏k pk(rk)] where pk(rk) is the exact pdf corresponding to a beta
distribution that describes the random variable rk as derived from SOS [13]. The quasi log-likelihood
is not an exact log-likelihood. Rather, SLL corresponds to a mean field approximation where
correlations between the random variables, {rk}N , are neglected. Another scoring function is defined
as SVAR = 〈z2

k〉, where zk = (rk − μk)/σk. As mentioned in the Introduction, μk = 〈rk〉 = k/(N + 1) is
the mean quantile of the k-th random variable and σk = μk (μk − 1) /

√
N + 2 is the standard deviation
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of the k-th random variable about its mean. Essentially SVAR is the mean variance of a “z-value”
for SOS.

Despite sharing a similar mathematical form, the SAD and SLL scoring functions are not the same,
even in the limit N → ∞. At face value, these functions look very different. However, after shifting
the origin of these functions to their natural reference points and scaling SLL by a factor of −2, which
was empirically determined to obtain data collapse, these two measures were remarkably similar.
To demonstrate this, let S′

AD ≡ SAD ({rk}) − SAD ({μk}) and S′
LL ≡ −2 [SLL ({rk}) − SLL ({μk})].

The natural reference points So
AD and So

LL are respectively defined as SAD and SLL, evaluated at the
mean quantiles. Figure 3a,d show the pdf for S′

AD and the pdf for S′
LL are approximately sample size

invariant and markedly similar. Interestingly, S′
AD has superior sample size invariance because it

reaches its asymptotic limit extremely fast, as reported almost 60 years ago [20].
To improve or create a scale invariant scoring function, finite size corrections are incorporated by

transforming St(N) to a z-value. For all score types, Zt = (St − μt)/σt where μt is the average of St

and σt is the standard deviation of St about its mean. All shifts and scale factors used to transform
St(N) → Zt(N) are given in Table 1. Figure 3a,d,g show that, after finite size corrections, the pdf for
the three scoring functions ZAD , ZLL and ZVAR exhibit excellent scale invariance. Furthermore, the
pdf for these scoring functions fall on top of one another in a massive data collapse (data not shown)
indicating they share the same pdf for all practical purposes. It is worth noting that because this is a
numerical study, there is uncertainty in the formulas that define the corrections to finite sample size.
As can be clearly seen in Figure 3a, the AD measures before finite size corrections are applied display
the most impressive data collapse. Indeed, the observed data collapse from numerical simulation
are tighter than the intrinsic uncertainties in the correction to finite size samples. In contrast, the log
likelihood measure has the most dispersion in its data collapse before finite size corrections are applied.
In this case, the finite sample size corrections greatly improved the data collapse.

The most surprising result is that this numerical study demonstrates that ZVAR shares the same
pdf as ZAD. This result is surprising because both ZAD and ZLL involve linear combinations of
logarithms, while ZVAR has no logarithms. However, it is not surprising that ZVAR has good scaling
properties because the function is defined in terms of the scaled variable, otherwise called the z-value.
The transformation to the z-value naively sets the mean to the origin and normalizes the variance.
As such, it would be somewhat surprising if ZVAR did not exhibit data collapse as a function of the
z-value. Given that ZVAR scales, it is expected that generalized moments of the z-value variable will
exhibit data collapse and also exhibit sample size invariance.

From a practical standpoint, it is computationally faster to work with ZVAR. Therefore, additional
scoring functions defined as Sp = 〈|zk|p〉1/p for p = 1

2 , 1, 2, 3, 4 were considered. Note that S2 is
the standard deviation of zk and, after finite size corrections are applied, Sp → Zp. The cases p = 1

2
and p = 4 are listed in Table 1 and exhibit scale invariance as shown in Figure 3b,e respectively. The
p = 1, 2, 3 cases (data not shown) are similar and straddle the limiting cases smoothly. It is worth
mentioning that the natural reference at the mean quantile is zero for SVAR and Sp.

By exploring SURD for additional patterns, it was observed that two disjoint blocks of the same
size can be compared using double order statistics (DOS). Among all random variables, {rk}N , the
indices that span from k1

o to k1
f define block 1 and the indices that span from k2

o to k2
f define block 2.

Without loss of generality, block 2 is taken to be to the right of block 1, such that k1
o < k1

f < k2
o < k2

f .
With m random variables in both blocks, m − 1 differences given by δk = rk+1 − rk are used in the
scoring function S2,1

LR = 〈log(δ2
k /δ1

k )〉, which simplifies to S2,1
LR = 〈log(δ2

k )〉 − 〈log(δ1
k )〉. Importantly,

〈log(δj
k)〉 is calculated for all disjoint blocks at once. By partitioning all random variables into equal

blocks of indices, the mean log-ratio is calculated rapidly for all pairs of blocks. For any size block and
for any pair of blocks, S(i,j)

LR exhibits strong scale invariance as shown in Figure 3h. Over a hundred

diverse cases are shown as gray lines. Interestingly, the pdf for S(i,j)
LR is essentially a normal distribution

shown as a red line.
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Figure 3. Illustration of sample size invariance in the probability density function for various scoring
functions. The sample sizes selected in panels (a,b,d,e,g,h) to show data collapse include N = 9, 11, 12,
14, 17, 20, 24, 33, 49, 95, 110, 124, 142, 166, 199, 249, 332, 497, 990, 1500, 2015, 3298, 5505, 8838, 14,467,
23,684, 38,771, 63,471, 103,905, 272,389, 750,000, 1,000,000, 2,000,000. The sample sizes selected in panels
(c,f,i) include N = 10, 50, 200, 1000, 5000, 20,000, 100,000. In panel h, the results from each system size
along with all partitions made within each system size (a total of 111 cases) is plotted as light gray lines.
The red line shows the result of a normal distribution, indicating that the scaling is well described by a
normal distribution. All other details are described in the text.

Because S(i,j)
LR is localized to a pair of blocks, to cover the entire SQR-plot a new scoring function

is constructed by taking the root mean square of all distinct pairs of S(i,j)
LR . For a calculation time

proportional to sample size, the size of a block is set proportional to
√

N, which necessarily makes
the number of blocks, Nb, proportional to

√
N. The pdf for RMSLR is nearly sample size invariant as

shown in Figure 3i. From Table 1, it appears the finite size corrections for RMSLR are complicated.
However, as will be discussed below, scale invariance should be preserved for sub-samples of the data,
called partitions. It turns out that only RMSLR requires special attention to make partitions scale,
where Np is the number of data points being sub-sampled. Finally, the absolute value of the measures
ZVAR and Z4 are respectively shown in Figure 3c,f. Note that taking an absolute value of a measure
that is scale invariant will remain scale invariant.
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2.2. Redundant and Complimentary Information

Since the pdf of different scoring functions may be similar or the same, the next question addressed
is how do different measures compare when applied to the same SURD? For sample size N, SURD
is generated using numerical simulation and each measure is evaluated per realization of {rk}N .
For 100,000 random trials per N, a 1 to 1 comparison is made between Za(N) versus Zb(N) with
a �= b. Note that by definition, Zt(N) has a mean of zero and a standard deviation of 1. For reasons
that will become clear below, absolute values are taken on the scoring functions. Despite the pdf for
|ZVAR|, |ZLL| and |ZAD| being practically identical for all sample sizes, scatter plots indicate that the
scores are not identical on a 1 to 1 basis. Figure 4a,b plot |ZVAR| and |ZLL| against |ZAD|, respectively.
Although there is always a tight linear correlation, there is more scatter in the comparison at smaller
sample sizes. As N → ∞ the different scores converge to the same value, although the approach
to the asymptotic limit for each measure differs. These differences have important implications for
application to density estimation as discussed below.

0 5 10 15
|Z

AD
|

0

5

10

15

|Z
V

A
R

|

(a)

0 5 10 15
|Z

AD
|

0

5

10

15

|Z
LL

|

(b)

0 5 10 15
|Z

VAR
|

0

5

10

15

|Z
4|

(c)

0 5 10 15
|Z

VAR
|

0

5

10

15

R
M

S
LR

N=10
N=50
N=200
N=1000
N=5000
N=20000
N=100000

(d)

Figure 4. Examples of pairwise comparisons of different measures through scatter plots. (a,b) show
that the |ZAD| measure is statistically the same as the |ZLL| and |ZVAR| measures. (c) Shows mild
differences between |Z4| and |ZVAR|. (d) Shows that the information content between RMSLR and
|ZVAR| is very different.

The scatter plot of |Z4| versus |ZVAR| in Figure 4c shows that these two measures characterize
SURD in a fundamentally different way due to the strong deviation of |Z4| relative to |ZVAR| with
modest statistical scatter. The greatest non-linear deviation between the two scores occurs at large
values of |ZVAR|, corresponding to outliers in SURD. The scatter plot of RMSLR versus |ZVAR|
in Figure 4d shows strong random scatter with no discernible deterministic dependence. Hence,
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RMSLR and |ZVAR| measure different SURD characteristics. Yet, despite their conspicuous differences,
the pdf for |Z4| and RMSLR are qualitatively similar as shown in Figure 3f,i, respectively.

As demonstrated by scatter plots, various scoring functions characterize SURD in different or
similar ways relative to one another. Note that combining measures with complimentary properties
can potentially lead to a more sensitive measure. Through reductive analysis, a composite score (CS) is
proposed as:

CS = |ZVAR + 0.666|+ [max (2.5, |Z4|, RMSLR)− 2.5] (2)

In constructing CS, the most probable score for ZVAR, near 0.666, is used as a baseline.
Then contributions are added from outliers from either |Z4| or RMSLR, whichever is larger. The
last term does not modify the score when no outlier is detected, otherwise the contribution to CS
continuously increases starting at zero at just above the threshold for outlier detection.

2.3. Partition Size Invariance

A critical part of the algorithm in the PDFestimator [11] is that the input data sample is partitioned
into hierarchical sub-samples by powers of 2 when N > 1025. Consequently, the employed scoring
function should be sample size invariant for all partitions. Invariance of partition size, Np, is satisfied
by all scoring functions described in this work, as exemplified in Figure 5 for three of the most distinct
measures. Furthermore, for any realization of SURD of size N, all partitions within have essentially
the same score independent of the type of scoring function.
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Figure 5. ZVAR, |Z4| and CS illustrate the three most distinct measures considered. Data collapse based
on the probability density for different measures is demonstrated for N = 10, 50, 200, 1000, 5000, 20,000,
100,000 in addition to Np = 1025, 2049, 4097, 8193, 16,385, 32,769, 65,537. A different color is used for
each sample size.

A necessary requirement for all the scoring functions is that sub-sampling must be uniformly
distributed over the data. It is worth noting that SAD (and its corresponding ZAD) is particularly
sensitive to the way the uniform sub-sampling is performed within a partition. Due to the form of
the SAD equation, it is critical that the selected points are symmetric about the center index in the sort
ordering. The number of samples used in a partition is always odd of the form Np = 1 + 2n. Thus,
the median point is included and for each index selected to be in the sub-sample below the median,
a corresponding mirror image index above the median is selected. For example, if there are 17 indices
in the full sample, indices 1, 4, 9, 14, 17 has the required mirror symmetry. All other scoring functions
are not sensitive to breaking mirror symmetry.
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2.4. Decoy SURD

For the purpose of quantifying how well a scoring function discriminates between true SURD and
random data that is not SURD, a controlled decoy-SURD (dSURD) is generated. Let {ro

k} define SURD
and let {rd

k} define dSURD. As described in detail in Section 4.4, a decoy cdf, Fd(r), is constructed to
facilitate the 1 to 1 mapping given by {rd

k} = Fd({ro
k}). If Fd(r) = r, then the output is identical to the

input. A decoy-SURD is controlled by adding a perturbation of the form Fd(r) = r + Δ(r). By choosing
various functional forms for the perturbation and, by controlling the amplitude of the perturbation,
it is a simple matter to make a broad spectrum of decoys that range from impossible to markedly
obvious to detect at any specified sample size.

In Figure 6, the middle row shows the decoy cdf resulting from the perturbations shown along the
top row. This is an example of a moderately hard dSURD because by eye the decoy cdf looks close to a
perfect straight line. To make it clear that dSURD is indeed different from SURD, the pdf for each case
is shown along the bottom row. For a sufficiently large sample size, statistical resolution will be good
enough to resolve these small perturbations, but for smaller sample sizes the perturbation will not
be detectable. To demonstrate how statistical resolution increases with larger sample sizes, Figure 7
shows SQR-plots for SURD and its corresponding dSURD for samples sizes of 1000, 5000, 20,000 and
100,000. These three cases are examples of localized perturbations.
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Figure 6. Top row shows three examples of localized perturbations for moderately difficult decoys.
Center row shows the corresponding cdf. Bottom row shows the pdf, where the cyan horizontal
highlights the probability density function (pdf) for sampled uniform random data (SURD).
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Figure 7. Progression of scaled quantile residual (SQR)-plots for moderately difficult localized decoys
as sample size increases.

Three additional perturbations of an extended type are shown in Figure 8 using the same layout.
The last column plots the perturbation, cdf and pdf as dashed red lines because “reduced fluctuation”
is a special type of perturbation that is also explained in Section 4.4. As the name implies, fluctuations
are suppressed, representing a scenario where a pdf estimate over-fits the data. Figure 9 shows the
SQR-plots for SURD and its corresponding dSURD of the extended type for samples sizes of 1000,
5000, 20,000 and 100,000. Note that the reduced fluctuation perturbation is equally detectable at any
size sample because fluctuations are suppressed by a fixed proportion in relation to true SURD.

By comparing measures applied to dSURD and SURD, it can be expected that the more sensitive
scoring function is one that detects a given perturbation at smaller sample sizes compared to other
scoring functions. It is also expected that a certain scoring function will be able to detect certain types
of perturbations more readily than other types of perturbations. As such, it is likely impossible to
find a perfect scoring function that performs best on all decoy types all the time. Nevertheless, for a
given diverse set of dSURD examples, the best overall performing scoring functions with the greatest
sensitivity or selectivity can be deduced using receiver operator characteristics.

2.5. Receiver Operator Characteristics

Receiver operator characteristics (ROC) are calculated based on simulation data involving 10,000
trials of SURD over a broad range of N samples, and for each SURD, many dSURD mappings are
generated for each of the six decoy types shown above. Results are exemplified in Figure 10, showing
ROC curves for three different sample sizes and six different decoy types. ROC curves quantify the
efficacy of a scoring function in discriminating SURD from dSURD. Figure 10 shows representative
results for moderately difficult decoys. As a point of reference, easy, moderate and hard decoys are
aimed at requiring about 1000, 10,000 and 100,000 samples to have sufficient statistical resolution to
notice dSURD just barely by eye (e.g., see Figures 7 and 9). Only the decoy that reduces fluctuations
using a fixed scale factor has the same difficulty for detection independent of sample size.
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Figure 8. Extended perturbations for moderately difficult decoys. The cyan horizontal line shown on
the bottom panels defines the pdf for SURD. The red dashed lines represent suppression of fluctuations.
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Figure 9. Progression of SQR-plots for moderately difficult extended decoys as sample size increases.
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Figure 10. The qualitative features of receiver operator characteristic (ROC) curves are shown for
sample sizes of 5000, 20,000 and 100,000 along the top, middle and bottom rows. The left, middle and
right columns correspond to the |ZVAR|, |Z4| and CS scoring functions. The (y-axis, x-axis) corresponds
to the fraction of true (positives, negatives) having a range from 0 to 1. Each ROC curve compares 6
different decoy types.

It is common practice to quantify ROC curves by their area under the curve (AUC). Table 2 gives
all AUC values for all the cases shown in Figure 10. The ROC curves and the results listed in Table 2
clearly show that CS detects decoys better than the other measures. Of course, informed by reductive
analysis, this result was purposely intended during the construction of CS given in Equation (2).
In summary, it is generally found that ZAD, ZLL, ZVAR, |ZAD|, |ZLL|, |ZVAR|, Z4, |Z4| and CS scoring
functions are all good measures to distinguish SURD from easy to detect dSURD. However, it is always
possible to create decoy SURD that will go undetected by any measure (e.g., Figure 10).

Table 2. Area under the ROC curves shown in Figure 10.

N = 5000 N = 20,000 N = 100,000

decoy |ZVAR| |Z4| CS |ZVAR| |Z4| CS |ZVAR| |Z4| CS

dimple 0.50 0.50 0.55 0.49 0.49 0.61 0.46 0.46 0.96

pulse 0.49 0.49 0.55 0.48 0.48 0.65 0.43 0.49 0.99

wavelet 0.49 0.49 0.72 0.47 0.48 0.99 0.42 0.51 1.00

sine 0.47 0.46 1.00 0.42 0.55 1.00 0.94 0.99 1.00

beta 0.62 0.62 0.70 0.87 0.87 0.92 1.00 1.00 1.00

reduced 0.89 0.97 1.00 0.89 0.97 1.00 0.89 0.97 1.00

In general, ZAD, ZLL and ZVAR share similar ROC curves and |ZVAR| and |Z4| have similar ROC
curves. The most sensitive scoring function is CS. The reason Zt and |Zt| are considered as two
separate cases is now easily explained. First note that Zt has a mean of zero and a standard deviation
of 1. For a decoy type of "reduced fluctuations" that mimics an over-fitting scenario, the ROC curve
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becomes inverted for any type of measure, Zt. However, the inversion problem is eliminated when
considering |Zt| because both over-fitting and under-fitting is detected when |Zt| is large. Finally, only
the combined score, CS, readily detects very localized perturbations due to its RMSLR component.

2.6. PDF Estimation Performance

Figure 11 summarizes the comparative statistics for failure rates. The bar plots in Figure 11a report
averages across distributions and random samples, for cumulative ranges of sample sizes. As expected,
the failure rate increases with sample size. For all scoring methods, average failure rates are typically
on the order of 10% for sample sizes less than one million. Failure rate averages are the least for
|Z4| and |ZLL|, a trend that holds across sample size. The associated box plots in Figure 11b more
clearly demonstrate the computational advantage of |Z4| and |ZLL| over the other scoring methods.
All scoring methods have between 50 and 60 outliers, but |Z4| and |ZLL| have virtually no failures
outside of these extreme values.
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Figure 11. Figure (a) cumulative averages of failure rates across four ranges Figure (b) distribution of
failure rates for each scoring method. Box plots show inner-quartiles and whiskers represent range of
data excluding outliers, which are shown as red crosses.

For computational time and Kullback-Leibler (KL) divergence [21], or simply KL, care must be
taken to ensure a fair comparison, accounting for failure rates. Thus, a subset of the data is considered
for these measurements. Of the 275 test sets (25 distributions at 11 sample sizes), 230 of these contain
at least 10 successes out of the 100 trials, across all five scoring methods. The remaining 45 tests
contain failure rates greater than 90% for at least one scoring method and are eliminated from further
comparison, ensuring an equitable comparison across successful distributions and sample sizes. The
results are shown in Figure 12.

Computational time comparisons prove to be the most challenging to pin down, due to wide
variations between distributions, sample sizes and random trials. However, Figure 12a demonstrates
a clear advantage in the average computational time for |Z4|, across all sample sizes. Once again,
the number of outliers, which are compressed for clarity in Figure 12b, is roughly the same across
the five scoring methods. However, |ZAD| has a higher range of typical runtimes, as well as higher
averages in the smallest sample sizes. The KL-divergence comparisons shown in Figure 12c,d are less
variable between scoring methods. A lower divergence between the estimate and the known reference
distribution suggests a better estimate is being made. Figure 12c shows a decreasing KL-divergence
with increasing sample size for all scoring methods, which demonstrates expected convergence,
albeit with diminishing returns for larger sample sizes. Notably, |ZAD| produces slightly lower
KL-divergence on average, compared to the other methods.
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Figure 12. Comparative statistics between five scoring methods averaged over successful solutions.
Cumulative averages for (a) performance time across four sample size ranges and (c) Kullback-Leibler
divergence [21]. Panels (b,d) show box plots for the respective data shown in panels (a,c). Box plots
show inner-quartiles and whiskers represent range of data excluding outliers, which are shown as
red crosses.

3. Discussion

Each of the five scoring methods have been evaluated when utilized within the PDFestimator
and applied to the same distribution test set in terms of scalability, sensitivity, failure rate and
KL-divergence. Each of the proposed measures have strengths and weaknesses in different areas.
The |ZAD| measure produces the most accurate scaling and the lowest KL-divergence. The CS measure
shows the greatest sensitivity for detecting small deviations from SURD. The |ZLL| method, although
not a clear winner in any particular area, is notably well-performing in all tests. These results suggest
a possible trade-off between a lower KL-divergence versus longer computational time with the
|ZAD| scoring method. However, the slight benefit of a lower KL-divergence is arguably not worth
the computational cost, particularly when also considering the higher failure rate. In contrast, the
significantly low failure rate and fast performance times are strong arguments in favor of |Z4| as the
preferred scoring method. However, this result is only true when the score of a sensitive measure is
minimized, while the threshold to terminate is based on a less sensitive measure (see Section 4.7 in
methods for details).

Qualitative analysis is used to elucidate why |Z4| minimization is the best overall performer.
The pdf and SQR for hundreds of different estimates were compared visually and robust trends were
observed between the |ZVAR| and |Z4| methods. Figure 13a is a representative example, showing
the density estimates for the Burr distribution at 100,000 samples. Although both estimates were
terminated at the same quality level, the smooth curve found for |Z4| would be subjectively judged
superior. However, there is nothing inherently or measurably incorrect about the small wiggles in the
|ZVAR| estimate. Note that no smoothness conditions are enforced in the PDFestimator.
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The SQR-plot, shown in Figure 13b, is especially insightful in evaluating the differences in this
example. The Burr distribution is deceptively difficult to estimate accurately due to a heavy tail on the
right. Both |ZVAR| and |Z4| fall mostly within the expected range, except for the sharp peak to the right
corresponding to the long tail. Although the peak is more pronounced for |ZVAR|, the more relevant
point in this example is the shape of the entire SQR-plot. SQR for |ZVAR| contains scaled residuals
close to zero, behavior virtually never observed in true SURD. Hence, this corresponds to over-fitting.
This contrast in the SQR-plot between |ZVAR| and |Z4| is generally true with the following explanation.

The |Z4| scoring method uses the same threshold scoring as |ZVAR|, but simultaneously seeks to
minimize the variance from average, thus highly penalizing outliers to the expected z-score. The |ZVAR|
method, by contrast, tends to over-fit some areas of the distribution of high density, attempting to
compensate for areas of relatively low density where it deviates significantly. This often results in
longer run times, many unnecessary Lagrange multipliers, less smooth estimates and unrealistic
SQR-plots, as the NMEM algorithm attempts to improve inappropriately. For example, in the test
shown in Figure 13, the number of Lagrange multipliers required for the |ZVAR| estimate was 141,
whereas |Z4| required only 19. Therefore, it is easy to see why |ZVAR| took much longer to complete.
This phenomenon is a general trend but it is exacerbated in cases where there are large sample sizes on
distributions that have a combination of sharp peaks and heavy tails.
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Figure 13. (a) Two density estimates are compared based on two different scoring functions. (b) The
corresponding SQR-plots for each density estimate are shown. By eye, both density estimates look
exceptionally good, but the SQR-plot has a strong peak representing error in the extreme tail of the
distribution. The degree of error depends on the scoring function, but both scoring functions give
qualitatively the same results.

A surprising null result of this work is that the CS measure, custom designed to have the greatest
overall sensitivity and selectivity, failed to be the best overall performer in practice when invoked in
the PDFestimator. Although more investigation is required, all comparative results taken together
suggest that the CS scoring function is the most sensitive but is over-designed for the capability of
the random search optimization method currently employed in the PDFestimator. In the progression
of improvements on pdf estimation, the results from the initial PDFestimator suggested that a more
sensitive scoring function would improve performance. With that aim, more sensitive scoring functions
have been determined and performance of the PDFestimator substantially improved. However, it
appears the opposite is now true, requiring a shift in attention to optimize the optimizer, with access
to a battery of available scoring functions. In preparation, another work (ZM, JF, DJ) optimizes the
overall scheme by dividing the data into smaller blocks, which gives much greater speed and higher
accuracy, while taking advantage of parallelization.
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4. Methods

MATLAB 2019a (MathWorks, Natick, MA, USA) and the density estimation program
“PDFestimator” were used to generate all the data presented in this work. The PDFestimator is a
C++ program that JF and DJ developed as previously reported [11], which has the original Java
program in supporting material. Upgrades on the PDFestimator are continuously being made
on the BioMolecular Physics Group (BMPG) GitHub website,Available online: https://github.
com/BioMolecularPhysicsGroup-UNCC/PDF-Estimator, where the source code is freely available,
including a MATLAB interface to the C++ program. An older C++ version is also available in R,
https://cran.r-project.org/web/packages/PDFEstimator/index.html. The version on the public
GitHub website is the most recent stable version that has been well tested.

4.1. Generating SURD and Scoring Function Evaluation

MATLAB was employed in numerical simulations to generate SURD. For a sample size N, the
sort ordered sequence of numbers {rk}N was used to evaluate each scoring function being considered.
The same realization of SURD was assigned multiple scores to facilitate subsequent cross correlations.

4.2. Method for Partitioning Data

As previously explained in detail [11], sample sizes of N > 1025 were partitioned in the
PDFestimator to achieve rapid calculations. The lowest and highest random number in the set
{rk}N define the boundaries of each partition. The random number closest to the median was also
included. Partitions have an odd number of random numbers due to the recursive process of adding
one additional random number between the previously selected random numbers in the current
partition. Partition sizes follow the pattern of 3, 5, 9, 17, 33, ....1 + 2n. A desired property of scoring
functions is that they should maintain size invariance for all partitions. Scores for each measure were
tracked for all partitions of size 1026 and greater, including the full data set, which is the last partition.
For example, with N=100,000 the scores for partitions of size Np = 1025, 2049, 4097, 8193, 16,385, 32,769,
65,537, 100,000 were calculated. Scores from different partitions were cross correlated in scatter plots.

4.3. Finite Size Corrections

For each partition of size Np, including the last partition of size N, the scores were transformed
to obtain data collapse. For all practical purposes finite size corrections were successfully
achieved by shifting the average of a score to zero and normalizing the data by the standard
deviation of the raw score. That is to say, the score, St(Np) for Np samples in the p-th
partition, was a random variable. This score was transformed to a Z-value through the procedure
Zt(Np) =

[
St(Np)− μt(Np, N)

]
/σt(Np, N). Operationally, tens of thousands of random sequences of

SURD were generated for each scoring function type to empirically estimate μt(Np, N) and σt(Np, N).
Note that μt(Np, N) and σt(Np, N) were obtained using basic fitting tools in the MATLAB graphics
interface, and these are reported in Table 1.

4.4. Decoy Generation

For each decoy the sort ordered sequence of numbers
{

ro
k
}

N defining SURD was transformed into
decoy-SURD, denoted as dSURD. This was accomplished by creating a model decoy cdf, Fd(r). A new
set of sort ordered random numbers was created by the 1 to 1 mapping {rd

k}N = Fd({ro
k}N), yielding a

dSURD realization per SURD realization. Different decoys were generated based on different types of
perturbations, which must meet certain criteria. Let Δ(r) represent a perturbation to SURD, such that

F(r) = r + Δ(r) (3)
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For the perturbation to be valid, the pdf given by fd(r) =
dFd(r)

dr must satisfy fd(r) ≥ 0, which
implies 1 + Δ′(r) ≥ 0. The boundary conditions Δ(0) = Δ(1) = 0 must also be imposed. With these
conditions satisfied, decoys of a wide variety could be generated. Four types of decoys were created
using this approach, listed in the first 4 rows of Table 3. In this approach, the amplitude of the
perturbation is a parameter. A decoy that is marginally difficult to detect at sample size of Nd has
max(|Δ|) = 1/

√
Nd. It will be challenging to discriminate between SURD and dSURD for N < Nd,

and markedly distinguishable when N/Nd � 1.
Two additional types of decoys were also generated. First, Fd(r) is set to a beta distribution

cdf, denoted as Fβ(r|α, β). Therefore, the perturbation is given as Δ(r) = Fβ(r|α, β)− r. The α and β

parameters were adjusted to tune detection difficulty, by systematically searching for pairs of α and
β on a high resolution square grid to find when max(Δ) was at a level that was consistent with the
targeted sample size, Nd. Second, a decoy can be defined by uniformly reducing fluctuations according
to rd

k = ro
k + p(ro

k − μk) where μk = k/(N + 1). When p = 0 the decoy was the same as SURD, but as
p → 1 the decoy retained no fluctuations. In this sense, this decoy type mimics extreme over-fitting,
where p controls how much of the fluctuations are reduced.

Table 3. Decoy type summary.

Decoy Name Perturbation Equation Parameters

dimple Δ(r) = A exp
[−(r−ro)2

2σ2

]
A, ro, σ

pulse Δ(r) = A
(

ro−r
σ2

)
exp

[−(r−ro)2

2σ2

]
A, ro, σ

wavelet Δ(r) = A sin (mπr) exp
[−(r−ro)2

2σ2

]
A, ro, σ, m

sine Δ(r) = A sin (mπr) A,m

beta distribution Δ(r) = Fβ(r|α, β)− r α, β

reduced fluctuations Δk = p(ro
k − μk) p

4.5. ROC Curves

All ROC curves were generated according to the definition that the fraction of true positives
(FTP) were plotted on the y-axis versus the fraction of false positives (FFP) plotted on the x-axis [22].
Note that alternative definitions for ROC are possible. To calculate FTP and FFP, a threshold score
must be specified. If a score is below this threshold, the sort ordered sequence of numbers is predicted
to be SURD. Conversely, if a score exceeds the threshold, the prediction is not SURD. As such, there are
four possible outcomes. First, true SURD can be predicted as SURD or not, respectively, corresponding
to a true positive (TP) or a false negative (FN). Second, dSURD can be predicted as SURD or not,
respectively corresponding to a false positive (FP) or true negative (TN). All possible outcomes are
tallied, such that FTP = TP/(TP + FN) and FFP = FP/(FP + TN). For a given threshold value, this
calculation determines one point on the ROC curve. By considering a continuous range of possible
thresholds, the entire ROC curve is constructed.

Procedurally, the data used to calculate the fractions of true and false positives that come from
numerical simulations in MATLAB comprised 10,000 random SURD and dSURD pairs for sample sizes,
N = 10, 50, 200, 1000, 5000, 20,000 and 100,000. About 60 different types of decoys were considered
with diverse sets of parameters.

4.6. Distribution Test Set

To benchmark the effect of a scoring function on the performance of the PDFestimator, a diverse
collection of distributions was selected and these are listed in Table 4. A MATLAB script was created to
utilize built in functions dealing with statistical distributions to generate random samples of specified
size. The random samples were subsequently processed by the PDFestimator to estimate the pdf, but
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for which the exact pdf is known. The set of possible distributions available for analysis cover a range
of monomodal distributions that represent many types of features that include sharp peaks, heavy
tails and multiple resolution scales. Some mixture models were also included that combine difficult
distributions to create a greater challenge.

4.7. PDF Estimation Method

Each alternative scoring function, {|ZAD|, |ZLL|, |ZVAR|, |Z4|, CS} was implemented in the
PDFestimator and were evaluated separately. Factors confounding comparisons in performance
include sample size, distribution type, selection of key factors to evaluate and consistency across
multiple trials. To provide a quantitative synopsis of the strengths and weaknesses of the proposed
scoring methods, large numbers of trials were conducted on the distribution test set listed in Table 4.
The distribution test set increases atypical failures amongst the estimates because it is necessary to
consider extreme scenarios to identify breaking points in each of the scoring methods. Nevertheless,
easier distributions, such as Gaussian, uniform and exponential, were included. To wit, good
performance of an estimator when applied to challenging cases should not suffer when applied
to easier distributions.

As an inverse problem, density estimation applied to multiple random samples of the same size
for any given distribution will generally produce variation amongst the estimates. For small samples,
the pdf estimate must resist over-fitting, whereas large sample sizes create computational challenges
that must trade between speed and accuracy. To monitor these issues, a large range of sample sizes
were tested, each with 100 trials of an independently generated input sample data set. Specifically, 100
random samples were generated for each of the 25 distributions, for each of the following 11 sample
sizes with N = 10, 50, 100, 500, 1000, 5000, 10,000, 50,000, 100,000, 500,000, 1,000,000. This produced
a total of 27,500 test cases, each of which were estimated using five scoring methods. Statistics were
collected and averaged over each of the 100 random sample sets.

Three key quantities were calculated for a quantitative comparison of the scoring methods—failure
rate, computational time and Kullback-Leibler (KL) divergence [21]. It was found that the
KL-divergence distance was not sensitive to the different scoring functions. Alternative information
measures [23,24] could be considered in future work. Failure rate is expressed as a fraction of failures
out of 100 random samples. The KL-divergence measures the difference between the estimate against
the known reference distribution. Computational times and KL-divergences were averaged only for
successful solutions and thus were not impacted by failures. A failure is automatically determined by
the PDFestimator when a score does not reach a minimum threshold.

During an initial testing phase, it was found that the measures Zt and |Zt| for t = AD, LL, and
VAR all worked successfully, which is not surprising considering the original measure, ZLL, works
markedly well. However, for the more sensitive measures, Z4, |Z4| and CS, the PDFestimator failed
consistently because the score rarely reached its target threshold, at least within a reasonable time.
Therefore, a hybrid method was developed that minimizes a sensitive measure as usual, but the |ZVAR|
measure was invoked to determine when to terminate. In tests of |Zt| for t = AD, LL or VAR, these
measures were optimized and were simultaneously used as a stopping condition with a threshold of
0.66 corresponding to the 40% level in the cdf, which was the same level used previously [11]. All these
measures have the same pdf and cdf, and thus the same threshold value. This threshold was used for
|ZVAR| as a stopping condition when different scoring functions are minimized.
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Table 4. List of distribution types and corresponding parameters used to generate random data
samples. Parameter and variable names correspond to the labeling scheme of MATLAB. For mixture
distributions, subscripts indicate the distribution used to create the mixture with ordinal numbering,
and under the Scale Parameter column, for mixture distributions pi is the mixing weight.

Distribution Name
Shape
Parameter

Scale
Parameter

Location
Parameter

Beta a = 0.5 b = 1.5
Beta a = 2 b = 0.5
Beta a = 0.5 b = 0.5
Bimodal Normal σ1 = 0.8

σ2 = 0.3
p1 = 0.65
p2 = 0.35

μ1 = 2
μ2 = 6

Birnbaum-Saunders γ = 0.5 β = 1.5
Birnbaum-Saunders and Stable γ1 = 0.5

α2 = 0.5
β2 = 0.5

β1 = 1.5
γ2 = 1

δ2 = 7

Burr c = 2
k = 2

α = 1

Exponential μ = 1
Extreme-Value σ = 2 μ = 1
Gamma k = 1 σ = 2 μ = 2
Generalized-Extreme-Value a = 2 b = 2 b = 2
Generalized-Pareto k = 2 σ = 1 θ = 0
Half Normal σ = 1 μ = 0
Inverse Gaussian λ = 1 μ = 5
Normal σ = 1 μ = 1
Normal Contaminated σ1 = 2

σ2 = 0.25
p1 = 0.5
p2 = 0.5

μ1 = 5
μ2 = 5

Stable α = 0.5
β = 0.05

γ = 1 δ = 4

Stable α = 0.2
β = 0.05

γ = 1 δ = 4

Stable α1 = 0.5
β1 = 0.05
α2 = 0.5
β2 = 0.05

γ1 = 1
γ2 = 1
p1 = 0.25
p2 = 0.75

δ1 = 2
δ2 = 5

Stable α1 = 0.5
β1 = 0.05
α2 = 0.5
β2 = 0.05
β3 = 0.05

γ1 = 1
γ2 = 1
γ3 = 1
p1 = 0.25
p2 = 0.5
p3 = 0.25

δ1 = 2
δ2 = 5
δ3 = 8

Trimodal Normal σ1 = 0.5
σ2 = 0.25
σ3 = 0.5

p1 = 0.3
p2 = 0.3
p3 = 0.3

μ1 = 4
μ2 = 5
μ3 = 6

t-Location Scale ν = 1 σ = 0.5 μ = 4
Uniform l = 4

u = 8
Uniform-Mix l1 = 1

l2 = 3.5
l3 = 7
u1 = 2
u2 = 5.5
u3 = 9

p1 = 0.16
p2 = 0.66
p3 = 0.36

Uniform Periodic l1 = 1
l2 = 2.5
l3 = 4
l4 = 5.5
l5 = 7
l6 = 8.5
u1 = 2
u2 = 3.5
u3 = 5
u4 = 6.5
u5 = 8
u6 = 9.5

p1 = 0.16
p2 = 0.16
p3 = 0.16
p4 = 0.16
p5 = 0.16
p6 = 0.16

Weibull b = 2 a = 1
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5. Conclusions

Several conclusions can be drawn from the large body of results presented. (1) The scaled
quantile residual (SQR) is instrumental in assessing the quality of a pdf by means of visual inspection.
The advantage of an SQR-plot over a traditional QQ-plot is that the displayed information is not only
universal (distribution free), but importantly, sample size invariant; (2) It is possible to construct myriad
scoring functions that are universal and sample size invariant based on quantitatively characterizing
SQR. In particular, various measures can be developed based on mathematical properties of single
order statistics (SOS) and/or double order statistics (DOS); (3) Finite size corrections can generally be
applied to scoring functions so that their asymptotic properties can be utilized for finite size samples,
as low as N = 9; (4) Surprisingly, the scoring functions based on the Anderson-Daring test, quasi
log-likelihood of SOS and the variance of SOS z-score —when applied to sampled uniform random
data (SURD) share identical pdf for their scores for all practical purposes. Moreover, the scores are
invariant across sample size and for different size partitions that sub-sample the input data; (5) The
concept of decoy-SURD is introduced and a few methods are given for creating decoy-SURD (dSURD).
The purpose of dSURD is to quantify the sensitivity and selectivity of a proposed scoring function using
Receiver Operator Characteristics (ROC) or other means, such as machine learning. The usefulness
of dSURD to quantify uncertainty in density estimation parallels the use of decoys in the field of
protein structure prediction. That is, better scoring functions can be developed by focusing on how
they discriminate between true SURD and dSURD; (6) Implementing a more sensitive scoring function
in a method that estimates a pdf from random sampled data does not necessarily imply the process
of estimation will be improved. There are many confounding factors that determine the ultimate
performance characteristics of an algorithm for density estimation, since speed and accuracy need to
be balanced for a practical software tool; (7) Minimizing either the Z4 or |Z4| scores greatly improved
the performance of the PDFestimator, a C++ program for univariate density estimation, compared to
the initially used scoring function ZLL.

In closing, a few research directions that can stem from this work are highlighted. Interestingly,
the mean log ratio of nearest neighbor differences in sort ordered SURD, when taken from two disjoint
subsets, is normally distributed (at least to a very good approximation). Unaware of an existing proof
of this result, the empirical result suggests that a proof should be sought given that the literature
contains many works that derive the pdf for ratios of random numbers that are distributed in a
specific way. The results presented here can be applied to the problem of constructing a more sensitive
distribution free “test for goodness of fit.” Essentially, this was the main objective that was addressed
but here the emphasis was on how to better quantify uncertainty for the process of estimating a pdf for
a random sample of data. Going forward, the universal sample size invariant measures developed
here can be employed to test the similarity of two random samples of data.
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Abstract: We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the
INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the
top of the model hierarchy. Our main finding is a graphical criterion that guides the specification
of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and
concentration parameters interact with the chosen base measure to yield a gain in terms of the
robustness of the inferential results. The forecasting performance of the model is exemplified in the
analysis of a time series of worldwide earthquake events, for which the new model outperforms the
original INAR(p) model.

Keywords: time series of counts; Bayesian hierarchical modeling; Bayesian nonparametrics;
Pitman–Yor process; prior sensitivity; clustering; Bayesian forecasting

1. Introduction

Integer-valued time series are relevant to many fields of knowledge, ranging from finance and
econometrics to ecology and meteorology. An extensive number of models for this kind of data has
been proposed since the introduction of the INAR(1) model in the pioneering works of McKenzie [1]
and Al-Osh and Alzaid [2] (see also the book by Weiss [3]). A higher-order INAR(p) model was
considered in the work of Du and Li [4].

In this paper, we generalize the Bayesian version of the INAR(p) model studied by Neal and
Kypraios [5]. In our model, the innovation rates are allowed to vary through time, with the distribution
of the innovation rates being modeled hierarchically by means of a Pitman–Yor process [6]. In this way,
we account for potential heterogeneity in the innovation rates as the process evolves through time,
and this feature is automatically incorporated in the Bayesian forecasting capabilities of the model.

The semi-parametric form of the model demands a robustness analysis of our inferential
conclusions as we vary the hyperparameters of the Pitman–Yor process. We investigate this
prior sensitivity issue carefully and find ways to control the hyperparameters in order to achieve
robust results.

This paper is organized as follows. In Section 2, we construct a generalized INAR(p) model with
variable innovation rates. The likelihood function of the generalized model is derived and a data
augmentation scheme is developed, which gives a specification of the model in terms of conditional
distributions. This data augmented representation of the model enables the derivation in Section 4 of
full conditional distributions in simple analytical form, which are essential for the stochastic simulations
in Section 5. Section 3 recollects the main properties of the Pitman–Yor process which are used to define
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the PY-INAR(p) model in Section 4, including its clustering properties. In building the PY-INAR(p),
we propose a form for the prior distribution of the thinning parameters vector which improves on the
choice made for the Bayesian INAR(p) model studied in [5]. In Section 5, we investigate the robustness
of the inference with respect to changes in the Pitman–Yor process hyperparameters. Using the full
conditional distributions of the innovation rates derived in Section 4, we inspect the behavior of the
model as we concentrate or spread the mass of the Pitman–Yor base measure. This leads us to a
graphical criterion that identifies an elbow in the posterior expectation of the number of clusters as we
vary the hyperparameters of the base measure. Once we have control over the base measure, we study
its interaction with the concentration and discount hyperparameters, showing how to make choices
that yield robust results. In the course of this development, we use geometrical tools to inspect the
clustering of the innovation rates produced by the model. Section 6 puts the graphical criterion to work
for simulated data. In Section 7, using a time series of worldwide earthquake events, we finish the
paper comparing the forecasting performance of the PY-INAR(p) model against the original INAR(p)
model, with favorable results.

2. A Generalization of the INAR(p) Model

We begin by generalizing the original INAR(p) model of Du and Li [4] as follows.
Let {Yt}t≥1 be an integer-valued time series, and, for some integer p ≥ 1, let the innovations

{Zt}t≥p+1, given positive parameters {λt}t≥p+1, be a sequence of conditionally independent
Poisson(λt) random variables. For a given vector of parameters α = (α1, . . . , αp) ∈ [0, 1]p, let Fi =

{Bij(t) : j ≥ 0, t ≥ 2} be a family of conditionally independent and identically distributed Bernoulli(αi)

random variables. For i �= k, suppose that Fi and Fk are conditionally independent, given α.
Furthermore, assume that the innovations {Zt}t≥p+1 and the families F1, . . . , Fp are conditionally
independent, given α and λ. The generalized INAR(p) model is defined by the functional relation

Yt = α1 ◦ Yt−1 + · · ·+ αp ◦ Yt−p + Zt,

for t ≥ p + 1, in which ◦ denotes the binomial thinning operator, defined by αi ◦ Yt−i = ∑
Yt−i
j=1 Bij(t),

if Yt−i > 0, and αi ◦ Yt−i = 0, if Yt−i = 0. In the homogeneous case, when all the λt’s are assumed to
be equal, we recover the original INAR(p) model.

When p = 1, this model can be interpreted as specifying a birth-and-death process, in which,
at epoch t, the number of cases Yt is equal to the new cases Zt plus the cases that survived from the
previous epoch; the role of the binomial thinning operator being to remove a random number of the
Yt−1 cases present at the previous epoch t − 1 (see [7] for an interpretation of the order p case as a
birth-and-death process with immigration).

Let y = (y1, . . . , yT) denote the values of an observed time series. For simplicity, we assume that
Y1 = y1, . . . , Yp = yp with probability one. The joint distribution of Y1, . . . , YT , given parameters α and
λ = (λp+1, . . . , λT), can be factored as

Pr{Y1 = y1, . . . , YT = yT | α, λ} =
T

∏
t=p+1

Pr{Yt = yt | Yt−1 = yt−1, . . . , Yt−p = yt−p, α, λt}.

Since, with probability one, αi ◦ Yt−i ≤ Yt−i and Zt ≥ 0, the likelihood function of the generalized
INAR(p) model is given by
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Ly(α, λ) =
T

∏
t=p+1

min{yt , yt−1}
∑

m1,t=0
· · ·

min{yt−∑
p−1
j=1 mj,t , yt−p}
∑

mp,t=0

(
p

∏
i=1

(
yt−i
mi,t

)
α

mi,t
i (1 − αi)

yt−i−mi,t

)
×

⎛⎝ e−λt λ
yt−∑

p
j=1 mj,t

t

(yt − ∑
p
j=1 mj,t)!

⎞⎠ .

For some epoch t and i = 1, . . . , p, suppose that we could observe the values of the latent
maturations Mi,t. Postulate that Mi,t | Yt−i = yt−i, αi ∼ Binomial(yt−i, αi), so that the conditional
probability function of Mi,t is given by

p(mi,t | yt−i, αi) = Pr{Mi,t = mi,t | Yt−i = yt−i, αi}
=

(
yt−i
mi,t

)
α

mi,t
i (1 − αi)

yt−i−mi,t I{0, ... , yt−i}(mi,t).

Furthermore, suppose that

p(yt | m1,t, . . . , mp,t, λt) = Pr{Yt = yt | M1,t = m1,t, . . . , Mp,t = mp,t, λt}

=
e−λt λ

yt−∑
p
j=1 mj,t

t

(yt − ∑
p
j=1 mj,t)!

I{∑
p
j=1 mj,t , ∑

p
j=1 mj,t+1, ... }(yt).

Using the law of total probability and the product rule, we have that

p(yt | yt−1, . . . , yt−p, α, λt) =
yt−1

∑
m1,t=0

· · ·
yt−p

∑
mp,t=0

p(yt, m1,t, . . . , mp,t | yt−1, . . . , yt−p, α, λt)

=
yt−1

∑
m1,t=0

· · ·
yt−p

∑
mp,t=0

p(yt | m1,t, . . . , mp,t, λt)×
p

∏
i=1

p(mi,t | yt−i, αi).

Since

I{∑
p
j=1 mj,t , ∑

p
j=1 mj,t+1, ... }(yt) = I{0, ... , yt}

(
∑

p
j=1 mj,t

)
= I{0, ... , yt}(m1,t)× · · · × I{0, ... , yt−∑

p−1
j=1 mj,t}(mp,t)

and
I{∑

p
j=1 mj,t , ∑

p
j=1 mj,t+1, ... }(yt)× I{0, ... , yt−i}(mi,t) = I{0, 1, ... , min{yt−∑j �=i mj,t , yt−i}}(mi,t),

we recover the original likelihood of the generalized INAR(p), showing that the introduction of the
latent maturations Mi,t with the specified distributions is a valid data augmentation scheme (see [8,9]
for a general discussion of data augmentation techniques).

In the next section, we review the needed definitions and properties of the Pitman–Yor process.

3. Pitman–Yor Process

Let the random probability measure G ∼ DP(τ, G0) be a Dirichlet process [10–12] with
concentration parameter τ and base measure G0. If the random variables X1, . . . , Xn, given G = G,
are conditionally independent and identically distributed as G, then it follows that

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ

τ + n
G0(B) +

1
τ + n

n

∑
i=1

IB(xi),
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for every Borel set B. If we imagine the sequential generation of the Xi’s, for i = 1, . . . , n, the former
expression shows that a value is generated anew from G0 with probability proportional to τ, or we
repeat one the previously generated values with probability proportional to its multiplicity. Therefore,
almost surely, realizations of a Dirichlet process are discrete probability measures, perhaps with
denumerable infinite support, depending on the nature of G0. Also, this data-generating process,
known as the Pólya–Blackwell–MacQueen urn, implies that the Xi’s are “softly clustered”, in the
sense that in one realization of the process the elements of a subset of the Xi’s may have exactly the
same value.

The Pitman–Yor process [6] is a generalization of the Dirichlet process which results in a model
with added flexibility. Essentially, the Pitman–Yor process modifies the expression of the probability
associated with the Pólya-Blackwell-MacQueen urn introducing a new parameter so that the posterior
predictive probability becomes

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ + kσ

τ + n
G0(B) +

1
τ + n

n

∑
i=1

(
1 − σ

ni

)
IB(xi),

in which 0 ≤ σ < 1 is the discount parameter, τ > −σ, k is the number of distinct elements in
{X1, . . . , Xn}, and ni is the number of elements in {X1, . . . , Xn} which are equal to Xi, for i = 1, . . . , n.
It is well known that E[G(B)] = G0(B) and

Var[G(B)] =
(

1 − σ

τ + 1

)
G0(B)(1 − G0(B)),

for every Borel set B. Hence, G is centered on the base probability measure G0, while τ and σ control
the concentration of G around G0. We use the notation G ∼ PY(τ, σ, G0). When σ = 0, we recover the
Dirichlet process as a special case. The PY process is also defined for σ < 0 and τ = |σ|m, for some
positive integer m. For our purposes, it is enough to consider the case of non-negative σ.

Pitman [6] derived the distribution of the number of clusters K (the number of distinct Xi’s),
conditionally on both the concentration parameter τ and the discount parameter σ, as

Pr{K = k | τ, σ} =
∏k−1

i=1 (τ + iσ)
σk × (τ + 1)n−1

× C (n, k; σ),

in which (x)n = Γ(x + n)/Γ(x) is the rising factorial and C (n, k; σ) is the generalized factorial
coefficient [13].

In the next section, we use a Pitman–Yor process to model the distribution of the innovation rates
in the generalized INAR(p) model.

4. PY-INAR(p) Model

The PY-INAR(p) model is as a hierarchical extension of the generalized INAR(p) model defined
in Section 2. Given a random measure G ∼ PY(τ, σ, G0), in which G0 is a Gamma(a0, b0) distribution,
let the innovation rates λp+1, . . . , λT be conditionally independent and identically distributed with
distribution Pr{λt ∈ B | G = G} = G(B).

To complete the PY-INAR(p) model, we need to specify the form of the prior distribution for the
vector of thinning parameters α = (α1, . . . , αp). By comparison with standard results from the theory
of the AR(p) model [14], Du and Li [4] found that in the INAR(p) model the constraint ∑

p
i=1 αi < 1

must be fulfilled to guarantee the non-explosiveness of the process. In their Bayesian analysis of
the INAR(p) model, Neal and Kypraios [5] considered independent beta distributions for the αi’s.
Unfortunately, this choice is problematic. For example, in the particular case when the αi’s have
independent uniform distributions, it is possible to show that Pr{∑

p
i=1 αi < 1} = 1/p!, implying that

we would be concentrating most of the prior mass on the explosive region even for moderate values of
the model order p. We circumvent this problem using a prior distribution for α that places all of its
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mass on the nonexplosive region and still allows us to derive the full conditional distributions of the
αi’s in simple closed form. Specifically, we take the prior distribution of α to be a Dirichlet distribution
with hyperparameters (a1, . . . , ap; ap+1), and corresponding density

π(α) =
Γ
(

∑
p+1
i=1 ai

)
∏

p+1
i=1 Γ(ai)

p+1

∏
i=1

α
ai−1
i ,

in which ai > 0, for i = 1, . . . , p + 1, and αp+1 = 1 − ∑
p
i=1 αi.

Let m = {mi,t: i = 1, . . . , p, t = p + 1, . . . , T} denote the set of all maturations, and let μG be the
distribution of G. Our strategy to derive the full conditionals distributions of the model parameters
and latent variables is to consider the marginal distribution

p(y, m, α, λ) =
∫

p(y, m, α, λ | G) dμG(G)

=

{
T

∏
t=p+1

p(yt | m1,t, . . . , mp,t, λt)
p

∏
i=1

p(mi,t | yt−i, αi)

}

× π(α)×
∫ T

∏
t=p+1

p(λt | G) dμG(G).

From this expression, using the results in Section 3, the derivation of the full conditional
distributions is straightforward. In the following expressions, the symbol ∝ denotes proportionality
up to a suitable normalization factor, and the label “all others” designate the observed counts y and all
the other latent variables and model parameters, with the exception of the one under consideration.

Let λ\t denote the set {λp+1, . . . , λT} with the element λt removed. Then, for t = p + 1, . . . , T,
we have

λt | all others ∼ wt × Gamma(yt − mt + a0, b0 + 1) + ∑
r �=t

(
1 − σ

nr

)
λ

yt−mt
r e−λr δ{λr},

in which the weight

wt =
(τ + k\t σ)× ba0

0 × Γ(yt − mt + a0)

Γ(a0)× (b0 + 1)yt−mt+a0
,

nr is the number of elements in λ\t which are equal to λr, and k\t is the number of distinct elements in
λ\t. In this mixture, we suppressed the normalization constant that makes all weights add up to one.

Making the choice ap+1 = 1, we have

αi | all others ∼ TBeta

(
ai +

T

∑
t=p+1

mi,t, 1 +
T

∑
t=p+1

(yt−i − mi,t), 1 − ∑
j �=i

αj

)
,

for i = 1, . . . , p, in which TBeta denotes the right truncated Beta distribution with support
(0, 1 − ∑

p
j �=i αj).

For the latent maturations, we find

p(mi,t | all others) ∝
1

(mi,t)!(yt − ∑
p
j=1 mj,t)!(yt−i − mi,t)!

(
αi

λt(1 − αi)

)mi,t

× I{0, 1, ... , min{yt−∑j �=i mj,t , yt−i}}(mi,t).
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To explore the posterior distribution of the model, we build a Gibbs sampler [15] using these full
conditional distributions. Escobar and West [16] showed, in a similar context, that we can improve
mixing by resampling simultaneously the values of all λt’s inside the same cluster at the end of each
iteration of the Gibbs sampler. Letting (λ∗

1, . . . , λ∗
k ) be the k unique values among (λp+1, . . . , λT),

define the number of occupants of cluster j by νj = ∑T
t=p+1 I{λ∗

j }(λt), for j = 1, . . . , k. It follows that

λ∗
j | all others ∼ Gamma

(
a0 +

T

∑
t=p+1

(
yt −

p

∑
i=1

mi,t

)
· I{λ∗

j }(λt), b0 + νj

)
.

for j = 1, . . . , k. At the end of each iteration of the Gibbs sampler, we update the values of all λt’s
inside each cluster by the corresponding λ∗

j using this distribution.

5. Prior Sensitivity

As it is often the case for Bayesian models with nonparametric components, a choice of the
prior parameters for the PY-INAR(p) model which yields robustness of the posterior distribution is
nontrivial [17].

The first aspect to be considered is the fact that the base measure G0 plays a crucial role in the
determination of the posterior distribution of the number of clusters K. This can be seen directly by
inspecting the form of the full conditional distributions derived in Section 4. Recalling that G0 is a
gamma distribution with mean a0/b0 and variance a0/b2

0, from the full conditional distribution of λt

one may note that the probability of generating, on each iteration of the Gibbs sampler, a value for λt

anew from G0 is proportional to

(τ + k\t σ)× ba0
0 × Γ(yt − mt + a0)

Γ(a0)(b0 + 1)yt−mt+a0
.

Therefore, supposing that all the other terms are fixed, if we concentrate the mass of G0 around
zero by making b0 → ∞, this probability decreases to zero. This is not problematic, because it is hardly
the case that we want to make such a drastic choice for G0. The behavior in the other direction is more
revealing, since taking b0 ↓ 0, in order to spread the mass of G0, also makes the limit of this probability
to be zero. Due to this behavior, we need to establish a criterion to choose the hyperparameters of the
base measure which avoids these extreme cases.

In our analysis, it is convenient to have a single hyperparameter regulating how the mass of G0

is spread over its support. For a given λmax > 0, we find numerically the values of a0 and b0 which
minimize the Kullback-Leibler divergence between G0 and a uniform distribution on the interval
[0, λmax]. This Kullback-Leibler divergence can be computed explicitly as

− log λmax − a0 log b0 + log Γ(a0)− (a0 − 1)(log λmax − 1) +
b0λmax

2
.

In this new parameterization, our goal is to make a sensible choice for λmax. It is worth
emphasizing that by this procedure we are not truncating the support of G0, but only using the uniform
distribution on the interval [0, λmax] as a reference for our choice of the base measure hyperparameters
a0 and b0.

Our proposal to choose λmax goes as follows. We fix some value 0 ≤ σ < 1 for the discount
parameter and choose an integer k0 as the prior expectation of the number of clusters K, which, using
the results at the end of Section 3, can be computed explicitly as

E[K] =

{
τ × (ψ(τ + T − p)− ψ(τ)) if σ = 0;

((τ + σ)T−p/(σ × (τ + 1)T−p−1))− τ/σ if σ > 0,
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in which ψ(x) is the digamma function (see [6] for a derivation of this result). Next, we find the value
of the concentration parameter τ by solving E[K] = k0 numerically. After this, for each λmax in a grid
of values, we run the Gibbs sampler and compute the posterior expectation of the number of clusters
E[K | y]. Finally, in the corresponding graph, we look for the value of λmax located at the “elbow” of
the curve, that is, the value of λmax at which the values of E[K | y] level off.

6. Simulated Data

As an explicit example of the graphical criterion in action, we used the functional form of a
first-order model with thinning parameter α = 0.15 to simulate a time series of length T = 1000, for
which the distribution of the innovations is a symmetric mixture of three Poisson distributions with
parameters 1, 8, and 15. Figure 1 shows the formations of the elbows for two values of the discount
parameter: σ = 0.5 and σ = 0.75.
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 | 
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Figure 1. Formation of the elbows for σ = 0.5 (left) and σ = 0.75 (right). The red dotted lines indicate
the chosen values of λmax.

For the simulated time series, Figures 2–5 display the behavior of the posterior distributions
obtained using the elbow method for (k0, σ) ∈ {4, 10, 16, 30} × {0, 0.25, 0.5, 0.75}. These figures make
the relation between the choice of the value of the discount parameter σ and the achieved robustness
of the posterior distribution quite explicit: as we increase the value of the discount parameter σ,
the posterior becomes insensitive to the choice of k0. In particular, for σ = 0.75, the posterior mode is
always near 3, which is the number of components used in the distribution of the innovations of the
simulated time series.
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Figure 2. Posterior distributions of the number of clusters K for the simulated time series with σ = 0
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

Once we understand the influence of the prior parameters on the robustness of the posterior
distribution, an interesting question is how to get a point estimate for the distribution of clusters, in the
sense that each λt, for t = p + 1, . . . , T, would be assigned to one of the available clusters.

From the Gibbs sampler, we can easily get a Monte Carlo approximation for the probabilities
drt = Pr{λr �= λt | y}, for r, t = p+ 1, . . . , T. These probabilities define a dissimilarity matrix D = (drt)

among the innovation rates. Although D is not a distance matrix, we can use it as a starting point to
represent the innovation rates in a two-dimensional Euclidean space using the technique of metric
multidimensional scaling (see [18] for a general discussion). From this two-dimensional representation,
we use hierarchical clustering techniques to build a dendrogram, which is appropriately cut in order
to define three clusters, allowing us to assign a single cluster label to each innovation rate.
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Figure 3. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.25
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

Table 1 displays the confusion matrix of this assignment, showing that 83% of the innovations
were grouped correctly in the clusters which correspond to the mixture components used to simulate
the time series.

Table 1. Confusion matrix for the cluster assignments.

True

Predicted 1 2 3
1 297 32 0
2 11 217 42
3 0 84 316
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Figure 4. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.5
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 5. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.75
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

7. Earthquake Data

In this section, we analyze a time series of yearly worldwide earthquakes events of substantial
magnitude (equal or greater than 7 points on the Richter scale) from 1900 to 2018 (http://www.usgs.
gov/natural-hazards/earthquake-hazards/earthquakes).

The forecasting performances of the INAR(p) and the PY-INAR(p) models are compared using a
cross-validation procedure in which the models are trained with data ranging from the beginning of
the time series up to a certain time, and predictions are made for epochs outside this training range.

Using this cross-validation procedure, we trained the INAR(p) and the PY-INAR(p) models with
orders p = 1, 2, and 3, and made one-step-ahead predictions. Table 2 shows the out-of-sample mean
absolute errors (MAE) for the INAR(p) and the PY-INAR(p) models. In this table, the MAE’s are
computed predicting the counts for the last 36 months. For the three model orders, the PY-INAR(p)
model yields a smaller MAE than the original INAR(p) model.

Table 2. Out-of-sample MAE’s for the INAR(p) and the PY-INAR(p) models, with orders p = 1, 2, and 3.
The last column shows the relative variations of the MAE’s for the PY-INAR(p) models with respect to
the corresponding MAE’s for the INAR(p) models.

INAR PY-INAR ΔPY-INAR

p = 1 3.861 3.583 −0.072
p = 2 3.583 3.417 −0.046
p = 3 3.972 3.305 −0.202
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Abstract: Singular spectrum analysis (SSA) is a non-parametric method that breaks down a time
series into a set of components that can be interpreted and grouped as trend, periodicity, and noise,
emphasizing the separability of the underlying components and separate periodicities that occur at
different time scales. The original time series can be recovered by summing all components. However,
only the components associated to the signal should be considered for the reconstruction of the
noise-free time series and to conduct forecasts. When the time series data has the presence of outliers,
SSA and other classic parametric and non-parametric methods might result in misleading conclusions
and robust methodologies should be used. In this paper we consider the use of two robust SSA
algorithms for model fit and one for model forecasting. The classic SSA model, the robust SSA
alternatives, and the autoregressive integrated moving average (ARIMA) model are compared in
terms of computational time and accuracy for model fit and model forecast, using a simulation
example and time series data from the quotas and returns of six mutual investment funds. When
outliers are present in the data, the simulation study shows that the robust SSA algorithms outperform
the classical ARIMA and SSA models.

Keywords: singular spectrum analysis; robust singular spectrum analysis; time series forecasting;
mutual investment funds

1. Introduction

Mutual investment funds provide management services to institutional and individual investors,
besides great liquidity for financial investments made in them and low transactional costs [1,2].
These funds can be of fixed or variable income and allow to diversify the assets while reducing
unsystematic risk. Fixed income mutual investment funds are of low risk, whereas variable-income
mutual investment funds vary in terms of risk but also in terms of returns. In this study, we
were interested in analyzing the quotas and returns of six of the largest Brazilian based mutual
investment funds—three purely based on stocks: (i) Alaska Black, (ii) APEX Long Biased, and
(iii) Brasil Capital; and three balanced funds (usually combining a stock component, a bond component,
and sometimes a money market component in a single portfolio): (iv) ADAM Strategy, (v) Gavea Macro,
and (vi) SPX Nimitz.

A natural framework for analyzing mutual investment funds, due to its underlying structure, is a
time series method.

Singular spectrum analysis (SSA) is a powerful non-parametric technique for time series analysis
and forecasting, which incorporates elements of classical time series analysis, multivariate statistics,
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and matrix algebra. Its main aim is to decompose the original time series into a set of components that
can be interpreted as trend components, seasonal components, and noise components [3–6]. SSA has
proven both wide usefulness and applicability across many applications [7–17], being that its scope
of application ranges from parameter estimation to time series filtering, synchronization analysis,
and forecasting [18].

The SSA methodology for model fit can be summarized in four steps: (i) embedding, which maps
the original univariate time series into a trajectory matrix; (ii) singular value decomposition (SVD),
which helps decomposing the trajectory matrix into the sum of rank-one matrices; (iii) eigentriple
grouping, which helps deciding which of the components are associated to the signal and which are
associated to the noise; and (iv) diagonal averaging, which maps the rank-one matrices, associated to the
signal, back to time series that can be interpreted as trend, seasonal, or other meaningful components.

SSA results and interpretation, similarly to many other classical time series methods, can be
sensitive to data contamination with outliers [19,20]. In those cases, even a small percentage of outliers
can make a big difference on the results for model fit and model forecast. Very few attempts have
been made in order to access the effect of the presence of outliers in the data while conducting a SSA.
One study [21,22] presented some preliminary results on the effect of outliers in singular spectrum
analysis, and [23] made a first attempt to robustify the SSA by considering an SVD based on a robust
L1 norm [24] instead of the L2 norm used in the classical algorithm, which they used for model fit.

In this paper we go one step further than [23] and propose a new robust algorithm for SSA that
considers the SVD based on the Huber function [25]. Moreover, we propose two robust SSA forecasting
algorithms, one based on the the L1 norm and another based on the Huber function. Comparisons are
made between the classical SSA algorithm, the robust SSA algorithm based on the L1 norm (RLSSA),
the robust SSA algorithm based on the Huber function (RHSSA), and the classical autoregressive
integrated moving average (ARIMA) model, in terms of computational time and accuracy for model
fit and model forecast. These comparisons for decomposing and forecasting time series were done by
considering a simulation example and the six mutual investment funds mentioned above.

The rest of this paper is organized as follows. Section 2 provides the materials and methods
containing the data description, a brief introduction to the ARIMA and SSA methodologies, and the
details of the proposed robust SSA algorithm that uses the SVD based on the Huber function. Section 3
presents the results and discussion, wherein the ARIMA, SSA, and robust SSA algorithms are compared
in terms of model fit and model forecast, using the six mutual investment funds and the simulation
example. The paper closes in Section 4, wherein some conclusions are drawn.

2. Materials and Methods

2.1. Data

In this paper we consider a dataset that includes daily observations of six mutual investment
funds, three based purely on stocks and three balanced funds:

Stock funds

• Alaska Black: 3 January 2017–30 August 2019 (N = 666 observations).
• APEX Long Biased: 15 April 2013–30 August 2019 (N = 1604 observations).
• Brasil Capital: 27 August 2012–30 August 2019 (N = 1760 observations).

Balanced funds

• ADAM Strategy: 29 April 2016–30 August 2019 (N = 838 observations).
• Gavea Macro: 30 June 2008–30 August 2019 (N = 2809 observations).
• SPX Nimitz: 01 December 2010–30 August 2019 (N = 2199 observations).

The datasets were collected from https://infofundos.com.br/carteira.
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2.2. ARIMA Model

The autoregressive integrated moving average (ARIMA) models are among the most widely used
techniques for time series analysis and forecasting. Such a model depends on three parameters: p is
the number of lagged observations in the model, i.e., the autoregressive (AR) order; d is the number of
times that the original observations are differenced, i.e., the integrated (I) degree; and q is the size of
the moving average window, i.e., the order of the moving average (MA) [26]. This parametric model
can then be written as ARIMA(p, d, q), with p, d, and q non-negative integers. Given a time series
YN = y1, . . . , yN , the ARIMA(p, d, q) model can be written as:

(1 − φ1B1 − · · · − φpBp)(1 − B)dyt = c + (1 + θ1B1 + · · ·+ θqBq)εt, (1)

where φ1, . . . , φp are the parameters or coefficients of the p autoregressive terms; B is the time lag
operator, or backward shift, which is a linear operator denoted by Bk such that Lkyt = yt−k, t ∈ Z; yt is
the observation at the time point t; c = μ(1 − φ1 − · · · − φp); μ is the mean of (1 − B)dyt; β1, . . . , βq are
the parameters or coefficients of the q moving average terms; and εt is an error term, usually white
noise with variance σ2.

Alternatively, the model can be written as:

(1 − φ1B − · · · − φpBp)(1 − B)d(yt − μtd/d!) = (1 + θ1B + · · ·+ θqBq)εt, (2)

which is the parametization used in the “arima” function of the software R [27].

2.3. Singular Spectrum Analysis

Singular spectrum analysis is a non-parametric technique for model fit and model forecasting
that decomposes a time series into a number of components that are summed and interpreted as trend,
periodicity, and noise. Similarly to many other time series techniques, SSA can be used for solving a
wide range of problems, some of the most relevant being its ability to smooth the original time series,
and to separate the signal (i.e., trend and oscillatory components with different amplitudes) from the
noise components. Therefore, SSA can be used to analyze and reconstruct smoother noise-free time
series that can then be used for model forecasting.

SSA is divided into two interconnected stages: decomposition and reconstruction of the time
series. These stages are divided into two sets each, forming a total of four steps: embedding, singular
value decomposition (SVD), grouping, and diagonal averaging. The complete algorithm for model fit
is described in the following sub-section. Further details can be found in, e.g., [5,6,28].

2.3.1. Decomposition

In the first stage, the (univariate) time series is converted into a high-dimensional matrix called a
trajectory matrix, which is then decomposed into the sum of rank-one matrices based on the SVD.

(1) Embedding:

Consider a non-zero time series YN = {y1, . . . , yn} with size N > 2. Let L(1 < L < N) be an
integer value called window length and K an integer such that the trajectory matrix includes all values;
i.e., K = N − L + 1. The embedding step is achieved by mapping the original time series into a
sequence of K vectors with length L:

Yi = (yi, · · · , yi+L−1)
T , 1 ≤ i ≤ K. (3)
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Then, the trajectory matrix X, that includes the vectors Yi, i = 1, . . . , K, in its columns can be
written as:

X = [Y1, · · · , YK] = (yi j)LK
i,j=1 =

⎡⎢⎢⎢⎢⎣
y1 y2 · · · yK
y2 y3 · · · yK+1
...

...
. . .

...
yL yL+1 · · · yN

⎤⎥⎥⎥⎥⎦ . (4)

(2) Singular value decomposition:

Let S = XXT , U1, . . . , UL be the eigenvectors of S, and λ1 ≥ · · · ≥ λL, its corresponding
eigenvalues. If d is the number of non-null eigenvalues of S, and considering Vi = XTUi

√
λi, we can

decompose the trajectory matrix X as:

X =
d

∑
i=1

Xi =
d

∑
i=1

√
λiUiVT

i . (5)

The decomposition stage can be accomplished either by the eigendecomposition of XTX or by the
SVD of X (X = UDVT , D = diag(

√
λ1, . . . ,

√
λd)). A comparison between both decompositions can be

found in [29].

2.3.2. Reconstruction

In the second stage, after a separating signal from noise components, a diagonal averaging
procedure is conducted in the matrices associated to the signal resulting into the sum of time series
components that can then be interpreted as trend or oscillatory components:

(1) Eigentriple grouping:

This step consists of identifying the first r eigentriples associated with the signal and discarding
the d− r eigentriples associated with the noise. Formally, let I = 1, . . . , r and Ic = r + 1, . . . , d. The goal
of this step is to choose I such that the trajectory matrix can be written as:

XI = ∑
i∈I

√
λiUiV

T
i + ε, (6)

where ε is the noise term.
The number of eigentriples to conduct the reconstruction is often decided based on w-correlations.

We shall say that two series Y(1) and Y(2) are approximately separable if all correlations between the
rows and the columns of the corresponding trajectory matrices obtained from series Y(1) and Y(2)

are close to zero. In [5] they considered other characteristics of the quality of separability; namely,
the weighted correlation or w-correlation, which is a natural measure of deviation of two series Y(1)

T

and Y(2)
T from w-orthogonality:

ρ
(w)
12 =

(
Y(1)

T , Y(2)
T
)

w

‖Y(1)
T ‖w‖Y(1)

T ‖w
, (7)

where ‖Y(i)
T ‖w =

√(
Y(i)

T , Y(i)
T

)
w

, i = 1, 2, and
(
Y(1)

T , Y(2)
T
)

w = ∑T
t=1 wty

(1)
t y(2)t with wt =

min {t, L, T − t + 1}. If the absolute value of the w-correlation is small, the two series are almost
w-orthogonal. If the absolute value of the w-correlation is large, the series are far from being
w-orthogonal and are, therefore, badly separable. Further explanation and intuition about this measure
can be found in [5,28]. Other proposals for this choice were proposed by, e.g., [30,31].

(2) Diagonal averaging:
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In this step, using anti-diagonal averaging on the matrices included in XI , the noise-free time
series is reconstructed. First, the approximate trajectory matrix XI is transformed into a Hankel matrix.
Let As = {(l, k) : l + k = s, 1 ≤ l ≤ L, 1 ≤ k ≤ K} and #(As) be the number of elements in As.
The element x̃ij of the new Hankel matrix X̃ is given by:

x̃ij = ∑
(l,k)∈As

xlk
#(As)

. (8)

Next, the Hankel matrix X̃I is transformed into a new series of dimension N, and the original time
series YN can be approximated by:

ỹi =

{
x̃i1 for i = 1, . . . , L,
x̃Lj for i = L + 1, . . . , N,

(9)

where j = i − L + 1.
The reconstructed noise-fee time series can then be used for out-of-sample forecasting.

2.4. Robust SSA

Despite knowing that SSA has shown to be superior to traditional model-based methods in
many applications, the singular value decomposition (second step of the SSA algorithm) is highly
sensitive to data contamination with outliers. Very few studies were made in order to access effects
of outliers in SSA and to generalize this methodology [21,22]. A first attempt to robustify the SSA
by considering an SVD based on a robust L1 norm [24] instead of the L2 norm used in the classical
algorithm, was proposed by [23]. That robust generalization was compared with the classical SSA
algorithm for model fit by these authors. In this subsection we review that robust SSA algorithm
proposed by [23] and propose a new robust algorithm for SSA that considers the SVD based on the
Huber function [25] and also propose an algorithm for robust SSA model forecasting. While the robust
algorithms based on the L1 norm are very popular, they have difficulties in handling heavy tail outliers.
The robust algorithms based on the Huber function combine the sum of squares loss and the least
absolute deviation loss, that is, a quadratic on small errors, but grows linearly for large errors. As a
result, the Huber loss function is not only more robust against outliers but also more adaptive for
different types of data [32]. Further details and comparisons between the L1 and Huber loss functions,
among others, can be found in [33]. The R source code is available upon request from the first author
of this paper.

2.4.1. Robust SSA Based on the L1 Norm

The robust SSA algorithm proposed by [23] replaces the classical SVD based on the least squares L2

norm, by the robust SVD algorithm based on the L1 norm [24]. This robust SVD is performed iteratively,
starting with an initial estimate of the first left singular vector U1 and leading to an outlier-resistant
approach that also allows for missing data. The robust SVD based on the L1 norm is implemented
under the function “robustSVD()” from the R package “pcaMethods”.

2.4.2. Robust SSA based on the Huber Function

Here we propose a new alternative to robustify the SSA algorithm, where the least squares SVD
in the step two is replaced by the robust SVD based on the Huber function [25]. The Huber loss
function [34] can be defined as:

Lδ(a) =

{ 1
2 a2 if |a| ≤ δ

δ
(
|a| − 1

2 δ
)

if |a| > δ
, (10)
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where δ is a parameter that controls the robustness level, and a smaller value of δ usually leads to more
robust estimation.

The robust SVD based on the Huber function is a special case of robust regularized SVD and
can be obtained with the function “RobRSVD” of the “RobRSVD” R package, in the following way:
RobRSVD (data, rough = TRUE, uspar = 0, vspar = 0). In this R implementation, the authors consider
δ = 1.345, the value commonly used in robust regression that produces 95% efficiency for normal
errors [35]. However, numerical studies suggested that the RobRSVD function is not very sensitive to
the choice of δ [25]. More details about this robust SVD can be found in [25].

2.5. Robust SSA Forecasting Algorithm

The standard recurrent SSA forecasting algorithm assumes that a given observation can be written
as a linear combination of the L − 1 previous observations [5,6,30]. The coefficients of those linear
combinations in the classical SSA forecasting algorithm are obtained based on the left singular vectors,
U, of the trajectory matrix X. This is valid for SSA because of the orthogonality of the vectors in U and
of the full rank decomposition of X, which is not the case for the robust SVD algorithms because of
their construction and specific properties. To overcome this limitation for the robust SSA algorithms
and to be able to obtain out-of-sample forecasts using a robust SSA algorithm, a three stages approach
can be conducted:

(i) Use the robust SSA algorithm to obtain a robust approximation for the signal in the trajectory
matrix; i.e., conduct the two stages of the robust SSA algorithms, decomposition (using the robust
SVD algorithm) and reconstruction, to obtain the noise free (i.e., the signal) trajectory matrix X̃;

(ii) Apply the standard SVD to the matrix X̃ obtained in (i) and obtain U∇
j , the vector of the first

L − 1 components of Uj and πj, the last component of the vector Uj, j = 1, · · · , r. Then, we can
write the coefficient vector â as

â = (âL−1, · · · , â1)
′ = 1

1 − γ2

r

∑
j=1

πjU∇
j , (11)

where γ2 = ∑r
j=1 π2

j .
(iii) The h-steps-ahead out-of-sample recurrent robust SSA forecasts ŷN+1, . . . , ŷN+h, can be obtained as

ŷt =

⎧⎨⎩ỹt, for t = 1, · · · , N

∑L−1
j=1 âj ŷt−j, for t = N + 1, · · · , N + h

(12)

where ỹ1, . . . , ỹN , are the fitted values for the reconstructed time series, as obtained from the
robust SSA algorithm in (i).

2.6. Accuracy Measures

There are several methods and measures for assessing model accuracy based on the behavior of
model errors. Here, there are two types of errors:

• Sample errors, called tuning errors;
• Out-of-sample errors, called forecast errors.

Typically, the root mean squared error (RMSE) is used as a criterion for accessing the precision of
a model. The RMSE to investigate the quality of the model fit can be written as:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ỹt)2, (13)
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where yt are the observed values and ỹt the fitted values by the considered model/algorithm (i.e.,
ARIMA, SSA, robust SSA).

To investigate the forecasting accuracy, let us assume that the last g observations are used as a
reference (i.e., as test set). Let N0 = N − h − g. The RMSE to investigate the quality of the forecasting
model can be written as:

RMSE =

√√√√ 1
g

N

∑
t=N0+h+1

(yt − ỹt)2, (14)

where yt are the last g observed values and ỹt the respective h-steps-ahead forecast values.

3. Results and Discussion

In this section, comparisons are made between the classical ARIMA model, the classical SSA
algorithm, and the robust SSA algorithms, in terms of computational time and accuracy for model
fit and model forecast. These comparisons for decomposing and forecasting time series are done by
considering a simulation example and the time series of six mutual investment funds.

Table 1 shows the descriptive statistics for the six mutual investment funds, including the minimum,
maximum, and mean returns, being clear that Alaska Black is the fund that shows the largest variation
and with the highest mean daily return. On the other end there are Gavea Macro and SPX Nimitz,
which show the smallest variations among the considered funds, and low mean returns.

In addition to the descriptive measures, Figure 1 shows the behavior of the six investment funds
over time. From these plots, it is possible to observe that all funds have an overall growing tendency,
with similar patterns for Gavea Macro and SPX Nimitz.

Brasil Capital Gávea Macro SPX Nimitz

ADAM Estrategy Alaska Black APEX Long Biased
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Figure 1. Time series for the returns of the six mutual investment funds, ADAM Strategy, Alaska Black,
APEX Long Biased, Brasil Capital, Gávea Macro and SPX Nimitz, from left to right and from top to
bottom. The vertical axes show the quota values; i.e., the total net assets of a fund divided by the total
number of quotas existing.
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Table 1. Descriptive measures for returns of the six mutual investment funds.

Investment Fund Minimum Mean Maximum Standard deviation

ADAM Strategy −6.26% 0.05% 1.63% 0.0045%
Alaska Black −29.62% 0.16% 9.80% 0.0240%
APEX Long Biased −8.60% 0.07% 3.72% 0.0085%
Brasil Capital −7.55% 0.07% 3.42% 0.0094%
Gavea Macro −2.22% 0.04% 2.36% 0.0033%
SPX Nimitz −1.92% 0.05% 1.42% 0.0030%

3.1. Model Fit

The models/algorithms under comparison for model fit are: (i) ARIMA, (ii) SSA, (iii) robust SSA
based on the L1 norm (RLSSA), and (iv) robust SSA based on the Huber function (RHSSA).

The parameters of the ARIMA model for each of the six mutual investment funds were estimated
with the function “auto.arima” from the R package “forecast” [36].

For the SSA and robust SSA algorithms, there are two choices to be made by the researcher: (i) the
window length L; and (ii) the number of eigentriples used for reconstruction r. Three values of L
were chosen for each time series, as defined in Table 2—L1 = N/20, L2 = N/2, and Lp—being the
Lp obtained from the periodogram, based on the largest cycle for each time series [37] (i.e., about
one trimester for ADAM Strategy, one semester for Alaska Black, one year for APEX Long Biased,
one quadrimeter for Brasil Capital, one quadrimeter for Gavea Macro, and one quadrimester for
SPX Nimitz), and N being the time series length. The choice of the number of eigentriples used for
reconstruction r, for each of the considered window lengths and each of the time series, was done
by taking into consideration the the w-correlations among components [5]. Figure 2 shows the
w-correlation matrices for each of the six mutual investment funds, considering an window length
L = N/20, and Figure A1 of the appendix shows the w-correlation matrices for each of the six mutual
investment funds, considering an window length L = N/2. The w-correlation matrices can be obtained
with the function “wcor” of the R package “Rssa” [38] and the number of eigentriples r should be
chosen in order to maximize the separability between signal and noise components; i.e., maximize
the w-correlation among signal components, maximize the w-correlation among noise components,
and minimize the w-correlation between signal and noise components. A summary of the number of
eigentriples used for the reconstruction of each time series for each of the window length considered
can be seen in Table 2.

Since one of the objectives in SSA is to decompose the original time series into interpretable
components such as trend and seasonality, plus the noise component that is then discarded, Figure 3
shows the original time series for the Alaska Black mutual investment fund, its trend component (sum
of individual trend components), its seasonal component (sum of individual seasonal components),
and its residuals (sum of the remaining components associated to noise), considering an window
length L = N/20 = 33 and r = 12 eigentriples for reconstruction. Similar SSA decompositions
for ADAM Strategy, APEX Long Biased, Brasil Capital, ADAM Strategy, Gavea Macro, and SPX
Nimitz—considering the values of window length L1 and r1 eigentriples used for reconstruction, as
defined in Table 2—can be found in Figures A2–A6 of the appendix, respectively.
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Figure 2. W-correlation matrices for each of the six mutual investment funds, ADAM Strategy, Alaska
Black, APEX Long Biased, Brasil Capital, Gávea Macro and SPX Nimitz, from left to right and from top
to bottom, considering an window length L = N/20.

Figure 3. Decomposition of the original time series for the Alaska Black mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 33 and
r = 12 eigentriples for reconstruction.
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Table 2. Window length L1, L2, and Lp, and number of eigentriples r considered for model fit and
model forecast for each of the mutual investment funds.

Investment Fund n L1 r1 L2 r2 Lp rp

ADAM Strategy 838 41 17 419 18 60 13
Alaska Black 666 33 12 333 11 125 8
APEX Long Biased 1604 80 14 802 11 250 11
Brasil Capital 1760 88 12 880 12 80 13
Gavea Macro 2809 140 12 1404 12 80 12
SPX Nimitz 2199 109 8 1099 8 80 11

In order to evaluate and compare the ability for model fit using the four models, ARIMA, SSA,
robust SSA based on the L1 norm (RLSSA), and robust SSA based on the Huber function (RHSSA),
the root mean square error (RMSE) was calculated for each time series. Table 3 shows the RMSE for
model fit by each of the four models applied to each of the six mutual investment funds, considering a
window length L = N/2 (Table 2). Table 4 shows the RMSE for model fit by each of the four models
applied to each of the six mutual investment funds, considering a window length L = N/20 (Table 2).
Table 5 shows the RMSE for model fit by each of the four models applied to each of the six mutual
investment funds, considering a window length obtained based on the largest cycle for each time
series (Table 2). From the analyzes of these tables, we can conclude that the ARIMA model shows an
overall better performance when the window length in the SSA related algorithms is set to be half of
the time series (Table 3). However, when the window length is set to be L1 = N/20 or Lp (i.e., equal to
the length of the largest cycle), the classical SSA provides the best results, while the ARIMA model
and the robust SSA algorithms alternate for the second best performances. For all choices of window
length, the two robust SSA algorithms behaved similarly.

Table 3. Root mean square error for each of the six mutual investment funds, considering each of
the four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA based on
the Huber function (RHSSA), for the window length L2 = N/2 and considering r2 engentriples for
reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0057 0.0075 0.0088 0.0076
Alaska Black 0.0402 0.0450 0.0508 0.0476
APEX Long Biased 0.0160 0.0294 0.0318 0.0320
Brasil Capital 0.0170 0.0338 0.0429 0.0346
Gavea Macro 0.6756 1.9758 2.1486 2.0016
SPX Nimitz 0.0063 0.0197 0.0239 0.0207

Table 4. Root mean square error for each of the six mutual investment funds, considering each of
the four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA based on
the Huber function (RHSSA), for the window length L1 = N/20 and considering r1 engentriples for
reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0057 0.0024 0.0034 0.0034
Alaska Black 0.0402 0.0190 0.0244 0.0234
APEX Long Biased 0.0160 0.0107 0.0124 0.0116
Brasil Capital 0.0170 0.0124 0.0143 0.0133
Gavea Macro 0.6756 0.6508 0.7716 0.7432
SPX Nimitz 0.0063 0.0066 0.0078 0.0077
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Table 5. Root mean square error for each of the six mutual investment funds, considering each of the
four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA based on the
Huber function (RHSSA), for the window length Lp (i.e., the length of the largest cycle) and considering
rp engentriples for reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0057 0.0038 0.0046 0.0045
Alaska Black 0.0402 0.0415 0.0482 0.0459
APEX Long Biased 0.0160 0.0185 0.0196 0.0190
Brasil Capital 0.0170 0.0123 0.0139 0.0132
Gavea Macro 0.6756 0.5049 0.5997 0.5986
SPX Nimitz 0.0063 0.0049 0.0058 0.0057

Tables 6–8 show the computational times for each combination of model/algorithm and mutual
investment fund, as presented in Tables 3–5, respectively. From the analyzes of these tables, we can
conclude that the best performance was obtained by the ARIMA and SSA algorithms. The computational
time, for the classic and robust SSA algorithms, increases with the increase of the length L. Moreover,
for larger trajectory matrices (i.e., considering L = N/2) the robust SSA algorithm based on the Huber
function has a lower computational time than the robust SSA algorithm based on the L1 norm (Table 6).
However, when the trajectory matrices are more rectangular (i.e., considering L = N/20, Table 7, or
L = Lp, Table 8), the robust SSA algorithm based on the L1 norm has a much lower computational time
(comparable to the ARIMA and SSA computational times) than the robust SSA algorithm based on the
Huber function).

Table 6. Computational time, in minutes, for each of the six mutual investment funds, considering each
of the four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA based on
the Huber function (RHSSA), for the window length L2 = N/2 and considering r2 engentriples for
reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0010 0.0052 15.563 14.232
Alaska Black 0.0018 0.0042 7.5859 6.8834
APEX Long Biased 0.0175 0.0320 195.27 61.031
Brasil Capital 0.0226 0.0366 287.80 83.821
Gavea Macro 0.0057 0.1584 1605.2 632.84
SPX Nimitz 0.0022 0.0618 616.75 120.83

Table 7. Computational time, in minutes, for each of the six mutual investment funds, considering each
of the four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA based on
the Huber function (RHSSA), for the window length L1 = N/20 and considering r1 engentriples for
reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0010 0.0025 0.1257 68.384
Alaska Black 0.0018 0.0031 0.0669 16.794
APEX Long Biased 0.0175 0.0039 1.2952 530.43
Brasil Capital 0.0226 0.0048 1.9145 629.79
Gavea Macro 0.0057 0.0088 10.823 1441.1
SPX Nimitz 0.0022 0.0050 3.7450 375.29
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Table 8. Computational time, in minutes, for each of the six mutual investment funds, considering
each of the four models, ARIMA, SSA, robust SSA based on the L1 norm (RLSSA), and robust SSA
based on the Huber function (RHSSA), for the window length Lp (i.e., the length of the longest cycle)
and considering rp engentriples for reconstruction as defined in Table 2.

Investment Fund ARIMA SSA RLSSA RHSSA

ADAM Strategy 0.0010 0.0024 0.3371 65.149
Alaska Black 0.0018 0.0026 1.6994 3.3270
APEX Long Biased 0.0175 0.0078 26.826 115.14
Brasil Capital 0.0226 0.0099 2.0020 804.16
Gavea Macro 0.0057 0.0126 3.4485 1718.4
SPX Nimitz 0.0022 0.0078 3.4937 905.16

Figure 4 shows the original time series and the model fit by the SSA model with L = N/20 and by
the ARIMA model. We can confirm that both fits are almost overlapped and very near to the original
time series, which was expected from the small RMSE showed in Table 4.

Brasil Capital Gávea Macro SPX Nimitz
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Figure 4. Original time series (black line); smoothed time series after applying the SSA considering
L = N/20, with the number of eigentriples r as they are defined in Table 2 (red line); and model fit by
the ARIMA model (green line), for each of the six mutual investment funds, ADAM Strategy, Alaska
Black, APEX Long Biased, Brasil Capital, Gávea Macro and SPX Nimitz, from left to right and from top
to bottom. The vertical axes show the quota values.

3.2. Model Forecasting

In this section we compare the forecasting abilities of ARIMA, SSA with L = N/2, SSA with
L = N/20, SSA with L = Lp based on the largest cycle for each time series, and robust SSA based on
the L1 norm with L = N/20 and Lp. The decision for not considering the robust SSA algorithm based
on the Huber function was because of its similarity in terms of RMSE with the robust SSA based on
the L1 norm (Tables 3–5) and the much higher computational time (Tables 6–8). A similar argument
was considered for not presenting the results for the robust SSA algorithm based on the L1 norm with
L = N/2.

Table 9 shows the RRMSE for model forecasting for each of the six mutual investment funds,
considering each of the four models, ARIMA, SSA with L = N/2, SSA with L = N/20, SSA with
L = Lp, and robust SSA based on the L1 norm (RLSSA) with L = N/20 and Lp, considering the
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window length and engentriples used for reconstruction as defined in Table 2. These values were
obtained based on the forecasting of the g = 12 observations from each time series, obtained for
one, five, and ten steps ahead out-of-sample forecast; i.e., one day ahead, one week ahead, and two
weeks ahead.

The overall best performance was obtained with the classic SSA algorithm that considers a lower
value for the window length, either L = N/20 or L = Lp, followed closely by ARIMA and the
robust SSA algorithm based on the L1 norm. The ARIMA model obtained the best performance in
three cases for one-step-ahead forecasting, and the robust SSA algorithm based on the L1 norm with
L = N/20 yielded the best performance in a couple of time series for five-steps-ahead forecasting.
As expected, the RMSE shows an overall increase when increasing the number of steps ahead to be
forecast. A possible justification for the similarity between the SSA and robust SSA algorithm can be
explained by the possible lack of outliers in the data. Table 10 shows the computational time for model
forecasting for each of the six mutual investment funds, considering each of the five models shown
in Table 9. As expected, after analyzing the computational times for model fit (Tables 6–8), the best
performance in terms of computational time for model forecasting was obtained by the the ARIMA
and SSA (with lower values for the window length) models and the worse by the robust SSA algorithm
based on the L1 norm.

Table 9. Root mean square error for model forecasting for each of the six mutual investment funds,
considering the models ARIMA, SSA with L = N/2, SSA with L = N/20, SSA with Lp, robust SSA
based on the L1 norm (RLSSA) with L = N/20, and RSSA with Lp, and their respective engentriples,
as defined in Table 2.

Investment Fund ARIMA SSA N
2 SSA N

20 SSA Lp RLSSA N
20 RLSSA Lp

one-step-ahead

ADAM Strategy 0.0027 0.0036 0.0029 0.0047 0.0048 0.0048
Alaska Black 0.0712 0.2118 0.0638 0.1357 0.1138 0.178
APEX Long Biased 0.0426 0.1778 0.0544 0.0646 0.0663 0.0576
Brasil Capital 0.0436 0.0496 0.0590 0.0573 0.0545 0.0512
Gavea Macro 1.1670 2.3104 1.5536 1.2571 1.1532 1.6582
SPX Nimitz 0.0081 0.0278 0.0061 0.0061 0.0061 0.0074

five-step-ahead

ADAM Strategy 0.0056 0.0047 0.0058 0.0038 0.0089 0.0057
Alaska Black 0.2031 0.2990 0.1800 0.1848 0.2120 0.2365
APEX Long Biased 0.1184 0.1965 0.0578 0.0724 0.0830 0.0577
Brasil Capital 0.1277 0.0481 0.0704 0.0669 0.0693 0.0615
Gavea Macro 2.4007 2.8585 2.0509 1.8165 1.2367 2.3534
SPX Nimitz 0.0275 0.0292 0.0075 0.0077 0.0076 0.0108

ten-step-ahead

ADAM Strategy 0.0057 0.0087 0.0055 0.0086 0.0111 0.0091
Alaska Black 0.2958 0.3795 0.2201 0.0263 0.3311 0.3329
APEX Long Biased 0.2012 0.2162 0.0929 0.0706 0.1020 0.0555
Brasil Capital 0.1998 0.0460 0.1100 0.1101 0.0844 0.0700
Gavea Macro 3.2948 3.6784 2.6578 2.7515 2.8015 2.5541
SPX Nimitz 0.0467 0.0314 0.0166 0.0120 0.0103 0.0170
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Table 10. Computational time, in minutes, for the model for each of the six mutual investment funds,
considering the models ARIMA, SSA with L = N/2, SSA with L = N/20, SSA with Lp, robust SSA
based on the L1 norm (RLSSA) with L = N/20, and RSSA with Lp, and their respective engentriples,
as defined in Table 2.

Investment Fund ARIMA SSA N
2 SSA N

20 SSA Lp RLSSA N
20 RLSSA Lp

one-step-ahead

ADAM Strategy 0.0123 0.1231 0.0277 0.0253 39.768 58.804
Alaska Black 0.0222 0.0549 0.0183 0.0267 30.516 45.948
APEX Long Biased 0.2106 0.4888 0.0613 0.1752 176.18 692.18
Brasil Capital 0.2712 0.8409 0.0644 0.0648 212.60 295.20
Gavea Macro 0.0681 2.7338 0.1687 0.0976 698.34 857.58
SPX Nimitz 0.0265 1.2750 0.0774 0.0740 420.23 584.59

five-step-ahead

ADAM Strategy 0.0129 0.0879 0.0222 0.0256 44.019 56.524
Alaska Black 0.0181 0.0531 0.0150 0.0246 32.351 58.674
APEX Long Biased 0.2203 0.4909 0.0682 0.1840 250.85 675.41
Brasil Capital 0.2620 0.6400 0.0764 0.0675 314.59 290.72
Gavea Macro 0.0702 2.7839 0.1460 0.1034 988.02 858.96
SPX Nimitz 0.0348 1.3029 0.0805 0.0755 537.94 572.93

ten-step-ahead

ADAM Strategy 0.0089 0.0924 0.0344 0.0261 45.729 46.518
Alaska Black 0.0156 0.0469 0.0184 0.0263 28.140 54.289
APEX Long Biased 0.1775 0.5057 0.0678 0.1906 198.27 638.13
Brasil Capital 0.2103 0.6628 0.0726 0.0679 244.06 307.30
Gavea Macro 0.0532 2.6942 0.1724 0.1060 761.49 520.66
SPX Nimitz 0.0243 1.2388 0.0634 0.0786 407.61 316.60

3.3. Simulation Example

To verify the hypothesis raised in the previous subsection that the similarity between the results
from SSA and the robust SSA algorithm can be due to the lack of outliers in the time series, in this
subsection we present a simulation example where the methods are compared while analyzing a time
series contaminated with outlying observations. The synthetic data were obtained by generating
random values from the following function, and then we transformed them into a time series
(right-hand plot in Figure 5):

f (t) = exp{0.02t + 0.5 sin(2πt/5)}+ ε, t = 1, ..., 100,

where ε is the noise generated from the N(0, 0.1). A total of 100 simulated time series were considered.

Figure 5. Synthetic data without contamination (right), data with 5% additive outliers (left), and data
with 5% multiplicative outliers (center). The vertical axes show the simulated value and the horizontal
axes show the index of the simulated observation.
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The data contamination, for illustration purposes, was made by considering additive outliers and
magnitude increase outliers in the following way:

• Additive outliers: 2%, 5%, and 10% of the time points yi are randomly chosen to be replaced by
2+ yi; i.e., the values of yi are increased by a constant value of 2, resulting in a mild contamination
scenario (e.g., (left-hand plot in Figure 5));

• Magnitude increase: 2%, 5%, and 10% of the time points yi are randomly chosen to be replaced
by 5 × yi; i.e., the time point magnitude of yi is increased by a factor of 5, resulting in an a quite
extreme contamination scenario (e.g., central plot in Figure 5).

Table 11 shows the mean of the root mean square errors for model fit, computed for each of the
four models, ARIMA, SSA, robust SSA based on the L1 norm, and robust SSA based on the Huber
function, for the simulated data, based on 100 runs, using L = 24 and r = 5, and considering both
contamination scenarios with 2, 5, and 10% outliers. As expected, when there is no data contamination,
the classic SSA model is the most appropriated. For the mild contamination scenario with additive
outliers, the robust SSA algorithms outperform both ARIMA and SSA models, the better performance
being more evident when the percentage of the outliers increases. For the more extreme contamination
scenario with multiplicative outliers, a similar patters was obtained, the RLSSA being the best robust
algorithm, in this simulation example.

Appendix B includes a second simulation scenario where robust SSA algorithm based on the
Huber function (RHSSA) outperforms the classic ARIMA and SSA models and the robust SSA
algorithm based on the L1 norm (RLSSA).

Table 12 shows mean of the root mean square errors for model forecasting (M = 1, 5, 10 steps-
ahead), computed for each of ARIMA, SSA, and robust SSA based on the L1 norm, for the simulated
data, based on 100 runs, using L = 24 and r = 5. The results for the robust SSA based on the
Huber function were not included because of their computational cost and out-performance when
compared with the robust SSA based on the L1 norm. Again, as expected, the SSA model yielded
the best performance for no data contamination. For scenarios with data contamination, the best
performance was obtained by the robust SSA forecasting algorithm, with a very large decrease in
RMSE in many scenarios.

Table 11. Mean of the root mean square errors for model fit, computed for each of the four models,
ARIMA, SSA, robust SSA based on the L1 norm, and robust SSA based on the Huber function, for the
simulated data, based on 100 runs, using L = 24 and r = 5.

% of Data Contamination Shift ARIMA SSA RLSSA RHSSA

0% - 0.715 0.083 0.109 0.127

2% yi + 2 0.612 0.149 0.119 0.133
5% yi + 2 0.640 0.236 0.134 0.148
10% yi + 2 0.675 0.364 0.179 0.232

2% yi × 5 1.206 1.235 0.126 0.389
5% yi × 5 1.828 2.289 0.167 0.929
10% yi × 5 2.384 3.404 0.425 1.463
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Table 12. Mean of the root mean square errors for model forecasting (M = 1, 5, and 10 steps-ahead),
computed for each of the four models, ARIMA, SSA, robust SSA based on the L1 norm, and robust SSA
based on the Huber function, for the simulated data, based on 100 runs, using L = 24 and r = 5.

M
% of Method

Cont.
Shift

ARIMA SSA RLSSA

0% - 1.685 0.125 0.245

5% yi + 2 0.843 0.475 0.330
M = 1 10% yi + 2 0.793 0.596 0.426

5% yi × 5 3.960 8.461 0.358
10% yi × 5 4.359 9.692 0.652

0% - 1.631 0.122 0.222

5% yi + 2 0.984 0.475 0.307
M = 5 10% yi + 2 0.768 0.586 0.413

5% yi × 5 3.789 538.447 0.323
10% yi × 5 3.853 17.670 0.720

0% - 1.381 0.127 0.244

5% yi + 2 1.320 0.601 0.358
M = 10 10% yi + 2 1.148 0.698 0.474

5% yi × 5 3.486 22.695 * 4.015
10% yi × 5 3.694 622.783 2.320

* 10% trimed mean. The mean value is 1.566 × 106.

4. Conclusions

In this paper we considered the problem of model fit and model forecasting in time series.
In particular, we analyzed six mutual investment funds. Following up on [23], who proposed a robust
SSA algorithm by replacing the standard least squares SVD by a robust SVD algorithm based on the L1

norm [24] for model fit, we proposed another robust SSA algorithm where the robust SVD based on
the Huber function is considered [25]. Moreover, we propose a forecasting strategy for the robust SSA
algorithms, based on the linear recurrent SSA forecasting algorithm.

Comparisons were made between the classical SSA algorithm, the robust SSA algorithms, and the
classical ARIMA model, both in terms of computational time and accuracy for model fit and model
forecast. Those comparisons were made by using daily observations of six mutual investment funds,
and a synthetic data set where the time series were contaminated with outlying observations.

For model fit of the six mutual investment funds, the best results were obtained for the SSA model
when the window length L was set to be equal to the length of the time series divided by 20, or when
the window length is defined as the length of the largest cycle in the time series. The ARIMA model
and the robust SSA algorithms alternated for the second best performance. For model forecasting of
the six mutual investment funds, the best overall performance was obtained for the classic SSA model
considering a lower value for the window length, L = N/20 or Lp, followed closely by the ARIMA
model and the robust SSA algorithm based on the L1 norm.

Based on the similarity between the results from the classic SSA model and the robust SSA
algorithms, both for model fit and model forecasting, one may assume that the time series data from
the six mutual investment funds had no or little data contamination. To access that hypothesis and
to better illustrate the usefulness of the robust SSA algorithms, using a scenario with known and
controlled outliers, a simulation study and its results were presented in this article. For both mild
and and more extreme contamination scenarios, the robust SSA algorithms clearly outperformed the
classical AMMI and SSA models, both for model fit and for model forecasting. Another important
advantage of the robust SSA algorithms, because of their use of the robust SVD, is that they allow for
missing values.
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In terms of computational time, the SSA model gives the best performance, the robust algorithms
being the most time consuming. A possible future development to reduce the computational time
in the robust SSA algorithms is to consider a similar strategy as in [39], where a randomized SVD
algorithm was used to speed up the SSA algorithm.

The usefulness of the proposed approach, regarding the forecasting case, can be assessed based
on forecasting competitions (e.g., [40]) or large scale forecasting studies (see, e.g., [41]).

The methodology and results presented in this paper are of great generality and can be applied to
other time series applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ARIMA autoregressive integrated moving average
SSA singular spectrum analysis
SVD singular value decomposition
RHSSA robust SSA algorithm based on the Huber function
RLSSA robust SSA algorithm based on the L1 norm
RMSE root mean squared error

Appendix A

Figure A1. W-correlation matrices for each of the six mutual investment funds, ADAM Strategy, Alaska
Black, APEX Long Biased, Brasil Capital, Gávea Macro and SPX Nimitz, from left to right and from top
to bottom, considering an window length L = N/2.
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Figure A2. Decomposition of the original time series for the ADAM Strategy mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 41 and
r = 17 eigentriples used for reconstruction.

Figure A3. Decomposition of the original time series for the APEX Long Biased mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 80 and
r = 14 eigentriples used for reconstruction.
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Figure A4. Decomposition of the original time series for the Brasil Capital mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 88 and
r = 12 eigentriples used for reconstruction.

Figure A5. Decomposition of the original time series for the Gavea Macro mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 140 and
r = 12 eigentriples used for reconstruction.
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Figure A6. Decomposition of the original time series for the SPX Nimitz mutual investment fund
(top panel), with a trend component (sum of individual trend components, second panel), a seasonal
component (sum of individual seasonal components, third panel), and a residual (sum of the remaining
components associated to noise, bottom panel), considering an window length L = N/20 = 109 and
r = 8 eigentriples used for reconstruction.

Appendix B

A second synthetic dataset was obtained by generating random values from the following function
and then transforming them into a time series:

f (t) = cos (2πwt + φ) + ε, t = 1, ..., 100,

with w = 3/8, φ = π/8 and ε the noise generated from the N(0, 0.1) (right-hand side of Figure A7).
A total of 100 simulated time series were considered.

5% Additive Outliers 5% Multiplicative Outliers Synthetic Data
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Figure A7. Synthetic data without contamination (right), data with 5% additive outliers (left), and data
with 5% multiplicative outliers (center). The vertical axes show the simulated value and the horizontal
axes show the index of the simulated observation.

The data contamination was done in the same manner as described before. An example of 5%
additive outliers scenario can be found on the left-hand plot of Figure A7, and an example of 5%
multiplicative outliers scenario can be found on the central plot of Figure A7. The results for the root
mean square errors for model fit, computed for each of the four models, ARIMA, SSA, robust SSA
based on the L1 norm, and robust SSA based on the Huber function, can be found in Table A1.
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Table A1. Mean of the root mean square errors for model fit, computed for each of the four models,
ARIMA, SSA, robust SSA based on the L1 norm, and robust SSA based on the Huber function, for the
simulated data, based on 100 runs, using L = 24 and r = 2.

% of Data Contamination Shift ARIMA SSA RLSSA RHSSA

0% - 0.1045 0.0097 0.0099 0.0104

2% yi + 2 0.277 0.071 0.058 0.019
5% yi + 2 0.351 0.113 0.096 0.032
10% yi + 2 0.465 0.161 0.197 0.055

2% yi × 5 0.279 0.108 0.026 0.018
5% yi × 5 0.386 0.193 0.052 0.040
10% yi × 5 0.484 0.338 0.075 0.098
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Abstract: After long arguments between positivism and falsificationism, the verification of universal
hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple
proposed the Raven Paradox. Then, Carnap used the increment of logical probability as the
confirmation measure. So far, many confirmation measures have been proposed. Measure F proposed
by Kemeny and Oppenheim among them possesses symmetries and asymmetries proposed by Elles
and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many
researchers. Based on the semantic information theory, a measure b* similar to F is derived from the
medical test. Like the likelihood ratio, measures b* and F can only indicate the quality of channels
or the testing means instead of the quality of probability predictions. Furthermore, it is still not
easy to use b*, F, or another measure to clarify the Raven Paradox. For this reason, measure c*
similar to the correct rate is derived. Measure c* supports the Nicod Criterion and undermines the
Equivalence Condition, and hence, can be used to eliminate the Raven Paradox. An example indicates
that measures F and b* are helpful for diagnosing the infection of Novel Coronavirus, whereas most
popular confirmation measures are not. Another example reveals that all popular confirmation
measures cannot be used to explain that a black raven can confirm “Ravens are black” more strongly
than a piece of chalk. Measures F, b*, and c* indicate that the existence of fewer counterexamples is
more important than more positive examples’ existence, and hence, are compatible with Popper’s
falsification thought.

Keywords: relative entropy; cross-entropy; uncertain reasoning; inductive logic; confirmation
measure; semantic information; medical test; raven paradox

1. Introduction

A universal judgment is equivalent to a hypothetical judgment or a rule, such as “All ravens
are black” is equivalent to “For every x, if x is a raven, then x is black”. Both can be used as a major
premise for a syllogism. Deductive logic needs major premises; however, some major premises for
empirical reasoning must be supported by inductive logic. Logical empiricism affirmed that a universal
judgment can be verified finally by sense data. Popper said against logical empiricism that a universal
judgment could only be falsified rather than be verified. However, for a universal or hypothetical
judgment that is not strict, and is therefore uncertain, such as “Almost all ravens are black”, “Ravens
are black”, or “If a man’s Coronavirus test is positive, then he is very possibly infected”, we cannot
say that one counterexample can falsify it. After long arguments, Popper and most logical empiricists
reached the identical conclusion [1,2] that we may use evidence to confirm universal judgments or
major premises that are not strict or uncertain.

In 1945, Hemple [3] proposed the confirmation paradox or the Raven Paradox. According to the
Equivalence Condition in the classical logic, “If x is a raven, then x is black” (Rule I) is equivalent
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to “If x is not black, then x is not a raven” (Rule II). A piece of white chalk supports the Rule II, and
hence, also supports the Rule I. However, according to the Nicod criterion [4], a black raven supports
the Rule I, a non-black raven undermines the Rule I, and a non-raven thing, such as a black cat or a
piece of white chalk, is irrelevant to the Rule I. Hence, there exists a paradox between the Equivalence
Condition and the Nicod criterion.

To quantize confirmation, both Carnap [1] and Popper [2] proposed their confirmation measures.
However, only Carnap’s confirmation measures are famous. So far, researchers have proposed
many confirmation measures [1,5–13]. The induction problem seemly has become the confirmation
problem. To screen reasonable confirmation measures, Elles and Fitelson [14] proposed symmetries

and asymmetries as desirable properties; Crupi et al. [8] and Greco et al. [15] suggested normalization

(for measures between −1 and 1) as a desirable property; Greco et al. [16] proposed monotonicity as a
desirable property. We can find that only measures F (proposed by Kemeny and Oppenheim) and Z
among popular confirmation measures possess these desirable properties. Measure Z was proposed by
Crupi et al. [8] as the normalization of some other confirmation measures. It is also called the certainty
factor proposed by Shortliffe and Buchanan [7].

When the author of this paper researched semantic information theory [17], he found that an
uncertain prediction could be treated as the combination of a clear prediction and a tautology; the
combining proportion of the clear prediction could be used as the degree of belief; the degree of belief
optimized with a sampling distribution could be regarded as a confirmation measure. This measure is
denoted by b*; it is similar to measure F and also possesses the above-mentioned desirable properties.

Good confirmation measures should possess not only mathematically desirable properties but
also practicabilities. We can use medical tests to check their practicabilities. We use the degree of belief
to represent the degree to which we believe a major premise and use the degree of confirmation to
denote the degree of belief that is optimized by a sample or some examples. The former is subjective,
whereas the latter is objective. A medical test provides the test-positive (or the test-negative) to predict
if a person or a specimen is infected (or uninfected). Both the test-positive and the test-negative have
degrees of belief and degrees of confirmation. In medical practices, there exists an important issue: if
two tests provide different results, which test should we believe? For example, when both Nucleic Acid
Test (NAT) and CT (Computed Tomography) are used to diagnose the infection of Novel Coronavirus
Disease (COVID-19), if the result of NAT is negative and the result of CT is positive, which should
we believe? According to the sensitivity and the specificity [18] of a test and the prior probability of
the infection, we can use any confirmation measure to calculate the degrees of confirmation of the
test-positive and the test-negative. Using popular confirmation measures, can we provide reasonable
degrees of confirmation to help us choose a better result from NAT-negative and CT-positive? Can
these degrees of confirmation reflect the probability of the infection?

This paper will show that only measures that are the functions of the likelihood ratio, such as F and
b*, can help us to diagnose the infection or choose a better result that can be accepted by the medical
society. However, measures F and b* do not reflect the probability of the infection. Furthermore, using
F, b*, or another measure, it is still difficult to eliminate the Raven Paradox.

Recently, the author found that the problem with the Raven Paradox is different from the problem
with the medical diagnosis. Measures F and b* indicate how good the testing means are instead of
how good the probability predictions are. To clarify the Raven Paradox, we need a confirmation
measure that can indicate how good a probability prediction is. The confirmation measure c* is hence
derived. We call c* a prediction confirmation measure and call b* a channel confirmation measure. The
distinction between Channels’ confirmation and predictions’ confirmation is similar to yet different
from the distinction between Bayesian confirmation and Likelihoodist confirmation [19]. Measure c*
accords with the Nicod criterion and undermines the Equivalence Condition, and hence can be used to
eliminate the Raven Paradox.
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The main purposes of this paper are:

• to distinguish channel confirmation measures that are compatible with the likelihood ratio and
prediction confirmation measures that can be used to assess probability predictions,

• to use a prediction confirmation measure c* to eliminate the Raven Paradox, and
• to explain that confirmation and falsification may be compatible.

The confirmation methods in this paper are different from popular methods, since:

• Measures b* and c* are derived by the semantic information method [17,20] and the maximum
likelihood criterion rather than defined directly.

• Confirmation and statistical learning mutually support so that the confirmation measures can be
used not only to assess major premises but also to make probability predictions.

The main contributions of this paper are:

• It clarifies that we cannot use one confirmation measure for two different tasks: (1) to assess
(communication) channels, such as medical tests as testing means, and (2) to assess probability
predictions, such as to assess “Ravens are black”.

• It provides measure c* that manifests the Nicod criterion and hence provides a new method to
clarify the Raven Paradox.

The rest of this paper is organized as follows. Section 2 includes background knowledge. It reviews
existing confirmation measures, introduces the related semantic information method, and clarifies some
questions about confirmation. Section 3 derives new confirmation measures b* and c* with the medical
test as an example. It also provides many confirmation formulas for major premises with different
antecedents and consequents. Section 4 includes results. It gives some cases to show the characteristics
of new confirmation measures, to compare various confirmation measures by applying them to the
diagnosis of COVID-19, and to show how an increased example affects the degrees of confirmation with
different confirmation measures. Section 5 discusses why we can only eliminate the Raven Paradox by
measure c*. It also discusses some conceptual confusion and explains how new confirmation measures
are compatible with Popper’s falsification thought. Section 5 ends with conclusions.

2. Background

2.1. Statistical Probability, Logical Probability, Shannon’s Channel, and Semantic Channel

First we distinguish logical probability and statistical probability. Logical probability of a
hypothesis (or a label) is the probability in which the hypothesis is judged to be true, whereas its
statistical probability is the probability in which the hypothesis or the label is selected.

Suppose that ten thousand people go through a door. For everyone denoted by x, entrance guards
judge if x is elderly. If two thousand people are judged to be elderly, then the logical probability of
the predicate “x is elderly” is 2000/10,000 = 0.2. If the task of entrance guards is to select a label for
every person from four labels: “Child”, “Youth”, “Adult”, and “Elderly”, there may be one thousand
people who are labeled “Elderly”. The statistical probability of “Elderly” should be 1000/10,000 = 0.1.
Why are not two thousand people are labeled “Elderly”? The reason is that some elderly people are
labeled “Adult”. A person may make two labels be true, such as a 65 years old person makes both
“Adult” and “Elderly” be true. That is why the logical probability of a label is often greater than its
statistical probability. An extreme example is that the logical probability of a tautology, such as “x is
elderly or not elderly”, is 1, whereas its statistical probability is almost 0 in general because a tautology
is rarely selected. Statistical probability is normalized (the sum is 1), whereas logical probability is
not normalized in general [17]. Therefore, we use two different symbols “P” and “T” to distinguish
statistical probability and logical probability.

We now consider the Shannon channel [21] between human ages and labels “Child”, “Adult”,
“Youth”, “Middle age”, “Elderly”, and the like.
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Let X be a random variable to denote an age and Y be a random variable to denote a label. X
takes a value x∈{ages}; Y takes a value y∈{“Child”, “Adult”, “Youth”, “Middle age”, “Elderly”, . . . }.
Shannon calls the prior probability distribution P(X) (or P(x)) the source, and calls P(Y) the destination.
There is a Shannon channel P(Y|X) from X to Y. It is a transition probability matrix:

P(Y|X)⇔

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P(y1|x1) P(y1|x2) . . . P(y1|xm)

P(y2|x1) P(y2|x2) . . . P(y2|xm)

. . . . . . . . . . . .
P(yn|x1) P(yn|x2) . . . P(yn|xm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⇔
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(yj|x)
P(yj|x)
. . .

P(yn|x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where⇔ indicates equivalence. This matrix consists of a group of conditional probabilities P(yj|xi)
(j = 0, 1, . . . , n; i = 0, 1, . . . , m) or a group of transition probability functions (so called by Shannon [21]),
P(yj|x) (j = 0, 1, . . . , n), where yj is a constant, and x is a variable.

There is also a semantic channel that consists of a group of truth functions. Let T(θj|x) be the truth
function of yj, where θj is a model or a set of model parameters, by which we construct T(θj|x). The θj
is alse explained as a fuzzy sub-set of the domain of x [17]. For example, yj = “x is young”. Its truth
function may be

T(θj|x) = exp[−(x − 20)2/25], (2)

where 20 and 25 are model parameters. For yk = “x is elderly”, its truth function may be a logistic
function:

T(θk|x) = 1/[1 + exp[−0.2(x − 65)], (3)

where 0.2 and 65 are model parameters. The two truth functions are shown in Figure 1.

Figure 1. The truth functions of two hypotheses about ages.

According to Tarski’s truth theory [22] and Davidson’s truth-conditional semantics [23], a truth
function can represent the semantic meaning of a hypothesis. Therefore, we call the matrix, which
consists of a group of truth functions, a semantic channel:

T(θ|X)⇔

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
T(θ1|x1) T(θ1|x2) . . . T(θ1|xm)

T(θ2|x1) T(θ2|x2) . . . T(θ2|xm)

. . . . . . . . . . . .
T(θn|x1) T(θn|x2) . . . T(θn|xm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⇔
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(θ1|x)
T(θ2|x)
. . .

T(θn|x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Using a transition probability function P(yj|x), we can make the probability prediction P(x|yj) by

P(x|yj) = P(x)P(yj|x)/P(yj), (5)
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which is the classical Bayes’ formula. Using a truth function T(θj|x), we can also make a probability
prediction or produce a likelihood function by

P(x|θ j) = P(x)T(θ j|x)/T(θ j), (6)

where T(θj) is the logical probability of yj. There is

T(θ j) =
∑

i

P(xi)T(θ j|xi). (7)

Equation (6) is called the semantic Bayes’ formula [17]. The likelihood function is subjective; it
may be regarded as the hybird of logical probability and statistical probability.

When the source P(x) is changed, the above formulas for predictions still work. It is easy to prove
that P(x|θj) = P(x|yj) as T(θj|x)∝P(yj|x). Since the maximum of T(θj|x) is 1, letting P(x|θj) = P(x|yj), we
can obtain the optimized truth function [17]:

T*(θj|x) = [P(x|yj)/P(x)]/max[P(x|yj)/P(x)] = P(yj|x)/max[P(yj|x)], (8)

where x is a variable and max(.) is the maximum of the function in brackets (.).

2.2. To Review Popular Confirmation Measures

We use h1 to denote a hypothesis, h0 to denote its negation, and h to denote one of them. We use
e1 as another hypothesis as the evidence of h1, e0 as its negation, and e as one of them. We use c(e, h) to
represent a confirmation measure, which means the degree of inductive support. Note that c(e, h) here
is used as in [8], where e is on the left, and h is on the right.

In the existing studies of confirmation, logical probability and statistical probability are not
definitely distinguished. We still use P for both in introducing popular confirmation measures.

The popular confirmation measures include:

• D(e1, h1)=P(h1|e1)−P(h1) (Carnap, 1962 [1]),
• M(e1, h1) = P(e1|h1)−P(e1) (Mortimer, 1988 [5]),
• R(e1, h1) = log[P(h1|e1)/P(h1)] (Horwich, 1982 [6]),
• C(e1, h1) = P(h1, e1)−P(e1)P(h1) (Carnap,1962 [1]),

• Z(h1, e1) =

{
[P(h1|e1) − P(h1)]/P(h0), as P(h1|e1) ≥ P(h1),
[P(h1|e1) − P(h1)]/P(h1), otherwise,

(Shortliffe and Buchanan, 1975 [7],

Crupi et al., 2007 [8]),
• S(e1, h1) = P(h1|e1)−P(h1|e0) (Christensen, 1999 [9]),
• N(e1, h1) = P(e1|h1)−P(e1|h0) (Nozik, 1981 [10]),
• L(e1, h1) = log[P(e1|h1)/P(e1|h0)] (Good, 1984 [11]), and
• F(e1, h1) = [ P(e1|h1)−P(e1|h0)]/[ P(e1|h1)+ P(e1|h0)] (Kemeny and Oppenheim, 1952 [12]).

Two measures D and C proposed by Carnap are for incremental confirmation and absolute
confirmation respectively. There are more confirmation measures in [8,24]. Measure F is also denoted
by l* [13], L [8], or k [24]. Most authors explain that probabilities they use, such as P(h1) and P(h1|e1) in
D, R, and C, are logical probabilities. Some authors explain that probabilities they use, such as P(e1|h1)
in F, are statistical probabilities.

Firstly, we need to clarify that confirmation is to assess what kind of evidence supports what kind
of hypotheses. Let us have a look at the following three hypotheses:

• Hypothesis 1: h1(x) = “x is elderly”, where x is a variable for an age and h1(x) is a predicate. An
instance x=70 may be the evidence, and the truth value T(θ1|70) of proposition h1(70) should be 1.
If x=50, the (uncertain) truth value should be less, such as 0.5. Let e1 = “x ≥ 60”, true e1 may also
be the evidence that supports h1 so that T(θ1|e1) > T(θ1).
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• Hypothesis 2: h1(x) = “If age x ≥ 60, then x is elderly”, which is a hypothetical judgment, a major
premise, or a rule. Note that x = 70 or x ≥ 60 is only the evidence of the consequent “x is elderly”
instead of the evidence of the rule. The rule’s evidence should be a sample with many examples.

• Hypothesis 3: e1→h1 = “If age x ≥ 60, then x is elderly”, which is the same as Hypothesis 2. The
difference is that e1 = “x ≥ 60”; h1 = “x is elderly”. The evidence is a sample with many examples
like {(e1, h1), (e1, h0), . . . }, or a sampling distribution P(e, h), where P means statistical probability.

Hypothesis 1 has a (uncertain) truth function or a conditional logic probability function between 0
and 1, which is ascertained by our definition or usage. Hypothesis 1 need not be confirmed. Hypothesis
2 or Hypothesis 3 is what we need to confirm. The degree of confirmation is between −1 and 1.

There exist two different understandings about c(e, h):

• Understanding 1: The h is the major premise to be confirmed, and e is the evidence that supports
h; h and e are so used by Elles and Fitelson [14].

• Understanding 2: The e and h are those in rule e→h as used by Kemeny and Oppenheim [12]. The
e is only the evidence that supports consequent h instead of the major premise e→h (see Section 2.3
for further analysis).

Fortunately, although researchers understand c(e, h) in different ways, most researchers agree to
use a sample including four types of examples (e1, h1), (e0, h1), (e1, h0), and (e0, h0) as the evidence to
confirm a rule and to use the four examples’ numbers a, b, c, and d (see Table 1) to construct confirmation
measures. The following statements are based on this common view.

Table 1. The numbers of four types of examples for confirmation measures.

e0 e1

h1 b a

h0 d c

The a is the number of example (e1, h1). For example, e1 = “raven” (“raven” is a label or the
abbreviate of “x is a raven”) and h1 = “black”; a is the number of black ravens. Similarly, b is the
number of black non-raven things; c is the number of non-black ravens; d is the number of non-black
and non-raven things.

To make the confirmation task clearer, we follow Understanding 2 to treat e→h = “if e then h” as
the rule to be confirmed and replace c(e, h) with c(e→h). To research confirmation is to construct or
select the function c(e→h)=f (a, b, c, d).

To screen reasonable confirmation measures, Elles and Fitelson [14] propose the following
symmetries:

• Hypothesis Symmetry (HS): c(e1→h1) = −c(e1→h0) (two consequents are opposite),
• Evidence Symmetry (ES): c(e1→h1) = −c(e0→h1) (two antecedents are opposite),
• Commutativity Symmetry (CS): c(e1→h1) = c(h1→e1), and
• Total Symmetry (TS): c(e1→h1) = c(e0→h0).

They conclude that only HS is desirable; the other three symmetries are not desirable. We call this
conclusion the symmetry/asymmetry requirement. Their conclusion is supported by most researchers.
Since TS is the combination of HS and ES, we only need to check HS, ES, and CS. According to this
symmetry/asymmetry requirement, only measures L, F, and Z among the measures mentioned above
are screened out. It is uncertain whether N can be ruled out by this requirement [15]. See [14,25,26] for
more discussions about the symmetry/asymmetry requirement.

Greco et al. [15] propose monotonicity as a desirable property. If f (a, b, c, d) does not decrease
with a or d and does not increase with b or c, then we say that f (a, b, c, d) has the monotonicity.
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Measures L, F, and Z have this monotonicity, whereas measures D, M, and N do not have. If we further
require that c(e→h) are normalizing (between −1 and 1) [8,12], then only F and Z are screened out.
There are also other properties discussed [15,19]. One is logicality, which means c(e→h) = 1 without
counterexample and c(e→h) = −1 without positive example. We can also screen out F and Z using the
logicality requirement.

Consider the medical test, such as the test for COVID-19. Let e1 = “positive” (e.g., “x is positive”,
where x is a specimen), e0 = “negative”, h1 = “infected” (e.g.,“x is infected”), and h0 = “uninfected”.
Then the positive likelihood ratio is LR+ = P(e1|h1)/P(e1|h0), which indicates the reliability of the rule
e1→h1. Measures L and F have the one-to-one correspondence with LR:

L(e1→h1) = log LR+; (9)

F(e1, h1)=(LR+ − 1)/(LR+ + 1). (10)

Hence, L and F can also be used to assess the reliability of the medical test. In comparison with
LR and L, F can indicate the distance between a test (any F) and the best test (F = 1) or the worst test
(F = −1) better than LR and L. However, LR can be used for the probability predictions of diseases more
conveniently [27].

2.3. To Distinguish a Major Premise’s Evidence and Its Consequent’s Evidence

The evidence for the consequent of a syllogism is the minor premise, whereas the evidence for a
major premise or a rule is a sample or a sampling distribution P(e, h). In some researchers’ studies,
e is used sometimes as the minor premise, and sometimes as an example or a sample; h is used
sometimes as a consequent, and sometimes as a major premise. Researchers use c(e, h) or c(h, e) instead
of c(e→h) because they need to avoid the contradiction between the two understandings. However, if
we distinguish the two types of evidence, it has no problem to use c(e→h). We only need to emphasize
that the evidence for a major premise is a sampling distribution P(e, h) instead of e.

If h is used as a major premise and e is used as the evidence (such as in [14,28]), −e (the negation
of e) is puzzling because there are four types of examples instead of two. Suppose h = p→q and that e is
one of (p, q), (p, −q), (−p, q), and (−p, q). If (p, −q) is the counterexample, and other three examples (p,
q), (−p, q) and (−p, −q) are positive examples, which support p→q, then (−p, q) and (−p, −q) should
also support p→−q because of the same reason. However, according to HS [14], it is unreasonable that
the same evidence supports both p→q and p→−q. In addition, e is a sample with many examples in
general. A sample’s negation or a sample’s probability is also puzzling.

Fortunately, though many researchers say that e is the evidence of a major premise h, they also
treat e as the antecedent and treat h as the consequent of a major premise because, only in this way, one
can calculate the probabilities or conditional probabilities of e and h for a confirmation measure. Why,
then, should we replace c(e, h) with c(e→h) to make the task clearer? Section 5.3 will show that h used
as a major premise will result in the misunderstanding of the symmetry/asymmetry requirement.

2.4. Incremental Confirmation or Absolute Confirmation

Confirmation is often explained as assessing the impact of evidence on hypotheses, or the impact
of the premise on the consequent of a rule [14,19]. However, this paper has a different point of view
that confirmation is to assess how well a sample or sampling distribution supports a major premise or
a rule; the impact on the rule (e.g., the increment of degree of confirmation) may be made by newly
added examples.

Since one can use one or several examples to calculate the degree of confirmation with a
confirmation measure, many researchers call their confirmation incremental confirmation [14,15].
There are also researchers who claim that we need absolute confirmation [29]. This paper supports
absolute confirmation.
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The problem with incremental confirmation is that the degrees of confirmation calculated are
often bigger than 0.5 and are irrelevant to our prior knowledge or a, b, c, and d that we knew before. It
is unreasonable to ignore prior knowledge. Suppose that the logical probability of h1 = “x is elderly” is
0.2; the evidence is one or several people with age(s) x > 60; the conditionally logical probability of h1

is 0.9. With measure D, the degree of confirmation is 0.9 − 0.2 = 0.7, which is very large and irrelevant
to the prior knowledge.

In confirmation function f (a, b, c, d), the numbers a, b, c, and d should be those of all examples
including past and current examples. A measure f (a, b, c, d) should be an absolute confirmation
measure. Its increment should be

Δf = f (a + Δa, b + Δb, c +Δc, d + Δd) − f (a, b, c, d). (11)

The increment of the degree of confirmation brought about by a new example is closely related
to the number of old examples. Section 5.2 will further discuss incremental confirmation and
absolute confirmation.

2.5. The Semantic Channel and the Degree of Belief of Medical Tests

We now consider the Shannon channel and the semantic channel of the medical test. The relation
between h and e is shown in Figure 2.

Figure 2. The relationship between Positive/Negative and Infected/Uninfected in the medical test.

In Figure 2, h1 denotes an infected specimen (or person), h0 denotes an uninfected specimen, e1 is
positive, and e0 is negative. We can treat e1 as a prediction “h is infected” and e0 as a prediction “h is
uninfected”. In other word, h is a true label or true statement, and e is a prediction or selected label.
The x is the observed feature of h; E1 and E2 are two sub-sets of the domain of x. If x is in E1, then e1 is
selected; if x is in E0, then e0 is selected.

Figure 3 shows the relationship between h and x by two posterior probability distributions P(x|h0)
and P(x|h1) and the magnitudes of four conditional probabilities (with four colors).
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Figure 3. The relationship between two feature distributions and four conditional probabilities for the
Shannon channel of the medical test.

In the medical test, P(e1|h1) is called sensitivity [18], and P(h0|e0) is called specificity. They ascertain
a Shannon channel, which is denoted by P(e|h), as shown in Table 2.

Table 2. Sensitivity and specificity ascertain a Shannon’s Channel P(e|h).

Negative e0 Positive e1

Infected h1 P(e0|h1) = 1 − sensitivity P(e1|h1) = sensitivity

Uninfected h0 P(e0|h0) = specificity P(e1|h0) = 1 − specificity

We regard predicate e1(h) as the combination of believable and unbelievable parts (see Figure 4).
The truth function of the believable part is T(E1|h)∈{0,1}. The unbelievable part is a tautology, whose
truth function is always 1. Then we have the truth functions of predicates e1(h) and e0(h):

T(θe1|h)= b1’ + b1’ T(E1|h); T(θe0|h) = b0’ + b0’ T(E0|h). (12)

where model parameter b1’ is the proportion of the unbelievable part, and also the truth value for the
counter-instance h0.

Figure 4. Truth function T(θe1|h) includes the believable part with proportion b1 and the unbelievable
part with proportion b1’ (b1’ = 1 − |b1|).

The four truth values form a semantic channel, as shown in Table 3.
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Table 3. The semantic channel ascertained by b1’ and b0’ for the medical test.

e0 (Negative) e1 (Positive)

h1 (infected) T(θe0|h1) = b0’ T(θe1|h1) = 1

h0 (uninfected) T(θe0|h0) = 1 T(θe1|h0) = b1’

For medical tests, the logical probability of e1 is

T(θe1) =
∑

i

P(hi)T(θe1|hi) = P(h1) + b1′P(h0), (13)

The likelihood function is

P(h|θe1) = P(h)T(θe1|h)/T(θe1). (14)

P(h|θj) is also the predicted probability of h according to T(θe1|h) or the semantic meaning of e1.
To measure subjective or semantic information, we need subjective probability or logical

probability [17]. To measure confirmation, we need statistical probability.

2.6. Semantic Information Formulas and the Nicod–Fisher Criterion

According to the semantic information G theory [17], the (amount of) semantic information
conveyed by yj about xi is defined with the log-normalized-likelihood:

I(xi;θ j) = log
P(xi|θ j)

P(xi)
= log

T(θ j|xi)

T(θ j)
, (15)

where T(θj|xi) is the truth value of proposition yj(xi) and T(θj) is the logical probability of yj. If
T(θj|x) is always 1, then this semantic information formula becomes Carnap and Bar-Hillel’s semantic
information formula [30].

In semantic communication, we often see hypotheses or predictions, such as “The temperature is
about 10 ◦C”, “The time is about seven o’clock”, or “The stock index will go up about 10% next month”.
Each one of them may be represented by yj = “x is about xj.” We can express the truth functions of yj by

T(θj|x) = exp[−(x − xj)2/(2σ2)]. (16)

Introducing Equation (16) into Equation (15), we have

I(xi;θ j) = log[1/T(θ j)] − (xi − xj)
2/(2σ2), (17)

by which we can explain that this semantic information is equal to the Carnap–Bar-Hillel’s semantic
information minus the squared relative deviation. This formula is illustrated in Figure 5.
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Figure 5. The semantic information conveyed by yj about xi.

Figure 5 indicates that the smaller the logical probability is, the more information there is; and the
larger the deviation is, the less information there is. Thus, a wrong hypothesis will convey negative
information. These conclusions accord with Popper’s thought (see [2], p. 294).

To average I(xi; θj), we have generalized Kullback–Leibler information or relative cross-entropy:

I(X;θ j) =
∑

i

P(xi|yj) log
P(xi|θ j)

P(xi)
=
∑

i

P(xi|yj) log
T(θ j|xi)

T(θ j)
, (18)

where P(x|yj) is the sampling distribution, and P(x|θj) is the likelihood function. If P(x|θj) is
equal to P(x|yj), then I(X; θj) reaches its maximum and becomes the relative entropy or the
Kullback–Leibler divergence.

Consider medical tests, the semantic information conveyed by e1 about h becomes

I(hi;θe1) = log
P(hi|θe1)

P(hi)
= log

T(θe1|h)
T(θe1)

. (19)

The average semantic information is:

I(h;θe1) =
1∑

i=0

P(hi|e1) log
P(hi|θe1)

P(hi)
=

1∑
i=0

P(hi|e1) log
T(θe1|hi)

T(θe1)
(20)

where P(hi|e1) is the conditional probability from a sample.
We now consider the relationship between the likelihood and the average semantic information.
Let D be a sample {(h(t), e(t))|t = 1 to N; h(t)∈{h0, h1}; e(t)∈{e0, e1}}, which includes two sub-samples

or conditional samples H0 with label e0 and H1 with label e1. When N data points in D come from
Independent and Identically Distributed random variables, we have the log-likelihood

L(θe1) = log P(H1|θe1) = log P(h(1), h(2), . . . , h(N)|θe1) = log
1∏

i=0
P(hi|θe1)

N1i

= N1
1∑

i=0
P(hi|e1) log P(hi|θej) = −N1H(h|θe1).

(21)

where N1i is the number of example (hi, e1) in D; N1 is the size of H1. H(h|θe1) is the cross-entropy. If
P(h|θe1) = P(h|e1), then the cross-entropy becomes the Shannon entropy. Meanwhile, the cross-entropy
reaches its minimum, and the likelihood reaches its maximum.
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Comparing the above two equations, we have

I(h;θe1) = L(θe1)/N1 −
1∑

i=0

P(hi|e1) log P(hi) (22)

which indicates the relationship between the average semantic information and the likelihood. Since
the second term on the right side is constant, the maximum likelihood criterion is equivalent to the
maximum average semantic information criterion. It is easy to find that a positive example (e1, h1)
increases the average log-likelihood L(θe1)/N1; a counterexample (e1, h0) decreases it; examples (e0, h0)
and (e0, h1) with e0 are irrelevant to it.

The Nicod criterion about confirmation is that a positive example (e1, h1) supports rule e1→h1; a
counterexample (e1, h0) undermines e1→h1. No reference exactly indicates if Nicod affirmed that (e0, h1)
and (e0, h1) are irrelevant to e1→h1. If Nicod did not affirm, we can add this affirmation to the criterion,
then call the corresponding criterion the Nicod–Fisher criterion, since Fisher proposed the maximum
likelihood estimation. From now on, we use the Nicod–Fisher criterion to replace the Nicod criterion.

2.7. Selecting Hypotheses and Confirming Rules: Two Tasks from the View of Statistical Learning

Researchers have noted the similarity between most confirmation measures and information
measures. One explanation [31] is that information is the average of confirmatory impact. However,
this paper gives a different explanation as follows.

There are three tasks in statistical learning: label learning, classification, and reliability analysis.
There are similar tasks in inductive reasoning:

• Induction. It is similar to label learning. For uncertain hypotheses, label learning is to train a
likelihood function P(x|θj) or a truth function T(θj|x) by a sampling distribution [17]. The Logistic
function often used for binary classifications may be treated as a truth function.

• Hypothesis selection. It is like classification according to different criteria.
• Confirmation. It is similar to reliability analysis. The classical methods are to provide likelihood

ratios and correct rates (including false rates, as those in Table 8).

Classification and reliability analysis are two different tasks. Similarly, hypothesis selection and
confirmation are two different tasks.

In statistical learning, classification depends on the criterion. The often-used criteria are the
maximum posterior probability criterion (which is equivalent to the maximum correctness criterion)
and the maximum likelihood criterion (which is equivalent to the maximum semantic information
criterion [17]). The classifier for binary classifications is

e(x) =
{

e1, if P(θ1|x) ≥ P(θ0|x), P(x|θ1) ≥ P(x|θ0), or I(x;θ1) ≥ I(x;θ0);
e0, otherwise.

(23)

After the above classification, we may use information criterion to assess how well ej is used to
predict hj:

I∗(hj;θej) = I(hj; ej) = log
P(hj |ej)

P(hj)
= log

P(ej |hj)

P(ej)

= log P(hj|ej) − log P(hj)= logP(ej|hj) − log P(ej)

= log P(hj, ej) − log[P(hj)P(ej)],

(24)

where I* means optimized semantic information. With information amounts I(hi; θej) (i, j = 0,1), we can
optimize the classifier [17]:

e∗j = f (x) = argmax
ej

[P(h0|x)I(h0;θej)+P(h1|x)I(h1;θej)]. (25)
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The new classifier will provide the new Shannon’s channel P(e|h). The maximum mutual
information classification can be achieved by repeating Equations (23) and (25) [17,32].

With the above classifiers, we can make prediction ej = “x is hj” according to x. To tell information
receivers how reliable the rule ej→hj is, we need the likelihood ratio LR to indicate how good the
channel is or need the correct rate to indicate how good the probability prediction is. Confirmation
is similar. We need to provide a confirmation measure similar to LR, such as F, and a confirmation
measure similar to the correct rate. The difference is that the confirmation measures should change
between −1 and 1.

According to above analyses, it is easy to find that confirmation measures D, N, R, and C are more
like information measures for assessing and selecting predictions instead of confirming rules. Z is their
normalization [8]; it seems between an information measure and a confirmation measure. However,
confirming rules is different from measuring predictions’ information; it needs the proportions of
positive examples and counterexamples.

3. Two Novel Confirmation Measures

3.1. To Derive Channel Confirmation Measure b*

We use the maximum semantic information criterion, which is consistent with the maximum
likelihood criterion, to derive the channel confirmation measure. According to Equations (13) and (18),
the average semantic information conveyed by e1 about h is

I(h;θe1) = P(h0|e1) log
b′1

P(h1 + b′1P(h0)
+ P(h1|e1) log

1
P(h1 + b′1P(h0)

(26)

Letting dI(h;θe1)/db1’ = 0, we can obtain the optimized b1’:

b′∗1 =
P(h0|e1)

P(h0)
/

P(h1|e1)

P(h1)
, (27)

where P(h1|e1)/ P(h1) ≥ P(h0|e1)/ P(h0). The b’* can be called a disconfirmation measure. Letting both the
numerator and the denominator multiply by P(e1), the above formula becomes:

b1’* = P(e1|h0)/ P(e1|h1) = (1 − specificity)/sensibility = 1/LR+. (28)

According to the semantic information G theory [17], when a truth function is proportional to the
corresponding transition probability function, e.g., T*(θe1|h)∝P(e1|h), the average semantic information
reaches its maximum. Using T*(θe1|h)∝P(e1|h), we can directly obtain

b′∗1
P(e1|h0)

=
1

P(e1|h1)
(29)

and Equation (28). We call

b1* = 1 − b1’* = [P(e1|h1) − P(e1|h0)]/P(e1|h1) (30)

the degree of confirmation of the rule e1→h1. Considering P(e1|h1) < P(e1|h0), we have

b1* = b1’* − 1 = [P(e1|h0) − P(e1|h1)]/P(e1|h0). (31)

Combining the above two formulas, we obtain

b∗1 = b∗(e1 → h1) =
P(e1|h1) − P(e1|h0)

max[P(e1|h1), P(e1|h0)]
=

LR+ − 1
max(LR+, 1)

. (32)
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Since

b∗1 = b∗(e1 → h0) =
P(e1|h0) − P(e1|h1)

max[P(e1|h0), P(e1|h1)]
= −b∗(e1 → h1), (33)

the b1* possesses HS or Consequent Symmetry.
In the same way, we obtain

b∗0 = b∗(e0 → h0) =
P(e0|h0) − P(e0|h1)

max[P(e0|h0), P(e0|h1)]
=

LR− − 1
max(LR−, 1)

. (34)

Using Consequent Symmetry, we can obtain b*(e1→h0) = −b*(e1→h1) and b*(e0→h1) = −b*(e0→h0).
Using measure b* or F, we can answer the question: if the result of NAT is negative and the result

of CT is positive, which should we believe? Section 4.2 will provide the answer that is consistent with
the improved diagnosis of COVID-19 in Wuhan.

Compared with F, b* is better for probability predictions. For example, from b1* > 0 and P(h),
we obtain

P(h1|θe1) = P(h1)/[ P(h1) + b1’*P(h0)] = P(h1)/[1 − b1*P(h0)]. (35)

This formula is much simpler than the classical Bayes’ formula (see Equation (5)).
If b1* = 0, then P(h1|θe1) = P(h1). If b1* < 0, then we can make use of HS or Consequent Symmetry

to obtain b10* = b1*(e1→h0) = |b1*(e1→h1)| = |b1*|. Then we have

P(h0|θe1) = P(h0)/[ P(h0) + b10’*P(h1)] = P(h0)/[1 − b10*P(h1)]. (36)

We can also obtain b1* = 2F1/(1 + F1) from F1 = F(e1→h1) for the probability prediction P(h1|θe1),
but the calculation of probability predictions with F1 is a little complicated.

So far, it is still problematic to use b*, F, or another measure to handle the Raven Paradox. For
example, as shown in Table 13, the increment of F(e1→h1) caused by Δd = 1 is 0.348 − 0.333, whereas
the increment caused by Δa = 1 is 0.340 − 0.333. The former is greater than the latter, which means that
a piece of white chalk can support “Ravens are black” better than a black raven. Hence measure F does
not accord with the Nicod–Fisher criterion. Measures b* and Z do not either.

Why does not measure b* and F accord with the Nicod–Fisher criterion? The reason is that the
likelihood L(θe1) is related to prior probability P(h), whereas b* and F are irrelevant to P(h).

3.2. To Derive Prediction Confirmation Measure c*

Statistics not only uses the likelihood ratio to indicate how reliable a testing means (as a channel) is
but also uses the correct rate to indicate how reliable a probability prediction is. Measure F and b* like
LR cannot indicate the quality of a probability prediction. Most other measures have similar problems.

For example, we assume that an NAT for COVID-19 [33] has sensitivity P(e1|h1)= 0.5 and specificity
P(e0|h0) = 0.95. We can calculate b1’* = 0.1 and b1* = 0.9. When the prior probability P(h1) of the infection
changes, predicted probability P(h1|θe1) (see Equation (35)) changes with the prior probability, as
shown in Table 4. We can obtain the same results using the classical Bayes’ formula (see Equation (5)).

Table 4. Predictive probability P(h1|θe1) changes with prior probability P(h1) as b1* = 0.9.

Common People Risky Group High-Risky Group

P(h1) 0.001 0.1 0.25

P(h1|θe1) 0.002 0.19 0.77

Data in Table 4 show that measure b* cannot indicate the quality of probability predictions.
Therefore, we need to use P(h) to construct a confirmation measure that can reflect the correct rate.
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We now treat probability prediction P(h|θe1) as the combination of a believable part with proportion
c1 and an unbelievable part with proportion c1’, as shown in Figure 6. We call c1 the degree of belief of
the rule e1→h1 as a prediction.

Figure 6. Likelihood function P(h|θe1) may be regarded as a believable part plus an unbelievable part.

When the prediction accords with the fact, e.g., P(h|θe1) = P(h|e1), c1 becomes c1*. The degree of
disconfirmation for predictions is

c’*(e1→h1) = P(h0|e1)/P(h1|e1), if P(h0|e1) ≤ P(h1|e1);

c’*(e1→h1) = P(h1|e1)/P(h0|e1), if P(h1|e1) ≤ P(h0|e1).
(37)

Further, we have the prediction confirmation measure

c∗1 = c∗(e1 → h1) =
P(h1 |e1)−P(h0 |e1)

max(P(h1 |e1),P(h0 |e1))

=
2P(h1 |e1)−1

max(P(h1 |e1),1−P(h1 |e1))
= 2CR1−1

max(CR1,1−CR1)
.

(38)

where CR1 = P(h1|θe1) = P(h1|e1) is the correct rate of rule e1→h1. This correct rate means that the
probability of h1 we predict as x∈E1 is CR1. Letting both the numerator and denominator of Equation
(38) multiply by P(e1), we obtain

c∗1 = c∗(e1 → h1) =
P(h1, e1) − P(h0, e1)

max(P(h1, e1), P(h0, e1))
=

a− c
max(a, c)

. (39)

The sizes of four areas covered by two curves in Figure 7 may represent a, b, c, and d.

Figure 7. The numbers of positive examples and counterexamples for c*(e0→h0) (see the left side) and
c*(e1→h1) (see the right side).
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In like manner, we obtain

c∗0 = c∗(e0 → h0) =
P(h0, e0) − P(h1, e0)

max(P(h0, e0), P(h1, e0))
=

d− b
max(d, b)

. (40)

Making use of Consequent Symmetry, we can obtain c*(e1→h0) = −c*(e1→h1) and c*(e0→h1) =
−c*(e0→h0).

In Figure 7, the sizes of the two areas covered by two curves are P(h0) and P(h1), which are
different. If P(h0) = P(h1) = 0.5, then prediction confirmation measure c* is equal to channel confirmation
measure b*.

Using measure c*, we can directly assess the quality of the probability predictions. For P(h1|θe1) =
0.77 in Table 4, we have c1* = (0.77 − 0.23)/0.77 = 0.701. We can also use c* for probability predictions.
When c1* > 0, according to Equation (39), we have the correct rate of rule e1→h1:

CR1 = P(h1|θe1) = 1/(1 + c′∗1 ) = 1/(2− c∗1) (41)

For example, if c1* = 0.701, then CR1 = 1/(2−0.701) = 0.77. If c*(e1→h1) = 0, then CR1 = 0.5. If
c*(e1→h1) < 0, we may make use of HS to have c10* = c*(e1→h0) = |c*1|, and then make probability
prediction:

P(h0|θe1) = 1/(2− c10
∗),

P(h1|θe1) = 1− P(h0|θe1) = (1− c10
∗)/(2− c10

∗).
(42)

We may define another prediction confirmation measure by replacing operation max( ) with +:

cF1 = cF
∗(e1 → h1) =

P(h1 |e1)−P(h0 |e1)
P(h1 |e1)+P(h0 |e1)

= P(h1|e1) − P(h0|e1)

=
P(h1,e1)−P(h0,e1)

P(e1)
= a−c

a+c .
(43)

The cF* is also convenient for probability predictions when P(h) is certain. There is

P(h1|θe1) = CR1 = (1 + cF1
∗)/2;

P(h0|θe1) = 1−CR1 = (1− cF1
∗)/2.

(44)

However, when P(h) is variable, we should still use b* with P(h) for probability predictions.
It is easy to prove that c*(e1→h1) and cF*(e1→h1) possess all the above-mentioned

desirable properties.

3.3. Converse Channel/Prediction Confirmation Measures b*(h→e) and c*(h→e)

Greco et al. [19] divide confirmation measures into

• Bayesian confirmation measures with P(h|e) for e→h,
• Likelihoodist confirmation measures with P(e|h) for e→h,
• converse Bayesian confirmation measures with P(h|e) for h→e, and
• converse Likelihoodist confirmation measures with P(e|h) for h→e.

Similarly, this paper divides confirmation measures into

• channel confirmation measure b*(e→h),
• prediction confirmation measure c*(e→h),
• converse channel confirmation measure b*(h→e), and
• converse prediction confirmation measure c*(h→e).

96



Entropy 2020, 22, 384

We now consider c*(h1→e1). The positive examples’ proportion and the counterexamples’
proportion can be found in the upside of Figure 7. Then we have

c∗(h1 → e1) =
P(e1|h1) − P(e0|h1)

max(P(e1|h1), P(e0|h1))
=

a− b
max(a, b)

. (45)

The correct rate reflected by c*(h1→e1) is sensitivity or true positive rate P(h1|e1). The correct rate
reflected by c*(h0→e0) is specificity or true negative rate P(h0|e0).

Consider the converse channel confirmation measure b*(h1→e1). Now the source is P(e) instead of
P(h). We may swap e1 with h1 in b*(e1→h1) or swap a with d and b with c in f (a, b, c, d) to obtain

b∗(h1 → e1) =
P(h1|e1) − P(h1|e0)

P(h1|e1) ∨ P(h1|e0)
=

ad− bc
a(b + d) ∨ b(a + c)

(46)

where ∨ is the operator for the maximum of two numbers and is used to replace max( ). There are
also four types of converse channel/prediction confirmation formulas with a, b, c, and d (see Table 7).
Due to Consequent Symmetry, there are the eight types of converse channel/prediction confirmation
formulas altogether.

3.4. Eight Confirmation Formulas for Different Antecedents and Consequents

Table 5 shows the positive examples’ and counterexamples’ proportions needed by measures b*
and c*.

Table 5. Eight proportions for calculating b*(e→h) and c*(e→h).

e0 (Negative) e1 (Positive)

h1 (infected) P(e0|h1) = b/(a + b) P(e1|h1) = a/(a + b)

h0 (uninfected) P(e0|h0) = d/(c + d) P(e1|h0) = c/(c + d)

h1 (infected) P(h1|e0) = b/(b + d) P(h1|e1) = a/(a + c)

h0 (uninfected) P(h0|e0) = d/(b + d) P(h0|e1) = c/(a + c)

Table 6 provides four types of confirmation formulas with a, b, c, and d for rule e→h, where
function max( ) is replaced with the operator ∨.

Table 6. Channel/prediction confirmation measures expressed by a, b, c, and d.

b*(e→h) (for Channels, Refer to Figure 3) c*(e→h) (for Predictions, Refer to Figure 7)

e1→h1
P(e1 |h1)−P(e1 |h0)
P(e1 |h1)∨P(e1 |h0)

= ad−bc
a(c+d)∨c(a+b)

P(h1 |e1)−P(h0 |e1)
P(h1 |e1)∨P(h0 |e1)

= a−c
a∨c

e0→h0
P(e0 |h0)−P(e0 |h1)
P(e0 |h0)∨P(e0 |h1)

= ad−bc
d(a+b)∨b(c+d)

P(h0 |e0)−P(h1 |e0)
P(h0 |e0)∨P(h1 |e0)

= d−b
d∨b

These confirmation measures are related to the misreporting rates of the rule e→h. For example,
smaller b*(e1→h1) or c*(e1→h1) means that the test shows positive for more uninfected people.

Table 7 includes four types of confirmation measures for h→e.

Table 7. Converse channel/prediction confirmation measures expressed by a, b, c, and d.

b*(h→e) (for Converse Channels)
c*(h→e) (for Converse Predictions,

Refer to Figure 7)

h1→e1
P(h1 |e1)−P(h1 |e0)
P(h1 |e1)∨P(h1 |e0)

= ad−bc
a(b+d)∨b(a+c)

P(e1 |h1)−P(e0 |h1)
P(e1 |h1)∨P(e0 |h1)

= a−b
a∨b

h0→e0
P(h0 |e0)−P(h0 |e1)
P(h0 |e0)∨P(h0 |e1)

= ad−bc
d(a+c)∨c(b+d)

P(e0 |h0)−P(e1 |h0)
P(e0 |h0)∨P(e1 |h0)

= d−c
d∨c
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These confirmation measures are related to the underreporting rates of the rule h→e. For example,
smaller b*(h1→e1) or c*(h1→e1) means that the test shows negative for more infected people.
Underreports are more serious problems.

Each of the eight types of confirmation measures in Tables 6 and 7 has its consequent-symmetrical
form. Therefore, there are 16 types of function f (a, b, c, d) altogether for confirmation.

In a prediction and converse prediction confirmation formula, the conditions of two conditional
probabilities are the same; they are the antecedents of rules so that a confirmation measure c* only
depends on the two numbers of positive examples and counterexamples. Therefore, these measures
accord with the Nicod–Fisher criterion.

If we change “∨” into “+” in f (a, b, c, d), then measure b* becomes measure bF* = F, and measure c*
becomes measure cF*. For example,

cF*(e1→h1) = (a − c)/(a + c). (47)

3.5. Relationship Between Measures b* and F

Measure b* is like measure F. The two measures changes with likelihood ratio LR, as shown
in Figure 8.

 
Figure 8. Measures b* and F change with likelihood ratio LR.

Measure F has four confirmation formulas for different antecedents and consequents [8], which
are related to measure bF* as follows:

F(e1 → h1) =
P(e1|h1) − P(e1|h0)

P(e1|h1) + P(e1|h0)
=

ad− bc
ad + bc + 2ac

= bF
∗(e1 → h1) (48)

F(h1 → e1) =
P(h1|e1) − P(h1|e0)

P(h1|e1) + P(h1|e0)
=

ad− bc
ad + bc + 2ab

= bF
∗(h1 → e1) (49)

F(e0 → h0) =
P(e0|h0) − P(e0|h1)

P(e0|h0) + P(e0|h1)
=

ad− bc
ad + bc + 2bd

= bF
∗(e0 → h0) (50)

F(h0 → e0) =
P(h0|e0) − P(h0|e1)

P(h0|e0) + P(h0|e1)
=

ad− bc
ad + bc + 2cd

= bF
∗(h0 → e0) (51)

F is equivalent to bF*. Measure b* has all the above-mentioned desirable properties as well as
measure F. The differences are that measure b* has a greater absolute value than measure F; measure b*
can be used for probability predictions more conveniently (see Equation (35)).

3.6. Relationships between Prediction Confirmation Measures and Some Medical Test’s Indexes

Channel confirmation measures are related to likelihood ratios, whereas Prediction Confirmation
Measures (PCMs) including converse PCMs are related to correct rates and false rates in the medical test.
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To help us understand the significances of PCMs in the medical test, Table 8 shows that each PCM
is related to which correct rate and which false rate.

Table 8. PCMs (Prediction Confirmation Measures) are related to different correct rates and false rates
in the medical test [18].

PCM Correct Rate Positively Related to c* False Rate Negatively Related to c*

c*(e1→h1) P(h1|e1): PPV (Positive Predictive Value) P(h0|e1): FDR (False Discovery Rate)

c*(e0→h0) P(h0|e0): NPV (Negative Predictive Value) P(h1|e0): FOR (False Omission Rate)

c*(h1→e1) P(e1|h1): Sensitivity or TPR (True Positive Rate) P(e0|h1): FNR (False Negative Rate)

c*(h0→e0) P(e0|h0): Specificity or TNR (True Negative Rate) P(e1|h0): FPR (False Positive Rate)

The false rates related to PCMs are the misreporting rates of the rule e→h, whereas the false
rates related to converse PCMs are the underreporting rates of the rule h→e. For example, False
Discovery Rate P(h0|e1) is also the misreporting rate of rule e1→h1; False Negative Rate P(e0|h1) is also
the underreporting rate of rule h1→e1.

4. Results

4.1. Using Three Examples to Compare Various Confirmation Measures

In China’s war against COVID-19, people often ask the question: since the true positive rate, e.g.,
sensitivity, of NAT is so low (less than 0.5), why do we still believe it? Medical experts explain that
though NAT has low sensitivity, it has high specificity, and hence its positive is very believable.

We use the following two extreme examples (see Figure 9) to explain why a test with very low
sensitivity can provide more believable positive than another test with very high sensitivity, and
whether popular confirmation measures support this conclusion.

(a) (b) 

Figure 9. How the proportions of positive examples and counterexamples affect b*(e1→h1). (a) Example
1: positive examples’ proportion is P(e1,|h1) = 0.1, and counterexamples’ proportion is P(e1|h0) = 0.01.
(b) Example 2: positive examples’ proportion is P(e1,|h1) = 1, and counterexamples’ proportion is
P(e1|h0) = 0.9.

In Example 1, b*(e1→h1) = (0.1 − 0.01)/0.1 = 0.9, which is very large. In Example 2, b*(e1→h1) = (1
− 0.9)/1 = 0.1, which is very small. The two examples indicate that fewer counterexamples’ existence is
more important to b* than more positive examples’ existence. Measures F, c*, and cF* also possess this
characteristic, which is compatible with the Logicality requirement [15]. However, most confirmation
measures do not possess this characteristic.

We supposed P(h1) = 0.2 and n = 1000 and then calculated the degrees of confirmation with
different confirmation measures for the above two examples, as shown in Table 9, where the base of
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log for R and L is 2. Table 9 also includes Example 3 (e.g., Ex. 3), in which P(h1) is 0.01. Example 3
reveals the difference between Z and b* (or F).

Table 9. Three examples to show the differences between different confirmation measures.

Ex. a, b, c, d D M R C Z S N L F b* c*

1 20, 180, 8, 792 0.514 0.072 1.84 0.014 0.643 0.529 0.09 3.32 0.818 0.9 0.8

2 200, 0, 720, 80 0.017 0.08 0.12 0.016 0.022 0.217 0.1 0.152 0.053 0.1 −0.722

3 10, 0, 90, 900 0.09 0.9 3.32 0.009 0.091 0.1 0.091 3.46 0.833 0.91 −0.9

Data for Examples 1 and 2 show that L, F and b* give Example 1 a much higher rating than
Example 2, whereas M, C, and N give Example 2 a higher rating than Example 1 (see red numbers).
The excel file for Table 9, Tables 12 and 13 can be find in Supplementary Material.

In Examples 2 and 3, where c > a (counterexamples are more than positive examples), only the
values of c*(e1→h1) are negative. The negative values should be reasonable for assessing probability
predictions when counterexamples are more than positive examples.

The data for Example 3 show that when P(h0) = 0.99>>P(h1) = 0.01, measure Z is very different
from measures F and b* (see blue numbers) because F and b* are independent of P(h) unlike Z.

Although measure L (log-likelihood ratio) is compatible with F and b*, its values, such as 3.32 and
0.152, are not intuitionistic as well as the values of F or b*, which are normalizing.

4.2. Using Measures b* to Explain Why And How CT is also Used to Test COVID-19

The COVID-19 outbreak in Wuhan of China in 2019 and 2020 has infected many people. In the
early stage, only NAT was used to diagnose the infection. Later, many doctors found that NAT often
failed to report the viral infection. Because this test has low sensitivity (which may be less than 0.5) and
high specificity, we can confirm the infection when NAT is positive, but it is not good for confirming the
non-infection when NAT is negative. That means that NAT-negative is not believable. To reduce the
underreports of the infection, CT gained more attention because CT had higher sensitivity than NAT.

When both NAT and CT were used in Wuhan, doctors improved the diagnosis, as shown in
Figure 10 and Table 11. If we diagnose the infection according to confirmation measure b*, will the
diagnosis be the same as the improved diagnosis? Besides NAT and CT, patients’ symptoms, such
as fever and cough, were also used for the diagnosis. To simplify the problem, we assumed that all
patients had the same symptoms so that we could diagnose only according to the results of NAT
and CT.

 
Figure 10. Using both NAT and CT to diagnose the infection of COVID-19 with the help of confirmation
measure b*.
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Reference [34] introduces the sensitivity and specificity of CT that the authors achieved. According
to [33,34] and other reports on the internet, the author of this paper estimated the sensitivities and
specificities, as shown in Table 10.

Table 10. Sensitivities and specificities of NAT (Nucleic Acid Test) and CT for COVID-19.

Sensitivity Specificity

NAT 0.5 0.95

CT 0.8 0.75

Figure 10 was drawn according to Table 10. Figure 10 also shows sensitivities and specificities.
For example, the half of the red circle on the right side indicates that the sensitivity of NAT is 0.5.

We use c(NAT+) to denote the degree of confirmation of NAT-positive with any measure c, and
used c(NAT−), c(CT+), and c(CT−) in like manner. Then we have

b*(NAT+) = [P(e1|h1) − P(e1|h0)]/P(e1|h1) = [0.5 − (1 − 0.95)]/0.5 = 0.9;

b*(NAT−) = [P(e0|h0) − P(e0|h1)]/P(e0|h0) = [0.95 − (1 − 0.5)]/0.95 = 0.47.

We can also obtain b*(CT+) = 0.69 and b*(CT−) = 0.73 in like manner (see Table 11).

Table 11. Improved diagnosis (for final positive or negative) according to NAT and CT.

NAT-Negative, b0* = 0.47 NAT-Positive, b1* = 0.9

CT-positive, b1* = 0.69 Final positive (changed) Final positive

CT-negative, b0* = 0.73 Final negative Final positive

If we only use the positive or negative of NAT as the final positive or negative, we confirm the
non-infection as NAT shows negative. According to measure b*, if we use both results of NAT and CT,
when NAT shows a negative whereas CT shows positive, the final diagnosis should be positive (see
blue words in Table 11) because b*(CT+) = 0.69 is higher than b*(NAT−) = 0.47. This diagnosis is the
same as the improved diagnosis in Wuhan.

Assuming the prior probability of the infection P(e1) = 0.25, the author calculated the various
degrees of confirmation with different confirmation measures for the same sensitivities and specificities,
as shown in Table 12.

Table 12. Various confirmation measures for assessing the results of NAT and CT.

D M Z S C N F b* c*

c(NAT-) 0.10 0.11 0.40 0.62 0.08 0.45 0.31 0.47 0.83

c(NAT+) 0.52 0.34 0.69 0.62 0.08 0.45 0.82 0.90 0.70

c(CT−) 0.17 0.14 0.67 0.43 0.10 0.55 0.58 0.73 0.91

c(CT+) 0.27 0.41 0.36 0.43 0.10 0.55 0.52 0.69 0.06

c(CT+) > c(NAT−) No No No

c(NAT+) > c(CT−) No No No

If there is a “No” under a measure, this measure will result in a different diagnosis from the
improved diagnosis. The red numbers mean that c(CT+) < c(NAT−) or c(NAT+)<c(CT−). Measures
D, M, and F, as well as b*, are consistent with the improved diagnosis. If we change P(h1) from 0.1
to 0.6, we will find that measure M is also not consistent with the improved diagnosis. If we believe
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a test-positive or test-negative when its degree of confirmation is greater than 0.2, then D is also
undesirable, and only measures F and b* satisfy our requirements.

The above sensitivities and specificities in Table 10 were not specially selected. When
NAT-sensitivity changed between 0.3 and 0.7, or CT-sensitivity changed between 0.6 and 0.9, it
was the same that only measures D, F, and b* were consistent with the improved diagnosis.

Measure c* is also not suitable for the diagnosis because it reflects correctness and cannot reduce
the underreports of the infection. Yet, the underreports of the infection will cause greater loss than the
misreports of the infection.

4.3. How Various Confirmation Measures are Affected by Increments Δa and Δd

The following example is used to check if we can use popular confirmation measures to explain
that a black raven can confirm “Ravens are black” more strongly than a piece of white chalk.

Table 13 shows the degrees of confirmation calculated with nine different measures. First, we
supposed a = d = 20 and b = c = 10 to calculate the nine degrees of confirmation. Next, we only replaced
a with a + 1 to calculate the nine degrees. Last, we only replaced d with d + 1 to calculate them.

Table 13. How confirmation measures are affected by Δa = 1 and Δd = 1.

f (a, b, c, d)
a = d = 20
b = c = 10

Δa = 1
Δd = 0

Δd = 1
Δa = 0

Δf /Δa-Δf /Δd

D(e1→h1) a/ (a + c) − (a + b)/n 0.167 0.169 0.175 −0.006

M(e1→h1) a/ (a + b) − (a + c)/n 0.167 0.169 0.175 −0.006

C(e1→h1) a/n − (a + c)(a + b)/n2 0.083 0.086 0.086 0

Z(e1→h1) D(e1→h1)/[(c + d)/n] 0.333 0.344 0.344 0

S(e1→h1) a/ (a + c) − b(b + d) 0.333 0.334 0.344 0

N(e1→h1) a/(a + b) − c/(c + d) 0.333 0.334 0.344 0

F(e1→h1) (ad-bc)/ (ad + bc + 2ac) 0.333 0.340 0.348 −0.007

LR+ [a/ (a + b)]/[c/ (c + d)] 2 2.03 2.07 −0.034

c*(e1→h1) (a − c)/max(a, c) 0.5 0.524 0.5 0.024 > 0

The results must have exceeded many researchers’ expectations. Table 13 indicates that all
measures except c* (see blue numbers) cannot ensure that Δa = 1 increases f (a, b, c, d) more than Δd = 1.
If we change b and c between 1 and 19, all measures except c*, S, and N cannot ensure Δf /Δa≥Δf /Δd.
When b>c, measures S and N also cannot ensure Δf /Δa≥Δf /Δd. The cause for measures D and M is
that Δd = 1 decreases P(h1) and P(e1) more than increasing P((h1|e1) and P(e1|h1). The causes for other
measures except c* are similar.

5. Discussions

5.1. To Clarify the Raven Paradox

To clarify the Raven Paradox, some researchers including Hemple [3] affirm the Equivalence
Condition and deny the Nicod–Fisher criterion; some researchers, such as Scheffler and Goodman [35],
affirm the Nicod–Fisher criterion and deny the Equivalence Condition. There are also some researchers
who do not fully affirm the Equivalence Condition or the Nicod–Fisher criterion.

First, we consider measure F to see if we can use it to eliminate the Raven Paradox. The difference
between F(e1→h1) and F(h0→e0) is that their counterexamples are the same, yet, their positive examples
are different. When d increases to d+Δd, F(e1→h1) and F(h0→e0) unequally increase. Therefore,
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• though measure F denies the Equivalence Condition, it still affirms that Δd affects both F(e1→h1)
and F(h0→e0);

• measure F does not accord the Nicod–Fisher criterion.

Measure b* is like F. The conclusion is that measures F and b* cannot eliminate our confusion
about the Raven Paradox.

After inspecting many different confirmation measures from the perspective of the rough set
theory, Greco et al. [15] conclude that Nicod criterion (e.g., the Nicod–Fisher criterion) is right, but
it is difficult to find a suitable measure that accords with the Nicod criterion. However, many
researchers still think that the Nicod criterion is incorrect; it accords with our intuition only because
a confirmation measure c(e1→h1) can evidently increase with a and slightly increase with d. After
comparing different confirmation measures, Fitelson and Hawthorne [28] believe that the likelihood
ratio may be used to explain that a black raven can confirm “Ravens are black” more strongly than a
non-black non-raven thing.

Unfortunately, Table 13 shows that the increments of all measures except c* caused by Δd = 1 are
greater than or equal to those caused by Δa = 1. That means that these measures support the conclusion
that a piece of white chalk can confirm “Ravens are black” more strongly than (or as well as) a black
raven. Therefore, these measures cannot be used to clarify the Raven Paradox.

However, measure c* is different. Since c*(e1→h1) = (a − c)/(a∨c) and c*(h0→e0) = (d − c)/(d∨c), the
Equivalence Condition does not hold, and measure c* accords with the Nicod–Fisher criterion very
well. Hence, the Raven Paradox does not exist anymore according to measure c*.

5.2. About Incremental Confirmation and Absolute Confirmation

In Table 13, if the initial numbers are a = d = 200 and b = c = 100, the increments of all measures
caused by Δa = 1 will be much less than those in Table 13. For example, D(e1→h1) increases from 0.1667
to 0.1669; c*( e1→h1) increase from 0.5 to 0.5025. The increments are about 1/10 of those in Table 13.
Therefore, the increment of the degree of confirmation brought about by a new example is closely
related to the number of old examples or our prior knowledge.

The absolute confirmation requires that

• the sample size n is big enough;
• each example is selected independently;
• examples are representative.

Otherwise, the degree of confirmation calculated is unreliable. We need to replace the degree of
confirmation with the degree interval of confirmation, such as [0.5, 1] instead of 1.

5.3. Is Hypothesis Symmetry or Consequent Symmetry desirable?

Elles and Fitelson defined HS by c(e, h) = −c(e, −h). Actually, it means c(x, y) = −c(x, −y) for any x
and y. Similarly, ES is Antecedent Symmetry, which means c(x, y) = −c(−x, y) for any x and y. Since
e and h are not the antecedent and the consequent of a major premise from their point of view, they
cannot say Antecedent Symmetry and Consequent Symmetry. Consider that c(e, h) becomes c(h, e).
According the literal meaning of HS (Hypothesis Symmetry), one may misunderstand HS as shown
in Table 14.

Table 14. Misunderstood HS (Hypothesis Symmetry) and ES (Evidence Symmetry).

HS or Consequent Symmetry ES or Antecedent Symmetry

Misunderstood HS c(e, h) = −c(e, −h) c(h, e) = −c(−h, e)

Misunderstood ES c(h, e) = −c(h, −e) c(e, h) = −c(−e, h)
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For example, the misunderstanding happens in [8,19], where the authors call c(h, e) = −c(h, −e)
ES. However, it is in fact HS or Consequent Symmetry. In [19], the authors think that F(H, E) (where
the right side is evidence) should have HS: F(H, E) = −F(−H, E), whereas F(E, H) should have ES: F(E,
H)= −F(−E, H). However, this “ES” does not accord with the original meaning of ES in [14]. Both F(H,
E) and F(E, H) possess HS instead of ES. The more serious thing because of the misunderstanding is
that [19] concludes that ES and EHS (e.g., c(H, E) = c(−H, −E)), as well as HS, are desirable, and hence,
measures S, N, and C are particularly valuable.

The author of this paper approves the conclusion of Elles and Fitelson that only HS (e.g.,
Consequent Symmetry) is desirable. Therefore, it is necessary to make clear that e and h in c(e, h) are
the antecedent and the consequent of the rule e→h. To avoid the misunderstanding, we had better
replace c(e, h) with c(e→h) and use “Antecedent Symmetry” and “Consequent Symmetry” instead of
“Evidence Symmetry” and “Hypothesis Symmetry”.

5.4. About Bayesian Confirmation and Likelihoodist Confirmation

Measure D proposed by Carnap is often referred to as the standard Bayesian confirmation measure.
The above analyses, however, show that D is only suitable as a measure for selecting hypotheses instead
of a measure for confirming major premises. Carnap opened the direction of Bayesian confirmation, but
his explanation about D easily lets us confuse a major premise’s evidence (a sample) and a consequent’s
evidence (a minor premise).

Greco et al. [19] call confirmation measures with conditional probability p(h|e) as Bayesian
confirmation measures, those with P(e|h) as Likelihoodist confirmation measures, and those for h→e as
converse Bayesian/Likelihoodist confirmation measures. This division is very enlightening. However,
the division of confirmation measures in this paper does not depend on symbols, but on methods. The
optimized proportion of the believable part in the truth function is the channel confirmation measure b*,
which is similar to the likelihood ratio, reflecting how good the channel is. The optimized proportion
of the believable part in the likelihood function is the prediction confirmation measure c*, which is
similar to the correct rate, reflecting how good the probability prediction is. The b* may be called
the logical Bayesian confirmation measure because it is derived with Logical Bayesian Inference [17],
although P(e|h) may be used for b*. The c* may be regarded as the likelihoodist confirmation measure,
although P(h|e) may be used for c*.

This paper also provides converse channel/prediction confirmation measures for rule h→e.
Confirmation measures b*(e→h) and c*(e→h) are related to misreporting rates, whereas converse
confirmation measures b*(h→e) and c*(h→e) are related to underreporting rates.

5.5. About the Certainty Factor for Probabilistic Expert Systems

The Certainty Factor, which is denoted by CF, was proposed by Shortliffe and Buchanan for
a backward chaining expert system [7]. It indicates how true an uncertain inference h→e is. The
relationship between measures CF and Z is CF(h→e) = Z(e→h) [36].

As pointed out by Heckerman and Shortliffe [36], the Certainty Factor method has been widely
adopted in rule-based expert systems, it also has its theoretical and practical limitations. The main
reason is that the Certainty Factor method is not compatible with statistical probability theory. They
believe that the belief-network representation can overcome many of the limitations of the Certainty
Factor model; however, the Certainty Factor model is simpler than the belief-network representation; it
is possible to combine both to develop simpler probabilistic expert systems.

Measure b*(e1→h1) is related to the believable part of the truth function of predicate e1(h). It is
similar to CF(h1→e1). The differences are that b*(e1→h1) is independent of P(h) whereas CF(h1→e1) is
related to P(h); b*(e1→h1) is compatible with statistical probability theory whereas CF(h1→e1) is not.

Is it possible to use measure b* or c* as the Certainty Factor to simplify belief-networks or
probabilistic expert systems? This issue is worth exploring.
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5.6. How Confirmation Measures F, b*, and c* are Compatible with Popper’s Falsification Thought

Popper affirms that a counterexample can falsify a universal hypothesis or a major premise.
However, for an uncertain major premise, how do counterexamples affect its degree of confirmation?
Confirmation measures F, b*, and c* can reflect the importance of counterexamples. In Example 1 of
Table 9, the proportion of positive examples is small, and the proportion of counterexamples is smaller
still, so that the degree of confirmation is large. This example shows that to improve the degree of
confirmation, it is not necessary to increase the conditional probability P(e1|h1) (for b*) or P(h1|e1) (for
c*). In Example 2 of Table 9, although the proportion of positive examples is large, the proportion of
counterexamples is not small so that the degree of confirmation is very small. This example shows that
to raise degree of confirmation, it is not sufficient to increase the posterior probability. It is necessary
and sufficient to decrease the relative proportion of counterexamples.

Popper affirms that a counterexample can falsify a universal hypothesis, which can be explained
by that for the falsification of a strict universal hypothesis, it is important to have no counterexample.
Now for the confirmation of a universal hypothesis that is not strict or uncertain, we can explain that
it is important to have fewer counterexamples. Therefore, confirmation measures F, b*, and c* are
compatible with Popper’s falsification thought.

Scheffler and Goodman [35] proposed selective confirmation based on Popper’s falsification
thought. They believe that black ravens support "Ravens are black" because black ravens undermine
"Ravens are not black". Their reason why non-black ravens support "Ravens are not black" is that
non-black ravens undermine the opposite hypothesis "Ravens are black". Their explanation is very
meaningful. However, they did not provide the corresponding confirmation measure. Measure
c*(e1→h1) is what they need.

6. Conclusions

Using the semantic information and statistical learning methods and taking the medical test as an
example, this paper has derived two confirmation measures b*(e→h) and c*(e→h). The measure b* is
similar to the measure F proposed by Kemeny and Oppenheim; it can reflect the channel characteristics
of the medical test like the likelihood ratio, indicating how good a testing means is. Measure c*(e→h)
is similar to the correct rate but varies between −1 and 1. Both b* and c* can be used for probability
predictions. The b* is suitable for predicting the probability of disease when the prior probability
of disease is changed. Measures b* and c* possess symmetry/asymmetry proposed by Elles and
Fitelson [14], monotonicity proposed by Greco et al. [16], normalizing property (between −1 and
1) suggested by many researchers. The new confirmation measures support absolute confirmation
instead of incremental confirmation.

This paper has shown that most popular confirmation measures cannot help us diagnose the
infection of COVID-19, but measures F and b* and the like, which are the functions of likelihood
ratio, can. It has also proved that popular confirmation measures did not support the conclusion
that a black raven could confirm more strongly than a non-black non-raven thing, such as a piece
of chalk. It has shown that measure c* could definitely deny the Equivalence Condition and exactly
reflect Nicod–Fisher Criterion, and hence, could be used to eliminate the Raven Paradox. The new
confirmation measures b* and c* as well as F indicates that fewer counterexamples’ existence is more
important than more positive examples’ existence; therefore, measures F, b*, and c* are compatible
with Popper’s falsification thought.

When the sample is small, the degree of confirmation calculated by any confirmation measure
is not reliable, and hence, the degree of confirmation should be replaced with the degree interval of
confirmation. We need further studies combining the theory of hypothesis testing. It is also worth
conducting further studies ensuring that the new confirmation measures are used as the Certainty
Factors for belief-networks.
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Supplementary Materials: The Excel File for Data in Tables 9, 12 and 13 is available online at http://survivor99.
com/lcg/Table9-12-13NAT.zip. We can test different confirmation measures by changing a, b, c, and d.
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Abstract: Here, we introduce a class of Tensor Markov Fields intended as probabilistic graphical
models from random variables spanned over multiplexed contexts. These fields are an extension of
Markov Random Fields for tensor-valued random variables. By extending the results of Dobruschin,
Hammersley and Clifford to such tensor valued fields, we proved that tensor Markov fields are
indeed Gibbs fields, whenever strictly positive probability measures are considered. Hence, there is a
direct relationship with many results from theoretical statistical mechanics. We showed how this class
of Markov fields it can be built based on a statistical dependency structures inferred on information
theoretical grounds over empirical data. Thus, aside from purely theoretical interest, the Tensor
Markov Fields described here may be useful for mathematical modeling and data analysis due to
their intrinsic simplicity and generality.

Keywords: Markov random fields; probabilistic graphical models; multilayer networks

1. General Definitions

Here, we introduce Tensor Markov Fields, i.e., Markov random fields [1,2] over tensor spaces.
Tensor Markov Fields (TMFs) represent the joint probability distribution for a set of tensor-valued
random variables.

Let X = Xβ
α be one of such tensor-valued random variables. Here Xj

i ∈ X may represent either
a variable i ∈ α, that may exist in a given context or layer j ∈ β (giving rise to a class of so-called
multilayer graphical models or multilayer networks) or a single tensor-valued quantity Xj

i . A TMF
will be an undirected multilayer graph representing the statistical dependency structure of X as given
by the joint probability distribution P(X).

As an extension of the case of Markov random fields, a TMF is a multilayer graph Ĝ = (V, E)
formed by a set V of vertices or nodes (the Xj

i ’s) and a set E ⊆ V × V of edges connecting the
nodes, either on the same layer or through different layers (Figure 1). The set of edges represents
a neighborhood law N stating which vertex is connected (dependent) to which other vertex in the
multilayer graph. With this in mind, a TMF can be also represented (slightly abusing notation) as
Ĝ = (V, N). The set of neighbors of a given point Xj

i will be denoted N
Xj

i
.

Entropy 2020, 22, 451; doi:10.3390/e22040451 www.mdpi.com/journal/entropy109
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XI
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XI
2

XI
3

XI
4

XII
1

XII
3

XII
4

XII
2

Figure 1. A Tensor Markov Field: represented as a multilayer graph spanning over Xj
i with i =

{1, 2, 3, 4} and j = {I, I I}. To illustrate, layer I is colored in blue and layer I I is colored green.

1.1. Configuration

It is possible to assign to each point in the multilayer graph, one of a finite set S of labels. Such
assignment will be called a configuration. We will assign probability measures to the set Ω of all
possible configurations ω. Hence, ωA represents the configuration ω restricted to the subset A of V.
It is possible to think of ωA as a configuration on the smaller multilayer graph ĜA restricting V to
points of A (Figure 2).

i) ii) iii)

Figure 2. Three different configurations of a Tensor Markov Fieldpanels (i), (ii) and (iii) present
different configurations or states of the TMF. Labels are represented by color intensity.

1.2. Local Characteristics

It is also possible to extend the notion of local characteristics from MRFs. The local characteristics
of a probability measure P defined on Ω are the conditional probabilities of the form:

P(ωt |ωT\t) = P(ωt |ωNt) (1)
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i.e., the probability that the point t is assigned the value ωt, given the values at all other points of
the multilayer graph. In order to make explicit the tensorial nature of the multilayer graph Ĝ, let
us re-write Equation (1). Let us also recall the fact that the probability measure will define a tensor
Markov random field (a TMF) if the local characteristics depend only of the knowledge of the outcomes
at neighboring points, i.e., if for every ω

P(ω
Xj

i
| ω

Ĝ\Xj
i
) = P(ω

Xj
i
|ωN

Xj
i

) (2)

1.3. Cliques

Given an arbitrary graph (or in the present case a multilayer graph), we shall say that a set of
points C is a clique if every pair of points in C are neighbors (see Figure 3). This definition includes
the empty set as a clique. A clique is thus a set whose induced subgraph is complete, for this reason
cliques are also called complete induced subgraphs or maximal subgraphs (although these latter term may
be ambiguous).

XI
1

XI
2

XI
3

XI
4

XII
1

XII
3

XII
4

XII
2

Figure 3. Cliques on a Tensor Markov Field: The set {XI
2, XI

3, XI
4} forms an intra-layer 2-clique (as

marked by the red edges, all on layer I), the set {XI
3, XII

3 } forms an inter-layer 1-clique (marked by the
blue edge connecting layers I and I I). However, the set {XI

3, XII
3 , XI

4, XII
4 , } is not a clique since there

are no edges between XI
3 and XII

4 nor between XI
3 and XII

4 .

1.4. Configuration Potentials

A potential η is a way to assign a number ηA(ω) to every subconfiguration ωA of a configuration
ω in the multilayer graph Ĝ. Given a potential, we shall say that it defines (or better, induces) a
dimensionless energy U(ω) on the set of all configurations ω by

U(ω) = ∑
A

ηA(ω) (3)

In the preceeding expression, for fixed ω, the sum is taken over all subsets A ⊆ V including the
empty set. We can define a probability measure, called the Gibbs measure induced by U as

P(ω) =
e−U(ω)

Z
(4)
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with Z a normalization constant called the partition function.

Z = ∑
ω

e−U(ω) (5)

In physics, the term potential is often used in connection with the so-called potential energies.
Physicists often call ηA a dimensionless potential energy, and they call φA = e−ηA a potential.

Equations (4) and (5) can be thus rewritten as:

P(ω) =
∏A φA(ω)

Z
(6)

Z = ∑
ω

∏
A

φA(ω) (7)

Since this latter use is more common in probability and graph theory, we will refer to
Equations (6) and (7) as the definitions of Gibbs measure and partition function (respectively) unless
otherwise stated.

1.5. Gibbs Fields

A potential is called a nearest neighbor Gibbs potential if φA(ω) = 1 whenever A is not a clique.
It is customary to refer as a Gibbs measure to a measure induced by a nearest neighbor Gibbs potential.
However, it is possible to define more general Gibbs measures by considering other types of potentials.

The inclusion of all cliques in the calculation of the Gibbs measure is necessary to establish
the equivalence between Gibbs random fields and Markov random fields. Let us see how a nearest
neighbor Gibbs measure on a multilayer graph determines a TMF.

Let P(ω) be a probability measure determined on Ω by a nearest neighbor Gibbs potential φ:

P(ω) =
∏C φC(ω)

Z
(8)

With the product taken over all cliques C on the multilayer graph Ĝ. Then,

P(ω
Xj

i
|ω

Ĝ\Xj
i
) =

P(ω)

∑ω′ P(ω′) (9)

Here ω′ is any configuration which agrees with ω at all points except Xj
i .

P(ω
Xj

i
|ω

Ĝ\Xj
i
) =

∏C φC(ω)

∑ω′ ∏C φC(ω′) (10)

For any clique C that does not contain Xj
i , φC(ω) = φC(ω

′), So that all the terms that correspond

to cliques that do not contain the point Xj
i cancel both from the numerator and the denominator in

Equation (10), therefore this probability depends only on the values xj
i at Xj

i and its neighbors. P

defines thus a TMF.
A more general proof of this equivalence is given by Hammersley-Clifford theorem that will be

presented in the following section.

2. Extended Hammersley Clifford Theorem

Here we will outline a proof for an extension of Hammersley-Clifford theorem for Tensor Markov
Fields (i.e., we will show that a Tensor Markov Field is equivalent to a Tensor Gibbs Field).

Let Ĝ = (V, N) be a multilayer graph representing a TMF as defined in the previous section. With
V = Xβ

α = {Xj
i}, a set of vertices over a tensor field and N a neighborhood law that connects vertices
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over this tensor field. The field Ĝ obeys the following neighborhood law given its Markov property
(see Equation (2))

P(Xj
i |XĜ\Xj

i
) = P(Xj

i |XNj
i
) (11)

Here X
Nj

i
is any neighbor of Xj

i . The Hammersley-Clifford theorem states that a MRF is also a

local Gibbs field. In the case of a TMF we have the following expression:

P(X) =
1
Z ∏

c∈CĜ

φc(Xc) (12)

In order to prove the equivalence of Equations (11) and (12), we will first bult a deductive
(backward direction) part of the proof to be complemented with a constructive (forward direction)
part as presented in the following subsections.

2.1. Backward Direction

Let us consider Equation (11) at the light of Bayes’ theorem:

P(Xj
i |XĜ\Xj

i
) =

P(Xj
i , X

Nj
i
)

P(X
Nj

i
)

(13)

Using a clique-approach to calculate the joint and marginal probabilities (see next subsection to
support the following statement):

P(Xj
i |XĜ\Xj

i
) =

∑Ĝ\Dj
i
∏c∈CĜ

φc(Xc)

∑Xj
i

∑Ĝ\Dj
i
∏c∈CĜ

φc(Xc)
(14)

Let us split the product ∏c∈CĜ
φc(Xc) into two products, one over the set of cliques that contain

Xj
i (let us call it Cj

i ) and another set formed by cliques not containing Xj
i (let us call it Rj

i):

P(Xj
i |XĜ\Xj

i
) =

∑Ĝ\Dj
i
∏c∈Cj

i
φc(Xc) ∏c∈Rj

i
φc(Xc)

∑Xj
i

∑Ĝ\Dj
i
∏c∈Cj

i
φc(Xc) ∏c∈Rj

i
φc(Xc)

(15)

Factoring out the terms depending on Xj
i (that do not contribute to cliques in the domain Ĝ \ Xj

i ):

P(Xj
i |XĜ\Xj

i
) =

∏c∈Cj
i

φc(Xc) ∑Ĝ\Dj
i
∏c∈Rj

i
φc(Xc)

∑Xj
i

∏c∈Cj
i

φc(Xc) ∑Ĝ\Dj
i
∏c∈Rj

i
φc(Xc)

(16)

The term ∑Ĝ\Dj
i
∏c∈Rj

i
φc(Xc) does not involve Xj

i (by construction) so, it can be factored out from

the summation over Xj
i in the denominator.

P(Xj
i |XĜ\Xj

i
) =

∏c∈Cj
i

φc(Xc)∑Ĝ\Dj
i
∏c∈Rj

i
φc(Xc)

∑Ĝ\Dj
i
∏c∈Rj

i
φc(Xc) ∑Xj

i
∏c∈Cj

i
φc(Xc)

(17)

We can cancel the term in the numerator and denominator:

P(Xj
i |XĜ\Xj

i
) =

∏c∈Cj
i

φc(Xc)

∑Xj
i

∏c∈Cj
i

φc(Xc)
(18)
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Then we multiply by
∏

c∈Rj
i

φc(Xc)

∏
c∈Rj

i
φc(Xc)

P(Xj
i |XĜ\Xj

i
) =

∏c∈Cj
i

φc(Xc)∏c∈Rj
i
φc(Xc)

∑Xj
i

∏c∈Cj
i

φc(Xc)∏c∈Rj
i
φc(Xc)

(19)

Remembering that Cj
i
⋃

Rj
i = CĜ,

P(Xj
i |XĜ\Xj

i
) =

∏c∈Ĝ φc(Xc)

∑Xj
i

∏c∈Ĝ φc(Xc)
(20)

Equation (20) is nothing but the definition of a local Gibbs Tensor Field (Equation (12)).

2.2. Forward Direction

In this subsection we will show how to express the clique potential functions φc(Xc), given the
joint probability distribution over the tensor field and the Markov property.

Consider any subset σ ⊂ Ĝ of the multilayer graph Ĝ. We define a candidate potential function
(following Möbius inversion lemma) [3] as follows:

fσ(Xσ = xσ) = ∏
ζ⊂σ

P(Xζ = xζ , XĜ\ζ = 0)−1|σ|−|ζ|
(21)

In order for fσ to be a proper clique potential, it must satisfy the following two conditions:

(i) ∏σ⊂Ĝ fσ(Xσ) = P(X)

(ii) fσ(Xσ) = 1 whenever σ is not a clique

To prove (i), we need to show that all factors in fσ(Xσ = xσ) cancel out, except for P(X).
To do this, it will be useful to consider the following combinatorial expansion of zero:

0 = (1 − 1)K = CK
0 − CK

1 + CK
2 + · · ·+ (−1)KCK

K (22)

Here, of course CA
B is the number of combinations of B elements from an A-element set.

Let us consider any subset ζ of Ĝ. Let us consider a factor Δ = P(Xζ = xζ , XĜ\ζ = 0). For

the case of f ζ(Xζ) it occurs as Δ−10
= Δ. Such factor also occurs in subsets containg ζ and other

additional elements. If it includes ζ and one additional element, there are C|Ĝ|−|ζ|
1 such functions. The

additional element creates an inverse factor Δ−11
= Δ−1. The functions over subsets containg ζ and

two additional elements contributes with a factor Δ−12
= Δ1 = Δ. If we continue this process and

consider Equation (22), it is evident that all odd cardinality difference terms cancel out with all even
cardinality difference terms so that the only remaining factor corresponds to ζ = Ĝ equal to P(X) thus
fulfilling condition (i).

In order to show how condition (ii) is fulfilled, we will need to use the Markov property of TMFs.
Let us consider σ∗ ⊂ Ĝ that is not a clique. Then it will be possible to find two nodes Xh

i and Xk
j in σ∗

that are not connected to each other. Let us recall Equation (21):

fσ(Xσ∗ = xσ∗) = ∏
ζ⊂σ∗

P(Xζ = xζ , XĜ\ζ = 0)−1|σ∗|−|ζ|
(23)

An arbitrary subset ζ may belong to any of the following classes: (i) ζ = ω a generic subset of σ;
(ii) ζ = ω ∪ {Xh

i } ; (iii) ζ = ω ∪ {Xk
j } or iv) ζ = ω ∪ {Xh

i , Xk
j }. If we write down Equation (23) factored

down to these contributions we get:
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fσ(Xσ∗ = xσ∗) = ∏ω⊂σ∗\{Xh
i ,Xk

j }

[
P(Xω ,XĜ\ω=0)P(X

ω∪{Xh
i ,Xk

j }
,X

Ĝ\ω∪{Xh
i ,Xk

j }
=0)

P(X
ω∪{Xh

i }
,X

Ĝ\ω∪{Xh
i }
=0)P(X

ω∪{Xk
j }

,X
Ĝ\ω∪{Xk

j }
=0)

]−1|σ∗|−|ζ|

(24)

Let us consider two of the factors in Equation (24) at the light of Bayes’ theorem:

P(Xω ,XĜ\ω=0)
P(X

ω∪{Xh
i }

,X
Ĝ\ω∪{Xh

i }
=0) =

P(X{Xh
i }
=0|X{Xk

j }
=0,Xω ,X

Ĝ\ω∪{Xh
i ,Xk

j }
=0)P(X{Xk

j }
=0,Xω ,X

Ĝ\ω∪{Xh
i ,Xk

j }
=0)

P(X{Xh
i }
|X{Xk

j }
=0,Xω ,X

Ĝ\ω∪{Xh
i ,Xk

j }
=0)P(X{Xk

j }
=0,Xω ,X

Ĝ\ω∪{Xh
i ,Xk

j }
=0) (25)

We can notice that the priors in the numerator and denominator of Equation (25) are the same.
We can then cancell them out. Since by definition Xh

i and Xk
j are conditionally independent given the

rest of the multilayer graph, we can also replace the default value Xk
j = 0 for Xk

j instead.

P(Xω , XĜ\ω = 0)

P(Xω∪{Xh
i }, XĜ\ω∪{Xh

i } = 0)
=

P(X{Xh
i } = 0|X{Xk

j }, Xω , XĜ\ω∪{Xh
i ,Xk

j } = 0) P(X{Xk
j }, Xω , XĜ\ω∪{Xh

i ,Xk
j } = 0)

P(X{Xh
i }|X{Xk

j }, Xω , XĜ\ω∪{Xh
i ,Xk

j } = 0) P(X{Xk
j }, Xω , XĜ\ω∪{Xh

i ,Xk
j } = 0)

(26)

Since Xh
i and Xk

j are conditionally independent given the rest of the multilayer graph, we can also

replace the condition for Xk
j with any other, without affecting Xh

i . By adjusting this prior conveniently,
we can write out:

P(Xω, XĜ\ω = 0)

P(Xω∪{Xh
i }, XĜ\ω∪{Xh

i } = 0)
=

P(Xω∪{Xk
j }, XĜ\ω∪{Xk

j } = 0)

P(Xω∪{Xh
i ,Xk

j }, XĜ\ω∪{Xh
i ,Xk

j } = 0)
(27)

By substituting Equation (27) into Equation (24) we get (condition (ii)):

fσ ∗ (Xσ∗) = 1 (28)

3. An Information-Theoretical Class of Tensor Markov Fields

Let us consider again the set of tensor-valued random variables X = Xβ
α . It is possible to calculate,

for every duplex in X, the mutual information function I(·, ·) [4]:

I(Xh
i , Xk

j ) = ∑
Ω

∑
Ω′

p(Xh
i , Xk

j ) log
p(Xh

i , Xk
j )

p(Xh
i ) p(Xk

j )
(29)

Let us consider a multilayer graph scenario. From now on, the indices i, j will refer to the random
variables, whereas h, k will be indices for the layers. Ω and Ω′ are the respective sampling spaces (that
may, of course, be equal). In order to discard self-information, let us define the off-diagonal mutual
information as follows:

I†(Xh
i , Xk

j ) = I(Xh
i , Xk

j )×
(

1 − δXh
i Xk

j

)
(30)

With the bi-delta function δXh
i Xk

j
defined as:

δXh
i Xk

j
=

{
1, if i = j and h = k

0, otherwise
(31)

By having the complete set of off-diagonal mutual information functions for all the random
variables and layers, it is possible to define the following hyper-matrix elements:

Ahk
ij = Θ

[
I†(Xh

i , Xk
j ) − I0

]
(32)
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as well as:
Whk

ij = Ahk
ij ◦ I†(Xh

i , Xk
j ) (33)

Here Θ[·] is Heavyside’s function and I0 is a lower bound for mutual information (a threshold) to
be considered significant.

We call Ahk
ij and Whk

ij the adjacency hypermatrix and the strength hypermatrix respectively (notice that
◦ in Equation (33) represents the product of a scalar times a hypermatrix). The adjacency hyper-matrix
and the strength hyper-matrix define the (unweighted and weighted, respectively) neighborhood law
of the associated TMF, hence the statistical dependency structure for the set of random variables and
contexts (layers).

Although the adjacency and strength hypermatrices are indeed, proper representations of
the undirected (unweighted and weighted) dependency structure of P(X), it has been considered
advantageous to embed them into a tensor linear structure, in order to be able to work out some of the
mathematical properties of such fields relying on the methods of tensor algebra. One relevant proposal
in this regard, has been advanced by De Domenico and collaborators, in the context of multilayer
networks.

Following the ideas of De Domenico and co-workers [5], we introduce the unweighted and
weighted adjacency 4-tensors (respectively) as follows:

A =
L

∑
h,k=1

N

∑
i,j=1

Ahk
ij ⊗ ξ

αγ
βδ (34)

W =
L

∑
h,k=1

N

∑
i,j=1

Whk
ij ⊗ ξ

αγ
βδ (35)

Here, ξ
αγ
βδ = ξ

αγ
βδ [ijhk] is a unit four-tensor whose role is to provide the hypermatrices with the

desired linear properties (projections, contractions, etc.). Square brackets indicate that the indices i, j, h
and k belong to the α, β, γ and δ dimensions and ⊗ represents a form of a tensor matricization product
(i.e., the one producing a 4-tensor out of a 4-index hypermatrix times a unitary 4-tensor).

3.1. Conditional Independence in Tensor Markov Fields

In order to discuss the conditional independence structure induced by the present class of TMFs,
let us analyze Equation (32). As already mentioned, the hyper-adjacency matrix Ahk

ij represents the

neigborhood law (as given by the Markov property) on the multilayer graph Ĝ (i.e., the TMF). Every
non-zero entry on this hypermatrix represents a statistical dependence relation between two elements
on X. The conditional dependence structure on TMFs inferred from mutual information measures
via Equation (32) are related not only to the statistical independence conditions (as given by a zero
mutual information measure between two elements), but also to the lower bound I0 and in general to
the dependency structure of the whole multilayer graph.

The definition of conditional independence (CI) for tensor random variables is as follows:

(Xh
i ⊥⊥ Xk

j )|Xm
l ⇐⇒ FXh

i ,Xk
j |Xm

l =Xm
l ∗(Xh

i ∗, Xk
j ∗) = FXh

i |Xm
l =Xm

l ∗(Xh
i ∗) · FXk

j |Xm
l =Xm

l ∗(Xk
j ∗) (36)

∀ Xh
i , Xk

j , Xm
l ∈ X.

Here ⊥⊥ represents conditional independence between two random variables, were
FXh

i ,Xk
j |Xm

l =Xm
l ∗(Xh

i ∗, Xk
j ∗) = Pr(Xh

i ≤ Xh
i ∗, Xk

j ≤ Xk
j ∗ |Xm

l = Xm
l ∗) is the joint conditional cumulative

distribution of Xh
i and Xk

j given Xm
l and Xh

i ∗, Xk
j ∗ and Xm

l ∗ are realization events of the corresponding
random variables.
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In the case of MRFs (and by extension TMFs), CI is defined by means of (multi)graph separation:
in this sense we say that Xh

i ⊥⊥Ĝ Xk
j |Xm

l iff Xm
l separates Xh

i from Xk
j in the multilayer graph Ĝ. This

means that if we remove node Xm
l there are no undirected paths from Xh

i to Xk
j in Ĝ.

Conditional independence in random fields is often considered in terms of subsets of V. Let A, B
and C be three subsets of V. The statement XA ⊥⊥Ĝ XB|XC, which holds only iff C separates A from B
in the multilayer graph Ĝ, meaning that if we remove all vertices in C there will be no paths connecting
any vertex in A to any vertex in B is called the global Markov property of TMFs.

The smallest set of vertices that renders a vertex Xh
i conditionally independent of all other vertices

in the multilayer graph is called its Markov blanket, denoted mb(Xh
i ). If we define the closure of a node

Xh
i as C(Xh

i ) then Xh
i ⊥⊥ Ĝ \ C(Xh

i )|mb(Xh
i ).

It is possible to show that in a TMF, the Markov blanket of a vertex is its set of first neighbors.
This is called the undirected local Markov property. Starting from the local Markov property it is possible
to show that two vertices Xh

i and Xk
j are conditionally independent given the rest if there is no direct

edge between them. This has been called the pairwise Markov property.
If we denote by ĜXh

i →Xk
j

the set of undirected paths in the multilayer graph Ĝ connecting vertices

Xh
i and Xk

j , then the pairwise Markov property of a TMF can be stated as:

Xh
i ⊥⊥ Xk

j |Ĝ \ {Xh
i , Xk

j } ⇐⇒ ĜXh
i →Xk

j
= ∅ (37)

It is clear that the global Markov property implies the local Markov property which in turn implies
the pairwise Markov property. For systems with positive definity probability densities, it has been
probed (in the case of MRFs) that pairwise Markov actually implied global Markov (See [6] p. 119 for
a proof). For the present extension this is important since it is easier to assess pairwise conditional
independence statements.

3.2. Indepence Maps

Let IĜ denote the set of all conditional independence relations encoded by the multilayer graph Ĝ
(i.e., those CI relations given by the Global Markov property). Let IP be the set of all CI relations implied
by the probability distribution P(Xj

i ). A multilayer graph Ĝ will be called an independence map (I-map)

for a probability distribution P(Xj
i ), if all CI relations implied by Ĝ hold for P(Xj

i ), i.e., IĜ ⊆ IP [6].
The converse statement is not necessarily true, i.e., there may be some CI relations implied by

P(Xj
i ) that are not encoded in the multilayer graph Ĝ. We may be usually interested in minimal I-maps,

i.e., I-maps from which none of the edges could be removed without destroying its CI properties.
Every distribution has a unique minimal I-map (and a given graph representation). Let P(Xj

i ) > 0.
Let Ĝ† be the multilayer graph obtained by introducing edges between all pairs of vertices Xh

i , Xk
j such

that Xh
i ⊥⊥ Xk

j |X \ {Xh
i , Xk

j }, then Ĝ† is the unique minimal I-map. We call Ĝ a perfect map of P when

there is no dependencies Ĝ which are not indicated by P, i.e., IĜ = IP [6].

3.3. Conditional Independence Tests

Conditional independence tests are useful to evaluate whether CI conditions apply either exactly
or in the case of applications under a certain bounded error. In order to be able to write down
expressions for C.I. tests let us introduce the following conditional kernels [7]:

CA(B) = P(B|A) =
P(AB)
P(A)

(38)

as well as their generalized recursive relations:

CABC(D) = CAB(D|C) = CAB(CD)

CAB(C)
(39)
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The conditional probability of Xk
h given Xj

i can be thus written as:

C
Xj

i
(Xk

h) = P(Xk
h|Xj

i ) =
P(Xk

h, Xj
i )

P(Xj
i )

(40)

We can then write down expressions for Markov conditional independence as follows:

Xj
i ⊥⊥ Xk

h|Xm
l ⇒ P(Xj

i , Xk
h|Xm

l ) = P(Xj
i |Xm

l )× P(Xk
h|Xm

l ) (41)

Following Bayes’ theorem, CI conditions –in this case– will be of the form:

P(Xj
i , Xk

h|Xm
l ) =

P(Xj
i , Xm

l )

P(Xm
l )

× P(Xk
h, Xm

l )

P(Xm
l )

=
P(Xj

i , Xm
l )× P(Xk

h, Xm
l )

P(Xm
l )

2 (42)

Equation (42) is useful since in large scale data applications is computationally cheaper to work
with joint and marginal probabilities rather than conditionals.

Now let us consider the case of conditional independence given several conditional variables.
The case for CI given two variables could be written—using conditional kernels—as follows:

Xj
i ⊥⊥ Xk

h|Xm
l , Xo

n ⇒ P(Xj
i , Xk

h|Xm
l , Xo

n) = P(Xj
i |Xm

l , Xo
n)× P(Xk

h|Xm
l , Xo

n) (43)

Hence,
P(Xj

i , Xk
h|Xm

l , Xo
n) = CXm

l ,Xo
n(Xj

i )×CXm
l ,Xo

n(Xk
h) (44)

Using Bayes’ theorem,

P(Xj
i , Xk

h|Xm
l , Xo

n) =
P(Xj

i , Xm
l , Xo

n)

P(Xm
l , Xo

n)
× P(Xk

h, Xm
l , Xo

n)

P(Xm
l , Xo

n)
(45)

P(Xj
i , Xk

h|Xm
l , Xo

n) =
P(Xj

i , Xm
l , Xo

n)× P(Xk
h, Xm

l , Xo
n)

P(Xm
l , Xo

n)
2 (46)

In order to generalize the previous results to CI relations given an arbitrary set of conditionals, let
us consider the following sigma-algebraic approach:

Let Σjk
ih be the σ-algebra of all subsets of X that do not contain Xj

i or Xk
h. If we consider the

contravariant index i ∈ α with i = 1, 2, . . . , N and the covariant index j ∈ β with j = 1, 2, . . . , L, then
there are M = NL

2 such σ-algebras in X (let us recall that TMFs are undirected graphical models).
A relevant problem for network reconstruction is that of establishing the more general Markov

pairwise CI conditions, i.e., the CI relations for every edge not drawn in the graph. Two arbitrary
nodes Xj

i and Xk
h are conditionally independent given the rest of the graph iff:

Xj
i ⊥⊥ Xk

h |Σjk
ih ⇒ P(Xj

i , Xk
h |Σjk

ih) = P(Xj
i |Σjk

ih)× P(Xk
h |Σjk

ih) (47)

By using conditional kernels, the recursive relations and Bayes’ theorem it is possible to write
down M expressions of the form:

P(Xj
i , Xk

h |Σjk
ih) =

P(Xj
i , Σjk

ih)× P(Xk
h, Σjk

ih)

P(Σjk
ih)

2 (48)

The family of Equations (48) represent the CI relations for all the non-existing edges in the
hypergraph Ĝ, i.e., every pair of nodes Xj

i and Xk
h not-connected in Ĝ must be conditionally
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independent given the rest of the nodes in the graph. These expression may serve to implement
exact tests or optimization strategies for graph reconstruction and/or graph sparsification in applications
considering a mutual information threshold I0 as in Equation (32).

In brief, for every node pair with a mutual information value lesser than I0, the presented graph
reconstruction approach will not draw an edge, hence implying CI between the two nodes given the
rest. Such CI condition may be tested on the data to see whether it holds or the threshold itself can be
determined by resorting to optimization schemes (e.g. error bounds) in Equation (48).

4. Graph Theoretical Features and Multilinear Structure

Once the probabilistic properties of TMFs have been set, it may be fit to briefly present some of their
graph theoretical features, as well as some preliminaries as to the reasons to embed hyperadjecency
matrices into multilayer adjacency tensors. Given that TMFs are indeed PGMs, some of their graph
characteristics will result relevant here.

Since the work by De Domenico and coworkers [5] covers in great detail how the multilinear
structure of the multilayer adjacency tensor allows the calculation of these quantities—usually as
projection operations—we will only mention connectivity degree vectors since these are related with
the size of the TMF dependency neighborhoods.

Let us recall multilayer adjacency tensors, as defined in Equations (34) and (35). To ease
presentation, we will work with the unweighted tensor Aαγ

βδ (Equation (34)). The multidegree centrality
vector Kα which contains the connectivity degrees of the nodes spanning different layers can be written
as follows:

Kα = A
αγ
βδ Uδ

γ uβ (49)

Here Uδ
γ is a rank 2 tensor that contains a 1 in every component and uβ is a rank 1 tensor

that contains a 1 in every component—these quantities are called 1—tensors by De Domenico and
coworkers [5]. It can be shown that Kα is indeed given by the sums of the connectivity degree vectors kα

corresponding to all different layers:

Kα =
L

∑
h=1

L

∑
k=1

kα(hk) (50)

kα(hk) is the vector of connections that nodes in the set α = 1, 2, . . . , N in layer h have to any other
nodes in layer k. Whereas Kα is the vector with connections in all the layers. Appropriate projections
will yield measures such as the size of the neighborhood to a given vertex |N

Xj
i
|, the size of its Markov

blanquet |mb(Xh
i )|, or other similar quantities.

5. Specific Applications

After having considered some of the properties of this class of Tensor Markov Fields, it may
become evident that aside from purely theoretical importance, there is a number of important
applications that may arise as probabilistic graphical models in tensor valued problems, among
the ones that are somewhat evident are the following:

• The analysis of multidimensional biomolecular networks such as the ones arising from multi-omic
experiments (For a real-life example, see Figure 4) [8–10];

• Probabilistic graphical models in computer vision (especially 3D reconstructions and 4D
[3D+time] rendering) [11];

• The study of fracture mechanics in continuous deformable media [12];
• Probabilistic network models for seismic dynamics [13];
• Boolean networks in control theory [14].
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Some of these problems are being treated indeed as multiple instances of Markov fields or as
multipartite graphs or hypergraphs. However, it may become evident that when random variables
across layers are interdependent (which is often the case), the definitions of potentials,cliques and
partition functions, as well as the conditional statistical independence features become manageable
(and in some cases even meaninful) under the presented formalism of Tensor Markov Fields.

Figure 4. Gene and microRNA regulatory network: A Tensor Markov Field depicting the statistical
dependence of genome wide gene and microRNA (miR) on a human phenotype. Edge width is given
by the mutual information I†(Xj

i , Xk
h) between expression levels of genes (layer j) and miRs (layer k) in

a very large corpus of RNASeq samples, vertex size is proportional to the degree, i.e., the size of the
node’s neighborhood, NXj

i
.

6. Conclusions

Here we have presented the definitions and fundamental properties of Tensor Markov Fields, i.e.,
random Markov fields over tensor spaces. We have proved –by extending the results of Dobruschin,
Hammersley and Clifford to such tensor valued fields– that tensor Markov fields are indeed Gibbs
fields whenever strictly positive probability measures are considered. We also introduced a class
of tensor Markov fields obtained by using information theoretical statistical dependence measures
inducing local and global Markov properties, and show how these can be used as probabilistic
graphical models in multi-context environments much in the spirit of the so-called multilayer network
approach. Finally, we discuss the convenience of embedding tensor Markov fields in the multilinear
tensor representation of multilayer networks.
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Abstract: There is not much literature on objective Bayesian analysis for binary classification problems,
especially for intrinsic prior related methods. On the other hand, variational inference methods have
been employed to solve classification problems using probit regression and logistic regression with
normal priors. In this article, we propose to apply the variational approximation on probit regression
models with intrinsic prior. We review the mean-field variational method and the procedure of
developing intrinsic prior for the probit regression model. We then present our work on implementing
the variational Bayesian probit regression model using intrinsic prior. Publicly available data from
the world’s largest peer-to-peer lending platform, LendingClub, will be used to illustrate how model
output uncertainties are addressed through the framework we proposed. With LendingClub data,
the target variable is the final status of a loan, either charged-off or fully paid. Investors may very
well be interested in how predictive features like FICO, amount financed, income, etc. may affect the
final loan status.

Keywords: objective Bayesian inference; intrinsic prior; variational inference; binary probit regression;
mean-field approximation

1. Introduction

There is not much literature on objective Bayesian analysis for binary classification problems,
especially for intrinsic prior related methods. By far, only two articles have explored intrinsic
prior related methods on classification problems. Reference [1] implements integral priors into the
generalized linear models with various link functions. In addition, reference [2] considers intrinsic
priors for probit models. On the other hand, variational inference methods have been employed to
solve classification problem with logistic regression ([3]) and probit regression ([4,5]) with normal
priors. Variational approximation methods have been reviewed in [6,7], and more recently [8].

In this article, we propose to apply variational approximations on probit regression models with
intrinsic priors. In Section 4, we review the mean-field variational method that will be used in this
article. In Section 3, procedures for developing intrinsic priors for probit models will be introduced
following [2]. Our work is presented in Section 5. Our motivations for combining intrinsic prior
methodology and variational inference is as following

• Avoiding manually set ad hoc plugin priors by automatically generating a family of
non-informative priors that are less sensible.

• Reference [1,2] do not consider inference of posterior distributions of parameters. Their focus is
on model comparison. Although the development of intrinsic priors itself comes from a model
selection background, we thought it would be interesting to apply intrinsic priors on inference
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problems. In fact, some recently developed priors that proposed to solve inference or estimation
problems turned out to be also intrinsic priors. For example, the Scaled Beta2 prior [9] and the
Matrix-F prior [10].

• Intrinsic priors concentrate probability near the null hypothesis, a condition that is widely
accepted and should be required of a prior for testing a hypothesis.

• Also, intrinsic priors have flat tails that prevents finite sample inconsistency [11].
• For inference problems with large data set, variational approximation methods are much faster

than MCMC-based methods.

As for model comparison, due to the fact that the output of variational inference methods cannot
be employed directly to compare models, we propose in Section 5.3 to simply make use of the
variational approximation of the posterior distribution as an importance function and get the Monte
Carlo estimated marginal likelihood by importance sampling for model comparison.

2. Background and Development of Intrinsic Prior Methodology

2.1. Bayes Factor

The Bayesian framework of model selection coherently involves the use of probability to express
all uncertainty in the choice of model, including uncertainty about the unknown parameters of a model.
Suppose that models M1, M2, ..., Mq are under consideration. We shall assume that the observed data
x = (x1, x2, ..., xn) is generated from one of these models but we do not know which one it is. We
express our uncertainty through prior probability P(Mj), j = 1, 2, ..., q. Under model Mi, x has density
fi(x|θi, Mi), where θi are unknown model parameters, and the prior distribution for θi is πi(θi|Mi).
Given observed data and prior probabilities, we can then evaluate the posterior probability of Mi
using Bayes’ rule

P(Mi|x) = pi(x|Mi)P(Mi)

∑
q
j=1 pj(x|Mj)P(Mj)

, (1)

where

pi(x|Mi) =
∫

fi(x|θi, Mi)πi(θi|Mi)dθi (2)

is the marginal likelihood of x under Mi, also called the evidence for Mi [12]. A common choice of
prior model probabilities is P(Mj) =

1
q , so that each model has the same initial probability. However,

there are other alternatives of assigning probabilities to correct for multiple comparison (See [13]).
From (1), the posterior odds are therefore the prior odds multiplied by the Bayes factor

P(Mj|x)
P(Mi|x) =

P(Mj)pj(x)

P(Mi)pi(x)
=

P(Mj)

P(Mi)
× Bji. (3)

where the Bayes factor of Mj to Mi is defined by

Bji =
pj(x)

pi(x)
=

∫
f j(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

. (4)

Here we omit the dependence on models Mj, Mi to keep the notation simple. The marginal
likelihood, pi(x) expresses the preference shown by the observed data for different models. When
Bji > 1, the data favor Mj over Mi, and when Bji < 1 the data favor Mi over Mj. A scale for
interpretation of Bji is given by [14].

124



Entropy 2020, 22, 513

2.2. Motivation and Development of Intrinsic Prior

Computing Bji requires specification of πi(θi) and πj(θj). Often in Bayesian analysis, when prior
information is weak, one can use non-informative (or default) priors πN

i (θi). Common choices for

non-informative priors are the uniform prior, πU
i (θi) ∝ 1; the Jeffreys prior, π J

i (θi) ∝
[

det(Ii(θi))
]1/2

where Ii(θi) is the expected Fisher information matrix corresponding to Mi.
Using any of the πN

i in (4) would yield

BN
ji =

pN
j (x)

pN
i (x)

=

∫
f j(x|θj)π

N
j (θj)dθj∫

fi(x|θi)π
N
i (θi)dθi

. (5)

The difficulty with (5) is that πN
i are typically improper and hence are defined only up to an

unspecified constant ci. So BN
ji is defined only up to the ratio cj/ci of two unspecified constants.

An attempt to circumvent the ill definition of the Bayes factors for improper non-informative
priors is the intrinsic Bayes factor introduced by [15], which is a modification of a partial Bayes
factor [16]. To define the intrinsic Bayes factor we consider the set of subsamples x(l) of the data x

of minimal size l such that 0 < pN
i (x(l)) < ∞. These subsamples are called training samples (not

to be confused with training sample in machine learning). In addition, there is a total number of L
such subsamples.

The main idea here is that training sample x(l) will be used to convert the improper πN
i (θi) to

proper posterior

πN
i (θi|x(l)) =

fi(x(l)|θi)π
N
i (θi)

pN
i (x(l))

(6)

where pN
i (x(l)) =

∫
fi(x(l)|θi)π

N
i (θi)dθi. Then, the Bayes factor for the remaining of the data x(n − l),

where x(l) ∪ x(n − l) = x, using πN
i (θi|x(l)) as prior is called a “partial” Bayes factor,

BN
ji (x(n − l)|x(l)) =

∫
f j(x(n − l)|θj)π

N
j (θj|x(l))dθj∫

fi(x(n − l)|θi)π
N
i (θi|x(l))dθi

(7)

This partial Bayes factor is a well-defined Bayes factor, and can be written as BN
ji (x(n − l)|x(l)) =

BN
ji (x)Bij(x(l)), where BN

ji (x) =
pN

j (x)

pN
i (x)

and Bij(x(l)) =
pN

i (x(l))
pN

j (x(l))
. Clearly, BN

ji (x(n − l)|x(l)) will depend

on the choice of the training samples x(l). To eliminate this arbitrariness and increase stability,
reference [15] suggests averaging over all training samples and obtained the arithmetic intrinsic Bayes
factor (AIBF)

BAIBF
ji (x) = BN

ji (x)
1
L

L

∑
l=1

BN
ij (x(l)). (8)

The strongest justification of the arithmetic IBF is its asymptotic equivalence with a proper Bayes
factor arising from Intrinsic priors. These intrinsic priors were identified through an asymptotic analysis
(see [15]). For the case where Mi is nested in Mj, it can be shown that the intrinsic priors are given by

π I
i (θi) = πN

i (θi) and π I
j (θj) = πN

j (θj)EMj

[mN
i (x(l))

mN
j (x(l))

|θj

]
. (9)
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3. Objective Bayesian Probit Regression Models

3.1. Bayesian Probit Model and the Use of Auxiliary Variables

Consider a sample y = (y1, ..., yn), where Yi, i = 1, ..., n, is a 0− 1 random variable such that under
model Mj, it follows a probit regression model with a j + 1-dimensional vector of covariates xi, where
j ≤ p. Here, p is the total number of covariate variables under our consideration. In addition, this
probit model Mj has the form

Yi|β0, ..., β j, Mj ∼ Bernoulli(Φ(β0x0i + β1x1i + ... + β jxji)), 1 ≤ i ≤ n, (10)

where Φ denotes the standard normal cumulative distribution function and βj = (β0, ..., β j) is a vector
of dimension j + 1. The first component of the vector xi is set equal to 1 so that when considering
models of the form (10), the intercept is in any submodel. The maximum length of the vector of
covariates is p + 1. Let π(β), proper or improper, summarize our prior information about β. Then the
posterior density of β is given by

π(β|y) = π(β)∏n
i=1 Φ(x′i β)

yi (1 − Φ(x′i β)
1−yi )∫

π(β)∏n
i=1 Φ(x′i β)yi (1 − Φ(x′i β)1−yi )dβ

,

which is largely intractable.
As shown by [17], the Bayesian probit regression model becomes tractable when a particular set

of auxiliary variables is introduced. Based on the data augmentation approach [18], introducing n
latent variables Z1, ..., Zn, where

Zi|β ∼ N(x′i β, 1).

The probit model (10) can be thought of as a regression model with incomplete sampling
information by considering that only the sign of zi is observed. More specifically, define Yi = 1
if Zi > 0 and Yi = 0 otherwise. This allows us to write the probability density of yi given zi

p(yi|zi) = I(zi > 0)I(yi = 1) + I(zi ≤ 0)I(yi = 0).

Expansion of the parameter set from {β} to {β, Z} is the key to achieving a tractable solution for
variational approximation.

3.2. Development of Intrinsic Prior for Probit Models

For the sample z = (z1, ..., zn)′, the null normal model is

M1 : {Nn(z|α1n, In), π(α)}.

For a generic model Mj with j + 1 regressors, the alternative model is

Mj : {Nn(z|Xjβj, In), π(βj)},

where the design matrix Xj has dimensions n × (j + 1). Intrinsic prior methodology for the linear
model was first developed by [19], and was further developed in [20] by using the methods of [21]. This
intrinsic methodology gives us an automatic specification of the priors π(α) and π(β), starting with
the non-informative priors πN(α) and πN(β) for α and β, which are both improper and proportional
to 1.
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The marginal distributions for the sample z under the null model, and under the alternative
model with intrinsic prior, are formally written as

p1(z) =
∫

Nn(z|α1n, In)π
N(α)dα,

pj(z) =
∫ ∫

Nn(z|Xjβj, In)π
I(β|α)πN(α)dαdβ. (11)

However, these are marginals of the sample z, but our selection procedure requires us to compute
the Bayes factor of model Mj versus the reference model M1 for the sample y = (y1, ..., yn). To solve
this problem, reference [2] proposed to transform the marginal pj(z) into the marginal pj(y) by using
the probit transformations yi = 1(zi > 0), i = 1, ..., n. These latter marginals are given by

pj(y) =
∫

A1×...×An
pj(z)dz (12)

where

Ai =

{
(0, ∞) if yi = 1,

(−∞, 0) if yi = 0.
(13)

4. Variational Inference

4.1. Overview of Variational Methods

Variational methods have their origins in the 18th century with the work of Euler, Lagrange,
and others on the calculus of variations (The derivation in this section is standard in the literature on
variational approximation and will at times follow the arguments in [22,23]). Variational inference
is a body of deterministic techniques for making approximate inference for parameters in complex
statistical models. Variational approximations are a much faster alternative to Markov Chain Monte
Carlo (MCMC), especially for large models, and are a richer class of methods than the Laplace
approximation [6].

Suppose we have a Bayesian model and a prior distribution for the parameters. The model may
also have latent variables, here we shall denote the set of all latent variables and parameters by θ.
In addition, we denote the set of all observed variables by X. Given a set of n independent, identically
distributed data, for which X = {x1, ..., xn} and θ = {θ1, ..., θn}, our probabilistic model (e.g., probit
regression model) specifies the joint distribution p(X, θ), and our goal is to find an approximation
for the posterior distribution p(θ|X) as well as for the marginal likelihood p(X). For any probability
distribution q(θ), we have the following decomposition of the log marginal likelihood

ln p(X) = L(q) + KL(q||p)

where we have defined

L(q) =
∫

q(θ) ln
{ p(X, θ)

q(θ)

}
dθ (14)

KL(q||p) = −
∫

q(θ) ln
{ p(θ|X)

q(θ)

}
dθ (15)

We refer to (14) as the lower bound of the log marginal likelihood with respect to the density q, and
(15) is by definition the Kullback–Leibler divergence of the posterior q(θ|X) from the density q. Based
on this decomposition, we can maximize the lower bound L(q) by optimization with respect to the
distribution q(θ), which is equivalent to minimizing the KL divergence. In addition, the lower bound
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is attained when the KL divergence is zero, which happens when q(θ) equals the posterior distribution
p(θ|X). It would be hard to find such a density since the true posterior distribution is intractable.

4.2. Factorized Distributions

The essence of the variational inference approach is approximation to the posterior distribution
p(θ|X) by q(θ) for which the q dependent lower bound L(q) is more tractable than the original
model evidence. In addition, tractability is achieved by restricting q to a more manageable class of
distributions, and then maximizing L(q) over that class.

Suppose we partition elements of θ into disjoint groups {θi} where i = 1, ..., M. We then assume
that the q density factorizes with respect to this partition, i.e.,

q(θ) =
M

∏
i=1

qi(θi). (16)

The product form is the only assumption we made about the distribution. Restriction (16) is also
known as mean-field approximation and has its root in Physics [24].

For all distributions q(θ) with the form (16), we need to find the distribution for which the lower
bound L(q) is largest. Restriction of q to a subclass of product densities like (16) gives rise to explicit
solutions for each product component in terms of the others. This fact, in turn, leads to an iterative
scheme for obtaining the solutions. To achieve this, we first substitute (16) into (14) and then separate
out the dependence on one of the factors qj(θj). Denoting qj(θj) by qj to keep the notation clear,
we obtain

L(q) =
∫ M

∏
i=1

qi

{
ln p(X, θ)−

M

∑
i=1

ln qi

}
dθ

=
∫

qj

{ ∫
ln p(X, θ)∏

i �=j
qidθi

}
dθj −

∫
qj ln qjdθj + constant

=
∫

qj ln p̃(X, θj)dθj −
∫

qj ln qjdθj + constant

(17)

where p̃(X, θj) is given by

ln p̃(X, θj) = Ei �=j[ln p(X, θ)] + constant. (18)

The notation Ei �=j[·] denotes an expectation with respect to the q distributions over all variables zi
for i �= j, so that

Ei �=j[ln p(X, θ)] =
∫

ln p(X, θ)∏
i �=j

qidθi.

Now suppose we keep the {qi �=j} fixed and maximize L(q) in (17) with respect to all possible
forms for the density qj(θj). By recognizing that (17) is the negative KL divergence between p̃(X, θj)

and qj(θj), we notice that maximizing (17) is equivalent to minimize the KL divergence, and the
minimum occurs when qj(θj) = p̃(X, θj). The optimal q∗j (θj) is then

ln q∗j (θj) = Ei �=j[ln p(X, θ)] + constant. (19)

The above solution says that the log of the optimal qj is obtained simply by considering the log of
the joint distribution of all parameter, latent and observable variables and then taking the expectation
with respect to all the other factors qi for i �= j. Normalizing the exponential of (19), we have
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q∗j (θj) =
exp(Ei �=j[ln p(X, θ)])∫
exp(Ei �=j[ln p(X, θ)])dθj

.

The set of equations in (19) for j = 1, ..., M are not an explicit solution because the expression on
the right hand side of (19) for the optimal q∗j depends on expectations taken with respect to the other
factors qi for i �= j. We will need to first initialize all of the factors qi(θi) and then cycle through the
factors one by one and replace each in turn with an updated estimate given by the right hand side
of (19) evaluated using the current estimates for all of the other factors. Convexity properties can be
used to show that convergence to at least local optima is guaranteed [25]. The iterative procedure is
described in Algorithm 1.

Algorithm 1 Iterative procedure for obtaining the optimal densities under factorized density
restriction (16). The updates are based on the solutions given by (19).

1: Initialize q∗2(θ2), ..., q∗M(θM).
2: Cycle through

q∗1(θ1) ←
exp(Ei �=1[ln p(X, θ)])∫

exp(Ei �=1[ln p(X, θ)])dθ1

...

q∗M(θM) ← exp(Ei �=M[ln p(X, θ)])∫
exp(Ei �=M[ln p(X, θ)])dθM

until the increase in L(q) is negligible.

5. Incorporate Intrinsic Prior with Variational Approximation to Bayesian Probit Models

5.1. Derivation of Intrinsic Prior to Be Used in Variational Inference

Let Xl be the design matrix of a minimal training sample (mTS) of a normal regression model Mj
for the variable Z ∼ N(Xjβj, Ij+1). We have, for the j + 1-dimensional parameter βj,

∫
Nj+1(zl |Xl βj, Ij+1)dβj =

{
|X′

lXl |−1/2 if rank of Xl ≥ j + 1

∞ otherwise
.

Therefore, it follows that the mTS size is j + 1 [2]. Given that priors for α and β are proportional
to 1, the intrinsic prior for β conditional on α could be derived. Let β0 denote the vector with the first
component equal to α and the others equal to zero. Based on Formula (9), we have

π I(β|α) = πN
j (β)E

Mj
zl |β

[ p1(zl |α)∫
pj(zl |β)πN

j (β)dβ

]
= E

Mj
zl |β

[ exp{− 1
2 (zl − Xl β0)

′(zl − Xl β0)}∫
exp{− 1

2 (zl − Xl β)′(zl − Xl β)}dβ

]
= (2π)−

(j+1)
2 |(X′

lXl)
−1|− 1

2 ×E
Mj
zl |β

[
exp{−1

2
(zl − Xl β0)

′(zl − Xl β0)}
]

= (2π)−
(j+1)

2 |2(X′
lXl)

−1|− 1
2 exp{−1

2
[(β − β0)

′ X
′
lXl

2
(β − β0)]}.

129



Entropy 2020, 22, 513

Therefore,

π I(β|α) = Nj+1(β|β0, 2(X′
lXl)

−1), where β0 =

⎛⎜⎜⎜⎜⎝
α

0
...
0

⎞⎟⎟⎟⎟⎠
(j+1)×1

.

Notice that X′
lXl is unknown because it is a theoretical design matrix corresponding to the training

sample zl . It can be estimated by averaging over all submatrices containing j + 1 rows of the n × (j + 1)
design matrix Xj. This average is j+1

n X′
jXj (See [26] and Appendix A in [2]), and therefore

π I(β|α) = Nj+1(β|β0,
2n

j + 1
(X′

jXj)
−1).

Next, based on π I(β|α), the intrinsic prior for β can be obtained by

π I(β) =
∫

π I(β|α)π I(α)dα. (20)

Since we assume that π I(α) = πN(α) is proportional to one, set πN(α) = c where c is an arbitrary
positive constant. Denote 2n

j+1 (X
′
jXj)

−1 by Σβ|α, we obtain

π I(β) =
∫

π I(β|α)π I(α)dα

= c · (2π)−
j+1

2 |Σβ|α|−
1
2

∫
exp{−1

2
(β − β0)

′Σ−1
β|α(β − β0)}dα

∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
[β′

0Σ−1
β|αβ0 − 2β′Σ−1

β|αβ0]}dα

∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
(Σ−1

β|α(1,1)
α2 − 2β′Σ−1

β|α(·1)α)}dα

(21)

where Σ−1
β|α(1,1)

is component of Σ−1
β|α at position row 1 column 1 and Σ−1

β|α(·1) is the first column of Σ−1
β|α.

Denote Σ−1
β|α(1,1)

by σ11 and Σ−1
β|α(·1) by γ1, we then obtain

π I(β) ∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
σ11(α − β′γ1

σ11
)2 +

1
2
(β′γ1)

2

σ11
}dα

∝ exp{−1
2
(β′Σ−1

β|αβ − β′ γ1γ′
1

σ11
β)} ×

√
2πσ−1/2

11

∝ exp{−1
2

β′(Σ−1
β|α −

γ1γ′
1

σ11
)β}.

(22)

Therefore, we have derived that

π I(β) ∝ Nj+1(0, (Σ−1
β|α −

γ1γ′
1

σ11
)−1). (23)
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For model comparison, the specific form of the intrinsic prior may be needed, including the
constant factor. Therefore, by following (21) and (22) we have

π I(β) = c · (2π)−
j+1

2 |Σβ|α|−
1
2 (2π)

j+1
2 |(Σ−1

β|α −
γ1γ′

1
σ11

)−1| 1
2
√

2πσ−1/2
11 × Nj+1(0, (Σ−1

β|α −
γ1γ′

1
σ11

)−1)

= c · |Σβ|α(Σ−1
β|α −

γ1γ′
1

σ11
)|− 1

2
√

2πσ−1/2
11 × Nj+1(0, (Σ−1

β|α −
γ1γ′

1
σ11

)−1)

= c ·
√

2πσ−1/2
11 |(I− γ1γ′

1
σ11

Σβ|α)|−
1
2 × Nj+1(0, (Σ−1

β|α −
γ1γ′

1
σ11

)−1).

(24)

5.2. Variational Inference for Probit Model with Intrinsic Prior

5.2.1. Iterative Updates for Factorized Distributions

We have that

Zi|β ∼ N(x′i β, 1) and

p(yi|zi) = I(zi > 0)I(yi = 1) + I(zi ≤ 0)I(yi = 0)

in Section 3.1. We have shown in Section 5.1 that

π I(β) ∝ Nj+1(μβ, Σβ),

where μβ = 0 and Σβ = (Σ−1
β|α −

γ1γ′
1

σ11
)−1. Since y is independent of β given z, we have

p(y, z, β) = p(y|z, β)p(z|β)p(β)

= p(y|z)p(z|β)p(β).
(25)

To apply the variational approximation to probit regression model, unobservable variables are
considered in two separate groups, coefficient parameter β and auxiliary variable Z. To approximate
the posterior distribution of β, consider the product form

q(Z, β) = qZ(Z)qβ(β).

We proceed by first describing the distribution for each factor of the approximation, qZ(Z) and
qβ(β). Then variational approximation is accomplished by iteratively updating the parameters of each
factor distribution.

Start with qZ(Z), when yi = 1, we have

log p(y, z, β) = log
(

∏
i

1√
2π

exp{− (zi − x′i β)
2

2
} × π I(β)

)
where zi > 0.

Now, according to (19) and Algorithm 1, the optimal qZ is proportional to

Eβ[log p(y, z, β)] = −1
2
Eβ[z

′z − 2β′Xz + β′X′Xβ] +Eβ[log π I(β)]

= −1
2

z′z +Eβ[β]
′X′z +���������constant

−1
2
Eβ[β

′X′Xβ] +��������constant
Eβ[log π I(β)].
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So, we have the optimal qZ,

q∗Z(Z) ∝ exp{−1
2

z′z +Eβ[β]
′X′z + constant}

∝ exp{−1
2
(z − XEβ[β])

′(z − XEβ[β])}.

Similar procedure could be used to develop cases when yi = 0. Therefore, we have that the
optimal approximation for qZ is a truncated normal distribution, where

q∗Z(Z) =
{

N[0,+∞)(XEβ[β]i, 1) if yi = 1,

N(−∞,0](XEβ[β]i, 1) if yi = 0.
(26)

Denote XEβ[β] by μz, the location of distribution q∗Z(Z). The expectation Eβ is taken with respect
to the density form of q(β) for which we shall derive now.

For qβ(β), given the joint form in (25), we have

log p(y, z, β) = −1
2

exp{(z − Xβ)′(z − Xβ)} − 1
2

exp{(β − μβ)
′Σ−1

β (β − μβ)}+ constant.

Taking expectation with respect to qZ(z), we have

EZ[log p(y, z, β)] =
�������

constant

−1
2
EZ[Z

′Z] +EZ[Z]
′Xβ − 1

2
β′X′Xβ

− 1
2

β′Σ−1
β β + μ′

βΣ−1
β β +������constant

μ′
βΣ−1

β μβ .

Again, based on (19) and Algorithm 1, the optimal qβ(β) is proportional to EZ[log p(y, z, β)],

q∗β(β) ∝ −1
2

β′(X′X + Σ−1
β )β + (EZ[Z]

′X + μ′
βΣ−1

β )β.

First notice that any constant terms, including constant factor in the intrinsic prior, were canceled
out due to the ratio form of (19). Then by noticing the quadratic form in the above formula we have

q∗β(β) = N(μqβ
, Σqβ

), (27)

where

Σqβ
= (X′X + Σ−1

β )−1,

μqβ
= (X′X + Σ−1

β )−1(EZ[Z]
′X + μ′

βΣ−1
β ).

Notice that μqβ
, i.e., Eβ[β], depends on EZ[Z]. In addition, from our previous derivation, we

found that the update for EZ[Z] depends on Eβ[β]. Given that the density form of qZ is truncated
normal, we have

EZ[Zi] =

⎧⎨⎩XEβ[β]i +
φ(−XEβ [β]i)

1−Φ(−XEβ [β])i
if yi = 1,

XEβ[β]i − φ(−XEβ [β]i)

Φ(−XEβ [β])i
if yi = 0,

where φ is the standard normal density and Φ is the standard normal cumulative density. Denote
EZ[Z] by μqZ

. See properties of truncated normal distribution in Appendix A. Updating procedures
for parameters μqβ

and μqZ
of each factor distribution are summarized in Algorithm 2.
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Algorithm 2 Iterative procedure for updating parameters to reach optimal factor densities q∗β and q∗Z
in Bayesian probit regression model. The updates are based on the solutions given by (26) and (27).

1: Initialize μqZ
.

2: Cycle through

μqβ
← (X′X + Σ−1

β )−1(μ′
qz

X + μ′
βΣ−1

β ),

μqZ
← Xμqβ

+
φ(Xμqβ

)

Φ(Xμqβ
)y[Φ(Xμqβ

)− 1]1−y
,

until the increase in L(q) is negligible.

5.2.2. Evaluation of the Lower Bound L(q)
During the process of optimization of variational approximation densities, the lower bound for

the log marginal likelihood need to be evaluated and monitored to determine when the iterative
updating process converges. Based on derivations from previous section, we now have the exact form
for the variational inference density,

q(β, Z) = qβ(β)qZ(Z).

According to (14), we can write down the lower bound L(q) with respect to q(β, Z).

L(q) =
∫

q(β, Z) log
{ p(Y, β, Z)

q(β, Z)

}
dβdZ

=
∫

qβ(β)qZ(Z) log
{ p(Y, β, Z)

qβ(β)qZ(Z)

}
dβdZ

=
∫

qβ(β)qZ(Z) log{p(Y, β, Z)}dβdZ −
∫

qβ(β)qZ(Z) log{qβ(β)qZ(Z)}dβdZ

= Eβ,Z[log{p(Y, Z|β)}] +Eβ,Z[π
I(β)]−Eβ,Z[log{qβ(β)}]−Eβ,Z[log{qZ(Z)}].

(28)

As we can see in (28), L(q) has been divided into four different parts with expectation taken over
the variational approximation density q(β, Z) = qβ(β)qZ(Z). We now find the expression of these
expectations one by one.

Part 1: Eβ,Z[log{p(Y, Z|β)}]

= log(2π)−
n
2 +

∫ ∫
qβ(β)qZ(Z){−1

2
(z − Xβ)′(z − Xβ)}dβdz

= log(2π)−
n
2 +

∫
qZ(Z)

∫
qβ(β){−1

2
(β′X′Xβ − 2z′Xβ + z′z)}dβdz

(29)

Deal with the inner integral first, we have∫
qβ(β){−1

2
(β′X′Xβ − 2z′Xβ + z′z)}dβ = −1

2

∫
qβ(β)[β′X′Xβ]dβ + z′XEβ[β]− 1

2
z′z

= −1
2

∫
qβ(β)[β′X′Xβ]dβ + z′Xμqβ

− 1
2

z′z
(30)
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where

−1
2

∫
qβ(β)[β′X′Xβ]dβ = −1

2

∫
qβ(β)[(β − μqβ

+ μqβ
)′X′X(β − μqβ

+ μqβ
)]dβ

= −1
2

trace(X′XEβ[(β − μqβ
)(β − μqβ

)′])− 1
2

μ′
qβ

X′Xμqβ

= −1
2

trace(X′X[μqβ
μ′

qβ
+ Σqβ

]).

(31)

Substitute (31) into (30), we got∫
qβ(β){−1

2
(β′X′Xβ − 2z′Xβ + z′z)}dβ = −1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
]) + z′Xμqβ

− 1
2

z′z. (32)

Substituting (32) back into (29) gives

Eβ,Z[log{p(Y, Z|β)}] = log(2π)−
n
2 +

∫
qZ(z){−1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
]) + z′Xμqβ

− 1
2

z′z}dz

= log(2π)−
n
2 − 1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
])− 1

2
EZ[z

′z] + μ′
qz

μz

= log(2π)−
n
2 − 1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
]) + μ′

qz
μz

− 1
2

n

∑
i=1

[1 + μ2
zi
− μzi

φ(−μzi )

Φ(−μzi )
]I(yi=0)[1 + μ2

zi
+ μzi

φ(−μzi )

1 − Φ(−μzi )
]I(yi=1)

= log(2π)−
n
2 − 1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
]) + μ′

qz
μz

− 1
2

n

∑
i=1

[1 + μqzi
μzi ]

I(yi=0)[1 + μqzi
μzi ]

I(yi=1)

= log(2π)−
n
2 − 1

2
trace(X′X[μqβ

μ′
qβ

+ Σqβ
]) +

1
2

μ′
qz

μz − n
2

.

(33)

We applied properties of truncated normal distribution in Appendix B to find the expression of
the second moment EZ[z

′z].

Part 2: Eβ,Z[log qZ(z)]

=
∫ ∫

qβ(β)qZ(z) log qZ(z)dβdZ

=
∫

qZ(z) log qZ(z)dZ

= −n
2
(log(2π) + 1)

+
n

∑
i=1

{[log(Φ(−μzi )) + μzi

φ(−μzi )

2Φ(−μzi )
]I(yi=0)[log(1 − Φ(−μzi ))− μzi

φ(−μzi )

2(1 − Φ(−μzi ))
]I(yi=1)}

= −n
2
(log(2π) + 1)− 1

2
μ′

zμz +
1
2

μ′
qz

μz +
n

∑
i=1

{[log(Φ(−μzi ))]
I(yi=0)[log(1 − Φ(−μzi ))]

I(yi=1)}

(34)

Again, see Appendix B for well-known properties of truncated normal distribution. Now
subtracting (34) from (33) we got

Eβ,Z[log{p(Y, Z|β)}]−Eβ,Z[log qZ(z)] = −1
2

trace(X′X[μqβ
μ′

qβ
+ Σqβ

]) +
1
2

μ′
zμz+

n

∑
i=1

{[log(Φ(−μzi ))]
I(yi=0)[log(1 − Φ(−μzi ))]

I(yi=1)}.
(35)
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Based on the exact expression of the intrinsic prior π I(β), denoting all constant terms by C,
we have

Part 3: Eβ,Z[log pβ(β)]

=
∫ ∫

qZ(z)qβ(β) log π I(β)dβdz

= log C − (j + 1)
2

log(2π)− 1
2

log |Σβ| − 1
2

∫
qβ(β)[β′Σ−1

β β]dβ

(36)

To find the expression for the integral, we have∫
qβ(β)[β′Σ−1

β β]dβ =
∫

qβ(β)(β − μqβ
+ μqβ

)′Σ−1
β (β − μqβ

+ μqβ
)dβ

= E[trace(Σ−1
β (β − μqβ

)(β − μqβ
)′)] + μ′

qβ
Σ−1

β μqβ

= trace(Σ−1
β Σqβ

) + μ′
qβ

Σ−1
β μqβ

(37)

Substituting (37) back into (36), we obtained

Eβ,Z[log pβ(β)] = log C − (j + 1)
2

log(2π)− 1
2

log |Σβ| − 1
2
[trace(Σ−1

β Σqβ
) + μ′

qβ
Σ−1

β μqβ
]. (38)

Part 4: Eβ,Z[log qβ(β)]

=
∫ ∫

qZ(z)qβ(β) log qβ(β)dβ

= − j + 1
2

log(2π)− 1
2

log |Σqβ
| − 1

2

∫
qβ(β)(β − μqβ

)′Σ−1
qβ

(β − μqβ
)dβ

= − j + 1
2

log(2π)− 1
2

log |Σqβ
| − 1

2
trace(Σ−1

β Σβ)

= − j + 1
2

(log(2π) + 1)− 1
2

log |Σqβ
|

(39)

Combining all four parts together, we get

L(q) = Eβ,Z[log{p(Y, Z|β)}] +Eβ,Z[π
I(β)]−Eβ,Z[log{qβ(β)}]−Eβ,Z[log{qZ(Z)}]

= −1
2

trace(X′X[μqβ
μ′

qβ
+ Σqβ

]) +
1
2

μ′
zμz +

n

∑
i=1

{[log(Φ(−μzi ))]
I(yi=0)[log(1 − Φ(−μzi ))]

I(yi=1)}︸ ︷︷ ︸
Eβ,Z [log{p(Y,Z|β)}]−Eβ,Z [log{qZ(Z)}]

+ log C − 1
2

log |Σβ| − 1
2
[trace(Σ−1

β Σqβ
) + μ′

qβ
Σ−1

β μqβ
] +

j + 1
2

+
1
2

log |Σqβ
|︸ ︷︷ ︸

Eβ,Z [log pβ(β)]−Eβ,Z [log qβ(β)]

.

(40)

5.3. Model Comparison Based on Variational Approximation

Suppose we want to compare two models, M1 and M0, where M0 is the simpler model.
An intuitive thought on comparing two models by variational approximation methods is just to
compare the lower bounds L(q1) and L(q0). However, we should note that by comparing the lower
bounds, we are assuming that the KL divergences in the two approximations are the same, so that we
can use just these lower bounds as guide. Unfortunately, it is not easy to measure how tight in theory
any particular bound can be, if this can be accomplished we could then more accurately estimate
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the log marginal likelihood from the beginning. As clarified in [27], when comparing two exact log
marginal likelihood, we have

log p1(X)− log p0(X) = [L(q1) + KL(q1 ‖ p1)]− [L(q0)− KL(q0 ‖ p0)] (41)

= L(q1)−L(q0) + [KL(q1 ‖ p1)− KL(q0 ‖ p0)] (42)

�= L(q1)−L(q0). (43)

The difference in log marginal likelihood, log p1(X) − log p0(X), is the quantity we wish to
estimate. However, if we base this on the lower bounds difference, we are basing our model comparison
on (43) rather than (42). Therefore, there exists a systematic bias towards simpler model when
comparing models if KL(q1 ‖ p1)− KL(q0 ‖ p0) is not zero.

Realizing that we have a variational approximation for the posterior distribution of β, we propose
the following method to estimate p(X) based on our variational approximation qβ(β) (27). First,
writing the marginal likelihood as

p(x) =
∫ [ p(x|β)π I(β)

qβ(β)

]
qβ(β)dβ,

we can interpret it as the conditional expectation

p(x) = E
[ p(x|β)π I(β)

qβ(β)

]
with respect to qβ(β). Next, draw samples β(1), ..., β(n) from qβ(β) and obtain the estimated
marginal likelihood

p̂X(x) =
1
n

n

∑
i=1

p(x|β(i))π I(β(i))

qβ(β(i))
.

Please note that this method proposed is equivalent to importance sampling with importance
function being qβ(β), for which we know the exact form and the generation of the random β(i) is easy
and inexpensive.

6. Modeling Probability of Default Using Lending Club Data

6.1. Introduction

LendingClub (https://www.lendingclub.com/) is the world’s largest peer-to-peer lending
platform. LendingClub enables borrowers to create unsecured personal loans between $1000 and
$40,000. The standard loan period is three or five years. Investors can search and browse the loan
listings on LendingClub website and select loans that they want to invest in based on the information
supplied about the borrower, amount of loan, loan grade, and loan purpose. Investors make money
from interest. LendingClub makes money by charging borrowers an origination fee and investors a
service fee. To attract lenders, LendingClub publishes most of the information available in borrowers’
credit reports as well as information reported by borrowers for almost every loan issued through
its website.

6.2. Modeling Probability of Default—Target Variable and Predictive Features

Publicly available LendingClub data, from 2007 June to 2018 Q4, has a total of 2,260,668 issued
loans. Each loan has a status, either Paid-off, Charged-off, or Ongoing. We only adopted loans with an
end status, i.e., either paid-off or charged-off. In addition, that loan status is the target variable. We
then selected following loan features as our predictive covariates.
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• Loan term in months (either 36 or 60)
• FICO
• Issued loan amount
• DTI (Debt to income ratio, i.e., customer’s total debt divided by income)
• Number of credit lines opened in past 24 months
• Employment length in years
• Annual income
• Home ownership type (own, mortgage, of rent)

We took a sample from the original data set that has customer yearly income between $15,000 and
$60,000 and end up with a data set of 520,947 rows.

6.3. Addressing Uncertainty of Estimated Probit Model Using Variational Inference with Intrinsic Prior

Using the process developed in Section 5, we can update the intrinsic prior for parameters (see
Figure 1) of the probit model using variational inference, and get the posterior distribution for the
estimated parameters. Based on the derived parameter distributions, questions of interest may be
explored with model uncertainty being considered.

Figure 1. Intrinsic Prior.

Investors will be interested in understanding how each loan feature affect the probability of
default, given a certain loan term, either 36 or 60. To answer this question, we samples 6000 cases
from the original data set and draw from derived posterior distribution 100 times. We end up with
6000 × 100 calculated probability of default, where each one of the 6000 samples yield 100 different
probit estimates based on 100 different posterior draws. We summarize some of our findings in
Figure 2, where color red representing 36 months loans and green representing 60 months loans.

• In general, 60 months loans have higher risk of default.
• Given loan term months, there is a clear trend showing that high FICO means lower risk.
• Given loan term months, there is a trend showing that high DTI indicating higher risk.
• Given loan term months, there is a trend showing that more credit lines opened in past 24 months

indicating higher risk.
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• There is no clear pattern regarding income. This is probably because we only included customers
with income between $15,000 and $60,000 in our training data, which may not representing the
true income level of the whole population.

Model uncertainty could also be measured through credible intervals. Again, with the derived
posterior distribution, the credible interval is just the range containing a particular percentage of
estimated effect/parameter values. For instance, the 95% credible interval of the estimated parameter
value of FICO is simply the central portion of the posterior distribution that contains 95% of the
estimated values. Contrary to the frequentist confidence intervals, Bayesian credible interval is much
more straightforward to interpret. Using the Bayesian framework created in this article, from Figure 3,
we can simply state that given the observed data, the estimated effect of DTI on default has 89%
probability of falling within [8.300, 8.875]. Instead of the conventional 95%, we used 89% following
suggestions in [28,29], which is just as arbitrary as any of the conventions.

One of the main advantages of using variational inference over MCMC is that variational inference
is much faster. Comparisons were made between the two approximation frameworks on a 64-bit
Windows 10 laptop, with 32.0 GB RAM. Using the data set introduced in Section 6.2, we have that

• with a conjugate prior and following the Gibbs sampling scheme proposed by [17], it took 89.86 s
to finish 100 simulations for the Gibbs sampler;

• following our method proposed in Section 5.2, it took 58.38 s to get the approximated posterior
distribution and sampling 10,000 times from that posterior.

Figure 2. Effect of term months and other covariates on probability of default
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Figure 3. Credible intervals for estimated coefficients

6.4. Model Comparison

Following the procedure proposed in Section 5.3, we compare the following series of nested
models. From the data set introduced in Section 6.2, 2000 records were sampled to estimate the
likelihood p(x|β(i)). Where β(i) is one of the 2500 draws sampled directly from the approximated
posterior distribution qβ(β), which serves as the importance function used to estimate the marginal
likelihood p(x).

• M2: FICO + Term 36 Indicator
• M3: FICO + Term 36 Indicator + Loan Amount
• M4: FICO + Term 36 Indicator + Loan Amount + Annual Income
• M5: FICO + Term 36 Indicator + Loan Amount + Annual Income + Mortgage Indicator

Estimated log marginal likelihood for each model is plotted in Figure 4. We can see that the model
evidence has increased by adding predictive features Loan Amount and Annual Income sequentially.
However, if we further adding home ownership information, i.e., Mortgage Indicator as a predictive
feature, the model evidence decreased. We have the Bayes factor

BF45 =
p(x|M4)

p(x|M5)
= e−1014.78−(−1016.42) = 5.16,

which suggests a substantial evidence for model M4, indicating home ownership information may be
irrelevant in predicting probability of default given that all the other predictive features are relevant.
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Figure 4. Log marginal likelihood comparison

7. Further Work

The authors thank the reviewers for pointing out that mean-field variational Bayes underestimates
the posterior variance. This could be an interesting topic for our future research. We plan to study
the linear response variational Bayes (LRVB) method proposed in [30] to see if it can be applied on the
framework we proposed in this article. To see if we can get the approximated posterior variance
close enough to the true variance using our proposed method, comparisons should be made between
normal conjugate prior with the MCMC procedure, normal conjugate prior with LRVB, and intrinsic
prior with LRVB.
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Appendix A. Density Function

Suppose X ∼ N(μ, σ2) has a normal distribution and lies within the interval X ∈ (a, b),−∞ ≤
a < b ≤ ∞. Then X conditional on a < X < b has a truncated normal distribution. Its probability
density function, f , for a ≤ X < b, is given by

f (x|μ, σ, a, b) =
1
σ φ( x−μ

σ )

Φ( b−μ
σ )− Φ( a−μ

σ )

and by f = 0 otherwise. Here

φ(ξ) =
1√
2π

exp(−1
2

ξ2)
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is the probability density function of the standard normal distribution and Φ(·) is its cumulative
distribution function. If b = ∞, then Φ( b−μ

σ ) = 1, and similarly, if a = −∞, then Φ( a−μ
σ ) = 0. And the

cumulative density for the truncated normal distribution is

F(x|μ, σ, a, b) =
Φ(ξ)− Φ(α)

Z
,

where ξ = x−μ
σ and Z = Φ(β)− Φ(α).

Appendix B. Moments and Entropy

Let α = a−μ
σ and β = b−μ

σ . For two-sided truncation:

E(X|a < X < b) = μ + σ
φ(α)− φ(β)

Φ(β)− Φ(α)
,

Var(X|a < X < b) = σ2
[
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
( φ(α)− φ(β)

Φ(β)− Φ(α)

)2]
.

For one sided truncation (upper tail):

E(X|X > a) = μ + σλ(α)

Var(X|X > a) = σ2[1 − δ(α)],

where α = a−μ
σ , λ(α) = φ(α)

1−Φ(α)
and δ(α) = λ(α)[λ(α)− α].

For one sided truncation (lower tail):

E(X|X < b) = μ − σ
φ(β)

Φ(β)

Var(X|X < b) = σ2
[
1 − β

φ(β)

Φ(β)
−
( φ(β)

Φ(β)

)2]
.

More generally, the moment generating function for truncated normal distribution is

eμt+σ2t2/2 ·
[Φ(β − σt)− Φ(α − σt)

Φ(β)− Φ(α)

]
.

For a density f (x) defined over a continuous variable, the entropy is given by

H[x] = −
∫

f (x) log f (x)dx.

And the entropy for a truncated normal density is

log(
√

2πeσZ) +
αφ(α)− βφ(β)

2Z
.
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Abstract: Intuitionistic fuzzy distance measurement is an effective method to study multi-attribute
emergency decision-making (MAEDM) problems. Unfortunately, the traditional intuitionistic
fuzzy distance measurement method cannot accurately reflect the difference between membership
and non-membership data, where it is easy to cause information confusion. Therefore, from
the intuitionistic fuzzy number (IFN), this paper constructs a decision-making model based on
intuitionistic fuzzy cross-entropy and a comprehensive grey correlation analysis algorithm. For the
MAEDM problems of completely unknown and partially known attribute weights, this method
establishes a grey correlation analysis algorithm based on the objective evaluation value and subjective
preference value of decision makers (DMs), which makes up for the shortcomings of traditional
model information loss and greatly improves the accuracy of MAEDM. Finally, taking the Wenchuan
Earthquake on May 12th 2008 as a case study, this paper constructs and solves the ranking problem of
shelters. Through the sensitivity comparison analysis, when the grey resolution coefficient increases
from 0.4 to 1.0, the ranking result of building shelters remains stable. Compared to the traditional
intuitionistic fuzzy distance, this method is shown to be more reliable.

Keywords: multi-attribute emergency decision-making; intuitionistic fuzzy cross-entropy; grey
correlation analysis; earthquake shelters; attribute weights

1. Introduction

At present, earthquakes, fires, novel coronavirus infections, and other frequent disasters have
caused great loss to human beings. Owing to the uncertainty and fuzziness of such emergency
problems, it is difficult for decision makers (DMs) to determine alternatives with real numbers to
make quick decisions. The accurate processing of information has become an unavoidable problem
in the development of the emergency decision [1–3] field. Under this urgent demand, fuzzy set
theory, which can deal well with the uncertainty of decision-making problems, came into being [4].
Fuzzy sets [5,6] use membership as a single scale to reflect the support and opposition of DMs to
objective things. However, with the development of decision theory, it is difficult to accurately describe
the uncertainty of objective things by fuzzy sets alone. Based on this, Atanassov, a Bulgarian professor,
put forward the concept of the intuitionistic fuzzy set (IFS) in the 1980s [7,8]. He used membership
degree and non-membership degree to express the support, opposition, and hesitation of decision
information. Compared to the fuzzy set, the IFS can describe the natural attributes of objective things
more accurately [9–11].

Entropy 2020, 22, 768; doi:10.3390/e22070768 www.mdpi.com/journal/entropy143
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The IFS is a new mathematical tool for dealing with uncertain and complex information efficiently,
which is widely used in the field of multi-attribute decision-making (MADM) [12–14]. In recent years,
scholars have made great progress in the research of intuitionistic fuzzy multi-attribute decision-making
(IFMADM). The similarity measure is one of the most important decision-making methods in IFMADM.
Xu et al. [15] systematically analyzed the similarity measurement formula based on geometric distance,
set theory, and intuitionistic fuzzy matching degree. In order to improve the measurement accuracy of
the similarity of the IFS, Park et al. [16] and Hu et al. [17] used the similarity measurement formula based
on intuitionistic fuzzy entropy for the intuitionistic fuzzy number (IFN) and interval IFN, respectively,
and optimized the alternatives. The IFS can represent the uncertainty of decision information well, but
there are some difficulties in data comparison. Score function and precise function are effective means
for data comparison and ranking in IFMADM. Chen et al. [18] were the first experts to study the score
function of the IFN. They used the difference between membership and non-membership in the IFN to
construct a function to compare the size relationship of the IFN, which is the basis of IFMADM. On the
basis of score function, Hong et al. [19] proposed an intuitionistic fuzzy precise function, which greatly
improved the efficiency of decision-making. The classical multi-attribute method has a wide range
of development and application in the field of intuitionistic fuzzy. Table 1 summarizes some main
methods of IFMADM.

Table 1. A brief overview of preprocessing methods in intuitionistic fuzzy multi-attribute
decision-making (IFMADM).

Literatures Methods

Xu [15], Park et al. [16] Similarity measure
Hu et al. [17] Similarity measure, Fuzzy entropy

Chen et al. [18] Score function
Hong et al. [19] Intuitionistic fuzzy precise function
Wu et al. [20] AHP, Score judgment matrix

Keshavarzfarda et al. [21] AHP, DEMATEL
Chatterjee et al. [22], Liao et al. [23] TOPSIS, VIKOR

Wu et al. [24], Vahdani et al. [25], Yu et al. [26] ELECTRE, PROMETHEE
Meng et al. [27] Prospect theory
Luo et al. [28] Regret theory

Unfortunately, natural disasters, such as fires and floods, often lead to unexpected and disastrous
consequences. A large number of emergency decision-making problems have evolved into MADM.
Up to now, domestic and foreign scholars have conducted in-depth research in this field. Xu et al. [29]
proposed a two-stage method to support the consensus-building process of large-scale MADMand
applied it to earthquake shelter selection. Taking a fire and explosion accident as the study, Xu et al. [30]
defined a generalized asymmetric language D number and proposed the corresponding MADM fusion
algorithm, which verified the effectiveness of the method. Li et al. [31] proposed a risk decision analysis
method based on the TODIM (an acronym in Portuguese of interactive and MADM) method to solve the
emergency evacuation problem of tourist attractions, in which the attribute value and the probability
of state occurrence are in the interval number format. This method solves this kind of emergency
decision-making problem well, which shows that it is more effective than the traditional method.
Based on an example of ship collision, Xiong et al. [32] used two intelligent algorithms, multi-attribute
differential evolution algorithm and non-dominant sorting genetic algorithm, to verify the feasibility
and effectiveness of the model. From the prediction model of the triple exponential smoothing
method, Wang et al. [33] proposed an MADM additive weighting method, weighted product method,
and elimination selection transformation reality method to sort the recycled electric vehicles, which
provided an effective solution for managers and researchers in the electric vehicle industry and
improved the efficiency of the electric vehicle industry. For the multi-attribute group decision-making
problem of community sustainable development emergency response, Wu et al. [34] proposed a method
based on subjective imprecise estimation of the reliability of binary language vocabulary, which greatly
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improved the efficiency of MADM. Karimi et al. [35] introduced the best and worst algorithm to solve
the MADM problem in the fuzzy environment and applied this method to the evaluation of hospital
maintenance, which proves the satisfactory performance of this method. Based on the above analysis,
the MADM method is widely used in the field of emergency decision-making, which can solve the
uncertainty well in the case of emergency. Table 2 summarizes some applications of the MADM
method in emergency situations.

Table 2. A brief literature list on the applications of multi-attribute decision-making (MADM) methods
in emergency situations.

Literatures Methods Applications

Xu et al. [29] Two-stage theory Earthquake shelter selection
Xu et al. [30] Generalized asymmetric language Fire and explosion accident
Li et al. [31] Risk decision analysis Electric vehicle industry

Xiong et al. [32] Evolution and non-dominant sorting genetic algorithm Ship collision
Wang et al. [33] Additive weighting Electric vehicle industry
Wu et al. [34] Subjective imprecise estimation of binary language Community development

Karimi et al. [35] The best and worst algorithm Hospital maintenance

The above method is effective in solving the multi-attribute emergency decision-making (MAEDM)
problem in a fuzzy environment. However, it has some limitations in the following aspects.

(1) In the case of emergency, DMs often have a certain subjective preference for alternatives, which is
rarely studied.

(2) The traditional intuitionistic fuzzy distance measurement accuracy is not high. It is easy to have
a situation where the IFN cannot be compared, which makes the decision result produce errors.

(3) For MAEDM problems with unknown or partially unknown attribute weights, the research is not
deep enough and needs further analysis.

(4) There is no corresponding sensitivity analysis for the ranking results of alternatives, which fails
to fully explain the reliability and stability of the evaluation mechanism.

According to the above limitations, the motivation of this paper is summarized as follows:

(1) With the increasing complexity of the global environment, many scholars focus on the field of
emergency decision-making. Intuitionistic fuzzy multi-attribute emergency decision-making
(IFMAEDM) is the focus of the current research.

(2) It is necessary to propose a distance measurement method based on the IFN, which can get
rid of the shortcomings of traditional distance measurement and improve the reliability of
decision results.

(3) The research on the uncertainty of attribute weight is the key problem in MAEDM. How to
determine the weight is always the core of decision-making.

(4) The evaluation mechanism of the ranking results of alternatives can make the decision results
more reliable.

Therefore, based on intuitionistic fuzzy and grey correlation analysis, this paper proposes a
method to solve MAEDM by using intuitionistic fuzzy cross-entropy distance. First, the average
information entropy of intuitionistic fuzzy is defined, and the measurement method of cross-entropy
distance of intuitionistic fuzzy is given. On this basis, considering the unknown and known attribute
weights, an optimization model with the subjective preference of the DMs is established and solved.
Secondly, the intuitionistic fuzzy decision matrix is obtained according to the objective attribute
evaluation of DMs. The intuitionistic fuzzy cross-entropy distance matrix is constructed by combining
the objective evaluation value and subjective preference value of alternatives. Then, the attribute
weight is determined according to the adjusted intuitionistic fuzzy average information entropy.
By using the method of grey correlation analysis, the comprehensive grey relation coefficient of each
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alternative is obtained, and the order of alternatives is generated. Therefore, a new method is proposed
to solve the MAEDM problem by using intuitionistic fuzzy cross-entropy and grey correlation analysis.
The important contributions of this paper are mainly reflected in six aspects. (1) The intuitionistic
fuzzy cross-entropy distance is defined. (2) A multi-attribute emergency decision with subjective
preference is considered. (3) The uncertainty of attribute weight is discussed and solved by intuitionistic
fuzzy information entropy. (4) The grey correlation analysis method is applied to MAEDM, which
makes full use of decision-making information such as membership, non-membership, and hesitation.
(5) According to the grey resolution coefficient, the sensitivity analysis is carried out to verify the
reliability and stability of the decision results. (6) Compared to the traditional intuitionistic fuzzy
distance, this method is shown to be more stable.

The remainder of this paper is organized as follows. Section 2 defines some basic knowledge of
intuitionistic fuzzy theory and introduces the concept of intuitionistic fuzzy cross-entropy distance.
In Section 3, a MAEDM model based on intuitionistic fuzzy cross-entropy and comprehensive grey
correlation analysis is constructed. In Section 4, taking the ranking of earthquake shelters as an example,
the practical application of this method is illustrated by comparing to the traditional intuitionistic
fuzzy method. Lastly, Section 5 is the conclusion of the method proposed in this paper and the prospect
of future research.

2. Preliminaries

This section first reviews some basic concepts and definitions of intuitionistic fuzzy theory.
As the preference relationship in fuzzy theory is often assigned by the complementary

0.1–0.9 five-scale, we believe that the distribution of the levels between opposition and support
is uniform and symmetric. However, in an actual situation, some problems require the use of a
non-consistent and asymmetric distribution to evaluate variables, such as the marginal utility decline
rate in economics. Therefore, it is very popular to solve this kind of asymmetric problem by fuzzy
set theory.

Definition 1 [4]. If the domain X is a non-empty set, a fuzzy set is defined as:

A =
{
< x,μA(x)|x ∈ X

}
(1)

which is characterized by a membership function μA : X→ [0, 1], where μA(x)denotes the degree of membership
of the element x to the set A.

Ordinary fuzzy sets can only represent membership function, which refers to the support degree
of an alternative without non-membership degree information. Therefore, Atanassov [7,8] extended
the fuzzy set to the IFS. It is shown as follows:

Definition 2 [7]. If the domain X is a non-empty set, then the intuitionistic fuzzy set A onX can be expressed as:

A =
{
< x,μA(x), νA(x) > |x ∈ X

}
(2)

where μA(x) and νA(x) are the membership degree and non-membership degree of the element x belonging to A
in the domain X, respectively,

μA : X→ [0, 1], x ∈ X→ μA(x) ∈ [0, 1]
νA : X→ [0, 1], x ∈ X→ νA(x) ∈ [0, 1],

It satisfies 0 ≤ μA(x) + vA(x) ≤ 1; let

πA= 1− μA(x) − νA(x) (3)
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denote the degree of hesitation or uncertainty that element x in X belongs to IFS A, obviously for any x ∈ X,
with the condition 0 ≤ πA ≤ 1.

Example 1. Take an example to illustrate the specific meaning of the IFS. Suppose there is an IFS
A = {< x, 0.7, 0.2 > |x ∈ X }, which indicates that the membership degree of IFS X is 0.7, the non-membership
degree is 0.2, and the hesitation degree is 0.1. If we use this set to represent the voting process, assuming that the
number of participants is 10, then 7 people support it, 2 oppose it, and 1 hesitates to remain neutral.

Definition 3 [36]. Let αA = (μA, vA) and αB = (μB, vB) be the two intuitionistic fuzzy numbers. Then, the
normalized Hamming distance between αA and αB is defined as follows:

d(αA,αB) =
1
2

(∣∣∣μA − μB
∣∣∣+ |νA − νB|

)
(4)

where μA ∈ [0, 1], vA ∈ [0, 1] and 0 ≤ μA + vA ≤ 1; meanwhile, all intuitionistic fuzzy numbers are expressed
as θ. Obviously, the fuzzy number a+ = (1, 0) is the maximum value in the fuzzy set, and a− = (0, 1) is the
minimum value in the set.

Geometric distance is not suitable for processing fuzzy decision information. According to
the traditional distance model, Xu [15] proposed the distance measure formula of the intuitionistic
fuzzy set:

Definition 4. Suppose d is a mapping: d: (φ(x))2 → [0, 1] . If there are intuitionistic fuzzy sets,

A =
{
< x,μA(x), νA(x) > |x ∈ X

}
B =

{
< x,μB(x), νB(x) > |x ∈ X

}
C =

{
< x,μC(x), νC(x) > |x ∈ X

} ,

then the distance measure between the IFSs is

dXu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
2n

n
Σ

j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣μA

(
xj
)
− μB

(
xj
)∣∣∣∣λ + ∣∣∣∣νA

(
xj
)
− νB

(
xj
)∣∣∣∣λ

+
∣∣∣∣πA

(
xj
)
−πB

(
xj
)∣∣∣∣λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
λ

(5)

where λ ≥ 1. When λ = 1, dXu degenerates into Hamming distance with IFS:

dH =
1

2n

n
Σ

j=1

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣μA

(
xj
)
− μB

(
xj
)∣∣∣∣+ ∣∣∣∣νA

(
xj
)
− νB

(
xj
)∣∣∣∣

+
∣∣∣∣πA

(
xj
)
−πB

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

When λ = 2, dXu degenerates into Euclidean distance with IFS:

dE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
2n

n
Σ

j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣μA

(
xj
)
− μB

(
xj
)∣∣∣∣2 + ∣∣∣∣νA

(
xj
)
− νB

(
xj
)∣∣∣∣2

+
∣∣∣∣πA

(
xj
)
−πB

(
xj
)∣∣∣∣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

(7)

Hamming and Euclidean distance formulas are an extension of intuitionistic fuzzy distance.
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Considering the attribute weight vector of xj( j = 1, 2, . . . n), ω = (ω1,ω2, . . . ,ωn)
T, satisfies

0 ≤ ω j ≤ 1 and
n
Σ

j=1
ω j = 1, and the above two distance formulas dH and dE can be expressed as:

dHω =
1

2n

n
Σ

j=1
ω j

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣μA

(
xj
)
− μB

(
xj
)∣∣∣∣+ ∣∣∣∣νA

(
xj
)
− νB

(
xj
)∣∣∣∣

+
∣∣∣∣πA

(
xj
)
−πB

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

dEω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
2n

n
Σ

j=1
ω j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣μA

(
xj
)
− μB

(
xj
)∣∣∣∣2 + ∣∣∣∣νA

(
xj
)
− νB

(
xj
)∣∣∣∣2

+
∣∣∣∣πA

(
xj
)
−πB

(
xj
)∣∣∣∣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

(9)

It is not difficult to see from the formula that all intuitionistic fuzzy distances satisfy the
following properties:

(1) 0 ≤ d(A, B) ≤ 1;
(2) When A = B, d(A, B) = 0
(3) d(A, B) = d(B, A);
(4) If A ⊆ B ⊆ C, d(A, B) ≤ d(A, C) and d(B, C) ≤ d(A, C).
In order to define the concept of intuitionistic fuzzy cross-entropy, the definition of information

entropy is introduced. The average level of residual information after information redundancy
eliminated is called information entropy, which is used to measure the uncertainty of information
source in the communication process.

Definition 5. There is a discrete random variable X = {x1, x2, . . . , xn} that can be represented as:

I =

{
x1, x2, · · ·, xn

p1, p2, · · ·, pn

}
, where P = (p1, p2, . . . , pn) is the probability of discrete random variable X satisfying

0 ≤ pj ≤ 1 and
n
Σ

i=1
pj = 1; then, the information entropy of I can be expressed as

I = −η n
Σ

j=1
pj logc pj (10)

The constant ηmeans the unit of measurement of information entropy, which is a constant greater
than 0, and the base number c of the logarithmic function in the formula can take a non-negative constant.
In particular, when c = 2, the unit of information entropy is bit. When c = e, the unit of information
entropy is nat. When c = 10, its unit is dit. In general calculation, η = 1, c = 2.

Burillo et al. [37] extended the basic idea of information entropy to the field of intuitionistic fuzzy,
and creatively used it to describe the uncertainty of the IFS.

Definition 6. Let X = {x1, x2, . . . xn} be a domain and A =
{
< x,μA(x), vA(x) > |x ∈ X

}
be an IFS on X.

The intuitionistic fuzzy entropy of A can be expressed as:

ELH(A) =
1
n

n
Σ

i=1

1−
∣∣∣μA(xi) − νA(xi)

∣∣∣+ πA(xi)

1 +
∣∣∣μA(xi) − νA(xi)

∣∣∣+ πA(xi)
(11)

Definition 7. Another equivalent transformation of intuitionistic fuzzy entropy ELH is:

E(A) =
1
n

n
Σ

i=1

1−max(μA(xi) − νA(xi))

1−min(μA(xi) − νA(xi))
. (12)
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Proof. Model (11) and model (12) are equivalent.

ELH(A) = 1
n

n
Σ

i=1

1−|μA(xi)−νA(xi)|+πA(xi)

1+|μA(xi)−νA(xi)|+πA(xi)

= 1
n

n
Σ

i=1

1−|μA(xi)−νA(xi)|+1−μA(xi)−νA(xi)

1+|μA(xi)−νA(xi)|+1−μA(xi)−νA(xi)

= 1
n

n
Σ

i=1

2−|μA(xi)−νA(xi)|−(μA(xi)+νA(xi))

2+|μA(xi)−νA(xi)|−(μA(xi)+νA(xi))

= 1
n

n
Σ

i=1

1− 1
2 (|μA(xi)−νA(xi)|+|μA(xi)+νA(xi)|)

1− 1
2 (|μA(xi)+νA(xi)|−|μA(xi)−νA(xi)|)

= 1
n

n
Σ

i=1

1−max(μA(xi)−νA(xi))

1−min(μA(xi)−νA(xi))
= E(A)

.

�

Definition 7 is more concise in form and simpler in calculation. It eliminates the influence of
hesitation and is a better expression of intuitionistic fuzzy entropy.

For the MAEDM problem discussed in this paper, when the attributes are completely unknown,
it is necessary to calculate the average information entropy of each attribute. Combining with the
intuitionistic fuzzy entropy, the intuitionistic fuzzy cross-entropy distance is defined as:

Definition 8. Suppose there is a domain X = {x1, x2, . . . , xn}, where A and B are two IFSs on X,

A =
{
< xj,μA(xj), νA(xj) >

∣∣∣xj ∈ X
}

B =
{
< xj,μB(xj), νB(xj) >

∣∣∣xj ∈ X
} ,

then, the intuitionistic fuzzy cross-entropy distance formula of A and B is [38]:

CE(A, B) =
n
Σ

j=1

{
1+μA(xj)−νA(xj)

2 ×

log2
1+μA(xj)−νA(xj)

1/2[1+μA(xj)−νA(xj)+1+μB(xj)−νB(xj)]

}
+

n
Σ

j=1

{
1−μA(xj)+νA(xj)

2 ×

log2
1−μA(xj)+νA(xj)

1/2[1−μA(xj)+νA(xj)+1−μB(xj)+νB(xj)]

}
. (13)

As the intuitionistic fuzzy cross-entropy CE(A, B) does not satisfy the symmetry, considering the problems of
emergency decision-making, let

CE∗(A, B) = CE(A, B) + CE(B, A) (14)

define the intuitionistic fuzzy cross-entropy distance combined with the characteristics of multi-attribute.

Theorem 1. Referring to the properties of the intuitionistic fuzzy geometric distance formula, the intuitionistic
fuzzy cross-entropy satisfies the following properties:

(1) 0 ≤ CE∗(A, B);
(2) If A = B, CE∗(A, B) = 0;
(3) If A ⊆ B ⊆ C, then CE∗(A, B) ≤ CE∗(A, C) and CE∗(B, C) ≤ CE∗(A, C).
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Proof. As
CE(A, B) =

n
Σ

j=1

{
1+μA(xj)−νA(xj)

2 ×

log2
1+μA(xj)−νA(xj)

1/2[1+μA(xj)−νA(xj)+1+μB(xj)−νB(xj)]

}
+

n
Σ

j=1

{
1−μA(xj)+νA(xj)

2 ×

log2
1−μA(xj)+νA(xj)

1/2[1−μA(xj)+νA(xj)+1−μB(xj)+νB(xj)]

}
,

and model (13) has been given, the following exists

−CE(A, B) = − n
Σ

j=1

{
1+μA(xj)−νA(xj)

2 × log2
1+μA(xj)−νA(xj)

1/2[1+μA(xj)−νA(xj)+1+μB(xj)−νB(xj)]

}

+
n
Σ

j=1

{
1−μA(xj)+νA(xj)

2 × log2
1−μA(xj)+νA(xj)

1/2[1−μA(xj)+νA(xj)+1−μB(xj)+νB(xj)]

}

=
n
Σ

j=1

{
1+μA(xj)−νA(xj)

2 × log2
1/2[1+μA(xj)−νA(xj)+1+μB(xj)−νB(xj)]

1+μA(xj)−νA(xj)

}

+
n
Σ

j=1

{
1−μA(xj)+νA(xj)

2 × log2
1/2[1−μA(xj)+νA(xj)+1−μB(xj)+νB(xj)]

1−μA(xj)+νA(xj)

}

As the above logarithmic function is strictly convex, according to the relevant properties,

f (a1x1 + a2x2 + . . .+ anxn) ≤
a1 f (x1) + a2 f (x2) + . . .+ an f (xn)

, (15)

therefore, we can obtain the following expression,

−CE(A, B) ≤ n
Σ

j=1
log2

{
1+μA(xj)−νA(xj)

2 ×
1/2[1+μA(xj)−νA(xj)+1+μB(xj)−νB(xj)]

1+μA(xj)−νA(xj)

}
+

n
Σ

j=1
log2

{
1−μA(xj)+νA(xj)

2 ×
1/2[1−μA(xj)+νA(xj)+1−μB(xj)+νB(xj)]

1−μA(xj)+νA(xj)

}
≤ log2

{[(
1 + μA(xj) − νA(xj)

)
+
(
1− μB(xj) + νB(xj)

)
+(

1 + μB(xj) − νB(xj)
)
+

(
1− μA(xj) + νA(xj)

)]
/4
}
= 0

Through the above proof, obviously, CE(A, B) ≥ 0 and CE(B, A) ≥ 0, and the same can be obtained.
According to model (13) and (14), we can prove that CE∗(A, B) ≥ 0. �

Proof. When A = B, there are the following relationships: μA
(
xj
)
= μB

(
xj
)
,vA

(
xj
)
= vB

(
xj
)
.

By substituting it into the model (13), we can obtain the conclusion CE(A, B) = 0, CE(B, A) = 0.
Then, combining model (14), we can prove that CE∗(A, B) = 0. �

Proof. According to the understanding of the geometric intuitionistic fuzzy distance formula, it is not
difficult to prove that the size of the fuzzy cross-entropy set is positively correlated with the size of
distance. Let us assume that with A ⊆ B ⊆ C, we have μA(xi) ≤ μB(xi) ≤ μC(xi) and vA(xi) ≤ vB(xi) ≤
vC(xi). The following conclusions can be drawn: μA(xi) − νA(xi) ≤ μB(xi) − νB(xi) ≤ μC(xi) − νC(xi).
For the sake of proving convenience, μA(xi) − vA(xi), μB(xi) − vB(xi), and μC(xi) − vC(xi) are recorded
as a, b, c, respectively, and satisfy −1 ≤ a ≤ b ≤ c ≤ 1. Comparing the size relationship between two
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intuitionistic fuzzy cross-entropies can be done by subtraction. ΔCE∗ = CE∗(A, C) −CE∗(A, B) can be
transformed into:

ΔCE∗ = 1+a
2 log2

1+a
1/2[1+a+1+c] +

1−a
2 log2

1−a
1/2[1−a+1−c]

+ 1+c
2 log2

1+c
1/2[1+c+1+a] +

1−c
2 log2

1−c
1/2[1−c+1−a]

− 1+a
2 log2

1+a
1/2[1+a+1+b] − 1−a

2 log2
1−a

1/2[1−a+1−b]
− 1+b

2 log2
1+b

1/2[1+b+1+a] − 1−b
2 log2

1−b
1/2[1−b+1−a]

,

thus,
−ΔCE∗ = 1+a

2 log2
1/2[1+a+1+c]

1+a + 1−a
2 log2

1/2[1−a+1−c]
1−a

+ 1+c
2 log2

1/2[1+c+1+a]
1+c + 1−c

2 log2
1/2[1−c+1−a]

1−c

− 1+a
2 log2

1/2[1+a+1+b]
1+a − 1−a

2 log2
1/2[1−a+1−b]

1−a

− 1+b
2 log2

1/2[1+b+1+a]
1+b − 1−b

2 log2
1/2[1−b+1−a]

1−b

.

As the −ΔCE∗ is a strictly convex function, it has the property (15). It satisfies

−ΔCE∗ ≤ log2

⎧⎪⎪⎨⎪⎪⎩
1+a

2 × 1/2(1+a+1+c)
1+a + 1−a

2 × 1/2(1−a+1−c)
1−a

+ 1+c
2 × 1/2(1+c+1+a)

1+c + 1−c
2 × 1/2(1−c+1−a)

1−c

⎫⎪⎪⎬⎪⎪⎭
− log2

⎧⎪⎪⎨⎪⎪⎩
1+a

2 × 1/2(1+a+1+b)
1+a − 1−a

2 × 1/2(1−a+1−b)
1−a

+ 1+b
2 × 1/2(1+b+1+a)

1+b + 1−b
2 × 1/2(1−b+1−a)

1−b

⎫⎪⎪⎬⎪⎪⎭ = 0

.

Obviously, with −ΔCE∗ ≤ 0, which is ΔCE∗ ≥ 0, we can easily obtain CE∗(A, C) ≥ CE∗(A, B). The same
reasoning can be proved, CE∗(A, C) −CE∗(B, C) ≥ 0; thus, CE∗(A, C) ≥ CE∗(B, C). �

It can be seen from property (1) that the fuzzy entropy distance is non-negative. Property (2)
means that when two IFSs are completely equal, the minimum intuitionistic fuzzy cross-entropy
distance is equal to 0; thus, cross-entropy can be used to measure the difference degree or distance
between two IFSs. Property (3) provides a sufficient basis for the comparison of intuitionistic fuzzy
cross-entropy distance. Intuitionistic fuzzy cross-entropy extends the meaning of information entropy,
which can be used to measure the fuzzy degree and unknown degree between IFSs on the basis of
preserving the complete information of the original IFS. The greater the distance between two IFSs, the
greater the cross-entropy of the fuzzy numbers. However, the traditional intuitionistic fuzzy distance
measurement method cannot accurately reflect the differences between the data.

Based on this, a group of simple data can be used to compare the traditional intuitionistic fuzzy
distance and fuzzy cross-entropy distance to show the reliability and stability of cross-entropy used to
measure the degree of fuzzy.

Example 2. Suppose that there are three voting activities with a population of 10. The voting can be represented
by three groups of fuzzy numbers: α1 = (0.6, 0.3), α2 = (0.5, 0.4), α3 = (0.4, 0.2). First, we use the traditional
Hamming and Euclidean distance model (6) and model (7), respectively, to solve dH(α1,α3) = dH(α2,α3) = 0.3
and dE(α1,α3) = dE(α2,α3) = 0.2646. Obviously, it can be seen from the calculation results that two
traditional distance formulas cannot measure the distance between fuzzy numbers α1 and α3, or α2 and α3,
which is the disadvantage of the classical intuitionistic fuzzy distance measurement method. It is solved by the
intuitionistic fuzzy cross-entropy distance method, CE∗(α1,α3) = 0.0037 and CE∗(α2,α3) = 0.0101.

The results show that the distance between α1 and α3 is closer than that of the traditional
intuitionistic fuzzy distance. Therefore, it is more effective to introduce intuitionistic fuzzy cross-entropy
to deal with uncertainty decision information.
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3. A Multi-Attribute Emergency Decision Model Based on Intuitionistic Fuzzy Cross-Entropy and
Grey Correlation Analysis

This section analyzes the IFMAEDM problem in which DMs have a certain subjective preference
for alternatives.

3.1. Problem Description

Taking the Wenchuan earthquake on May 12th 2008 as a study case, the government needs to
build a batch of temporary shelters to rescue the victims in the disaster area. Considering the impact
of earthquakes, the government has a certain priority (subjective preference) for the construction of
regional shelters. After determining the geographical location, disaster risk, rescue facilities, and
feasibility, a number of rescues in disaster-affected areas began in an orderly manner. The whole
decision-making process aims to find the optimal solution through intuitionistic fuzzy cross-entropy and
grey correlation analysis, which determines the area where the shelter is built first. It can be abstractly
understood as: The decision-maker (government) gives the IFN representing the attribute value
(agree, disagree, neutral)

(
μi j, νi j

)
from a series of alternatives (disaster-affected areas) Ai(i = 1, 2, . . .m)

according to the objective evaluation attribute (specific factors of disaster situation) Cj( j = 1, 2, . . . n),
which denotes that the decision maker’s approval degree is μi j, objection degree is νi j, and neutrality
degree is πi j = 1− μi j − νi j for alternative Ai under the condition of attribute Cj. The attribute weight

is expressed in ω j and satisfies 0 ≤ ω j( j = 1, 2, . . . n) ≤ 1 and
n
Σ

j=1
ω j = 1. The IFN meets the following

conditions: 0 ≤ μi j, νi j,πi j ≤ 1. Using a fuzzy number to construct multi-attribute intuitionistic fuzzy
decision matrix Rmn, the expression form is shown in Table 3:

Table 3. Intuitionistic fuzzy decision matrix.

Alternative C1 C2 . . . Cn

A1 (μ11, ν11) (μ12, ν12) . . . (μ1n, ν1n)
A2 (μ21, ν21) (μ22, ν22) . . . (μ2n, ν2n)
. . . . . . . . . . . . . . .
Am (μm1, νm1) (μm2, νm2) . . . (μmn, νmn)

Analyzing the Wenchuan earthquake, DMs have a certain subjective preference for alternatives,
which need to consider the severity of the disaster area. The preference value is also IFN
ci = (σi, δi)(i = 1, 2, . . .m). The following content uses the method of intuitionistic fuzzy cross-entropy
and grey correlation analysis to build the optimal decision model and solve it.

3.2. Steps of Intuitionistic Fuzzy Cross-Entropy and Grey Correlation Analysis Algorithm

For the uncertain MAEDM problem with certain subjective preference, taking the Wenchuan
earthquake shelter ranking problem for analysis, the comprehensive algorithm of intuitionistic fuzzy
cross-entropy and grey correlation analysis is used to solve it. The specific steps are as follows (see
Figure 1 for the flow framework):
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Figure 1. Algorithm framework of intuitionistic fuzzy cross-entropy and grey correlation analysis.

Step 1. According to the data given in the background of the Wenchuan earthquake case,
alternative Ai, objective evaluation attribute value Cj, decision maker’s subjective preference value ci,
and intuitionistic fuzzy evaluation decision matrix Rmn are determined.

Step 2. Using intuitionistic fuzzy cross-entropy distance to solve the grey correlation coefficient
between the objective evaluation value of alternatives and the subjective preference value of DMs,
the formula is expressed as:

θi j =

min
i

min
j

CE∗i j + ξmax
i

max
j

CE∗i j

CE∗i j + ξmax
i

max
j

CE∗i j
, (16)

ξ is called the grey resolution coefficient, and the value range is 0 ≤ ξ ≤ 1, which is often set as
ξ = 0.5. It satisfies 0 ≤ θi j(i = 1, 2, . . .m; j = 1, 2, . . . n) ≤ 1. The larger the grey correlation coefficient
θi j, the closer the objective evaluation value and subjective preference value. In model (16), CE∗i j is the
intuitionistic fuzzy cross-entropy distance, and the specific formula is as follows:

CE∗i j =
1+μi j−νi j

2 × log2
1+μi j−νi j

1/2[1+μi j−νi j+1+σi−δi]

+
1−μi j+νi j

2 × log2
1−μi j+νi j

1/2[1−μi j+νi j+1−σi+δi]

+ 1+σi−δi
2 × log2

1+σi−δi
1/2[1+σi−δi+1+μi j−νi j]

+ 1−σi+δi
2 × log2

1−σi+δi
1/2[1−σi+δi+1−μi ji+νi j]

, (17)

Step 3. On the basis of the solution method of the grey correlation coefficient given in model (16),
the weight of each attribute is calculated to determine the comprehensive correlation coefficient θi of
each alternative. The following three cases are discussed: The attribute weight is completely unknown,
completely known, and the value range is known.
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Case 1. Attribute weight is completely unknown. In order to determine the attribute weight, the
average information entropy of each attribute must be obtained. On the basis of intuitionistic fuzzy
entropy, the calculation method of information entropy is as follows:

E
(
Cj
)
= − 1

ln m

m
Σ

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CE∗i j

m
Σ

i=1
CE∗i j

ln
CE∗i j

m
Σ

i=1
CE∗i j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (18)

The natural logarithm is taken to make the entropy value return to 1 and ensure the boundedness of
information entropy. By transforming the formula of average information entropy, we can obtain the
method of solving attribute weight:

ω j =
1− E

(
Cj
)

n
Σ

k=1
[1− E(Ck)]

( j = 1, 2, . . . n), (19)

The weight parameters of each attribute can be determined and substituted,

θi =
n
Σ

j=1
θi jω j(i = 1, 2, . . .m; j = 1, 2, . . . n), (20)

In model (20), the comprehensive correlation coefficient of alternatives θi can be aggregated.
Case 2. Attribute weights are fully known. Under the condition that the attribute is completely

known, the grey correlation coefficient θi j of each alternative attribute is obtained by using model (16),
and the comprehensive correlation degree θi of the alternative is obtained by combining model (20).

Case 3. The value range of attribute weight is known. Based on the maximum approach
between weights with a known range of values and the subjective decision maker’s preference, a linear
programming model with attribute weight as a variable is constructed,

max Y
(
ω j
)
=

m
Σ

i=1

n
Σ

j=1
θi jω j( j = 1, 2, · · ·n)

s. t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n
Σ

j=1
ω j = 1,ω j ∈W

0 ≤ ω j, ( j = 1, 2, · · ·n), (i = 1, 2, · · ·m)

, (21)

In this way, the weight parameters of each attribute can be determined.
The weight ω j of each attribute can be calculated by establishing the optimization model of the

maximum comprehensive grey correlation coefficient θi:

θi =
n
Σ

j=1
θi jω j(i = 1, 2, . . .m; j = 1, 2, . . . n), (22)

The corresponding linear programming model is constructed by programming software Matlab
(R2017b) to solve the code, and the attribute weight of each alternative is obtained. Then, the model is
substituted into (20) to determine the comprehensive correlation degree θi.

Step 4. Based on the comprehensive correlation coefficient obtained under three different attribute
weights in Step 3, the alternatives of the earthquake shelter are ranked according to the size relationship.
The larger the θi, the better the alternative, which is in the front row.

Step 5. The sensitivity analysis is made by setting different values of the grey resolution constant
in the correlation coefficient, and the difference of ranking alternatives under different resolution
coefficients is compared and analyzed.
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4. A Numerical Case Study on the Ranking of Wenchuan Earthquake Shelters

In this section, the traditional intuitionistic fuzzy distance and the intuitionistic fuzzy cross-entropy
distance are used to analyze and compare the ranking of earthquake shelters.

4.1. Intuitionistic Fuzzy Cross-Entropy Distance and Grey Correlation Analysis

The stability and reliability of the method of intuitionistic fuzzy cross-entropy and the grey
correlation coefficient are analyzed through comparative experiments. Assume that the government
carries out shelter assessment and optimization for the five areas with a large disaster impact, and use
A, B, C, D, and E to represent them. The government analyzes and evaluates the geographical location
C1, disaster risk C2, rescue facilities C3, and feasibility C4 of the five disaster areas. The decision-maker
adopts an IFN to express the objective evaluation value of alternatives under different attributes, and
the intuitionistic fuzzy decision matrix R5×4 is shown in Table 4.

Table 4. Objective evaluation value of each alternative.

Alternative C1 C2 C3 C4

A (0.4, 0.3) (0.6, 0.3) (0.5, 0.4) (0.2, 0.7)
B (0.5, 0.4) (0.5, 0.3) (0.2, 0.7) (0.7, 0.1)
C (0.4, 0.3) (0.3, 0.5) (0.6, 0.2) (0.5, 0.2)
D (0.5, 0.5) (0.4, 0.5) (0.4, 0.4) (0.5, 0.4)
E (0.6, 0.3) (0.6, 0.4) (0.3, 0.6) (0.6, 0.3)

The decision maker’s subjective preference values for alternatives A, B, C, D, and E are also
expressed by IFNs: c1 = (0.5, 0.4 ), c2 = (0.6, 0.3), c3 = (0.4, 0.3 ), c4 = (0.4, 0.5), and c5 = (0.6, 0.2).
In order to choose the best alternative to build a shelter in the earthquake disaster area, the government
adopts the intuitionistic fuzzy cross-entropy and grey correlation analysis method to make a decision.

Step 1. Determine the values of alternative A, B, C, D, and E; the objective evaluation attribute
values C1,C2,C3,C4; the decision makers’ objective evaluation matrix R5×4; and subjective preference
values c1,c2,c3,c4,c5.

Step 2. According to model (17), the intuitionistic fuzzy cross-entropy distance between the
objective evaluation value and the subjective preference value of each alternative is calculated to form
the distance matrix:

CE∗5×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0151 0.0000 0.1378
0.0151 0.0038 0.2402 0.0411
0.0000 0.0327 0.0348 0.0151
0.0036 0.0000 0.0036 0.0145
0.0041 0.0159 0.1810 0.0041

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 3. Assuming that the grey resolution coefficient is ξ= 0.5, the grey correlation coefficient

between the decision-maker’s subjective preference value and the objective evaluation value is
calculated according to model (16). The coefficient matrix is as follows:

θ5×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.8883 1.0000 0.4657
0.8883 0.9693 0.3333 0.7450
1.0000 0.7860 0.7753 0.8883
0.9709 1.0000 0.9709 0.8923
0.9670 0.8831 0.3989 0.9670

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 4. Calculate the attribute weight ω j according to the known information provided by the

above case. When the attribute weight is known, the model is relatively easy to solve. The following
focuses on the analysis of two situations: The attribute weight is completely unknown and the attribute
weight range is known.
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Case 1. The weight of attributes is completely unknown. According to the idea of intuitionistic
fuzzy entropy, the average intuitionistic fuzzy entropy of the attribute is obtained by combining model
(18): E(C1)= 0.5424, E(C2)= 0.7385, E(C3)= 0.5837, E(C4)= 0.6498. Then, according to model (19),
we obtain the attribute weight ω1 = 0.3080, ω2 = 0.1761, ω3 = 0.2802 and ω4 = 0.2357. The attribute
weight obtained is substituted into model (22), and the comprehensive grey correlation coefficient
θi of the alternatives under the attribute condition is calculated: θ1= 0.8544, θ2= 0.7133, θ3= 0.8730,
θ4= 0.9575, and θ5= 0.7930. From the comprehensive grey correlation coefficient θi of the alternatives,
the result is θ4 > θ3 > θ1 > θ5 > θ2 and D 
 C 
 A 
 E 
 B. Therefore, the alternative D is the best
and the government should give priority to building earthquake shelters in the region.

For proving the superiority and stability of the intuitionistic fuzzy cross-entropy and the
comprehensive grey correlation analysis algorithm proposed in this paper, different resolution
coefficients ξ are set for sensitivity analysis to compare and analyze whether the above alternatives
will produce fluctuations. Set ξ =0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00. The results of the comprehensive
correlation coefficient are shown in Table 5. The ranking results of alternatives did not fluctuate with
the change in resolution coefficient.

Table 5. Comprehensive grey correlation coefficient of alternatives under different grey resolution
coefficients based on completely unknown attribute weights.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

A 0.8372 0.8544 0.8681 0.8793 0.8887 0.8967 0.9037
B 0.6807 0.7133 0.7388 0.7596 0.7769 0.7917 0.8045
C 0.8488 0.8730 0.8906 0.9039 0.9143 0.9226 0.9295
D 0.9479 0.9575 0.9641 0.9689 0.9726 0.9755 0.9779
E 0.7697 0.7930 0.8114 0.8266 0.8393 0.8501 0.8595

In order to verify the reliability and stability of the method proposed in this paper more
intuitively, we use Python graphics to carry out simulation experiments on the sequencing and gray
resolution coefficient of each alternative, and the specific results are shown in Figure 2 (G is the grey
resolution coefficient).
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Figure 2. Ranking results of alternatives with different grey resolution coefficients based on completely
unknown attribute weights.

It can be seen from Figure 2 that in the seven experiments of sensitivity analysis of grey resolution
coefficient, the ranking results of alternatives have not changed, and D 
 C 
 A 
 E 
 B is always
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maintained. The simulation experiment shows that D is the best alternative to build a shelter in the
earthquake disaster area, and the decision result does not fluctuate, which shows the strong stability.

Case 2. The value range of attribute weight is known: 0.30 ≤ ω1 ≤ 0.32, 0.17 ≤ ω2 ≤ 0.20,
0.25 ≤ ω3 ≤ 0.28, and 0.20 ≤ ω4 ≤ 0.24. Through the linear programming model (21), the objective
function Y to maximize the grey correlation coefficient of alternatives is constructed and solved:

max Y
(
ω j
)
= 4.8262ω1+4.5267ω2

+3.4784ω3+3.9583ω4
, s. t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.30 ≤ ω1 ≤ 0.32
0.17 ≤ ω2 ≤ 0.20
0.25 ≤ ω3 ≤ 0.28
0.20 ≤ ω4 ≤ 0.24
ω1 +ω2 +ω3 +ω4= 1
0 ≤ ω j ≤ 1, ( j = 1, 2, 3, 4)

(23)

The attribute weight is ω1= 0.30, ω2= 0.18, ω3= 0.28, and ω4= 0.24 by MATLAB. Combined with
model (22), the comprehensive grey correlation coefficient of each alternative is obtained: θ1= 0.8517,
θ2= 0.7131, θ3= 0.8718, θ4= 0.9573, θ5= 0.7928. According to the comprehensive grey correlation
coefficient θi of the alternatives, we can obtain θ4 > θ3 > θ1 > θ5 > θ2. Therefore, the order of
alternatives is D 
 C 
 A 
 E 
 B, and, thus, alternative D is the best. The government should give
priority to building earthquake shelters in area D, which is the same as the decision-making result
when the attribute weight is unknown.

In order to further verify the stability and superiority of the algorithm of intuitionistic fuzzy
cross-entropy and comprehensive grey correlation analysis when the attribute weight range is known,
different resolution coefficients are also set for sensitivity analysis, and the optimal alternative and
decision results are compared. Taking ξ =0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.00, and attribute weight
and comprehensive grey correlation analysis when the attribute weight range is known, different
resolution coefficients are also set for sensitivity analysis, and the optimal alternative and decision
results are compared. The attribute weight and comprehensive grey correlation coefficient of each
alternative are shown in Tables 6 and 7. From the table data, the change in the grey resolution
coefficient does not affect the attribute weight and the decision-making result of the alternative, which
is still D 
 C 
 A 
 E 
 B. It is always the best alternative to build the seismic shelter in the D area.
In addition, when the weight is completely unknown, the comprehensive grey correlation coefficient
of the alternatives is higher than that of the alternatives with known range of attribute weight.

Table 6. Attribute weight values under different grey resolution coefficients.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

ω1 0.30 0.30 0.30 0.30 0.30 0.30 0.30
ω2 0.18 0.18 0.18 0.18 0.18 0.18 0.18
ω3 0.28 0.28 0.28 0.28 0.28 0.28 0.28
ω4 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Table 7. Comprehensive grey correlation coefficient of alternatives under different grey resolution
coefficients based on known range of attribute weight.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

A 0.8341 0.8517 0.8656 0.8771 0.8867 0.8948 0.9019
B 0.6805 0.7131 0.7387 0.7595 0.7768 0.7916 0.8044
C 0.8473 0.8718 0.8895 0.9029 0.9134 0.9218 0.9288
D 0.9476 0.9573 0.9639 0.9688 0.9725 0.9754 0.9778
E 0.7695 0.7928 0.8113 0.8264 0.8392 0.8500 0.8594

More importantly, when the grey resolution coefficient fluctuates from 0.4 to 1.0, whether the
weight is known or unknown, the change range of the comprehensive grey correlation coefficient of
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alternative D is the smallest, which is 0.0300 and 0.0302, respectively (see Table 8). Alternative B is
always the worst, and its fluctuation is also the largest, which is 0.1438 and 0.1239, respectively. Based
on this, the stability of the proposed method is proved.

Table 8. Change degree of comprehensive grey correlation coefficient of alternatives under fluctuation
of grey resolution coefficient.

Alternative Δθ (Unknown Weight) Δθ (Weight Range Known)

A 0.0665 0.0678
B 0.1238 0.1239
C 0.0807 0.0815
D 0.0300 0.0302
E 0.0898 0.0899

From Table 7, Python simulation results are shown in Figure 3. Compared to Figure 2,
the comprehensive grey correlation coefficient decreases but does not change the overall trend
of each alternative, and the decision results remain unchanged. Whether the attribute weights are
known or not, the optimal alternative and ranking results are the same, which shows the superiority
and stability of the method.
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Figure 3. Ranking results of alternatives with different grey resolution coefficients based on known
attribute weight range.

Through the above comparative analysis, the intuitionistic fuzzy entropy and grey correlation
analysis method has achieved good results in solving the MAEDM problems. In this way, the ranking
results have strong stability and environmental adaptability.

4.2. Traditional Intuitionistic Fuzzy Distance and Grey Correlation Analysis

Based on the data given by the above problem of ranking earthquake shelters, the traditional
intuitionistic fuzzy distance and grey correlation degree are used to analyze and give the ranking results.

The traditional intuitionistic fuzzy distance model (4) has been given; thus, the corresponding
grey correlation coefficient εi j is

εi j =

min
i

min
j

d
(
rij, ci

)
+ ξmax

i
max

j
d
(
rij, ci

)
d
(
rij, ci

)
+ ξmax

i
max

j
d
(
rij, ci

) (24)
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where rij denotes the objective evaluation value, ci denotes the subjective preference information, and
grey resolution coefficient ξ = 0.50.

Step 1. Calculating the grey correlation coefficient of each alternative between the objective
evaluation value and subjective preference information.

ε5×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6667 0.6667 1.0000 0.4000
0.6667 0.8000 0.3333 0.5714
1.0000 0.5714 0.5714 0.6667
0.8000 1.0000 0.8000 0.6667
0.8000 0.6667 0.8000 0.8000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 2. Determining the attribute weight. Due to the fact that the range of attribute weight values

is known, utilize model (21) to establish the following single-objective programming model:

max Z
(
ω j
)
= 3.9334ω1+3.7048ω2

+3.5047ω3+3.1048ω4
s. t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.30 ≤ ω1 ≤ 0.32
0.17 ≤ ω2 ≤ 0.20
0.25 ≤ ω3 ≤ 0.28
0.20 ≤ ω4 ≤ 0.24
ω1 +ω2 +ω3 +ω4= 1
0 ≤ ω j ≤ 1, ( j = 1, 2, 3, 4)

(25)

Solving this model, attribute weight can be obtained:ω1= 0.30, ω2= 0.18, ω3= 0.28, and ω4= 0.24.
Step 3. On the basis of model (20), the comprehensive grey correlation coefficient is calculated:

ε1= 0.6960, ε2= 0.5745, ε3= 0.7229, ε4= 0.8040, ε5= 0.7760.
Step 4. Determining the alternatives ranking. Rank the alternatives according to the size of the

comprehensive grey correlation coefficient εi. Thus, D 
 E 
 C 
 A 
 B is the ranking result.

4.3. Comparative Analysis

Based on the ranking problem of earthquake shelters, this paper makes a comparative analysis
from two aspects:

(1). The attribute weight is completely unknown and the attribute weight range is known
For a more intuitive comparison, it is further explored based on Figures 2 and 3. Regardless of

whether the attribute weight is known or unknown, the ranking results of alternatives maintain
high stability. The best alternative is always D, and the worst is always B. The comprehensive grey
correlation coefficient of the alternative is positively correlated with the grey resolution coefficient,
which indicates that the larger the resolution coefficient, the greater the correlation coefficient of the
corresponding alternative.

Moreover, in the case of unknown weight, the comprehensive grey correlation coefficient of each
alternative is always better than that of the known weight range, which also indirectly proves the
fact that attribute weights are uncertain in most fields of decision problems (see Figures 4 and 5).
In addition, the results obtained by using a reasonable method to determine the attribute weights are
more practical.
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Figure 4. The alternatives with different grey resolution coefficients based on completely unknown
attribute weights.
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Figure 5. The alternatives with different grey resolution coefficients based on known attribute
weight range.

Meanwhile, based on the data in Table 8, we can further analyze the volatility of the comprehensive
grey correlation coefficient in two cases. From Figure 6 (deviation 1 represents unknown weights
and deviation 2 represents known weights range), the deviation curves of the comprehensive grey
correlation coefficient in the two kinds of weights situation almost coincide. However, when the weight
is unknown, the fluctuation amplitude of the comprehensive grey correlation coefficient is still less
than that of the known attribute weight range.

Figure 6. Deviation of comprehensive grey correlation coefficient in two cases.

160



Entropy 2020, 22, 768

Through the comparative analysis, we can see that the ranking result with unknown weight is more
reasonable and more consistent with the uncertainty of the decision environment in MAEDM problems.

(2). The traditional intuitionistic fuzzy distance with the intuitionistic fuzzy cross-entropy distance
Through the above solution, the ranking results of the intuitionistic fuzzy cross-entropy method

is D 
 C 
 A 
 E 
 B. Under the sufficient sensitivity analysis, the results maintain a high stability.
However, by using the traditional intuitionistic fuzzy distance method, the result of ranking becomes
D 
 E 
 C 
 A 
 B. Although the ranking result has little change, the best alternative is still D and
the worst one is B (see Table 9). This also fully proves that the method based on intuitionistic fuzzy
cross-entropy and grey correlation analysis proposed in this paper has strong stability.

Table 9. Ranking results under different methods.

Methods Ranking Results

The traditional intuitionistic fuzzy distance D 
 E 
 C 
 A 
 B
The intuitionistic fuzzy cross-entropy distance (unknown weight) D 
 C 
 A 
 E 
 B

The intuitionistic fuzzy cross-entropy distance (weight range known) D 
 C 
 A 
 E 
 B

According to the above two groups of comparative analysis, it can be concluded from many
aspects that D is the best alternative. For the decision maker to make rescue measures, it is the most
reasonable decision to give priority to the establishment of earthquake shelters in the D area.

5. Conclusions

This paper presents a new MAEDM method based on intuitionistic fuzzy cross-entropy and
comprehensive grey correlation analysis. The main contributions are as follows: (1) Overcome the
limitations of the traditional intuitionistic fuzzy geometric distance algorithm, and introduce the
intuitionistic fuzzy cross-entropy distance measurement method, which can not only retain the integrity
of decision information, but also directly reflect the differences between intuitionistic fuzzy data.
(2) This paper focuses on the weight problem in MAEDM, and analyzes and compares the known and
unknown attribute weights, which greatly improves the reliability and stability of decision-making
results. (3) By using the method of grey correlation analysis, the fitting degree between the objective
evaluation value and the subjective preference value of the decision maker can be fully considered.
On this basis, a sensitivity analysis is made for the grey resolution coefficient to make the ranking result
more reasonable. (4) The intuitionistic fuzzy cross-entropy and grey correlation analysis algorithm
are introduced into the emergency decision-making problems such as the location ranking of shelters
in earthquake disaster areas, which greatly reduces the risk of decision-making. (5) By comparing
the traditional intuitionistic fuzzy distance to the intuitionistic fuzzy cross-entropy, the validity of the
proposed method is verified.

Unfortunately, the method proposed in this paper is applicable to the emergency decision-making
problems with certain subjective preference. For the emergency problems with which the decision
maker has no obvious preference, the method needs to be further studied. In addition, considering
more attribute indicators to rank alternatives may obtain more convincing results.

These aspects will become the research hotspot in the future: (1) In the MAEDM, the attribute
weight problem will become a research focus. Considering the time factor, it may be an interesting
topic to develop the weight into a dynamic field in the future. (2) The decision maker’s preference
relation and attribute weight often have great uncertainty. It is an effective method to discuss the
multi-attribute emergency decision by using a more reliable robust optimization [39–41].
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Abstract: To perform statistical inference for time series, one should be able to assess if they present
deterministic or stochastic trends. For univariate analysis, one way to detect stochastic trends is to
test if the series has unit roots, and for multivariate studies it is often relevant to search for stationary
linear relationships between the series, or if they cointegrate. The main goal of this article is to briefly
review the shortcomings of unit root and cointegration tests proposed by the Bayesian approach of
statistical inference and to show how they can be overcome by the Full Bayesian Significance Test
(FBST), a procedure designed to test sharp or precise hypothesis. We will compare its performance
with the most used frequentist alternatives, namely, the Augmented Dickey–Fuller for unit roots and
the maximum eigenvalue test for cointegration.

Keywords: time series; Bayesian inference; hypothesis testing; unit root; cointegration

Several times series present deterministic or stochastic trends, which imply that the effects of
these trends on the level of the series are permanent. Consequently, the mean and variance of the
series will not be constant and will not revert to a long-term value. This feature reflects the fact that the
stochastic processes generating these series are not (weakly) stationary, imposing problems to perform
inductive inference using the most traditional estimators or predictors. This is so because the usual
properties of these procedures will not be valid under such conditions.

Therefore, when modeling non-stationary time series, one should be able to properly detrend
the used series, either by directly modeling the trend by deterministic functions, or by transforming
the series to remove stochastic trends. To determine which strategy is the suitable solution, several
statistical tests were developed since the 1970s by the frequentist school of statistical inference.

The Augmented Dickey–Fuller (ADF) test is one of the most popular tests used to assess if a
time series has a stochastic trend or, for series described by auto-regressive models, if they have a
unit root. When one is searching for long term relationships between multiple series under analysis,
it is crucial to know if there are stationary linear combinations of these series, i.e., if the series are
cointegrated. Cointegration tests were developed, also by the frequentist school, in the late 1980s [1]
and early 1990s [2]. Only in the late 1980s did the Bayesian approach to test the presence of unit roots
start to be developed.

Both unit root and cointegration tests may be considered tests on precise or sharp hypotheses, i.e.,
those in which the dimension of the parameter space under the tested hypothesis is smaller than the
dimension of the unrestricted parameter space. Testing sharp hypotheses poses major difficulties for
either the frequentist or Bayesian paradigms, such as the need to eliminate nuisance parameters.

The main goal of this article is to briefly review the shortcomings of the tests proposed by the
Bayesian school and how they can be overcome by the Full Bayesian Significance Test (FBST). More
specifically, we will compare its performance with the most used frequentist alternatives, the ADF
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for unit roots, and the maximum eigenvalue test for cointegration. Since this is a review article, it is
important to remark that the results presented here were published elsewhere by the same authors,
see [3,4].

To accomplish this objective, we will define the FBST in the next section, also showing how it
can be implemented in a general context. The following section discusses the problems of testing the
existence of unit roots in univariate time series and how the Bayesian tests approach the problem.
Section 4 then shows how the FBST is applied to test if a time series has unit roots and illustrates this
with applications on a real data set. In the sequel, we discuss the Bayesian alternatives to cointegration
tests and then apply the FBST to test for cointegration using real data sets. We conclude with some
remarks and possible extensions for future work.

1. FBST

The Full Bayesian Significance Test was proposed in [5] mainly to deal with sharp hypotheses.
The procedure has several properties, see [6,7], most interestingly the fact that it is only based on
posterior densities, thus avoiding the necessity of complications such as the elimination of nuisance
parameters or the adoption of priors with positive probabilities attached to sets of zero Lebesgue
measure.

We shall consider general statistical models in which the parameter space is denoted by Θ ⊆ Rm,
m ∈ N. A sharp hypothesis H assumes that θ, the parameter vector of the chosen statistical model,
belongs to a sub-manifold ΘH of smaller dimensions than Θ. This implies, for continuous parameter
spaces, that the subset ΘH has null Lebesgue measure whenever H is sharp. The sample space, the set
of all possible values of the observable random variables (or vectors), is here denoted by X .

Following the Bayesian paradigm, let h(·) be a probability prior density over Θ, x ∈ X , the
observed sample (scalar or vector), and L(· | x) the likelihood derived from data x. To evaluate the
Bayesian evidence based on the FBST, the sole relevant entity is the posterior probability density for θ

given x,
g(θ | x) ∝ h(θ) · L(θ | x).

It is important to highlight that the procedure may be used when the parameter space is discrete.
However, when the posterior probability distribution over Θ is absolutely continuous, the FBST
appears as a more suitable alternative to significance hypothesis testing. For notational simplicity, we
will denote ΘH by H in the sequel.

Let r(θ) be a reference density on Θ such that the function s(θ) = g(θ | x)/r(θ) is a relative surprise,
(see [8], pp. 145–146) function. The reference density is important because it guarantees that the FBST
is invariant to reparametrizations, even when r(θ) is improper, see [6,9]. Thus, when considering r(θ)
proportional to a constant, the surprise function will be, in practical terms, equivalent to the posterior
distribution. For the applications considered in this article, we will use the improper uniform density
as reference density on Θ. The authors of [10] remark that it is possible to generalize the procedure
using other reference densities such as neutral, invariant, maximum-entropy or non-informative priors,
if they are available and desirable.

Definition 1 (Tangent set). Considering a sharp hypothesis H : θ ∈ ΘH, the tangential set of the hypothesis
given the sample is given by

Tx = {θ ∈ Θ : s(θ) > s∗}. (1)

where s∗ = supθ∈H s(θ).

Notice that the tangent set Tx is the highest relative surprise set, that is, the set of points of the
parameter space with higher relative surprise than any point in H, being tangential to H in this sense.
This approach takes into consideration the statistical model in which the hypothesis is defined, using
several components of the model to define an evidential measure favoring the hypothesis.
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Definition 2 (Evidence). The Bayesian evidence value against H, ev, is defined as

ev = P (θ ∈ Tx | x) =
∫
Tx

dGx(θ), (2)

where Gx(θ) denotes the posterior distribution function of θ and the above integral is of the Riemann–Stieltjes type.

Definition 2 sets ev as the posterior probability of the tangent set that is interpreted as an evidence
value against H. Hence, the evidence value supporting H is the complement of ev, namely, ev = 1 − ev.
Notwithstanding, ev is not evidence against A : θ /∈ ΘH , the alternative hypothesis (which is not sharp
anyway). Equivalently, ev is not evidence in favor of A, although it is against H.

Definition 3 (Test). The FBST is the procedure that rejects H whenever ev = 1 − ev is smaller than a critical
level, evc.

Thus, we are left with the problem of deciding the critical level evc for each particular application.
We briefly discuss this and other practical issues in the following subsection.

1.1. Practical Implementation: Critical Values and Numerical Computation

Since ev (also called e-value) is a statistic, it has a sampling distribution derived from the adopted
statistical model and in principle this distribution could be used to find a threshold value. If the
likelihood and the posterior distribution satisfy certain regularity conditions. See [11], p. 436. [12]
proved that, asymptotically, there is a relationship between ev and the p-values obtained from the
frequentist likelihood ratio procedure used to test the same hypotheses. This fact provides a way to
find, at least asymptotically, a critical value to ev to reject the hypothesis being tested.

In a recent review [7], the authors discuss different ways to provide a threshold for ev. Among
these alternatives, we highlight the standardized e-value, which follows, asymptotically, the uniform
distribution on (0, 1). See also [13] for more on the standardized version of ev.

One could also try to define the FBST as a Bayes test derived from a particular loss function and
the respective minimization of the posterior expected loss. Following this strategy, [10] showed that
there are loss functions which result in ev as a Bayes estimator of φ = IH(θ), where IA(x) denotes the
indicator function, being equal to one if x ∈ A and zero otherwise, x /∈ A. Hence, the FBST is in fact a
Bayes procedure in the formal sense as defined by Wald in [14].

Table 1. Pseudocode to implement the FBST.

General algorithm: compute ev supporting hypothesis H : θ ∈ ΘH

1. Specify the statistical model (likelihood) and prior distribution on Θ.
2. Specify the reference density, r(θ), and derive the relative surprise function, s(θ).

3. Find s∗, the maximum value of s(θ) under the constraint θ ∈ H.
4. Integrate the posterior distribution on the tangent set—Equation (2)—to find ev.

5. Find ev = 1 − ev.

To compute the evidence value supporting H defined in the last section, we need to follow the
steps showed in Table 1. Appendix A provides detailed information about the computational resources
and codes used to implement the FBST in the examples presented in this work. After defining the
statistical model and prior, it is simple to find the surprise function, s(θ). In step 3, one should find
the point of the parameter space in H that maximizes s(θ), that is, to solve a problem of constrained
numerical maximization. In several applications, this step does not present a closed form solution,
requiring the use of numerical optimizers.

Step 4 involves the integration of the posterior distribution on a subset of Θ, the tangent set Tx

that can be highly complex. Once more, since in many cases it is fairly difficult to find an explicit
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expression for Tx, one may use various numerical techniques to compute the integral. If it is possible
to generate random samples from the posterior distribution, Monte Carlo integration provides an
estimate of ev, as we will show in this work. Another alternative is to use approximation techniques,
such as those proposed in [15], based on a Laplace approximation. We discuss how to implement such
approximations for unit root and cointegration tests in [3,4].

2. Bayesian Unit Root Tests

Before presenting the Bayesian procedures used to test the presence of unit roots, let us fix notation.
We will denote by yt the t-th value of a univariate time series observed in t = 1, . . . , T + p dates, where T
and p are positive integers. The usual approach is to assume that the series under analysis is described by
an auto-regressive process with p lags, AR(p), meaning that the data generating process is fully described
by a stochastic difference equation of order p, possibly with an intercept or drift and a deterministic
linear trend, i.e.,

yt = μ + δ · t + φ1yt−1 + . . . + φpyt−p + εt (3)

with εt i.i.d. N(0, σ2) for t = 1, . . . , T + p. Using the lag or backshift operator B, we denote yt−k by
Bkyt, allowing us to rewrite (3) as

(1 − φ1B − . . . φpBp)yt = μ + δ · t + εt (4)

where φ(B) = (1 − φ1B − . . . φpBp) is the autoregressive polynomial. The difference Equation (3) will

be stable, implying that the process generating {yt}T+p
t=1 is (weakly) stationary, whenever the roots

of the characteristic polynomial φ(z), z ∈ C, lie outside the unit circle, since there may be complex
roots. The set of polynomial operators, such as lag polynomials like φ(B), induces an algebra that is
isomorphic to the algebra of polynomials in real or complex variables, see [16].

If some of the roots lie exactly on the unit circle, it is said that the process has unit roots. In order
to test such a hypothesis statistically, (3) is rewritten as

Δyt = μ + δ · t + Γ0 yt−1 + Γ1Δyt−1 + . . . + Γp−1Δyt−p+1 + εt (5)

where Δyt = yt − yt−1, Γ0 = φ1 + . . . + φp − 1 and Γi = −∑
p
j=i+1 φj, for i = 1, . . . , p − 1. If the

generating process has only one unit root, one root of the complex polynomial φ(z),

1 − φ1z − φ2z2 . . . φpzp,

is equal to one, meaning that
1 − φ1 − φ2 − . . . − φp = 0

i.e., φ(1) = 0, and all the other roots are on or outside the unit circle. In this case, Γ0 = 0, the hypothesis
that will be tested when modeling (5). Even though tests based on these assumptions verify if the
process has a single unit root, there are generalizations based on the same principles that test the
existence of multiple unit roots, see [17].

The search for Bayesian unit root tests began in the late 1980s. As far as we know, [18,19] were the
first works to propose a Bayesian approach for unit root tests. The frequentist critics of these articles
received a proper answer in [20,21], generating a fruitful debate that produced a long list of papers in
the literature of Bayesian time series. A good summary of the debate and the Bayesian papers that
resulted from it is presented in [22]. We will present here only the most relevant strategies proposed
by the Bayesian school to test for unit roots.

Let θ = (ρ, ψ) be the parameters vector, in which ρ = ∑
p
i=1 φi and ψ = (μ, δ, Γ1, . . . , Γp−1).

Assuming σ2 fixed, the prior density for θ can be factorized as

h(θ) = h0(ρ) · h1(ψ | ρ).
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The marginal likelihood for ρ, denoted by Lm, is:

Lm(ρ | y) ∝
∫
Ψ

L(θ | y) · h1(ψ | ρ) dψ.

where y = {yt}T+p
t=1 is the observations vector, L(θ|y) the full likelihood, and Ψ the support of the

random vector ψ. This marginal likelihood, associated with a prior for ρ, is the main ingredient used
by standard Bayesian procedures to test the existence of unit roots. Even though the procedure varies
among authors according to some specific aspects, mentioned below, basically all of them use Bayes
factors and posterior probabilities.

One important issue is the specification of the null hypothesis: some authors, starting from [23],
consider H0 : ρ = 1 against H1 : ρ < 1. Starting from [24], this is the way the frequentist school
addresses the problem, but following this approach no explosive value for ρ is considered. The decision
theoretic Bayesian approach solved the problem using the posterior probabilities ratio or Bayes factor:

B01 =
Lm(ρ = 1 | y)

1∫
0

Lm(ρ | y) · h0(ρ) dρ

.

Advocates of this solution argue that one of the advantages of this approach is that the null and
the alternative hypotheses are given equal weight. However, the expression above is not defined if
h0(ρ) is not a proper density since the denominator of the Bayes factor is equal to the predictive density,
defined just if h0(ρ) is a proper density. There are also problems if Lm(ρ = 1|y) is zero or infinite.

The problem is approached by [20,25] by testing H0 : ρ ≥ 1 against H1 : ρ < 1, considering
explicitly explosive values for ρ. The main advantage of this strategy is the possibility to compute
posterior probabilities like

P(ρ > 1 | y) =
∫ ∞

1
gm(ρ | y) dρ

defined even for improper priors on ρ, where gm is the marginal posterior for ρ.
In [26], the authors do not choose ρ as the parameter of interest, examining instead the largest

absolute value of the roots of the characteristic polynomial and then verifying if it is smaller or larger
than one. Usually, this value is slightly smaller than ρ, but the authors argue that this small difference
may be important. When this approach is used, unit roots are found less frequently. For an AR(3)
model with a constant and deterministic trend, [26] derives the posterior density for the dominant root
for the 14 series used in [27] and concluded the following: for eleven of the series, the dominant root
was smaller than one, that is to say, the series were trend-stationary. These results were based on flat
priors for the autoregressive parameters and the deterministic trend coefficient.

Another controversy is about the prior over ρ: [20] argues that the difference between the results
given by the frequentist and Bayesian inferences is due to the fact that the flat prior proposed in [18]
overweights the stationary region of ρ. Hence, he derived a Jeffreys prior for the AR(1) model: this
prior quickly diverges as ρ increases and becomes larger than one. The obtained posterior led to
the same results of [27], which will be discussed in detail in the following section. The critics of the
approach adopted by Phillips in [20] judged the Jeffreys prior as unrealistic, from a subjective point of
view. See the comments on Phillips’s paper on the Journal of Applied Econometrics, volume 6, number 4,
1991. The subsequent papers of the same number support the Bayesian approach. This is a nonsensical
objection if one considers that the Jeffreys prior is crucial to ensure an invariant inferential procedure,
and invariance is a highly desirable property, for either objective or subjective reasons. See [28] for
more on invariance in physics and statistical models.

A final controversial point concerns the modeling of initial observations. If the likelihood explicitly
models the initial observed values (it is an exact likelihood), the process is implicitly considered
stationary. In fact, when it is known that the process is stationary, and it is believed that the data
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generating process is working for a long period, it is reasonable to assume that the parameters of the
model determine the marginal distribution of the initial observations. In the simplest AR(1) model,
this would imply that y1 ∼ N(0, σ2/(1 − ρ2)). In this scenario, to perform the inference conditional
on the first observation would discard relevant information. On the other hand, there is no marginal
distribution defined for y1 if the generating process is not stationary. Then, it is valid to use a likelihood
conditional on initial observations. For the models presented here, we always work with the conditional
likelihood. As argued in [18], inferences for stationary models are little affected by using conditional
likelihoods, especially for large samples. He compares these inferences with the ones based on exact
likelihoods under explicit modeling for initial observations.

3. Implementing the FBST for Unit Root Testing

We will now describe how to use the FBST to test for the presence of unit roots referring to the
general model (5). It is also possible to include q ∈ N moving average terms in (3) to model the process,
a case that will not be covered in this article but that, in principle, shall not imply major problems for
the FBST.

Δyt = μ + δ · t + Γ0 yt−1 + Γ1Δyt−1 + . . . + Γp−1Δyt−p+1 + εt, (5)

where εt
i.i.d.∼ N(0, σ2) for t = 1, . . . , T + p, recalling also that the hypothesis being tested is Γ0 = 0. We

slightly change the notation of the last section now using ψ to denote the vector (μ, δ, Γ0, . . . , Γp−1)

and setting θ = (ψ, σ).
Recalling the steps to implement the FBST displayed in Table 1, we have just specified the statistical

model. The likelihood, conditional on the first p observations, derived from the Gaussian model is

L(θ | y) = (2π)−T/2σ−Texp

{
− 1

2σ2 ·
T+p

∑
t=p+1

ε2
t

}
, (6)

in which εt = Δyt − μ − δ · t − Γ0yt−1 − Γ1Δyt−1 − . . . − Γp−1Δyt−p+1. To complete step 1 of Table 1,
we need a prior distribution for θ. For all the series modeled in this article, we will use the following
non informative prior:

h(θ) = h(ψ, σ) ∝ 1/σ. (7)

We are aware of the problems caused by improper priors applied to this problem when one uses
alternative approaches, like those mentioned by [22]. However, one of our goals is to show how the
FBST can be implemented even for a potentially problematic prior like this one. To write the posterior,
we use the following notation:

ΔY =

⎡⎢⎢⎢⎢⎣
Δyp+1

Δyp+2
...

ΔyT+p

⎤⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎣
1 p + 1 yp Δyp . . . Δy2

1 p + 2 yp+1 Δyp+1 . . . Δy3
...

...
...

...
...

...
1 T + p yT+p−1 ΔyT+p−1 . . . ΔyT+1

⎤⎥⎥⎥⎥⎦ , ψ =

⎡⎢⎢⎢⎢⎢⎢⎣
μ

δ

Γ0
...

Γp−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

being ΔY of dimension T × 1, X of dimension T × (p + 2) and ψ, (p + 2)× 1. Thanks to this notation,
we can write, using primes to denote transposed matrices:

T+p

∑
t=p+1

ε2
t = (ΔY − Xψ)′(ΔY − Xψ) = (ΔY − Δ̂Y)′(ΔY − Δ̂Y) + (ψ − ψ̂)′X′X(ψ − ψ̂),
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where ψ̂ = (X′X)−1X′ · ΔY is the ordinary least squares (OLS) estimator of ψ and Δ̂Y = Xψ̂ its
prediction for ΔY. Thus, the full posterior is

g(θ | y) ∝ σ−(T+1)exp
{
− 1

2σ2 [(ΔY − Δ̂Y)′(ΔY − Δ̂Y) + (ψ − ψ̂)′X′X(ψ − ψ̂)]

}
, (8)

a Normal-Inverse Gamma density.
Step 2 demands a reference density in order to define the relative surprise function. Since we will

use the improper density r(θ) ∝ 1, the surprise function will be equivalent to the posterior distribution
in our applications. Given this, to find s∗ (Step 3), we need to find the maximum value of the posterior
under the hypothesis being tested, in our case, Γ0 = 0.

This maximization step is fairly simple to implement given the modeling choices made here:
Gaussian likelihood, non informative prior and reference density proportional to a constant. The
restricted (assuming H) posterior distribution is

gr(θr | y) ∝ σ−(T+1)exp
{
− 1

2σ2 [(ΔY − Δ̂Yr)
′(ΔY − Δ̂Yr) + (ψr − ψ̂r)

′X′
rXr(ψr − ψ̂r)]

}
, (9)

in which θr = (ψr, σ), ψr being vector ψ without Γ0,

Xr =

⎡⎢⎢⎢⎢⎣
1 p + 1 Δyp . . . Δy2

1 p + 2 Δyp+1 . . . Δy3
...

...
...

...
...

1 T + p ΔyT+p−1 . . . ΔyT+1

⎤⎥⎥⎥⎥⎦ , ψ̂r = (X′
rXr)

−1X′
r · ΔY, and Δ̂Yr = Xrψ̂r,

that is, Xr is simply matrix X above without its third column, since under H : Γ0 = 0 and the coefficient
of the third column of X is Γ0—see Equation (5)—ψ̂r is a least squares estimator of ψr and Δ̂Yr denotes
the predicted values for ΔY given by the restricted model. From (9), it is easy to show that the maximum
a posteriori (MAP) estimator of θr is given by (ψ̂r, σ̂r), with

σ̂r =

√
(ΔY − Δ̂Yr)′(ΔY − Δ̂Yr)

T + 1
.

Plugging the values of ψ̂r and σ̂r into (9), we find s∗, as requested in Step 3. Step 4 will also be
easy to implement thanks to structure of the models assumed in this section. Since the full posterior,
(8), is a Normal-Inverse Gamma density, a simple Gibbs sampler allows us to obtain a random sample
from such distribution, suggesting a Monte Carlo approach to compute ev. From (8), the conditional
posteriors of ψ and σ are, respectively,

gψ(ψ | σ, y) ∝ N(ψ̂, σ2(X′X)−1) (10)

gσ2(σ2 | ψ, y) ∝ IG
(

T + 1
2

, H
)

(11)

in which H = 0.5[(ΔY − Δ̂Y)′(ΔY − Δ̂Y) + (ψ − ψ̂)′X′X(ψ − ψ̂)], IG denotes the Inverse-Gamma
distribution and ψ̂ is the OLS estimator of ψ, as above. Appendix B brings the parametrization and the
probability density function of the Inverse-Gamma distribution. With a sizable random sample from
the full posterior, we estimate ev as the proportion of sampled vectors that generate a value for the
posterior greater than s∗, found in Step 3. Hence, in Step 5, we only compute one minus the estimate
of ev found in Step 4. The whole procedure is summarized in Table 2. For the implementations in this
article we sampled 51,000 vectors from (8) and discarded the first 1,000 as a burn-in sample.
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Table 2. Pseudocode to implement the FBST to unit root tests.

General algorithm: compute ev supporting hypothesis H : Γ0 = 0 in model (5)

1. Statistical model: Gaussian; prior: h(θ) ∝ 1/σ.
2. Reference density: r(θ) ∝ 1; relative surprise function: g(θ | y).

3. Find s∗: (9) evaluated at ψ̂r and σ̂r.
4. Gibbs sampler (from Equations (10) and (11)) to obtain N random samples of parameter vectors from (8).

Evaluate the posterior at the sampled vectors and estimate ev as the proportion of N in which the
evaluated values are larger than s∗.

5. Find ev = 1 − ev.

Results

We implemented the FBST as described above to test the presence of unit roots in 14 U.S. macroeconomic
time series, all with annual frequency, first mentioned in [27]. We used the extended series, analyzed
in [23]. Appendix A brings more information on the data set and the computational resources and
codes used to obtain the results displayed in Table 3 below.

Table 3 reports the names of the tested series, the number of available observations or sample size,
the adopted value for p—as denoted in Equation (8)—if a linear (deterministic) trend was included in
the model or not, the ADF test statistic and its respective p-value. We have used the computer package
described in [29] to find the ADF p-values, available in the R library urca. The last two columns bring
the posterior probability of non-stationarity, Γ0 ≥ 0, and the FBST e-values for the specified models. In
order to obtain comparable results, we have adopted the models chosen by [22] for all the series. All
the models considered the intercept or constant term, μ in (8).

The results show that the non-stationary posterior probabilities are quite distant from the ADF
p-values. These results were highlighted in [18,19]. Considering the simplest AR(1) model, they argued
that, once frequentist inference is based on the distribution of ρ̂|ρ = 1, the non-stationary posterior
probabilities provide counterintuitive conclusions since the referred distribution is skewed. Their main
argument is that Bayesian inference uses a distribution (marginal posterior of ρ) that is not skewed.

As mentioned before, ref. [20] claims that the difference in results between frequentist and Bayesian
approaches is due to the flat prior that puts much weight on the stationary region. He proposed the
use of Jeffreys priors, which restored the conclusions drawn by the frequentist test. Phillips argued
that the flat prior was, actually, informative when used in time series models like those for unit root
tests. Using simulations, he shows that “ [the use of a] flat prior has a tendency to bias the posterior towards
stationarity. ... even when [the estimate] is close to unity, there may still be a non negligible downward bias in the
[flat] posterior probabilities”. Notwithstanding, the e-values reported in the last column are quite close to
the ADF p-values even using the flat prior criticized by Phillips.

Table 3. Unit root tests for the extended Nelson and Plosser data set.

Series Sample Size p Trend ADF p-Value P(Γ0 ≥ 0|y) e-Value

Real GNP 80 2 yes −3.52 0.044 0.0005 0.040
Nominal GNP 80 2 yes −2.06 0.559 0.0238 0.523

Real GNP per capita 80 2 yes −3.59 0.037 0.0004 0.034
Industrial prod. 129 2 yes −3.62 0.032 0.0003 0.028

Employment 99 2 yes −3.47 0.048 0.0004 0.043
Unemployment rate 99 4 no −4.04 0.019 0.0001 0.020

GNP deflator 100 2 yes −1.62 0.778 0.0584 0.762
Consumer prices 129 4 yes −1.22 0.902 0.1154 0.983
Nominal wages 89 2 yes −2.40 0.377 0.0106 0.341

Real wages 89 2 yes −1.71 0.739 0.0475 0.715
Money stock 100 2 yes −2.91 0.164 0.0029 0.147

Velocity 119 2 yes −1.62 0.779 0.0620 0.777
Bond yield 89 4 no −1.35 0.602 0.0962 0.936
Stock prices 118 2 yes −2.44 0.357 0.0103 0.349
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4. Bayesian Cointegration Tests

Before starting our brief review of the most relevant Bayesian cointegration tests, we fix notation
and present the definitions to which we will refer in the sequel.

All the tests mentioned here are based on the following multivariate framework. Let Yt =

[y1t . . . ynt]′ be a vector with n ∈ N time series, all of them assumed to be integrated of order d ∈ N, i.e.,
have d unit roots. The series are said to be cointegrated if there is a nontrivial linear combination of
them that has b ∈ N unit roots, b < d. We will assume that, as in most applications, d = 1 and b = 0,
meaning that, if the time series in Yt is cointegrated, there is a linear combination a′Yt that is stationary,
where a ∈ Rn is the cointegrating vector. Since the linear combination a′Yt is often motivated by
problems found in economics, it is called a long-run equilibrium relationship. The explanation is that
non-stationary time series that are related by a long-run relationship cannot drift too far from the
equilibrium because economic forces will act to restore the relationship.

Notice also that: (i) the cointegrating vector is not uniquely determined since, for any scalar s,
(s · a) is a cointegrating vector; and (ii) if Yt has more than two series, it is possible that there is more
than one cointegrating vector generating a stationary linear combination.

It is assumed that the data generating process of Yt is described by the following vector
autoregression with p ∈ N lags, denoted VAR(p), and given by:

Yt = c + Φ0Dt + Φ1Yt−1 + . . . + ΦpYt−p + Et, (12)

in which c is a (n × 1) vector of constants, Dt a vector (n × 1) with some deterministic variable, such
as deterministic trends or seasonal dummies, Φi are (n × n) coefficients matrices and Et is a (n × 1)
stochastic vector with multivariate normal distribution with null expected value and covariance matrix
Ω, denoted Nn(0, Ω). This dynamic model is assumed valid for t = 1, . . . , T + p, the available span of
observations of Yt. As in the univariate case, one may include moving average terms in (12), i.e., lags
for Et, but this, in principle, would not cause major problems in the Bayesian framework. Model (12)
can be rewritten using the lag or backshift operator as

(In − Φ1B − . . . − ΦpBp)Yt = c + Φ0Dt + Et, (13)

where Φ(B) = In − Φ1B − . . . − ΦpBp is the (multivariate) autoregressive polynomial and In denotes
the n-dimensional identity matrix. The associate characteristic polynomial in this context will be the
determinant of Φ(z), z ∈ C. If all the roots of the characteristic polynomial lie outside the unit circle, it
is possible to show that Yt has a stationary representation—see [30]—such as Equation (12). In order
to determine if this is the case, model (12) is rewritten as an (vectorial) error correction model (VECM):

ΔYt = c + Φ0Dt + Γ1ΔYt−1 + . . . + Γp−1ΔYt−p+1 + ΠYt−1 + Et, (14)

where ΔYt = [Δy1t . . . Δynt]′, Γi = −(Φi+1 + . . . Φp) for i = 1, 2, . . . , p − 1 and Π = −Φ(1) =

−(In − Φ1 − . . . − Φp). It is possible to show that, when all the roots of det(Φ(z)) are outside the unit
circle, matrix Π in (14) has full rank, i.e., all the n eigenvalues of Π are n non null. If the rank of Π
is null, this matrix cannot be distinguished from a null matrix, implying that the series in Yt has at
least one unit root and a valid representation is a VAR of order p − 1, i.e., model (14) without the term
ΠYt−1. It is possible that the series in Yt has two unit roots each, implying that the correct VECM must
be written with Δ2Yt as a dependent variable.

Finally, if the (n × n) matrix Π has rank r, 0 < r < n, it has n − r non null eigenvalues, implying
that the series in Yt has at least one unit root and its valid representation is given by the VECM in
Equation (14). In this case, Π = αβ′, where α and β are matrices (n × r) of rank r. Matrix β denotes
the one with the cointegrating vectors and matrix α is called the loading matrix, since it contains the
weights of the equilibrium relationships. The tests developed in [2] focus on the rank of matrix Π.
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The pioneer Bayesian works to study VAR models and reduced rank regressions are [31–33].
However, the main concern of these papers is to estimate the model parameters and their (marginal)
posterior distributions. The usual approach is to assume a given rank for the long run matrix Π, and
proceed with all the computations conditional on the given rank. The Bayesian initiatives to test the
rank of the referred matrix are recent, the main reference for Bayesian inference on VECM’s being [34].

To justify inferential procedures based on prespecified ranks of matrix Π, [22] argued that an
empirical cointegration analysis should be based on economic theory, which proposes models obeying
equilibrium relationships. According to this view, cointegration research should be “confirmatory” rather
than “exploratory”. Even though the advocated conditional inference is of simple implementation and
very useful for small samples, [22] recognized that tests for the rank of matrix Π should be developed.
To our knowledge, few initiatives with this purpose were developed up to now.

One common approach to test sharp hypotheses in the Bayesian framework is by means of Bayes
factors. Testing the rank of matrix Π by Bayes factors implies several computational complications and
requires the use of proper priors, as shown in [35]. Following an informal approach, [33] obtained the
posterior distribution of the ordered eigenvalues of the “squared” long run matrix, Π′ · Π, obtained
from a VAR model without assuming the existence of cointegration relations. As the long run matrix
has a reduced rank, it has some null eigenvalues, and this should be revealed by the fact that the
smallest eigenvalues should have a lot of probability mass accumulated on values close to zero. The
computations can be made straightforwardly, simulating values for the long run matrix from its
(marginal) posterior distribution, which is a matrix t-Student distribution under the non informative
prior (16), also considered in the sequel.

Another common procedure is to estimate the rank of Π as the value r that maximizes the (marginal)
posterior distribution of the rank. Conditioned on such an estimate, one proceeds to derive the full
posterior and eventually estimate the cointegration space, i.e., the linear space spanned by β.

A different approach was proposed by [36], who used the Posterior Information Criterion (PIC),
developed in [37], as a criterion to choose the mode of the posterior distribution of the rank of Π. However,
as highlighted in [34], one of the advantages of the Bayesian approach is the possibility to incorporate the
uncertainty about the parameters in the analysis, represented by the posterior distribution of the rank and,
whatever the tool the scientist uses to infer the value of r, it is derived from this posterior distribution.

The authors of [38] nested the reduced rank models in an unrestricted VAR and used Metropolis–
Hastings sampling with the Savage–Dickey density ratio—see [39]—to estimate the Bayes Factors
of all the models with incomplete rank up to the model with full rank. The Bayes Factor derivation
requires the estimation of an error correction factor for the incomplete rank. This factor, however, is
not defined for improper priors due to a problem known as Bartlett paradox, which arises whenever
one compares models of different dimensions. The difficulty is relevant in the present case because,
after deriving the rank posterior density, one may consider that models of different dimensions are
being compared. The paradox is stated informally as: improper priors should be avoided when one
computes Bayes Factors (except for parameters common to both models) as they depend on arbitrary
constants (that are integrals).

More recently, [40] developed an efficient procedure to obtain the posterior distribution of the rank
using a uniform proper prior over the cointegration space linearly normalized. The author derived
solutions for the posterior probabilities for the null rank and for the full rank of Π. The posterior
probabilities of each intermediate rank are derived from the posterior samples of the matrices that
compose the long run matrix (α and β), properly normalized, under each rank and using the method
proposed by [41].

5. Implementing the FBST as a Cointegration Test

This section describes how to implement the FBST to test for cointegration. We will proceed in the
same spirit of Section 3, i.e., describing the steps given in Table 1 to implement the test for cointegration.
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Let us begin recalling the VECM given by Equation (14):

ΔYt = c + Φ0Dt + Γ1ΔYt−1 + . . . + Γp−1ΔYt−p+1 + ΠYt−1 + Et, (14)

t = 1, . . . , T + p, in which Et
i.i.d.∼ Nn(0, Σ) with 0 a null vector of dimension n × 1 and Ω a symmetric

positive definite real matrix. Notice that these assumptions already specify the statistical model
(Gaussian) and its implied likelihood. Before giving it explicitly, let us rewrite Equation (14) using
matrix notation:

ΔY = Z · η + E (15)

where ΔY =

⎡⎢⎢⎢⎢⎣
ΔY′

p+1
ΔY′

p+2
...

ΔY′
T+p

⎤⎥⎥⎥⎥⎦, Z =

⎡⎢⎢⎢⎢⎣
1 D′

p+1 ΔY′
p . . . ΔY′

2 Y′
p

1 D′
p+2 ΔY′

p+1 . . . ΔY′
3 Y′

p+1
...

...
...

...
...

1 D′
T+p ΔY′

T−1 . . . ΔY′
T+p−1 Y′

T+p−1

⎤⎥⎥⎥⎥⎦, η =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c′

Φ0

Γ1
...

Γp−1

Π

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the error vector is given by E ∼ MNT×n(0, IT , Ω), denoting the matrix normal distribution.
See Appendix B for more information on this distribution. Now the parameter vector is given by
Θ = (η, Ω).

Notice that ΔY is formed by piling up T transposed vectors ΔYt, thus resulting in a matrix with
T lines and n columns (n is the number of time series in vector Yt), those being also dimensions of
matrix E. Matriz Z is constructed likewise—always piling up the transposed vectors—resulting in a
matrix with T lines and pn + n + 1 columns. Finally, matrix η has the matrices of coefficients, all piled
up properly, resulting in a matrix with pn + n + 1 lines and n columns.

Given the assumptions above, ΔY ∼ MNT×n(Z · η, IT , Ω), implying that the likelihood is

L(Θ | y) ∝ |Ω|−T/2exp
{
−1

2
· tr[Ω−1(ΔY − Z · η)′(ΔY − Z · η)]

}
where y denotes the set of observed values of vectors Yt for t = 1, . . . , T + p. As in Section 3, we will
consider an improper prior for Θ, given by

h(Θ) = h(η, Ω) ∝ |Ω|−(n+1)/2, (16)

and our reference density, r(Θ), will be proportional to a constant, leading to a surprise function
equivalent to the (full) posterior distribution. These choices correspond to steps 1 and 2 of Table 1.
These modeling choices imply the following posterior density:

g(Θ | y) ∝ |Ω|−(T+n+1)/2exp
{
− 1

2 · tr[Ω−1(ΔY − Z · η)′(ΔY − Z · η)]
}

= |Ω|−(T+n+1)/2exp
{
− 1

2 · tr{Ω−1[S + (η − η̂)′ · Z′Z · (η − η̂)]}
} (17)

where η̂ = (Z′Z)−1Z′ΔY and S = ΔY′ΔY − ΔY′Z(Z′Z)−1Z′ΔY.
To implement Step 3 of Table 1, we need to find the maximum a posteriori of (17) under the

constraint Θ ⊂ ΘH , i.e., we need to maximize the posterior in ΘH . Since we are testing the rank of
matrix Π, as discussed in the beginning of Section 4, it is necessary to maximize the posterior assuming
the rank of Π is r, 0 ≤ r ≤ n. Thanks to the modeling choices made here—Gaussian likelihood and
Equation (16) as prior—our posterior is almost identical to a Gaussian likelihood, allowing us to
find this maximum using a strategy similar to that proposed by [2], who derived the maximum of
the (Gaussian) likelihood function assuming a reduced rank for Π. We will summarize Johansen’s
algorithm, providing in Appendix C a heuristic argument of why it indeed provides the maximum
value of the posterior under the assumed hypotheses.
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We begin estimating a VAR(p − 1) model for ΔYt with all the explanatory variables shown in (14)
except for Yt−1. Using the matrix notation established above, this corresponds to estimate

ΔY = Z1 · η1 + U,

where Z1 =

⎡⎢⎢⎢⎢⎣
1 D′

p+1 ΔY′
p . . . ΔY′

2

1 D′
p+2 ΔY′

p+1 . . . ΔY′
3

...
...

...
...

1 D′
T+p ΔY′

T−1 . . . ΔY′
T+p−1

⎤⎥⎥⎥⎥⎦ and η1 =

⎡⎢⎢⎢⎢⎢⎢⎣
e′

τ0

υ1
...

υp−1

⎤⎥⎥⎥⎥⎥⎥⎦ showing that Z1 is obtained

from matrix Z extracting its last n columns, exactly those corresponding to Yt−1.
We also estimate a second set of auxiliary equations, regressing Yt−1 on a vector of constants and

Dt, ΔYt−1, . . . , ΔYt−p+1. By piling up all the (transposed) vectors Y′
t−1 for t = p + 1, . . . , T + p, we

have a (T × n) matrix, denoted by Y−1. As above, these equations can be represented by

Y−1 = Z1 · η2 + V,

where Y−1 =

⎡⎢⎢⎢⎢⎣
Y′

p
Y′

p+1
...

Y′
T+p−1

⎤⎥⎥⎥⎥⎦ and η2 =

⎡⎢⎢⎢⎢⎢⎢⎣
m′

ν0

ζ1
...

ζp−1

⎤⎥⎥⎥⎥⎥⎥⎦.

Considering the OLS estimates of these sets of equations and their respective estimated residuals,
we may write

Δ̂Y = Z1 · η̂1 + Û (18)

Ŷ−1 = Z1 · η̂2 + V̂ (19)

where η̂1 = (Z′
1Z1)

−1Z′
1 · ΔY, η̂2 = (Z′

1Z1)
−1Z′

1 · Y−1, Û and V̂ are the respective matrices of
estimated residuals. Thanks to the Frisch–Waugh–Lovell theorem—see [42] theorem 3.3 or [43] Section
2.4—it is possible to show that the estimated residuals of these auxiliary regressions are related by Π
in the following regressions:

Û = Π V̂ + Ŵ. (20)

One can prove that the OLS estimates of Π obtained from (15) and from (20) are numerically
identical, as the estimated residuals Ê and Ŵ.

The second stage of Johansen’s algorithm requires the computation of the following sample
covariance matrices of the OLS residuals obtained above:

Σ̂VV =
1
T
· V̂′V̂ Σ̂UU =

1
T
· Û′Û

Σ̂UV =
1
T
· Û′V̂ Σ̂VU = Σ̂′

UV

and, from these, we find the n eigenvalues of matrix

Σ̂−1
VV · Σ̂VU · Σ̂−1

UU · Σ̂UV,

ordering them decreasingly λ̂1 > λ̂2 > . . . > λ̂n. The maximum value attained by the log posterior
subject to the constraint that there are r (0 ≤ r ≤ n) cointegration relationships is

�∗ = K − (T + n + 1)
2

· log |Σ̂UU| − T + n + 1
2

·
r

∑
i=1

log(1 − λ̂i), (21)
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where K is a constant that depends only on T, n and y by means of the marginal distribution of the data
set, y. Since �∗ represents the maximum of the log-posterior, to obtain s∗, one should take s∗ = exp(�∗),
completing step 3 of Table 1.

As in Section 3, we compute ev in step 4 by means of a Monte Carlo algorithm. It is easy to
factor the full posterior (17) as a product of a (matrix) normal and an Inverse-Wishart, suggesting a
Gibbs sampler to generate random samples from the full posterior. See Appendix B for more on the
Inverse-Wishart distribution. Thus, the conditional posteriors for η and Ω are, respectively,

gη(η | Ω, y) ∝ MNn×k(η̂, (Z′Z)−1, Ω) (22)

gΩ(Ω | η, y) ∝ IW(Ω|S + (η − η̂)′ · Z′Z · (η − η̂), T) (23)

where S = ΔY′ΔY−ΔY′Z(Z′Z)−1Z′ΔY, IW denotes the Inverse-Wishart, k = pn+ n+ 1 is the number
of lines of η, and η̂ its OLS estimator, as above. From a Gibbs sampler set with these conditionals, we
obtain a random sample from the full posterior to estimate ev as the proportion of sampled vectors that
generate a value for the posterior greater than s∗. Finally, we obtain ev = 1 − ev in the final step (5).
The whole implementation for cointegration tests, following the assumptions made in this section, is
summarized in Table 4. See Appendix A for more information on the computational resources needed
to implement the steps given by Table 4.

Table 4. Pseudocode to implement the FBST to cointegration tests.

General algorithm: compute ev supporting hypothesis H : rank(Π) = r (0 ≤ r ≤ n) in model (14)

1. Statistical model: Gaussian; prior: h(Θ) ∝ |Ω|−(n+1)/2.
2. Reference density: r(Θ) ∝ 1; relative surprise function: g(Θ | y).
3. Find s∗: Johansen’s algorithm; obtain �∗ from Equation (21) with s∗ = exp(�∗).
4. Gibbs sampler (from Equations (22) and (23)) to obtain N random samples of parameter vectors from (17).

Evaluate the posterior at the sampled vectors and estimate ev as the proportion of N for which the
evaluated values are larger than s∗.

5. Find ev = 1 − ev.

Before presenting the results of the procedure applied to real data sets, it is important to remark
one feature of the FBST applied to cointegration tests. The estimated eigenvalues of matrix Π, λ̂i,
correspond to the squared canonical correlations between ΔYt and Y−1 corrected for the variable in
Z1 and therefore lie between 0 and 1. Therefore, (21) shows that �∗0 ≤ �∗1 ≤ . . . �∗n, where �∗r denotes
the maximum of the posterior (14) assuming Π has rank 0 ≤ r ≤ n. Therefore, one may say that the
hypotheses rank(Π) = r are nested, in the sense that the respective e-values obtained by the FBST for
these hypotheses are always non-decreasing ev(0) ≤ ev(1) ≤ . . . ≤ ev(n).

This nested formulation is also present in the frequentist procedure proposed by [2], based on the
likelihood ratio statistics for successive ranks of Π. Thus, the FBST should be used, like the maximum
eigenvalue test, in a sequential procedure to test for the number of cointegrating relationships. We will
show how this should be done in presenting the applied results in the sequel.

Results

Now we present, by means of four examples, the application of FBST as a cointegration test. In all
the examples, we have adopted a Gaussian likelihood and the improper prior (16). The Gibbs sampler
was implemented as described above, providing 51,000 random vectors from the posterior (17). The
first 1000 samples were discarded as a burn-in sample, the remaining 50,000 being used to estimate the
integral (2). The tables show the e-value computed from the FBST and the maximum eigenvalue test
statistics with their respective p-values.
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Example 1. We analyzed four electroencephalography (EEG) signals from a subject that has previously presented
epileptic seizures. The original study, [44], had the aim of detecting seizures based on multiple hours of recordings
for each individual and the cointegration analysis of the mentioned signals was presented by [45]. In fact, the
cointegration hypothesis is tested using the phase processes estimated from the original signals. This is done by
passing the signal into the Hilbert transform and then “unwrapping” the resulting transform. Sections 2 and 5
of [45,46] provide more details on the Hilbert transform and unwrapping.

The labels of the modeled series refer to the electrodes on the scalp. As seen in Figures 1 and 2,
the series are called FP1-F7, FP1-F3, FP2-F4, and FP2-F8, where FP refers to the frontal lobes and F
refers to a row of electrodes placed behind these. Even numbered electrodes are on the right side
and odd numbered electrodes are on the left side. The electrodes for these four signals mirror each
other on the left and right sides of the scalp. The recordings of the studied subject, an 11-year-old
female, identified a seizure in the interval (measured in seconds) [2956, 2996]. Therefore, like [45],
we analyze the period of 41 seconds prior to the seizure—interval [2956, 2996]—and the subsequent
41 seconds—interval [2996, 3036]—the seizure period. In the sequel, we will refer to these as prior to
seizure and during seizure, respectively. Since the sample frequency has 256 measurements per second,
there are a total of 10,496 measurements for each of the four signals. Ref. [45] used 40 seconds for each
period, obtaining slightly different results.

Figures 1 and 2 display the estimated phases based on the original signals. The model proposed
by [45] is a VAR(1), resulting in a VECM given by

ΔYt = c + ΠYt−1 + Et. (24)

Tables 5 and 6 present the results that essentially lead to the same conclusions obtained by [45],
even though they have based their findings on the trace test. See Table 8 of [45].

The comparison between p-values and the FBST e-values must be made carefully, the main reason
being the fact that p-values are not measures supporting the null hypothesis, while e-values provide
exactly such a kind of support. That being said, a possible way to compare them is by checking the decision
their use recommend regarding the hypothesis being tested, i.e., to reject or not the null hypothesis.

Figure 1. Estimated phase processes prior to a seizure.
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Figure 2. Estimated phase processes during a seizure.

Table 5. FBST and max. eig. test: prior to seizure.

H0 FBST Max. p-Value

r = 0 �0 60.966 �0
r = 1 0.0691 30.727 0.0010
r = 2 0.9990 11.458 0.1337
r = 3 �1 0.0812 0.7757

Table 6. FBST and max. eig. test: during seizure.

H0 FBST Max. p-Value

r = 0 �0 1120.5 �0
r = 1 0.1144 31.563 0.0007
r = 2 0.9999 6.5015 0.5574
r = 3 �1 1.4383 0.2304

Frequentist tests often adopt a significance level approach: given an observed p-value, the hypothesis
is rejected if the p-value is smaller or equal to the mentioned level, usually 0.1, 0.05, or 0.01. Since the
cointegration ranks generate nested likelihoods, the hypotheses are tested sequentially, starting with null
rank, r = 0. For Table 5, adopting a 0.01 significance level, the maximum eigenvalue test would reject r = 0
and r = 1, and would not reject r = 2. The same conclusions follow for Table 6. Thus, the recommended
action is to work, for estimation purposes for instance, assuming two cointegration relationships.

The question on which threshold value to adopt for the FBST was already mentioned on Section 1.1,
but it is worthwhile to underline it once more. We highly recommend a principled approach deriving
the cut-off value from a loss function, which is specific for the problem at hand and the purposes of
the analysis. A naive but simpler approach would be to reject the hypothesis if the e-value is smaller
than 0.05 or 0.01, emulating the frequentist strategy. Even not recommending this path, since p-values
are not supporting measures for the hypothesis being tested while e-values are, the researcher may
numerically compare p-values and e-values in a specific scenario. If the researcher derived the p-values
from a generalized likelihood ratio test, it is possible to asymptotically compare them. The relationship
is: ev = 1 − Fm[F−1

m−h(1 − p)], where m is the dimension of the full parameter space, h the dimension of
the parameter space under the null hypothesis, Fm the chi-square distribution function with m degrees
of freedom and p the corresponding p-value. See [9,12] for the proof of the asymptotic relationship
between e-values and p-values.
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Since the maximum eigenvalue test is derived as a likelihood ratio test, this comparison may be
done for the results of all the examples presented here, and more appropriately to this example, given
its sample size of 10,496 observations. Regarding Tables 5 and 6, one could be in doubt regarding
whether to reject or not the hypothesis r = 1 since the e-values are larger than 0.01. However, for this
model and hypothesis, the e-value corresponding to 0.01 is 0.436. Therefore, in both tables, one could
reject the hypothesis and proceed to the next rank that has plenty of evidence in its favor. In conclusion,
the practical decisions of both tests (FBST and maximum eigenvalue) would be the same: to not reject
r = 2.

Example 2 ([47]). Compare three methods for modeling empirical seasonal temperature forecasts over South
America. One of these methods is based on a (possible) long-term cointegration relationship between the temperatures
of the quarter March–April–May (MAM) of each year and the temperature of the previous months of November–
December–January (NDJ). When there is such a relationship, the authors used the NDJ temperatures (of the
previous year) as a predictor for the following MAM season.

The original data set has monthly temperatures for each coordinate (latitude and longitude) of
the covered area. The mentioned series of temperatures (MAM and NDJ) are computed as seasonal
averages from this monthly data set by averaging over consecutive three months. Since we have data
available from January 1949 to May 2020, the time series of monthly and seasonal average surface
temperatures of length 72 for each grid point.

The authors of [47] consider Yt as a two-dimensional vector, its first component being the seasonal
(average) MAM temperature of year t and the second component the seasonal NDJ temperature of the
previous year. They consider a VAR(2) without deterministic terms to model the series, resulting in
a VECM

ΔYt = Γ1ΔYt−1 + ΠYt−1 + Et. (25)

We have chosen five grid points corresponding to major Brazilian cities to test the cointegration
hypothesis of the mentioned seasonal series. The coordinates chosen were the closest ones from:
23.5505◦ S, 46.6333◦ W for São Paulo; 22.9068◦ S, 43.1729◦ W for Rio de Janeiro; 19.9167◦ S, 43.9345◦

W for Belo Horizonte; 15.8267◦ S, 47.9218◦ W for Brasília and 12.9777◦ S, 38.5016◦ W for Salvador.
Figures 3 and 4 show the seasonal temperatures for São Paulo and Brasília, respectively, indicating
that the cointegration hypothesis is plausible for both cities.

Figure 3. Seasonal (MAM and NDJ) temperatures for São Paulo from 1949 to 2020.
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Figure 4. Seasonal (MAM and NDJ) temperatures for Brasília from 1949 to 2020.

Table 7. FBST and maximum eigenvalue test applied to temperature data (MAM and NDJ series) of
the mentioned Brazilian cities.

H0 : r = 0 H0 : r = 1
Cities

FBST Max. p-Value FBST Max. p-Value

São Paulo 0.0012 33.302 �0 �1 0.0893 0.8205
Rio de Janeiro 0.0273 23.294 0.0004 �1 2.43e-5 0.9986
Belo Horizonte 0.0173 24.621 0.0001 �1 0.0963 0.8126
Brasília 0.1129 18.008 0.0045 0.9999 1.3321 0.2892
Salvador 0.0172 24.431 0.0001 �1 0.2450 0.6838

The results are shown in Table 7. Assuming a significance level of 0.01, the maximum eigenvalue
test reject the null rank and do not reject r = 1 for all the five cities. If we adopt the asymptotic
relationship between p-values and e-values for the model under analysis, we obtain an e-value of 0.276
corresponding to a 0.01 p-value for r = 0. Therefore, the FBST would also reject the null rank for all
the cities. The hypothesis r = 1 is not rejected since all the e-values are close to 1, once more agreeing
with the maximum eigenvalue test.

One remark about Brasília seems in order. The city was built to be the federal capital, being officially
inaugurated on 21 April 1960. The construction began circa 1957 and before that the site had no human
occupation. The process of moving all the administration from Rio de Janeiro, the former capital, was
slow and only the 1980 census detected a population over 1 million inhabitants. The present population is
almost 3.2 million inhabitants living in the Federal District that includes Brasília and minor surrounding
cities. Figure 4 indicates that the seasonal temperatures began to rise exactly after 1980.

Example 3. we applied the FBST to the Finish data set used in their seminal work [2].

The authors used the logarithms of the series of M1 monetary aggregate, inflation rate, real income,
and the primary interest rate set by the Bank of Finland to model the money demand, which, in theory,
follows a long-term relationship. The sample has 106 quarterly observations of the mentioned variables,
starting at the second trimester of 1958 and finishing in the third trimester of 1984. The chosen model
was a VAR(2) with unrestricted constant, meaning that the series in Yt have one unit root with drift
vector c and the cointegrating relations may have a non-zero mean. For more information about how to
specify deterministic terms in a VAR see [48], chapter 6. Seasonal dummies for the first three quarters
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of the year were also considered in the model chosen by [2]. Writing the model in the error correction
form, we have:

ΔYt = c + Φ0,1D1t + Φ0,2D2t + Φ0,3D3t + Γ1ΔYt−1 + ΠYt−1 + Et. (26)

where Π = Φ1 + Φ2 − I3, Γ1 = −Φ2, c is a vector with constants and Dit denote the seasonal dummies
for trimester i = 1, 2, 3. The results are displayed in Table 8.

Table 8. FBST and maximum eigenvalue test applied to Finish data of Johansen and Juselius (1990).

H0 FBST Max. p-Value

r = 0 0.132 38.489 0.0007
r = 1 0.994 26.642 0.0060
r = 2 �1 7.8924 0.3983

In [2], the authors concluded that there is, at least, two cointegration vectors, a conclusion that
follows if one adopts a 0.01 significance level, for instance. Using the asymptotic relationship between
p-values and e-values for Equation (26), we obtain, for r = 0, an e-value of 0.998, and, for r = 1,
an e-value of 0.999, corresponding to a 0.01 p-value. These apparently discrepant values for the e-values
are due to the high dimensions of the unrestricted (m = 58) and under H0 (h = 42 for r = 0 and h = 43
for r = 1) parameter spaces. Therefore, under this criterion, the FBST also rejects the null rank and r = 1
(since 0.132 < 0.998 and 0.994 < 0.999, respectively) and does not reject r = 2, recommending the same
action as the maximum eigenvalue test.

Example 4. As a final example, we apply the FBST to a US data set discussed in [49]. The observations have
annual periodicity and went from 1900 to 1985. We tested for cointegration between real national income, M1
monetary aggregate deflated by the GDP deflator and the commercial papers return rate. The chosen model was a
VAR(1) with unrestricted constant. The series were used in natural logarithms and the results follow below:

Table 9. FBST and maximum eigenvalue test applied to US data of Lucas (2000).

H0 FBST Max. p-Value

r = 0 0.042 25.334 0.0101
r = 1 0.996 4.2507 0.8271

Table 9 shows that the maximum eigenvalue test rejects r = 0 and does not reject r = 1 at a 0.05
significance level. Once more adopting the asymptotic relationship between p-values and e-values
for the chosen model, we obtain, for r = 0, an e-value of 0.247 corresponding to a 0.01 p-value. Thus,
under this criterion, the FBST also rejects the null rank and does not reject r = 1.

6. Conclusions

In the past few decades, the econometric literature introduced statistical tests to identify unit
roots and cointegration relationships in time series. The Bayesian approach applied to these topics
advanced considerably after the 1990s, developing interesting alternatives, mostly for unit root testing.
The (parametric) frequentist tests mentioned here may not be suitable since these procedures rely on
the distribution of the test statistic—usually assuming the hypothesis being tested is true—which
depend on a particular a statistical model, usually Gaussian. When the distributions of such statistics
cannot be obtained, the procedure is saved by asymptotic results. If the researcher considers different
statistical models and the available sample is small, the results of the tests may be quite misleading.

The present work reviewed a simple and powerful Bayesian procedure that can be applied to both
purposes: unit root and cointegration testing. We have also shown that the FBST works considerably
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well even when one uses improper priors, a choice that may preclude the derivation of Bayes Factors,
a standard Bayesian procedure in hypotheses testing.

A long series of articles provided in [7] and the references therein, has showed the versatility and
properties of FBST, such as: a. the e-value derivation and computation are straightforward from its
general definition; b. it uses absolutely no artificial restrictions like a distinct probability measure on the
hypothesis set, induced by some specific parametrization; c. it is in strict compliance with the likelihood
principle; d. it can conduct the test with any prior distribution; e. it does not need closed conjectures
concerning error distributions, even for small samples; f. it is an exact procedure, since it does rely on
asymptotic assumptions; and g. it is invariant with respect to the null hypothesis parametrization and
with respect to the parameter space parametrization. See [9], p. 253 for this property.

To proceed with this research agenda, it would be interesting to perform more simulation studies
with the FBST applied to unit root testing for a larger group of parametric and semi-parametric
models (likelihoods). Another possibility is to include moving average terms in the data generating
processes and work with Gaussian and non-Gaussian ARMA models. Notice that, given the points
made above, these extensions would not impose major problems to the FBST as they would to the
frequentist procedures. Regarding cointegration, the same extensions may be studied in future works,
although the adoption of statistical models outside the Gaussian family would require further efforts to
numerically implement the FBST. We shall also investigate the effect of the prior choice in the estimates
of cointegration relations, especially for small samples.
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Appendix A. Computational Resources

The FBST was implemented in all the examples using codes written by the authors in Matlab/
Octave programming language. The results displayed in Tables 3 and 5–9 were obtained using GNU
Octave version 4.4.1. The only package required to run the routines was the statistics package
(version 1.4.1), necessary to simulate vectors of random variables from the distributions mentioned in
the text. The codes are briefly described at https://www.ime.usp.br/~jstern/software/, where they
can be freely downloaded.

The original data sets used in the examples presented in this work can be obtained from the
following sources:

1. Table 3: fourteen U.S. economic time series used by [23]. Available at the R library urca, where it
is named “npext”.

2. Example 1: the original series used in [44,45] are available at https://physionet.org/content/chbmit/
1.0.0/. The data for the subject analyzed in Example 1 is from file chb01_03.edf, found inside
folder chb01. To obtain Tables 5 and 6, the data were transformed as described in Example 1.
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3. Example 2: the original data set used in [47] is available at https://climexp.knmi.nl/NCEPData/
ghcn_cams_05.nc, provided by the Global Historical Climatology Network (GHCN)/Climate
Anomaly Monitoring System (CAMS). The data set studied here is the 2 m temperature analysis
(0.5 × 0.5) data, a high resolution (0.5 × 0.5 degrees in latitude and longitude) global land surface
temperature data set covering the period 1949 to near present, in our case May 2020.

4. Example 3: the original data set with four macroeconomic series used by [2] to estimate the
money demand of Finland is available in the R library urca with the name “finland”.

5. Example 4: the original data used in [49] can be downloaded from https://www.ime.usp.br/
~jstern/software/.

Appendix B. Non-Standard Distributions Used in This Article

Appendix B.1. Inverse-Gamma

The probability density function of the Inverse-Gamma distribution is given

f0(x | a, b) =
ba

Γ(a)
·
(

1
x

)a+1
exp

(
− b

x

)
for x > 0 and zero, otherwise. The parameters a and b are both positive real numbers and Γ is the
gamma function.

Appendix B.2. Matrix Normal

The probability density function of the random matrix X with dimensions p × q that follows the
matrix normal distribution MNp×q(M, U, V) has the form:

f1(X | M, U, V) =
exp

(
− 1

2 tr
[
V−1(X − M)′U−1(X − M)

])
(2π)pq/2|V|p/2|U|q/2

where M ∈ Rp×q, U ∈ Rp×p and V ∈ Rq×q, being U and V symmetric positive semidefinite matrices.
The matrix normal distribution can be characterized by the multivariate normal distribution as follows:
X ∼ MNp×q(M, U, V) if and only if vec(X) ∼ Npq(vec(M), V ⊗ U), where ⊗ denotes the Kronecker
product and vec the vectorization of M.

Appendix B.3. Inverse-Wishart

The probability density function of the Inverse-Wishart distribution is

f2(x | Λ, ν) =
|Λ|ν/2

2νp/2Γp(
ν
2 )

|x|−(ν+p+1)/2 exp
[
−1

2
tr(Λx−1)

]
where x and Λ are p × p positive-definite matrices, and Γp is the multivariate gamma function. Notice
that we may also write the same density with tr(x−1Λ) inside the exponential function, as would be
convenient in our implementation of the Gibbs sampler in Section 5.

Appendix C. Heuristic Proof of Johansen’s Procedure

The goal of this appendix is to provide a brief heuristic explanation of the procedure, discussed in
Section 5 that finds the maximum of posterior (17) subject to the hypothesis that matrix Π has reduced
rank r, 0 ≤ r ≤ n. The procedure is based on the algorithm proposed in [2,50] to maximize a Gaussian
likelihood under the same assumption (reduced rank of matrix Π). The formal proof of Johansen’s
algorithm can be found in [51], chapter 20. As mentioned in Section 5, Johansen’s algorithm can be
applied to the posterior (17) since this distribution is very close to a (multivariate) Gaussian likelihood.
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The first step of the algorithm involves “concentrating” the posterior, i.e., to assume Ω and Π are
given and maximize the posterior with respect to all the other parameters in Θ. Hence, let γ denote the
matrix η except for matrix Π, i.e., γ ′ =

[
c Φ′

0 Γ′
1 . . . Γ′

p−1

]
. The concentrated log-posterior, denoted

by M, is found by replacing γ with γ̂(Π) in (17):

M(Π, Ω | y) = ln[g(γ̂(Π); Π, Ω | y)] = C +
(T + n + 1)

2
ln |Ω−1| −

{
− 1

2
· tr[Ω−1(Û − ΠV̂)′(Û − ΠV̂)]

}
(A1)

where C is a constant that depends on T, n and y. The strategy behind concentrating the posterior is
that, if we can find the values Ω̂ and Π̂ that maximize M, then these same values, along with γ̂(Π̂),
will maximize (17) under the constraint rank(Π) = r. Carrying the concentration on one step further,
we can find the value of Ω that maximizes (A1) assuming Π known, giving

Ω̂(Π) =
1

T + n + 1
· (Û − ΠV̂)′(Û − ΠV̂).

To evaluate the concentrated log-posterior at Ω̂(Π), notice that

tr
[
Ω̂(Π)−1(Û − ΠV̂)′(Û − ΠV̂)

]
= tr[(T + n + 1)In] = n(T + n + 1)

and, therefore, denoting by M∗ this new concentrated log-posterior, we have

M∗(Π | y) = C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
∣∣∣∣ 1
T + n + 1

(Û − ΠV̂)′(Û − ΠV̂)

∣∣∣∣ (A2)

= C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
∣∣∣∣ T
T + n + 1

· 1
T
(Û − ΠV̂)′(Û − ΠV̂)

∣∣∣∣ (A3)

= C +
(T + n + 1)n

2
− (T + n + 1)

2
ln
[(

T
T + n + 1

)n
·
∣∣∣∣ 1
T
(Û − ΠV̂)′(Û − ΠV̂)

∣∣∣∣] (A4)

= K − (T + n + 1)
2

· ln
∣∣∣∣ 1
T
(Û − ΠV̂)′(Û − ΠV̂)

∣∣∣∣ (A5)

where K is a new constant depending only on T, n and y. Equation (A5) represents the maximum
value one can achieve for the log-posterior for any given matrix Π. Thus, maximizing the posterior
comes down to choosing Π so as to minimize the determinant∣∣∣∣ 1

T
(Û − ΠV̂)′(Û − ΠV̂)

∣∣∣∣
subject to the constraint rank(Π) = r. The solution of this problem demands the analysis of the sample
covariance matrices of the OLS residuals Û and V̂ and here we only present the final expression for
the maximum value achieved for the log-posterior, denoted �∗ in Section 5:

�∗ = K − (T + n + 1)
2

· ln |Σ̂UU| − T + n + 1
2

·
r

∑
i=1

ln(1 − λ̂i). (A6)

Chapter 20 of [51] provides the formal derivation of (A6).
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Abstract: Rényi entropy as a generalization of the Shannon entropy allows for different averaging
of probabilities of a control parameter α. This paper gives a new perspective of the Kalman filter
from the Rényi entropy. Firstly, the Rényi entropy is employed to measure the uncertainty of the
multivariate Gaussian probability density function. Then, we calculate the temporal derivative of the
Rényi entropy of the Kalman filter’s mean square error matrix, which will be minimized to obtain
the Kalman filter’s gain. Moreover, the continuous Kalman filter approaches a steady state when the
temporal derivative of the Rényi entropy is equal to zero, which means that the Rényi entropy will
keep stable. As the temporal derivative of the Rényi entropy is independent of parameter α and is
the same as the temporal derivative of the Shannon entropy, the result is the same as for Shannon
entropy. Finally, an example of an experiment of falling body tracking by radar using an unscented
Kalman filter (UKF) in noisy conditions and a loosely coupled navigation experiment are performed
to demonstrate the effectiveness of the conclusion.

Keywords: Rényi entropy; discrete Kalman filter; continuous Kalman filter; algebraic Riccati equation;
nonlinear differential Riccati equation

1. Introduction

In the late 1940s, Shannon introduced a logarithmic measure of information [1] and a theory that
included information entropy (the literature shows that it is related to Boltzmann entropy in statistical
mechanics). The more stochastic and unpredictable a variable is, the larger its entropy is. As a measure
of information, entropy has been used in various fields, such as information theory, signal processing,
information-theoretic learning [2,3], etc. As a generalization of the Shannon entropy, Rényi entropy,
named after Alfréd Rényi [4], allows for different averaging of probabilities through a control
parameter α, and is usually used to quantify the diversity, uncertainty, or randomness of random
variables. Liang [5] presented the evolutionary entropy equations and the uncertainty estimation for
Shannon entropy and relative entropy, which is also called Kullback–Leibler divergence [6], within the
framework of dynamical systems. However, higher-order Rényi entropy has some better properties
than Shannon entropy by setting the control parameter α in most cases.

The Kalman filter [7] and its variants have been widely used in navigation, control, tracking,
etc. Many works focus on combining different entropy and entropy-like quantities with the original
Kalman filter to improve the performance. When the state space equation is nonlinear, Rényi entropy
can be used to measure the nonlinearity [8,9]. Shannon entropy was used to estimate the weight
of each particle from the weights of different measurement models for the fusion algorithm in [10].
Quadratic Rényi entropy [11] of innovation has been used as a minimum entropy criterion under
a nonlinear and non-Gaussian circumstance [12] in unscented Kalman filter (UKF) [13] and finite
mixtures [14]. A generalized density evolution equation [15] and polynomial-based non-linear
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compensation [16] were used to improve the minimum entropy filtering [17]. Relative entropy has
been used to measure the similarity between the probabilistic density functions during the recursive
processes of the nonlinear filter [18,19]. As for the nonlinear measurement equation with additive
Gaussian noise, relative entropy can be deduced to measure the nonlinearity of the measurement [20],
and can also be used to measure the approximation error of the i-th measurement element in the
partitioned update Kalman filter [21]. When the state variables and the measurement variables do not
belong to strict Gaussian distribution, such as in the seamless indoor/outdoor multi-source fusion
positioning problem [22], the estimation error can be measured by the relative entropy. Relative entropy
can also be used to calculate the number of particles in the unscented particle filter for mobile robot
self-localization [23] and to calculate the sample window size in the cubature Kalman filter (CKF) [24]
for attitude estimation [25]. Moreover, it has been verified that the original Kalman filter can be derived
by maximizing the relative entropy [26]. Meanwhile, the robust maximum correntropy criterion
has been adopted as the optimal criterion to derive the maximum correntropy Kalman filter [27,28].
However, there has been no work on the direct connections between the Rényi entropy and the Kalman
filter theory until now.

In this paper, we propose a new perspective of the Kalman filter from the Rényi entropy for the first
time, which bridges the gap between the Kalman filter and the Rényi entropy. We calculate the temporal
derivative of the Rényi entropy for the Kalman filter mean square error matrix, which provides the
optimal recursive solution mathematically and will be minimized to obtain the Kalman filter gain.
Moreover, from the physical point of view, the continuous Kalman filter approaches a steady state when
the temporal derivative of the Rényi entropy is equal to zero, which also means that the Rényi entropy
will keep stable. A numerical experiment of falling body tracking in noisy conditions with radar using
the UKF and a practical experiment of loosely-coupled integration are provided to demonstrate the
effectiveness of the above conclusion.

The structure of this paper is as follows. In Section II, the definitions and properties of Shannon
entropy and Rényi entropy are presented. In Section III, the Kalman filter is derived from the
perspective of minimizing the temporal derivative of Rényi entropy, and the connection between the
Rényi entropy and the algebraic Riccati equation is explained. In Section IV, experimental results and
analysis are given by the simulation of the UKF and the real integrated navigation data. We finally
conclude this paper and provide an outlook for future work in Section V.

2. The Connection between the Kalman Filter and the Temporal Derivative of the Rényi Entropy

2.1. Rényi Entropy

To calculate the Rényi entropy of the continuous probability density function (PDF), it is necessary
to extend the definition of the Rényi entropy to the continuous form. The Rényi entropy of order α for a
continuous random variable with a multivariate Gaussian PDF p(x) is defined [4] and calculated [9] as:

Hα
R(x) =

1
1 − α

ln
∫
S

pα(x)dx =
N
2

ln(2πα
1

α−1 ) +
1
2

ln(det Σ), (1)

where α > 0, α �= 1, and α is a parameter providing a family of entropy functions. N is the dimension
of the random variable x. S is the support. Σ is the covariance matrix of p(x).

It is straightforward to show that the temporal derivative of the Rényi entropy is given by [9]:

Ḣ(α)
R (x) =

1
2

Tr{Σ−1Σ̇}, (2)

where Σ̇ is the temporal derivative of the covariance matrix and Tr(·) is the trace operator.
It is easy to get the Shannon entropy for the multivariate Gaussian PDF by taking the limitation

of Equation (1) as α approaches 1. This entropy is given as H(x) = N
2 ln(2πe) + 1

2 ln(det Σ), and the
temporal derivative of the Shannon entropy is given as Ḣ(x) = 1

2 Tr{Σ−1Σ̇}. It is obvious the temporal
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of the Shannon entropy is the same as the temporal of the Rényi entropy. Therefore, we will see
later that the conclusion can also be derived from the temporal derivative of the Shannon entropy.
However, the Rényi entropy for the multivariate Gaussian PDF instead of the temporal derivative of the
Rényi entropy will be used by adjusting the free parameter α for different uncertainty measurements
in most cases, as the filtering problem has to account for the nonlinearity and the non-Gaussian noise;
we adopt the Rényi entropy as the measurement for uncertainty.

2.2. Kalman Filter

Given the continuous-time linear system [29]:

Ẋ(t) = F(t)X(t) + G(t)w(t) (3)

Z(t) = H(t)X(t) + v(t), (4)

where X(t) is the state vector; F(t) is the state transition matrix; G(t) is the system noise driving matrix;
Z(t) is the measurement vector; H(t) is the measurement matrix; and w(t) and v(t) are independent
white Gaussian noise with zero mean value; their covariance matrices are Q(t) and R(t), respectively:

E[w(t)] = 0,E[w(t)wT(τ)] = Q(t)δ(t − τ) (5)

E[v(t)] = 0,E[v(t)vT(τ)] = R(t)δ(t − τ) (6)

E[w(t)vT(τ)] = 0, (7)

where δ(t) is the Dirac impulse function, Q(t) is a symmetric non-negative definite matrix, and R(t) is
a symmetric positive matrix.

The continuous Kalman filter can be deduced by taking the limit of the discrete Kalman filter.
The discrete-time state-space model is arranged as follows [29]:

Xk = Φk|k−1Xk−1 + Γk|k−1Wk−1 (8)

Zk = HkXk + Vk (9)

where Xk is an n-dimensional state vector; Zk is an m-dimensional measurement vector; Φk|k−1,
Γk|k−1, and Hk are the known system structure parameters, which are called the n × n dimensional
one-step state update matrix, the n × l dimensional system noise distribution matrix, and the m × n
dimensional measurement matrix, respectively; Wk−1 is the l-dimensional system noise vector, and Vk
is the m-dimensional measurement noise vector. Both of them are Gaussian noise vector sequences
with zero mean value, and are independent of each other:

E[Wk] = 0,E[WkWT
j ] = Qkδkj (10)

E[Vk] = 0,E[VkVT
j ] = Rkδkj (11)

E[WkVT
j ] = 0. (12)

The above equation is the basic assumption for the noise requirement in the Kalman filtering state
space model, where Qk is a symmetric non-negative definite matrix, and Rk is a symmetric positive
definite matrix. δkj is the Kronecker δ function.

The covariance parameters Qk and Rk play roles similar to those of Q and R in the continuous filter,
but they do not have the same numerical values. Next, the relationship between the corresponding
continuous and discrete filter parameters will be derived.
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To achieve the transformation from the continuous form to the discrete form, the relations between
Q and R and the corresponding Qk and Rk for a small step size Ts are needed. According to the linear
system theory, the relation between Q and Qk from Equation (3) to Equation (8) is as follows:

Φk|k−1 = Φ(tk, tk−1) ≈ e
∫ tk

tk−1
F(τ)dτ

(13)

Γk|k−1Wk−1 =
∫ tk

tk−1

Φ(tk, τ)G(τ)w(t)dτ. (14)

Denote the discrete-time interval as Ts = tk − tk−1, when F(t) does not change too dramatically
within the shorter integral interval [tk−1, tk]. Take the Taylor expansion of eF(tk−1)Ts with respect to
F(tk−1)Ts and set F(tk−1)Ts << I, so the higher-order terms are negligible and the one-step transition
matrix, Equation (13), can be approximated as:

Φk|k−1 ≈ eF(tk−1)Ts = I + F(tk−1)Ts + F2(tk−1)
T2

s
2!

+ F3(tk−1)
T3

s
3!

+ · · · ≈ I + F(tk−1)Ts. (15)

Equation (14) shows that Γk|k−1Wk−1 is the linear transform of the Gaussian white noise w(τ);
the result remains the normal distribution random vector. Therefore, the first- and second-order
statistical characteristics can be used to describe and be equivalent to Γk|k−1Wk−1. Referring to
Equation (5), the mean of Γk|k−1Wk−1 is given as follows:

E[Γk|k−1Wk−1] = E[
∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)dτ] =
∫ tk

tk−1

Φ(tk, τ)G(τ)E[w(τ)]dτ = 0. (16)

For the second-order statistical characteristics, when k �= j, the time parameter between the noise
w(τk) and w(τj) is independent, so Γk|k−1Wk−1 and Γj|j−1Wj−1 are uncorrelated:

E[(Γk|k−1Wk−1)(Γj|j−1Wj−1)
T ] = 0 (k �= j). (17)

When k = j, thus

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] = E

{
[
∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)dτ][
∫ tk

tk−1

Φ(tk, s)G(s)w(s)ds]T
}

= E

{∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)
∫ tk

tk−1

wT(s)GT(s)ΦT(tk, s)dsdτ

}
=
∫ tk

tk−1

Φ(tk, τ)G(τ)
∫ tk

tk−1

E[w(τ)wT(s)]GT(s)ΦT(tk, s)dsdτ.

(18)

Substituting Equation (5) into the above equation:

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] =

∫ tk

tk−1

Φ(tk, τ)G(τ)
∫ tk

tk−1

Q(t)δ(τ − s)GT(s)ΦT(tk, s)dsdτ

=
∫ tk

tk−1

Φ(tk, τ)G(τ)Q(τ)GT(τ)ΦT(tk, τ)dτ.
(19)

When the noise control matrix G(τ) changes slowly during the time interval [tk−1, tk],
Equation (19) becomes:
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E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ]

≈
∫ tk

tk−1

[I + F(tk−1)(tk − τ)]G(tk−1)Q(τ)GT(tk−1)[I + F(tk−1)(tk − τ)]Tdτ

= [I + F(tk−1)Ts] · [G(tk−1)Q(tk−1)GT(tk−1)Ts] · [I + F(tk−1)Ts]
T

+
1
12

F(tk−1)G(tk−1)Q(tk−1)GT(tk−1)F(tk−1)
TT3

s

≈ {[I + F(tk−1)Ts]G(tk−1)} · [Q(tk−1)Ts] · {[I + F(tk−1)Ts]G(tk−1)}T .

(20)

When F(tk−1)Ts << I is satisfied, the above equation can be further approximated:

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] ≈ G(tk−1) · [Q(tk−1)Ts] · GT(tk−1). (21)

Comparing the result with Equation (10):

Γk|k−1 ≈ [I + F(tk−1)Ts]G(tk−1) ≈ G(tk−1) (22)

E[WkWT
j ] = Qkδkj = [Q(tk)Ts]δkj. (23)

Notice that [29]:
Qk = Q(tk)Ts. (24)

The derivation of the equation relating to Rk and R is more subtle. In the continuous model, v(t) is
white, so simple sampling of Z(t) leads to measurement noise with infinite variance. Hence, in the
sampling process, we have to imagine averaging the continuous measurement over the Ts interval to
get an equivalent discrete sample. This is justified because x is not the Gaussian white noise and can
be approximately constant within the interval.

Zk =
1
Ts

∫ tk

tk−1

Z(t)dt =
1
Ts

∫ tk

tk−1

[H(t)x(t) + v(t)]dt = H(tk)xk +
1
Ts

∫ tk

tk−1

v(t)dt. (25)

Then, the discrete noise matrix and the continuous noise matrix are equivalent:

Vk =
1
Ts

∫ tk

tk−1

v(t)dt. (26)

From Equation (12), we have:

E[VkVT
j ] = Rkδkj =

1
T2

s

∫ tk

tk−1

∫ tj

tj−1

E[v(τ)v(s)]dτds

=
1

T2
s

∫ tk

tk−1

∫ tj

tj−1

R(τ)δ(s − τ)dτds =
1

T2
s

∫ tk

tk−1

R(τ)δkjdτ ≈ R(tk)

Ts
δkj.

(27)

Comparing it with Equation (6), we have [29]:

Rk =
R(tk)

Ts
. (28)

2.3. Derivation of the Kalman Filter

Assuming that the optimal state estimation at tk−1 is X̂k−1, the state estimation error is X̃k−1,
and the state estimation covariance matrix is Σk−1:

X̃k−1 = Xk−1 − X̂k−1 (29)

and
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Σk−1 = E[X̃k−1X̃T
k−1] = E[(Xk−1 − X̂k−1)(Xk−1 − X̂k−1)

T ]. (30)

If we take the expectation operator of both sides of Equation (8), we obtain the state one-step
prediction and the state one-step estimation error:

X−
k|k−1 = E[Xk] = E[Φk|k−1Xk−1 + Γk|k−1Wk−1] = Φk|k−1E[Xk−1] = Φk|k−1X̂k−1, (31)

X̃k|k−1 = Xk − X−
k|k−1. (32)

Substituting Equations (8) and (31) into Equation (32) leads to:

X̃k|k−1 = (Φk|k−1Xk−1 + Γk|k−1Wk−1)− Φk|k−1X̂k−1

= Φk|k−1(Xk−1 − X̂k−1) + Γk|k−1Wk−1 = Φk|k−1X̃k−1 + Γk|k−1Wk−1.
(33)

Since X̃k−1 is uncorrelated with Wk−1, we therefore obtain the covariance of the state one-step
estimation error X̃k|k−1 as follows:

Σk|k−1 = E[X̃k|k−1X̃T
k|k−1] = E[(Φk|k−1X̃k−1 + Γk|k−1Wk−1)(Φk|k−1X̃k−1 + Γk|k−1Wk−1)

T ]

= Φk|k−1E[X̃k−1X̃T
k−1]Φ

T
k|k−1 + Γk|k−1E[Wk−1WT

k−1]Γ
T
k|k−1

= Φk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1.

(34)

In a similar way, the measurement at tk can be predicted by the state one-step estimation prediction
X−

k|k−1 and system measurement Equation (9) as follows:

Z−
k|k−1 = E[HkX−

k|k−1 + Vk] = HkX−
k|k−1. (35)

In fact, there is difference between the measurement one-step prediction Z−
k|k−1 and the actual

measurement Zk. The difference is denoted as measurement one-step prediction error:

Z̃k|k−1 = Zk − Z−
k|k−1. (36)

Substituting the measurement Equations (9) and (35) into Equation (36) yields:

Z̃k|k−1 = Zk − HkX−
k|k−1 = HkXk + Vk − HkX−

k|k−1 = HkX̃k|k−1 + Vk. (37)

In general, the measurement one-step prediction error Z̃k|k−1 is called innovation in the classical
Kalman filter theory, and it indicates the new information about the state estimate carried by the
measurement one-step prediction error.

On the one hand, if the estimation of Xk only includes the state one-step prediction X−
k|k−1 of the

system state equation, the estimation accuracy will be low, as no information of the measurement
equation has been used. On the other hand, according to Equation (37), the measurement one-step
prediction error calculated using the system measurement equation contains the information of the
state one-step prediction of X−

k|k−1. Consequently, it is natural to consider all the state information
that comes from the system state equation and the measurement equation, respectively, and correct
the state one-step prediction mean X−

k|k−1 with the measurement one-step prediction error Z̃k|k−1.

Thereby, the optimal estimation of Xk can be calculated by the combination of X−
k|k−1 and Z̃k|k−1

as follows:
X̂k = X−

k|k−1 + KkZ̃k|k−1, (38)

where Kk is the undetermined correction factor matrix.
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Substituting Equations (31) and (37) into Equation (38) obtains:

X̂k = X−
k|k−1 + Kk(Zk − HkX−

k|k−1) = (I − Kk Hk)X−
k|k−1 + KkZk

= (I − Kk Hk)Φk|k−1X̂k−1 + KkZk.
(39)

From Equation (39), the current state estimation X̂k is a linear combination of the last state
estimation X̂k−1 and the current measurement Zk, which considers the influence of the structural
parameters Φk|k−1 in the state equation and the structure parameters Hk in the measurement equation
with different types of construction.

The state estimation error at the current time tk is denoted as:

X̃k = Xk − X̂k, (40)

where Xk is the true values and X̂k is the posterior estimation of Xk.
Substituting Equation (39) into Equation (40) obtains:

X̃k = Xk − [X−
k|k−1 + Kk(Zk − HkX−

k|k−1)] = (Xk − X−
k|k−1)− Kk(HkXk + Vk − HkX−

k|k−1)

= X̃k|k−1 − Kk(HkX̃k|k−1 + Vk) = (I − Kk Hk)X̃k|k−1 − KkVk.
(41)

Then, the mean square error matrix of state estimation X̂k is given by:

Σk = E[X̃kX̃T
k ] = E{[(I − Kk Hk)X̃k|k−1 − KkVk][(I − Kk Hk)X̃k|k−1 − KkVk]

T}
= (I − Kk Hk)E[X̃k|k−1X̃T

k|k−1](I − Kk Hk)
T + KkE[VkVT

k ]KT
k

= (I − Kk Hk)Σk|k−1(I − Kk Hk)
T + KkRkKT

k .

(42)

Substituting Equation (34) into Equation (42) obtains:

Σk = (I − Kk Hk)[Φk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1](I − Kk Hk)
T + KkRkKT

k

= Φk|k−1Σk−1ΦT
k|k−1 + Kk HkΦk|k−1Σk−1ΦT

k|k−1HT
k KT

k − Φk|k−1Σk−1ΦT
k|k−1HT

k KT
k

− Kk HkΦk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1 − Kk HkΓk|k−1Qk−1ΓT
k|k−1

− Γk|k−1Qk−1ΓT
k|k−1HT

k KT
k + Kk HkΓk|k−1Qk−1ΓT

k|k−1HT
k KT

k + KkRkKT
k .

(43)

We now use the approximation Φk|k−1 ≈ I + F(tk−1)Ts as Equation (15). From Equation (22) with
Γk|k−1 ≈ G(tk−1), we have:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T HT
k KT

k

− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k KT
k − Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T

+ G(tk−1)Qk−1GT(tk−1)− Kk HkG(tk−1)Qk−1GT(tk−1)− G(tk−1)Qk−1GT(tk−1)HT
k KT

k

+ Kk HkG(tk−1)Qk−1GT(tk−1)HT
k KT

k + KkRkKT
k .

(44)

Note from Equation (24) that Qk is of the order of Ts and from Equation (28) that Rk = R(tk)
Ts

;
then, Equation (44) becomes:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T HT
k KT

k

− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k KT
k − Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T

+ G(tk−1)Q(tk)TsGT(tk−1)− Kk HkG(tk−1)Q(tk)TsGT(tk−1)

− G(tk−1)Q(tk)TsGT(tk−1)HT
k KT

k + Kk HkG(tk−1)Q(tk)TsGT(tk−1)HT
k KT

k + Kk
R(tk)

Ts
KT

k .

(45)
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2.4. The Temporal Derivative of the Rényi Entropy and the Kalman Filter Gain

To obtain the continuous form of covariance matrix Σ, the limit will be taken. However, the relation
between the undetermined correction factor matrix Kk and its continuous form still remains unknown.
Therefore, we make the following assumption.

Assumption 1. Kk is of the order of Ts, that is:

K(tk) =
Kk
Ts

. (46)

From the conclusion, we can also derive this assumption conversely. We next draw the conclusion
as one theorem under the assumption, as follows:

Theorem 1. The discrete form of the undetermined correction factor matrix is the same as the continuous
form when the temporal derivative of Rényi entropy is minimized. This can be presented in a mathematical
form as follows:

{Kk = Σk HT
k Rk, K = ΣHT R−1|K∗ = arg min

K
Ḣ(α)

R (K)}. (47)

Proof of Theorem 1. We substitute the expression for Kk into Equation (45) and neglect higher-order
terms in Ts; Equation (45) becomes:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + TsK(tk)HkΣk−1[I + F(tk−1)Ts]Σk−1

[I + F(tk−1)Ts]
T HT

k TsKT(tk)− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k TsKT(tk)

− TsK(tk)Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T + G(tk−1)Q(tk)TsGT(tk−1)

− TsK(tk)HkG(tk−1)Q(tk)TsGT(tk−1)− G(tk−1)Q(tk)TsGT(tk−1)HT
k TsKT(tk)

+ TsK(tk)HkG(tk−1)Q(tk)TsGT(tk−1)HT
k TsKT(tk) + TsK(tk)

Rk
Ts

TsKT(tk)

= Σk−1 + TsF(tk−1)Σk−1 + TsΣk−1FT(tk−1)− Σk−1HT
k TsK(tk)

T − TsK(tk)HkΣk−1

+ G(tk−1)Q(tk)TsGT(tk−1) + TsK(tk)
R(tk)

Ts
TsKT(tk).

(48)

Moving the first term of Equation (48) from right to left and dividing both sides by Ts to form the
finite difference expression:

Σk − Σk−1
Ts

= F(tk−1)Σk−1 + Σk−1FT(tk−1)− Σk−1HT
k K(tk)

T − K(tk)HkΣk−1

+ G(tk−1)Q(tk)GT(tk−1) + K(tk)R(tk)KT(tk).
(49)

Finally, passing to the limit as Ts → 0 and dropping of the subscripts lead to the matrix
differential equation:

Σ̇ = FΣ + ΣFT − ΣHTKT − KHΣ + GQGT + KRKT . (50)

Σ is invertible, as it is a positive matrix. Multiplying Σ−1 with Equation (50), we can consider the
temporal derivative of the Rényi entropy of the mean square error matrix Σ using Equation (2):
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Ḣ(α)
R =

1
2

Tr{Σ−1Σ̇}

=
1
2

Tr{Σ−1FΣ + FT − HTKT − Σ−1KHΣ + Σ−1GQGT + Σ−1KRKT}

=
1
2

Tr{F + FT − HTKT − KH + Σ−1GQGT + Σ−1KRKT}

=
1
2

Tr{2F − 2KH + Σ−1GQGT + Σ−1KRKT},

(51)

where the invariance under the cyclic permutation property of the trace operator has been used to
eliminate Σ−1 and Σ, as well as the truth that Tr(F) = Tr(FT) has been used to simplify the formula.

It is obvious that Equation (51) is a quadratic function of the undetermined correction factor
matrix K. Thereby, there must be a minimum of Ḣ(α)

R (x) in a probabilistic sense. Taking the derivative
of both sides of Equation (51) with respect to matrix K obtains:

∂

∂K
Ḣ(α)

R = −2
∂Tr(KH)

∂K
+

∂Tr(Σ−1KRKT)

∂K

= −2HT +
Tr(Σ−1KR(∂K)T)

∂K
+

Tr(Σ−1(∂K)RKT)

∂K
= −2HT + Σ−1KR + (RKTΣ−1)T .

(52)

In addition, since Σ−1 and Rk are symmetric matrices, the result is:

∂

∂K
Ḣ(α)

R = −2HT + 2Σ−1KR. (53)

Rk is invertible, as it is a positive matrix. According to the extreme value principle of the function,
when the above are equal to zero, then we have:

K = ΣHT R−1. (54)

So far, we have found the analytic solution to the undetermined correction factor matrix K, which is
called the continuous-time Kalman filter gain in the classical Kalman filter. Then, the recursive formulations
of the Kalman filter can be established through the Kalman filter gain K. Most importantly, this implies the
connection between the temporal derivative of Rényi entropy and the classical Kalman filter: The temporal
derivative of the Rényi entropy is minimized when the Kalman filter gain satisfies Equation (54).

Looking back to Assumption 1 and substituting Equation (28) into Equation (54), we obtain:

K(tk) =
Kk
Ts

= K = ΣHT R−1 = Σk HT
k Rk(Ts) =

Σk HT
k Rk

Ts
. (55)

Therefore, the discrete-time Kalman filter gain can be expressed as follows:

Kk = Σk HT
k Rk. (56)

Remark 1. The discrete-time Kalman filter gain has the same form as the continuous-time filter gain, as shown
in the Equation (54). In principle, this is consistent with our intuition and proves the correctness and rationality
of Assumption 1, in turn.

Remark 2. The Kalman filter gain is equivalent to the minimization of the temporal derivative of the Rényi
entropy, although it has the same result as the original Kalman filter, which is deduced under the minimum mean
square error criterion.
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Substituting Equation (54) into Equation (50), we have:

Σ̇ = FΣ + ΣFT − ΣHTKT − ΣHT R−1HΣ + GQGT + ΣHT R−1RKT

= FΣ + ΣFT − ΣHT R−1HΣ + GQGT .
(57)

This is a second-order nonlinear differential equation with respect to the mean square error
matrix Σ, and it is commonly called the Riccati equation. This is the same result as that of the
Bucy–Kalman filter [7].

If the system equation, Equation (3), and the measurement equation, Equation (4), form a linear
time-invariant system with constant noise covariance, the mean square error matrix Σ may reach a
steady-state value, and Σ̇ may eventually reach zero. So, we have the continuous algebraic Riccati
equation as follows:

Σ̇ = FΣ + ΣFT − ΣHT R−1HΣ + GQGT = 0. (58)

As we can see, the time derivative of covariance at the steady state is zero; then, the temporal
derivative of the Rényi entropy should also be zero:

Ḣ(α)
R = 0. (59)

This implies that when the system approaches a stable state, the Rényi entropy approaches a
steady value so that the temporal derivative of the Rényi entropy is zero. This is reasonable when the
steady system owns a constant Rényi entropy, as uncertainty is stable, which follows our intuitive
understanding. Consequently, it is worth noting that whether the value of the Rényi entropy is stable
or not can be a validated indicator of whether the system is approaching the steady state.

3. Simulations and Analysis

In this section, we give two experiments to show that when the nonlinear filter system approaches
the steady state, the Rényi entropy of the system approaches stability. The first experiment is
a numerical example of a falling body in noisy conditions, tracked by radar [30] using the UKF.
The second experiment is a practical experiment of loosely coupled integration [29]. The simulations
were carried out on MATLAB 2018a running on a computer with i5-5200U, 2.20 GHz CPU, and the
graphs were plotted by MATLAB.

3.1. Falling Body Tracking

In the example of a falling body being tracked by radar, the body falls vertically. The radar is
placed at a vertical distance L from the body, and the radar measures the distance y from the radar to
the body. The state-space equation of the body is given by:

ẋ1 = x2

ẋ2 = d + g

ẋ3 = 0,

(60)

where x1 is the height, x2 is the velocity, x3 is the ballistic coefficient, g = −9.81 m/s2 is the gravity
acceleration, and d is the air drag, which could be approximated as:

d =
ρx2

2
2x3

= ρ0 exp(− x1

k
)

x2
2

2x3
, (61)

where ρ is the air density with an initial value of ρ0 = 1.225; ρ0 = 1.225 and k = 6705.6 are constants.
The measurement equation is:

y =
√

L2 + x2
1. (62)
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It is worth noting that the drag and the square root cause severely nonlinearity in the state-space
function and measurement function, respectively.

The discrete-time nonlinear system can be given by the Euler discretization method. Combining
the additive process with Gaussian white noises for measurement, we can obtain:

x1(n + 1) = x1(n) + x2(n) · T + w1(n)

x2(n + 1) = x2(n) + (d + g) · T + w2(n)

x3(n + 1) = x3(n) + w3(n)

(63)

y(n) =
√

L2 + x2
1(n) + v(n). (64)

In the UKF numerical experiment, we set the sampling period to T = 0.4 s, the horizontal
distance to L = 100 m, the maximum number of samples to N = 100, the process
noise to Sw = diag(105, 103, 102), the measurement noise to Sv = 106, and the initial state to
x = [105;−5000; 400]. The results are shown as follows:

Figure 1 shows the evolution of covariance matrix Σ. Figures 2 and 3 show the Rényi entropy of
covariance matrix Σ and its change in adjacent time, respectively. Notice that the uncertainty increases
near the middle of the plots, which is coincident with the drag peak. However, the Rényi entropy
fluctuates around 15; even the fourth element of Σ changes dramatically. Of course, the entropy changes
are closely accompanied by the drag peak, which means the change of the entropy of covariance reflects
the evolution of matrix Σ. Consequently, the Rényi entropy can be viewed as the indicator of whether
the system is approaching the steady state or not.
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Figure 1. Evolution of matrix Σ.
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Figure 2. Simulation results for the entropy.
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Figure 3. Simulation results for the change of entropy.

3.2. Practical Integrated Navigation

In the loosely integrated navigation system, the system state parameter x is composed of inertial
navigation system (INS) error states in the North–East–Down (NED) local-level navigation frame,
and can be expressed as follows:

x = [(δrn)T (δvn)T (ψ)T (bg)
T (ba)

T ]T , (65)

where δrn, δvn, and ψ represent the position error, the velocity error, and the attitude error, respectively;
bg and ba are modeled as first-order Gauss–Markov processes, representing the gyroscope bias and the
accelerometer bias, respectively.

The discrete-time state update equation is used to update state parameters as follows:

xk = Φk|k−1xk−1 + Gk|k−1wk−1, (66)

where Gk|k−1 is the system noise matrix, wk−1 is the system noise, and Φk|k−1 is the state transition
matrix from tk−1 to tk; this is determined by the dynamic model of the state parameter.

200



Entropy 2020, 22, 982

In the loosely coupled integration, the measurement equation can be simply expressed as:

δz = Hkxk + vk, (67)

where vk is the measurement noise, Hk is the measurement matrix, and zk is the measurement vector
calculated by subtracting the global navigation satellite system (GNSS) observation with the inertial
navigation system (INS) mechanism.

The experiments reported in this section were carried out by processing the data from an
unmanned ground vehicle test. The gyroscope random walk was set to 0.03 deg/

√
h and the velocity

random walk was set to 0.05 m/s/
√

h. The sampling rates of the inertial measurement unit (IMU) and
the GNSS are 200 Hz and 1 Hz, respectively. The test lasts 48 min.

The position error curve, velocity error curve, and attitude error curve of the loosely coupled
integration are shown in Figures 4–6. The root mean squares (RMSs) of the position errors in the
north, east, and earth directions are 0.0057 m, 0.0024 m, and 0.0134 m, respectively. The RMS of the
velocity errors in the north, east, and earth directions are 0.0023 m/s, 0.0021 m/s, and 0.0038 m/s,
respectively. The RMSs of the attitude errors in the roll, pitch, and yaw directions are 0.0034 deg,
0.0030 deg, and 0.0178 deg, respectively.

The Rényi entropy of the covariance P is shown in Figure 7. As we can see, the Rényi entropy
fluctuates around −100 once the filter converges, which is consistent with the conclusion from the
entropy perspective.
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Figure 4. Position error of the loosely coupled integration.

201



Entropy 2020, 22, 982

1.1 1.15 1.2 1.25 1.3 1.35

104

-0.01

0

0.01

0.02
V

el
 E

rr
o 

V
n(

m
/s

)

Vel Erro Vn

RMS=0.0023m/s

1.1 1.15 1.2 1.25 1.3 1.35

104

-0.02

-0.01

0

0.01

0.02

V
el

 E
rr

o 
V

e(
m

/s
)

Vel Erro Ve

RMS=0.0021m/s

1.1 1.15 1.2 1.25 1.3 1.35

time(s) 104

-0.01

0

0.01

0.02

V
el

 E
rr

o 
V

d(
m

/s
)

Vel Erro Vd

RMS=0.0038m/s

Figure 5. Velocity error of the loosely coupled integration.
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Figure 6. Attitude error of the loosely coupled integration.
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4. Conclusions and Final Remarks

We have considered the original Kalman filter by taking the minimization of the temporal
derivative of the Rényi entropy. In particular, we show that the temporal derivative of Rényi entropy is
equal to zero when the Kalman filter system approaches the steady state, which means that the Rényi
entropy approaches a stable value. Finally, simulation experiments and practical experiments show
the Rényi entropy truly stays stable when the system becomes steady.

Future work includes calculating the Rényi entropy of the innovation term when the
measurements and the noise are non-Gaussian [14] in order to evaluate the effectiveness of
measurements and adjust the noise covariance matrix. Meanwhile, we can also calculate the Rényi
entropy of the nonlinear dynamical equation to measure the nonlinearity in the propagation step.
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Abstract: Forecasting stock prices plays an important role in setting a trading strategy or determining
the appropriate timing for buying or selling a stock. The use of technical analysis for financial
forecasting has been successfully employed by many researchers. The existing qualitative based
methods developed based on fuzzy reasoning techniques cannot describe the data comprehensively,
which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. Extended
fuzzy sets (e.g., fuzzy probabilistic set) study the fuzziness of the membership grade to a concept.
The cloud model, based on probability measure space, automatically produces random membership
grades of a concept through a cloud generator. In this paper, a cloud model-based approach was
proposed to confirm accurate stock based on Japanese candlestick. By incorporating probability
statistics and fuzzy set theories, the cloud model can aid the required transformation between the
qualitative concepts and quantitative data. The degree of certainty associated with candlestick
patterns can be calculated through repeated assessments by employing the normal cloud model.
The hybrid weighting method comprising the fuzzy time series, and Heikin–Ashi candlestick was
employed for determining the weights of the indicators in the multi-criteria decision-making process.
Fuzzy membership functions are constructed by the cloud model to deal effectively with uncertainty
and vagueness of the stock historical data with the aim to predict the next open, high, low, and close
prices for the stock. The experimental results prove the feasibility and high forecasting accuracy of
the proposed model.

Keywords: cloud model; fuzzy time series; stock trend; Heikin–Ashi candlestick

1. Introduction

Forecasting stock prices is an attractive pursuit for investors and researchers who want to
beat the stock market. The benefits of having a good estimation of the stock market behavior are
well-known, minimizing the risk of investment and maximizing profits. Recently, the stock market
has become an easily accessible investment tool, not only for strategic investors, but also for ordinary
people. Over the years, investors and researchers have been interested in developing and testing
models of stock price behavior. However, analyzing stock market movements and price behaviors is
extremely challenging because of the market’s dynamic, nonlinear, non–stationary, nonparametric,
noisy, and chaotic nature [1]. Stock markets are affected by many highly interrelated uncertain factors
that include economic, political, psychological, and company-specific variables. These uncertain
factors are undesirable for the stock investor and make stock price prediction very difficult, but at
the same time, they are also unavoidable whenever stock trading is preferred as an investment
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tool [1,2]. To invest in stocks and achieve high profits with low risks, investors have used technical and
fundamental analysis as two major approaches in decision-making in financial markets [2].

Fundamental analysis studies all of the factors that have an impact on the stock price of the
company in the future such as financial statements, management processes, industry, etc. It analyzes
the intrinsic value of the firm to identify whether the stock is underpriced or overpriced. On the other
hand, technical analysis uses past charts, patterns, and trends to forecast the price movements of the
entity in the coming time [2,3]. The main weakness of fundamental analysis is that it is time-consuming
as people cannot quickly locate and absorb the information needed to make thoughtful stock picks.
People’s judgments are subjective, as is their definition of fair value. The second drawback of a
fundamental analysis is in relation to the efficient market hypothesis. Since all information about
stocks is public knowledge—barring illegal insider information—stock prices reflect that knowledge.

A major advantage of technical analysis is its simple logic and application. It is seen in the fact that
it ignores all economic, market, technological, and any other factors that may have an impact on the
company and the industry and only focuses on the data on prices and the volume traded to estimate
future prices. The second advantage of technical analysis is that it excludes the subjective aspects of
certain companies such as the analyst’s personal expectations [4]. However, technical analysis may get
an investor trapped: when price movements are artificially created to lure an investor into the stock
and once enough investors are entered, they start selling, and you may be trapped. Furthermore, it is
too reliant on mathematics and patterns in the chart of the stock and ignores the underlying reasons or
causes of price movements. As a result, the stock movements are too wild to handle or predict through
technical analysis.

There exist two types of forecasting techniques to be implemented [5,6]: (a) qualitative forecasting
models; and (b) quantitative forecasting models. The qualitative forecasting models are generally
subjective in nature and are mostly based on the opinions and judgments of experts. Such types of
methods are generally used when there is little or no past data available that can be used to base the
forecast. Hence, the outcome of the forecast is based upon the knowledge of the experts regarding
the problem. On the other hand, quantitative forecasting models make use of the data available to
make predictions into the future. The model basically sums up the interesting patterns in the data and
presents a statistical association between the past and current values of the variable. Management can
use qualitative inputs in conjunction with quantitative forecasts and economic data to forecast sales
trends. Qualitative forecasting is useful when there is ambiguous or inadequate data. The qualitative
method of forecasting has certain disadvantages such as anchoring events and selective perception.
Qualitative forecasts enable a manager to decrease some of this uncertainty to develop plans that are
fairly accurate, but still inexact. However, the lack of precision in the development of a qualitative
forecast versus a quantitative forecast ensures that no single qualitative technique produces an accurate
forecast every time [2,4,7–10].

In nearly two decades, the fuzzy time series approach has been widely used for its superiorities
in dealing with imprecise knowledge (like linguistic) variables in decision making. In the process of
forecasting with fuzzy time series models, the fuzzy logical relationship is one of the most critical
factors that influence the forecasting accuracy. Many studies seek to deploy neuro-fuzzy inference to the
stock market in order to deal with probability. Fuzzy logic is known to be useful for decision-making
where there is a great deal of uncertainty as well as vague phenomena, but lacks the learning capability;
on the other hand, neural networks are useful in constructing an adaptive system that can learn from
historical data, but are not able to process ambiguous rules and probabilistic datasets. It is tedious
to develop fuzzy rules and membership functions and fuzzy outputs can be interpreted in a number
of ways, making analysis difficult. In addition, it requires a lot of data and expertise to develop a
fuzzy system.

Recently, a probabilistic fuzzy set was suggested for forecasting by introducing probability theory
into a fuzzy set framework. It changes the secondary MF of type 2 fuzzy into the probability density
function (PDF), so it is able to capture the random uncertainties in membership degree. It has the
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ability to capture uncertainties with fuzzy and random nature. However, the membership functions
are difficult to obtain for existing fuzzy approaches of measurement uncertainty. In order to conquer
this disadvantage, the cloud model was used to calculate the measurement uncertainty. A cloud is a
new, easily visualized concept for uncertainty with well-defined semantics, mediating between the
concept of a fuzzy set and that of a probability distribution [11–16]. A cloud model is an effective tool
in transforming qualitative concepts and their quantitative expressions. The digital characteristics
of cloud, expect value (Ex), entropy (En), and hyper–entropy (He), well integrate the fuzziness and
randomness of linguistic concepts in a unified way. Cloud is combined with several cloud drops in
which the shape of the cloud reflects the important characters of the quantity concept [17]. The essential
difference between the cloud model and the fuzzy probability concept lies in the used method to
calculate a random membership degree. Basically, with the three numerical characteristics, the cloud
model can randomly generate a degree of membership of an element and implement the uncertain
transformation between linguistic concepts and its quantitative instantiations.

Candlestick patterns provide a way to understand which buyer and seller groups currently control
the price action. This information is visually represented in the form of different colors on these charts.
Recently, several traders and investors have used the traditional Japanese candlestick chart pattern
and analyzed the pattern visually for both quantitative and qualitative forecasting [6–10]. Heikin–Ashi
candlesticks are an offshoot from Japanese candlesticks. Heikin–Ashi candlesticks use the open–close
data from the prior period and the open–high–low–close data from the current period to create a combo
candlestick. The resulting candlestick filters out some noise in an effort to better capture the trend.

1.1. Problem Statement

The price variation of the stock market is a non–linear dynamic system that deals with
non–stationary and volatile data. This is the reason why its modeling is not a simple task. In fact, it is
regarded as one of the most challenging modeling problems due to the fact that prices are stochastic.
Hence, the best way to predict the stock price is to reduce the level of uncertainty by analyzing the
movement of the stock price. The main motivation of our work was the successful prediction of stock
future value that can yield enormous capital profits and can avoid potential market risk. Several
classical approaches have been evolved based on linear time series models, but the patterns of the
stock market are not linear. These approaches lead to inaccurate results, which may be susceptible to
highly dynamic factors such as macroeconomic conditions and political events. Moreover, the existing
qualitative based methods developed based on fuzzy reasoning techniques cannot describe the data
comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data
forecasting. The most important disadvantage of the fuzzy time series approach is that it needs
subjective decisions, especially in the fuzzification stage.

1.2. Contribution and Novelty

The objective of the work presented in this paper is to construct an accurate stock trend prediction
model through utilizing a combination of the cloud model, Heikin–Ashi candlesticks, and fuzzy
time series (FTS) in a unified model. The purpose of the cloud model is to add the randomness and
uncertainty to the fuzziness linguistic definition of Heikin–Ashi candlesticks. FTS is utilized to abstract
linguistic values from historical data, instead of numerical ones, to find internal relationship rules.
Heikin–Ashi candlesticks were employed to give easier readability of the candle’s features through the
reduction of noise, eliminates the gaps between candles, and smoothens the movement of the market.

As far as the authors know, this is the first time that the cloud model has been used in forecasting
stock market trends that is unlike the current methods that adopt a fuzzy probability approach for
forecasting that requires an expert to define the extra parameters of the probabilistic fuzzy system
such as output probability vector in probabilistic fuzzy rules and variance factor. These selected
statistical parameters specify the degree of randomness. The cloud model not only focuses on the
studies regarding the distribution of samples in the universe, but also try to generalize the point–based
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membership to a random variable on the interval [0, 1], which can give a brand new method to
study the relationship between the randomness of samples and uncertainty of membership degree.
More practically speaking, the degree with the aid of three numeric characteristics, by which the
transformation between linguistic concepts and numeric values will become possible.

The outline of the remainder of this paper is as follows. Section 2 presents the background and
summary of the state-of-the-art approaches. Section 3 describes the proposed model. The test results
and discussion of the meaning are shown in Section 4. The conclusion of this work is given in Section 5.

2. Preliminaries and Literature Review

In this section, we summarize material that we need later that includes the cloud model, fuzzy
time series, and Heikin–Ashi candlesticks. Finally, some state-of-the-art related works are discussed.

2.1. Cloud Model

The cloud model (CM) proposed by Li et al. [17] relies on probability statistics and traditional
fuzzy theory [18,19]. The membership cloud model as shown in Figure 1 can mix the fuzziness and
randomness to objectively describe the uncertainty of the complex system. This model makes it
possible to obtain the range and the distribution of the quantitative data from qualitative information,
which is described by linguistic value and effectively transits precise data into appropriate qualitative
language value. The digital character of the cloud can be expressed by expected value (Ex), entropy
(En), and hyper entropy (He). CM uses Ex to represent the qualitative concept and usually is the value
of x corresponding to the cloud center. En represents the uncertainty measure of the qualitative concept.
It measures the ambiguity of the quantitative numerical range. He symbols the uncertainty measure of
entropy, namely the entropy of entropy, which reflects the dispersion degree of cloud, which appears
in the size of the cloud’s thickness [17–21].

 
Figure 1. Cloud model.

The theoretical foundation of CM is the probability measure (i.e., the measure function in the sense
of probability). On the basis of normal distribution and Gaussian membership function, CMs describe
the vagueness of the membership degree of an element by a random variable defined in the universe.
Being an uncertain transition way between a qualitative concept described by linguistic terms and its
numerical representation, the cloud has depicted such abundant uncertainties in linguistic terms as
randomness, fuzziness, and the relationship between them. CM can acquire the range and distributing
law of the quantitative data from the qualitative information expressed in linguistic terms. CM has
been successfully applied and gives better performance results in several fields such as intelligence
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control [11], data mining [19], and others. Figure 2 illustrates the types of cloud model (see [11,17] for
more details).

 

Figure 2. Two different types of cloud generators. (a) Forward cloud generator; (b) Backward
cloud generator.

2.2. The Fuzzy Time Series Model

Fuzzy time series is another concept to solve forecasting problems in which the historical data
are linguistic values. The fuzzy time series has recently received increasing attention because of its
capability to deal with vague and incomplete data. There have been a variety of models developed
to either improve forecasting accuracy or reduce computation overhead [22]. The fuzzy time series
model uses a four–step framework to make forecasts, as shown in Figure 3: (1) define the universe of
discourse and partition it into intervals; (2) determine the fuzzy sets on the universe of discourse and
fuzzify the time series; (3) build the model of the existing fuzzy logic relationships in the fuzzified time
series; and (4) make forecast and defuzzify the forecast values [23–25].

Figure 3. Processes of fuzzy time series forecasting.

Nevertheless, the forecasting performance can be significantly affected by the partition of the
universe of discourse. Another issue is the consistency of the forecasting accuracy with the interval
length. In general cases, better accuracy can be achieved with a shorter interval length. However,
an effective forecasting model should adhere to the consistency principle. In accounting, consistency
requires that a company’s financial statements follow the same accounting principles, methods,
practices, and procedures from one accounting period to the next. In general, the effect of some
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parameters in fuzzy time series such as population size, number of intervals, and order of fuzzy time
series must be tested and analyzed [26,27].

2.3. Heikin–Ashi Candlestick Pattern

The current forecasting models do not contain the qualitative information that would help in
predicting the future. Japanese candlesticks are a technical analysis tool that traders use to chart and
analyze the price movement of securities. Japanese candlesticks provide more detailed and accurate
information about price movements compared to bar charts. They provide a graphical representation
of the supply and demand behind each time period’s price action. Each candlestick includes a central
portion that shows the distance between the open and the close of the security being traded, the area
referred to as the body. The upper shadow is the price distance between the top of the body and the
high for the trading period. The lower shadow is the price distance between the bottom of the body
and the low for the trading period. The closing price of the security being traded determines whether
the candlestick is bullish or bearish. The real body is usually white if the candlestick closes at a higher
price than when it opened. In such a case, the closing price is located at the top of the real body and
the opening price is located at the bottom. If the security being traded closed at a lower price than it
opened for the time period, the body is usually filled up or black in color. The closing price is located
at the bottom of the body and the opening price is located at the top. Modern candlesticks now replace
the white and black colors of the body with more colors such as red, green, and blue. Traders can
choose among the colors when using electronic trading platforms (see Figure 4) [6,7].

Figure 4. The dark candle and white candle.

Normal candlestick charts are composed of a series of open–high–low–close (OHLC) candles set
apart by a time series. The Heikin–Ashi technique shares some characteristics with standard candlestick
charts but uses a modified formula of close–open–high–low (COHL). There are a few differences
to note between the two types of charts, and are demonstrated by the charts above. Heikin–Ashi
has a smoother look as it essentially takes an average of the movement. There is a tendency with
Heikin–Ashi for the candles to stay red during a downtrend and green during an uptrend, whereas
normal candlesticks alternate colors, even if the price is moving dominantly in one direction. Since
Heikin–Ashi takes an average, the current price on the candle may not match the price the market is
actually trading at. For this reason, many charting platforms show two prices on the y-axis: one for the
calculation of the Heikin–Ashi and another for the current price of the asset [7–10].

2.4. Related Work

Researchers that believe in the existence of patterns in a financial time series that make them
predictable have centered their work mainly in two different approaches: statistical and artificial
intelligence (AI). The statistical techniques most used in financial time series modeling are the
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autoregressive integrated moving average (ARIMA) and the smooth transition autoregressive (STAR) [2].
On the other hand, artificial intelligence provides sophisticated techniques to model time series and
search for behavior patterns: genetic algorithms, fuzzy models, the adaptive neuro-fuzzy inference
system (ANFIS), artificial neural networks (ANN), support vector machines (SVM), hidden Markov
models, and expert systems, are some examples. Unlike statistical techniques, they are capable of
obtaining adequate models for nonlinear and unstructured data. There exists a huge amount of
literature that uses AI approaches for time series forecasting [2,4,8]. However, most of them are
inaccurate: the computer programs are more effective in syntax analysis than semantic analysis.
Furthermore, most of them follow the quantitative forecasting category; qualitative forecasting is useful
when there is ambiguous or inadequate data. Most of the current studies were conducted from single
time scale features of the stock market index, but it is also meaningful for studying from multiple time
scale features [8]. With the development of deep learning, there are many methods based on deep
learning used for stock forecasting and have drawn some essential conclusions [3].

In the literature, many studies have used an integrated neuro-fuzzy model to estimate the
dynamics of the stock market using technical indicators [3]. This approach integrates the advantages
in both the neural and fuzzy models to facilitate reliable intelligent stock value forecasting. However,
most of these works did not consider the fractional deviation within a day. Another group of research
work utilized hidden Markov models (HMMs) to predict the stock price based on the daily fractional
change in the stock share value of intra-day high and low. To benefit from the correlation between
the technical indicators and reduce the large dimensionality space, the principal component analysis
(PCA) concept was deployed to select the most effective technical indicators among a large number of
highly correlated variables. PCA linearly transforms the original large set of input variables into a
smaller set of uncorrelated variables to reduce the large dimensionality space.

In addition, some researchers are currently using soft computing techniques (e.g., genetic
algorithm) for selecting the most optimal subset of features among a large number of input features,
and then selected features are given as input to the machine learning module (e.g., SVM Light software
package). Technical analysis is carried out based on technical indicators from the stock to be predicted
and also from other stocks that are highly correlated with it. However, the decision is carried out only
based on the input feature variables of technical indicators. This leads to prediction errors due to the
lack of precise domain knowledge and no consideration of various political and economic factors that
affect the stock market other than the technical indicators [3,8].

Song and Chissom [13] suggested a forecasting model using fuzzy time series, which provided a
theoretical framework to model a special dynamic process whose observations were linguistic values.
The main difference between the traditional time series and fuzzy time series was that the observed
values of the former were real numbers while the observed values of the latter were fuzzy sets or
linguistic values. Chen et al. [16] presented a new method for forecasting university enrolment using
fuzzy time series. Their method is more efficient than the suggested method by Song and Chissom
due to the fact that their method used simplified arithmetic operation rather than the complicated
MaxMin composition operation. Hwang [22] suggested a new method based on fuzzification to revise
Song and Chissom’s method. He used a different triangle fuzzification method to fuzzily crisp values.
His method involved determining an interval of extension from both sides of crisp value in triangle
membership function to get a variant degree of membership. The results obtained a better average
forecasting error. In addition, the influences of factors and variables in a fuzzy time series model such
as definition area, number and length of intervals, and the interval of extension in triangle membership
function were discussed in detail. More techniques that used fuzzy time series for forecasting can be
found in [23–27].

Nison [5] introduced the Japanese candlestick concepts to the Western world. Japanese candlestick
patterns are believed to show both quantitative information like price, trend . . . etc., and qualitative
information like the psychology of the market. It considers not only the close values, but also
the information on the body of the candlestick can offer an informative summary of the trading
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sessions [28] and some of its components are predictable [29]. Some researchers have combined
technical patterns and candlestick information [30]. In the last decades, several researchers have used
Japanese candlesticks in creative forecasting methods [31–36]. Lee et al. [31] suggested an expert system
with IF–THEN rules to detect candlestick patterns, flag sell, and buy orders with good hit ratios in the
Korean market. The authors in [32] displayed Japanese candlestick patterns using fuzzy linguistic
variables and knowledge-based by fuzzing both the candle line and the candle lines relationship. In [33],
a prediction model was suggested for the financial decision system based on fuzzy candlestick patterns.
Lee [34] extended this work through creating and using personal candlestick pattern ontologies to
allow different users to have their explanation of a candlestick pattern. Kamo et al. [8,35,36] suggested
a model that combined neural networks, committee machines, and fuzzy logic to identify candlestick
patterns and generate a market strength weight using fuzzy rules in [35], the type–1 fuzzy logic system
in [36], and finally, the type–2 fuzzy logic system in [6].

Naranjo et al. [37] presented a model that used the K-nearest neighbors (KNN) algorithm to
forecast the candlestick one day ahead using the fuzzy candlestick representation. Naranjo et al. [38]
fuzzified the gap between candles and added it as an extended element in candlesticks patterns.
However, Japanese candlestick has contradictory information due to the market’s noise [38]. Recently,
the Heikin–Ashi technique modifies the traditional candlestick chart and makes it easier to reduce
the noise, eliminate the gaps between candles, and smoothen the movement of the market and let the
traders focus on the main trend. The Heikin–Ashi graph is not only more readable than traditional
candles, but is also a real trading system [10].

In general, most existing fuzzy time series forecasting models follow fuzzy rules according to the
relationships between neighboring states without considering the inconsistency of fluctuations for
a related period [38–40]. This paper proposes a new perspective to study the problem of prediction,
in which inconsistency is quantified and regarded as a key characteristic of prediction rules by utilizing
a combination of the cloud model, Heikin–Ashi candlesticks, and fuzzy time series (FTS) in a unified
model that can represent both fluctuation trend and fluctuation consistency information.

3. Proposed Model

The purpose of the study is to predict and confirm accurate stock future trends due to a lack of
insufficient levels of accuracy and certainty. However, there are many problems in previous studies.
The main problems in data are uncertainty, noise, non-linearity, non-stationary, and dynamic process
of stock prices in time series. In the prediction model, many models are used. The statistical method
like the ARMA family is achieved with the trial and error basis iterations. Traders also have problems
that include predicting the stock price every day, finding the reversal patterns of the stock price,
the difficulty in model parameter tuning, and finally, the gap exists between prediction results and
investment decision. Additionally, traditional candlestick patterns have problems such as the definition
of the patterns itself being ambiguous and the largest number of patterns.

In order to deal with the above problems, the suggested prediction model uses both cloud model
and Heikin–Ashi (HA) candlestick patterns. Figure 5 illustrates the main steps of the suggested model
that include preparing historical data, HA candlestick processing, representing the HA candlestick
using the cloud model, forecasting the next day price (open, high, low, close) using cloud–based time
series prediction, formalizing the next day HA candlestick features, and finally, forecasting the trend
and its strong patterns. The following subsection discusses each step in detail [9].

3.1. Step 1: Preparing the Historical Data

The publicly available stock market datasets contain historical data on the four price time series
for several companies were collected from Yahoo (http://finance.yahoo.com). The dataset specifies the
“opening price, lowest price, closing price, highest price, adjusted closing price, and volume” against
each date. The data were divided into two parts: the training part and the testing part. The training
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part from the time series data was used for the formulation of the model while the testing part was
used for the validation of the proposed model.

 

Figure 5. The procedure of the proposed forecasting model.

3.2. Step 2: Candlestick Data

The first stage in stock market forecasting is the selection of input variables. The two most common
types of features that are widely used for predicting the stock market are fundamental indicators and
technical indicators. The suggested model used technical indicators that are determined by employing
candlestick patterns such as open price, close price, low price, and high price to try to find future stock
prices [5,6]. A standard candlestick pattern is composed of one or more candlestick lines. However,
the extended candlestick (Heikin–Ashi) patterns have one candlestick line. The HA candlestick uses
the modified OHLC values as candlesticks that are calculated using [5]:

HaClose =
(Open + High + Low + Close)

4

HaOpen =
(HaOpen(Previous Bar) + HaClose(Previous Bar)

2
HaHigh = Max

(
High, HaOpen, HaClose

)
HaLow = Min

(
Low, HaOpen, HaClose

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

Herein, each candlestick line has the following parameters: length of the upper shadow, length of
the lower shadow, length of the body, color, open style, and close style. The open style and close style
are formed by the relationship between a candlestick line and its previous candlestick line. The crisp
value of the length of the upper shadow, length of the lower shadow, length of the body, and color play
an important role in identifying a candlestick pattern and determining the efficiency of the candlestick
pattern. The candlestick parameters are directly calculated using [9,10].

HaLBody =
Max(Haopen , HaClose) − Min(Haopen, HaClose)

Haopen
× 100

HaLUpperShadow =
HaHigh − Max(Haopen, HaClose)

Open × 100

HaLLowerShadow =
Min(Haopen, HaClose) − HaLow

Haopen
× 100

HaColor = HaClose − Haopen

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2)

where HaL indicates the length of the body, upper shadow, or lower shadow of the HA candlestick. The
HaCOLOR parameter represents the mean body color of the HA candlestick. Heikin–Ashi candlesticks
are similar to conventional ones, but rather than using opens, closes, highs, and lows, they use average
values for these four price metrics.

In stock market prediction, the quality of data is the main factor because the accuracy and the
reliability of the prediction model depends upon the quality of data. Any unwanted anomalies in the
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dataset are known as noise. Outliers are the set of observations that do not obey the general behavior
of the dataset. The presence of noise and outliers may result in poor prediction accuracy of forecasting
models. The data must be prepared so that it covers the range of inputs for which the network is
going to be used. Data pre-processing techniques attempt to reduce errors and remove outliers, hence
improving the accuracy of prediction models. The purpose of HA charts is to filter noise and provide a
clearer visual representation of the trend. Heikin–Ashi has a smoother look, as it is essentially taking
an average of the movement [9,10].

3.3. Step 3: Cloud Model-Based Candlestick Representation

There is no crisp value to define the length of body and shadow in the HA candlestick; these
variables are usually described as imprecise and vague. Herrin, to transform crisp candlestick
parameters (HA quantitative values) to linguistic variables to define the candlestick (qualitative value),
the cloud model was used. To achieve this goal, fuzzy HA candlestick pattern ontology was built that
contains [4,8]:

- Candlestick Lines: Four fuzzy linguistic variables, equal, short, middle, and long, were defined to
indicate the cloud model of the shadows and the body length. Figure 6 shows the membership
function of the linguistic variables based on the cloud model, then used the maximum μ(x) to
determine its linguistic variable. The ranges of body and shadow length were set to (0, p) to
represent the percentage of the fluctuation of stock price. The parameter value of each fuzzy
linguistic variable was set as stated in [8]. See [8] for more details regarding the rationale of using
these values. These fuzzy linguistic variables are defined as:

Equal(x : a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 x < a

exp
(
− 1

2

(
x−Ex

En

)2)
a ≤ x ≤ b

0 x > b

(3)

Short/Middle(x : a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < a

exp
(
− 1

2

( x−Ex1
En1

)2)
a ≤ x ≤ b

1 b < x < c

exp
(
− 1

2

( x−Ex2
En2

)2)
c ≤ x ≤ d

0 x > d

(4)

Large(x : a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 x < a

exp
(
− 1

2

(
x−Ex

En

)2)
a ≤ x ≤ b

1 x > b

(5)

The body color BodyColor is also an import feature of a candlestick line. It is defined by three terms
Black, White, and Doji. A Doji term is defined to describe the situation where the open price equals the
close price. In this case, the height of the body is 0, and the shape is represented by a horizontal bar.
The definition of body color is defined as [10]:

If(Open−Close) > 0 Then BodyColor = Black
If(Open−Close) < 0 Then BodyColor = White
If(Open−Close) = 0 Then BodyColor = Doji

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

- Candlestick Lines Relationships: This defines the place of the HA candlestick with the previous
one to form open style and close style linguistic variables. In general, merging the description of
the candlestick line and HA candlestick line relationship can create a HA candlestick pattern that
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is completely defined. Herein, five linguistic variables were defined to represent the relationship
style (X style): low, equal low, equal, equal high, and high. Their membership function follows
half bell cloud defined in Equation (7). Additionally, the parameter value of each fuzzy linguistic
variable was set as stated in [8]. Figure 7 shows the membership function of the linguistic variable
based on the cloud model:

X_Style(x : a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 x < a

exp
(
− 1

2

(
x−Ex

En

)2)
a ≤ x ≤

0 x > b

b (7)

 

Figure 6. The membership function of the body and shadow length based on the cloud model.

 

Figure 7. The membership function of the open and close styles based on the cloud model.

In our case, membership cloud function (forward normal cloud generator) converts the statistic
results to fuzzy numbers, and constructs the one–to–many mapping model. The input of the forward
normal cloud generator is three numerical characteristics of a linguistic term, (Ex, En, He), and the
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number of cloud drops to be generated, N, while the output is the quantitative positions of N cloud
drops in the data space and the certain degree that each cloud drop can represent the linguistic term.
The algorithm in detail is:

- Produce a normally distributed random number En’ with mean En and standard deviation He;
- Produce a normally distributed random number x with mean Ex and standard deviation En’;

- Calculate Y = exp
(
− 1

2

(
x−Ex

En

)2)
- Drop (x,y) is a cloud drop in the universe of discourse; and
- Repeat step 1–4 until N cloud drops are generated.

Expectation value (Ex) at the center-of-gravity positions of cloud drops is the central value of
distribution. Entropy (En) is the fuzzy measure of qualitative concept that describes the uncertainty
and the randomness. The larger the entropy, the larger the acceptable interval of this qualitative
concept, which represents that this conception is more fuzzy. Hyper entropy (He) is the uncertain
measure of qualitative concept that describes the dispersion. The larger the hyper entropy, the thicker
the shape of the cloud, which shows that this conception is more discrete [20,21].

– Forecast the next day price (open, high, low, close)
In the fuzzy candlestick pattern approach, the measured values are the open, close, high, and low

price of trading targets in a specific time period. The features of the trading target price fluctuation are
represented by the fuzzy candlestick pattern. The classification rules of fuzzy candlestick patterns
can be determined by the investors or the computer system. In general, using a candlestick pattern
approach for financial time series prediction consists of the following steps [21]:

- Partitioning the universe of discourse into intervals: In this case, after preparing the historical
data and defining the range of the universe of discourse (UoD), open, high, low, and close
prices should be established as a data price set for each one. Then, for each data price
set, the variation percentage between two prices on time t and time t + n is calculated
((Closet+n −Closet)/Closet)×100 to partition the universe of discourse dataset into intervals. Based
on the variation, the minimum variation Dmin and the maximum variation Dmax are determined
that define U = [Dmin −D1, Dmax + D2], where D1 and D2 are suitable positive numbers.

- Classifying the historical data to its cloud: The next step determines the linguistic variables
represented by clouds (see Figure 8) to describe the degree of variation between data of time t and
time t + n and defined it as a set of linguistic terms. Table 1 shows the digital characteristics of the
cloud member function (Ex, En, He) for each linguistic term.

- Building the predictive logical relationships (PLR): The model builds the PLR to carry on the soft
inference At−1 → At , where At−1 and At are clouds representing linguistic concepts, by searching
all clouds in time series with the pattern (At−1 → At ).

- Building of predictive linguistic relationship groups (PLRG): In the training dataset, all PLRs
with the same “current state” will be grouped into the same PLRG. If A1, A2,· · · , Am is the
“current state” of one PLR in the training dataset and there are r PLRs in the training dataset
as A1 → A1 ; A1 → A2 ; . . . . ; A1 → Am , the r PLRs can be grouped into the same PLRG,
as A1 → A1, A2, . . . ., Am . Then, assign the weight elements for each PLRG. Assume Ai has n1

relationships with A1, n2 relationships with A2, and so on. The weight values (w) can be assigned
as wi = (number of recurrence of Ai)/(total number of PLRs).

- Calculating the predicted value via defuzzification: Then the model forecasts the next day (open,
high, low, close) prices through defuzzification and calculates the predicted value at time t P(t) by
following the rule:

� Rule 1: If there is only one PLR in the PLRG, ( A1 → Ai ) then,

P(t) =
Exi + S(t− 1)

2
(8)
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� Rule 2: If there is r PLR in the PLRG, ( A1 → A1, A2, . . . ., Ap ) then,

P(t) =
1
2

((
(n1 × Ex1) + (n2 × Ex2) + . . .+ (np × Exp)

n1 + n1 + . . .+ np

)
+ S(t− 1)

)
(9)

� Rule 3: If there is no PLR in the PLRG, ( A1 → #) where the symbol “#” denotes an
unknown value; then apply Equation (8). Exi is the expectation of the Gaussian cloud Ci
corresponding to Ai, ni is the number of Ai appearing in the PLRG, 1 ≤ i ≤ r, and S(t − 1)
denotes the observed value at time t – 1.

- Transforming the forecasting results (open, high, low, and close) to the next HA candlestick.
through the following rules [9]:

� Rule 1: If BodyColor is White and HaLBody is Long Then, UP Trend.

� Rule 2: If BodyColor is Black and HaLBody is Long Then, Down Trend.

� Rule 3: If BodyColor is White and HaLBody is Long and HaLLowerShadow is Equal Then, Strong
UP Trend.

� Rule 4: If BodyColor is Black and HaLBody is Long and HaLUpperShadow is Equal Then, Strong
Down Trend.

� Rule 5: If (HaLBody is Equal) and (HaLUpperShadow & HaLLowerShadow) is Long Then Change
of Trend.

� Rule 6: If (HaLBody is Short) and (HaLUpperShadow & HaLLowerShadow) is not Equal Then,
Consolidation Trend.

� Rule 7: If (HaLBody is Short or Equal) and (HaOpen_Style and HaClose_Style) is (Low_Style
or EqualLow_Style) and HaLUpperShadow is Equal Then Weaker Trend.

 

Figure 8. The clouds of the linguistic terms.

Table 1. The digital characteristics of cloud member function for each linguistic term.

Price Variation [−6, −4.5] [−6, −3] [−4.5, −1.5] [−3, 0] [−1.5, 1.5] [0, 3] [1.5, 4.5] [3, 6] [4.5, 6]

Linguistic Terms
A1

Extreme
Decrease

A2 Large
Decrease

A3 Normal
Decrease

A4 Small
Decrease

A5 No
Change

A6 Small
Increase

A7
Normal
Increase

A8 Large
Increase

A9
Extreme
Increase

CG
Ex −6 −4.5 −3 −1.5 0 1.5 3 4.5 6
En 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
He 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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4. Experimental Results

In order to test the efficiency and validity of the proposed model, the model was implemented in
MATLAB language. The prototype verification technique was built in a modular fashion and has been
implemented and tested in a Dell™ Inspiron™N5110 Laptop machine, Dell computer Corporation,
Texas, which had the following features: Intel(R) Core(TM) i5–2410M CPU@ 2.30GHz, and 4.00 GB
of RAM, 64–bit Windows 7. A dataset composed of real-time stocks series of the NYSE (New York
Stock Exchange) was used in the experimentation. The dataset had 13 time series of NYSE companies,
each one with the four prices (open, high, low, and close). Time series were downloaded from the Yahoo
finance website (http://finance.yahoo.com), Table 2 shows the companies’ names, symbol, and starting
date and ending date for the selected dataset. The dataset was divided into 2/3 for training and the
other 1/3 for testing.

Table 2. Selected time series datasets.

Company Symbol from to

Boeing Company BA 02/01/1962 27/06/2018
Bank of America BAC 03/01/2000 12/12/2014

DuPont DD 03/01/2000 12/12/2014
Ford Motor Co. F 03/01/2000 12/12/2014
General Electric GE 03/01/2000 12/12/2014

Hewlett–Packard HPQ 03/01/2000 12/12/2014
Microsoft MSFT 03/01/2000 12/12/2014
Monsanto MON 18/10/2000 12/12/2014

Toyota Motor TM 03/01/2000 12/12/2014
Wells Fargo WFC 01/06/1972 27/06/2018

Yahoo YHOO 03/01/2005 12/12/2014
Exxon Mobil XOM 02/01/1970 21/05/2018
Walt Disney DIS 02/01/1962 27/06/2018

In the proposed forecasting model, the parameters were set as follows: the ranges of body (p) and
shadow length were set to (0, 14) to represent the percentage of the fluctuation of stock price because
the varying percentages of the stock prices are limited to 14 percent in the Taiwanese stock market,
for example. It should be noted that although we limited the fluctuation of body and shadow length to
14 percent, in other applications, the designer can change the range of the fluctuation length to any
number [4]. The four parameters (a–d) of the function to describe the linguistic variables SHORT and
MIDDLE were (0, 0.5, 1.5, 2.5) and (1.5, 2.5, 3.5, 5). The parameters (a, b) that were used to model the
EQUAL fuzzy set were equal to (0, 0.5). Regarding the two parameters D1 and D2, which are used to
determine the UOD, we can set D1 = 0:17 and D2 = 0:34, so the UoD can be represented as [6,8]. Finally,
the number of drops in the cloud model used to build the membership function is usually equal to the
number of samples in the dataset to describe the data efficiently. The mean squared error (MSE) and
mean absolute percentage error (MAPE) that are used by academicians and practitioners [4,21] were
used to evaluate the accuracy of the proposed method. Tables 3–6 show the output of applying each
model step for the Yahoo dataset.

MSE =

∑n
i=1(Forcasted Value−Actual Value)2

n
(10)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣ (Actual Value)i − (Forcasted Value)i

(Actual Value)i

∣∣∣∣∣∣ (11)
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Table 5. The PLR results.

Date Open PLR High PLR Low PLR Close PLR

03/01/2005
04/01/2005 A5 → A2 A4→ A2 A3→ A4 A2→ A4
05/01/2005 A2→ A4 A2→ A4 A4→ A4 A4→ A4
06/01/2005 A4→ A4 A4→ A4 A4→ A5 A4→ A6
07/01/2005 A4→ A4 A4→ A6 A5→ A5 A6→ A6
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .

09/12/2014 A2→ A7 A4→ A5 A4→ A6 A6→ A4
10/12/2014 A7→ A4 A5→ A4 A6→ A5 A4→ A6
11/12/2014 A4→ A4 A4→ A6 A5→ A4 A6→ A5

Table 6. PLRG for close PLR.

Close
To Total

CountA1 A2 A3 A4 A5 A6 A7 A8 A9

From

A1 0 2 0 14 1 2 2 0 3 24
A2 2 7 3 21 4 16 6 6 5 70
A3 0 1 1 15 3 7 2 2 1 32
A4 6 30 15 370 79 170 67 29 17 783
A5 4 3 3 100 22 28 11 7 1 179
A6 5 10 3 152 42 64 32 13 6 327
A7 3 9 3 68 19 21 4 6 3 136
A8 0 3 2 25 8 15 10 7 3 73
A9 4 5 2 18 1 4 2 3 5 44

1668

The suggested model was verified with respect to the RMS on both the training and testing data.
The predicted prices of the model were found to be correct and close to the actual prices. There was a
clear difference between the MSE values for the training and testing data, showing that the model was
overfitting the training data as the error on the training dataset was minimized. The reason for this
is that the model was not as generalized and was specialized to the structure in the training dataset.
Using cross validation represents one possible way to handle overfitting, and using multiple runs of
cross validation is better again. The model RMS is summarized in Table 7.

Table 7. Average MSE of the suggested model for all dataset.

MSE Open High Low Close

Training Data 0.09 0.19 0.16 0.20
Testing Data 0.03 0.07 0.07 0.07

Table 8 shows the comparison results between our two versions of the suggested model: the first
one uses open, high, low, and close price as the initial price in the cloud FTS model (Cloud FTS) and the
second method uses HaOpen, HaHigh, HaLow, and HaClose prices as the initial price in the cloud FTS
model (HA Cloud FTS), and other two standard Song fuzzy time series (FTS) [13,14] and Yu weighted
fuzzy time series (WFTS) models [23]. In Song’s studies, the fuzzy relationships were treated as if they
were equally important, which might not have properly reflected the importance of each individual
fuzzy relationship in forecasting. In Yu’s study, it is recommended that different weights be assigned
to various fuzzy relationships. From Table 8, the MSE of the forecasting results of the proposed model
was smaller than that of the other methods for all datasets. That is, the proposed model could obtain a
higher forecasting accuracy rate for forecasting stock prices than the Song FTS and Yu WFTS models.
In general, the MSE values changed according to the nature of each dataset. It can be noted from the
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table that the Wells Fargo dataset yielded the best results in terms of RMS for both the training and
testing data. In general, the Wells Fargo dataset is a small dataset (2,313 row and 12 column) that is
probably linearly separable, so it produced high accuracy. This is a bit difficult to accomplish with
larger data, so the algorithm produced lower accuracy.

Table 8. MSE Comparison for CLOSE price prediction between HA Cloud FTS, Cloud FTS, Yu WFTS
and Song.

Company

MSE HA Cloud FTS Cloud FTS Yu WFTS [23] Song FTS [14]

Train Test Train Test Train Test Train Test

Boeing Company BA 0.048 0.672 0.078 0.960 5.290 3.460 5.954 3.725
Bank of America BAC 0.941 0.023 1.124 0.029 6.503 2.592 2.756 0.960

DuPont DD 0.270 0.116 0.397 0.152 5.336 2.496 14.516 7.076
Ford Motor Co. F 0.168 0.020 0.203 0.026 5.905 2.690 4.080 1.588
General Electric GE 3.204 0.023 3.423 0.036 8.526 2.403 9.425 2.074

Hewlett–Packard HPQ 1.392 0.096 1.769 0.130 7.182 2.756 6.605 2.372
Microsoft MSFT 0.740 0.048 0.922 0.068 5.905 2.403 7.129 2.372
Monsanto MON 1.904 0.314 2.528 0.476 8.009 3.028 6.052 1.588

Toyota Motor TM 1.166 0.449 1.369 0.504 6.300 2.856 19.272 9.303
Wells Fargo WFC 0.023 0.102 0.040 0.144 4.928 2.624 3.133 1.638

Yahoo YHOO 0.203 0.073 0.250 0.090 5.664 2.624 6.052 2.496
Exxon Mobil XOM 0.040 0.221 0.068 0.314 4.580 2.560 6.656 3.572
Walt Disney DIS 0.023 0.130 0.036 0.194 5.198 2.723 4.580 2.250

AVERAGE 0.779 0.176 0.939 0.240 6.102 2.709 7.400 3.155

One possible explanation of these results is that, compared with standard models that use FTS
only, utilizing FTS with the cloud model helps to automatically produces random membership grades
of a concept through a cloud generator. In this way, the membership functions are built based on the
characteristics of the data instead of traditional fuzzy–based forecasting methods that depend on the
expert. From the point of view of the importance of using HA candlesticks with the cloud model
for forecasting, utilizing the HA candlesticks showed significant features that could identify market
turning points and also the direction of the trend that helps improve prediction accuracy.

The last set of experiments was fulfilled to validate the efficiency of the suggested model compared
to state-of-the-art models listed in Figure 9 using the Taiwan Capitalization Weighted Stock Index
(TAIEX). The data used for comparison were obtained from a website https://www.twse.com.tw/ that
provided the stock prices prevailing at the NASDAQ stock quotes. As shown in Figure 9, the proposed
model can perform effective prediction where the predicted stock price closely resembles the actual
price in the stock market. The MSE of the suggested model was 665.40 compared with 1254.90, 4530.45,
and 4698.78 for the other methods, respectively. Clearly, the suggested model had a smaller MSE than
the previous methods. One of the reasons for this result is due to the merging between the cloud model
and HA candlesticks, which makes it possible to account for the vagueness and uncertainty of the
pattern features based on data characteristics.
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Figure 9. Comparison of the forecasting values of different methods.

5. Conclusions

In recent years, mathematical and computational models from artificial intelligence have been
used for forecasting. Knowing about future values and the stock market trend has attracted a lot of
attention by researchers, investors, financial experts, and brokers. This work analyzed stock trading
due to its high non-linear, uncertain, and dynamic data over time. Therefore, this paper presented a
Japanese candlestick-based cloud model for stock price prediction that minimizes the investor risk
while investing money in the stock market. The proposed work presented an enhanced fuzzy time
series forecasting model based on the cloud model and Heikin–Ashi Japanese candlestick to predict
and confirm the accurate stock trends. The objective of this model was to handle qualitative forecasting
and not quantitative only. The experimental result showed that using HA Cloud FTS and Cloud FTS
had a lower average than the other methods used in the literature. This low average proves the high
accuracy of the proposed model. HA Cloud FTS provided a MSE = 0.779 for the training data and 0.176
for the test data and Cloud FTS gave a MSE of 0.939 for the training data and 0.240 for the test data;
these results mean that the HA Cloud FTS method, which uses HaOpen, HaHigh, HaLow, HaClose
prices as the initial price, has a significant improvement in stock market trend prediction. Future work
includes embedding Neutrosophic logic to enhance qualitative forecasting.
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Abstract: This paper presents an extensive and practical study of the estimation of stable channel bank
shape and dimensions using the maximum entropy principle. The transverse slope (St) distribution
of threshold channel bank cross-sections satisfies the properties of the probability space. The entropy
of St is subject to two constraint conditions, and the principle of maximum entropy must be applied
to find the least biased probability distribution. Accordingly, the Lagrange multiplier (λ) as a critical
parameter in the entropy equation is calculated numerically based on the maximum entropy principle.
The main goal of the present paper is the investigation of the hydraulic parameters influence governing
the mean transverse slope (St) value comprehensively using a Gene Expression Programming (GEP)
by knowing the initial information (discharge (Q) and mean sediment size (d50)) related to the
intended problem. An explicit and simple equation of the St of banks and the geometric and hydraulic
parameters of flow is introduced based on the GEP in combination with the previous shape profile
equation related to previous researchers. Therefore, a reliable numerical hybrid model is designed,
namely Entropy-based Design Model of Threshold Channels (EDMTC) based on entropy theory
combined with the evolutionary algorithm of the GEP model, for estimating the bank profile shape
and also dimensions of threshold channels. A wide range of laboratory and field data are utilized
to verify the proposed EDMTC. The results demonstrate that the used Shannon entropy model is
accurate with a lower average value of Mean Absolute Relative Error (MARE) equal to 0.317 than a
previous model proposed by Cao and Knight (1997) (MARE = 0.98) in estimating the bank profile
shape of threshold channels based on entropy for the first time. Furthermore, the EDMTC proposed
in this paper has acceptable accuracy in predicting the shape profile and consequently, the dimensions
of threshold channel banks with a wide range of laboratory and field data when only the channel
hydraulic characteristics (e.g., Q and d50) are known. Thus, EDMTC can be used in threshold channel
design and implementation applications in cases when the channel characteristics are unknown.
Furthermore, the uncertainty analysis of the EDMTC supports the model’s high reliability with a
Width of Uncertainty Bound (WUB) of ±0.03 and standard deviation (Sd) of 0.24.

Keywords: water resources; channel; mathematical entropy model; bank profile shape;
gene expression programming (GEP); entropy; genetic programming; artificial intelligence;
data science; big data
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1. Introduction

The sections and dimensions of rivers and alluvial channels change due to the constant interactions
between water and sediments. River and channel plans and cross-sections undergo dimensional
changes until equilibrium or stable state is attained. After equilibrium, the average dimensions of a
stable cross-section do not change over time; in fact, the rate of sedimentation and erosion in a channel
cross-section is theoretically in equilibrium [1–3]. In this case, the particles on the bed and at the
channel banks are in dynamic balance. In channels with coarse particles, the movement of sediments
at any location in the channel contradicts the term “channel stability” [4,5]. In this type of channel,
it is not possible for sediments to move without changing the channel dimensions and width [6].
Moreover, the channel dimensions and width of water surface are only preserved (channel stability)
in a state when the sediment particles on the channel bed move slightly and at the banks are in the
threshold of motion [7]. In such case, one problem related to river morphology is with predicting the
erosion process of river banks and profile shape formation until stable sections are achieved [8,9].

The St is distributed between zero value on the channel bed and the maximum St value (St
+) at

the free water surface at the water margin. St distribution is related to the lateral distance (x) from
the channel bed (x = 0) to the water margin. At the water margin, x is named L which is equal to the
half-width of the free water surface (B/2) (L = B/2). Therefore, it is worth using the entropy concept in
the study of the St of bank profiles because the entropy concept is based on the probability principle
and its relation to a channel’s geometric parameters. Furthermore, since the St

+ value at the free
water surface is equal to μ (submerged static coefficient of Coulomb friction), the St of the banks is
affected by the hydraulic parameters of the channel cross-sections too (including flow and sediment
characteristics). The St value in channels is due to the homogeneity of St

+ values as a result of these
conditions. Because the St value is not specified for channels (and also there is no specified relation for
computing it), a uniform distribution of the transverse bank slope is assumed to obtain the St value
from the ratio of the maximum flow depth at the channel centerline (hc) to the corresponding lateral
distance of this depth from the central channel axis (L). Therefore, if the channel dimension values are
not specified, the St value cannot be obtained. Therefore, a novel relationship would have existed to
estimated St values based on available datasets (not only channel dimensions).

Furthermore, with the obtained entropy equation it is possible to accurately predict the St of
the banks depending on the correct values of the Lagrange multipliers contained in the equation.
Therefore, if the entropy equation can predict the transverse bank slope correctly, multiplier λ should be
closely related to the hydraulic and geometric parameters of the banks, which has not been investigated
so far except the recent study of authors. Gholami et al. [10] analyzed the sensitivity of λmultiplier to
different hydraulic and geometric parameters. They referred to considerable impact of the maximum
slope of the bank profile and the dimensionless lateral distance of the river banks on λ variations.
Therefore, by investigating the relationship between the entropy parameters and the hydraulic and
geometric parameters of a channel, it is possible to achieve a simpler equation for the transverse
bank slope distribution and thus, the bank profile shape. Based on Gholami et al.’s [10] study results,
a simple relation is presented based on the maximum entropy principle to compute entropy parameter
using maximum and mean values of St. In the Consequently, the fraction obtained with the St to St

+

ratio (δ) is evaluated and a relationship between the δ ratio and the entropy parameter (K = λμ) is
presented. Moreover, a regression model based on GEP is used to create a relationship between the St

of the banks and the geometric and hydraulic parameters of the flow (when the channel dimensions
are unknown and only the hydraulic characteristics (e.g., Q and d50) are available). This relationship is
combined with Vigilar and Diplas’ [11] polynomial equation to present an equation for estimating the
stable free surface width based on the relationship between δ and K. The EDMTC proposed in this
paper is used together with the bank profile shape equation to obtain the channel bank dimensions.
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2. Literature Review

So far, many studies have been carried out to examine channel dimensions in dynamic equilibrium
state [12–19]. However, few studies have examined the bank profile shape of threshold channels or the
static equilibrium of channels. Parker [6] did extensive research in this field and justified the stable
channel paradox with the nonuniform shear stress distribution on the channel bed and banks due to
the longitudinal transformation of the lateral flow momentum. Parker’s model estimated the bank
profile shape as a cosine curve. Later, Ikeda [20] conducted extensive laboratory studies to investigate
the shape of stable channel banks. Ikeda then employed a mathematical model based on Parker’s idea
and presented an exponential equation for bank profile shapes. Ikeda [20] pointed out that the most
influential parameters in determining the shape of stable channels are the Q and d50. Diplas [21] used
an analytical model with their experimental data and proposed a special case of Ikeda’s [20] equation
as an exponential function for a bank profile shape. Pizzuto [22] examined the stability criterion using
an analytical solution of the widening process at the free water surface. Pizzuto [22] considered the
shear stress redistribution due to lateral diffusion and reported an exponential function for a bank
profile after channel widening stops. Diplas and Vigilar [23] presented a numerical model to assess the
difference between the shape of threshold channels and a previous conventional shape (cosine) for
banks. They stated that with particles that do not move along the banks, the transverse slope of the
banks should be milder, in which case a wider and deeper channel would form. Hence, they introduced
a fifth-degree polynomial profile shape of stable channel banks. Vigilar and Diplas [11,24,25] provided
graphs for use to predict the dimensions and profile shapes of stable channel banks with a third-degree
polynomial equation. This equation can accurately predict the bank profile shape, because it is in
accordance with the results obtained with the equations of several other researchers who have used
various other methods [26,27]. Babaeyan [7] did an extensive laboratory study and according to their
observational data introduced a hyperbolic bank profile shape. Cao and Knight [28] were the first
to examine the shape of bank profiles using the entropy concept. By applying the shape equation
obtained with the maximum entropy principle, they reported a parabolic equation. In solving their
entropy equation, the Lagrange multiplier (λ) contained within were tested numerically. The equation
was validated according to Chow’s [29] definition of natural rivers considering a value of zero for λ.
Cao and Knight [28] emphasized the need to further consider the physical concept of multiplier λ.
Following Cao and Knight’s [28] brief study, no other study has been based on the entropy concept
to predict the St and hence the bank profile shape of stable channels. Gholami et al. [30–34] assessed
the ability of different artificial intelligence (AI) methods in the estimation of bank profile shapes of
threshold channels. They referred to high efficiency in these methods in estimation and the necessity
of further researches about on forming stable shape of bank profiles.

Due to the significance of the entropy concept, many studies have addressed entropy in examining
different variables [35–38]. In hydraulic science, Chiu [39] was the first to examine the flow velocity
distribution using entropy. Later, other considerations were applied to evaluate the mean and
maximum velocity ratio, shear stress and sediment concentration distributions in the cross sections of
channels [40–53]. In the field of application of entropy concepts in determining St of stable channels,
recently, Gholami et al. [54,55] assessed the ability of Tsallis and Shannon entropy concepts in estimation
of St of stable channels banks. They extensively assessed the variation of different entropy parameters
and their signs in obtained entropy-based equations. However, they presented no reports about the
significant effects of relations of maximum and mean values of St with entropy parameters and the
other hydraulic and geometric conditions.

3. Materials and Methods

3.1. Maximum Entropy Principle in Estimating the Transverse Slope of Stable Banks

Cao and Knight [28] evaluated the St of banks in threshold state using the principle of maximum
entropy for the first time. In the following, Gholami et al. [54,56] modified the application of maximum
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entropy principle used by Cao and Knight [28]. Cao and Knight [28] employed the Shannon entropy [56]
in the form of Equation (1) and presented Equation (2) considering the St of stable banks as a random
variable and the principle of maximum entropy [57,58] associated with the two constraint conditions
of continuity and momentum in Equations (3) and (4) [59].

H(St) = −
∫

p(St) ln p(St)dSt, (1)

where p(St) is the Probability Density Function (PDF) of the St of the banks, and H is the amount
of entropy.

St =
1
λ

ln
[
1 + (eλμ − 1)

x
L

]
(2)

∫ μ

0
p(St)dSt = 1, (3)

∫ μ

0
Stp(St)dSt = St, (4)

where x is the lateral distance of points on the banks from the channel centerline and λ is the Lagrange
multiplier. Figure 1 represents a symmetrical bank cross section of stable alluvial channels. In stable
channels, St of the banks changes monotonically from the centerline of the channel bed (x = 0 and
y = 0) that is zero (St = 0) to the St

+ value at the free water surface at the water margin (x = L = B/2
and y = hc), which is equal to μ (the submerged static coefficient of Coulomb friction).

Figure 1. Symmetrical cross section of alluvial threshold channels and its characteristics.

Cao and Knight [28] carried out numerical testing and considered a specified range for λ
(1, 5, 10, 50, 100). They stated that when λ tends toward zero, the cross-sectional bank shape is a
parabolic curve. Consequently, this multiplier was deleted from their equation. The following equation
was presented with numerical justification for bank profile shape estimation:

y∗ =
(
μ2

4

)
x∗2, (5)

where x* = x/hc is the dimensionless lateral distance from the channel centerline and y* = y/hc is
the dimensionless vertical boundary level. The Lagrange multiplier is a key component of the
maximum entropy principle. In the following, Gholami et al. [54] presented an equation based on
the maximum entropy principle to caculate λ numerically [54] which is explained in summary in the
following. Accordingly, by using the Lagrange Multiplier Method (LMM) and variable calculation
technique [39,60,61], the equation below is obtained for p(St):

p(St) = exp(λ1 + λSt − 1). (6)
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Equation (6) is used with the first constraint (Equation (3)) to obtain the following equation:

eλ1−1 = λ(eλμ − 1)
−1

, (7)

where λ1 is Lagrange multipliuer and equal to: λ1 = ln[λ/(eλμ − 1)] + 1.
Furthermore, by replacing Equations (6) and (7) in the second constraint condition (Equation (4)),

the following equation is obtained to calculate λ:

St =
μeλμ

(eλμ − 1)
− 1
λ

. (8)

On the other hand, by dividing the sides of Equation (8) by μ, the following equation is obtained:

St

μ
= δ =

eK

(eK − 1)
− 1

K
(9)

where K is a dimensionless parameter known as the entropy parameter used to measure the uniformity
of the probability and distribution of the St, which is equal to K = λμ, and δ is the ratio of St to St

+

(=μ). In the present study, when the values of hc, L, and St
+ (=μ) are known, the St value along the

banks is obtained by assuming the uniform distribution of St as equal to the hc/L ratio. Therefore, λ is
obtained by numerically solving Equation (8). Then, the St distribution of stable banks can be computed
according to Equation (2). Moreover, physical justifications of λmultiplier and the effect of different
hydraulic and geometric parameters on it is investigated in Gholami et al. [10]. On the other hand,
the St at each point on the channel banks is formulated as St = dy/dx, where y is the vertical boundary
level of the points. By integrating this, the bank profile shape equation for threshold channels becomes
Equation (10), where the integral constant (C) is obtained by applying the boundary condition at the
channel centerline (x and y = 0).

y =
1
λ

[(
x +

L
eλμ − 1

)
ln
(
1 + (eλμ − 1)

x
L

)
− x

]
. (10)

This is introduced as the bank profile shape equation based on developed entropy model which is
extended in Gholami et al. [54] in details. If the channel dimensions (B and hc) are not specified, it is
not possible to estimate λ and hence, the St and y values. Therefore, in this paper, the next section
presents a numerical model for when the channel dimensions are not specified and only Q and d50 are
known from the problem condition.

3.2. Calculating μ

The μ value can be calculated as μ = tan ϕ, where ϕ is the angle of sediment reposition.
Furthermore, since the value of μ changes with the sand size and roughness [5,62], the following
relationship between the ϕ and sediment size (d50) can be utilized in the current study to compute ϕ in
uniform sediments [10,27,54]:

ϕ =

⎡⎢⎢⎢⎢⎣ 0.302(log d50)
5 + 0.126(log d50)

4 − 1.811(log d50)
3

−0.57(log d50)
2 + 5.952(log d50) + 37.52

⎤⎥⎥⎥⎥⎦ (11)

where ϕ is in degree and d50 should be inserted in centimeters.

3.3. Entropy-Based Design Model of Threshold Channels (EDMTC)

As stated in the previous section, by assuming a uniform distribution for St value, the St value
can be obtained by the hc/L when the values of hc, and L (=B/2) are known. Accordingly, if the hc and B
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values are not known, it is not possible to calculate St. In this section, an explicit relationship will be
provided to calculate the St value for the cases that the channel dimensions (hc, B) are not available.

In this way, using several series of available observational data with different hydraulic conditions,
the Q, d50 and μ values are determined and a relationship for the St value based on these parameters is
applied to calculate the St value for any other data where the channel dimensions are not specified.
Accordingly, considering Q, d50 and μ parameters as input parameters and St as output parameter
based on a numerical GEP model (Figure 2) [32,63,64] provide a relationship for predicting St in the
form of Equation (12):

St = G1 + G2 + G3,

G1 = ê
{
−
{[
μ2 − 2μ + ln(μ+ 4.433)

]
+
[
exp

(
−(Q + μ)2

)]
+ exp

[
−
(
(0.936 + d50)

2
)]2}}

,

G2 = ê
{
−{[(17.693− 1.565Q) + (1/d50)] + [μ+ 1.565− μQ]

}2},
G3 = ê

{
−{[(1.112Qd50 − ln(6.5Q))/μ] + μ

}2}.
(12)

 

Figure 2. Flowchart of the proposed Entropy-based Design Model of Threshold Channels (EDMTC)
computational procedure for designing the dimensions and shape of threshold channels in the
present study.

In fact, with input parameters Q, d50 and μ (=St
+) the value of St is calculated using Equation (12).

Now by knowing the St value for any channel whose stability dimensions are not specified, in addition
to bank profile shape, the width and depth of the channel after stability can be determined. To do this,
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St can be calculated by using the equations presented by former researchers who have applied analytical
and theoretical frameworks to derive the relationships. As stated, the polynomial shape proposed by
some researchers is an acceptable shape than the previous classic cosine, parabolic, and exponential
forms [23]. Therefore, in the present study, the polynomial function provided by Vigilar and Diplas [11]
is used to estimate the bank profile shape of stable channels as follows [11]:

y∗ = 1− a3x ∗3 −a2x ∗2 −a1x ∗ −a0. (13)

Coefficients a0, a1, a2 and a3 depend on the values of δ*cr and μ, which are obtained from Table 1 for
each given dataset [11]. δ*cr is the dimensionless critical stress depth (δ*cr = δcr/hc) in critical condition
of sediments in the bank profile. In this case, the shear stress depth (δ′) is δ′ = τ/ρgS, where τ is the
shear stress along the channel and S is the longitudinal slope of the water surface. The value of δ*cr can
be obtained according to the (μ − δ*cr) figures related to Vigilar and Diplas [11].

Table 1. Coefficients in the bank profile shape equation related to Vigilar and Diplas [11] (Equation (13))
for different values of μ and δ*cr [11].

a0 a1 a2 a3 δ*cr

μ = 0.4
1.0001 −0.0135 −0.0411 0 0.93
1.0004 −0.0236 −0.0412 0 0.935
1.0008 −0.0307 −0.0412 0 0.94
1.0009 −0.0342 −0.0413 0 0.945

μ = 0.55
1.0003 −0.018 −0.0503 −0.0029 0.9
1.0006 −0.0299 −0.0527 −0.0027 0.905
1.0008 −0.0366 −0.0547 −0.0025 0.91
1.001 −0.0416 −0.0565 −0.0022 0.915

1.0011 −0.0463 −0.0586 −0.0019 0.921

μ = 0.65
1.0006 −0.0278 −0.0543 −0.006 0.885
1.001 −0.0444 −0.06 −0.0054 0.895

1.0013 −0.0529 −0.0647 −0.0048 0.905
1.0041 −0.0556 −0.0665 −0.0045 0.909

μ = 0.76
1.0009 −0.0365 −0.0544 −0.0105 0.87
1.0014 −0.0531 -0.061 −0.0101 0.88
1.0017 −0.0621 −0.0662 −0.0095 0.89
1.0018 −0.0662 −0.0701 −0.009 0.897

μ = 0.84
1.0011 −0.0418 −0.0516 −0.0146 0.86
1.0016 −0.0594 −0.059 −0.0143 0.87
1.002 −0.0697 −0.0634 −0.0141 0.88

1.0021 −0.0742 −0.0708 −0.013 0.89

μ = 1.0
1.0016 −0.0571 −0.0466 −0.0233 0.845
1.0022 −0.0738 −0.0531 −0.0237 0.855
1.0025 −0.0828 −0.0589 −0.0236 0.865
1.0028 −0.0884 −0.0656 −0.023 0.875
1.0028 −0.0892 −0.0683 −0.0226 0.878

Now, the derivative of the above function (Equation (13)) versus dx* yields the transverse slope
function at different points in the channel as follows:

St =
dy∗
dx∗ = −3a3x ∗2 −2a2x ∗ −a1. (14)
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Now, according to the mean value theorem in integral, the mean slope value of the bank profiles (St)
is computed based on the mean value theorem for definite integrals for y* distribution (Equation (13))
along the transverse interval in range of (0 ≤ x∗ ≤ 0.5B∗) according to the following Equations (15a–c):

St =
1

0.5B∗
∫ 0.5B∗

0
y ∗ (x)dx, (15a)

St =
2
B∗
[
1− a3

B∗3
8
− a2

B∗2
4
− a1

B∗
2
− a0

]
, (15b)

St = −a3
B∗2
4
− a2

B∗
2
− a1 − 2

B∗ (a0 − 1). (15c)

Therefore, by obtaining St value using Equation (12), B* value of the free water surface of bank
profile is obtained with Equation (15b). In fact, with input parameters Q, d50 and μ (=St

+) the value of
St is calculated using Equation (12). Then, Equation (15c) is used to obtain the value of B* based on
obtained St values according to Equation (12). Accordingly, in this study, the EDMTC (Figure 2) is
presented to predict the dimensions and shape of bank profiles using the entropy principle. The value
of x* (lateral distance from the channel axis) is selected for a specific range of arbitrary x* values at
a distance of 0 ≤ x∗i ≤ 0.5B ∗ (= L). The values of y* obtained by the entropy facilitate plotting the
bank shape profiles against different xi. Figure 2 shows the flowchart of the GEP model and model
developed in the present study (EDMTC) to predict the shape and dimensions of threshold channels.

3.4. Experimental Data

The observational data series used in the present study were collected in previous investigations
by Mikhailova et al. [65], Ikeda [20], Diplas [19], Babaeyan [7], Macky [66], Hassanzadeh et al. [67],
and Khodashenas [68]. The hydraulic and geometric conditions of the data vary, with different ranges
of Q and d50 values in the channel as well as geometric conditions of the laboratory flumes used with
each data series. Furthermore, several tests were carried out for different discharge rates with each data
series, and the channels had different conditions until reaching equilibrium state. In each observational
data series, in addition to the channel dimensions (B and hc) the coordinate data of the points in stable
bank profiles (x, y) were extracted for some discharge values as well. Moreover, all experiments were
done in laboratory flumes with different aspect ratios (B/hc = α) in the range (4–30). In each test,
the sediment sizes selected were somewhat course, so the corresponding proportional discharge in
the channels would cause no movement of sediment particles in the channels. Hence, the stresses
on the walls and channel bed were respectively less and more than the critical stress until threshold
channel conditions would govern. Table 2 summarizes the hydraulic and geometric conditions for the
data used.
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Table 2. Summary of experimental characteristics for the data used in the present study.

Researchers Runs. No.
No. of
Series

d50 [mm]
Discharge
(Q) [L/s]

Water
Surface

Half-Width
(B/2) [cm]

Central
Water Depth

(hc) [cm]

Mikhailova et al. [65] 2
S1 0.2 65 112 10.4

S2 0.2 69 132.5 14.4

Ikeda [20] 1 S3 1.3 16.28 24.8 3.54

Diplas [21] 1 S4 1.9 12.526 33 3.85

Babaeyan [7] 1 S5 1 2.5 52.6 2.63

Macky [66] (Field data) 1 S6 3.42 64.3 127 3.7

Hassanzadeh et al. [67] 2
S7 1.2 11.09 32 8.6

S8 1.6 20.07 40.6 10.9

Khodashenas [68] 4

S9 0.53 6.2 21.7 8

S10 0.53 2.57 16 6.3

S11 0.53 2.18 17 6.12

S12 0.53 1.157 9.5 3.7

3.5. Used Data in Modeling

As stated in the previous section, in this paper, 12 numbers of observed runs (S1–S12) (according to
Table 1) with different hydraulic and geometry characteristics are selected for training and testing
the EDMTC model. The hydraulic and geometric conditions of the data series are varied, so that
the range of Q and d50 values in the channel, as well as the geometric conditions of the laboratory
flumes used in each data series, are different. Furthermore, in each seven available observational data
series (Mikhailova et al. 1980; Ikeda 1981; Diplas 1990; Babaeyan 1996; Macky 1999; Hassanzadeh et al.
2014; and Khodashenas 2016), there are several runs related to them according below with different
discharges, therefore, the stable channel shape formed on banks in each observed run is different.

• Ikeda (1981)→ one run as S3 (8 samples)
• Diplas (1990)→ one run as S4 (25 samples)
• Babaeyan (1996)→ one run as S5 (8 samples)
• Macky (1999)→ one run as S6 (101 samples)
• Hassanzadeh et al. (2014)→ two runs as S7 (33 samples) and S8 (38 samples)
• and Khodashenas (2016)→ four runs as S9 (44 samples), S10 (33 samples), S11 (57 samples) and

S12 (20 samples)

In fact, in this paper, external-validation is performed. External validation means that among
12 numbers of data series (totally 367 sample numbers), some data series are used for training and
some data series are selected for testing the models. Accordingly, in this paper, 10 data series of S1, S2,
S3, S7, S8, S9, S10, S11, and S12 (65% of all samples: 233 samples) are used for training the EDMTC
model and three data series of S4, S5, and S6 (35% of all samples: 134 samples) related to Diplas’ (1990),
Babaeyan’s (1996) and Macky’s (1999) data series are selected for testing the EDMTC model. This kind
of validation is acceptable, because the proposed EDMTC model is trained and tested based on data
series with different hydraulic and geometry characteristics.

3.6. Evaluation of Model Efficiency

In order to evaluate the methods presented in this study, several statistical indices are used: The
determination coefficient (R2), Root Mean Squared Error (RMSE), Mean Absolute Relative Error (MARE),
Mean Absolute Error (MAE), and Bias. These evaluation criteria are defined by Equations (16)–(20):

233



Entropy 2020, 22, 1218

R2 = 1−

n∑
i=1

(yi − xi)
2

n∑
i=1

(yi − y)2
, (16)

RMSE =

√√
1
n

n∑
i=1

(xi − yi)
2, (17)

MARE =
1
n

n∑
i=1

⎛⎜⎜⎜⎜⎝
∣∣∣xi − yi

∣∣∣
xi

⎞⎟⎟⎟⎟⎠, (18)

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣, (19)

Bias =
1
n

n∑
i=1

(xi − yi), (20)

where yi and xi denote the estimated and observed values, y represents the mean modeled values and
n is the sample size. The closer the R2 coefficient is to the unit value (1), the higher the agreement there
is between the observed and predicted values. The closer the results of MARE, RMSE, Bias, and MAE
indices are to zero, the higher the estimation accuracy is as well. Positive and negative Bias values
imply model over and underestimation, respectively [69–71]. Therefore, computing several evaluation
criteria can better reveal the model performance [72,73].

4. Results

In the first section, the ability of entropy model is evaluated to predict bank profile shapes. In the
second section, the EDMTC proposed in this study is examined in detail. At the end, the uncertainty of
the proposed EDMTC is examined using different uncertainty indexes.

4.1. Entropy Model in Predicting Bank Profile Shapes

In Figure 3, the vertical boundary level of stable channel banks is estimated by the developed
entropy model based on the maximum entropy principle which is proposed in Gholami et al. [54] for
the first time. The λ value is obtained by numerical solution of Equation (8). Accordingly, for each
data series (each bank profile shape), one λ value is obtained by numerically solving Equation (8).
In Equation (8), St value is calculated by assuming uniform distribution of St, according to ratio of hc/L.
Using obtained λ value, the y value is computed based on entropy method by solving Equation (10).
The y* distribution obtained by Equation (10) corresponding each x* value is drawn for each data series
in Figure 3. Moreover, the results of Cao and Knight’s [28] model (CKM) (according to Equation (5))
are extracted and their proposed bank profile shape is drawn in Figure 3 to evaluate the entropy
model performance. Table 3 contains the different error indices for entropy model and CKM. Figure 3
indicates that entropy model exhibits acceptable conformity with the corresponding observational
data series in predicting the vertical boundary level and hence, estimates the bank profile shape with
low error values. According to all data series, entropy model is able to estimate the governing bank
profile shape trend with lower MARE and RMSE values equal to 0.317 and 0.08 better than CKM
with 0.981 and 0.363 values respectively. Figure 3 also shows that for two data series, i.e., S1 and S2
(Mikhailova et al.’s [65] data), CKM has high error values in y* estimation and high accuracy in the
area near the free water surface, where high MARE values in the 2–4 range are observed for these data
series. However, the proposed entropy model is able to detect the bank profile shape trend with lower
error values (MARE = 0.2 and 0.8 for S1 and S2 datasets respectively) than CKM with 1.95 and 3.95
MARE values, which represents the significant superiority of entropy model. This process is repeated
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for the S2 and S3 data series. Although CKM exhibits acceptable performance, entropy model is more
accurate with lower error values and coincides closely with the observed values (especially in the area
near the surface). For the S6 field data series, although both models do not perform well (with close
Bias values of −0.31 and 0.45 for entropy model and CKM respectively), entropy model again performs
with lower error (MARE = 0.58) than CKM (MARE = 1.03). Furthermore, the high MARE index value
for CKM is representative of its inability to estimate low y* values (in the vicinity of channel bed),
a problem that is solved by entropy model significantly. Furthermore, the RMSE values of CKM
and entropy model which is equal to 0.5 and 0.38 respectively approved the inefficiency of CKM in
estimating low y* levels. With data series S7, the improvement of entropy model over CKM by about
60% and 85% in the MARE and RMSE values respectively is observed clearly in Figure 3, as entropy
model highly conforms to the observational data with R2 values of 0.98. With Khodashenas’ [68] data
(S9–S12), the higher efficiency of entropy model over CKM is evident with lower MARE and RMSE
values in entropy model than CKM. Furthermore, entropy model is able to estimate the water surface
widening with high y* values well with low values of RMSE and Bias values close to 0. The negative
and positive Bias value represents the underestimation and overestimation of the models respectively.
As it can be seen in the Bias values, the CKM in most of the datasets have positive Bias values and
overestimates the y* values in comparison with the corresponding observed values. It can thus be said
that the entropy model proposed in the present study based on the maximum entropy principle is
more accurate in the estimating the bank profile shape of stable channels than CKM, which suggests
a parabolic curve (Equation (5)) for channel banks. A notable point in this paper is the significant
physical effect of λ values on the accurate estimation of the intended variables, which is negligible
with CKM. The λ values obtained by entropy model in this study are gathered in Table 3, where it can
be seen that this multiplier is in a specified range of −2 to 2 with almost all data series (except with 1–2
data series). Furthermore, the λ values are the same for different runs of one experiment.

 

Figure 3. Cont.

235



Entropy 2020, 22, 1218

 

Figure 3. Bank profile shape predicted by developed entropy model and Cao and Knight’s [28] model
(CKM) for different observational data series (S1–S12).

Table 3. Assessment of the efficiency of developed entropy model (DEM) and CKM compared with
different observational data series according to different error indices and λ values related to DEM in
this paper.

MARE RMSE Bias R2 λ

Data
Series

DEM CKM DEM CKM DEM CKM DEM CKM DEM

S1 0.254 1.95 0.103 1.31 −0.04 0.99 0.93 0.981 −5.56
S2 0.86 3.95 0.057 0.7 −0.036 0.47 0.98 0.988 −4.26
S3 0.228 0.47 0.037 0.141 0.022 0.116 0.99 0.981 −1.62
S4 0.15 0.11 0.053 0.08 −0.05 0.064 0.99 0.997 −1.75
S5 0.43 0.42 0.1 0.135 −0.08 0.114 0.99 0.988 2.11
S6 0.58 1.03 0.38 0.5 −0.31 0.45 0.96 0.957 1.5
S7 0.147 0.86 0.056 0.37 0.045 0.35 0.98 0.966 −2.46
S8 0.315 0.99 0.109 0.34 0.098 0.32 0.97 0.95 −2.2
S9 0.26 0.50 0.044 0.184 0.008 −0.148 0.98 0.989 1.72
S10 0.18 0.56 0.028 0.24 −0.01 −0.192 0.99 0.987 2.2
S11 0.23 0.46 0.05 0.14 0.03 −0.108 0.99 0.996 1.4
S12 0.17 0.47 0.05 0.22 0.03 −0.16 0.985 0.996 2.4

Averaged 0.317 0.981 0.08 0.363 −0.02 0.189 0.978 0.981 -

4.2. Presenting the Entropy-Based Design Model of Threshold Channels (EDMTC)

In previous sections, the entropy model was evaluated for its prediction ability of bank profile
shapes in case the depth and width of the free water surface in the channel are determined. In this
study, EDMTC based on the relationship between the entropy parameter and the St of channel banks to
predict the channel dimensions as well as the bank profile shape is presented and explained in detail in
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Section 3.2 and Figure 2. The proposed EDMTC is evaluated in the first subsequent section and the
model’s uncertainty is examined in the second part.

Evaluation of EDMTC Performance

Figure 4 displays scatter plots of the EDMTC proposed in this study for several observational
data series. The left side of the figure contains the regression plots of the y* values predicted by
EDMTC compared to the corresponding observational values. The right side of the figure shows
the cross-sectional profile shapes predicted by EDMTC compared with the profile shapes obtained
with observational values. Table 4 lists the error indices of EDMTC compared to the corresponding
observational values. The scatter plots indicate that EDMTC can very accurately predict the vertical
elevation of stable channel banks, as most data is compressed around the trend line and slight scattering
is observed for some of the datasets. In Figure 4, the trend line is mapped to the data and the
resulting equation is y = ax + b. Closer a and b values to 1 and 0, respectively, represent acceptable
model prediction performance. According to the trend line, for all datasets the predicted values
are concentrated around this line and the values of a, b are close to 1, 0, respectively. This indicates
the high efficiency of the proposed EDMTC in predicting the vertical elevation of channel banks.
Moreover, the R2 index value in this figure is higher than 0.95 for all observational data series,
indicating the high EDMTC prediction accuracy. The value of this index is very close to 1 for some
of the observational data [20,21,68], signifying very high model conformity to the corresponding
observational values. Furthermore, according to the diagrams on the right side of Figure 4, the EDMTC
is able to accurately estimate the bank profile shape trend for all data series. Although some differences
between the values y* predicted by the model and the observational values are seen, it is notable that
EDMTC is able to model the vertical bank elevation (from the channel center on the bed to the free
water surface margins) and the water surface widening near the water surface levels similar to the
corresponding observational values. The error index values in Table 4 are also validated accordingly.
This table shows that the MARE values for all datasets are 0.3–0.5, which is close to 0. This index
indicates the accuracy of the proposed EDMTC in predicting the vertical elevation of banks as well
as the free water surface width in stable channels. An important point is that the proposed EDMTC
predicts the profile shape trend successfully and can therefore be used to design the width and depth
(dimensions) of stable channels when only flow inputs such as Q, d50 and μ are known. The high
accuracy of this model is confirmed, and achieving such a model with the least parameters to predict the
dimensions and cross-sectional bank shapes formed in stable channels is of considerable importance.
Also, EDMTC not only considers the geometric conditions of the channel cross sections but also
involves the hydraulic conditions of the problem (by using Vigilar and Diplas’ [11] equation), which is
one of the notable features of this model. Based on most observational data series, the estimated
channel width is very similar to the observational values (in some cases it is slightly less). For example,
for the EDMTC profile predictions based on the observational data from Diplas [21], Babaeyan [7],
and Hassanzadeh et al. [67], the water surface width is estimated very close to the observed values.
Furthermore, for most observational datasets, the proposed model estimates greater values for the
vertical elevation of the water surface, although the estimated profile trend fits the observational values
perfectly. The partial error values of EDMTC that are mostly seen in the areas near the channel bed
and the free water surface with some of the datasets can be considered measurement errors of the
observational data [74]. For some data, e.g., Hassanzadeh et al. [67] and Khodashenas [68] this error
is seen at the channel bed. Additionally, Figure 4 shows that EDMTC based on Khodashenas’ [68]
data estimates lower y* than the actual values, which results in a negative Bias and an absolute error
increase of 14% in MAE value according Table 4 (MAE represents the absolute magnitude of the
difference between observational values and the model). It is worth noting that the EDMTC can
estimate a more logical shape than the profile derived from the corresponding observational values,
which has a uniform distribution from the bed to the water surface. With the rest of the data series,
EDMTC estimates roughly higher partial values equal to the observational values for y*, as the RMSE
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error value is about 0.9–0.13, which is acceptable. Therefore, EDMTC with low average error values
(MARE = 0.55 and MAE = 0.19) is generally highly accurate in predicting bank profiles and stable
channel dimensions.

Table 4. Evaluation of the EDMTC proposed in the present study in estimating the dimensions of stable
channels in comparison with several available observational data series.

Dataset R2 MARE RMSE MAE Bias

Ikeda [20] (S3) 0.995 0.357 0.098 0.078 0.064
Diplas [21] (S4) 0.991 0.186 0.132 0.097 0.094

Babaeyan [7] (One set) (S5) 0.961 0.400 0.124 0.095 −0.095
Macky [66] (S6) 0.942 0.568 0.556 0.381 0.380

Hassanzadeh et al. [67] (S7) 0.986 1.164 0.456 0.436 0.436
Hassanzadeh et al. [67] (S8) 0.981 1.146 0.380 0.364 0.364

Khodashenas [68] (S9) 0.992 0.426 0.127 0.109 −0.109
Khodashenas [68] (S10) 0.979 0.473 0.169 0.143 −0.143
Khodashenas [68] (S11) 0.994 0.361 0.096 0.076 −0.076
Khodashenas [68] (S12) 0.995 0.475 0.193 0.147 −0.147

Average 0.9816 0.5556 0.2331 0.1926 0.0768

 

Figure 4. Cont.
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Figure 4. Comparison of values predicted for the vertical boundary level of stable channels by the
EDMTC proposed in the present study using scatter plots (left side) and cross-sectional profile shapes
(right side) for different observational data: (a) Ikeda [20]-S3, (b) Babaeyan [7]-S5, (c) Diplas [21]-S4,
(d) Hassanzadeh et al. [67]-S7, (e) Khodashenas [68]-S9, and (f) Khodashenas [68]-S12.
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4.3. Uncertainty Analysis of the Proposed EDMTC and GEP Model

In this section, the uncertainty of EDMTC in predicting the bank profile shape based on entropy
model ans also GEP model in predicting St of bank (according Equation (12)) is examined and the
uncertainty indices are shown in Table 5. With the Uncertainty Wilson Score Method (UWSM) [10],
ref. [19,75–79], the error of the St predicted by the GEP model and the y* values predicted by EDMTC
is calculated and compared with the corresponding observation values. The error between estimated
and observed values (ei) and the corresponding the Mean Prediction Error (MPE or e) and standard
deviation (Sd) for error values calculated for data is obtained as Equations (21)–(23):

ei = xi − yi, (21)

MPE = e =
1
n

n∑
i=1

ei, (22)

Sd =

√√ n∑
i=1

⎛⎜⎜⎜⎜⎝ (ei − e)2

n− 1

⎞⎟⎟⎟⎟⎠, (23)

where n is the sample size. With these indices, the WUB are calculated as Equation (24):

WUB =
1

n0.5 (Ilt Sd), (24)

where Ilt is the left-tailed inverse of the error distribution that represent the probability of error
distrubution associated with the numebr of degree of freedom with which to characterize the
distribution [76,80]. In the present paper, the probability of 0.05 error (95% Confidence Bound (CB))
with degree of freedom equals to n − 1 is considered in Ilt-value calculation [80]. Moreover, CB is the
95% quantile of the Ilt distribution with 1 degree of freedom. In the following, CB can be defined.
In this range, the WUB represents the upper and lower uncertainty bounds of CB respectively as Upper
Bound (UB) and Lower Bound (LB). UB and LB can be calculated by e ± WUB. Moreover, the CB
represents the mean value of error. Furthermore, dx represents the average width of CB which is
calculated as Equation (25). The lower average width of the CB associated with the lower values of Sd
and WUB provides the high certainty of model.

dx =
1
n

n∑
i=1

(UB− LB) =
1
n

n∑
i=1

e±WUB, (25)

Table 5. Uncertainty analysis for the Gene Expression Programming (GEP) model in St prediction
according to Equation (12) and EDMTC.

Model Datasets
Sample
Number

Sd MPE WUB dx CB

EDMTC

Ikeda [20] (S3) 8 0.08 −0.064 ±0.07 0.065 −0.13 to 0.00

Diplas [21] (S4) 25 0.09 −0.094 ±0.04 0.09 −0.13 to −0.05

Babaeyan [7] (S5) 8 0.08 0.095 ±0.075 0.095 +0.02 to +0.17

Khodashenas [68] (S9) 44 0.07 0.109 ±0.02 0.11 +0.09 to +0.13

Khodashenas [68] (S10) 33 0.09 0.143 ±0.035 0.145 +0.11 to +0.18

Khodashenas [68] (S12) 20 0.13 0.147 ±0.06 0.15 +0.09 to +0.21

All datasets 266 0.33 −0.14 ±0.04 0.14 −0.18 to −0.10

GEP, Equation (12) All datasets 20 0.02 -0.009 ±0.01 ±0.01 −0.02 to 0.00

The ideal certainty analysis is achieved when most of the estimated values are bracketed within
the CB and also the narrowest width is achieved.
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Table 5 shows the MPE, CB, dx, and WUB for predicting the St
− using the GEP model as well

as the values of these indices for the EDMTC. Figure 5 displays the CB calculated using MPE for
several observational data series (S3, S4, S5, S9, S10, and S12). In EDMTC, according Table 5, for all
datasets, the low values of dx (0.14), WUB (±0.04) and the low value of MPE (−0.14) represent the
low uncertainty and high precision of proposed EDMTC in predicting y* values. It is clear that for
almost each observational data series, 95% of predicted and observed values are within the CB range
beside the narrow WUB. This represents the acceptable accuracy of the proposed models in predicting
the vertical boundary elevation of stable channel profiles. According Table 5, in S3 [20] and S5 [7]
data, almost all of the y* values predicted by EDMTC model are located within the one side of CB.
Because, in these series of data, the more underestimation and overestimation performance of the
EDMTC causes the almost high values of WUB. Morover, CB is calculated based on mean error values,
therefore, the higher and lower predicted y* values than observed values are located in one side of
CB. For the rest of the data, as more than 95% of the data are within this bound. According Table 5,
the WUB in all test is low for EDMTC and for GEP model the WUB is 0.01. The low WUB and associate
with the low dx values provides a high certainty and precision of EDMTC for S3 [20] and S4 [21],
and S5 [7]. While in S12 [68] the low values of WUB is associated with high Sd values. The low values
of Sd and WUB in GEP model represents the high precision (low MPE value) and certainty of model
simultaneously. Therefore, according to the explanations and results presented, it can be said that
the proposed EDMTC and GEP has great certainty and their ability to predict the dimensions and
stable bank profiles with high accuracy is assured. Therefore, the models proposed in this study
can be used to predict channel dimensions in cases when there is little channel information given.
Besides, the proposed model is capable of predicting the profile shape of stable channel banks when
observational data for the bank profile shape is not available.

Figure 5. Cont.
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Figure 5. CB (95%) ranges for the observational values and values predicted by EDMTC for the vertical
boundary elevation of stable channels based on different datasets of (a) Ikeda [20] (S3), (b) Diplas [21] (S4),
(c) Babaeyan [7]-S5, (d) Khodashenas [68]-S9, (e) Khodashenas [68]-S10, and (f) Khodashenas [68]-S11.

Finally, the proposed EDMTC can be used to determine the maximum value of y* as the maximum
dimensionless depth at the channel center and the predicted free surface width. In this case, the channel
dimensions can be obtained using the proposed model.

5. Conclusions

In the present study, the maximum entropy principle was employed to provide an equation to
calculate the Lagrange multipliers. Accordingly, an equation was developed to predict the bank profile
shape of threshold channels. The relation between (δ) ratio with the entropy parameter (K) and the
hydraulic and geometric characteristics of channels was evaluated. Next, the EDMTC computational
model for estimating the shape of banks profiles and the channel dimensions (B and hc) was designed
based on the maximum entropy principle in combination with the GEP regression model for cases
when only the Q and d50 are known as problem conditions. The results indicate that the entropy model
is capable of predicting the bank profile shape trend with acceptable error values (MARE = 0.317,
RMSE = 0.09) according to the experimental data in comparison with the Cao and Knight’s [28] model
(MARE = 0.317, RMSE = 0.09). Therefore, the λ multiplier has a significant role in determining the
transverse slope and consequently the vertical elevation of banks, and the physical meaning of λ
is associated with the hydraulic parameters governing the problem. The EDMTC proposed in this
study with R2 greater than 0.95 and MAE in the 0.076–0.436 range for different observational data
series is able to predict the bank profile shape trend as well as the free water surface level in threshold
channels. In addition, the uncertainty analysis of EDMTC demonstrated that more than 95% of
predicted and observed data are within the CB with low WUB, and the model reliability is largely
assured. The EDMTC computational model presented in this paper can be used widely to predict
stable channel profiles when the given problem information only includes the Q and d50. This study
was developed on Shannon entropy concept, it is suggested to improve the obtained results with
other generalized entropies. It is further recommended that other equations provided by different
researchers be used to estimate the free surface width of channels. Regression and AI models based on
more field data also ought to be used to estimate the mean transverse slope of banks as well as other
entropy model types to examine the accuracy of the model presented in this study.
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