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Luis E. Jardón-Pérez, Carlos González-Rivera, Marco A. Ramirez-Argaez and 
Abhishek Dutta

Numerical Modeling of Equal and Differentiated Gas Injection in Ladles: Effect on Mixing Time 
and Slag Eye
Reprinted from: Processes 2020, 8, 917, doi:10.3390/pr8080917 . . . . . . . . . . . . . . . . . . . . 457

Fu Yang, Yan Jin, Chengyi Zhu, Xiaosen Dong, Peng Lin, Changgui Cheng, Yang Li, Lin Sun,

Jianhui Pan and Qiang Cai

Physical Simulation of Molten Steel Homogenization and Slag Entrapment in Argon
Blown Ladle
Reprinted from: Processes 2019, 7, 479, doi:10.3390/pr7080479 . . . . . . . . . . . . . . . . . . . . 475

Hongliang Zhao, Jingqi Wang, Wanlong Zhang, Mingzhuang Xie, Fengqin Liu and 
Xiaochang Cao

Bubble Motion and Interfacial Phenomena during Bubbles Crossing Liquid–Liquid Interfaces
Reprinted from: Processes 2019, 7, 719, doi:0.3390/pr7100719 . . . . . . . . . . . . . . . . . . . . . 491

Jialiu Lei, Dongnan Zhao, Wei Feng and Zhengliang Xue

Titanium Distribution Ratio Model of Ladle Furnace Slags for Tire Cord Steel Production Based
on the Ion–Molecule Coexistence Theory at 1853 K
Reprinted from: Processes 2019, 7, 788, doi:10.3390/pr7110788 . . . . . . . . . . . . . . . . . . . . 501

Alberto N. Conejo

Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring:
A Review
Reprinted from: Processes 2020, 8, 750, doi:10.3390/pr8070750 . . . . . . . . . . . . . . . . . . . . 513

vii



Usman Niaz, Mihaiela Minea Isac and Roderick I.L. Guthrie

Numerical Modeling of Transport Phenomena in the Horizontal Single Belt Casting (HSBC)
Process for the Production of AA6111 Aluminum Alloy Strip
Reprinted from: Processes 2020, 8, 529, doi:10.3390/pr8050529 . . . . . . . . . . . . . . . . . . . . 537

Lu Wang, Zheng-Liang Xue, Yi-Liang Chen and Xue-Gong Bi

Understanding TiN Precipitation Behavior during Solidification of SWRH 92A Tire Cord Steel
by Selected Thermodynamic Models
Reprinted from: Processes 2020, 8, 10, doi:10.3390/pr8010010 . . . . . . . . . . . . . . . . . . . . . 557

Jianli Li, Qiqiang Mou, Qiang Zeng and Yue Yu

Experimental Study on Precipitation Behavior of Spinels in Stainless Steel-Making Slag under
Heating Treatment
Reprinted from: Processes 2019, 7, 487, doi:10.3390/pr7080487 . . . . . . . . . . . . . . . . . . . . . 571

Joong-Ki Hwang

Thermal Behavior of a Rod during Hot Shape Rolling and Its Comparison with a Plate during
Flat Rolling
Reprinted from: Processes 2020, 8, 327, doi:10.3390/pr8030327 . . . . . . . . . . . . . . . . . . . . 581

Joong-Ki Hwang

Effect of Cambered and Oval-Grooved Roll on the Strain Distribution During the Flat Rolling
Process of a Wire
Reprinted from: Processes 2020, 8, 876, doi:0.3390/pr8070876 . . . . . . . . . . . . . . . . . . . . . 595

Zhengbiao Hu, Dongfeng He, Wei Song and Kai Feng

Model and Algorithm for Planning Hot-Rolled Batch Processing under Time-of-Use 
Electricity Pricing
Reprinted from: Processes 2020, 8, 42, doi:10.3390/pr8010042 . . . . . . . . . . . . . . . . . . . . . 605

Rongchuang Chen, Haifeng Xiao, Min Wang and Jianjun Li

Flow Behavior and Hot Processing Map of GH4698 for Isothermal Compression Process
Reprinted from: Processes 2019, 7, 491, doi:0.3390/pr7080491 . . . . . . . . . . . . . . . . . . . . . 619

viii



About the Editors

Henrik Saxén is Professor in Heat Engineering and has been working at the Process and Systems

Engineering Laboratory of Faculty of Science and Engineering, Åbo Akademi University, Finland,
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This Special Issue on “Process Modeling in Pyrometallurgical Engineering” consists
of 39 articles, including two review papers, and covers a wide range of topics related to
process development and analysis based on modeling in ironmaking, steelmaking, flash
smelting, casting, rolling operations, etc. The approaches include small-scale experiments
and experimental design, first-principles modeling, detailed modeling based on CFD or
DEM, and statistical and machine-learning-based methods. In the following paragraphs
the issue is briefly scanned, presenting the papers in the order roughly following the route
from raw materials processing to rolling and heat treatment.

1. Coal

Lignite is a low-grade coal with the lowest carbon content. Liu et al. [1] studied the
structural changes of Huolinhe lignite when it was modified by microwave and ultrasound
treatment and reported the chemical composition of the products.

2. Sintering

Sintering is an important agglomeration process that is a prerequisite for downstream
processing. Liu et al. [2] studied the combustion kinetics during sintering at a partial
replacement of coke powder by anthracite and found improvements in the combustion
rate. Two combustion models, the volumetric and random pore models, were compared
and the latter was demonstrated to yield better agreement with the measurements.

Wang et al. [3] studied a partial replacement of coke with biomass in sintering. The
results indicated a higher combustion rate using charcoal due to a higher surface area, in
spite of a lower fixed carbon content. It may therefore be viable to partially replace coke by
charcoal in the sintering process.

Cheng et al. [4] investigated the removal of arsenic from iron ore through roasting in
air and nitrogen. They reported higher removal ratios using a reducing atmosphere.

3. Blast Furnace

The ironmaking blast furnace (BF) is an extremely complicated industrial unit process,
and this is a reason why many computational approaches have been made to study its
behavior or to predict its performance under new operation conditions.

An analysis of the process based on a state-of-the-art 3D static model is presented
by Kou et al. [5], addressing the problem of estimating the extent of the solution loss, or
Boudouard, reaction. The model is applied to shed light on how operation factors, such as
blast oxygen enrichment and scrap charging, affect the solution-loss in the furnace. Another
global study of the BF is provided by Ouyang et al. [6], with the goal of detecting abnormal

Processes 2021, 9, 252. https://doi.org/10.3390/pr9020252 https://www.mdpi.com/journal/processes
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events in the process. This entirely data-driven approach is based on a multidimensional
Gated Recurrent Unit (GRU) neural network that, using its feedback nodes, can consider
temporal evolutions of signals.

The charging of burden is treated in three papers. Wei et al. [7] studied the fundamental
features of BF burden materials, including the angles of repose and bed porosity, by small-
scale experiments in combination with computational analysis based on the Discrete
Element Method (DEM). Mio et al. [8] used a unique 1:3 pilot model of the BF top to
study the radial distribution of the rings of burden materials and used the results for
validation of a DEM-based model of the system. Li et al. [9] outlined a model of the burden
distribution in the BF by considering the falling trajectories, layer formation, and descent.
Radar measurements of the burden profile provided supporting evidence.

The flow of molten iron and slag in the coke bed of the lower BF is very complex
and traditional modeling techniques cannot describe the flow patterns. Natsui et al. [10]
presented an interesting attempt based on smoothed particle hydrodynamics (SPH) simu-
lation, demonstrating the role of wettability on the arising flow rivulets of iron and slag,
shedding light on the complex liquid flow patterns. The role of the dead man, and how
it influences the conditions in the lower part of the BF, is reviewed by Shao et al. [11],
presenting approaches to model the dead-man state and the way in which it affects hearth
performance, e.g., the flow paths of hot metal, lining wear, and liquid levels.

The combustion region, or raceway, formed in front of the tuyeres is studied in two
papers. Peng et al. [12] developed a three-dimensional transient Eulerian multiphase flow
model of the raceway to study how the raceway size, pressure distribution, and flow field
are affected by the blast parameters. The use of natural gas as auxiliary reductant is studied
by Okosun et al. [13] using a CFD model of the furnace from the raceway to the top. Special
attention is focused on means to counteract the cooling of the raceway associated with high
injection rates of natural gas.

The last stage of ironmaking in the BF is the tapping operation. The complex flow
patterns in the main trough were studied by Ge at al. [14], using transient 3D CFD based
on the volume of fluid (VOF) model. As for the outflows of iron and slag, Roche et al. [15]
developed a strategy for compressing the information about the outflow rates from a large
BF by principal component analysis.

4. Iron Smelting

Alternative ironmaking technologies have also been developed and some are analyzed
in this Special Issue. Xie et al. [16] carried out water modeling experiments to study the
mixing time in a smelter as a function of nozzle position, nozzle diameter, nozzle immersion
depth, gas flow rate, and liquid properties. Applying dimensional analysis, the authors
derive expressions for the mixing time and compare the results with practical findings.

Many studies of the burden distribution in the blast furnace have been undertaken,
but much less work has been reported for the COREX process, which has a more complex
charging system. Li et al. [17] reported results from mathematical modeling of burden
distribution in the COREX melter–gasifier. Based on experimental results from a pilot rig,
the model was found to accurately predict the DRI/coal ratio as a function of the radial
position.

Sun et al. [18] described a mathematical model predicting the raceway geometry in the
melter–gasifier as a function of time and gas velocity. By dynamic simulations, the authors
concluded that the final shape is reached in a short time (<1 s). Increasing the velocity of
the gas increases the depth of the raceway. For a normal blowing speed of 250 m/s and a
tuyere angle of 4◦, a raceway depth of 950 mm was predicted.

5. Copper Smelting

Smelters used for other metals, e.g., copper and nickel, are also complex processes,
where mathematical modeling can provide valuable information used for enhancing the
process or for improved control. Jylhä et al. [19] developed a CFD–DEM model to study the
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settling of copper particles in a flash smelter settler, applying a population balance model
to describe the settling and coalescence of the droplets. The modeling confirmed that small
particles (< 100 mm) remain in the slag, suggesting that an operation with a thinner slag
layer would increase the yield of the process.

Wang et al. [20] found a higher elimination rate of arsenic in copper smelters by
controlling the oxygen/sulfur potential, reporting a decrease in As from 0.07% to 0.02%.

Navarra et al. [21] discussed the application of sensors and process control systems for
process automation of copper smelters, and stressed the potential of data-driven models
and discrete-event simulation for smelter optimization.

6. BOF

The basic oxygen furnace that converts hot metal into liquid steel is also characterized
by harsh conditions that justify model-based analysis. Jiang et al. [22] introduced a novel
hybrid model integrating multiple linear regression (MLR) and Gaussian process regression
(GPR) to predict the oxygen consumption for optimization of the energy requirement of
the BOF. The model was validated with actual data collected from a steel factory in China.

Rahnama et al. [23] reported correlations between the operating parameters and rate
of decarburization (dc/dt) in a pilot plant. A positive correlation was found between
the decarburization rate and the oxygen flow as well as the temperature and CO2 con-
tent in the waste gas, while a negative correlation was found with the lance height. A
neural network was trained to predict the decarburization in a full-scale plant, yielding
satisfactory performance.

Dering et al. [24] described a first principles-based dynamic model of the BOF. The
model considers an energy balance, slag formation, as well as decarburization rate. The
authors estimated a set of parameters to adapt the model to data reported in the literature
and from a reference BOF, and the model was demonstrated to capture the dynamics of
the process.

7. EAF

The high temperatures and complex melting phenomena in the electrical arc furnace
are reasons why many model-based studies of the process have been undertaken. Carlsson
et al. [25] determined the effect of scrap shape and density on the energy consumed to
melt the scrap in the EAF by using a statistical model and process optimization algorithms
validated through plant trials. The results provide significant evidence that a well-chosen
scrap categorization is important to predict the electric energy demand.

A simulator of an EAF based on a dynamic model was developed by Hay et al. [26], to
be used as an automatic control tool for assessment of multiple scenarios in the operation.
The model can also be used for training furnace operators.

Chen et al. [27] developed a 3D mathematical model of the interaction of the supersonic
coherent jet with the steel bath. The model predicts the decarburization kinetics, including
the distribution of the in-bath components, flow patterns, and bath temperatures, and can
be used to optimize the refining process.

8. Ladle Furnace

Ladle treatment is an important step for adjusting the final composition and tempera-
ture of the metal before it is cast. Two papers deal with the simultaneous optimization of
mixing and slag open-eye area in ladle furnaces. Jardón-Pérez et al. [28] validated a CFD
model against PIV measurements and applied the model to analyze the mixing time and
open-eye area in gas-stirred ladles using two plugs with equal (50%/50%) or differentiated
(75%/25%) flows. Yang et al. [29] applied a physical model to measure the mixing times
and interface slag entrainment under different conditions, including the injection modes,
gas flow rates, and top slag thicknesses. The authors suggested an optimum argon flow
rate between 36 m3/h and 42 m3/h with two plugs.
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Zhao et al. [30] reported fundamental research on a water–oil–air physical model to
study the dynamics occurring when bubbles pass through the liquid–liquid interface for
different oil viscosities at various gas flow rates. They found that bubble movement is
greatly influenced by the viscosity of the oil and that the water-oil interface stability was
enhanced with increased viscosity of the oil phase.

Lei et al. [31] computed, based on the Ion-Molecule Coexistence Theory, the titanium
distribution ratio in ladle furnace slags (CaO–SiO2–Al2O3– MgO–FeO–MnO–TiO2) at
1853 K for tire cord steel production, and found a good agreement of the model with the
measurements. The structural unit CaO was found to play a pivotal role in the slags.

Finally, Conejo [32] presented an extensive and exhaustive review of physical and
mathematical models of mass transfer in gas-stirred ladles, stressing the effects of the
process variables on the mass transfer coefficient. The review noted that currently there is
a lack of means to simultaneously keeping both liquid phases (steel and slag) well mixed
in the ladles.

9. Casting and Solidification

The solidification of a metal is a complex and gradual process that is difficult to control.
Niaz et al. [33] reported numerical predictions of the Horizontal Single Belt Casting (HSBC)
process, which avoids multiple hot-rolling steps by directly producing a thin sheet. Results
from an experimental rig were compared with findings from a CFD model, and the latter
was applied to study non-uniformity and other undesired conditions, as well as means to
address these, e.g., by appropriate design of the metal feeding system.

Precipitation behavior of inclusions was studied by both Wang et al. [34] and Li
et al. [35], the former for titanium nitride (TiN) during solidification and the latter for
chromium spinels in stainless steel slags. A systematic study was made to clarify the
mechanism of TiN precipitation to guide the development of ultra-high strength grade
steels. The stability of chromium in stainless steel slag was found to have a positive
correlation with spinel particle size and a negative correlation with the calcium content
of the spinel. However, both groups of authors stress that further experimental work and
theoretical analysis are needed to understand the precipitation behavior of the inclusions
to improve the quality of the finished steel.

10. Rolling

Most steel products are manufactured by hot rolling, because it is one of the most
efficient plastic-forming processes. On the basis of comparative studies on the temperature
distribution during hot plate rolling and rod rolling, Hwang [36] concluded that the
temperature distribution and variation of a rod during shape rolling are different from
those of a plate during flat rolling. The higher variation in effective stress of the rod along
the circumferential direction induces a higher temperature difference of the rod. The same
author [37] also investigated the effect of roll design on the strain distribution of the flat
surface, lateral spreading, and the strain inhomogeneity of a flat-rolled wire, proposing
a new strategy for fabricating high-quality flat-rolled wires through a cambered roll of a
small radius.

Hu et al. [38] developed an optimization model for hot rolling based on the time-of-use
(TOU) electricity pricing using a genetic algorithm. Jumps between adjacent slabs in width,
hardness, and thickness were avoided by including penalties in the objective function. The
method was verified on batch results from the hot rolling of 240 slabs of different sizes and
was demonstrated to reduce the cost of power required for rolling.

Chen et al. [39] found that the hot working ability of a nickel-based GH4698 alloy
markedly decreased under lower temperatures and higher strain rates in isothermal com-
pressions: this alloy is extremely sensitive to thermal processing parameters and cracking
may easily occur. An Arrhenius model was used to estimate the flow stresses and profiles
for processing under various thermal conditions.
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Abstract: In this paper, Huolinhe lignite was selected as the lignite experimental sample,
using microwave modification and ultrasonic modification separately as improvement methods.
The three-dimensional molecular models of HLH before and after modification were established base
on the parameters obtained by 13C NMR, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy
(Raman), and Fourier transform infrared (FTIR). After the microwave treatment, the methylene
carbon in the HLH coal sample structure mostly exists in the form of long straight chains, and after
microwave and ultrasonic treatment, the -OH content of oxygen atoms in the coal sample increases,
and form the CO- and the COO-. The proportion is decreasing. The models were adjusted and
tested by the covalent bond concentration method and carbon chemical shift spectra calculation
using Chemdraw software. A new method is proposed to study the structure and physicochemical
properties of lignite modification from the molecular point of view through this study.

Keywords: Lignite; microwave and ultrasound modification; structural characterization;
3D molecular model; structural simulation

1. Introduction

In recent years, the shortage of high-rank coal resources has gradually become a prominent
problem in industrial development [1,2]. Lignite is widely used in energy fields, such as pyrolysis,
combustion, gasification and liquefaction [3,4]. In order to make more effective use of lignite resources,
many scholars carried out much research on modification treatment processes for lignite characteristics.
Arash Tahmasebi [5] discovered that the content of some functional groups in pulverized coal particles
decreased significantly after microwave irradiation, but the content of aromatic carbon and aromatic
ring in lignite was not affected by microwave pyrolysis. Sun Qiang [6] selected coal samples were
treated with water and heat treatment and found that the rate of re-absorption decreased with the
increase of temperature, and the lignite quality could improve most in high temperature and low
humidity. Ge Lichao [7] found the rank of lignite increased after microwave modification and the
combustion reaction process moved to high temperature zone by Thermogravimetry (TG) analysis.

The existing research focuses more on the optimization of modification processes and
proposes new modification processes. The mechanism of these processes were difficult to study
by experimental methods due to innumerable coupling reaction pathways during the utilization of
lignite [8–10]. Therefore, Huolinhe lignite (HLH) was selected as the experimental sample, using
microwave modification (MM) and ultrasonic modification (UM) as improvement methods separately.
The two-dimensional molecular models of HLH before and after modification were established based on
the parameters obtained by a series of detection methods, and three-dimensional model is constructed
based on molecular mechanics and molecular dynamics. A new method is proposed to study the
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structure and physicochemical properties of lignite modification from the molecular point of view
through this study.

2. Experiment

2.1. Modification of Lignite

HLH was low degree of coalification was selected as the experimental sample. HLH sample was
ground to 109–180 μm and dried in a vacuum drying chamber at 40 ◦C for 24 h. Take HLH sample
in a crucible, added 100 mL distilled water and blended fully. The crucible contained HLH sample
was placed in the ultrasonic oscillator to water bath oscillation for 60 s. The crucible was placed in the
drying oven for drying treatment with 85 ◦C for 4 h. The crucible containing the HLH sample was
placed in the a quartz reaction tube of the microwave reactor, the modification parameters set as 200 W
and 60 s, and the microwave activated. Industrial analysis and elemental analysis of lignite samples
before and after treatment were carried out and the results are shown in Table 1.

Table 1. Proximate and ultimate analyses of HLH lignite.

Sample (wt. %), ad
Proximate Analysis Ultimate Analysis

Mad Aad FCad Vdaf C H O N S

HLH 16.32 21.97 24.20 37.51 78.38 6.24 13.35 1.51 0.52
MM 15.22 22.32 26.03 36.43 80.67 5.81 11.29 1.66 0.57
UM 15.46 22.64 25.06 36.84 81.77 5.47 10.31 1.85 0.60

Note: ad: air-dry basis; daf: dry-and-ash-free basis. M: moisture; A: ash; FC is fixed carbon; V: volatile matter content.

2.2. FTIR and Structural Parameters Analysis

2.2.1. FTIR Results Analysis

Infrared spectroscopy is closely related to the chemical structure of the substance. It can be
confirmed the aromatic structure, oxygen-containing structure and fat structure of coal by FTIR
detection [11]. Infrared spectra of all samples are shown in Figure 1, with curves smoothed and
baselines corrected.

Figure 1. FTIR spectra of lignite before and after modification.

It can be observed that selected coal samples contain similar functional groups, hence the absorption
of sample to infrared spectrum occurs at same wavenumber positions [11]. These obtained spectra
are comprehensive curves of many independent peaks, which have to be deconvoluted to achieve.
All spectra were divided into 4 regions, namely 700–900 cm−1 (aromatic structures), 1000–1800 cm−1

(oxygen-containing structures), 2800–3000 cm−1 (aliphatic structures) and 3000–3600 cm−1 (hydroxyl
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structure). Consequently, the area values of specific peak can be derived. The corresponding
relationships between peak position and functional group are shown in Tables 2–5 [12,13].

Table 2. Aromatic structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

4H 11.051 13.573 12.106
3H 86.498 86.427 87.894
2H 2.459 — —

Table 3. Oxygen-containing functional group of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

Alkyl ethers 16.406 14.231 13.321
C-O phenols, ethers 48.679 40.349 51.372
C-O in aryl ethers 9.023 11.452 8.213

Symmertric CH3-Ar, R 1.612 1.823 —
Asymmertric CH3-, CH2- 2.462 7.435 9.468

Aromatic C=C 10.954 9.097 6.039
Conjugated C=O 9.633 10.979 10.534
Carboxyl acids 1.231 4.634 1.053

Table 4. Fatty structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

Sym. R2CH2 13.118 20.622 17.705
R3CH 47.68 28.051 36.046

Asym. R2CH2 24.814 30.553 27.132
Asym. RCH3 14.388 20.774 19.118

Table 5. Hydroxyl structure of HLH before and after modification.

Assignment
Relative Area

HLH MM UM

OH-N 4.419 3.118 8.304
Ring hydroxyl 45.653 41.322 31.922

Phenol OH 35.271 41.202 42.944
OH-π 14.662 14.358 16.829

It can be found that there are 3 substitution modes of hydrogen atoms on benzene ring in HLH
structure. The proportion of triple substituted aromatics (3H) is the largest among all the samples.
The proportion of triple substituted aromatics of HLH raw coal is 86.498%, the MM sample is 86.427%
in, the UM sample is 87.893%. The tetrasubstituted hydrocarbons (2H) of HLH lignite has also
changed significantly. Tetrasubstituted hydrocarbons (2H) are not found in the infrared spectra of HLH
lignite after both modification. In the process of modification, the substitution reaction of aromatic
hydrocarbons may cause structural changes, which is due to the instability of other atoms and aliphatic
side chains in benzene rings.

It is also found that the form and proportion of oxygen elements in HLH sample changed a lot
after modification, however the carbonyl (C=O), alkyl ether (C-O-C), and phenol hydroxyl (-OH)
groups are still the main existing forms of oxygen-containing functional group of HLH.
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2.2.2. FTIR Structural Parameters Analysis

FTIR structural parameters could be obtained by the area of peak with peak fitting [14,15].
(1) Ratio of hydrogen to carbon H/C.

H
C

=
Had
Cad
12

(1)

(2) The aromatic carbon ratio far-F: On the premise of ignoring carbonyl carbon, assuming that
coal only contains aromatic carbon and aliphatic carbon, the formula for calculating aromatic carbon
rate is as follows:

Hal
H

=
A(3000− 2800)cm−1

A(3000− 2800)cm−1 + A(900− 700)cm−1
(2)

far−F = 1− Cal

C
= 1−

Hal
H × H

C
Hal
Cal

(3)

where aromatic hydrogen ratio Har/H: Cal/C is the ratio of aliphatic carbons to the total number of
carbons, H/C represents the ratio of hydrogen to carbon atoms, Hal/Cal is 1.8 for all coal samples,
and represents the atomic ratio between hydrogen and carbon in aliphatic groups.

(3) Fat carbon ratio fal-F:
fal−F = 100− far−F (4)

(4) Lipid chain length and branching degree of coal I1: According to the ratio between CH2 and
CH3, namely the area ratio of A(CH2)/A(CH3), the aliphatic group length and the branched chain
degree were calculated to determine the aliphatic structural parameters. The intensity ratio of CH2/CH3

was determined by Equation (5):

I1 =
CH2

CH3
=

A2852cm−1 + A2924cm−1

A2957cm−1
(5)

(5) Alkane branching degree:

δF >
R3CH

A(3000−2800cm−1)
(6)

Compared with the alkane branching degree of the 3 coal samples from Table 6, the δF of HLH
without modification is 47.68% which indicate there were much tertiary carbon and quaternary
carbon in HLH raw coal. There were many branching structures in HLH raw coal. After microwave
modification, the main structure of HLH is methylene carbon with long straight chain.

Table 6. FTIR structural parameters of HLH before and after modification.

Parameter HLH MM UM

H/C 0.97 0.89 0.83
Hal/H 0.56 0.44 0.45
far-F 61.38 78.49 79.84
fal-F 38.62 21.52 16.16
I1 2.64 2.85 2.35
δF 47.68% 25.05% 36.05%

2.3. 13C NMR Results Analysis

Figure 2 shows 13C NMR spectra of HLH lignite. It is including 2 main peaks. The lipid-carbon
peak area with chemical shift of 0–90 × 10−6 and the aromatic-carbon peak area with chemical shift of
90–165 × 10−6. The sample also contains a small amount of carbonyl carbon, with a chemical shift of
165–220 × 10−6 in the peak area [16,17]. The carbon spectra obtained before and after modification
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were fitted by peak-splitting method, and 9 carbon skeleton structural parameters were obtained.
The results are shown in Table 7.

  

Figure 2. Peak fit of 13C NMR of HLH before and after modification.

Table 7. Structure attribution and relative content of chemical shifts in 13C NMR spectra of HLH before
and after modification.

Chemical Shift Structural Fragments Symbols Carbon Distribution
Sample

HLH MM UM

14–16 Aliphatic CH3 fal
M

Aliphatic carbon 30.48 32.246 32.21
16–22 Aromatic CH3 fal

A

22–50 Methylene fal
H

50–90 Oxy- aliphatic carbon fal
O

100–129 Aromatic protonated fa
H

Aromatic carbon 64.983 63.719 64.703
129–137 Aromatic bridgehead fa

B

137–148 Aromatic branched fa
S

148–165 Oxy- aromatic carbon fa
O

>165 Carbonyl carbon fa
C Carbonyl carbon 4.319 3.135 3.087

XBP = fa
B
/(fa

H
+ fa

O
+ fa

S
+ fa

B
), the ratio of aromatic bridge carbon to peripheral carbon of HLH

before and after modification is an important parameter to construct macromolecular structure model of
lignite, which represent condensation degree of polycyclic aromatic hydrocarbons as well as reflecting
the size of aromatic cluster. According the parameters shown above, the XBP of 3 samples could be
calculated, and the value of HLH is 0.26, 0.29 for sample with microwave modification, and 0.28 for
sample with ultrasonic modification.
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2.4. XPS Results Analysis

2.4.1. Oxygen Element Analysis

XPS is often used to characterize the existence of oxygen, nitrogen and other heteroatoms in coal,
which provides an important basis for the construction of macromolecular structure model of HLH [18].
XPS tests of HLH raw coal, microwave modified HLH and ultrasonic modified HLH were carried out,
and the XPS maps of 3 samples were processed by peak fitting. The peak-splitting diagram is shown in
Figure 3, and the form and content of nitrogen elements are shown in Table 8.

 

Figure 3. XPS peak fitting of oxygen atoms of HLH before and after modification.

The main forms of oxygen in HLH coal samples are C=O, C-O, -OH and COO-, and it can be
found in Table 8 that oxygen exists in most of the four forms of C-O in structure. The content of
C-O in HLH samples after microwave modification decreases 2%, but the content of COO-structure
form decreases from 14.37% to 35.25% of raw coal. 12.37%. The reason for this change may be that
microwave treatment destroys the oxygen structure of HLH raw coal. The content of oxygen-OH and
C=O in HLH coal samples treated by ultrasonic wave also increased obviously, while the content of
CO-form in opposite direction was still decreasing. Therefore, the microwave and ultrasonic treatment
of HLH has different effects on the existing forms of oxygen elements. The stability of COO-and C-O
structure forms is relatively poor and easy to be destroyed in the process of modification. On the
contrary, the stability of C=O structure makes it not easy to be destroyed in the process of ultrasonic
and microwave treatment, which increases the proportion of C=O in the structure.
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Table 8. XPS detection and analysis of oxygen composition forms of HLH before and after modification.

Elemental Peak Functionality Binding Energy (eV) Molar Content (%)

HLH

C-O 532.87 37.25
C=O 531.27 24.71
-OH 529.89 23.67

COO- 533.28 14.37

MM

C-O 532.08 35.25
C=O 531.87 26.47
-OH 530.08 25.91

COO- 533.28 12.37

UM

C-O 532.08 36.56
C=O 531.87 26.21
-OH 530.08 25.35

COO- 533.28 11.88

2.4.2. Nitrogen Element Analysis

Nitrogen in coal mainly comes from coal-forming plants, and most of it exists in the form of
organic matter, which mainly includes pyridine nitrogen (N-6), pyrrole nitrogen (N-5), nitrogen oxides
(N-X) and proton nitrogen (N-Q) [19,20]. In order to characterize the forms of nitrogen elements
in HLH before and after modification, the XPS spectra of HLH lignite were fitted by peak-splitting
method. The peak-splitting diagram is shown in Figure 4, and the forms and contents of nitrogen
elements are shown in Table 9.

Figure 4. XPS peak fitting of nitrogen atoms of HLH before and after modification.
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Table 9. XPS detection and analysis of nitrogen composition forms of HLH before and after modification.

Elemental Peak Functionaliy Binding Energy (eV) Molar Content (%)

HLH
N-Q 402.21 32.78
N-5 396.75 42.81
N-6 399.81 24.41

MM
N-Q 402.21 31.28
N-5 396.75 43.02
N-6 399.81 25.70

UM
N-Q 402.21 30.78
N-5 396.75 43.31
N-6 399.81 25.91

By comparing the XPS data of N element in HLH before and after modification, it is obvious that
the percentages of N-5, N-6 and N-Q in HLH have changed significantly. The percentage of N-Q in
pulverized coal decreased to 31.28% and 30.78% respectively after modification, and the corresponding
proportion of N-5 and N-6 increased to varying degrees. The total amount of N-5 and N-6 of modified
HLH is nearly 70%. It can be seen that microwave and ultrasonic modification methods mainly play
a role in N-Q, while N-5 and N-6 form of nitrogen bond are relatively stable, and the above modification
methods have little effect on it. Therefore, in order to make the model representative, N-5 and N-6
nitrogen bonds are often used in the construction of macromolecule HLH lignite structure model.

2.5. Raman Results Analysis

There are two relatively broad D and G peaks in the Raman spectra of HLH, and two vibration
peaks have abundant information, the G peak in lignite does not really represent its crystal structure.
It mainly reflects the strength of the stretching vibration bond of aromatic rings [21,22]. Raman spectra
of coal samples are exhibited in Figure 5.

Figure 5. Raman spectra of HLH coal samples before and after modification.

There are many overlapping peaks between D and G peaks in Raman spectra of coal. In order
to obtain more accurate functional group information of HLH lignite before and after modification,
Position and area values of D and G peaks of coal samples obtained by deconvolution process of
Raman spectra shown in Figure 6. Raman fitting parameters of HLH coal samples before and after
modification are shown in Table 10.
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Figure 6. Raman peak separation fitting charts of HLH coal samples before and after reformation.

Table 10. Raman spectrum structural parameters of different coal samples.

Sample
Peak Position Peak Area Peak Height

PG-D AD/AG ID/IG
PD PG AD AG ID IG

HLH 1361.1 1594.3 47,030 57,990 4782.3 5926.3 233.2 0.81 0.81
MM 1362.1 1591.8 35,770 45,858 3105.5 3997.8 229.7 0.78 0.78
UM 1365.3 1595.6 41,480 55,500 3867.6 5173.1 230.3 0.75 0.75

From the AD and AG values of coal samples before and after modification, it can be found that
the D peak area of coal samples after microwave and ultrasonic treatment decreases, especially the
D peak area of coal samples after microwave treatment decreases significantly, which also shows
that microwave treatment makes HLH structure more complete. Compared with G peak area AG,
the AG value of HLH structure after microwave modification is significantly smaller than that of HLH.
It can be seen that the total number of aromatic rings in macromolecular structure of HLH treated by
microwave is the smallest, and the enrichment degree of aromatic carbon is the lowest, followed by the
macromolecular structure of HLH coal treated by ultrasound, while the content of aromatic rings in
the macromolecular structure of HLH coal is the highest and the enrichment degree of aromatic carbon
is the largest.

ID/IG is usually used to evaluate the disordering degree of carbon materials, and it decreases with
the increase of graphitization degree. After microwave treatment, the ID/IG value of HLH was reduced
from 0.81 to 0.78. Similarly, after ultrasonic treatment, the ID/IG value of HLH was also reduced to
0.75, and the ID/IG value was reduced. This indicated that the ordering degree of aromatic ring layers
in the structure increased and the content of fat chain and side chain decreased after microwave and
ultrasonic treatment.
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3. HLH Molecular Model Before and After Modification

3.1. Determination of the Type and Number of Aromatic Ring

The average molecular formula of HLH is C167N3O27H149 by elemental analysis. The average
molecular formula of microwave modified HLH is C148H129N3O20, and that of ultrasonic modified
HLH is C155H131O23N23. Combined with XPS and elemental analysis, it is found that S content in
HLH lignite is extremely small. S element was added to the macromolecular model, but it was found
that the percentage of S atom in the analysis of experimental elements was about 1.5%, which was
obviously inconsistent with the actual results. Therefore, a small amount of S content was neglected in
the construction of the macromolecular model of HLH.

XBP is calculated by using the twelve structural parameters, which is calculated by 13C NMR.
The ratio of aromatic bridge carbon to periphery carbon of HLH raw coal is 0.26, that of microwave
modified HLH is 0.29, and that of ultrasonic modified HLH is 0.28. The XBP of naphthalene ring with
two rings is 0.25, and that of anthracene ring with three rings is 0.40. Therefore, the aromatic framework
of HLH raw coal structure model is mainly composed of benzene ring and naphthalene ring. After HLH
with microwave modification model and HLH with ultrasonic modification aromatic framework is
mainly composed of naphthalene ring, with anthracene ring and benzene ring supplemented. In order
to make the XBP of HLH raw coal and HLH model after microwave and ultrasonic modification close
to 0.26, 0.29 and 0.28, the combination number of benzene, naphthalene and anthracene rings in its
structural model needs to be adjusted continuously. The type and number of aromatic rings in the
three structural models are determined. The results are shown in Table 11.

Table 11. Type and quantities of aromatic rings of HLH before and after modification.

Type of Aromatic Unit Structure
Number

HLH MM UM

6 4 5

 
5 3 3

2 2 2

1 1 1

— 1 1

Comparing the previous 13C NMR and FTIR spectra, it is found that the proportion of oxygen
bonded by carbon-oxygen double bond is much smaller than that bonded by carbon-oxygen single
bond, which is consistent with the XPS test results. This shows that the main forms of oxygen in
macromolecular structure before and after HLH modification are mostly in the form of ether bond
and hydroxyl bond of carbon-oxygen single bond, and the other oxygen-containing structures are in
the second place. The final form of oxygen in the structure is determined by constantly adjusting the
structure of oxygen.

The main forms of nitrogen in HLH macromolecular structure are pyridine nitrogen and pyrrole
nitrogen. According to XPS analysis, the number of nitrogen atoms is always 3 of HLH before and after
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modification, and the main forms of nitrogen elements were pyridine nitrogen and pyrrole nitrogen
the content ratio was 2:1. Therefore, two pyridine rings and one pyrrole ring were added to the HLH
structure model before and after modification.

3.2. Model Construction

Wiser coal chemical model is used as the basis, which is widely accepted and considered to be
comprehensive and reasonable. Combining with the above calculation results, the existing forms and
proportions of each part of the macromolecular structure model before and after modification of HLH
are summarized and analyzed. Finally, the two-dimensional molecular model of HLH before and after
modification is preliminarily established according to the chemical structure characteristics obtained
from the experiments. As shown in Figures 7–9.

Figure 7. Final two-dimensional model macromolecular structure diagram of HLH.

 
Figure 8. Final two-dimensional model macromolecular structure of HLH after microwave modification.
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Figure 9. Final two-dimensional model macromolecular structure of HLH after Ultrasonic modification.

3.3. Verification of Model

The 13C NMR chemical shifts of the three models were calculated and compared with the
experimental 13C NMR chemical shifts. Because of the complexity and diversity of coal’s macromolecule
structure, it is necessary to constantly adjust the types and quantities of its structural units in the
construction process, so as to make its 13C NMR simulation spectra better consistent with the
experimental spectra. The comparison of 13C NMR simulation spectra and experimental spectra of the
three models is shown in Figure 10.

 
Figure 10. Comparison of 13C NMR computational spectra and experimental spectra of HLH final
two-dimensional model before and after modification: (a) HLH, (b) HLH after microwave modification,
(c) HLH after Ultrasonic modification.

It can be seen that the 13C NMR simulation spectra of the three models are in good agreement with
the experimental spectra. There are some errors between the two spectra due to some uncontrollable
factors in the experimental process, but it is considered acceptable and will not affect the characterization
of average macromolecular structure of HLH coal samples.

In order to adjust the structure of the model to approximate the experimental data, most researchers
adopted the simulation of 13C NMR spectrum, but which cannot avoid the choice of isomers [23,24].
At the same time, the model obtained by this method is only a conceptual structure, which cannot
reflect the properties of chemical reactions. By using the main covalent bond concentration instead of
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the 13C NMR simulation spectrum, the molecular model can be better corrected. According to the 11
structural parameters (fa, fa

H, fa
O, fa

B, fa
S, fa

C, fal, fal
A, fal

M, fal
H, fal

O) obtained from 13C NMB data,
nine covalent bond concentrations of HLH lignite (Car-Car, Car-Cal, Cal-Cal, Car-H, Cal-H, Car-O,
Cal-O, Cal=O, and O-H.) can be obtained. This covalent concentration method reflects the essence of
13C NMR simulation spectroscopy. By comparing the simulated concentration of the main covalent
bond with the experimental results, the preliminary two-dimensional molecular model is modified.
The concentrations of nine types covalent bonds in coal can be determined by Equations (7)–(15).

conCa−Ca =
1
2

[C%
12

(
3 fa − f H

a − f S
a − f O

a

)]
(7)

conCa−Cal =
C%
12

f S
a (8)

conCal−Cal = 1
2

[
C%
12

(
4 fal + 2 f C

a − f C
a − f O

al

)
− nCal−H

]
= −H%

2 + O%
16 + 1

2

[
C%
12

(
4 fal + f H

a − f S
a − f O

a − 2 f O
al − f C

a

)] (9)

conCa−H =
C%
12

f H
a (10)

conCal−H = H%− conO−H − conCa−H

= H%− 2 O%
16 + C%

12

(
f O
a + f O

al + 2 f O
a + 3 f C

a − f H
ar

) (11)

conCar−O =
C%
12

f O
ar (12)

conCal−O =
C%
12

(
f O
al + f C

a

)
(13)

conCal=o =
C%
12

(
f C
a

)
(14)

conO−H =
2O%

16
− C%

12

(
f O
a + f O

al + 3 f C
a

)
(15)

Based on the formula, the information of covalent bond concentration of the three final planar
model structures is calculated and summarized in Table 12, in order to more intuitively compare and
analyze the difference between the covalent bond concentration obtained from the experiment and that
calculated from the model. Then, the molecular models of the three structures obtained from HLH raw
coal, microwave, and ultrasonic upgrading of HLH coal, respectively, were adjusted.

Table 12. Covalent bond concentrations of 3 structural models of HLH before and after modification.

Sample conCa-Ca conCa-Cal conCal-Cal conCa-H conCal-H conCa-O conCal-O conCal=O conO-H

HLH 46.701 6.943 18.037 16.410 35.768 5.303 5.389 2.828 7.208
HLH Model 46.233 6.822 17.354 17.231 35.154 5.036 5.673. 2.32 7.053

MM 47.669 10.053 19.488 14.499 36.133 4.851 3.621 2.113 5.252
MM Model 47.276 10.997 17.376 15.547 34.453 4.784 3.435 2.349 5.127

UM 47.095 9.934 20.374 15.093 38.309 4.793 2.133 2.005 6.407
UM Model 46.967 9.322 19.763 15.216 37.867 4.452 2.243 2.105 6.395

According to the covalent bond concentration obtained from the experiment and the concentration
calculated by the model, it was found that the concentration of the nine covalent bonds is not different
from that calculated by the model, but the difference between the experimental concentration of
conCal-Cal and conCar-H and the calculated concentration of the model is relatively large. The reason
for this may be that there is a certain difference between the proportion of elements in the model
and that in the experimental measurement, which makes the calculation of the nine covalent bonds
concentration more intensive.
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3.4. Adjustment of Model

After the final model of molecular structure is obtained, the molecular formulas and element
contents of the three models of HLH under different modification conditions are calculated.
By comparing the results of Tables 13 and 14, it can be seen that the element contents of the three
models are very close to the experimental values, and there is no significant difference, which verifies
the reliability of the model.

Table 13. Element content measured by experiments of HLH before and after modification.

Sample
Ultimate Analysis (wt. %), ad

C H O N

HLH 78.56 6.36 13.48 1.61
MM 80.87 5.99 11.39 1.76
UM 81.97 5.67 10.41 1.95

Table 14. Molecular formula and element content of the model of HLH before and after modification.

Sample Molecular Formula
Ultimate Analysis (wt. %)

C H O N

HLH C167H151N3O27 76.21 5.78 16.41 1.6
MM C148H129N3O20 78.52 5.73 14.10 1.85
UM C155H131N3O23 77.45 5.49 15.31 1.75

3.5. Construction of 3- Dimensional Model

The three-dimensional model is constructed for the 2- dimensional structure of HLH before and
after modification, whose three-dimensional geometric optimization configuration is calculated by
MM and MD of Forcite module in Materials Studio 8.0 software. The structure model of HLH before
and after optimization is shown in Figures 11–13, and the energy change in the process of optimization
is shown in Table 15.

 
(a) Initial 3-dimensional structure model (b) Optimized by MM and MD 

Figure 11. 3-dimensional structure of HLH lignite model before and after geometric optimization.

 
(a) Initial 3-dimensional structure model (b) Optimized by MM and MD 

Figure 12. 3-dimensional structure of HLH lignite model modified by microwave before and after
geometric optimization.
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(a) Initial 3-dimensional structure model (b) Optimized by MM and MD 

Figure 13. 3-dimensional structure of HLH lignite model modified by ultrasound before and after
geometric optimization.

Table 15. Energy comparison before and after HLH structural model optimization.

Sample
Total Energy
(Kcal·mol−1)

Valence Energy (Kcal·mol−1) Non-Bond Energy (Kcal·mol−1)

EB EA ET EI EH Evan EE

HLH
Initial 6030.56 2602.16 65.21 90.59 2.05 0 3270.55 0
Final 810.65 204.89 197.06 119.08 18.42 0 342.05 −70.85

MM
Initial 6310.80 2225.16 153.04 89.24 1.68 0 3841.68 0
Final 850.20 191.04 217.58 139.81 24.99 0 344.30 −67.52

UM
Initial 7608.20. 2402.78 142.34 122.83 1.56 0 4938.69 0
Final 846.37 187.50 189.76 134.07 17.57 0 348.01 −30.54

It can be seen from this that the total energy of the minimum energy structures of the three
structures decreases sharply. Compared with other terms, the value of Van der Waals energy (EVan)
in the non-bonding energy is the largest, which constitutes the most important part of the potential
energy. Therefore, the decrease of the inter-molecular Van der Waals energy (EVan) is also the main
factor that makes the HLH macromolecular structure model stable in space.

4. Conclusions

(1) The molecular formula of the three structures was determined by elemental analysis.
The average molecular formula of HLH raw coal configuration was C167N3O27H149, and the aromatic
part consists of five benzene rings, six naphthalene rings, two pyrrole rings and one pyridine ring.
The average molecular formula of Mm coal configuration was C148H129N3O20, the aromatic structure
includes three benzene rings, four anthracene rings, four naphthalene rings, one anthracene ring,
one pyridine ring and two pyrrole rings. And the average molecular formula of Um coal configuration
was C155H131O23N23, the aromatic structure includes three benzene rings, five anthracene rings,
four naphthalene rings, one anthracene ring, one pyridine ring, and two pyrrole rings.

(2) It was found that after microwave and ultrasonic treatment, the orderliness of aromatic ring
layer arrangement increased. The content of fat chain and side chain decreased, and the existence form
of oxygen atoms also changed, in which the proportion of C-O and COO- form shows a decreasing trend.
It was found that the total energy of the three structures decreased significantly after optimization.
The chemical bonds between the atoms are obviously bent and distorted, and the space configuration
is more stereoscopic. Although the model constructed in this paper is not the most comprehensive
and optimized configuration before and after HLH modification, some problems such as isomers are
considered in the process of construction, which has a certain reference value for better understanding
and application of lignite upgrading.
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Abstract: In order to systematically elucidate the combustion performance of fuel during sintering, this
paper explores the influence of three factors, namely coal substitution for coke, quasi-particle structure
and the coupling effect with reduction and oxidation of iron oxide, on fuel combustion characteristics,
and carries out the kinetic calculation of monomer blended fuel (MBF) and quasi-granular fuel (QPF).
The results show that replacing coke powder with anthracite can accelerate the whole combustion
process. MBF and QPF are more consistent with the combustion law of the double-parallel random
pore model. Although the quasi-particle structure increases the apparent activation energy of fuel
combustion, it can also produce a heat storage effect on fuel particles, improve their combustion
performance, and reduce the adverse effect of diffusion on the reaction process. In the early stage
of reaction, the coupling between combustion of volatiles and reduction of iron oxide is obvious.
The oxidation of iron oxide will occur again when the combustion reaction of fuel is weakened.

Keywords: quasi-particle structure; monomer blended fuel; quasi-particle fuel; apparent activation
energy; coupling effect

1. Introduction

At present, the supply of energy is highly reliant on fossil fuel [1]. The rising demand for energy
around the globe is leading to many economic and environmental problems [2]. Ironmaking in China
is still dependent on the blast furnace [3]. The direct reducibility and intensity of high-basicity sinter,
which is the main raw material for blast furnace ironmaking, markedly influence the production
efficiency of ironmaking [4,5]. The combustion characteristic of fuel in sintering mixture materials plays
a decisive role in sinter quality [6,7]. Therefore, it is urgent to explore the combustion characteristics of
solid fuel in the sintering process in order to provide a theoretical basis for improving the combustion
efficiency, improving the quality of sinter and reducing the consumption of solid fuel [8]. Coke is made
from natural bituminous coal heated between 950 ◦C and 1050 ◦C in an airless environment. It is the
main fuel in the sintering site [9]. Previously, the research on sintering fuel combustion was mostly
based on coke breeze [10,11]. However, with the development of the steel industry and the continuous
improvement of the grog ratio in the blast furnace, the supply of coke powder for sintering has been
short. Therefore, many sintering sites use anthracite wholly or partially to replace coke powder as fuel
for sintering [12,13].

In the traditional sense, the experimental samples for studying the combustion characteristics
of fuels consist mainly of monomer fuel. However, during the sintering process, the solid fuel in the
material layer is usually distributed in a dispersed manner. Hence, the combustion law of sintering
fuel should generally be different from the monomer fuel and the fuel layer [14,15]. In recent years,
researchers have begun to use a quasi-particle structure to describe the existence of fuel inside the

Processes 2020, 8, 475; doi:10.3390/pr8040475 www.mdpi.com/journal/processes25
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sintering mixture [16,17]. In order to exclude the interference brought by other reactions, Al2O3 pure
powder reagent is often used in many studies on quasi-particles sinter to replace other materials used
in production for experimental exploration [18].

Combustion of sintering fuel at low temperature is generally considered as a chemical reaction
control process. However, the introduction of a quasi-particle structure will greatly improve the
diffusion resistance of internal fuel combustion. Therefore, the extent to which diffusion controls
combustion is greatly increased [19,20]. This paper innovatively introduced the double parallel
reaction volume model (DVM) and double parallel random pore model (DRPM) to conduct a
comparative analysis of the combustion characteristics of monomer blended fuel and quasi-particle
fuel and calculated the related kinetic parameters, which are widely used in the kinetic calculation
of co-combustion of multiple fuels [21], single-fuel gasification [22] and co-gasification of multiple
fuels [23,24]. They can not only obtain the suitable dynamic models for describing the combustion
process of two kinds of fuel, but also characterize the effect of quasi-particle structure on the combustion
characteristics of sintering fuel. There are many physical and chemical reactions in the sintering
process. Due to the influence of sintering temperature and atmosphere, iron oxides undergo different
degrees of reduction and oxidation reactions. The occurrence of these reactions is coupled with fuel
combustion, which greatly affects the quality of sinter [25]. Therefore, this study systematically explores
the influence of factors such as the substitution of anthracite for coke powder, quasi-particle structure
and the coupling effect of reduction and oxidation of iron oxide on the combustion characteristics
of sintering fuel in order to provide a certain guiding significance for improving fuel efficiency and
reducing sintering production cost.

2. Materials and Methods

2.1. Materials

The fuel used in the experiment was 25% anthracite blended with 75% coke powder by weight
and the particle size was less than 0.105 mm. The specific industrial analysis, elemental analysis and
calorific value of the raw materials are shown in Table 1. Because there are many types of reactions of
the sintering process of iron ore and the coupling between the reactions is strong, in order to investigate
the influence of the quasi-particle structure on the combustion kinetic parameters of the sintering fuel,
Fe2O3 and Al2O3 pure powder reagents with a particle size of less than 0.147 mm were used instead of
the iron ore and flux applied in an industrial setting. In addition to single anthracite and coke powder,
there are also three-blended fuels, namely monomer blended fuel (MBF), quasi-particle fuel (QPF) and
sintered mixture (SDM). The schematic diagrams of them are shown in Figure 1, and the ratios of raw
materials are shown in Table 2.

Table 1. Proximate and ultimate analysis of the fuel (in dry basis).

Samples
Proximate Analysis/% Ultimate Analysis/%

Qgr/(MJ g−1)
FC V A C H O N S

Anthracite 76.51 6.94 16.58 75.86 1.69 2.25 0.81 0.36 29.31
Coke 86.68 0.23 11.80 87.17 0.77 0.64 0.91 0.51 35.23

FC, V and A represent fixed carbon, volatile and ash, respectively; subscript gr means gross calorific value.
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Al2O3 Fuel Fe2O3 
Figure 1. Schematic diagram of monomer blended fuel (MBF), quasi-granular fuel (QPF) and sintered
mixture (SDM).

Table 2. Raw materials and proportions used in the experiment, wt%.

Samples Fe2O3 Al2O3 Anthracite Coke

MBF - - 25 75
QPF - 60 10 30
SDM 76 20 1 3

2.2. Thermogravimetric Experiment

Combustion experiments were conducted using the HCT-4 thermal analyzer. The usage of
anthracite, coke powder and MBF was 1.2 ± 0.1 mg for each group, and 30 ± 0.1 mg for QPF and SDM
respectively. Each sample was loaded into a crucible for thermal analysis with a height of 4 mm and
diameter of 5 mm. The samples were heated from room temperature (25 ◦C) to 1000 ◦C at heating
rates of 5.0, 10.0, 15.0, and 20.0 ◦C/min, respectively. The rate of heating is expressed as β. At the same
time, the air was injected at a flow rate of 100 mL/min during the heating to provide an oxidizing
atmosphere for the heating. To ensure the accuracy of all experimental results, each experiment was
repeated at least three times under the same conditions.

The conversion of the sample (α) was calculated with the mass loss data collected during
the combustion

α =
m0 −mt

m0 −m∞
(1)

where m0 is the original mass of the sample; mt is the mass at time t; m∞ is the final mass of the sample
after the reaction.

In the thermogravimetric combustion experiment, the parameters of the sample can be determined
by using the thermal analysis curve (TG-DTG), including ignition temperature (Ti), combustion
temperature (Tj), peak temperature (Tp), combustion reaction time (t), flammability index (C) and
combustion characteristic index (S). The determination method of characteristic parameters is shown
in Figure 2.

•
T

L

L

t 

L

L4

T v

T•

•

 

Figure 2. Schematic diagram of characteristic parameter determination method of the
thermogravimetric curve.
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The flammability index reflects the ability of the sample to react at the beginning of combustion.
This index can measure the ignition stability of the sample during combustion,

C = vp/T2
i (2)

where vp is the maximum combustion reaction rate in min−1.
The combustion characteristic index reflects a combined characteristic of the ignition and

combustion of the sample. If the value of S is larger, the combustion performance of the sample is better,

S = vp × vm/(T2
i × Tj) (3)

where vm is the average burning rate of the sample from Ti to Tj in min−1.

2.3. Thermal Analysis Kinetic

The combustion process of the sintering fuel can be regarded as a gas–solid heterogeneous reaction.
The total combustion reaction consists of two independent chemical reactions:

Anthracite + (x/2 + y + z/2)O2 → xCO + yCO2 + zH2O (4)

Coke + (x/2 + y + z/2)O2 → xCO + yCO2 + zH2O (5)

In order to further clarify the combustion reaction mechanism of the pure mixed fuel and the
quasi-particle fuel, we introduced two kinetic models to study the combustion behavior of the sample:

dα
dt

=
2∑

i=1

ciki f (αi) (6)

where t is the reaction time, ci is the proportion of a reaction to the total response, ki is the combustion
reaction rate constant, and f (αi) is a function of the differential reaction mechanism.

The relationship between apparent reaction rate and temperature can be derived from the
Arrhenius equation,

k = Ae−E/RT (7)

where E is reaction activation energy, A is the pre-exponential factor, R is the universal gas constant,
and T is the temperature.

Currently, volumetric models (VM) and random pore models (RPM) are widely used to describe
various coal char combustion reactions and are used to calculate kinetic parameters,

dαVM

dt
= AVMe−EVM/RT(1− αVM) (8)

dαRPM

dt
= ARPMe−ERPM/RT(1− αRPM)

√
1−ψ ln(1− αRPM) (9)

where ψ is the parameter of particle structure,

ψ =
4πL0(1− ε0)

S2
0

(10)

where S0 is the pore surface area, L0 is the pore length, and ε0 is the porosity of particles.
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Since the experimental materials use two types of fuels with different combustion performances,
it is necessary to optimize the VM and RPM. The expressions of DVM and DRPM are obtained by
combining Equations (6)–(9),

dαDVM

dt
=

2∑
i=1

ciAie−Ei/RT(1− αi) (11)

dαDRPM

dt
=

2∑
i=1

ciAie−Ei/RT(1− αi)
√

1−ψi ln(1− αi) (12)

In the non-isothermal analysis experiment, in order to determine the kinetic parameters and
improve the calculation accuracy, three or more types of heating rates are usually selected. Thus, this
experiment adopts four different heating rates to calculate kinetic parameters. Under the constant
heating rate of the experiment, the reaction temperature can be obtained from the initial temperature
and reaction time,

T = T0 + βt (13)

where β is the heating rate, and T0 is the starting temperature of 25 ◦C. After t = (T − T0)/β is substituted
into Equations (11) and (12), the formulas can be integrated to give

αDVM =
2∑

i=1

ci

(
1− exp

(
−AiRT2

βEi
· exp

(−Ei
RT

)))
(14)

αDRPM =
2∑

i=1

ci

(
1− exp

(
− exp

(−Ei

RT

)
·AiRT2

βEi
·
(
1 + exp

(−Ei
RT

)
·ψiAiRT2

4βEi

)))
(15)

The combustion kinetic parameters were calculated by the above two kinetic models at different
heating rates. The experimental data of the reaction rate (dα/dt) and conversion rate (α) were fitted
in 1stop software using a nonlinear least-squares method. Then, the parameters A, E and ψ that are
obtained are substituted into Equations (14) and (15) to obtain the relationship between the sample
conversion rate (α) and the temperature (T) during combustion. At the same time, due to the possible
deviation between the actual value and the calculated value of the model, the root mean square error
(RMSE) is introduced to evaluate the error between the fitted data and the actual value of the DVM
and DRPM models,

RMSE(α) =

√∑N
i=1

(
αi

exp − αi
cal

)2

N
× 100% (16)

RMSE
(dα

dt

)
=

√∑N
i=1

(
dα
dt

i
exp − dα

dt
i
cal

)2

N
× 100% (17)

where αi
exp and αi

cal are the experimental and calculated values of the conversion rate at points i = 1, 2,

3, . . . ; dα
dt

i
exp and dα

dt
i
cal are the experimental and calculated values of reaction rate at some points, and

N is the number of data points.

3. Results and Discussion

3.1. FTIR Analysis

In order to compare and analyze the combustion characteristics of anthracite and coke powder
used in sintering site, this experiment adopts Fourier transform infrared spectroscopy to detect the
functional group structure of the two fuels and compare the differences between the structures, thus
providing a theoretical basis for studying their combustion characteristics and laws. In infrared
spectrum detection, the absorption peak of each functional group has a specific spectral position.
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The corresponding functional group can be found according to the peak of the characteristic peak on
the spectrum. According to relevant studies [26,27], the infrared spectral curves of coal samples can be
divided into hydroxyl (3700~3000 cm−1), aliphatic hydrocarbon (3000~2800 cm−1), oxygen-containing
functional group (1800~1000 cm−1) and aromatic hydrocarbon (900~700 cm−1) according to the spectral
wave number, the structure and properties of functional groups. Therefore, in this paper, the infrared
spectral curves of anthracite and coke powder were divided into nine points A~I in order to better
distinguish the differences in the structure of their functional groups. It can be seen from the Figure 3
that there is a big gap between the two spectral curves.

 
Figure 3. Fourier infrared spectra of anthracite and coke.

It can be seen from Table 3 that there are significant differences between coke powder and
anthracite at B and H, which represent the –CH group on aromatic ring and aliphatic hydrocarbon in
coal respectively. As the content of –CH will increase with the increase of volatile substances, compared
with coke powder, anthracite still contains a small amount of volatile substances, so the content of –CH
group in anthracite is significantly higher than that of coke powder. At the same time, the comparison
of the absorbance of the two at point A in the infrared spectrum shows that the content of hydroxyl
in the pyrolysis process of coking coal is greatly reduced, that is, the number of active groups and
the activity of coal are reduced, so the reactivity of coke powder is significantly lower than that of
anthracite. This is also the reason why the mixed combustion process of anthracite and coke powder
for sintering will present a multi-stage weightless reaction.

Table 3. Infrared spectrum absorption peak classification of anthracite and coke powder.

Peak Position
Wavenumber/cm−1

Functional Group
Anthracite Coke

A 3414.4 3439.1 –OH
B 3042.2 - –CH (Aromatic hydrocarbon)
C 2923.3 2914.7 –CH3, –CH2–
D 1604.1 1626.3 –C=C–
E 1439.1 1444.1 –CH2–
F 1089.9 1094.2 C–O (Phenol, alcohol, ether, ester)
G 1023.2 1037.7 –Si–O–

H
870.1 - Carbonate minerals
793.1 786.2 Substituted benzene class
746.9 - –CH2–

I 542.3 540.6 –S–S–
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3.2. Thermogravimetric Characteristics

3.2.1. Combustion Characteristics of Anthracite and Coke

In order to better characterize the combustion process of anthracite and coke powder for sintering,
this study conducted a TG-DTG analysis on the two fuels by means of thermogravimetric experiments
at the same heating rate. It can be seen from Figure 4 that the combustion interval of anthracite
and coke powder is concentrated in a certain region, and there is only one section of weightlessness.
Because the volatile content of anthracite and coke powder is low, most of the reaction weight loss can
be considered as the result of fixed carbon combustion. However, the volatile content of anthracite is
6.94%, which is significantly higher than that of coke powder. Therefore, the combustion interval of
anthracite is obviously smaller than that of coke powder.

 

Figure 4. Thermogravimetric curves of anthracite and coke.

Combined with Equations (2) and (3), the combustion characteristic parameters of anthracite and
coke powder for sintering can be obtained. As shown in Table 4, the average combustion rate, ignition
stability C value and combustion characteristic index S value of anthracite were higher than that of
coke powder, while the combustion time was lower than that of coke powder. Therefore, anthracite
has a better combustion performance than coke powder. This is because the volatile content of coke
powder and the strength of hydroxyl absorption peak are low, which directly leads to the ignition
temperature of anthracite being lower than that of coke powder, resulting in significant differences in
the combustion performance of the two. Therefore, the coal coke mixed fuel used in sintering raw
materials will have multi-stage weightless reactions during the combustion process.

Table 4. Combustion characteristics of anthracite and coke powder.

Samples Ti/(
◦C) Tp/(

◦C) vp/(min−1) Tj/(
◦C) vm/(min−1)

C ×
10−6/(min−1·◦C−2)

S ×
10−9/(min−2·◦C−3)

t/(min)

Anthracite 353.7 516.6 1.0529 619.3 0.0974 8.4562 1.3237 10.27
Coke 443.5 708.7 0.5672 846.4 0.0726 2.8837 0.2473 13.77

3.2.2. Combustion Characteristics of MBF and QPF

Figure 5 shows the conversion (α) and the reaction rate (dα/dt) of MBF and QPF at different
heating rates. The improving trend of the reaction rates gradually slows down as the heating rate
increases and all the reaction curves have a common feature that the weight loss reaction of the two
samples is divided into two parts, which is because that the different combustion characteristics of
anthracite and coke divide the whole combustion process into two reaction zones. The first reaction
zone is mainly the combustion reaction of anthracite, which occurs in the temperature range of about
400–600 ◦C. The second reaction zone is the combustion of coke breeze, and the temperature range
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of this reaction is about 550–950 ◦C. Because of the difference in the amount of anthracite and coke
powder added, the rate of change peak of the latter is significantly higher than that of the former.

As shown in Table 5, when the heating rate (β) is increased from 5 ◦C/min to 20 ◦C/min, Ti,
Tj, Tp-1 and Tp-2 all increase, and the conversion rate and reaction rate curves are shifted to the
high-temperature region, which indicates that the amount of heat transferred from the surrounding
environment to the inside of the sample per unit time increases. The increase of the heat will greatly
improve the combustion rate of the fuel but also shortens the reaction time (t) of samples at the same
temperature, so the phenomenon of the curve’s movement to the high-temperature area will occur.
By comparing the Tp-2 and Tj values of MBF in Table 5 at 5 ◦C/min with the Tp and Tj values in Table 4,
it can be seen that the maximum reaction rate and the corresponding temperature at the end reaction
of the coke powder in the mixed fuel are significantly lower than the corresponding temperature
when the coke powder is burned alone. This indicates that the combustion of anthracite before coke
powder provides heat for the latter’s oxidation, thus speeding up the reaction process of coke powder.
Therefore, when the sintering site adopts anthracite to partially replace coke powder, the migration
speed of combustion zone will be accelerated and the sintering efficiency will be improved.

t 

 

t 

 

Figure 5. Fractional conversion and reaction rate-conversion curves of MBF and QPF at different
heating rates.
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Table 5. Combustion characteristic parameters of MBF and QPF at different heating rates.

Sample
β/(◦C
min−1)

Ti

(◦C)
Tp-1

(◦C)
vp-1

(min−1)
Tp-2

(◦C)
vp-2

(min−1)
Tj

(◦C)
vm

(min−1)
C × 10−7

(min−1·◦C−2)
S × 10−12

(min−2·◦C−3)
t
(min)

MBF

5 399.2 501.2 0.020 676.1 0.029 802.8 0.012 1.63 2.52 60.32
10 423.1 523.2 0.034 698.6 0.054 856.1 0.023 2.62 7.07 33.29
15 419.4 536.3 0.045 717.3 0.078 876.9 0.033 3.79 14.18 22.71
20 436.0 543.3 0.057 717.3 0.094 895.1 0.044 4.32 20.05 17.59

QPF

5 414..3 509.0 0.018 681.9 0.038 826.1 0.012 1.86 2.73 63.42
10 432.6 531.5 0.031 707.4 0.068 838.6 0.025 3.06 8.99 30.71
15 447.8 549.9 0.044 719.9 0.092 901.1 0.033 3.89 14.29 23.41
20 456.8 561.4 0.055 732.2 0.116 917.5 0.043 5.29 24.81 17.81

It can be seen that the QPF flammability index, combustion characteristic index and combustion
reaction time are significantly higher than MBF, while the average burning rate of both is about the
same. This indicates that the quasi-particle structure extends the reaction time of fuel combustion, but
it does not inhibit the burning rate and in fact, improves the combustion performance. It is probable
that the inert particles around the fuel reduce the loss of heat generated by the combustion reaction.
At the same time, as the combustion reaction progresses, the particle size of the fuel gradually shrinks,
so that a “regenerator” is formed around the wrapped fuel. The specific schematic diagram is shown
in Figure 6. This is also the reason for the heat storage in the combustion zone during sintering.

Figure 6. Thermal storage of quasi-particle sintering.

3.3. Combustion Kinetic Parameters

The relationship between the conversion rates and reaction rates of the two kinds of fuel at
different heating rates is shown in Figure 7. The whole combustion reaction process is divided into two
stages. The earlier stage is mainly anthracite combustion, while the latter stage is mainly composed of
coke-powder combustion. The trend of the curves describing the two combustion stages is roughly the
same. The rate in the initial stage of the reaction increases rapidly with an increase in the conversion rate
and then decreases rapidly after reaching a certain peak value. The combustion reaction of anthracite
and coke breeze follow the law of non-uniform reaction. Therefore, the combustion reaction of the fuel
in the low-temperature condition is in the “chemical-controlled zone”, where the combustion rate is
greatly affected by the temperature, and the reaction rate increases with an increase of temperature;
As the reaction proceeds, the ash content on the fuel surface gradually increases and adheres to the
particle surface, which limits the diffusion of gas to the solid boundary layer and the desorption of
gaseous reaction products from the solid surface to a certain extent, then greatly slows down the rate of
late combustion reactions. After the peak, the reaction enters the “diffusion-controlled zone”. Because
of the dependence of reaction rate on the diffusion rate of the gas, the burning rate of the fuel decreases
as the conversion rate increases.
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t t 

 
Figure 7. Combustion rates of MBF, QPF and fitting curves of double parallel reaction volume model
(DVM) and double parallel random pore model (DRPM).

Table 6 lists the kinetic parameters and correlation coefficient R2 of MBF and QPF calculated
according to Equations (14) and (15). It can be seen from the data that the correlation coefficients of the
two samples calculated by the DVM model are all ≤ 0.9993, and the correlation coefficients calculated
by DRPM are all ≥ 0.9994. Whether it is MBF or QPF, the correlation coefficient of the data calculated by
the latter is slightly higher than by the former. Table 7 lists the RMSEs of conversion and combustion
rates calculated according to Equations (16) and (17). The results show that the RMSEs of conversion
and combustion rate calculated by DRPM model at different heating rates are less than 0.8 and 0.01,
respectively, which are far less than the RMSEs of the conversion rate and combustion rate calculated
by the DVM model. Therefore, the combustion behavior of the MBF and QPF follows the combustion
law of the double parallel reaction random pore model.

To further verify the reliability of the data calculated by the DRPM model, the corresponding
kinetic parameters in Table 6 were brought into Equation (15), and the resulting conversion curves
were compared with the experimental curves. As shown in Figure 8, α1 and α2 increase with
temperature at different heating rates, representing the conversion curves of anthracite and coke
powder. The remaining curves are experimental and calculated results of MBF and QPF. It can be seen
from the figure that they have a high degree of fit. The experimental results are equivalent to the sum
of the anthracite combustion conversion rate and the coke powder combustion conversion rate.

It can be seen from Table 6 that the activation energy of the MBF calculated by DRPM is slightly
lower than that of QPF. In order to better reflect the height of barriers, Equation (18) was introduced to
calculate the apparent activation energy of samples,

Eα = c1E1 + c2E2 (18)

where Eα is the apparent activation energy of samples in kJ·mol−1, c1 is the proportion of the anthracite
combustion reaction to the total response, E1 is the activation energy of the anthracite combustion
reaction in kJ·mol−1, c2 is the proportion of the coke combustion reaction to the total response, and E2

is the activation energy of the coke combustion reaction in kJ·mol−1.
The calculation results are shown in Figure 9.
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Table 7. Deviation between the experimental and calculated curves.

Sample β/(◦C·min−1)
RMSE (α)/(%) RMSE (dα/dt)/(%)

DVM DRPM DVM DRPM

MBF

5 1.12 0.72 3.3 × 10−3 2.29 × 10−3

10 1.04 0.66 6.72 × 10−3 4.62 × 10−3

15 1.12 0.74 9.37 × 10−3 6.57 × 10−3

20 1.19 0.77 1.25 × 10−2 8.68 × 10−3

QPF

5 1.07 0.68 3.66 × 10−3 2.52 × 10−3

10 1.17 0.68 7.65 × 10−3 4.94 × 10−3

15 1.14 0.74 1.02 × 10−2 7.09 × 10−3

20 1.13 0.74 1.33 × 10−2 9.24 × 10−3

 

Figure 8. Comparison the correlation between experimental data and calculation results of MBF and
QPF at different heating rates.

E

  

Figure 9. Comparison the apparent activation energy of MBF and QPF calculated by DRPM.

At different heating rates, the apparent activation energy of QPF is significantly higher than that of
MBF, and the difference between them is maintained between 13.62 and 14.53 kJ·mol−1, which does not
change with the increase of the heating rate. This indicates that the difference in apparent activation
energy between QPF and MPF is the reaction energy barrier provided by the diffusion resistance during
the combustion reaction. The inert particles in the quasi-particle structure hinder the contact of the
active part on the fuel particles with the air, thereby improving the reaction energy barrier of internal
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fuel. Compared with the conventional simple fuel particle structure, an increased number of particles
in the quasi-particle structure increase the tortuosity of the internal pores, which greatly reduces the
diffusion coefficient of the gas in the heterogeneous reaction and then increases the diffusion resistance
of anthracite and coke powder combustion and the activation degree of the diffusion control reaction.
However, by comparing the combustion performance parameters of QPF and MBF, it can be seen that
the quasi-granular structure can produce a certain heat storage effect on the fuel during the combustion
reaction process, which not only improves the combustion performance of the fuel but also increases
its combustion rate, thus reducing the adverse effect of diffusion on fuel combustion.

3.4. Kinetic Analysis of Quasi-Particle Fuel Combustion

In order to clarify the coupling effect between the redox reaction of iron oxide and the combustion
of fuel in the sintering mixture, we carried out SDM in the thermal analysis experiments at different
heating rates, as shown in Figure 10. The increase of heating rate accelerates the reaction speed of each
reaction in the sintering process and the weight variation of SDM increases with the increase of heating
rate. Since the reaction is complicated in the sintering process, a reaction overlap is highly likely to
occur. In order to better distinguish the redox reaction and explore the reasons for the change of sample
weight, we carried out experiments using a DTA analysis under different heating rates and found that
the second derivative of the DTA curve obtained the hidden information of the peak structure in the
overlapping region. The results of the analysis are shown in Figure 11.

 

Figure 10. Fractional conversion and reaction rate-conversion curves of the sintered mixture at different
heating rates.

As can be seen from the figure, SDM exhibits a small change in exothermic → endotherm →
exothermic below 500 ◦C. The volatile first undergoes combustion and exothermic reaction, which
provides a reducing atmosphere for Fe2O3 in the sample and a small amount of CO is sufficient to
completely reduce Fe2O3 to Fe3O4. Due to the continuous renewal of the reaction gas, the reducing
atmosphere is replaced by an oxidizing atmosphere. The Fe3O4 produced by the reduction is oxidized
and the experimental curve shows a slight exothermic weight gain,

Volatile + (x/2 + y + z/2)O2 → xCO + yCO2 + zH2O (19)

3Fe2O3 + CO = 2Fe3O4 + CO2 (20)

2Fe3O4 + 1/2O2 =3Fe2O3 (21)

The reactions can be regarded as a series of reactions at this stage. Among them, CO and Fe3O4

are both the product of the former reaction and the reactant of the latter reaction. This indicates that the
increase of the latter reaction rate will promote the previous reaction, and the slowing of the previous
reaction rate will inhibit the latter reaction, thus forming a significant coupling relationship.
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Figure 11. Differential thermal analysis curves of the sintered mixture at different heating rates.
(a) 5 ◦C/min, (b) 10 ◦C/min, (c) 15 ◦C/min, (d) 20 ◦C/min.

Above 500 ◦C, anthracite and coke breeze burn, and the exothermic is intense, which may mask the
reduction reaction of Fe2O3. However, the DTA curve shows a significant reduction of the endothermic
peak in the 550–630 ◦C range. This is because this stage is the combustion interval between anthracite
and coke breeze and the oxidative exothermic is replaced by the reduced endotherm. However, due to
the large weight loss caused by the combustion and reduction reactions, a weight gain phenomenon is
not obvious at this stage. The coupling phenomenon of each reaction in the sintering mixture is very
obvious and is complicated.

4. Conclusions

There are many –CH groups and hydroxyl groups in anthracite, which makes the combustion
performance of anthracite significantly better than that of coke powder. When the coke powder is
partially replaced by anthracite, the whole combustion process will be accelerated. DVM and DRPM
models were used to calculate the dynamics of MBF and QPF at different heating rates. Through
comparative analysis of the relevant kinetic parameters and root mean square error, it was found that
the DRPM model was more suitable for describing the combustion process of MBF and QPF. Although
quasi-particles increase the apparent activation energy of fuel combustion, they also produce a heat
storage effect on fuel particles, improve their combustion performance, and reduce the adverse effect
of diffusion effect on the combustion reaction process. According to the differential thermal analysis of
SDM samples, the coupling between volatiles combustion and redox reaction of iron oxides is obvious
in the early combustion period and the oxidation of iron oxides will occur again when the combustion
reaction of fuel is weakened.
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Abstract: The coke combustion rate in an iron ore sintering process is one of the most important
determining factors of quality and productivity. Biomass carbon material is considered to be a coke
substitute with a lower CO2 emission in the sintering process. The purpose of this study was to
investigate the combustion rate of a biomass carbon material and to use a sintering simulation model
to calculate its temperature profile. The samples were prepared using alumina powder and woody
biomass powder. To simplify the experimental conditions, alumina powder, which cannot be reduced,
was prepared as a substitute of iron ore. Combustion experiments were carried out in the open at
1073 K~1523 K. The results show that the combustion rates of the biomass carbon material were
higher than that of coke. The results were analyzed using an unreacted core model with one reaction
interface. The kinetic analysis found that the kc of charcoal was higher than that of coke. It is believed
that the larger surface area of charcoal may affect its combustion rate. The analysis of the sintering
simulation results shows that the high temperature range of charcoal was smaller than that of coke
because of charcoal’s low fixed carbon content and density.

Keywords: coke combustion rate; charcoal combustion rate; iron ore sintering process; temperature
distribution; biomass; quasi-particle

1. Introduction

CO2 emission from Japan’s industrial sector is much higher than that from other sectors. In 2017,
it accounted for approximately 37.2% of the total emission. In the industrial sector, the iron and
steel-making industry accounts for approximately 39.4% of energy consumption. The steel industry
emits approximately 13% of the CO2 in Japan [1]. The demands of global environmental conservation
require a greenhouse gas reduction. Currently, approximately 80 million tons of pig iron are produced
by blast furnace annually in Japan. Coal and coke are used as reducing materials and heat sources,
respectively, and a large amount of CO2 is emitted in the iron-making process. Therefore, the development
of innovative technologies is required to reduce the CO2 emission.

Trees absorb carbon dioxide during photosynthesis. When wood from forests is burned as fuel,
carbon dioxide is generated. If the forest is renewed after tree cutting, the carbon dioxide will be
absorbed by the trees again during the growth process. Thus, the use of wood for energy is carbon
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neutral. Therefore, using wood instead of fossil fuels makes it possible to reduce carbon dioxide
emissions and contribute to the prevention of global warming [2].

It is increasingly difficult to prepare a sintering iron ore due to the high price of raw materials,
environmental regulations and inferior quality raw materials. Limited work [3–6] has been conducted
to investigate the application of biomass in the sintering process to replace coke breeze, with this work
mainly focused on its environmental impacts and low substitution rates. Therefore, it is necessary to
improve the sintering iron ore method. In the sintering process, the coke combustion rate is one of the
most important determining factors of quality and productivity.

However, little research has been conducted on the combustion behavior of biomass carbon
material quasi-particles during the sintering process. The purpose of this study was to investigate the
combustion rate of a biomass carbon material and use a sintering simulation model to calculate its
temperature profile.

2. Experimental Sample and Procedure

To simulate the test particles, the samples were prepared using alumina powder and woody
biomass powder. The woody biomass powder used in this study was commercial mangrove charcoal,
which is normally used for barbecues. To simplify the experimental conditions, alumina powder was
prepared as a substitute for iron ore. Alumina eliminated the effects of melt formation, reduction
and re-oxidation of iron ore during coke combustion. Charcoal powder with a particle diameter of
−125 μm and 125~250 μm was used in this experiment. The particle size of iron ore was to simulate
the adhere powder layer, but not the coke particle. Coke powder with the same particle diameter was
used to compare the results. Alumina powder with a particle diameter of −250 μm was prepared to
match the particle size of the iron ore. The analysis of the results of prepared carbon material are listed
in Table 1. Compared with coke, charcoal has a lower ash ratio and higher volatile matter content
and therefore charcoal has a lower fixed carbon. The surface area of charcoal is higher than that of
coke. This was also observed by an SEM, as shown in Figure 1. Figure 2 shows the overall view of
raw materials and samples. After the alumina and coke powders were mixed, 0.5 mass % flour was
mixed as a binder. The flour was just used to enable keeping the tablet shape until it was inserted
to the platinum basket. It was thought that the effect of the flour could be negligible, because flour
evaporates at a lower temperature—600 K—than the experimental temperature in this study. Then,
the mixture was pressed into 10 mm diameter tablets by stainless dies. The height of the tablet was
10 mm with a void ratio of 35%. The void ratio was decided from the information on the tablet volume
and the true density of the sample mixture. Each true density of the sample materials was measured
by pycnometer. The weight ratio of coke in each sample was fixed at 20 mass %. To ensure that the
volume ratio of the samples was the same as the hematite and alumina samples, 22.1 mass % coke with
77.9 mass % alumina and 20.8 mass % charcoal with 79.2 mass % alumina was also prepared.

Table 1. Properties of carbon materials.

Ash
(mass %)

V.M.
(mass %)

Fix.C.
(mass %)

Specific Surface Area (m2/g)

Charcoal (−125 μm)
1.84 29.2 69.0

61.0

Charcoal (125~250 μm) 28.5

Coke (−125 μm)
10.1 1.71 88.2

2.59

Coke (125~250 μm) 0.92
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Figure 1. Scanning electron micrograph of coke and charcoal (−125 μm).

Figure 2. Overall view of the raw materials and the sample.

The measurement of the sample weight loss during coke combustion was done by the thermobalance
shown in Figure 3. The sample was placed in a platinum basket. A vertical electric resistance furnace
was used to do isothermal heating. The isothermal zone was heated up to 1073 K, 1223 K, 1373 K and
1523 K. Before the combustion experiment, heat treatment of the samples was carried out at each of
the given temperatures in a N2 atmosphere for 30 mins to remove water, Volatile matter (V.M.) and
the binder from the samples. Then, air was passed through the reaction tube. The air flow rate was
4 NL/min. When a weight change in the sample was not observed, the experiment was terminated. It
was hypothesized that coke ash did not influence the weight loss of the sample because the amount of
coke in every sample stayed the same.
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Figure 3. Schematic of the device used in the experiment.

3. Results

The reaction ratio in the study was defined as the removal ratio of fixed carbon from the sample.
A carbon combustion reaction can be described using the following chemical reaction, if CO gas
formation is ignored:

C(s) + O2(g) = CO2(g) (1)

In the combustion experiment, the sample weight loss was attributed to the decrease in the amount
of fixed carbon. Therefore, the reaction ratio (F) at a reaction time can be described by Equation (2):

F =
Δwt

W
(2)

Fractional reaction curves at 1073 K are shown in Figure 4. The figure shows that combustion
rates of charcoal were quicker than those of coke. This tendency was also observed at 1223 K, 1373 K
and 1523 K.

Figure 4. Fractional reaction curves of coke and charcoal combustion at 1073 K.

44



Processes 2020, 8, 406

To verify the reaction mechanism of the combustion reaction, samples with a reaction ratio of 50%
were also prepared under 1073 K and 1523 K and cross-sectional and microscopic observations were
made. Figures 5 and 6 show the cross-sectional observation and the microstructure at the reaction
interfaces of each sample. It was clear that the combustion reaction was a topochemical reaction.

Figure 5. Cross-sectional view of the samples.

Figure 6. Microstructure of the samples at the reaction interface.

4. Kinetic Analysis

4.1. Unreacted Core Model for Coke

From the fractional reaction curves obtained from the combustion experiment, the combustion
reaction rate constant was determined using the unreacted core model [7]. The combustion reaction
has five processes [8].
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1. O2 transport from the gas phase to the particle surface through the gas film:

− .
ng·O2 = 4πr2

0k f
(
CO2 −CO2·s

)
(3)

2. O2 transport from the particle surface to the reaction interface through the alumina powder layer
after coke combustion:

− .
nd·O2 = (DO2)e f f

4πr0ri
r0 − ri

(
CO2·s −CO2·i

)
(4)

3. The combustion reaction at the reaction interface:

− .
R = 4πr2

i kc

(
CO2·i −

CCO2·i
K

)
(5)

4. CO2 transport from the reaction interface to the particle surface through the alumina powder
layer after coke combustion:

.
nd·CO2 = (DCO2)e f f

4πr0ri
r0 − ri

(
CCO2·i −CCO2·s

)
(6)

5. CO2 transport from the particle surface to the gas phase through the gas film:

.
ng·CO2 = 4πr2

0k f
(
CCO2·s −CCO2

)
(7)

The overall rate equation can be described by the quasi-steady state analysis method below:

− .
n =

4πr2
0

(
K

1+K

) (
CO2 −CCO2

)
1
k f

+ 1
De
· r0(ro−ri)

ri
+ 1

kc
· K

1+K

( r0
ri

)2 (8)

1
De

=
K

1 + K

⎛⎜⎜⎜⎜⎜⎝ 1
(DO2)e f f

+
1

K(DCO2)e f f

⎞⎟⎟⎟⎟⎟⎠ (9)

Equation (8) can be expressed by the following equation, assuming that the combustion reaction
of coke was an irreversible reaction and the equilibrium constant K infinite:

− .
n =

4πr2
0CO2

1
k f

+ 1
De
· r0(r0−ri)

ri
+ 1

kc
·
( r0

ri

)2 (10)

.
n can be replaced by the following equation:

− .
n = − d

dt

(4
3
πr3

i ρCm

)
= −4πr2

i ρCm · dri
dt

(11)

The reaction ratio F is expressed by Equation (12):

F = 1−
(

ri
r0

)3

(12)

When Equations (10)–(12) are combined and integrated under boundary conditions; r = r0 at t = 0
and r = ri at t = t, Equation(13) is obtained:

t =
ρCmr0

CO2

·
[

F
3k f

+
dr

16De

{
3− 3(1− F)

2
3 + 2F

}
+

1
kC

{
1− (1− F)

1
3

}]
(13)
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The gas film mass transfer coefficient, kf, can be calculated from Ranz–Marshall’s Equation [9].
The value of the effective diffusion coefficient in the alumina layer, De, and the interfacial reaction rate
coefficient of coke, kC, was obtained by parameter-fitting using the nonlinear least-squares method to
the fractional reaction curves.

De, and kC can be expressed by substituting the coefficients in Arrhenius’ equation as shown:

kC = A(kC)
exp

(
−Ea(kC)

RT

)
(14)

De = A(De)exp
(
−Ea(De)

RT

)
(15)

Equations (13) and (14) can be transformed into the following equations:

lnkC = −Ea(kC)

R
· 1

T
+ lnA(kC)

(16)

lnDe = −Ea(De)

R
· 1

T
+ lnA(De) (17)

Figure 7 shows the Arrhenius plot of kc. The values of kc are at the same level in all samples.
The temperature dependence of kc is expressed as

Coke (−125 μm) kc = 6.02 × 10−2 exp(−9.32 × 103/RT) (m/s)
(125~250 μm) kc = 4.51 × 10−2 exp(−5.12 × 103/RT) (m/s)

Figure 7. Temperature dependence of the reaction rate constants kc.

Figure 8 shows the Arrhenius plot of De. The temperature dependence of De can be expressed as

Coke (−125 μm) De = 1.79 × 10−3 exp(−36.4 × 103/RT) (m/s)
(125~250 μm) De = 3.06 × 10−3 exp(−36.6 × 103/RT) (m/s)
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Figure 8. Temperature dependence of the effective diffusivities De.

4.2. Chemical Reaction Control Step for Charcoal

Because the surface area of charcoal is larger than that of coke, when a combustion reaction takes
place, the reaction area of charcoal will also be larger. Moreover, due to the low ash ratio in the charcoal,
the O2 transportation rate in the alumina layer will be large. Therefore, the reaction is based on the
chemical reaction control step.

For the charcoal samples, the chemical reaction control step can be used in the analysis method
shown below:

The combustion reaction at the reaction interface can be expressed by Equation (5).
The combustion rate can be expressed as

− .
n =

4πr2
0

(
K

1+K

) (
CO2 −

CCO2
K

)
1
kc
· K

1+K

( r0
ri

)2 (18)

Under boundary conditions, r = r0 at t = 0 and r = ri at t = t, and this gives Equation (19):

[
1− (1− F)

1
3

]
=

CO2

ρcmr0
kct (19)

Based on the reaction curves obtained by the experiments, kc was determined using the unreacted
core model [3].

kC can be substituted in Arrhenius’ equation as shown by Equation (14) which also can be
transformed as Equation (16).

Figure 9 shows the Arrhenius plot of kc.
The temperature dependence of kc can be expressed as

Coke (−125 μm) kc = 8.24× 10−3 exp
(
−10.6 × 103/RT

)
(m/s)

(125~250 μm) kc = 8.54× 10−3 exp
(
−10.3 × 103/RT

)
(m/s)
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Figure 9. Temperature dependence of the reaction rate constants kc.

5. Sintering Simulation Model

5.1. Simulation Method

The simulation condition was based on the study results using Ohno’s model [10]. The model
has S’-type, C-type and P-type quasi-particles as shown in Figure 10. The S’ type was calculated
using Hottel’s equation [11–13], while the C and P types were calculated based the results obtained in
this study.

Figure 10. Classification of the quasi-particles.

Our mathematical model is based on the Dwight–Lloyd sinter machine and the calculation range
is from the ignition point on the pallet to the discharge of the sinter ore.

The numerical analysis was based on the control volume method shown in Figure 11. The control
volume method is obtained by dividing the analysis target region into equal minute portions. Various
basic equations, representing phenomena, such as the continuous and energy conservation equations,
govern the inside of the analysis target area and are relational equations to be established in each
control volume. Assuming that these control volumes are in a sufficiently small area, there would not
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be a large error even if the changes in various quantities inside the control volumes were linear or
approximated to be constant values. In other words, changes in various quantities in a certain control
volume can be represented using values at a representative point in the control volume adjacent to the
representative point. In our mathematical model, the sintering material layer was divided into minute
control volumes in one dimension, the basic governing equations were discretized, and each difference
approximation equation was solved using an explicit method.

Figure 11. Pattern diagram of the control volume.

In the model used, the temperature distribution was estimated considering the combustion of
carbonaceous materials, the decomposition reaction of CaCO3, the evaporation and condensation of
water, and the formation and solidification of calcium ferrite melt according to Ohno’s model [10].

De depends on coke distribution.
The combustion reaction rate of the quasi-particles is expressed by Equations (20) and (21):

r∗Quasi−particle = 4πr2
Quasi−particlek

′CO2 (20)

k′ = 1/

⎛⎜⎜⎜⎜⎝ 1
k f

+
r0(r0 − ri)

Deri
+

r2
0

kcr2
i

⎞⎟⎟⎟⎟⎠ (21)

In this equation, De has a value of 108 because the resistance of the diffusion can be ignored.
The material balance is calculated using Equation (22):

ρi·x
∣∣∣
t+Δt − ρi·x

∣∣∣
t

Δt
= −

(ρZ+ΔZui)
∣∣∣
Z+ΔZ − (ρZui−1)

∣∣∣
Z

ΔZ
+ r∗i,x (22)

The material balance equations of N2, O2, CO2 and H2 respectively, can be expressed as follows:

∂
(
ρN2 u

)
∂Z

= −∂ρN2

∂t
(23)

∂
(
ρO2 u

)
∂Z

= −∂ρO2

∂t
− r∗Coke (24)

∂
(
ρCO2 u

)
∂Z

= −∂ρCO2

∂t
+ r∗Coke + r∗CaCO3

(25)

∂
(
ρH2Ou

)
∂Z

= −∂ρH2O

∂t
+ r∗H2O (26)
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Because convection did not occur in the solid phase, the thermal budget of the phase considering
heat transfer and reaction heat can be represented as

ρsCP·s ∂Ts
∂t − 6(1−εa)

.
d

h
(
Tg − Ts

)
+ HCoke

(
r∗CokenCoke + r∗Quasi−paritclenQuasi−particle

)
+HCaCO3r∗CaCO3

nCaCO3 + HH2O·Vr∗H2O·V + HCF·Gr∗CF·G + HCF·Sr∗CF·S = k ∂
2Ts
∂Z2

(27)

The thermal budget of the gas phase factoring the heat transfer and combustion reaction heat can
be expressed as

ρgCP·g
∂Tg

∂t
− 6(1− εa)

.
d

h
(
Ts − Tg

)
+ CP·g

∂ρguTg

∂Z
= k
∂2Tg

∂Z2 (28)

The particles were charged in the control volume. Therefore, the pressure loss of the fluid also
needed to be considered. The pressure loss of a laminar-turbulent transition area can be represented
by Ergun’s equation as shown:

ΔP
ΔZ

=
150(1− εa)

2

(ϕd)2εa3
· μg

ρg
U + 1.75

1− εa

ϕdεa3 U2 (29)

5.2. Calculation Conditions

Table 2 lists the common calculation conditions for the sintering process. The composition of raw
materials was set to simplify the calculation condition. The influence of MgO was not considered
in this study. The particle size of hematite was set to 2.5 mm and 0.25 mm. It was assumed that
2.5 mm and 0.25 mm were the sizes of the nuclear particle and the adhering fine ores, respectively,
in the quasi-particle. The 5.1 mass % charcoal calculation was compared with the 4 mass % coke
calculation when the fixed carbon content is the same which means that the combustion heat of coke
and charcoal during this process is the same. However, in this study, the effect of V.M. was not
discussed. As a thought, the gas generated when V.M. is heated may improve the permeability and
affect the temperature profile in the same way as a gas fuel injection, mentioned by Oyama [14]. Further
research is needed to clarify this factor.

Table 2. Common calculation conditions.

Sinter Bed

Bed depth 450 mm
Porosity of sinter bed 35%

Composition of Raw materials

Hematite 85.0 mass %
Lime (CaO) 10.0 mass %

Moisture 5.0 mass %
Coke, Charcoal 4.0 mass % (additionally)

Charcoal 5.1 mass % (additionally)

Diameter of Raw Materials

Hematite 2.5 mm:0.25 mm ≈ 88.6:11.4
Lime (CaO) 2.0 mm

Others

Initial temperature 298 K
Ignition temperature 1573 K

Ignition time 90 s
Gas flow rate (outlet) 0.6 m/s

Calculation cell 5 mm
Time step 0.001 s

Courant number 0.2
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Table 3 lists the state of the coke quasi-particles in the sinter bed for calculation using the date of
the sinter pot test based on Hida’s study [15].

Table 3. Existing state of the coke quasi-particles in the sinter bed.

Existing State of Coke (%)
Total

Amount of Coke and Charcoal
in Sinter Bed (%)S’-Type C-Type P-Type

40.0 30.0 30.0 100 4.0, 5.1

5.3. Calculation Results

Figures 12 and 13 show the temperature profiles of the cases of coke and charcoal at a depth of
20 cm and 40 cm, respectively. The basic case was 4 mass% coke mixing condition. It was compared
with cases of 4 mass % and 5.1 mass % charcoal mixing conditions. The influence of particle size is not
apparent. Compared with the results for coke, charcoal has a lower temperature profile and a shorter
holding time at a high temperature. This is thought to be due to the low fixed carbon content and the
density of charcoal which leads to the presence of unreacted charcoal. As a result, the temperature of
charcoal in all the sinter cakes was lower than that of coke.

Figure 12. Calculation results of the temperature profile (20cm).

Figure 13. Calculation results of the temperature profile (40cm).
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However, when the amount of charcoal was 5.1 mass %, the holding times at a high temperature
of both kinds of carbon material were at the same level. The highest temperature of charcoal was
higher than that of coke. The rate of the temperature increase of charcoal was also faster than that
of coke. This is because the combustion rate of charcoal is higher than that of coke, i.e., if the fixed
carbon content of charcoal is equivalent to that of coke, the temperature profile of the same level can be
obtained. Therefore, the sintering simulation results of this study show that there are probabilities that
charcoal can replace coke in the sintering process.

6. Conclusions

The study aimed to understand the combustion rate of a biomass carbon material using a sintering
model to calculate its temperature profile. The following conclusions were made:

• Compared with coke, the reaction curves of charcoal combustion show that the combustion
reaction of charcoal is faster.

• The interfacial chemical reaction rate coefficient of charcoal for the experimental data was
calculated as follows:

Coke (−125 μm) kc = 8.24× 10−3 exp
(
−10.6 × 103/RT

)
(m/s)

(125~250 μm) kc = 8.54× 10−3 exp
(
−10.3 × 103/RT

)
(m/s)

• Calculations using the rate equation obtained in the sintering simulation model found that the
high temperature range of charcoal is smaller than that of coke due to charcoal’s low fixed carbon
content and density.

• If the fixed carbon content of charcoal is the same as that of coke, which means that the combustion
heat of carbon materials is the same, a temperature profile of the same level can be obtained.

• The sintering simulation results suggest that there are probabilities that biomass carbon materials
can replace coke in the sintering process.
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Nomenclature

A(kc,De) Frequency factor (m/s)
C(O2, CO2) O2 or CO2 concentration in the gas phase (mol/m3)
C(O2, CO2)·i O2 or CO2 concentration at the reaction interface (mol/m3)
C(O2, CO2)·s O2 or CO2 concentration at the particle surface (mol/m3)
Cp Specific heat (J/kg/K)
d Particle size (m)
De Effective diffusion coefficient in the Al2O3 powder layer (m2/s)
(DO2, CO2)eff Effective diffusion coefficient of O2 or CO2 in the Al2O3 powder layer (m2/s)
Ea(kc,De) Activation energy (J/mol)
F Reaction ratio (–)
H Reaction heat of each reaction (J/mol)
h Convection heat transfer coefficient (J/m2/s/K)
K Equilibrium constant (–)
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kC Interfacial chemical reaction rate coefficient (m/s)
kf Mass transfer coefficient in the gas film (m/s)
k Heat conductivity (J/m/s/K)
k’ Overall reaction rate (m/s)
n(Coke, Quasi-particle, Lime, Ore) The amount of coke, quasi-particle, lime and ore among unit volume (-)
ΔP Pressure loss (atm)
r0 Initial radius (m)
ri Radius of the non-reaction nucleus (m)
ri,x * Generation rate of the component x in the number i cell (kg/s/m3)
rQuasi-particle Distance from the left of the particle to the reaction interface of the quasi-particle (m)
r * Reaction ratio of the component in the sample (–)
r *Quasi-particle Reaction rate per one particle of the quasi-particle (mol/s)
Tg Temperature of gas in the control volume (K)
Ts Temperature of solid in the control volume (K)
Δwt Sample weight change (kg)
U Superficial velocity (m/s)
u Gas flow rate (m/s)
W Weight change of the sample during the experiment (kg)
ΔZ Length of the control volume (m)
Px Density of component x (kg/m3)
ρCm Carbon concentration in the sample (mol/m3)
ρN2, O2,CO2, H2O Density of gas in the sample(kg/m3)
εa Porosity (-)

Φ
(Surface area of a ball which has the same volume with the particle)/(Surface area
of the particle) (-)

μg Viscosity of gas (Pa·s)

References

1. Japan’s National Greenhouse Gas Emissions in Fiscal Year 2017 (Final Figures); Ministry of the Environment:
Tokyo, Japan, 2019.

2. Takeshima, S. Biomass, Carbon-neutral and Renewable Energy. K. J. JIME 2012, 47, 133. [CrossRef]
3. Lovel, R.R.; Vining, K.R.; Dell’Amico, M. The influence of fuel reactivity on iron ore sintering. ISIJ Int. 2009,

49, 195–202. [CrossRef]
4. Zandi, M.; Martinez-Pacheco, M.; Fray, T. Biomass for iron ore sintering. Miner. Eng. 2010, 23, 1139–1145.

[CrossRef]
5. Ooi, T.; Aries, E.; Ewan, B.; Thompson, D.; Anderson, D.R.; Fisher, R.; Fray, T.; Tognarelli, D. The study of

sunflower seed husks as a fuel in the iron ore sintering process. Miner. Eng. 2008, 21, 167–177. [CrossRef]
6. Gan, M.; Fan, X.; Chen, X.; Ji, Z.; Lv, W.; Wang, Y.; Yu, Z.; Jiang, T. Reduction of pollutant emission in iron ore

sintering process by applying biomass fuels. ISIJ Int. 2012, 52, 1574–1578. [CrossRef]
7. Yagi, T.; Ono, Y. A method of analysis for reduction of iron oxide in mixed-control kinetics. Trans. ISIJ

1968, 8, 377.
8. Ohno, K.; Noda, K.; Nisioka, K.; Maeda, T.; Shimizu, M. Combustion rate of coke in quasi-particle at iron ore

sintering process. ISIJ Int. 2013, 53, 1588–1593. [CrossRef]
9. Ranz, W.E.; Marshall, W.R. Evaporation from drops. Chem. Eng. Prog. 1952, 48, 173–180.
10. Ohno, K.; Noda, K.; Nisioka, K.; Maeda, T.; Shimizu, M. Effect of coke combustion rate equation on numerical

simulation of temperature distribution in iron ore sintering process. ISIJ Int. 2013, 53, 1642–1647. [CrossRef]
11. Tu, C.M.; Davis, H.; Hottel, H.C. Combustion rate of carbon-combustion of spheres in flowing gas streams.

Ind. Eng. Chem. 1934, 26, 749–757. [CrossRef]
12. Davis, H.; Hottel, H.C. Combustion rate of carbon-combustion at a surface overlaid with stagnant gas.

Ind. Eng. Chem. 1934, 26, 889–892. [CrossRef]
13. Parker, A.S.; Hottel, H.C. Combustion rate of carbon study of gas-film structure by microsampling. Ind. Eng.

Chem. 1936, 28, 1334–1341. [CrossRef]

54



Processes 2020, 8, 406

14. Oyama, N.; Iwami, Y.; Yamamoto, T.; Machida, S.; Higuchi, T.; Sato, H.; Sato, M.; Takeda, K.; Watanabe, Y.;
Shimizu, M.; et al. Development of secondary-fuel injection technology for energy reduction in the iron ore
sintering process. ISIJ Int. 2011, 51, 913–921. [CrossRef]

15. Hida, Y.; Sasaki, M.; Enokido, T.; Umezu, Y.; Iida, T.; Uno, S. Effect of the existing state of coke breeze in
quasi-particles of raw mix on coke combustion in the sintering process. Tetsu-to-Hagané 1982, 68, 400–409.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

55





processes

Article

Arsenic Removal from Arsenopyrite-Bearing Iron Ore
and Arsenic Recovery from Dust Ash by
Roasting Method

Rijin Cheng 1,2,3, Hua Zhang 1,3,* and Hongwei Ni 1,*

1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,
Wuhan 430081, China

2 Technical Center, HBIS Group Hansteel Company, Handan 056001, China; chengrijin@wust.edu.cn
3 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,

Wuhan University of Science and Technology, Wuhan 430081, China
* Correspondence: huazhang@wust.edu.cn (H.Z.); nihongwei@wust.edu.cn (H.N.);

Tel.: +86-27-6886-2811 (H.Z. & H.N.)

Received: 12 September 2019; Accepted: 13 October 2019; Published: 16 October 2019

Abstract: In most cases, arsenic is an unfavorable element in metallurgical processes. The mechanism
of arsenic removal was investigated through roasting experiments performed on arsenopyrite-bearing
iron ore. Thermodynamic calculation of arsenic recovery was carried out by FactSage 7.0 software
(Thermfact/CRCT, Montreal, Canada; GTT-Technologies, Ahern, Germany). Moreover, the arsenic
residues in dust ash were recovered by roasting dust ash in a reducing atmosphere. Furthermore, the
corresponding chemical properties of the roasted ore and dust ash were determined by X-ray diffraction,
inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy, coupled
with energy-dispersive X-ray spectroscopy. The experimental results revealed that the arsenic in
arsenopyrite-bearing iron ore can be removed in the form of As2O3(g) in an air or nitrogen atmosphere
by a roasting method. The efficiency of arsenic removal through roasting in air was found to be less
than that in nitrogen atmosphere. The method of roasting in a reducing atmosphere is feasible for
arsenic recovery from dust ash. When the carbon mass ratio in dust ash is 1.83%, the arsenic removal
products is almost volatilized and recovered in the form of As2O3(g).

Keywords: arsenopyrite; arsenic removal; mechanism; roasting; arsenate; dust ash; arsenic recovery

1. Introduction

Arsenic content in the earth’s crust is up to 5 mg·kg−1, and more than 300 arsenic species occur in
nature. Arsenic is mainly associated with minerals such as pyrite, arsenopyrite, or enargite [1,2]. In
most cases, arsenic is an unfavorable element in metallurgical processes. For example, arsenic reduces
the quality of raw materials, affects the extraction of metal, interferes with the purity of the product,
and poses serious environmental hazards [1]. Arsenic has an adverse effect on steel; for instance, the
surface hot shortness increases, and the reduction of area and impact toughness decrease with the
increase of arsenic content in steel [3–6]. Under the hot rolling or welding conditions, the arsenic in the
steel leads to the increase in the content of arsenic at grain boundaries and the expansion of welding
cracks [4,7–9]. Moreover, as the oxidability of arsenic is less than that of iron, it is difficult to remove
arsenic by oxidation in the ironmaking or steelmaking process. It is theoretically possible to remove
arsenic from molten iron by using excessive Al and Ca–Fe alloys or rare earth elements, but it also needs
deep deoxidation and desulfurization before arsenic removal can be achieved, so the cost of arsenic
removal is too high to be feasible in realistic production [10]. However, the price of arsenic-bearing iron
ore is cheaper than that of high-grade iron ore. Moreover, the total amount of high-grade iron ore is
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decreasing greatly in the earth, and arsenic-bearing ore needs to be comprehensively utilized through
ore blending. Some metallurgical enterprises at home and abroad, such as Peru, Chile, Philippines,
France, Mexico, and China, have adopted some arsenic-bearing ore in the metallurgical industry [11].
When these arsenic-bearing ores are used, they are faced with the problem of arsenic removal from ores
and the problem of arsenic-bearing dust treatment from the point of view of environmental protection.

Arsenic can be removed from arsenic-bearing ore by a roasting or sintering method due to the
volatile nature of arsenic and its compounds [12]; thus, some scholars have explored the appropriate
arsenic removal conditions by performing roasting or sintering experiments. Yin et al. and Lu et
al. studied arsenic removal from copper–silver ore using a roasting method [13,14], and the impact
of different parameters (e.g., temperature, atmosphere, and roasting time) on the arsenic removal
ratio was also evaluated. Lu et al. investigated arsenic removal from arsenic-bearing iron ore
during the sintering process [15,16]. The effects of temperature, bed depth, gas pressure, and coal
ratio on arsenic removal during the sintering process were studied, and the reasonable technical
parameters were obtained. In addition to the arsenic removal tests by roasting and sintering methods,
a number of scholars also carried out thermodynamic calculations on arsenic removal, and discussed
the arsenic-bearing products and suitable conditions for arsenic removal. Chakraborti and Lynch
analyzed the As–S–O vapor system [17] and further identified the importance of bed depth in the
rapid release of arsenic from arsenical materials under an oxidizing atmosphere. Contreras et al.
evaluated the impact of various factors, such as trace element concentration, flue gas composition,
temperature, and pressure, on the equilibrium composition based on the arsenic interactions in the
co-combustion processes [18]. Nakazawa et al. and Zhang et al. studied the thermodynamics of
arsenic removal from arsenic-containing copper ore during roasting [19] and arsenic-bearing iron ores
during sintering [20–23], respectively, and obtained the equilibrium components containing arsenic
and the arsenic removal rate.

The arsenic removed by roasting is mixed in the dust ash. For arsenic existing in dust, chemical
adsorption of gaseous arsenic by CaO or CaCO3 can effectively control arsenic content in flue gas and
prevent arsenic pollution [24–26], but arsenate is easy to remain in dust, which is not conducive to the
use of dust ash as raw material for sintering or roasting ore. Therefore, recovery of As2O3 is another
feasible method.

Although arsenic removal experiments and thermodynamic calculations have been carried out by
many scholars [12–23], and the volatilization behavior of arsenic in the process of roasting has also been
explored [13,22], the mechanism of arsenic removal by roasting has never been reported. Exploration
of the mechanism of arsenic removal by a roasting process and investigation of the residual form of
arsenic in the roasted ore are important for controlling the arsenic removal efficiency and the arsenic
component. Moreover, it is important to recover arsenic from dust ash to prevent further mobilization
of arsenic and arsenic contamination. Therefore, these problems were attempted in this research.

2. Materials and Methods

2.1. Experiment on Arsenic Removal from Roasting Iron Ore

The composition of mixed ore used in the test is listed in Table 1.

Table 1. Composition and proportion of roasting ore.

Ore Name
Component/wt %

Proportion/%
Fe2O3 SiO2 CaO Al2O3 MgO FeAsS S

Iron ore 71.36 10.64 0.40 7.39 0.31 0.05 0.06 90
Arsenopyrite / / / / / 92.71 / 10

Mixed ore 64.22 9.58 0.36 6.65 0.28 9.37 0.05 100

Note: “/” Represents “the chemical composition is not determined”.
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The mixed ore can be obtained by mixing 90% iron ore with 10% arsenopyrite. Mixed ore was
crushed by an F77-1 sealed sample grinder for 1 min, then screened by a 75 mesh sieve. The ore powder
larger than 75 mesh was crushed again until all powders were less than 75 mesh, and then the crushed
powder was mixed. Mixed ore was blended with water to make iron ore balls with a diameter of 10
± 2 mm. Furthermore, the iron ore balls were heated in an oven at 110 ◦C for 3 h, until they were
completely dry. Then, the balls were taken out and reserved for further experiments.

The roasting test was carried out in a horizontal resistance furnace with 60 mm i.d. quartz tube,
and the constant temperature zone of the resistance furnace was controlled using a thermocouple.
The experiments were carried out in an air atmosphere and nitrogen atmosphere (1 L·min−1, STP),
respectively. The roasting temperature was 700, 800, 900, and 1000 ◦C, respectively, and the roasting
time was 60 min. The porcelain boat loaded with the ore ball was put into the constant temperature
zone of the tube furnace. When the roasting time was over, the power was turned off, and the sample
was cooled down to room temperature and analyzed by various techniques. The schematic illustration
of the roasting method is shown in Figure 1.

Quartz tube Ore ball Porcelain boat 

Gas inlet Resistance furnace Thermocouple Beaker 

Figure 1. Schematic illustration of roasting test.

2.2. Experiment on Recovery of Arsenic by Roasting Dust Ash

The composition of dust ash of roasting iron ore from an iron plant is shown in Table 2. After
adding 10% As2O3 chemically pure powder to the dust ash, the XRD pattern of the mixed dust ash
powder is shown in Figure 2.

Table 2. Composition of dust ash from roasted iron ore.

Fe CaO MgO SiO2 Al2O3 TiO2 S K2O Na2O Cl−

42.34 7.08 0.82 4.80 3.04 0.72 0.65 1.16 0.15 1.06

The arsenic recovery experiment by roasting was carried out in two different atmospheres with
10% As2O3 powder in the dust ash. The experiment was carried out in a horizontal resistance furnace
with a 60 mm i.d. quartz tube. The dust ash was first placed in the constant temperature zone of the
quartz tube. When the roasting experiment was carried out under an anaerobic atmosphere, the quartz
tube was evacuated and washed with high-purity nitrogen 3 times before heating up the furnace. The
test process was protected by 100 mL/min of high-purity nitrogen. The dust ash was heated to 600
◦C and then cooled to room temperature after an hour of constant temperature. The experimental
steps of roasting in a reducing atmosphere with 2% graphite powder as raw material are the same for
the anaerobic atmosphere. When the roasting time was over, the sample was cooled down to room
temperature and analyzed by the following various tests.
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θ (°)

Figure 2. XRD spectra of the mixed dust ash powder.

2.3. Sample Analysis and Testing

The phase composition of iron ore was evaluated by PANalytical XPert PRO MPD XRD (Panaco,
Almelo, Netherlands)with Cu target, K radiation, and 40 kV operating voltage. The chemical component
of roasted ore was determined by IRIS Advantage Radial inductively coupled plasma atomic emission
spectrometry (ICP-AES, Thermo Elemental, Massachusetts, America), and the physicochemical
properties of the roasted ore were analyzed by FEI Nova NanoSEM400 (FEI, Hillsboro, America)
scanning electron microscopy (SEM), coupled with energy-dispersive X-ray spectroscopy (EDS, FEI,
Hillsboro, America).

3. Results

The white volatile that condensed in the cold beaker at the end of the quartz tube during the
roasting process is shown in Figure 3a, b, and its XRD pattern is presented in Figure 3c. The XRD
pattern and ICP-AES analysis indicated that the white volatiles corresponded to As2O3 powder with
89.12% purity, which confirms that the arsenic removal in an oxygen atmosphere is mainly carried
out via Equation (1). The arsenic content in the ore after roasting at different temperatures is listed
in Table 3.

2FeAsS + 5O2(g) = Fe2O3 + As2O3(g) + 2SO2(g) (1)

© 

©©©©©©
©©

©©
©

©©

©

©

©

θ (°)

©

 

Figure 3. (a) Arsenic removal from mixed ore by roasting in resistance furnace with quartz tube under
air atmosphere and 1000 ◦C; (b) Collected As2O3 powers condensed in cold beaker; (c) XRD spectra of
collected As2O3 powers condensed in cold beaker.
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Table 3. Arsenic removal rate of ore subjected to roasting.

Temperature/◦C

Arsenic Removal Rate in Air
Atmosphere/wt %

Arsenic Removal Rate in Nitrogen
Atmosphere/wt %

Before
Roasting

After
Roasting

Arsenic
Removal Rate

Before
Roasting

After
Roasting

Arsenic
Removal Rate

700 4.31 3.78 12.30 4.31 1.000 76.80
800 4.31 3.86 10.44 4.31 0.186 95.68
900 4.31 0.88 79.58 4.31 0.051 98.82
1000 4.31 0.57 86.77 4.31 0.027 99.37

Table 3 summarizes how arsenic can be removed from arsenopyrite-bearing iron ore by roasting
in an air atmosphere or nitrogen atmosphere. The arsenic removal rate increases with the increase of
temperature from 700 to 1000 ◦C. The arsenic removal rate by roasting method in an air atmosphere
is less than that in the nitrogen atmosphere. The arsenic removal rate in the air atmosphere is
poor at 700–800 ◦C, and the arsenic removal rate is about 12%, while the rate is 76.8–95.68% in the
nitrogen atmosphere.

4. Discussion

4.1. Thermodynamic Calculation of Mixed Ore Subjected to Roasting

In order to explain the reason for the increase in arsenic removal rate with increasing temperature
during roasting, the thermodynamic calculations of the roasting mixed ore in the air atmosphere were
carried out by FactSage 7.0 (version 7.0, Thermfact/CRCT, Montreal, Canada, GTT-Technologies, Ahern,
Germany) thermodynamic software. The effect of partial pressure of oxygen on the residual arsenic
rate at different temperatures was calculated as shown in Figure 4. The results show that arsenate is the
residual product in air roasting of arsenic-bearing ores at 700–1000 ◦C. Figure 4 shows that excessive
partial pressure of oxygen is not beneficial to arsenic removal. Moreover, with the decrease of roasting
temperature from 1000 to 700 ◦C, arsenic removal requires lower partial pressure of oxygen, which is
the reason why the arsenic removal rate at 700 ◦C is lower than that at 1000 ◦C.

Figure 4. Effect of partial pressure of oxygen on residual rate at different temperatures.

The arsenic removal rate by roasting method in the air atmosphere is poor, which is probably
attributed to the reaction between As2O3 and oxygen to generate As2O5, and then the As2O5 reacts
with other oxides (Fe2O3, Al2O3, CaO) via Equations (2) to (4) to generate arsenate. Thus, the roasting
product contains a variety of arsenic residues. The arsenic removal rate at 900–1000 ◦C increases to
79.58–86.77% in air; the formation rate of As2O3 is accelerated at high temperature, and a large amount
of gas escapes rapidly.

As2O3
(
g) + O2(g) + Fe2O3 = 2FeAsO4 (2)
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As2O3(g) + O2(g) + Al2O3 = 2AlAsO4 (3)

As2O3(g) + O2(g) + 3CaO = Ca3 (AsO 4)2 (4)

4.2. X-Ray Diffraction Analysis of the Roasted Ore and Dust in Different Atmospheres

The XRD spectra of the roasted ore in air and nitrogen atmospheres are shown in Figure 5a,b,
respectively. In the raw material ore, arsenic exists in the form of FeAsS (Figure 5a, bottom). Figure 5a
shows the disappearance of peaks of FeAsS due to its decomposition when the ore was roasted at
700–1000 ◦C, and a small amount of peaks of AlAsO4 at 800 ◦C and As2O3 at 1000 ◦C appear for the
roasted ore, indicating that FeAsS underwent decomposition via Equation (1) and As2O3(g) underwent
reaction via Equation (3). Figure 5b demonstrates that the arsenic removal by roasting in the nitrogen
atmosphere is more thorough, and the peaks of arsenates and As2O3(s) are not found in XRD spectra of
roasted ore. The reaction of arsenic removal is mainly carried out via Equation (1). The investigation
of the mechanism on arsenic removal by roasting method proves that arsenic is mainly removed in
the form of gaseous As2O3(g) in the oxidation or nitrogen atmosphere, while the residual arsenic is
mostly arsenate.
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Figure 5. XRD spectra of the roasted ore and dust in: (a) Air and (b) nitrogen atmosphere.

4.3. Mechanism Research on Arsenic Removal by Roasting Method and Scanning Electron Microscopy and
Energy-Dispersive X-Ray Spectroscopy Analysis

Arsenic removal efficiency in the air atmosphere was found to be poor. Therefore, the arsenic
residual form in the roasted sample under an air atmosphere was further studied by SEM coupled with
EDS. Figure 6 shows the SEM images of the roasted ore under an air atmosphere at different roasting
temperatures. Chemical composition of the raw ore and roasted ore is shown in Table 4. Figure 6a
demonstrates that arsenic and sulfur occur simultaneously in the raw material, and arsenic is present
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in the form of FeAsS. Figure 6b shows that arsenic is found in the samples roasted at 700 ◦C; however,
sulfur is not found, which indicates the decomposition of FeAsS, where arsenic is present in FeAsO4

and Ca3(AsO4)2. Figures 5 and 6c show that the arsenic in the roasted ore is present as AlAsO4 and
FeAsO4 at 800 ◦C, respectively. The results exhibited in Figure 6d,e are similar to those shown in
Figure 6c. The abovementioned SEM and EDS results further confirm that arsenic is removed in the
form of As2O3(g) by roasting in the air atmosphere, and the residual arsenic reacts with oxide in the
ore to generate arsenates.

Table 4. Chemical composition of the raw ore and roasted ore.

Figure No. Point No.
Atomic Ratio of Elements/at %

Mg Al Ca Cr Si S Mn Fe Ni As Nb O

6a
(raw ore)

A - - - - 5.40 - - 33.53 - - - 61.08
B 5.97 - - - 10.86 - - 22.20 - - - 60.98
C - 9.18 - - 6.73 - - 22.75 - - - 61.35
D - - - - 7.50 0.26 0.43 28.61 - 1.64 - 61.57
E - - - - - - - 40 - - - 60
F - - - - - 5.91 - 32.42 - 0.48 - 61.18
G - - - - 7.23 2.14 - 22.82 - 5.08 - 62.73

6b
(700 ◦C)

A - - - - 7.30 - - 24.31 - 0.082 4.36 63.21
B - - - - 11.16 - 1.15 24.35 0.80 0.70 - 61.84
C - - - - 3.12 - - 35.84 - 0.42 - 60.62
D - - 0.46 - 10.45 - - 25.06 0.42 1.70 - 61.92
E - - 0.64 - 8.38 - - 28.03 - 0.81 - 61.65
F - - - 0.36 7.73 - - 29.08 - 1.28 - 61.55
G - - - - 2.10 - - 37.48 - - - 60.42

6c
(800 ◦C)

A - - - 0.36 10.00 - 0.38 27.33 - - - 61.92
B - - - 0.34 8.42 - - 29.56 - - - 61.68
C - - - - 22.59 - - 12.55 - 0.34 - 64.52
D - - - - 11.86 - - 25.76 - - - 62.37
E - - - - 8.02 - 3.49 27.58 - - - 60.91
F 2.59 - - - 19.04 - - 15.08 - - - 63.29
G - - - - 24.37 - 0.40 9.85 - 0.58 - 64.79
H - - - - 12.95 - - 19.00 - 0.25 3.72 64.08

6d
(900 ◦C)

A - - - - 9.79 - - 28.25 - - - 61.96
B - - - - 7.12 - - 23.55 - 2.00 4.22 63.11
C - - - - 9.72 - - 25.08 - 3.25 - 61.94
D - 7.01 - 0.39 3.87 - - 27.95 - - - 60.77
E - - - 0.46 6.49 - - 31.75 - - - 60.30
F - - - 0.34 5.44 - - 32.65 - 0.49 - 61.09

6e
(1000 ◦C)

A - - - 0.96 7.34 - - 30.23 - - - 61.47
B - 1.16 - - 1.75 - - 36.74 - - - 60.35
C - 2.93 - - 2.50 - - 26.14 - - 5.66 62.76
D - 1.46 - - - - - 38.54 - - - 60.00
E - - - - 2.45 - - 35.38 - 1.68 - 60.49
F - 0.89 - 0.49 16.73 - - 18.54 - - - 63.35
G - - - 1.02 8.67 - - 26.13 - 2.44 - 61.73

Note: “-” Represents “below the detection limit”.
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Figure 6. SEM images of the roasted ore in air atmosphere and at different roasting temperatures: (a)
Raw material; (b) 700 ◦C; (c) 800 ◦C; (d) 900 ◦C; (e) 1000 ◦C.

4.4. Route for the Recovery of Arsenic from Arsenic-Bearing Dust Ash

The arsenic recovery experiment by roasting in the atmosphere of air, anaerobic and reducing,
was carried out with the dust ash containing 10% As2O3 powder [20]. The experiment confirms that
arsenic recovery from dust ash by roasting in the atmosphere of air or an anaerobic atmosphere is
difficult, and that arsenate easily remains in the dust ash. Figure 7 shows the effect of temperature on
arsenic-containing products in dust ash by reduction roasting. Thermodynamic calculation of arsenic
recovery by roasting under a reduction environment shows that arsenic is not easy to be removed from
dust and that arsenate is easy to be formed when the roasting temperature is below 390 ◦C. The arsenic
is easily volatilized and recovered when the dust is roasted above 390–890 ◦C, but it is easy to produce
arsenate when the dust ash is roasted above 890 ◦C, which affects the recovery of arsenic.
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Figure 7. Effect of temperature on arsenic-containing products in dust ash by reduction roasting.

4.5. Effect of Carbon Mass Ratio on Arsenic Removal Products of Dust Ash by Roasting

According to the dust ash in Table 2, the thermodynamic calculation of the effect of carbon powder
on arsenic removal products was done using FactSage 7.0. Figure 8 shows the results of the effect of
carbon ratio on arsenic removal products of dust ash by roasting using thermodynamic calculations.
When the arsenic-bearing dust ash was roasted with a carbon mass ratio increasing from 0 to 1.83%,
the percentage of residual solid AlAsO4(s) in dust ash gradually decreased from 100% to 0, and the
percentage of gaseous As2O3(g) gradually increased to 100%. When the arsenic-bearing dust ash was
roasted with a carbon mass ratio was below 1.63%, the arsenic removal products were the majority
of AlAsO4(s) and a small amount of As2O3(g). When the carbon mass ratio was 1.83%, the arsenic
removal product was almost volatilized in the form of As2O3(g). Subsequently, with the increase of
carbon mass ratio, the percentage of volatile As2O3(g) gradually decreased, while the percentages
of As2(g) and As4(g) gradually increased. When the carbon mass ratio increased to 5%, arsenic was
almost removed by volatilization of As2(g) and As4(g).

 
Figure 8. Effect of carbon ratio on arsenic removal products of dust ash by roasting.

The arsenic recovery experiment by roasting in the reducing atmosphere was carried out with
dust ash containing 2% carbon powder. Figure 9a shows the recovered products condensed on the
edge wall of the quartz tube. Figure 9b exhibits the XRD spectrum of the recovered products. The
recovered products are almost As2O3(g). Figure 9c is the XRD spectrum of the roasted dust ash, and
the peak of arsenic is almost invisible in the XRD spectrum. By comparing dust ash before roasting in
Figure 2, it can be seen that almost all arsenic in the dust ash has been volatilized and recovered in the
low-temperature section at the end of the quartz tube. Thermodynamic calculation of Figure 8 shows
that arsenic volatilized in the form of gaseous As2O3(g) when dust ash was roasted with 2% carbon.
The results demonstrate that the thermodynamic calculation results are in good agreement with the
experimental results.
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Figure 9. (a) Volatile compounds photograph, (b) XRD spectrum of volatile compounds collected
during roasting dust ash, and (c) the dust ash after roasting.

5. Conclusions

(1) Arsenic in arsenopyite-bearing iron ore can be removed by roasting method in an air or
nitrogen atmosphere;

(2) The mechanism of arsenic removal by roasting method indicates that the efficiency of arsenic
removal by roasting in air is less than that in nitrogen atmosphere. The poor arsenic removal
efficiency at low temperature and in an air atmosphere is due to the formation of arsenates by
the reaction of As2O3(g) with other oxides in the strong oxidizing atmosphere. Lower partial
pressure of oxygen is required to ensure an effective arsenic removal rate when arsenic-bearing
ore is roasted at lower temperatures. Arsenic is removed in the form of As2O3(g) by the roasting
method, and residual arsenic reacts with oxides in the ore to generate arsenates.

(3) The arsenic recovery from dust ash by roasting in the atmosphere of an air or anaerobic atmosphere
is difficult, and arsenic easily reacts with oxides to form arsenate and remains in the dust ash. The
method of roasting in a reducing atmosphere is feasible for arsenic recovery from dust ash. When
the arsenic-bearing dust ash is roasted with a carbon mass ratio below 1.63%, the arsenic removal
products are the majority of AlAsO4(s) and a small amount of As2O3(g). When the carbon mass
ratio is 1.83%, the arsenic removal product is almost volatilized and recovered in the form of
As2O3(g).
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Abstract: Carbon solution loss reaction of coke gasification is one of the most important reasons for
coke deterioration and degradation in a blast furnace. It also affects the permeability of gas and fluids,
as well as stable working conditions. In this paper, a three dimensional model is established based
on the operational parameters of blast furnace B in Bayi Steel. The model is then used to calculate
the effects of oxygen enrichment, coke oven gas injection, and steel scrap charging on the carbon
solution loss ratio of coke in the blast furnace. Results show that the carbon solution loss ratio of coke
gasification for blast furnace B is almost 20% since the results of a model are probably only indicative.
The oxygen enrichment and the addition of steel scrap can reduce the carbon solution loss ratio with
little effect on the working condition. However, coke oven gas injection increases the carbon solution
loss ratio. Therefore, coke oven gas should not be injected into the blast furnace unless the quality of
the coke is improved.

Keywords: blast furnace; coke; carbon solution loss; numerical simulation

1. Introduction

CO2 emission is a global problem that affects many countries. Ironmaking processes contribute
significantly to CO2 emission, and this is the case especially with blast furnace process, which produces
more than 90% of the world’s pig iron. The blast furnace is a chemical reactor involving counter-current
flows of gas and solid [1–3]. Iron-bearing materials and coke are charged in turn at the top of the
furnace. Hot air, enriched oxygen, and pulverized coal are blown into the furnace through the tuyeres.
Iron-bearing materials are reduced by the reducing gas containing CO and H2, which are generated
from the combustion of coke and coal in the cavity around the exit of a tuyere called the raceway [2–4].
The hot reducing gas flows upward, heats up the iron-bearing materials, and escapes from the top in
the form of CO2, CO, H2, H2O and N2. Coke has several functions in a blast furnace: a fuel providing
the heat for chemical reactions and for the melting of iron and slag; a reducing agent in itself and also
providing gases for iron oxide reduction; and a permeable skeleton providing a passage for liquids and
gases [5]. Therefore, it is very important for the efficiency of the blast furnace process and the quality
of the hot metal. The carbon solution loss reaction of coke is a main means of coke gasification for the
coke consumption in the upper part of the blast furnace. The strength and the size of the coke will
deteriorate with the carbon solution loss reaction when the coke moves towards the lower zones of the
blast furnace. This greatly affects the permeability of the bed and the efficiency of the process [1,5].
Therefore, the carbon solution loss of the coke should be restricted.
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By conducting experiments under real blast furnace gas-temperature conditions, Babich et al. [6]
found that the reaction rate of the coke close to the wall of the blast furnace was higher than that in the
center of the furnace. By studying the reactivity of cokes charged in an experimental blast furnace,
Lundgren et al. [7] found that the carbon solution loss reaction in the blast furnace was limited by the
diffusion rate. Hilding et al. [5] found that the reactivity of coke increased when coke moved from the
thermal reserve zone to the cohesive zone of the experimental blast furnace. Having investigated the
transformation of mineral matters of cokes in the blast furnace, Gornostayev et al. [8] reported that this
reduced coke reactivity by covering the pore wall. Loison et al. [9] stated that the carbon solution loss
reaction occurred under a mixed regime in the thermal reserve zone of the blast furnace. When the
temperature was raised, the chemical reaction rate increased exponentially and the diffusion rate was
limited to the amount of CO2 gas. Sato et al. [10] stated that the coke pore structure modified the
available carbon surface area for the carbon solution loss. Alkalies have catalytic effects on the solution
loss reaction, and they can decrease the threshold temperature to approximately 760 ◦C [5,11,12].
Fe, CaO and MgO in coke ash are also shown to have a catalytic effect on solution loss [13,14]. However,
the effects of different operational parameters on the carbon solution loss ratio are seldom studied.
Physical experiments and mathematical modelling are common ways of investigating carbon solution
loss. Several continuum models have been applied to improve practical operations of the ironmaking
process especially in a blast furnace [15–19].

Therefore, in the present work, a three dimensional model of carbon solution loss of coke is
established based on the actual production data of blast furnace B in Bayi Steel. The model is then
used to analyze the effects of oxygen enrichment, coke oven gas injection and steel scrap charging
on the carbon solution loss ratio of coke in the blast furnace. The research provides the theoretical
reference and technical direction for Bayi Steel to control the carbon loss solution of coke.

2. Model Establishment

The geometric model of a blast furnace was established based on blast furnace B in Bayi Steel of
Baowu Group in China, and it was a one-sixth (60 degree section) sector of the blast furnace. The total
height of the model was 27.43 m, as shown in Figure 1, where, for the sake of simplification, the part
below the taphole in the blast furnace hearth is not included.

Figure 1. Geometric and mesh models and volume fraction distribution of solid phase of blast furnace
B in Bayi Steel of Baowu Group (a) geometric model; (b) mesh model; (c) volume fraction distribution
of solid phase.
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Both gas and solid phases were considered. The gas phases were the same as those in practice,
including CO, CO2, H2, H2O and N2. The density of gas phase was calculated by the ideal gas law.
The solid phase was simplified to include Fe2O3, Fe3O4, FeO, Fe, and C. Other components were not
considered for the sake of simplicity. The density of solid phase was 4190 kg·m−3, the same as the
apparent density of the original solid material. Both gas phase and solid phase were considered as
continuous phases using the Eulerian method. The mass, energy, and species transfer can be described
by Equation (1) under steady state [20,21].

∇(αp · ρp ·φ ·
→
Vp) = ∇(αp · Γ · ∇(φ)) + Sφ (1)

where ρ is the phase. Γ and S are the effective diffusivity and the source respectively, varying with
respect to the different variables φ as listed in Table 1 [21–25].

Table 1. Parameters in Equation (1).

Items. φ Γ Sφ

continuity 1 0 MO ·
N∑

n=1
Rn

−MO ·
N∑

n=1
Rn

momentum
→
v g 0 ∇ · τg + εg(−∇P + ρg · →g ) +

→
F gs→

v s ∇ · τs + εs(−∇P + ρs · →g )

energy Hg Kg/CP,g Egs + MO ·
N∑

n=1
(Rn · ΔHT

n )

Hs Ks/CP,s −Egs + MO ·
N∑

n=1
(Rn · ΔHT

n )

Rn refers to different reactions.

τp = εp · μp · [∇ · →v p + (∇ · →v p)
T
] − 2

3
· εp · μp · (∇ · →v p) · I

→
F gs = −[150 · (1− εg)

2 · μg

ε3
s · d2

s
+ 1.75 · ρg · εs · |→v s −→

v g|
ds

] · (→v s −→
v g)

Egs = −6 · kg · εg · εs

d2
s

· (2.0 + 0.6 ·Re1/2
s · Pr1/3

g ) · (Tg − Ts)

The chemical reactions between gas phase and solid phase are as follows, including the indirect
reduction of iron oxide (Reactions 1–6), carbon solution loss reaction (Reactions 7), water gas reaction
(Reaction 8), water gas shift reaction (Reaction 10), combustion reaction of C and H2 (Reaction 9 and 11),
and so on.

3Fe2O3+CO → 2Fe3O4+CO2 Reaction 1
Fe3O4+CO → 3FeO + CO2 Reaction 2

FeO + CO → Fe + CO2 Reaction 3
3Fe2O3+H2 → 2Fe3O4+H2O Reaction 4

Fe3O4+H2 → 3FeO + H2O Reaction 5
FeO + H2 → Fe + H2O Reaction 6

C + CO2 ←→ 2CO Reaction 7
C + H2O ←→ CO + H2 Reaction 8

C + O2 → CO2 Reaction 9
CO + H2O ←→ CO2+H2 Reaction 10

H2+0.5O2 → H2O Reaction 11
The three-interface unreacted core model was used to calculate the chemical reaction rates, and

the physical chemistry data were taken from Perry et al.’s book [26]. The reaction rate constants of the
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indirect reduction of iron ore by CO or H2, carbon solution loss reaction, water gas reaction, combustion
of carbon and water gas shift reaction were taken from other work [27–30]. The combustion rate of
H2 with O2 was taken from Kuwabara et al.’s work [31]. The effective diffusion coefficients were
taken from other work [27–30]. The viscosity and thermal conductivity of gas were obtained from the
literature [18,32–34]. The chemical reaction rates are as follows.

R1 =
Aρg

W

3∑
m=1

a1,m(Km
wCO,g

MCO
− wCO2,g

MCO2

) (2)

R2 =
Aρg

W

3∑
m=1

a2,m(Km
wCO,g

MCO
− wCO2,g

MCO2

) (3)

R3 =
Aρg

W

3∑
m=1

a3,m(Km
wCO,g

MCO
− wCO2,g

MCO2

) (4)

R4 =
Aρg

W

6∑
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In the numerical solution of the arising differential equations, a structured grid was applied.
The average mesh size is 40 mm. The sensitivity study of mesh size was carried out with average
size of 100 mm, 80 mm, 60 mm, 40 mm, 30 mm, and 20 mm. The difference of top gas temperature
between 60 mm and 40 mm is 4.9% while that between 40 mm and 30 mm is within 0.5%. This suggests
that the mesh size of 40 mm is reasonable and confirms the mesh independence. The model contains
261,131 nodes and 248,496 hexahedral cells.

The assumptions for this model were as follows: (1) The powder phase was not considered;
(2) Other chemical reactions such as flux decomposition and reduction of non-ferrous compounds were
ignored; (3) The melting of solids was ignored.

The main operational parameters of the blast furnace in 2018 are listed in Table 2, where HM is
the abbreviation of hot metal.
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Table 2. Main operational parameters of the blast furnace.

Parameters Value Unit

Coke rate 455 kg·ton HM−1

PCI rate 101 kg·ton HM−1

Production 4456 ton HM·d−1

Blast flowrate 4198 Nm3·min−1

Blast temperature 1122 ◦C
Oxygen enrichment ratio 0 %

Blast pressure 339 kPa
Blast humidity 5.00 g·m−3

Burden feed amount 7508 ton·d−1

The total Fe content in the mixed iron-bearing materials was 56.20%, and the total C contents
in the coke and coal were 87.38% and 62.46%. Based on the material and energy balances, Fe in the
mixed iron-bearing materials was converted to Fe2O3 and only C in the coke was considered. The coal
injection and the oxygen of the blast at the tuyere were converted to CO. Therefore, the mass fraction of
Fe2O3 and C were 77.05% and 22.95% at the top of blast furnace, respectively. The volume fraction of
the solid phase was fixed, as shown in Figure 1c. The burden velocity distribution was firstly calculated
with a simple model without taking into account heat and energy transfer. The results of burden
velocity were then loaded to the present complex model taking into consideration all the transfers and
reactions. The top gas pressure in the blast furnace was 194 kPa. The gas compositions at the tuyere
were N2-74.92 vol%, O2-15.34 vol%, CO-9.15 vol%, H2O-0.59 vol%. The conservation equations were
solved numerically by the finite volume method with commercial software ANSYS FLUENT (release
17.0) [35]. The Eulerian multiphase module was used in this model. The first order upwind scheme
was used for discretization of density, momentum, volume fraction, energy, gas and solid species, and
so on. The Phase Coupled SIMPLE method was applied [21,30]. The simulation was considered to
have converged when the residuals for each variable were less than 10−5. The solution flow chart is
shown in Figure 2.

 

Figure 2. Solution flow chart of the simulation.
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3. Results and Discussion

3.1. Base Model

The gas compositions at the top of the blast furnace calculated from this model were verified
against some measured results of practical production as shown in Table 3, where H2O is not listed
since it was not measured in the practice. The maximum relative error between the measured and
calculated results is 6.3%. Therefore, the present model is considered to be applicable to carry out the
further simulation.

Table 3. Comparison between practical values and simulated values.

Parameters Practical Value Simulated Value Relative Error

top gas composition in mole fraction
CO 22.8% 24.0% 5.3%
CO2 18.6% 18.9% 1.6%
H2 2.45% 2.38% 2.9%

top gas temperature 229.6 ◦C 244.0 ◦C 6.3%
top gas pressure 194.7 kPa 200.6 kPa 3.0%

Figure 3 shows the mass fraction distribution of carbon in the blast furnace under base
operational condition.

Figure 3. Coke mass fraction distribution in the blast furnace under base operational condition.

It can be seen from Figure 3 that the carbon mass fraction in the blast furnace firstly increases, then
decreases after reaching a maximum in the middle. The reason for the increase is that the reduction
reactions take place in the middle-upper part of blast furnace, and this leads to the decrease of the
ferrite oxide mass fraction. The reason for the decrease of the carbon mass fraction is that carbon
solution loss takes place in the lower part of the blast furnace.

The absolute consumption amount of carbon at a certain height of the blast furnace can be
calculated based on the material balance. The carbon solution loss ratio of coke can be calculated by

yC =
mC−C
mC−T

× 100% (13)

where mC−C and mC−T are the amounts of carbon consumed by the carbon solution loss reaction and
the total carbon input from the blast furnace top, kg.
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The carbon solution loss reaction taking place in the middle-upper part of blast furnace further
reduces the quality of the coke and results in the poor performance of the blast furnace. Therefore the
mean temperature of the cohesive zone is adopted as the boundary of the carbon solution between the
middle-upper part and the lower part of the blast furnace. The average temperature of the boundary is
1300 ◦C. The yC at this boundary is 18.61%.

3.2. Oxygen Enrichment Ratio

The oxygen enrichment mode in the present work is that the flowrate of the hot blast is constant.
Oxygen is added to the blast and forms a mixture of air and oxygen. The amount of coal changes
with the oxygen enrichment ratio. Based on the practical data, the coke rate decreases by 5 kg·t−1 and
produced hot metal increases by 3.3% when the oxygen enrichment ratio increases by 1%. As a result,
the amounts of gas, coal, coke, and production can be determined, and the compositions of injected
gas and top gas are then calculated based on the balances of Fe, C, H and O. Table 4 presents the
typical parameters when the oxygen enrichment ratio varies from 1% to 5% at a step of 1%, where the
production, coke rate and coal rate at 1–5% are calculated based on the above balance calculations.
The temperature profiles at different oxygen enrichment ratios are shown in Figure 4. The carbon
solution loss ratio is also calculated after simulation, as shown in Figure 5.

Figure 4. Temperature profiles at different oxygen enrichment ratios.

It can be seen from Figure 4 that the temperature increases in the lower zone of the blast furnace
with the increase of oxygen enrichment ratio while decreases a little in the upper zone of the blast
furnace. At 5% oxygen enrichment ratio, the facet average temperature at 4 m height (the average
temperature of the horizontal plane at 4 m height) increases by 85 ◦C from the base model. This indicates
that the cohesive zone narrows with the increase of oxygen enrichment ratio.

Table 4. Typical parameters when the oxygen enrichment ratio changes.

Oxygen Enrichment Ratio (%) 0 (Base) 1 2 3 4 5

Production (ton HM·day−1) 4431 4577 4723 4869 5015 5161
Coke rate (kg·ton HM−1) 462 457 452 447 442 437
Coal rate (kg·ton HM−1) 97 105 113 121 129 137
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Figure 5. Carbon solution loss ratio at different oxygen enrichment ratio.

It can be seen from Figure 5 that the carbon solution loss ratio decreases gradually as the oxygen
enrichment ratio increases. For each 1% increase of the oxygen enrichment ratio, the carbon solution
loss ratio decreases by about 0.47%. The reason may be as follows. Firstly, productivity increases
while the coke feed rate is kept constant after the oxygen enrichment, which reduces the proportion
of coke in the solid. This results in less contact between the gas and the coke. Secondly, the increase
of coal injected after the oxygen enrichment leads to an increase of CO content in the lower part of
the blast furnace, which limits the carbon solution loss reaction. Thirdly, the burden descending
velocity increases after the oxygen enrichment, which causes the residence time of burden to decrease.
This makes the carbon loss solution less sufficient.

The carbon consumption decreases and blast furnace productivity increases with the increase
of oxygen enrichment. Therefore a higher oxygen enrichment ratio is better for preserving carbon
saving and increasing production. However, oxygen enrichment has a great impact on the temperature
distribution of the blast furnace, and especially increases the theoretical combustion temperature around
the raceway. In the present study, when the oxygen enrichment rate increases by 5%, the theoretical
combustion temperature increases by 200 ◦C, which is still within the normal range of the blast furnace
of Bayi Steel. The gas temperature in the top decreases by 44 ◦C, but is still higher than the 150 ◦C,
which is acceptable for normal production. The actual average oxygen enrichment rate in Bayi Steel is
about 3%, so it can be increased to 5% based on the above analysis.

3.3. Coke Oven Gas Injection

In order to decrease the CO2 emissions of the blast furnace, coke oven gas was mixed with hot
blast and injected from tuyeres. Table 5 shows the composition of the coke oven gas in Bayi Steel.
The total amount of coke oven gas and blast gas was kept constant when injecting the coke oven gas.
The proportion of coke oven gas in the gas mixture was from 3% to 15% at a step of 3%.

Table 5. Composition of coke oven gas.

Element CH4 H2 CO2 CO O2 N2

Volume fraction(vol%) 26.0 58.0 2.0 8.0 0.5 5.5

The CH4 and O2 in coke oven gas were converted to CO and H2 for simplicity. The replacement
ratio of coke oven gas to coke was 0.4 kg·Nm−3. Therefore, for each 3% increase of coke oven gas, the
oxygen enrichment rate increased by 0.55%. The production increased by 246 ton HM and the coke
ratio decreases by 16kg·ton HM−1. The temperature profiles at different coke oven gas injection ratios
are shown in Figure 6. The carbon solution loss ratio under different coke oven gas injection ratios was
also calculated after simulation, as shown in Figure 7.

76



Processes 2019, 7, 528

Figure 6. Temperature profiles at different proportions of coke oven gas injected.

It can be seen from Figure 6 that the temperature decreases with the increase of the proportion of
coke oven gas injected, and the temperature in the middle zone increase relatively more. When the
proportion of coke oven gas injected is 15%, the facet average temperature at 14 m height decreases
by 210 ◦C than the base model. This suggests that the cohesive zone widens with the increase of
proportion of coke oven gas injected.

Figure 7. Carbon solution loss ratio at different amount of coke oven gas injected.

It can be seen from Figure 7 that the carbon solution loss ratio of the coke increases gradually as
the coke oven gas injection increases. For each 3% increase in the coke oven gas injection ratio, the
carbon solution loss ratio of coke increases by an average of 0.83%. The carbon solution loss ratio of
the coke increases by 4.15% when the coke oven gas injection is 15%.

The reason may be that the replacement of hot blast with coke oven gas leads to an increase of H2

in the gas mixture due to the high H2 content of the coke oven gas. This results in a higher H2O content
in the blast furnace due to the reduction reaction of the H2 and iron ore. The higher H2O content may be
part in a water gas reaction, which increases the reaction of the carbon solution loss. The temperature
of the strong reaction between the coke and the H2O is from 800 to 1300 ◦C. The average H2O content
in the gas in the blast furnace increases from 2.45% to 8.67% when the coke oven gas ratio increases
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from 0% to 15%. Moreover, the high temperature zone shrinks after the injection of the coke oven gas,
which leads to the expansion of the zone for the reaction of the carbon solution loss.

Therefore, on the one hand, coke oven gas can reduce the coke rate and CO2 emission of the
blast furnace as a hydrogen-rich gas. On the other hand, the injection of coke oven gas causes the
temperature in the lower part of the blast furnace to decrease and the carbon solution loss to increase,
which impairs the operation of blast furnace. Therefore, coke oven gas should not be injected into the
blast furnace in Bayi Steel in its present condition. Coke oven gas should only be injected only if the
carbon solution loss is low enough, and it should be done a higher gas temperature and with better
coke quality of a high M40 and a high CSR (coke strength after reaction).

3.4. Steel Scrap Charging

Since the steel market has been strong in China recently, steel scraps are charged so as to increase
production. The metallic iron (MFe) of steel scrap is 52.29% and the FeO is 9.07%. The steel scrap is
added when the total amount of iron-bearing materials is kept constant. The proportion of steel scrap
is from 0% to 10% at a step of 2%, as shown in Table 6, where the absolute amount is also illustrated.
For each 2% increase of steel scrap, the oxygen enrichment ratio increases 0.06%, the coke rate decreases
4 kg·ton HM−1, and production increases 70 ton HM while the coal rate and the amount of hot blast
remain unchanged. The temperature profiles at different proportions of steel scrap added are shown in
Figure 8. The carbon solution loss ratio is calculated after simulation, as shown in Figure 9.

Table 6. Amount of steel scrap added.

Proportion of Steel Scrap Added (%) 2 4 6 8 10

Absolute value(ton·day−1) 149.7 299.3 448.9 598.6 748.3

Figure 8. Temperature profiles at different proportions of steel scrap added.

It can be seen from Figure 8 that the temperature increases a little in the lower zone of the blast
furnace with the increase of the proportion of steel scrap added, but the degree is very small. When the
proportion of steel scrap added is 10%, the facet average temperature at 4 m height increases by 22 ◦C
than the base model. Hardly any difference of temperature in the upper zone of the blast furnace can
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be found. This indicates that the cohesive zone only narrows a little with the increase of the proportion
of steel scrap added.

Figure 9. Carbon solution loss ratio at different amounts of steel scrap added.

The carbon solution loss ratio decreases gradually as the proportion of steel scraps added increases;
when 10% steel scrap is added, it decreases by 2.6%. The reason may be that the amount of iron ore
that needs to be reduced decreases when steel scraps are added in the top of blast furnace since steel
scrap provides iron content that does not need reduction. However, this leads the utilization ratio of
the gas to decrease. The ratio decreases by 1.32% when the proportion of steel scraps increases to 10%.
As a result, the CO content in the gas increases while the CO2 content decreases. This also leads to
a decrease of the carbon solution loss ratio.

It should be noticed that the addition of steel scrap reduces the gas utilization ratio, and also the
temperature in the upper part of the blast furnace. But the reduction in the gas utilization ratio and the
temperature of the upper part of the blast furnace is small and within acceptable limits. Therefore,
the addition of steel scrap is beneficial for the operation of blast furnace in the aspect of carbon solution
loss. Steel scrap can be added to the blast furnace in appropriate amounts.

4. Conclusions

A three dimensional model was established to analyze the carbon solution loss of coke based
on the practical operational parameters of blast furnace B in Bayi Steel. The model was then used to
investigate the effects of the oxygen enrichment ratio, the injection of coke oven gas, and the addition
of steel scraps on the carbon solution loss ratio of the coke. The conclusions are as follows.

(1) The carbon solution loss ratio of the blast furnace studied is 18.61% when the coke reaches
1300 ◦C.

(2) The carbon solution loss ratio decreases with the increase of the oxygen enrichment ratio or
when a certain proportion of steel scraps is added, while it increases with an increase in the amount of
coke oven gas injected.

(3) The oxygen enrichment ratio and the proportion of steel scraps added can be increased to 5%
and 10%, respectively in order to reduce the carbon solution loss without affecting the operation of the
blast furnace.

(4) The injection of coke oven gas is not recommended given the current condition of blast furnace
B of Bayi Steel.
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Nomenclature

A specific surface area/m−1

D binary diffusivity for specie i and j/m·s−2

CP,p specific heat capacity of phase p/J·kg−1·K−1

ds solid particle diameter/m
Egs volumetric heat flux/J·m−3

→
F gs gas-solid drag force/N
→
g gravitational acceleration/m·s−2

Hn specific enthalpy of reaction n/J·kg−1

Hp specific enthalpy of phase p/J·kg−1

I identity tensor/-
k kinetic constant for reaction/-
kf film mass transfer resistance/m·s−1

kp thermal conductivity of p phase/W·m−1·K−1

Kp equilibrium constant of reaction n/-
Mi molecular weight of specie i/kg·kmol−1

mC-C amount of carbon consumed by carbon solution loss reaction/kg
mC-T total carbon input from the blast furnace top/kg
P pressure/Pa
Pr Prandtl number/-
Re Reynolds number/-
Rn rate of reduction reaction n/kmol·m−3·s−1

Sh Sherwood number/-
Sφ source term for variable φ in Equation (1)
Tp temperature of phase p/K
→
v p physical velocity of phase p/m·s−1

yc carbon solution loss ratio of coke/%
Greek Symbols
εp volume fraction of phase p/-
ρp density of phase p/kg·m−3

φ general dependent variable in Equation (1)
Γφ diffusion coefficient for variable φ in Equation (1)
μp viscosity of phase p/kg·m−1·s−1

τp stress tensor of phase p/Pa
ω mass fraction/-
Subscripts
g gas
s solid
p phase
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Abstract: It is of critical importance to keep a steady operation in the blast furnace to facilitate
the production of high quality hot metal. In order to monitor the state of blast furnace, this article
proposes a fault detection and identification method based on the multidimensional Gated Recurrent
Unit (GRU) network, which is a kind of recurrent neural network and is highly effective in handling
process dynamics. Comparing to conventional recurrent neural networks, GRU has a simpler
structure and involves fewer parameters. In fault detection, a moving window approach is applied
and a GRU model is constructed for each process variable to generate a series of residuals,
which is further monitored using the support vector data description (SVDD) method. Once a fault
is detected, fault identification is performed using the contribution analysis. Application to a real
blast furnace fault shows that the proposed method is effective.

Keywords: gated recurrent unit; support vector data description; time sequence prediction;
fault detection and identification

1. Introduction

Maintaining the blast furnace system at a stable status is critical to ensure efficient production
of high-quality blast furnace hot metal [1]. Therefore, condition monitoring of the blast furnace
ironmaking process becomes a significant issue. During the operation of blast furnace ironmaking
process, different kinds of faults may happen, such as hanging, low stockline and abnormal gas flow.
If the faults cannot be detected and identified in time and accurately, it may lead to loss in production
rate or even a significant accident.

The problem of fault detection and diagnosis for blast furnace ironmaking process is a long
lasting and well research topic. Traditional methods like expert knowledge and fuzzy logic have been
well developed in different kinds of expert systems [2]. However, constructing and maintaining an
up-to-date knowledge base is difficult. Alternatively, classification-based algorithms like support
vector machine have been applied to diagnose faults in blast furnaces [3]. Liu et al. [4] proposed
a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) to achieve
rapid diagnosis of blast furnace faults. An et al. [5] proposed a support vector machine for multiple
classification to diagnose blast furnace faults. The main assumption of classification-based methods
is that sufficient faulty samples can be collected, which is often not true in a real blast furnace.
More recently, multivariate statistical methods became popular in the monitoring of blast furnaces.
For example, Vanhatalo applied the principal component analysis (PCA) to monitor the status of an
experimental blast furnace [6]. A two-stage PCA is considered to deal with multi-modal distribution
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in blast furnace data [7]. Shang et al. [8] developed a recursive transformed component statistical
analysis (RTCSA)-based algorithms to monitor incipiently happened faults in the iron-making process.
In addition, other kinds of PCA-based approaches have been introduced to monitor process faults,
such as robust PCA [9] and convex hull-based PCA [10].

In order to deal with process dynamics, Zeng et al. applied a state space model to extract
residuals from the process data and used the support vector data description (SVDD) to detect blast
furnace faults [11]. Also, Vanhatalo and Kulahci [12] considered the impact of autocorrelation to
statistical methods like PCA. Dynamic principal component analysis (DPCA) [13,14] and dynamic
linear discriminant analysis (DLDA) [15] are also used to handle dynamic processes. From the above
analysis, it can be seen that how to handle process dynamics has become an important task in fault
detection and diagnosis of blast furnace.

In this paper, a new process monitoring method based on the GRU network [16] is considered
to detect and identify process faults in blast furnace. The GRU network is a new type of recurrent
neural network (RNN). Comparing to conventional RNN methods like long-short term memory
network, it has comparable capability to handle process dynamics, however with a simpler structure
and fewer parameters. In fault detection, a GRU neural network is used to make prediction for each
process variable, so that the process dynamics can be filtered and a series of residuals can be generated.
The generated residuals are then monitored using the support vector data description (SVDD)
method [11]. Faulty variables are then identified by inspecting the deviation of the residuals from
normal operation condition (NOC). The benefits of the proposed method can be summarized as:
(i) the introduction of GRU network can fully capture the dynamic characteristics of the blast furnace
data; (ii) faulty variables can be identified by investigating the residual of each variable, which greatly
simplifies subsequent fault diagnosis task.

2. Methodologies

This section describes the methodologies applied in fault detection and identification of blast
furnace system. Section 2.1 briefly introduces the GRU network, which is an extension of the LSTM
network. Section 2.2 describes the SVDD classifer.

2.1. GRU Neural Network

GRU is a type of recurrent neural network. The main difference between RNN and feed-forward
artificial neural network is in their structure. In a feed-forward artificial neural network, signals travel
from the inputs to outputs and the flow of information is in the forward direction only. Since there
is no backward/feedback flow, the name of “feed-forward” is justified. In contrast, an RNN
allows feedback from output to input and hence it is called “recurrent”. In addition, the output
of the previous time step/state in RNN will be used as the input of the next time step, which is different
from feed-forward neural network that considers fixed length input and fixed length output only.
With this kind of recurrent structure, RNN can be used to learn the characteristics of the time series
and make predictions. A widely used RNN is the LSTM network, which is very suitable to capture
long-term dependencies and also able to avoid the vanishing gradient problem. As an improvement
of LSTM, GRU network inherits its advantages, whilst having an optimized structure and fewer
parameters, resulting in lower computation load and better generalization ability.

2.1.1. The Structure of LSTM Cell

LSTM [17] was originally proposed in 1997, in order to solve the vanishing gradient
problem faced by RNN [18]. The main difference between LSTM and standard RNN network
is the handling of long-term dependencies. In the RNN network, each cycle involves only the last state
and the current input. Because each prediction only involves the state at the last moment, the RNN
can only establish a dependency relationship between states in a short time. In contrast, LSTM can
establish dependencies between states at arbitrary long intervals, so they are called “Long-Short Term
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Memory network”. In addition, the LSTM has a cell state update process similar to the conveyor
belt structure. The old cell state will remain on the conveyor belt until it needs to be forgotten by
structure called “gate”. Through this conveyor belt structure, LSTM can take long-term memory from
the conveyor belt at any time for learning the characteristics of time series and make predictions.
An LSTM unit consists of a cell, an input gate, a forget gate and an output gate. The cell is used
to record state values at different time intervals and the three gates are used to control the flow
of the information. The introduction of three gates enables LSTM to keep, utilize, or discard a state
when necessary.

Let xt denote a data sample at the tth time instance, Ct−1 denote the cell value and ht−1 the hidden
state of each cell at the t− 1th time instance. The information of previous time is stored in Ct−1 and ht−1.
The input gate regulates to what extent a new value xt is transferred into the cell, the forget gate
controls to what extent Ct−1 remains in the cell and the output gate regulates to what extent Ct−1

is used to calculate the output activation. The structure of a standard LSTM cell is shown in Figure 1.

Figure 1. Structure diagram of LSTM cell.

In Figure 1, the green box, blue box and red box correspond to the input gate, the output gate
and the forget gate respectively. The mathematic formulation of the forget gate is described as:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

where W f is the weight matrix of the forget gate; σ is the sigmoid activation function; b f is the bias
vector for the forget gate; [ht−1, xt] is a vector that merge the previous cell state vector ht−1 and the input
vector xt at the current moment. The input gate is used to decide what information will be saved
in the cell value. On the other hand, the input gate can be described mathematically as follows.

it = σ (Wi · [ht−1, xt] + bi) (2)

C̃t = tanh (Wc · [ht−1, xt] + bi) (3)

Here, Wi is the weight matrix in the input gate, bi is the bias vector. The input gate adds new
information generated by the current input to the cell value, and creates new memories: it and C̃t.
The current state Ct is updated based on the previous cell value Ct−1, the new memories it and C̃t

as follows.
Ct = ft · Ct−1 + it · C̃t (4)
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Finally, the hidden state ht is updated in the output gate as:

ot = σ (Wo · [ht−1, xt] + bo) (5)

ht = ot · tanh (Ct) (6)

where Wo is the weight matrix in the output gate. In this way, the cell value Ct and hidden state ht can
be updated whenever a new sample xt is available.

2.1.2. The Structure of GRU Cell

The GRU is a refined version of LSTM with a simpler structure [19]. The main difference between
GRU and LSTM is in the process of forgetting and updating cell values. In the LSTM network,
update of cell values are controlled by two gates, the forget gate and the input gate. Since two gate
structures are required, the structure of LSTM is relatively complex. Compared to LSTM, GRU controls
both the forgetting coefficient and the update coefficient for the output with one single update gate,
so it involves fewer matrix multiplication calculations. Through this simplification, the GRU can
retain the functions of the LSTM and reduce network training time. More specifically, it consists of an
update gate and a reset gate, which reduces the number of parameters to only one fourth of the LSTM.
The reset gate determines how much previous memory is retained and the update gate determines
how much new information needs to be combined with the previous memory. The structure of GRU
cell is shown in Figure 2.

Figure 2. Structure diagram of Gated Recurrent Unit (GRU) cell.

In contrast to LSTM, GRU has only 2 gate functions. The update gate is shown in the blue box
in Figure 2 and the reset gate is shown in the red box. The forward transfer formulations of GRU can
be calculated as follows.

rt = σ (Wr · [ht−1, xt]) (7)

zt = σ (Wz · [ht−1, xt]) (8)

h̃t = tanh
(
Wh̃ · [rt · ht−1, xt]

)
(9)

ht = (1 − zt) · ht−1 + zt · h̃t (10)

where rt is the reset gate determining how much information in the previous state cell should be
forgotten; zt is the update gate determining how much information should be brought to the next cell;
h̃t is the intermediate state; ht is hidden state. For the update gate, a greater value of zt means that
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more new information is brought to the next cell. For the reset gate, a greater value means that more
information from the former cell may be ignored [16].

2.2. Support Vector Data Description

SVDD is a kernel method, which maps the data samples into the high-dimensional feature space
through a non-linear mapping. In the high-dimensional feature space, a compact hypersphere with
the minimum radium while covering the maximum number of data samples is obtained by solution
of an optimization problem. The SVDD is generally used in anomaly detection. If a new sample
is mapped inside the hypersphere, it is regarded as a normal sample, otherwise it is faulty.

Given a data set
{

xi ∈ Rd, i = 1, · · ·, N
}

and assume a ∈ Rd the center of the hypersphere,
R is the radius of the hypersphere, the following objective function can be obtained for SVDD.

{
F (R, a, ξi) = R2 + C ∑N

i=1 ξi
‖xi − a‖2 ≤ R2 + ξi

(11)

Here, ξi is the relaxation factor, and C is the penalty parameter. In Equation (11), ξi satisfies ξi ≥
0, ∀i. The above optimization problem can be transformed as follows using the Lagrangian multipliers.

L (R, a, α, γi, ξi) = R2 + C
N

∑
i=1

ξi −
N

∑
i=1

γiξi −
N

∑
i=1

αi

[
R2 + ξi −

(
‖xi‖2 − 2axi + ‖a‖2

)]
(12)

where γi and αi is the Lagrange multiplier and they satisfy αi ≥ 0, γi ≥ 0. Differentiate Equation (12)
with respect to R, a and ξi and make it equal to 0, the following holds:

⎧⎪⎨
⎪⎩

∂L
∂R = 0
∂L
∂a = 0
∂L
∂ξi

= 0
=⇒

⎧⎪⎨
⎪⎩

∑N
i=1 αi = 1

a = ∑N
i=1 αixi

C − αi − γi = 0
(13)

Combining Equation (13) to Equation (12) one can obtain:

L =
N

∑
i=1

αi (xi · xi)−
N

∑
i=1

N

∑
j=1

αiαj
(
xi · xj

)
(14)

where αi is the support vector and 0 ≤ αi ≤ C. Generally, kernel function K is used to calculate
whether the distance between the new sample y ∈ Rd and the center of the hypersphere is less than
the radius R2:

D2 (y) = K (y · y)− 2
N

∑
i=1

αiK (y · xi) +
N

∑
i,j=1

αiαjK
(
xi · xj

) ≤ R2 (15)

The kernel term K
(
xi · xj

)
is commonly used to replace the inner product

(
xi · xj

)
,

which is the Gaussian kernel here:

K
(
xi · xj

)
= exp

(
−‖xi − xj‖2

σ2

)
(16)

3. Fault Detection and Identification Strategy

In order to detect and identify a process fault, it is essential to characterize the normal
operating condition (NOC). Hence, a training dataset collected under normal operational condition
is used to construct the GRU neural network. The GRU neural network generates model residuals,
which is further used to construct monitoring statistics using SVDD. As described earlier, the GRU
model is capable of extracting the spatial and temporal signatures in the data that are important
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for characterizing complex ironmaking process. The general framework for fault detection
and identification based on GRU-SVDD is described in detail in the following subsections.

3.1. Fault Detection

In order to detect a process fault, it is required to train a model based on the NOC data. In the
ironmaking process, this involves training a GRU with multiple time series to model temporal
dynamics and correlations between process variables.

The GRU model is trained on historical normal data. Specifically, the GRU model uses the past
information captured by its cell value and current observation to predict the next observation.
Assume a training set

{
xi ∈ Rd, i = 1, · · ·, N

}
is collected under NOC, a moving window approach

can be applied, with the window length being n, n 	 N. Take the first window as an example,
the structure of a two-layer GRU is shown in Figure 3.

Figure 3. Structure of two layers GRU.

Here, hi ∈ Rdh denotes the hidden state of the first layer at the ith time, h
′
i ∈ Rd

′
h denotes

the hidden state of the second layer and x̂n+1 ∈ Rd is the predicted value. The hidden state hi
of the first layer becomes the input to the second layer of GRU model. The final output is then obtained
using the dense layer as follows.

x̂n+1 = W
′
h

′
n + b

′
(17)

Here x̂n+1 is the prediction of x at the n + 1th time instance, W
′

is the weight matrix of the dense
layer, b

′
is the bias term. A GRU model with more layers can also be used, for the sake of simplicity,

however two-layer GRU is considered here.
The model parameters can be trained based on the N − n + 1 windows. Once the model

parameters are estimated, estimation of model output x̂n+1 can be predicted from the past n samples.
A series of residuals can be obtained as ei = |x̂i − xi| , i = n + 1, · · · , N. The residual series obtained
from GRU under NOC is then fed into the SVDD to estimate the parameters, namely the center a

and the radius R of the hypersphere. Whenever a new sample is available, the residuals obtained from
the GRU can be fed into the SVDD to calculate the the squared distance D2 according to Equation (15).
If D2 is greater than R2, it is faulty, otherwise it is normal.
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3.2. Fault Identification

Once a fault is detected, the next goal is to identify which variables are the most affected
and contribute most to the monitoring statistics. Assume a fault was detected between time t1

and t2, let ei = (e1
i , e2

i , · · · , ed
i ) denote the residual vector for the l process variables, i = t1, · · · , t2.

The normalized residuals El
i can be used to evaluate the impact of the fault on each variable as:

El
i =

el
i − μl

σl (18)

where μl is the mean value and σl is the standard deviation of the GRU residuals of the NOC
training data.

For a clearer exhibition, the deviation El
i of each variable is accumulated to get the total

contribution rate CRl = ∑N
i=t El

i . With the contribution rate obtained, operators can know which
variables are most sensitive to the process fault. Also, operators can use the contribution plots to
identify which kind of fault has occurred.

For completeness, the overall flowchart is summarized in Figure 4, including both the offline
training stage (left) and the online monitoring stage (right).

Figure 4. Flowchart of the GRU-support vector data description (SVDD)-based fault detection
and identification methodology.

The offline monitoring stage can be summarized as follows:

1. Obtain historical NOC data;
2. Remove extreme values and normalize the training data to have a zero mean and unit variance.
3. Set initial parameters of GRU model and train the model;
4. If the GRU model is valid, the GRU residuals will be fed into the SVDD model, and the threshold

R2 of D2 statistic is obtained.

The online detection stage can be summarized as follows:

1. Collect online samples;
2. Normalize the online samples;
3. Use the GRU model trained in the offline process to make prediction and get the residuals;
4. Calculate the D2 statistic using SVDD;
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5. Determine whether to alarm by comparing the D2 statistic and the threshold R2. If D2 is greater
than R2, the process is faulty, otherwise it is normal.

6. If the process is faulty, isolate and identify which variables are most severely affected.

4. Application Studies

This section presents the application results of the proposed GRU-based fault detection
and identification method to the datasets collected from a blast furnace (with the inner volume
of 2500 m3) in China. Two case studies are studied, with Section 4.1 introduces the application
of GRU-based fault detection and identification method to a hanging fault and Section 4.2 presents
the application results to a fault involving fluctuation in molten iron temperature.

4.1. Case 1: Hanging Fault

The hanging fault happens in the upper part of the blast furnace, the fault caused a severe drop
in the quantity of blast u1 and pressure of blast u3, which subsequently resulted in an abnormal change
in the composition of flue gas u5, u6, u7. For the purpose of model training, 2000 samples are collected
under the normal operation condition and a faulty dataset containing 400 samples is considered.
The sampling interval of the data is 20 min. A total of 7 process variables are considered and listed
in Table 1. For comparison, the LSTM-SVDD and PCA-SVDD [20] methods are considered.

Table 1. The input variables for Case 1.

No. Variable

u1 quantity of blast
u2 temperature of blast
u3 pressure of blast
u4 the quantity of oxygen blasted
u5 CO concentration in top gas
u6 CO2 concentration in top gas
u7 H2 concentration in top gas

4.1.1. Residual Generation Using the GRU Network

In order to reduce the impact of extreme values in the process data, the Hampel filter [21] is used
to process the training set before feeding into the GRU network. During the training of GRU network,
the mean square error loss function and ’Adam’ optimizer are used [22]. The length of moving window
n is set as 99 by trial and error. The number of hidden states in the first layer dh and the second layer
d
′
h are determined in a similar way. Figure 5 shows the modelling errors of the GRU network for u1

under different combinations of dh and d
′
h.

Considering both the modelling error and structure complexity, the fourth combination in Figure 5
is used so that dh = 32 and d

′
h = 200. Also, to prevent overfitting, a dropout process is used

in the training process by randomly discarding a part of units. Here, the dropout rate of pd = 0.2
is selected. The GRU network uses the past values to predict current values. The predicted values
obtained by this model not only contains the past information, but also affected by other related
variables. Therefore, when a fault happens, the predictions will deviate from the actual values.
The modeling results of the GRU model are shown in Figure 6.

Figure 6 shows that there are some clear changes occurring in several variables (e.g.,
CO concentration, CO2 concentration and H2 concentration). the obtained residuals are then fed into
the SVDD model to perform fault detection.
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Figure 5. Prediction results for u1 using models with different parameter settings (the red line
corresponding to predictions, the blue line corresponding to true values). (a) Prediction results for
u1 with dh = 64 and d

′
h = 100; (b) Prediction results for u1 with dh = 64 and d

′
h = 200; (c) Prediction

results for u1 with dh = 32 and d
′
h = 100; (d) Prediction results for u1 with dh = 32 and d

′
h = 100.

Figure 6. The prediction results of the GRU model in Case 1 (the red lines represent prediction
and the blue lines represent actual values).
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4.1.2. Fault Detection and Identification

From the previous subsection, the GRU model can be used to generate residuals. As is shown
in the Figure 6, there is an obvious change after the 2000th sample. In order to detect this change,
SVDD is used here. The parameters of SVDD are set as σ = 10, C = 0.01. With 99% of confidence limit,
the monitoring results using SVDD are shown in Figure 7a.

(a)

(b)

(c)

Figure 7. Monitoring results for the hanging fault. (a) Monitoring results of GRU-SVDD, (b) Monitoring
results of LSTM-SVDD, (c) Monitoring results of principal component analysis (PCA)-SVDD.

From Figure 7a it can be seen that significant violation of the confidence limit can be observed,
indicating that there is a fault happening in the blast furnace system. This is in accordance with
the fact that the last 400 samples correspond to a hanging fault. For comparison, the monitoring
results using LSTM-SVDD and PCA-SVDD are shown in Figure 7b,c. The LSTM network has the same
structure and parameters as GRU-SVDD. For PCA-SVDD, PCA is first performed on the training data
and SVDD is used to detect the residual subspace. The number of principal components retained
for PCA is 3. Comparing Figure 7a–c, it can be seen that GRU-SVDD and LSTM-SVDD has higher
sensitivity than PCA-SVDD. The detection rates of the three methods are shown in Table 2.
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Table 2. Comparison of detection rate for different methods.

Methods Detection Rate

D2
GRU − SVDD 93.52%

D2
LSTM−SVDD 92.27%

D2
PCA − SVDD 72.82%

Table 2 confirms the finding that GRU-SVDD and LSTM-SVDD have better detection rates.
Considering the simpler structure of GRU, obviously GRU-SVDD is a better method. After the hanging
fault is detected, fault identification is then performed based on the GRU residuals. Figure 8 shows
the sample by sample GRU residuals, with deeper color indicating greater residuals.

Figure 8. The sample by sample normalized GRU residuals in Case 1.

For a clearer inspection, Figure 9 presents the accumulated normalized GRU residuals. Figure 9
shows that the hanging fault has significant impact on the concentration of flue gas, with the most
significant change happening in the CO2, CO, H2 concentration. This will lead experienced operators
to inspect the gas flow and see whether there is any kind of hanging fault happening in the system.

Figure 9. The fault contribution rate for each variable in Case 1.

4.2. Case 2: Abnormal Molten Iron Temperature

In this subsection, a faulty condition from the same blast furnace is considered. The fault
involves an abnormal fluctuation of the molten iron temperature, which caused the operators to adjust
the quantity of blast u1 as well as the temperature of blast u2, resulting in change in a series of variables.
In the later stage, the fault was corrected, however the temperature of blast was kept at a relatively low
level for the sake of safety. Similar to the hanging fault, 2000 samples were collected under the normal
operating conditions for model training, and a faulty dataset containing 1000 samples is considered.
The fault involves an abnormal molten iron temperature, which caused reduction in blast quantity,
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blast temperature and fluctuation in a series of variables related to the gas flow. This time, 10 process
variables are considered and listed in Table 3.

Table 3. The input variables for Case 2.

No. Variable

u1 quantity of blast
u2 temperature of blast
u3 pressure of blast
u4 quantity of oxygen blasted
u5 temperature of cold blast
u6 top pressure
u7 CO concentration in top gas
u8 CO2 concentration in top gas
u9 H2 concentration in top gas
u10 pressure of cold blast

Comparing to Table 1, it can be seen that three additional variables, the temperature of cold blast
(u5), the top pressure (u6) and the pressure of cold blast (u10) are also included. it should be noted some
of them are redundant variables (u5 and u10) that are highly related with other variables. The purpose
for introducing these variables is to show the capability of the proposed method in dealing with
variable redundancy.

Similar to Section 4.1, the proposed GRU method is applied, with the same parameter values.
And the prediction results for the 10 variables are shown in Figure 10. For a clearer exhibition,
only the 1000 faulty samples are presented. It can be seen that for the first 200 samples, the prediction
accuracy is acceptable. After that, an obvious fluctuation can be observed and the prediction
accuracy deteriorated. After the 2450th sample, the prediction accuracy for all variables except
u2 return normal.

After the predictions are obtained, SVDD is applied and the monitoring results are shown
in Figure 10b. It can be seen that the fault was successfully detected since significant number
of violations can be observed after the 2250th sample. This again indicates the good capability
for the proposed method in fault detection. It should be noted that violations can still be observed
even after the fault was corrected after 2450th sample. This can be explained, as to avoid further fault,
the operators decided to reduce the temperature of blast(u2), which caused the violations. This can be
confirmed by the subsequent fault identification results in Figure 11.

In Figure 11, the first plot involves the fault identification results from samples from 2250 to 2450,
while the second plot involves the identification results for samples from 2450 till 3000. As can be
seen from the first plot of Figure 11, it can be clearly seen all variables except u4 have significant
contribution to the fault, indicating a significant anomaly arises. This is expected, as to correct
the fault, both the quantity of blast and the temperature of blast are reduced, resulting in changes
in other variables. From the second plot, it can be seen that after the fault was corrected, the contribution
of other variables reduced significantly while that of u2 remains. This is in accordance with our previous
analysis that the operators reduced the temperature of blast to avoid further fault. The application
results of the second faulty case also confirmed the performance of the proposed method.
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(a) (b)

Figure 10. Prediction results using GRU and monitoring results using SVDD for Case 2. (a) Prediction
results using GRU, (b) Monitoring results using SVDD.

(a) (b)

Figure 11. The fault contribution rate for each variable in Case 2. (a) The Contribution of different
variables in observations 2250 to 2450, (b) The Contribution of different variables in observations 2450
to 3000.

5. Conclusions

This paper introduces a fault detection and identification method for blast furnace ironmaking
process based on the GRU network and SVDD. The GRU model is capable of handling
multi-dimensional inputs to make predictions for future inputs. The residuals between the actual
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inputs and predictions are then monitored using SVDD. A fault identification method is further
developed by inspecting the accumulated normalized residuals. The proposed method is tested on
a hanging fault observed in a real blast furnace in China. Application results show that the proposed
GRU-SVDD model can successfully detect the hanging fault. Compared with the PCA-SVDD model,
GRU-SVDD has a higher detection rate. The method proposed in this article is very suitable
for monitoring systems with strong dynamics and non-Gaussianity.
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Abstract: The lumpy zone in a blast furnace is composed of piles formed naturally during burden
charging. The properties of this zone have significant effects on the blast furnace operation, including
heat and mass transfer, chemical reactions and gas flow. The properties of the layers mainly include
the angle of repose and porosity distribution. This paper introduces two methods, the Discharging
Method and the Lifting Method, to study the influence of the packing method on the angle of repose
of the pile. The relationships of the angle of repose and porosity with physical parameters are
also investigated. The porosity distribution in the bottom of a pile shows a decreasing trend from
the region below the apex to the center. The coordination number of the particles is employed to
explain this change. The maximum of the frequency distribution of it was found to show a negative
correlation to the static friction coefficient, but becomes insensitive to the parameter as the static
friction coefficient increases above 0.6.

Keywords: pellet pile; Discrete Element Method; porosity distribution; angle of repose;
coordination number

1. Introduction

The lumpy zone of the blast furnace (BF) is composed of layers of piled burden formed naturally
during charging. Two significant variables characterize the properties of the layers: The angle of
repose and porosity distribution, which reflect the external shape and internal structure, respectively.
The former reflects the stability and surface profile of the piles. The latter is a direct reflection of the
permeability of the burden, which is closely connected to the gas flow resistance and heat exchange
efficiency between the burden and gas in the blast furnace. Therefore, an improved understanding
of the formation mechanism and internal state of a pile is important when measures are to be taken
to improve the efficiency of the conditions in the upper part of the blast furnace. The coordination
number (CN) is an important parameter reflecting the internal structure of the granular pile, which
is closely related to porosity. However, it is difficult to gain a deep understanding of the flow and
packing of granular materials by experimental methods, due to the complex behavior of granular
materials in bulk systems [1,2]. Therefore, numerical simulation has become an interesting and viable
option, and, in particular, the discrete element method (DEM). This method can provide estimates of
the position, velocity and stress information of each particle in a granular system.

The angle of repose is a fundamental property of a pile, which usually reflects the liquidity
potential of it. By simulation, it has been found that the angle of repose is related to DEM parameters,
such as the rolling and static friction coefficient [3]. Elperin et al. [4] and Coetzee et al. [5] revealed that
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the angle of repose is positively correlated with the friction coefficient, but when the friction coefficient
increases to a certain value, the angle of repose does not any longer increase or instead even decreases,
due to the collapse of the pile. Alizadeh et al. [6] also found that the angle of repose is strongly affected
by the particle shape. Furthermore, the particle size [7,8] and packing method [9] also influence the
angle of repose.

Porosity is closely related to the permeability of the packed bed. Thus, by adjusting the porosity in
the BF can help control the gas distribution, and thus, the heat transfer and reactions in the lumpy zone.
It has been observed that the gas permeability of the stock column will deteriorate rapidly when the
porosity is reduced to or below 0.3. It is easier to measure the porosity of particles in a container either
in an experiment or in simulation than in the real process. Zou and Yu [10] presented experimental
research on porosity by using a cylindrical container and found that the initial porosity of a pile is
strongly dependent on both particle shape and packing method. Another simulation work by the same
authors [11] concluded that particle size also influenced the porosity. However, there are only a few
publications on the porosity distribution in a three-dimensional particle pile, which is of interest for
the distribution of gas flow in industrial applications, such as in reactors, moving and fluidized beds.

Iron oxide particles are used as the main raw material in the blast furnace. Still, many papers
on the simulation of gas-solid two-phase flow in the blast furnace have not considered the radial
distribution of porosity, even though the porosity distribution is known to be non-uniform. Therefore,
it is an important aspect to consider. The present work studied the effects of DEM parameters and
packing method on the properties of pellet piles, with the aim to provide insights that can be used in
modeling and further research on the porosity distribution of burden in the blast furnace.

Packing density, as the opposite of porosity, has also been studied by many investigators. Most
studies focus on packing density of spherical [12–14] and non-spherical particles [15–20] in a container
by dense or loose packing [15]. However, as it is hard to measure the porosity distribution of a conical
pellet heap, there are still few publications in this field, due to the anisotropic properties of granular
materials, the complexity of pile structure and the opaque mechanism by which the packing evolves in
three dimensions [1]. DEM has become a viable choice for studies on the properties of granular piles,
and therefore this modeling method has become popular in blast furnace investigations [21–24].

The present work introduces several novel aspects, including the treatment of the porosity
distribution in the pile and the fact that industrial-scale pellets are studied, as well as the 1:10
scale-charging system used. The paper studies the angle of repose and porosity distribution of a pile
of iron oxide pellet by experimental and numerical methods. Section 2 introduces the experimental
work, including the methods and apparatus. The simulation theories and conditions are presented
in Section 3. In Section 4, the angle of repose and porosity distribution of a pellet pile are studied to
validate the DEM physical parameters determined by the discharging method. The effects of packing
method on the angle of repose are also discussed. Finally, the conclusions of the work are proposed.

2. Experimental Work

The experimental study is based on iron oxide pellets. As the shape of the pellet is close to that of
a sphere, spherical particles were used in the simulations to be presented. In fact, particle shape affects
the porosity of the pile, but since we focus of pellets, particle shape was not considered. The reader is
referred to Reference [25] for more information about this matter.

Pellets used in the experiments come from a steel plant in China. About 10,000 pellets were
selected after applying sieves with aperture size in the range 13–15 mm. The experimental apparatus
is illustrated in Figure 1a, which is a 1:10 scale charging system of a BF. A stable pellet pile was
formed on a table by the discharging method. In order to study the profiles of the arising pile, a
camera with the lens level along with the desktop was used to take photographs from four different
directions of the pile. The angle of repose was obtained by analyzing the profile of the heap using
photograph-processing technology.
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The same method was used to form a pile for measuring the porosity distribution. Seven 25 mL
(plexiglass) breakers placed beforehand to be buried in the pellet pile were slowly removed afterwards
to be able to measure the porosity (P), expressed b y

P =
V1

V
× 100%, (1)

where V1 and V denote the void volume (mL) of beakers full of particles and the volume of the empty
beaker, respectively. In order to reduce the errors, the experiment was repeated nine times, and the
average result was reported.

Figure 1. (a) Experimental apparatus and schematic of the measurement of pellet pile and (b) the
geometric models of different packing method in simulation.

3. Simulation Method and Conditions

3.1. Discrete Element Method (DEM)

The simulation part of this research is based on DEM, which was firstly proposed by Cundall
and Strack [26]. This method considers two types of motion of a particle, translation and rotation,
which are governed by Newton’s second law of motion. The elastic contact force expression used in
this work is the non-linear Hertz-Mindlin no-slip model [27], which is illustrated in Figure 2. The
basic expressions are given in Equations (2) and (3). The former is the translational equation, which is
composed of gravitational force, mig, contact force and viscous contact damping force, where Kn, Kt, γn

and γt express the normal elastic constant, tangential elastic constant, normal damping constant and
tangential damping constant, respectively. A particle with the mass of mi contacts with K particles, and
the contact force between them depends on the deformation between particles, δn. In the equation, ui,
vn and vt represent the translational velocity, and the component of relatively velocity for the normal
and tangential directions.

mi
dui
dt

=
K∑

j=1

(
Knδnij − γnvnij

)
+

(
Ktδnij − γtvti j

)
+ mig (2)

Equation (3) represents the rotational movement of particles, where Mk
r and Md

r are two torques,
which are caused by a tangential force and rolling friction. A Coulomb-type friction law is used to
express the friction between the two particles. Ii and ωi denote the moment of inertia and rotational
velocity, respectively.

Ii
dωi
dt

=
K∑

j=1

(Mk
r + Md

r ) (3)

101



Processes 2019, 7, 561

Table 1 presents the formulas used to calculate the forces and torques between the particles. In
this work, we use the open-source software LIGGGHTS 3.5.0 [28] implementation of DEM.

Figure 2. Depiction of forces acting particle i in contact with particle j.

Table 1. Detailed description of the parameter expressions in discrete element method (DEM).

Parameters Equations

Kn, Kt Kn =
4
3
γ∗
√

R∗δn,Kt = 8G∗ √R∗δn

γn, γt γn = −2

√
5
6
β
√

snm∗  0, γt = −2

√
5
6
β
√

stm∗  0

Sn, St Sn = 2γ∗
√

R∗δn, St = 8G∗ √R∗δn

β β =
ln(e)√

ln2(e) + π2

1
γ∗

1
γ∗ =

(
1− v1

2
)

Y1
+

(
1− v2

2
)

Y2
1

G∗
1

G∗ =
2(2− v1)(1 + v1)

Y1
+

2(2− v2)(1 + v2)

Y2
1

R∗ ,
1

m∗
1

R∗ =
1

R1
+

1
R2

,
1

m∗ =
1

m1
+

1
m2

ΔMk
r ΔMk

r = −krΔθr, kr = kt·R∗2∣∣∣∣Mk
r,t+Δt

∣∣∣∣� Mm
r

Mk
r,t+Δt = Mk

r,t + ΔMk
r , Mm

r = μrR∗Fn

Md
r,t+Δt

Md
r,t+Δt = −Cr

.
θr(

∣∣∣∣Mk
r,t+Δt

∣∣∣∣<Mm
r )

Md
r,t+Δt = −Cr

.
θr(

∣∣∣∣Mk
r,t+Δt

∣∣∣∣= Mm
r )

Cr = ηrCcrit
r , Ccrit

r = 2
√

Irkr

Ir =

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Ii + mir2

i

+
1

Ij + mjr2
j

⎞⎟⎟⎟⎟⎟⎟⎠
−1

In the expressions, G, Y, e and υ represent the Shear modulus, Young’s modulus, coefficient of restitution and
Poisson’s ratio, respectively, while μr and μs represent the rolling and static friction coefficient, respectively.

102



Processes 2019, 7, 561

3.2. Simulation Conditions

The apparatus of the Discharging Method in the simulation consists of a hopper, a baffle and a
table, just like the components used in the experiments. In the Lifting Method, the apparatus is only a
column barrel. The geometric models are both shown in Figure 1b. DEM parameters of pellet were
chosen according to the results of previous work by the authors [29] and are presented in Table 2. In
the simulations, we studied the effects of the DEM parameters on the angle of repose and porosity
distribution. Furthermore, the effects of different drop heights of the Discharging Method, as well as
the effects of lift speed and barrel size in the Lifting Method, on the angle of repose of the pile were
also investigated.

Table 2. Physical and contact parameters used in DEM simulation, including pellet particle and walls.

Parameters Values

Particle number 100,000
Particle density 4837 kg/m3

Time step 10−5 s
Young’s modulus 2.5 × 1011 Pa (pellet), 2 × 1011 Pa (steel plane), 7.2 × 1010 (plexiglass)

Poisson ratio (p-p; p-w; p-g) 0.25, 0.3, 0.2
Coefficient of restitution (p-p; p-w; p-g) 0.4, 0.35, 0.2

Coefficient of friction (p-w; p-g) 0.4, 0.25
Rolling friction coefficient (p-w; p-g) 0.4, 0.15

Size of pellet 8 mm, 14 mm, 20 mm

In the table, p-p, p-w and p-g represent the coefficients for pellet-pellet, pellet-wall and pellet-plexiglass (breaker)
interaction. Some parameter values were from the literature [17,18].

For the simulation of porosity, we used seven boxes (5 cm × 10 cm × 5 cm) placed along the
diameter of the bottom of the pile to measure the bottom porosity distribution (BPD). In determining
whether a particle belongs to the box, its central coordinates were used. The porosity of the bed in each
box can be calculated by

P =

(
1− nVp

V

)
× 100%, (4)

where V is the volume of the box and Vp is the volume of a single pellet, and n is the number of
particles in the box.

4. Results and Discussion

4.1. Simulation and Experimental Study of Angle of Repose

4.1.1. Angle of Repose by the Discharging Method

We first studied the influence of DEM parameters on the angle of repose of the pellet pile.
As the effect of a physical parameter is studied, the other parameters were kept unchanged at the
values reported in Table 2. From work reported in the literature [2], it is known that the angle of
repose is sensitive mainly to the rolling and static friction coefficients between the particles. Vertical
cross-sections of the pellet pile with different rolling and static friction coefficients are shown in Figure 3.
It was observed that when the rolling and static friction coefficients increase from low (0.01) to high
(0.99) values, the shape of the pile changed a lot, especially for the latter parameter. The results of
contour extractions of the heap are shown in Figure 4. It is obvious that the height of the pile increases
and then tends to be stable.

Figure 5 shows the angle of repose with different rolling and static friction coefficients, with error
bars indicating the deviation of the angle of repose in different directions of the pile. The angle of
repose shows a positive correlation with the friction coefficients. When the static and rolling friction
coefficients change from 0.01 to 0.99, the angle of repose of the pellet pile changes about 8◦ and 20◦,
respectively, which indicates that static friction coefficient has a stronger impact on the angle of repose.
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In general, high static friction is always accompanied by high rolling friction, and the latter depends
on the physical properties on the particle surface. However, there is a decreasing trend when μr > 0.6
or μs > 0.8. A reason may be that the heap has reached the maximum stable angle at this point, and a
further increase in the friction coefficient will cause the heap to collapse.

In addition to the effects of the DEM parameters on the angle of repose, the external conditions,
such as the drop height cannot be ignored. Figure 6a shows the angle of repose for different drop
heights for pellets with different static and rolling friction coefficients. It reveals that when the drop
height increases, the angle of repose decreases and this trend will weaken when the friction coefficients
increase. It was found that with an increase in the drop height, the bottom size of the heap decreased.
Therefore, we define the normalized effective diameter (NED) to express the size, which is the diameter
of the bottom circle of the heap where most particles gather, neglecting the particles scattered around
the heap because there is an obvious boundary of the high-density particle area and the scattered
particle area. Figure 6b shows that for particles with a large coefficient of static friction, the NED of
the pile is small. In addition, the NED decreases sharply initially and then levels out when the drop
height increases. The reason is that particles will have large kinetic energy when dropping from a high
location, and when the particles collide with the packed bed, they more easily bounce and scatter
around the heap.

 
(a) 

(b) 

Figure 3. Vertical cross-sections of the pellet pile simulated under different (a) rolling and (b) static
friction (b) coefficients.

104



Processes 2019, 7, 561

  
Figure 4. Extracted contours of the pellet pile for different (a) rolling and (b) static friction coefficients.

  
Figure 5. Relationship of the angle of repose of pellet piles and (a) rolling friction coefficient with
μs = 0.15, and (b) static friction coefficient with μr = 0.12. Error bars indicate the deviation of the angle
of repose in different directions of the pile.

 
Figure 6. (a) Angle of repose and (b) and normalized effective diameter of the heap (top view) with
different coefficient of static and rolling friction for different drop heights in the Discharging Method.
(The numbers in the two figures represent rolling and static friction coefficients, respectively) The
inserted subfigure in (b) is a top view of the simulated pile.

4.1.2. The angle of Repose by the Lifting Method

In the simulation of the Lifting Method, we designed four different cases (Table 3) to study the
influence of the barrel size and lift speed on the angle of repose. Case 1 and Case 2 have the same
coefficient of friction, but different barrel size. All the cases were considered with four different lifting
velocities (0.005 m/s, 0.01 m/s, 0.02 m/s and 0.03 m/s). Figure 7 shows the angle of repose with different
lifting velocities. The angle of repose tends to decrease when the lifting velocity increases, and this
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trend is weakened as the friction coefficient increases because a small lifting velocity makes it easier to
keep the particles in their original positions. Through comparing Cases 1 and 2, it can be seen that the
angle of repose will increase if the barrel size gets smaller. The dotted pink line and solid pink line in
Figure 7 represent the angle of repose with different packing methods, but the same DEM parameters,
which reveals that the angle of repose formed by the Lifting Method is larger than that determined by
the Discharging Method.

Table 3. Different cases studied by the Lifting Method.

Cases Rolling Friction Coefficient Static Friction Coefficient Barrel Size (Diameter: m)

Case1
0.05 0.15

0.1

Case2

0.15Case3 0.12 0.15
Case4 0.12 0.45

 
Figure 7. The angle of repose for different lifting velocities. Pink dotted and solid lines represent the
angle of repose with different packing methods, but the same DEM parameters.

4.1.3. Simulated vs. Experimental Angles of Repose

The average of the experimentally determined angle of repose of the pellet pile is about 25◦.
Comparing it with the simulated results in Figure 5, we found that when μr = 0.12 and μs = 0.15, the
experimental and simulated results agree well. Thus, these two values can be used to study the BPD
and average porosity of pellet piles. The profiles of the experimental and simulated heaps seen in
Figure 8 as black and red lines illustrate the agreement. The figure also shows that the Lifting Method
gives a higher heap and a larger angle of repose than the Discharging Method.

 

Figure 8. Profile of heap in simulation and experiment.
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4.2. Porosity Distribution of Pellet Pile

4.2.1. Simulated vs. Experimental BPD

The BPD of the pile is used to specifically and quantitatively describe the pile porosity. Figure 9
shows the simulated and experimental BPD of the pellet pile measured by the containers. The simulated
results include porosity distribution in containers and in-unit boxes. The coordinate 0.00 on the abscissa
represents the center position of the pile, and ±0.15 represent the edges. The trends of the curves are
seen to be the same in the experiments and simulations. The porosity distribution shows a V-shaped
appearance, where the central value is lower than that at the edge. In fact, the experimental and
simulated values measured by the containers are all larger than the real ones (without containers)
because of the so-called wall effect. The difference of the simulated results (equal value of BPD) with
containers and without containers can be used to quantify this effect. We found that the wall effect
would result in an error of 3.3 percent points compared with direct measurement without a container.
In Figure 9, the experimental porosities are a little larger than the simulated ones because a drainage
method was used to measure the porosity in the experiments, and the operation loss of water leads to a
larger porosity. In order to further study the distribution of the porosity, the coordination number (CN)
was employed, where CN expresses the number of particles in contact with one particle. Figure 10,
where different colors represent different values, indicates that CN increases from the edge to the
center of the pile, because of the compact packing of particles in the center. These results coincide with
the findings on the porosity distribution. The central position of the heap is formed by the vertical
falling particles, which have greater kinetic energy, causing a more compact structure of the pile. After
the formation of the initial heap, the pile with the continuous falling particles will collapse, and the
edges form.

 

Figure 9. Comparisons of simulated (with and without containers) and experimental bottom porosity
distribution (BPD) of the pellet pile.

Figure 10. Coordination number of a vertical cross-section of the simulated pellet pile.

4.2.2. Effects of Rolling and Static Friction on BPD

Figure 11 shows the BPD of the heap when the rolling and static friction coefficients change, where
the inserted graphs show the average value of BPD. When the static and rolling friction coefficient
change from 0.01 to 0.99, the average porosities change by 7 and 3 percent points, respectively, which
means that the static friction coefficient has a greater impact on porosity. This conclusion is also
supported by findings reported in the literature [3,6,30–33].
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Figure 11. BPD of the pellet pile and the inserted graph is the average porosity (the average value of
seven points on a curve) with different (a) static and (b) rolling friction coefficients.

Figure 12 depicts the frequency distribution of CN for different static and rolling friction coefficients,
showing a maximum value of the frequency at CN ≈ 4. Thus, most particles are in contact with four
neighboring particles. The static friction coefficient affects the frequency distribution, but mainly for
μs < 0.6, and the rolling friction seems to have no effect. As seen in Figure 13, when the static friction
coefficient increases, the CN of the heap decreases, but the decrease is small for μs > 0.6. The reason
may be that if the CN is small, the porosity is large. The average CN of the heap is only affected by the
rolling friction when the coefficient is very small.

Figure 12. Frequency distribution of coordination number with different (a) static and (b) rolling
friction coefficients.

 

Figure 13. The average coordination number of the whole heap for different static (μr = 0.12) and
rolling friction (μs = 0.15) coefficients.
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5. Conclusions

The angle of repose, coordination number (CN) and bottom porosity distribution (BPD) of pellet
piles were studied by DEM simulation and experimental methods. A charging system mimicking
that of a blast furnace, but in 1:10 scale was designed to simulate the pile formation of iron oxide
pellets. The effects of DEM parameters and packing method on the angle of repose were also studied,
including the drop height in the Discharging Method and properties (lifting velocity, barrel size) of the
Lifting Method. Some of the results are highlighted in the following.

The angle of repose shows a positive correlation with static and rolling friction coefficients. The
angle of repose formed by the Lifting Method is bigger than that obtained by the Discharging Method.
When the drop height increases, the angle of repose decreases, but this trend will weaken when the
static friction coefficient becomes large. In the Lifting Method, the angle of repose tends to decrease
with an increase in the lifting velocity or in the barrel size, but the trend is less clear for pellets with
large friction coefficients. The size of the bottom circle of the heap is significantly reduced with an
increase in the friction coefficient. Appropriate values of the rolling and static friction coefficients for
the pellets were found to be 0.12 and 0.15, respectively.

The porosity distribution in the bottom of the heap (BDP) along the heap diagonal shows a V-type
behavior, where the value in the center is smaller than those at the edges. The BPD shows an increasing
trend with the increase of the friction coefficient. CN is an important parameter reflecting the internal
structure of the pile, and expectedly, it shows a negative correlation with porosity. The maximum of
the frequency distribution of CN, which occurs at CN ≈ 4, exhibits a negative correlation with the static
friction coefficient and eventually remains unchanged when the coefficient grows larger than 0.6. CN
is not significantly affected by the rolling friction coefficient.
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Abstract: The objective of this paper was to develop a prediction tool for the burden distribution
in a charging process of a bell-less-type blast furnace using the discrete element method (DEM).
The particle behavior on the rotating chute and on the burden surface was modeled, and the burden
distribution was analyzed. Furthermore, the measurements of the burden distribution in a 1/3-scale
experimental blast furnace were performed to validate the simulated results. Particle size segregation
occurred during conveying to the experimental blast furnace. The smaller particles were initially
discharged followed by the larger ones later. This result was used as an input in the simulation.
The burden profile simulated using DEM was similar to the experimental one. The terrace was found
at the burden surface subsequent to ore-charging, and its simulated position simulated agreed with
that of the experimental result. The surface angle of the ore layer was mostly similar. The simulated
ore to coke mass ratio (O/C) distribution in the radial direction and the mean particle diameter
distribution correlated with the experimental results very well. It can be concluded that this method
of particle simulation of the bell-less charging process is highly reliable in the prediction of the burden
distribution in a blast furnace.

Keywords: DEM; blast furnace; burden distribution; particle flow; validation

1. Introduction

A blast furnace is a reactor with approximately 5000 m3 of volume to produce pig iron from ore
particles. Iron ore (sinter, lump, and pellet) and coke particles are alternately stacked at the topmost
layer of the blast furnace, and the hot gas is blown from tuyeres at the bottom of the furnace. Iron
ore particles are reduced during the descent, and numerous physical changes and chemical reactions
occur between each phase over this period. Thus, it is an extremely complicated system, resulting in
the possibility of unfavorable phenomena or serious problems occurring. To avoid these problems,
controlling and stabilizing the gas flow in the furnace is of utmost importance because the gas plays a
key role for the reduction and the heat source. Thus, keeping the gas flow in the steady state leads
to an efficient and low RAR (reducing agent ratio) operations. Therefore, controlling a void fraction
in the stacked layer, i.e., the burden distribution at the top of the blast furnace, is the most effective
operation for stabilizing the gas flow. Much research has been experimentally conducted and some
mathematical models have been proposed to estimate and control the burden distribution [1–5]. These
models can give useful information in the daily operation. However, many kinds of particles are
usually mixed in ore charging to help the reduction; therefore, it is necessary to analyze the individual
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solid particles’ behavior in the blast furnace for an in-depth analysis of several phenomena that were
previously mentioned. The discrete element method (DEM) [6] is one of the most reliable simulation
methods for analysis of the solid particle behavior, and an approach using the computational simulation
based on DEM is extremely useful to grasp the phenomena found in the charging process of the blast
furnace. Some studies on the modeling of solid flow in a blast furnace have been previously reported,
for example, the raceway [7,8], solid flow in the blast furnace [9–11], gas–solid flow [12], hopper
flow [13,14], and particle trajectory from the rotating chute [15], and authors have developed burden
distribution simulators using DEM [16–20]. Validations of the particle trajectory discharged from the
rotating chute were studied, and they showed good correlations [19,20]. This simulator still remains a
key issue to validate the simulated burden distribution with experimental results in detail.

In this paper, charging tests were performed using a 1/3-scale experimental burden distribution
simulator of the blast furnace to validate the simulated results, and the particle size segregation and
ore to coke mass ratio (O/C) were investigated. Furthermore, the particle flow during charging into
the experimental blast furnace was modeled using DEM, and the results were compared with the
experimental ones.

2. Experimental

A 1/3-scale experimental burden distribution simulator, which is shown in Figure 1, was used
herein. It is a bell-less-type blast furnace and it has approximately a 3.7-m throat diameter and
approximately a 10-m height. Furthermore, it has a surge hopper, parallel hoppers, and a discharging
funnel. A horseshoe-shaped rotating chute with a length of 1.7 m is installed at the top of the furnace.
A blower and a discharging unit are installed at the bottom of the furnace to assess the effects of
the gas flow and the burden descending. Figure 2 shows the detailed schematic illustration of the
experimental apparatus.

 

Figure 1. Picture of the 1/3-scale experimental burden distribution simulator.
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Figure 2. Schematic illustration of the 1/3-scele experimental burden distribution simulator.

Sinter particles were conveyed to the top of the experimental blast furnace via a surge hopper, one
of the parallel hoppers, and a discharging funnel, as shown in Figure 2. The sinter, which were sieved
in the range 5–20 mm (d50 = 11.4 mm), were used in this charging test. The particle size distribution is
shown in Figure 3. In total, 5500 kg of sinter was charged into the experimental blast furnace during
15 rotations at 13.4 rpm. Table 1 shows a charging pattern of coke and ore dumps. The gas was not
blown in this experiment to simplify the phenomena.

Figure 3. Distribution of the particle diameter of the sinter.
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Table 1. Charging conditions for the rotating chute.

Chute Angle [◦] 52 50.5 49 47.5 46 44.5 43 41 39 37 35 33 Mass [kg]

Coke 2 2 1 1 1 1 1 1 1250
Ore 2 2 1 1 1 1 1 1 1 1 1 2 5500

Subsequent to charging, a burden surface profile was measured with a laser distance meter.
Moreover, the burden was dug up using a vacuum cleaner to obtain the ore to coke mass ratio (O/C)
and the particle size distribution. The area that was dug up was rectangular (200 mm × 262 mm) from
the furnace wall to its center for seven divisions, and the digging-up depth was every 50 mm, as shown
in Figure 4. This was carefully performed to avoid breaking the particle-packing structure. The burden
was removed by a large vacuum cleaner, except for the sampling area, before digging up. That is to
say, the sampling area became the highest in the burden. The digging up was carried out from the
highest position, thus collapse did not occur. Subsequently, the particles were sieved and weighed.
The sinter particles, which were discharged from the funnel, were also sampled to check the particle
size segregation during conveying to the top of the furnace. This gave the time evolution of the particle
size distribution that was used as input of the DEM calculation.

Figure 4. Schematic illustration of the digging-up operation.

3. Simulation

3.1. Discrete Element Method

DEM is one of the most popular and reliable simulation methods for the numerical analysis of
particle behavior. This simulation method comprises an idea for determining the kinematic force to
each finite-sized particle. The key calculation of DEM comprises three steps; i.e., (1) contact detection,
(2) calculation of forces, and (3) updating the trajectories, and these processes are looped until t = tmax.
The contact between two particles is given using Voigt model, which consists of a spring dashpot and a
slider for the friction in the tangential component. The contact forces, Fn and Ft, are calculated using:

Fn,i j =

(
KnΔun,i j + ηn

Δun,i j

Δt

)
ni j, (1)
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Ft,i j = min
{
μ
∣∣∣Fn.i j

∣∣∣ti j,
[
Kt

(
Δut,i j + Δφi j

)
+ ηt

(
Δut,i j + Δφi j

Δt

)]
ti j

}
, (2)

where K and η are the spring and damping coefficients, Δu and Δϕ are the relative translational
displacement of the gravitational center between two particles and the relative displacement at the
contact point caused by the particle rotation, μ is the frictional coefficient, and nij and tij denote the unit
vector from i-th particle to the j-th one in the normal and the tangential components. The subscript “n”
and “t” denote the normal and the tangential components. The translational and rotational motions of
each particle are updated using:

·
v =

∑
F

m
, (3)

·
ω =

∑
M

I
, (4)

where v is the vector of a particle velocity, F is the contact force acting on a particle, m and g are the
mass of a particle and the gravitational acceleration, ω is the vector of the angular velocity, and M and
I are the moment caused by the tangential force and the moment of inertia.

The shape of granular material in DEM is usually assumed to be spherical to simplify the contact
detection and the calculation of the contact force, although the shape of the sinter particle is not
spherical. The best solution for considering the particle shape in DEM is to model the exact particle
shape using polyhedra. However, this calculation is extremely laborious, and it is unsuitable for the
simulation of particle flow in the ironmaking process where the number of particles could be in the
billions. Thus, the effect of the particle shape on the motion was considered by setting a proper rolling
friction for the particle, and it is given by:

Mr,i = −3
8
αib|Fn| ωi

|ωi| , (5)

where b is the radius of the contact area and αi is the coefficient of the rolling friction. Every particle
has different αi, because the shapes of the sinter are totally different from each other. Its distribution
is related with the rollability of the particle [16], and it is shown in Figure 5. The method of having
different rolling friction provides a significant agreement with the experimental results [16]; therefore,
this method was applied here.

Figure 5. Distribution of the coefficient of the rolling friction [16].
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3.2. Simulation Conditions

The particle behavior during charging into the experimental blast furnace was simulated using
DEM, and the burden distribution was compared with the experimental results to validate the
simulation results. The geometry of the rotating chute and the throat of the furnace were identical to
those of the experimental results, and 5500 kg of sinter particles, with a particle density of 3300 kg/m3,
were charged into the furnace. The size of sinter particle was 6 to 20 mm, and its particle size
distribution corresponded to Figure 3. The total number of sinter particles was 2,545,086, and the
detailed particle condition is tabulated in Table 2. Young’s modulus and Poisson’s ratio were assumed
to be 3.5 GPa and 0.25, respectively. Only the ore-charging process was executed in the simulation,
i.e., the coke layer prior to ore charging was arranged at the top of the furnace corresponding to the
surface profile subsequent to coke charging in the experimental test. The particle diameter of coke is
7.5 to 30 mm; its density, Young’s modulus, and Poisson’s ratio are 1050 kg/m3, 0.54 GPa, and 0.22,
respectively; and the number of coke particles is 1,049,686. Table 3 shows the detailed conditions for
the coke particles. The input sinter particles were generated at the outlet of the discharging funnel,
i.e., the particle behavior from the parallel hopper and the discharging funnel was not simulated to
reduce the computing time. The time changes in the mass ratio for each particle of the input sinter
corresponded to the sampled results in the experimental work, which was described above, to consider
the particle size segregation during conveying to the furnace. The input particles have 5.5 m/s of
vertical velocity, which was also measured using high speed video camera [20]. Every particle has
a different rolling friction coefficient, which was obtained by generating a random number at the
beginning of the simulation. The distribution of the rolling friction coefficient is shown in Figure 5.
The charging pattern of the chute tilting angle was the same as that of the experimental one, as shown
in Table 1, and the rotational speed was 13.4 rpm. The discrete time was 1.5 μs and the total number of
calculation steps was 50 million. The calculation was parallelized using OpenMP.

Table 2. Condition for sinter particle in DEM.

Particle Diameter [mm] Number of Particle [-] Mass Fraction [-]

6 414,382 0.028
8 539,490 0.087

10 809,088 0.254
12 349,403 0.190
14 315,434 0.272
16 87,722 0.113
18 26,239 0.048
20 3328 0.008

Table 3. Condition for coke particle in DEM.

Particle Diameter [mm] Number of Particle [-] Mass Fraction [-]

7.5 695,453 0.151
12.5 216,471 0.218
17.5 90,753 0.251
22.5 34,048 0.200
30 12,961 0.180

4. Results and Discussions

Figure 6 shows the relation between the normalized discharging time and the mass fraction of each
size range of the sinter particles that were discharged from the funnel. It is confirmed that the smaller
particles were discharged during the initial period, whereas the larger ones were discharged later.
The particle size segregation occurred during charging and discharging at the storages (the surge hopper
and the parallel hoppers); therefore, the larger particles tend to be discharged later. This phenomenon
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affects the radial particle size distribution of the burden. This result of the time change of the particle
size during discharging was used as the input particle condition of DEM.

Figure 6. Relation between the mass fraction of each size range of the sinter particles and the normalized
discharging time.

Figure 7 shows pictures during ore charging in the experimental test. The black particles in the
furnace are coke, and the dark brown ones, which are charged from the rotating chute, are sinter.
The sinter particles are stacked near the wall at the beginning of charging, and subsequently, the particles
flow toward the center. The sinter covers the coke layer after the 11 rotations. Figure 8 shows the
surface profile of the burden after charging. The surface angle of the ore layer is approximately 32.1◦.
A terrace is found around 1185 mm from the center, and the angle of the terrace is 13.7◦. The surface
angle of the coke layer is also found to be 36.7◦. This value is larger than that of the sinter layer because
of the particle shape and the size distribution.

  

(a) (b) 

  
(c) (d) 

Figure 7. Pictures during ore-charging in the experimental work. (a) 1st rotation; (b) 4th rotation;
(c) 7th rotation; (d) 11th rotation.
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Figure 8. Surface profile of the burden after the charging test.

Figure 9 shows the contour map for the sinter volume fraction in the burden, which was obtained
by digging up the burden. The surface profiles subsequent to charging are also drawn in the contour.
Most coke particles are situated near the wall, and the thickness of the coke layer around the center is
extremely thin. Therefore, it is suggested that a collapse of the coke layer during ore-charging was not
significant in this charging condition.

 
Figure 9. Contour map for the sinter volume fraction in the burden.

Figure 10 shows snapshots of the charging behavior simulated by DEM. The brown particles
denote sinter and the blue ones are coke. The sinter particles are charged around the wall toward
the center, and they reach the center in approximately 11 chute rotations. Their behavior is found
to be very similar to that of the experimental ones, which are shown in Figure 7. Figure 11 shows a
cross-section of the burden simulated using DEM. The surface angle is 33.6◦, and the position of the
terrace is approximately 1250 mm from the center. The terrace angle is approximately 14.2◦. Although
the profile and the thickness near the center are slightly different, the simulated burden layer is quite
similar to the experimental one, especially the shape of the terrace.
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(a) (b) 

  
(c) (d) 

Figure 10. Snapshots of ore charging simulated by DEM. (a) 1st rotation; (b) 4th rotation; (c) 7th rotation;
(d) 11th rotation.

 
Figure 11. Cross-section of the burden simulated by DEM.

Figure 12 shows the relation between the ore to coke mass ratio (O/C) and the radial distance.
The experimental results were obtained by digging up the burden. The value of O/C around the center
is enormous because the thickness of the coke layer is thin, and it decreases with the increase in the
radial distance because the coke layer becomes thicker. Trends of the O/C for both the experiment
and the simulation are excellently correlated. Figure 13 shows the relation between the normalized
mean particle diameter of the sinter and the radial distance. The particle diameter at each position was
normalized using the mean value of all particles because the mean particle diameter in the experimental
work became smaller than that of the initial condition. Some sinter particles had fragmented during the
continuous charging into hoppers and discharging. The particle diameter at the terrace is smaller, and
it increases while approaching the center due to the particle size segregation during the flow toward
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the center. A good agreement between the experimental results and the simulated ones was obtained.
Therefore, the burden distribution simulated in this work was validated, and it has a high potential
to predict the particle behavior during charging. In the simulation, the burden layer formation can
be clarified. Figure 14 shows the cross-section of the ore layer, which is color-coded by the chute
tilting angle. It is found that the thickness of each layer is thin, and it reaches the center. This is
good information for considering the mixing particles in the ore layer. The vertical layer structure for
each ring is clarified. Therefore, the discussion of the vertical position of mixed particles is possible.
For example, if some particles should be mixed in the purple layer, they should be charged in the blast
furnace during the rotation of 39◦. It should be noted that this simulation did not consider the effect of
the mixing particle and gas flow, but they will be investigated in the future work.

Figure 12. Relation between the ore-coke mass ratio (O/C) and the radial distance.

Figure 13. Relation between the normalized mean particle diameter of sinter and the radial distance.
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Figure 14. Cross section of the ore layer, which is color-coded by the chute tilting angle.

5. Conclusions

A particle simulation model of the charging process of the bell-less-type blast furnace was
developed using DEM. The ore to coke mass ratio (O/C) and the mean particle diameter of the
radial direction were compared with the experimental results, which were obtained in the 1/3-scale
experimental burden distribution simulator. The following is a summary of this study:

(1) The particle size segregation occurred during conveying to the experimental blast furnace.
The smaller particles were initially discharged, whereas the larger ones were discharged later.

(2) The burden profile, which was simulated using DEM, was similar to the experimental one.
A terrace was found at the burden surface subsequent to ore charging, and its simulated position
agreed with that of the experimental result. The surface angle was mostly similar between them.

(3) The simulated O/C distribution in the radial direction and the mean particle diameter distribution
showed excellent correlation with the experimental results.

(4) It can be concluded that this method of particle simulation of the bell-less charging process is
highly reliable in the prediction of the burden distribution in the blast furnace.
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Abstract: Charging directly affects the burden distribution of a blast furnace, which determines the
gas distribution in the shaft of the furnace. Adjusting the charging can improve the distribution
of the gas flow, increase the gas utilization efficiency of the furnace, reduce energy consumption,
and prolong the life of the blast furnace. In this paper, a mathematical model of blast furnace charging
was developed and applied on a steel plant in China, which includes the display of the burden profile,
burden layers, descent speed of the layers, and ore/coke ratio. Furthermore, the mathematical model
is developed to combine the radar data of the burden profile. The above model is currently used in
Nanjing Steel as a reference for operators to adjust the charging. The model is being tested with a
radar system on the blast furnace.
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1. Introduction

The raw material used in the production of a blast furnace is called burden. It is mainly composed
of coke, sinter, and pellet. The prepared burden is loaded into a hopper. After a series of transportation
steps on the top of the furnace, it falls onto a rotating chute, when the exit of the hopper opens. Then,
the material enters the blast furnace and forms burden layers in the throat. At the bottom, hot air
is blown into the furnace to burn the coke, producing carbon monoxide and hydrogen that act as
reductants. The rising reductants react chemically with iron oxide in burden and the iron oxide
becomes hot metal after the reduction and melting. In the reduction, impurities in iron ore combine
with the added flux to form molten slag. Hot metal and slag are discharged from tapholes at the
bottom of the furnace. After treatment, molten slag is used as a raw material for cement and hot metal
is transported to basic oxygen furnace by torpedo.

Some studies have shown that the charging affects the chemical reaction between the layers and
reducing gas in the shaft of the furnace. The layers influence the shape of the cohesive zone and energy
utilization efficiency of the furnace [1]. Therefore, the charging system is of great significance for the
operation of the blast furnace. Due to the high temperature, high pressure, and dusty environment
of the blast furnace, the internal state of the furnace cannot be measured. Even though furnace top
temperature detection equipment, cross temperature measurement, and furnace top infrared cameras
are already applied in the furnace, they still cannot accurately provide information about the burden
layers in the furnace. Simulation technology is a powerful method combining computer, mathematics,
physical engineering, and chemical engineering. It is helpful to observe the phenomena that are difficult
to be directly measured in practice. Meanwhile, it saves costs, time, and materials in experiments [2].

Many studies have used mathematical models to study the charging system of the blast furnace.
Yoshimasa et al. [3] developed a simulation model for the burden distribution of blast furnace charging
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and studied the trajectory of the raw material, burden descent, and mixing layer, providing important
information for the subsequent model development. Pohang Iron and Steel Company proposed a radial
distribution function of the burden and applied it in an actual blast furnace to study the distribution
characteristics of the burden and to improve the distribution of the gas flow [4]. Krishman et al. [5]
developed a mathematical model for the optimization of bell-less charging, and the calculation results
were consistent with the actual data. Saxén and Hinnelä [6] developed a bell-less burden distribution
model on the basis radar measurement, and the dependence between the layer thickness and charging
variables was modeled by neural networks [7]. Nag [8] proposed a mathematical model of the bell-less
top to calculate the trajectory of the burden in charging. Park et al. [9] analyzed the blast furnace
charging system by developing a burden descent model and a gas flow model, and compared the
results with those from a 1/12-scaled model experiment. Samik et al. [10] proposed a general target
methodology to estimate the stock profile in the blast furnace, where the burden distribution is based
on experiments in different scaled models of a blast furnace with various materials. Shi et al. [11]
proposed a new model of stockline profile formation in which equations were developed for the inner
and the outer repose angles by considering the influence of the burden’s vertical and horizontal flow.

The above mathematical models were developed based on some assumptions and different
operating conditions. Therefore, it is quite difficult to apply them to get accurate results of the burden
layer for other furnaces. If a charging model can be combined with a reliable burden surface detection
method, the reliability of the calculated burden profile information can be increased. For example,
rotating radar detection technology can more accurately measure the height of each point of the
burden surface even under severe conditions, such as complete darkness and high-dust atmosphere,
than a mechanical stock rod [12]. Therefore, in a black-box environment, vibration, and strong airflow,
burden distribution online measurement should be stable and accurate. Considering the limits of
the radar method, radar data also includes noise and can only reflect the surface shape of the object.
Through the combination of radar, data processing, and the charging mathematical model, the error
and noise of radar data can be reduced a lot. Furthermore, the shape of the burden surface and the
structure of the burden layers can be better estimated [13].

Some scholars have studied the application of radar in blast furnaces, and some achievements
have been made. Liu et al. [14] used radar data containing information of the burden surface situation
and cross thermometer data reflecting the trend change of the burden surface with time as the training
data for a fuzzy neural network to classify and predict the burden surface. Gao et al. [15] suggested
that visualization and simulation is a new technology to monitor the charging system and to help the
operation of blast furnaces. Based on the real multi-radar data, Zhu et al. [16] estimated the burden
profile by a cubic-curve equation at the end of a multi-loop charging. Furthermore, the burden profile
before the next multi-loop charging was calculated by considering the impact of the burden descent.
Li et al. [17] used fuzzy c-means clustering to classify a large amount of burden surface radar data and
proposed a multiple-model set of the burden surface. The real-time burden surface data were matched
with the model to produce the expected burden surface. A reconstruction algorithm based on phased
array radar data was proposed by Zhang [13] to extract the data of the blast furnace charging line and it
was shown to have high efficiency and high accuracy. Tian et al. [18] developed a radar detection-based
model for the prediction of the burden surface shape to develop a charging strategy and the results
showed that the proposed model had the advantages of higher prediction accuracy for both local details
and global shape than mechanical stock rods. In another publication [19], they proposed an innovative
data-driven model for predicting the distribution of the burden descent speed. This model has the
ability to better characterize the variability in the radial distribution of the burden descent speed than a
pure mathematical model based on Newton’s second law. Miao et al. [20] proposed a new calculation
method of shape fusion of the material line based on a stacking method, which can directly calculate
the shape of the material surface and improve the measurement accuracy by 4.8%, compared to the
first principle mathematical model. Li et al. [21] recently presented a similar model to improve the
measurement accuracy of the burden profile and to use this in modeling of the burden distribution.
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From the above literature and statements, there are no publications presenting a combination of
radar data and a mathematical model to test, modify, and improve the model. Therefore, this paper
will concentrate on this issue.

2. Mathematical Model and Radar Data Treatment

2.1. Mathematical Model Structure

Locations of raw material trajectories, shape of the burden profile, and ratio of ore to coke on the
top of the blast furnace are gained by calculating the charging process. This is important for predicting
the reducing gas distribution and chemical reactions between layers and the gas in the shaft of the
blast furnace. Therefore, combining the mathematical model of the charging with the experience of the
production and radar data, the operation of the blast furnace can be optimized to become more stable
and efficient.

From the raw material in the hopper to the formation of burden layers in the throat of the furnace,
the charging process is decomposed into the trajectory of the burden flow, burden profile, burden layer
structure, and burden distribution evaluation. The four steps are calculated by four models: Burden
flow trajectory model, burden profile model, burden distribution model, and burden evaluation model,
and are shown in Figure 1.

Figure 1. Mathematical model structure.

In Figure 1, after the calculation of the material movement by Newton’s second law, the velocity
of the burden at the hopper exit, velocity of the burden into the chute, and velocity of the burden
leaving the chute tip are obtained successively. Then, based on the inclination angle and rotation speed
of the chute, the trajectories of the raw material after leaving the chute tip are calculated. From the
trajectories and burden profile model, the coordinates of a new burden profile can be calculated based
on the original one. Then, the descent speed of the burden is used to modify the new burden profile
and the modified one is saved in the database. In the next calculation, the modified one is considered
as an original profile and the procedure is repeated. Finally, the ratio of ore to coke in the last two
profiles is obtained and is used as a criterion of evaluation.

2.1.1. Burden Flow Trajectory Model

This part studies the movement of raw material particles and velocities of the material from the
hopper to the trajectory of the burden flow. This part is divided into four sections and is shown in
Figure 2. It includes the velocity of the burden at the hopper exit, velocity of the burden into the chute,
velocity of the burden leaving the chute tip, and trajectory of the burden after leaving the chute tip.

125



Processes 2020, 8, 239

Figure 2. Trajectory of the burden flow passing through the bell-less top.

The raw material flows out from the exit of the hopper in a funnel form, and its velocity (V0) can
be described by the hydraulic formula [22]:

V0 = Q/π(2S/C− di/2)2, (1)

where S, C, di, and Q express the projection area of the throttle valve (m2), circumference of the
throttle (m), average particle size of the burden (m), and flow rate of the burden out the throttle valve
(t/s), respectively.

According to the literature [23], the relationship between Q and A (throttle valve opening) is
as follows:

Ore:
Q = 1× 10−5A3 − 7× 10−4A2 + 0.0366A− 0.5; (2)

Coke:
Q = 3× 10−5A3 − 2.7× 10−3A2 + 0.103A− 1.29. (3)

Before reaching the chute, raw material particles free fall with an initial velocity V0 and collide
with the wall of the downcomer (see Figure 2), causing a loss of energy (velocity), which can be
calculated by the velocity attenuation factor k. Therefore, the velocity of the particles entering the
chute is calculated by:

V1 =
√

k cosα(V02 + 2g(h + b/ sinα)), (4)

where α, h, b, g, and A define the inclination angle of the chute in the vertical direction (◦) (see Figure 3),
height of the downcomer (m), distance from the chute suspension point to the bottom of the chute (m),
acceleration due to gravity (9.81m/s2), and throttle valve opening of the hopper’s exit (◦), respectively.

The particles fall into the chute at the velocity (V1) and are mainly subjected to gravitational
force (F1), supportive force (F2), frictional force (F3), and centrifugal force (F4) as shown in Figure 3.
The applied forces on particles along the chute can be expressed by:

F1 = mg (5)

F2 = mg sinα−ω2lm sinα cosα (6)

F3 = μF2 (7)

F4 = ω2ml sinα (8)∑
F = F1 + F2 + F3 + F4, (9)
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where ω, m, l, and μ express the rotation speed of the chute (r·S−1), mass of the burden (kg), length of
the chute (m), and coefficient of dynamic friction (−), respectively.

Figure 3. Schematic diagrams of the applied forces on the particle flow along the chute.

According to Newton’s second law, the velocity V2 of particles leaving the chute end can be
calculated and it is decomposed into the horizontal velocity Vh, vertical velocity Vv, and tangential
velocity Vt as follows:

V2 =

√
ω2 sinα(sinα+ μ cosα)l2 + 2g(cosα− μ sinα)l + (V1 cosα)2, (10)

Vh = V2 sinα (11)

Vv = V2 cosα (12)

Vt = rω (13)

After leaving the chute end, the burden moves with the velocity of V2 in the throat until it falls
onto the burden surface. In the movement, burden particles are subjected to gravitational force,
buoyancy force, and the drag force of gas. The influence of the latter two forces on the movement of
the burden is very small and is ignored [22]. Therefore, the movement of the burden is treated as a
slant throw movement with gravity, as is shown in Figure 4.

The slant throw movement of particles can be decomposed into two directions: The radius of the
throat (Sr) and the tangential direction of the radius (St). Therefore, the distance of particles from the
center line of the furnace (S) to the falling point of particles with the burden profile can be calculated
by:

Sr = r + (V2 sinα)t (14)

St = ωrt (15)

S =
√

Sr2 + St2 (16)

where r and t are the radial distance from the chute tip to the center line of the blast furnace (m) and
the movement time of particles between leaving the chute tip and reaching the burden profile (S).

When the burden moves below the zero value of the stock line, the vertical distance between
material particles and the zero value of the stock line can be expressed by:

H = h2 − (h0 − h1), (17)

where h0, h1, h2, and H define the distance from the chute suspension point to the zero stock line (m),
distance from the chute suspension point to the end of the chute (m), vertical distance of the material
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after leaving the chute tip (m), and distance between the material and zero value of the stock line
(m), respectively.

Figure 4. The trajectory of the material in the cavity, where h0 is the distance from the chute suspension
point to the zero value stock of the line (m), h1 is the distance from the chute suspension point to the
end of the chute (m), h2 is the vertical distance of the material after leaving the chute tip (m), and H is
distance between the material and zero value of the stock line (m).

2.1.2. Burden Profile Model

After the raw material moves from the chute tip, it is uniformly dumped to the burden surface of
the furnace and forms a new one. For multi-ring charging programs, the material forms a new shape
of the burden surface with several concentric piles. There is a certain width of the burden mass flow,
after the material leaves the chute tip. Therefore, we describe the mass flow by two trajectories: The
main trajectory of the material flow (mass trajectory) and the lower material flow, as shown in Figure 5.

  

Figure 5. Schematic diagram of a new surface formation on an original one, where δ is the repose
angle of the burden. (a) the location of the inner foot B is the intersection of the lower trajectory with
the previous burden profile; (b) the material keeps the repose angle slipping on the inner surface of
the profile.
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Along the radial direction of the furnace, the surface of a new burden profile can be described
by three points as shown in Figure 5: Inner foot B of the pile, outer foot C of the pile, and apex A of
the pile.

When the material settles down on the inner surface of a new pile, the angle of the new pile is
less than the repose angle of the raw material, and the location of the inner foot B is the intersection
of the lower trajectory with the previous burden profile as shown in Figure 5a. When the material
slips on the inner surface of the pile, the inner surface reaches the repose angle of the material and will
keep the repose angle, as shown in Figure 5b. Therefore, more material moves towards the center of
the furnace and the inner foot B is decided by the volume conservation of the raw material. For the
apex A calculation, it is given by the intersection of the main trajectory with the previous burden
profile. The right-side material of the main trajectory falls to the outer side of the apex A and forms the
outer surface of the pile. Because the particles have a velocity component in the radial direction of the
furnace, they roll along the outer surface of the pile for a while. The rolling distance of the material is
constant for different materials and is 0.7 m for coke and 0.5 m for ore [23].

The new burden profile is described by the A, B, and C points along the radial direction as shown
in Figure 6. It is divided into several regions for integration to obtain the volume. Therefore, the new
burden volume is calculated as follows and is equal to the volume of the material in each batch:

V = 2π
∫

( fnew(r) − fori(r))rdr = 2π
∫ ni+1

ni

( fm(r) − fn(r))rdr, (18)

where r, fnew(r), fori(r), fm(r), and fn(r) are the distance from the center line (m), new burden profile
function, original burden profile function, mth burden profile function, and nth burden profile
function, respectively.

Figure 6. Burden volume partition integral.

2.1.3. Burden Distribution Model

Tapping of hot metal and molten slag from the taphole in the hearth as well as combustion
and gasification of coke give the space for the burden to descend in the furnace. The shape of the
layer distribution changes during the descent. Therefore, it is necessary to modify the burden profile
according to the burden descent. In practice, two to four mechanical stock rods are used to measure
the descent of the burden at fixed locations.

According to the measurement, Nishida et al. [24] proposed a velocity distribution of the burden
descent along the radial direction of the furnace (V(r)), which is measured directly by a profilometer
and is a linear assumption based on the measured data. From the velocity distribution, the rate of the
burden descent is slower in the center and faster near the wall of blast furnace:

V(r) = a + br (19)
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a =
R1Vch − 2

3 R0Vrod

R1 − 2
3 R0

(20)

b =
Vrod −Vch

R1 − 2
3 R0

(21)

where V(r) is the velocity component of the burden descent at the radial position r (mm/s), R0 is the
throat radius (m), R1 is the distance of the profilometer from the center line (m), Vch is the average
velocity of the burden descent (mm/s), and Vrod is the descent velocity at the profilometer (mm/s).

The descent velocity of the burden is only vertical in the furnace throat (Vr), and divides into
vertical (Vh) and horizontal (Vr) components in the shaft region as follows:

Vh = V(r) sin β, Vr=V(r) cos β, (22)

where β defines the shaft angle of the furnace (◦).
When different kinds of raw materials are charged into the throat of the furnace, the structure of

alternating layers (ore layer and coke layer) forms. The burden still keeps its layer structure in the
descent. Therefore, the layer structure of the burden can be used to study the distribution of the ratio
of ore to coke and the permeability of the burden in the shaft.

2.1.4. Burden Evaluation Model

In order to gain a reasonable material distribution and help the operation of the blast furnace,
it is necessary to evaluate the distribution of the layers. The particle average size and strength of
coke are much larger and higher than those of sinter. Coke remains in a solid state to 1500 ◦C while
sinter softens and melts below the cohesive zone in the furnace. In the blast furnace, coke has better
permeability than sinter. Therefore, the mass ratio of ore to coke is used to evaluate the burden of the
coke state and is calculated as follows:

KO/C =
ΔMO
ΔMC

=
[ fO(r)n − fC(r)n]ρO

[ fC(r)n − fO(r)n−1]ρC
, (23)

where ΔMO is the mass of the ore layer (kg), ΔMC is the mass of the coke layer (kg), fO(r)n is the
function of ore in the nth layer, and fC(r)n is the function of coke in the nth layer. ρO and ρC are the ore
bulk density (kg/m3) and coke bulk density (kg/m3), respectively.

2.2. Radar Detection Measurement

Rotating radar detection measurement is an integration system, including a mechanical radar
device, signal transmission device, and signal processing system. Two rotating radars are installed on
the top of the blast furnace (see Figure 7). One of them only measures half of the burden surface profile
from the centerline of the furnace to the periphery. They are symmetrically distributed in the top of the
furnace and can detect the full material surface together.

 

Figure 7. Schematic diagram of the radar installation in the top of the blast furnace.
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After a new burden layer has been formed, the two radars are used to get the radar of the full
surface. A combination of the mathematical model and radar data is divided into radar data processing
and mathematical model calculation and is shown in Figure 8. After radar data processing, the burden
profile function is obtained. The burden descent velocity is gained by two methods: The calculation
descent function from the mathematical model and the fitting function of radar data. After the descent
function, the burden profiles will present the layer structure. Then, we can evaluate the burden
distribution through calculation of the ratio of ore to coke.

 
Figure 8. Procedure of the combination of the mathematical model and radar data in a
software implementation.

2.2.1. Radar Data Collection

When a rotating radar works, it rotates around the axis of itself to detect the radial data of
the burden profile. The radial data includes the height and the radius of the burden surface. Dust,
chute shield, and airflow in the throat all interfere with the radar data, producing noise and making
the measurement values deviate from the real ones.

2.2.2. Processing of Radar Data

Radar data were collected from a blast furnace of Nanjing Steel. In order to ensure the accuracy
and authenticity of the data, the K nearest neighbor algorithm was firstly employed to remove the
noise. Then, the Delaunay triangulation algorithm was used to realize the visualization of the 3D
surface. The burden profile takes the average values of multiple coordinates extracted from the data.
After the above processing, 40 group points were selected as the coordinates of the burden profile.
The intersection of the furnace center line and the zero line of the stock line was defined as the origin
of the coordinates. These 40 group points were converted into two-dimensional coordinates of the
burden profiles.

The 40 groups of radar data were treated and stored in a database, which included the radar data
time, burden profile coordinates (x, y), and material type as shown in Figure 9.

 

Figure 9. Radar data structure in the database.

From these 40 group of radar data, burden profiles were extracted and illustrated, as depicted in
Figure 10. The radar data are independent points and discontinuous in the radial direction (red points
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in Figure 10). Therefore, a polyfit regression method was used to find the most consistent curve for
these radar data. This not only retains the characteristics of the radar data but also makes the burden
profile look continuous and smooth.

Figure 10. Radar data calculation of the burden profile function.

When the burden profile function is known, it is modified by the burden descent function.
There are two methods to obtain the descent function: The one from the mathematical model
(Equations (19)–(21)) and the other from the radar data fitting method.

Considering the difference between these two measurements, the descent velocity function can be
calculated by:

Vd =
f (r)n − f (r)n−1

tn − tn−1
, (24)

where f (r)n and f (r)n−1 are the nth burden distribution and the (n − 1)th one after the
descent, respectively. tn and tn−1 define the charging times of the nth and (n − 1)th burden
distribution, respectively.

A polyfit regression method was used to obtain the descent functions show in Figure 11.
The distribution of the descent function is symmetrical at the centerline of the furnace (x = 0). The red
dots in Figure 11 and blue curve express the radar data and the fitted curve, respectively.

 

Figure 11. Method of the burden descent velocity from radar data.

2.2.3. Burden Distribution Calculation

From the above, the function of the burden profile and the function of the descent velocity were
obtained. Then, the type of the charging material is identified by comparing the last batch with the

132



Processes 2020, 8, 239

previous one. If the type is different, radar data are used to calculate the burden profile function.
Otherwise, it is used to calculate the descent velocity and to modify the last material layer. After many
layer calculations, the eburden forms a structure layer by layer as shown in Figure 12. Then, the coke
to ore ratio curve of the burden can be calculated for the last two batches.

 

Figure 12. Burden distribution with layer by layer.

2.3. Parameters of Blast Furnace and Assumptions of Calculation

In order to combine the mathematical model with the radar data for a blast furnace, the relevant
parameters of the charging system are listed in Tables 1–3.

Table 1. Parameters of the bell-less top blast furnace.

Property Value

Throat diameter (mm) 8300
Throat height (mm) 2600

Shaft angle (◦) 84.15
Dc

1 (mm) 4010
Db

2 (mm) 1030
Dz

3 (mm) 4601
1 Distance from throttle to chute suspension point. 2 Distance from the chute suspension point to the chute bottom
plate. 3 Distance from the chute suspension point to the zero line.

Table 2. Parameters of rotating chute.

Property Value

The length of the chute (mm) 3890
Chute speed (r·s−1) 0.133

Coefficient of coke friction 0.758
Coefficient of ore friction 0.638

Velocity attenuation coefficient of coke 0.70
Velocity attenuation coefficient of ore 0.71

Table 3. Physical parameters of raw material.

Property Ore Coke

Bulk density (kg/m3) 1800 550
Repose angle (◦) 31.5 32.5

Considering the influence of the charging parameters, burden distribution properties, and practical
experience of blast furnace operators, the mathematical model combining the radar data was derived
on the basis of the following assumptions [5,23]:
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(1) Velocity of particles after collision with chute can be described by an attenuation factor without
bouncing of particles in the chute.

(2) The chute rotates around the centerline of the blast furnace at any inclination angles with the
revolution speed of 8 ring/min.

(3) There is no size distribution of particles in the raw material. The drag force of particles in the
air after the chute and Coriolis force can be ignored.

(4) Burden is distributed in three dimensions, is uniform around the circumference, and is
symmetrical around the centerline of the blast furnace.

(5) Burden keeps an alternate layer structure during the descent.

3. Application of the Combined Model and Results

3.1. Mathematical Model Test

The trajectory of the burden flow model was used to calculate the material flow path at different
inclination angles of the chute as shown in Figure 13. With the increase of the inclination angle of the
chute, the trajectory moves to the periphery. The drop point for a large inclination angle of the chute is
farther away from the center line of the blast furnace. When the inclination angle of the chute is less
than 15◦, the chute dumps the materials directly to the center of the furnace (called center-charged
burden), which cannot be observed in Figure 13. Figure 14 shows the radial velocity of the burden
descent calculated by the burden decent velocity model (Equations (19)–(21)). The descent velocity
increases with the increase of the distance from the centerline.

Figure 13. Main trajectories of coke flow.

 

Figure 14. Burden descent velocity from the mathematical model.

Based on the parameters of Tables 1–3 and charge matrix of Table 4, the burden distribution of
a multi-ring charging program was calculated by the burden profile model. The results are shown
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in Figure 15. Blue, green, and red lines express the initial material surface, and the ore and coke
surface, respectively. An ore profile with a single ring is shown in Figure 15a. After the full burden
matrix, the burden distribution of a batch of ore and coke can be calculated as shown in Figure 15b.
The structure of multi-batch burden layers (two coke and two ore layers) was calculated by iterative
calculation, as shown in Figure 15c. From the latter, the same type of material has a similar shape and
the apexes of the burden profile move toward the periphery a little during the descent due to the effect
of the shaft angle of the furnace.

Table 4. Charging matrix of a blast furnace.

Chute Angle (◦) 46 44 41.5 39 36.5 15

Coke charging ring number 2 2 2 2 2
Ore charging ring number 3 3 2 2

Figure 15. Burden distribution by a multi-ring charging program based on Tables 1–4: (a) 1st ring
of ore; (b) a full burden distribution of an ore and a coke layer with multi-ring; (c) 2 coke and 2 ore
layers. Blue line: initial material surface. Blue dash-dotted line: wall. Green line: ore layer. Red line:
coke layer.

In order to test the mathematical model, a number of cases are listed in Table 5. A comparison
of the burden distributions for different charging matrixes is shown in Figure 16. Figure 16a shows
burden profiles with central coke when the inclination angle of the chute is 12◦ and the number of
coke rings is 5. Figure 16b shows the burden profile with exactly the same parameters as in Figure 16a
but for four coke rings. Comparing Figure 16a,b, only one ring of coke moves to an angle of 27◦,
which means the central coke becomes thinner and the thickness of the coke layer at an angle of 27◦
becomes bigger. With another ring of coke moving to 27◦ (Figure 16c), the thickness of the central coke
becomes much thinner and the layer becomes much thicker than in Figure 16a. Figure 16d shows the
burden distribution without the central coke and three rings moved to an angle of 20◦. Compared to
Figure 16c, the central coke has disappeared and the layer thickness at an angle of 20◦ becomes bigger
than in Figure 16d. a comparison of Figure 16d,e shows that only a ring of coke moves from an angle of
20◦ to 27◦. Therefore, the only difference between them is that the coke thicknesses at these two angles
are somewhat different. Figure 16f shows the burden distribution with one ring less of coke at an angle
of 27◦ compared to (e). Comparing Figure 16f,g, the burden distribution without two rings at an angle
of 20◦ in the latter yields a thin layer at an angle of 20◦. In Figure 16h, every inclination angle of the
chute decreased by 1◦ except 27◦ for coke. Therefore, the ore layers move toward the center. Figure 17
shows the effect of the ore batch on the burden distribution (a. with ore batch of 63 t and b. with ore
batch of 55 t). When the ore batch decreased from (a) to (b), the ore layer thickness became smaller.
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Table 5. Charging programs with different matrixes to test the mathematical model.

Figure No. Inclination Angle of the Chute (◦) 41 39 37 34 31 27 20 12

a Ore 2 3 3 2 1
Coke 3 3 3 2 2 5

b
Ore 2 3 3 2 1

Coke 3 3 3 2 2 1 4

c Ore 2 3 3 2 1
Coke 3 3 3 2 2 2 3

d
Ore 2 3 3 2

Coke 3 3 3 2 2 3

e Ore 2 3 3 2 1
Coke 3 3 3 2 2 3 2

f
Ore 2 3 3 2 1

Coke 3 3 3 2 2 2 2

g Ore 2 3 3 2 1
Coke 3 3 3 2 2 2

Inclination angle of the Chute (◦) 40 38 36 33 30 27

h
Ore 2 3 3 2 1

Coke 3 3 3 2 2 2

 

Figure 16. (a–h) are the comparison of burden distributions corresponding to the charging matrix of
(a–h) in Table 5.

Figure 17. Comparison of the burden distribution with different ore batches: (a) Ore batch of 63 t; (b)
Ore batch of 55 t.

Figures 16 and 17 shows the test of the sensitivity of the mathematical model. When the number of
burden rings increased, the corresponding thickness of the burden layer increased. When the inclination
angle of the chute changed, the structure of the burden layers changed accordingly. According to the
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conservation of volume, the burden distribution changes with the change of the burden batch. In short,
changes in the inclination angle of the chute, ring of charging, and ore batch will cause corresponding
changes of the layers predicted by the mathematical model.

The burden distribution with the charging matrix of Table 5a is shown in Figure 18a. The ratio of
ore to coke (Equation (23)) is defined by the last two layers and is shown in Figure 18b. The ratio is
zero at the center due to the central-coke layers and has a highest value at r = 1.3 m at the inclination
angle of the chute of 31◦.

Figure 18. (a) Burden distribution; (b) ratio of ore to coke from (a) case.

3.2. Combination of the Mathematical Model and Radar Data

Radar data can work together with the mathematical model to support and guide the operation of
blast furnace charging. Therefore, it is necessary to compile them into a visual interface. Based on
the charging parameters and radar data from a plant in East China, a 2D simulation software of blast
furnace charging was developed. The model was programed in Python and the visualization code was
provided by JavaScript to give a friendly web interface.

A cloud map drawn by radar scanning data is shown in Figure 19a. Radar scanning data includes
many points in an interval. After noise removal and feature extraction in the interval, 20 relatively
stable points (green curve) were obtained. These points were used to calculate the burden distribution
by the burden distribution model. The calculated burden layers’ structure is shown in Figure 19b.

 

Figure 19. Burden profile: (a) Burden profile from radar data; (b) Burden profile from the mathematical
model combined with radar data.

In order to display the radar data and the results of the mathematical model, we designed a
user-friendly operator interface. Its main functions are shown in Figure 20. After logging into the
software (Figure 20a), the left column is the function menu of the software. A column is designed
to enter the parameter settings of the furnace in Figure 20b and includes blast furnace parameters,
chute parameters, raw material properties parameters, charging matrix, and so on. The burden
distribution display is the main page of the software and is drawn out by Echarts after radar data
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processing in Figure 20c. After noise removal and feature extraction, the radar data combined with the
mathematical model illustrate the structure of the material layers. The burden descent velocity and
ratio of ore to coke are also drawn in the main interface. In addition, the system parameters of the
radar are also monitored, such as the chip temperature, nitrogen temperature and nitrogen flow rate,
valve pressure in radar system, and liquid flow rate.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 20. Visualization of our software by the combination of the mathematical model and radar data:
(a) Software login interface; (b) Parameter setting interface; (c) Burden distribution display and radar
data monitor; (d) User management interface.

In order to guarantee the security of the data and analyze the data of different users and different
furnaces, a user management system was designed for user administration, as shown in Figure 20d.

4. Conclusions

The charging of the blast furnace directly affects the burden distribution in the throat,
which influences the gas distribution in the shaft of the furnace. Adjusting the charging can
improve the distribution of gas flow, increase the gas utilization efficiency, reduce energy consumption,
and prolong the life of the furnace.

In this paper, with the help of computer technology, a mathematical model of the charging system
was developed, composed of the trajectory of burden flow, burden profile, burden layer structure,
and burden distribution evaluation. Serial cases were used to test the mathematical model’s sensitivity.
After noise removal and feature extraction, radar data of the burden profile was combined with the
mathematical model to improve the accuracy of the model. A 2D view was obtained by combining
the mathematical model and the radar data to visualize the charging, burden distribution, radar data,
mathematical model, and relative equipment state. Based on the data from a blast furnace, the software
was found to be more consistent than the present state-of-the-art tools used at the plant and ran
smoothly to help the operation of the furnace.
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Abstract: In the bottom region of blast furnaces during the ironmaking process, the liquid iron and
molten slag drip into the coke bed by the action of gravity. In this study, a practical multi-interfacial
smoothed particle hydrodynamics (SPH) simulation is carried out to track the complex liquid
transient dripping behavior involving two immiscible phases in the coke bed. Numerical simulations
were performed for different conditions corresponding to different values of wettability force
between molten slag and cokes. The predicted dripping velocity changes and interfacial shape were
investigated. The relaxation of the surface force of liquid iron plays a significant role in the dripping
rate; i.e., the molten slag on the cokes acts as a lubricant against liquid iron flow. If the attractive force
between the coke and slag is smaller than the gravitational force, the slag then drops together with
the liquid iron. When the attractive force between the coke and slag becomes dominant, the iron-slag
interface will be preferentially detached. These results indicate that transient interface morphology is
formed by the balance between the momentum of the melt and the force acting on each interface.

Keywords: ironmaking blast furnace; coke bed; trickle flow; molten slag; liquid iron; SPH

1. Introduction

An efficient trickle flow of high-temperature melts in coke beds is necessary in ironmaking blast
furnaces, as it ensures a smooth continuous process, which is a prerequisite for high productivity in
operations that use lower amounts of reducing agents. The trickle flow is driven by the gravitational
force that acts on the liquid iron and molten slag (two immiscible liquids), and the dripping behavior
is balanced by viscous and interfacial forces. When the volume of the high-strength coke, which acts as
a spacer in the lower part of the blast furnace, is reduced, the resistance to the melt passage increases,
which can cause instability. It is, therefore, essential to maintain a desired trickle flow through the coke
bed to prevent clogging problems that may occur if the pressure drop in the bed becomes excessive or
shows large variations. This approach emphasizes the need to understand the dripping behavior of
the two liquids in the coke bed.
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Over the years, liquid flow in blast furnaces has been investigated experimentally and
mathematically. Several studies focused on the volume fraction of the liquid in the packed bed, called
“liquid hold-up”, and the effect of various in-furnace conditions, including the physical properties of
the liquid and the wettability of coke. The relationship between hold-up and dimensionless number has
been determined by applying an experimental system using room temperature media [1–3] or actual
melt [4–6]. Since the hold-up of CaO-SiO2-Al2O3-based molten slag (>1773 K) is significantly affected
by the wettability of coke [7], several experimental studies have been conducted on the static contact
angle between molten slag and “carbonaceous material” [8–10]. The molten slag wetting behavior
relatively depends on the carbonaceous material substrate, i.e., not only the equilibrium contact angles
but the periods to reach a stable contact angle vary considerably. If basicity (CaO/SiO2 mass %) ≤ 1, the
decrease in the contact angle with time as the basicity decreases is generally attributed to the formation
of interface product SiC [11], but the change in the state of the Fe-Si-C system is still unclear because
this change depends on the Si form (which may exist in a gaseous form). In investigating coke-slag
wettability, the differences in small amounts of components (such as FeO and MgO) in slag and the
differences in the specific properties (such as crystal structure and void structure) of carbonaceous
substrates should be considered.

Computational fluid dynamics (CFD) is useful for understanding this phenomenon. The advantage
of this approach is the precise tracking of time-varying fluid interfaces, which is difficult to observe
experimentally. Most recent CFD studies demonstrate that, with regard to the wettability of the packed
bed, the geometry of the bed has a significant effect on the interface dynamics, leading to the co-existence
of complex interfaces; thus, the change in wettability leads to various interfacial movements that
are unidentified under static conditions. Molten slag flow in a packed coke bed was investigated by
using the three-dimensional combined discrete element method (DEM) and CFD [12–14]. A series of
two-dimensional [15,16] and three-dimensional [17] high-resolution direct numerical simulations were
also conducted with the aim of understanding the pore-scale fluid dynamics. Although the two-liquid
flow in packed beds has received attention but usually focused on room temperature media [18,19],
there is no guarantee that the information available from the water-oil-rock system can be applied to
the slag-iron-coke system in blast furnaces. For example, the density difference between iron and slag
(≈4000 kg/m3) is considerably higher than that of water and oil (≈200 kg/m3) [20]. It is essential to
evaluate the interfacial force in an unsteady condition under the condition where the momentum in the
gravity direction appears. CFD studies have been conducted for such cases. The phase field modeling
for the behavior of molten slag confirmed that the increment of the interfacial tension between liquid
iron and molten slag was the driving force of the molten slag separation from the melt [21]. Using
the volume of fluid simulation, the driving force of the liquid iron penetration into the coke bed was
proposed due to the total energy reduction by extending the area covered with the liquid iron [22]. On
the other hand, the fully Lagrangian approach, which can track moving calculation points, has been
adopted for solving multi-fluid physics problems during high-temperature metallurgical processes
with complicated interfaces [23,24]. The smoothed particle hydrodynamics (SPH) method discretizes
a continuous fluid phase by moving particles and is suitable for analyzing interfacial flow, even for
numerous dispersed phases. This method can track the dripping flow [25], the movement of both
the gas and the liquid phase [26], fluid flow in bed structures having different shapes (coupled with
multi-sphere DEM) [27,28], and solid particle penetration into the liquid iron bath [29,30] directly.
Recently, with the increase in computer capacity, the SPH method has been applied to very complicated
interface problems [31]. For convenience, surface forces are converted into body forces in the SPH
method, but recent expansions in computer capacity have alleviated this weakness. In this study, the
trickle flow of a liquid iron and molten slag was simulated in the lower part of the blast furnace, and
the effect of the wettability of molten slag and coke was investigated.
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2. Methods

2.1. Basic Formulation of SPH

From the basic idea of SPH, it is evident that fluid motion is represented using a set of particle
motion equations. A kernel function is introduced as an integral interpolation to solve a differential
equation. In other words, the formulation is based on an interpolation scheme that allows the
estimation of a vector or scalar function f at position r in terms of the values of the function at the
discretization points.

f (r) �
∫

f (r′)W(r, h)dV (1)

In Equation (1), r denotes arbitrary coordinates, r′ denotes particle positions, V denotes the volume,
W is the smoothing kernel function, and h is the radius of influence. The summation of function
f can be replaced with a summation over particles only within the distance h from ri owing to the
compactness; thus, W

(
ri j, h

)
= 0 when

∣∣∣ri j
∣∣∣ > h. The kernel must possess a form symmetrical to

∣∣∣ri j
∣∣∣ = 0.

Here, i is the particle index, and j is the index of the neighboring particle around i. The kernel has at
least a continuous first derivative and must satisfy the normalization condition as

∫
W

(
ri j, h

)
dr = 1.

Within the h → 0 limit, the kernel is required to reduce to a Dirac delta function δ
(
ri j

)
. Wendland’s

kernel can be applied to prevent having various kernel artifacts in a multiphase system [32]:

W
(
ri j, h

)
=

21
16πh3

⎧⎪⎪⎨⎪⎪⎩
(
1− q

2

)4
(2q + 1), q < 2

0, q ≥ 2
(2)

where
∣∣∣ri j

∣∣∣
0 is the interparticle distance corresponding to the initial conditions, q =

∣∣∣ri j
∣∣∣/h, and it is

assumed that h = 1.05
∣∣∣ri j

∣∣∣
0 [27]. The gradient form of Equation (1) can be represented by using the

divergence theorem as follows:

∇ f (r) � −
∫

f
(
r
′)∇W(r, h)dV (3)

When applying this approximation to dispersed fluids, the discontinuities in the density
distribution of the fluids become significant, which increases numerical errors. Nonuniform distribution
or insufficiency of particles in the regions near the interface results in a significant fluctuation of
pressure. The moving least squares (MLS) method is useful for approximating the function to solve
this problem [33], which is related to the numerical fluctuations in the pressure at the nearby interface.
The pressure is a function of the local density, and thus, the smooth density field of a bulk phase leads
to a continuous pressure distribution. The MLS method improves the mass-area-density consistency
and filters small-scale pressure oscillations, as described briefly in the following section.

2.2. Density Approximation

The SPH formulation can be transformed into a particle-based format to express the
mass-area-density consistency process. The density of the particles was expressed in terms of
the sum of the kernel functions of the N particles present within the radius of influence as follows:

ρi =
N∑

j=1

mjW
(
ri j, h

)
(4)
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where the subscripts i and j denote the particle indices, m is the mass, and ρ is the local density around
the particle. Further, mj is the mass of particle j. Therefore, the kernel function around particle i can be
discretized using the following equation, which is derived from Equations (1)–(3):

fi(r) =
N∑

j=1

mj

ρ j
f
(
r j
)
W

(
ri j, h

)
(5)

The gradient of fi can be represented as expressed in Equation (6):

∇ fi(r) = −
N∑

j=1

mj

ρ j
f
(
r j
)
∇W

(
ri j, h

)
(6)

MLS involves a first-order consistent gradient approximation, which allows pressure smoothing,
and its first derivative values are obtained using the method for the homogenous bulk phase mentioned
above. The method of the least square interplant with constraint condition (CLS) represents an
improved scheme, leading to a more accurate approximation than the MLS method around the
sampling points [33,34]. In the CLS method, the particles can be made to directly represent a physical
quantity by extending the MLS method in the one-dimensional error space for multiple dimensions. In
the three-dimensional space, the CLS method approximates the values of various physical parameters
around the particles based on the following equation:

〈
ρ
〉

i = a0 + a1(x− xi) + a2(y− yi) + a3(z− zi),
where, x, y, and z are the coordinates of the sampling points and a0, a1, a2, and a3 are the undetermined
coefficients. If x = xi, y = yi, and z = zi, then

〈
ρi

〉
= a0 at particle i. Refer to a previous report for

parameters determining the procedure [26].

2.3. Fluid Motion Equation and Discretization

The governing equations for a weakly compressible viscous flow are based on the relationship
between the velocity of sound and the flow density under adiabatic conditions, as well as the
Navier-Stokes Equations: (

Dp
Dρ

)
S
= c2 (7)

ρ
Dv

Dt
= −∇p + μ∇2v + ρ+ Fs (8)

where v is the fluid velocity, p is the pressure, c is the velocity of sound, μ is the viscosity, and Fs is the
interfacial force. Subsequently, Equation (8) can be formulated for each particle as follows:

mi
Dvi
Dt

= −
N∑

j=1

(〈
p
〉

iV
2
i +

〈
p
〉

jV
2
j + Πi j

)
∇Wij +

N∑
j=1

2μiμ j

μi + μ j

(
Vi

2 + Vj
2
) ri j∣∣∣ri j

∣∣∣2 vi j∇Wij + mig + 〈Fs〉i (9)

where Π is the artificial viscosity term, which is usually added to the pressure gradient term to help
in diffusing sharp variations in the flow and dissipate the energy of the high-frequency term [35].
To determine the time derivative of pressure from Equation (7), Tait’s equation of state can generally
be used [28]: 〈

p
〉

i =
c2ρ0

γ

{(
ρi

ρ0

)γ
− 1

}
(10)

where γ (= 7.0) is the adiabatic exponent and ρ0 is the true density value of the material. Considering
the balance of the time step and the incompressible behavior of the artificial compressible fluid, an
optimal value for c must exist.
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2.4. Interfacial Force Model

Considering the interfacial force Fs, the interparticle potential force is defined using the space
derivative of potential E

(∣∣∣ri j
∣∣∣). Fs is localized at the liquid interface by applying it to the liquid elements

in the transition region of the interface. The force per unit area 〈Fs〉i is then converted into force per
unit volume using the expression [36]:

〈Fs〉i = −2σi
∣∣∣ri j

∣∣∣
0

2

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

E
(∣∣∣ri j

∣∣∣)
⎞⎟⎟⎟⎟⎟⎟⎠
−1

·
N∑

j=1

∂E
(∣∣∣ri j

∣∣∣)
∂r

ri j∣∣∣ri j
∣∣∣ (11)

where σi is the surface tension or interfacial tension of particle i. The Fowkes hypothesis is considered
in calculating the interfacial force on the multiphase boundary [37]. The Fowkes hypothesis explains
that, in a system in which two immiscible liquid phases (liquid iron and molten slag) are in contact, the
elements present at the two-phase interface are subject to forces. At the interface between liquid iron
and molten slag, liquid iron interface elements receive the attractive force σm equivalent to the “surface
tension” of liquid iron and the dispersion force σD from molten slag. The force acting on the interface
elements of the molten slag can be described similarly. Hence, the interfacial tension σms is expressed
as follows:

σms = σm + σs − 2σD (12)

This simple hypothesis indicates that the unknown dispersion force and interfacial tension can
be calculated explicitly by applying the surface tension as the input and the interfacial tension of the
two liquid phases in contact as the conditions. An immiscible blend of liquid iron and molten slag
contacting the coke plate is considered, as illustrated in Figure 1. In terms of the tension balance on
the solid-gas-liquid triple line in which liquid iron, coke, and gas are in contact with one another,
the surface tension σm of the liquid iron, surface tension σc of the solid phase, and the solid-liquid
interfacial tension σmc are assumed to be balanced by the contact angle θm. In other words, Young’s
equation reflects a horizontal balance among the interfacial tensions: σm cos θm + σmc = σc. Here, the
unknown solid surface tension and the solid-liquid interfacial tension are eliminated from Young’s
and Fowkes’ equations to obtain the following equation:

cosθm = 2
σD

σm
− 1 (13)

Figure 1. Two liquid droplets in contact on a flat, solid surface. These forces balance one another.

Equation (13) indicates that θm is determined by the surface tension of the liquid phase and the
dispersion force acting between the different phases. The dispersion force is explicitly defined by
this equation, and the static contact angle can be calculated using the potential interparticle model.
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Furthermore, considering other triple lines, such as that existing between the molten slag, the solid,
and the gas, and that between the two liquid phases and the solid, the following equation is obtained:

cosθms =
σm

σms
cosθm − σs

σms
cosθs (14)

In Equation (14), θs is the contact angle between the molten slag and solid plate, and θms is the
contact angle between the two liquid phases and the solid plate. This equation indicates that the liquid
iron-molten slag-solid contact angle θms is represented by the contact angles θm and θs.

2.5. Physical Properties of Liquid Iron and Molten Slag

The condition of the lower part of the blast furnace was examined to determine the physical
properties of liquid iron (ρm, μm, and σm) and molten slag (ρs, μs, and σs). Assuming that the molten
iron at the lower part of the blast furnace has a sufficiently low oxygen concentration and is in a
carbon-saturated state, the molten iron can be regarded as chemically stable at 1773 K. Hence, it can
be assumed as follows: ρm = 6800 kg/m3, μm = 0.01 Pa s, and σm = 1.25 N/m [38]. The contact angle
between carbon-saturated iron and coke is reported to exceed 120◦. However, the physical properties
of molten slag vary over a wide range. The typical slag composition in the dripping zone depends on
the CaO-SiO2-Al2O3-MgO system at 1773 K; the basicity (CaO/SiO2 mass %) ranges from 0.7–2.0 and
decreases as the slag descends in the furnace. When the slag contains MgO, the reduction of MgO may
proceed preferentially over that of SiO2, thereby influencing the wetting behavior of the molten slag on
the coke substrate [8]. In this study, the liquid phase composition was considered as the simplest 40
mol% CaO-40 mol% SiO2-20 mol% Al2O3-0 mol% MgO slag, in which the physical property data were
assumed in a single phase at a constant temperature of 1773 K. Since the physical properties of molten
slag exhibit large deviations among the reported values, typical datasets from the same research group
are adopted [39,40]: ρs = 2574 kg/m3, μs = 0.53 Pa s, and σs = 0.49 N/m. According to a previous
study, there is no agreement on the contact angle between the CaO-SiO2-Al2O3-based molten slag
and the carbonaceous material. On one hand, the contact angle decreases when CaO/SiO2 � 1 [11,41];
on the other hand, the contact angle remains constant at approximately 160◦ in the case of graphite,
regardless of the basicity [10]. These differences are thought to be due to the different compositions of
the carbonaceous material. The change in these contact angles might be due to the reduction reaction
of SiO2 between the carbonaceous material and molten slag, as well as the formation of SiC as the
interfacial product because an initial contact angle of 45◦ between SiC and the slag was reported [11].
Therefore, in this study, the contact angle between the molten slag and coke was defined by taking θm

= 160◦ for low-reactivity interface and θm = 30◦ for high-reactivity interface [8,10].

2.6. Calculation Condition

Detailed packed-bed-structure digital data consisting of multiple coke samples was constructed
to simulate the lower part of the blast furnace. Assuming that the coke distribution was just above
the raceway, representative coke samples with an average equivalent spherical volume diameter
D = 0.0247 m was selected [42]. By using a three-dimensional scanning technique [26], 100 pieces
of representative coke three-dimensional surface shape dataset were numerically obtained. About
300,000 surface points on each coke sample were obtained with a minimum resolution of 0.43 mm.
The obtained coordinates were converted to standard triangulated language, and the surface shape
was polygonal with a triangular mesh. The natural packed structure comprising these particles can
be obtained by a DEM-based scheme. The basic format of the DEM is to track spherical particles.
Multi-sphere (MS) DEM is a method utilizing a DEM contact force model that is expanded to handle
the motion of freely shaped solids. It arrays spherical particles and expresses complex shapes to enable
intuitive mounting. The position and rotation angles of each coke sample were determined by using a
pseudorandom number, and the packed bed structure was determined by the MS-DEM simulation of a
box-type container with 0.12-m sides, similar as a previous report [43]. Next, two immiscible liquids
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with a 0.12-m width and 0.02-m height were placed immediately above the packed bed to simulate
the liquid iron-molten-slag trickle flow in the coke-packed bed. Position of liquid iron and molten
slag was determined by using a pseudorandom number. The volume ratio was set as 8:2 to achieve
the conditions similar to that of the actual operation. In SPH simulations for multi-phase flow that
include a gas, the pressure differential becomes large between liquid and gas, and, consequently, the
pressure gradient becomes excessive, thus making convergent calculation difficult. Therefore, in this
research, a gas phase is assumed to exist in spaces where particles do not exist. The calculation domain
is depicted in Figure 2. The well-known Courant–Friedrichs–Lewy condition was applied to determine
dt. In this study, a calculation particle diameter dp of 1.00 mm was adopted as a constant value in all
calculation processes. Thus, the following values were determined: dt = 1.0× 10−5 s, the analysis time
is 10 s, and the number of total particles is 1,402,280. All the programs were coded by the author. Each
computer code was written in Fortran 90/95 and compiled and executed by an Intel Fortran compiler
on a Windows system. The CPU used in this work was Intel Core i7-7820 × (3.6 GHz, 8 cores). A basic
parallelized algorithm was applied using a multi-core processor and OpenMP. Simulation time was 1
week or more.

Figure 2. Schematic diagram of initial conditions: (a) three-dimensional view and (b) horizontal view
of packed structure and liquid iron and molten slag.

3. Results

Figure 3 shows the temporal change in the three-dimensional distributions of the liquid iron (blue
color) and molten slag (green color) as a result of the model calculation. The packed bed structure
formed by irregularly shaped cokes is geometrically complex, and the liquid iron flow through the
continuous void drops in the form of strings or droplets. From the viewpoint of localized flow behavior,
several regions do not receive any flow, and it is assumed that liquid iron flows only through the
limited region. However, the flow behavior of liquid iron is influenced by the presence of slag with
different coke wettability, as shown in Figure 3b,c. As shown in Figure 3b, for a coke surface with poor
wettability containing molten slag, the molten slag drops along with the liquid iron. However, the coke
surface with good wettability shown in Figure 3c retains molten slag at the upper part of the packed
bed owing to a high attractive force acting against the molten slag.
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Figure 3. Liquid iron and molten slag distributions on vertical cross-sections of a coke bed. (a) Without
slag, (b) θs = 160◦, and (c) θs = 30◦.

Figure 4 shows the volume distribution of liquid iron and molten slag in the height direction at t
= 0.20 and 1.20 s. In Figure 4a, liquid iron almost has the same distribution at t = 0.20 s, irrespective of
the presence of slag and the change in θs. Conversely, at t = 1.20 s, the liquid iron with slag exists at a
lower height compared to “without slag” iron. In the region shown in (a-1), liquid iron is concentrated
regardless of θs, and in the region shown in (a-2), liquid iron is concentrated when θs = 30◦. In
Figure 4b, molten slag exists at a lower height when θs = 160◦ than that at 30◦. The attractive force
due to the wettability of the coke surface prevents slag from dripping in the direction of gravity. This
change in wettability affects the flow form of the liquid iron shown in (a-1) and (a-2). It is necessary
to determine the time change of each melt velocity to consider the dripping mechanism leading to
this result. The average velocity in the gravitational direction per unit time is given, considering the
temporal change in the center of gravity of each phase, as follows [44]:

vz =
1

VΔt

∫
(ri,t+Δt − ri,t)dV (15)
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Figure 4. Dripping profiles of liquid iron and molten slag. Calculation domain of coke bed was divided
into 34 control volumes in the height direction (Δz = 0.005 m), and the profiles were derived by counting
the number of liquid particles existing in each control volume as time passes.

Figure 5 displays the average velocity of each melt. At t > 0.5 s, the liquid iron almost reaches a
steady state and almost corresponds to the flow at the lower part of the blast furnace presented by
Sugiyama et al. [45] and also appears to follow the Darcy-type equation. From a detailed perspective,
however, the liquid iron tends to increase the dripping rate because of the presence of slag. Moreover,
the velocity of liquid iron is affected by the wettability between the slag and coke. The angle θs = 30◦
yields the maximum liquid-iron velocity within range (A); in contrast, θs = 160◦ represents the
maximum velocity in region (B). This reversal occurs at t = 0.31 s. As observed from Figure 4, the liquid
iron dripping rate is higher than that of molten slag. Due to the difference in density between the two
melts, the gravitational force of liquid iron was 2.7 times higher than that of molten slag. As molten
slag has a high viscosity and low density, it appears that it prevents liquid iron from descending.
However, when θs = 30◦, the coke bed surface is wet by slag immediately and facilitates the sliding
of the liquid iron. With time, this “lubrication” by molten slag is lost, because the liquid iron moves
below the molten slag. When θs = 160◦, the effect of wetting becomes weak, and the molten slag drips
along with the liquid iron. Thus, the “lubrication” between the molten slag and liquid iron remains on
the coke surface. Since the molten slag drops slowly, owing to the 0.37 times density and 53 times
viscosity coefficient of the liquid iron, these observations appear as slight differences.
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Figure 5. Time variations in the mean dripping velocity. These profiles were obtained using a space
integral by considering the center of gravity of all the droplets each time.

The variation in the wettability between the coke and molten slag modifies the interfacial area
between the four-phase iron-slag-coke-gas by the following mechanism. When some droplets are
dispersed in the system under isothermal conditions, the Helmholtz free energy, F =

∑
σi jAi, of the

system increases. Since the potential energy corresponding to the flow of the liquid iron droplets
through the packed bed is equal for each case, the kinetic energy corresponding to the secondary
droplet formation may be the same for all the conditions. However, the total energy in the system is
not conserved due to the viscous damping from this calculation, but it is useful to clarify the effect of
wettability between the coke and slag on the interfacial area of each phase. As our interest is focused on
the effect of wettability between the slag and coke on the interfacial energy of each phase, the interfacial
area for each phase should be estimated. The main advantage of the SPH method is its rapid prediction
of the interface area A from its initial condition A0 and the interface-judged particle number n.

A(t) �
n(t)
n0

A0 (16)

A0 is geometrically determined from the initial conditions. In this study, the free surface of the
liquid iron and slag are 0.04992 and 0.01248 m2, respectively, and the initial iron-slag interface area is
0.02110 m2. See Section 2 and a previous report [46] for the counting procedure of n. Figure 6 depicts
the time change of the estimated interfacial area of each phase. At t = 0.1 s, the melt penetrates the coke
bed, and both interfacial areas significantly vary simultaneously. In Figure 6a, for “without slag” liquid
iron, the initial iron-gas surface area is significantly different from that of “with slag”, but the area
becomes almost equal to other conditions at t = 0.1 s. The case of θs = 160◦ sometimes indicates a larger
iron-gas surface area than that of “without slag”, because the iron slides down first and forms a contact
interface at a lower height. Beyond t = 0.1 s, “without slag” iron has the lowest iron-gas surface area.
This behavior can be explained as follows. As shown in Figure 6b, since the liquid is not affected by
molten slag in “without slag” liquid iron, the iron-coke interfacial area significantly increases compared
to that of “with slag” at t > 0.1 s; in other words, the iron-coke interface decreases with the presence of
the molten slag. From Figure 6c, although the iron-slag interface area has a larger value at θs = 160◦
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than at θs = 30◦, the slag-coke interface area exhibits the opposite trend, as observed in Figure 6d.
Since the coke surface with good wettability is covered with slag, it will likely increase the contact
area between the free surface of the slag and iron-slag in a static state. In the case of θs = 160◦, the
slag drops with the liquid iron due to gravity. This dripping occurs because the attractive force acting
between the coke and slag is less than the gravitational force. However, for θs = 30◦, the attractive force
acting between the coke-slag interface dominates, and the iron-slag interface is preferentially detached.
Here, the effect of momentum in the direction of gravity appears. Since a “quasi-stable” interface is
formed by the balance between the melt momentum and the force acting on each interface, the state
predicted by the equilibrium theory is not always achieved during dripping [47]. This result indicates
that static hold-up of the molten slag may promote the smooth dripping of liquid iron, as variations
in the wettability between the coke and slag transiently change the flow field of the liquid iron. It
emphasizes the distinctive interfacial features that can depend on interactions with the wettability
of nonuniform packed cokes and the transient behavior of two melts. In the future, the calculation
region of this model can be expanded and the model may be applied to continuous dripping, and the
application of the model can also be extended to the entire bottom of the blast furnace.

Figure 6. Time change of estimated interfacial area between each phase.

151



Processes 2020, 8, 221

4. Conclusions

Numerical simulations using a multi-phase SPH method were performed on two immiscible
high-temperature melts dripping through a coke-packed bed during an ironmaking blast furnace
process, namely, a binary trickle flow in which liquid iron and molten slag dripped simultaneously.
The advantage of this method is the direct estimation of the transient three-dimensional behavior of
multi-phase flow based on body forces considering the force acting between different phases, including
complex dispersed phases. The present detailed analysis helps in the rationalization of the unexplained
transient behavior of liquid iron and molten slag presented by previous experiments. In particular, the
effect of coke surface wettability for molten slag on binary trickle flow was investigated.

The flow behavior of liquid iron is influenced by the presence of slag in coke surfaces with different
coke wettability. If the coke surface has poor wettability and contains molten slag, the molten slag
drops along the molten iron. However, a coke surface with good wettability retains molten slag owing
to a higher attractive force acting between the coke and slag rather than an interfacial force of attraction
acting between the iron and slag. Although the molten slag dripping rate is lower than that of the
liquid iron because of high viscosity and low density, the coke bed surface is wet by slag immediately
and facilitates the sliding of the liquid iron. These results demonstrate that the static hold-up of molten
slag may promote the smooth dripping of liquid iron. As predicted by novel findings presented in this
study, when the low reducing agent ratio operation is realized, increases in the amount of liquid iron
and molten slag passing through a unit volume of coke bed finally influence the amount of stagnant
melt behavior in the coke bed through a mechanism in which the descent velocity of each melt depends
on coke-slag wettability. Through this analysis, the mechanism underlying the simultaneous trickle
flow of liquid iron-molten slag behaviors, as described in conventional research, can be explained from
a unified point of view.
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Abstract: The blast furnace campaign length is today usually restricted by the hearth life, which is
strongly related to the drainage and behavior of the coke bed in the hearth, usually referred to as
the dead man. Because the hearth is inaccessible and the conditions are complex, knowledge and
understanding of the state of the dead man are still limited compared to other parts of the blast
furnace process. Since a number of publications have studied different aspects of the dead man
in the literature, the purpose of the current review is to compile the findings and knowledge in a
comprehensive document. We mainly focus on contributions with respect to the dead man state,
and those assessing its influence on the hearth performance in terms of liquid flow patterns, lining
wear and drainage behavior. A set of common modeling approaches in this specific furnace area
is also briefly presented. The aim of the review is also to deepen the understanding and stimulate
further research on open questions related to the dead man in the blast furnace hearth.
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1. Introduction

The blast furnace (BF) route still remains the dominant one in the production of liquid iron, which
is the primary raw material for large-scale steelmaking. In recent years, the trend has been to construct
larger furnaces and close small and inefficient ones. Along with the growth of furnace size, more liquid
iron and slag are also stored in the BF hearth, and problems of draining and wear are encountered more
frequently in the practical operation. Furthermore, due to tougher global competition, the furnace
campaign lengths should be extended, and the furnace body should withstand operation under
production rates that vary with the market conditions. It is today commonly recognized that drainage
and wear problems in the hearth region play the key role in determining the BF campaign life [1].

Both practical and theoretical investigations have revealed that most of the draining and wear
problems in the hearths of large furnaces are related to the state and behavior of the porous coke
beds that fill them, i.e., the dead man. In order to fully utilize the potential of large BFs in terms of
high productivity and lower unit costs of production, it is of considerable significance to understand
the governing mechanisms of the dead man behavior in the BF hearth. However, knowledge and
information about the dead man are still severely limited, mainly due to the fact that the hearth is the
most inaccessible part of the BF, lacking direct measurements. Nevertheless, a number of publications
related to or addressing different aspects of the dead man can be found in the literature. The purpose
of the current brief review is to summarize these results in a comprehensive document, where the
main emphasis is put on presenting contributions shedding light on the dead man state and assessing
its influence on BF hearth performance, with respect to liquid flow patterns, hearth lining wear and
drainage behavior. The basic modeling approaches used in the analysis are also briefly treated.
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2. Investigations and Modeling of the Dead Man

The internal state of the BF, as schematically illustrated in Figure 1, has been gradually revealed by
extensive dissection investigations [2,3], which confirmed that there exists a stagnant column of coke
particles in the lower part of the furnace. The stagnant column, where coke particles move downwards
with a highly reduced velocity, was called “dead man” because it was earlier assumed to exert negligible
influence on the whole ironmaking process [4]. However, this assumption was later been found to be
incorrect. As a matter of fact, it is nowadays commonly believed that the dead-man state significantly
affects the gas and liquid flows in the BF lower part, which, in turn, determine the temperature distribution
within the hearth, the liquid drainage, as well as wear of the hearth lining [5]. In addition, the dead man
appears to be rather “active” since it is usually claimed to have an average porosity of ε = 0.3− 0.5 [2],
and can be renewed in periods varying between a few days and some weeks.

Figure 1. Schematic vertical cross-section of the ironmaking blast furnace and its hearth.

2.1. Structure and Renewal of the Dead Man

As depicted in Figure 1, the dead man is located under the active coke zone beneath the cohesive
zone. The upper part of the dead man, which is in the region between the raceways, is cone-shaped
with a rounded top. The inclination from the apex of the dead man to the raceway plane is usually
claimed to be associated with the repose angle of the coke particles that are charged [6], but also other
factors (e.g., charging pattern [7], gas and liquid flow rates) may influence its state. Traditionally,
the solid flow has been studied via small-scale experiments, but along with the emergence of more
efficient software and hardware, it has recently become feasible to study the dead man formation and
the flow of coke in the hearth via the Discrete Element Method (DEM).

The lower part of the dead man is in the region of the hearth where liquid iron and slag dripping
from the cohesive zone accumulate before they are tapped out intermittently. Thus, the lower part
of the dead man is submerged in a bath of liquid iron and slag, and is thus subjected to a buoyancy
force that depends on how deeply the coke is submerged in the two liquids. Because of this, it is
not straightforward to deduce the bottom shape and position of the dead man, especially taking into
account the dynamic changes in the liquid levels during the tap cycle, as well as other operation
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variables that may affect or interact with the buoyancy force. In principle, the bottom shape and
position of the dead man can be estimated by balancing the forces acting on the dead man, whereby
the buoyancy force (often) varies with the liquid levels. A majority of the studies on the estimation of
the dead man bottom shape and position are summarized in a separate subsection. In this context, it
should be mentioned that some authors use the term dead man only referring to its lower part (i.e.,
the region below the tuyere level), while others use the broader definitions used above (cf. Figure 1).

In the upper part beneath the active coke zone, the renewal of the dead man is relatively fast due
to the short distance to the raceways where coke is intensively consumed. It has been clarified that
there exists a small quasi-stagnant region in the center of the active coke zone where the coke particles
descend slowly towards the raceways. Therefore, the dead-man porosity (and permeability) can be
improved by feeding high-quality coke into the BF center [8–10]. It was also reported that the dead
man can be lifted with a sufficient buoyancy force, and the coke right beneath the tuyere level can be
“pushed” into the raceways. Renewal thus occurs as the “old” particles are forced to go out of the dead
man and “new” particles enter to fill the voids through the upper surface of the dead man [11–15].
In the lower part, especially below the taphole level, it is, however, difficult for the coke to flow
upwards into the raceways. Various other renewal mechanisms have been presented and the prevailing
ones include FeO reduction, carbon solution loss and carbonization of liquid iron [16–20]. Data from
a radioactive tracer test indicated that coke in the peripheral region within the hearth is consumed
in 2–3 days, due to a more intensive flow of liquid iron that dissolves coke carbon. This number
can be deduced from a simple carbon balance of the hearth, as follows: Consider a large BF with a
hearth diameter of 14 m and a daily production rate of 9000 tons, where the hearth coke (85% carbon)
occupies about 1000 m3, with a dead man voidage of ε = 0.35. If the iron that enters the hearth has a
carbon content of 2.5% and a content of 4.5% at tapping, an average renewal rate of about 3 days is
obtained. However, in the core region of the dead man, the coke is much more gradually dissolved,
which is often claimed to occur within a few weeks [3]. It is expected that the dead man in the hearth is
heterogeneous with respect to permeability, since the renewal processes are all strongly dominated
by liquid flow and heat transfer, which are usually non-uniform in the hearth [21]. Another aspect
that indicates a non-uniform permeability distribution is that smaller coke particles may move up and
down with the hearth liquids in the voids formed between larger coke particles [5].

The permeability of the dead man can be estimated qualitatively by studying the residence time
distribution of tracers injected through a tuyere, or via a probe inserted into the dead man at the
tuyere level. The tracer particles dissolve in the iron and/or the slag and are measured in the runner
afterwards. By analyzing the response of the tracer in the outflow, information about the flow pattern
inside the hearth can be obtained. If the tracer particles are injected at different locations along the
radius using a probe, the residence time can be used to evaluate the permeability of different zones of
the hearth coke. In some industrial trials with radioactive coke particles, it was found that the core of
the dead man in the hearth was very impermeable [22,23].

2.2. Floating State of the Dead Man

The bottom shape and position of the dead man depend on the liquid levels in the hearth and
on the force acting on the bed from above. In a normal tap cycle, the liquid levels vary with varying
outflow rates of iron and slag, due to the intermittent tapping, as the taphole is eroded during tapping,
and because of the “competition” between iron and slag flow in the taphole [24]. Mainly based
on balance equations of mass and force, the liquid levels in the BF hearth with two different dead
man floating states were estimated and are shown in Figure 2, where the corresponding filtered
electromotive force (emf) signals measured at the hearth shell are also depicted [25]. By comparison of
simulated liquid levels and emf, Brännbacka [26] found that the iron level corresponds better to the
emf signal. Comparing the maxima of the iron and slag level with the emf, this observation can also be
confirmed in Figure 2. However, it should be mentioned that the variation in true liquid levels is very
hard to measure, even though some indirect measuring methods have been proposed [27–29].
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Figure 2. Estimated slag (upper solid curves) and iron (lower solid curves) levels in two BFs with different
dead man floating states: sitting (upper panel) and floating (lower panel). Scaled emf signals (dashed
curves) and the taphole levels (dotted lines) are also depicted. Reproduced with permission [25].

In an operating furnace, the dead man state in the hearth cannot be measured directly or monitored,
owing to the high temperatures, wear, and extremely hostile environment. The dynamic behavior of
the dead man has therefore mainly been investigated by utilizing scale models and/or mathematical
models under simplified conditions. By visual inspection, it was found that the dead man moves
vertically in a cyclic manner during a tap cycle [11,30]. The dead man sits completely on the hearth
bottom (i.e., fully fills the hearth) when the liquid levels measured from the hearth bottom are low,
while it floats to some degree of height or fully if the liquid levels are high, thus creating a free passage
(i.e., coke-free zone) for the liquid flow. Since the iron, with a density of about 2.5 times that of slag,
exerts a stronger buoyancy, it is generally considered that the distance between the hearth bottom and
the inner end of the taphole (“sump depth”) is decisive for dead man floating [31]. In the experimental
runs with a pilot model where air was blown in through several tuyeres located in the sidewall and
particles were discharged near the tuyeres (in order to mimic the coke consumption by combustion),
the dead-man bottom was demonstrated to assume a profile with higher floating levels near the
sidewall. This bottom shape has been confirmed in a set of quenched furnaces and two examples are
presented in [32,33].

A sophisticated mathematical model [34] also taking into account BF hearth geometry and operation
parameters categorized the floating state of the dead man into four different groups: (A) completely
floating with a flat bottom, (B) completely floating, but floating higher near the wall, (C) partly floating
at the wall, and (D) completely sitting. The results are shown in Figure 3a, where the hearth depth is
defined as the distance between hearth bottom and the taphole level. It can be seen that the floating state
of the dead man depends strongly on the hearth (“sump”) depth and liquid level. The corresponding
conditions of some Japanese furnaces were also examined by the mathematical model. As elucidated in
Figure 3, the prevailing conditions (i.e., types B and C) of Japanese furnaces appear left of the vertical
dashed line, while the aforementioned floating type A (i.e., completely floating with a flat bottom
profile) appears right of the dashed vertical line, and is thus in conflict with the prevailing conditions.
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Figure 3. Influences of liquid level and hearth depth on the dead-man state, where Y, Z and RH refer to
the liquid level from hearth bottom, hearth depth, and hearth radius, respectively. (a) Critical liquid
level as a function of hearth depth; (b) operating liquid levels of Japanese blast furnaces. Reproduced
with permission [34].

2.3. Modeling of Dead Man State

The dead-man state can be estimated by conducting a balance between the buoyancy of iron and
slag in the hearth and the force pressing down on the dead man. The buoyancy force, which is a
function of liquid level and dead man porosity, is relatively straightforwardly expressed. Nevertheless,
the vertical force pressing down on the dead man is more complicated, since it is related to a set of
furnace operating conditions, e.g., raceway length, gas drag and burden weight, as well as liquid holdup
above the hearth liquids [34]. The BF lower part is schematically illustrated in Figure 4, where the dead
man is divided into two particular regions based on the raceway length/gas drag intensity, i.e., a central
region and a region under raceways [35].

Figure 4. Schematic sketch representing the lower part of the blast furnace. Reproduced with permission [35].

It should be stressed that both the buoyancy force and the downward-acting force are often expressed
per unit area, i.e., in the form of pressure. The downward-acting stress at the tuyere level (cf. Figure 4),
which was investigated by conducting both experimental runs and numerical calculations [34], is depicted
in Figure 5. As can be seen in the figure, the stress is highly reduced in the region where the raceway
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is located. This can be explained by the drag of the upward-flowing gas from the raceway, which
compensates for a portion of the burden weight above the tuyere level. In the region under the raceways,
consequently, the dead man could float higher if the buoyancy force is sufficient.

Figure 5. Lateral distribution of the downward-acting stress at the tuyere level. Reproduced with
permission [34].

As the radial distribution of the downward-acting force per area, pd, may vary with the operating
conditions, Brännbacka et al. [25,26,36–38] suggested the simple but flexible parameterized expression

pd =

⎧⎪⎪⎨⎪⎪⎩ pd if r ≤ r0

pd − a
( r−r0

R

)n
if r > r0

(1)

where pd, r and r0 are the overall downward pressure, radial position as well as radius of the central
region where the downward-acting pressure is unaffected by the raceways, respectively. R is the hearth
radius and a is a scaling factor, while n is a parameter that influences the arising shape of the dead
man bottom under the raceways. The magnitude of the overall force can be obtained by calculating
the burden weight as reduced by the lifting force of the gas drag and the friction of the furnace wall.
The vertical position of the dead man bottom deduced from the force balance is

zdm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zsl − pd

ρsl g(1−ε) if 0 ≤ pd ≤ pmax
b,sl

zir +
ρsl
ρir
(zsl − zir) − pd

ρir g(1−ε) if pmax
b,sl < pd ≤ pmax

b,sl + pmax
b,ir

zhb if pd > pmax
b,sl + pmax

b,ir

(2)

with
pmax

b,sl = ρslg(1− ε)(zsl − zir); pmax
b,ir = ρirg(1− ε)(zir − zhb) (3)

where ρir, ρsl, g and zhb are the densities of liquid iron and slag, gravitational acceleration and the
vertical position of the hearth bottom, respectively, while ε, zir and zsl are the dead-man porosity and
the levels of liquid iron and slag, respectively.

If the parameters of Equation (1) are given, the dead man bottom profile can be calculated based
on the quantities of hearth liquids and an average dead man porosity. Figure 6 shows the estimated
evolution of the iron and slag levels and the bottom shape of the dead man during a tap cycle in a
BF, where the inner hearth profile was estimated by solving an inverse heat transfer problem [25].
The corresponding three-dimensional coke-free zones beneath the dead man are depicted in Figure 7,
where the black bar indicates the location of the taphole.
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Figure 6. Evolution of the iron and slag levels (upper panel) and the dead-man bottom profile (lower
panel) during a tap cycle in an eroded blast furnace. Reproduced with permission [25].

Figure 7. Three-dimensional illustration of the coke-free zones in cases 1–3 of Figure 6. The black horizontal
bar marks the location of the taphole. Reproduced with permission [25].

2.4. Effect of Dead Man State on Hearth Performance

2.4.1. Liquid Flow Pattern and Flow-Induced Shear Stress

In the hearth, the floating state of the dead man plays a key role in determining the lining wear and
the pattern of liquid flow [31]. Through dissections of quenched furnaces and based on observations at
the campaign end when the hearth is relined, the wear profile of the hearth lining has been investigated.
The profiles reported in such investigations usually indicate an elephant-foot-shaped profile with
severe erosion of the lining in the lower periphery of the hearth. It has been recognized that an elephant-
foot-shaped profile is caused by the intensive circumferential flow of hot metal that can occur when the
permeability in the dead man’s core deteriorates and/or the dead man floats partly, forming a coke-free
zone (“gutter”) at the hearth corner [39,40]. A bowl-shaped profile, where the lining in the middle of
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the hearth bottom is excessively eroded, has also been reported. This pattern could be the result if the
dead man floats completely, or if the porosity of the dead man is fairly uniform and it occupies the
whole hearth. The latter can be expected for hearth designs where the sump depth is large.

The pattern of liquid flow in the BF hearth has been investigated by using both physical and numerical
models. Physical studies utilizing scale models have usually considered only steady-state iron flow
through a heterogeneous dead man with zones of different permeability. The modeling results can still
give insightful information concerning the liquid flow close to the hearth bottom, where the lining
erosion is mainly attributed to iron flow.

A number of computational fluid dynamics (CFD) models, focusing on the phenomena in the BF
hearth and considering liquid flow and/or heat transfer, have also been built in the past. Usually, the dead
man is taken as a fixed packed bed, and Darcy’s/Ergun’s equation can be applied. The influences of dead
man properties, such as packing structure and floating state, on the liquid flow paths and distribution of
temperature in the hearth lining have been thoroughly evaluated [41–50]. Figure 8 (based on unpublished
results using the model outlined in [48]) illustrates the general streamlines of hot metal in one half of the
hearth. These results indicate that a partly floating dead man leads to an intensive circumferential flow,
thus exerting a strong heat load on the lining at the hearth corner. However, some simulation results
have implied that the distribution of temperature at the hearth bottom is less sensitive to the dead man’s
properties, since the local heat transfer is controlled by the high thermal resistance of the hearth lining
refractories (i.e., ceramic pad) [47].

Figure 8. General streamlines of iron flow in a hearth with a partially floating dead man.

The possible hearth lining wear mechanisms include chemical reactions between the lining
materials and molten liquids, abrasion and friction caused by coke particles in the hearth, as well as
thermo-mechanical stress and flow-induced shear stress. The last one that is caused by the near-wall
flow field can lead to lining erosion alone, and a combination of it with other mechanisms could give
rise to more wear, eventually resulting in severe hearth damage. Thus, it is imperative to understand
the shear stress in terms of its generation and distribution so that appropriate precautions can be taken
to reduce the shear stress in order to prolong the campaign life of the hearth. The flow-induced shear
stress has been studied mainly using CFD models, since no direct measurements of the BF hearth
state variables exist [48–53]. The contours of the shear stress on the hearth bottom under different
dead man states, calculated in [48,49], are depicted in Figure 9. It can be seen that with a sitting dead
man, the high shear stress zone emerges in the interior of the hearth bottom, particularly below the
taphole entrance. Nevertheless, the zone moves to the peripheral region when the dead man partly
floats, with a coke-free zone emerging at the hearth corner. In addition, a fully floating dead man state
could mitigate the hearth bottom shear stress to some extent, since the shear stress distributes quite
uniformly. This would imply that in furnaces where the dead man has started floating completely,
the hearth bottom erosion would not progress much.
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Figure 9. Influences of dead man floating state on the shear stress exerted on the hearth bottom.
Reproduced with permission [48].

It was also reported that the high shear stress and heat load in the vicinity of the taphole can be
effectively reduced with a longer taphole, since the overall liquid flow is forced to bend towards the
center of the dead man, and the circumferential flow caused by a partly floating dead man, or a dead
man with a blocked core, can be restrained [52]. This is actually the main reason why a long taphole is
usually a prerequisite for protecting the hearth lining near the taphole from severe erosion. A long
taphole is often associated with a high carbon content of the liquid iron, which supports the above
hypothesis. Furthermore, it has been demonstrated [35] that to achieve a longer taphole, the injected
mud must be in good contact with the dead man. Thus, if the dead man floats excessively at the wall,
the taphole becomes short, and severe sidewall erosion may follow. In summary, the dead man state is
strongly associated with hearth lining erosion, as discussed in the following subsection.

2.4.2. Hearth Wear Profile

The internal geometry of the scale models and the computational domains that represent the
hearth profile have usually been simple and regular in physical experiments and in CFD simulations.
However, as discussed above, the inner hearth profile may assume different states, partly as a result
of the dead-man state. When the hearth lining is cooled at the cold face, the local temperature and
velocity of liquid iron in the vicinity of the hot face could become insufficient to keep the iron in liquid
form. As a result, the iron may gradually solidify, forming a skull layer on the hot surface of the
remaining lining. Therefore, as is often seen by observing the evolution of thermocouples embedded
in the hearth lining, the internal geometry of the hearth varies during the campaign [54].

In view of the inherent coupling between liquid flow and heat transfer, an intensive circumferential
flow leading to severe erosion is usually linked with an increased heat load on the hearth lining
materials. Temperatures measured by thermocouples embedded in the hearth lining can therefore
be utilized to predict the hearth wear profile. In practice, the 1150 ◦C isotherm is often regarded as
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the internal liquid–solid interface in the hearth. In order to estimate this isotherm, mathematical
models where an inverse problem of heat transfer is solved have been proposed [31,54]. It should be
stressed that 1150 ◦C is the lowest temperature at which carbon-saturated iron is present in liquid form,
and consequently only heat conduction is solved in this kind of hearth wear profile model. A basic
algorithm for estimating the hearth wear profile is outlined in Figure 10.

Figure 10. Basic algorithm of a hearth wear profile estimation model.

As a rule, wear models detect the inner profile of the intact lining by matching the most severe
erosion experienced during the campaign. If later points correspond to less severe erosion, this is
taken as an indication of the formation of a skull layer. It is still a complicated task to accurately
identify the remaining sound lining and the skull thickness, particularly for cases wherein the
historical thermocouple readings are not available for the whole furnace campaign. A systematic and
two-dimensional approach is needed in order to estimate the progress of erosion, and also the formation
of skull, during the campaign [31,54,55]. The erosion and skull lines estimated with such an approach
for two different BFs (unpublished results using the model outlined in [55]) are presented in Figure 11.
It can be seen that the two furnaces have different but characteristic wear profiles, i.e., bowl-shaped
and elephant-foot-shaped profiles, which are likely to reflect the state of the iron flow in or below the
dead man during the campaigns.

Hearth wear profile estimation models are commonly implemented as monitoring and diagnosis
tools to aid the operation of BFs. By analyzing the estimated hearth wear profile, indications may be
obtained pertaining to the need to adjust the operation towards conditions less prone to cause erosion,
e.g., by reducing the production rate or by blanking tuyeres. The latter means both reducing the local
inflow of iron “from above” and suppressing a possible local floating of the dead man. On the other
hand, it may be argued that such blanking may instead promote liquid flow, as the liquid holdup
decreases at a lower local bosh gas flow. It seems that the efficiency of such actions depends on the
state of the furnace when the change is implemented.

The estimated erosion profile can be used to support the interpretation of the liquid flow pattern
and dead man floating state that are intimately related to hearth erosion. For instance, a too strong
peripheral flow or too low carbon content of the hot metal may be counteracted by the center charging
of strong and large coke, which (in the long run) will promote a more uniform flow of iron through the
dead man, enhancing the contact of it with the hearth wall. Still, it should be kept in mind that the
accuracy of erosion models depends on the validity of the modeling assumptions. In particular, brittle
lining layers of low conductivity may lead to inaccurate estimates of the progress of the erosion profile,
and the occurrence of such should be detected by other means [56,57].
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Figure 11. Erosionandskull lines intwoindustrial furnacesestimatedbasedoninverseheat transfercalculation.

2.4.3. Drainage Behavior

In the BF hearth, the void space is occupied by the immiscible liquid iron and slag. As a result of
gravity, the rivulets of molten iron and slag from the cohesive zone [58] will eventually separate into
two different layers, i.e., the upper slag layer and the lower iron layer. Two interfaces, i.e., gas–slag
and slag–iron, are thus formed in the hearth. In practice, a tap starts when one taphole is drilled open.
A substantial pressure drop in the vicinity of the taphole can be formed as the high-viscosity slag is
driven to flow through the dead man towards the taphole. As a result, the gas–slag interface is tilted
down locally near the taphole [24,59–62]. Thus, the overall gas–slag interface is above the taphole level
at the moment when gas bursts out and the tap is terminated. This is actually the reason why some
amount of slag still remains in the hearth at the tap end, and a “dry hearth” is impossible in practice.

It was earlier commonly assumed that the slag–iron interface is horizontal at the level of the taphole
when the slag phase approaches the taphole during tapping. Based on this assumption, extensive
physical experiments were carried out by Fukutake and Okabe in order to estimate the tap end slag
residual ratio [63–65]. By analyzing the experimental results mainly using the theories of fluid dynamics,
the authors proposed a dimensionless flow-out coefficient that was found to correlate monotonically
with the slag residual ratio defined. The flow-out coefficient is strongly affected by the state of the
dead man, including its voidage and coke particle size. Later, the aforementioned assumption of
a horizontal slag–iron interface was found to be incorrect, since both practical observations and
physical experiments with two immiscible liquids indicated that the lower phase (liquid iron) can be
pumped up from some level below the taphole during the period when slag and iron are drained
out simultaneously [59,66,67]. In the BF hearth, a substantial pressure drop is induced in the taphole
vicinity when the high-viscosity slag flows through the dead man. This large pressure drop is sufficient
to compensate for the flow resistance of the low-viscosity iron, and to overcome the gravitational force
when iron is drained up from some level below the taphole. The iron and slag levels at the end of a tap
in the BF hearth are sketched in Figure 12, where the hearth internal profile is idealized.

The flow-out coefficient [63–65] was later modified by other authors [68,69] to take into account
the non-horizontal slag–iron interface as it is depicted in Figure 12, the coke-free zone beneath the
dead man, the varying drainage rates of iron and slag due to taphole erosion, and the continuous
production of the liquids. Both observations in the practical operation of the hearth and CFD-based
simulations [70,71] have shown that an increase in the slag residual ratio is often attributed to a decrease
in dead man permeability, or an increase in draining rate or in slag viscosity. It has also been found
that a coke-free zone beneath the dead man directly affects hearth drainage only if it extends close
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to or above the taphole level [32,68,72]. However, even a partial floating of the dead man may have
implications for the drainage via the accumulation and depletion of liquid iron in the coke-free zone
during the tap cycle, which affects the liquid levels [25,37,38] and therefore the pressure-loss terms of
iron and slag in front of the taphole [24].

Figure 12. Schematic of the gas–slag and slag–iron interfaces at the end of a tap, where zsl,e, zth and
zir,e refer to the vertical distances from the overall gas-slag interface, centerline of taphole, and slag-iron
interface to the hearth bottom, while psl, pth and pir,ft refer to the static pressure at the overall gas–slag
interface, in front of the taphole, and at the overall slag–iron interface, respectively.

With reference to Figure 12, the asymptotic relation between the tap end iron and slag levels that
are related to the dead man state can be derived based on a simplified pressure balance [66,67]:

Δzir,e

Δzsl,e
=

ρsl

ρir − ρsl
(4)

where z and ρ are the vertical distance and liquid density, and where subscripts ir, sl and e denote iron,
slag and tap end, respectively.

Equation (4) has been adopted as an asymptotic relation in some hearth drainage studies to
validate the calculated results [25,73]. It should, however, be noted that the end points of individual
taps may depart considerably from the above relation, simply because the “initial” volume of slag is
not sufficient: if too little slag is drained, the duration of the tap is not long enough for the liquids to
reach this asymptotic state. The occurrence of local liquid levels in a BF with an impermeable dead
man further complicates the general interpretation [62,74–76].

3. Concluding Remarks

Over the years, several aspects regarding the BF dead man have been studied by means of
dissection investigations, physical experiments, and theoretical and numerical calculations. Today,
the importance of the dead man state and its influence on the performance of the BF hearth have been
commonly recognized, even though direct (long-term) measurements of the pertaining state variables
are still impossible.

The structure and renewal mechanisms of the dead man have been clarified. It has been demonstrated
that the dead man is heterogeneous in terms of its permeability distribution, and that the permeability
can be improved in practice by charging high-quality coke into the BF center. The dead man bottom
shape and position strongly depend on the balance between the buoyancy force exerted by the in-hearth
liquid iron and slag, and the downward-acting force that is reduced towards the furnace wall due to
the drag of the upward-flowing gas from the raceways and wall friction. In general, the dead man sits
completely on the hearth bottom when the levels of the in-hearth liquids are low. If the liquid levels are
high, however, the dead-man bottom assumes a profile where it floats higher at the hearth corner.
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Observed hearth lining wear profiles, i.e., elephant-foot-shaped and bowl-shaped, are intimately
related to the dead man floating state and its permeability distribution. The lining profile can be estimated
utilizing hearth wear models, whereby an inverse problem of heat conduction is solved to predict the
position of the 1150 ◦C isotherm. Such models are today used in several BFs as monitoring and diagnosis
tools. The estimated profile can be used to assist the interpretation of the in-hearth liquid flow pattern
and the floating state of the dead man. By analyzing the estimated hearth wear profile, indications may
also be obtained pertaining to the need to change the operation towards conditions less prone to cause
erosion, including lowering of the production rate, blanking of tuyeres in regions with strong local hearth
wear, or modifying the tapping strategy.

The drainage of the BF hearth is complicated and a dry tap is impossible because some amount of
slag always remains in the hearth at the end of a normal tap. It has been shown that the slag residual
ratio at the tap end can be correlated with the flow-out coefficient. In practice, an increase in the slag
residual ratio is often attributed to a decrease in dead man permeability, or an increase in draining rate
or in slag viscosity. The complexity of the hearth drainage behavior is basically due to the multiphase
flow of immiscible fluids (gas, slag and iron), the existence of the dead man and the erosion of the
taphole. As a tap proceeds, both the gas–slag and slag–iron interfaces gradually tilt towards the taphole.
Therefore, the overall slag and iron levels are located above and below the taphole at the tap-end,
respectively. This interface titling phenomenon has been investigated, and an absolute asymptotic limit
has been derived and can be applied to validate the related modeling results. However, much work is
still required in order to understand the effects of, e.g., local permeability changes in the dead man or
local dead man motion on the drainage patterns from individual tapholes. A deeper understanding of
the drainage can be the basis of a better design of the tapping operation, which can be influenced by
the duration of the inter-cast period, the drill diameter and the taphole angle. The role of the taphole
length, e.g., how this variable can be controlled and how it affects the dead-man state, are also factors
that should be studied and clarified in the future.
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Abstract: In industrial processes, a semi-cavity area formed by airflow wherein the particles circulate is
called a “raceway”. In a blast furnace, the role of the raceway is particularly important. To understand
and predict the evolution and physical characteristics of the raceway, a three-dimensional transient
Eulerian multiphase flow model in a packed particle bed was developed. In the model, it was assumed
that the gas and solid (particle) phases constitute an interpenetrating continuum. The gas-phase
turbulence was described as a k–ε dispersed model. The gas-phase stress was considered in terms of
the effective viscosity of the gas. The solid-phase constitutive relationship was expressed in terms
of solid stress. It was found that the evolution process of the raceway can be divided into three
stages: (1) rapid expansion, (2) slow contraction, and (3) gradual stabilization. When the blast velocity
was increased from 150 m/s to 300 m/s, the surface area of the raceway increased from 0.194 m2 to
1.644 m2. The depth and height of the raceway increased considerably with velocity, while the width
slightly increased.

Keywords: raceway evolution; raceway size; flow pattern; Eulerian multiphase flow

1. Introduction

In a blast furnace (BF), the raceway is formed by airflow wherein the particles circulate.
The combustion of coke and injected fuels in the raceway supplies gas and heat for the critical
endothermic reduction of iron ores and for iron smelting [1]. Therefore, the raceway characteristics
directly affect the primary distribution of gas and heat inside the BF. Some previous studies have
used empirical size characteristics of the raceway to predict the combustion of pulverized coal and
the gas flow distribution, which may considerably differ from those of the actual BF raceway [2–4].
The raceway depth directly affects the burnout rate of pulverized coal and determines the airflow
distribution in the center of the blast furnace. The flow pattern will determine the strength of gas–solid
mixing and the rate of coke consumption, thereby further affecting the smelting efficiency of the blast
furnace. Therefore, it is necessary to understand the evolution process and physical characteristics of
the raceway.

Investigations of the BF raceway phenomenon and its characteristics can be carried out via three
methods: theoretical analysis, experimental testing, and numerical modeling. In theoretical analyses,
some studies analyzed the raceway size on the basis of the force balance of the raceway boundary in
different spatial dimensions [5–8]. The phenomenon of raceway hysteresis was explained, together
with the effects of chemical reactions, blast velocity, material layer porosity, particle diameter, and other
factors. However, this method treats the raceway as a circle or a sphere and disregards the force
between the particles. Thus, it can be considered a relatively inaccurate method.

In experimental testing, the microwave reflection method was used to study the formation and
depth of the BF raceway during production [9]. The effects of tuyere diameter, air volume, and coal
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injection on the depth of the raceway zone were investigated. In contrast, considering that the
complex environment, in terms of high temperature and pressure in the raceway, implies significant
difficulties for direct research, most researchers used cold models to study the formation and physical
characteristics of the raceway [10–16]. However, it was challenging for the researchers to experimentally
obtain dynamic information and accurately measure the raceway characteristics in three-dimensional
(3D) space through experimental testing.

With the advancement of computers, numerical modeling has become a more popular
method. A combined computational fluid dynamics and discrete element method (CFD-DEM) was
developed [17–23]. The effects of different variables on the raceway were investigated. Nonetheless,
previous CFD-DEM-based studies generally used two-dimensional (2D) or pseudo 3D models and small
sizes with certain divergences from actual conditions. Hilton et al. [24] and Lichtenegger et al. [25] used
the CFD-DEM method to investigate the effect of particle properties on the evolution of the raceway in
3D packed beds. However, these previously reported approaches were computationally expensive.
Also, these approaches did not facilitate quantitative analysis of the raceway or the investigation of
raceway physical characteristics.

However, the gas–solid flow model based on CFD can achieve high efficiency at low computational
cost. The shape and size of the raceway was studied in a 2D state using a transient or steady model based
on CFD [26–28]. Rangarajan et al. [29] extensively studied the influence of the operating conditions
on raceway properties using a two-fluid model. Based on CFD modeling technology, research on
coupling fuel combustion and raceway formation has been carried out, and a lot of information about
combustion and gas distribution has been obtained [30–36]. However, no details on constitutive
relations, the surface area of the raceway, or the evolution of the raceway penetration depth in a short
time interval can be found in these articles.

In this study, we developed an industrial-scale blast furnace 3D slot model based on a transient
Eulerian multiphase flow model (EMFM). The influence of the chemical reaction in the BF on the
raceway characteristics is mainly reflected in the change in gas flow [26]. For simplicity, we did not set
the combustion reaction or heat transfer, but we set the initial bed solid packing fraction to be less
than the maximum volume fraction as an approximate replacement. The evolution process and flow
pattern of the raceway are revealed. The depth, height, width, and surface area of the raceway were
predicted, providing detailed information and theoretical guidance for the process of gas injection into
packed beds in industrial processes.

2. Model Description

The model assumes that the gas phase and the solid (particle) phase constitute an interpenetrating
continuum. The different phases appear in the same calculated cell and are characterized by the
volume fraction, αi, of each phase i (gas, solid). The gas-phase turbulence was described as a k–ε
dispersed model and the gas-phase stress was considered in terms of effective viscosity. An advanced
constitutive relation was adopted to describe solid stress.

2.1. Conservation Equations

In the process of gas–solid flow, both the gas and particle flows satisfy the conservation of mass
and momentum. Given that there is no mass exchange between the solid particles and the gas phase,
they are independent of each other. The mass conservation equation for phase i can be expressed as

∂(αiρi)

∂t
+ ∇·(αiρiUi) = 0, (1)

Σαi = 1. (2)
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The momentum conservation equation for phase i can be written as

∂(αiρiUi)

∂t
+ ∇·(αiρiUiUi) = ∇·τi + αiρig + S. (3)

The source term, S, is generated by the momentum transfer between the gas and solid phases and
is expressed as

S = β
(
Uj −Ui

)
, j � i. (4)

For αg > 0.8, coefficient β is based on the drag force of the fluid acting on a single particle, and for
αg ≤ 0.8, β is described by Ergun’s equation [37]. Thus, β can be expressed as

β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
4 CD

αsαgρg|Us−Ug|
ds

α−2.65
g αg > 0.8

150
α2

sμg

αgd2
s
+ 1.75

Pgαs|Us−Ug|
ds

αg ≤ 0.8
(5)

where ds is the solid (particle) diameter; the drag coefficient, CD, is given by

CD =

⎧⎪⎪⎨⎪⎪⎩
24
αgRe

[
1 + 0.15

(
αgRe

)0.687
]

Re ≤ 1000

0.44 Re > 1000
(6)

where Re is the particle Reynolds number and can be expressed as

Re =
ρgds

∣∣∣Us −Ug
∣∣∣

μg
. (7)

2.2. Constitutive Relations

The gas-phase constitutive equation is characterized by the effective viscosity of the gas.
The solid-phase constitutive relationship is expressed in terms of solid stress. Tables 1 and 2 summarize
a detailed description of the constitutive relations [37–42].

Table 1. Gas constitutive relations.

Item Formula

Gas stress τg = −PgI + μe f f ,g(∇Ug +
(
∇Ug)T

)
− 2

3

(
μe f f ,g

(
∇·Ug

)
I + ρgkg

)
Gas effective viscosity μe f f ,g = μg + μt,g

Gas turbulent viscosity μt,g = ρgCμ
k2

g
εg

(Cμ = 0.09)

Table 2. Solid constitutive relations.

Item Formula

Solid stress τs = (−Ps + ξs∇·Us)I + μs
{(
∇Us + ∇UT

s

)
− 2

3∇UsI
}

Solid pressure Ps = αsρsΘ + 2ρs(1 + e)α2
s g0Θ

Diffusion coefficient ks =
150ρsds

√
Θπ

384(1+e)g0
[1 + 6

5 g0αs(1 + e)]
2
+ 2α2

sρsdsg0(1 + e)(Θ
π )

1/2

Particle collisional dissipation of energy γs = 3
(
1− e2

)
g0ρsα2

s Θ( 4
ds
(Θ
π )

1/2 −∇·Us)

Solid radial distribution function g0 = 3
5 [1−[ αs

αs, max
]1/3]−1

Solid bulk viscosity ξs =
4
3α

2
sρsdsg0(1 + e)(Θ
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Solid frictional viscosity μs, f r =
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⎧⎪⎪⎨⎪⎪⎩ Fr (αs−αs,min)
2

(αs,max−αs)
5 , Fr = 0.1αs, αs ≥ 0.5

0 αs < 0.5
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2.3. Turbulence Equations

Turbulence predictions were obtained from a k–ε dispersed model. The transport equations were
expressed as follows:

∂
∂t

(
αgρgkg

)
+ ∇·

(
αgρgUgkg

)
= ∇·

(
αg
μt,g

σk
∇kg

)
+ αgGk,g − αgρgεg + αgρgΠkg (8)

∂
∂t

(
αgρgεg

)
+ ∇·

(
αgρgUgεg

)
= ∇·

(
αg
μt,g

σε
∇εg

)
+ αg

εg

kg

(
C1εGk,g −C2ερgεg

)
+ αgρgΠεg (9)

where Πkg and Πεg are source terms that can be included to model the influence of the dispersed
phases on the continuous phase. The constants for the k–ε model were taken as σk = 1.00, σε = 1.30,
C1ε = 1.44, and C2ε = 1.92 [26].

2.4. Geometry and Operating Conditions

To save computing resources, a slot model of the lower part of the BF was derived. Figure 1
depicts the computational domain. The geometric model covers the iron slag surface to the furnace
bosh, with the deadman removed. Its size is based on a small steel plant BF. The EMFM equations
were calculated using ANSYS–FLUENT 17.2. The phase-coupled SIMPLE (PC-SIMPLE) algorithm was
used for the coupling between pressure and velocity. The second-order upwind style was used in the
discretization scheme.

Figure 1. Blast furnace (BF) schematic and geometry model of the calculation domain.

Tables 3 and 4 list the simulation parameters and computational conditions, respectively. Injection
angles of 5◦ were associated with the negative direction of the y axis. The chemical reaction,
the polydispersity of the particles, and the liquid phase were not considered during the flow process.
Therefore, to replace the effects of the above factors, and in combination with the actual charge void
distribution in the lower part of the BF, the solid volume fraction was set to 0.6, which is less than the
maximum limiting volume fraction (αs,max). Considering the pressure of the upper layer of the BF,
the outlet pressure was set to 303,000 Pa.
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Table 3. Simulation parameters.

Parameters Value

Number of calculation units 109,516
Time Step 0.0001 s

Particle density 1000 kg/m3

Angle of internal friction 30◦
Tuyere equivalent diameter 0.113 m
Initial solid volume fraction 0.6

Solid packing limit 0.7
Friction packing limit 0.61

Initial bed particle height 4 m
Outlet pressure 303,000 Pa

Table 4. Computational conditions.

Case Blast Velocity (m/s) Injection Angle Particle Diameter (m)

1 150 5◦ 0.01
2 200 5◦ 0.01
3 250 5◦ 0.01
4 300 5◦ 0.01

2.5. Grid and Time Step Independence

Table 5 shows the raceway size after stabilization under different grids and time steps. Further
refinement of the grid in either direction did not change the raceway size by more than 2%, which verifies
the independence of the computational domain grid. The simulation result did not change by more
than 1% by further reducing the time step. This demonstrates the reliability of the numerical model.

Table 5. Raceway size of different numbers of grid cells and time steps.

Number of Grid Cells Time Step (s) Depth (mm) Height (mm) Width (mm) Deviation

109,516 0.0001 631 458 264 -
300,672 0.0001 640 461 267 <2%
109,516 0.00005 637 462 266 <1%

3. Results and Discussion

3.1. Raceway Evolution Characteristics

Raceway evolution is an important phenomenon, particularly reblowing, which occurs after a
temporary wind break in an ironmaking BF. To accurately analyze the evolution process and physical
characteristics of the raceway, the boundary of the raceway was previously defined by the values of
isostatic stress and solid or gas volume fractions [24–27]. In this study, when the solid volume fraction
was less than 0.5, the frictional pressure was 0, and the solid motion was mainly affected by collision.
Therefore, the boundary of the raceway was defined as a solid volume fraction of 0.5.

As depicted in Figure 2, at an injection velocity of 150 m/s, the penetration depth of the raceway
reached a peak at 1 s, at a value of 0.783 m, and it stabilized at 9 s, at a value of 0.386 m. At an injection
velocity of 200 m/s, the penetration depth reached 0.982 m at 1.1 s and then decreased to 0.460 m at 25 s.
At 250 m/s, the penetration depth increased to a peak of 1.143 m at 1.5 s and achieved a stable value of
0.631 m at 40 s. At 300 m/s, the penetration depth reached a peak of 1.327 m at 1.7 s and stabilized
at 1.109 m at 47.5 s. The evolution process of the raceway can be divided into three stages: (1) rapid
expansion, (2) slow contraction, and (3) gradual stabilization. In Stage 1, the penetration depth of the
raceway increases rapidly in the early stages of gas injection. The higher the injection velocity, the faster
the increase in the penetration depth. Then, in Stage 2, as the particles descend and congregate,
the penetration depth decreases slowly after reaching the peak. In Stage 3, the raceway stabilizes.
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(a) (b) 

Figure 2. Evolution of penetration depth in the raceway: (a) 0–2 s and (b) 2–50 s.

A typical blast velocity is close to 250 m/s in a small BF tuyere. Figure 3 depicts the evolution of
the raceway. When air was injected through the tuyere, the expansion of the depth of the raceway was
more obvious. When the peak was reached, the height changes of the raceway were more obvious.
Finally, the raceway stabilized at 40 s. This trend was due to the fact that when the solid phase
interacted with the gas phase, the initial solid volume fraction changed toward the maximum limiting
volume fraction and eventually stabilized. This created a particle circulation zone attributed to the
balance between the drag of the blast and the gravity and pressure of the particles.

Figure 3. Time evolution of the solid volume fraction for Case 3.

3.2. Raceway Size Characteristics

Different BF operating conditions led to different raceway physical characteristics, which were
mainly reflected by their size. Figure 4 shows that the shape of the raceway after it stabilizes is an
upturned bag at high blast velocity. In an actual BF, this provides enough space for the combustion of
pulverized coal and coke, thereby improving production efficiency.
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(a) (b) (c) (d) 

Figure 4. Raceway shapes after they stabilize at different blast velocities: (a) 150 m/s; (b) 200 m/s;
(c) 250 m/s; (d) 300 m/s.

The blast velocity increase was obviously beneficial for increasing the depth, height, and surface
area of the raceway, while the width was slightly increased, as depicted in Figure 5. The size of the
raceway was not linearly related to the blast velocity. When the blast velocity was increased from
150 m/s to 300 m/s, the surface area of the raceway increased from 0.194 m2 to 1.644 m2, and the
depth increased from 0.386 m to 1.109 m. This was due to the increased gas kinetic energy because of
the increased blast volume and velocity. Therefore, increasing the blast velocity is very effective for
increasing the depth of the raceway in order to develop the central gas flow in an actual BF.

Figure 5. Effect of blast velocity on the raceway size.

3.3. Pressure Distribution

Figure 6a shows that the gas pressure was high in the raceway and decreased as it approached the
outlet of the particle bed. In contrast, the solid granular pressure was considerably low in the raceway
and at the boundary of the raceway. It is noteworthy that the solid granular pressure reached a local
peak at the boundary of the raceway, where gas injection resistance was the highest, as depicted in
Figure 6b.

As demonstrated in Figure 7, the gas pressure remained relatively stable up to 0.4 m from the
front end of the tuyere because there were fewer particles and low resistance. At a distance equal to
or greater than 0.4 m, the air pressure rapidly increased because the gas was subjected to increased
particle resistance after deep penetration into the particle bed, and the pressure decreased because
the gas velocity decreased and there was further particle resistance. The solid granular pressure in
the raceway is close to 0. Near the boundary of the raceway, due to the interaction gas and solid,
the solid granular pressure changes drastically, increasing first and then decreasing. However, it slowly
increases in the end because the solid were constricted by the wall.
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(a) (b) 

Figure 6. (a) Gas pressure and (b) solid granular pressure for Case 3 in the symmetry plane at 40 s.

Figure 7. Gas pressure and solid granular pressure for Case 3 on the axis of the tuyere at 40 s.

3.4. Flow Pattern

As depicted in Figures 8a and 9a, the gas in the raceway can be divided into a jet zone and an
anti-clockwise flow zone. However, the gas flowed into the particle bed from the boundary of the
raceway and did not form a large circulation area. This was due to the injection of high-speed gas into
the tuyere, which limited gas circulation in the jet zone. Additionally, the gas had a weak anti-clockwise
circulation flow at the edge of the tuyere. This is inconsistent with previous results in which the gas
studied according to the CFD-DEM model was divided into anti-clockwise or clockwise circulation or
a plume-like flow [21].

 

(a) (b) 

Figure 8. The symmetry plane of Case 3 at 40 s: (a) gas velocity streamline; (b) solid velocity streamline.
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(a) (b) 

Figure 9. The tuyere level plane of Case 3 at 40 s: (a) gas velocity streamline; (b) solid velocity streamline.

The particles were clearly circulating anti-clockwise in the raceway, as depicted in Figure 8b.
This was mainly due to the higher resistance of the solid particles along the axis of the tuyere and
the lower pressure on the upper part of the particle bed. Below the tuyere, two clockwise particle
circulation zones were formed, but the movement speed was considerably low. This was because the
gas was affected by the solid resistance and the forces on the bottom and the wall. This reduced the gas
flow velocity in the lower part of the packed bed, resulting in lower resistance. The source of particles
in the solid jet area mainly derived from the upper part of the raceway particles, which also caused the
upper particles in the particle bed to move downwards. In the horizontal direction, although there
were also two anti-clockwise circulating flows to provide particles for the raceway, as depicted in
Figure 9b, their velocities were extremely low. Therefore, the BF raceway was not a single-cycle flow
as previously reported [21], but an extremely complex multi-cycle flow with gas–solid interaction.
The circulation pattern near the tuyere may have a negative impact on the life of the tuyere.

The gas was injected from the tuyere along the axial direction of the tuyere. Owing to the resistance
of the solid particles, the gas velocity rapidly decreased until it reached a value of 0.443 m/s at the
wall surface, as depicted in Figure 10. The drag of the gas affected the particles. The particle velocity
increased rapidly and maintained a relatively stable value in the middle part of the raceway. However,
near the boundary of the raceway (αs → 0.5 ), the particle collision viscosity increased because of the
increased particle volume fraction, which considerably reduced the particle velocity. External to the
raceway boundary and with an increase in the particle friction viscosity and a decrease in the gas drag,
the particle velocity was reduced to a value close to 0.

Figure 10. Gas and solid velocity along the axis of the tuyere for Case 3 at 40 s.

4. Conclusions

A 3D transient EMFM was developed to study the evolution and physical characteristics of the
raceway in the packed particle bed of an ironmaking BF. The constitutive relation of the gas and
solid phases was comprehensively considered in the model. The main conclusions of this study are
as follows:
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(1) The evolution process of the raceway can be divided into three stages: rapid expansion,
slow contraction, and gradual stabilization. The shape of the raceway was that of an upturned
bag at high blast velocity.

(2) The blast velocity had a significant effect on the size of the raceway. As the velocity increased,
the depth, height, and surface area of the raceway considerably increased, while the width
slightly increased.

(3) The gas pressure in the raceway was higher than that of the particle bed, while the solid granular
pressure was lower. The raceway did not exhibit a single-cycle flow pattern, but exhibited a
complex multiphase and multi-cycle flow pattern.
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Notation

Symbol Meaning
αi i phase volume fraction
ρi i phase density, kg/m3

Ui i phase velocity, m/s
τi i phase stress–strain tensor, Pa
Pi i phase pressure, Pa
g Gravity acceleration, m/s2

S Source term
β Momentum exchange coefficient
CD Drag coefficient
ds Solid-phase diameter, m
μg Gas-phase viscosity, Pa·s
Re Reynolds number
I Unit stress tensor
μe f f ,g Gas effective viscosity, Pa·s
kg Gas turbulent kinetic energy, Pa·s
μt,g Gas turbulent viscosity, Pa·s
εg Gas turbulent dissipation rate
g0 Solid radial distribution function
e Coefficient of restitution for particle collisions
Θ Granular pseudo-temperature
ks Diffusion coefficient
γs Particle collisional dissipation of energy
αs,min Friction packing limit
αs, max Packing limit
ξs Solid bulk viscosity, Pa·s
μs Solids shear viscosity, Pa·s
μs,kin Solid kinetic viscosity, Pa·s
μs,col Solid collisional viscosity, Pa·s
μs, f r Solid frictional viscosity, Pa·s
P f riction Frictional pressure, Pa
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φ Angle of internal friction
I2D Second invariant of the deviatoric stress tensor
Fr Froude number
Gk,g Gas-phase turbulent kinetic energy
Πkg Turbulent kinetic energy source term
Πεg Turbulent dissipation rate source term
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Abstract: During recent years, there has been great interest in exploring the potential for high-rate
natural gas (NG) injection in North American blast furnaces (BFs) due to the fuel’s relatively low
cost, operational advantages, and reduced carbon footprint. However, it is well documented that
increasing NG injection rates results in declining raceway flame temperatures (a quenching effect
on the furnace, so to speak), with the end result of a functional limit on the maximum injection
rate that can be used while maintaining stable operation. Computational fluid dynamics (CFD)
models of the BF raceway and shaft regions developed by Purdue University Northwest’s (PNW)
Center for Innovation through Visualization and Simulation (CIVS) have been applied to simulate
multi-phase reacting flow in industry blast furnaces with the aim of exploring the use of pre-heated
NG as a method of widening the BF operating window. Simulations predicted that pre-heated NG
injection could increase the flow of sensible heat into the BF and promote complete gas combustion
through increased injection velocity and improved turbulent mixing. Modeling also indicated that the
quenching effects of a 15% increase in NG injection rate could be countered by a 300K NG pre-heat.
This scenario maintained furnace raceway flame temperatures and top gas temperatures at levels
similar to those observed in baseline (stable) operation, while reducing coke rate by 6.3%.

Keywords: blast furnace; natural gas; fuel injection; computational fluid dynamics; numerical
simulation; combustion; RAFT

1. Introduction

Worldwide, auxiliary fuel injection serves as one of the key technologies by which blast furnace
(BF) coke consumption rates are reduced. As with many other industries, iron and steelmaking
must also contend with a growing focus on carbon emissions and their impacts, resulting in tighter
regulations on emissions or the implementation of carbon taxes by various governments. Through the
reduction of coke consumption and by the introduction of some hydrogen to the reduction process
via fuels such as natural gas, injected fuels are one of the key levers by which operators can reduce
carbon footprint and possibly make the blast furnace more efficient. In addition, these injected fuels
typically present a significant economic incentive for their greater use, especially in the case of natural
gas (NG) in North America. However, no modification can be undertaken in isolation, and changes
to any variable will inevitably require an understanding of how they may impact conditions within
the furnace.

With high NG injection rates becoming more and more common in addition to, and sometimes
in place of, pulverized coal injection (PCI) in North American BFs, it is increasingly important for
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operators to understand what impacts NG injection can have on conditions in the furnace and how
any disadvantages can be mitigated. Of course, in comparison to PCI, NG injection has some obvious
benefits, including reduced carbon footprint and the lack of potential for fines buildup from ash or
unburned char. However, the most critical limitation of NG injection results from the production of
H2O (and to a lesser extent CO2) from NG combustion. Within the raceway and packed bed, these
species will participate in endothermic reactions with the coke bed, consuming heat and causing a drop
in reducing gas temperatures. This phenomenon can be easily observed by examining the raceway
adiabatic flame temperature (RAFT), calculated theoretically using heat and mass balance modeling
based upon the ‘Rist Diagram’ or via approaches such as the AISI (American Iron and Steel Institute)
formulation [1,2]. This is the temperature of the furnace gases after all reactions have taken place and
the only remaining species are CO, H2, and N2.

While the minimum stable RAFT level will vary between furnaces, recent publications indicate
that the majority of North American BFs operate somewhere above 2020 K [1,3]. A falling RAFT can
result in furnace instability and reduced productivity, and generally, operators will mitigate such
scenarios by increasing the level of oxygen enrichment in the hot blast. Increased O2 levels in the
blast, however, are known to cause a decline in furnace top temperatures, potentially leading to
condensation of moisture in or near the uptakes and damage to the furnace. While increasing NG
injection rates can help to bring the top temperature back up [3], the negative impact of O2 enrichment
on top temperatures is stronger than the positive impacts of NG. The competing factors of low top
temperatures due to O2 enrichment and low raceway flame temperatures due to NG injection create a
functional constraint on the maximum level of NG injection in the BF, with the highest reported levels
occurring at around 150–160 kg/mthm (kg per tonne of hot metal produced by the furnace) [1,3].

It is clear then that a method by which flame temperatures could be increased without relying
heavily on O2 enrichment could make possible higher rates of NG injection. The approach which
appears most obvious here would be to increase the hot blast temperature, as that would supply
additional sensible heat to the furnace to counter the low flame temperatures without impacting gas
chemistry. However, as many furnaces are already maximizing their available hot blast temperature,
this method may not be an option. One may then wish to turn to alternative methods of introducing
sensible heat to the furnace. Since NG is typically injected at ambient temperature, the injected gas
flow presents the most desirable location for this additional heat, with the added benefit of increasing
the gas velocity, which may slightly enhance tuyere exit velocity, as well as improve turbulent mixing
with the blast and enhance gas combustion.

Pre-heating NG by a reasonable amount (300–400 K) before injection into the furnace is a
concept that has been previously noted in a very limited set of publications and trials. The idea
has been explored conceptually by researchers working with heat and mass balance models and
lab-scale experimentation [3], and at least one industrial facility has reported attempts at studying and
implementing NG pre-heating in operational BFs [4,5]. The aforementioned attempt at implementation
was conducted at the OJSC LMZ “Svobodny Sokol” and OJSC “Severstal” BFs, with NG temperature
increases of 170K and 75K, respectively, achieved by channeling NG flow through a heat recovery
apparatus around the outside of the blowpipe. While gas pre-heating was not applied in isolation, the
increase in NG temperature led to a reduction in coke consumption rate in both trialed scenarios, and an
increase in the NG coke replacement ratio (the ratio of how much coke can be removed from the furnace
burden for a fixed amount of fuel injected into the tuyere) from 1.2:1 to 1.42:1 was observed. Table 1
details additional operating conditions under which the technique was implemented for both furnaces.
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Table 1. Impacts of pre-heated NG injection at OJSC LMZ “Svobodny Sokol” and OJSC “Severstal”.
Reproduced with permission from T. Okosun, AISTech 2019; published by AIST, 2019.

Svobodny Sokol Severstal

Baseline Gas Pre-Heat Baseline Gas Pre-Heat

Production (t/day) 1334 1391 3303 3207
NG Temp. (K) 303 473 303 378

Blast Temp. (K) 1323 1361 1454 1455
Coke rate

(kg/mthm) 497 480.4 420.2 411.1

Production %
change +4.15% −2.9%

Coke rate % change −3.3% −2.2%

The implementation of such gas pre-heating in the field, whether achieved via heat recovery
systems or some other method, would require some expenditure for design and installation. With this
in mind, it becomes important to develop a more complete understanding just how much value there
is in enabling this additional lever for BF control, and what potential efficiency benefits NG pre-heating
might present to BF operation in a range of different scenarios. Industry experience can serve as a
judge of feasibility for methods of implementation, but focused research is often needed to understand
the specific impacts of untested changes in parameters such as NG pre-heating on the BF. Simulation
modeling presents an excellent approach for such research, allowing for scientific-based predictions
of how changes to input conditions can impact the chemical reactions, temperatures, flow patterns,
and other phenomena inside the BF.

Given its comparable speed and low expense when compared to test rigs or other experimental
methods, computational fluid dynamics (CFD) modeling has become a key first step in determining
the impacts of new operating parameters on multi-phase reacting flow systems. In particular, CFD
modeling of the BF has been applied to great effect at the tuyere level by a wide range of researchers
exploring methods of optimization for operation. Such modeling has expanded from simplified
one-dimensional approaches to full-scale three-dimensional multi-phase flow models of specific
regions of the blast furnace [6–14]. In particular, the Steel Manufacturing Simulation and Visualization
Consortium (SMSVC) at Purdue University Northwest’s (PNW) Center for Innovation through
Visualization and Simulation (CIVS) has performed a range of simulation studies on BF performance
using a combination of commercial CFD codes and in-house solvers focusing on combustion, tuyere
region design, and more [15–22].

This paper details current simulation research on high-rate NG injection in North American BFs,
and the impacts of pre-heated NG injection. CFD models of two BFs of similar scale were conducted as
part of this research, with one furnace utilizing co-injection of NG and PC, and the other operating
on a pure NG injection basis. Modeling was conducted to determine the impacts of gas pre-heating
in isolation and in conjunction with other modifications to operation. Observed benefits included
increased analogue flame temperatures and a corresponding reduction in furnace coke rate with NG
pre-heating. Additionally, CFD modeling indicated that a combined increase in NG injection rate and
NG pre-heat could maintain top gas and flame temperatures at baseline levels while achieving a lower
coke consumption rate.

2. Methods, Geometry, and Boundary Conditions

2.1. Computational Modeling Methodology

Accurately modeling the multiphase flow physics, chemical reactions, and heat/mass transfer
occurring within the blast furnace requires a delicate balance of detailed modeling techniques and
reasonable assumptions in order to produce results in a reasonable time frame. This research focuses
on the flow, reactions, and heat transfer in the raceway and shaft regions of the BF, and a combination
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of CFD models are coupled together to predict phenomena. These models have been discussed in far
greater detail in previous publications [15–25], so in the interests of brevity, this paper will present a
summary of the approach.

The primary assumption made in this modeling approach is based upon the difference in
time-scales between the flow of gases and solids in the furnace. Gases ascend through the shaft very
quickly in comparison to the descent speed of the solid burden material, allowing for the burden
packed bed to be treated as a steady-state porous media that can participate in heat transfer and
chemical reactions, as well as influence gas flow. Dispersed solids, such as the pulverized coal in the
raceway region, are treated as interpenetrating continuum in the model, with both gas and dispersed
phases having their own corresponding conservation equations. Interphase momentum and mass
exchange occurs between the particle and gas phases. For this modeling approach, the flow of liquid
slag and hot metal are not directly simulated. The presence of liquid below the cohesive zone and
its impact on gas flow are accounted for by decreasing the porosity of the packed bed, resulting in a
corresponding increase in gas pressure resistance.

Additionally, the most effective way to reduce the computational cost of a BF simulation is to
assume that flow input conditions through each tuyere—this would include wind rate, auxiliary fuel
injection rates, hot blast temperature, and other parameters—are axisymmetric around the entire
furnace. With this assumption made, it is possible to simulate a single tuyere, corresponding raceway
cavity, and similarly axisymmetric region of the BF shaft, greatly reducing the total computational
cost of a simulation. For a generic BF, the 3D domain of the simulation would include the blowpipe
upstream of the tuyere, any fuel injection lances, the tuyere, the raceway boundary and coke bed, and
boundaries representing the location of the furnace walls and deadman.

As previously mentioned, the approach in this research utilizes multiple sub-models coupled
together to predict conditions in the BF. Specifically, these models are targeted at two major reaction
zones, the raceway and the shaft. Gas flow and injected fuel input conditions are specified for the
raceway model, which is used to calculate the combustion and other reactions occurring within the
raceway. The corresponding species, temperature, and mass flow distribution of reducing gases leaving
the raceway region are then mapped into the lower boundary of the BF shaft model, which can then be
used to predict macro-level output parameters such as top gas temperature, cohesive zone shape and
location, gas utilization, and furnace coke rate.

For easier adjustment of tuyere, blowpipe, and injection lance design and placement, gas
combustion, solids combustion, fluid flow, and heat transfer in the blowpipe and tuyere zones are
conducted using a Eulerian-based model in ANSYS Fluent® (v19.2, ANSYS, Canonsburg, PA, USA,
2019), a commercial CFD package. The steady-state Navier–Stokes equations are applied to model
conditions in this region using the semi-implicit method for pressure linked equations (SIMPLE) scheme
with second-order upwind discretization of the transport equations. Turbulence modeling is handled
with the standard k-ε turbulence model [26], a common and robust choice for efficient simulation of
multiphase flow. Gas phase reactions— including CO, H2, CH4, and coal volatile combustion—are
governed by the eddy-dissipation-concept model. Radiation heat transfer is governed in all raceway
region simulations by the discrete ordinates (DO) radiation model.

The results of this simulation are then mapped to a two-component approach for simulating
the coke bed and raceway cavity downstream of the tuyere. Once the incoming conditions from
the tuyere are determined, the size and shape of the raceway in the coke bed is simulated using a
transient Eulerian multi-fluid model, conducted again with a second-order application of the SIMPLE
scheme in ANSYS Fluent®. The coke bed is treated as a fluidized granular continuous phase, and
the gas flow forms a raceway cavity, which can then be frozen. The air phase volume fraction is then
used to define the porosity of the coke bed in the raceway, and an in-house CFD solver detailed in
previous publications [27–29] is applied to predict chemical reactions, gas flow, and heat transfer in a
steady-state simulation of flow through the coke bed in the raceway region. In addition to combustion
of injected fuels, the coke bed can react with oxygen in the hot blast to generate combustion products
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and heat, and if sufficient thermal energy is present, reactions of CO2 and H2O with carbon in the coke
bed are also possible. Table 2 below contains the kinetic constants for gas-phase reactions of CO, H2,
and CH4, as well as coke reactions and coal moisture evaporation and devolatilization.

Table 2. Key reaction mechanisms and kinetics for the computational fluid dynamics (CFD) raceway
combustion model [30,31].

Reaction A (1/s) B (m3/(kg.s))
Activation

Energy E (J/mol)

CH4 + 2O2 → CO2 + 2H2O N/A 1.6 × 1010 1.081 × 105

2CO + O2 → 2CO2 N/A 7.0 × 104 6.651 × 104

2H2 + O2 → 2H2O N/A 5.4 × 102 1.255 × 105

Coal Moisture Evaporation N/A 8.32 × 105 4.228 × 104

Coal Devol. Reaction 1 3.7 × 105 N/A 7.366 × 104

Coal Devol. Reaction 2 1.46 × 1013 N/A 2.511 × 105

C + O2 → CO2 1.225 × 103 N/A 9.977 × 104

2C + O2 → 2CO 1.813 × 103 N/A 1.089 × 105

C + CO2 → 2CO 7.351 × 103 N/A 1.380 × 105

C + H2O → CO + H2 1.650 × 105 N/A 1.420 × 105

Combustion reactions of solids in the raceway result in the generation of additional gaseous mass.
In addition, the significant variations in temperature can result in changes to gas density. These updated
values are mapped back into the raceway formation step in the commercial CFD code in the form of
cell-specific gas density values and a source term for gas mass, and the simulation of the raceway
shape is re-run. This generates a new coke bed porosity distribution (updated raceway shape), and the
combustion model can then be repeated as well. This iterative process will converge to an unchanging
raceway shape, at which point the final combustion simulation results can be post-processed and
mapped onto the CFD shaft model as input conditions.

Using the reducing gas flow rates, species, and temperature inputs from the raceway sub-model,
the blast furnace shaft model simulates reducing gas flow through the burden layers in the BF, iron ore
reduction and melting, and related phenomena. Computational domains for the BF shaft stretch from
the furnace bosh, just above the raceway region, to the furnace top. As mentioned earlier, the flow is
assumed to be steady state once the burden distribution is defined—either with a burden distribution
sub-model or based on imported burden profiles from industry. This burden profile is used to define
the porosity of the packed bed in the simulation, with coke and ore layers each having their own
corresponding porosity and resistance to gas flow depending on particle size.

In this packed bed, fluid flow, chemical reactions, and heat and mass transfer between the gas and
burden are all simulated by the CFD solver. Species included in the reaction models are CO, CO2, H2,
H2O, and N2 in the gas phase and Fe2O3, Fe3O4, FeO, Fe, C, CaO, and MgO in the solid phase. Reactions
are primarily gas–solid, though some phase transitions are included, such as moisture evaporation
from the burden near the top of the furnace. The most common reactions are, of course, reduction of
iron oxides by CO and H2, coke gasification, and carbonate flux decomposition. The primary reactions
included in the BF shaft model are listed in Table 3.

Finally, the cohesive zone (CZ) is defined between the iron ore pellet softening and iron liquidus
temperatures (1473–1673 K), and in this region, the porosity of the iron ore layers is decreased to almost
zero, rendering these areas impermeable to gas flow and generating a layered CZ. The approach allows
gas flow to pass through the coke slits while being blocked by the cohesive ore layers. Additional
details on the BF shaft model, including information on the burden distribution sub-model, can be
found in previous publications [24,32–34].
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Table 3. Reaction mechanisms used in the CFD shaft model.

Reaction No. Chemical Equation

Indirect reduction of iron oxide by CO R1 3Fe2O3(s) + CO(g) → 2Fe3O4 + CO2(g)
R2 Fe3O4 + CO(g) → 3FeO(s) + CO2(g)
R3 FeO(s) + CO(g) → Fe(s) + CO2(g)

Indirect reduction of iron oxide by H2 R4 3Fe2O3(s) + H2(g) → 2Fe3O4 + H2O (g)
R5 Fe3O4 + H2(g) → 3FeO(s) + H2O(g)
R6 FeO(s) + H2(g) → Fe(s) + H2O(g)

Boudouard reaction R7 C(s) + CO2(g) → 2CO(g)
Water gas reaction R8 C(s) + H2O(g) → CO(g) + H2(g)

Flux decomposition R9 MeCO3(s) → MeO(s) + CO2(g) (Me = Ca, Mg)
Water gas shift reaction R10 H2(g) + CO2(g)� H2O(g) + CO(g)

Direct reduction of liquid FeO R11 C(s) + FeO(l) → Fe(l) + CO(g)

2.2. Blast Furnace Geometry and Simulation Boundary Conditions

Research was conducted via simulation of two different blast furnaces of average size and
production for North America located at separate North American steel manufacturing facilities.
The geometry for the tuyere and blowpipe regions of both furnaces are unique to their different
operations, with one furnace utilizing co-injection of pulverized coal and natural gas and the second
using only NG injection. These two operations present ideal test beds for exploring the impacts of
injected fuel adjustments, with the co-injection case allowing for comparisons of how a co-injection
furnace may react during a loss-of-PCI scenario and the NG-injection furnace highlighting the impacts
of NG pre-heating on operation.

The area beyond the tuyere nose (containing the raceway and coke bed) for a single tuyere
was modeled for both furnaces using computational grids. These domains were approximately two
meters high and were bounded by the furnace wall and tuyere at the outside and a fixed boundary
representing the deadman towards the furnace center. Symmetry conditions were applied on the
bounding walls to either side of the raceway. The combination of the specific physical geometry of the
tuyere and furnace with the momentum and reactions from the hot blast generated a unique raceway
cavity in the coke bed. As mentioned in the previous section, the raceway geometry was defined by
applying the calculated void fraction in the raceway formation model to fixed spatial variations of the
coke bed porosity. The geometry for the tuyere region of both industry blast furnaces and a generic
raceway region geometry are shown in Figure 1.

 

Figure 1. (a) Blowpipe and tuyere region simulation domain for co-injection blast furnace (BF);
(b) Blowpipe and tuyere region simulation domain for natural gas (NG)-only BF; and (c) Generic
raceway region geometry with tuyere and blowpipe position included.

Additionally, simulations of the shaft region of the NG-only blast furnace were conducted.
This geometry was far simpler than the raceway, with the furnace walls defining an axisymmetric
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cylindrical region with a radius that varied depending on height. The burden charge profile for
ore and coke layers was provided by the industry partner, with the ore charge weight varying
depending on the natural gas injection rate to adjust furnace production and corresponding coke rate
in real-world operation.

Boundary conditions were defined for each individual region simulated. In the tuyere/blowpipe
regions, the hot blast inflow, NG inflow, and PC carrier gas inflow were defined as mass flow inlets
in the CFD solver. At each inlet, fluid temperature, species distribution, and mass flow rate were
defined based on furnace operating conditions. PC injection was handled with the discrete phase
method (DPM), and the total mass flow influx of PC particles was defined once again based on industry
operating conditions. A pressure outlet boundary condition was used for the tuyere exit, with an
estimated emissivity and blackbody temperature used to account for radiation heat flux entering the
tuyere from the high-temperature coke bed in the raceway.

Mass flow and species distribution for the gas phase were mapped onto the inlet for the raceway
region CFD simulation. The DPM concentration at the tuyere outlet plane was mapped as a scalar
value to define the volume fraction of the dispersed particle phase for tracking PC movement in the
raceway. Similar mass flow inlet and pressure outlet flow boundary conditions were applied in this
region, with symmetry conditions applied on the boundaries located on either side of the raceway
envelope. Mass flow rates and species distributions were also mapped from the outlet of the raceway
region to the inlet of shaft model, and once again, a pressure outlet was used for the out-flow condition
at the top of the furnace.

Environmental heat losses were governed by refractory and steel shell thermal conductivity in
the blowpipe, with assumed natural convection at average ambient temperatures of ~305 K. In the
water-cooled copper tuyere, assumptions were based on typical industry conditions and expectations,
with a heat transfer coefficient of ~3000 W/(m2 K) and a freestream temperature of 300 K for cooling water
applied. For the furnace walls in the raceway and shaft regions, a basic constant heat flux assumption
was applied based on expectations of heat losses to cooling water provided by industry partners.

3. Results

3.1. Co-Injection Blast Furnace

The impact of various parameters and design modifications on the operation of the co-injection
furnace simulated in this research were documented in previous publications [15–17]. This work
focuses in particular on the effects of a significant increase in natural gas injection rate in comparison
to standard operating conditions, perhaps in a loss-of-PCI scenario while attempting to maintain
production rate. Modeling of this furnace was conducted at typical operating conditions, with a wind
rate of ~200,000 Nm3/h, an oxygen enrichment of 34%, a blast temperature of 1408 K, a PCI rate of
85 kg/mthm, and a NG injection rate of 65 kg/mthm. The pulverized coal particle size distribution was
provided by industry partners, with an average particle size of 0.046 mm.

While attention was given to the impacts of design and operational changes on conditions in the
tuyere region in previous publications [15–17], in this research, the focus remained on changes to gas
temperature and species distribution in the raceway region. Using the CFD model, it is possible to
generate a numerical value that can be easily compared to the raceway adiabatic flame temperature
(RAFT) by taking a mass-weighted average of the gas temperature in all computational cells in the
domain with less than 0.5% H2O, CO2, and O2 content by volume. This corresponds to the theoretical
definition of RAFT as the temperature of all gases once they have been reduced from fuel and oxidizer
into CO and H2 (also including inert N2). From this point forward, the CFD-generated value will be
referred to as the flame temperature analogue (FTA).

In the baseline scenario, simultaneous injection of NG and PC led to spatial variations in
temperature distribution. Coke combustion occurred where unreacted oxygen encountered the coke
bed, while the initial NG flame occurred rapidly near the outlet of the tuyere, followed by a sharp
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reduction in gas temperature in the regions where NG combustion products (particularly H2O) engage
in endothermic reactions with coke. PC combustion in recirculation zones within the raceway itself
generated larger high temperature regions, which can be observed in Figure 2. The predicted baseline
FTA was 2244 K, a difference of 2.1% compared with an expected RAFT of 2293 K.

Figure 2. (a) Gas temperature contours and flow streamlines for the baseline co-injection BF raceway
(raceway boundary shown in blue); (b) Contours of CH4 mass fraction; and (c) Contours of H2O
mass fraction.

Operational rules-of-thumb based on industry experience have documented the impacts of
increasing or decreasing many tuyere-level parameters on the furnace. Correspondingly, this research
aimed to ascertain whether the CFD models used in this study would show similar trends, and if
so, to simulate the impacts of a complete loss-of-PCI scenario in which furnace operators attempt to
replace all injected fuel with natural gas. Comparisons were conducted with two scenarios in which
the ratio between NG and PC injection rates were shifted and all other parameters were held constant.
The ratio in the baseline case was 1.31:1 (PC to NG). In Case #1, the ratio was increased to 2.26:1, and in
Case #2, the ratio was decreased to 0.87:1. In line with expectations, Case #1 (with a lower NG injection
rate) resulted in a high predicted FTA of 2271 K and Case #2 (with a higher NG injection rate) had a
lower predicted FTA of 2228 K.

Case #3 took high-rate natural gas operation to an extreme, cutting PCI and increasing the NG
injection rate from the baseline value of 65 kg/mthm and increasing it to 150 kg/mthm. The NG in this
case was supplied through an NG injection lance. This level of NG injection is generally held as the
maximum sustainable for stable operation due to the constraints detailed in Section 1 of this paper
(falling RAFT, low top temperatures due to increased O2 enrichment). Aside from the modification
to injection, operating conditions in Case #3 were maintained at baseline levels. Figure 3 shows the
distribution of gas temperature, CO2, and H2O in the raceway region. Combustion was immediate
and was distributed throughout the majority of the tuyere jet, however, gas temperature fell rapidly
upon contact with the coke bed as CO2 and H2O underwent the aforementioned endothermic reactions
with coke. The FTA in this scenario dropped by more than 11% to 1988 K, a value just below the
aforementioned minimum RAFT for North American BFs of 2020 K. It should be noted that the
increased injection rate and delivery of NG through a lance resulted in NG pushing away from the
tuyere center plane, and it was only once the gas had begun to recirculate in the raceway that higher
concentrations were observed on the center plane of the raceway as seen in Figure 3b.

The results from this scenario indicated that the CFD modeling techniques applied were able to
predict the decline in gas temperatures resulting from high levels of NG injection. Based upon this, the
next stage of research aimed to determine the effectiveness of NG pre-heating as a method to counter
the decline in predicted FTA and maintain reducing gas temperatures in the furnace. This would serve
as a potential method by which a loss-of-PCI scenario could be quickly adapted to in the field, allowing
for significantly higher NG injection rates with a much more manageable decline in BF reducing gas
temperatures. As previously discussed, NG pre-heating may present another lever for operators
beyond adjustments to O2 enrichment, wind rate, and hot blast temperature.
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Figure 3. (a) Gas temperature contours and flow streamlines for Case #3 in the co-injection BF raceway
(raceway boundary shown in blue); (b) Contours of CO2 mass fraction; and (c) Contours of H2O
mass fraction.

3.2. Natural Gas Injection Blast Furnace

Following the loss-of-PCI study, an investigation of the specific impacts of NG pre-heating
throughout the furnace (both in the raceway and shaft regions) was conducted using the NG injection
industry blast furnace. While the NG-only BF was roughly 30% larger than the co-injection BF and
operated at a slightly higher production rate, CFD modeling of the BF as a trial for this portion of the
research allowed for isolation of gas pre-heating impacts, helping to clearly delineate any benefits
and drawbacks associated with the approach. The baseline operating conditions for the NG-only
BF included a wind rate of 270,000 Nm3/h, an oxygen enrichment of 29%, a hot blast temperature of
1448 K, and an NG injection rate of 95 kg/mthm, among other parameters. Natural gas was injected
into the tuyere through a lance with multiple ports around the edges near the tip and a single central
port for primary gas flow, as shown in Figure 1b.

The FTA predicted for baseline operating conditions at the NG-only BF was 2187 K, which
compares favorably to the industry RAFT expectation of 2169 K (0.74% difference). When observing
conditions within the NG-only furnace raceway, it can be seen that the location and angle of the NG
injection lance has a significant impact on the temperature and gas species distributions in the raceway
region. Figure 4 shows contours of gas temperature, CH4 mass fraction, and H2O mass fraction. In this
case, the NG plume remained to the left (looking from the outside of the furnace in, as if through a
peep sight) of the tuyere center plane, as the injection lance was inserted from the right-hand side
and pushed gas to the opposite side of the tuyere. This resulted in higher concentrations of NG and
NG combustion products on the left-hand side the raceway, leading to a left–right asymmetry in
gas temperatures as the CO2 and H2O from NG combustion experienced the expected endothermic
reactions with coke.

The distributions of gas temperature, mass flow rate, and species distribution were exported from
the upper outlet boundary of the raceway region CFD model and were then transferred as importable
inlet conditions for the shaft region CFD model. Other required operating conditions for the BF shaft
model included the burden distribution—provided by industry collaborators for the baseline scenario
and shifts in burden charge weight for increased or decreased NG injection rates—and by-weight
moisture content in the charged iron ore and coke layers. The moisture content was of particular
interest, as in the wet and cold winter months in some regions of North America, ore moisture content
can rise significantly, resulting in impacts on top gas water vapor content and temperature when
charged moisture evaporates. For the baseline case, these values were fixed at 2.5% by weight for the
ore layers and 6% by weight for the coke layers. Contours of gas temperature and species distribution
in the shaft region are shown in Figure 5. Also included are demarcations indicating the location of the
burden layers in the furnace and the location of the cohesive zone.
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Figure 4. Side view (top) and top view (bottom) of contours of (a) temperature; (b) CH4 mass fraction
contours; and (c) H2O mass fraction in the raceway region for the NG-only BF baseline case (raceway
boundary shown in blue or white).

Figure 5. Cross-section views of contours in the shaft region showing (a) gas temperature contours;
(b) CO volume fraction; (c) CO2 volume fraction; (d) H2 volume fraction; and (e) H2O volume fraction.

While the CFD models applied in this research have been extensively validated in previous
publications [21,25,26,30–32], additional validation against macro-level parameters from the industry
operation of this blast furnace was conducted to build confidence in the ability of the included
simulations to predict operating conditions for this particular blast furnace. In particular, CFD
predictions of coke rate, reducing gas utilization, and average top gas temperature were compared
against industrial values for operation corresponding to the scenario investigated in the baseline
case. Top gas temperature and CO and H2 utilization values were determined based on averaged
readings from a top gas analyzer during standard operation matching the conditions of the baseline
case. These comparisons are detailed in Table 4.
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Table 4. Comparison of CFD results against industry data for NG-only BF baseline operation.

Parameter CFD Prediction Industrial

Coke Rate 392 kg/mthm ~390 kg/mthm
CO Utilization 50.8% ~50%
H2 Utilization 51.5% ~50%

Avg. Top Gas Temperature 403 K ~385 K

The impacts of NG pre-heating on the NG injection BF were first explored with six scenarios
beyond the baseline case. These cases, selected based on industry feedback, raised the incoming
temperature of injected NG from 300 K to 600 K in 100 K increments. The upper temperature boundary
was set at 600 K for this study to avoid scenarios with the potential for NG cracking and soot formation
in the transport piping, a practical limitation which might well lead to excessive maintenance and
higher costs after implementation. Every other operating condition (hot blast temperature, wind rate,
oxygen enrichment, NG injection rate) was held constant for the first set of simulation cases to isolate
the impacts of NG pre-heating on phenomena within the raceway region.

In the tuyere and blowpipe region, the impacts of NG pre-heating were primarily observable in
the increased velocity of the incoming NG plume and the increased average temperature. Comparing
a scenario in which NG was preheated to 600 K to the baseline case, gas temperatures at the outlet were
1.4% higher and the average gas velocity was 1.8% higher. Additionally, the higher NG injection velocity
pushed the combusting gas plume slightly closer to the tuyere wall, which may present reliability
concerns during operation unless the lance is retracted, or a larger diameter lance is used. A 6.3%
increase in NG combustion before the tuyere exit was also observed, most likely due to the reduced
density and increased velocity of NG, which results in improved turbulent mixing. The average
turbulent kinetic energy predicted at the tuyere outlet under standard conditions was 326 m2/s2, while
with a 300 K NG pre-heat this value rose to 414 m2/s2, a 27% increase. A direct comparison between
these two cases is shown in Figure 6.

 
Figure 6. Isometric and front views of gas temperature contours on the tuyere center plane (left) and
tuyere outlet (right) for (a) the baseline case; and (b) the 300 K NG pre-heat scenario.

Changes to species distribution in the raceway region were minimal, as might be expected given
that incoming mass flow rates of fuel and oxygen were held constant. Temperature distributions
were also similar between cases, with the largest observable variations occurring in the predicted FTA
value (which is itself the first parameter targeted by NG pre-heating). Similarly, in the shaft region,
the impacts of NG pre-heating are easiest to observe by directly comparing the changes in top gas
temperature and coke rate to the corresponding values from the baseline case. Table 5 details the
results from the NG pre-heating simulations at the baseline natural gas injection rate.
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Table 5. Impacts of NG pre-heating on BF operating conditions in the raceway and shaft regions.
FTA: flame temperature analogue.

NG
Temp.

(K)

FTA
(K)

FTA Increase
from Base (K)

Top Gas
Temp. (K)

Coke Rate
(kg/mthm)

Coke Rate Decrease from
Base (kg/mthm)

300
(Base) 2187 - 403 392 -

400 2207 20 K (0.9%) 399 389 3
500 2221 34 K (1.6%) 393 387 5
600 2239 52 K (2.4%) 390 385 7

It is clear that NG pre-heating had an observable impact on the predicted FTA value, with each
100 K increase in NG temperature resulting in a 17 K increase in predicted FTA on average. Additionally,
the BF coke rate declined by up to 7 kg/mthm at the maximum level of NG pre-heating, indicating the
potential for improvements to operational efficiency with this approach.

During the course of this research, the potential of NG pre-heating as a lever to address declining
top gas temperatures during winter months in North America due to high burden moisture content
was also explored. The CFD shaft model was applied to determine the impact of ore moisture, with
results indicating that each 0.5% increase in ore moisture content by weight resulted in a 5 K decline
in top gas temperature. This agrees with measurements and experience from both industrial partner
facilities modeled in this research. CFD modeling of the impacts of NG pre-heating indicated that each
100 K increase in NG temperature resulted in a 4.5 K drop in average top gas temperature. While this
aligns well with blast furnace operational rules-of-thumb (parameters that increase RAFT such as hot
blast temperature or oxygen enrichment typically also result in a decline in top gas temperatures) it also
means that NG pre-heating alone is unlikely to serve as a direct counter to the low top temperatures
observed in high burden moisture content scenarios.

Having established the potential benefits and drawbacks of NG pre-heating in isolation, the next
step was to determine whether pre-heating could be applied together with the modification of other
variable parameters to widen the BF operating window. For instance, does pre-heating allow for a
potential solution to moisture-generated low top temperatures if combined with increased NG injection
rates (which typically increase top gas temperature)? Could pre-heating serve as a tool that might
enable operators to push higher NG injection rates in the case of the aforementioned loss-of-PCI
scenario at a co-injection BF? Or might it be possible to push beyond the typical limit of 150 kg/mthm
of NG injection by combining the increased injection rate with NG pre-heating? The next stage of
research aimed to answer these questions with a parametric study involving a range of NG injection
rates, NG pre-heating levels, and oxygen enrichment levels.

Eight different NG injection rates were simulated for this study. In addition to the baseline NG
injection rate of 95 kg/mthm, scenarios were modeled at NG injection rates of 85, 105, 110, 115, 120, 130,
140, and 150 kg/mthm. For each of these new injection rates, the ratio between ore and coke in the
burden charge was altered based on industry operation guidelines for the furnace. As the injection rate
rose, the ore charge weight was increased while maintaining the same burden distribution, leading to
thicker ore layers and a higher potential production rate. NG pre-heating was also tested for each of
these injection rates, so each of these eight additional injection rate scenarios had four sub-cases at the
same NG temperatures (300 K, 400 K, 500 K, and 600 K) as the baseline case.

While results in the tuyere region are not different enough between cases to merit a full review
here, it is important to note that the increased NG injection rates were achieved by simply increasing
the mass flow rate of NG into the lance. At the upper end of the injection rate range (140–150 kg/mthm),
this results in very high NG velocities exiting the lance, especially when combined with NG pre-heating.
A realistic implementation of such high NG injection rates with pre-heating would require a larger
diameter injection lance to manage NG injection velocity and avoid potential impingement on the
inner surface of the tuyere.
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Focusing on the raceway region, the predicted FTA fell quickly with increasing NG injection rate,
as expected. Additionally, the FTA increasesd with NG pre-heating for all simulated NG injection
rates, save for the 150 kg/mthm scenario. Figure 7 details the predicted FTA results for the full range
of cases, with the declining slope of the FTA vs. NG pre-heat as the NG rate (in kg/mthm) increased.
These slopes represent the “pre-heating efficiency” of NG pre-heating in raising the predicted FTA
(unit increase in FTA per unit increase of NG temperature).

 
Figure 7. (a) Predicted FTA vs. NG pre-heat; and (b) NG pre-heating efficiency vs. NG injection rate.

Included in Figure 7 is a marker noting the location of the baseline FTA value that allows for easy
comparison with other cases. For instance, at an NG injection rate of 105 kg/mthm (10 kg higher than
the baseline), an equivalent FTA to the baseline case could be achieved with an NG pre-heat level of
200 K (NG temperature of 500 K). At 110 kg/mthm, this FTA could be achieved with a pre-heat of
a little over 300 K (NG temperature of 600 K). If it is assumed that the furnace remains stable and
matches productivity at a given reducing gas temperature with a fixed burden distribution, these
comparisons seem to indicate the potential for operators to push higher NG injection rates through the
use of pre-heated NG, with relatively minor impacts on furnace operation otherwise.

It is worth noting here that from an NG injection rate of 85 kg/mthm to an injection rate of
105–110 kg/mthm, it appears the NG ”pre-heating efficiency” increased to a maximum of a 0.177 K
increase in FTA for each 1 K increase in NG temperature. When the NG injection rate was increased
further, the “pre-heating efficiency” began to decline. There are multiple potential causes for this
decline. First, the increase in NG injection rate for these cases was not accompanied by a corresponding
increase in hot blast O2 enrichment. The NG fuel rate exceeded the available oxygen for combustion
around the 110 kg/mthm mark, and pre-heating at injection rates beyond this point likely contributed
to NG decomposition. Additionally, the increased injection rate reduced gas residence time inside
the raceway and drove the NG plume closer to the tuyere wall due to higher gas velocity, potentially
hindering combustion. The combination of these factors likely led to the results observed in the
150 kg/mthm case, in which NG pre-heating actually decreased the predicted FTA.

In addition to the baseline oxygen enrichment level of ~29%, two additional scenarios were
added to each case at oxygen enrichment levels of 32% and 35%. In all cases, wind rates were
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held constant at baseline levels and the volume fraction of oxygen in the wind was adjusted.
Figures 8 and 9 show the predicted FTA values for the 32% and 35% oxygen enrichment case
sets respectively. As expected, FTA values were inflated for these cases. Additionally, the availability
of additional oxygen resulted in improved “pre-heating efficiency” at the higher NG injection rates
compared to the baseline oxygen enrichment scenario, though in each set of cases, most benefits from
pre-heating had essentially vanished by the 150 kg/mthm injection rate. It is likely that some combination
of additional measures such as increased oxygen enrichment, wind rate, and NG pre-heating would be
necessary for efficient operation at these high injection rates for this particular furnace.

 
Figure 8. Predicted FTA vs. NG pre-heat for (a) the 32% O2 enrichment scenario; and (b) the 35% O2

enrichment scenario.

 
Figure 9. (a) Predicted BF coke rate for 0 K and 300 K NG pre-heat vs. NG injection rate; and
(b) Predicted average top gas temperature for all NG pre-heat levels vs. NG injection rate.
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For the shaft region, simulations focused on the baseline oxygen enrichment scenario with
increases to NG injection rate that would require no adjustments to the existing infrastructure at the
industry partner facility. These cases aimed to determine the combined impacts of NG pre-heating
and increased NG injection rates on the furnace top gas temperature and coke rate. Figure 9 shows
the predicted impacts of NG injection rates (from 85 to 130 kg/mthm) on furnace coke rate and top
gas temperature.

While changes in both coke rate and top gas temperature due to NG injection rate remained linear
through the range of 85–130 kg/mthm, two trends appeared from the impacts of NG pre-heating. First,
it appears that the coke rate savings observed from pre-heating decline at the higher NG injection rates,
likely due to the aforementioned limiting factors in the raceway. Second, the impact of pre-heating on
top gas temperature appears to become more significant as the injection rate rises, with a larger drop
in top gas temperature observed for each 100 K pre-heat at the higher end of the injection rate range.
The increased decomposition of NG in the raceway in lieu of gas combustion will result in reducing
gas compositions with a balance shifted slightly towards H2 (as carbon from the NG will deposit in
the solid phase and require CO2 or O2 to convert it into reducing gas), and modeling predicts that
this shift promotes endothermic hydrogen reduction reactions. Specifically, simulations predicted that
the increase from an NG temperature of 300 K to 600 K would result in a 1.8% increase in wustite
reduction by H2 in the shaft for the 130 kg/mthm NG injection rate scenario. In comparison, the same
increase in NG temperature results in only a 0.77% increase in the wustite-H2 reduction reaction for
the 85 kg/mthm NG injection rate scenario. Since wustite reduction by H2 consumes ~25 kJ/mol,
while wustite reduction by CO releases 16 kJ/mol, this shift towards H2 reduction (together with the
reduction in available heat due to NG cracking rather than combusting) seems to explain the increasing
detrimental impact on top gas temperatures. Further research in this area could prove illuminating
when exploring high natural gas injection rates and their impacts on the furnace.

Overall, the modeling predicts that the NG injection rate will have a far more significant impact
on predicted coke rate than NG pre-heating, which is to be expected given the additional shifts in gas
composition and reduction reactions under higher NG injection conditions. For top gas temperature,
the impacts between the two parameters are more similar, and it is in this region that the greatest
benefits of combining NG pre-heating and increased NG injection rates can be observed. Selecting a
sample acceptable top gas temperature value of 400 K (125 ◦C) and moving across the range of NG
injection rates, it is clear that there are numerous combinations of NG injection rate and NG pre-heat
level that provide an average top gas temperature close to matching the criterion (95 kg/mthm NG
injection rate and 100 K pre-heat, 105 kg/mthm NG injection rate and 200 K pre-heat, 110 kg/mthm NG
injection rate and 300 K pre-heat).

4. Discussion

4.1. Potential Impacts and Benefits of NG Pre-Heating

Both in isolation and in concert with modest increases in NG injection rate, pre-heating of NG
before injection into the BF appears to present an additional method by which operators could improve
the operating efficiency of their furnaces and widen the window of stable operating conditions.
CFD modeling results indicated that there were observable benefits to blast furnace coke rates from
pre-heating NG up to a temperature of 600 K, though this did result in a decline in top gas temperatures,
similar to the expected impacts from increased hot blast temperature or other parameters that result
in a boost to FTA (RAFT). While the predicted 7 kg/mthm decrease in BF coke rate in this scenario
was a desirable outcome, the corresponding decline of 13 K in top gas temperature may lead to top
gas temperatures lower than 373 K (100 ◦C) and the possibility of condensation of water vapor in
the uptakes. However, by combining higher NG temperatures with an increased NG injection rate,
significant benefits to the BF coke rate can be achieved while maintaining constant levels for both
FTA and top gas temperature (TGT). A set of such cases are outlined in Table 6. Scenario #1 has the
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standard operating conditions from the baseline case, with an NG pre-heat of 300 K. Scenarios #2 and
#3 apply combinations of NG pre-heating with increased NG injection rates (using the levels at which
pre-heating was most effective for this BF) to maintain the FTA and TGT at or near baseline levels
while allowing for the furnace to operate at a lower coke rate.

Table 6. Potential operating condition modifications and corresponding economic impacts. TGT: top
gas temperature.

Case
NG Rate

(kg/mthm)
NG Pre-heat

(K)
FTA (K) TGT (K)

Coke Rate
(kg/mthm)

Baseline 95 0 2187 403 392
Scenario #1 95 300 2238 390 385
Scenario #2 105 200 2192 400 375
Scenario #3 110 300 2186 401 367

The CFD simulations conducted for Scenario #3, using a 110 kg/mthm NG injection rate and a
300 K NG pre-heat, predicted an FTA of 2186 K (1 K lower than baseline) and a TGT of 401 K (2 K lower
than baseline). However, in this case, the BF coke rate decreased from 392 kg/mthm in the baseline
to 367 kg/mthm (25 kg/mthm lower), presenting the potential for significant savings. Of course, it is
necessary to consider the potential costs and safety concerns involved in pre-heating the NG, as the
effort would likely be greatly dependent on the exact method of NG pre-heating.

It is worth returning here to the concept of using high-rate NG injection to compensate for a
loss-of-PCI situation at a co-injection BF. Clearly, NG pre-heating presents a net benefit to predicted
FTA. While not enough to entirely counter the decline seen in the NG-only operation case at the
co-injection BF, applying pre-heating at higher NG injection rates (up to the 120–130 kg/mthm mark)
would likely enable furnace operators to maintain stable operation in a loss-of-PCI scenario. In the
NG-only furnace, balancing NG injection rate with various levels of NG pre-heating allows for the
furnace FTA and TGT to remain at baseline levels. Similarly, it is expected that this strategy could
be applied for furnaces with lower total levels of injectants (such that acceptable RAFTs could be
achieved), or furnaces with the flexibility to supply additional oxygen through enrichment or wind to
further supplement the pre-heating impacts.

4.2. Conceptual Methods for Achieving NG Pre-Heating

Several potential methods could be used to achieve an increase in NG temperature from ambient
(~300 K or 25 ◦C) temperature to the range of pre-heating explored in this study (~600 K or 325 ◦C).
From a practical standpoint, it would likely be best to apply a pre-heating method that does not
require any additional heat sources or fuel use in order to maximize the operating expense reduction
benefits highlighted in the previous section. It is clear that a single capital investment to develop and
implement an NG pre-heating system with minimal ongoing costs would certainly be more attractive
to BF operators than the alternative. The previously reported exploration of NG pre-heating at two
Russian BFs [4,5] approached the concept from this angle, electing to route the incoming ambient NG
through cooling flanges around the exterior of the blowpipe and elbow in an effort to capture heat that
would otherwise be lost to the environment from the hot blast and direct it back into the BF.

Some preliminary CFD modeling of similar concepts was undertaken for the industry BF studied
in this research. Some sample designs of a blowpipe-based heat exchanger or heat recovery system
were explored, including in-refractory channels and an exterior piping wrap similar to the concepts
shared in previous publications. A visualization of these potential designs is shown in Figure 10.
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Figure 10. Conceptual designs for (a) the blowpipe channel NG pre-heater; and (b) the exterior wrap
NG pre-heater.

Preliminary CFD simulations of convection heat transfer using the blowpipe channel NG pre-heater
were conducted using baseline operating conditions (hot blast temperature, wind rate, and natural
gas injection rate). These simple trials predicted a NG pre-heat of 170 K (NG temperature of 470 K)
by the end of the channel, though the exact impact of this heat exchanger design on the hot blast
temperature flowing through the blowpipe has yet to be determined. A potential loss in hot blast
temperature would certainly be a significant detractor from such a design implementation and might
serve to encourage the exploration of alternative approaches.

In addition, these designs present significant complexity in a region of the BF that can already
have a great deal of design constraints, so it may be beneficial to explore methods for pre-heating
elsewhere. A heat recovery system based around the exhaust or ambient heat losses from the BF hot
stoves may present an acceptable solution, and future work may focus on determining the viability
of such a system in terms of achievable NG pre-heat and specific impacts on BF coke rate, top gas
temperature, and FTA.

4.3. Industrial Perspective on Feasibility of Implementation

The computational simulations conducted in this research indicate that pre-heating of natural
gas prior to injection into the blast furnace could offer process benefits. However, modeling does not
consider the effort required for industrial implementation and the associated difficulties that such an
effort might present.

Several routes to pre-heating exist, recuperative (including waste heat), on-demand, and in-situ
partial combustion; each route having a certain level of technical maturity, capability, controllability,
as well as CAPEX and OPEX characteristics that are plant unique. Conceptually, most of the identified
heating technologies would heat gas sourced singly from the main furnace distribution line, i.e., all the
injected natural gas would be passed through a single recuperative heater, while the heating routes
illustrated in Figure 10 would heat individually closer to the point of consumption.

Implementation for the single source is somewhat easier, although potentially more expensive, as
much of the construction and commissioning could be completed while the furnace remains online.
However, pre-heating via the blowpipe route would require an outage of suitable length to change all
the blowpipes, or a planned approach to replace at regular intervals, which could take several years
and leave the furnace with unbalanced pre-heating in the meantime.

Industrial consideration also needs to be given for material selection (pipes, valves, and seals
need to be capable of operating at higher temperatures) and process control (which may have varying
feasibility depending on the route chose, i.e., blowpipe heating). In addition, modified operating and
maintenance practices would need to be developed, and safety protocols would also require careful
review. One example would be RAFT control, which is widely adopted as a key variable in ironmaking.
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Typically, front-line operators use a simple empirical model such as the AISI RAFT model equation to
determine real-time RAFT values. As currently defined, this model does not account for pre-heating of
natural gas. Similarly, the well-known operating rules-of-thumb would need expansion to include the
effect of pre-heating temperature on RAFT, top heat, fuel rate, and productivity.

5. Conclusions

CFD modeling techniques were applied to ascertain the predicted impacts of varied NG injection
rates and pre-heating levels on operation at two different industrial BFs. Simulations indicated that
there is a clear possibility to utilize NG pre-heating in conjunction with increased NG injection rates
to provide an avenue for improved BF operating efficiency (reduced coke rates while maintaining
stable raceway flame and top gas temperatures). Impacts of NG pre-heating in isolation appear linear,
though the slope changes significantly with NG injection rate, and the benefits disappear quickly
when pushing towards injection rates above 140 kg/mthm. The application of NG pre-heating also
appears to have a similar negative impact on top gas temperatures as that of other parameters that
increase furnace RAFT, such as hot blast temperature or oxygen enrichment. However, this impact
is small enough that it can be offset by the increased NG injection rates made possible under these
operating conditions.

As noted in the discussion section, achieving NG pre-heating could be approached from a multitude
of different avenues, including pre-combustion or an upstream recuperative heater. Some initial
simulation testing of a conceptual system for heating NG near the BF blowpipe indicated that sufficient
heating could be provided to the incoming NG to achieve the predicted benefits explored in this
research. However, any industrial implementation would doubtless need to account for the control
mechanisms, CAPEX considerations, and other limitations that would figure into such a system in a
real-world environment. The difficulties and costs would need to be weighed against the potential
benefits, with an eye towards furnace life-span and the potential operational flexibility and return on
investment that an NG pre-heating system would enable.
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Abstract: The main trough is a part of the blast furnace process for hot metal and molten slag
transportation from the tap hole to the torpedo, and mechanical erosion of the trough is an important
reason for a short life of a campaign. This article employed OpenFoam code to numerically study
and analyze velocity, temperature and wall shear stress of the fluids in the main trough during a full
tapping process. In the code, a three-dimensional transient mass, momentum and energy conservation
equations, including the standard k-ε turbulence model, were developed for the fluid in the trough.
Temperature distribution in refractory is solved by the Fourier equation through conjugate heat
transfer with the fluid in the trough. Change velocities of the fluid during the full tapping process
are exactly described by a parabolic equation. The investigation results show that there are strong
turbulences at the area of hot metal’s falling position and the turbulences have influence on velocity,
temperature and wall shear stress of the fluid. With the increase of the angle of the tap hole, the wall
shear stress increases. Mechanical erosion of the trough has the smallest value and the campaign of
the main trough is estimated to expand over 5 days at the tap hole angle of 7◦.

Keywords: main trough; transient fluid of hot metal and molten slag; wall shear stress; conjugate
heat transfer; refractory

1. Introduction

The main trough of the blast furnace is a drainage channel for molten iron and slag. In tapping of
a 3000 m3 blast furnace, 4 to 7 tons per minute of molten slag and hot metal with 1773 K flows into the
main trough from a tap hole. Tapping time changes from 70 to 120 min and tapping number is around
15 every day [1]. Then, with gravity force, molten slag moves to a skimmer on the top of hot metal
and is separated into a slag trough by the skimmer. Due to a harsh working environment, the main
trough of the 3000 m3 blast furnace has 9 to 10 campaigns per year and 45 tons of casting material
(with a price of $857 per ton) is needed for every campaign. Each campaign runs for about 35 days and
needs five minor maintenances. Each minor maintenance consumes 3 tons of ramming material (with
a price of $823 per ton). The cost of the blast furnace main trough is around $0.52 million per year
excluding manpower, time and environmental cost [2]. The maintenance cost of the main trough is
very expensive. Therefore, the internal state of the main trough should be known, and the erosion
mechanism of refractory materials must be understood by the operators and the managers of the blast
furnace. Erosional factors of the blast furnace trough include [3]: (1) Mechanical (physical) erosion of
fluid flows of molten slag and hot metal, (2) chemical reaction erosion between refractory and the fluid,
and (3) thermal stress erosion of intermittent tapping. The main one is the first (mechanical erosion),
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which is proven by the fact that the erosional extent of an iron storage trough is quite little in the new
generation of huge blast furnaces.

In order to reduce the erosion of the main trough, scientists and engineers have done a lot of works
to understand the inner situation of the main trough. There are two approaches to study the mechanical
erosion. One is the hydraulic model experiment with a tracer. Locations and extent of the physical
erosion are predicted through analyzing the range and the depth of the tracer color [4]. The other
is a numerical method of Computational Fluid Dynamics (CFD) to analyze fluid properties, such as
velocity, temperature, pressure drop, viscosity and thermal stress. The hydraulic model experiment
has inherent defects, such as high-cost, high-labor and limit-specific results of experiments. Therefore,
many scientists choose the numerical method to investigate their work.

Luo et al. [5] applied Ansys commercial software (Fluent) to analyze velocity distribution of molten
slag and hot metal in a main trough. The results show that the fluid’s velocities in the center of the
trough are faster than ones near the wall and depend on the shape of the trough. Dash et al. [6] studied
the fluid and turbulent kinetic energy in a main trough by the numerical analysis and investigated the
effect of the slope of the main trough on the velocity distribution. Luomala et al. [7] used CFD and a
1/4 scaled-down hydraulic model with a laser Doppler velocimeter to study the properties of fluid in
the main trough and the effect of the dam height on velocity distribution. Duan et al. [3] calculated the
temperature distribution of a main trough using a three-dimensional (3D) model considering natural
convection and forced convection and proposed that a new main trough be designed based on the
gradient arrangement of the bricks. Wang et al. [8] combined the turbulent model and the volume
of fraction (VOF) to develop a 3D fluid model of a main trough and studied the effects of the tap
hole stream velocity and the trough geometry on the fluid flow. Chang et al. [9] used a momentum
conservation equation and VOF to analyze a main trough flow velocity and wall shear stress, and
proposed a method to reduce the refractory wear of the blast furnace. The above literature only
concentrates on the flow properties (velocity, pressure, viscosity and so on), temperature distribution
in the trough and studies the influence of the trough structure on the fluid. However, the effect of
the hot metal trajectory leaving the tap hole on the velocity and the temperature of a trough and the
refractory erosion during tapping are not reported. Therefore, this investigation will focus on the effect
of the hot metal trajectory.

In this paper, OpenFoam is used to solve the transient Navier–Stocks equations including the mass,
momentum and energy conservation equations. In Section 2, the solved issue will be addressed. Then,
a mathematical model, boundary conditions and solution of the mathematical model are presented
in detail. In Section 2, calculation results are presented and discussed. For example, the velocity,
the temperature and the wall shear stress of the main trough are analyzed at different tapping moments.
Furthermore, the shear stress under different tap hole angles is analyzed and temperature in the
refractory is studied by conjugate heat transfer between the refractory and the fluid. In the last section,
the conclusions from the work are summarized.

2. Problem Formulation

2.1. Physical Model

According to the shape of a blast furnace trough from a steel plant in China, a physical model is
established in Figure 1. During tapping, molten slag and hot metal are regarded as a mixed continuous
and incompressible fluid flowing out from the tap hole, and then fall down into the main trough.
The mixture fluid keeps a constant level in the main trough and around 300 mm from the upper surface
in the calculation. It is separated by the skimmer, and then hot metal flows into a torpedo. Falling
position of the mixture fluid trajectory (FPMFT) in the trough defines the inlet of the model. It moves
from 4 m away from the origin of the coordinates in the beginning to the tap hole direction in the
tapping process. According to References [5,10], Table 1 lists the physical properties of the mixture
fluid and the refractory in the study. Chemical reaction between the refractory and the mixture fluid is
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neglected in simulations. The diameter and the angle of the tap hole is 60 mm and 10 degrees in the
simulations, respectively.

Figure 1. Schematic diagram of the main trough in front view: 1-1 cross-section view at the main
trough; 2-2 cross-section view at the outlet.

Table 1. Physical properties of the mixture and the refractory.

Property Value

Temperature of the inlet (K) 1773
Temperature of the main trough (K) 1583

Temperature of the refractory (K) 1273
Thermal conductivity of the fluid (kg·m·s−3·K−1) 33

Thermal conductivity of the refractory (kg·m·s−3·K−1) 0.16
Density of iron (kg·m−3) 6900
Density of slag (kg·m−3) 2600

Viscosity of iron (kg·m−1·s−1) 0.0045
Viscosity of slag (kg·m−1·s−1) 0.25

Where temperature and viscosity are given in constant values for calculation speed, and the effect
of them on the simulation will be focused on later.

2.2. Mathematical Model

2.2.1. Mathematical Model of Molten Slag and Hot Metal

The governing equations of the mixture fluid include a mass conservation equation, a momentum
equation based on Reynolds-averaged one, and an energy conservation equation. The fluid in the
study was an incompressible Newtonian fluid and its volume expansion ratio ∂ui

∂xi
is zero. In order to

maintain the conservation of the mixture, the mass conservation equation must be met [11], as:

∂ui
∂xi

= 0, (1)

where, xi and ui express the coordinates of space points (m) and the velocity component at point xi
of the time t coordinate (m·s−1), respectively. x1, x2 and x3 define the three directions of x, y and
z, respectively.

The viscous stress tensor P and the deformation rate tensor S of Newtonian fluid have a linear and
isotropic function relationship [12]. The Newtonian fluid constitutive equation is substituted into the
dynamic equation to obtain the momentum conservation equation of the incompressible Newtonian
fluid [11], as:

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρ

∂p
∂xi

+ ν
∂
∂xj

(
∂ui
∂xj

)
, (2)
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where, p, ρ, μ and ν express pressure of the fluid (kg·m−1·s−2), viscosity of the fluid (kg·m−3), kinetic
viscosity (kg·m−1·s−1) and kinematic viscosity (m2·s−1), respectively.

In this study, the standard k-ε turbulence model is used in the simulation. The momentum
conservation equation is a time average one to obtain the Reynolds-averaged N-S equation [13]:

∂〈ui〉
∂t

+ 〈uj〉∂〈ui〉
∂xj

+
∂〈u′i u′j〉
∂xj

= − 1
ρ

∂〈p〉
∂xi

+ ν
∂
∂xj

(
∂〈ui〉
∂xj

)
, (3)

where, u′i and u′j define pulse values of the velocity (m·s−1), respectively. 〈ui〉 is time average, and
ui = 〈ui〉 + u′i .

Reynolds stress tensor term, −〈u′i u′j〉, is added into Equation (3). This makes the equations disable
to close and introduces a turbulence model. According to the Boussinesq hypothesis, the expression of
Reynolds [13] stress is:

− 〈u′i u′j〉 = νt

[
∂
∂xj

〈ui〉 +
∂
∂xi

uj

]
− 2

3
δi jk, (4)

where, δi j is Kronecker delta and δi j =

{
1, i = j
0, i � j

. k is turbulent energy (m2·s−2).

Due to high velocity at the inlet, the mixture fluid in the main trough has a high Reynolds number.
The standard k−ε turbulence model has a few empirical constants for this condition. In the standard k−ε
model, the turbulent energy k and the turbulent dissipation rate ε are associated with the turbulence
νt, the formula [13] is as follows:

νt = Cμ
k2

ε
, (5)

where, Cμ expresses the empirical constant and a value of 0.09 is used in the simulation.
k and ε are solved in an incompressible fluid using the following two equations [13]:

∂(ρk)
∂t

+ 〈ui〉∂
(ρk)
∂xi

=
∂
∂xi

[(
μ+

νt

σk

)
∂k
∂xj

]
+ Gk − ρε, (6)

∂(ρε)

∂t
+ 〈ui〉∂

(ρε)

∂xi
=
∂
∂xi

[(
μ+

νt

σε

)
∂ε
∂xi

]
+

C1εε
k

Gk −C2ερ
ε2

k
, (7)

where, C1ε, C2ε, σk and σε express 1.44, 1.92, 1.0 and 1.3, respectively. Gk defines the increase in
turbulent kinetic energy caused by the average velocity gradient and is calculated as follows:

Gk = νt

(
∂〈ui〉
∂uj

+
∂〈uj〉
∂ui

)
∂〈ui〉
∂xj

, (8)

The above eight equations jointly solve the velocity and the pressure of the mixture fluid region
and the energy conservation equation is expressed [11] by:

∂T
∂t

+ ui(
∂T
∂xi

) =
∂
∂xi

λ
ρCp

∂T
∂xi

, (9)

where, λ and Cp express the fluid heat transfer coefficient (W·m−1·K−1) and the specific heat capacity
of fluid (J·m−1·s−1), respectively.

The energy conservation equation is also a time average one. Equation (9) is added to the Reynolds
heat conduction term (〈u′i T′〉) after time-average, and it becomes:

D〈u′i T′〉
Dt = ∂

∂xj

[
CT

k2

ε
∂〈u′i T′〉
∂xj

+ a
∂〈u′i T′〉
∂xj

]
−

(
〈u′i u′j〉∂〈T〉∂xj

+ 〈u′jT′〉∂〈ui〉
∂xj

)
−CT1

ε
k 〈u′i T′〉−CT2

∂〈ui〉
∂xj

〈u′jT′〉, (10)
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where, CT, CT1 and CT2 are empirical coefficients. The values of them are 0.07, 3.2 and 0.5 in the
simulation, respectively.

2.2.2. Mathematical Model of Refractory

Heat transfer between the mixture fluid and the refractory is coupled to each other. For the
refractory heat transfer calculations, only the Fourier equation [14] is solved:

∂〈T〉
∂t

=
∂
∂xi

λ
ρCp

∂〈T〉
∂xi

, (11)

where, λ defines the solid heat transfer coefficient (W m−1·K−1). Cp expresses the specific heat of the
refractory (Al2O3–SiC–C) and is 0.628 kJ·kg−1·K−1.

2.3. Boundary Conditions (cf. Figure 2)

(1) Inlet boundary conditions. Due to the decrease of the pressure in the furnace during tapping,
mass flow of the mixture flow from the tap hole decreases and FPMFT moves to the tap hole
direction. Therefore, boundary condition at the inlet is velocity type and it can change in the
direction and in the magnitude at the same time. A parabolic Equation (12) is used to define
the velocity. Its maximum magnitude is 6.635 m·s−1 and is estimated from the FPMFT at the
beginning of the tapping. Thermal and pressure boundary conditions at the inlet are constants of
1773 K and zero gradient, respectively.

y = x· tanα− g

2u2
0cos2α

·x2, (12)

where, α is the inclined angle of the tap hole (◦), u0 defines the velocity of the mixture fluid stream
(m·s−1) and changes with the time, x and y are the coordinates of FPMFT (m, m) and g expresses
the acceleration of gravity (m·s−2).

(2) Outlet boundary conditions. The outlet of the main trough defines pressure type and is
expressed as zero. Thermal and velocity boundary conditions are constants of 1583 K and zero
gradient, respectively.

(3) Wall boundary conditions. Boundary condition for free surface of the main trough is no slip.
The temperature and pressure are constants of 1583 K and zero gradient at the walls, respectively.

(4) Interaction wall boundary conditions (see yellow surface in Figure 2) for the mixture fluid and the
refractory. Temperature boundary condition is a conjugate heat transfer. Velocity and pressure
are constants of zero and zero gradient at the interaction wall, respectively.

(5) Refractory wall boundary conditions. Since the refractory only needs to solve the Fourier’s
equation, there is only a temperature boundary condition with a constant of 1273 K.

 

Figure 2. Computational grid: (a) the grids at the inlet and the upper wall, (b) the grids at the outlet.

2.4. Numerical Procedure

(1) Pre-process. A 3D modeling software is employed to draw a geometry. Hexahedron structure
meshes of the geometry are created by the Integrated Computer Engineering and Manufacturing
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(ICEM) and are shown in Figure 2. There are 6,433,548 grids, including 1,477,213 for the mixture
fluid and 4,956,335 for the refractory.

(2) Solution. The mixture fluid in the main trough is solved by Equations (1), (3) and (9), and the
solid in the refractory is solved by Equation (11). For transient simulation, these equations are
discretized in time and a time step of 0.001 s is used. In every time step, the simulation is solved
by the semi-implicit method for pressure-linked equations (SIMPLE) algorithm as a steady state.
Then, the pressure implicit with splitting of operator (PISO) is employed to calculate the transient
discretization until the last time step.

(3) Post processing. Paraview and Tecplot software is used to visualize the simulations. Locations of
5 faces and 6 lines in the main trough are shown in Figure 3a, b to analyze the results. A center
plane (red) is the central cross-section of the main trough. The distance between the center plane
and plane 1 (blue) and one between plane 1 and 2 (orange) are both 0.2 m. Plane 3 (green) defines
the back surface of the mixture fluid in the main trough. Plane 4 (deep blue) is perpendicular
to other planes with a horizontal distance of 3 m from the origin of the coordinates and also
includes some parts in the refractory. Except for line 2, other lines are located on the center plane.
Line 1 expresses the intersection of the central plane and the bottom surface of the main trough.
The distance between line 1 and 3, one between line 3 and 4, one between line 4 and 5 and one
between line 5 and 6 are 0.02, 0.2, 0.2 and 0.2 m, respectively. The intersection of the front surface
(cf. Figure 2a) and the bottom surface of the main trough defines line 2.

 

 
Figure 3. Locations of 5 faces and 6 lines in the main trough for post-processing analysis: (a) planes in
the full main trough, (b) lines in the mixture fluid of the main trough.

3. Results and Discussion

3.1. Residual Errors in Simulation

The residuals include internal and external, two parts in the simulation. When transient state
calculations happen in OpenFoam, the number of iterations in each time step is controlled by the
internal residuals. The external residual is the difference between the calculated results at adjacent time
steps. When the convergence criterion is reached, the calculation moves to the next time simulation.
The smaller the residual errors are, the better convergence the calculations have. Figure 4 shows
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residual error values of pressure, velocity and temperature at the initial moment of calculation. It
can be observed that with the increase of the calculation time, the residuals errors gradually decrease.
All of them meet the convergence criteria and the calculation results are reliable.

 

Figure 4. Monitoring residual error curves of pressure, velocity and temperature in the simulation.

3.2. Velocity Distribution of the Mixture Fluid in the Main Trough

Tapping lasts around 90 min in practice and it is not necessary to simulate the full process. Because,
except for the beginning of 1 to 2 min and the end of 1 to 2 min, molten slag and hot metal keep a
constant mass flow and flow out from the tap holes. Simulation should include the following three
steps: the start moment, constant state and the end. Therefore, the total calculation is 90 s and includes
the three stages. Furthermore, time step is 0.001 s and the courant number is smaller than 1.

The calculation results at 5, 30, 55 and 80 s are used to analyze the velocity distribution of the
mixture fluid at the initial, early intermedia, late intermedia and the end of the tapping. Figure 5 shows
the velocity vector of the center plane (cf. Figure 3a) along the main trough. The FPMFT is 2.7 m from
the origin of the coordinates in the main trough and downstream of the FPMFT is strongly influenced
by the tap hole flow at 5 s. Therefore, a counter clockwise turbulence is observed near 4.5 m, but the
impact of the turbulence on the upstream of the FPMFT is quite weak.

The FPMFT moves to the tap hole direction during tapping. The turbulence of FPMFT’s
downstream is fully developed and its influence range is obviously increased at 30 s. It decreases a
lot at 50 s and disappears at 80 s. Comparing four figures in Figure 5, the angle of the mixture fluid
at the moving inlet (cf. Equation (12)) changes hugely, and the mixture fluid flow hits the bottom of
the main trough. Therefore, more hot metal and molten slag mechanically erode the bottom wall of
the refractory.

Figure 5 shows that the erosion near the FPMFT is more serious and the velocity distribution at the
FPMFT of 3 m is studied. Figure 6 shows the velocity vector at 3 m from the origin of the coordinates
in the main trough at 5, 30, 55 and 80 s. With the increase of the time, the velocity on plane 4 is also
significantly reduced. The velocity at the center of plane 4 is large in the period of 2 to 2.6 m/s at 5
s. At 30 s, obvious turbulence is observed to form in the main trough and velocity at the bottom of
the main trough is the largest (around 0.6 m/s). Therefore, physical erosion at the bottom of the main
trough is more possible and serious. At 55 s, the mixture fluid velocity in the lower side walls of the
main trough is larger than other locations. At 80 s, two “donuts” flows appear on the cross-section, but
velocity magnitude of the flow is quite small (maximum 0.05 m/s). Therefore, the mixture fluid flow
has little effect on the main trough.

Comparing maximum velocities (red arrows) in Figures 5 and 6, velocities of the mixture fluid
from the inlet become smaller and smaller during the tapping, which means that mechanical erosion
mainly happens in the beginning of the tapping.

In summary, the mixture fluid flow of the main trough is significantly affected by the fluid from
the inlet, and a strong turbulence is formed at the downstream of FPMFT and the turbulent area also
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expands toward the skimmer. The turbulent area near the initial moment of FPHMT exists for a long
time. The velocity at the bottom and the lower side walls of the main trough is bigger than others.

 

 

 

Figure 5. Velocity distribution on the center plane (cf. Figure 3a) at 5, 30, 55 and 80 s.

 
X = 3

z

y

0

Figure 6. Velocity distribution of the mixture fluid on plane 4 (cf. Figure 3a) at 5, 30, 55 and 80 s.

210



Processes 2020, 8, 249

3.3. Wall Shear Stress

In order to quantitatively study and describe mechanical erosion, wall shear stress is chosen and
expressed by:

τ = −μ
→
u
→
n

, (13)

where,
→
n and μ indicate the normal vector (m) and the mixed viscosity of molten iron and slag

(kg·m−1·s−1), respectively.
→
u→
n

is change rate of velocity perpendicular to the direction of the
fluid movement.

Figure 7 shows wall shear stress distribution of the refractory on line 1 and line 2 at 5 s. Wall shear
stress reaches the maximum at 4 m, and its value at the bottom (line 1) of the main trough is significantly
larger than the side wall (line 2). The FPMFT at 2.7 m and the velocity at 4 m is strongly influenced by
the mixture fluid flow from the inlet at the moment. Due to effect of the skimmer, the wall shear stress
increases a little at 15 m but there is no difference between the side wall and the bottom wall.
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Figure 7. Wall shear stress on the line 1 (blue curve, cf. Figure 3b) and line 2 (red curve, cf. Figure 3b).

3.4. Temperature Distribution of the Main Trough

Figure 8 shows the temperature distribution of the central plane (cf. Figure 3a) at 5, 30, 55 and 80 s.
The temperature distribution matches the velocity distribution in the previous section. The downstream
of the FPMFT has a significant increase of the temperature due to the mixture fluid from the inlet with
high energy, while the temperature of the upstream mixture changes little.

Figure 9 shows the temperature distribution of the mixture fluid on plane 4 (cf. Figure 3a) at 5,
30 and 55 s. At 5 s, the mixture fluid flows from the tap hole and a high temperature is concentrated
on the center of the cross-section. At 30 s, the bottom of the main trough forms a higher temperature
region than others. The temperature at the others is around 1605 K and is much higher than that at 5 s.
At 55 s, the falling position of the mixture fluid is located at 1.2 m and the high-temperature zone is
located at the side and the bottom walls of the main trough.

Figure 10 show temperature changes of four lines during tapping ((a) line 3, (b) line 4, (c) line 5
and (d) line 6, cf. Figure 3b). Temperature varies greatly on the main trough direction, especially when
the mixture fluid is close to the FPMFT. Due to movement of the FPMFT, temperature varies greatly
before 3 m. There is a constant temperature zone of 1610 k from 3 to 6 m. The largest fluctuation
happens near the bottom of the mixture fluid (Figure 10a), which means the bottom refractory suffers
the highest frequent changes of thermal stress and is highly probable to erode.

Figure 11 shows the temperature distribution of the mixture fluid from the central plane to plane
3 of the main trough (cf. Figure 3a). Temperature near FPMFT is obviously higher than others, and
temperature at the downstream of FPMFT is apparently higher than the initial boundary set 1573 K
due to the conduction and the convection of heat transfer. Furthermore, the temperature gradually
decreases from the central plane trough (z = 0.8) to the plane 3 (z = 0.3). Due to a low thermal
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conductivity of the refractory and the low initial temperature, the temperature gradient in the refractory
is really small. However, the temperature at the interaction boundary wall of the refractory and the
mixture fluid is exactly the same as each other.

In summary, the temperature of the mixture fluid increases significantly during tapping. From the
center of the mixture fluid to the refractory, the temperature gradually decreases, but the temperature
distribution is consistent with the velocity field. In the vertical direction, temperature increases with
the increase of the height. In the horizontal direction, the temperature of the mixture fluid near FPMFT
changes greatly.

 

 

 

 

Figure 8. Temperature distribution of the center plane (cf. Figure 3a) at 5, 30, 55 and 80 s.

 

Figure 9. Temperature distribution of the mixture fluid on plane 4 (cf. Figure 3a) at 5, 30 and 55 s.

3.5. Influence of Tap hole Angles on the Flow of the Main Trough

Intermittent tapping of a blast furnace must be punched before the tapping and be plugged
after the tapping. The angle of the tap hole can change during tapping. Therefore, it is important to
understand the influence of the angle of the tap hole to the temperature, velocity and shear stress of
the mixture flow in the main trough. Since velocity and temperature distributions are quite similar in
Figures 5–11, they are not analyzed any more.
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Figure 10. Temperature fluctuations of four lines during tapping ((a) line 3, (b) line 4, (c) line 5 and (d)
line 6, cf. Figure 3b).

 

 

 

Figure 11. Temperature distributions from the central plane to plane 3 (cf. Figure 3a).

Generally speaking, the angle of the tap hole changes between 7 to 12◦. Therefore, two values in
the interval were selected to highlight the effect of the angle. As shown in Figure 12, with the increase
of the tap hole angle, the wall shear stress increases from 0.73 to 0.87 because molten slag and hot
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metal gets a higher velocity when they fall into the main trough from a bigger angle of the tap hole.
The little increase of wall shear stress happens at 15 m due to the fact that the fluid velocity becomes
bigger at the skimmer. When the tap hole angle is 7◦, mechanical erosion of the trough has the smallest
value. The maximum of wall shear stress is reduced by 16% and the campaign of the main trough is
estimated to expand over 5 days, comparing with the tap hole angle of 10◦ and 7◦.
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Figure 12. Wall shear stress distribution at different angles of the tap hole on line 2 (cf. Figure 3b).

Figure 13 shows temperature changes of line 3 during tapping with different tap hole angles,
(a) 7◦, (b) 10◦ and (c) 12◦. With the increase of the angle of the tap hole, change of temperature during
tapping is little. But as the location of FPMFT moves toward the direction of the tap hole, the maximum
temperature of it increases. During tapping, reasonable adjustment of the tap hole angle can reduce
the extent of mechanical erosion in some areas, which is helpful to expand the sieve campaign of the
main trough.
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Figure 13. Temperature fluctuations on line 3 (cf. Figure 3b) during tapping with different tap hole
angles, (a) 7◦, (b) 10◦ and (c) 12◦.
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4. Conclusions

In this study, OpenFoam was employed to analyze the velocity, the temperature, the wall shear
stress in the main trough of a blast furnace and the influence of different tap hole angles on the main
trough. Some conclusions are highlighted as follows.

(1) Velocity of the mixture fluid at the center of the main trough is generally larger than that at the
wall. Velocity of the FPMFT at the downstream is larger than that at the upstream. However, due
to strong turbulence at the downstream, the lower front wall also has larger velocity.

(2) Maximum of shear stress occurs at the downstream of the FPMFT, and the shear stress on the
bottom wall is bigger than that on the front wall.

(3) Due to velocity increase of the FPMFT, the shear stress on the wall of the main trough increases
with the increase of the tap hole angle. When the tap hole angle is 7◦, mechanical erosion of the
trough has the smallest value and the campaign of the trough expands over 5 days.
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Abstract: Monitoring and control of the blast furnace hearth is critical to achieve the required
production levels and adequate process operation, as well as to extend the campaign length. Because
of the complexity of the draining, the outflows of iron and slag may progress in different ways during
tapping in large blast furnaces. To categorize the hearth draining behavior, principal component
analysis (PCA) was applied to two extensive sets of process data from an operating blast furnace with
three tapholes in order to develop an interpretation of the outflow patterns. Representing the complex
outflow patterns in low dimensions made it possible to study and illustrate the time evolution of
the drainage, as well as to detect similarities and differences in the performance of the tapholes.
The model was used to explain the observations of other variables and factors that are known to be
affected by, or affect, the state of the hearth, such as stoppages, liquid levels, and tap duration.

Keywords: hearth; drainage; PCA; analysis tool; pattern; tapholes

1. Introduction

The blast furnace represents the most relevant process on the main route for ore-based production
of iron in the steelmaking industry. An important part of the process is its lowest region, better known
as the hearth, where molten iron and slag are collected before they are drained (“tapped”) out through
the tapholes. In large-size furnaces, this drainage procedure is carried out by opening alternating
tapholes from where both liquid phases are tapped out simultaneously. Different tapping rates may
occur, partly because of differences in the production or internal conditions in the hearth, leading to
variation of the levels of the liquid phases. The outflow rates are anticipated to be lower in the beginning
of the tapping, increasing as the drainage proceeds owing to erosion of the taphole. The erosion may
be further induced by the arrival of newly produced hotter liquids that have not experienced heat loss
to the hearth lining. The goal is to drain sufficient amounts according to observations and estimations
to keep the liquid levels low in the furnace [1,2].

In large-scale operation, productivity and efficient operation of the casthouse might be jeopardized
by the variation of operating factors. Some of the most common concerns are liquid-level fluctuations
caused by production/extraction imbalance, and erosion of the hearth lining. Because of the complexity
of the process and besides the lack of direct measurements, the understanding and control of the
tapping procedure represent both difficult and essential tasks in order to ensure an efficient operation.

Earlier studies of alternating tapping practice presented differences in taphole length, amounts
of liquids extracted, and hot metal temperature between the operating tapholes [1,3,4]. Even though
some correlations among production variables and erosion of both lining and taphole were established,
little is known about what induces such variations and how. Computational fluid dynamics (CFD)
simulations were undertaken with the goal to clarify the relation between production variables,
implicitly or explicitly suggesting that there may be considerable spatial distribution of the variables
or differences depending on local conditions at the tapholes [5–8].
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Many previous efforts have been made to shed light on the hearth fluid dynamics and the
phenomena that occur during and between the taps. In contrast to earlier notions, the fact that iron
can be drained to levels below the taphole was clarified in the 1980s by Tanzil et al. [9], who made
small-scale experiments supported by computational analysis. The investigators showed that the flow
of the viscous slag phase leads to a lower pressure in front of the taphole, which makes it possible to
elevate iron from levels well below the taphole, thus leading to simultaneous outflow of the two liquid
phases. Nouchi et al. [3] presented experimental work that associated slag ratio (mass ratio of slag
to iron) with liquid levels and tap duration, as well as how the time corresponding to a maximum
of the slag ratio shifted with changes in the conditions. Furthermore, the results showed that at
constant conditions, the maximum slag ratio increases if low-permeability zones are present in the
hearth. On the other hand, Nishioka et al. [10] pointed out that only taphole mud quality or erosion
of the operating taphole could not explain the duration of the tapping and the fluctuations in the
drainage rate. Even though some causal factors have been identified or suggested, little is reported
about the occurrence or frequency of such fluctuations. Iida et al. [2] reached similar conclusions to
Nishioka et al. [10], also suggesting that coke particle size and configuration in front of the taphole play
important roles for the liquid outflow rates. These results indicate that local conditions at the taphole
might cause such imbalance. Furthermore, in later efforts [1], the authors developed a mathematical
model that led them to conclude that discrepancies between operating tapholes in terms of liquid
drainage rate and tap duration were the result of local zones of low permeability. According to their
model, the metal fraction depended on the vertical level of the iron–slag interface compared with the
taphole level.

Several studies in the literature have presented models of hearth drainage [1,2,10–13]. A recent
study by the present authors proposed a simple offline model simulating the liquid level fluctuations
in a hearth with intermittent tapping [14]. By applying different conditions to each taphole, it was
demonstrated that some outflow patterns and slag delays observed in a blast furnace could be
mimicked. Thus, the model makes it possible to theoretically evaluate the role of different parameters.
Furthermore, an online liquid-level model was also proposed based on similar simplifications and
assumptions, but using estimates of the production and outflow rates [4]. The model considers a
division of the hearth into pools with individual liquid levels. Its application indicated non-uniform
drainage among the tapholes, as well as periods of accumulation and depletion of both iron and slag.
However, certain drainage behaviors were observed that could not be explained by the models, so a
deeper understanding of the hearth drainage behavior is needed. An analysis of the recurrence of
outflow patterns and transition from one to another could provide some understanding of the blast
furnace hearth state, even though irregularities frequently seen in the data make it difficult to identify
and categorize the observations in an appropriate way. It is thus clear that a data-driven analysis of the
liquids outflow patterns could be useful. The present paper addresses this very problem using principal
component analysis to compress the information to make it easier to understand and illustrate.

2. Principal Component Analysis

The main purpose of principal component analysis (PCA) is to reduce the dimensionality of
multivariate data. The method also provides guidelines on the number of components needed to
represent the data in question with sufficient accuracy.

Consider a sample data Y of mean-centered measurements with n observations on q
variables [15,16]. First, the linear combination t1 = Yp1 is found that accounts for the maximum
variance subject to

∣∣∣p1
∣∣∣ = 1. This represents the first principal component. The second component

is a combination defined by t2 = Yp2 that has the next greatest variance subject to
∣∣∣p2

∣∣∣ = 1 with
the conditions that it is uncorrelated with, and orthogonal to, the first component t1. The following
components are similarly determined. The sample principal component loading vectors pi are the
eigenvectors of the covariance matrix of Y. PCA decomposes the observation matrix Y as
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Y = TPT =

q∑
i=1

tiPT
i . (1)

If a considerable part of the variation is represented by the contribution of a smaller number of
components, these components can replace the original data.

The present paper aims to identify and classify iron and slag outflow patterns from a reference blast
furnace by applying PCA to two data sets. The data representation in lower-dimensional components
is presented in the following section in order to identify and visualize possible trends in the drainage
patterns. Some interpretations of the results will also be presented with respect to hearth dynamics
and tapping procedure.

3. Method and Data Sets

The data analyzed consists of two data sets, Data set 1 and 2, of three and six months worth of
measurements of liquid outflow rates, respectively, from a large blast furnace with three tapholes,
TH-1, TH-2, and TH-3. Between the end of Data set 1 and the beginning of Data set 2, 15 months of
operation passed. The iron outflow rate was obtained from torpedo weighing, while the slag outflow
rate was estimated based on measurements from the granulation unit. Both signals were available as
one-minute averages. Considering the recorded times from the individual taps, the liquid outflow rate
for each tapping was calculated, resulting in a total of 887 consecutive ones for Data set 1 and 1729 for
Data set 2. From here on, individual tapping samples will be referred as taps, while tapping will refer
to the drainage process.

3.1. Pre-Processing of the Data Set

After visual inspection of the samples, systematic abrupt changes of the iron outflow rate (>5
tonne/min in a couple of minutes) were noticed, which did not agree with the overall trend. Such
deviations were found to be caused by torpedo changes, so they were filtered out of the samples.
The outflow samples were subjected to additional pre-processing conditions in order to discard samples
that, owing to error in the measurements or records, could potentially corrupt the classification. Among
these conditions were the following:

• outflow near zero for any of the phases;
• taps shorter than 40 min that may occur as a result of disturbances, stoppages, or contingencies;
• any of the phases shows an outflow rate above 2% of the production rate at all times (i.e., also

during the intercast period, where there should be no liquid outflows); and
• the total outflow abruptly goes near zero as a result of measurement errors or possibly

taphole clogging.

After excluding such samples, 776 taps remained in Data set 1 and 1463 taps in Data set 2,
accounting for 87% and 86% of the original data sets, respectively. Nonetheless, the excluded samples
were taken into account when estimating the slag delay (see below).

It was found to be appropriate to use a threshold for the outflow rate, set at 2% of the production
rate, to indicate when the flow of the liquid in question (iron or slag) has started during the tap.
This condition was needed as liquids from a tap often progressed in the runner to the torpedo and
the granulation units for some minutes after the tapping ended, and so, based on this information,
the moments when iron and slag started flowing out were noted, and the difference between these two
times is called “slag delay” in what follows. Note that a negative slag delay means that slag starts
flowing out first. The slag delay has an important meaning as it reflects the vertical location of the
iron–slag interface in the hearth at the moment when the taphole is opened; therefore, it is an important
feature to identify with the present method. Figure 1 illustrates two cases where different locations of
the iron–slag interface determine which liquid phase will be “seen” first, that is, if the slag delay will
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be positive or negative. The figure depicts the state of the interfaces just before the tapping ends (solid
lines), just after the tap has ended and the interfaces have become horizontal (dotted lines) and the
state just before the next tapping starts (dashed lines). In case (a), the right taphole has drained more
slag and less iron, so the iron–slag interface is not significantly below the left taphole as the tapping
ends, and while the tapholes are plugged, it rises above the left taphole. This will result in a positive
slag delay in the following tap from the left taphole. As this taphole will start with iron-only flow, slag
keeps on accumulating in the hearth, elevating the slag–gas interface. The duration of the tap is long
and the iron–slag interface will have time to descend well below the taphole, eventually leading to
the state depicted in the right panel, yielding a negative slag delay for the right taphole, as shown in
case (b).

Figure 1. Illustration of two cases of slag delay: (a) positive slag delay (for the left taphole), (b) negative
slag delay (for the right taphole).

PCA is a scale-dependent method. Thus, if the data matrix has variables of considerably bigger
magnitude than others, these will have dominant weights in the sub-dimension. Therefore, the outflows
were normalized by calculating the slag share, defined as

Sslag(i) =
mslag(i)

miron(i) + mslag(i)
, (2)

where i denotes the time, while miron(i) and mslag(i) are the corresponding mass flow rates of iron
and slag from the furnace for the same time. The share of slag was considered an interesting variable,
because work by other investigators has demonstrated that the hearth state may affect the distribution
of the two liquids in the taps from multi-taphole furnaces [2,3,10]. Furthermore, in order to normalize
the tap duration (defined as the time elapsed between the moment when the first liquid starts flowing
out till the last liquid stops flowing out of the taphole), Sslag was down-sampled to 10 average points,
each representing one tenth of the duration of the tap. Thus, all taps were represented by ten values of
the slag share, which facilitated a comparison between the results of different taps despite differences
in tap duration. This down-sampling was found to yield an acceptable representation of the variable
without losing much significant or relevant information. Thus, the vector length of the samples to be
categorized was of 10. The method aims to identify outflow patterns within the production levels of
the BF; therefore, both slag fraction and tapping duration were required to results pattern-dependent.
Figure 2 presents a few examples from Data set 2 that depict some typical liquid outflow patterns,
illustrating the phase that is first observed—hence, the start of the tap—and how the tap durations
may vary. The top panels of Figure 3 show the corresponding slag shares calculated by Equation (2)
for the same four taps. The lower panels of the figure show, using solid squares, the corresponding
10-point normalized curves. As seen from the four examples, the evolution of the share of slag in the
outflowing liquid mixture may show quite different characteristics.
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Figure 2. Examples of liquid outflow patterns from the Data set 2: (a) zero slag delay and 135 min tap
duration, (b) negative slag delay and 170 min tap duration, (c) zero slag delay and 70 min tap duration,
and (d) positive slag delay and 140 min tap duration.

Figure 3. Slag share for the taps presented in Figure 2. Upper panels: one-minute values obtained from
the measurements. Lower panels: information discretized into 10 points (solid squares) and principal
component analysis (PCA) reconstruction (open circles).

A preliminary study of the normalized outflow patterns showed differences between data sets
and tapholes. Figure 4 shows the slag share for the 10 average points or variables of the data sets
after preprocessing. Data set 1 is presented in Figure 4a, while Data set 2 is presented for comparison
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in two equivalent consecutive subsets of 720 and 763 taps in Figure 4b,c, respectively. The median
curves for each taphole are depicted, as well as the median for the whole data set or subset and their
corresponding 25th and 75th percentiles. The median for TH-1 in Data set 1 is seen to be similar to
the 25th percentile of this dataset, while for TH-2, it is similar to the 75th percentile, particularly for
variables 1 and 8–10. The median of TH-3 is, on the other hand, comparable to the global median.
The median for the first subset of Data set 2 shows higher slag shares for all variables compared with
Data Set 1, particularly for variable 1, where the median of TH-1 falls below the global median, while
median of TH-2 falls above, and for TH-3 at the same level. Taphole median values are found above
and below the global median in different orders for the other nine variables. In the second subset of
Data set 2 (cf. Figure 4c), variable 1 shows a decrease from 0.35 to 0.23, with TH-1 and TH-2 medians
below the global median and TH-3 above. Similar median curves are observed for variables 2–10 as in
the first subset in Figure 4b.

Figure 4. Overall median curves of Data set 1 and 2 and median by taphole (TH), (a) Data set 1, (b) first
half of Data set 2, (c) second half of Data set 2.

In summary, interesting variability is observed within and between the data sets, and between the
different tapholes. This motivates the effort to identify the outflow patterns that may occur during
certain periods and how they persist or develop during the operation of the blast furnace. Next, a
systematic PCA-based analysis of the outflow patterns of the two data sets is presented.

3.2. Post-Processing of the Results

Matlab’s PCA algorithm was applied separately to the two discretized data sets. After subtracting
the mean value corresponding to each variable, the algorithm computes by singular value decomposition
the coefficient matrix corresponding to each variable per component. The 10-dimensional vector is
represented by 10 components yielding a 10 × 10 coefficient matrix. The algorithm also computes the
scores matrix corresponding to each observation per component, that is, there are as many individual
score vectors as samples. On the basis of Equation (1) and adding the mean value of each variable,
the observations can be reproduced. In this way, the variability of each component or dimension can
be studied. Figure 5 presents the different pattern ranges that the first four principal components
represent in the two data sets.
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Figure 5. Slag share ranges represented by the principal component (C1 . . . C4) for Data set 1 (left
panels) and Data set 2 (right panels). Solid lines represent the mean pattern, dotted lines the lowest
values (labelled A), and dashed lines the highest (labelled B). The percentage of variance explained by
each component is reported in the right top part of each subpanel.

After studying the results, it can be hypothesized that the first component (C1, top panels) largely
reflects the slag delay expressed in terms of slag share in the initial part of the tapping, where zero
corresponds to iron-first and one to slag-first drainage. The second component (C2) captures mainly
the level of the slag share (excluding variable 1), falling in the range of 0.1 to 0.3 for both data sets
(corresponding to a slag ratio of 110–430 kg/thm, where subscript hm denotes hot metal). The third and
fourth components (C3 and C4) represent changes in the share of slag during tapping. Even though
the data sets were treated separately, C1 and C2 display a similar meaningful representation of the
data in the principal component space. C4 in Data set 1 and C3 in Data set 2 show similar pattern
ranges as well. As seen in Figure 4, the outflow patterns of the three tapholes display different trends
from variable 2 to 10, and this trend can be captured by the slopes that C4 in Data set 1 and C3 in Data
set 2 describe. It can be concluded that these slopes reflect how the slag share develops during the
tapping when both phases flow out. Figure 5 also indicates by solid lines the pattern corresponding
to the mean values for each data set, which are seen to be very similar. In the principal component
space, this pattern corresponds to the interception of the components, which is referred to as the mean
pattern in what follows. The dotted lines correspond to lowest values in the principal component space
(denoted by A) and the dashed lines correspond to highest values (denoted by B).

The algorithm also reports the percentage of the total variance explained by each component.
In Data set 1, the first four components explain 78.4%, 9.2%, 5.8%, and 4.0%, respectively, while in Data
set 2, they explain 77.8%, 9.3%, 5.7%, and 3.6%, respectively. Considering the meaningful information
that the components provide, C1, C2, and C4 were selected for Data set 1, which together explain 91.6%
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of the data variation. To provide an equal representation of the data sets and to allow for a comparison,
C1, C2, and C3 were selected for Data set 2, together explaining 92.8% of the variation. An accuracy
exceeding 90% was considered sufficient to represent the data sets and consequently enough to make a
meaningful analysis of the results.

4. Results

The method as a batch algorithm organizes all samples in the component dimensions regardless
of the taphole operated. In order to process the results, moving averages of the selected principal
components for the latest 20 taps (corresponding to approximately two days of operation) were
considered. The average was calculated for each taphole, taking into account the taps that occurred
within the latest 20-tap window. Thus, this post-processing criterion yields a quasi-time evolution. It is
important to stress that the main objective of the work is to reveal similar or different behavior of the
drainage from the different tapholes to gain understanding of the variability seen during operation.
The left panel of Figure 6 shows a lay-out of the three tapholes in the furnace. The right top and
bottom panels present the periods during which the tapholes were operated in Data set 1 and Data set
2, respectively. Each taphole is typically operated about three weeks for the blast furnace in question.
This schedule results in the alternating operation of two tapholes at the time, with some overlap (where
all three tapholes are used) during the transition periods. The figure also indicates the (numbered)
periods that are analyzed in the following subsections.

 

Figure 6. Taphole location in the reference furnace (left) and operating periods of the tapholes for the
Data set 1 (right top) and Data set 2 (right bottom). The sub-periods studied in following sections are
also indicated.

It should be noted that the representation, because of the data compression and averaging, does
not provide detailed information about single days of operation. However, the comparison between
tapholes at any given point could indicate agreement or disagreement between the outflow patterns.
We will present some snapshots (cf. Figures 7–10) of the motion of the averages of the principal
components as time evolves. The corresponding components of the tapholes are depicted by blue line
and diamonds (TH-1), red line and squares (TH-2), and green line and circles (TH-3). For the sake of
clarity, the two most important components (C1 and C2) are plotted versus each other in a “phase plot”
for shorter sub-periods (cf. Figures 7 and 9).

The positions of the markers on each curve indicate the average value of the components
corresponding to each tapholes for the last 20 observations. For instance, a blue diamond labeled
“70” indicates the average location in the principal component space of taps from TH-1 from taps 50
to 70 regardless of taphole. As the tapholes are operated alternatively, the same number label will
appear next to the markers on the curves of the operating tapholes, indicating the pattern progression.
For clarity, arrows show the direction of the evolution, and labels “start” and “end” are used to
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indicate the first and last points of operation of a taphole if it occurs in the period. On the axes of
each component, the limits of the component (lower by A, upper by B, cf. Figure 5) are also indicated.
In addition to the phase plot of C1 and C2, similar averages of an additional principal component, C4
for Data set 1 (cf. Figure 8) and C3 for Data set 2 (cf. Figure 10), are plotted in a separate panel for each
data set along with the average tap duration of the operating tapholes.

4.1. Data Set 1

Figure 7 presents C1 versus C2 for Data set 1, while Figure 8 depicts the evolution of C4 and the
tap duration. Four periods are studied from Data set 1, referred to as Periods 1.1–1.4 (cf. Figure 6).
They range from 7 to 16 days of operations and include segments of operation where one taphole is
replaced by another, as well as segments where a taphole pair operates.

4.1.1. Period 1.1

Figure 7a shows the evolution of C1 versus C2 for Period 1.1 ranging from tap 40 to 150 and
corresponding to 15 days of operation. Initially, TH-2 and TH-3 operate with stable outflow patterns
with little variation for taps 40–70. TH-2 shows short negative slag delay (positive C1) where slag
flows out first, while TH-3 shows a short positive slag delay (negative C1) where iron flows out first.
This slight imbalance can be explained by the reasoning presented in Figure 1. By tap 70, both tapholes
exhibit outflow patterns resembling the mean. However, at the time when TH-1 starts operating (after
tap 100), TH-3 has shifted towards a higher slag share (positive C2). As TH-1 initially drains a relatively
high share of iron, the system reacts to compensate for such an imbalance with TH-3. The balance
before this moment and the imbalance that follows are also seen in C4 in the top panel of Figure 8.
By tap 130, the drainage reaches a more stable distribution, with TH-1 showing a positive slag delay
and TH-2 and TH-3 a negative slag delay. After TH-3 ends its operation, TH-1 and TH-2 show little
variation, with TH-1 draining more iron than TH-2. One-day stoppages occur at taps 74 and 141, but
do not affect the drainage patterns.

Figure 8, in turn, shows that C4 values higher than the mean occur when the tap duration is short.
As seen in Figure 5, high C4 values correspond to a negative slope of slag share. Thus, if the slag share
is high at the beginning of the tapping and, as a consequence, the descent of the slag–gas interface is
rapid, a short tap duration can be expected because the moment when the slag–gas interface bends
down to the taphole will end the tap [9] (cf. Figure 1). This holds true for TH-1 and TH-2 beyond
Period 1.1.

4.1.2. Period 1.2

Figure 7b shows C1 versus C2 for taps 180–320, corresponding to the 16 days of operation in
Period 1.2 that starts two days after the end of Period 1.1. Period 1.2, where TH-1 and TH-2 operate
alternately, is particularly interesting because the tapholes are opposite (cf. Figure 6), so possible
differences in the in-hearth conditions should be discerned during the period. The results indeed
suggest drainage imbalance: at tap 180, TH-1 and TH-2 display similar patterns to those seen at the
end of Period 1.1, that is, positive slag delay for TH-1 and negative for TH-2. For taps 180–210, the slag
share decreases in TH-1, while it increases in TH-2 and the outflow patterns remain fundamentally
different, but from tap 210 onward, the imbalance gradually disappears and the patterns become more
similar. By tap 255, the two tapholes show patterns where the two liquids flow out simultaneously.
TH-2 still drains a higher share of iron than TH-1, but the differences gradually become smaller, even
though TH-1 still drains iron first while TH-2 drains slag first. As for C4, in Period 1.2 (like the previous
period), a negative correlation is seen with the tap duration (cf. Figure 8). The taphole showing a larger
C4 value changes from one to the other, in pace with the taphole showing the shortest tap duration.
In the end of this period, all principal components considered approach the mean values for both
tapholes, but the strong imbalance lasted for about 100 taps of operation of the taphole pair, reflecting
the slow dynamics of the system.
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Figure 7. First vs. second principal components progression (C1, C2) corresponding to Data set 1 at
different tap labels. (a) Period 1.1, (b) Period 1.2, (c) Period 1.3, (d) Period 1.4.

 
Figure 8. Fourth principal component (C4, top) and average tap duration (bottom) corresponding to
the four periods of Data set 1. Blue line (TH-1), red line (TH-2), and green line (TH-3).
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4.1.3. Period 1.3

Figure 7c shows the period between taps 340 and 420, starting two days after Period 1.2 ended.
It covers eight days of operation, where TH-2 ends while TH-3 starts its operation. At tap 340, TH-1
and TH-2 show outflow patterns of similar characteristics to those in the previous period: TH-1 with
lower slag share and iron-first flow and TH-2 with higher slag share and slag-first flow. In this drainage
state, the “incoming” taphole TH-3 starts with a simultaneous drainage of both liquid phases and with
a slightly higher iron share than what TH-1 exhibited initially in Period 1.1. This suggests that at the
moment when TH-3 starts its operation, the iron–slag interface is at the taphole level. For taps 370–395,
TH-3 adopts the same performance that TH-2 showed before its operation ended. However, by tap
420, both TH-1 and TH-3 drain a higher iron share, but a positive and negative slag delay, respectively.
This drainage state should trigger an imbalance in the systems as more iron is drained than produced,
but may reflect a temporal state (with low slag rate). Yet, the internal conditions still seem to allow for
a rather uniform liquid flow within the hearth. Figure 8 shows that all three tapholes yield medium or
high C4 values and short or average tap durations.

4.1.4. Period 1.4

The results of the final period of Data set 1, starting six days after Period 1.3 has ended and lasting
for seven days ranging from tap 550 to 620, are shown in Figure 7d. At tap 550, both TH-2 and TH-3
show a slag share close to the average (0.2) and short positive and negative slag delays, respectively.
As expected, the slag share increased after Period 1.3, and the increase continues in TH-1. TH-3 shows
little variation in the share of slag, but shifts to a positive slag delay around tap 595. By contrast,
the slag share for TH-2, which is taken into operation, increases rapidly. The tap duration for TH-1
is considerable longer than for TH-3 (cf. Figure 8), suggesting that the system reaches a balanced
drainage state mainly through changes in the outflows of TH-1.

4.2. Data Set 2

Figure 9 presents the C1 versus C2 for Data set 2 and Figure 10 the results for C3 in the top panel
and tap duration in the bottom panel. Six periods are studied (cf. Figure 6), with period lengths
ranging from 9 to 16 days of operation, including segments where one taphole starts its operation and
another ends it.

4.2.1. Period 2.1

Figure 9a shows the evolution of C1 versus C2 for Period 2.1, taps 40–170, corresponding to
16 days of operation of Data set 2. TH-1 starts operating around tap 50 with a long positive slag
delay, but with a higher drained share of slag compared with the other tapholes. Figure 10 confirms
these features by showing a low C3 value, that is, a positive slope of the slag share: as iron drains
first, the slag outflow rate is small initially, but increases as the iron level descends and the taphole
erodes. As expected, the tap duration is long; an initial high iron share indicates a high iron level in the
hearth and a longer time will elapse until the slag–gas interface has descended sufficiently to end the
tapping. However, as the operation continues, the slag share steadily decreases in TH-1. Inspection
of the individual outflows from this taphole during the period revealed that the iron flow of some
taps was interrupted or highly irregular. This suggests an unsuccessful drainage of iron from the
taphole, even though iron was initially the first phase to flow out. For TH-3, the outflow patterns fall
close to the mean and vary little during the last 30 taps of this taphole. As for TH-2—taphole that
operates throughout the whole period—fluctuations between positive and negative slag delays are
observed, but with low variation in C2 and an overall slag share close to 0.2. With time, both TH-1 and
TH-2 converge around tap 170 to similar patterns with short negative slag delays. The tap duration
decreases for both tapholes, which may indicate a poor slag drainage. C3 in Figure 10 also indicates
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that from tap 170 onwards, TH-1 shows a negative slope, that is, the iron share increases as the tapping
progresses. This is a significant pattern shift from the drainage in the earlier parts of the period.

Figure 9. First vs. second principal components progression (C1, C2) corresponding to Data set 2
at different tap labels. (a) Period 2.1, (b) Period (2.2), (c) Period 2.3, (d) Period 2.4, (e) Period 2.5,
(f) Period 2.6.
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Figure 10. Third principal component (C3, top) and average tap duration (bottom) corresponding to
the six periods of Data set 2. Blue line (TH-1), red line (TH-2), and green line (TH-3).

4.2.2. Period 2.2

Period 2.2 (Figure 9b), with taps 220–300, covering 11 days of operation, shows another type of
evolution of the principal components. TH-1 operates throughout the period, TH-2 up to tap 270,
while TH-3 is taken into operation some taps earlier. TH-1 shows a cyclical evolution in the (C1, C2)
plane, where C1 first decreases and then increases back to the level of the starting point, while the
changes in C2 are smaller. Thus, the main differences are in the slag delay, which changes from zero to
clearly positive, and then back again. By contrast, for TH-2, taps 220–270, which represent the last
50 taps with this taphole operating, the main change is seen in C2: the operation shifts from a low
slag share towards a high one with no slag delay, finally drifting to a state with a negative slag delay.
A descent of the iron–slag interface in the hearth at TH-2 could lead to an increase of the slag share
in the tapping and eventually also to a negative slag delay. By tap 270, TH-1 drains enough iron to
lower the iron–slag interface to yield a negative slag delay (cf. Figure 1b) for TH-2, as it is ending its
operation, and for TH-3, a few taps after its operation starts. Such behavior is discussed at some length
in the work of [17]. C3 for TH-2 (Figure 10), in turn, indicates that the slope of the slag share increases,
which can also be explained by the descent of the iron–slag interface. As TH-3 is taken into operation,
the taps initially show a low slag share, but the outflow patterns rapidly change to become similar to
those of TH-2 (around tap 270). Compared with Period 2.1, the tap duration for TH-1 is shorter as C2
decreases and C3 increases, even though C1 stays low.

Summarizing the findings, the changes in the hearth during the period reflect a strong imbalance
in the liquid volumes tapped from the tapholes. Measures in the casthouse taken at the beginning and
at the end of the period, for example, different tapping sequences or the use of different drill diameters,
may trigger such an imbalance. Nonetheless, local conditions in certain hearth regions or taphole
conditions cannot be ruled out as influencing factors. More information about specific taps should be
analyzed in order to explain the reason for the imbalance observed.

In the six-week segment between Periods 2.2 and 2.3 (not shown), TH-1 shows some variation
of the slag delay, but the overall slag share stays close to the mean. TH-3 initially shows a negative
slag delay and then drifts towards the mean pattern, and to a positive slag delay as TH-2 is taken into
operation. This “new” taphole starts its operation with a long positive slag delay and high iron share
to converge to the states of the other two tapholes, suggesting that liquid levels are in balance in the
different regions of the hearth. The changes in slopes described by C3 in the top panel of Figure 10 may
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reflect the system’s response to maintain such a balance. Like in previous periods, a positive slope
(lower C3) implies longer tap duration. For taps 500–620, the outflows from TH-2 and TH-3 show less
variation in the three principal components, despite a six-day stoppage after tap 603.

4.2.3. Period 2.3

Figure 9c presents the evolution of (C1, C2) for the period that spans from taps 620 to 720,
corresponding to 13 days of operation. This period occurs after a six-day stoppage, where operation
restarts with tap 604. Thus, tap 620 in the (C1, C2) plane represents the average location of the 16
taps after operation was resumed. TH-3 ends its operation as TH-1 is taken into use. At tap 620,
the principal components for TH-2 suggest drainage close to the mean pattern, while the flow from
TH-3 has a higher slag share. Thus, it is expected that TH-1, when introduced (replacing TH-3), will
count with a higher iron share, as is also seen in C2. TH-1 initially shows a high iron share and negative
slag delay, to later show higher a slag share. Also, the slag delay changes from negative to positive and
then negative again. The behavior of TH-2 is almost opposite, indicating that the end levels of the
iron–slag interface show a mirror relation (noting that TH-1 and TH-2 are opposite tapholes). Finally,
the outflows of TH-1 and TH-2 converge to similar patterns by tap 720. C3 indicates a progressive
change in opposite directions of TH-1 and TH-2 before tap 700 to then reach a more balance distribution
around the mean. A negative correlation between C3 and tap duration is again observed.

4.2.4. Period 2.4

Period 2.4 represents seven days of quite stable and uniform operation (Figure 9d, taps 800–880),
where TH-1 operates throughout the period, TH-2 ends, and TH-3 starts its operation in the beginning
of the period. TH-1 and TH-2 initially display a slightly positive slag delay and a mean slag share of
0.2, and as TH-3 is introduced, a positive slag delay is also expected. However, local conditions or
operating actions result in a high iron share for TH-3, inducing imbalance as explained in Figure 1.
At tap 820, TH-3 drains according to the mean pattern without slag delay, and the high iron share of
TH-2 is counteracted by a shift in outflow of TH-1 to a higher slag share. The variations in C3 for all
tapholes are small (Figure 10). After TH-2 is taken out of operation, the other tapholes show stable
outflows, but TH-1 drifts towards a state with negative slag delay.

4.2.5. Periods 2.5 and 2.6

Period 2.5 (Figure 2e) represents a nine-day segment (taps 970–1040) that holds both positive and
negative slag delays, but the slag share varies little. It can be argued that similar drainage conditions
prevail at the tapholes with a uniform distribution of the liquids in the hearth. However, at the
point where TH-1 is substituted by TH-2 (before tap 1020), its iron drainage has become poor: TH-1
experiences problematic taps much more often than TH-2 and TH-3. As a result, TH-2 drifts to a higher
iron share and positive slag delay by tap 1020. Even though TH-2 drains enough iron, the tap duration
is short, suggesting that slag is also poorly drained. As a consequence, both TH-2 and TH-3 show a
higher slag share in the outflows by tap 1040. The imbalance of the drainage system is also seen in C3,
but for taps 1050–1250, a more stable operation is noticed. This can be compared to similar segments
following periods with a larger variation, for example, taps 350–600 and taps 800–100.

Finally, Period 2.6 is studied, which represents the nine-day segment with taps 1260–1340. During
this period, TH-1 starts operating, while TH-3 ends. As also seen in Period 2.4, when both operating
tapholes show iron-first tapping (i.e., positive slag delay), the “incoming” taphole will also do so.
The initial imbalance in the share of slag drained between TH-1 and TH-2 vanishes by tap 1310, when
TH-3 has already been taken out of operation. TH-1 maintains a long positive slag delay until tap 1340,
while TH-2 shifts to a negative one, but towards the end of Data set 2, the outflows of the two tapholes
fall close to the mean.
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5. Results of PCA and Liquid Level Model

The large hearth diameter in multi-taphole blast furnaces may give rise to zones of different
coke-bed permeability, which leads to differences in the local conditions and liquid levels [18,19].
A mathematical model was developed by the present authors [14] and applied to study the effect of
different parameters and variables on the liquid levels and drainage process. The hearth was modelled
as two interconnected pools of liquids, where communication factors can control the flow from one
taphole zone to the other. Figure 1 illustrates the states of a hearth with good communication between
the zones, resulting in uniform liquid levels (except the in/declining parts in the vicinity of the tapholes).
A sensitivity analysis of the model was conducted to evaluate the effect of parameters on the tap
duration and slag delay. Therefore, some findings from the earlier study can be associated with the
PCA results presented here.

For instance, the model shows that poor iron communication increases the tap duration and slag
delay (Periods 2.1, 2.3, and 2.4), while poor slag communication does not change the tap duration,
but results in a negative slag delay (Periods 1.3 and 2.3). Asymmetric cases, where the pool sizes are
different, give rise to conditions resembling those observed during periods when one taphole ends its
operation and another is taken into use. Roche et al. [14] demonstrated that the asymmetric cases are
characterized by more negative slag delay (for one taphole) and longer tap duration (for the other).
This is observed in periods where the “incoming” taphole shifts from an initially positive slag delay to
a slight negative one after some taps (Periods 1.3, 2.1, 2.2, and 2.4).

Changes in the conditions in front of the taphole due to the interaction between the injected mud
and the coke bed [5] could potentially alter the internal level of the taphole with respect to the slag–iron
interface, causing differences in the slag delay and tap duration between operating tapholes. The final
declivity of the gas–slag interface is affected by the slag viscosity and coke diameter [20–22], which may
vary with time and affect the tap duration, and, therefore, the liquid levels, triggering some imbalance.

Regardless of the conditions in the hearth, the outflow from one taphole will affect the outflow
of the other. A sensitivity study of the outflow parameters by the model suggests that the system is
prompted to changes in slag delay and tap duration when different outflow patterns are imposed on
one taphole. A slower initial drainage rate of iron from one taphole yields a positive slag delay and
longer tap duration for the other, which, in turn, leads to a negative slag delay for the first taphole
because of low liquids levels (cf. Figure 1). This behavior is seen in several periods where the outflow
patterns are found in opposite regions of the (C1, C2) plane (Periods 1.1, 1.2, 1.3, 2.4, and 2.6). On the
other hand, a slow initial drainage rate of slag from one taphole yields slightly negative slag delays in
both tapholes and longer tapping. This seems to be the case with tapholes ending their operation when
compared with the operating one (Periods 1.3, 2.1, and 2.5). As observed in the results, the outflow
patterns diverge as a result of a triggering factor, but often converge after some period of operation
towards the mean pattern as the systems reaches balance again (as seen in Periods 1.2, 1.4, 2.2, and 2.4).
A constant monitoring of the variables during operation, for example, iron production, liquid outflows,
and slag delay, is a key to keep such imbalances within reasonable limits.

6. Summary of the Analysis

For the taps in the two data sets analyzed, TH-1 entered into operation four times, while TH-2
and TH-3 entered three times. Even though the data sets analyzed were quite extensive, the number
of taphole changes was still limited, and it is thus difficult to draw general conclusions about the
draining conditions of the taphole that is brought into operation. However, it can still be deduced
that if the taphole that enters into operation is located farther off (here, TH-1 or TH-2) and the liquids
are not in balance, it likely leads to more imbalance in the drainage. This is particular notable for
TH-1 in Periods 1.1, 2.1, and 2.6. This effect can be caused by smaller random effects, for example, in
the conditions in the coke bed at the taphole inlet that accentuate the characteristics of the pattern
when a taphole starts operating. Thus, an existing drainage imbalance sets the incoming taphole in an
extreme initial state. On the other hand, when the drainage of the system is balanced, the operation
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of the incoming taphole is not very different, even though it often initially shows some discrepancy
in terms of (typically positive) slag delay and slag share. This suggests that inactivity of a taphole
gradually leads to different conditions in the hearth in the vicinity of it. In the reference BF, the taphole
length was found to be initially considerably longer for the fresh taphole compared with the ones that
had been operating. As for the end of the operating period of a taphole pair, more extreme drainage
patterns were often observed. In the steel works in question, the incoming and outgoing tapholes
were operated alternately for a few taps, most likely to induce a smooth transition, but disturbances
were still seen. This also supports the hypothesis that different local conditions in the hearth may
arise, such as different liquid levels and differences in the hearth-coke permeability. The model-based
analysis of the liquid levels referred to in Section 5 indicated that the effective pool of the hearth that is
drained may grow during tapping [14]. Such distribution of volumes would not only lead to different
outflow patterns, but could also induce zones with different permeability with impact on lining and
taphole erosion.

Also, the results of C4 for Data set 1 and C3 for Data set 2 are interesting because of the cyclical
trend seen for all tapholes. These principal components showed negative correlation with the tap
duration in both data sets and for all three tapholes. As mentioned earlier, with an initial higher slag
share in the outflow, the slag–gas interface descends more rapidly. Additionally, some variation of the
slag share as the tapping evolves is expected as a result of taphole erosion. Another explanation is
that the fluid dynamics of the system induces such behavior, for example, the fact that iron has to be
elevated from levels below the taphole.

It should be stressed that the two-phase outflow, the unknown conditions of the coke bed and
the taphole entrance, and the taphole erosion make it difficult to explain the dynamics of the system.
In general, TH-3 showed a more uniform distribution of the samples around the mean pattern, most
likely owing to its location in the hearth. When operating alternately with either of the other two
tapholes, similar hearth conditions are expected because of their location. Further, TH-1 and TH-2
often showed opposite behavior in order to balance the drainage.

The liquid level model supporting the findings [14] has proposed some system parameters that
affect the outflow patterns of iron and slag. In light of the information gained in the present study,
there may be a need to re-evaluate the system with the model. A challenge is that every tapping
seems to show individual features, but the results presented in this paper still reveal some general
drainage patterns of the hearth, and interrelations between the drainage of two alternating tapholes.
In particular, it would be interesting to understand the transition paths between different common or
particular outflow patterns, which could be useful when an online model is developed. In order to
present more conclusive interpretations, a larger number of samples is necessary, where each taphole is
represented by a sufficient number of operating periods. Despite these limitations, the PCA-based tool
must be considered efficient in illustrating and condensing the information from individual samples
into a comprehensible and compact form. The tool can be used along with other information from the
BF to analyze how the system reacts after stoppages of different duration, an increase or decrease in
the production rate, interchanges of tapholes, changes of drill diameters, and other specific measures
taken in the casthouse.

7. Conclusions

Two data sets, corresponding to three and six months of operation of a blast furnace, were analyzed
with respect to the drainage of the furnace hearth. The blast furnace studied has three tapholes (TH-1,
TH-2, and TH-3) and the liquid outflow rates were calculated based on weighing of the torpedos
(hot metal) and signals from the granulation unit (slag). After inspecting individual outflow rates
throughout the data, certain outflow patterns were detected and some of them were found to recur.
To simplify the interpretation, the share of slag in the outflow was taken as the variable of primary
concern. After normalizing the tap duration, the evolution of the share of slag during the tapping
was down-sampled to ten variables to filter out some noise. To further compress the information
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and to make it possible to visualize the time evolution of the drainage patterns, principal component
analysis (PCA) was applied to the data sets. The results of the compression were analyzed and the first
two principal components were found to describe two relevant tapping features: the first principal
component (C1) basically describes the slag delay (i.e., the length of the period of one-phase flow in
the beginning of the tapping), and the second principal component (C2) describes the mean or end
slag share for the tapping. To better analyze the results, one additional component was considered,
which expresses how the slag share develops as both iron and slag are being drained. This component
was found to be the fourth component (C4) in Data set 1 and the third component (C3) in Data set 2.
For the sake of clarity, the results were post-processed into moving averages over the latest 20 taps.
The results presented in the paper focus mainly on detecting diverging or converging behavior of the
outflows of the operating tapholes based on the evolution of the principal components. The data sets
were divided into different periods. TH-1 was found to display the most erratic patterns, followed
by TH-2, while TH-3 exhibited less fluctuation. This is logical, as TH-3 is located between TH-1
and TH-2. Often, taphole changes were followed by draining imbalance, where the outflows from
all three tapholes occasionally showed large fluctuations, which were seen as extreme values in the
principal component space. After some time, the system typically stabilized, leading to drainage
that corresponded to the mean outflow pattern. Even though the reason for the disturbances often
remained unknown, the general behavior of the system could partly be explained by arguments based
on fluid dynamics. To generalize the findings, a longer data set may be needed, because random events
seem to have a considerable effect on the dynamics. Nonetheless, the PCA-based tool developed has
proven to be useful in capturing the evolution of hearth drainage in a few key indices, which may be
studied and analyzed in an attempt to gain further understanding of the complex industrial system at
hand. To assess the usefulness of the PCA-based approach, it is proposed that the model should be
implemented in the plant and the evolution of the (main) principal components could be studied and
correlated with other BF variables. This will allow for gathering further experience on what affects the
lower-dimensional representation of the liquids outflows and how the information could be utilized in
the casthouse operation. In conjunction with further analysis, the accuracy of the estimated liquid
outflow rates should also be evaluated, and, in particular, the quality of the estimated slag outflow rate.
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Abstract: Higher requirements for steel smelting technology have been put forward based on the
increasing awareness of energy conservation and environmental protection. In the field of iron making,
carbon reduction processes are often used. In this study, molten iron was smelted by designing a C-H2

smelting reduction method. Although previous researchers have studied this through a large number
of physical and numerical simulations, they have not yet refined general laws from the perspective of
dimensional analysis. In this paper, a double-row side blow hydraulics simulation was carried out in
the C-H2 smelting reduction furnace, and an entire list of dimensionless groups of input and output
parameters was proposed based on its hydraulics simulation data. The expressions between the
dimensionless group of mixing time and dimensionless groups such as Capillary number (Ca) and
Lagrange group (La1) were obtained by multiple linear regression based on the experimental research
results and data analysis. By verifying the calculated and experimental values of the dimensionless
group of mixing time, it can be seen that both have a good positive correlation. This study provides a
better methodology for controlling key parameters and lays the foundation for the optimal design of
the process parameters for the C-H2 smelting reduction furnace.

Keywords: C-H2 smelting reduction furnace; double-row side nozzles; dimensional analysis; mixing
time; multiple linear regression

1. Introduction

The steel industry is one of the most important raw material industries. The iron-making process
in the early steel process is mainly done through a blast furnace [1]. With changes in the times, a
series of drawbacks of the blast furnace have gradually emerged. One is the heavy dependence on
coke resources [2], and the second is the increasing pressure on environmental protection. With the
rapid depletion of natural resources and awareness regarding environmental protection, the smelting
reduction process came into being. This significantly reduces energy consumption and investment
by recycling the waste heat and eliminating sintering and coking plants [3]. Among the variants of
this process, representative ones are COREX [4], jointly developed by VAI and Korf, FINEX [5], jointly
developed by POSCO Steel and VAI Engineering, HISMELT [6], jointly developed by CRA Australia
and Kloekner, and DIOS [7], jointly developed by the Japan Iron and Steel Federation to organize eight
domestic steel companies.

In the field of smelting reduction, many researchers have done considerable research on physical
simulation and mathematical simulation. Zou et al. [8,9] proposed a two-step three segment iron
bath smelting reduction process with a thick slag layer, which was developed for the gradient
separation of the oxidation zone and the reduction zone by a thick slag layer with physical simulation.
Srishilan et al. [10] proposed a predictive thermochemical model of the COREX process which enables
the rapid computation of process parameters. The model helps in predicting the variations in process
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parameters with respect to the degree of metallization and post-combustion ratio for the given
raw material conditions. A series of recent representative research results have also been obtained
in smelting reduction and hydrocarbon reduction. In the field of plasma reduction, for example,
Behera et al. [11] succeeded in the smelting reduction of iron ore (hematite) in thermal hydrogen
plasma. Mandal et al. [12] described a new concept for maintaining an inert atmosphere with a
high temperature of about 1973 K (1700 ◦C) inside the furnace during smelting reduction. In terms
of direct reduction, Shim et al. [13] reported that the direct reduction rate in a melter–gasifier was
roughly drawn as the product of the CO2 content in the ascending gas and the reaction rate constant of
coal with CO2, and the way to minimize the direct reduction ratio was discussed with that diagram.
You et al. [14] used Sn-bearing complex iron ore via reduction with mixed H2/CO gas to prepare
Sn-enriched direct reduced iron (DRI). In the behavior of reduction, Park et al. [15,16] investigated the
high-temperature behavior of a magnetite–coke composite pellet fluxed with dolomite by a customized
thermogravimetric analyzer (TGA) at 1573 K (1300 ◦C) and the influence of different coal types on the
reduction of the composite pellet. At the same time, previous research has proposed a new generation
of C-H2 smelting reduction furnace (cf. Figure 1).

Figure 1. A new generation of C-H2 iron bath smelting reduction process configuration.

The theory of similarity is the theory of experimentation. For the formulas of complex phenomena
that cannot be solved by mathematical analysis, the similarity theory provides an experimental
solution. The similar first theorem specifies the physical quantities that need to be measured during
the experiment, as well as the conditions that the model experiment should follow. The π theorem is a
universal dimensional analysis method which was proposed by E. Buckinghan in 1915, so it is also
known as the Buckingham Theorem. The Buckingham Theorem is described as F(x1, x2, . . . , xn) = 0, if
there are n variables that are mutual functions for a physical phenomenon. If these variables contain m
basic quantities, they can be arranged into the functional relation ϕ(π 1, π 2, . . . , π n ≤ m) of (n ≤ m)
dimensionless numbers, and then n physical quantities can be combined into (n ≤ m) dimensionless
π numbers. In this paper, the dimensional analysis is based on the Buckingham theorem, which
specifies how to organize the experimental results. The experimental results need to be organized into
a functional relationship between dimensionless groups. Finally, the dimensionless groups and the
coefficients of similarity are determined according to the experimental results. The similarity theory
is used to solve the problem in various fields. Zhen et al. [17] focuses on providing a quantitative
methodology on how each parameter affects the structural response of the subsurface tension leg
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platform (STLP), which will facilitate establishing the unique design dimensionless groups as regards
to STLP. Vatankhah et al. [18] predicted the rate of discharge through different side holes in irrigation
and hydraulic engineering. Sharp-crested side triangular orifices were studied experimentally and
analytically, and several models were derived for the discharge coefficient based on Buckingham’s
theorem of dimensional analysis. Meng et al. [19] used the π theorem, an improved dimensional
analysis method, and the dimensionless quantity, which can effectively reflect the relationship between
the non-sinusoidal vibration parameters of a continuous casting mold, was given. The dimensionless
function correlation formula, which can objectively describe the actual phenomenon, was obtained.

Side blowing is one of the key processes of smelting reduction. Fuel and enriched oxygen are
injected into the furnace by a side nozzle to provide the heat required for the reduction reaction and the
melt is stirred at the same time. By designing and optimizing the parameters such as the arrangement,
the angle, and the flow rate of the side nozzle, this provides better reaction conditions for melting in the
furnace and prolongs the service life of the side nozzle, and finally achieves the combination with the
top and bottom blowing. For side blowing, many scholars had conducted relevant research in this field.
For example, Feng [20] outlined the production overview of the side-blown melting reduction furnace,
introduced the construct design of main components, and listed the practice and summarized the
characteristics of the side-blown reduction furnace. Due to a large number of side nozzle parameters
and furnace parameters, the experimental results were not regular on the surface, so it was necessary
to sort out the data through dimensional analysis and provide an analytical formula, so as to obtain
the quantitative law. Wang et al. [21] investigated the penetration behavior of immersion side-blowing
gas flow in a slag lade water model by photography and the dimensional analysis method, in order to
provide a theoretical base for improving the reaction speed between the gas–liquid interface and the
oxygen gun jet distribution. The maximum penetration depth calculated by the empirical formula is in
agreement with the measured data from the experiments.

Although many studies [22–24] have been carried out on the C-H2 smelting reduction furnace
through physical simulation and mathematical simulation, the experimental data and results have not
been quantitatively analyzed. This paper is aimed at providing a quantitative method for examining
how each parameter affects the mixing time in the C-H2 smelting reduction furnace, and proposes a
dimensionless input and output parameter based on the Buckingham theory, a complete list of derived
dimensionless groups. This is helpful for establishing a single design standard for C-H2 smelting
reduction furnaces. This study provides a means to understand critical parameters better and lays
the foundation for the optimal design of the side blowing parameters of the C-H2 smelting reduction
furnace. The conclusions obtained are also widely applicable to the engineering design and design
analysis of the smelting reduction furnace.

2. Experimental Setup and Methods

In this paper, a comprehensive experimental study on the flow characteristics of a C-H2 smelting
reduction furnace was carried out. Based on the similarity principle, the smelting reduction iron-making
process under the high temperature conditions in the prototype was studied by hydraulic simulation
at room temperature in this experiment. The schematic diagram of the C-H2 smelting reduction
model apparatus is shown in Figure 2. The model was simulated by the scale ratio of 1:1 to the
prototype, in which the molten iron of the prototype was 200 kg. The experiment was carried out in a
cylindrical transparent plexiglass furnace with a diameter of about 0.4 m and a height of 1.68 m. In
the experiment, the molten iron was simulated by water, high vacuum oil was used to simulate the
slag, and oxygen-enriched air was blown on the top and bottom and side nozzle to simulate the flux
injection and the bottom blowing hydrogen. The volume ratio of water to high vacuum oil in the model
was 1:2 [25,26], in which the water phase was 0.246 m and the height of the oil phase was 0.492 m.
The physical parameters of the experiment are shown in Table 1. In the prototype, the combined top,
bottom, and side blowing of the C-H2 smelting reduction process occurs. This paper is the first phase
of the project, aiming to carry out the physical simulation and dimensional analysis of the single-side
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blowing of double-row side nozzles. The side blowing nozzle was divided into the upper side nozzle
and the lower side nozzle, and the diameter of the side nozzle was 0.004 m. The upper side nozzle
was 0.574 m from the bottom and was located at 1/3 above the slag phase. The lower side nozzle was
0.492 m from the bottom and was located in the middle of the slag layer. The prototype and dimensions
of the water model are shown in Figure 3a,b, respectively.

 
Figure 2. Schematic diagram of the C-H2 smelting reduction model apparatus.

Table 1. Physical parameters of the experiment.

Density (kg/m3) Kinematic Viscosity (m2/s)

Iron 7020 9 × 10−5

Slag 3000 1.33 × 10−4

Air 1.205 1.506 × 10−5

High vacuum oil (25 ◦C) 860 8.75 × 10−5

Water 1000 1 × 10−6

In this study, several different influencing factors were set. The effects of various factors and
mixing time were obtained by orthogonal tests. By sorting out the experimental data, it was organized
to be a functional relationship between the dimensionless groups. The first factor was the tracer feeding
position. In the prototype, the tracer feeding port was added to the preheating mine and flux. It is of
considerable significance to investigate the feeding position of raw materials for the mixing effect in
the molten pool. Position A was at 2 cm above the slag interface (0.758 m from the bottom). Position B
was located at 2 cm below the slag interface (0.718 m from the bottom). Position C was at the center
of the slag (0.492 m from the bottom). Position D was located at 2 cm above the slag and the molten
interface (0.266 m from the bottom), as shown in Figure 4a.

Similarly, several other factors were considered separately. These included the relative angle
between the upper side nozzle and the lower side nozzle (60◦, asymmetrical side blowing; 120◦,
asymmetrical side blowing; 180◦, symmetric side blowing) (cf. Figure 3c), the horizontal angle of the
upper side nozzle and the lower side nozzle (−15◦, 0◦, 15◦) (cf. Figure 3d), the insertion depth of the
side nozzle, and the flow rate of the side nozzle.

The inside of the molten pool was strongly agitated and disturbed in the combined upper side
nozzle and lower side nozzle. Therefore, the efficiency of mass transfer and heat transfer was increased,
and the rate of chemical reaction was also increased. In order to study the mixing phenomenon in
the C-H2 smelting reduction bath, the mixing time was regarded as an important index. The mixing
time [27] was defined as the period required for an instantaneous tracer concentration to settle within
±5% deviation around the final tracer concentration in the C-H2 smelting reduction reactor bath. This
definition is referred to as the 95% mixing time. In the C-H2 smelting reduction bath, the mixing time
was measured by the conductivity of three electrodes, which was 0.05 m away from the bottom of the
bath. Figure 4b is the position and angle of the sensor and tracer. In the prototype, the feed port was
used for feed preheating ore and flux. In this experiment, in order to simulate the effect of different
raw material positions on the mixing time of the molten pool, a saturated Sodium chloride (NaCl)
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aqueous solution (75 mL) was fed from the intermediate to the C-H2 smelting reduction furnace. The
conductivity of water was measured by three DSS-IIA conductivity meters and recorded automatically
by a computer software recorder. For each physical simulation test site in each mode of operation,
the measurements were taken at least three times and the arithmetic mean of the average residence
time was obtained. Through the orthogonal test and analysis, the relationship between the average
residence time and various experimental parameters can be obtained. These results would eventually
be organized into a functional relationship between the dimensionless groups.

Figure 3. Prototype (a) and dimensions (b) of water model, the relative angle between the upper side
nozzle and the lower side nozzle (c), the horizontal angle of the upper side nozzle and the lower side
nozzle (d).
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Figure 4. Different tracer feeding positions (a), and the position and angle of the sensor and tracer (b).

3. Dimensional Analysis

The purpose of this study was to establish a relationship between the mixing time and other
valid variables. Their dimensions were considered through dimensional analysis. In this method, the
first step is to select the appropriate initial parameters, including the input parameters and output
parameters of the mixing time. The second step is to group these initial parameters into a dimensionless
group and organize the new relationships between the various parameters. In particular, it is important
to select the initial parameters precisely, since there is a need for a unique relationship between the
chosen parameters [28,29].

Several factors may affect the value of mixing time. The variables that may affect the mixing time
are density ρ, kinematic viscosity υ, surface tension σ, stirring energy ε [30], etc. In this study, 20 initial
parameters were selected to identify the dimensionless groups of the parameters which can quantify
the mixing time, as shown in Table 2. Based on this, 17 corresponding dimensionless groups were
obtained from the selected initial parameters, according to the Vaschy–Buckingham theorem.

Table 2. Selected parameters for the dimensional analysis of the mixing time.

Category Variable Symbol Unit M L t

Physical
Parameters

Density ρ kg·m−3 1 −3 0
Kinematic viscosity υ m2·s−1 0 2 −1

Surface tension σ kg·s−2 1 0 −2
Mixing time τ s 0 0 1

Acceleration of gravity g m·s−2 0 1 −2
Stirring energy ε kg·m2·s−3 1 2 −3

Model Size

Height of furnace Hf m 0 1 0
Diameter of furnace Df m 0 1 0

Height of high vacuum oil Hoil m 0 1 0
Height of water Hw m 0 1 0

Height of upper side nozzle Hus m 0 1 0
Height of lower side nozzle Hls m 0 1 0

Diameter of side nozzle Ds m 0 1 0
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Table 2. Cont.

Category Variable Symbol Unit M L t

Tracer
Position

Height of tracer Hi m 0 1 0
Distance from tracer to the

center of the circle Ri m 0 1 0

Measuring
Point

Height of measuring point Hm m 0 1 0
Distance from measuring point

to the center of the circle Rm m 0 1 0

Working
Condition

Insertion depth of side nozzle hs m 0 1 0
Flow velocity of side nozzle Vs m·s−1 0 1 −1

Flow rate of single side nozzle qs m3·s−1 0 3 −1

In Table 2, M, L, t are three basic dimensions, where M stands for the mass dimension, kg, L for the length dimension,
m, and t for the time dimension, s.

The mixing time can be represented by the following functional relationships:

π = F
(
ρ, υ, σ, τ, g, ε, H f , D f , Hoil, Hw, Hus, Hls, Ds, Hi, Ri, Hm, Rm, hs, Vs, qs

)
(1)

Meanwhile, since many factors are constant in this study, such as the height of the furnace, the
height of the high vacuum oil, the height of the side nozzle, the diameter of the side nozzle and so on,
the functional relationships can be further simplified to

π = F(ρ, υ, σ, τ, g, ε, Ds, Hi, hs, Vs, qs) (2)

The equation can be expressed in the following dimensionless equation:

π = ϕ(π1,π2,π3,π4,π5,π6,π7,π8) (3)

where π1~π8 is a dimensionless group, and ϕ is a functional symbol. After substituting in each variable,
it gives

π = ρaυbσcτdgeε f Dg
s Hh

i hi
sV

j
sqk

s (4)

M0L0t0 =
(
ML−3

)a(
L2t−1

)b(
Mt−2

)c
(t)d

(
Lt−2

)e(
ML2t−3

) f
(L)g(L)h(L)i

(
Lt−1

) j(
L3t−1

)k
(5)

By replacing the other variables with ρ, Ds and Vs, we get

π = ρ(−c− f )υbσcτdgeε f D(−b−c−d+e−2 f−h−i−2k)
s Hh

i hi
sV

(−b−2c+d−2e−3 f−k)
s qk

s (6)

π =

(
υ

DSVS

)b(
σ

ρDsV2
s

)c(
τVs

Ds

)d( gDs

V2
s

)e(
ε

ρD2
s V3

s

) f ( Hi
Ds

)h( hs

Ds

)i( qs

D2
s Vs

)k

(7)

Since the side-blown nozzle is located in the high vacuum oil, the kinematic viscosity here is
selected as the high vacuum oil kinematic viscosity, voil, m2·s−1. The tracer feeding position and the
insertion position of the side nozzle are closely related to the total height of the water phase and oil
phase, the DS in the tracer feeding position number and the insertion depth number of side nozzle are
replaced by the total height of the water phase and oil phase Hoil+w, which can be converted into the
following equation:

π =

(
υoil

DSVS

)b(
σ

ρDsV2
s

)c(
τVs

Ds

)d( gDs

V2
s

)e(
ε

ρD2
s V3

s

) f ( Hi
Hoil+w

)h( hs

Hoil+w

)i( qs

D2
s Vs

)k

(8)

In this work, the angle between the upper side nozzle and the lower side nozzle is also a relatively
important factor, including the relative angle and horizontal angle, so the angle factor should be taken
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into account when studying the dimensionless groups. The momentum dimensionless group is studied
based on different angles. δ is introduced here, that is,

δ = (
π
4
)

1
2 × (2× (Vs × cosα)2)

1
4 × (

D f

(Qs)
1
2

) (9)

where α is combined the the relative angle between the upper side nozzle and the lower side nozzle and
the horizontal angle of the upper side nozzle and the lower side nozzle. This parameter synthetically
considers the influence of flow velocity with various angles, Vs is flow velocity of the side nozzle,
m·s−1. Df is the diameter of the furnace, m, and Qs is the volumetric flow rate, m3·s−1.

Through the above dimensionless group derivation, a series of dimensionless groups can be
obtained as follows in Table 3.

Table 3. Expression of dimensionless groups based on Equations (8) and (9).

Dimensionless Groups Expressions

π1
υoil

DSVS

π2
σ

ρDsV2
s

π3
τVs
Ds

π4
gDs

V2
s

π5
ε

ρD2
s V3

s

π6 δ
π7

qs

D2
s Vs

π8
Hi

Hoil+w

π9
hs

Hoil+w

The original dimensionless groups mentioned above can be substituted into Equation (10) to obtain

π = ϕ(
υoil

DSVS
,
σ

ρDsV2
s

,
τVs

Ds
,

gDs

V2
s

,
ε

ρD2
s V3

s
, δ,

Hi
Hoil+w

,
hs

Hoil+w
,

qs

D2
s Vs

) (10)

Extracting the τ from Equation (10) and rearranging, we get

τ =
Ds

Vs
(
υoil

DSVS
,
σ

ρDsV2
s

,
gDs

V2
s

,
ε

ρD2
s V3

s
, δ,

Hi
Hoil+w

,
hs

Hoil+w
,

qs

D2
s Vs

) (11)

where υoil is the kinematic viscosity of the high vacuum oil, m2·s−1, σ is the surface tension of the high
vacuum oil, kg·s−2, g is the acceleration of gravity, m·s−2, ε is the stirring energy of the side nozzle,
kg·m2·s−3, δ is the dimensionless groups of momentum, qs is the flow rate of the single side nozzle,
m3·s−1, hs is the insertion depth of the side nozzle, m, Hoil+w is the total height of the high vacuum oil
and water, m, Ds is the diameter of the single side nozzle, m, and Vs is the flow velocity of the side
nozzle, m·s−1.

The dimensionless groups related to Equation (11) based on a physical chemistry handbook are
shown in Table 4:
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Table 4. The dimensionless groups associated with Equation (11) based on the physical chemistry
handbook [31].

Symbol Name Expression

Re Reynolds number DsVs
υoil

Ca Capillary number ρυoilVs
σ

La1 Lagrange group ευoil
ρD3

s V4
s

Ho1 Homochronous number τVs
Ds

KF Capillarity-buoyancy number gρ4υ4
oil

ρσ3

Z Ohnesorge number ρυoil

(ρσDs)
1
2

δ Diameter group
(
π
4

) 1
2 × (2× (Vs × cosα)2)

1
4 × (

Df

(Qs)
1
2
)

jM J-factor (
qsυ8

oil
D10

s V9
s
)

1
3

Nsh Sherwood number VsD2
s

qs

Nsc Schmidt number υoilDs
qs

Combining Tables 3 and 4, the dimensionless groups in Equation (11) can be sorted into Table 5.

Table 5. The dimensionless groups in Equation (11).

Dimensionless Groups Expression

π1 = υoil
DSVS

1
Re

π2 = σ
ρDsV2

s

1
Ca×Re

π3 = τVs
Ds

Ho1

π4 =
gDs

V2
s

KF

Z2 × 1
Ca

π5 = ε
ρD2

s V3
s

La1 ×Re

π6 = δ δ

π7 =
qs

D2
s Vs

jM×Nsh

N
5
3
sc

×Re

Based on the fact that KF
Z2 is constant in this condition, it will be removed here. At the same

time, Njm is named in order to simplify the expression of jM×Nsh

N
5
3
sc

, that is Njm =
jM×Nsh

N
5
3
sc

. According to

Tables 3–5 and the actual working conditions of this study, the equation of dimensionless groups can
be expressed as follows:

τ =
Ds

Vs

⎛⎜⎜⎜⎜⎝Rea, Cab, La1
c, δd, Ne

jm,
(

Hi
Hoil+w

) f

,
(

hs

Hoil+w

)g⎞⎟⎟⎟⎟⎠ (12)

As can be seen from Table 4, Re
Ca = σDs

ρυoil
2 is a constant. Since Ca is the dimensionless group

representing the relative effect of viscous drag forces versus surface tension forces acting across an
interface between a liquid and a gas, or between two immiscible liquids, so the Capillary number (Ca)
is retained here, thus the following dimensionless groups equation can be further obtained:

τ =
Ds

Vs

⎛⎜⎜⎜⎜⎝Caa, La1
b, δc, Nd

jm,
(

Hi
Hoil+w

)e

,
(

hs

Hoil+w

) f ⎞⎟⎟⎟⎟⎠ (13)

where a, b, c, d, e, and f are the empirical coefficient, to be derived from the experimental data.
Through the analysis of the data obtained in the hydraulic simulation experiment, the influence

of the dimensionless quantities and the mixing time was obtained.
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4. Results and Discussions

In this study, multiple linear regression was used to fit the dimensionless groups equation in order
to obtain many empirical coefficients in Equation (13). Comparing the calculated value of the fitted
dimensionless groups equation with the water simulation experiment value allowed us to verify the
accuracy. The multiple linear regression equation of dimensionless groups can be rewritten into the
following mode:

lg
τVs

Ds
= a1lgCa + a2lgLa1 + a3lgδ+ a4lgN jm + a5lg

(
Hi

Hoil+w

)
+ a6lg

(
hs

Hoil+w

)
(14)

4.1. The Effects of Ca and La1

After the parameters such as the injection velocity of the upper side nozzle and the lower side
nozzle are respectively substituted into Equation (14), the data of multiple linear regression are shown
in the Table 6:

Table 6. Value and standard error of lg Ca and lg La1 by multiple linear regression for the upper side
nozzle and lower side nozzle.

Y Axis X Axis Value Standard Error

Upper side nozzle lgτexpVus/Ds
“lgCa” −0.9564 0.0684
“lgLa1” −0.6496 0.0006

Lower side nozzle lgτexpVls/Ds
“lgCa” −0.7403 0.0647
“lgLa1” −0.6685 0.0058

From Table 6, the equation of the mixing time of the upper side nozzle and the lower side nozzle
and the similar number of Ca, La1 can be obtained, respectively:

τ =
Ds

Vus

(
Ca−0.96La1

−0.65
)

(15)

τ =
Ds

Vls

(
Ca−0.74La1

−0.67
)

(16)

where Vus is the injection velocity of the upper side nozzle, m·s−1, Vls is the injection velocity of the
lower side nozzle, m·s−1.

Figure 5a,b shows the relationship between the experimental value and the calculated value
of the dimensionless group of the mixing time of the upper side nozzle and the lower side nozzle,
respectively, made according to the Equations (15) and (16). As can be seen from Figure 5a,b, for both
the upper side nozzle and the lower side nozzle, the experimental values have a considerable linear
relationship with the calculated values. At the same time, to further verify the comparison, Figure 6a–f
shows the relation diagram of the experimental value and the calculated value of the mixing time
dimensionless groups in three monitoring points τ1, τ2 and τ3 of the upper and lower side nozzle,
respectively. It can also be seen that it has a higher consistency with the τ (cf. Figure 5).
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Figure 5. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a) and
lower side nozzle (b), respectively, using proposed Equations (15) and (16).

 
Figure 6. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a–c) and
lower side nozzle (d–f), respectively, using τ1, τ2, τ3.

.

4.2. The Effects of Ca, La1 and Njm

After studying the effect of Ca and La1, the Njm dimensionless group is added here for the
purpose of investigating the relationship between the dimensionless group of the mixing time and the
dimensionless groups such as density, dynamic viscosity, stirring energy, flow rate, and so on based on
the variable of velocity. The following table contains the multiple linear regression data based on the
three dimensionless numbers of upper side nozzle and lower side nozzle, respectively:

From Table 7, the equations between the dimensionless group of the mixing time and the three
dimensionless groups of Ca, La1 and Njm for the upper and lower side nozzles can be obtained,
respectively, as shown below:

τ =
Ds

Vus

(
Ca−1.90La1

−2.61N jm
5.01

)
(17)
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τ =
Ds

Vls

(
Ca−1.51La1

−2.27N jm
4.11

)
(18)

Table 7. Value and standard error of lg Ca, lg La1, and lgNjm by multiple linear regression for upper
side nozzle and low side nozzle.

Y Axis X Axis Value Standard Error

Upper side nozzle lgτexpVus/Ds

“lgCa” −1.8971 1.3603
“lgLa1” −2.6093 2.8302
“lgNjm” 5.0122 7.2387

Lower side nozzle lgτexpVls/Ds

“lgCa” −1.5112 1.2876
“lgLa1” −2.2745 2.679
“lgNjm” −4.1078 6.8521

Similarly, by drawing the experimental values and calculated values for the dimensionless group
of mixing time, we can see from Figure 7a,b that they have a good linear correlation, and the comparison
chart (cf. Figure 8a–f) of τ1, τ2, τ3 is also shown a high consistency with τ (cf. Figure 7), respectively.

Figure 7. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a) and
lower side nozzle (b), respectively, using proposed Equations (17) and (18).

Figure 8. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a–c) and
lower side nozzle (d–f) respectively using τ1, τ2, τ3.
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4.3. The Effects of Ca, La1, Njm, and δ

The above three dimensionless groups are mainly based on the variable factor of injection velocity.
Nevertheless, the variables of the angles are also important variable parameters, such as the relative
angle of the upper and lower side nozzle, the horizontal angle of the upper side nozzle, the horizontal
angle of the lower side nozzle, etc. and dimensionless group δ is the group of the related angle.
Therefore, the dimensionless group δ is introduced here to study the expression of the dimensionless
group of mixing time under the action of these four dimensionless groups. The following Table 8
shows multiple linear regression data for the experimental values of four dimensionless groups to the
mixing time:

Table 8. Value and standard error of lg Ca, lg La1, lg Njm and lg δ by multiple linear regression for the
upper side nozzle and lower side nozzle.

Y Axis X Axis Value Standard Error

Upper side nozzle lgτexpVus/Ds

“lgCa” −1.8802 1.3685
“lgLa1” −2.7131 2.8806
“lgNjm” 5.3305 7.4090

“lgδ” 0.1140 0.5086

Lower side nozzle lgτexpVls/Ds

“lgCa” −1.8503 1.3312
“lgLa1” −2.6127 2.7000
“lgNjm” 4.7726 6.8838

“lgδ” −0.4049 0.4034

Based on the data in Table 8, the following equations of the mixing time dimensionless group
of the upper side nozzle and the mixing time dimensionless group of the lower side nozzle can be
obtained, respectively:

τ =
Ds

Vus

(
Ca−1.88La1

−2.71N jm
5.33δ0.11

)
(19)

τ =
Ds

Vls

(
Ca−1.85La1

−2.61N jm
4.77δ−0.40

)
(20)

Finally, by comparing the experimental values of the dimensionless group of mixing time with
the calculated value of the dimensionless group, it can be seen that the experimental value of the
dimensionless group has a good linear relationship with the calculated value of the dimensionless
group (cf. Figure 9a,b), and it can also be seen from Figure 10a–f that there is a high consistency
between the figure τ1, τ2, τ3 (cf. Figure 10) and τ (cf. Figure 9).

Figure 9. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a) and
lower side nozzle (b), respectively, using proposed Equations (19) and (20).
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Figure 10. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a–c) and
lower side nozzle (d–f), respectively, using τ1, τ2, τ3.

4.4. The Effects of Ca, La1, Njm, δ, Hi and hi

The position of the tracer feeding position and the insertion depth of the side nozzle are also
important variable parameters. The expression of the dimensionless group of mixing time was
studied after adding these two dimensionless groups. On the basis of the above dimensionless groups,
the dimensionless group related to the tracer feeding position and the dimensionless group related
to the insertion depth of the side nozzle was added unceasingly into the equation of mixing time
dimensionless group. After substituting the parameters such as the flow velocity of upper side nozzle
and the insertion depth of upper side nozzle into the Equation (14), multiple linear regression was
performed through the origin, and the results are shown in in Table 9:

Table 9. Value and standard error of lg Ca, lg La1, lg Njm, lgδ, lgHi/(Hoil+w), and lg(hs/Hoil+w) by
multiple linear regression for upper side nozzle and lower side nozzle.

Y Axis X Axis Value Standard Error

Upper side nozzle lgτexpVus/Ds

“lgCa” −1.8704 1.2735
“lgLa1” −2.7167 2.6804
“lgNjm” 5.3508 6.8942

“lgδ” 0.1180 0.4733
“lgHi/(Hoil+w)” −0.3671 0.0872
“lg(hus/Hoil+w)” 0.0103 0.0168

Lower side nozzle lgτexpVls/Ds

“lgCa” −1.8389 1.2257
“lgLa1” −2.6102 2.4860
“lgNjm” 4.7765 6.3382

“lgδ” −0.4019 0.3715
“lgHi/(Hoil+w)” −0.3632 0.0808
“lg(hls/Hoil+w)” 0.0108 0.0157

As can be seen from Table 9, the equation of the dimensionless group of the mixing time of the
upper side nozzle is as follows in Equation (21):

τ =
Ds

Vus
(Ca−1.87La1

−2.72N jm
5.35δ0.12

(
Hi

Hoil+w

)−0.36( hus

Hoil+w

)0.01

) (21)
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τ =
Ds

Vls
(Ca−1.84La1

−2.61N jm
4.77δ−0.40

(
Hi

Hoil+w

)−0.36( hls
Hoil+w

)0.01

) (22)

Similarly to the upper side nozzle, Table 9 can also be obtained after the injection velocity and
insertion depth of the lower side nozzle are replaced in the Equation (14) by multiple linear regression.
According to the data in Table 9, the equation of the dimensionless group of mixing time of lower side
nozzle can be obtained in Equation (22).

By comparing the dimensionless group calculated by the dimensionless Equations (21) and (22)
with the dimensionless groups measured in the experiment, the correctness of the above dimensionless
group can be verified. Figure 11a shows the relationship between the experimental value and the
calculated value of the mixing time dimensionless group for the upper side nozzle, while Figure 11b
shows the relationship between the experimental value and the calculated value of the mixing time
dimensionless group for the lower side nozzle. It can be seen from Figure 11a,b that the fitting effect of
a dimensionless group of mixing time is good. At the same time, in order to further verify its accuracy,
Figure 12a–f shows the fitting curves of the three mixing time monitoring points at the respective
operating conditions of the upper side nozzle and the lower side nozzle, respectively. It can also be
seen that the distribution of the showcases 1, 2, and 3 has a relatively high degree of fitness. Therefore,
it can be concluded that the equation of the mixing time dimensionless group of the upper side nozzle
and the equation of the mixing time dimensionless group of the lower side nozzle have practical
reference value.

Figure 11. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a) and
lower side nozzle (b), respectively, using proposed Equations (21) and (22).
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Figure 12. Comparison of experimental lgτVs/Ds with calculated ones for upper side nozzle (a–c) and
lower side nozzle (d–f), respectively, using τ1, τ2, τ3.

5. Conclusions

Based on the experimental research and data analysis, the dimensionless groups of mixing time
and kinetic viscosity, the surface tension, the tracer feeding position, the insertion depth of the side
nozzle, etc., were obtained. In this paper, the expressions between the dimensionless group of mixing
time and dimensionless groups such as Ca and La1 were obtained by multiple linear regression. It can
be seen from the expressions that the indexes of the dimensionless groups have a higher identity when
they have more than three dimensionless groups. By verifying the calculated and experimental values
of the dimensionless group of mixing time, it can be seen that both have a good positive correlation.
At the same time, it can also be seen from the comparison between the calculated values of τ1, τ2,
τ3 and the experimental values that they are in good agreement with the corresponding τ, which
indicates that the fitting expressions have higher reliability. Because density, surface tension, and other
parameters of the medium have not been changed in this study, Equations (15) and (16) are more
suitable for the study of the side nozzle velocity and related angle. Equations (21) and (22) will be of
great significance when the density, viscosity, surface tension, and furnace diameter of the medium are
changed in further work. This conclusion will better provide help for the control of key parameters,
help to establish the design standard of C-H2 smelting reduction furnaces, and lay a foundation for the
optimization of side nozzle parameters of C-H2 smelting reduction furnaces.
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Abstract: COREX is one of the commercialized smelting reduction ironmaking processes. It mainly
includes two reactors, i.e., a (reduction) shaft furnace (SF) and a melter gasifier (MG). In comparison
with the conventional blast furnace (BF), the COREX MG is not only equipped with a more complicated
top charging system consisting of one gimbal distributor for coal and eight flap distributors for
direct reduction iron (DRI), but also the growth mechanism of its burden pile is in a developing
phase, rather than that in a fully-developed phase in a BF. Since the distribution of charged burden
plays a crucial role in determining the gas flow and thus in achieving a stable operation, it is of
considerable importance to investigate the burden distribution influenced by the charging system
of COREX MG. In the present work, a mathematical model is developed for predicting the burden
distribution in terms of burden layer structure and radial ore/coal ratio within the COREX MG.
Based on the burden pile width measured in the previous physical experiments at different ring radii
on a horizontal flat surface, a new growth mechanism of burden pile is proposed. The validity of the
model is demonstrated by comparing the simulated burden layer structure with the corresponding
results obtained by physical experiments. Furthermore, the usefulness of the mathematical model
is illustrated by performing a set of simulation cases under various charging matrixes. It is hoped
that the model can be used as a what-if tool in practice for the COREX operator to gain a better
understanding of burden distribution in the COREX MG.

Keywords: COREX melter gasifier; mixed charging; burden layer structure; burden pile width

1. Introduction

Steel is the world’s most popular construction material due to its durability, processability,
and cost cheapness. However, producing steel brings high energy consumption and CO2 emissions,
especially in ironmaking process. In order to minimize the energy consumption and CO2 emissions of
the ironmaking process, some alternative liquid iron production technologies to blast furnace (BF),
such as the COREX process and the FINEX process, have been developed [1]. The COREX process
is a smelting-reduction process developed by Siemens Voest-Alpine Industrieanlagenbau Gmbh &
Co. (VAI) in the 1970s, for cost-efficient and environment-friendly production of hot metal from iron
ore and non-coking coal. Eight COREX units in the world have been put into use and successfully
commercialized in different areas, e.g., South Africa, India, and China; therein, two of them are the
latest generation of COREX with a capacity of 1.5 million tons of liquid iron per year and were built in
China at the Baosteel Luojing steel plant.

Processes 2019, 7, 892; doi:10.3390/pr7120892 www.mdpi.com/journal/processes253
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In the COREX process [2], all the metallurgical reactions take place in two separate process reactors,
the upper shaft furnace (SF) for the iron ore pre-reduction and the lower melter gasifier (MG) for final
reduction and smelting. A schematic process flow sheet is shown in Figure 1. Iron ore (lump ore,
pellets, or a mixture thereof) is charged into the upper SF where the burden is reduced to direct reduced
iron (DRI) by the reduction gas arising from the lower MG. Discharge screws convey the DRI from
the SF into the MG where final reduction and melting take place in addition to all other metallurgical
reactions. In comparison with a conventional BF, COREX MG is equipped with a more complicated
top charging system consisting of one gimbal distributor for coal and eight flap distributors for DRI.

Figure 1. Schematic flow sheet of COREX process.

The BF concept is used, but the BF is virtually split into two parts at the cohesive zone interface
(cf. Figure 2) in a COREX process. Compared with the conventional BF route, non-coking coal can be
directly used for ore reduction and smelting in a COREX process, which eliminates the need for coke
making units. The use of lump ore or pellets also dispenses with the need of sinter plants. Since coking
and sintering plants are not required for the COREX process, substantial cost savings of up to 20% can
be achieved in the production of hot metal, of a grade similar to that of the blast furnace [3].

Figure 2. Comparison of concepts between blast furnace (BF) route and COREX route.

Since the distribution of charged burden plays a crucial role in determining the gas flow and thus
in achieving a stable operation in BF and SF, it is of considerable importance to investigate the burden
distribution influenced by the complicated charging system of COREX MG. The top charging system
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of COREX MG consists of one coal-gimbal distributor and eight DRI-flap distributors. The gimbal
distributor distributes the coal to different radial positions in the furnace by adjusting the angle of the
chute. The DRI-flap distributors can charge DRI into the furnace by changing the angle of the flap.
The burden distribution is affected by many factors, such as loading equipment and charging patterns.
However, as a closed high-temperature reactor, it is difficult to observe directly the burden surface
profile and internal structure in the COREX MG. Therefore, it is necessary to establish a mathematical
model to predict the profile of the burden surface and the internal structure of burden column.

Many studies [4–7] have established mathematical models of BF and SF charging with chute
distributors, and compared with physical experiments [8] or data from industrial onsite experiments [9],
and the rationality and accuracy of the models have been verified. However, the mathematical model
studies on the charging process in COREX MG remain scarce. In recent years, more and more
detailed research works have been carried out on the flow trajectory of the DRI-flap distributor and
the coal-gimbal distributor by some research groups [10–16]. Although many physical experiments
and numerical simulations have been conducted, sophisticated forecasting software or mathematical
models similar to the fast evaluation model of BF charging [17–19] for predicting the burden surface
profile and internal layer structure have not been formed.

The authors’ experimental studies on COREX MG charging [11,12] has shown that, due to the high
free space (low stockline) and small flow rate of burden charging in the COREX MG, the formation
of burden pile is in a developing phase with growing pile angles, while that in a BF is commonly
recognized as in a fully-developed phase with stable pile angles. The experimental measurement
showed also that the pile width was practically the same as the width of burden flow arriving at the
burden surface. This makes the formation of burden pile in COREX MG being different from that in
a BF. Therefore, this work will focus on the formation process of burden pile when certain material
reaches the burden surface, and thereby a thorough understanding of the charging process as well
as burden pile evolution can be expected, especially for the mechanism of developing growing with
developing pile angles.

2. Mathematical Model

The charging system of MG involves one coal-gimbal distributor and eight DRI-flap distributors.
Reasonable charging processes are completed by various combinations of the two sets of equipment.
The coal-gimbal distributor consists of consecutively a coal hopper, a down-comer, and the rotating
chute; while a DRI-flap distributor consists of consecutively a vertical pipe, an inclined-pipe, and the
angle-adjustable flap.

2.1. The Coal-Gimbal Distributor

The mathematical model for the coal-gimbal distributor is similar to the chute distributor of a
modern BF with the bell-less charging system (cf. Figure 3). In the mathematical model, the charging
process is divided into four consecutive fundamental steps: the free falling of particles from the hopper
onto the chute, the sliding of particles along chute, the free falling of particles from the chute tip,
and the formation of the burden pile. Detailed treatments of the first three fundamental steps can be
found in a previous publication [18,19] of the authors. In the fourth step, compared with the charging
process of BF, the burden has a longer descent distance and a wider flow width in the COREX charging
process, so the formation mechanism of burden pile is quite different.
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Figure 3. Schematic illustration of coal-gimbal distributor.

2.2. The DRI-Flap Distributor

The pathway of DRI particles in the DRI-flap distributor is shown in Figure 4. The mass of the
particle is m. At the bottom of the vertical pipe, the particle attains the velocity of V1 (m/s) normal to
the inclined pipe and it attains the velocity of V2 (m/s) at the end of the inclined pipe, then the particle
collides with DRI-flap and attains the bouncing velocity of V3 (m/s). The friction coefficient between
particle and inclined-pipe is μ, and the length of inclined pipe is l1. The angle between the inclined
pipe and the horizontal direction is α1, and that between V3 and the vertical direction is α2.

Figure 4. Pathway of direct reduction iron (DRI) in DRI-flap distributor.

DRI particles stored in the upper hopper fall onto the bottom of vertical pipe. This motion is
simplified by assuming the flow of a bulk stream similar to that of an individual particle, which is
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stationary when leaving the upper hopper and gains an exit velocity V1 along the direction normal to
the inclined pipe.

V1 = k1,DRI cosα1

√
2g(H1 + h1) (1)

where a correction coefficient, k1,DRI, is introduced to take into account the imperfect elastic collision of
the falling particles.

Since the moving direction of DRI particles from the vertical pipe is normal to the inclined pipe,
the initial particle velocity along the inclined pipe is zero. Therefore, the velocity at the end of the
inclined pipe is obtained as

V2 =
√

2g(cosα1 − μ sinα1)l1 (2)

The velocity V3 after colliding with the flap is

V3 = k2,DRIV2 (3)

where a correction coefficient, k2,DRI, is introduced to take into account the imperfect elastic collision
between the particles and flap.

Upon leaving the flap, the velocity of the bulk stream is decomposed into two components in the
vertical direction (V3 sinα2) and the horizontal direction (V3 cosα2). After this, the bulk stream will
form a parabolic motion similar to the free falling of a particle from a chute tip.

2.3. Formulation of Mathematical Model

The burden structure model in COREX MG is formulated as follows.
(1) Whenever the coal-gimbal distributor or the DRI-flap distributor is used, the burden pile is

formed in a ring at certain radius and uniformly distributed in the circumferential direction. It is
assumed that the two-dimensional section of the burden profile is a triangle, the shape of the triangle
is determined by the width of the burden flow and the volume of the burden batch together, and the
position of the triangle in radius direction is determined by the chute angle or flap angle.

(2) As mentioned above, the formation of COREX burden pile is in a developing phase, therefore,
the width (W) of the burden pile is considered to be equal to the width of the burden flow arriving at
the burden surface. The measured results for the width (W) of burden piles, the locations of the pile’s
left (L) and right (R) edges for coal, and DRI for different rings in physical experiment are listed in
Table 1 [15].

Table 1. Measured results of the width of burden piles for coal and DRI in physical experiment
(Units: mm).

Parameters R0.5 R1.0 R1.5 R2.0 R2.5 R3.0 R3.5 R4.0 R4.5 R5.0

Wcoal - 220 240 265 280 300 320 350 365 -
Lcoal - 37 94 151 208 264 320 376 431 -
Rcoal - 257 334 412 490 567 644 721 797 -
WDRI - - - 300 - 330 - 350 - 370
LDRI - - - 134 - 237 - 389 - 563
RDRI - - - 437 - 563 - 738 - 935

Through regression analysis of the experimental data, the relationships between burden pile
width and ring radius were obtained as shown by Equations (4) and (5) for coal and DRI respectively.

Wcoal = 41.667Ri + 177.92 (4)

WDRI = 23Ri + 257 (5)
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(3) The impinging effect and the mixing between sequential layers (rings) are ignored. Based on
observations from physical experiments, it was found that the larger and lighter coal particles more
easily to roll than the ore particles if they charged on an inclined surface. Therefore, a modification
coefficient (greater than 1) is introduced to take it into account.

2.4. Result of Stable Initial Burden Profile

Compared with BF, the COREX MG charging process has the characteristics of smaller volume
of burden dumps (or batches) and lower height of stock level (13~14 m in MG, and 1~2 m in BF).
Previous physical experiments [10–12] and numerical simulation [13,14] results indicate that, in MG,
it is difficult to form a stable surface with certain internal and external repose angles similar to those in
the BF [15,16]. In other words, the mechanism of burden pile formation is different in the two reactors.
To solve this problem, a new method based on burden pile width is proposed to calculate the growing
process of the pile. The model can be used to characterize the evolution of burden surface profile and
internal layer structure under various charging matrixes.

The published physical experiment [12] and numerical simulation [20] studies of the mixed
charging in MG show that the stable burden profile has a high center and a low edge with the descent of
the whole burden column. By regression analysis of the physical experiment and numerical simulation
data, an equation for the stable burden profile in the COREX MG can be obtained, as shown in Figure 5.
Such a stable burden profile is then simplified into a line of three segments, that is, the horizontal
center and edge segments and the inclined middle segment.

     

Figure 5. Stable initial burden profile.

2.5. Growing Mechanism of Burden Surface

The characterization of the growing of burden surface mainly requires the determination of the
radius locations of the left and right edges of the pile according to the width of burden flow measured
from previous physical experiments [12] under various angles of coal-gimbal chute and DRI-flap.
Since the stable initial burden profile is composed of three segments, the growing mechanisms at
different locations are more complicated than that on a horizontal flat profile. In this model, there are
mainly five pile patterns as shown in Figure 6. In the figure, L and R represent the left and right ends of
the burden pile, respectively, on a horizontal plane. OM represents the radius of the pile ring which is
determined by the angles of coal-gimbal chute and DRI-flap. Point O is the intersection point between
the old burden surface and the vertical line at pile ring radius, and point M can be obtained according
the dump volume. The critical width of burden pile (Wcritical) is the width when the pile attains stable
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repose angles, and is determined by the height of stock line, the angle of chute or flap, and the physical
property parameters including size distribution and rolling friction coefficient. L, R, O and Wcritical are
measured on a horizontal flat burden surface by previous physical experiment under various angles of
the coal-gimbal chute and DRI-flap, and these data has just been listed in the above Section 2.3.

To characterize the formation of such complicated piles, the growing of a pile is calculated by
iteration with a small volume step till the dump volume. In this way, the growth mechanism of burden
pile on the horizontal section is shown in Figure 6a, including an early developing phase and a later
developed phase. In the developing phase, both the inner and outer angles of the pile increase before
the pile reaches the developed phase, where the pile undergoes a parallel growing mechanism similar
to that in a BF. The horizontal distance LR is the width of burden flow arriving at the original burden
surface, while OM represents the radial location of the burden ring.

The growing mechanism of a burden pile sitting on the turning point from a horizontal segment to
a declining one is shown in from Figure 6b, where both points L and M are on the horizontal segment
and point R is on the declining segment. In such cases, the point L is set as the left end of the burden
flow. The right end of the first-step burden pile is the first intersection R0, between the old burden
surface and the line segment of MR. When the right point R0 reaches R, the outer angle starts increasing
until it reaches the developed phase, and then the growing mechanism becomes parallel in growth
with the outer angle, similar to that in a BF. The evolution of the inner angle follows a similar procedure
as the outer angle.

Figure 6. Cont.
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Figure 6. Growing mechanism of burden surface. (a) on the horizontal section; (b) from a horizontal
segment to a declining one; (c) on the horizontal section; (d) near the furnace center section; and (e) near
the furnace wall section.

When a pile is developed on the declining segment, its growing mechanism is shown in Figure 6c,
where all the three points L, R, and M are on the declining segment. In this case, point R is set as the
right end of the burden flow. The left point of first-step burden pile is the first intersection L0 between
the old burden profile and the horizon line. The inner angle increases until it reaches the developed
phase and then turns to parallel growth with inner angle similar to that in the BF.

The special cases where one side of the pile reaches the furnace center and the furnace wall are
considered as shown in Figure 6d,e. Regardless of whether the inner angle or the outer angle is in the
developed or developing phases, as long as one side of the pile encounters an obstacle (furnace center
or furnace wall), the inner or outer angle will decrease until it reaches the horizontal level, that is, a flat
platform is formed by the center or wall.

3. Results

3.1. Verification of the Model

To show the feasibility and effectiveness of the proposed mathematical model, a comparison
between the model prediction and the results of a physical experiment is conducted. Two important
parameters, the radial coal/ore ratio and burden surface profile, are compared and analyzed. Table 2
shows the mixed charging pattern of Case 1 used in the physical experiment, where the time period
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of charging is 300 s (the same as the physical experiment), and the volumes of coal and DRI in one
charging period (including two coal dumps and two DRI dumps) are 14.5 m3 and 8.6 m3 respectively.

Table 2. Data of charging pattern in Case 1.

Parameters

Rings R0.5 R1.0 R1.5 R2.0 R2.5 R3.0 R3.5 R4.0 R4.5 R5.0

Relative thickness of coal - - - 0.5 0.6 0.7 0.6 0.6 0.5 -
Volume of coal/m3 - - - 0.639 0.958 1.341 1.341 1.533 1.437 -
Relative thickness of
DRI

- - - - - 0.5 0.8 1 1 -

Volume of DRI/m3 - - - - - 0.504 0.941 1.344 1.512

According to the similarity principle, the scale ratio of the physical model to the actual furnace is
1:7.5, so the width of burden pile in the actual process should be expanded by 7.5 times. Therefore,
the results for burden piles of coal and DRI in the mathematical model are listed in Table 3, including
the inner end and outer end positions of the consecutive piles.

Table 3. Results for the burden piles of coal and DRI in mathematical model of Case 1 (Units: mm).

Parameters R0.5 R1.0 R1.5 R2.0 R2.5 R3.0 R3.5 R4.0 R4.5 R5.0

Lcoal 0.00 276.98 704.83 1131.57 1556.92 1980.52 2401.81 2819.98 3233.79 3641.21
Rcoal 1490.65 1923.88 2507.98 3090.97 3672.58 4252.43 4829.96 5404.39 5974.45 6538.12
LDRI 0.00 0.00 0.00 1003.81 1373.31 1777.01 2285.95 2916.84 3588.18 4224.70
RDRI 2013.75 2100.00 2186.25 3276.31 3732.06 4222.01 4817.20 5534.34 6291.93 7014.70

The burden surface profile of Case 1 obtained by the mathematical model is shown in Figure 7.
As can be seen from Figure 7a, the height of the burden surface varies from 12.9 m to 14.5 m, and the
burden surface is higher in the middle area and lower in the edge area. Figure 7b is an enlarged part
view of the burden surface. By comparing with the result of the physical experiment (cf. Figure 7c),
it can be seen that the profile calculated by the model is similar to the result of the physical experiment,
showing that the mathematical model based on the burden flow width has a certain accuracy for
predicting the burden profile. Both the results of the physical experiment and mathematical model
show that the height of burden surface near the furnace center is lower than that in the middle region,
and it then decreases along the radial direction but slightly rises near the wall. In this case, because the
coal and DRI particles were charged from 2.0 m and 3.0 m outwards respectively, less particles reach
the center and more particles were charged to the wall region. But the descent rate of the wall region is
higher than that of the center region, and thus a lower burden bed profile was formed.

To further validate the mathematical model, the radial distribution of radial ore/coal mass ratio is
compared. Figure 8 shows a comparison of the ore/coal mass ratio in the radial direction between model
prediction and experimental measurement. In the physical experiment, eight samples (about 2 kg each)
are collected from the layer formed in the last charging cycle at the locations of every 100 mm from
center to wall. The ore/coal mass ratio is calculated based on the mass of coal and DRI particles of
each sample.

Both the model prediction and experimental measurement in Figure 8 show that the ore/coal mass
ratio increases first and then decreases, attaining a maximum at a radial position of about 5 m for the
present charging matrix. The charging region of coal is in the radial range of 2~4.5 m, and that of DRI
is in the range of 3~4.5 m. Therefore, the volume of coal distributed before the radial distance of 2 m is
more than that of ore, and the mass ratio of ore/coal is close to zero. In the radial range of 2.0~4.5 m,
the increase rate of coal is lower than that of DRI (cf. Table 1), so the mass ratio of ore/coal is increased.
However, due to that larger size and lighter mass, coal particles tend to roll and easily be pushed to the
descending region near the wall, the ore/coal mass ratio is decreased near the furnace wall.
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Figure 7. Comparison of burden profile between model prediction and experimental measurement.
(a) Overall schematic of model prediction; (b) partially enlarged view of model prediction; and (c) burden
profile of experimental measurement.

 

Figure 8. Comparison of ore/coal ratio distribution between model prediction and experimental
measurement.

Comparing the results of the mathematical model and physical experiment, it can be found that
the trend is basically the same, but the value of ore/coal mass ratio calculated by the mathematical
model is smaller than that measured in the physical experiment, which is mainly caused by the shape
of DRI-flap in the physical experiment. In a previous work [12], it was observed that DRI particles
were unevenly distributed in the circumferential direction due to the effect of DRI-flap shape, and the
relative quantity of DRI distributed in the area between two adjacent flaps is somewhat more than
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that in the other areas. The sampling in the physical experiment is exactly in the points between the
two DRI-flaps, and thus the ore quantity is somewhat large. In the mathematical model, however,
it is assumed that the DRI is evenly distributed in the circumferential direction. In other words,
the circumferential segregation is not considered, so the overall ore/coal ratio is somewhat smaller than
the experimental value.

Since the burden distribution is determined according to its flow width (measured at a horizontal
level), and do not consider the rolling of the particles at a horizontal level in the mathematical model,
no material reaches the central area of the furnace (especially DRI). This is somewhat different from
the results of the physical experiments. The model should thus be further improved in future studies
to make it more consistent with the results of physical experiments. Overall, although the model
calculation results are slightly different from the physical experiment results, the overall trend is
consistent, which further proves that the mathematical model can effectively predict the mass ratio of
ore/coal and the burden profile.

3.2. Application of the Model

The charging matrix determines the surface profile and internal structure of the burden column in
the furnace. In this section, three different charging matrixes are used to study the effect of charging
pattern on the burden distribution. Detailed data of the charging matrixes are listed in Table 4.
The on-site charging pattern can be classified into three categories, including inner coal and outer ore
(e.g., Case 1#), outer coal and inner ore (e.g., Case 2#), and co-location of coal ore (e.g., Case 3#).

Table 4. Data of charging matrixes.

Case
NO.

Materials
Type

Relative Thickness (–) at Different Rings Locations (m)

R1.0 R1.5 R2.0 R2.5 R3.0 R3.5 R4.0 R4.5 R5.0

1#
Coal - - 0.5 0.6 0.7 0.6 0.6 0.5 -
DRI - - - - 0.5 0.8 1.0 1.0 -

2#
Coal - - - 0.5 0.8 0.7 0.6 0.15 -
DRI - - 1.0 0.8 0.8 0.7 0.6 0.2 -

3#
Coal - - 0.7 0.7 0.8 0.9 0.8 - -
DRI - - 1.0 0.8 0.8 0.8 0.75 - -

The evolution of burden profiles under various charging matrixes is shown in Figure 9, where the
respective initial stable burden surfaces are determined according to the physical experiment as
described above. Taking Case 1 as an example, one charging period including two coal dumps and
two DRI dumps, that is, the first coal dump is charged from center to wall, followed by the first DRI
charging from center to wall, and then the second coal dump is charged from wall to center, followed
by the second DRI charging from wall to center. As can be seen from the figure, the burden surface
profile is higher in the center and lower near the wall. As the charging position of Case 3 is farther from
the wall than that of Case 1 and Case 2, the original burden surface does not have a flat platform near
by the wall. Therefore, the burden profile of Case 3 is relatively flat in the radial direction, and more
material gets to the wall region, while the middle area thickness of the burden pile in Case 1 and Case
2 is relatively greater than that in Case 3.

The results of the ore/coal mass ratio distribution for different charging matrixes are shown in
Figure 10. It can be seen from the figure that the charging pattern has a great influence on the radial
ore/coal ratio distribution.
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Figure 9. Evolution of burden surface profiles under different charging patterns. (a) Burden surface
profile in Case 1; (b) Burden surface profile in Case 2; and (c) Burden surface profile in Case 3.

For Case 1, the charging region of coal is in the range of 2.0~4.5 m, and that of DRI is in the range
of 3.0~4.5 m. Since the starting position of coal charging is closer to the furnace center than DRI, there is
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an ore-free region in the central area. The ore/coal ratio is zero before approximately 2.0 m, and then
increases rapidly along the radial direction till R ≈ 4.75 m, and finally decreases in the wall region.

For Case 2, the charging region of coal is in the range of 2.5~4.5 m and that of DRI is in the range
of 2.0~4.5 m. Therefore, the volume of ore distributed before the radial distance of 1.0 m (the DRI left
ends of R2.0 in Table 3) is more than that of coal, and the ore/coal ratio is larger in this region than Case
1. In the region of 2.5~3.0 m, the relative coal increase rate is greater than DRI, so the ore/coal ratio
decreases along radial direction. However, due to larger size and lighter mass, the coal particles tend
to roll and are easily pushed to the descending region near the wall, so the ore/coal ratio is decreased
near the furnace wall.

For Case 3, the charging regions of both coal and ore are in the same range of 2.0~4.0 m. Since the
starting positions of coal and ore charging are the same, the ore/coal ratio distribution in the radial
direction is relatively uniform in Case 3. In Case 1 and Case 2, the ore/coal ratio is relatively higher in
the wall area, so the ore content or the coal load is larger, which may lead to a poor permeability of the
burden bed.

Figure 10. Calculated radial ore/coal ratio distribution with different charging patterns.

4. Conclusions and Future Perspectives

Based on the previous physical experiment, a new approach was proposed to characterize the
growing mechanism of burden surface with the width of burden flow arriving at the burden surface
in the COREX MG. The validity of the model is demonstrated by comparing the simulated burden
layer structure with the corresponding results obtained by physical experiments. The usefulness of
the mathematical model is illustrated by performing a set of simulation cases under various charging
matrixes. The main conclusions are as follows.

(1) A mathematical model for characterizing the layer structure has been established based on the
burden flow width. Compared with physical experiment, the model prediction is reasonably reliable,
and the model can be used to predict the burden distribution with the complicated charging system of
gimbal and flaps.

(2) The model can be used to predict the radial distribution of ore/coal mass ratio with different
charging matrixes. It can be seen that the charging matrix has a great influence on the radial ore/coal
ratio distribution. The co-location charging of coal and ore results in the most uniform distribution of
the ore/coal ratio in the radial direction.
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In the future, the mathematical model will be further improved by considering the influences of
coal pushing, mixing between layers, and burden column descending. It is hoped that the model can
be used as a what-if tool in practice for the COREX operator to gain a better understanding of burden
distribution in the COREX MG and to supply boundary conditions for a mathematical model of the
COREX MG to be developed.
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Abstract: The physical and chemical processes in the raceway zone of the COREX melter–gasifier
express are similar to those inside the blast furnace. Based on the research achievements on blast
furnaces, the unsteady numerical simulation of a gas-solid two-phase in the raceway was carried
out by using computational fluid software. The formation process of the raceway in the COREX
melter–gasifier was simulated. The shape and size of the raceway were obtained. Then, the effect of
gas flow on the depth and height of the raceway was analyzed in this paper.

Keywords: COREX; raceway zone; numerical simulation; gas flow

1. Introduction

COREX is the world’s first commercially established and industrially proven smelting-reduction
process [1,2]. It is a two-stage process that involves pre-reduction in a shaft furnace, followed by final
reduction and separation in a melter gasifier [3–5]. The melter gasifier is the key reactor of the COREX
process. Lateral injection of high-speed gas into the packed bed in a melter gasifier can cause the
formation of granular circulation regions within the bed. These are commonly called ‘raceways’ due to
the distinct shape of the path taken by entrained particles within the bed [6,7]. The raceway plays a
critical role in providing energy and reducing agents for the successful and stable operation of the
melter gasifier. Exploring the characteristics of the raceway in the COREX melter gasifier is beneficial
for the design and optimization of the chemical process.

There are different approaches for the investigation of raceway phenomena in a packed bed.
One method is cold model simulation. Two-dimensional or pseudo three-dimensional models were
used to study the size of the raceway through photography [8–11]. However, due to the rather intensive
particle-fluid interactions and high temperature environment, there are some deviations between the
experimental results and the practice dates. The temperature measurement method is also a good
way to explore the properties of the raceway zone. However, no matter the direct measurement
method or non-contact measurement method, the size and volume of the raceway cannot be accurately
obtained [12–14]. To overcome these difficulties in experimental and measurement studies, numerical
simulations of the raceway have becomes more and more popular. For example, Sarkar et al. studied
the raceway boundary using a continuum two-fluid model [15]. Frank et al. developed a computational
fluid dynamics (CFD) model for describing the pressure field, temperature field, gas composition field,
and so on [16]. Shen et al. established a series of CFD models to study coal combustion in the raceway
zone [17–20]. Recently, a coupled CFD-DEM model was also developed to determine particle and
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gas flow in the raceway in a blast furnace [21–23]. All these studies are useful for understanding the
characteristics of the raceway in a blast furnace, whereas the difference between a blast furnace and a
COREX process makes it impossible for the latter to draw experience directly from the blast furnace.
Indeed, the raceway boundary and gas–solid flow behaviours of the raceway in a COREX melter
gasifier were investigated by Sun et al. [24,25]. However, under pure oxygen injection in a COREX
melter gasifier, the formation process of the raceway needs further research.

In this paper, a CFD model is developed to study the raceway zone in the melter gasifier of the
COREX process. The raceway formation process is first discussed, and the influence of the amount of
the blowing gas on raceway size is also studied. The findings of this work will be useful for the design,
control, and optimization of COREX melter gasifier process operation.

2. Mathematical Model

2.1. The Basic Assumptions of This Paper

(1) In each location of the flow field, the particulate phase coexists with the gas phase and both
penetrate each other, with each phase having its own velocity, temperature, and volume fraction,
but the particles of each size group have the same velocity and temperature.

(2) Each particle phase (size group) has a continuous distribution of velocity, temperature, and
volume fraction in space.

(3) Each particle phase and gas phase, in addition to quality, momentum, and energy interactions,
also has its own turbulence.

(4) The initial size distribution is used to distinguish the particle groups.
(5) For dense particle suspensions, particle collision can cause additional particle viscosity, diffusion,

and heat conduction. A two-fluid model is used in the study (also called Eulerian model).

2.2. Volume Fraction

The Ansys-Fluent 14.5 commercial software was used in the study. The volume fraction represents
the volume percentage of each phase, and each phase satisfies the law of conservation of mass and
momentum. The volume fraction of the q phase (Vq) is defined as

Vq =

∫
V
αqdV (1)

where
n∑

q=1
αq = 1.

The effective density of the q phase is

�
ρq = αqρq (2)

where ρq is the physical density of the q phase.

2.3. Mass Conservation Equation

The mass conservation equation of the q phase is

∂
∂t

(
αqρq

)
+ ∇ ·

(
αqρq

→
v q

)
=

n∑
p=1

( .
mpq − .

mqp
)
+ Sq (3)

where
→
v q,

.
mpq, and Sq are the velocity of the q phase, the mass transfer from the p phase to q phase,

and the source phase, respectively.
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2.4. Momentum Conservation Equation

The momentum conservation equation of the q phase is

∂
∂t

(
αqρq

→
v q

)
+ ∇ ·

(
αqρq

→
v q

→
v q

)
= −αq∇p + ∇ · τq + αqρq

→
g

+
n∑

p=1

(→
Rpq +

.
mpq

→
v pq − .

mqp
→
v qp

)
+

(→
Fq +

→
F lift,q +

→
Fvm,q

) (4)

where τq is the pressure strain tensor of the q phase;
→
Fq,

→
F lift,q, and

→
Fvm,q are the volume force, lift

force, and virtual mass force of the q phase, respectively; and
→
Rpq is an interaction term.

2.5. Conditions

Using the melter–gasifier as the prototype, an unsteady simulation is performed from the
computational domain consisting of the upper coke bed region of the slag layer on the packed bed
region. The calculation domain size is shown in Figure 1. The bottom edge is 4690 mm, the height is
4230 mm, and the furnace wall inclination angle is 30◦, which is close to the actual size, and the tuyere
spray gun is 1200 mm. Compared with the whole model, the insertion depth of the tuyere spray gun is
negligible. For the sake of the simplicity of the model calculation, the inlet of the tuyere spray gun
is located at the wall. The average mesh size is 40 mm in the present simulation. They are mostly
structured meshes. We performed a sensitivity study of the mesh size with an average size of 100 mm,
80 mm, 60 mm, 40 mm, 30 mm, and 20 mm. The difference in the depth of the raceway (gas velocity is
200 m/s) between 60 mm and 40 mm is 2.9%, while that between 40 mm and 30 mm is within 0.5%.
This suggests that a mesh size of 40 mm is reasonable and confirms the mesh independence.

In the simulation, a no-slip condition is applied to walls. The pressure–velocity decoupling is
done with the PISO algorithm. The tuyere zone is the velocity inlet. An explicit scheme is used to
describe the shape of the interface. The time step is 0.001 s. The numerical solution is considered to be
convergent when the residual errors of the variables are less than 10−5. The main parameters used in
the model are shown in Table 1.

Table 1. Parameters used in this model.

Project Values Unit

Gun inlet diameter 30 mm
Coke bed porosity 0.60 -

Max focal bed porosity 0.63 -
Bed height 2230 mm

Type of blowing gas Air -
Air density 1.205 kg/m3

Air viscosity 1.76 × 10−5 Pa·s
Injecting gas velocity 50–250 m/s

Coke diameter 40 mm
Coke density 600 kg/m3

Gas injection inclination 4 degree (◦)
Operating pressure 3.5 atm

The unsteady simulation initialization conditions are shown in Figure 2. The lower part is the
coke layer, and the porosity is 0.4; the upper part is gas.
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Figure 1. Schematic diagram of the computational domain for the tuyere zone.

Figure 2. Initialization condition of the coke volume fraction in the model.

3. Results

3.1. Unsteady Simulation of the Raceway Formation Process

Taking the typical COREX melter–gasifier nozzle injection operation parameters as an example,
the gas velocity is set to 200 m/s; the spray inclination angle is 4◦, and the parameters of the shape
of the raceway zone and the volume fraction of the gas–solid particles at different times are tracked.
The gas volume fraction at different time periods is shown in Figure 3.

It can be seen from Figure 3 that the volume fraction of the gas phase changes significantly over
time. At the beginning of the injection, the gas develops radially toward the center. Then, the gas
moves straight to the center, and the upper and lower sides develop slowly. Over time, the expansion
of the radial direction begins to become slow and finally stagnate, at which point the gas begins to
extend upwards in the axial direction, slowly forming an arc-shaped cavity region. The upper portion
of the cavity region exhibits a semicircular or semi-elliptical shape, which lasts for a long period of
time. Finally, the gas forming bubble-like sphere begins to drift upward when the gas pressure in the
cavity accumulates to a certain extent.

Combining the above theory, it can be determined from the change of the gas phase volume
fraction, and from the start of the injection to the formation of the raceway zone, that the gas first
develops in the radial direction and reaches a certain degree before starting to develop upward.
The reason for this development is that the porosity of the coke bed is continuously reduced under
the compression of the gas; the gap between the coke particles becomes increasingly smaller, and
the resistance of the gas to the depth development is increased. When compressed to a certain limit
(simulated by setting the coke porosity limit to 0.37), the resistance of the gas in the radial direction is
so large that the gas cannot expand forward, and the gas grows upwards.
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Figure 3. Variation of gas phase volume fraction with time.

Figure 4 shows the depth variation of the radial development of the gas over time. It can be seen
from the figure that, as the blowing time changes, the depth of the raceway zone first increases rapidly,
and after 0.4 s, it begins to stabilize and finally reaches a maximum of about 800 mm.

Figure 4. Variation of raceway depth with blowing time.

Figure 5 shows the raceway behaviour in our previous experimental study [26]. The result
indicates that particles rotate in front of the tuyere, and a stable cavity can be observed. Comparing
the present numerical simulation and the previous physical simulation, the calculation result is
consistent with the results of the physical experiment. The shape of the raceway shows similar features.
These agreements verify the applicability of the present model for investigating the characteristics of
the raceway in a melter gasifier under different conditions.
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Figure 5. Raceway behaviour in the experiment.

3.2. Effect of the Velocity of the Blowing Gas on the Cavity Size of the Raceway

According to the previous analysis, the shape and boundary of the raceway zone are generally
stable from the time when the depth reaches the maximum and the time when the air mass begins
to drift away from the raceway zone. On this basis, the effects of the different gas kinetic energies of
blasting (i.e., airflow velocity) on the shape and size of the raceway zone are considered. Figure 6
shows the volume fraction diagram of the gas phase when the injection angle is four degrees and the
gas velocities are 150 m/s, 200 m/s, 250 m/s, and 300 m/s, respectively.

Figure 6. Gas phase volume fraction fractions at different blowing velocities.

Combined with the velocity cloud map and the gas phase volume fraction map, it can be seen
that the greater the gas injection speed, the deeper the depth of the raceway, and the larger the cavity
volume when it is stabilized, which can also be seen from its depth and height. Figure 7 shows the
depth variation of the raceway under different gas velocity conditions.
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Figure 7. Variation of raceway depth with time at different blowing velocities.

Under different gas velocities, the penetration depth is different. With an increase in gas velocity,
the depth of the coke layer, through which the gas flows, increases. As can be seen from Figure 7,
the cavity depth changes in the four blowing situations are basically the same—that is, both increase
from the beginning and finally stabilize. The variation of the depth of the raceway also directly reflects
the variation of the volume of the cavity in the raceway. When the raceway zone is stable at 150 m/s,
the depth is about 500 mm, at 200 m/s, the depth is about 800 mm, at 250 m/s, the depth is about
950 mm, and at 300 m/s, the depth is about 1200 mm.

The depth and height values of the raceway zone in the stable period at each blowing speed are
plotted, as shown in Figure 8. This makes it easier to visually observe how the two change with the
injection speed. The main reason for this trend is that the velocity of the blowing gas increases—that is,
the kinetic energy of the blast increases, the amount of gas injected per unit time increases, the gas
pressure in the cavity increases, and the ability to compress the coke particles also increases. When the
gas pressure and the coke layer resistance are balanced, the cavity volume is also large.

Figure 8. Variations of raceway depth and height with blowing velocity.

4. Conclusions

The formation process of the tuyere of the COREX melter–gasifier was simulated by Euler gas–solid
two-phase flow theory. The shape and size of the relatively stable period of the raceway were obtained.
The influence of the jet velocity on the depth and height of the raceway is analyzed. The main results
are as follows.

(1) As the gas continues to inject, the cavity first grows deep into the furnace. After reaching a certain
depth, the cavity begins to develop upwards, and the cavity volume increases. The time taken
from the start of the gas to the formation of the stable raceway shape is short, and then the depth
and height of the raceway and the volume of the cavity are stable for a long period of time.
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(2) Under the condition that the normal blowing speed of the COREX melter–gasifier is 250 m/s and
the blowing angle is 4◦, the depth of the raceway is about 950 mm, and the shape of the raceway
is approximately semi-elliptical.

(3) As the velocity of the tuyere gas injection increases, the depth and height of the raceway increase,
and the volume of the cavity in the raceway zone increases as it stabilizes, but the shape of the
raceway does not change significantly.
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Abstract: Computational methods have become reliable tools in many disciplines for research and
industrial design. There are, however, an ever-increasing number of details waiting to be included in
the models and software, including, e.g., chemical reactions and many physical phenomena, such as
particle and droplet behavior and their interactions. The dominant method for copper production,
flash smelting, has been extensively investigated, but the settler part of the furnace containing molten
high temperature melts termed slag and matte, still lacks a computational modeling tool. In this paper,
two commercial modeling software programs have been used for simulating slag–matte interactions
in the settler, the target being first to develop a robust computational fluid dynamics (CFD) model
and, second, to apply a new approach for molten droplet behavior in a continuum. The latter is
based on CFD coupled with the discrete element method (DEM), which was originally developed
for modeling solid particle–particle interactions and movement, and is applied here for individual
droplets for the first time. The results suggest distinct settling flow phenomena and the significance
of droplet coalescence for settling velocity and efficiency. The computing capacity requirement for
both approaches is the main limiting factor preventing full-scale geometry modeling with detailed
droplet interactions.

Keywords: computational fluid dynamics; CFD–DEM; coalescence; settling; funneling flow

1. Introduction

In the flash smelting (FS) process, a mixture of sulfide-based concentrate and flux is continuously
fed to the reaction shaft through a concentrate burner. Additional recycled materials, such as copper
scrap and waste electrical and electronic equipment (WEEE) scrap can be used in the flash smelting
feed. With the solid feed, oxygen enriched air is also blown through the burner. The air is used to
create the exothermic reaction of sulfide oxidation, which creates the energy needed to melt the feed.
This forms molten slag and matte phases as separate layers in the settler, with the lighter slag layer on
top of the matte layer. The main functions of the slag are to protect the matte from oxygen, collect
impurities such as Zn, Co, Ni, Sb, As, and Mo [1–3], and thermally insulate the matte to minimize
energy losses. The slag and matte are tapped through tapping holes in the furnace wall. Unlike the
feed, the tapping takes place at regular intervals, which causes variations in the thickness of the melt
layers. Besides the melts, SO2 gas is also formed. The gas exits through the uptake shaft carrying
dust that is collected in gas cleaning, and the gas is then used in sulfuric acid production. In addition,
the thermal energy of the gas is recovered and used for heating input gases and possibly for the local
community. The collected dust is then circulated back to the process [4].

The slag and matte layers are not stagnant in this continuous process. More material constantly
descends from the reaction shaft and matte droplets settle through the slag layer, creating flows in the
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matte and slag layers. Xia et al. studied the slag and matte flows in a FS settler [5–7]. They found
that tapping of the slag and the matte creates complex turbulent flows in the settler. The flows are
not uniform: the effect of the tapping flow is reduced as the distance to the tapping hole increases.
Furthermore, the region affected by the tapping decreases as the flow velocity is reduced.

However, the area under the reaction shaft has strong flows as the majority of the droplets will be
descending relatively directly from the concentrate burner. Similar trajectories have been reported in a
study by Zhou et al. [8]. Studies by Khan and Jokilaakso, and Jylhä and Jokilaakso show a funneling
effect created by drag flows in the slag [9,10]. These drag flows were caused by settling matte droplets.

Mechanical copper losses in the FS process can be traced to copper as flue dust or matte entrained
in the slag. The settling of matte droplets through the slag phase in the FS furnace (FSF) as shown
in Figure 1, is an important phenomenon and determines the overall copper yield in the smelting
unit process. The copper losses during the settling process are due, in addition to the mechanical
entrainment of the copper matte droplets, to the chemical dissolution of copper in the slag phase. This
not only reveals the loss of matte droplets during the settling process, but also how quick the settling
process is. The entrainment of matte droplets has been studied by many researchers [11–17] and it has
been concluded that mostly droplets ≤100 μm in size are trapped in the slag phase and are ultimately
carried away in the slag phase through the slag outlet.

 
Figure 1. Illustration of the Outotec flash smelting furnace.

The entrained copper losses to slag are due to, for example, solid spinels, small size, or droplets
being lifted from the surface of the matte layer [18–20]. Spinels may be attached to a droplet or surround
the droplet completely [21]. The attached spinel affects the settling of the droplet: the bulk density of
the droplet–spinel entity is lower than that of a droplet without an attached spinel, but the size of the
entity increases. Thus, the attached spinel may either increase or decrease the settling velocity of the
droplet–spinel entity. However, as the droplet–spinel has better wetting with the slag than the matte,
and has lower density than the matte, the droplet–spinel entity cannot enter the matte layer, and thus,
droplets with spinel may be removed with the slag in tapping. Additionally, turbulence can lift parts
of the surface layer of the matte to the slag [18]. Furthermore, the distance between the tapping hole
and the slag–matte interface affects copper losses. In a study by Jiménez et al. [19], matte droplets were
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found to form a dispersion layer above the matte surface. With too short a distance between the matte
surface and the tapping hole, droplets from the dispersion layer may be sucked upwards and removed
through the tapping hole. According to their study, at least 20 cm distance is needed to minimize the
quantity of droplets sucked from the dispersion layer.

To limit mechanical copper losses, several parameters should be optimized [22]. The density
difference between the slag and the matte should be as high as possible, while the viscosity of the slag
should be as low as possible. Also, the matte droplets should be as large as possible. These three
factors decrease the residence time of the matte droplets in the slag. The density difference and the
slag viscosity are greatly affected by slag chemistry and variations in solid content, oxygen levels,
and temperature in the slag. The droplet size is affected by coalescence and reactions, which are also
affected by the properties of the slag and droplets themselves.

Mathematical and computational modeling of pyrometallurgical processes and furnaces started
decades ago, as there was an increasing need for better understanding of the phenomena occurring
inside them. A significant increase in modeling development has been seen since the introduction of
commercially available computational fluid dynamics (CFD) software. The development of the Outotec
flash smelting furnace (FSF) and process modeling has been reviewed in a recent review paper [23].
The aim of the modeling studies reported here is to find a feasible computational method by using
commercial simulation software packages for gaining a better understanding of the fluid dynamics
of the settling matte droplets in the slag layer. After validating the fluid dynamics behavior with
physical model results, additional droplet–droplet or droplet–spinel interactions and chemical reactions
between matte droplets and slag will be included in the simulation. However, as the geometries and
phenomena in the models are computationally extremely intensive, the additional features have to be
included one by one as a longer-term target. Finally, the models and knowledge developed will be
used to help find ways to reduce copper losses and develop processes and their operational efficiency
in a similar manner as has been done with the FS reaction shaft models [23]. In this paper, the fluid
dynamics modeling results are presented, and the results obtained with the two software packages are
compared. The settling flow behavior of the molten matte phase has been revealed, and the results
from statistical (or traditional) CFD modeling and from the new CFD–DEM coupling approach are
consistent, suggesting a channeling or funneling kind of flow pattern.

The software used in this study was ANSYS® Fluent 19.2 and EDEM® 2019.1 with EDEM-Fluent
coupling v2.2 provided by DEM Solutions Ltd., Edinburgh, Scotland, UK [24].

2. Methods

Information or research reports on the breakup or coalescence of matte droplets in the FS settler in
the literature are scarce. Therefore, this study focused on this part of the process so that the entraining
and settling behavior of matte droplets could be investigated thoroughly.

2.1. Population Balance Model

The high-volume fraction of the dispersed matte phase during the settling process in the FS
settler was described by the population balance model (Eulerian–Eulerian approach). The dispersed
phase model (DPM, Eulerian–Lagrange approach) method has limitations when the volume fraction is
above 10%, since computational time becomes expensive. Several methods are available for droplet
classifications using the population balance model. These include size class formation and the moment
method. Size class formation divides the system into several size groups. Therefore, it is a more
accurate way to estimate the system. Size classes are further classified into the homogeneous and
inhomogeneous methods. The homogeneous method classifies the different size groups into a single
velocity field, which means it treats all the size groups as one phase and, therefore, the results from this
method are not as accurate. In contrast, the inhomogeneous method defines a velocity profile for each
size group, so this method is more feasible for an accurate representation of a system that contains
different size groups. The inhomogeneous method has been used for an oil, water and air system [25],
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and it accurately predicted the system. Therefore, this method was preferred for this study as well.
However, defining the different size groups with the inhomogeneous method is not enough, since the
model equations need to be parametrized to truly depict the scenario population balance, especially
for coalescence efficiency and frequency, to capture the correct coalescence rate. Nonetheless, since it is
not easy to obtain experimental data under the harsh conditions of the settler, these methods may give
a good estimate of what is happening inside the settler.

The population balance model distributes different droplet sizes into various size groups. These
groups represent a range of droplet sizes and the volume fraction of each droplet size is estimated
through mathematical models. The equation representing the population balance model (PBE) in a
control volume is shown in Equation (1) [26].

∂ f (x, ξ, t)
∂t

+ ∇·(V(x, ξ, t) f (x, ξ, t)) = S(x, ξ, t) (1)

where f represents the density function with parameters: x, ξ, and t, where x represents the physical
coordinates, and ξ represents the internal coordinates of the particle, for example, diameter. Internal
coordinates could be either a scalar or a vector depending on how many properties of the droplet
or particle you wish to include. Since in this work the focus is on the diameter of the droplet, ε is
considered as a scalar. Finally, t represents the time, V represents velocity, and S an external source term.

If the death and birth of particles are not considered, then the number of particles in a control
volume is constant, and

dN
dx

=
∂ f (x, ξ, t)
∂t

+ ∇·(V(x, ξ, t) f (x, ξ, t)) = S(x, ξ, t) = 0 (2)

Two different schemes, the class method and the moment method, are available for estimating
the particle size distribution (PSD) in the domain. The class method divides the PSD into various
discrete size groups and each size group is represented by the PBE. For some applications, the multiple
size groups (MUSIG) model has been developed, which uses a homogeneous and inhomogeneous
approach to solve the PSD field.

Inhomogeneous particle size distribution was used for this work since homogeneous PSD
schemes use a single velocity field for all particle sizes groups and therefore, may not be an accurate
representation of the velocity fields for different size groups. In contrast, inhomogeneous PSD uses
different velocity fields for the size groups [26].

2.2. Coalescence Model

The Luo coalescence model [27] over-predicts the coalescence frequency and requires adjustment
of coefficients in the equation using sensitivity analysis and validation with experimental data [28].
Therefore, the turbulence model was used for detailed analysis. However, a few results from the Luo
model are presented as well for comparison. The turbulence model is governed by the following
empirical equations.

The droplet collision rate is determined by the local shear within the eddy in the suspension
mixture and is represented by the following equation [29]

a
(
Li, Lj

)
= ςT

√
8π
15

.
γ

(
Li + Lj

)3

8
(3)
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where
.
Υ is the shear rate of the droplet and ςT is the capture efficiency coefficient of turbulent collision.

Finally, the aggregation or coalescence rate is determined by the equation presented below [30]. The
Brownian effect is negligible in turbulent flows and on droplet scale, so it was excluded.
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2.3. Coupled CFD–DEM

Matte settling through the slag was also investigated with CFD coupled to a discrete element
method (DEM). With the CFD–DEM method, individual droplets can be simulated by approximating
them as soft spheres that are affected by slag flow. In the coupling, CFD is used to calculate the slag
flow and drag forces for each droplet, while DEM is used to solve the contact forces and movement of
the droplets. Additional models can be used to take more complex phenomena, such as coalescence,
into account. CFD and DEM are not computed simultaneously; instead, first CFD solves one time step
and transfers the drag forces to DEM, which then calculates until the CFD time step is reached and
returns the droplet locations to CFD. Generally, DEM calculates several time steps between each CFD
time step as the CFD time steps are longer. The basic principle of CFD–DEM simulation is illustrated
in Figure 2.

Figure 2. Illustration of the computational fluid dynamics–discrete element method (CFD–DEM)
calculation process.

In CFD–DEM simulation, coalescence was calculated using the bubble coalescence probability by
Wang et al. [31], which was calculated for every droplet–droplet contact. If the probability was at least
50%, the droplets were considered to have coalesced.

2.4. Geometry Dimensions and Materials

As CFD–DEM is a computationally demanding method, the FS settler model had to be scaled
down for studying the settling phenomenon. The high computational demand is caused by using
two methods in parallel and solving interactions of a very large number of individual elements. The
geometry for the slag was a cube with 20 cm sides, as presented in Figure 3. As both slag and matte
descend from the reaction shaft, the droplet and slag inlet was set at the center of the top face of
the cube, while the tapping hole was depicted with a small tube on one side. The inlet and tapping
hole had diameters of 15 cm and 1.5 cm, respectively. The slag flow rate (70 t/h) was taken from the
literature [6] and scaled down with the reaction shaft diameter (4.5 m) reported in the literature [32].
The matte droplet feed rate was set as 40% of the slag feed rate and varied in size according to a normal
distribution. The values of the slag and matte parameters used in the simulation are listed in Table 1.
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Figure 3. Geometry and mesh of the CFD model for CFD–DEM simulation. Inlet (blue) on the top and
tapping hole (red) on the right side.

Table 1. Values of the slag and matte parameters.

Parameter Slag Matte

Feed rate (kg/s) 0.022 0.0086
ρ (kg/m3) 3150 5100

Viscosity (kg/ms) 0.45 -
Mean diameter (μm) - 500
Standard deviation - 0.1

An additional user-defined model was used to simulate coalescence of the matte droplets.
Coalescence was approximated by deleting the coalescing droplets and creating a new one in their
center of mass with a mass equal to the sum of the deleted ones. Due to the limitations of the model,
coalescence was instantaneous. The maximum size for coalesced droplets was limited to 2 mm, as
larger droplets caused the software to use all the available memory due to the coalescence affected too
many droplets at once.

This scaled-down settler geometry with similar slag and matte physical properties was modeled
with CFD software as well. However, in addition to the previous research in this regard (single
particle size of 500 μm) [10] and the CFD–DEM modeling part, in this CFD modeling the particle size
distribution (PSD) scheme was also applied. The final selection and distribution of different droplets
present in the initial mixture (PSD) were taken from the work of Jun 2018 [33], which is presented in
Table 2.

Table 2. Size distribution of the droplets at the inlet.

Matte Droplets Size (μm) Mass % Volume Fraction in Mixture

500 2 0.006
300 67 0.201
150 18 0.054
100 4 0.012
75 1 0.003
60 2 0.006
50 6 0.018

Parallel with the development of these computational models, experimental investigations were
ongoing on laboratory scale. The kinetics of slag–matte reactions [34,35] at temperatures prevailing in
the FSF was studied in a vertical tube furnace in air and argon (oxygen-free) atmospheres simulating
the settler area reactions between matte droplets and partly and nonreacted feed particles. Additionally,
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the main impurity elements (Sb, As, Bi) and pieces of waste electric and electronic equipment
(WEEE) [36] were used in the experiments.

3. Results

3.1. CFD Simulation

Coalescence was studied using the Luo coalescence model [27] and the turbulence coalescence
model [30]; however, the Luo model over-predicted the results. For example, the coalescence rate
was quite high and almost all the smaller-sized droplets were coalesced into large size droplets, and
therefore, the concentration of large droplets was high in the scaled-down settler. The results after
20 s are presented in Table 3. The results were obtained at a plane passing through the center of the
scaled-down settler at x = 0.

Table 3. Results for Luo [27] coalescence model.

Droplet Size (μm) Volume Fraction

1300

 

900

 

500

 

From the above results it can be concluded that all the smaller size droplets had coalesced into
large size droplets and were not present in the settler after 20 s, which reveals that the coalescence rate
was unrealistic. However, even though the coalescence rate might not be accurate, the model shows
similar flowing behavior as depicted in the CFD–DEM method below. Thus, it can be concluded that
the flow is aligned more towards the center of the settler forming a conical shape. The turbulence
model was also used in lieu of the Luo model to obtain a comparison, and the results are presented in
Table 4.
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Table 4. Volume Fraction Contours for 500 μm Droplets at 15, 17, 18, and 20 s.

 

 

 

The volume fraction contours for the small-sized settler, taken at a plane in the center of the settler
at x = 0.1 for 500 μm droplets, are presented in Table 4. It can be deduced that coalescence mostly
occurred near the top of the slag surface, and as the particles started to settle, they took their own path.
Second, the volume fraction was decreasing towards the larger size droplets, which shows that a small
number of droplets bigger than 900 μm were present in the settler. Almost all the droplets reached
the bottom of the settler within 20 s. In the future, it would be good to focus the study of droplet
coalescence on sizes between 500–1000 μm.

The velocity vector profiles for the small settler model with 500 μm droplets are presented in
Table 5. The velocity vector profiles confirm the formation of a funnel-shaped flow. After entering the
slag layer, the flow channels the droplets towards the center of the settler.

Table 5. Velocity Vector Contours for 500 μm Droplets at 15, 17, 18, and 20 s.
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The volume fraction contours for the full-sized settler taken at the center plane of the settler
(x = 0.5) containing the settler inlet and slag outlet are presented in Table 6. These volume fraction
contours reveal that most of the coalescence occurred at the surface of the slag. However, a small
number of droplets also coalesced during the descending route because of the turbulence underneath
the inlet. This chaotic behavior was created because of the reverse flows caused by vortices and slag
movement in the upward direction due to the density difference. This phenomenon is presented in the
velocity vector profiles in Table 7.

Table 6. Volume fraction contours for 500 μm droplets.

Time (Sec.)

70

75

80

Table 7. Velocity Vector Contours for 500 μm Droplets (m/s).

Time (sec.)

70

75

80

Finally, when we compare the volume fraction contours of the smaller-sized settler presented in
Table 4, and the volume fraction contours of the full-size settler presented in Table 6, we can observe a
significant difference. This is because in the full-size settler instead of a single funnel-shaped flow,
different locally channeled flows are formed, which is exhibited in the profile. The same phenomenon
is depicted in the velocity vector profiles in Tables 5 and 7.

The velocity vector profiles of 500 μm droplets are presented at a plane of the settler center
(x = 0.5 m). This vector profile exhibits the development of 500 μm droplets and settling behavior. As
the matte and slag mixture enters the settler, the matte droplets start settling, and after separation the
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slag circulates upwards. This creates a turbulent flow and vortices underneath the inlet illustrated
by the vector profiles, which also confirm the formation of the local channeling flows aligned to
their centers.

Compared to the 900 μm droplets, 1300 μm droplets are present in the settler in fairly low numbers,
which is revealed by the number fraction of the different-sized matte droplets plot in Figure 4 and
the volume fraction distribution in Figure 5. Figure 5 shows the volume fraction distribution of
different-sized droplets present in the settler at different time intervals. Figure 4 also illustrates that a
higher number of small droplets are present in the system, which suggests that their coalescence rate is
low, and thus, the coalescence rate is low in general. The dominant droplet size is smaller than 300 μm.

Figure 4. Number fraction distribution of different-sized droplets inside the settler.

Figure 5. Volume fraction distribution curves.

The volume fraction distribution curves presented in Figure 5 show that most of the droplets are
between 200 μm to 400 μm. The peak of these curves is usually achieved at around 300 μm. This is
also an indication that the transition to large droplets above 400 μm is significantly low.

3.2. Coupled CFD–DEM Simulation

The CFD–DEM simulation revealed a strong funneling effect in the settling droplet cloud. The
effect was caused by the drag of the settling matte, pulling droplets towards the centerline of the cloud,
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and subsequently increasing the bulk density as the droplets became more closely packed. This caused
an increased settling velocity which, in turn, increased the drag, and thus, created a self-sustaining
funneling effect. However, the CFD–DEM simulation did not show the development of two light matte
streams that can be seen at 15 s in Table 4. The development of the effect is shown in Figure 6.

 

Figure 6. Formation of the funneling effect in the slag at 5 s, 10 s, 20 s, and 40 s.

The funneling effect increased the settling efficiency of the matte by increasing the settling velocity,
as presented in Figure 7. Also shown is a comparison to a calculated velocity. Stokes’s law was used to
calculate the settling velocity for an average droplet size for every 0.5 s, while the function calculator in
Ansys CFD-Post was used to calculate the average downward slag flow velocity. These were summed
to obtain the calculated velocity, which was found to match well with the results from the simulation.
The average velocity decreased as the cloud reached the slag–matte interface. The decrease was caused
by the slag scattering droplets on the outer sides of the bottom cloud. The scattering was caused by
downward flowing slag being deflected by the matte. As the droplets were scattered, some of the
smaller droplets were pushed sideways and slightly upwards, prolonging the residence time of the
droplets. Some of these droplets were removed through the tapping hole. Also, some of the droplets
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could have been trapped by the slag flows, preventing them from settling onto the matte layer and
leading to copper losses.

Figure 7. Average velocity of droplets and calculated velocity.

In addition to the funneling effect, droplet size has a significant effect on settling. The droplet size
increases as two droplets collide and coalesce. The droplet size can be seen to increase rapidly near the
surface of the slag as drag decelerates the falling droplets. The average diameter of the droplets in the
whole slag layer at 60 s was 627 μm. As the droplets started to settle and coalesce, the size increased
rapidly, averaging around 1280 μm below a depth of 50 mm, as presented in Figure 8. However,
the size distribution and the figure show that a significant number of the droplets coalesced very near
the slag surface.

 

Figure 8. Droplet sizes in the slag layer at 60 s. The 50 mm settling distance is marked with a line.

The total feed rate was around 25,000 droplets per second. The cloud penetrated the slag layer in
around 23 s, during which time over 500,000 droplets were injected in the slag. However, the droplet
numbers in the simulation are significantly lower due to the high coalescence rate; 72% of all droplets
in the simulation had coalesced. As can be seen in Figure 9, the droplet number peaks at around
135,000 droplets at the 12 second mark, but then begins to decrease. The decrease can be accounted
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for by the start of the funnel formation, which pulls the droplets closer together and thus enhances
coalescence. However, the number of coalesced droplets does not show a similar peak during the
funnel formation period, which can be explained by the increasing droplet diameter as the coalesced
droplets further coalesce with each other. The average diameter stabilized soon after the funnel effect
had fully formed. Also, the number of droplets in the simulation stabilized at around 124,000 after 30 s.

Figure 9. Droplet count and diameter development during the simulation.

4. Discussion

In the literature, [5,7] research regarding matte droplets settling through the slag phase was
conducted at steady state using the Eulerian–Eulerian approach. In addition, the Eulerian–Lagrangian
approach has been used to study the paths of individual droplets during settling and the effect of the
slag tapping position and velocity on settling [6]. The conclusion drawn in these studies was that
mostly droplets of 100 μm and below remained suspended in the slag phase, and that a higher tapping
velocity and tap position close to the inlet disturbed the settling and entrapped the matte droplets.
Similar conclusions were later drawn when using the Eulerian–Eulerian approach and transition state
conditions while studying 100 μm, 300 μm, and 500 μm sized droplets individually [10]. The current
investigation continued by adding the coalescence of droplets. Furthermore, instead of mono-sized
droplets at the inlet, a mixture of different-sized droplets as reported in literature [33] were used for
the inlet conditions, and the results from the full-scale settler were consistent with those reported
earlier [6,7,10].

As expected, large droplets settled quickly and droplets of 500 μm and above mostly settled within
90 s. However, small droplets below 500 μm were still settling after 90 s, especially the 100 μm and 50
μm droplets, which were mostly dispersed inside the slag. Additionally, the formation of a vortex
under the inlet and chaotic flows due to opposing currents of matte droplets trying to settle [7], and the
lighter slag phase moving upwards were likewise observed in this work. Nonetheless, the coalescence
rate of large droplets was relatively low, as indicated by the low volume fraction of 900 μm and 1300
μm sized droplets. In the future work, more droplets with a wider size distribution will be used as the
inlet condition to get closer to the real situation.

The results in the down-scaled model and industrial scale geometry suggested a funneling settling
of the matte phase. However, in the industrial scale simulation, there were several funnels whereas in
the small model, only one central funnel formed. Intuitively, it is quite obvious that the large inlet area
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of the industrial settler would not produce only one single channel for the whole matte phase, but
rather, several localized “nucleation” sites from where the funneled settling would start.

The settling of individual matte droplets was simulated using CFD–DEM coupling. The funneling
effect was also formed in the slag layer as the drag pulled the droplets towards the centerline of the
settling cluster. The funneling effect increased the settling velocity of the droplets, and thus, increased
the settling efficiency.

A user-defined model for coalescence was also included in the CFD–DEM simulation. The
behavior of the droplets, and consequently, coalescence is practically impossible to observe in a real FS
process due to the extreme environment in the furnace. However, the effects of the coalescence in the
simulations seemed reasonable: the settling velocity of the droplets increased due to the increasing
size of the droplets. Also, coalesced droplets created a relatively large size distribution in the slag
layer. Compared to the Eulerian–Eulerian method, the coalescence rate was higher in the CFD–DEM
simulation. This difference could have been caused by different methods for solving the droplet–droplet
contact or coalescence criteria. Nonetheless, some of the smaller droplets did not coalesce and never
settled, and consequently, they were entrained in the slag and would have caused copper losses.

Due to computational instabilities, the maximum droplet size had to be limited to 2 mm. This
could have had some effect on settling, as some droplets could have grown more, leading to a smaller
number of droplets with a larger average size. They would cause stronger drag, and thus strengthen
the funneling effect. However, the number of such large droplets would most likely be relatively low,
limiting their effect. Also, very large droplets could break into smaller ones due to inertial forces.
Furthermore, a significant majority of the droplets would most likely be much smaller.

The funneling effect and coalescence together formed a kind of feedback loop. Coalescence
increased the droplet size which increased drag, and subsequently strengthened the funneling effect.
The effect caused the droplets to move closer to each other, which consequently increased the
coalescence rate. Both phenomena increased the settling velocity. The results were in good agreement
with the values calculated by combining the average slag flow velocity and Stokes’s law velocity of an
average-sized droplet.

The slag flow deflecting from the matte surface created a kind of dispersion layer above the
slag–matte interface, as some of the smaller droplets were pushed sideways with the slag. This kind
of layer has also been reported in the literature [20]. Some droplets from the dispersion layer were
sucked by the tapping hole, leading to copper losses. Such a situation can be seen in Figure 6; however,
the effect in the simulation is likely over-emphasized by the small geometry as the tapping hole is
much closer to the matte–slag interface than it would be in a real settler.

The use of well-established CFD modeling with the commercial and widely used tool ANSYS
Fluent, together with a coupled CFD–DEM modeling with EDEM software was the first computational
attempt to understand the settling of matte droplets in the FS settler. The results of the scaled-down
geometry obtained with both computational approaches suggest that droplet coalescence plays a
crucial role in the resulting flow pattern. The matte droplets entering the slag surface layer coalesce
rapidly causing accelerated settling which, in turn, drags the droplets towards a central path or channel
down to the underlaying matte layer. In the full-scale geometry, in contrast, the flow of matte droplets,
although quickly coalescing, seems to follow a more complicated settling pattern. This is believed to
be due to the more complicated flow of the continuous slag phase induced by the input material flow.

A comparison of the two computational approaches for the matte settling phenomena can be seen
in Figure 10, where the small-scale model results from the CFD and CFD–DEM models are shown.
Based on the computational results of the small-scale model of the matte droplets settling through the
slag layer, it seems to be fair to conclude that the two approaches used, CFD and coupled CFD–DEM,
both predict the settling pattern to be channeled or funneled to a central “trail” of coalescing droplets.
However, these results have to be validated by a physical model before this can be confirmed.

The relation of the funneling effect and size of the settling cloud requires further study. In a real
FS furnace, the area corresponding to the inlet in the model is significantly larger. The diameter of
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the reaction shaft can be, for example, 4.5 m compared to the 15 cm of the scaled-down model in this
study. Additionally, the inlet area would not be as well defined as in the computational study. Instead,
there would be a gradient in the feed density. Further research is needed to evaluate the effect of
these factors on the formation and strength of the funneling effect. Moreover, the small geometry of
the model may affect the ease of forming the funneling effect as walls close to the cloud may create
stronger turbulence in the slag. Thus, larger model geometry should also be studied and the funneling
effect experimentally validated with a physical water–oil model. The results of the validation will be
presented in a future article.

 
Figure 10. A comparison of the CFD and CFD–DEM results for matte settling in the small-scale settler
model, revealing a similar funneling flow pattern at 15, 17, 18, and 20 s. Upper row: CFD, lower
row: CFD–DEM.

Further development is needed to improve the accuracy of the coalescence model. An improved
coalescence model could decrease memory issues (especially with the CFD–DEM computation), if the
droplet size limit were increased. In addition, simulating the formation and effect of spinel particles
should be considered. DEM is capable of simulating spinel particles too, but their attachment to
droplets and formation require an additional model. The spinel model would also be supplemented
by a reaction kinetics model. However, development of these two models would require further
development in the software used as well. Additionally, a more powerful computer is required until
full-scale settler simulations with CFD–DEM can be considered as even small-scale simulations take a
long time. For example, the small cube simulation took over a month of computing and the larger
model [9] took over two months with Intel Xeon E3-1230 v5 @ 3.4 GHz.

5. Conclusions

A comparison of two computational approaches, CFD and CFD–DEM, was carried out for the
matte settling phenomena in settler geometries. The results of the small-scale model of matte droplets
settling through a slag layer suggest that the settling flow pattern is channeled or funneled as a central
trail of coalescing droplets. For a sounder conclusion, these results still have to be validated by a
physical model. Nevertheless, as a conclusion, the applicability of the coupled CFD–DEM software
equal to CFD software for the liquid–liquid system used in this study can be confirmed.

One conclusion regarding the settling pattern of matte droplets in the industrial scale settler
geometry, is that it is plausible that the droplets coalesce and form centralized funnels instead of settling
uniformly across the whole inlet area. This phenomenon is beneficial for the efficient separation of the
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slag and matte phases, and thus, for the recovery of the metal. Consistently with industrial reality,
the smallest droplets were very slow to settle, and consequently they require a very long time or a very
thin slag layer to reach the matte layer before the slag leaves the settler through the tapping hole. One
option could be to operate with continuous tapping and a thin slag layer.

The studied case clearly indicated that the current computing power is still the limiting step
in computer modeling of a full-scale industrial settler with realistic droplet coalescence calculation.
Although there are some similarities in the settling pattern in the small- and full-scale models, they are
too different for conclusions to be made based on the small-scale model. This poses a challenge for the
validation of the full-scale model results as there are no possibilities for direct observations of the flow
phenomena in the molten slag layer inside the settler. So far, the only option is to compare copper
losses from the CFD model with industrial data [10].
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Abstract: Arsenic removal is a crucial issue in all copper smelters. Based on the Fangyuan 1#

smelter, the effects of major elements (Cu, Fe and S) in sulfide concentrates on arsenic removal in
the SKS copper smelting process were studied in this paper. The results show that Cu, Fe and S in
concentrates have a significant influence on the oxygen/sulfur potential of smelting systems, and also
affect the efficiency of arsenic removal. By regulating the proportion of the major elements in sulfide
concentrates, the concentrate composition was changed from its original proportions (Cu 24.4%,
Fe 26.8%, S 28.7%, and other 20%) to optimized proportions (Cu 19%, Fe 32%, S 29%, and other
20%). The distribution of arsenic among three phases in the original production process (gas 82.01%,
slag 12.08%, matte 5.91%) was improved to obtain an optimal result (gas 94.37%, slag 3.45%, matte
2.18%). More arsenic was removed into the gas phase, and the mass fraction of arsenic in matte was
reduced from 0.07% to 0.02%. The findings were applied to actual production processes in several
other copper smelters, such as the Hengbang copper smelter, Yuguang smelter and Fangyuan 2#

smelter. Therefore, the optimized result obtained in this work could provide direct guidance for
actual production.

Keywords: arsenic removal; copper smelting; SKS; Shuikoushan process; oxygen bottom blown

1. Introduction

Arsenic is an element that is toxic for the environment and people’s health [1–4], especially As2O3.
In the smelting process for copper sulfide ores, arsenic is dispersed into the fly ash, smelting slag and
copper matte [5–7]. Due to the increasing complexity of copper concentrate, arsenic control has been
listed as an important issue in copper smelters [8]. The SKS (Shuikoushan) copper smelting process is
very adaptable to complex concentrates and it has high arsenic removal efficiency [9–13]. In recent years,
the SKS copper smelting process has become a popular research topic [14–20]. Arsenic removal in the
SKS smelting process is affected by several factors, such as the composition of concentrate, matte grade,
oxygen concentration in air blown into the furnace, oxygen/ore ratio, smelting temperature, the Fe/SiO2

ratio in slag, and so on. In our previous study, the effects of matte grade, oxygen/ore ratio, oxygen
concentration in air blown into the furnace, smelting temperature and ratio of Fe/SiO2 in slag were
investigated [21].

However, the composition of concentrate, especially the major elements (Cu, Fe and S), could affect
the oxygen/sulfur potential of the smelting system, and further affect the removal of arsenic. Therefore,
in this work, the content of the major elements (Cu, Fe and S) in sulfide concentrate was adjusted,
and the removal of arsenic from the matte to gas phase in the SKS copper smelting process was
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investigated through the commercial simulation software SKSSIM [22]. This work will help us to better
understand the SKS copper smelting process.

2. Research Methodology

The study was carried out by SKSSIM simulation software, combined with actual production in
the Fangyuan 1# smelter in Dongying, China.

SKSSIM is an efficient simulation software for the SKS process, and it is based on the SKS smelting
mechanism model [22] and the theory of Gibbs free energy minimization [23]. In the mechanism
model, the SKS furnace is divided into seven functional layers from top to bottom and three functional
regions along the length direction [21–24]. The particle swarm optimization algorithm, C# computer
programming language, and Microsoft Visual Studio were used to develop the SKSSIM software.
The development process (including activity coefficient, Gibbs free energy including activity coefficient,
Gibbs free energy, phase entrainment coefficient, model verification and modification) has been
presented in detail in our previous work [23]. SKSSIM has been successfully validated by the actual
production process in Fangyuan 1# smelter [21,23,24]. Therefore, SKSSIM is a convenient method to
carry out this study.

3. Results and Discussion

3.1. Arsenic Distribution in the Actual Production Process and by SKSSIM

The initial conditions and operation parameters of the SKS process are given in our previous
work [21]. The calculated results are compared with the actual industrial production data in Tables 1
and 2.

Table 1. Chemical composition of matte and slag.

Composition (wt %) As Cu Fe S SiO2 Others

Actual production
matte 0.07 70.77 5.52 20.22 0.51 2.91
slag 0.08 3.16 42.58 0.86 25.24 28.08

By SKSSIM matte 0.07 70.31 4.80 20.38 0.82 3.62
slag 0.07 2.93 42.07 0.73 25.18 29.02

Table 2. Arsenic fractional distribution among gas, matte and slag phases.

Distribution (wt %) Gas Slag Matte

Actual production 82.01 12.08 5.91
By SKSSIM 82.71 11.06 6.23

3.2. Effect of Cu Content in Concentrate on Arsenic Distribution

Figure 1 shows the effect of Cu content in concentrate on the distribution of arsenic among the
gas, slag and matte phases. With an increase in Cu content, there is an increase in the proportion of
arsenic in both the matte and slag phases, and the fractional distribution in the gas phase decreases.
At a low Cu content (such as 18%), around 95 pct of the arsenic reports to the gas phase. As the Cu
content increases to 27%, about 20% of the arsenic reports to the matte phase, and only 55% reports
to the gas phase. Under the fixed total volume of oxygen blown into the SKS furnace and ratio of
oxygen/ore (total volume of oxygen/total mass of dry mixed concentrates), the matte grade increases as
the Cu content increases. The activity coefficient of As in matte decreases with an increase in matte
grade, and higher-grade matte has a higher affinity for arsenic; hence it reduces the activity and vapor
pressure of arsenic [7,25].
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Figure 1. Comparison between the actual production and simulation results of the effect of Cu content
in concentrate on the distribution of arsenic among the gas, slag and matte phases.

Therefore, a higher initial Cu content in the concentrate results in more arsenic in the matte phase,
and the removal of arsenic from the smelting system to the gas phase is not very efficient.

After arsenic enters the gas phase, it then goes through the waste heat boiler, electrostatic
precipitator and flue gas scrubber with the SO2 off-gas. Most arsenic compounds in off-gas condense
into the solid phase and are collected in dust by the waste heat boiler and electrostatic precipitator.
In the flue gas scrubber, some of the arsenic enters the waste acid. Arsenic can be detoxified or
recovered from the aforementioned dust and waste acid.

3.3. Effect of Fe Content in Concentrate on Arsenic Distribution

In Figure 2, the effect of the initial Fe content in the concentrate on the calculated distribution of
arsenic among the gas, slag and matte phases in the SKS process are presented. With the increase in
Fe content, the proportion of arsenic reporting to both the matte and slag phases decreases, and the
fractional distribution in the gas phase increases. However, the change trend is not as obvious as that
caused by the initial Cu content in the concentrate. When the Fe content in the concentrate is varied
from 17% to 37%, the distribution of arsenic among the gas, slag and matte phases varies from 75% to
85%, from 15% to 10%, and from 10% to 5%, respectively. Therefore, the change in Fe content in the
initial concentrate has a relatively tiny influence on the distribution of arsenic.

Figure 2. Comparison between the actual production and simulation results of the effect of Fe content
in concentrate on the distribution of arsenic among the gas, slag and matte.
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3.4. Effect of S Content in Concentrate on Arsenic Distribution

In Figure 3, as the S content in the initial concentrate increases, the proportion of arsenic reporting
to the matte and slag phases decreases sharply, and the arsenic reporting to the gas phase increases.
Therefore, the change in S content has a relatively significant influence on the distribution of arsenic.
As the S content in the feed increases, the oxygen potential in the smelting system decreases and
the sulfur potential increases, causing higher partial pressure of S2 and hence, a higher degree of
volatilization of arsenic as AsS [7,24]. Therefore, high S content in the initial concentrate is beneficial
for removing arsenic to the gas phase from the matte phase.

Figure 3. Comparison between the actual production and simulation results of the effect of S content in
concentrate on the distribution of arsenic among the gas, slag and matte.

3.5. Effect of Arsenic Content in Concentrate on Arsenic Distribution

Figure 4 shows the effect of the initial content of arsenic in copper concentrate on the deportment
of arsenic to the phases. In China, the maximum allowed content of arsenic in copper concentrates
imported from abroad is 0.5%. In general, the arsenic content in feed is 0.2%–0.7% in the copper
smelting process. As shown in Figure 4, in the range studied, the proportion of arsenic reporting
to both the gas and slag phases increases slightly with an increase in the arsenic content in copper
concentrate. The volatilization of arsenic increases as a result of the arsenic being transferred to the gas
phase as AsS, AsO, and As2.

Figure 4. Comparison between the actual production and simulation results of the effect of arsenic
content in copper concentrate on the distribution of arsenic among the gas, slag and matte.
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3.6. Interactive Effect of Cu and S Content in Concentrate on Arsenic Distribution

As shown in Figures 1–3, it is obvious that the Cu and S elements in concentrates have a more
significant influence than Fe on the distribution of arsenic among the gas, slag and matte phases.
Therefore, it is necessary to discuss the interactive effect of Cu and S content on arsenic distribution.

3.6.1. Interactive Effect on Arsenic Distribution

In this work, the symbol % represents the proportion of arsenic distribution among the gas, slag,
and matte phases, and the symbol wt % represents the mass fraction of arsenic in different phases.

The fractional distribution of arsenic in the gas phase with the change in the initial content of
Cu and S in concentrate is given in Figure 5a. The mass fraction of arsenic in gas is also shown in
Figure 5b. The variation trends in the two figures are basically consistent. As both the Cu and S
content in concentrate increases, both the fractional distribution and mass fraction of arsenic in the
gas phase decrease. With Cu 18% and S 28%, around 95% of the arsenic enters the gas phase, and the
mass fraction of arsenic in the gas phase is nearly 0.6%. However, as the Cu and S content in the
concentrate increase to 24% and 34%, respectively, only 74% of the arsenic reports to the gas phase,
and the mass fraction of arsenic in the gas phase is around 0.41%. Therefore, low initial content of Cu
and S in concentrate helps to eliminate arsenic from the smelting system to the gas phase. However,
these results contradict the result of Figure 3, that is, as the S content in the initial concentrate increases,
the proportion of arsenic reporting to the gas phase increases. This phenomenon may be explained
because Cu in concentrate has a stronger impact on arsenic distribution than S. Cu, S and Fe exist
in concentrate in the form of CuFeS2, CuS, Cu2S, FeS2, etc., the content of the elements have close
relevance, and the interactive relationship to arsenic distribution is complex.

 
(a) (b) 

Figure 5. Arsenic distribution in the gas phase: (a) fractional distribution; (b) mass fraction.

The fractional distribution and mass fraction of arsenic in the slag phase with the change in
the initial content of Cu and S in the concentrate are presented in Figure 6a,b. The variation trend
in Figure 6 is contrary to Figure 5. As the Cu and S content in concentrate increases, the fractional
distribution and mass fraction of arsenic in the slag phase also increase. With Cu of 18% and S of 28%,
only around 2.1% arsenic enters the slag phase, and the mass fraction of arsenic in the slag phase is
about 0.012%. However, as the Cu and S content in concentrate increases to 24% and 34%, respectively,
about 24% arsenic reports to the slag phase, and the mass fraction of arsenic in the slag phase is nearly
0.18%. Therefore, a high initial content of Cu and S in concentrate helps to eliminate arsenic from the
smelting system to the slag phase.
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(a) (b) 

Figure 6. Arsenic distribution in the slag phase: (a) fractional distribution; (b) mass fraction.

In the matte phase, the fractional distribution and mass fraction of arsenic in relation to the change
in the initial content of Cu and S in concentrate are presented in Figure 7a,b. The variation trend in
the matte phase is different from the gas and slag phases. As the S content in concentrate increases
and Cu decreases, both the fractional distribution and mass fraction of arsenic decrease in the matte
phase. With Cu 24% and S 28% in concentrate, about 6.3% arsenic reports to the matte phase, and mass
fraction of arsenic in the matte phase is nearly 0.073%. However, with Cu 18% and S 34% in concentrate,
about 1.1% of the arsenic enters the matte phase, and the mass fraction of arsenic in the matte phase is
nearly 0.012%.

 
(a) (b) 

Figure 7. Arsenic distribution in the matte phase: (a) fractional distribution; (b) mass fraction.

In the copper smelting process, it is necessary to eliminate arsenic from the matte to gas or
slag phase as much as possible. However, arsenic removal is just one parameter; if the concentrate
composition is changed, many other important parameters need to be considered, such as smelting
temperature, matte grade, copper loss to slag, slag type (Fe/SiO2), Fe3O4 content in slag, and so on.

3.6.2. Interactive Effects on Other Parameters of the SKS Process

In order to ensure normal production and avoid big changes in other major process parameters
(smelting temperature, copper loss to slag, matte grade, etc.), the impact of major elements (Cu, Fe and
S) in sulfide concentrate on other parameters (matte grade, slag type Fe/SiO2, smelting temperature,
copper loss to slag, Fe3O4 content in slag, S content in slag) was evaluated.
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Matte grade, smelting temperature and slag type are the main factors considered in the copper
smelting process. Matte grade with the change in the initial content of Cu and S in concentrate is
given in Figure 8a. As the S content in concentrate decreases and Cu increases, matte grade increases.
With Cu 24% and S 28% in concentrate, the matte grade increases to about 70%. With Cu 18% and S
34% in concentrate, the matte grade drops to around 50%. Therefore, as the total oxygen blown into
the SKS furnace is fixed, to produce high grade matte, the initial content of Cu in concentrate should
be increased, and the initial content of S in concentrate should be reduced. However, in the Hengbang
copper smelter (Yantai, China), low grade matte (around 50% [13]) was chosen, and more arsenic was
removed to the gas phase.

 
(a) (b) 

 
(c) (d) 

  

(e) (f) 

Figure 8. Interactive effects on other parameters of the SKS process: (a) matte grade; (b) slag type
Fe/SiO2; (c) smelting temperature; (d) copper loss to slag; (e) Fe3O4 content in slag; (f) S content in slag.
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Slag type could affect the copper loss to slag and the capacity to remove impurities. Slag type
Fe/SiO2 with the change in the initial content of Cu and S in concentrate is given in Figure 8b. As the
Cu and S content in concentrate both increase, slag type Fe/SiO2 decreases. With Cu 18% and S 28%,
Fe/SiO2 is about 1.9. However, as Cu and S content in concentrate increase to 24% and 34%, respectively,
Fe/SiO2 is nearly 1.2. In the SKS process, Fe/SiO2 should be around 1.7.

Smelting temperature with the change in the initial content of Cu and S in concentrate is given in
Figure 8c. As both the Cu and S content in concentrate increase, the smelting temperature decreases.
With Cu 18% and S 28%, Fe/SiO2 is about 1200 ◦C. However, as Cu and S content in concentrate
increases to 24% and 34%, respectively, Fe/SiO2 is nearly 1050 ◦C. In the actual industrial production of
the SKS copper smelting process, the smelting temperature should be above 1170 ◦C.

Copper loss to slag is an important factor in production. The mass fraction of copper in slag
with the change in the initial content of Cu and S in concentrate is given in Figure 8d. As S content in
concentrate decreases and Cu increases, the copper loss to slag increases. With Cu 24% and S 28% in
concentrate, the mass fraction of copper in slag increases to about 2.9%. However, with Cu 18% and S
34% in concentrate, the mass fraction of copper in slag drops to around 1.5%. In industrial production,
the mass fraction of copper in slag should be controlled below 2.5% for the high direct recovery rate
of copper.

In slag, Fe3O4 can increase the viscosity of slag and further increase the copper loss to slag,
thus Fe3O4 content in slag is a very important indicator. In Figure 8e, Fe3O4 content in slag with the
change in the initial content of Cu and S in concentrate is given. As both the Cu and S content in
concentrate increase, the Fe3O4 content in slag decreases. With Cu 18% and S 28%, the Fe3O4 content
in slag is about 27%. However, when the Cu and S contents in concentrate increase to 24% and 34%,
respectively, the Fe3O4 content in slag is nearly 24.5%.

The mass fraction of sulfur in slag with the change in the initial content of Cu and S in concentrate
is given in Figure 8f. As S content in concentrate decreases and Cu increases, the S content in slag
increases. With Cu 24% and S 28% in concentrate, the S content in slag increases to about 0.74%.
However, with Cu 18% and S 34% in concentrate, the S content in slag drops to around 0.63%. The S
element exists in slag mainly in the form of Cu2S and FeS by the mechanical entrainment of matte.

In short, under normal production or little change of other major process parameters (smelting
temperature, copper loss to slag, matte grade, copper loss to slag, slag type Fe/SiO2, Fe3O4 content in
slag, etc.), the proportions of ore should be optimized to remove more arsenic from the matte to the gas
or slag phase in the actual industrial production.

3.7. Industrial Application and Verification

The commercial SKS smelting furnace in the Fangyuan 1# smelter (Dongying, China) is shown in
Figure 9. In the Fangyuan 1# smelter, gold concentrates bearing arsenic are treated with copper sulfide
concentrates by using the SKS smelting process. As more and more gold concentrates bearing arsenic
are added to copper sulfide concentrates, the Cu content in the final mixed concentrate decreases
gradually. Therefore, the composition of the final mixed concentrate should be optimized.

The impurity element As could be greatly eliminated from the matte to gas phase by adjusting the
concentrate composition. In this work, the oxygen rate was 12,072 Nm3·h−1, the oxygen concentration in
oxygen-enriched air was 73%, the feed rate of dry concentrate was 66 t·h−1, and the ratio of oxygen/ore
was 183 Nm3·t−1. The matte grade, smelting temperature, slag type Fe/SiO2 were around 70%, 1200 ◦C
and 1.7, respectively.

Through optimization, as shown in Figure 10, the concentrate composition was changed from
its original proportions (Cu 24.4%, Fe 26.8%, S 28.7%, and other 20%) to optimized proportions (Cu
19%, Fe 32%, S 29%, and other 20%), and the distribution of arsenic among three phases was changed
from the original (gas 82.01%, slag 12.08%, matte 5.91%) to optimized results (gas 94.37%, slag 3.45%,
matte 2.18%). The mass fraction of arsenic in matte was reduced from 0.07% to 0.02%.
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Figure 9. Commercial SKS smelting furnace in the Fangyuan 1# phase smelter.

Figure 10. Optimization of ore proportions for arsenic removal in the Fangyuan 1# smelter.

The research results and change rules were also confirmed by actual production at several
other copper smelters, such as the Hengbang smelter, Yuguang smelter and Fangyuan 2# smelter.
By decreasing the Cu content in concentrate, the arsenic removal ratio to gas increases, and residual
ratios in slag and matte decrease. The change tendency is shown clearly in Table 3 and Figure 11.

Table 3. Main composition of concentrate and distribution ratios of arsenic.

Name of Smelter
Composition of Concentrates (wt %) Distribution Ratios of Arsenic (%)

Cu Other Gas Slag Matte

Yantai Hengbang [13] 16.10 83.90 88.35 7.51 4.14
Fangyuan 2# 20.46 79.54 72.50 20.37 7.13

Jiyuan Yuguang 22.67 77.33 55.89 36.08 8.03
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Figure 11. Arsenic distribution in different copper smelters.

Therefore, the optimized result identified in this work provides direct guidance to actual
production, and can reduce the load of removing impurities in the conversion, refining and electrolytic
processes in SKS copper smelters.

4. Conclusions

The main elements (Cu, Fe and S) in sulfide concentrates have a significant influence on the
arsenic distribution among gas, slag and matte phases. When the Cu content in concentrate increases,
the fractional distribution of arsenic in smelting products increases, except in the gas phase. As the Fe
content increases, the proportion of arsenic reporting to the gas phase increases, however, there are
opposite changes in the matte and slag phases. When the S content in the initial concentrate increases,
the fractional distribution of arsenic in both the matte and slag phases decreases sharply, and reporting
to the gas phase increases. Through optimization of the ore proportions, the concentrate composition
was changed from its initial proportions (Cu 24.4%, Fe 26.8%, S 28.7%, and other 20%) to optimized
proportions (Cu 19%, Fe 32%, S 29%, and other 20%), and the distribution of arsenic among three phases
was improved from the initial (gas 82.01%, slag 12.08%, matte 5.91%) to an optimized distribution (gas
94.37%, slag 3.45%, matte 2.18%). The mass fraction of arsenic in matte was reduced from 0.07% to
0.02%. The optimized result could provide direct guidance for actual production.
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Abstract: Sensors and process control systems are essential for process automation and optimization.
Many sectors have adapted to the Industry 4.0 paradigm, but copper smelters remain hesitant to
implement these technologies without appropriate justification, as many critical functions remain
subject to ground operator experience. Recent experiments and industrial trials using radiometric
optoelectronic data acquisition, coupled with advanced quantitative methods and expert systems,
have successfully distinguished between mineral species in reactive vessels with high classification rates.
These experiments demonstrate the increasing potential for the online monitoring of the state of a charge
in pyrometallurgical furnaces, allowing data-driven adjustments to critical operational parameters.
However, the justification to implement an innovative control system requires a quantitative framework
that is conducive to multiphase engineering projects. This paper presents a unified quantitative
framework for copper and nickel-copper smelters, which integrates thermochemical modeling into
discrete event simulation and is, indeed, able to simulate smelters, with and without a proposed set of
sensors, thus quantifying the benefit of these sensors. Sample computations are presented, which are
based on the authors’ experiences in smelter reengineering projects.

Keywords: Industry 4.0; copper smelter; nickel-copper smelter; radiometric sensors;
Peirce-smith converting; matte-slag chemistry; discrete event simulation; adaptive finite differences

1. Introduction

Modern metallurgical installations such as steel plants and copper smelters require a range of
plant sensors and process control systems to attain their highest efficiency. It is often stated that the
levels of so-called “smart automation” today represents the fourth-generation industrial revolution
(sometimes also called “Industry 4.0”)—following the first, considered as the power generation and
mechanical automation (early 1800s), the second as widespread industrialization (early 1900s), the third
as electronic automation (starting 1950s), and, now, the fourth [1], benefitting from modern information
and communication technology (ICT), as illustrated in Figure 1. Learning from history, it is well-known
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that if a plant does not remain up to date, taking advantage of modern but proven equipment and
controls, then it lags its competitors. This paper discusses the application of techniques, sensors,
and mathematical modeling that can support copper smelters in their endeavors to modernize their
operations through data acquisition and, thus, remain competitive.

Figure 1. Representation of “Industry 4.0”—the 4th industrial revolution. Adapted from [1].
ICT: information and communication technology.

By way of background, copper smelters [2] are quite complex, with a number of individual
high-performance operating units functioning together. Two of the key primary instrumentation and
control needs in copper smelting today—and throughout history—are air (or oxygen) measurement
and control and furnace temperature. In February 1956, a paper was presented at the AIME Annual
Meeting in New York on the fine and well-recognized converter operation at the Noranda smelter
(now Glencore Horne) located in Rouyn-Noranda, Quebec, Canada [3].

After describing how the production capacity at the fairly new plant increased over the previous
two decades since the start-up (in 1927) by simply installing additional and/or larger units, the author
discussed a major effort at further increasing production capacity that included the installation of
reliable instruments for measuring both the instantaneous air flow and reporting the accumulated
air blown over any given time interval. The significance and benefits of this new instrumentation
(higher production rates) were subsequently described; of interest, the converters at this plant reached
record or near-record air blowing rates in the industry at this time, reflecting the fact that it was one
of the leading plants of the day. Of course, such equipment is mandatory today, coupled with the
distributed control system (DCS) and advanced computer models to provide feedback for optimizing
the operation.

Furnace temperature measurements at the time were made by an optical pyrometer mounted so
that it pointed downward onto the molten bath. While generally reliable, it was often prone to dust and
fume build-up affecting a clear sight line; unsmelted flux and other materials on the bath could also
lead to low temperature readings. Some thirty years after the above noted paper [3], a new pyrometer
instrument operated by sighting directly into the bath through one of the tuyères was described at the
Copper 87 conference held in Viña del Mar, Chile [4]. During the discussion, the authors were asked
about the cost of the new instrument. An indicative preproduction price range was given when the
questioner loudly stated that he could buy “a Mercedes-Benz automobile” for the price mentioned,
whereupon the authors responded that if the questioner installed one of these instruments at his plant,
the profits he would make would allow him to purchase quite a few Mercedes! The point is that proper
selection and use of reliable instruments for automated data acquisition and control are vital for a
proper functioning plant to remain competitive, as the cost of sensors are comparatively modest.

In batch processes, such as steelmaking or copper converting, knowledge of the precise endpoint
of the operation is extremely important for compositional control and optimization of the subsequent
refining operations.
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The Boliden’s Rönnskär smelter, located at Skelleftehamn, Sweden, operates one of the best
converter aisles in the world today, in the authors’ opinion. They also pioneered the use of the
ingenious Semtech Optical Process Control (OPC) sensor device for precise endpoint determination [5]
to detect when the last of the iron was expelled into slag and, subsequently, when the last of the
sulfur was expelled into the SO2 offgas. This instrument spectrometrically measures trace amounts
of lead and copper sulfides and oxides in the offgas and signals when the level of sulfides starts
to decrease, signaling the end of the batch [6]. The precise endpoint control saves significantly in
processing time at Rönnskär in the subsequent anode furnace, thus lowering operating costs and
allowing higher throughput.

In spite of the successful implementations of modern sensors at certain smelters such as Rönnskär,
there is a general hesitance for copper smelters to adopt sensor arrays, as it is often unclear what the
operational implications will be. Indeed, it is unclear what will be the series of changes that will be
necessary so that the perceived benefits of the sensors will be manifest, and it is therefore difficult to
quantify what will be the true impact of these new sensors. This paper presents a unified quantitative
framework for copper and nickel-copper smelters, which integrate thermochemical modeling into
discrete event simulations and is intended to assist in smelter reengineering projects that feature
innovative sensors in consideration the Industry 4.0 paradigm.

2. Radiometric Sensors for Extractive Pyrometallurgy of Copper

Within copper smelters, the reality is that even the 3.0 industrial revolution (information technology
(IT) and automation) still has room for continued development. This current condition limits the ability
to integrate Industry 4.0 developments for process optimization. Indeed, the degree of analytical
instrumentation usage for the monitoring and control of the smelter processes is limited. As a result,
the information available for operational decision-making at many plants is mainly based on static
mass and energy balances. In such cases, the operational dynamics continues to depend largely on the
experience of ground operators.

Only a handful of advanced measurement instruments have gained industry acceptance for
operational monitoring and control in copper pyrometallurgical reactors. The aforementioned Semtech
OPC system, which has been on the market for more than 25 years, monitors pyrometallurgical variables
by analyzing the emission spectrum of flames emitted by gases during the conversion of copper sulfide
mattes within Peirce-Smith (PS) converters. Additionally, the Noranda Pyrometer, configured solely
for bath furnaces using blowing tuyères, has been on the market since the 1980s without any change to
the original concept and with only some upgrades to the unit’s robustness (with regard to assembly,
material selection, etc.). By measuring radiation through an analog array, it monitors the temperature
of the molten bath by applying Planck’s law for two fixed wavelengths. Other instruments include
level measurement in a feed bin and furnace melts and equipment vibration monitoring.

One option for the advancement of process monitoring and control systems in copper smelters is
to modernize the use of radiometric measurements, since this approach was previously validated with
both the OPC system and the Noranda Pyrometer. A series of proposed concepts and results from
initial industrial trials are discussed here.

2.1. Reactive Systems

A recent work focused on radiometric optoelectronic sensors that consider a broad spectrum,
which includes the visible range up the near infrared range [7–9]. This approach is different from
available commercialized sensors, which only analyze a limited selection of wavelengths. The idea
here is to analyze both the continuous and discontinuous parts of the spectrum, as well as its
dynamics in different time scales. The purpose is to correlate the measured spectral radiation to the
operational conditions of the reactors following the emission of radiation from the oxidation reactions.
These sensors also measure temperature with better precision than the Noranda Pyrometer by using
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more sophisticated techniques to select the appropriate (two or more) wavelengths. The sensor thus
solves the complex problem of simultaneously measuring emissivity and temperature.

Results from an experiment using a drop tube setup for the flash oxidation of copper concentrates
(Figure 2) validate the formation of wustite (FeO), magnetite (Fe3O4), and copper oxides (CuO/Cu2O)
as indicators of the concentrate smelting/oxidation/combustion process [7–9]. This information is
of special interest to track the physicochemical dynamics of the process in real-time and establish
operating criteria for a smelting reactor. Examples of such criteria could include adjustments to
concentration/oxygen ratios, oxygen enrichment for the incoming blast, and the quantity of cold charge
that will be required to maintain the heat balance.

 
(a) 

 
(b) 

Figure 2. Radiometric measurement scheme and associated radiative processes: (a) single-heated
particle radiative emission with its surroundings, in which the intensity I of the emitted radiation is a
function of wavelength λ, particle temperature Tp and particle emissivity εp and (b) sensing scheme
depicting the different particle states as they fall through the reaction zone (adapted from [8]).

The spectral acquisition system consists of a multicore optical fiber with its own cooling process
(Figure 2b), which measures the combustion flame radiation. Figure 2b shows a simple combustion
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scheme for sulfide particles covering the physical phase changes that a particle can experience inside
the reaction zone. However, measuring the spectrum is a complex task. As shown in Figure 2a, there is
an ensemble of physical and chemical processes that complicate this measurement. One example is
drop tube radiation caused by increased electrical resistance due to the higher temperatures; processing
these spectral signals can, however, mitigate the effect of the unwanted radiation [8,9].

Applying specialized algorithms in the treatment of the spectral signals obtained from the
experiment, coupled with multivariate data analysis methodologies, allows for the identification and
classification of copper and iron sulfide minerals present in the blend [10]. These results are particularly
important as they demonstrate that spectral data obtained from the oxidation process can be used to
identify the type of charge being treated within a molten bath. The controlled bench-scale laboratory
study was carried out on several different types of concentrate. An exploratory analysis of the results
using principal component analysis (PCA) applied to the spectral data depicted high correlation features
among species with different mineral characteristics but similar elemental compositions. Classification
algorithms were tested on the spectral data, and a classification accuracy of 95.3% was achieved using
a support vector machine (SVM) classifier with a Gaussian kernel. Initial industrial-scale trials with a
prototype have confirmed these results [10].

2.2. Nonreactive Systems

Despite tremendous advances in the development of passive and active photonic sensors, such as
hyperspectral imaging (HI) and laser-induced breakdown spectroscopy (LIBS), real-time analytical
sensors do not exist at present for the conditions of pyrometallurgical copper processing. To date,
there is no commercial instrument capable of online quantification of copper content (% Cu) without
contact during tapping operations. Nor can the available sensors discriminate between the phases that
are of particular interest to smelter operations. The distinction between matte and slag during the
tapping of a smelting furnace can significantly impact copper recovery, yet this function is heavily
reliant on the experience of operators involved in tapping.

However, in the last decade, the spectral behavior of pig iron and slag in the ferrous industry
has been studied to estimate different variables that allow for improved control of the tapping
process [11,12]. These models describe the parameters contained in the iron–slag mixture during blast
furnace tapping, such as iron emissivity, casting depth, slag layer thickness and absorption coefficients,
and radiometric parameters (e.g., reflectance at the iron-slag interface). The methodology begins
by determining a spectral range in which the radiation of the molten phases is comparatively high.
This facilitates detection by a silicon charge coupled device (CCD) camera, which is sensitive in the
visible spectral range and part of the near-infrared. An optical filter centered at 650 nm was used
together with the optics, such that the radiation emitted by the wash was partially filtered in the
indicated spectral range.

The results confirm that the difference in emissivity of iron and slag at 650 nm allows for the spatial
distinction of these phases. Furthermore, it was identified that the radiation intensity of the molten iron
remains practically constant during the process, while that of the slag fluctuates. This fluctuation is due
to differences in the thickness of the slag layer, as it absorbs and transmits the radiation coming from
the steel to varying degrees. Additionally, the optical system was calibrated with a high-temperature
black-body radiator, allowing the temperatures to be estimated at 1500–1600 ◦C, which is considerably
higher than the copper smelter temperatures (1200–1350 ◦C). The results confirm that, by using sensitive
optoelectronic systems in the molten iron spectral emission band, coupled with appropriate spectral
models and processing software, it is possible to develop reliable and robust systems at both the
laboratory and industrial scales. The authors believe that this approach could be adapted for copper
smelter processes and represents a natural pathway for future work.

313



Processes 2020, 8, 1478

3. Unifying Framework for Copper and Nickel–Copper Smelter Dynamics

3.1. Overview of Copper and Nickel–Copper Smelter Operations

The copper pyrometallurgy process treats mineral concentrates to produce copper anodes that are,
in turn, electrorefined to generate effectively pure (99.99% Cu) end-product cathodes. The concentrates
are comprised of copper–iron sulfide minerals with particle sizes of generally less than 150 μm.
Elemental compositions typically range from 25% to 30% Cu, 25% to 35% S, and 20% to 40% Fe,
with the remainder made up of gangue material (oxides). The smelter targets the selective oxidation
of Fe and S in order to retain Cu for the final product. Specifically, the iron is skimmed away as
liquid slag and the sulfur is removed as SO2 offgas, eventually resulting in molten copper [13,14].
This pyrometallurgical technique accounts for approximately 75% of the primary copper production
worldwide [15,16], the majority of which is carried out using the conventional approach depicted in
Figure 3. In some cases, the incoming concentrates are subject to roasting reactions prior to being fed
into the smelting operation; these roasted concentrates are known as calcines.

 

Figure 3. Schematic of conventional copper or nickel–copper sulfide smelter operations. The smelting
furnace and converting aisle eliminate iron and sulfur, producing blister copper in the case of copper
smelters and Bessemer matte in the case of nickel–copper smelters.

Within a copper smelter, the concentrate or calcine is smelted by exothermic reactions while
controlling the oxygen mass balance, which produces an intermediate matte phase composed of
copper, iron, and sulfur. This molten matte is then subject to further oxidation, which converts the
matte into a molten metal product called blister copper (>98% purity). The subsequent liquid–state
refinement (fire-refining) precedes the casting of a Cu anode product (~99.5% purity). The anodes are
then transferred to an electrorefinery for a final upgrade to end-product Cu cathodes that are 99.99%
pure; the electrorefinery also recovers gold, silver, and other valuable byproducts that are contained
in the anodes. Nonetheless, smelting and converting are the central processes in a copper smelter,
since they transform the mineral input into an initial metallic output [14].

The smelting operation is a continuous process typically executed in one (or at certain large
plants, two) large furnace(s). There are two main smelting technologies that induce similar chemical
transformations but differ in the mechanism by which oxygen is delivered to the concentrate. Flash
smelting, in which the oxidation of the concentrate takes place in a generally vertically mounted burner,
currently accounts for roughly 45% of the world copper smelting capacity [2,15,17]. Within a flash
smelting furnace, the refractory-lined reaction shaft is like an industrial scale “drop tube” (Figure 2).
On the other hand, bath smelting technologies inject air or oxygen-enriched air into the molten bath
either via a top-mounted lance (called top smelting lance or TSL technology) or via submerged tuyères;
bath smelting technologies account for roughly 50% of smelting capacity, and this proportion has
recently increasing due to new bath smelting technologies introduced in China [15,17].

Peirce-Smith (PS) converting is the most longstanding and widely used technology in conventional
copper smelters [14] and is performed in discrete batches. PS converting is indeed a remnant of
the second industrial revolution (Figure 1) and was influenced by the 19th century developments
of Sir Henry Bessemer in steelmaking [16]. PS batch conversions are often carried out in parallel
(Figure 3) and may share a limited set of resources (e.g., oxygen and offgas handling capacities).
The continuous-discrete contrast of smelting converting is central to conventional smelter dynamics,
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in which PS converting can be a major bottleneck in conventional copper smelters [14]. Moreover,
PS converting is also a feature of nickel–copper smelters (Figure 3), noting the difference in the final
discharge product (Figure 3). Copper PS results in blister copper, whereas nickel–copper PS converting
is simply to remove the iron and its associated sulfur; the resulting iron-free matte still contains
considerable sulfur and is known as Bessemer matte, in honor of Sir Henry Bessemer.

Smelting furnaces can generally produce, and hold, matte in excess of the converting capacity,
which means that the smelting schedule can depend on the converting schedule. Given that smelting
and converting are central to the overall smelter operation, all other critical functions at the smelter
plant can also be restricted by the converting cycles. Each converting cycle begins when a fresh charge
of matte (and possibly some amount of cold charge) is delivered to an empty converter and ends
with the final discharge. The matte is subjected to pressurized blowing wherein oxygen-enriched
air is blown into the melt, and N2 and SO2 are exhausted through a hood mounted on the vessel
(Figure 4). The offgas is captured in order to convert SO2 into sulfuric acid; meanwhile, N2 acts as
a coolant in the process [14]. Copper and nickel–copper smelters both apply the first stage of PS
converting, which is called the slag-blow, producing an iron-rich slag that forms atop the denser matte
(Figure 4a). This stage may require intermittent pauses in order to skim away slag accumulation
and replenish the vessel with fresh matte and cold charge. Once all of the slag is removed (<1% Fe
in matte), copper smelters continue blowing the remaining matte; this final stage of converting is
known as the copper-blow, as it results in the formation of blister copper that sinks to the bottom of the
vessel (Figure 4b). The copper-blow does not produce any more slag and, therefore, does not require
intermittent skimming. Nickel–copper smelters, however, only apply the slag-blow (Figure 4a), not the
copper-blow. In either context, the cycle is complete when all of the matte is converted to the correct
endpoint and discharged (Figure 3).

  
(a) (b) 

Figure 4. Cross-section of a Pierce-Smith converter, during (a) a slag-blow and (b) a copper-blow.

In addition to scheduling constraints, various process parameters are also subject to statistical
variations, including the chemical composition of incoming plant feed, matte grade, furnace
performance, and converter cycle times, among other global factors. It is critical to measure, model,
and simulate such uncertainties in order to streamline and support the decision-making processes in
the design, development, and operation stages of industrial systems.

3.2. Detailing of Smelter Dynamics Within Discrete Event Simulation

In a previous work, Navarra et al. [18,19] incorporated thermochemical equilibria within a discrete
event simulation (DES); it was suggested generally that the hybridization of time-adaptive finite
differences (TAFD) and DES is a suitable paradigm for multiphase smelter reengineering projects [20].
Within copper and nickel–copper smelters, thermochemical equilibria determine the iron-speciation of
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smelting and converting slags, as described in the following section. However, the early phases of a
smelter reengineering project can assume fixed molar ratios of iron and oxygen.

Assuming that the smelter feed is composed mainly of iron, sulfur, and copper, a smelter
accomplishes the following unbalanced reaction:

(Cu, Fe, S)(Feed) + O2(Blast) + Flux → (FeOx, Flux)(Slag) + SO2(Offgas) + Cu(Blister) (1a)

In which FeOx represents a mixture of wustite FeO and magnetite Fe3O4, such that x = 1 and
x = 1.25 corresponds to pure wustite and magnetite, respectively. For simplicity, x can be fixed to 1,
although typical values can range between 1.0 and 1.1, depending on the nature and quantity of the
flux and the monitoring and control of the process itself; in particular, a low level of magnetite in
slag is desirable, which is associated with low slag viscosity. In practice, the flux is predominantly
silica SiO2, but certain smelters include varying quantities of CaO and other stable oxides; CaO is
especially common in continuous converting [21], which is an alternative to the conventional PS
converting [16]. The SO2 is captured for sulfuric acid production, and the blister copper is subject to
fire refining prior to being cast into anodes that undergo electrolytic refining. A similar reaction can
describe nickel–copper smelters:

(NI, CU, CO, FE, S)(FEED) + O2(Blast) + Flux
→ (FeOx, Flux)(Slag) + SO2(Offgas) + (Ni, Cu, Co, S)(Bessemer)

(1b)

The subsequent processing of Bessemer matte depends on the given nickel–copper plant.
Equation (1a,b) provide more detail to Figure 3 for copper and nickel–copper smelters, respectively.

Depending on the scope and phase of the project, x can be regarded as a single global value for the
entire smelter or as distinct values for the smelting furnace(s) and converters. Equation (1a) can thus
be rewritten

(Cu, Fe, S)(Feed) + O2(Blast) + SFlux + CFlux
→

(
FeOxS , SFlux

)
(SSlag)

+
(
FeOxC , CFlux

)
(CSlag)

+ SO2(Offgas) + Cu(Blister)
(2)

For copper smelters, which decompose the global x into xS and xC, characterize the slag of the
smelting furnace. A similar decomposition of the global x could be applied to Equation (1b) in the case
of nickel–copper smelters.

Moreover, the individual slag-blow segments of PS cycles can each be assigned appropriate x
values. Therefore, Equation (2) could be further detailed as:

(Cu, Fe, S)(Feed) + O2(Blast) + SFlux + CFlux1 + CFlux2 + · · ·+ CFluxn
→(

FeOxS , SFlux
)
(SSlag)

+
(
FeOxC1 , CFlux1

)
(CSlag1)

+
(
FeOxC2 , CFlux2

)
(CSlag2)

+ · · ·
+

(
FeOxCn , CFluxn

)
(CSlagn)

+ SO2(Offgas) + Cu(Blister)

(3)

In which xS characterizes the slag of the smelting furnace, and, depending on the level of detail,
xCi can characterize the types of converter cycles or can characterize the individual types of slag-blow
segments, for i = 1 to n. For example, Figure 5a shows an action graph that occurs within a smelter that
practices two kinds of converter cycles, long and short; hence, n = 2. Figure 5b shows a more detailed
representation, which considers 13 kinds of blow segments. (The slag-blow segments are punctuated
with charging and skimming actions, although these are not explicitly shown in Figure 5b). For a
conventional copper smelter, actions 1–9 describe slag-blow segments (Figure 4a); hence, n = 9, and the
remaining actions 10–13 represent copper-blow segments (Figure 4b) that complete the cycle as a batch
of blister copper is discharged. In the case of a nickel–copper smelter, all of the arcs represent slag-blow
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segments; hence, n = 13, noting that the discharge is the so-called Bessemer matte (Ni, Cu, Co and S)
that is described in Figure 3 and Equation (1b).

 
(a) (b) 

Figure 5. Examples of action graphs that represent Peirce-Smith converting cycles, which consider
two types of cycles: long and short. (a) The low-detail representation shows the long and short cycles
as single actions that are characterized by broad distributions of cycle times, whereas (b) a more
detailed representation considers individual blow segments, from 1 to 13; each of the segments can be
characterized by comparatively narrow time durations (which were omitted from the figure).

The decision to apply one segment versus another (e.g., segment 3 versus 4) would depend
on the state of the plant, to the extent that the state variables can monitored with the available
sensors. Even if the resulting slag compositions for the different cycles (Figure 5a) or blow segments
(Figure 5b) are relatively consistent, it may be unclear how frequently each cycle or segment will be
applied, e.g., depending on how often certain plant conditions occur. A global mass balance based on
Equation (3) requires an estimation of how often each of the different cycles (Figure 5a) or segments
(Figure 5b) are applied; such estimations are the result of DES computations, as described below.

The broad distributions of Figure 5a approximate the combined effects of narrower distributions
that would characterize the individual segments of Figure 5b. A proposed technological change
within the smelter (e.g., installation of new sensors) may require a rethinking of the slag-blow and the
definition of new action graphs. Depending on the project, it may be necessary to further decompose
the actions of Figure 5b into sub-actions and sub-sub-actions, possibly including thermochemical
modeling [22,23] or computational fluid dynamics [24]. This decomposition may be essential in order
to properly simulate the system with and without the technological change, thereby evaluating the
benefit of the proposed change. In the case of sensors, it is necessary to simulate how the additional
information will be incorporated into the decisions and operational actions of the smelter, thereby
computing the value of these better-informed decisions and actions.

In many reengineering projects, the phenomena that occur within the smelter may be less important
than the phenomena that occur outside of the smelter. For instance, the DES model of the Hernán Videla
Lira (HVL) Smelter developed by Navarra et al. [25] focuses on the smelter-wide response to changing
meteorological conditions and has a comparatively simple representation of converter cycles, similar
to Figure 5a. The HVL Smelter considers distinct categories of meteorological conditions—normal,
unfavorable, and extreme—to describe the potential for the surrounding atmosphere to disperse the SO2

effluent. If the smelter is running in its normal operational mode when the unfavorable meteorological
conditions emerge, there is a so-called “environmental incident”. The model of Navarra et al. [25]
computes the trade-off between production and environmental risk. Moreover, this model quantifies
the improved trade-off that can result from a more accurate array of meteorological sensors.

DES development is a means to extend the static mass balances, to detail the critical phenomena
that are driving and/or constraining a particular phase of an engineering project. The simulated events
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can dynamically affect the mass balances that are detailed throughout the model. Figure 6 makes the
distinction between the events that occur outside of the smelter and within the smelter, which constitute
the external and internal logistics, respectively. There is a further distinction between the logistical
coordination of smelter equipment (furnaces, ladles, cranes, etc.) and the kinetics that occur within
the equipment. In general, the state variables that describe the system, and the events that would
alter these variables, can be positioned within the concentric ellipses of Figure 6. The incorporation of
variables and events within a DES model must be guided by the scope and the phase of the engineering
project. For example, it is not recommended to detail individual crane movements, unless the particular
project would benefit from a comprehension of this aspect [26]. Likewise, it is not recommended to
detail particular equipment breakdown events, unless the project would benefit from a comprehension
of this aspect [27].

 
Figure 6. Relationship between smelter kinetics, internal and external smelter logistics, and broader
system dynamics.

The computational efficiency of DES is due to adaptive time stepping, as the virtual clock advances
from one event to the next without explicitly representing the dynamics that occur between events
(Figure 7a). The sequencing of events is governed by the future event list (Figure 7b). Within this
scheme, a prolonged activity is represented by a sequence of events, including starting and ending the
activity. For example, a basic representation of converter cycles described by Figure 5a may include only
two events: the start and end of the cycle. A more detailed representation (e.g., Figure 5b) may include
several intervening events to represent individual slag- and copper-blow segments, as well as the
intervening skimming, charging, actions of the operators, etc. with the level of details that correspond
to the given project. Incidentally, DES applies random number generation to determine the duration
and outcome of the activities and is thus a form of Monte Carlo simulation [28]; the distributions and
action paths illustrated in Figure 5 can be incorporated into the framework.

  

(a) (b) 

Figure 7. Fundamental components of a discrete event simulation (DES) framework, including
(a) a virtual timeline that is subject to discrete steps and (b) a future event list.

Moreover, the simultaneous operation of several converters in unison with other logistical
phenomena is integrated into one single future event list (Figure 7b); hence, a system-wide
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representation. Periods of time with relatively few events are computed relatively quickly, thereby
focusing the computational efforts on periods of time that are more heavily packed with activity.
This time-adaptive aspect of DES allows the simulation of thousands of operating days within minutes.

A DES framework can include operational criteria that determine the action pathway of converter
cycles, allowing the computation of frequency confidence intervals. Following the example of Figure 5a,
the average frequency of short cycles may be between 2.8 and 3.2 cycles/day with 95% confidence and
that of long cycles may be between 0.9 and 1.2 cycles/day with 95% confidence; this result will allow a
mass balance based on Equation (3), given the data about the matte that are charged within each cycle
and the corresponding flux and oxygen requirements. In a slightly more detailed representation, the DES
framework may include the criteria that would determine the more detailed action paths of Figure 5b.

Standard DES frameworks do not explicitly represent the dynamics that occur between events.
However, a linearly dynamic state variable can be represented as a combination of discretely dynamic
state variables. For instance, the mass of feed stockpile k may be computed at a time t, as

mk(t) = mPrevious
k +

.
mPrevious

k ·
(
t− tPrevious

)
(4)

in which mPrevious
k and

.
mPrevious

k are the mass and rate change of k that were computed at the previous
event, which occurred at time tPrevious. Thus, each feed k would require two discretely dynamic
variables (mPrevious

k and
.

mPrevious
k ), in addition to the tPrevious variable that remembers the time of the

previous event. Equation (4) can used in simulations that consider alternating modes of operation that
control feed blends in response to imbalances in incoming concentrates [29].

Other linearly continuous variables can be implemented in a manner similar to Equation (4),
representing each of these continuous variables as two discrete variables: level and rate (e.g., mPrevious

k

and
.

mPrevious
k ). Considering the DES representation of time (Figure 7), this constitutes a time-adaptive

finite difference (TAFD) scheme. However, a full representation of the continuous dynamics requires
the detection of threshold-crossing events, as described in Section 3.4. These threshold-crossing events
are especially important in assessing the installation of sensors whose role may be to signal the need
for corrective actions precisely when critical thresholds are crossed.

3.3. Slag Iron Speciation and Other Thermochemical Considerations

The iron oxide speciation, i.e., the balance between FeO and Fe3O4, can be quantified as the
oxygen-to-iron ratio x presented in Equations (1)–(3). Indeed, x represents a degree of freedom that
must be resolved in order to complete the mass balance. This degree of freedom can also be expressed
as the ratio of ferric to ferrous ions within the slag, α = Fe3+/Fe2+, often called the degree of oxidation.
The homeomorphic relationship between x and α is given by

x =
2 + 3α
2 + 2α

(5)

Equation (1a) can thus be rewritten as

(Cu, Fe, S)(Feed) + O2(Blast) + Flux → (FeO( 2+3α
2+2α )

, Flux)
(Slag)

+ SO2(Offgas) + Cu(Blister) (6)

similar to Equation (1b), in which the minimum α = 0 corresponds to pure wustite FeO and α = 2
corresponds to pure magnetite Fe3O4. Equation (6) can be further detailed in a similar manner as
Equations (2) and (3) by assigning appropriate subscripts to α, as in [20].

In the modeling of slag chemistry, α is preferred over x to avoid ambiguity between the reactive
oxygen of the blast and the inert oxygen that is strongly bonded within the flux (i.e., within the SiO2,
CaO, etc.). For instance, the role of SiO2 flux is made more evident by expressing the wustite as a
component within a fayalite matrix FeO·2SiO2; hence, the balance of FeO versus Fe3O4 is considered
as FeO·2SiO2 and Fe3O4. In practice, SiO2 is added into the slag in proportions that surpass the
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stoichiometry of fayalite and may be accompanied by other stable oxides. Under matte-processing
conditions, the stable molecules SiO2, CaO, etc. can be regarded as if they were indivisible atoms.
Most notably, the strongly bonded oxygen is not explicitly represented in Equations (1)–(3) and is
not taken into account in x; these equations only explicitly consider the blast oxygen. The degree of
oxidation α considers only the iron species isolated from any mention of the blast and flux oxygen.

Within Equation (6) and its nickel–copper equivalent, the slag-blow reaction can be isolated and
balanced as:

FeS(Matte) +
(2 + 3α

4 + 4α

)
O2(Blast) → FeO( 2+3α

2+2α )(Slag) + SO2(Offgas) (7)

which applies to both the smelting and converting furnaces for both copper and nickel–copper smelters.
Indeed, the melting of the feed of Equation (6) results in molten matte that is a mixture of FeS and
Cu2S; in the case of nickel–copper smelters, the matte will also contain nickel and cobalt sulfides [18],
but Equation (7) is still correct. The incoming blast includes N2, as well as O2 (see Figure 4). As the N2

passes through the bath and is exhausted into the offgas, along with the SO2, it carries away sensible
heat and is a critical consideration in controlling the bath temperature.

To resolve the degree of freedom α (or equivalently x), the equilibrium between iron oxide species
can be expressed as

FeS(Matte) + 3Fe3O4(Slag) ↔ 10FeO(Slag) + SO2(Offgas) (8)

having enthalpy and entropy values ΔH0 = 622,549 J/mol and ΔS0 = 342.64 J/mol K, respectively,
which can be obtained from HSC ChemistryTM. The corresponding Gibbs free energy balance is

ΔG = ΔH0 − TΔS0 + RT ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
aFeO,Slag

)10
pSO2,Offgas

aFeS,Matte
(
aFe3O4,Slag

)3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9)

which is set to zero to assume equilibrium. R is the ideal gas constant, T is the bath temperature, and aij
is the activity of species i within phase j. The activity of SO2 in the offgas is taken to be the partial
pressure pSO2,Offgas.

Within Equation (9), the activities (aFeS,Matte, aFeO,Slag, and aFe3O4,Slag) can be re-expressed in terms
of α, T, and the operational parameters. The usual parameters include the oxygen enrichment of
the blast ϕ and the silica–iron mass ratio r = (mSiO2,Slag/mFe,Slag), which are considered in Section 4.
Empirical measurements relate the activities aij to their respective mole fractions Xij. In particular,
the classic model of Goto [30,31] is validated for smelting and converting, in both the copper and
nickel–copper contexts [32], and is the subject of Appendix A.

Iron speciation computations are simpler for smelting furnaces than for converting, since the
smelting bath temperature can usually be treated as if it were at a steady state and is approximately
uniform and constant. Under this simplification, α can be resolved through an application of Newton’s
Method [18,19]:

α(k) = α(k−1) − fG
∂ fG
∂α

(10)

or, in case T is not constant,

(
T(k)

α(k)

)
=

(
T(k−1)

α(k−1)

)
− 1
∂ fH
∂T
∂ fG
∂α −

∂ fH
∂α
∂ fG
∂T

⎡⎢⎢⎢⎢⎣ ∂ fG
∂α −∂ fH

∂α

−∂ fG
∂T

∂ fH
∂T

⎤⎥⎥⎥⎥⎦
[

fG
fH

]
(11)

which is a two-variable form of Newton’s Method, in which (T(k), α(k)) denote the results of the kth
Newton iteration. The righthand sides of Equations (10) and (11) include proxy functions, f G and f H,
and their derivatives, which are all evaluated at the preceding values (T(k−1), α(k−1)), considering
(T(0), α(0)) = (1473 K, 0.15) as typical starting values. The proxy function f G must be formulated so that
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f G = 0 when the Gibbs free energy balance of Equation (9) is satisfied, i.e., when ΔG = 0. Appendix A
presents a formulation of f G that is based on the classic Goto model [30,31]. Likewise, f H is formulated
such that f H = 0 when the heat balance is satisfied [19].

Following the results of Appendix A, it is relatively simple to program Equations (10) and (11) into
a simulation platform, thereby relating slag chemistry to the wustite–magnetite balance and, indeed,
to the overall mass balance. Depending on the project, Goto’s model may be an appropriate starting
point, although it does not consider olivine slags [21], nor does it consider the transport of minor
elements. In practice, it is preferable to have more wustite than magnetite, since the latter increases the
slag viscosity and the entrainment of matte into the slag [21,33]. The modification of slag chemistry
through flux additions affects the migration of minor elements [22,23], possibly at the expense of
having higher slag viscosity [21].

There is an interest to develop DES platforms that draw upon state-of-the-art thermochemical
databases [19] to assist in the retrieval of valuable elements such as gold, silver, and platinum and
the handling of deleterious elements such as arsenic, bismuth, and antimony. The authors suspect
that the partition of trace elements can be efficiently computed as a function of the main elements a
posteriori when Equations (10) and (11) converge. This is an area of future research, and the resulting
platforms would support smelter-wide strategies for the processing increasingly problematic feeds.
Yet, in reality, for similar apparent conditions like matte grade, temperature, etc., the balance of FeO
versus Fe3O4 can depend on various parameters, including flux quality, refractory wear, and amount
of charge (hence, affecting mixing), and so, an empirical approach to speciation may be more effective.

3.4. Estimation of Threshold Crossing Times Using Time-Adaptive Finite Differences

Time-adaptive finite differences are an important feature of our smelter DES frameworks, allowing
the correct placement of threshold-crossing events within the future event list (Figure 8). In the
approach of Navarra et al. [18,19], the Newton iterations of Equations (10) and (11) are nested within
the Runge-Kutta-Fehlberg (RKF) method, which is a well-known time-adaptive finite difference
(TAFD) scheme [34,35]. This method is a combination of finite difference schemes based on fourth
and fifth-order Taylor expansions [34]; an attempted timestep is only accepted if the fourth and fifth
order estimates of T and α are within an acceptable error tolerance; otherwise, a smaller timestep is
attempted. Moreover, each attempted timestep uses the previous results of T and α as a starting point
for the Newton iterations, so that convergence is faster, thus making the computation more efficient.

  
(a) (b) 

Figure 8. Threshold-crossing event in relation to another event e. Time-adaptive finite differences
determine if the threshold is crossed (a) before e or (b) after e.

The efficiency of DES depends on this time-adaptive aspect to limit the computational effort
devoted to dynamics that occur between the discrete events (Figure 7). Alternatives to the approach
of Navarra et al. [18,19] include the use of cubic Hermite spline interpolation [36,37] and Richardson
extrapolation [38]. These techniques can be adapted to isolate the threshold crossing event of a state
variable and improve the accuracy with which we can find the time at which it crosses. In fact, it is
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important to recognize that both the efficiency and accuracy of the method rely on an accurate time
estimate for threshold crossing. In our case, the threshold is first contained in the interval bounded
by the two timesteps bracketing an evaluation of the state variable below and above the threshold.
This precisely guarantees we have access to values already computed at both of the upper and lower
estimates (as a result of the RKF attempt), which includes state variable values, as well as their time
derivatives (by direct evaluation if the right-hand side at the state variable values). With this data,
we constructed a cubic Hermite spline, which is, therefore, a valid fourth-order interpolation of the
solution over this interval. Since the Hermite spline is, in fact, a cubic polynomial, we can compute
analytically the crossing time as a simple root-finding problem. We also note that this approach
is robust, since the data at the end of the interval provided need not be exact. In fact, if the state
variable data has a fourth-order accurate truncation error (e.g., by only using a third order Runge-Kutta
integrator) and the derivatives are third-order accurate, the interpolant is guaranteed to be fourth-order
accurate [37]. Further, while this approach is tailored to the RKF used here, it may be expanded by
considering Hermite quintics if a further need for accuracy is required.

While conventional DES frameworks support basic representations of smelter logistics,
a hybridization with time-adaptive finite differences supports a detailed representation of the kinetics
that occur within the individual unit operations. In particular, the detailed representation of individual
slag-blow segments may require a dynamic simulation of the evolving thermochemical states of matte
and slag. Moreover, the DES-TAFD hybridization allows the simulation of several simultaneous
converting cycles, in conjunction with the intervening actions involving cranes and ladles, the delivery
of a cold charge, and other phenomena. Nonetheless, the explicit representation of slag-blow segments
should only be implemented if it is beneficial to the particular engineering project. Beyond the
internal dynamics of smelter, a project may require an explicit representation of market-related or
environmental phenomena (Figure 6). The hybridization of DES and TAFD is indeed capable of linking
detailed representations of diverse aspects throughout the smelter and beyond, whose coordination
may be critical to the sustainability of the smelter. Furthermore, aging smelters will not be sustainable
unless they can successfully modernize their operational practices, benefitting from sensors and other
novel technology.

4. Sample Computations and Context

The sample calculations presented in this section are typical of an aging copper smelter that:

• has been successful for decades in processing reasonably clean feeds;
• is confronted with increasingly challenging feeds that carry excess quantities of arsenic, bismuth,

and antimony; and
• is aware of an approach to draw a critical portion of the undesirable elements into the converting

slag, which is only effective as the iron in matte approaches zero

Regarding the third point, there may be operator experiences in treating marginal feeds that
had a manageable amount of the trace elements; such feeds were treated by driving the individual
slag-blow segments to a relatively low iron content (e.g., ~3% Fe), in combination with particular flux
compositions. Indeed, a more forceful elimination of the undesirable elements could be induced at an
even lower iron content, but this would increase the level of entrained into the slag, under imperfect
mixing, as blister copper would be precipitated heterogeneously in certain regions of the vessel. Better
endpoint control on the individual segments would allow a more careful advance toward 0% Fe with
a limited risk of copper entrainment and could be attained by adapting the endpoint approach at
Boliden’s Rönnskär Smelter [5], mentioned earlier; this approach depended on customized sensor
development [10–12].

From the authors’ experience in copper smelter projects, it is incumbent on outside experts to
integrate their general understanding with the detailed understanding of in-house experts at the given
smelter. There may be issues that were already confronted with some amount of success, but these
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issues may gradually become critical. For instance, the increasing presence of penalty elements is
especially common in custom smelters that receive concentrates from a combination of regional mines,
which are themselves confronted with ore blending challenges [29]. The experiences of the smelter
should be cross-checked with thermochemical models and a literature review [22,23] in proposing new
operational modes that may require a technological upgrade. In effect, this can be a standardization
and optimization of approaches that the in-house experts were already considering.

The DES framework described in Sections 3.1–3.4 was implemented using Rockwell ArenaTM

software and replicated the general aspects of conventional smelters while incorporating
smelter-specific data. Tables 1–3 contain sample data that are loosely based on published values
from [2,5,6,13,39,40]. As stated in Section 3.1, conventional smelters have smelting capacities that
normally exceed the downstream converting capacity; indeed, the smelting furnace should not usually
produce matte at full capacity, nor should it function in fits and starts. The definition of so-called short
and long converter cycles (Figure 6) provides the operational flexibility to set a fixed smelting rate.
Moreover, some smelters may have several cycle types under consideration to respond to build-ups
of cold charges or compositional imbalances in the feeds that are received from the supplying mines.
For simplicity, the current computations consider only two types of cycles.

Table 1. Feed compositions entering the smelting furnace.

Element Weight%

Copper 20
Iron 39

Sulfur 40
Arsenic 0.4–1.0
Bismuth 0.02–0.20

Antimony 0.02–0.10

Table 2. Examples of smelting furnace operational parameters.

Parameter Value

Matte holding capacity 900 t
Bath temperature 1275 ◦C

Blast rate 1100 Nm3/min
Oxygen enrichment 50 vol%O2

SiO2/Fe in slag 0.7
Matte grade 60 wt% Cu

Table 3. Examples of Peirce–Smith (PS) converting data describing short and long cycles.

Short Cycle Long Cycle

Duration (h) * Ladles Added Duration (h) * Ladles Added

First slag-blow
segment 2.0 3 3.0 4

Second slag-blow
segment 0.5 ± 0.2 1 1.0 2

Third slag-blow
segment - - 0.5 ± 0.2 1

Copper-blow 4.5 ± 0.7 - 5.0 ± 1.2 -

* Assume that ladles are added at the beginning of the segment, each carrying 30 t of matte.

To maintain stable throughput, the blending strategy ensures comparatively stable portions of
the main elements (Table 1) but with unavoidable fluctuations in the undesirable trace elements.
Additionally, to maintain stable throughput, the smelting parameters are kept constant (Table 2),
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including the grade of the output furnace matte; given that the matte is a mixture of FeS and Cu2S,
an elemental mass balance determines that a 60% Cu grade corresponds to roughly 24% S and 16% Fe.

Effectively, the smelting furnace blasts 550 Nm3/min of oxygen into a bath in order to decrease
the iron content from 39% to 16% as it burns the FeS. The smelting blast also includes 550 Nm3/min
of nitrogen, which carries away a portion of the heat. The control of the temperature at 1275 ◦C
depends on this nitrogen flow. Given the stable temperature T = 1275 ◦C = 1548 K, oxygen enrichment
ϕ = 0.5, and silica-iron ratio r = 0.7, the Newton iterations of Equation (10) are used to obtain the
degree of oxidation α = 0.166, with a corresponding throughput of 36.928 t/h of matte or equivalently
1.231 ladles/h. At a matte grade of 60% Cu, this corresponds to 22.157 t Cu/h.

Figure 9 shows graphs of the matte content using the data from Tables 1–3. The largest declines
correspond to the initiation of long cycles (four ladles = 120 t) and short cycles (three ladles = 90 t),
and the other declines correspond to the recharging actions that occur during the cycles at the second
and third slag-blow segments. As is common in larger smelters, the offgas handling capacity allows
for the execution of two simultaneous converter cycles.

  
(a) (b) 

Figure 9. Matte levels of the smelting furnace with data from Tables 1–3, in which (a) exceeding 800 t
triggers two long cycles and (b) exceeding 700 triggers three long cycles. The second case is safely
below the maximum holding capacity of 900 t.

Within Table 3, the times for the initial slag-blow segments are fixed as operational parameters.
However, the durations of the final slag-blow segments depend on the exact nature of the charge
(including the cold dope), as well as variable operator behavior and, potentially, other factors.
By extension, the copper-blow durations are also variable. For the purposes of Figure 9, these fluctuating
values are used to define uniform distributions, e.g., the copper-blow durations are uniformly
distributed between 3.8 and 5.2 h for the short cycles and between 3.8 and 6.2 h for the long cycles.
Uniform distributions, triangular distributions (Figure 5a), and other simple forms are typical of the
early phases of a smelter project. More advanced phases can include more elaborate distributions that
are supported by goodness-of-fit testing of the plant data [41].

An analysis of Table 3 reveals that the average conversion rates are 0.571 ladles/h and 0.737 ladles/h
for the short and long cycles, respectively. Considering that the smelting furnace produces 1.231 ladles/h
that is fed into two simultaneous converter cycles (i.e., 0.615 ladles/h per converter), the balancing
of the smelting and converting throughput will require a combination of the long and short cycles.
(Incidentally, the long cycle copper-blow is more productive than that of the short cycle; this may
be because it is loaded with cold copper scrap, which makes the heat balance less dependent on the
nitrogen convection, thus supporting a more intense higher-oxygen blast).

Figure 9 considers a threshold criterion that, whenever the matte level surpasses a critical value,
the next several cycles are set to a long cycle. Poor adjustment of this threshold can diminish the overall
throughput, as the smelting furnace is deactivated when it reaches the 900-t capacity given in Table 1;
this is depicted in Figure 9a, in which the threshold is set to 800 t, which triggers two long cycles,
which is insufficient to prevent the approach to 900 t observed at time 140 h. A balanced production is
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shown in Figure 9b, which applies a threshold of 700 t, which triggers three long cycles. In general,
a DES-TAFD hybrid can be adapted to incorporate the operational decision-making of the smelter that
is being studied; this flexibility is vital in the context of reengineering projects [20].

Table 4 and Figure 10 describe modified dynamics in which an array of sensors track the approach
to 0% Fe and the presence of the undesirable trace elements. The data-driven approach to removing
the iron is reflected by the (uniform) variation ascribed to all of the slag-blow segments, whereas the
previous configuration (Table 3) fixed predetermined blow times for the initial segments. Moreover,
Table 4 follows the action graph of Figure 5b, in which the commitment to an extended cycle is made
only after the cycle begins. Indeed, the regular short cycles correspond to 2-5-13, the extended short
cycles to 2-5-18-12, the regular long cycles to 1-4-7-10, and the extended long cycles to 1-3-6-9-11.
For the sake of Figure 10, it is assumed that 30% of the short cycles are extended and 20% of the long
cycles are extended, although different values could be tested and should be driven by actual forecasts
of what the incoming feed might be.

Table 4. Example of PS converting data, including short and long cycles that can be extended.

Regular Short C. Extended Short C. Regular Long C. Extended Long C.

Duration (h)
* Ladles
Added

Duration (h)
* Ladles
Added

Duration (h)
* Ladles
Added

Duration (h)
* Ladles
Added

First SB segment 2.2 ± 0.2 3 2.2 ± 0.2 3 3.4 ± 0.2 4 3.4 ± 0.3 4
Second SB
segment 0.3 ± 0.1 1 0.3 ± 0.1 1 0.7 ± 0.2 2 1.2 ± 0.2 3

Third SB segment - - 0.4 ± 0.1 1 0.4 ± 0.1 1 0.3 ± 0.1 1
Fourth SB segment - - - - - - 0.4 ± 0.1 1

Copper-blow 4.5 ± 0.7 - 5.6 ± 0.8 - 5.0 ± 1.2 - 7.0 ± 1.7 -

* Assume that ladles are added at the beginning of the segment, each carrying 30 t of matte.

 

Figure 10. Matte level of smelting furnace with data from Table 1, Table 2, and Table 4, in which exceeding
700 triggers three long cycles, 30% of short cycles are extended, and 20% of long cycles are extended.

A comparison between Figures 9 and 10 shows the effect that responsive converter cycles (Table 4)
can have on the matte levels; although the matte levels of Figure 10 remain mostly between 600 and
700 t, the pattern of peaks and dips is far less regular. These fluctuations may be acceptable, considering
that it would allow the smelter to handle problematic feeds. Otherwise, the feed rate into the smelting
furnace could be controlled in coordination with a variable blast rate, which may be the subject of a
following stage of engineering.

To the authors’ knowledge, the computations of Figure 10 are the first published instance in which
several converters are simultaneously drawing upon a smelting furnace and operational decisions
are finalized after the cycles begin, i.e., in response to incoming sensor data. This level of detail is
necessary to evaluate the utility of sensors in supporting smelter-wide responses to problematic feeds.
The computations described by Table 4 and Figure 10 rely on the representation of individual slag-blow
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segments (Figure 5b), although other approaches might require the detailed representation of additional
aspects within or surrounding the smelter (Figure 6).

5. Conclusions and Future Work

Not only warehouses and manufacturing facilities but metallurgical plants such as a steel plant
or copper smelter—which are more difficult to automate—will be transformed in the future with
use of new machine capabilities, automation, and improved sensors and controls. Steel is, by far,
the major metal produced in the world, representing about 95% by tonnage of all metal production,
with the world copper smelter output some 80 to 90 times less than world steel output. This, in part,
helps understand that certainly more developments are attained in the iron and steel industry relative
to copper. However, the computational framework described in this paper will help close the gap,
regarding HI and LIBS and other radiometric sensors, as it enables the implementation of these
technologies and justifies their further development within the copper industry. In particular, LIBS is
expected to have an increasing importance in handling problematic feeds as existing copper smelters
are confronted with increasing amounts of arsenic, bismuth, and antimony [42].

Modern sensors will be vital in supporting smelter-wide responses to increasingly challenging
feeds that are being confronted throughout the world, as described in the previous section. It should be
noted in particular that smelting and converting operations are central within copper and nickel–copper
smelting and are linked to supporting operations throughout the smelter. High-quality and reliable
process instrumentation and controls are therefore important in maximizing the global operating
efficiency. Additionally, the monitoring of the furnace integrity, refractory wear, preventative
maintenance, and plant safety are also key aspects that constantly need attention at the plant.
Many high-performance smelting furnaces today include water-cooled copper blocks generally
externally mounted on a furnace sidewall to protect the refractory lining at the hot face. The Peirce-Smith
converter operates with a converter hood that includes water-cooled panels on the cold face in order
to protect the steel wall at the hot face. Recent developments in the instrumentations for detecting
and measuring the presence of small levels of water vapor in furnace offgas can signal a water leak
and lead to improved furnace monitoring [43]. However, the implementation of such measures often
requires quantitative justification.

This paper showed that combining thermochemical equilibrium data with a knowledge of smelting
and converting dynamics provides a powerful tool for advancing smelting operations in the form
of DES-TAFD hybrid simulations. The specialized use of Newton’s Method, Runge-Kutta-Fehlberg,
and Hermite interpolation within a DES are, in fact, an advancement within the industrial system
analysis, which can be adapted to other industrial contexts, supporting modernization projects that
include novel sensors and other technology.
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Appendix A Proxy Function for Gibbs Free Energy Balance Based on Goto’s Model

The approach of Navarra et al. [18,19] to obtain a viable proxy function f G considers that each
mole of wustite FeO contains one mole of ferrous, that each mole of magnetite FeO·Fe2O3 contains one
ferrous and two ferric, and that all other iron-bearing slag compounds are negligible. It follows that
α = Fe3+/Fe2+ can be taken as

α =
2nFe3O4,Slag

nFeO,Slag + nFe3O4,Slag
(A1)

in which nij generally denotes the number of moles of i within phase j.
When setting ΔG = 0, Equation (9) can be reorganized:

0 = aFeS,Matte
(
aFe3O4,Slag

)3 −
(
aFeO,Slag

)10
pSO2,Offgase(

ΔS0
R − ΔH0

RT )

Using the expressions from Goto [30] and Kemori et al. [31] for the activity coefficients of (aFeS,Matte,
aFeO,Slag, and aFe3O4,Slag), a series of algebraic manipulations were performed by Navarra et al. [18,19]
to obtain the following form that explicitly features T and α:

0 =
3∏

l=1

(Al + Blα)
Cl+Dl/T −

9∏
l=4

(Al + Blα)
Cl+Dl/T

In which the coefficients (Al, Bl, Cl, and Dl) are given in Table A1, from which a viable proxy
function is obtained:

fG(T,α) =
3∏

l=1

(Al + Blα)
Cl+Dl/T −

9∏
l=4

(Al + Blα)
Cl+Dl/T (A2)

Indeed, ΔG = 0 if and only if f G = 0. Moreover, the partial derivates of f G can be obtained with
respect to α and T, so to complete the Newton iterations described by Equations (10) and (11). To obtain
the expression for ∂ fG

∂T , it is helpful to notice that Dl is zero for all factors except for the third and ninth.

fG(T,α) =
(

2∏
l=1

(Al + Blα)
Cl

)
(A3 + B3α)

C3+D3/T

−
(

8∏
l=4

(Al + Blα)
Cl

)
(A9 + B9α)

C9+D9/T
(A3)

However, to obtain an expression for ∂ fG
∂α , it is more effective to work directly with Equation (A2).

Within Table A1, ϕ denotes the volume fraction of oxygen within the blast, which can be related
to pSO2,offgas. Additionally, the mole fraction of FeS within the matte is taken to be

XFeS,Matte =
nFeS,Matte

nFeS,Matte + nNiS,Matte + nCu2S,Matte + nCoS,Matte
(A4)

which supports the modeling of nickel–copper smelters, as well as copper smelters in which nNiS,Matte

and nCoS,Matte are set to zero. Moreover, Table A1 has several instances of the silica-to-iron mole ratio
(nSiO2,Slag/nFe,Slag), which can be related to the silica-to-iron mass ratio r within the slag:

r =
(

MSiO2

MFe

)(nSiO2,Slag

nFe,Slag

)
(A5)

in which MSiO2 and MFe are the molar masses of silica and iron, respectively; r is a common operational
parameter used to control the flux additions.
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Table A1. Coefficients for Equation (A2) (adapted from [19]).

l Al Bl Cl Dl

1 1 1 1 0
2 2 −1 10 0
3

(
2.44− 0.4

(
nSiO2,Slag

nFe,Slag

))
−
(
1.42− 0.4

(
nSiO2,Slag

nFe,Slag

))
0 15,430

4 XFeS,Mattee
ΔS0

R 0 1 0
5 0 1 3 0
6

(
3−φ
2φ

) (
7−3φ

4φ

)
1 0

7
(
1.38 + 12.28

(
nSiO2,Slag

nFe,Slag

)) (
56.8 + 12.28

(
nSiO2,Slag

nFe,Slag

))
3 0

8 2
(
1 +

(
nSiO2,Slag

nFe,Slag

))
2
(

nSiO2,Slag

nFe,Slag

)
4 0

* 9 2
(
1 +

(
nSiO2,Slag

nFe,Slag

))
K 2

(
nSiO2,Slag

nFe,Slag

)
K 0 15,430

* In which K = e−ΔH0/15,430R(0.54 + 0.52XFeS,Matte + 1.4XFeS,Matte ln XFeS,Matte)
1458/15,430.
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Abstract: Oxygen is one of the most important energies used in converter steelmaking processes of
integrated iron and steel works. Precisely forecasting oxygen consumption before processing can
benefit process control and energy optimization. This paper assumes there is a linear relationship
between the oxygen consumption and input materials, and random noises are caused by other
unmeasurable materials and unobserved reactions. Then, a novel hybrid prediction model integrating
multiple linear regression (MLR) and Gaussian process regression (GPR) is introduced. In the hybrid
model, the MLR method is developed to figure the global trend of the oxygen consumption, and the
GPR method is applied to explore the local fluctuation caused by noise. Additionally, to accelerate the
computational speed on the practical data set, a K-means clustering method is devised to respectively
train a number of GPR models. The proposed hybrid model is validated with the actual data collected
from an integrated iron and steel work in China, and compared with benchmark prediction models
including MLR, artificial neural network, support vector machine and standard GPR. The forecasting
results indicate that the suggested model is able to not only produce satisfactory point forecasts,
but also estimate accurate probabilistic intervals.

Keywords: steelmaking; oxygen consumption; GPR; prediction model

1. Introduction

In modern integrated iron and steel works, oxygen is one of the most important energy resources
used in various production processes, such as oxygen-rich combustion for ironmaking, converter
blowing for steelmaking, and flame cutting for casting [1]. Statistically, about 20% [2] plant-wide
electric power is used to produce the oxygen, and more than 50% [2] oxygen is used in the steelmaking
process. To precisely monitor for oxygen consumption not only improves the process controlling
performance in the steelmaking process, but also benefits making a satisfactory schedule for oxygen
production to achieve the goal of energy saving and economic profits [3].

Traditionally, the main task of the steelmaking process is to produce various grades of steel by
removing impurities in hot metal, such as excess carbon, silicon, manganese and phosphorus [4].
The primary steelmaking equipment is called the basic oxygen furnace (BOF) also known as
Linz–Donawitz (LD) or oxygen converter (as shown in Figure 1). Theoretically, converter steelmaking
is a complex process including melting, purifying, and alloying which are carried out at approximately
1600 ◦C (2900 ◦F) in melting conditions. First, the hot metal at 1200–1300 ◦C, an amount of scrap steel
and calcined lime are charged into a converter, which produces violent reactions on the surface of the
hot metal and slags. Then, oxygen from a lance is blown onto the liquid metal bath surface within
typically 15 min, which continuously increases temperature and reduces the carbon-rich hot metal to

Processes 2019, 7, 352; doi:10.3390/pr7060352 www.mdpi.com/journal/processes331
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low-carbon steel between 0–1.5 percent. The slag-gas emulsion is formed during blowing and will
decrease in the later period of blowing. Finally, specified chemical compositions and temperatures are
reached by initiating numerous chemical reactions in sequence or simultaneously. In addition, the flux
of burnt lime, dolomite and other chemical materials are added to further remove impurities and
protect the lining of the converter. In fact, because each reaction couples and interplays with others [5],
the process of converter steelmaking is very complex, and the condition of oxygen consumption
is hard to be monitored in actual environments. However, with the current trend of Industry 4.0,
the industrial process tends to be more expensive, which requires higher system reliability and
performance. Therefore, it is needed to find an access to forecast the volume of oxygen consumption,
which can boost the control performance of steelmaking process and the operational performance of
oxygen distribution to a new level.

Figure 1. Converter steelmaking process.

With rapid developments of industrial automation and information systems, the industry
has established big-data platforms and has collected a vast amount of valuable data [6].
Hence, a considerable number of researchers have used data-driven methodologies to predict
these parameters that are hard to directly collect or calculate in the complex process [7,8], such
as semiconductor [9], petrochemical [10], and energy process [11]. With concerns on the converter
steelmaking process, many efforts have been devoted into predicting the end-point temperature
and carbon content [12] in past decades, but the studies on forecasting oxygen consumption have
seldom been reported. Since a large number of complex chemical reactions and physical changes
in the steelmaking process exist, the exact amount of oxygen required to complete the steelmaking
process cannot be calculated directly. Traditionally, these unmeasurable variables were estimated
by constructing explicit knowledge models, i.e., material balance, heat balance, kinetics and other
theories [13]. However, there are still many unknown factors in the converter steelmaking process,
which may cause low precision and unreliability. Therefore, to develop its theoretical model is a
high-cost and high-challenge task. However, industrial data produced in the steelmaking process
provide a potential way to forecast these unmeasurable variables. These data-driven models complete
the prediction task by building the mapping relationship between the input-output data without
knowledge about the process. Owing to these advantages, a wide range of data-driven models
are applied in the steel industry. Saxén et al. [14] reviewed a variety of prediction models for the
silicon content of hot metal produced in blast furnaces. Liu et al. [15] applied a least squares support
vector machine (LS-SVM) model to investigate several real-time prediction problems in the converter
steelmaking process. Tian and Mao [16] proposed an ensemble extreme learning machine (ELM)
to forecast the temperature of liquid steel in the ladle furnace. Han and Liu [17] proposed an
ELM with optimized parameters to predict the endpoint carbon content and temperature of liquid
steel. Laha et al. [18] compared a number of machine learning models for predicting yield steel in a
steelmaking work, and verified that the support vector regression (SVR) is the most powerful one.
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However, the data-driven model is a black-box lack of interpretation. Therefore, many researchers
paid more attention to the hybrid model based on theory and data. Yang et al. [19] developed a
hybrid model to predict the electricity demand in the fused magnesia smelting process, in which its
mechanism is formulated by a linear model and the unknown factors are modeled by neural networks.
Chen et al. [20] proposed a hybrid model combined with a finite element method and an artificial
neural network (ANN) to predict the degree of void closure produced in the cold rolling process.
Lei and Su [21] developed an SVR-based hybrid model to forecast the mold level of the continuous
casting production process.

The remaining sections of the paper are organized as follows. Section 2 provides the details of
the proposed Gaussian process-based hybrid model named HyGPR. The experimental setup and
results are analyzed and discussed in Section 3. Finally, Section 4 draws conclusions of this study and
identifies several topics for future studies.

2. Methodology

The consumed volume of oxygen during the converter steelmaking process is mainly related with
the following four types of factors:

(1) The amount of input materials, such as the carbon, silicon, manganese, phosphorus, sulfur content
of hot metal.

(2) The control parameters of blowing, e.g., lance position, and blowing pattern.
(3) The final smelting targets, e.g., oxygen consumption highly depends on the carbon target.
(4) The equipment conditions, e.g., converter lining and internal converter geometry.

In this study, the exact amount of oxygen that will be consumed in the not-started steelmaking
process is forecasted. This task is usually realized by static prediction models (before blowing) which
obviously differ with dynamic prediction models (during blowing). Hence, the control parameters are
not selected in this study. Since the final carbon target of the similar steel grades is very close, prediction
models can be trained independently with different carbon target. The equipment conditions cannot
be directly observed, so we assume they are constants within a short period. Therefore, only the input
materials are considered in our proposed methodology stated in the following subsections.

2.1. Reaction-Based Linear Model

To describe the converter steelmaking process, reaction Equations (1)–(9) are defined where the
symbols [·], (·) and {·} indicate metal, slag and gas phases, respectively. As shown in (1)–(6) oxidation
is the most important chemical reaction mainly carried out on the hot metal, which converts carbon to
carbon oxide, silicon to silica, manganese to manganous oxide, phosphorus to phosphate, and sulphur
to sulfur dioxide.

[C] +
1
2
{O2} = {CO} (1)

[C] + {O2} = {CO2} (2)

[Si] + {O2} = (SiO2) (3)

[Mn] +
1
2
{O2} = (MnO) (4)

2[P] +
5
2
{O2} = (P2O5) (5)

[S] + {O2} = {SO2} (6)

Unfortunately, a little iron is also combined with oxygen in addition to these chemical reactions,
and produces FexOy as follows.

2[Fe] +
3
2
{O2} = (Fe2O3) (7)
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[Fe] +
1
2
{O2} = (FeO) (8)

In addition, the liquid slag releases a little oxygen, and acts as an oxidizer to produce some
by-products:

[S] + (CaO)→ (CaS) + [O] (9)

It should be noted that, a number of other oxygen-related reactions occur in the steelmaking process.
For instance, the post reaction {CO}+ 1

2 {O2} → {CO2} will consume an amount of oxygen, and the C
element in the converter lining will also absorb oxygen. Specially, when the phenomenon of rephosphoration
and remanganization occur with rising temperatures and low FeO contents in the slag, the reduction of the
(P2O5) and (MnO) with the solved [C] in the steel droplets in the slag/gas emulsion will release a little
oxygen. However, these reactions fail to be directly observed and recorded. Therefore, the consumed and
released oxygen during the reaction or blowing are identified as constants or random noises.

We classify these input materials (x) into two sets: The materials consumed oxygen O+ and the
materials released oxygen O−. To estimate the value of oxygen consumption (y), we assume there is
linear relationship between x and:

y = f (x) =
m1∑
i=1

wixi +

m2∑
i=1

wi(−xi) + w0 =

m1∑
i=1

wixi −
m2∑
i=1

wixi + w0 (10)

where x = (x1, · · · , xm) represents the materials reacting with oxygen, wi denotes their reactions
coefficient, w0 is a constant term determined by learning from data, m1 and m2 respectively represent
the size of O+ and O−, and m1 + m2 = m. To determine the values of w = (w0, w1, · · · , wm),
the pre-defined loss function Equation (11) is minimized.

J(w) =
1

2m

m∑
j=1

(
f
(
x( j)

)
− y( j)

)
(11)

where x( j) and y( j) respectively represent the input and output values of jth sample data. The loss
function J(w) can be solved by the least square or gradient descent least angle method [22].

However, the suggested multiple linear regression (MLR) model is an ideal theoretical model,
because the converter steelmaking process in nature is a complex system with multi-component,
multi-phase and multi-reaction, the detailed process of each reaction is impossible to be precisely
formulated. Additionally, in actual production environments, considerable number factors played
in or affected the reactions fail to be observed. Therefore, the MLR model based on these reactions
always suffers from low precision and low robustness in the actual production process. To overcome
this shortage, this study develops the data-driven prediction model in Section 2.2.

2.2. Gaussian Process Regression with Noise

Gaussian process regression (GPR) [23] is a non-parametric prediction model based on the
Gaussian prior distribution. The two main advantages of GPR are the interpretability between the
prediction and observations, and the probabilistic sense when some prior models are embedded. In the
past decades, theoretical research and real-world application have proved that GPR is a powerful tool
for supervised learning applications [24]. Given a dataset D =

{
X, y

}
, where X ∈ R

n×m, y ∈ R
n×1, n is

the sample size, and m is the sample dimension. Assume the regression function f mapping an input
vector x to an output value y can be written as:

y = f (x) + ε (12)
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where noise ε is the noise with Gaussian distribution N
(
0, σ2

n

)
and the “signal” term f (x) and noise

ε are mutually independent. The signal term f (x) is also assumed to be a random variable with
Gaussian distribution.

f (x) ∼ GP(m(x), k(x, x′)) (13)

where m(x) = E( f (x)) is a mean function which often set to 0, and k(x, x′) =

E[( f (x) −m(x))( f (x′) −m(x′))] is a covariance that illustrates prior assumptions including likely
smoothness and patterns in the data. The covariance function k is also identified as the kernel function
of Gaussian process [25].

Given a collected data setD =
{
X, y

}
, a predicted signal function f∗ should be constructed in order

to forecast a new output y∗ based on a new input x∗. Once we have determined the mean function and
the kernel, the predicted function f∗ can be sampled as follows.

f∗ ∼ N(0, k(x∗, x)) (14)

Then, the joint probabilistic distribution of the training outputs y and the predicted function f∗
can be written as: [

y
f∗

]
= N

(
0,

[
K(X, X) + σ2

nIn K(X, x∗)
K(x∗, X) k(x∗, x∗)

])
(15)

where K(X, X) denotes the covariance matrix between all training inputs, K(X, x∗) represents the
covariance matrix between the training inputs and test inputs, K(x∗, X) stands for the covariance matrix
between the test inputs and training inputs, k(x∗, x∗) is the covariance between test inputs. In is an
identity matrix and σ2

n is the assumed variance of training samples.
The main task of GPR is to forecast the most likely value of y∗ related to x∗. Based on the Bayes’

principle, the conditional distribution is concluded [23] as:

p
(
( f∗

∣∣∣x∗, X, y)
)
∼ N(m∗, Cov( f∗)) (16)

m∗ = K(x∗, X)
[
K(X, X) + σ2

nIn
]−1

y (17)

Cov
(
f∗
)
= k(x∗, x∗) −K(x∗, X)

[
K(X, X) + σ2

nIn
]−1

K(x∗, X) (18)

Based on these theoretical analysis, the mean and covariance function are the two most important
elements in GPR. The kernel function k directly illustrates prior knowledge about the function f ,
and the combinations between two different kernel functions still can be identified as a kernel [25].
In this paper, we use a composite covariance function with the squared exponential kernel function
k1(x, x′) Equation (19) to express smooth trend of the data and the exponential kernel functions k2(x, x′)
Equation (20) to illustrate the irregularity of the data.

k1(x, x′) = σ2
f1

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
1
2
(x− x′)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l2s1

. . .
l2sp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

(x− x′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

k2(x, x′) = σ2
f2

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

√√√√√√√√√√√
(x− x′)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l2e1

. . .
l2ep

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

(x− x′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

k(x, x′) = k1(x, x′) + k2(x, x′) (21)
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2.3. HyGPR with K-Means Clustering

In this study, the novel hybrid model HyGPR integrating the parametric MLR model and the
non-parametric GPR model are constructed to forecast the oxygen consumption in the converter
steelmaking process.

f (x) = wTx + g(x) (22)

where wT is the weight vector of the MLR model defined in Equation (10) and g(x) ∼ GP(0, k(x, x′)).
Such a hybrid model can bridge the gap between the interpretability of the parametric model

MLR and the accuracy of non-parametric model GPR, where MLR is identified as the prior model.
Note that the proposed hybrid model can be identified as a special GPR, where the mean function
is defined as a linear function and the covariance function is formed as a composite kernel function
defined in Equations (19)–(21).

The hyper-parameters of the proposed hybrid model are formed as a vector θ ={
w0, w1, . . . , wm, σ2

f1
, l2s1, . . . , l2sm, l2e1, . . . , l2em

}
. To seek the optimal hyper-parameters, we need to

maximize the log marginal likelihood [23].

log p(y|θ ) = −1
2
(y−m)TK−1(y−m) − 1

2
log|K| − n

2
log 2π (23)

where m = wTX, and Kij = k
(
xi, xj

)
. When solving this equation, the most challengeable and

time-consuming task is finding the inverse matrix K−1 with high dimensions.
To apply the proposed HyGPR model in an actual environment, we employ a K-means clustering

method to reduce the training sample size (as shown in Figure 2). When training the noise function g(x),
we use the K-means clustering method with the same input variables as MLR and GPR to decompose the
training set D =

{
X, y

}
into Q subsets, and respectively train Q GPR models. When a new input x′ arrives,

the HyGPR firstly forecasts the value of f (x′) using the MLR model, and then predicts the value of g(x′)
using the qth GPR model selected by the K-means clustering model. With this decomposition manner,
the training speed of the GPR is assumed to be accelerated because the dimension of the observed matrix
is reduced.

Training Set

f(x)=wTx' g(x')=gpq 0, k x'1,x'2

K-means

x' x'
y=f x' +g x'

GPR QGPR 1

GRP

MLR

 

Figure 2. HyGPR model with K-means clustering. MLR: multiple linear regression; GPR: Gaussian
process regression.

3. Experiments and Discussion

3.1. Data Set

To test the proposed HyGPR model, we collected the real-world process data of the converter
steelmaking process in an integrated iron and steel works situated in the north of China. The data set

336



Processes 2019, 7, 352

has 1534 observed samples between 1 April 2018 and 30 June 2018. Figure 3 indicates the distribution of
the observed outputs, which is irregular and fluctuates severely. The selected input variables includes:

(1) The weight of hot metal (Fe).
(2) The weight of impurity elements, e.g., carbon (C), silicon (Si), manganese (Mn), sulphur (S) and

phosphorus (S) which are the products of the weights of hot metal and the element percentages.
(3) Five additional materials (AM) for steelmaking, of which the real compositions are secreted.

The statistics information such as means, standard deviations, minimum and maximum values,
are summarized in Table 1. To evaluate the performance of the proposed model, we divided the dataset
into two sets with the handout way: The former 1381 samples (about 90%) for learning HyGPR and
second 153 samples (10%) for testing.

 

Figure 3. Oxygen consumption of each process in converters.

Table 1. Descriptive statistics of data set.

Parameters Mean. Std. Minimum Maximum

Fe (t) 276.8450 252.7000 289.8000 21.6711
C (t) 12.1259 0.5061 10.3288 14.0078
Si (t) 0.9477 0.4456 0.0318 2.332

Mn (t) 0.4332 0.2047 0.1252 2.2066
P (t) 0.2431 0.0221 0.1736 0.4119
S (t) 0.0023 0.0022 0 0.0343

AM1 (t) 1.7980 1.4659 0 9.908
AM2 (t) 1.7487 1.6683 0 8.172
AM3 (t) 14.1139 2.5374 5.9610 28.937
AM4 (t) 4.1623 1.3636 0 9.66
AM5 (t) 0.7833 1.6976 0 11.994

O2 (103m3) 13.7823 0.8079 11.0480 15.913

3.2. Evaluation Metrics

In order to compare HyGPR with the other benchmark prediction model, we defined four metrics
to assess quantitatively its point and interval forecasting ability. There accuracy metrics for the point
prediction including root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) were formulated in Equations (24)–(26).

RMSE =

√∑N
i=1(yi − ŷi)

2

N
(24)

MAE =
1
N

N∑
i=1

∣∣∣yi − ŷi
∣∣∣ (25)
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MAPE =
1
N

N∑
i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣× 100% (26)

where yi and ŷi denote respectively the observed and predicted oxygen consumption in the ith test
sample; N is the size of the test sample. Note that the small values of these metrics indicate high
prediction accuracy.

The proposed HyGPR model is able to provide not only the forecasting point ŷi but also the
confidence interval

[
ŷ−i , ŷ+i

]
of future oxygen consumption. Therefore, we defined a coverage metric

for interval prediction named hit ratio (HRI) in Equation (27) which is applied to calculate the number
of test samples fallen into the 95% confidence interval.

HRI =
1
N

N∑
i=1

IA(ŷi) × 100% (27)

where A =
{
ŷi
∣∣∣ŷ−i ≤ ŷi ≤ ŷ+i

}
, and IA(ŷi) =

{
1, ŷi ∈ A
0, ŷi � A

.

Additionally, we also used the CPU running time (seconds) to evaluate the learning speed of the
tested models.

3.3. Results and Analysis

In this study, all proposed and benchmark models are implemented with the MATLAB
2017 software. Especially, we used the GPML (Gaussian processes for machine learning) toolbox [26]
to construct the GPR model and the one in HyGPR, and other compared models were provided by the
toolboxes installed in MATLAB. All programs ran on a personal computer with an Intel Core i7-8550U
Processor (1.8550GHz) and 16.0GB Memory and installing a Windows 10 operating system.

In the proposed HyGPR model, the cluster count (Q) of K-means is a very important factor that
may influence the final prediction performance. To select the most appropriate value of Q, we carried
out five group experiments with different clusters. The results of the four accuracy metrics were listed
in Table 2 and the forecasting plots were shown in Figure 4.
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Figure 4. Cont.
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(b) 
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Figure 4. Forecasting results with candidate clusters: (a) Q = 1; (b) Q = 2; (c) Q = 3; (d) Q = 4; (e) Q = 5.

According to results listed in Table 2, we found that the RMSE, MAE and MAPE of the HyGPR model
with different clusters were approximate, but the CPU time was reduced greatly when Q > 1. Since the
HyGPR with four clusters could run successfully within the shortest time, we set Q = 4 in following
computational experiments. In addition, we also found that most of the actual data located in the 95%
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confidence interval was provided by HyGPR, which means the proposed model was able to make a
probabilistic sense.

Table 2. Experimental results for candidate clusters (The best metrics are highlighted in bold).

Cluster Count RMSE (103m3) MAE (103m3) MAPE (%) CPU Time (S)

Q = 1 0.64 0.49 3.56 62.47
Q = 2 0.64 0.48 3.51 27.62
Q = 3 0.63 0.49 3.55 19.82
Q = 4 0.63 0.48 3.52 13.32
Q = 5 0.64 0.53 3.90 15.49

In order to further evaluate the prediction accuracy of the HyGPR model, we compared it with three
benchmark models including MLR, ANN [27], and the support vector machine (SVM) [28]. The MLR
model was created by the function fitlm in MATLAB. The function fitnet in MATLAB was adopted to
construct ANN with three layers and 10 nodes in the hidden layer, in which the network parameters
were optimized by the Levenberg–Marquardt method. The function fitrsvm in MATLAB was used to
construct the SVM model with the radial basis function (RBF) kernel, in which the hyperparameters
were automatically optimized by minimizing the five-fold cross-validation loss function.

To quantitatively select the best one from the testing models, the computational results of the
point evaluation metrics were listed in Table 3. It can be observed that the proposed HyGPR model
obtained the smallest of RMSE, MAE and MAPE, while the proposed MLR got the worst results of
RMSE, MAE and MAPE. The above results focused on the prediction accuracy of the single valued
point predictions (as shown in Figure 5).

Table 3. Performance evaluation of compared models on the test set (The best metrics are highlighted
in bold).

Model RMSE (103m3) MAE (103m3) MAPE (%)

MLR 0.70 0.54 3.95
SVM 0.69 0.53 3.92
ANN 0.68 0.52 3.84

HyGPR 0.63 0.48 3.52

 

Figure 5. Point forecasting results of the oxygen consumption.

Usually, the MLR, ANN and SVM can only provide point estimations of future oxygen consumption.
However, the HyGPR model can provide not only the forecasting point ŷi but also the confidence
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interval
[
ŷ−i , ŷ+i

]
of future oxygen consumption. To test its HRI within 95% confidence interval of

HyGPR, we compared it with the standard GPR with the squared exponential kernel function. Table 4
listed the evaluation results of GPR and HyGPR. The HyGPR obtained the same value of RMSE and
slightly better value of MAE, MAPE and HRI, but its computing speed is more than five times as fast as
the standard GPR. Figure 6 showed the point forecasts and the corresponding 95% confidence intervals.
It can also be observed that nearly all of the actual observations fell in the confidence intervals.

Table 4. Accuracy and interval metrics of GPR and HyGPR (The best metrics are highlighted in bold).

Model RMSE (103m3) MAE (103m3) MAPE (%) HRI (%) CPU (S)

GPR 0.63 0.49 3.59 92.42% 75.74
HyGPR 0.63 0.48 3.52 96.08% 14.14

(a) 

(b) 

O
xy
ge
n/
10
3 m

3

Figure 6. Interval forecasting results of oxygen consumption: (a) HyGPR; (b) standard GPR.

4. Conclusions

With the increased concerns on the management and optimization of energy systems, it is necessary
for modern integrated iron and steel works to develop an accurate and robust model to forecast oxygen
consumption. However, it is challengeable to directly forecast oxygen consumption with a simple
regression model due to its intermittent and uncertain features. In this study, we introduce a novel
hybrid model named HyGPR integrating MLR and GPR. In the proposed prediction model, the MLR
model is developed to figure the global trend of the oxygen consumption, and the GPR is applied to
explore the local fluctuation caused by noise. Additionally, to overcome the shortcoming of GPR on
training speed, a K-means clustering method is applied to decompose the training dataset into a number
of subsets. The effectiveness of the HyGPR was verified using the actual process data collected from a
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large integrated iron and steel works located in the north of China. Afterwards, HyGPR is compared
with MLR, ANN, SVM and GPR. The results show that HyGPR can obtain the best point prediction
metrics in terms of RMSE, MAE, and MAPE, and the better interval prediction performance in terms
of HRI. Furthermore, it runs more than five times faster than the standard GPR. Therefore, it can
be concluded that the proposed method is an effective tool to improve the forecasting accuracy and
coverage. Moreover, HyGPR runs faster than the standard GPR model due to implementing the
decomposition policy.

In future studies, we will investigate the following issues that may be meaningful for industrial
application and scientific research:

(1). The online prediction model involving dynamic operating parameters, such as the position of
oxygen lance, the pressure of oxygen blowing and the duration of oxygen blowing.

(2). The prediction model to forecast slopping events, which is very important to reduce production
costs and environmental impacts.

(3). In this study, we assume that the noise of the steelmaking process is a Gaussian distribution.
However, when it comes to the small-sample and high-dimensional data set, the assumption is
incorrect. So it needs to develop a non-Gaussian prediction model applied in other environments.
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Abstract: A machine learning-based analysis was applied to process data obtained from a Basic
Oxygen Steelmaking (BOS) pilot plant. The first purpose was to identify correlations between
operating parameters and reactor performance, defined as rate of decarburization (dc/dt). Correlation
analysis showed, as expected a strong positive correlation between the rate of decarburization (dc/dt)
and total oxygen flow. On the other hand, the decarburization rate exhibited a negative correlation
with lance height. Less obviously, the decarburization rate, also showed a positive correlation with
temperature of the waste gas and CO2 content in the waste gas. The second purpose was to train the
pilot-plant dataset and develop a neural network based regression to predict the decarburization rate.
This was used to predict the decarburization rate in a BOS furnace in an actual manufacturing plant
based on lance height and total oxygen flow. The performance was satisfactory with a coefficient of
determination of 0.98, confirming that the trained model can adequately predict the variation in the
decarburization rate (dc/dt) within BOS reactors.

Keywords: machine learning; artificial intelligence; neural network; BOS reactor; steelmaking

1. Introduction

The processing of lower grade ores is a topic of particular interest, as fluctuation in raw material
cost is a key challenge to sustainability in the steel industry. Raw materials flexibility is to a great
extent enabled in the basic oxygen steelmaking (BOS) process, wherein oxidizable impurities, such as
phosphorus (P) and silicon (Si), are separated into a slag phase. However, the primary purpose of the
BOS process is to convert pig iron into crude steel and, therefore, impurity removal being a secondary
function of the converter, has to be balanced by the decarburization process.

As a result, processing parameters have to be balanced, and many different chemical reactions
compete for the available oxygen. There are also many processing parameters that are interconnected
in complicated ways that cannot be readily predicted. The BOS process is in general advised by static
mass- and heat-balanced models, which predict, based on inputs, the resultant end-point. The input
parameters include at least the quantities of hot metal, steel scrap, iron ore, fluxes and oxygen to blow,
while the resultant end-point is the temperature, weight and composition of steel produced. The
process control is supported by various measurements, such as in-blow sampling, end-blow sampling,
oxygen flow rate/ total oxygen blown, lance height, waste gas flow rate, waste gas pressure, waste gas
composition, etc. The operating information is recorded and stored in a plant manufacturing system
normally at the interval of one second. Dynamic process modeling of the BOS process, depending
on the researchers, can be based on thermodynamics [1], multizone reactions [2–4], empirical or
semi-empirical plant data regression, in combination with computational fluid dynamics (CFD) in
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some cases [5]. Data-driven modeling techniques have been applied in the dynamic modeling of basic
oxygen processes. These include the artificial neural network (ANN) [6–8], fuzzy logic [9]), support
vector machine [10,11] and case base reasoning [12]. However, most of these models are limited to the
end-point control of carbon and temperature.

The pilot plant work published by Millman et al. [2] (“IMPHOS” or Improved phosphorus refining)
provides a set of data on top-blown oxygen steelmaking under conditions similar to an actual BOS
plant. The trials were carried out in a six-ton pilot converter at the MEFOS in Sweden and provides
data for heats through samples obtained from seven vertical positions in the vessel at 2-min intervals.
In addition, 28 process data parameters (including decarburization rate) were recorded every second.
The major parameters recorded are the total of materials added as a function of time (hot metal and
fluxes); oxygen flow rate/total amount of oxygen blown (total oxygen flow); lance height; waste gas
(temperature; flow rate and composition of CO, CO2, N2 and O2) and the data calculated from the
above measurements, for example, dc/dt (the decarburization rate).

Using machine learning (ML) approaches to predict material properties is a research field that has
been increasing in the last years [13]. Thermodynamic stability of perovskite, transition temperatures
of inorganic glasses, glass-forming ability of metallic alloys and interphase precipitation in HSLA (High
Strength Low Alloy) steels, among others, are examples of material properties studied by machining
learning approaches [14–18]. Machine learning algorithms enable us to design new grades of alloys
purely based on past data, either available as an open dataset or reported in the scientific literature [19].

The objective of this study is to carry out a machine learning (ML) analysis on the data generated
from the six-ton pilot BOS trials (IMPHOS data) with the purposes of (i) identifying correlations
between features and (ii) based on a training data and test data developing a neural network-based
regression model (algorithm) to predict the decarburization rate. The tools that we employed in this
study were Microsoft Power BI for statistical analysis; Python (Scikit-learn, Matplotlib and Seaborn) for
performing correlation analysis and statistical analysis and Microsoft Azure Machine Learning Studio
for regression models and their subsequent performance evaluation [20]. The algorithm developed
here is used to successfully predict the decarburization rate (dc/dt) in an actual manufacturing plant
based on two operating parameters of lance height and total oxygen flow.

2. The Multiphysics of the Basic Oxygen Steelmaking Process

The overall purpose of the BOS process is to refine hot metal (pig iron) to a steel of desired
chemistry (C, Si, Mn, P and S) and temperature in a controlled manner in a refractory converter (as
shown schematically in Figure 1). In the BOS process wherein C-rich pig iron is converted to steel, pure
oxygen is injected though a water-cooled lance into the molten metal bath, and the bath is covered by
molten oxides (slag phase). The role of the oxygen is to selectively react with oxidizable elements and
primarily remove the C (from >4% to less than 0.1%) as a gas phase but also remove other unwanted
impurities, stemming from the iron ore as oxides, that separate and dissolve into the slag phase.

The kinetics of the BOS process is very complex, because it involves multiple simultaneous
processes. Simultaneous multiphase interactions, heat and mass transfer, gas-slag-metal chemical
reactions in multiple zones and vigorous fluid flow caused by the impingement of the oxygen jet occur
in a BOS reactor at high temperatures. In addition, it is a dynamic and transient process, which makes
the kinetics involved in a reactor more complex. Direct measurements of temperatures and chemistries
are very difficult due to the nature of the process, which involves harsh conditions. That is why many
researchers have been trying to address these difficulties through modeling the process.

A multiphysics description of the converter process, with the ultimate aim of predicting carbon
content in the melt, will have to involve several sub-models at different scales. These models will have
to capture various phenomenon occurring in the gas/metal, metal/slag and metal/slag/gas mixtures, as
well as transport processes in the bulk metal and bulk slag. The models include, but are not limited to,
the following:
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Figure 1. A schematic of the pilot plant BOF converter used in the Improved Phosphorus-refining
(IMPHOS) trials with dimensions and indicated location heights of the sampling levels [2].

(i) Multiphase fluid flow in the various multiphase mixtures. Since this is a complex and
computational task by itself, it is often simplified to 2D and informed by physical water models [5,21,22].

(ii) Reaction kinetics and competition between the injected oxygen and various dissolved elements,
such as C, but also P, Si, Mn, etc. [4,23].

(iii) Microscale interactions between the phases, which include the separation of elements and
precipitated phases across interfaces and emulsification [4,24,25].

The decarburization process mainly takes place in two reaction zones: namely, the jet impact zone
and the gas-slag-metal emulsion zone [4,24]. At the emulsion zone, a sequence of chemical reactions
take place: Firstly, FeO reacts with CO to form CO2 at the slag-gas interface. Secondly, CO2 transfers
from the slag-gas interface to the gas-steel droplet interface via the gas phase. Subsequently, CO2

reacts with carbon in an iron droplet at the metal-gas interface, and the formed CO is transferred
back to the slag-gas interface via the gas phase. It should be noted that there is disagreement among
researchers about the description of the mechanisms and the rate-controlling step(s) under different
operating conditions [26]. Some other studies proposed that the reaction rate is controlled by the
interfacial area change because of material exchanges during the process. The phase field models
developed according to the interfacial instability normally consider only the interfacial tension and
fluid flow [24]. The coupling of models across scales is a hard enough (and computationally intensive)
problem, which can be simplified and described under simplified process windows. However, the
predictive capability under widely ranging process parameters is not possible. Consequently, all the
previous studies, although mechanistic in nature, have different levels of simplification to address the
complex phenomena in the BOS reactor.

347



Processes 2020, 8, 371

The removal of elements (C, Si, Mn, P and S) from pig iron in the industrial BOS process is mainly
controlled by two operating parameters: lance height (i.e., the height of the lance tip above the static
steel bath) and oxygen blowing rate (or total oxygen flow/blown). The control strategy can be varying
one or both of these two parameters. The lance profile (i.e., lance height as a function of blowing
time) is critically important for the efficient production of high-quality steel. For example, a high
lance position can help stir and oxidize the slag with a high FeO content, which can accelerate the
removal of carbon. A low lance height can substantially increase the impingement of the oxygen jet
into the metal bath and splash the metal droplets into the slag layer, which accelerates the formation
of the emulsion zone and the removal of carbon and other elements through the interfacial reactions
between the massive numbers of metal droplets with emulsified slag [27]. The refining behavior (e.g.,
the decarburization rate) has a close relationship with the lance profile and oxygen blowing rate (or
total oxygen flow). Thus, in this work, we intend to develop a novel algorithm to predict the refining
behavior of the BOS reactor (using the decarburization rate as an example) by using machine learning
to analyze the massive dataset of operating parameters, including lance height and total oxygen flow.

Using machine learning, we propose a technique that does not employ any simplifying assumptions.
On the contrary, the algorithm was trained on a real dataset. In addition, the machine learning algorithm
does not require to take into account any of the physics involved in the process. It actually provides a
ring road to all the complexities involved in a BOS reactor. In addition, as shown later, the technique
is able to predict the decarburization rate precisely. The aim of the current study is, thus, twofold:
(1) Firstly, to identify the correlations and trends from a set of processing parameters on carbon
removal. (2) Secondly, to try and circumvent the granularity of multiphysics and develop an artificial
intelligence-based predictive model for carbon removal.

3. Dataset

A six-ton BOF (Basic Oxygen Furnace) pilot plant converter located at Swerea MEFOS, Sweden, as
part of the European commission funded project IMPHOS: Improved Phosphorus refining [2]. In this
reactor, operating conditions, such as oxygen blow rate (total oxygen flow), lance height, the quantities
of hot metal and fluxes used and off-gas analysis, are recorded. Gas/slag/metal emulsion samples were
taken from seven various heights and at 2-min intervals from the start of blowing during a blow via
robotic delivery. The sampler lances consist of an inner and outer structure of three mild steel bars, the
inner being joined to the sides of inline sample pots and the outer joined to the sides of the disc sample
pot lids. The sampler lance is lowered into the converter through an opening in the top (with a slight
offset from the oxygen lance), with the lids in the closed position. Once lowered into the position, the
outer three bars are retracted, lifting the lids in situ and allowing the sample pots to fill. A schematic of
the converter is given in Figure 1 with dimensions. The converter had a lining of magnesia-carbon
(fired and fused) bricks. Gas inlets include a single bath agitation tuyere, blowing nitrogen at a rate of
0.5 Nm3min−1, and a water-cooled oxygen lance blowing oxygen at a norminal rate of 17 Nm3min−1.
During the blow, the following was measured as output data from the reactor: oxygen flow rate/total
oxygen flow; lance height and waste gas (temperature; flow rate and composition of CO, CO2, N2

and O2).
There are various models, such as static (mass balance model, thermodynamic model, etc.);

empirical (regression based on individual plant data) and dynamic. These models are intended to
predict the end-point of steel or the steel/slag compositions as a function of blowing time and to
control/optimize BOF steelmaking. In the BOF process, the blown oxygen is used for decarburization;
the removal of other impurities of Si, Mn and P; the formation of iron oxides in the slag and
post-combustion. A typical example is off-gas information. The industry has been exploring the use of
off-gas information for process control. The most important one is to use the off-gas composition to
monitor the decarburization rate in the BOS converter. If the decarburization rate can be precisely
controlled or predicted, then under the known oxygen-blowing conditions, the amount of oxygen in
the slag (iron oxides) and the amount of oxygen to remove other elements, especially for phosphorus,
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can be predicted. The decarburization rate can be calculated by the off-gas analysis (CO, CO2, N2 and
O2). Then, we will link the decarburization rate (calculated from off-gas composition) to the operating
parameter(s). This will provide the foundation to predict the decarburization rate (dc/dt) and, as a
result, dynamically control the converter operation. The features we are investigating from the dataset
are presented in Table 1. The other operating conditions are listed in Table 2, including the chemistries
of hot metal; steel and slag; temperature; charges (hot metal, scrap and fluxes) and lance height.

Table 1. The operating parameters and their features obtained from the six-ton pilot plant BOF
converter system.

Parameter Feature

Charge Time (min) Blowing time (in minutes from O2 ignition)

dc/dt (kg C/min) Instant decarburization rate

Oxygen Yield (%) Instant oxygen yield

Total Oxygen flow rate (Nm3/min) Instant oxygen flow rate

Total C removal (kg) Calculated total C removed from the start of O2

Total N2 flow rate (Nm3/min) Instant N2 flow rate

Total O2 (Nm3/min) Total blown oxygen volume

Total N2 (Nm3/min) Total bottom blown nitrogen volume

Total propane (Nm3/min) Total blown propane volume

Lance height (mm) Instant lance height from the point of calculated metal bath level

dC/dt (kg C/s) Calculated from off-gas composition

dO/dt (kg O/s) Calculated from off-gas, oxygen for decarburization

dOs/dt (kg O/s) Calculated from off-gas composition, oxygen into slag

Temp. waste gas (◦C) Off-gas temperature (measured after water cooling)

CO waste gas (%) Measured waste gas composition

CO2 waste gas (%) Measured waste gas composition

O2 waste gas (%) Measured waste gas composition

Note: dC/dt (kg C/s) is calculated from the waste gas composition, which was recorded in the operating system in
every second, while dc/dt (kg C/min) is converted from dC/dt (kg C/s). The decarburization rate is generally expressed
as dc/dt (kg C/min), and therefore, the target of this study is to predict dc/dt (kg C/min) by a machine-learning
(ML)-based algorithm from the operating parameters. It should be pointed out that dC/dt (kg C/s) is still mentioned
in this study for the purpose of explanation.

In order to validate the correlation between the dc/dt and the operating parameters (the ML-based
methodology, as explained in Section 4, Methods, to predict dc/dt from operating parameters)
established from the six-ton BOF converter, production information has been taken from a 330-ton
converter at the Tata Steel UK Port Talbot Plant. The operating parameters and the resultant information
include oxygen flow rate; total oxygen flow; off-gas analysis (temperature, rate, composition CO,
CO2, N2 and O2) and dC/dt (kg C/s) calculated from the off-gas analysis. A total of 1100 data points
were obtained at different times for each value corresponding to Table 1, from the 6-ton pilot reactor,
which were used for training and test data. In addition, a total of 1200 points corresponding to known
conditions in the 330-ton full scale reactor were used as additional test data to investigate if the trained
model could predict the decarburization rate in a scaled-up system. It should be noted that differences
in the levels/quantities of the parameters exist between the pilot and industrial converters; for example,
the heat size (6t for pilot converter and 330t for industrial converter), blowing time (~18 min for the 6t
pilot converter and ~20 min for the 330t industrial converter), lance height (110~180 mm for the 6t pilot
converter and 2.0~2.6 meters for the 330t industrial converter), O2 flow rate (14.00~17.30 Nm3/min
for the 6t pilot converter and 598~1025 Nm3/min for the 330t industrial converter) and total oxygen
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flow (278 Nm3 for the 6t pilot converter and 18863 Nm3 for the 330t industrial converter). However,
the parameters and their features recorded in their systems are similar for both conditions, and in
this paper, we use the dataset from one heat of both the 6t pilot and the 330t industrial converters,
respectively, to develop and demonstrate the machining learning-based model for the prediction of the
decarburization rate from operating parameters under different conditions.

Table 2. The operating conditions for both the six-ton (6t) and 330t converters.

6t pilot BOF. C Si Mn P S T (◦C)

Hot metal (%) 3.78~4.25 0.41~0.88 0.39~0.48 0.067~0.095 0.037~0.081 1272~1316

Steel (%) 0.01~0.41 0~0.15 0.05~0.27 0.008~0.042 0.018~0.035 1669~1772

CaO SiO2 FeO MnO Al2O3 MgO P2O5

Slag (%) 26.2~52.3 6.7~19.2 8.3~30.5 2.6~4.1 0.7~1.6 4.6~17.7 0.73~1.62

330t BOF C Si Mn P S T (°C)

Hot metal (%) 3.60~5.18 0.30~1.20 0.11~0.52 0.058~0.125 0.025~0.072 1341~1412

Steel (%) 0.021~0.55 0~0.10 0.03~0.21 0.001~0.057 0.011~0.032 1579~1738

CaO SiO2 FeO MnO Al2O3 MgO P2O5

Slag (%) 36.07~55.35 9.13~19.58 12.15~31.34 2.04~5.62 0.64~4.97 3.61~10.73 0.94~2.38

6t pilot BOF 330t BOF

hot metal 4410~5170 kg 269.6~302.5 t

scrap 500~750 kg 46.0~85.5 t

lime 250~350 kg 5~25 t

dolomet 0~30 kg 0~11.5 t

iron ore 0 kg 0~6.5 t

total oxygen 263~307 Nm3 12265~21641 Nm3

Lance height 110~180 mm 2.0~2.6 m

4. Method

While neural networks are mainly known for applications in deep learning, they can be easily
used for regression problems and are especially suitable when linear regression does not work. Neural
network regression is another supervised learning algorithm available in Microsoft Azure Machine
Learning Studio and requires a label column which has to be numerical [20]. Since our label column
(dc/dt) was numerical, and the results generated by classical linear regression had low accuracy, we
used a neural network regression. Linear regression resulted in a coefficient of determination of 0.45
(Table 3, column 2), which was much lower than that by using neural network regression (0.99) and
deemed to be below what is acceptable. The output of a single neuron has a form of g(Σjwjixj), where
wji are the weights and xj are the input. A continuous activation function, e.g., sigmoid function
of a form of 1/(1 + e−x ), was employed. We used “Parameter Range” in the Create trainer mode
and subsequently employed the Tune Model Hyperparameters module to iterate over the possible
combinations of parameters to achieve the optimal configuration. In “Hidden layer specification” we
selected “fully connected case” to create a model that has exactly one hidden layer, and the output
layer is fully connected to the hidden layer, and the hidden layer is fully connected to the input
layer. Number of nodes in the hidden layer and learning rate were used as the hyperparameters. The
optimized number of hidden nodes was calculated to be 100. Another hyperparameter that was tuned
was the learning rate. Learning rate is the step taken at each iteration before correction. A large value
of the learning rate makes the convergence faster; however, it can result in overshooting the local
minima. The tuned learning rate was calculated to be 0.1. Min-max normalizer was selected to linearly
rescale each feature to the [0, 1] interval. Rescaling to the [0, 1] interval was carried out by shifting the
values of each features, i.e., the minimum value is 0, and then dividing by the new maximum value.
The error after each iteration is calculated and “back-propagated” to the network using the chain rule.
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Table 3. Evaluation metrics of the predicted values of the dc/dt by using different features in the pilot
dataset and using different regression methods.

Evaluated Metrics
Pilot Dataset

with All
Features (1)

Pilot Dataset
with All

Features (2)

Pilot Dataset
without
dc/dt (2)

Pilot Dataset with Total
O2 Flow and Lance

Height Only (2)

Industrial Dataset with
Total O2 Flow and

Lance Height Only (2)

Mean Absolute Error 0.12 0.029 0.030 0.034 0.25

Root Mean Square Error 0.51 0.043 0.055 0.060 0.62

Relative Absolute Error 0.42 0.005 0.006 0.008 0.04

Relative Square Error 0.48 0.000046 0.00006 0.0001 0.009

Coefficient of
Determination 0.45 0.99 0.99 0.97 0.98

(1) Using linear regression and (2) using neural network regression.

5. Results and Discussion

5.1. Machine Learning Predictions of the Decarburization Rate dc/dt

Figure 2 shows the correlation matrix between different features, which was generated by the
available dataset. The correlation between two datasets varies between -1 and 1, with 0 implying no
correlation. Correlation of +1 implies a perfect positive correlation (e.g., as x increases, so does y),
and -1 implies a perfect negative correlation (as x increases, y decreases). Dark blue implies a strong
positive correlation, and lighter pink shows a strong negative correlation. For example, there is a
strong positive correlation between Total O2 flow and dO/dt, or there is a strong negative correlation
between O2 waste gas and dc/dt.

Total oxygen flow has nearly perfect positive (>0.9) correlation with dc/dt (kg C/min) or dC/dt (kg
C/s), total C removed, dO/dt, dOs/dt (0.71) and waste gas CO2 composition. The total oxygen flow
was mainly used for decarburization escaping from the reactor as waste gas and remaining in the
slag (oxidization of Si, Mn, Fe and P elements in the liquid metal). The former is directly linked with
parameters dc/dt (or dC/dt), total C removed, dO/dt and waste gas CO2 composition, while the latter
is in the form of dOs/dt. Furthermore, dc/dt (or dC/dt) has nearly perfect positive correlation with
total O2 flow and waste gas CO2 composition and nearly perfect negative correlation with lance height
and waste gas O2. Except the oxygen from steel scrap and iron ore coolant, the main oxygen comes
from the total oxygen blown through the lance that is also the main oxygen source for decarburization.
Thus, the dc/dt (or dC/dt) has a nearly perfect correlation with the total O2 flow. During the pilot plant
experiment, O2 was blown at a fixed flow rate, and the refining performance in the converter was
controlled by adjusting the lance height. The decarburization mainly occurred in two zones of a hot
spot zone (at the vicinity of the location where the lance releases oxygen to the bath) and gas-slag-metal
droplet emulsification zone (where the available area for slag/metal/gas reaction is high). Lower lance
height increases the hot spot zone and the amount of metal droplets in the emulsification zone, and
the latter increases the decarburization in the gas-slag-metal droplet zone. Therefore, the overall
decarburization rate increases with decreasing the lance height, which explains the observed negative
correlation. The decarburization rate is calculated from the waste gas composition according to the
equation dc/dt

(
dc
dt = (CO + CO2) ×waste gas f low rate× 12

22.4

)
. This explains well the perfect positive

correlation between dc/dt (or dC/dt) and waste gas CO2 concentration. From the above analysis,
both the total O2 flow and the lance height are the controlling parameters for the decarburization,
which indicates that the probability of predicting the decarburization rate by the combination of
both parameters (see Section 5.3. Prediction of the dc/dt After Excluding Parameters). Finally, dO/dt
has nearly perfect positive correlation with the total O2 flow, dc/dt (or dC/dt) and waste gas CO2

composition but nearly perfect negative correlation with the lance height and waste gas O2 content
(similar explanation to that of the dc/dt or dC/dt dependence upon the parameters).
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Figure 2. The correlations between different features within the dataset from the six-ton (6t) pilot plant
trial. The figure has been vertically split into two parts, and the top and the bottom shown above are
actually the left and right parts of the figure, respectively.
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5.2. Prediction of dc/dt With All the Features Included in the Dataset

Initially, we used all the features present in the dataset (including dC/dt) to predict the value of the
dc/dt. Figure 3 shows a statistical comparison between the actual values of the dc/dt (Figure 3a) and the
predicted ones (Figure 3b). The blue bars show the histogram of the values. The green shadowed area
shows the cumulative distribution function (CDF) and the blue shadowed area shows the probability
density function (PDF). As shown in the figure, the predicted functions closely follow those of the
actual values of the dc/dt. Both histograms show a frequency around 700 for a dc/dt value close to 0. In
addition, both the histograms of the actual value of dc/dt and that of the predicted value show a bump
in frequency around 100 for dc/dt values close to 9.6 and a bump at a frequency about 100 for dc/dt
values around 17. As evident from Figure 3, the CDF of the actual values and that of the predicted
values have a very similar shape. This confirms that the algorithm successfully captured the statistics
of the dataset.

Figure 3. Histogram (blue), cumulative distribution function (green) and probability density function
(purple) for (a) the actual values of the dc/dt and (b) the predicted values of the dc/dt for the pilot
dataset with all the features included.

Table 4 compares the statistical metrics between the actual and predicted values of the dc/dt.
Although the statistical metrics for the predicted values are slightly higher, it can be concluded that
the machine-learning model successfully captured the statistics of the values of the dc/dt. This is
further confirmed by Figure 4, the scatter plot, showing that the neural network regression model
could accurately predict the values of the dc/dt. It should be noted that a scatter plot that compares the
predicted values of the test set with the “true” values of the target is one the main metrics to evaluate a
model performance. As is shown in Figure 4, the scored label as a function of the “true” value of the
dc/dt follows a y = x line, meaning the model performed very well.

Table 4. Statistical comparison between the actual values of the dc/dt with the predicted values for the
pilot dataset with all the features included.

Mean Median Min Max Standard Deviation

Actual Statistics 4.43 0.081 0 19.105 6.42

Predicted Statistics 4.45 0.092 0 19.09 6.43
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Figure 4. Scatter plot comparing the predicted values of the dc/dt using the neural network method
with the actual values of the dc/dt for the pilot dataset with all the features included.

Figure 5 shows the error histogram of the neural network regression model. Errors with a value
of 0.000049 had the highest frequency, confirming the excellent performance of the model. Table 3
(column 3) shows the performance metrics of the neural network regression model. The metrics were
recorded to be 0.029 for the mean absolute error, 0.043 for the root mean squared error, 0.005 for the
relative absolute error and 0.0046 for the relative squared error. The coefficient of determination for
the model was calculated to be 0.99, which shows the excellent performance of the neural network
regression algorithm.

 
Figure 5. Error histogram of the predicted values of the dc/dt by using all the features included in the
pilot plant dataset.
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We used the permutation method to measure the feature importance for the prediction of the
dc/dt. The feature importance values are shown in Table 5. It was computed that the dC/dt had the
highest importance, with a value of 9.06. In second place stands the dO/dt with a value of 0.16.

Table 5. Feature importance for predicting the values of the dc/dt in the pilot dataset with all the features.

dC/dt dO/dt
Oxygen

Yield

CO2

Waste
Gas

CO
Waste
Gas

Total
O2

Flow
dOs/dt

Temp. of
Waste Gas

Total
O2

O2

Waste
Gas

9.06 0.16 0.07 0.04 0.004 0.002 0.0006 0.0002 0.00014 0.00013

5.3. Prediction of the dc/dt After Excluding Parameters

In order to establish whether the dc/dt could be predicted with reasonable accuracy with fewer
parameters, parameters were successively removed. As discussed in the previous section, the dC/dt
had a very high prediction power for the values of the dc/dt. However, it was anticipated that the
dC/dt might lead to data leakage, as the dC/dt is calculated from the value of the dc/dt. Thus, the
feature dC/dt was removed in order to measure the performance of the neural network regression
model (Table 3, column 4). It was found that the scored labels (predicted values) have the very similar
histogram, CDF and PDF graphs to those of the actual values of the dc/dt. Similar to the previous
calculations, the statistical parameters belonging to the predicted values were slightly higher; however,
the difference is very low, and it can be thus said that the model was able to capture the statistics of the
data when the feature dC/dt was removed.

Then, we attempted to predict the value of the dc/dt using only two features: namely, total O2

flow and lance height, because these are the two inputs that are controllable in an industrial reactor.
The oxygen blown into the converter will be used for the decarburization (dO/dt), oxidization of other
elements into the slag (dOs/dt), oxygen in the waste gas, etc.; therefore, in the prediction of the dc/dt,
the features of the dO/dt, dOs/dt, etc. are excluded. Figure 6 shows the scatter plot of the dc/dt versus
the predicted values. As is evident from the figure, except for some values of the dc/dt where the
predicted values were slightly lower, for most of the values, the neural network regression model was
able to predict the dc/dt with a good accuracy.

Figure 6. Scatter plot comparing the predicted values of the dc/dt using the neural network method
with the actual values of dc/dt by using the two features of total oxygen flow and lance height in the
pilot dataset.
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Figure 7 shows the error histogram for this prediction. The most frequent error was 0.0000033.
Table 3 (column 5) shows the performance metrics for the prediction of the dc/dt using only two
features. For this computation, the mean absolute error was calculated to be 0.034, root mean squared
error to be 0.06, relative absolute error to be 0.008 and relative squared error to be 0.0001. The coefficient
of determination was computed to be 0.97. These performance metrics showed that we were able
to successfully predict the value of the dc/dt using only the two variables of total oxygen flow and
lance height.

Figure 7. Error histogram of the predicted values of the dc/dt by using the two operating parameters of
total oxygen flow and lance height in the pilot plant dataset.

5.4. Prediction of the dc/dt for an Industrial Dataset

We used a dataset that was acquired from an industrial reactor to evaluate the performance of our
trained model. Figure 8 shows the comparison between the predicted values and the actual values of
the dc/dt. Again, the authors would like to emphasize if the predicted value of the target as a function
of the “true” values of the test samples follows the “y = x” line, one can conclude that the model
performance is at its best. It is worth mentioning that we only used two features for this prediction:
namely, total O2 flow and lance height. It is always one the goals of any machine-learning development
to predict the target with a fewer number of variables/predictors. This is because if the model deals
with many predictor variables, then there is a high chance that there are hidden relationships between
some of them, leading to redundancy and, even if there is no relationship between any of them, the
model can suffer from overfitting when there are a large number of predictor variables. In addition,
a model that can predict with a fewer number of predictor variables is more practical due to some
considerations, such as data availability, storage, computer resources, time taken for computation, etc.
Thus, this is one of the achievements of this study, that the developed model can predict the target by
only using two predictor variables.

The scatter plot demonstrates that our trained model could predict the dc/dt precisely. Figure 9
shows the error histogram for this prediction. The most frequent error was 0.000026. The metrics
(Table 3, column 6) were recorded to be 0.25, 0.62, 0.04 and 0.009 for the mean absolute error, root
mean squared error, relative absolute error and relative squared error, respectively. The coefficient of
determination was computed to be 0.98. These values confirm that our trained model can be used at
industries to predict and control the variation of the dc/dt in an actual reactor. Figure 8 shows that the
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machine-learning algorithm can predict the decarburization rate very accurately without employing
any simplifications and without taking into account all the reactions, interactions, mass and heat
transfers and fluid flows. In fact, all of these parameters are already inherited in the dataset, and an
algorithm trained on the real dataset naturally learns the relationships between all of the parameters
involved in the process without exactly knowing the physical meanings of them.

 
Figure 8. Scatter plot comparing the predicted values of the dc/dt using neural network method with
the actual values of the dc/dt for an industrial dataset with the two operating parameters of total oxygen
flow and lance height only.

 
Figure 9. Error histogram of the predicted values of the dc/dt for the industrial dataset with the two
operating parameters of total oxygen flow and lance height only.

357



Processes 2020, 8, 371

6. Conclusions

We applied a machine learning-based analysis to a dataset (operating and output data) from a
pilot basic oxygen steelmaking (BOS) converter. Correlation analysis showed:

• A strong positive correlation between the rate of decarburization (dc/dt) and total oxygen flow.
• A negative correlation with lance height.
• Less obviously, the decarburization also showed a positive correlation with the temperature of the

waste gas, CO2 content in the waste gas and O2 in the waste gas.
• The pilot plant dataset was used for training and test data to develop a neural network-based

regression to predict the decarburization rate. The developed algorithm was used successfully to
predict the decarburization rate in a BOS furnace in an actual manufacturing plant based on the
two operating parameters of total oxygen flow and lance height only.

• The performance was satisfactory, with a coefficient of determination of 0.98, confirming that the
trained model can adequately predict the variation in the dc/dt within BOS reactors.

The method is easily scalable for industrial applications. In addition, the machine-learning model
does not simplify the problem and is able to predict the decarburization rate accurately through
learning from the real dataset acquired from BOS pilot plants.
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Abstract: Basic oxygen furnaces (BOFs) are widely used to produce steel from hot metal. The process
typically has limited automation which leads to sub-optimal operation. Economically optimal
operation can be potentially achieved by using a dynamic optimization framework to provide
operators the best combination of input trajectories. In this paper, a first-principles based dynamic
model for the BOF that can be used within the dynamic optimization routine is described. The model
extends a previous work by incorporating a model for slag formation and energy balances. In this
new version of the mathematical model, the submodel for the decarburization in the emulsion zone
is also modified to account for recent findings, and an algebraic equation for the calculation of the
calcium oxide saturation in slag is developed. The dynamic model is then used to simulate the
operation of two distinct furnaces. It was found that the prediction accuracy of the developed model
is significantly superior to its predecessor and the number of process variables that it is able to predict
is also higher.

Keywords: dynamic model; simulation; basic oxygen furnace

1. Introduction

The Basic Oxygen Furance (BOF) is responsible for approximately 70% of the steel production
worldwide [1]. A schematic diagram for the BOF in shown in Figure 1. Scrap metal and hot metal
are charged to the BOF, and an oxygen jet at supersonic speed is injected from the top through the
lance onto the surface of the metal bath. Some of the species in the metal bath are oxidized and form a
less dense slag layer. Flux is added to prevent refractory wearing and to contribute to slag formation.
Millions of metal droplets are generated at the impact zone due to the impingement of the supersonic
oxygen jet on the liquid metal. Carbon in the metal droplets can react with iron oxide in the slag
forming carbon monoxide [2]. Experiments using X-ray fluoroscopy have shown that gas bubbles
can be formed within the metal droplet itself [2,3] and not only at the metal droplet-slag interface.
Carbon monoxide and carbon dioxide are also formed due to decarburization taking place at the
impact zone. The droplet-gas-slag mixture, commonly referred to as emulsion, can occupy most of the
furnace volume during the main blow.

Processes 2020, 8, 483; doi:10.3390/pr8040483 www.mdpi.com/journal/processes361
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Figure 1. Schematic representation of the Basic Oxygen Furnace (BOF).

The process has limited automation and is highly dependent on operators’ knowledge and past
experience. Without a framework that can consistently aid the operators with the decision-making
process, some of the more complex interactions between the process variables may be overlooked,
leading ultimately to sub-optimal operation. Therefore, an optimization framework for the BOF
operation that can consistently provide operators with the economically optimal operating conditions
could greatly help steelshops reduce production costs. However, in order to have an optimization
framework it is necessary to have an accurate enough dynamic model of the physical process.

Several dynamic models [4–9] for the BOF have been developed in recent years. Jalkanen [4]
developed the CONSIM 5 simulator for the BOF. All reactions are assumed to take place in one zone
and oxygen is partitioned according to its affinity to a certain element. The model accounts for slag
formation, energy balance, scrap melting and decarburization.

Sarkar et al. [8] also developed a dynamic model for the BOF. They assumed that the refining
reactions take place only in the emulsion zone, between elements dissolved in the droplets and FeO in
slag. Oxygen is distributed between the elements in the upper part of the metal bath according to their
concentration. The model does not include an energy balance and temperature is assumed to increase
linearly during the blow.

Another dynamic model for the basic oxygen furnace was developed by Lytvynyuk et al. [7].
All the supplied oxygen is used to form iron oxide and all other refining reactions take place via reaction
with FeO. The rate of the reactions taking place in the metal bath and slag is primarily dependent on
the kinetics of mass transfer. For the energy balance, the slag and metal bath are assumed to have the
same temperature. The model seems to give excellent prediction of the slag composition, metal bath
composition and metal bath temperature at the end of the blow.

A few dynamic models based primarily on empirical relationships have also been developed.
Kattenbelt and Roffel [5] used step responses to model the decarburization rate during the main
blow. They studied the process response to step changes in lance height, oxygen flow rate and
iron ore addition. The model makes extensive use of empirical relationships but provides limited
physical insight.

A very comprehensive, first-priniciple dynamic model for the kinetics of decarburization in the
BOF was developed by Dogan et al. [6]. Their model accounts for carbon oxidation in two zones:
The emulsion and the impact zone (Figure 1). At the impact zone, carbon in the metal bath is assumed
to react directly with oxygen and carbon dioxide, and in the emulsion zone carbon in the metal droplets
is oxidized by FeO in the slag. The metal bath and slag temperature are assumed to increase linearly
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with blowing time and the slag composition is required as an input. Rout et al. [9] continued the work
of Dogan et al. [6] by modeling the kinetics of manganese, phosphorus and silicon oxidation enabling
the model to predict the slag composition.

The current study extends the work of Dogan et al. [6] by incoporating a model for slag formation
as well as energy balances. The model for decarburization in the emulsion zone is modified to
account for recent fidings [10] and the model for scrap melting is updated based on recent studies [11].
The mathematical model for the BOF is implemented as a system of Differential Algebraic Equations
(DAEs) using CasADi [12] with a Python front-end. The resulting framework is used to simulate the
Cicutti data [13] as well as 71 heats for the BOF of an industrial collaborator (Plant A).

2. Mathematical Model

2.1. Mass and Energy Balances

The phenomena taking place in the BOF are quite complex, therefore several assumptions are
made for the derivation of the mass and energy balances. Flux, iron ore, metal droplets and gas
bubbles are considered to be uniformly dispersed in the slag phase. The metal droplets, gas bubbles
and slag form an emulsion for which the continuous phase is assumed to be the slag. The oxidation
reactions take place mainly at the impact zone (IZ), the interface between the oxygen jet and the metal
bath, and there is no resistance to the diffusion of oxides from the metal bath to the slag. A schematic
representation of the flow of material in the BOF is shown in Figure 2.

Figure 2. Material flow in the BOF assumed for the current study.

The reactions modelled by the current work are as follows [14], where heats of reaction, ΔHrxn,
were obtained from FactSage at 1900 K:

Decarburization:

[C] +
1
2

O2(g) −−→ CO(g) ΔHrxn = −118.613 kJ/mol (1)

[C] + CO2(g) −−→ 2 CO(g) ΔHrxn = 160.623 kJ/mol (2)

(FeO) + [C] −−→ [Fe] + CO(g) ΔHrxn = 124.644 kJ/mol (3)

Desiliconization:

[Si] + O2(g) −−→ (SiO2) ΔHrxn = −945.172 kJ/mol (4)
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Iron Oxidation:

[Fe] +
1
2

O2(g) −−→ (FeO) ΔHrxn = −242.783 kJ/mol (5)

Post-combustion:

CO +
1
2

O2 −−→ CO2(g) ΔHrxn = −277.927 kJ/mol (6)

Argon or nitrogen can be injected at the bottom of the BOF to improve mixing. Even though
the injected nitrogen can undergo reaction at BOF operating conditions, the amount of nitrogen
compounds formed is small and can be neglected. Therefore, it is assumed that the stirring gas leaves
the furnace unreacted. At the impact zone, iron, carbon and silicon react with the injected oxygen
forming iron oxide, carbon monoxide and silica as shown in Equations (1)–(5). Some of the CO may
further react with O2 forming CO2 (Equation (6)).

The mass of dissolved flux and oxides is promptly incorporated by the slag. Similarly, the mass of
melted scrap is assimilated by the metal bath. All Fe in the iron ore is assumed to be in the form of
magnetite (Fe3O4) that is reduced to FeO by carbon in the metal bath (Equation (7)).

Fe3O4 + [C] −−→ (3 FeO) + CO(g) ΔHrxn = 184.660 kJ/mol (7)

The impact of the oxygen jet on the liquid metal causes millions of metal droplets to be ejected in
the emulsion zone. Carbon in the metal droplets can reduce FeO in the slag according to the reaction
shown in Equation (3). The refined droplets then fall back to the metal bath.

The gases CO, CO2, N2/Ar and unreacted oxygen O2 form the off-gas stream. Owing to the high
temperatures, the residence time for the gases is assumed to be negligible in this work. A mass balance
for the metal bath gives:

dWb
dt

= Ẇsc − ẆC,IO + ẆD,e−b − ẆD,b−e − ẆC,b−e − ẆFe,b−e − ẆSi,b−e (8)

where Wb represents the mass of the metal bath. Ẇsc is the scrap melting rate, ẆC,IO is the rate at which
carbon in the metal bath is consumed to reduce magnetite in the iron ore to FeO, ẆD,b−e and ẆD,e−b
are the mass flow rate of droplets from the metal bath to the emulsion and from the emulsion to the
metal bath, respectively. ẆC,b−e, ẆFe,b−e, ẆSi,b−e are the mass flow rate of carbon, iron and silicon out
of the metal bath and equals the oxidation rate of the respective element at the impact zone. A similar
mass balance on the slag–metal–gas emulsion gives:

dWsme

dt
= ẆDissFlux + ẆFeO,IO + ẆFeO,b−e + ẆSiO2,b−e + ẆD,b−e − ẆD,e−b − ẆCO,EZ (9)

where Wsme is the mass of the slag and droplets in the emulsion. ẆDissFlux is the rate of lime and
dolomite dissolution, ẆFeO,IO denotes the mass flow rate of iron oxide coming from iron ore, ẆFeO,b−e,
ẆSiO2,b−e are the mass flow rate of iron oxide and silicon dioxide into the slag and are equal to the rate
of formation of the respective component at the impact zone. ẆCO,EZ is the rate carbon monoxide is
formed at the emulsion zone due to droplet decarburization.

Heat is generated in the BOF by the oxidation and post-combustion reactions (Equations (1) and
(4)–(6)) and is consumed by scrap melting, to heat the fluxes and iron ore, by decarburization in the
emulsion (Equation (3)) and carbon dioxide reduction (Equation (2)). The total heat Qrxn

gen generated by
the oxidation reactions is given by

Qrxn
gen = Qrxn

FeO + Qrxn
SiO2

+ Qrxn
CO + Qrxn

CO2
(10)
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where Qrxn
FeO is the heat from iron oxidation (Equation (5)), Qrxn

SiO2
is the heat from silicon

oxidation (Equation (4)), Qrxn
CO is the net heat generation from decarburization at the impact zone

(Equations (1) and (2)), Qrxn
CO2

is the heat of CO post-combustion. Qrxn
i is obtained by multiplying the

rate of formation of compound i at the impact zone by the respective heat of reaction.
Individual energy balances were derived for the emulsion and metal bath. To simplify the

problem, the following assumptions are made:

• The gas hold up in the slag and metal bath is negligible
• The gas exits the furnace at the slag temperature
• The temperature of the slag-metal-emulsion and metal bath is uniform
• A fraction α

p
l of all the heat generated is assumed to be lost to the environment and the remainder

is assumed to be absorbed by the slag.

An energy balance for the slag–metal–gas emulsion yields:

(WsCP,s + WDCP,b)
dTs

dt
=(1 − α

p
l )Q

rxn
gen − Qrxn

Fe,EZ − QD,b−e

− QFeO,b−e − QSiO2,b−e − QCO,b−e − QCO2,b−e

− QIO − Qe−b − Q f lux − QN2/Ar,b−e − QO2,b−e

(11)

with
Qi,b−e = Ẇi,b−eCP,i(Ts − Tb) for i ∈ {FeO, SiO2, CO, CO2, N2/Ar, O2} (12)

In the above, Ws is the mass of slag, WD is the mass of the droplets in emulsion, CP,s, CP,b, CP,i are
the heat capacity of the slag, molten metal and component i, respectively. QFe,EZ is the heat consumed
by the decarburization reaction in the emulsion, QD,b−e is the heat required to raise the temperature of
the incoming droplets to the temperature of the slag–metal–gas emulsion; QFeO,b−e, QSiO2,b−e, QCO,b−e,
QCO,b−e and QCO2,b−e are the heat required to raise the temperature of the iron, silicon, carbon oxide
and carbon dioxide formed at the impact zone to the emulsion temperature, respectively; Qe−b is the
heat lost from the emulsion to the metal bath, Q f lux and QIO are the heat consumed by the flux and
iron ore additions, QN2/Ar,b−e is the heat required to raise the temperature of the stirring gas from
the bath to the emulsion temperature, QO2,b−e is the heat required to raise the temperature of the
non-reacted oxygen from the bath to the emulsion temperature. The rate of heat transfer between the
slag and metal bath is given by:

Qe−b = hs−bπR2(Ts − Tb) (13)

where R is the furnace diameter and hs−b is the heat transfer coefficient, which can be estimated using
dynamic data. Applying an energy balance for the metal bath gives:

WbCP,b
dTb
dt

= Qe−b + QD,e−b − QO2,in − QN2/Ar,in − Qsc (14)

where QD,e−b is the heat transferred by the droplets coming from the emulsion to the metal bath,
and Qsc is heat used to melt the scrap, QO2,in and QN2/Ar,in are the heat consumed to raise the
temperature of oxygen and stirring gas to the bath temperature:

Qi,in = FiCP,i(Tb − Ti,0) for i ∈ {N2/Ar, O2} (15)

where Fi, Ti,0 are the inlet mass flow rate and temperature of gas i.

2.2. The Impact Zone

The impact zone in the BOF is the region where the oxygen jet impinges on the molten metal
bath (Figure 1) causing a deformation on the liquid surface that is assumed to have the shape of a
paraboloid of height hc and maximum diameter dc. The number of impact zones is equivalent to the
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number of nozzles nn in the lance as long as there is no coalescence of the oxygen jet. The area of one
impact zone is equal to the surface area of the paraboloid:

Aiz =
dcπ

12h2
c

[(
d2

c
4

+ 4h2
c

)1.5

− d3
c

8

]
(16)

where dc and hc are calculated using the correlations proposed in [15]. For the current work,
the decarburization rates previously used by Dogan et al. [6] are modified by a parameter αp in
order to account for the difference between the conditions at which the equation rates were derived
and the BOF operating conditions. These parameters can be tuned using process data. Therefore,
the decarburization rate via O2 (Equation (1)) is -2rO2,iz, where:

− rO2,iz = α
p
O2,t AiznnkO2 ln(1 + PO2) (17)

with:

α
p
O2,t =

α
p
O2

1 + α
p
Si,C[%Si]

(18)

The partial pressure in Equation (17) is in atm, and the parameter α
p
Si,C in Equation (18) accounts for

the inhibiting effect that silicon has on the rate of carbon oxidation [14]. Similarly, the decarburization
rate via CO2 (Equation (2)) is given by:

− rCO2,iz = α
p
CO2

AiznnkaPCO2 (19)

In the above expressions, ka and kO2 are the rate coefficients calculated using the correlations
found in Dogan et al. [6] and P is the partial pressure calculated as:

Pi =
Fi

∑
i

Fi
Pa for i ∈ {O2, CO, CO2, N2/Ar} (20)

where Pa is the ambient pressure. In Equation (20), FO2 and FN2/Ar are the inlet molar flow rate of
oxygen and bottom stirring gas, and FCO and FCO2 are the molar flux of carbon monoxide and carbon
dioxide formed from the decarburization reaction in Equations (1) and (2) and the post-combustion
reaction in Equation (6).

When the carbon content of the metal bath [%C] becomes lower than the critical carbon content
CC, the decarburization rate is given by [6]:

− rCc ,iz = α
p
Cc

km
Aiznn

Vb
[%C] (21)

where Vb is the volume of liquid metal and km is the rate constant calculated using the correlation
developed by Kitamura et al. [16].

The desiliconization rate is calculated using the expression found in Rout et al. [17] and modified
by a parameter α

p
Si to give:

− rSi,iz = α
p
Sikmρb([%Si]− [%Sieq])Aiznn (22)

where ρb is the density and [%Si] is the silicon content of the liquid metal. Rout et al. [9] found that the
equilibrium silicon content of the metal bath ([%Sieq]) is approximately zero, therefore it is neglected
in the calculations. For the current study, it is assumed that the rate of iron oxidation is proportional to
the partial pressure of oxygen and is given by:

− rFe,iz = α
p
Fe AiznnPO2 (23)
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All the oxygen injected in the system via the lance that is not used for decarburization,
desiliconization or iron oxidation, is assumed to be used in the post-combustion of CO.

2.3. Scrap Melting

In the BOF, the heat generated by the oxidation reactions (Equations (1) and (4)–(6)) is much
higher than that required to reach the targeted end-point temperature. Therefore, scrap metal is usually
added in order to absorb part of the surplus heat via melting. In this section the model used to compute
the scrap melting rate Ẇsc as well as the heat absorbed Qsc is presented.

Consider a scrap metal plate of half-thickness L, initial temperature Tsc0 and melting temperature
Tm, as shown in Figure 3a.

(a)
(b)

Figure 3. Schematic representation of the melting of scrap. (a) Schematic representation of a plate.
(b) Schematic representation of temperature gradient between hot metal and a cold metal plate.

This plate is then submerged in a metal bath at temperature Tb > Tm and carbon content [%C].
Assuming that heat transfer occurs only in the axial direction and constant physical properties for the
plate, a heat balance at the interface between the solid plate and the metal bath gives [11,18–20]:

− ksc Asc
∂Tsc(0, t)

∂x
− hsc Asc(Tb − T′

m) =
dL
dt

ρsc(ΔHsc + CP,sc(Tb − T′
m))Asc Tb ≥ Tm (24)

where ksc is the thermal conductivity of the scrap plate, hsc is the heat transfer coefficient, ρsc is the
scrap density, ΔHsc is the latent heat of melting of the scrap, CP,sc is the specific heat of the scrap, Asc is
the interfacial area, x is the distance of a point within the scrap from the interface, t is time and Tsc(x, t)
is the scrap temperature at a position x. A schematic representation can be found in Figure 3b.

Equation (24) can be solved using the Quasi-Static approach to yield Equations (25)–(27) [21]:

dL
dt

=
∑∞

n=1
−An
nπ (1 − cos(nπ))λ2kscL e−λ2αsct − h(Tb − T′

m)

ρsc(ΔHsc + CP,sc(Tb − T′
m))− ∑∞

n=1
An
nπ (1 − cos(nπ))(ρscCP,sc + 2λ2ksct)e−λ2αsct

(25)

λ =

(
nπ

2L(t)

)
(26)

An = 2(Tsc0 − T′
m)

1 − cos(nπ)

nπ
(27)
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where α = ksc/ρscCPsc is the thermal diffusivity. The scrap melting rate Ẇsc is then given by:

Ẇsc = −nsc2ρsc Asc
dL
dt

(28)

where nsc is the total number of scrap plates.
At the beginning of the BOF operation, the temperature of the molten metal may not be high

enough to melt the scrap, in which case the interface temperature T′
m is equal to the bath temperature

Tb. The interface temperature is otherwise assumed to correspond to the melting temperature. This is
shown in Equation (29) :

T′
m =

{
Tb Tb < Tm

Tm Tb ≥ Tm
(29)

The melting temperature Tm is dependent on the carbon content Cm at the melting interface and
can be calculated using Equation (30) [22]:

Tm =

{
1810 − 90%Cm 0 ≤ %Cm ≤ 4.27%

1425 %Cm > 4.27%
(30)

Dogan [22] assumed Cm to be equal to the carbon content in the bulk metal [%C]. This assumption
reflects, to some extent, what happens in the BOF: Carbon in the metal bath migrates to the scrap
surface lowering its melting temperature [21,23]. One consequence of such an assumption is that scrap
types of similar physical properties will all melt at the same time, independent of their carbon content.
On the other hand, if Cm is assumed to be equal the carbon content of the scrap Csc, low-carbon content
scrap types will only melt towards the very end of the blow, which is not observed in practical BOF
operations. For the current work, Cm is defined as:

Cm = 0.8[%C] + 0.2Csc (31)

The heat transfer coefficient hsc in Equation (25) is calculated according to the correlation proposed
by Gaye et al. [24] and given by:

hsc = 5000ε̇ 0.2 (32)

where ε̇ is the mixing power due to bottom stirring and top blowing in Wm−3, and hsc is in units of
Wm−2K−1. The rate Qsc at which heat is absorbed by the scrap is given by the heat conduction term
in Equation (24) before melting starts, and by the convective term once melting starts as shown in
Equation (33).

Qsc = 2nsc Asc

{
− ∂Tsc(0,t)

∂x Tb < Tm

h(Tb − T′
m) Tb ≥ Tm

(33)

2.4. Iron Ore Dissolution

Some steel shops also add iron ore before or during the blow to cool down the metal bath and
meet the desired end point temperature. Since the mass of iron ore added is usually small compared to
the amount of scrap, a rather simple model is used to account for the cooling effect of iron ore.

Iron ore composition can vary greatly according to the region but the predominant element is
usually Fe followed by oxygen. For the current model all Fe in the iron ore is assumed to be in the form
of magnetite (Fe3O4) that is reduced to iron oxide by carbon in the metal bath according to Equation (7).
Furthermore, the iron ore melting point Tm is considered to be equal to the FeO melting point (1644 K).
Reduction of magnetite and melting of the formed iron oxide are assumed to happen concomitantly.
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The iron ore particles are assumed to be spherical and to have uniform temperature, therefore the total
heat transfered to the surface of an iron ore particle can be calculated using Equation (34):

Qconv,ore = 4πr2
orehore(Ts − Tore) (34)

where Tore is the iron ore temperature, hore is the heat transfer coefficient, rore is the radius and Ts is
the slag temperature. It is assumed that a fraction Tore/Tm of the total heat Qconv,ore contributes to
melting of the iron ore and the remainder is used for sensible heating. A similar approach was used
by MacRosty and Swartz [25] and Bekker et al. [26] to model scrap melting in electric arc furnaces.
At the beginning of the process Tore << Tm and most of the heat is used to heat up the iron ore. As Tore

approaches Tm, the fraction of the total heat used for melting increases. An energy balance for a single
iron ore particle yields:

WoreCP,ore
dTore

dt
= (1 − Tore/Tm)Qconv,ore (35)

where Wore is the mass of a single iron ore particle and can be obtained from Equation (36):

Wore =
4
3

πr3
oreρore (36)

In the above, ρore is the iron ore density and CP,ore is the iron ore heat capacity. A heat balance
at the interface of the iron ore particle gives Equation (37) for the rate of dissolution of an iron ore
particle:

Aoreρore(ΔHore + CpFeO(Ts − Tore))
drore

dt
= −(Tore/Tm)Qconv,ore (37)

where ΔHore is the latent heat of melting of FeO, CP,FeO is the heat capacity of iron oxide and Aore is
the area of the interface, here equal to the surface area of a sphere of radius rore.

The heat consumed to reduce magnetite to iron oxide is given by:

Qred,ore =
yFe,ore

3MFe
Ẇore,meltΔHrxn (38)

where yFe,ore is the mass fraction of Fe in the iron ore, ΔHrxn is the heat for the reaction defined in
Equation (7), MFe is the molar mass of iron and Ẇore,melt is the melting rate of iron ore given by:

Ẇore,melt = −4πρorer2
ore

drore

dt
(39)

The total heat consumed by iron ore melting and reduction is given by:

QIO = nore(Qconv,ore + Qred,ore) (40)

where nore is the number of iron ore lumps.

2.5. Flux Dissolution

Similarly to the decarburization rates at the impact zone, flux dissolution is modelled
after Dogan et al. [27]. The flux particles are assumed to have a spherical shape, and the rate of flux dissolution
is proportional to the rate of change of the particles’ radius.

The rate of lime dissolution is given by Equation (41) [27,28], where rL is the particle radius,
(%CaO) is the concentration of CaO in slag, (%CaOsat) is the saturation concentration of CaO in
the slag, kL is the mass transfer coefficient, ρs and ρL are the slag and lime density, respectively.
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The parameter α
p
L is introduced here to account for deviations between the experimental conditions at

which kL was derived, and the BOF operating conditions.

drL
dt

= α
p
LkL

ρs

100ρL
((%CaO)− (%CaOsat)) (41)

For dolomite, the rate of dissolution is given by [27,29]:

drD
dt

=

⎧⎨
⎩

α
p
DkD

ρs
100ρD

(
1 +

MMgO
MCaO

)
((%CaO)− (%CaOsat)) (%FeO) < 20%

α
p
DkD

ρs
100ρD

(
1 + MCaO

MMgO

)
((%MgO)− (%MgOsat)) (%FeO) ≥ 20%

(42)

where MMgO and MCaO are the molar mass of MgO and CaO, respectively, (%MgO) is the concentration
of MgO in slag, (%MgOsat) is the saturation concentration of CaO in the slag and kD is the mass transfer
coefficient. The rate constants kL and kD are calculated using the correlations proposed by Dogan et al. [27]
with the parameter used to modify the Reynolds number β set to the nominal value of 1.

Data for the calcium oxide saturation in slag (%CaOsat) for different slag compositions were
obtained using the Cell Model [30], a Matlab program that gives the saturation concentration of the
individual species in the slag as a function of composition and temperature. Kadrolkar et al. [30]
validated the Cell Model results against FactSageTM and ThermoCalcTM. The function ’fitnlm’ in
Matlab was then used to fit a curve to the generated data, yielding Equation (43).

(%CaO)sat =
3.52Ts − 4, 823.7e−

2.93
100 (%SiO2) + 12.4(%FeO)− 9.71(%MgO) + 17.9(%CaO)

100
(43)

An R2 of 0.9 was obtained for the nonlinear regression. The goodness of Equation (43) to predict
the calcium oxide saturation in slag was evaluated using the Cicutti data [13]. The calculated values
for CaOsat using the Cell Model and Equation (43) are shown in Figure 4, where it can be seen that
there is excellent agreement between them.

Figure 4. (%CaOsat) obtained using the Cell Model and Equation (43) for the Cicutti et al. [13] slag data.

The rate at which heat is absorbed by the flux particles is given by:

Q f lux = 4π ∑
i

r2
i hini(Ts − Ti) i ∈ {L, D} (44)

370



Processes 2020, 8, 483

where Ts is the temperature of the slag, Ti is the flux temperature, hi is the heat transfer coefficient
determined using data and ni is the number of flux particles. Assuming a uniform temperature for the
flux particle, an energy balance gives Equation (45) for the temperature of an iron ore particle:

WiCP,iρi
dTi
dt

= 4πr2
i hi(Ts − Ti) i ∈ {L, D} (45)

where CP,i is the heat capacity and Wi = 4/3ρiπr3 is the mass of one single flux particle.

2.6. Decarburization in the Emulsion Zone

In Figure 5, the initial carbon composition and diameter of a metal droplet are represented by Ci,0
and D0, respectively. The metal droplet is formed from the interaction of the oxygen jet and the metal
bath at the impact zone at time t0, and ejected to the slag–metal–gas emulsion. The droplet stays in the
emulsion zone for Rt seconds, then it returns to the metal bath at time t0 + Rt having a composition
Ci, f and diameter Df . While in the emulsion zone, carbon in the metal droplet can reduce FeO in slag
according to reaction 3.

Figure 5. Droplet decarburization.

The droplet generation rate RB, given by Equation (46), is calculated using the empirical expression
proposed by Subagyo et al. [31] modified by a parameter pDG to account for possible differences
between the conditions at which the correlation was derived and a given BOF operation:

RB = pDG
V̇O2 N3.2

B
(2.6 × 106 + 2 × 10−4N12

B )0.2
(46)

where V̇O2 is the volumetric flow rate of oxygen and NB is the blowing number [31].
Since millions of droplets are generated at every point, it can become computationally expensive

to track the composition of the individual metal droplets. Therefore, an algebraic equation to calculate
the final carbon content of the metal droplets was developed and the following assumptions were
made in order to make the problem tractable:

• All droplets decarburize immediately after they are ejected from the impact zone
• The carbon content of the metal droplets in the emulsion zone is approximated as the average

carbon content of the individual metal droplets
• Except for carbon, the mass of other elements in the metal droplets stays constant whilst the droplet

travels through the emulsion zone

The first-principles model developed by Kadrolkar and Dogan [10] for the droplet decarburization
was used to generate data for the final carbon content (CC, f ) of individual droplets with respect to
its initial carbon content CC,0, the slag temperature Ts and composition. Data were generated for the
range of initial carbon content between 0.3% and 5% and slag temperature of 1623–2153 K, and for the
slag composition provided by Cicutti et al. [13]. Equations (47) and (48) give a good description of the
generated data with an R2 of 0.96 and 0.92, respectively.

ΔCC = CC,0 − CC, f = 0.9514
(

0.001Ts

CC,0

)−1.4345
(%FeO) > 10 (47)
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CC, f = 0.67492C1.2261CC,0/(%FeO)
C,0 (%FeO) ≤ 10 (48)

In Figure 6, the average final carbon content of the droplets reported by Cicutti et al. [13], the values
predicted by Kadrolkar and Dogan [10]’s model and what was obtained using Equation (47) are shown.
Similar to the first-principles model proposed by Kadrolkar and Dogan [10], the final carbon content
of the droplets predicted by Equation (47) is largely within the range of values reported by Cicutti [13]
for a real BOF operation. These results indicate that Equation (47) approximates the kinetics of droplet
decarburization reasonably well and can therefore be used within the BOF model to describe the
kinetics of decarburization in the emulsion zone.

Figure 6. Comparison of final carbon content of metal droplets in the emulsion reported by Cicutti et al. [13],
and the values predicted using Kadrolkar and Dogan [10]’s first-principles model and Equation (47) as a function
of blow time.

Using Equations (47) and (48) and the previously stated assumptions, and introducing a term
α

p
μ,D to account for changes in the slag viscosity, it is possible to obtain Equation (49) for the rate of

carbon removal:

ẆC,s = RB

(
1 − 1 − 0.01CC,0

1 − 0.01CC, f

)
α

p
μ,D (49)

with α
p
μ,D given by:

α
p
μ,D = exp(−α

p
μμs) (50)

where ẆC,s is the rate of carbon removal, α
p
μ is a parameter and μs is the slag viscosity. The initial

carbon content of the droplet CC,0 is equal to the carbon content of the metal bath Cb at the time
of ejection. The term α

p
μ,D is necessary because the effect of slag viscosity is not taken into account

in Equations (47) and (48). However, it is likely that the high slag viscosity at the beginning of the
blow significantly decreases the decarburization rate. At high viscosities the slag becomes less fluid,
negatively impacting the rate of FeO mass transfer to the droplet surface and potentially leading to
FeO depletion in the neighborhood of the droplet, decreasing the decarburization rate. The value of α

p
μ

can be determined using dynamic data.
The mass of carbon WC,s in the emulsion is then given by:

dWC,s

dt
= (0.01RBCC,0 − ẆC,s)− 0.01CC,s

WD,s

Rt
(51)
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where the first term on the right hand side is the amount of carbon entering the emulsion zone minus
the carbon removed via decarburization, and the second term is the flow rate of carbon returning to
the metal bath. CC,s is the average carbon content of the droplets in the emulsion calculated by:

CC,s = 100
WC,s

WD,s
(52)

and WD,s is the total mass of droplets in the emulsion determined as:

dWD,s

dt
= (RB − ẆC,s)− WD,s

Rt
(53)

The droplet residence time Rt is calculated using the following empirical expression:

Rt = 5 + 20e
−0.3 (%FeO)

CC,0 (54)

As long as the residence time Rt of the droplets in the emulsion is small, CC,s is approximately
equal to CC, f and the simplifying assumption of uniform carbon content for the droplets in the
emulsion does not significantly impact the final result, while avoiding the need to track the behavior
of individual droplets.

2.7. Implementation

The mathematical model presented in the previous sections was implemented as a DAE system
using CasADi [12] with Python 3.7. An index-1 DAE in semi-explicit form can be written in the form
given by Equations (55) and (56):

ẋ(t) = f (x(t), z(t), u(t), p) (55)

0 = h(x(t), z(t), u(t), p) (56)

where f and h are the differential and algebraic functions, respectively, x and z are the differential and
algebraic states, u and p represent the control variables and time-independent parameters, and t is time.
Within CasADi, the DaeBuilder class was selected since it is capable of performing model reduction by
eliminating algebraic variables that can be explicitly calculated. The resulting DAE system was solved
using the variable step size DAE solver IDAS [32]. For implementation of the mathematical model,
the following modifications were made where necessary:

• Equations of the form:

y(a) =
1
a

(57)

where a → 0, were rewritten as:

y(a) =
1

a + ε
(58)

where ε is a positive small number. This strategy was used on the submodels for flux dissolution,
iron ore and scrap melting to prevent division by zero since either the radius or thickness of the
particles continuously decreases with time and can eventually equal zero.

• Piecewise functions of the form:

y(c) =

{
y1(c) a > b

y2(c) a ≤ b
(59)

were rewritten using hyperbolic tangent functions:

ỹ(c) = y1(0.5 tanh(γ(a − b)) + 0.5) + y2(0.5 tanh(γ(b − a)) + 0.5) (60)
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where γ is an adjustable parameter that controls the steepness of the continuous switching function
approximation. This was used for flux dissolution (Equation (42)), scrap melting (Equation (29)),
decarburization in the emulsion zone (Equations (47) and (48)), among others for a smooth
transition and to ensure differentiability.

• Flux additions: Flux and iron ore can be added at anytime during a blow, and each individual
addition is modeled as shown in Section 2.5. To model the indiviudal flux additons a new variable
tij, where i is the flux type (lime, dolomite, iron ore) and j is the addition number (first, second,
third), is defined for the flux addition time. Given the radius rij of the flux added at time tij,
Equation (41) for lime dissolution rate can be reformulated as:

drij

dt
=

{
0 t < tij

kL
ρs

100ρL
(%CaOs − %CaOsat) t ≥ tij

(61)

which was implemented using a hyperbolic tangent function.

3. Results and Discussion

3.1. System Parameters and Input Data

The parameters αp introduced during the model development to account for distinct BOF
operations and differences between the conditions at which the respective equations were derived and
the operating conditions were manually adjusted for a data set available in the literature for a 200 ton
furnace [13], as well as for the data provided by Plant A for 70 heats for a 250 ton furnace. The final
values of the parameters αp are given in Table 1.

Table 1. The values of model parameters for simulation and optimization. The heat transfer
coefficients h are given in Wm−2K−1, and α

p
Fe is given in kgm−2Pa−1s−1. All the other parameters

are dimensionless.

Parameters Cicutti Plant A

α
p
l 0.2 0.07

α
p
O2

1 1.16

α
p
Si,C 10 2

α
p
CO2

1 1

α
p
Cc

3 3.07

α
p
DG 1 1

α
p
Fe 7 × 10−6 2.0 × 10−5

α
p
Si 7 7

α
p
L 30 30

α
p
D 20 20

α
p
μ 0.5 0.5

hL, hD 1000 1000

hore 2500 2500

hs−b 80,000 80,000

In Cicutti et al. [13]’s study, lime is added before the blow starts and at every minute up to 7 min,
whereas dolomite is added before the blow starts and again at 7 min. Ar/N2 gas is continuously
injected from the bottom of the furnace to aid with stirring. In Plant A operations, lime and dolomite
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are added only before the blow starts, scrap selection varies for each heat, and the furnace design does
not allow for bottom stirring.

3.2. Simulation Results for Cicutti’s Operations

Cicutti et al. [13]’s data have been used to validate several dynamic models developed for the
BOF [6,8,9,33]. Information regarding the hot metal and scrap compositions is shown in Table 2. For the
mass of flux, gravel and iron ore refer to Cicutti et al. [13].

Table 2. Mass and composition of hot metal and scrap types added to the BOF, and average scrap
thickness [22].

Input Hot Metal Heavy Scrap Light Scrap Pig Iron External Scrap

Mass (kg) 170,000 3570 10,000 12,140 4284
Thickness (mm) - 100 25 200 500

C (%) 4 0.08 0.08 4.5 0.05
Si (%) 0.33 0.05 0.05 0.5 0.001

Mn (%) 0.52 0.3 0.3 0.5 0.2
P (%) 0.066 - - - -
S (%) 0.015 - - - -

Figure 7 shows the metal bath temperature and carbon content predicted by the model described
in this article, as well as the data published by Cicutti et al. [13].

(a). (b)

Figure 7. (a) Comparison between measured [13] and predicted values for the temperature of liquid
metal and slag. (b) Comparison between measured [13] and predicted values for the carbon content of
liquid metal and the returning metal droplets.

In the first few minutes, the bath temperature decreases due to the heat absorbed by the scrap.
Thereafter, the temperature increases approximately linearly as heat is released by the oxidation
reactions. The oscillations in the slag temperature during the first half of the blow are due to the flux
additions, done at every minute. Figure 7b shows that the carbon content predicted by the model for
the bulk metal agrees well with the measured data. The predicted final carbon content of the returning
droplets is also shown in Figure 7b. Due to the high interfacial area, the rate of carbon refining at the
droplet level is significantly higher than that for the bulk metal, thus the lower carbon content.

The decarburization rate in the emulsion zone is shown in Figure 8a. The extent of droplet
decarburization is primarily dependent on the initial carbon content of the liquid metal droplet when
it is ejected from the impact zone [10]. At low initial carbon contents the liquid metal droplets do not
bloat and their residence time in the emulsion zone decreases significantly [10,34]. Due to that the
contribution of the emulsion zone to the total decarburization rate decreases significantly towards the
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end of the blow. It follows that at high carbon contents it is possible to increase the decarburization
rate in the emulsion zone by increasing the droplet generation rate.

It is possible to identify the three decarturization periods characteristic of the BOF operation on
the total decarburization rate graph shown in Figure 8a:

• Period I: As the silicon content of the metal bath decreases, the decarburization rate increases
• Period II: Decarburization rate stays approximately constant
• Period III: Decarburization rate is controlled by mass transfer of carbon in the metal bath

The change from Period II to III is shown by the dashed line in Figure 8a, but it can also be seen in
the compostion of the gases exiting the furnace in Figure 8b. As the decarburization at the impact zone
decreases, more oxygen becomes available for the post-combustion reaction explaining the increase in
the percentage of CO2 at approximately 14 min. The percentage of CO2 in Figure 8b is slightly higher
than would normally be observed in practice. This can be due to the ideal assumption that all the
oxygen not used in the oxidation reactions is consumed in the post-combustion of CO.

(a) (b)
Figure 8. (a) Total decarburization rate and decarburization rate at the emulsion zone and
(b) composition of the off-gas stream exiting the BOF.

The profile for the lance height and oxygen flow rate is shown in Figure 9a. The effect of lance
height changes on the decarburization rate is clear at 4 min and 7 min in Figure 8a: Lowering the
lance height increases the droplet generation rate, as well as the rate constants for the decarburization
reactions taking place at the impact zone, which leads to a higher decarburization rate.

(a) (b)
Figure 9. (a) Control profile for Cicutti et al. [13]’s data and (b) scaled control profiles for a heat from
Plant A.

The contribution of the decarburization in the emulsion to the total decarburization is significantly
lower for the present work than previously suggested [8,17]. Rout et al. [17] suggested that 76%
of the total decarburization happens in the emulsion, while in the modeling approach adopted
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by Sarkar et al. [8] decarburization only takes place in the emulsion zone. For the current paper,
the emulsion zone was responsible for 15% of the total carbon removed. The reason why the
contribution of the decarburization in the emulsion is lower for the present study is because of
the significantly lower droplet generation rate RB. Sarkar et al. [8] modified the droplet generation rate
(Equation (46)) by a factor of 15. Using a modified correlation for RB, Rout et al. [35] obtained a droplet
generation rate similar in magnitude to Sarkar et al. [8]. It is not currently viable to measure how much
decarburization occurs at the impact and emulsion zones individually, and it may be the case that a
different set of parameter values yields approximately the same total decarburization rate. However,
taking into account the gradual decrease in the decarburization rate in the emulsion zone in Figure 8a,
it can be inferred that for a very high contribution of the emulsion to the total decarburizaton rate,
Period II would no longer be characterized by an approximately constant decarburization rate.

The slag composition throughout the blow is presented in Figure 10 for SiO2, CaO, FeO and MgO.
There is a good agreement between the values predicted by the model and the data. The large content
of silicon dioxide in the slag during the first minute is due to 800 kg of gravel addition. A large SiO2

content increases the slag viscosity, reducing the decarburization rate at the emulsion and allowing
FeO to build up. Flux dissolution slows down significantly at high slag viscosities, but as the blow
proceeds SiO2 gets diluted by FeO and the flux dissolution rate increases. The error between the model
prediction and measured data is, most likely, due to the treatment of slag as a homogeneous phase for
the density and viscosity calculations [36].

(a) (b)

(c) (d)

Figure 10. Evolution of slag composition for the Cicutti data [13] and model prediction: (a) FeO,
(b) SiO2, (c) CaO, (d) MgO.

A comparison between the carbon content prediction by the present and previous [6,8,9] studies is
shown in Figure 11. Only for the current model, the carbon content prediction starts from time zero,
and enregy balances are included; moreover, the quality of the prediction itself is quite good compared
with previous works. This is also the only study for which the mathematical model was transposed as
a DAE system and integrated using a variable step size solver, whilst in the aforementioned works
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integration was carried out using a fixed step size. The first main benefit stemming from the current
implementation is the reduced computational time as shown in Table 3. Moreover, the convergence is
taken care of by the integrator, and convergence studies based on step size are not required. Secondly,
the dynamic model can be easily built within an optimization framework to determine the optimal
input trajectories.

Figure 11. Comparison of the carbon content prediction by different models [6,8,9] and the measured
values [13] for a 200-ton furnace.

Table 3. Simulation time for Cicutti et al. [13]’s data required in different studies.

Model Computer Software Solution Time

Dogan et al. [6] Pentium (R) 4 CPU 3.00 GHz and 3GB of RAM Scilab 240 min
Sarkar et al. [8] Not given Matlab 27 min
Rout et al. [9] Intel(R) Core(TM) i5-4570 CPU @3.20 GHz and 8 GB RAM Matlab 20 min
Present study Intel(R) Core(TM) i7-7700 CPU @3.16GHz and 16.0 GB RAM Python 3.7 0.036 min

3.3. Simulation Results for Plant A Operations

The developed framework model was also used to simulate 71 heats using the data provided
by Plant A for its BOF operation. The model parameters, shown in Table 1, were manually adjusted
based on data collected at the end of the blow for the end-point carbon content, slag composition and
temperature. The extreme conditions in the BOF often prevent samples from being collected during
the blow, therefore there is no data regarding the state of the system during the blow.

The goodness of the prediction was evaluated in terms of the average of the model predictions
and process data for the 71 heats. Figure 12 shows the quality of the prediction for the end-point slag
composition together with the standard deviation. The results indicate that the model is able to predict
the slag composition at the end of the blow reasonably well.
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Figure 12. Average process and predicted values for the end-point slag composition in weight percentage.

The carbon content of the metal bath can be measured using a carbon probe before tapping, or a
sample is collected and the measurement is done in a laboratory setting, with the second giving the
more accurate results. However, laboratory results are not available for all the heats for the current
study. The average end-point carbon content and temperature measured using the probe and the
model’s prediction for the 71 batches are shown in Figure 13, based on which it is possible to conclude
that the model performs fairly well. The model was able to predict the end-point carbon content of
80% of the heats with a precision of ±0.03%, and the end-point temperature of 61% of the heats with a
precision of ±30 K.

(a) (b)

Figure 13. Average and standard deviation of the model predictions and process data for the end-point
(a) carbon content of the liquid metal and (b) temperature of the liquid metal.

The prediction error can be attributed to several factors. If the furnace is used back-to-back,
there is always some slag left over from one heat to another, however its temperature and mass are
not measured and the initial mass of slag present in the system is not accurately known. Moreover,
the initial temperature of the hot metal charged to the furnace is also not precisely known since it
is measured, on average, 40 minutes before the blow starts. Furthermore, due to the lack of data,
it is assumed that all scrap types have similar properties, which can lead to inaccurate prediction of
the heat needed for complete melting. Another potential reason could be the assumption that the
off-gas and slag have the same temperature; however, the data available is not sufficient to estimate
the actual off-gas temperature during the process. This, with the absence of sub-models to account for
phosphorus oxidation, manganese oxidation and the formation of higher iron oxides, can explain the
poorer performance of the model in predicting the end-point temperature.
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For each heat, the mass of iron ore, flux, scrap and hot metal charged to the furnace is different,
explaining the variation in the predicted and measured values. Since the inputs are always changing,
it makes it challenging to identify the primary source for larger deviations between the simulated and
actual data. Plant A has three different input profiles for the oxygen flow rate and lance height, however
the overall quality of the predictions is not significantly affected by the different control profiles
indicating that the model can potentially be used to simulate a wide range of operating conditions.

The trajectories for the temperature, carbon content and slag composition are shown in Figure 14
for one of the heats. We observe that the trajectories are similar to the Cicutti case. The content of SiO2

is lower for Plant A operation at the beginning of the blow because no gravel is added. Moreover,
the rate of silicon oxidation is slower due to the lack of bottom stirring. As mentioned before, at low
SiO2 contents, decarburization in the emulsion is enhanced due to the reduced slag viscosity. This
is evident in Figure 14a by the larger difference between the carbon content of the droplets and the
carbon content of the metal bath at high FeO contents at the beginning of the blow. As expected, due
to the lack of bottom stirring, the FeO content of the slag increases much faster than that for Cicutti’s
case toward the end of the blow. The rapid increase can also be explained by the higher lance height
towards the end of the blow compared to the mid-blow. The scaled control profiles for the oxygen flow
rate and lance height for the given heat are shown in Figure 9b.

(a) (b)

(c) (d)

Figure 14. Evolution of: (a) Carbon content of liquid metal and final carbon content CC, f of
the metal droplets, (b) silicon content of liquid metal, (c) slag and metal bath temperature and
(d) slag composition. The values have been scaled for proprietary reasons.

Figure 14 indicates that the model is able to predict the end-point carbon content, silicon content
and temperature of liquid metal reasonably well. It also provides insights about the trajectory
followed by the variables and how the change in one or more of the inputs affects the system.
The developed framework could potentially aid in finding more profitable operation modes as well as
in understanding the more complex relationships between process variables.
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4. Conclusions

The dynamic mathematical model presented in this study extends the work of Dogan et al. [6]
by incorporating slag formation and energy balances. The models for the decarburization in the emulsion
zone and scrap melting were updated with more recent findings, and an empirical relationship to calculate
the calcium oxide saturation was obtained. Therefore, the main phenomena taking place in the BOF were
accounted for, making the model suitable for further studies.

The mathematical model was translated as a DAE system to an open source environment
(Python with CasADi [12]). The current implementation allowed for a significantly shorter simulation
time compared with previous studies [6,8,9]. Moreover, as more complex and detailed models for the
phenomena taking place in the BOF are developed, they can be incorporated relatively easily using the
current framework.

It was shown that the updated model gives a better prediction of the carbon content trajectory for
Cicutti et al. [13]’s data compared with the previous version, and more recently developed dynamic
models for the BOF [8,9]. The dynamic model was also used to simulate 71 heats for a real industrial
BOF operation. The model predictions for the end-point carbon content, slag composition and
temperature agree reasonably well with the data for a wide range of operating conditions.
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Abstract: The melting time of scrap is a factor that affects the Electrical Energy (EE) consumption
of the Electric Arc Furnace (EAF) process. The EE consumption itself stands for most of the total
energy consumption during the process. Three distinct representations of scrap, based partly on the
apparent density and shape of scrap, were created to investigate the effect of scrap on the accuracy
of a statistical model predicting the EE consumption of an EAF. Shapley Additive Explanations
(SHAP) was used as a tool to investigate the effects by each scrap category on each prediction of a
selected model. The scrap representation based on the shape of scrap consistently resulted in the
best performing models while all models using any of the scrap representations performed better
than the ones without any scrap representation. These results were consistent for all four distinct and
separately used cleaning strategies on the data set governing the models. In addition, some of the
main scrap categories contributed to the model prediction of EE in accordance with the expectations
and experience of the plant engineers. The results provide significant evidence that a well-chosen
scrap categorization is important to improve a statistical model predicting the EE and that experience
on the specific EAF under study is essential to evaluate the practical usefulness of the model.

Keywords: electrical energy consumption; Electric Arc Furnace; scrap melting; statistical modeling

1. Introduction

Electrical Energy (EE) can account for between 40–66% of the total energy usage during the
Electric Arc Furnace (EAF) process, which is a number that highlights the importance of further
improvements in modeling of the EE consumption [1]. The energy losses, which partly governs the
EAF process energy dynamics, are mostly related to off-gases, slag, dust, furnace cooling, electrical and
radiative losses. Most of these energy losses are closely linked to the total process time of any given
heat. The process time itself is influenced by numerous impositions. One of these is the melting time
of the charged raw materials, which in the scope of this study is primarily steel scrap.

Many articles have studied and proposed statistical models predicting the EE consumption of the
EAF [1,2]. However, only a handful of studies have used scrap types as input variables to a statistical
model predicting the EE of an EAF [2–7]. Neither of these studies analyze the contributions of each
scrap type on specific predictions by the statistical model. Verifying the effects of the input variables on
the complete prediction space is paramount to evaluate the practical usefulness of any statistical model
let alone to make the users, i.e., process engineers, trust the model. Only when these two conditions
are met can the model possibly be used to solve practical problems. An example of a practical problem
where an EE prediction model can be used is when determining the EE requirement for the EAF in a
Demand Side Management (DSM) system, which optimizes the processes in a steel plant with respect
to the available power in the transmission line [8].

Shapley Additive Explanations (SHAP) is a recent development in the field of interpretable
machine learning [9], and has previously been used to analyze a statistical model predicting the EE
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of an EAF producing stainless steel [10]. Tap-to-Tap time (TTT), delays, and total charged weight
were found to be the three most influencing variables. TTT and total charged weight were correctly
interpreted by the model with respect to what is known from process metallurgical experience.
The delay variable was incorrectly interpreted by the model, which was concluded to be due to the
high correlation between delays with TTT.

The aim of the current study is to investigate the effect of scrap types on a statistical model
predicting the EE of an EAF. Although verifying the effects of other input variables on the model
output is important, it is not the main focus of this article. For such an analysis we refer to previous
studies [2,10]. To investigate the effects of scrap, three distinct representations of scrap types based
on the plant scrap codes, scrap physical shape, and scrap apparent density, respectively, will be
used in the models. The reasons are two-fold. First, to provide the steel plant engineers with an
intuitive and simple method to categorize scrap for modeling purposes. Second, to find the optimal
scrap representation for the prediction problem with respect to the accuracy and precision of the
statistical model.

In addition to its scrap-oriented focus, this study further builds on the modeling methodology
presented in two previous studies [2,10]. Four different data cleaning strategies will be used to
investigate the effect of data cleaning on the accuracy of the statistical model and an additional
non-linear statistical model framework will be employed; Random Forests (RF). Furthermore, this study
uses data from an EAF producing steel for tubes, rods, and ball-bearing rings and not from an EAF
producing stainless steel, thus broadening the application of the modeling methodology.

The results demonstrated that the three subsets of input variables provided by the scrap
representations all increase the performance of the models. Using SHAP, it was found that heavy
scrap, i.e., scrap with low surface-area-to-volume ratio, contributed to an increased EE consumption
while steel sheets, a scrap type with high surface-area-to-volume ratio, contributed to a decreased EE
consumption. These findings were confirmed by the steel plant engineers to agree well with previous
experiences using these scrap types as raw material.

2. Background

2.1. Melting of Steel Scrap in Liquid Steel

2.1.1. Driving Forces

The driving forces in scrap melting are present in any process in which scrap melting occurs.
However, the driving factors vary significantly between the EAF and Basic Oxygen Furnace (BOF).
This section highlights the driving factors in scrap melting with respect to the EAF in the steel plant
of study. The goal is not to create an extensive review over the various research topics governing
the melting of scrap, but rather to motivate the scrap representations used in the experimental part
of this study. A comprehensive review in the field was compiled by Freidrich [11]. Prominent later
developments in the field of scrap melting have been summarized in a recent review [12].

The melting of solid scrap in liquid steel is dominated by several factors. These are temperature
gradients between solid scrap and liquid steel, concentration gradients between solid scrap and
liquid steel, the freezing effect, the rate of stirring of the steel melt. These phenomena are explained
further below.

Temperature gradients between the solid scrap and the steel melt is one of the most important
driving factors in the melting of steel scrap. The melting rate, in m/s, can be determined by the
following equation:

dx
dt

= h · THM − Tliq

ρscr · (Hs + (THM − Tliq) · cp)
(1)

where THM is the temperature of the molten steel and Tliq is the scrap melting temperature.
Furthermore, Hs is the heat of melting of scrap, cp is the specific heat of scrap, ρscr is the density
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of the scrap metal, and h is the heat transfer coefficient in the interface of the molten steel and
scrap [12]. The higher the temperature gradient, THM − Tliq, the faster the steel scrap will melt.

Alloying element gradients also contribute to the melting of scrap in a process known as
dissolution. In this case, alloying elements migrate to the solid-liquid metal interface. The most
dominant alloying element in this process is carbon. However, in the BOF, the carbon concentration
difference can exceed 4 wt-% while in the EAF the carbon concentration difference seldom
exceeds 1 wt-%.

Assuming that the dissolution rate by carbon can be determined by the shortest length of the
scrap, the following equation can be used:

dx
dt

=
β · (Cl − Ci)

ρs(Cl − C0)
(2)

where β is the mass transfer coefficient of carbon, Cl is the carbon content in the liquid steel, C0 is the
initial carbon content in the steel scrap, and Ci is the carbon content in the solid-liquid interface [13].

A similar equation can be determined for silicon, which can also be an alloying element to account
for should the difference in silicon concentration between steel scrap and the molten steel be large.

The freezing effect occurs in the solid-liquid interface when the scrap first comes in contact with
the liquid steel. A solidified shell is formed due to the large temperature difference between the two.
This means that the volume of the scrap increases initially. The solidified shell is proportional to the
surface area of the scrap that is submerged in the hot metal or molten steel. Hence, the reduction in the
steel scrap size does not occur instantly, rather it decreases after the solidified shell has melted.

The stirring velocity is the velocity of the melt in the boundary layer between the melt and the
scrap surface area. Numerous studies have related the stirring velocity to the mass transfer coefficient
on scrap in liquid steel. However, there exists a wide range of reported mass transfer coefficient values
for scrap in liquid steel under forced convection [12]. Nevertheless, a commonly deduced relationship
between the mass transfer coefficient and the stirring velocity may be written as follows:

hscr = c · up (3)

where hscr is the mass transfer coefficient under forced convection, c and p are constants that are
determined experimentally. u is the average stirring power, which is related to the average stirring
velocity due to the physical relationship between energy, momentum and velocity. The stirring power
is governed by, for example, oxygen blowing and carbon boil.

Furthermore, the effect of stirring on the melting rate of scrap in the EAF is low compared to
the BOF since the stirring is more intense in the latter, i.e., higher stirring velocity governed by the
stirring power per unit volume. Furthermore, one should not expect the stirring to be very intense in
the EAF since the liquid steel depth is low and the solid-to-liquid ratio is high prior to the final stages
of the process, i.e., superheating, which hampers the flow velocity of the liquid steel. The device that
primarily facilitates stirring in the EAF is oxygen lancing, but other devices such as porous plugs and
induction stirring enhance the stirring.

2.1.2. Scrap Surface-Area-to-Volume Ratio

It is evident that the aforementioned factors are dependent on the surface-area-to-volume ratio
of the scrap pieces. On the one hand, the effect from temperature and alloying element gradients
influence on the complete surface area exposed to the steel melt. On the other hand, the mass of the
steel scrap piece determines the melting time since more mass needs to be heated (Equation (1)) and
more mass of the alloying elements have to be transported (Equation (2)). The mass is proportional
to the volume of the scrap piece. Thus, the surface-area-to-volume ratio can be expressed either as a
function of the surface area and volume or as a function of the surface area, apparent density of scrap,
and mass of the scrap piece:
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RSV =
A
V

=
A · ρs

m
(4)

Hence, to facilitate lower melting times one should use scrap that has a high surface-area-
to-volume ratio. The surface-area-to-volume ratios of some elementary geometrical shapes are
presented below to illuminate the effects of the surface-area-to-volume ratio in scrap melting.
However, real scrap pieces are often of more complex geometric shapes.

Sphere: A
V = 4πr2

4πr3
3

= 3
r

Cylinder: A
V = 2πrl+2πr2

πr2l = 2( 1
r +

1
l )

Cube: A
V = 6l2

l3 = 6
l

Square plate: A
V = 2l2+4lt

l2t = 2( 1
t +

2
l )

The thickness is defined as the thinnest dimension of the scrap piece. For the cylinder, one ought
to keep r << l. For the square plate, one ought to keep t << l. The cube and sphere are equidistant
from the center of the scrap piece, which means that one should keep the length and radius as small as
possible, respectively.

2.1.3. The Steel Plant of Study

The dissolution of steel scrap in molten steel due to carbon content gradients between the steel
scrap and molten metal are not significant in the EAF of study. The steel plant does not produce high
Si steels nor does the carbon content vary significantly between the hot heel and the charged scrap.
The temperature gradients between the steel scrap and molten steel will be similar for all heats which
have the 5–10-ton hot heel remaining in the furnace at the start of the heat. However, some heats will
be produced without this initial 5–10 ton of hot heel. This will affect the melting through temperature
gradients mainly for the scrap charged by the first basket. The main source of stirring in the EAF of
study is by oxygen lancing. The stirring is mainly facilitated by CO from carbon boil.

2.2. The Electric Arc Furnace

2.2.1. Process

The steel plant of study uses an EAF with a nominal charging capacity of 110 ton and a transformer
system of 80 MVA. The steel products produced are rods, tubes, and ball-bearing rings. The EAF
does not use a pre-heater but uses a hot heel, which is molten steel left over from each previous heat.
The amount of hot heel is 5–10 ton. During operation oxyfuel burners are used to remove the cold
spots between the furnace electrodes. The burners can also function as oxygen lances to inject oxygen
to the molten metal.

The process begins with a default mode where 5–10 ton of hot heel and a full basket of scrap
are present. The scrap basket is layered with different scrap types according to a pre-specified recipe.
When the basket of scrap has been charged into the furnace, the lowermost scrap mixes with the hot
heel and creates a mixture of scrap and partially molten steel. The melting phase starts when the
transformer is powered on and the electrode arcs are bored down into the upper layer of the scrap.
This process proceeds until enough space is available for the second basket of scrap to be charged.
In this instance, the amount of molten steel has increased but partially molten steel scrap is still present
in the steel bath. Furthermore, heaps of scrap are also present around the electrode arcs. The scrap
from the second basket gets piled on top of these heaps of scrap. The second melting phase starts in a
similar manner as the first melting phase. When a clear visible molten steel bath is present, the refining
phase starts. Oxygen lancing and injected fine carbon facilitate a foaming slag which increases the
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energy yield from the arcs to the steel bath. Some partially molten steel scraps are present in molten
bath during the refining phase. These are usually large and bulky pieces of scrap that require longer
exposure time to the molten steel to completely melt. Oxygen lancing also provides stirring of the
steel bath, which increases the melting rate of the remaining steel scraps. The contribution of the
stirring is expected to be minor compared to stirring using, for example, an electromagnetic field.
Finally, the steel is tapped into a ladle and the steel is further treated in downstream processes.

The described EAF process is illustrated in Figure 1.

Figure 1. The Electric Arc Furnace (EAF) process in the steel plant considered in the current
article. It shows the process divided into six parts. (I) The first scrap basket is fully charged with
up to 10 layers of scrap. The furnace shell contains hot heel. (II) The scrap from the first basket has been
charged into the furnace whereupon the lowermost scrap layers intermix with the hot heel. The furnace
arcs are bored down into the scrap and the transformer is powered on. (III) After the first melting
phase the furnace contains a steel scrap-melt mixture and heaps of partially solid scrap. The second
scrap basket is charged in as much to fully fill the furnace in the next step. (IV) Charging of the second
basket. (V) Refining of the molten steel where injected carbon and oxygen lancing facilitate an even
layer of foaming slag. (VI) The heat is ready for tapping.

As a last step, any preparations to the furnace are made before the next heat. This can, for example,
be replacement of electrodes or fettling of the furnace refractories. The steel plant of study also replaces
the hot heel periodically to allow for inspection of the furnace bottom refractories. This means that
some heats do not have a hot heel present at the start of the heat.

2.2.2. Charging of Scrap Baskets

Several aspects that affect the scrap charging either directly or indirectly must be highlighted.
The various steel grades have pre-specified recipes, i.e., charge types, which are used to determine
how much of each scrap type that will be charged into the baskets. This, in its turn, is determined by
the selection of primary scrap and alternative scrap. Primary scrap is always used if it is available in
the scrap yard. Alternative scrap is used if the primary scrap is not available. Each primary scrap type
has a matching alternative scrap type. Hence, the recipe is a representation of an ideal charged basket,
but not necessarily representative of the actual charged basket.

Available scrap types on the market also affect what charging strategies are possible. The available
scrap types in the market set the limit to what performance can be expected with regards to the EE
consumption. If a major scrap type that requires less EE to melt is not available, then the EE of the
next heats could be expected to increase, if a scrap type with higher apparent density is used instead.
Since the scrap turn-over rate can be as low as one week for several scrap types, varying available
scrap types are thus to be expected. Customer demand also influences the scrap requirements since
scrap with higher amount of tramp elements cannot be used for steel types with high performance
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requirements. The market factors and customer demand variations will not be accounted for in the
numerical experiments. However, it is important to keep these factors in mind since they indirectly
influence the EE consumption.

Some charging strategies are subsequently described. The first basket is usually filled with scrap to
75–100% of the total volume of the basket. The total volume of a scrap basket is 65 m3. The second scrap
basket is filled to reach the pre-specified amount of molten steel, which is approximately 100 tonnes.
A third scrap basket is used if the amount of required scrap was not satisfied by the first two baskets.

Each scrap basket can be made up of a total of 10 layers of different scrap types. The scrap types
in each layer are pre-specified by the scrap recipe. Combined, the layers will consist of a blend of
various scrap types. Bulky scrap with high apparent density (1.4 ≥ tons/m3) such as internal casting
residuals are put in the bottom layers of the basket. This ensures that the bulkier scrap gets a longer
exposure to the steel melt and thus reduces the risk of solid scrap pieces in the latter stages of the EAF
process. Consequently, scrap with lower apparent density (0.4–1.0 tons/m3) such as sheet and turnings
are put in the intermediate and upper layers. These scrap types do not require as long exposure to the
steel melt compared to other scrap types. Furthermore, the main source of heat for melting these scrap
types, most likely, comes from the radiative heat transfer from the electrode arcs.

Some effect of compaction of scrap types with lower apparent densities is expected due to the
weight imposed by the upper layers of scrap. Hence, the apparent density of these scrap types will be
higher in a fully charged basket compared to when they are solely present in the basket or in the scrap
yard. The apparent density of the scrap in the charged furnace can be assumed to have a reasonable
agreement with the apparent density of the scrap in the scrap bucket post-charging.

2.2.3. Parameters Governing the EE Consumption

Several previous articles have presented estimates of the energy sources and energy sinks during
the EAF process [14–18]. These reported values have been compiled in Table 1 and presents a guidance
regarding which input variables that need to be considered when predicting the EE consumption.
The reason behind the large percentage differences in energy sources and energy sinks is because one
of the studies compiled information from 16 EAF [14], some of which used up to 90% Direct Reduced
Iron (DRI) and 10% scrap as raw materials. Due to the gangue content of the DRI, mainly SiO2,
more slagformers must be added which increases the energy consumption. Furthermore, DRI contains
some remaining iron oxides that will be reduced by carbon in the melt. This also requires additional
energy. In addition, the amount of injected oxygen per ton charged raw material ranged from 5 m3/t
to 40 m3/t, which contributes to the large difference in oxidation of alloying elements [14]. The other
articles provided data on one EAF each, three of which used 100% scrap [15,17,18] and one that used
an unspecified mix of scrap and DRI [16].

A further discussion about the choice of input variables related to the energy balance equation,
but not related to scrap charging, has been published previously [1].

Table 1. Synthesized values of energy sources and energy sinks reported in [14–18].

Energy Factor % of Total Energy Sources or Energy Sinks

In Electric 40–66%
Oxidation of alloying elements 20–50%

Burner fuel 2–11%

Out Liquid steel 45–60%
Slag and dust 4–10%

Off-gas 11–35%
Cooling 8–29%

Radiation and electrical losses 2–6%
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In addition, the EE consumption is partly governed by the selected scrap mix in the steel plant.
This has been schematically illustrated in Figure 2. The available scrap in the scrap yard sets the limit
to the charged scrap mixture in each basket. The charging strategy, comprising of both the scrap types
and the layering of the basket, determines the exposed surface area of each scrap piece to the hot heel
and the furnace arcs during the process. The burners and oxygen lancing facilitate the melting of the
scrap. These factors in combination determine the aggregated melting time of the baskets combined.
An increased melting time contributes to a longer TTT, which increases the total heat losses during
the process. The increased heat loss has to be counteracted by increased amount of energy sources,
which is a combination of EE consumption, burner fuel, and oxidation by alloying elements in the
scrap (Table 1).
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Internal 
scrap

Available
scrap

Scrap recipe
and charging

strategy

Mixture of 
primary and

secondary
scrap + alloys

Basket 1
layering

Basket 2
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Burner
basket 1

Burner
basket 2

Burner
basket 3

EE 
basket 1
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basket 2
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basket 3

Basket 3 
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Scrap contribution
to EE consumption
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basket 2

Lance O2
basket 1

Lance O2
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Figure 2. The relationship between the available scrap and the scrap contribution to the Electrical
Energy (EE) consumption.

2.2.4. Non-Linearity

The non-linearity of the EAF process with respect to EE is caused by numerous factors. One of
these factors is related to the various sub-processes of the EAF as well as the resulting total process time.
For example, the heat loss through radiation and cooling losses are more prevalent during the refining
stage, when the steel is molten, compared to the first charging and melting phases. Furthermore,
the radiative heat transfer is proportional to T4, which adds to the non-linearity. By varying the refining
times and melting times, the resulting contribution to the EE consumption can vary significantly
between heats.

Delays imposed by up- and downstream processes as well as by the process itself add to
the non-linearity of the process with respect to the EE consumption. The reason is because the
process time is no longer a result of the total charged scrap weight or produced steel grade.
Furthermore, the delays are very hard to predict and should therefore be considered to be an external
non-linear factor imposed on the EAF at all times. The effects of delays have been extensively discussed
in [1].

The charged scrap types also add to the non-linearity of the process since combining varying
amounts of each scrap type will affect the melting behavior. For example, large and bulky pieces
of steel scrap must be exposed to the steel melt for longer times than thinner pieces of steel scrap.
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Larger fractions of heavy scrap increase the melting time, which in turn increases the EE consumption.
The general strategy is to charge bulkier scrap types in the lower layers of the scrap bucket. This is
regardless of the amount of bulky scrap in the heat. Failing to expose bulkier scrap to the hot heel and
molten steel means that partially molten pieces of scrap will remain during the latter stages of the
refining process. Hence, the melting time becomes the factor that determines the TTT of the heat and
hence also the EE consumption.

2.3. Statistical Modeling

2.3.1. Inherent Traits

There is one key difference that separates statistical models from physico-chemical models
and that is the connection between the input and output values. Physico-chemical models present
their prediction, i.e., output value, based on pre-determined equations that use the input values.
These equations are related to established physical and chemical laws. Statistical models, on the other
hand, interpret the values of the input variables in the context of previously observed input values
and output values. Hence, the output of a statistical model is purely based on probability and does
not necessarily adhere to established physical and chemical laws. The connection between the two
is purely dependent on the data that is used to adapt the statistical model to the prediction problem
of interest. This leads to three distinct traits unique to statistical models. These are data quality,
data variability, and correlation.

Data quality is related to how close the registered value is to the true value that is intended to
be measured. Uncertainties are imposed and the performance of a statistical model is reduced if the
data quality is low. There are numerous sources that can affect the data quality. Two examples are the
manual logging of data, which is prone to human error, and the definition of a variable in the logging
system, which may differ from what is measured in reality. One common data quality issue in the steel
industry is the precision of measurement equipment. For example, scales weighting raw materials
can have a precision of ±100 kg and temperature sensors can have a precision of ±5 ◦C. In this study,
data quality refers to the extent to which the data is affected by the aforementioned examples.

Data variability is a requirement because variations of the values in previously observed data
are what the statistical model learn. An input variable that is constant is useless to a statistical model.
A constant variable in a physico-chemical model is not useless. A straightforward example is the latent
heat of melting of steel, which is an important component of a physico-chemical model predicting the
temperature of steel in, for example, the EAF.

Correlation is a metric that indicates the relation between random variables. Strongly correlated
input variables are similar and therefore redundant as input variables to a statistical model. In this
case, only one of the input variables should be selected. Weakly correlated variables, on the other
hand, may be redundant. The degree of redundancy for weakly correlated variables depends on the
intra-correlation between the input variable and the other input variables. For example, scrap type A
may be redundant if the total scrap weight and scrap types B and C are included in a potential model.
The sum of scrap type B and C implies that scrap type A must be the difference between the total scrap
weight and scrap types B and C. In this case, adding scrap type A as input variable would likely not
increase the accuracy of the statistical model since there is no new information gained from this input
variable. It is important to note that correlation does not imply causation. However, statistical models
lack the ability to distinguish between the two. Even though a correlation can shed light on areas where
causation may exist, it is the task of the practitioner with domain-expertise to separate the causative
relations from the non-causative relations. This stresses the importance of possessing knowledge about
the domain in which the statistical model is used.
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2.3.2. The Abstract Case

Supervised statistical models will be used in this paper which means that each row of input
data, i.e., variables, has a corresponding output data point. This framework can be explained by the
following steps:

1. Select statistical model framework. The available hyper-parameters are unique to the statistical
model framework and are selected by the modeler.

2. Train the model using a set of matching input and output data. Continue the training phase until
the accuracy of the model converges.

3. Test the model with a set of previously unseen data.
4. Evaluate the models practical usefulness using the accuracy on the test data.
5. If the accuracy is good enough, deploy the model in a production environment.

In a practical context, the model hyper-parameters (step 1) are chosen based on a comprehensive
hyper-parameter search, also known as grid-search. During the parameter search, several models are
trained for each combination of hyper-parameters. The combination with the highest and most stable
accuracy is the most optimal hyper-parameter selection.

Non-linear supervised statistical models should be used when predicting the EE consumption of
an EAF. This is because some important input variables governing the EAF process are non-linearly
related to the EE consumption. The statistical model framework should always be chosen based on the
nature of the prediction problem.

Although non-linear statistical models are excellent at learning complex relations between
variables, these types of models are susceptible to overfitting. Overfitting means that the statistical
model has adapted itself too well to a particular set of data, i.e., the training data, in such a way that
it cannot predict well on future data. Combating this phenomenon is important since the relations
between the variables are expected to change from the training data to test data. This is the natural
course of any steel plant process. The strategies to reduce overfitting will be explained further in
Section 3.4.1 where the specific model frameworks used in the numerical experiments are presented.

2.3.3. Previous Studies

Statistical models have previously been used as a tool to predict the EE consumption of the EAF.
A comprehensive review of the subject has recently been published [1]. However, only four of the
previous studies have used some representation of scrap types as part of the input variables in the
models and as part of the model analysis [3–6].

The first study used the weight of shredded scrap as the only scrap type variable for a Multivariate
Linear Regression (MLR) model [6]. The coefficient for this variable is negative, which indicates that
less EE is needed than what is normally required when more shredded scrap is added. The model was
then used on data from 5 different EAF, all of which used various amounts of other scrap types which
were not taken into consideration by the model.

The second study used response graphs to investigate the total EE prediction response by each
scrap type in the first and second baskets [4]. However, a response graph only displays the total EE
prediction when varying one single input variable and does not reveal the specific contribution by
each input variable.

The third study used Partial Least Squares (PLS) regression to model the EE consumption
of two different EAF [3], one of which is the steel plant governing the data in the current study.
However, the significance of each scrap type representation was only given by an ad-hoc subjective
measure, as indicated by the descriptive words low and high.

The last study used the statistical modeling frameworks ML, RF, and Artificial Neural Networks
(ANN) to predict the EE consumption [5]. The effect of the scrap types on the EE was only reported
for the MLR model since the model coefficients reveal the impact of each scrap type on the EE
consumption. The values of the coefficients were then compared with experience-based values.
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However, some assumptions were made regarding the comparison since the MLR model used kWh/t
charged scrap and the experience-based values were reported in kWh/t tapped steel.

A recent study, published after the review, used Kolmogorov–Smirnov (KS) tests and correlation
metrics to highlight the change of all input variables between the training and test data [2]. In addition,
permutation feature importance was used to investigate the importance of each input variable to the
model prediction for both data sets. In combination, the KS tests and permutation feature importance
produced evidence that some of the input variables had the main influence in the performance
reduction of the model. However, the focus was never to investigate the specific effects of the scrap
types on the EE consumption of the selected models.

3. Method

3.1. Representing Scrap Types

The scrap types will be represented in three distinct ways. The first representation will use the
scrap codes from the steel plant of study, i.e., scrap type. The second representation is based on a
visual categorization of each scrap code with the aim to provide an intuitive categorization for the steel
plant engineers as well as to minimize the number of distinct scrap categories. The third representation
is based on the estimated apparent density of each scrap code. The estimated apparent densities are
both from established technical specifications as well as from estimations conducted by the plant
engineers. The relations between the three scrap representations can be seen in Figure 3. Henceforth,
the term scrap representation will refer to either of the three distinct scrap representations and the term
scrap category will be used to specify a specific category in either of the visual or apparent density
categorizations. The term scrap type will be used to refer to a specific scrap type as defined by the steel
plant coding system.
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Figure 3. The relationship between the steel plant scrap types and the two scrap representations
based on visual and estimated apparent density properties, respectively. The bold underlined scrap
types and categories occur in less than 10% of the heats and are therefore bundled together into
two aggregate variables, SCRAggr and Aggregate, for the plant scrap representation and visual scrap
representation, respectively.

Each of the three representations are further described in detail.
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3.1.1. Steel Plant Scrap Yard System

The steel plant uses an internal coding system for the raw material types, which follow a
logic that is based on where the raw material is sourced from, its quality, composition, and shape.
The majority of the raw material types represent steel scrap. Although nickel granulates and
anthracite, i.e., coal, have distinct coding, these raw materials will be referred to as scrap types well
knowing that they are not scrap. The main reason is that the focus of this study is on the effect
of steel scrap on the EE consumption of the EAF. The effect of alloying elements is not of interest.
Furthermore, nickel granulates and anthracite represent a small fraction of the total amount of charged
raw materials for all steel grades.

The composition of the scrap can vary from low-to high alloying elements such as carbon,
chromium, nickel, and molybdenum. Furthermore, quality-hampering impurities such as copper and
tin are prevalent in some scrap types that are considered of low quality. The scrap quality is also
dependent on the confidence in the actual content of the scrap. In general, more reliability is put on
quality from internal sourced scrap and scrap from other steel plants than on purchased scrap from
municipal waste incineration plants. The shapes of scrap can vary from thin plates to bulky residuals
from foundries and own arising scrap.

14 of the 33 scrap types were charged in less than 10% of the heats represented by the data.
To reduce the number of variables in the numerical experiments, a variable was created as the sum of
the charged weights of these scrap types. This variable is called SCRAggr, see also Figure 3.

The goal of including this representation in the numerical experiments is to investigate if the most
granular representation of the available scrap, in the steel plant of study, is the most optimal with
respect to the accuracy of the EE consumption prediction models.

3.1.2. Visual Categorization

The melting rate of scrap in the EAF is predominantly dependent on the surface area available to
heat transferring media such as the hot heel and radiation from the arc plasma. By categorizing the
scrap types according to their distinct physical shape, two benefits can be achieved. First, scrap types
with similar shapes are expected to have closely related melting performance in the EAF due to their
similar surface-area-to-volume ratios. Second, the number of variables will be reduced which is
beneficial from a statistical modeling point of view.

The difference between the categories Internal1 and Internal2 is based on the apparent density
and the difference between the categories Plate1 and Plate2 is based on the thickness of the plates.
They were separated because a difference in apparent density and plate thickness will affect the
melting time of the scrap pieces.

4 of 14 visual categories were charged in less than 10% of the heats represented by the data.
As with the steel plant scrap representation, a variable was created as the sum of the charged weight
of these scrap types to reduce the number of variables. This variable is called Aggregate.

3.1.3. Density Categorization

All scrap types have an estimated apparent density conducted by either established standards or
by the steel plants engineers. The main goal of this scrap representation is to categorize each scrap
type into four categories, which are based on the estimated apparent density, i.e., density interval.
All scrap types have an estimated apparent density range or a lower bound apparent density value.

The following categories were created, based on ranges of reported apparent densities:

• Light: 0.3–1.0 ton/m3

• Light-Mid: 0.56–1.0 ton/m3

• Mid: 0.7–1.4 ton/m3

• Heavy: >1.4 ton/m3
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Intuitively, scrap types with lower apparent densities should melt faster than scrap types with
higher apparent densities. Since the density of the metal pieces can be assumed to be the same,
the variation in apparent density is a measure of “porosity” of the scrap types. Higher “porosity” leads
to more surface area available for heat transfer, which in its turn leads to higher melting rates and
consequently shorted melting times.

3.2. Data Governing the EAF

3.2.1. Variable Selection

The selected variables are based on the discussion regarding the non-linearity of the EAF
process, reported energy sources and energy sinks, the correlative relationships of the variables
to the EE consumption, and the scrap variables governed by the three scrap representations
(see Section 2 and Section 3.1). The selected variables from each type are shown in Table 2.

Table 2. The variables used in the models.

Variables Unit Definition

Electrical Energy (EE) kWh The electrical energy consumption for the heat.

Total Weight kg The sum of all charged scrap types.

Tap-to-Tap time min The time between the end of the tapping from the previous
(TTT) heat to the end of tapping of the current heat.

TCB2 min Time between start of heat until charging of the second basket.

Burner oil kg Total amount of oil added by burner.

Burner O2 Nm3 Total amount of oxygen added by burner.

O2-lance Nm3 Total amount of oxygen added by lance.

Injected carbon kg Total amount of carbon injection.

Lime and dolomite kg Total lime and dolomite added.

No. Charges − Total number of scrap baskets added.

SCR101 kg Above 3 mm thick plate. Apparent density above 1.0 ton/m3.
SCR103 kg Thin plate, cuttings of rolled thin plate. Apparent density above 1.0 ton/m3.
SCR212 kg Heavy cuttings of internal scrap. Apparent density above 1.4 ton/m3.
SCR333 kg Anthracite (carbon). Apparent density 0.72 ton/m3.
SCR400 kg Purchased rebar and plates. Apparent density 0.56–1.0 ton/m3.
SCR407 kg Heavy melting mix (HM1). Apparent density above 0.7 ton/m3.
SCR409 kg Shredded scrap. Apparent density above 1.0 ton/m3.
SCR412 kg Internal scrap. Apparent density above 1.4 ton/m3.
SCR416 kg Turnings. Apparent density above 0.4 ton/m3.
SCR451 kg Purchased scrap (HM1 and HM2). Apparent density above 0.7 ton/m3.
SCR452 kg Internal scrap. Apparent density above 1.4 ton/m3.
SCR455 kg Turnings. Apparent density above 0.4 ton/m3.
SCR492 kg Mixed internal scrap. Apparent density above 0.7 ton/m3.
SCR633 kg Si-rich plate. Apparent density 0.7–1.0 ton/m3.
SCR677 kg Incineration scrap. Apparent density above 0.5 ton/m3.
SCR686 kg Grinding swarfs and grinding swarf briquettes. Apparent density 0.4–1.0 ton/m3.
SCR698 kg Skulls. Apparent density above 0.7 ton/m3.
SCR699 kg Grinding swarfs and grinding swarf briquettes. Apparent density 0.3–1.0 ton/m3.
SCR711 kg Incineration scrap. Apparent density above 0.5 ton/m3.

SCRAggr kg Sum of scrap types charged in less than 10% of the heats.

Incineration kg

Scrap representation based on the shape of the scrap type. See Section 3.1.2 and Figure 3.

Heavy melting scrap (HM) kg
Plate1 kg
Plate2 kg

Internal1 kg
Internal2 kg
Shredded kg

Swarfs kg
Turnings kg
Carbon kg
Skulls kg

Aggregate kg

Heavy kg
Scrap representation based on the reported and estimated apparent density ranges or values of each respective
scrap type in the steel plant. See Section 3.1.3 and Figure 3.

Mid kg
Light-Mid kg

Light kg

Hot heel − 1 if hot heel is present at the start of the heat, else 0. To account for the heat transfer by the hot heel.

Furnace shell number − An ordinary variable counting the number of heats since the last furnace barrel maintenance.
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3.2.2. Variable Batches

The variable batches are based on the variables motivated in Section 3.2.1 as a starting point.
All 8 variable batches from this group can be seen in Table 3 and the variables in each variable group
are shown in Table 4.

Table 3. The domain-specific variable batches. The variables present in each variable group are shown
in Table 4.

Variable Batch 1 2 3 4 5 6 7 8

V
a

ri
a

b
le

G
ro

u
p Base x x x x x x x x

Plant scrap category x x

Visual scrap category x x

Density scrap category x x

Furnace related x x x x

The reason the scrap representations will not be used together in any of the variable batches
is due to physical consistency. Besides being redundant, there is a physical logic tied to each scrap
representation. Using a mixture of scrap representations will not indicate which scrap representation
is the most optimal to use. One of the aims of this study is to investigate the best scrap representation
with respect to the performance of the models on test data.

Table 4. Input variables for each variable group. There is a total of 48 input variables.

Variable Group Variables No. Variables Variable Group Variables No. Variables

Base Total Weight 9 SCR686
TTT SCR698

TCB2 SCR699
Burner oil SCR711
Burner O2 SCRAggr

O2-lance Visual scrap Incineration 12
Injected carbon representation HM

Lime and dolomite Plate1
No. Charges Plate2

Plant scrap SCR101 20 Internal1
representation SCR103 Internal2

SCR112 Shredded
SCR333 Swarfs
SCR400 Turnings
SCR407 Carbon
SCR409 Skulls
SCR412 Aggregate

SCR416 Density scrap Heavy 4
SCR451 representation Mid
SCR452 Light-Mid
SCR455 Light

SCR492 Furnace Hot heel 2
SCR633 related Furnace shell number
SCR677

3.3. Data Treatment

3.3.1. Purpose

To ensure the reliability and validity of a statistical model, the data which is used to create the
model must be treated. The reason is because statistical models adapt their coefficients solely based
on data, as opposed to physical models, which have pre-determined coefficients. By including data
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that is of low quality, the statistical model will inherit that quality when making predictions on new,
previously unseen, data. In general, data treatment is a double-edged sword. On the one hand,
a model should be able to predict well on any future data. On the other hand, all data sets contain data
points that represent extreme cases. Any statistical regression model will predict these extreme cases
with a low accuracy, since the coefficient adaptation algorithm is based on minimizing the error on the
entire data set included in the training phase. Any extreme case receives a lower priority due to its
rarity. Hence, a successful modeling effort strikes a balance between these two opposing effects.

Data treatment methods can be divided into two categories, domain-specific methods and
statistical methods. The two disparate data treatment methods will be described further.

3.3.2. Domain-Specific Methods

This method uses the knowledge and experience in the domain from which the data originates.
Domain-specialization and manual treatment of the data are required. This can be both expensive and
time consuming but the end-result, i.e., the cleaned data, is expected to be of higher quality than using
pure statistical outlier detection algorithms, which do not adhere to the domain-specific considerations.
In the scope of the EAF process, an example of a domain-specific treatment is the removal of instances
of data that are improbable. If the registered charged content of scrap is 190 t while the maximum
capacity of the furnace is 120 t, then that instance should be removed. Another example is the removal
of heats that are not part of regular production. For example, testing the effects of new scrap types,
or delivery batches.

3.3.3. Statistical Methods

Statistical data treatment methods refer to algorithms that identify anomalies in the distributions
in data sets. The algorithms are purely mathematical and do not take into account any domain-specific
reasons behind anomalies or domain-specific relations between the variables. The advantage of this
method is that it is easy to apply and does require very little, if any, domain-specific knowledge.
However, applying outlier detection algorithms to multiple variables will potentially remove most of
the data. A simple example is the various types of scrap types used in production, which are prone to
extreme (very high or very low) values since some scrap types are not available at all times. Applying a
statistical cleaning algorithm to all scrap types will omit most of the data. Hence, statistical treatment
methods must be used with caution and only on well-selected variables that are expected to impact
the predictions dramatically. For example, total charged scrap weight and TTT.

Tukey’s fences [19], which is based on the interquartile range of a distribution, will be used in the
numerical experiments. The method removes data points that are present outside the range defined as:

q1 − ε(q1 − q3) ≤ xj ≤ q3 + ε(q1 − q3) (5)

where q1 and q3 are the first and third quartiles of variable j, respectively. ε is a pre-specified constant
indicating how far out the outlier must be before being cleaned. ε = 3.0 will be used in the numerical
experiments which removes extreme outliers [19].

Since this method is based on the quartiles of the distribution under consideration, it is less
sensitive to skewed distributions compared to cleaning by omitting data points outside of ±3σ

from the mean. This inherent characteristic of Tukey’s fences is advantageous, since most variables
governing the EAF process are non-Gaussian. See Figure 4 for examples.
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Figure 4. The distributions for four variables governing the EAF under study highlighting the absence
of the Gaussian distribution. All values are normalized, and the dashed lines indicate the mean
values. (A): TTT. (B): Charged weight of internal scrap. (C): Total charged weight of raw materials.
(D): Charged weight of shredded scrap.

3.3.4. Applied Data Treatments

Due to the opposing effects of data treatment as mentioned earlier, it is impossible to know
which approach strikes a good balance between model generalizability and model accuracy.
Therefore, four different data treatment approaches will be used in the modeling to investigate the
influence of the different approaches.

The first data treatment approach was conducted by a senior engineer at the steel plant. This data
treatment was done by manually inspecting each row of the data set and flagging rows which contained
values that were not consistent with the data instance as a whole. This data treatment is a combination
of domain-expertise and some subjectivity of the senior engineer. However, because the data is
inherently coupled with the steel plant it originates from, using on-plant experts is critical to a
successful data treatment operation. This data treatment is referred to as Expert.

For the following three data treatment approaches, two filter steps were applied to remove
unrealistic heats with respect to events in time. The first filter removed heats where the timestamp of
charging the second heat was negative respect to the start of the heat. The second filter removed heats
where the charging of the second basket occurred after the heat ended. Applying these filters were
enough to remove all unrealistic heats.

The second data cleaning approach was conducted by the authors of this study which was based
only on domain-specific knowledge. Two cleaning steps were applied. The first cleaning step removed
heats with TTT at, or above, 180 min since these heats are likely experiencing a longer delay in the
process or a scheduled stop. Usually, the TTT is aimed at 60–70 min. The second cleaning step removed
heats with a Total charged weight at, or above, 141 ton. This is a limit set by the steel plant for
abnormally large charge weights. This data treatment approach is referred to as Domain-specific.

The third data treatment used Tukey’s fences to remove clear outliers, see Section 3.3.3.
Tukey’s fences were calculated and applied to each of the following input variables using the training
data: Total Weight, TTT, Time until Charging of Basket 2 (TCB2), Burner O2, Burner oil, O2-lance,
and Injection carbon. Each ’fence’ was then applied to the training and test data, respectively. This data
treatment approach is referred to as Tukey.

The fourth data treatment approach used the second and third data treatment approaches, in order.
This data treatment approach is referred to as Domain-specific Tukey.

Each of the four described data treatment approaches will be used in the modeling to investigate
which one of the data treatments is the most optimal for a model applied in practice.
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3.4. Modeling the EE Consumption

3.4.1. Statistical Modeling Frameworks

To consider the non-linearity of the EAF process, a non-linear statistical modeling framework must
be used. The numerical experiments in this study will use two different non-linear statistical modeling
frameworks; ANN and RF. ANN has been used in a previous article using the same methodology as
described in this paper [2]. RF will be used to broaden the scope of models used to predict the EE
consumption using the same methodology. Furthermore, SHAP interactions, an interpretable machine
learning algorithm that calculates the interactions between the input variables with respect to the
output variable can be used for RF models [20]. This is not the case for ANN models where only
regular SHAP values can be used. SHAP will be further explained in Section 3.5.1.

Artificial Neural Networks: This model framework uses a fully connected network of nodes to
make predictions [21]. The first layer, which is known as the input layer, receives the values from the
input variables. The values are then propagated through the intermediate layers, which are known
as hidden layers, to the last layer. The last layer is the output layer where the prediction is made.
See Figure 5 for an illustration of an arbitrary ANN model.

Input
Hidden

Output

Figure 5. An Artificial Neural Network (ANN) for predicting an output value based on two input
values [2]. It has one hidden layer with three nodes. The lines between the nodes illustrate that the
ANN is fully connected and the forward flow of calculations in the network.

By changing the number of nodes in the hidden layers and the number of hidden layers, one can
alter the complexity of the model. Increasing the number of hidden layers and nodes increase the
complexity and enable the model to learn more complicated relations between the input variables and
the output variable.

In the output layer, and in each of the hidden layers, each node multiplies a weight value with
each of the value propagated by the previous layer. The resulting weight-value factors are summed
together. Mathematically, this process can be expressed as:

sj =
P

∑
i=1

wi · xi (6)

where j is the j:th node in the current layer and P is the number of nodes in the preceding layer.
Each value, sj, is then fed into an activation function, and the resulting value is propagated to the

next layer in the network. Two commonly used activation functions are the hyperbolic tangent (tanh)
and the logistic sigmoid.

During the training phase, the weights are updated in the direction of minimizing the overall loss
of the predictions on the training data. Since the output variable is connected to the input variables
by the network weights, it is possible to mathematically express the loss as a function of the network
weights. Finding an optimal local minimum, with respect to the overall loss, in the weight space
requires a sophisticated algorithm. These algorithms are known as gradient-descent algorithms as
their function is to descent to the most optimal local minima in loss space [21].

Given enough hidden layers and nodes, an ANN can learn any complex relationship between
variables even though the relationships are not valuable for prediction purposes. This overfitting
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phenomenon can be reduced by splitting the training data into two sets. The first set of data is used to
adapt the weights while the other set is used to calculate the loss after each weight update.

Random Forest: This statistical modeling framework is a model made of two, or more,
decision trees. See Figure 6 for an illustration of a simple decision tree for prediction purposes. The RF
model framework was first reported by L. Breiman [22]. RF belongs to the statistical model group
known as ensemble models, which is a group of statistical models that is made up of two or more
models that when combined, aim to increase the prediction accuracy.

x  <  0

y  > 15 z  > 1

A B DC

Leaf nodes

Branch
Root 
node

Figure 6. A simple decision tree sorting points on the {x, y, z} coordinate system. Points satisfying the
conditions on each node proceed on the left branch, the rest proceed to the right branch. The points
A = {0, 42, 5}, B = {−10,−10,−10}, C = {31, 4, 0}, and D = {2, 4, 61}, are sorted in the decision tree.

In an RF model, each decision tree is trained on a sub-sample of the complete training data set.
This sub-sample is drawn with replacement from the complete training data set, a process known as
bootstrapping. By training each decision tree on a sub-sample of the training data set the overfitting of
the RF model is reduced, since each decision tree becomes specialized on one segment of sample space.
Furthermore, the optimal split for the next branch from each node in the decision tree is selected using
a random selection of a pre-specified number of the total available input variables. This procedure also
reduces overfitting since each decision tree now has a higher probability of being diverse with respect
to the other trees in the model. Using many trees created by a random selection of features and data
points, RF type models have proven to converge such that overfitting does not become a problem [22].
In the prediction phase of an RF model, each decision tree predicts the value of the output variable.
In a prediction of regression type, i.e., when predicting continuous values, the prediction by the RF
model is the average of the predictions from all decision trees. The prediction of one data instance,
xk, in an arbitrary RF model is illustrated in Figure 7.

To optimize an RF model for the task at hand, i.e., improve the accuracy, one must search for an
optimal combination of hyper-parameters. The most important hyper-parameters are the maximum
tree depth, i.e., number of splits from the root node, the number of decision trees, and the maximum
number of features used to find the optimal condition when splitting a node [23].
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20 50 80 -30 10 -10

xk

yk = (20+50+80+(-30)+10+(-10))/6 = 20

Figure 7. An arbitrary RF model consisting of 6 decision trees. The prediction, yk, of the data instance,
xk, is determined by averaging the sum of the outputs from the decision trees. The filled nodes show
the path xk has taken in each decision tree.

3.4.2. Parameter Optimization

The variations of parameters for each statistical model framework, RF and ANN, can be seen in
Tables 5 and 6, respectively. Each combination of parameters represents one model type. The data
cleaning strategies and variable batches were included as additional, model framework independent,
parameters. By including the cleaning strategies as a parameter, it is possible to find out which cleaning
strategy achieves the most optimal trade-off between accuracy and data omission. By including the
variable batches as a parameter, it is possible to find the model with a relative high accuracy but with
the least amount of input variables. One should always abide to the concept of model parsimony,
which is to select the simplest model among a set of models with next to the same performance.

Table 5. Parameter combinations used for the RF models. Each value is separated by a comma.
m is the number of input variables. Each combination of parameters represents one model type.

Parameter Variations #Combinations

Number of trees 10, 30, 50, 70, 90, 110, 130,
150,170, 190, 210, 230, 250

13

Max tree depth 2, 3, 4, 5, 6, 7, 8, 9, 10, Unlimited 10

Max features in split v,
√

v 2

Cleaning strategies See Section 3.3 4

Variable batches
(domain-specific)

See Section 3.2.1 8

Total: 8320
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Table 6. Parameter combinations used for the ANN models. Each value is separated by a
comma. The topology (z) and (z,z), indicate one and two layers with z nodes in each layer,
respectively. Each combination of parameters represents one model type.

Parameter Variations #Combinations

Activation function Hyperbolic tangent function,
Logistic sigmoid

2

Learning rate 0.1, 0.01, 0.001 3

Topology (z) and (z,z) in z ∈ 1, 3, ..., 29 30

Cleaning strategies See Section 3.3 4

Variable batches
(domain-specific)

See Section 3.2.1 8

Total: 5760

3.4.3. Selection of Training and Test Data

Selecting the test data from a random sub-sample of the complete data makes the training and
test data become chronologically intertwined. This is a shortcoming because it does not reflect the
practical purpose of a statistical model predicting the EE of an EAF [1]. From a process perspective,
a statistical model will predict on heats that are from a future point in time with respect to the heats
whose data have been used to adapt the parameters of the model, i.e., training data. To account for this
shortcoming, the test data will be selected in chronological order from the training data. The test data
will be all heats produced from 1st of February 2020 to the 28th of February 2020 and the training data
will the heats produced from the 10th of November 2018 through January 2020. The start date of the
training data was selected based on a furnace upgrade that was completed on the 9th of November 2018.
This amounted to 4032 training data points and 263 test data points before data treatment. The heats
in the training data and test data will be referred to as training heats and test heats, respectively.

3.4.4. Model Performance Metrics

The performance of the models will be compared using two fundamental metrics. These are the
coefficient of determination, R2, and the regular error metric.

The adjusted-R2 value should be used instead of the regular R2 value when comparing models
that use different number of input variables. The reason is because each additional input variable
increases the R2-value when the number of data points is fixed [24]. The adjusted-R2 value can be
calculated as follows:

R̄2 = 1 − (1 − R2)
n − 1

n − v − 1
(7)

where n is the number of data points, is the number of input variables, and R2 is the regular
R-square value.

The regular error metric was chosen in favor of the absolute error metric, because in a practical
context, an overestimated prediction of EE is vastly different from an underestimated prediction of EE.
The regular error metric can be defined as follows:

Ei = yi − ŷi (8)

where yi is the true value, ŷi as the predicted value, i ∈ 1, 2, . . . , n, and n is the number of data points.
Using all the data points under consideration, the standard deviation, mean, minimum, and maximum,
error values are defined the ordinary way.

The EE consumption, and therefore the unit of error, will be expressed in kWh/heat rather than
in kWh/t tapped steel. The main reason for this choice is that the former varies only by consumed
EE while the latter varies both by consumed EE and the yield. This is a more challenging problem
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as it requires the statistical model to adapt to both the consumed EE as well as the yield, which is
defined as the weight of tapped steel divided by weight of charged scrap. Furthermore, the tap weight
is dependent on factors such as the slag created by oxidation in the process and on the total amount of
dust generated. These two examples are, in turn, affected by process times, amount of oxygen injected,
additives, and the charge mix.

3.4.5. Model Selection

Each model type, which is defined by one of the parameter combinations shown in Tables 5 and 6,
will be instantiated 10 times. The reason for this is to investigate the stability of each model type and
to reduce the impact of randomness, which is prevalent in each of the statistical model frameworks.
In RF, the randomness is introduced by random selection of data points for each tree and the random
selection of input variables to determine each split. In ANN, the randomness is partly governed by the
random selection of the initial values of the network weights.

The aggregate statistical metrics based on the 10 model instances of each model type are presented
in Table 7.

Table 7. The adjusted-R2 and error metric variants that are used to evaluate the performance of the
aggregated model instances.

Symbol Definition

R̄2
μ Mean adjusted R-square of the 10 model instances on the test data

R̄2
σ Standard deviation of adjusted R-square of the 10 model instances on the test data

R̄2
min Minimum adjusted R-square of the 10 model instances on the test data

R̄2
max Maximum adjusted R-square of the 10 model instances on the test data

Δμ Mean error of the mean error of the 10 model instances on the test data
Δσ Standard deviation of the mean error of the 10 model instances on the test data.
Δmin Minimum error of the mean error of the 10 model instances on the test data.
Δmax Maximum error of the mean error of the 10 model instances on the test data.

To determine the stability of the models, which is influenced by the underlying randomness,
the idea behind the model selection criteria was to keep the difference between R̄2

max and R̄2
min as low

as possible. Hence, the algorithm for selection the best model type of each variable batch can be
expressed as follows:

1. Select all models that pass the following condition: R̄2
max − R̄2

min ≤ 0.05.
2. Select the model(s) with the highest R̄2

μ. If the number of models exceeds 1, then proceed to the
next step, otherwise select the one model.

3. Select the model with min(R̄2
max − R̄2

min).

The adjusted-R2 was chosen to determine the stability of the models because it indicates the
goodness of fit. The other error metrics, based on the model error, do not relate to goodness of fit.

Using the above algorithm, the number of models will be reduced to 8, which is equal to the
number of variable batches. From this model subset, the model with the fewest number of input
variables will be selected, given that more than one model have the same R̄2

μ-value. This ensures
that the model selection adheres to the concept of model parsimony, i.e., that the simplest model,
which is the model with least number of input variables, is selected when more than one model have
the same performance.

3.5. Model Evaluation and Analysis

3.5.1. Shapley Additive Explanations (SHAP)

Any prediction by the statistical model, f , can be explained by a linear combination of the
contributions by all input variables:
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f (x) = φ0 +
M

∑
i=1

φi (9)

where φ0 is the contribution when information about the variables are not present. In practice, this will
always be the mean value of all prediction of the statistical model. This is sensible since the mean
value is always the most optimal choice if complementary information is lacking.

Each SHAP value, φi, can be calculated using the following expression [9]:

φi( f , x) = ∑
Z⊆Ẑ\{i}

|Z|!(M − |Z| − 1)!
M!

[ fx(Z ∪ {i})− fx(Z)] (10)

where Z is a subset of the set of all input variables, Ẑ, and M is the total number of input variables.
Ẑ \ {i} is the set of all input variables excluding variable i and Z ∪ {i} is a subset of the set of all input
variables including variable i. Hence, each SHAP value, φi, represents the average contribution by an
input variable on the output variable of all combinations in which that input variable is presented to
the statistical model, f .

The number of calculations required to calculate Equation (10) scales drastically when the number
of input variables and data points increases. To reduce the number of calculations, one can use an
approximative method known as the Kernel SHAP method, which assumes variable independence
and model linearity. Assuming variable independence means that Kernel SHAP will produce value
combinations that are unrealistic for variables that are dependent. For example, high amount of burner
oil will be matched with low oxygen through the burners. The linearity assumption is analogous to
linear approximation of functions in mathematics where the space in the vicinity of a data point is
assumed to be linear. Furthermore, Kernel SHAP is model independent which means that it can be
applied to any supervised statistical model. It has previously been used to analyze an ANN predicting
the EE of an EAF [10].

RF enables the use of the Tree SHAP method, which is adapted to tree-based statistical models.
Tree SHAP can calculate the exact SHAP values because it does not assume variable independence.
Furthermore, the algorithm is computationally efficient compared to the regular SHAP method [20],
which means that the SHAP values can be calculated within a reasonable timeframe. By not assuming
variable independence, Tree SHAP adheres to the true behavior of the model as opposed to Kernel
SHAP, which uses a simplified representation of the original model. This is important since the aim of
SHAP is to explain the behavior of the statistical model as accurately as possible.

Tree SHAP also provides the ability to use SHAP interaction values, which calculates the
interaction effects between the input variables as contributions to the prediction [25]. Instead of
receiving one SHAP value per input variable and prediction, the interaction value calculation provides
an MxM matrix per prediction, where M is the number of input variables. The diagonal of the matrix
contains the main interaction values, φi,i, which are the contributions by each input variable without
the influence of the other input variables. The upper and lower triangles of the matrix contain the
one-to-one interaction values, φi,j, which show the contributions to the prediction by each input
variable pair. The SHAP interaction value is equally split such that φi,j = φj,i, which means that the
total contribution of the input variable pair (i, j) is φi,j + φj,i.

The SHAP interaction values can be calculated by [25]:

φi,j( f , x) = ∑
Z⊆Ẑ\{i,j}

|Z|!(M − |Z| − 2)!
2(M − 1)!

∇i,j(Z) (11)

where

∇i,j(Z) = fx(Z ∪ {i, j})− fx(Z ∪ {i})− fx(Z ∪ {j}) + fx(Z) (12)

The SHAP interaction values can be expressed as the regular SHAP values as follows:
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φi = φi,i +
M

∑
i �=j

φi,j (13)

Henceforth, the SHAP interaction values relate to the model prediction as:

M

∑
i=0

M

∑
j=0

φi,j( f , x) = f (x) (14)

This means that the SHAP interaction values are a more granular representation of the contribution
by each input variable on the prediction as opposed to regular SHAP values. On the one hand, the main
interaction values provide us with the interaction of each input variable unaffected by the influences
of the other input variables. On the other hand, the one-to-one interaction values between the input
variables provide us with information on how the interaction between the input variables adds to the
prediction contribution.

The aim of showing the main interaction effects on EE by the input variables is to investigate if the
models adhere to the underlying relationships between the input variables and the output variables.
One must bear in mind that this analysis is univariate with respect to the output variable. Hence, it is
not possible to draw any conclusions regarding the intra-relationships between the input variables
that together affect the output variable.

There is also one concept known as SHAP feature importance. It is defined as the mean absolute
value of the regular SHAP values. See Equation (15).

FIj =
1
n

n

∑
i=1

φi
j (15)

where FIj is the SHAP feature importance for variable j and n is the number of data points.
SHAP feature importance measures the global importance of each input variable and is a

more trustworthy measure of feature importance than the traditional permutation-based feature
importance. The main reason is that SHAP feature importance is rooted in solid mathematical
theory while permutation-based feature importance is based on the empirical evidence provided by
random permutations.

In the numerical experiments, the package shap, with the method Tree Explainer, in Python will be
used to calculate SHAP. The method ’tree path dependent’ will be used since it adheres to the variable
dependence among the input variables. The software and hardware used in the numerical experiments
can be seen in Appendix A, Tables A1 and A2.

3.5.2. Correlation Metrics

Two different correlation metrics will be used to investigate the intra-correlation between input
variables as well as the correlation between the input variables and EE, i.e., the output variable.
By studying the resulting correlation values with domain-specific knowledge, it is possible to verify
the connection between the model prediction and the input variables. After all, the intra-correlation
between input variables and their respective correlations with the output variable is what the model
learns during the training phase. The two correlation metrics are explained further.

Pearson correlation: The Pearson correlation metric that can only detect linear relationships
between two random variables [26]. It assumes values between −1 and 1, where the former is a
perfect negative relationship between the variables and the latter is a perfect positive relationship,
i.e., the variables are identical. A value of 0 indicates that the variables have no relation.

The Pearson correlation coefficient is defined as follows:

ρX,Y =
covariance(X, Y)

σXσY
(16)
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where σX and σY are the standard deviations of the two random variables X and Y, respectively.
Distance correlation (dCor): Although dCor cannot distinguish between positive and negative

correlative relationships between variables, it is able to detect non-linear relationships between
variables [27]. This is important since some variables governing the EAF process have a non-linear
relationship to EE. By using dCor and Pearson in tandem, it is possible to get a clearer picture of the
relationships between the variables governing the statistical models.

The mathematical expression for dCor has the same form as the Pearson correlation coefficient:

dCor(V1, V2) =
dCov(V1, V2)√

dVar(V1)dVar(V2)
(17)

where dVar(V1) and dVar(V2) are the distance variance of the random variables V1 and V2, respectively.
dCov(V1, V2) is the corresponding distance covariance. The square root of dVar(V1) and dVar(V2)

gives the distance standard deviations.
dCor assumes values between 0 and 1, where the former indicates that the variables are

independent, and the latter indicates that the variables are identical. dCor has been used previously
when evaluating the variables governing statistical models predicting the EE of the EAF [2,10].

3.5.3. Charge Types

Three distinctly different charge types, i.e., scrap recipes, with different tramp element contents
will be used in the analysis to exemplify the contribution to EE by the scrap type or scrap category
for each of the chosen charge types. The first charge type, denoted A, has the lowest level of tramp
elements of the charge types used in the steel plant. It therefore requires higher amounts of scrap types
where the amount of tramp elements such as Cu and Sn are well-known. Examples are residual scrap
from the forging mill and purchased scrap from other steel mills. The second charge type, denoted B,
does not have as strict requirements as charge type A. Hence, a higher amount of scrap types with
lower qualities can be used. A typical lower quality scrap type is heavy melting scrap (HM) which can
have relatively high amounts of tramp elements. The last charge type, denoted C, can have higher
contents of tramp elements. Hence, purchased scrap from other steel plants and residual scrap are
used to a lesser extent.

It is important to note that alloying elements promoting the desired steel properties such as Ni,
Mo, and Cr come either from own arising scrap or from purchased scrap with low level of impurities.
In the cases the internal scrap is not used, pure alloying elements such as Ni-granulated must be used
instead. This is a more expensive route with respect to the total cost of raw materials.

4. Results and Discussion

4.1. EE consumption Models

R̄2
μ-values for all variable batches and data cleaning strategies are shown in Figure 8.

Consistency throughout the variable batches can be observed for all four cleaning strategies when
the RF model framework is used. The consistency among the variable batches means, for the RF
model framework that the deciding factor for the performance is the variable batch and not the
hyper-parameters of the statistical model framework. This is a wanted outcome since the performance
of a model should mainly be dependent on factors stemming from the application domain and not
based on an optimization of parameters in an abstract framework.

Variable batches (VB) 1 and 2 produce models with the lowest R̄2
μ-values. These are also the VB

that do not use scrap representation variables. This provides evidence that scrap types are relevant
factors when determining the EE consumption of the EAF and that scrap should not be treated
collectively using only the total weight of all charged scrap.
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The best performing models are those from VB 5 and 6 which use categories from the visual
scrap representation. This provides evidence that a categorization based on scrap shapes is an optimal
approach when creating a statistical model predicting the EE in the steel plant under study.

The performance of the models using the visual scrap representation are, performance-wise,
followed by the models using the plant scrap representation (VB 3 and 4) and the density scrap
representation (VB 7 and 8), respectively. Essentially, this indicates that a too fine or a too coarse
representation of the charged scrap are sub-optimal for a statistical model predicting the EE. The steel
plant scrap representation has numerous scrap types that contain the same scrap with respect to shape
and dimension. The only difference is varying alloying content from Ni, Cr, and Mo, which does not
significantly affect the melting time.

The coarse representation is based on the apparent density of the scrap, which does not take into
account the shape of the scrap. Scrap shapes are closely related to the area-to-volume ratio, which is
the strongest factor determining the melting time of scrap in the EAF since the stirring in the EAF is
low during a large part of the melting phase. For example, HM has the same apparent density as skulls,
which consist of bulky mixtures of solid slag and metal that takes long time to melt. Likewise, thin and
thick plate have similar densities but different area-to-volume ratios.

The consistency among the four sets of VB between the four cleaning strategies for both
statistical model frameworks further strengthens the evidence regarding the effects of the chosen scrap
representations on the predictive performance of the models.

The performance and meta data of the best models and meta data from each cleaning strategy
and model framework are shown in Table 8. In general, the ANN models perform similarly or better
than the RF models with regards to the R̄2

μ-values. However, the ANN models always have a smaller
mean error and standard deviation of error, i.e., Δμ and Δσ.

With regards to the modeling meta data, the ANN and RF models had the same VB for the best
models on the data from each cleaning strategy. This is also a wanted outcome based on the same
reasoning as before regarding the importance priority between the domain-specific factors and the
abstract model-based factors.

The total amount of cleaned data points was 25.8 percentages higher for the Expert cleaning
strategy compared to the Domain-specific cleaning strategy. The R̄2

μ-values only increased slightly
using the Expert cleaning strategy; 0.035 and 0.039 for the RF and ANN models, respectively.
Using the statistical cleaning method Tukey’s fences, the amount of data cleaned were 11 and 13.3
percentages higher than the Domain-specific cleaning strategy. As opposed to the Expert cleaning
strategy, the R̄2

μ-values were worse for the models involving Tukey’s fences. Tukey reported reduced
R̄2

μ-values of 0.049 and 0.077 for the RF and ANN models, respectively. For the Tukey-Domain-specific
the reduction in R̄2

μ were 0.053 and 0.078, respectively. These results lead to two important findings.
First, the usage of statistical cleaning heuristics results in a model performance that is sub-par to
models using data cleaned by the usage of domain-specific knowledge; the Expert and Domain-specific
cleaning strategies. Second, using data cleaned by an Expert yields models with the best performance,
which illuminates the importance of knowledge about the specific EAF operations one intends to
model. However, the large relative percentage of data loss using the Expert cleaning strategy (34.2%)
as opposed to the Domain-specific cleaning strategy (10%) tilts the chosen cleaning strategy in favor of
the latter since the data loss percentage directly relates to the percentage of future heats the model can
predict on. This finding is closely tied to the practical usefulness of the model.
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Figure 8. R̄2
μ-values for each variable batch (VB 1-8 on the abscissa) and cleaning strategy.

VB 1–2:Without scrap representation. VB 3–4: Steel plant scrap representation. VB 5-6: Visual scrap
representation. VB 7–8: Density scrap representation.

Table 8. The performance and meta data of the best models, and the meta data for the four cleaning
strategies. The values in parentheses show the values from the ANN models.

Cleaning Type Expert Domain-Specific Tukey Tukey-Domain-Specific

Train/test split 2571/187 3625/241 3179/212 3089/207
% cleaned train/test 36.2%/28.9% 10.1%/8.4% 21.2%/19.4% 23.4%/21.3%
% total cleaned data 35.8% 10.0% 21.0% 23.3%

Variable batches 6 (6) 6 (6) 6 (6) 6 (6)
No. Variables 21 (21) 21 (21) 21 (21) 21 (21)

R̄2
μ 0.461 (0.490) 0.430 (0.457) 0.381 (0.380) 0.377 (0.379)

Δμ 408 (238) 369 (209) 252 (214) 239 (126)
(kWh/heat)

Δσ 1938 (1863) 2173 (2063) 2062 (1995) 2042 (1976)
(kWh/heat)

Δmin −4496 (−5316) −7064 −(7756) −5061 (−5464) −5079 (−4262)
(kWh/heat)

Δmax 7113 (5699) 7833 (7735) 7810 (7608) 7942 (7162)
(kWh/heat)
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4.2. Analysis of the Selected Model

The selected model for the analysis is the RF model with a variable batch 6 using domain-specific
cleaning. This model was selected based on the relatively high R̄2

μ-value (0.457) while still keeping
90% of the data compared to the model using the expert cleaning type, which provided the highest
R̄2

μ-value (0.490) but only keeping 64.2% of the data. Hence, the chosen model can be used in 90% of
future heats given that the test data and training data come from the same distribution.

The main interactions of the variables Plate1, Internal1, HM, and Shredded on the EE consumption
and the charged weight distributions of these scrap categories for each of the charge types A, B, and C,
can be seen in Figure 9.

The EE contribution by Plate1 on charge type A is lower than for B and C. However, charge type
B can have both a positive and negative EE contribution since the densest part of the distribution is
present in the steepest EE interaction change for Plate1. Hence, it is hard to conclude whether charge
type B gets a similar contribution as does charge type A or charge type C. Charge type C is commonly
using zero, or next to zero, amount of Plate1. Hence there is a large contribution to EE by Plate1 for
this charge type. The EE contribution by Internal1 is slightly lower for charge type A than charge types
B and C. The EE contribution by HM on steel type A is higher than for charge types B and C, the latter
two of which are charged similarly across all heats. For the Shredded scrap category, all charge types
receive similar contributions to EE.

Based on these highlights, it is expected that charge type A has the lowest EE consumption,
that charge type C has the highest EE consumption, and that the EE consumption of charge type B is
in-between those of type A and type C. The following EE consumption, relative to the EE consumption
by charge type A, was obtained based on the data from the heats used to create Figure 9: charge type
B = 0.99 and charge type C = 1.02.

On the other hand, charge type B requires slightly less EE consumption on average than charge
type A (1.00). This is likely because Plate1 being closer to a negative contribution to EE for charge type B
than was previously anticipated. Furthermore, the analysis only focused on 4 of the 12 scrap categories,
out of which 3 are of particular interest to the selected charge types. In addition, the model also uses
a total of 21 input variables to predict the EE consumption of any given heat. However, given these
caveats, the analysis is in line with what could be expected from the model analyzed as well as from
expert domain knowledge.

The main utility of SHAP main interaction values is that it provides clarity on how specific values
governed by the input variable distribution contribute to the EE consumption prediction. The SHAP
main interaction values only show the univariate relationship between the input variable and the EE
consumption prediction. It is possible to use the SHAP interaction effects between the input variables
as explained in Section 3.5.1. However, the number of SHAP plots to analyze will be equal to an
additional 20 for each input variable; giving a total of 441 SHAP interaction plots for a complete
analysis of the selected model. Although experience and knowledge about the specific EAF can guide
the selection of SHAP interaction plots, a further analysis of the SHAP plots is best left as a future point
of study. The above analysis shows what can be done with the available tools. Although interesting,
an exhaustive analysis is for obvious reasons out of scope of the present paper.

The SHAP main interaction effects on EE by each scrap category of the selected model can be
observed in Figure 10. Thin plate, i.e., Plate1, has been confirmed by the steel plant engineers to
contribute to less EE. This is evident since a steep drop can be observed. The reduced EE by Plate1
is eventually flattened out and increases when the amount of Plate1 approaches the upper limit of
the furnace capacity. Internal1 contains heavy scrap with an apparent density of over 1.4 ton/m3.
Heavy scrap takes longer time to melt which contributes to a steadily rising EE with an increased
amount of Internal1 scrap. This has also been confirmed by the steel plant engineers, which refer to
the use of Internal1 as the reciprocal of Plate1 in the steel plant charging strategies. One could observe
a slight decrease in the EE contribution by increasing the amount of Plate2 and a slight increase in EE
contribution for Internal2. However, these scrap categories consist of less than 1% of the total charged
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weight in the studied heats. Hence, it is difficult to draw any clear conclusion on their contribution
to the EE. Shredded scrap is charged based on operating practices rather than for specific charging
strategies which results in steel with low amount of tramp elements. The EE contribution is decreasing
with increased amount of Shredded scrap from the nominal amount used. This was not confirmed
by the process engineers. The decreasing EE contribution could be a model artifact or because the
shredded scrap does contribute to a decrease EE consumption in the process. The latter could be the
case since shredded scrap is easily melted due to its high surface-area-to-volume ratio.
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Figure 9. SHAP main interactions on EE by Plate1, Internal1, HM, and Shredded scrap categories.
The three probability density plots below each plot show the distribution of the scrap category for each
of the charge types A, B, and C, respectively. See Section 3.5.3 for an explanation of the different steel
types. The y-axis of the scatter plot shows the SHAP main interactions on EE for each variable and
the y-axes of the probability density plots show the frequency of each charge weight. The x-axes of
both the SHAP plot and the probability density plot for each charge type are the amount charged of
the scrap category. The values on the x-axes has been omitted due to proprietary reasons. The values
governing the plots are from both the training and test data.

Incineration scrap is charged in low amounts, corresponding to only approximately 1.5% of the
total charging weight on average for all heats and approximately 5% for the heats using charge types
with lower requirements on impurity tramp elements. The increase in EE consumption is likely due
to the melting requirements of the scrap weight rather than due to the surface-area-to-volume ratio.
Also, skulls require higher EE according to the SHAP main interaction effect. This was confirmed by
the steel plant engineers which reported that skulls are difficult to melt. Skulls are large concrete-like
pieces of slag and metal mixture.

411



Processes 2020, 8, 1044

EE
 c

on
tr

ib
ut

io
n 

[k
W

h]

Figure 10. SHAP main interaction effects for the scrap categories for the selected model. The y-axes
show the main interaction effect on EE while the x-axes show the amount of each charged scrap
category. The values on the x-axes has been omitted due to proprietary reasons. The grey dots represent
values from the training data and the black dots represent values from the test data.

The SHAP main interaction values for the base variables can be seen in Figure 11. Here, the focus
will be on the variables whose EE contribution is counter-intuitive from the standpoint of a practitioner
in physico-chemical modeling. Specifically, these are Burner O2, Carbon Injection, Burner oil, and Lance
O2. According to the steel plant engineers, Burner oil is only effective up to a certain amount of kg,
which is when the burner oxygen is used in tandem with burner oil. This agrees well with the
observation from Figure 11. The burners are used in their maximum capacity when melting scrap.
However, the burners still need to be active for the remainder of the heat to prevent the burners from
getting clogged by slag and scrap. Thus, Burner oil is closely related to TTT, which is the reason
Burner oil in higher amounts contributes positively to EE. Carbon injection, which should contribute
to more heat generated by carbon boil, contributes positively to EE. This was confirmed by the steel
plant engineers to be related to the continuous injection of carbon fines throughout the heat. As soon
as liquid steel is present, carbon fines are injected to facilitate foaming slag. Similar to Burner oil,
Carbon Injection is also closely related to TTT. In the steel plant of study, Lance O2 is only used to clear
the slag door to enable sampling of the steel melt temperature and composition. Therefore Lance O2

does not have a consistent contribution to the EE.
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Figure 11. SHAP Main interaction effects for the base variables for the selected model. The y-axes
show the main interaction effect on EE while the x-axes show the increasing amount of each variable.
See Table 2 for details about the definition of each variable. The values on the x-axes has been omitted
due to proprietary reasons. The grey dots represent values from the training data and the black dots
represent values from the test data.

The positive relationship Injection Carbon to EE can also be observed by its Pearson correlation
coefficient in Table 9. For both the Pearson correlation and dCor, Injection Carbon has the highest
value with respect to the EE. In addition, the SHAP feature importance (Figure 12) regards the Carbon
Injection as almost twice as important as the Total weight when the model predicts the EE consumption.

The sometimes counter-intuitive relations between the input variables to the EE consumption
prediction emphasize the importance of not only having a firm understanding of the physico-chemical
and process experience on the relations governing the EAF. It is also important to understand the
relationship between the governing factors to the EE consumption of the specific EAF that one intends
to model.

It is important to observe that the total weight and TTT are among the three most important
variables for the model when predicting on EE. Both variables are also correctly considered by the
model with respect to what is known from process metallurgical experience. This agrees well with the
results from the previously reported SHAP analysis of a statistical model, created by the authors of the
present study, predicting the EE of an EAF [10].
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Figure 12. SHAP feature importance for the selected model as defined in Equation (15). The bars show
the feature importance on the training data and the dark dots show the feature importance on the
test data.

Table 9. Correlation between the input variables and the EE consumption as defined in the transformer
system. The input variables are ordered by dCor in the training data set. The values in parentheses are
the Pearson correlation coefficients.

Input Variable Training Test Input Variable Training Test

Carbon injection 0.39(0.40) 0.33(0.31) TCB2 0.12(0.13) 0.14(0.07)

Total weight 0.38(0.36) 0.35(0.37) HM 0.10(0.10) 0.22(0.21)

TTT 0.28(0.31) 0.33(0.31) Lance O2 0.09(0.07) 0.16(0.13)

Burner oil 0.24(0.24) 0.33(0.29) Anthracite 0.09(0.05) 0.23(0.17)

Plate1 0.20(-0.17) 0.34(-0.31) Internal2 0.08(0.05) 0.34(0.06)

Turnings 0.20(0.20) 0.28(0.24) Swarfs 0.07(0.04) 0.28(0.20)

Skulls 0.18(0.15) 0.35(0.34) Shredded 0.05(-0.03) 0.22(0.22)

Charges 0.17(0.19) 0.20(0.21) Lime+Dolomite 0.04(0.01) 0.13(-0.13)

Internal1 0.16(0.16) 0.22(0.13) Plate2 0.04(-0.02) 0.07(-0.01)

Burner O2 0.15(0.13) 0.14(0.0) Aggregate 0.04(-0.04) 0.10(-0.07)

Incineration 0.15(0.10) 0.33(0.30)

5. Conclusions

The main aim of this study was to investigate the effects of scrap in the performance of a statistical
model predicting the EE consumption of an EAF. This was done using three distinct representations of
the scrap types as well as SHAP main interaction effects which reveals the contributions from the scrap
variables on each specific EE consumption prediction. In addition, the study extended a previously
reported methodology used to create statistical models predicting the EE consumption of an EAF [2].
This was achieved by investigating the effects on the model performance using four different data

414



Processes 2020, 8, 1044

cleaning strategies, an additional statistical model framework, RF, and data from an EAF producing
steel for tubes, rods, and ball-bearing rings as opposed to stainless steel.

The main conclusions of the study may be summarized as follows:

5.1. Analysis of the Models

• All models using variables from any of the three scrap representations performed better than
the models using only the total charged scrap weight as a scrap representation. This consistency
provides evidence that more granular scrap representations are important when modeling the EE
consumption of an EAF using steel scrap as the main raw material.

• The models using the visual scrap representation had the highest R̄2
μ-values regardless of cleaning

strategy. This provides evidence that a scrap representation based on the shape of the scrap,
i.e., surface-area-to-volume ratio, is the most optimal to use. The result agrees well with the
surface-area-to-volume ratio and the physico-chemical relationships on the scrap melting rate
governed by temperature gradients, alloying gradients, and the freezing effect. In addition,
this representation is also intuitive and easy to apply from the perspective of steel plant engineers
and scrap yard operators.

• Data cleaning strategies using domain-specific knowledge from either an expert from the steel
plant of study or a domain expert provide models with the highest R̄2

μ-values compared to
pure statistical cleaning methods. This further emphasizes the importance of domain-specific
knowledge when modeling the EAF.

5.2. Analysis of the Selected Model

• The effects of the most important scrap categories on the EE consumption for the selected charge
types A, B, and C are transparently presented by SHAP main interaction values.

• SHAP main interaction values revealed the contribution by each scrap category on the complete
prediction space for the selected model. Plate1 and Internal1 were confirmed by the steel
plant engineers to agree well with their expectations. However, a more thorough investigation
must be conducted to evaluate the reasons behind the effects of the other scrap categories.
SHAP interaction values between the input variables is advised as a starting point.

• The experience and knowledge provided by the steel plant engineers were essential to determine
the reasons behind the counter-intuitive responses by Injected Carbon, Lance O2, Burner oil,
and Burner O2 on the EE consumption. This indicates that the participation by steel plant
engineers is of outmost importance to evaluate the trustworthiness of a practical model.

• The authors question whether one should use the Carbon Injection as part of EE prediction
models in the steel plant of study, given the specific operational practice. It is likely that the
Carbon Injection variable creates a model artifact for the selected model.

• The test data coincides with the training data in the SHAP plots. This raises the trust in the model
since the model response on previously unseen heats is within the range of SHAP values from
the heats used to adapt the model parameters.

6. Further Work

A continuation of the present study is to systematically evaluate the EE consumption of each scrap
category by performing controlled experiments. This would require a similar approach taken to achieve
the experiments in this study. Specifically, modeling according to the methodology presented in this
study, categorizing the scrap according to one of the provided scrap representations, and cooperating
with the steel plant engineers. As a final step, the resulting EE prediction model should be implemented
in the existing EAF process control system. Only then can the true effect by the model on the resulting,
actual, EE consumption be investigated.
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Nomenclature

THM Temperature of the molten steel
Tliq Scrap melting temperature
ρscr Density of the scrap metal
Hs Heat of melting of scrap
cp Specific heat of scrap
h Heat transfer coefficient in the interface of the molten steel and scrap
β Mass transfer coefficient of carbon
Cl Carbon content in liquid steel
Ci Carbon content in the solid-liquid interface
ρs Apparent density of scrap
C0 Initial carbon content in the steel scrap.
hscr Mass transfer coefficient under forced convection
c Experimentally determined constant
p Experimentally determined constant
u Average stirring power in the boundary between the melt and scrap surface area
RSV Surface-area-to-volume ratio
A The total area of an arbitrary scrap piece
V The total volume of an arbitrary scrap piece
l The length of an arbitrary scrap piece
r The radius of a cylindrical or spherical scrap piece
t The thickness of a square plate
m The mass of a scrap piece
T Temperature of the surface of a body emitting thermal radiation
q1 First quartile
q3 Third quartile
ε Pre-specified constant for outlier extremity
xj An instance of variable j
σ Standard deviation
v Number of input variables
P Number of nodes in the previous layer
sj Summation of the input values for j:th node in the current layer
wi Weight of node i in the previous layer
xi Value of node i in the previous layer
xk A data instance to be predicted by a RF
yk The predicted value of data instance xk by a RF
R2 Coefficient of determination

R2 Coefficient of determination adjusted for number of data points and variables
n Number of data points
Ei Regular error for data point i
yi True value of the output variable for data point i
ŷi Predicted value of the output variable for data point i
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R2
μ Mean adjusted R-square of the 10 model instances on test data

R2
σ Standard deviation of adjusted R-square of the 10 model instances on test data

R2
min Minimum of adjusted R-square of the 10 model instances on test data

R2
max Maximum of adjusted R-square of the 10 model instances on test data

Δμ Mean error of the mean error of the 10 model instances on the test data
Δσ Standard deviation of the mean error of the 10 model instances on the test data
Δmin Minimum of the mean error of the 10 model instances on the test data
Δmax Maximum of the mean error of the 10 model instances on the test data
f An arbitrary statistical model
fx A simplified representation of f
φ0 The contribution to the prediction by f when all information is absent
φi The contribution to the prediction by f by variable i
Z A subset of a set of all input variables
Ẑ The set of all input variables
|Z| The number of variables in the subset Z
Ẑ \ {i} The set of all input variables excluding variable i
Z ∪ {i} The subset of a set of all input variables including variable i
Z ∪ {j} The subset of a set of all input variables including variable j
Z ∪ {(i, j)} The subset of a set of all input variables including variable i and j
M The total number of input variables
φi,i The main interaction value for variable i
φj,i The interaction effect of input variable i imposed on variable j
φi,j The interaction effect of input variable j imposed on variable i
FIj SHAP feature importance for variable j
φi

j Regular SHAP value for variable j and data instance i
ρX,Y Pearson correlation coefficient between random variables X and Y
σX Standard deviation of random variable X
σY Standard deviation of random variable Y
V1 Random variable
V2 Random variable
dCor (V1, V2) Distance correlation between V1 and V2

dCov (V1, V2) Distance covariance between V1 and V2√
dVar (V1) Distance standard deviation for V1√
dVar (V2) Distance standard deviation for V2

Abbreviations

The following abbreviations are used in this manuscript:

EE Electrical Energy
EAF Electric Arc Furnace
BOF Basic Oxygen Furnace
DRI Direct Reduced Iron
DMS Demand Side Management
MLR Multivariate Linear Regression
PLS Partial Least Squares regression
ANN Artificial Neural Network
RF Random Forest
KS Kolmogorov–Smirnov
dCor Distance Correlation
SHAP SHapley Additive Explanations
TTT Tap-to-Tap Time
TCB2 Time to Charging of Basket 2
HM Heavy Melting Scrap
VB Variable Batch
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Appendix A

Table A1. Hardware specifications for the numerical experiments.

Computer model Dell Latitude E5570
CPU Intel Core i7 2376 MHz
RAM 16,203 MB

Table A2. Software specifications for the numerical experiments.

Purpose Software/Package Version

Operating system Microsoft Windows 7 Professional 6.1.7601 Service Pack 1 Build 7601

Programming language Python 3 3.7.1

Python distribution Anaconda 3 4.6.7

Data handling pandas 0.23.4

numpy 1.17.4

Statistical modeling scikit-learn 0.20.1

SHAP values shap 0.8.1

Distance correlation dcor 0.3

Visualization matplotlib 3.0.2

seaborn 0.9.0
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Abstract: A simulator and an algorithm for the automatic creation of operation charts based on
process conditions were developed on the basis of an existing comprehensive electric arc furnace
process model. The simulator allows direct user input and real-time display of results during the
simulation, making it usable for training and teaching of electric arc furnace operators. The automatic
control feature offers a quick and automated evaluation of a large number of scenarios or changes in
process conditions, raw materials, or equipment used. The operation chart is adjusted automatically
to give comparable conditions at tapping and allows the assessment of the necessary changes in the
operating strategy as well as their effect on productivity, energy, and resource consumption, along
with process emissions.

Keywords: electric arc furnace; simulation; process model; steelmaking

1. Introduction

The electric arc furnace (EAF) process is the main process for recycling of ferrous scrap [1] and the
second most important steelmaking process route in terms of global steel production [2]. EAF process
models have proven to be useful for improving process understanding and control as well as resource
and energy efficiency by providing information that cannot be measured directly during the process
due to the extreme conditions inside the furnace. Numerous models have been developed using
different approaches both for the complete process as well as local phenomena or single process phases.
However, few simulators allow for real-time manipulation of simulations by the user. Logar et al. [3]
describe a simulator based on their process model and the World Steel Association provides an online
EAF simulator on their website [4]. The simulator of Logar et al. [3] is based on a previously developed
process model considering detailed heat transfer [5,6] and thermochemical equations [7] as well as
an electrical model [8], whereas the World Steel Association gives only limited information about
the workings of their model [9]. Other published models run simulations based on predetermined
input data and although they can be used to study different scenarios, they do not adapt to current
simulation results or user inputs.

In order simulate the process independent of plant data and cover extreme cases that may occur
with unusual user input, a comprehensive mechanistic modelling approach is necessary. Several such
models are available in the literature such as those of Bekker et al. [10–12] and MacRosty et al. [13–15]
who introduced some of the simplifications and assumptions that Logar et al. based their model
on, as well as several others that have been published with a varying degree of detail [16–31].
Both Meier et al. [32–37] and Fathi et al. [38] have published models developed on the basis of the
work of Logar et al. [3,5–8]. With the exception of Logar et al., all these models rely on predetermined
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input from measured data and, as far as can be determined from the published information, no other
simulators that provide direct feedback and control for the user are available. Meier implemented
the automatic control of the model on the basis of current simulation results [35], but his model
does not allow direct user input during the simulation. The model and simulator presented here are
based on a further development of the model proposed by Meier [39]. Although the general model
structure and most of the assumptions and simplifications from Logar et al. [3,5–8] remain, the model
has been adjusted for a different solver algorithm [36] and substantially modified [32–34,36,37,39]
making it one of the most comprehensive and up-to-date EAF process models currently available.
The differences compared to the model published by Logar et al. include a more efficient numerical
method for solving the model equations [36], increased detail in the gas phase with additional species
and reactions [34,37], a more comprehensive model of the radiative heat transfer considering the
influence of the gas phase [32,37], the treatment of different carbon carriers [33], and the refinement of
the thermochemical model for the interaction of slag and melt with each other as well as the injected
oxygen and carbon [39].

2. Process Model

The model presented here as a basis for the simulator is essentially the state of development
documented in a previous publication [39]. The model is executed in the MATLAB environment.
Within the model there are eight different zones (i.e., control volumes), each of which is homogeneous
in terms of composition and temperature. Separate energy and mass balances are defined for each
zone. The zones are the (1) solid scrap, (2) liquid metal, (3) solid slag formers, (4) liquid slag, (5) gas
phase, (6) water cooled wall and roof, and (8) the electrode(s). The electric arc is treated simply as a
heat source whereas the air-cooled bottom vessel and lower wall section are represented as heat sinks.
Figure 1 shows a schematic illustration of all zones and heat sinks/sources within the model.

Figure 1. Model zones.

Relevant phenomena such as heat exchange through radiation and direct contact, phase changes
and mass transfer between zones, chemical reactions, as well as the change in geometry during
meltdown, are considered in the model. Simulation results have been validated using extensive data
from industrial furnaces [32–34,37,39].
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The operation of the furnace is characterized by continuous as well as discontinuous mass and
energy flows. For the charging of scrap baskets, the amount and composition of scrap, slag formers,
and coal charged with each basket can be considered with an unlimited number of baskets per heat.
The charging in bulk of coal, slag formers, or alloys without scrap can be accounted for as well by
defining the desired amount and composition and charging it independently. Due to the discontinuous
change of conditions inside the furnace resulting from charging of material in bulk, the integration
is stopped and restarted with new initial values adjusted according to the added material for each
charging event.

The time-dependent model input or operation chart consists of the electric energy input
characterized by voltage and current as well as the mass flows of oxygen for lances, burners and
post-combustion, natural gas for burners, coal for carbon lancing, slag former injection, and off-gas
extraction. The cooling of the wall and roof is determined on the basis of the mass flows and inlet
temperature of the respective cooling water flows. For the simulation based on plant data, these inputs
are determined from measured values or estimates and stored for each heat at the beginning of the
simulation to be evaluated at every time step of the simulation. Additional parameters describing
furnace-specific properties such as the geometry and empirical factors adjusted for each individual
plant are stored in a separate Excel file. Different parameter sets can be defined and automatically
simulated in succession. By comparing the results for different parameter settings, empirical parameters
can be adjusted for different furnaces or process conditions and the impact of parameters such as
the composition of slag formers or coal and gases can be evaluated. For the automatic control of the
simulation as implemented by Meier [35], the masses charged in bulk are predetermined while the
time of charging, mass flows, and electric energy input are determined on the basis of the progress
of the simulation and rules derived from the operation of a real-life furnace. For the simulator, the
operation chart and charging of baskets can be determined by the user during the simulation.

Figure 2 shows the structure of the model with its different modules and the exchange of
information between them. Essentially, the main model runs independent from the type of data
use and the change between the three running modes (measurement-based simulations, automatic
control, and user-input-controlled simulations) affects only the data module and its interaction with
the main model.

Figure 2. Model structure (translated from [37]). EAF: electric arc furnace.

The data module determines both the initial conditions for each basket that are calculated in
the input mass module and the time-dependent input during the simulation that is transferred to
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the energy distribution module for each time step. Figure 3 shows how the structure of the data
module and the data that is exchanged with the EAF model when measured data is used. The input
is predetermined for each point of time and together with the geometry and other furnace-specific
parameters determines the input for the model. The validation data is not used directly as model input
but can be compared to model results and to adjust empirical parameters.

 
Figure 3. Data module with measured data.

Figure 4 shows the structure of the data model for the automatic control (left) and simulator
(right) modes. Because the input is no longer predetermined for the full simulation, the time and
current state have to be passed back to the data module for each step. In the case of the automatic
control mode, the current input is then determined on the basis of the current set of parameters, rules,
and minimum/maximum values and passed back to the EAF model. In the simulator mode, the user
interface is updated with the current model results and the input for the model is updated with those
set in the interface so that any changes made by the user since the last update are carried over to
the EAF model. Furthermore, for the simulator mode, the selected speed is passed to the model as
an additional input parameter, whereas in all other cases the model always runs with the highest
attainable speed by default.
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Figure 4. Data module for automatic control and simulator modes.

3. Automatic Control Mode

The automatic control mode of the simulation implemented by Meier [35] was developed to
evaluate different scenarios such as the use of alternative materials of varying quantity and composition,
for instance, the replacement of coal with alternative carbon carriers and the use of oxygen from
different sources with varying oxygen and nitrogen content, or different operating strategies for the
control of post-combustion, burners, and carbon and oxygen lances. The simulations are automatically
adjusted to reach the predetermined conditions at tapping for all scenarios so that their impact on
energy consumption, operating cost, and carbon emissions can be evaluated.

3.1. Input

Different scenarios for which automatic operating strategies are to be generated and compared
can be defined by the user in an additional worksheet of the Excel file used for the furnace parameters.
First, the masses and compositions of scrap, two coal types, and two slag formers (usually lime and
dolomite) charged with three scrap baskets are defined. Although the input file is currently limited to
this, the model allows the addition of both more baskets and additional types of coal or slag formers.
The scrap composition can be defined separately for each basket. Furthermore, the initial conditions
before charging of the first basket, namely, the mass, temperature, and composition of the hot heel
present in the furnace have to be set. In addition to the values defining the initial conditions and
charged material, the minimum and maximum values have to be set for the electric power and voltage,
oxygen input for lances, post-combustion and burners, carbon injection, off-gas mass flow, slag former
injection, natural gas for burners, and the voltage. The variation of these parameters between the
selected minimum and maximum values over the course of each simulation is determined according
to a set of rules that in turn can be adjusted through the parameters shown and described in Table 1.

One minimum and several maximum values can be given for each parameter. The model
automatically selects all possible combinations and runs a simulation for each case. This can be
combined with the variation of parameters, such as the composition of coal and slag formers, allowing
a large number of scenarios to be simulated and compared automatically.
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Table 1. Parameters for automatic control.

Parameter Unit Description

tstop-delay s Time to raise electrodes and open roof
tstart-delay s Time to close roof and lower electrodes
Vscrap-max % Maximum fraction of furnace volume that can be filled with scrap
Pstart-reduction % Reduction of electric power during bore down (until arc is covered by scrap)
Prefine-reduction % Reduction of electric power during refining (flat bath)
Pwall-reduction % Reduction of electric power when water-cooled wall overheats

Twall-crit K Critical wall temperature for power reduction
Olance-min % Fraction of maximum value during reduced lancing
Clance-burner % Oxygen lancing increased when burner power below this fraction
Clance-bath % Influence of free bath surface on oxygen lancing
Cpost-scrap % Post-combustion reduced when remaining scrap below this fraction
tpost-delay s Post-combustion starting with delay after power on

Cburner-scrap % Burner power reduced when remaining scrap below this fraction
Ccarbon-batth % Carbon lancing initiated when free bath surface above this fraction
Ccarbon-scrap % Carbon lancing reduced when remaining scrap below this fraction

3.2. Control of Operation Chart Parameters

Using predefined rules, the model determines the desired value for each parameter from the
selected minimum and maximum values during the simulation, replacing the fixed operation chart
determined from measured data. The rules are derived from the current operating strategies and
operation charts from the regular operation of different EAF. The simulation starts with the charging
of the first basket and is terminated after the scrap charged with the final basket has melted and
a predefined carbon content and temperature of the melt have been reached. After and before the
charging of each basket all values of the operation chart are set to their minimum (power off) values
for the delays defined by tstart-delay and tstop-delay to account for the power-off time associated with the
raising and lowering of the electrodes, as well the opening and closing of the roof as necessary, when
scrap is charged into the furnace. The condition for charging the next basket is that the sum of the
currently remaining solid scrap volume and the volume of the scrap charged with the next basket
are below the maximum allowed scrap volume Vscrap-max. If no additional basket is defined and the
conditions for tapping are met, all operation chart parameters are reduced to their minimum values and
the simulation is terminated. The charging of the second and additional baskets is triggered by an event
function that constantly checks if the necessary conditions have been met. Initially, once the conditions
are met for charging of the next basket, all operation chart parameters are reduced to their respective
minimum values and the simulation continues until tstop-delay has passed. The simulation is then
stopped and reinitiated with new starting values and continues with a power-off period determined
by tstart-delay and the following power-on period just as with the first basket.

A hyperbolic tangent function is used to allow rapid but continuous changes between states where
necessary. It can assume values between one and zero and is based on a controlling variable and a
threshold. ϕ(a,b) indicates a hyperbolic tangent function that has the value zero as long as the variable
a is smaller than the threshold b, and rapidly changes to one if a increases to values higher than b.
For example, the factor indicating the charging of the next basket would be based on the maximum
allowed scrap volume Vscap-max, the scrap volume in the next basket Vscrap-next, and the actual scrap
volume Vscrap, as shown in Equation (1):

Φbasket = ϕ (Vscrap,Vscrap-max − Vscrap-next). (1)

It would become zero once the free volume is large enough to charge the next basket. Such factors
are used for all conditions and delays defining the operation chart.

The electric power is reduced for the initial period after charging until bore down has progressed
far enough to allow the arc to burn inside the scrap, at which point significantly less radiation is
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received by the wall and roof, and maximum power can be used. Later during the process, power is
reduced once the full bath surface is uncovered and the flat bath phase begins. During any stage of the
process, the power will be reduced if the wall temperature reaches the critical temperature Twall-crit.
The voltage is assumed to be a linear function of the power and the current is determined accordingly.

The oxygen lance mass flow is initially set to the percentage defined by Olance-min and increases
once the burner power conditions set by Clance-burner is fulfilled with another increase to its maximum
value once the complete bath surface is free of solid scrap. The ratio of the first and second increase is
determined by the parameter Clance-bath. Post-combustion oxygen flow is started with the maximum
value once the additional delay tpost-delay has passed and a minimum of 5% of the scrap has melted.
It is stopped once the mass of solid scrap remaining divided by the initial amount of scrap has reached
Cpost-scrap. The burners are started with full power and both oxygen and natural gas input are stopped
once the remaining scrap has reached Cburner-scrap. Carbon injection is started after meltdown of the
last scrap charge has progressed far enough to create a free bath surface as defined by Ccarbon-bath.
Once the melt temperature approaches the desired tapping temperature or the amount of remaining
scrap reaches Ccarbon-scrap, carbon injection is phased out. Oxygen lancing is reduced proportionally
with the reduction in carbon injection.

Off-gas extraction is started at the minimum mass flow and increased with the injection of gases
and carbon. Because the injection of slag formers using lances is not practiced at the furnaces this
automatic control was initially designed for, no rules have been defined for this purpose and the mass
flow is permanently set to zero. The practice could, however, be included by simply defining the
necessary factors and rules, as the process model does include the necessary equations and simulations
based on measured data have been run successfully for furnaces where the injection of lime is practiced.
Cooling water flows and inlet temperatures are assumed to be constant for these simulations.

4. Simulator Mode

Direct real-time feedback and control are necessary for the simulator function. Therefore, a user
interface has to be implemented to control the simulator and display current results while the simulation
is running. Figure 5 shows the currently used interface which displays the simulation time, current
melt temperature, remaining solid scrap mass, and the cooling water outlet temperatures of wall and
roof to indicate the progress of the process. The user can enter values for electric power, oxygen,
carbon, and lime injection, and select burners ‘on’ or ‘off’ to control the simulation. The button
‘charge basket’ allows for the charging of the masses selected for scrap, coal, lime, and dolomite in the
corresponding fields.

 
Figure 5. User interface.
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The model allows the display of any value calculated during the simulation, parameters such as
the total energy consumption or off-gas composition and temperature that can be used for control of
industrial furnaces that can easily be added to the display. The same is true for information that is not
attainable for a real-world furnace such as temperatures and energy or mass flows inside the furnace.
Furthermore, every operation chart parameter can be added and manipulated by the user. Values for
off-gas mas flow, arc voltage, and cooling water flows are currently set automatically but could be
added to the interface instead. Simulations are started by charging the first basket and ended using the
button ‘tap steel’. Pressing these buttons during the simulation triggers an event and the sequence of
determining new starting values and reinitiating the integration, which is described for the simulation
using measured data or automatic control.

4.1. Simulation Speed

The EAF model runs simulations significantly faster than the real process times—the process
taking roughly one hour per heat in reality can be simulated in less than a minute using a tabletop
computer (3.4 GHz, 4 core central processing unit, 32 GB random-access-memory). In order to allow the
user to make inputs and evaluate the current results, the simulation has to be slowed down. Therefore,
the simulation is paused after each second of simulated process time, the user interface is updated,
and values changed by the user after the previous update are returned to the process model. The
duration of the pause depends on the actual speed of the simulation and the desired speed set by the
user. If the simulation is progressing slower than the desired simulation rate, the pause is set to the
smallest possible value that allows the user interface to be updated. Otherwise, the pause is held long
enough to allow the simulation to synchronize with the desired simulation rate. The simulation speed
can be adjusted by the user during the simulation.

4.2. Model Adjustments

Due to the different nature of the simulation input, several changes to the model and solver are
required to insure fast and stable operation when using the simulator. When measured data is used
as input, the operation chart values can be interpolated between time steps and the full operation
chart is available at all times. For the automatic control, smooth changes are insured through the use
of a hyperbolic tangent function and the rules remain the same throughout the simulation, allowing
for stable simulation. Furthermore, both the automatic control and measured data from industrial
operation usually insure smooth and consistent progression of the process, whereas with the simulator
erratic user inputs and far more extreme and unusual states can be encountered, posing a significant
challenge for the process model.

4.2.1. Continuity of Operation Chart

When using the simulator, the model has to be adjusted for unpredictable and discontinuous
changes in operation chart values due to user input. Whenever such sudden changes are detected by
the ODE15s solver used for the EAF model, negative time steps can occur, meaning that the solver
will jump back to an earlier time and recalculate with a smaller step-size. Therefore, it is not possible
to always use the value currently set in the interface. Instead, the operation chart is extended with
the current time and values every time the interface is updated, and if negative steps occur then the
previous values are used accordingly.

4.2.2. Pressure Oscillations

In rare cases, usually when reinitiating electric energy input after long power-off periods, the
calculated pressure can start oscillating, causing the simulation to become very slow and eventually
crash. This is caused by a feedback loop from the coupling of leak air ingress with the pressure
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and temperature of the gas phase. The pressure is calculated using the ideal gas law according to
Equations (2) and (3):

P =
RT

∑ mi
Mi

V
, (2)

dP
dt

=
RT

∑ dmi
dt

1
Mi

V
+

dT
dt

∑ mi
Mi

V
, (3)

where P is the pressure, t is the time, T is the gas phase temperature, R is the gas constant, and mi and
Mi are the masses and molar masses of species in the gas phase, respectively. V is the volume of the gas
phase and is assumed to remain constant, whereas the mass of the gas phase depends on the density
and composition of the gas.

The leak air intake is assumed to be a linear function of the pressure inside the furnace, as shown
in Equation (4):

.
mleak−air = a + b(P− c) (4)

where a, b, and c are empirical parameters fitted to match measured data and optimize stability. In some
cases, an increased intake of leak air will cause the temperature to drop, with a resulting reduction in
pressure that in turn will increase the leak air ingress and vice versa. This can lead to unstable behavior
and pressure oscillations with large amplitudes. This problem was addressed by defining the leak air
ingress as a differential variable according to Equation (5).

d
.

mleak−air
dt

= 50(a + b(P− c) − .
mleak−air). (5)

This allows the solver to detect steep changes in the leak air intake and adjust the time-step
accordingly so that oscillations can be avoided. The difference in simulation results between
Equations (4) and (5) is negligible.

4.2.3. Additional Stability Improvements and Model Acceleration

In addition to the pressure oscillations, certain unusual cases exist where masses would reach
small negative values causing the model to crash. This was rectified by using the ‘NonNegative’
option of the ODE15s solver to insure the necessary adjustments of time-steps when masses approach
zero with a steep gradient and the adjustment of some empirical model parameters, especially in
several hyperbolic tangent functions that reduce chemical reaction rates when the mass of a reactant is
small. Furthermore, the model was accelerated by making the integration more efficient. The ODE15s
solver numerically calculates a Jacobian matrix that leads to a high number of function evaluations
with a single variable changing. By detecting this behavior and using previous results for expensive
analytical calculations, such as the determination of chemical activities and radiative heat transfer, if
none of the relevant inputs have changed, the simulation speed is increased significantly. Furthermore,
the number of function evaluations could be reduced by using the ‘JPattern’ option. Overall this
made the simulation more stable and significantly faster [39]. Crashes or non-physical results such
as negative masses have not been observed with the new model, even with unrealistic inputs and
extreme conditions.

5. Results and Discussion

Validation of the EAF process model using extensive measured process data from a 140 t direct
current (DC) furnace can be found in previous publications where the thermochemistry of the gas
phase [34] and liquid phases [39], the behavior of different carbon carriers [33], the heat transfer [32],
as well as the performance of the complete model [37], were evaluated thoroughly, which is not
reproduced here. The model has also been tested with data from additional furnaces including both
alternating current (AC) and DC technology and has given satisfactory results after adjustment of the
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empirical parameters during preliminary research. Instead, various simulations where both were run
in automatic control and simulator mode were set up to evaluate the model stability and speed as
well as its capability to reproduce existing operation strategies and adjust them for an altered set of
boundary conditions.

5.1. A Case Study for Different Operating Modes

The automatic control was initially adjusted to reproduce the results obtained from simulations
with measured data. Inputs with the scrap baskets as well as maximum and minimum mass flows
were set to match those documented for an industrial 140 t DC furnace. After adjusting the automatic
control to match the simulation on the basis of measured data for the operation chart, a scenario
was tested where the oxygen used for the furnace operation was taken from a different source with
an oxygen content of 40% instead of the 99% used for the initial case, with the remaining fraction
consisting of nitrogen in both cases. The mass flows for oxygen lancing, burners, and post-combustion
were adjusted to have the same mass flow of pure oxygen. Due to the decreased oxygen content,
this led to an increased total mass flow and more nitrogen being injected together with the oxygen.
The operation chart was automatically adjusted to reach the same tapping temperature and maximum
carbon content, resulting in an increased energy consumption (both electrical and chemical) and an
increased tap-to-tap time. The following cases were studied:

• Case 1, indicating the results obtained by adjusting the automatic control to reproduce the
measured operation chart;

• Case 2, indicating the results from the same control settings with the decreased oxygen content.

The oxygen shown in the following discussion is the actual mass of pure oxygen; therefore,
between Case 1 and Case 2 the total oxygen consumption increased by 6.5%, whereas, due to the
increased nitrogen fraction, the nitrogen carried into the furnace with the injected oxygen for Case
2 was 64 times that of Case 1. Figure 6 shows the measured electrical power (real) during the heat
compared to the automatic control for Case 1 and Case 2. The time was normalized using tap-to-tap
time of the measured heat, the power was normalized using the maximum measured value.

Figure 6. Electric power comparison.

Although the measured value fluctuated, the automatic control gave constant values. This had
little impact on the overall consumption if the mean measured power was selected for automatic
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control. As can be seen from the reduction in power to zero, for the measured heat, the second basket
was charged at about 0.23 process time, whereas automatic control charging occurred at roughly 0.3
for Case 1 and slightly later for Case 2. The time when the second basket was charged depended on
the initial density of the scrap as well as other parameters, which could vary between baskets, and the
progression of the process was not reproduced exactly here. Therefore, the reduction of power and
mass flows associated with the charging of the second basket occurred slightly later in the simulations
when compared to the measured operation chart. At about 0.65 and 0.7, the power was reduced for the
flat bath phase for Case 1 and Case 2, respectively.

Figure 7 shows the consumption of natural gas denoted by CH4 and injected coal denoted by C
for the measured heat and Cases 1 and 2. Mass flows and time were normalized the same way as in
Figure 6. For the first basket, the burners both in Case 1 and Case 2 showed almost identical behavior
as was measured. Due to the delayed charging of the second basket, burner operation was delayed as
well for the second basket, with a larger delay for Case 2 as meltdown of the initial basket was slower
when compared to Case 1. Carbon lancing started slightly later than for the measured operation chart
and the mass flow was reduced at around 80% of the process time.

Figure 7. Natural gas and injected coal comparison.

Figure 8 shows the normalized mass flows of post-combustion and lanced oxygen. The oxygen
mass flow for natural gas combustion is not shown as its profile was similar to that of the natural
gas shown in Figure 7. The post-combustion oxygen followed a profile comparable to that of the
burners and showed good agreement with the measured values. With the automatic control, oxygen
lancing was increased for a short period before the second basket was charged. At roughly 60% process
time, the mass flow was increased to its maximum value and reduced again at around 80% for the
flat bath phase until tapping. The measured value showed a smoother progression during meltdown
and fluctuated more during the flat bath phase; however, the general profile and the total oxygen
consumption could be reproduced during automatic control.
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Figure 8. Oxygen comparison.

Figure 9 shows the progression of the simulated melt temperature for the measured operation
chart and Cases 1 and 2. The delayed charging of the first basket was visible between 0.2 and 0.4 process
time, as the temperature drop associated with the charging of cold scrap occurred later under automatic
control. Although the temperature profile of Case 1 closely followed that of the measured case and
reached tapping temperature almost simultaneously, the increased energy demand for Case 2 was
visible in the lower temperature during the process and the delayed achievement of the desired tapping
temperature. Overall, the automatic control implemented was able to reproduce the progression
of the heat compared to the measured operation chart and indicate what impact a different oxygen
source would have under otherwise similar conditions, showing the increased tap-to-tap time and
consumption of electrical and chemical energy when the same operating strategies were applied in
both cases.

Figure 9. Melt temperature comparison.

Table 2 shows the resulting consumption of electric power, oxygen, natural gas, and coal, as well
as the extracted off-gas and tap-to-tap time for the two cases relative to the values measured for the
complete heat. Again, the increases in electrical and chemical energy used for Case 2 were visible.
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Table 2. Calculated performance indicators for the study cases.

Parameter Case 1 Case 2

Electric energy 1 1.06
Oxygen through lance 1.1 1.17

Oxygen for post-combustion 1 1.06
Injected carbon 0.9 0.96

Off-gas 1.06 1.13
Natural gas 0.99 1.04

Oxygen for natural gas burners 1 1.07
Total oxygen 1.07 1.14

5.2. Speed and Stability

For the simulator mode, the model speed and stability are most important. After charging a basket,
the simulation is initiated and the solver takes 3–5 s to run the initial steps. After this initial delay, the
simulator can be run at higher speed, allowing up to 20 seconds of the process to be simulated per
second of real-time. Therefore, periods during meltdown or refining where no user input is necessary
can be simulated at high speeds, whereas lower speeds can be selected during phases where frequent
user inputs are necessary.

Figure 10 shows the progression of the selected simulation speed and the actual speed attained
by the simulator during an example heat where two baskets were charged and a total process time
of 2646 s was simulated in 272 s of real-time. The speed actually attained was calculated for each
second of simulated process time. For most of the time, the simulation matched the selected speed;
however, there were numerous instances where the speed dropped below the selected speed which
was then compensated by an increased speed until the simulation and the target speed synchronized
again. This never took more than a few seconds and the actual delay between the target time and the
simulation stayed within less than 20 s. The short periods of re-synchronization were barely noticeable
for the user, and inputs could be made precisely at the desired time and state of the simulated process.

Figure 10. Selected and attained simulation speed.

Figure 11 shows the simulated and the target time during the first 55 s of the same simulation.
The delay during initialization is visible at 0–6 s, after which the simulation synchronized with the
desired speed and closely matched the target time. After the initiation of the basket, deviations from
the target time remained small and lasted for no more than 5 seconds.
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Figure 11. Simulated and target time.

Although results obtained with the automatic control and simulator cannot be validated using
measured data, the internal consistency of the model can be evaluated using energy and mass balances.
An energy balance using all heat flows calculated during the simulation yielded and error in the order
of magnitude of 10−10 kWh, which was assumed to be a numerical error and was irrelevant for the
simulation results. The mass balance prepared for each element gave a maximum error of 0.1% of the
respective total mass, which was of no relevance for the simulation results.

The above examples illustrate the potential of the simulator developed. The simulator can be
run in different modes depending on the aim of the simulation and, consequently, the simulator is
applicable for different purposes such as process development, online predictions, and training of
electric arc furnace operators. Simulators of this type are also applicable for dynamic optimization
problems [40] and as soft sensors for evaluating parameters that are crucial for the EAF operators [3].
Another notion highlighting the importance of developing fundamental process models further is the
fact that the computational load of comprehensive computational-fluid-dynamics-based approaches [41]
remains—at least for the time being—too high for online applications.

5.3. Further Research

The Simulator mode allows direct user input and feedback during the simulation through a
simple graphical interface. Although the current demonstrator is limited, all operation chart values can
easily be added and manipulated during the simulation and additional settings such as compositions
of charged materials for each basket could be added. All intermediate results of the model, such as
temperatures, heat flows, and masses, are available during the simulation.

A target value is selected (for example 100 MW of electrical power) for both the automatic control
and the simulator modes, and that exact value was used during the simulation, whereas in reality
many operation chart values, especially the electrical power, current, and voltage, will fluctuate due
to random influences such as the behavior of the electric arcs. In further work, a stochastic element
could be added to introduce such fluctuations during simulations and produce more realistic behavior.
Furthermore, it may be necessary to adjust the density of the scrap for each basket separately to better
reproduce the behavior seen in real-life operation of the furnace.

In addition, further improvement of the underlying process model itself is of course possible.
For example, a better representation of the melting behavior of scrap and adjustments for the use
of other input materials, such as direct reduced iron, hot briquetted iron, or hot metal; improved
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description of the foaming of the slag; as well as the automatic adjustment of model parameters for
different furnaces are possible areas of further research.

6. Conclusions

An automatic control and a simulator were developed on the basis of a comprehensive dynamic
EAF process model that has previously been validated exhaustively using data from industrial furnaces.
The automatic control is capable of reproducing real-live operation charts and adjusting them for
different operating conditions. It can be used to evaluate various scenarios such as new control
strategies, different materials for injection and charging, or the installation of new equipment. The rules
currently used are partially based on parameters that cannot be measured or observed directly in
the real-live process, and adjusted rules that are based more closely on the actual parameters used
in process control such as total electric energy input and off-gas composition may be more useful for
future work. The rules and parameters can be adjusted easily to allow different furnaces and operating
strategies to be replicated and evaluated.

The simulator was shown to be stable and fast enough to run simulations based on user input
in real-time as well as with higher speeds selected by the user with no noticeable delay apart from
a few seconds during initialization after charging. Additional inputs and outputs can be added to
make the simulator more versatile. For use in teaching and training, a more refined user interface and
documentation would also be useful.

Due to the modular structure of the EAF process model simulations based on measured data,
automatic control and simulator input can be run using the same basic model and structure with
changes only necessary to the input module and the evaluation and output of the results, with the
flexible solver algorithm allowing for stable and fast simulations for all cases. The model can therefore
be used to evaluate the current state of the process and identify potential for improvement, to create and
assess different scenarios and operating strategies, and for training and teaching using the simulator.
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Abstract: The present study proposes a complete 3D integrated model to simulate the top-blown
supersonic coherent jet decarburization in the electric arc furnace (EAF) refining process. The 3D
integrated model avoids the direct simulation of the supersonic coherent jet interacting with the liquid
steel bath and provides a feasible way to simulate the decarburization in the liquid steel-oxygen
two-phase reacting flow system with acceptable computational time. The model can be used to
dynamically predict the details of the molten bath, including 3D distribution of in-bath substances,
flow characteristics and bath temperature and provide a basis for optimizing the decarburization rate
or other required parameters during the refining process.

Keywords: supersonic coherent jet; decarburization; steel refining; EAF; CFD

1. Introduction

Electric arc furnace (EAF) steelmaking featuring high efficiency and energy saving has become
one of the major steelmaking methods in the world. The steel refining stage is seen as a final period to
improve the thermal homogenization of the bath and adjust the metallurgical parameters of the steel
grade. During this period, oxygen injection is desired to help to stir the molten bath, remove impurities
and further improve the quality of the liquid steel. In the 1990s, Praxair, Inc. introduced the supersonic
coherent jet technology (Cojet®) for oxygen injection in EAF [1], which significantly improves the jet
performance and makes the jet to have deeper penetration depth, less splashing and, most importantly,
more oxygen delivered to the molten bath. Therefore, this technology has been widely-used in EAF
operation. Generally, the oxygen carried by jet will dissolve and generate numerous in-bath bubbles
and the turbulence created by those bubbles will result in the intensive stirring effect. Meanwhile,
the bubbles containing the oxygen will effectively react with the carbon in the bath to form the CO
bubbles, which achieves the purpose of the decarburization and the further bath stirring. Except for
the carbon, other impurities including phosphorus, sulfur, aluminum, silicon and manganese may also
be dissolved in the molten bath. Therefore, oxygen is also responsible for removing those impurities
during the refining stage. The carbon and impurity removal process involves different exothermic
oxidation reactions leading to the consistent rising of the in-bath temperature. Once the carbon content
is reduced to a critical value and the bath temperature reaches the desired temperature, the liquid steel
is ready for tapping.

Among the research of the EAF refining process, most researchers choose to conduct the study
separately for either the gas phase or the liquid phase, namely the supersonic coherent jet part or the
molten bath part. For the supersonic coherent jet part, Anderson et al. [2] designed an experiment
aimed to generate the supersonic coherent jet and measured the corresponding characteristics of the
jet. Alam et al. [3] developed a numerical model with a revised k− ε turbulence model to simulate the
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supersonic coherent jet and validated the model by comparing the measurement from Anderson’s
experiment. Liu et al. [4] experimentally and numerically studied the effect of different ambient
temperatures and different oxygen preheating temperatures on jet performance. Li et al. [5] investigated
the jet performance using different shrouding flame created by different types of fuel. As for the molten
bath part, previous works can be further subdivided into the study of molten bath dynamics and the
study of in-bath chemical reactions. Cafeery et al. [6] and Li [7] simulated the stirring process for
both top-blown and bottom-blown EAF to investigate the mixing efficiency and the bath homogeneity.
Ramirez et al. [8] compared different operation conditions of the furnace in the refining process in order
to eliminate the flow dead zones in the bath and improve the heat dissipation of the arc. On the other
hand, Szekely et al. [9] developed a mathematical model to predict the stainless steel decarburization
process. Zhu [10] further analyzed the bath reaction mechanism to study the effect of different carbon
contents on deoxidizer consumption.

The research mentioned above separately provide useful information for modeling the EAF refining
from two perspectives but still lack a complete mathematical description of this process. Theoretically,
the numerical simulation based on the finite element or finite difference method could be a feasible
way to achieve the goals but considering that the simulation of such a complex process (high-speed
jet interacting with the liquid phase, post-combustion, in-bath multiphase chemical reactions, etc.)
may lead to either unaffordable computational time or numerical convergence issues, no related
research using this method have been reported so far. In fact, some researchers, like Memoli et al. [11],
attempted to adopt a jet cavity to connect both the top-blown jet part and the molten bath part for
modeling the EAF refining process, which makes it possible to establish a mathematical model that
contains the complete phenomena in the process. However, their models only considered the refining
using the top-blown supersonic conventional jet (without the shrouding flame), which obviously makes
a difference in the case using the top-blown supersonic coherent jet. In addition, the calculated 3D jet
cavity was only used to provide the effective contact area with the molten bath for decarburization
simulation. Therefore, the proposed decarburization simulation is still based on a zero-dimensional
mathematical model in essence, which cannot provide a detailed 3D information of the molten bath.

Based on the previous statement, the study of the EAF refining process presented in this paper
focuses on using the computational fluid dynamics (CFD) technique to simulate the top-blown
supersonic coherent jet decarburization process. A complete 3D integrated model with good accuracy
has been proposed, which can be used to predict the complete phenomena in the refining process
and provide detailed 3D distribution of in-bath substances as well as the flow characteristics for
further investigation. More information of the methodology for this 3D integrated model will be
illustrated below.

2. Methodology

The EAF refining process is a complex, high-temperature physicochemical process. Theoretically
it may be feasible to directly conduct the CFD simulation of the entire EAF refining process, however,
obvious limitations can be found including the numerical instability of simulation and the extremely
high computational costs. Therefore, the attempt of using a fully-coupled CFD model to concurrently
capture the multi-physical phenomena, such as the combustion flame, the supersonic compressible
flow, the jet penetration and the multiphase reacting flow, is difficult as expected.

To avoid the aforementioned difficulties, the complex phenomena during the refining stage can
be classified into three major categories based on their major physical principles, including (1) the
supersonic coherent jet above the liquid steel bath; (2) the interaction between the coherent jet and
the liquid steel; (3) the stirring and the chemical reactions inside the liquid steel bath. The present
study modeled each part separately and then made the overall integration to predict the entire refining
process. This methodology can greatly ensure the simulation accuracy of each part with acceptable
computational time, meanwhile facilitate the targeted control and analysis of various key parameters at
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the same time. The methodology of developing the proposed 3D integrated model is given in Figure 1
and the details are described below:

• The supersonic coherent jet with the revised k− ε turbulence model will be firstly simulated in an
open space under the actual high ambient temperature conditions inside the furnace to obtain the
jet characteristics, which will be used for the subsequent estimation and simulation.

• A theoretical interface will then be calculated to represent the jet penetration cavity inside the liquid
steel bath based on the supersonic coherent jet characteristics at the bath surface. This method is
based on the energy balance between the injected jet and penetrated bath and enables us to avoid
the direct simulation of the supersonic coherent jet interacting with the liquid steel bath.

• The geometry of the bottom section of the EAF with the above-estimated jet cavity can be established
and reasonable boundary conditions need to be defined on the cavity surface according to the
results from part 1, so that the thermodynamic and kinetic coupled multiphase reacting flow
simulation can be performed to predict in-bath stirring and decarburization process for the
refining stage.

Figure 1. Methodology of developing the 3D integrated model for electric arc furnace (EAF) steel
refining simulation.

The CFD simulation of part 1 and part 3 mentioned above is based on solving the appropriate
Navier-Stokes equations with the required source terms of the specific phenomenon and incorporating
them into the finite volume method (FVM) of Patankar [12]. A commercial software ANSYS® FLUENT
19.1 (ANSYS Inc., Washington County, PA, USA, 2019) [13] was adopted for the simulation.

This 3D integrated model can eliminate the compatibility issue of different CFD models during
multi-physics simulations, especially for the consideration of the interaction between multi phases.
Besides, the adoption of the current model makes the three-dimensional modeling of the decarburization
process possible, which provides the way for a more comprehensive analysis of the chemical reaction
rate and the species distribution inside the liquid steel bath. The complete model will be detailed in
the next section.

3. Numerical Model

3.1. Supersonic Coherent Jet Modeling

The supersonic coherent jet is modeled with the assumption that the jet flow is conducted in a
steady, compressible, non-isothermal process. The corresponding Navier-Stokes equations were solved
with the modification of the k− ε turbulence model, which aims to improve the prediction accuracy
of the jet potential core length and oxygen delivery rate and provide correct numerical conditions
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to estimate the subsequent jet penetration cavity shape and simulate the decarburization process.
The governing equations solved are listed below.

The continuity conservation equation can be expressed by:

∇·
(
ρ
→
v
)
= 0, (1)

The momentum conservation equation is represented as:

∇·
(
ρ
→
v
→
v
)
= −∇p + ∇·

(=
τ
)
+ ρ

→
g +

→
F , (2)

where ρ is the fluid density;
→
v is the velocity vector; p is the static pressure;

=
τ is the stress tensor;

→
g is

the acceleration of gravity and
→
F is the external body force.

The energy conservation equation can be written as:

∇·
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(=
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)⎤⎥⎥⎥⎥⎥⎥⎦+ Sh, (3)

where E is the total energy related to the sensible enthalpy h; k is the thermal conductivity; cp is the
specific heat; μt is the turbulent viscosity; Prt is the turbulent Prandtl number whose default value
is 0.85 for the k − ε turbulence model. For the free shear flow with high heat transfer simulation,
the appropriate turbulent Prandtl number should be set as 0.5 according to the suggestions by
Wilcox [14] and Alam [3]. However, the shrouding combustion flame around the primary supersonic
oxygen jet prevents the entrainment of ambient gas into the center jet, which further impacts the
generation of the free shear layer. Thus, 0.85 was still adopted for the turbulent Prandtl number to

estimate the turbulent thermal conductivity in the current model.
→
J j is the diffusion flux of substance j

and Sh is the volumetric heat sources including the heat of chemical reaction during the simulation.
Considering the supersonic state of the primary oxygen jet, the flow turbulence can be resolved

through a time-averaged velocity scalar. In the present study, the averaged Reynolds stresses term
was determined using the modified k − ε turbulence model originally proposed by Launder and
Spalding [15]. The governing equations of the turbulent kinetic energy k and turbulence dissipation
rate ε can be expressed by:

∂
∂xi

(ρuik) = −ρuiuj
∂uj

∂xi
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∂
∂xi
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σk

∂k
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−Cε2ρ
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where μ is the molecular viscosity; σk and σε are the turbulent Prandtl number for k and ε, whose values
are 1.0 and 1.3, respectively; Mτ is the turbulent Mach number that can be defined as:

Mτ =

√
2k
a

, (6)

where a is the acoustic velocity; Cε1 and Cε2 are constants whose values are 1.44 and 1.92, respectively.
The turbulent viscosity μt used in Equations (4) and (5) is defined by:

μt = Cμρ
k2

ε
, (7)

where Cμ is a constant value originally equal to 0.09 for the standard k− ε turbulence model. In order
to consider the influence of the entrained ambient gas that is reduced by the shrouding combustion
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flame, Cμ was modified according to the formula proposed by Alam et al. [3]. The original value of Cμ
was divided by a variable CT to include the effects of the local total temperature gradient in estimating
the turbulent viscosity, thereby further reducing the mixed growth rate of the shear layer to accurately
simulate the jet potential core length [16]. The modified CT can be expressed as:

Cμ =
0.09
CT

(8)

and

CT = 1 +
C1Tg

m

1 + C2 f (Mτ)
, (9)

where C1, C2 and m is constantly equal to 1.2, 1.0 and 0.6, respectively; Tg is the normalized local total
temperature gradient, which can be calculated by:

Tg =
k

3
2 |∇Tt|
ε Tt

, (10)

where Tt is the local total temperature of the flow field; f (Mτ) is a function that further considers the
influence of turbulent Mach number, which can be estimated by:

f (Mτ) =
(
Mτ2 −Mτ02

)
H(Mτ −Mτ0), (11)

where H(x) is the Heaviside function; Mτ0 is a constant equal to 0.1 [17]. All aforementioned
modifications of the standard k − ε turbulence model are incorporated into the CFD-solver Fluent
through the user-defined function (UDF) code based on C language and compiled in the CFD solver
for the simulation.

In order to capture the shrouding combustion flame, the species transport model with the eddy
dissipation concept (EDC) [18] was employed to simulate the 28-step natural gas-oxygen combustion
reactions. The Discrete Ordinates (DO) radiation model with Weighted-Sum-of-Gray-Gases Model
(WSGGM) [19] was adopted to model the radiation heat transfer phenomenon for the combustion.

The numerical simulation domain of the supersonic coherent jet is shown in Figure 2, which contains
3 million computational cells totally. Total computational time is around 15 h if using 80 cores in the
High Performance Computing (HPC) cluster to obtain the converged results. The simulation domain
is a cylindrical-shaped vessel originating from the exit of the converging-diverging nozzle where the
nozzle structure is ignored. The dimension of the vessel is much larger than the burner, which can be
used to simulate the supersonic coherent jet behavior in the open space. Therefore, except for the wall
where the nozzle exit is located, the other walls of the vessel are set as outlets. More detail on burner
operating conditions and other information are mentioned in another published paper [20].

Figure 2. 3D computational domain of the supersonic coherent jet modeling.
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3.2. Jet Penetration Cavity Estimation

The present study utilized a novel method to consider the jet penetration in the liquid steel bath
so that the direct simulations of interaction between multi phases can be avoided. The basic idea is to
calculate a theoretical interface to represent the jet penetration cavity inside the liquid steel bath and
this cavity will be estimated based on the characteristics of the coherent jet reaching the bath surface
and used as the physical boundary of the computational domain for subsequent decarburization
simulations. The shape of the cavity interface is assumed to be a revolution paraboloid according to
Memoli et al. [11], which is more precise for the coherent jet with high momentum, as its penetration
depth is greater than the radius of its cross-section. The three-dimensional mathematical expression of
a revolution paraboloid in Cartesian coordinate can be written as:

z =
x2 + y2

c
, (12)

where c is the constant need to be defined by a given volume of the jet penetration cavity and the
penetration depth.

The volume of the jet penetration cavity V can be determined by calculating liquid steel replaced
by the gas flow based on the impulsive balance at the cavity interface if ignoring the impact of the
liquid steel surface tension [21]. The expression of the jet cavity volume can be written as:

V =
πρ jvj

2dj
2

4gρs
, (13)

where ρ j and ρs are the density of primary oxygen jet and liquid steel, respectively; vj and dj are the
primary oxygen jet velocity and diameter when at bath surface, which can be determined through the
supersonic coherent jet modeling of a given distance from the nozzle exit to the bath.

Jet penetration depth D refers to an empirical formula derived by Ishikawa et al. [22],
which describes the penetration depth created by the turbulent jet. For the supersonic coherent
jet, the constants in the formula need to be modified accordingly. The empirical formula shows the
relationship between the jet penetration depth of a single-hole or multi-holes nozzle and the burner
operating conditions, which can be expressed as:

D = γh0 e
− σ1L
γh0

cos θ (14)

γh0 = σ2(

.
V√
3nd

), (15)

where L is the axial distance between the nozzle exit to the bath surface; θ is the angle of the jet
inclination;

.
V is the volume flow rate of primary oxygen jet; n is the number of the nozzle and equal

to 1 for the current study; d is the nozzle exit diameter for primary oxygen jet; σ1 and σ2 are two
constants originally equal to 1.77 and 1.67, respectively and those two parameters are determined
through experiments for a specific type of coherent jet used in the present study.

The actual refining process has the slag layer covering the liquid steel bath to protect the arc
and reduce heat radiation loss. The coherent jet needs to pass through the slag layer before reaching
the liquid steel bath. During this period, the jet will lose some of its momentum. Therefore, the jet
penetration depth should be shorter than the one without the slag layer. In the current model, the slag
layer is assumed to be converted equivalently to a corresponding liquid steel layer to include its effect
on the jet penetration depth. The equivalent slag layer height hs can be estimated by:

hs =
ρsl

ρs
hsl, (16)
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where ρsl and hsl are the values for slag layer density and slag layer height, respectively. The actual jet
penetration depth Dact reads as:

Dact = D− hs. (17)

Once the constant c is determined by solving Equations (13) to (17), the theoretical parabolic jet
cavity interface can be defined and included as the physical boundary for the computational domain of
the bottom section of the EAF for the decarburization simulation. This eliminates the need to include
the consideration of supersonic jets and its interaction with the liquid surface in the decarburization
simulation. The estimation of the three-dimensional jet penetration cavity based on actual burner
operating conditions is illustrated in Figure 3 and the computational domain with five jet penetration
cavities established according to the actual burner arrangement provided by industry is given in
Figure 4. This computational domain is going to be used in subsequent decarburization simulations.

Figure 3. Sketch of 3D jet penetration cavity estimation.

Figure 4. 3D computational domain with jet penetration cavities for decarburization modeling.

Notice that when the supersonic coherent jet impinges on the liquid steel bath forming the jet
penetration cavity, the exchange of energy and substance occurs intensively between the gas phase
and liquid phase. Therefore, the jet penetration cavity surface, as the physical boundary of the
computational domain, needs to establish appropriate boundary conditions to consider the energy and
substance transfer during the jet impingement. In the present study, both jet momentum transfer and
delivery of the oxygen were considered. Based on the energy balance on the cavity surface, the jet
momentum transferred to the liquid steel bath Ps,avg can be expressed as:

Ps,avg = αρO2vO2
2A =

αρO2
2A
ρs

[
1

Δz

∫ z1

z2

vO2(z)dz
]2

, (18)

where α is the transferable percentage of the jet total momentum at liquid steel bath, which is 0.06
according to the reference [23]; vO2 is average jet velocity along cavity centerline; A is the cavity surface
area; Δz is the length of the cavity centerline, which is equal to z1 − z2.

445



Processes 2020, 8, 700

The amount of oxygen delivered to the liquid steel mO2, avg through the jet cavity can be estimated
by calculating the average oxygen distribution along the cavity centerline:

mO2, avg =
1

Δz

∫ z1

z2

mO2(z)dz. (19)

3.3. Decarburization Modeling

The current decarburization modeling focuses on the refining process after the solid scrap is
completely melted down into a flat bath. Therefore, the scrap melting phenomenon is not included in
the present study for the sake of simplicity. The model proposed here considers a liquid steel-oxygen
two-phase reacting flow system inside the flat bath and the simulation domain, as mentioned above,
only includes the bottom section of EAF with estimated jet penetration cavities, through which the
oxygen enters the domain to react with carbon and other impurities. The injected oxygen also results in
two main effects on the system including the stirring of the liquid steel bath and the bath temperature
rise due to the heat released by the oxidation reactions. In the present study, the oxidations of the
carbon, iron and manganese as a mixture of liquid steel by the injected oxygen are listed in Table 1:

Table 1. Oxidation reactions (A) to (C) considered in present study.

Reaction (A) C + 1
2 O2(g) = CO(g)

Reaction (B) Fe + 1
2 O2(g) = FeO

Reaction (C) Mn + 1
2 O2(g) = MnO

Oxidation reactions take place in cells of the simulation domain that contain the oxygen.
The oxidation rates of carbon, iron and manganese at high carbon content are mainly limited by the
amount of oxygen contained in the same cell. If the oxygen is sufficient, the rate equations can be
written as suggested by Wei and Zhu [24]:

− Ws

100 MC

d[%C]
dt

=
2ηCQO2

22, 400
xC (20)

− Ws

100 MMn

d[%Mn]
dt

=
2ηMnQO2

22, 400
xMn, (21)

where Ws and QO2 is the mass of liquid steel and the volume of oxygen in the corresponding cell,
respectively; Mi is the mole mass of each substance; ηi is the efficiency factor of each substance,
which is a function of total mixing of the system and can be estimated based on the work done
by Shukla et al. [25]; xi is the oxygen distribution ratios of each substance and is assumed to be
proportional to the Gibbs free energies of corresponding oxidation reactions:

xC =
ΔGC

ΔGC + ΔGFe + ΔGMn
(22)

xMn =
ΔGMn

ΔGC + ΔGFe + ΔGMn
, (23)

where the Gibbs free energies ΔGi of respective substance can be defined as:

ΔGC = ΔG0
C + RTln

⎡⎢⎢⎢⎢⎢⎣ PCO

aC·a0.5
O2

⎤⎥⎥⎥⎥⎥⎦ (24)

ΔGFe = ΔG0
Fe + RTln

⎡⎢⎢⎢⎢⎢⎣ aFeO

aFe·a0.5
O2

⎤⎥⎥⎥⎥⎥⎦ (25)
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ΔGMn = ΔG0
Mn + RTln

⎡⎢⎢⎢⎢⎢⎣ aMnO

aMn·a0.5
O2

⎤⎥⎥⎥⎥⎥⎦, (26)

where ΔG0
i and ai is the standard Gibbs free energy and the activity of each substance in the bath

respectively; R is gas constant; PCO is the partial pressure of carbon monoxide.
At low carbon content, the oxidation rate of carbon is no longer controlled by the oxygen contained

in the cell. Instead, the mass carbon transfer rate to liquid steel will directly impact the decarburization
rate, which can be expressed as:

−Ws
d[%C]

dt
= −ρskCAinter ([%C] − [%C]e), (27)

where Ainter is the bubble inter-surface area; [%C]e is carbon equilibrium concentration in the molten
bath; kC is the carbon mass transfer coefficient through the oxygen bubble surface which can be
calculated by [26]:

kc = 0.59·[DC·(urel/dB)]
0.5, (28)

where DC is the diffusion coefficient of carbon; urel is relative velocity of liquid steel; dB is the
bubble diameter.

The oxides formed through Reaction (A) to Reaction (C) may gradually float upwards to the top
surface, which is the lower surface of the slag layer that is not included in the simulation domain.
Practically, the oxides will accumulate at the slag layer and have further reactions there. The absorption
of the oxides by slag layer can be achieved computationally by removing the corresponding oxides
that are in contact with the domain top surface. The process described above is illustrated in Figure 5.

Figure 5. Oxygen injection through jet penetration cavities and absorption of oxides.

During the refining stage, the temperature of the liquid steel bath increases due to the energy
released by the oxidation reactions. The amount of energy released to the bath can be estimated by
the oxidation rates and the oxidation enthalpies ΔHi of each reaction, where ΔHi is a function of bath
temperature and taken from reference [27]. Thus the rate of energy-generating in a cell due to the
oxidations can be expressed as:

dEreac

dt
=

∑
ΔHiWs

d[%i]
dt

, (29)

where i represents the carbon, iron and manganese considered in the liquid steel bath.
The current liquid steel-oxygen two-phase reacting flow system was solved in the numerical

simulation domain given in Figure 4, which has 2.5 million computational cells totally. By adopting
the Eulerian model with the appropriate source terms compiled through user-defined function (UDF)
code, the model is able to achieve the above-described simulation of in-bath oxidation reactions and
heat release. The total computational time needed to simulate 1000 s decarburization process is around
50 h if using 0.05 s time step size and 80 cores in the HPC cluster.
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4. Simulation Results and Discussions

4.1. Model Validaiton

The validation of the coherent jet modeling in ambient air with and without shrouding flame
was conducted based on the research works done by Anderson et al. [2]. The simulation was set up
according to the reported experiment. The comparison of the jet axial velocity distribution between the
present study and the measurement data is given in Figure 6a. The jet with the shrouding flame can
maintain its initial velocity for a longer distance compared with the jet without the shrouding flame.
The coherent jet with Mach 2.1 at nozzle exit has the potential core length around 48 De (where De is
the diameter of the converging-diverging nozzle exit), which is 2.5 times longer compared with the
conventional jet in this validation. On the contours given in Figure 6b, the entrainment of the ambient
air is blocked by the shrouding combustion flame, which significantly reduces the turbulence effect
around the primary oxygen jet leading to the great increase of the potential core length. The average
difference in this validation is 5.9% compared with experimental data, which shows good accuracy of
current supersonic coherent jet modeling.

 
Figure 6. (a) Jet axial velocity distribution with & without shrouding flame; (b) Velocity, temperature,
density field distribution of the supersonic coherent jet.

The validation of the jet penetration cavity estimation was done by comparing the predicted jet
penetration depth with the measurement data provided by Praxair under the same burner operating
conditions. It should be noted that the burner configuration of the coherent jet used for current
validation differs from the above-mentioned coherent jet validation. The key parameters of bath for jet
penetration cavity estimation are given in Table 2. The jet penetration depth is measured under the
fixed burner operating conditions. The distance between the jet nozzle exit and the liquid steel bath
surface is successively increased to reach different penetration depths, thereby obtaining six sets of
available data for the validation as shown in Figure 7a. The parity plot of the jet penetration depth
inside the liquid steel bath is given in Figure 7b showing the comparison of the estimation in the
present study and the experimental data by Anderson, et al. The jet penetration reduces exponentially
as the nozzle moves away from the liquid surface. This is because when the nozzle-liquid surface
distance is greater than the jet potential core length, no doubt increasing the distance (cases #4 to #6
in Figure 7a) will decrease the jet penetration depth since smaller momentum the jet will have when
reaching the liquid bath surface. On the other hand, if the nozzle-liquid surface distance is less than
the jet potential core length, the jet maintains the same axial velocity but the area of the jet mixing zone
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in the radial direction increases with the increase of the nozzle-liquid surface distance (cases #1 to #3
in Figure 7a). This results in a reduction of the jet maximum pressure gradient in the mixing zone,
thereby reducing the jet penetration ability inside the liquid steel bath. The tendency of the estimation
in the present study meets the above description and the error compared with measurement data is
less than 5% showing a good accuracy of the estimation.

Table 2. Key parameters of bath for jet penetration cavity estimation.

Key Parameters Values

Liquid steel density 7700 kg/m3

Slag layer density 4350 kg/m3

Slag layer height 0.381 m

Angle of jet inclination 40◦ from horizontal

Figure 7. (a) Different nozzle-liquid surface distance for specific burner configuration; (b) Parity plot of
penetration depth inside liquid steel bath.

The current 3D integrated model was adjusted accordingly to predict the decarburization process
of the industrial electric arc furnace for model validation. Under the same furnace operating conditions,
the percentage error of the decarburization rate prediction given by the model is less than 7% compared
with industrial data.

4.2. Stirring Mechanism

Generally, there are different stirring mechanisms that affect the flow characteristics of the molten
bath, including the momentum stirring, the bubble stirring and the electromagnetic stirring. In addition,
the buoyancy force arising from the bath temperature gradient and the bath concentration gradient will
also make contributions to stir the bath. In the present study, the electromagnetic stirring is assumed
to be neglected in this alternating current (AC) EAF since the electromagnetic field induced is limited
to the small region around the arcs and has a minor effect on the molten bath flow [28–30]. The stirring
caused by the buoyancy-driven flow is always included in the model by applying the Boussinesq
hypothesis for the liquid steel phase since it is a natural phenomenon built in any thermal system.
As for the rest two stirring mechanisms, that is, the momentum stirring and the bubble stirring, they are
the main stirring power provided by the supersonic coherent jet to the refining process, which are
valuable and feasible to be investigated using the 3D integrated model proposed above.
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In the actual steel refining process, the distance between the burner nozzle exit and the liquid steel
bath surface is usually controlled to be within the jet potential core length to guarantee the coherent
jet can maintain a relatively high kinetic energy when reaching the liquid steel bath. In this case,
the coherent jet is able to push the liquid steel aside to form a cavity and transfer the momentum to the
bath simultaneously. Generally, only a portion of the jet momentum can be transferred to a liquid steel
bath and further used to generate the stirring. Sano et al. [23] reported that only 6% of the total jet
momentum is transferable to the liquid steel and this value has also been proved to be suitable for the
current simulation under the given burner operating condition. The stirring generated by this direct
momentum transfer is called the momentum stirring. Another critical stirring mechanism during the
refining process is the bubble stirring. The decarburization reaction will generate the CO bubbles that
float upward together with oxygen bubbles quickly, creating a strong stirring power inside the liquid
steel bath due to the bubble-liquid drag force. The CO bubbles will eventually be absorbed by the slag
layer and subsequent chemical reactions will occur there. It has been reported that bubble stirring
plays a key role in the homogenization of the flow field, therefore the corresponding investigation
conducted below is aimed to reveal the impact of those two stirring mechanisms on the development
of the flow field.

The comparison of the flow filed with and without the bubble stirring is given in Figure 8.
Figure 8a shows the case only considering the momentum stirring. It can be seen that the high
momentum transferred from the surface of the jet penetration cavity pushes the liquid steel downward,
resulting in a high-speed liquid steel flow in the axial direction of the cavity together with vortexes
generated on both sides. The volume-averaged liquid steel velocity in the bath fluctuates most
frequently around a value of 0.01425 m/s. Figure 8b shows the case considering both the momentum
stirring and the bubble stirring. Because of the bubble stirring, the high-velocity region occurs
surrounding the jet penetration cavity instead and the direction of the vortex changes significantly.
This is mainly due to the intensive oxidation reactions in that region generating a large number of
oxides and the stirring intensity of the momentum transfer became much weaker compared to that of
the floating CO and oxygen bubbles. In addition, significant turbulence is generated through bubble
stirring in the liquid steel bath as well, which can lead to a better mixing. The volume-averaged
velocity of the liquid steel bath is approximately 0.1485 m/s, which is about 10 times as much as the
case only considering the momentum stirring. From this comparison, it can be seen that bubble stirring
greatly promotes the homogenization of the liquid steel bath and is one of the most important stirring
mechanism in the EAF refining stage.

Figure 8. (a) Momentum stirring without bubble stirring; (b) Momentum stirring together with
bubble stirring.
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The bath mixing efficiency evaluation for both cases was conducted as well and the results are
given in Figure 9. A tracer is introduced in the center of the liquid steel bath and the simulations stop
once the tracer is fully diffused inside the bath. During the simulation, the area-averaged concentration
of the tracer is monitored at three different horizontal planes in the bath to evaluate the mixing time.
The vertical distance between those three horizontal planes and the bottom of the furnace is 0.07 m
(plane monitor 1), 0.47 m (plane monitor 2) and 0.57 m (plane monitor 3), respectively. Noticed that,
plane monitor 1 is close to the furnace bottom surface, which is aimed to avoid the dead zone and
guarantee the full diffusion of the tracer in the domain. Figure 9a shows the contours of the in-bath
tracer mass fraction variation over time. Figure 9b,c show the molar concentration variation of the
tracer over time. When the variation in the molar concentration of the tracer is negligible, the mixing
time required for the liquid steel bath to reach full diffusion can be obtained. It can be seen that without
the bubble stirring, the mixing time is estimated to be 1665.3 s, which is almost 9.5 times longer than the
time needed for the case with the bubble stirring. Therefore, the bubble stirring needs to be considered
in the stirring mechanism for the future simulation of the liquid steel flow field.

Figure 9. (a) In-bath tracer mass fraction over time (with momentum transfer and bubble stirring);
(b) Mixing time of flow field without bubble stirring; (c) Mixing time of flow field with bubble stirring.

4.3. Decarburization Rate and Bath Temperature Rising Rate

The thermodynamic and kinetic coupled two-phase reacting flow simulation can be performed
by the proposed 3D integrated model to reveal the details of species concentrations and temperature
distribution inside the liquid steel bath and to predict the overall decarburization rate and bath
temperature rising rate in the refining stage.

Generally, the average carbon content and the bath temperature are two important indicators for
the operators to decide whether liquid steel meets the requirement of tapping. The volume-averaged
carbon mass fraction and bath temperature predicted by this 3D integrated model are plotted in
Figures 10 and 11. From the simulation results, after 800 s (around 13 min), the bath temperature will
be increased to 1918 K with carbon content reduced to 0.056%. The percentage of carbon reduction and
bath temperature increasing is 86.3% and 5.7% respectively. It is reported that the time required to
reach the same carbon content and bath temperature during the actual refining process is about 12
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to 15 min and current results give a correct prediction by comparing with the data published in the
reference [31].

Figure 10. Volume-averaged liquid steel bath temperature variation over time.

Figure 11. Volume-averaged carbon mass fraction variation in liquid steel bath over time.

The contours given in Figures 10 and 11 also show the detailed distribution for both in-bath
carbon content and temperature field, which are plotted on the cross-section plane through burner
#1 at 200 s, 400 s, 600 s and 800 s. The initial temperature and carbon content are assumed to be
1815 K and 0.41% by mass respectively. It can be seen that the carbon content maintains relatively low
around the jet penetration cavity region due to a large amount of the oxygen bubbles injected from
the cavity surface. The oxygen will first oxidize the reactive substances in this area and the excess
oxygen will either travel with the flow to other areas away from the cavity or float upward by the
buoyancy and be absorbed at the slag layer bottom surface (domain top surface). Generally, due to the
concentration difference and stirring effect, the carbon will continue to move to the vicinity of the jet
penetration cavity and react with the remaining or newly injected oxygen to generate the CO bubbles.
The CO bubbles can float up with the flow causing the aforementioned in-bath bubble stirring and be
absorbed once reaching the domain top surface. Moreover, since the oxygen reactions mainly occur
around the cavity, a large amount of chemical energy will be released there to heat up the liquid steel.
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Therefore, a red region representing high temperature can be seen around the jet penetration cavity
in the contours. This thermal effect will spread to the entire liquid steel bath over time, resulting in
significant bath temperature rise.

4.4. Carbon Distribution in Liquid Steel Bath

The current burner arrangement of the furnace is based on the arrangement commonly used in
the industry, that is, the four burners are pointed 45-degree downward. The current simulation also
takes the decarburization effect of door lance into account, which is used to make an immerged oxygen
injection. Thus a total of five jet penetration cavities was established in the simulation domain.

Compared with other models, the current proposed 3D integrated model can analyze the detailed
variation of the carbon distribution inside the liquid steel bath using the CFD technique. The simulation
results are plotted in Figure 12. It can be seen that the current burner arrangement will result in an
uneven carbon distribution in the liquid steel bath and the decarburization rate in front part of the
furnace is much slower than elsewhere. When the refining progresses reaches around 200 s (about
3 min), the average carbon content in front part of the furnace is about twice higher than that of other
places. It is not difficult to tell from the arrangement of the burners that most of the burners are located
in the middle or rear of the furnace, which leads to the issues including the weak stirring and less
oxygen injection in front of the furnace. The decarburization in this front area mainly depends on
the overall flow pattern in the bath, that is, the liquid steel carrying high carbon content flows from
the front of the furnace to the middle and rear of the furnace under specific rotating pattern so that
the carbon content can be reacted with rich oxygen injected from the burner in that area. Obviously,
this way of decarburization highly depends on the overall bath flow pattern and has a relatively low
decarburization rate in the front of the furnace, which may result in a potential issue.

 

Figure 12. 3D carbon content distribution in the bath over time.

Figure 13 plots the detailed carbon mass fraction distribution on a plane (0.5 m from furnace
bottom) close to the end of the refining process. The fraction of in-bath carbon content required for
the liquid steel tapping is usually to be 0.03% to 0.05% by mass. It can be seen from the figure that
the aforementioned uneven distribution of carbon content still exists at the end of the refining. In the
actual operation of EAF refining stage, the operator typically inserts the test rod into the liquid steel
bath through the side door to measure the carbon content, whose value is used to represent the average
carbon content of the entire bath being tested. Once the temperature and carbon content meets the
requirement, the liquid steel will be tapped. However, the measurement at this time only reflects the
actual carbon content at the rear of the furnace. According to the previous analysis, the front of the
furnace was not well stirred in the entire refining process. Thus, the actual carbon content was much
higher there compared with the carbon content at the rear of the furnace. If the measured value is
used to represent the average in-bath carbon content under this situation, it can potentially under
predict the actual carbon content and further affect the quality of tapped liquid steel. By using this 3D
integrated model, multiple cases can be simulated with acceptable computational time to optimize the
burner arrangement to achieve higher stirring and decarburization rate.
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Figure 13. Carbon mass fraction on plane (0.5 m from furnace bottom) close to the end of refining stage.

5. Conclusions

A complete 3D integrated model including the coherent jet modeling, the jet penetration cavity
estimation and the decarburization modeling was proposed in this study and the validations for
three parts were conducted respectively. The 3D integrated model can avoid the direct simulation of
the supersonic coherent jet interacting with the liquid steel bath and provide a possible method to
simulate the liquid steel-oxygen two-phase reacting flow system for the decarburization prediction
with acceptable computational time. The conclusions made by adopting this 3D integrated model in
EAF refining simulation are listed below:

• The stirring mechanism was analyzed using the model and the results indicated that the bubble
stirring greatly promotes the homogenization of the liquid steel bath and is one of the most
important stirring mechanism need to be considered in the EAF refining simulation.

• The decarburization rate and bath temperature distribution were investigated as well. The 3D
integrated model indicated that decarburization mainly occurs around the jet penetrating cavity
and due to the oxidation reaction, a large amount of chemical energy will be released there to
increase the bath temperature. The overall bath decarburization rate and temperature rising rate
predicted by the model has good agreement with reference data.

• 3D carbon distribution in the liquid steel bath was also investigated by the model. The results
illustrated that the burner arrangement considered in present study results in an uneven bath
decarburization rate, which is mainly due to the less oxygen-blowing and weak bath-stirring in
front of the furnace. The uneven carbon concentration may lead to the under-prediction of the
actual carbon content inside the furnace and further affect the quality of tapped liquid steel.
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Abstract: Ladle refining plays a crucial role in the steelmaking process, in which a gas stream is
bubbled through molten steel to improve the rate of removal of impurities and enhance the transport
phenomena that occur in a metallurgical reactor. In this study, the effect of dual gas injection using
equal (50%:50%) and differentiated (75%:25%) flows was studied through numerical modeling, using
computational fluid dynamics (CFD). The effect of gas flow rate and slag thickness on mixing time and
slag eye area were studied numerically and compared with the physical model. The numerical model
agrees with the physical model, showing that for optimal performance the ladle must be operated
using differentiated flows. Although the numerical model can predict well the hydrodynamic
behavior (velocity and turbulent kinetic energy) of the ladle, there is a deviation from the experimental
mixing time when using both equal and differentiated gas injection at a high gas flow rate and a high
slag thickness. This is probably due to the insufficient capture of the velocity field near the water–oil
(steel–slag) interface and slag emulsification by the numerical model, as well as the complicated
nature of correctly simulating the interaction between both gas plumes.

Keywords: secondary refining; numerical model; dual gas injection; slag eye; mixing time

1. Introduction

Secondary refining in steelmaking consists of removing impurities from liquid steel through
desulfurization, deoxidation and inclusion removal [1]. All aspects of refinement require agitation of
the steel in its molten liquid form to accelerate steel–slag exchanges and mixing phenomena. Liquid
steel is agitated by injecting gas through porous plugs located in the bottom of the ladle, which produces
a movement of recirculation in the liquid steel, causing homogenization of thermal and chemical
gradients, acceleration of metal–slag reactions, removal of gaseous species and flotation/precipitation of
non-metallic inclusions present in the molten metal towards the slag to be removed [2]. A ladle usually
has a cylindrical or truncated cone shape with a metal casing, covered inside with refractory brick.
At the bottom is the porous plug, where inert gas (Ar) is injected. It usually also has graphite electrodes
on top to maintain the temperature of the liquid mixture. It also has a hopper for the addition of alloys,
mainly ferroalloys, and a powder injection system for the processes that require it. The slag layer
plays a decisive role in refining the steel in the ladle. It is used to perform the desulfurization reaction,
as well as to prevent oxidation of the metal and reduce heat dissipation. As the key to obtaining low
sulfur containing steel, the efficiency and productivity of the desulfurization process depend largely on:
(a) the consecutive kinetic steps, which consist of two main processes, namely, the chemical reactions
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at the interface and interphase mass transfer of sulfur from metal to slag phase, and (b) mixing within
steel–slag phases. The efficiency of these physicochemical processes depends largely on the mixing
degree of the molten steel by gas injection; thus, mixing time has been used extensively as a measure
of the efficiency of the process. As the ladle is agitated by gas injection, the argon bubbles break up
the slag layer, exposing a certain area of liquid metal to the atmosphere, called the slag eye or open
eye. This phenomenon is harmful, because it is a site for reoxidation and nitrogen pickup in the bath.
During ladle operation, this can be envisaged by the reaching of low mixing times using violent gas
stirring. However, large gas flow rates lead to big slag eye areas as well. The behavior of the slag layer
and mixing phenomena in the ladle are highly influenced by the argon stirring rates, the number of
nozzles and their configuration. Thus, there is a balance needed for the ladle refining process which
requires high mixing times but low slag eye areas [3,4].

Mixing time is a parameter that measures the mixing efficiency of the primary phase (liquid steel)
in a bath. Mathematically, it is defined as the time at which there is a chemical homogeneity of 95% in
the steel [5]. Mixing time helps to quantify the degree of agitation needed to homogenize the liquid
contents after a step change in the composition inside a ladle. Researchers [6,7] have studied the mixing
time of a two-phase system using central gas injection. Joo and Guthrie [8] concluded that the more a
nozzle is moved from the center towards the mid-radius position, the more the mixing time decreases,
which was confirmed by Krishnapisharody et al. [9]. It is important to note that both these research
groups injected a tracer above the plume area to measure mixing time. Khajavi and Barati et al. [10]
stated that an overlying slag layer has a significant effect on mixing time. In the case of dual gas
injection, Chattopadhyay et al. [11] identified all possible dual purging locations that produced the
least mixing time and compared their result with single purging experiments. They concluded that
dual purging can reduce mixing time to a great extent even in the lower flowrate range. The promising
results obtained initially by Liu et al. [12] and Haiyan et al. [13], showing the possibility of improving
the mixing in a ladle by performing differentiated gas blowing, raised interest in the study of the effects
of different gas blown modes for dual injection (equal and differentiated) on the ladle performance.
Tang et al. [14] found both the ladle mixing and its exposed slag eye area are remarkably affected by
the bottom gas blowing modes. In most cases, the differentiated mode can decrease the mixing time
and slag eye area under given gas flowrates, compared with the equal gas blown mode. They also
found that, generally, a relatively small angle between the porous plugs and a small radial position
is beneficial to a decrease in the mixing time, whereas a relatively far plug radial position leads to
a smaller slag eye. Jardón-Pérez et al. [15] used a physical model of a gas-stirred ladle with dual
plugs to study the effect of gas flow ratio (equal or differentiated), gas flow rate, and slag thickness on
mixing time and open eye area, using particle image velocimetry (PIV) to reveal the flow structure and
using planar laser-induced fluorescence (PLIF) to determine the mixing time. They also performed a
multi-objective optimization using a genetic algorithm, similar to Mazumdar et al. [16]. Their results
revealed that the differentiated injection ratio significantly changes the flow structure and greatly
influences the behavior of the system regarding mixing time and open eye area. Their results suggest
that for optimal performance the ladle must be operated using a differentiated flow ratio. Liu et al. [17]
recently made a comprehensive review of the variables considered in the study of mixing time in ladle
metallurgy in the last three decades. Among all the variables, they found that the gas flow rate is by far
the most important variable affecting the mixing time. In general terms, the effect of increasing the gas
flow rate increases the slag eye area and an increase in the slag thickness decreases the slag eye area.

The dynamics of gas–liquid interaction in a metallurgical reactor such as a ladle furnace is similar
to a bubble column reactor [17], although it is more complex, since the process is a triphasic system.
Gathering experimental data in such high temperature environment is quite complex; thus, researchers
use scaled down water (physical) models and numerical models using computational fluid dynamics
(CFD) to understand the hydrodynamics and mixing processes [5]. Li et al. [18] developed a CFD
model to analyze the transient three phase flow in an argon-stirred ladle with one and two off-centered
porous plugs. The effect of the argon gas flow rate on the spout height and slag eye area was discussed.
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The slag layer behavior and the interface phenomena were also analyzed. Haiyan et al. [13] found
that the use of different flowrates can significantly reduce the mixing time, compared with the mixing
time reached when using the same flow rate. They performed a validation of their CFD model, which
suggests that the difference in mixing time arises due to the different flow behavior and the associated
changes in stirring energy dissipation, which in turn could explain the observed decrease in mixing
time. In the case of differentiated flows, the simulation showed that the eyes of the loops of the
two plumes are not located at the same height. This is due to the difference in the gas flow rates
injected at each plug (i.e., the strong plume forms a larger circulation loop stirring most of the ladle,
whereas the weak plume forms a smaller circulation loop). Using a coupled Eulerian–Lagrangian
model, Conejo et al. [19] studied mixing time and slag eye area fitted with dual plugs as a function of
operating variables, namely, gas flow rate, radial nozzle position, separation angle between nozzles
and partitioning flow rate. They suggested that if mixing time is the parameter of primary interest
then nozzle configuration with equal flow partitioning (50%:50%) between the nozzles should suffice
for both low and high gas flow rates, whereas if slag eye is the parameter of primary interest then a
configuration with non-equal flow partitioning (25%:75%) between the nozzles should be preferred.
Villela-Aguilar et al. [20] performed a multiphase numerical simulation to analyze the effects of the gas
flow rate, radial position and angle between plugs and differentiated flows in two plugs on the mixing
time in a secondary refining ladle. They found that the angle of separation between the plugs is the
most relevant variable to reduce mixing time. They also found that it is possible to reduce the mixing
time by using a good differentiated configuration in both gas flow and location of the porous plugs.
According to a review by Liu et al. [17], there is still room for further improvement of the numerical
model regarding the representation of the turbulence and the slag–steel interactions. One of the least
studied variables, in the case of dual gas injection points, is the effect of the use of different gas flow
rates in each plug (i.e., a gas blowing ratio different from 50%:50%).

In the present study, the effect of gas injection in equal (50%:50%) and differentiated (75%:25%)
flows, along with the gas flow rate and slag thickness, on mixing time and slag eye were studied using
a numerical model of a ladle and were compared with previously-obtained experimental data based on
PIV measurements of the hydrodynamics and PLIF measurements of mixing time for model validation.
This study aims to improve the mixing time in a secondary refining ladle and to identify a balanced
compromise between mixing time and slag eye, while improving numerical modeling practices using
experimental data on differentiated dual gas injection modes in ladles.

2. Methodology: Numerical Model Development

A Eulerian multi-phase mathematical model simulating the physical model described in this
study was developed under the following assumptions: (i) steady state, (ii) a symmetry plane is
considered for the dual gas injection system and thus only half of the ladle is solved; (iii) Newtonian
and incompressible fluids for both liquids and gas phases; (iv) isothermal flow and (v) constant bubble
diameter of 0.01 m. The latter is certainly an oversimplification, by neglecting bubble disintegration and
coalescence phenomena under real dynamic bubble size distributions. However, using the Eulerian
model most regions of the ladle are fairly well predicted, as presented in Section 3.1, both in turbulence
and velocity magnitude, except for the water-oil-bubble open eye regions. Governing equations for
the 3D Eulerian-Eulerian multi-phase algorithm include mass conservation equation, Navier–Stokes
equations and the k-ε realizable turbulence model for the water phase.

The volume of the q-phase, Vq, is given by the volume integral:

Vq =

∫
V
∝q dV (1)
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where ∝q is the volume fraction of phase q, and the sum of volume fractions must be equal to one
according to:

n∑
q=1

∝q= 1 (2)

The continuity equation for each q-phase is:

∇·
(
∝q ρq

→
v q

)
= 0 (3)

where ρq and
→
v q are the density and velocity vector of the q-phase, respectively.

The momentum conservation equation for the q-phase is:

∇·
(
∝q ρq

→
v q

→
v q

)
= − ∝q ∇P + ∇·

(
∝q μe f ,q

(
∇→v q +

(
∇→v q

)T))
+ ∝q ρq

→
g +

→
FT (4)

For the water phase:
μe f ,l = μlam,l + μt,l (5)

For other phases:
μe f ,q = μlam,q (6)

where P, μe f ,q,
→
g are the pressure, effective viscosity of the q-phase and the gravity acceleration,

respectively. The effective viscosity for the water phase is the sum of the molecular viscosity (μlam,l) and
the turbulent viscosity (μt,l) defined by the turbulence model employed. For the other phases μlam,q is
only the laminar viscosity of every fluid, and the subscripts l and lam stand for water and laminar,

respectively. The term
→
FT is the contribution of all interphase forces. The only force considered is the

drag force, and the virtual mass, lift and turbulent dispersion forces are neglected.
In this study, a sensitivity analysis was performed to choose the best turbulence model that

predicts correctly the turbulence measured in the ladle. From all the models tested, the best option is
the realizable k-ε turbulence model [21]. This model solves two additional conservation equations
applicable only to the water liquid phase, one of these equations being the conservation of turbulent
kinetic energy, k:

∇·
(
αlρlk

→
v l

)
= ∇·

(
αl

(
μlam,l +

μt,l

σk

)
∇k

)
+ αlGk,l + αlGb − αlρlε+ αlρlπk,l (7)

The conservation equation for the dissipation of the turbulent kinetic energy, ε:

∇·
(
αlρlε

→
v l

)
= ∇·

(
αl

(
μlam,l +

μt,l

σε

)
∇ε

)
+ αlC1

(
ε
k

GbC3

)
− αlρlC2

ε2

k +
√
εμlam,l
ρl

+ αlρlπε,l (8)

C1, C2, C3, σk and σε are constants of the model, with values of 1.44, 1.92, 1.3, 1.0 and 1.2
respectively. Gk is the production of turbulent kinetic energy due to the mean velocity gradients of the
water phase and Gb is the additional turbulent kinetic energy produced by the bubbles. πk,l and πε,l
are the turbulent interaction terms defined by Troshko-Hassan [22] as:

πk,l = Cke

m∑
p=1

Kgl

∣∣∣∣→v g −→
v l

∣∣∣∣2 (9)

πε,l = Ctd

3CA

∣∣∣∣→v g −→
v l

∣∣∣∣
2dg

πk,l (10)
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where Cke and Ctd are model constants with values of 0.75 and 0.45, respectively. Kgl is the covariance of
the velocities of the continuous phase l and the disperse phase g. dg is the bubble diameter; the velocity

difference between the gas and liquid phase,
(→

v g −→
v l

)
, is defined as the relative velocity,

→
v rel; whereas

CA is the drag coefficient determined through a sensitivity analysis (not mentioned in this study)
performed that revealed the best option was the well-known symmetric model:

CA =

⎧⎪⎪⎨⎪⎪⎩
24(1+0.15Re0.687)

Re Re ≤ 1000
0.44 Re > 1000

(11)

where Re is the Reynolds number.

The interphase forces,
→
FT are limited to the drag force,

→
FA as follows:

→
FT =

→
FA =

3αgαlρlCA

4dg

(→
v g −→

v l
)

(12)

Finally, to compute mixing time in the water phase l, a single conservation equation for a tracer
chemical species i is solved in transient mode with initial conditions of zero concentration of solute
everywhere except for the pulsed tracer injected at the free surface above the plume of high flow,
as follows:

∂
∂t

(
ρlwi,l

)
+ ∇·

(
ρl
→
ulwi,l

)
= ∇·

(
ρlDi,l +

μt,l

Sct

)
∇wi,l (13)

The geometry of the water (physical) model that was used in PIV experiments is made in 3D using
ANSYS Design Modeler 19.0 (Ansys Inc., Canonsburg, PA, USA) for the numerical model. The diameter
and height of the cylindrical ladle are 0.185 m and 0.214 m (0.17 m liquid level), respectively, similar
to that of the physical model [15] that corresponds to a 1:17 scale ratio of an industrial-size ladle of
200-ton capacity. Figure 1 shows an illustration of the mesh built with approximately 350,000 elements
with average orthogonality, skewness and aspect ratios of 0.98, 0.1 and 1.99, respectively. The choice
of the mesh elements was based on a sensitivity analysis using approximately 200,000 and 500,000
mesh elements.

Figure 1. Computational domain of the ladle used for the numerical simulations presented in this study.
The two vertical sections indicating the gas injection inlets and the top horizontal section indicating
the slag layer are comparatively denser than the remaining mesh domain. The inset shows the mesh
density for the slag zone which is different from the melt zone. The top portion of the mesh (half along
the symmetry plane) is shown separately.
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Non-slip boundary conditions at the bottom and lateral walls have been used, whereas the
standard wall functions have been used to connect the turbulent core of the fluid with the laminar flow
near the walls. The gas injection inlets at the nozzle positions and an open boundary to the atmosphere
at the top of the system allow the outflow of the gas phase. The complete set of boundary conditions
can be found in Table 1.

Table 1. Boundary conditions used in the numerical model presented in this study.

Boundary Mass Transport Condition Momentum Transport Condition

Inlets velocity inlet of air with turbulent intensity velocity inlet of air with turbulent intensity
Outlet pressure outlet with air backflow pressure outlet with air backflow

bottom wall impermeable boundary no slip with standard wall functions
lateral wall impermeable boundary no slip with standard wall functions

The system of partial differential equations was numerically solved and the solution in
pseudo-transient mode was considered to be converged when the residuals of all conservation
equations were below 1 × 10−3. Approximately 1200 iterations were required to get the convergence in
around 36 h of CPU time in a computer with 8 MB in RAM with an Intel Core® i7-3770 processor of
3.4 GHZ. Table 2 lists all the numerical simulations performed in this study which is based on a full
factorial experimental design at two levels with the three variables, namely, gas flow rate, dual gas
injection ratio and (slag) oil thickness, as mentioned in Jardón-Pérez et al. [15].

Table 2. Design of experiment with high and low values of the three variables, namely, gas flow rate,
dual gas injection ratio and (slag) oil thickness for the eight case studies presented in this study.

Cases
Experiment

Number
(Slag) Oil

Thickness (hs) (%)
Gas Flow Rate (Q)

(L/min)
Dual Gas Injection Ratio

(P) (%/%)

1 a 3 1.54 50/50
2 b 3 2.22 50/50
3 c 3 1.54 25/75
4 d 3 2.22 25/75
5 e 5 1.54 50/50
6 f 5 2.22 50/50
7 g 5 1.54 25/75
8 h 5 2.22 25/75

3. Results and Discussion

3.1. Model Validation

Figure 2 shows the flow patterns obtained through the PIV technique reported in
Jardón-Pérez et al. [15] at different operating conditions listed in Table 2, whereas Figure 3 shows the
flow patterns obtained with the numerical model presented in this study. As seen in these figures,
a reasonable agreement is observed between experimental and numerical results for all the cases.
For equal (50%:50%) dual gas injection, two symmetric toroids are formed at each side of the plume,
whereas for unequal (25%:75%) injection, symmetry vanishes and the high flow rate circulation expands
at the expense of the low flow rate circulation loop. An increase in the gas flow rate increases the
expansion of the plume in general, and for unequal injection further expands the high-flow rate
circulation loop. The increment in (slag) oil thickness mitigates the inertia of the plumes, reducing
the velocities of the liquid, and diminishes the loop expansions. An increase in (slag) oil thickness
lowers the velocity of the liquid in the vicinity of the oil layer at the top of the ladle. In general,
the experimental results were predicted successfully with the model, but some differences were also
perceived. The numerical predictions using CFD do not account for the expansion of the bigger loop for
unequal injection as occurs in PIV-measured flow patterns. As an illustration, Figure 4 shows measured
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(a) and calculated (b) streamlines obtained for experiment b (see Table 2) under equal dual gas injection,
showing good agreement between both predicted and measured streamlines; however, under unequal
dual gas injection for experiment g (see Table 2), calculated (d) streamlines do not capture the expansion
of the strong plume and the contraction of the small loop as seen in the measured (c) streamlines.
In general, the magnitudes of the liquid velocity were slightly underestimated. Mean value was
overestimated (see Table 3), but the distribution is quite different, especially in differentiated injection,
since the model does not accurately predict the interaction of the plumes. In the case of differentiated
dual gas injection, the interaction between the recirculation loops was not observed. This is probably
due to the drag effect, which was not successfully implemented, and represents a challenging issue in
numerical modeling, from the hydrodynamic point of view, of the more complex multiple differentiated
dual gas injections, compared to the traditional equal dual gas injection. Despite the differences,
the numerical model of the ladle furnace in steady state showed good results, with a reasonable
agreement with the experimentally measured liquid flow patterns reported in Jardón-Pérez et al. [15].
A more quantitative validation is shown in Figure 5 by comparing experimental (continuous line) and
numerical (dotted line) mean velocity radial profiles at h/H = 0.8 for experiments b (a) and g (b); axial
profiles at r/R = −0.75 for experiments b (c) and g (d); and axial profiles at r/R = 0.75, for experiments b
(e) and g (f). In all these cases, a good agreement between prediction and measurement is achieved,
with, in general, the numerical velocity profiles slightly over-predicting the measured results, but with
the simulations capturing the measured liquid motion in the plumes.

 

Figure 2. Flow patterns of the eight case studies obtained with the experimental model (particle image
velocimetry (PIV) technique) in the longitudinal plane. (a) through (h) are the experiments described
in Table 2.
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Figure 3. Flow patterns of the eight case studies obtained with the numerical model and shown along
the same longitudinal plane. (a) through (h) are the experiments described in Table 2. The cases
presented in this study are in the same order as in the experimental study of Jardón-Pérez et al. [15].

Figure 4. Streamlines obtained for experiment b (Table 2), measured (a) and calculated (b); and for
experiment g (Table 2), measured (c) and calculated (d).
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Table 3. Mean values of velocity v (× 10−2 m/s) for the experimental and numerical model along the
longitudinal plane (symmetry plane) for the eight cases presented in this study.

Low 1.54 L/min Gas Flow Rate (Q) High 2.22 L/min Gas Flow Rate (Q)

(Slag) Oil
Thickness (hs)

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

3% oil thickness

experimental 4.36 ± 2.61 5.33 ± 3.17 4.18 ± 2.72 4.53 ± 3.16

numerical 4.91 ± 4.94 5.98 ± 6.01 5.03 ± 5.24 5.91 ± 6.14

difference (%) 12.81 12.13 20.46 30.37

5% oil thickness

experimental 4.62 ± 2.86 4.74 ± 3.09 3.60 ± 2.27 4.53 ± 2.77

numerical 5.07 ± 5.15 5.30 ± 5.38 4.68 ± 5.00 5.52 ± 5.87

difference (%) 9.85 11.87 30.07 22.01

 

Figure 5. Comparison of experimental (continuous line) and numerical (dotted line) mean velocity
radial profiles at h/H = 0.8 for experiments b (a) and g (b); axial profiles at r/R = −0.75 for experiments
b (c) and g (d); and axial profiles at r/R = 0.75 for experiments b (e) and g (f).
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3.2. Turbulence Modeling

Figure 6 shows the simulated profiles of turbulent kinetic energy (k) at the same operating
conditions of Figure 2 (see Table 2 for the sequence of the experiments). A reasonable agreement can
be seen in Table 4 between the experimental and numerical results of turbulence, showing that the
k-ε realizable turbulence model was an appropriate choice to represent turbulence in the three-phase
fluid flow system implemented in this study. Due to the turbulence promoted by the bubbles,
high turbulence zones corresponding to the two plume zones were observed. By increasing the gas
flow rate (Figure 6b,d) the values of turbulent kinetic energy k in the circulation loops increase. A
thicker slag reduces turbulence and the interaction between the loops. Although the magnitudes of the
turbulent kinetic energy k in the plane overestimated the experimental results in almost all cases (in
comparison with Figure 4 of Jardón-Pérez et al. [15]), the above-mentioned main effects of the three
variables on k were successfully predicted with the numerical model. However, some features were
not captured by the model, such as the drag effect (comparing Figure 2h with Figure 3h), where the
smaller plume zone was not attracted to the center due to the influence of the loop.

 

Figure 6. Contours of turbulent kinetic energy (k) of the eight case studies obtained with the numerical
model and shown along the same longitudinal plane. (a) through (h) are the experiments described
in Table 2. The cases presented in this study are in the same order as in the experimental study of
Jardón-Pérez et al. [15].

Table 4. Mean values of turbulent kinetic energy k (× 10−3 m2/s2) for the experimental and numerical
model along the longitudinal plane (symmetry plane) for the eight cases presented in this study.

Low 1.54 L/min Gas Flow Rate (Q) High 2.22 L/min Gas Flow Rate (Q)

(Slag) Oil
Thickness (hs)

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

3% oil thickness
experimental 0.74 ± 0.51 1.18 ± 0.75 0.83 ± 0.55 1.05 ± 0.75

numerical 0.78 ± 1.02 1.15 ± 1.44 1.00 ± 1.37 1.24 ± 1.66
difference (%) 5.86 2.56 19.88 18.73

5% oil thickness
experimental 0.97 ± 0.61 1.11 ± 0.72 0.60 ± 0.39 0.78 ± 0.57

numerical 0.91 ± 1.17 1.14 ± 1.43 0.89 ± 1.23 1.11 ± 1.49
difference (%) 6.64 1.98 46.87 41.88
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3.3. Slag Eye Modeling

Tang et al. [14] compared the change in slag eye area between equal and differentiated flows at
various gas injection parameters, including the angle between the dual plugs from 45◦ to 180◦ and
its radial position from r/R = 0.5 to r/R = 0.7 and the gas flow rate. They found that in most cases
the proportion of slag eye in the differentiated flow system is smaller than that in the equal flow
system. Their results show that the proportion of slag eye in differentiated flow first decreases and then
increases with the increasing relative angle of plugs at the same flowrate, and the exposed areas of the
slag eyes of the two modes generally decrease with plug position from 0.55R to 0.70R, apparently due
to the obstacle of the ladle wall and its absorption of the stirring energy. The slag eye is the smallest at
0.7R–90◦ and 0.7R–135◦. Conejo et al. [19] measured the change in the slag eye area between equal
and differentiated flows for two nozzle radial positions (0.7R/0.7R and 0.7R/0.5R) and two angles (45◦
and 90◦). Their results show that the use of differentiated flow increases the area of slag eye for an
angle of 45◦ and equal plug positions, whereas there is a decrease in the eye when using unequal plug
positions and an angle between plugs of 90◦. From these results, it can be seen that the change in slag
eye becomes rather complex in the presence of multiple variables.

Figure 7 presents the time-averaged predicted slag eye of the eight experiments (see Table 2)
using the developed numerical model. The effect of the three variables, namely, gas flow rate, dual
gas injection ratio and (slag) oil thickness on the size of the slag eye was predicted. As seen in the
experiment, an increase in gas flow rate increases the extent of slag eye area in all cases, whereas the
opposite effect is obtained with an increase of (slag) oil thickness. A good agreement between the
experimental results (see Figure 5 of Jardón-Pérez et al. [15]) and the numerical results can be seen in
Table 5, with slag eye area as a percentage of the total surface. Again, the drag effect generated with
a differentiated gas injection was not captured completely by the model, i.e., the smaller slag eye is
not attracted to the center as observed in the experimental results, but the shapes of the slag eye were
correctly predicted. For example, for the case with 5% (slag) oil thickness and differentiated 2.22 L/min
gas flow rate, presented in Figure 8, the numerical size of the big eye is slightly under-predicted,
whereas the small eye is over-predicted, when compared against the measured eyes. As mentioned
earlier, the velocity field near the water–oil (steel–slag) interface and the slag eye size features are
not properly captured by the numerical model, which opens an opportunity for improvement of the
physical description of the interaction between the two phases through the modification of forces such
as drag and surface tension.

 

Figure 7. Time-averaged prediction of slag eyes at different operating conditions obtained with the
numerical model. (a) through (h) are the experiments described in Table 2. The cases presented in this
study are in the same order as in the experimental study of Jardón-Pérez et al. [15].
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Table 5. Slag eye area as a percentage of the total surface area for different operating conditions
experimentally obtained through image analysis from both experimental and numerical models.

Low 1.54 L/min Gas Flow Rate (Q) High 2.22 L/min Gas Flow Rate (Q)

(Slag) Oil
Thickness (hs)

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

3% oil thickness
experimental 39.40 ± 2.27 45.40 ± 3.53 51.47 ± 1.49 58.35 ± 1.97

numerical 45.35 49.75 49.84 55.21
difference (%) 15.10 9.59 3.17 5.38

5% oil thickness
experimental 34.13 ± 1.79 34.21 ± 2.96 43.99 ± 2.06 49.88 ± 3.03

numerical 30.07 38.31 33.89 38.93
difference (%) 11.90 11.99 22.95 21.94

 

Figure 8. Comparison of the time-averaged photograph of the slag eye obtained with the (a) experimental
model (operating condition of differentiated dual gas injection with 5% (slag) oil thickness and 2.22 L/min
gas flow rate) and the corresponding time-averaged (b) numerical model prediction. Dimensions of
measured and predicted open slag eyes are also indicated.

3.4. Mixing Time Modeling

Mixing phenomena in metallurgical steel ladles by bottom gas injection involve three phases,
namely, liquid molten steel, liquid slag and gaseous argon. Mixing time is the time needed for an
established constant flow field to disperse an injected non-reactive tracer until the required mixing
criterion is achieved. This criterion is generally set to 95%, although 99% and 99.5% [23,24] can be
used as well. Typically, the mixing efficiency of a ladle is qualified as the mixing time (τm) and is an
important indicator for the hydrodynamic performance to quantify the degree of agitation, which
influences secondary refining treatment in a ladle through desulphurization. Lou and Zhu [25] modeled
desulfurization and inclusion removal in a ladle with multiple nozzle configurations. They concluded
that dual nozzle configurations have a higher desulfurization rate than single nozzle configurations for
the same flow rate. Zhu et al. [26] investigated the mixing phenomena in argon-stirred ladles with six
types of tuyere arrangement. They concluded that mixing time is greatly influenced by the position
of the tracer, and that mixing time decreases with increasing gas flow rate, although the effect is not
so remarkable. Haiyan et al. [13] studied the effect of gas flow rate on the mixing phenomenon in
a bottom-stirring ladle with dual plugs. They found that compared with the same flowrate for the
two plugs, the mixing time is lower with different flow rates when the plug positions are located at
0.64R. This is mainly due to the strong gas plume, which produces a larger circulation flow to stir the
ladle. A weaker plume forms a smaller one, which weakens the interference and collision from the two
plumes, thus reducing the mixing time. Recently, Ramasetti et al. [27] calculated the mixing time of
tracer addition into the metal bath of a ladle, which decreased when the argon flow rate was increased.

Nunes et al. [28] were among the earliest to use a dye tracer to determine the mixing time in a
ladle, thus eliminating the dependence on the monitoring position. For the measurement of mixing
time, techniques such as using a pH meter or conductivity meter are the most common, although
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more recently dye tracers and laser-induced fluorescence (LIF) have been used. To measure the time
needed to reach a stable state, usually a criterion of ± 5% of variation of property is used, which can be
measured by pH in a pH meter, conductivity in a conductivity meter, and tracer concentration and
luminescence in LIF. In the experimental study of Jardón-Pérez et al. [15], mixing time in a gas-stirred
ladle was measured by means of the novel technique of planar laser-induced fluorescence (PLIF) that
uses Rhodamine 6G as a tracer. PLIF determinations were performed at two different planes and pH
probe determinations were performed at two different locations. The results were then compared,
which showed not only the accuracy of the PLIF method, but also that it is less sensitive to the location
of the measurement than the pH probe method. A detailed explanation of the technique can be found
in Jardón-Pérez et al. [29]. Ascanio [30] does not recommend the technique for highly aerated flows,
because the presence of bubbles complicates the calibration and the measurement of the obtained
concentration contour.

From the experimental study of Jardón-Pérez et al. [15], it was found that all cases gave smaller
mixing times with the same conditions of (slag) oil thickness and dual gas injection ratio. The increase
in the thickness gave slightly higher mixing times. The numerical model of the mixing time presented
in this study gave very similar results to the experimental mixing time for both 50%:50% equal flow
and 25%:75% dual differentiated flow. As with the experimental study, the effect of a 25%:75% dual
injection ratio is slightly less significant with conditions of high gas flow rate (2.22 L/min) as compared
with conditions of low gas flow rate (1.54 L/min) for 3% (slag) oil thickness than with 5% (slag) oil
thickness (see Table 6). The deviation from the experimental mixing time was found to be the greatest
for 25%:75% dual differentiated flow at a high gas flow rate (2.22 L/min), whereasthe deviation was
found to be the lowest for 25%:75% dual differentiated flow at low gas flow rate (1.54 L/min) both at
5% oil thickness. The difference between experimental and predicted mixing times can be explained by
comparing the experimental (Figure 2) and numerical (Figure 3) flow patterns. As can be seen, the area
of the low-velocity zone with dual injection is higher for the numerical model than the physical model,
mainly due to the difficulty of simulating the interaction between both the gas plumes, especially when
a differentiated injection is used. This is because the interaction between the low-injection and the
high-injection plumes (see Figure 3c,d,g,h) shows a large deformation in both plume structures due to
the drag force that the high-injection plume exerts on the low-injection plume.

Table 6. Mixing time in seconds for different operating conditions experimentally (obtained through
the planar laser-induced fluorescence (PLIF) method) and compared with the numerical model.

Low 1.54 L/min Gas Flow Rate (Q) High 2.22 L/min Gas Flow Rate (Q)

(Slag) Oil
Thickness (hs)

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

50%:50% Dual Gas
Injection Ratio

25%:75% Dual Gas
Injection Ratio

3% oil thickness
experimental 8.04 ± 0.57 7.24 ± 0.80 6.84 ± 0.26 6.57 ± 0.40

numerical 9.67 8.71 8.18 7.07
difference (%) 20.28 20.31 19.56 7.67

5% oil thickness
experimental 10.09 ± 1.04 9.35 ± 1.13 7.18 ± 0.62 5.92 ± 0.45

numerical 12.53 9.49 8.82 8.16
difference (%) 24.15 1.47 22.79 37.85

Figure 9 shows the trend in the model predictions and the experimental results reported in
Jardón-Pérez et al. [15] based on all the cases implemented in this study. In this Figure, it is seen that
the model is able to capture the more important issues regarding the behavior of the system under
different experimental conditions. Considering that differences between predicted and experimental
measurements increase for differentiated gas injection and high slag thickness (Cases 7 and 8 in Figure 9
and Table 2), the results suggest that these are places in which to seek improvements in the numerical
model, especially in high slag thickness. This is probably because with a higher slag thickness the
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influence of slag emulsification on mixing time becomes prominent, since the numerical model does not
consider the emulsified droplets. This is also shown clearly in Figure 10, which depicts the difference
in the model prediction compared with the experimental results reported in Jardón-Pérez et al. [15]
for the cases of low gas flow rate (Figure 10a) and high gas flow rate (Figure 10b), thus exploring the
ability of the numerical model to capture the two limit cases analyzed in this study.

Figure 9. Comparison between the model prediction (dotted line) and experimental mixing time (black
dots) obtained by Jardón-Pérez et al. [15].

Figure 10. Effect of the gas flow rate on the mixing time predicted by the model and experimental
measurements for (a) low gas flow and (b) differentiated gas flow.

In both figures, the best match is obtained for the case of low gas flow rate and low slag thickness.
At a high flow rate, the differences between experimental and predicted results increase for all cases
(see Table 6) and these differences are bigger for differentiated gas injection, independently of the
gas flow rates. The results suggest that modeling efforts must be focused on the improvement of the
turbulence model, as well as finding approaches to simulate the effect of the slag layer (mainly the slag
emulsification) on the flow dynamics of the stirred melt and to simulate changes in the flow plume
linked to the change in the mode of gas injection.

However, even if numerical values of both slag eye area and mixing time show differences between
numerical and experimental values (see Tables 5 and 6), the effect of the studied variables is correctly
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predicted by the mathematical model, i.e., an increase in gas flow rate causes an increase in the exposed
area and a decrease in the mixing time, an increase in slag height causes a decrease in the slag eye area
and an increment in the mixing time, and finally, the use of differentiated gas injection causes a slight
increment in the exposed area but also a decrement in the mixing time compared with equal injection.
Therefore, the CFD numerical model could be used to study the main effects of operation variables on
both mixing time and slag eye area.

4. Conclusions

In the numerical study of the effect of dual gas injection using equal (50%:50%) and differentiated
(75%:25%) flows and variable (slag) oil thickness compared with the experimental results obtained
previously, the following conclusions can be made:

1. The numerical model using CFD predicts the hydrodynamic behavior of the ladle well,
in comparison with the physical model. Turbulent kinetic energy is adequately and qualitatively
predicted, although it is somewhat overestimated. It can be said that the model qualitatively
predicts the influence of the gas flow, the distribution of the flows and the level of slag on the
distribution of velocities and turbulence.

2. The predicted slag eye shows a good agreement with the experimental results with slag eye area
as a percentage of the total surface. However, due to the interphase interaction, the slag eye from
differentiated gas injection is not captured completely by the model.

3. The numerical model does not fully predict the effect of differentiated gas injection, since the drag
model used does not exactly simulate the interaction between both recirculation zones, hence
predicting a smaller area of low-velocity zones.

4. There is a deviation in predicted mixing time from experimental mixing time for both equal
and differentiated gas injection, which becomes significant at a high gas flow rate and a high
slag thickness.

The anomaly in the observations is attributed to the insufficient capture of the hydrodynamic
behavior near the water–oil (steel–slag) interface, probably caused by the emulsification of slag, which
might also influence changes in the gas plumes, linked to the change in the mode of gas injection.
This is coupled with the difficulty of accurately predicting the complex interaction between the gas
plumes, especially in differentiated injection, which causes a variation in the predicted values of mixing
time and slag eye area, although the effect of the variables (gas flow rate, slag height and injection
mode) can be studied with an in-depth understanding of the mathematical model presented.
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Abstract: Argon stirring is one of the most widely used metallurgical methods in the secondary
refining process as it is economical and easy, and also an important refining method in clean steel
production. Aiming at the issue of poor homogeneity of composition and temperature of a bottom
argon blowing ladle molten steel in a Chinese steel mill, a 1:5 water model for 110 t ladle was
established, and the mixing time and interface slag entrainment under the different conditions of
injection modes, flow rates and top slag thicknesses were investigated. The flow dynamics of argon
plume in steel ladle was also discussed. The results show that, as the bottom blowing argon flow rate
increases, the mixing time of ladle decreases; the depth of slag entrapment increases with the argon
flow rate and slag thickness; the area of slag eyes decreases with the decrease of the argon flow rate
and increase of slag thickness. The optimum argon flow rate is between 36–42 m3/h, and the double
porous plugs injection mode should be adopted at this time.

Keywords: secondary refining; water model; mixing time; slag entrapment

1. Introduction

The major tasks in the production of clean quality steel include the removing of inclusions and
unwanted impurities, the secondary refining process is the important step of cleansing molten steel,
and argon bottom blowing is one of the most popular ladle metallurgical methods in all types of ladle
metallurgy processes as it is economical and easy [1]. During the argon bottom blowing, the molten
steel homogenization and entrapment of the top slag have a great effect on the result of the ladle
metallurgy. The water model [2–6] and mathematical models [7–9] are often used to simulate metal
bath in the ladle during the argon bottom blowing, as the flow field in the ladle can be observed in the
laboratory without the interfering of high temperature molten steel, splashing and dust in the actual
teeming ladle. Some researchers found that eccentric bottom blowing is in favor of bath mixing in the
ladle [7,10]. Some investigators also found that the position of porous plugs, gas flow rate and the size
of ladle have an abundant influence on bath mixing in the ladle [4,5,11–17]. It was discovered that
the top slag layer could consume some part of kinetic energy of flow and enlarge the mixing time of
the ladle [18–22]. Some researchers studied the flow field and inclusion removal in the ladle during
argon blowing by studying the bubble motion in the process of argon stirring [23,24]. The results of
Luis E. Jardón-Pérez’s research show that the ladle must be operated using a differentiated flow ratio for
optimal performance [25]. With the help of the water model the argon bottom-blowing was improved
dramatically. However, as the shortening of mixing time and decreasing top slag entrapment are a
pair of contradictions during the argon bottom-blowing, the more reasonable and general compromise
method should be studied based on the study of the detailed data of flow field in the metal bath of the
ladle with the water model.
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In this paper, based on the experiment of the water model, the bottom-blowing ladle of a Chinese
steel mill was studied, and the effect of the layout of porous plug, argon flow rate and properties of
top slag to ladle stirring efficiency, level fluctuation and slag entrapment. Based on the results, the
operation of bottom-blowing of the ladle was improved.

2. Water Model

In order to uniform the composition and temperature of metal bath in the ladle, a 1:5 downscale
water model was established, with the geometrical similarity of the actual ladle in a Chinese steel mill.
Water and air were chosen to simulate molten steel and argon, the dimension data of the water model
and prototype were shown in Table 1, and a schematic diagram of the prototype was in Figure 1.

Table 1. The dimension data of the water model and prototype.

Parameters Prototype Water Model

Top diameter of ladle/mm 3034 606.8
Bottom diameter of ladle/mm 3000 600

Ladle height/mm 3950 790
Blowing mode Bottom blowing through porous plug Bottom blowing through porous plug

Bottom blowing gas Argon Air
The density of blowing gas/kg/m3 1.78 1.29

The density of liquid/kg/m3 7020 1000
The temperature of liquid/K 1853 293

 
(a) (b) 

Figure 1. Schematic diagram of the ladle prototype; (a) vertical section; (b) porous plug arrangement.

The major forces affecting the flow of molten steel in the ladle include float force, viscous force and
gravity. According to similarity rules, modified Freud number can characterize the kinetic similarity of
the argon blowing system in the ladle with bottom blowing of argon. In our study work, the water
model should have the same modified Freud number as the prototype, as Equation (1):

(Fr′)m = (Fr′)p (1)

That is,
ρair·u2

water

(ρwater − ρair)·g·Hm
=

ρAr·u2
steel

(ρsteel − ρAr)·g·Hp
(2)

where, ρair, ρwater, ρAr, ρsteel are the densities of air, water, argon and molten steel respectively, kg/m3;
g is the acceleration of gravity, m/s2; uwater, usteel are the characteristic velocities of air and argon
respectively, m/s; H is the height of steel bath in the ladle, m.
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The characteristic velocity u can be expressed with Equation (3):

u =
4Q
π·d2 (3)

where, Q is the gas flow rate, m3/h; d is the equivalent diameter of the porous plug, m.
Based on the data of Table 1, Equations (2) and (3), the relation between gas flow rates in the water

model and in the actual teeming ladle, i.e., Qm and Qp, was derived as Equation (4).

Qm = 0.00794Qp (4)

According to the range of flow rate of argon blown in the prototype ladle, that is 12–50 m3/h, the
air flow rates were calculated from Equation (4) and listed in Table 2.

Table 2. The flow rate of bottom gas in the water model and prototype ladle.

The flow rate in
prototype/m3/h 12 18 24 30 36 42 48

The flow rate in
water model/m3/h 0.095 0.143 0.191 0.238 0.286 0.333 0.381

As the flow behaviour of molten steel-slag was influenced by interfacial tension of molten steel
and slag, the weber numbers of the model should be equivalent to that of the prototype to insure the
kinetic similarity at the interface between the molten steel and slag, Equation (5).

Wem = Wep (5)

That is,
ρwater·u2

water

[g·σwater−oil·(ρwater − ρair)]
1/2

=
ρsteel·u2

steel[
g·σsteel−slag·

(
ρsteel − ρslag

)]1/2
(6)

where, σwater-oil is the interfacial tension between the water and oil, N/m; σseel-slag is the interfacial
tension between the steel and slag, N/m.

In the water model experiment, aviation kerosene and vacuum pump oil were mixed in a certain
proportion to obtain a mixture oil with the same kinematic viscosity of the top slag.

The slag layer thickness of the prototype ladle is 60–100 mm, and the oil layer thickness (OLT)
in the water model experiment is 12–20 mm according to the similarity ratio of 1:5. Five oil layer
thicknesses were selected in the experiment, as shown in Table 3, to study the effect of the slag layer
thickness to level fluctuation and slag entrapment of steel bath in the ladle.

Table 3. The thicknesses of the top oil layer.

Item 1 2 3 4 5

Oil layer thickness/mm 12 14 16 18 20

There were two methods of eccentric bottom blowing in the prototype ladle: One is a single
porous plug with eccentric distance of 0.6 R, in which the eccentric distance is the distance between the
centers of the porous plug and ladle; the other is a double porous plug with an intersection angle of
100◦ and eccentric distance of 0.6 R.

The schematic diagram of the water model experiment setup was shown in Figure 2. In the
experiments, the mixing time of the model was measured through the stimulus-response method with
a tracer of KCl solution, flow field, level fluctuation and slag entrapment of steel bath in the model
ladle was recorded by high speed digital camera.
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Figure 2. Water model experiment setup: (1) Air compressor; (2) pressure gauge; (3) air flow rate
controller; (4) porous plug; (5) model ladle; (6) conductivity probe; (7) computer; (8) conductivity meter;
(9) high speed digital camera.

3. Results and Discussion

3.1. Mixing Time

In the water model experiment, seven air flow rates, that is 0.095, 0.143, 0.191, 0.238, 0.286, 0.333,
0.381 m3/h, were used to bottom-blow into the model ladle with/without an oil layer covered through
single or double porous plugs.

The influences of the bottom air flow rate, slag layer and the number of porous plugs to the mixing
time were shown in Figure 3.
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Figure 3. The relation between mixing time and air flow rate in the ladle with single porous plug and
double porous plugs: (1) Single porous plug without oil layer; (2) single porous plug with 16 mm OLT;
(3) double porous plugs without oil layer; (4) double porous plugs with 16 mm OLT.

From Figure 3, it was found that as the increase of the bottom air flow rate, the mixing time of
the metal bath in ladle decreased. When the bottom blowing air flow rate was equal to 0.095 m3/h
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(corresponding 12 m3/h in prototype), the mixing time of the steel bath was relatively long, as stirring
power produced by the dispersing small bubbles from porous plugs was too small and the circulating
flow rate in steel bath was weak.

As the bottom blowing air flow rate was increased from 0.143 m3/h to 0.286 m3/h (corresponding
from 18 m3/h to 36 m3/h in the prototype), the mixing time was reduced abundantly. When the bottom
air flow rate was above 0.143 m3/h, the bubble group in water model was transferred from dispersing
small bubbles to spherical bubbles or coronal bubbles group. The stirring energy by the bubble group
increased abundantly, so was the circulating flow in the steel bath of the ladle, which decreased the
mixing time markedly.

When the bottom blowing flow rate increased above 0.286 m3/h, the mixing time of the steel bath
increased slowly with the bottom blowing flow rate. The reason was that when the flow rate exceeds
0.286 m3/h, the diameter of the plume caused by bubble groups did not increase further, more bubbles
were blown into the plume, bubble coalescence and breaking were more frequent, and more energy
was exhausted in bubble coalescence and breaking, instead of driving circulate flow in the bath. At the
same time, there were more energy consumed by the surface rise and splashing, which were caused by
the escaping of a large number of bubbles. Therefore, when the bottom blowing flow rate increased
above 0.286 m3/h (i.e., 36 m3/h in prototype), the increase of the bottom blowing gas flow rate could not
improve the mixing of the bath in the ladle, and there was an obvious inflection point on the mixing
time curve.

The slag layer could influence the mixing time, Figure 3. It was shown that at the same bottom
blowing flow rate, the mixing time without the oil layer was obviously shorter than the mixing time
with OLT of 16 mm. The reason was that the horizontal flow at the surface was obstructed by the slag
layer at the bath top, so was the circulating flow in the bath. It can also be seen from the figure that the
air flow rate at mixing time inflection without the oil layer in the ladle was 0.286 m3/h, and the air flow
rate at mixing time inflection point with the oil layer in the ladle was 0.333 m3/h.

As there were two plumes in the ladle with double porous plugs, the intersection area of bubble
columns doubled, and the mixing of the bath improved obviously. From Figure 3, it was found that
the mixing time of the bath in the ladle with double porous plugs shortened abundantly.

The relation between the mixing time and bottom blowing flow rate in the ladle with double
porous plugs was shown in Figure 4. It was found that with the increase of the bottom gas flow rate,
the mixing time of the bath in the ladle was decreased. When the flow rate is above 0.333 m3/h (i.e.,
42 m3/h in prototype), the mixing time was reduced slowly as the increase of the flow rate, and the
trend was similar to the ladle with a single porous plug. The slag layer obstructed the mixing in the
ladle with double porous plugs, as the work by viscous force at the surface of the bath in the ladle
consumed the kinetic energy of plumes driven by bubbles blown from double porous plugs. The
thickness of the slag layer had a large influence to the mixing time of the bath in the ladle, as the mixing
time of the bath in the ladle decreased with the increase of thickness of the slag layer.

In summary, for the actual operation of the prototype ladle, the best option of the bottom gas flow
rate was 36–42 m3/h for the ladle. When the bottom flow rate in the actual ladle increased above that
range, the mixing time could not be reduced effectively.

479



Processes 2019, 7, 479

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
40

60

80

100

120

140

160

180

200

M
ix

in
g 

tim
e 

(s
)

Air flow rate (m3/h)

 0 mm    OLT
 12 mm  OLT
 14 mm  OLT
 16 mm  OLT
 18 mm  OLT
 20 mm  OLT

Figure 4. The relation of mixing time and air flow rate in the ladle with double porous plugs.

3.2. The Entrapment of Slag in Ladle

For the entrapment of the top slag in the ladle, the influence of the bottom gas flow rate, number
of porous plugs and thickness of the slag layer to the top slag entrapment in the ladle was studied with
an image processing method in the water model.

3.2.1. The Entrapment of Slag in Ladle with Single Porous Plug

In the water model, the entrapment of the top slag during bottom blowing was videoed to analyse
the influence of the bottom gas flow rate to entrapment, Figure 5, and in the experiment the thickness
of oil (simulating the slag layer) was 14 mm. It was found that as the bottom blowing gas flow rate was
less than 0.143 m3/h, the fluctuation at the interface between the oil and water was gentle (Figure 5a,b),
the escape of bubbles caused the little disturb at the interface between the oil and water and the
horizontal flow at the interface driven by the upper flow around the bubble column caused the oil
layer thickening at the area around the bubble escaping region. As the bottom flow rate was increased
above 0.143 m3/h, the escape of bubbles caused the obvious disturb at the interface between the oil and
water, the horizontal flow at the interface caused the oil layer obviously thickening at the area around
the bubble escaping region, as shown in Figure 5c–f, the oil bump was formed at that area, the shear
of horizontal flow resulted in the small droplet divided from the oil bump and the entrapment was
formed, most of the oil droplets were soon floated up to the top oil layer. When the bottom gas flow
rate was above 0.333 m3/h (Figure 5g,h), the entrapment worsened, most of the oil droplets were not
floated up to the top oil layer, instead, they were dragged into the deep region in the water model by
the downward flow.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5. The influence of the air flow rate to the entrapment in the water model simulating the ladle
with a single porous plug and OLT of 14 mm: (a) Q = 0.0475 m3/h; (b) Q = 0.095 m3/h; (c) Q = 0.143 m3/h;
(d) Q = 0.191 m3/h; (e) Q = 0.238 m3/h; (f) Q = 0.286 m3/h; (g) Q = 0.333 m3/h; (h) Q = 0.381 m3/h.

The area without the slag covering, which was caused by the bubbles-escaping at the top of the
bath, was called the slag eye. The area of the slag eye in the water model with a single porous plug at
different bottom gas flow rates and slag thicknesses was summarized in Table 4, which was measured
from the digital image of the top of the water model during bottom blowing. From Table 4, it was found
that the area of the slag eye increased as the increase of the bottom gas flow rate. The reason was that
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as the bottom gas flow rate increased, the rise velocity of the plume increased and then the horizontal
velocity at the liquid-oil interface was also raised, the increase of the horizontal velocity raised the
repulsive force at the interface between the water and oil and the area of the slag eye increased. On the
other hand, as the raise of the top oil thickness, the work to repulsive the oil at the top of the water
model, which overcame the interfacial tension and viscous force, increased and the area of the slag eye
decreased at the same bottom gas flow rate.

Table 4. The areas of the slag eye at different air flow rate and oil thickness in the water model with a
single porous plug.

Bottom Gas Flow
Rate, m3/h

Area (%) of Slag Eye to Top Area of Water Model

12 mm OLT 14 mm OLT 16 mm OLT 18 mm OLT 20 mm OLT

0.0475 6.79 6.30 6.58 2.83 2.88
0.095 15.06 10.40 11.24 8.60 5.62
0.143 17.05 14.87 12.80 11.06 8.46
0.191 19.63 18.16 16.92 13.43 12.77
0.238 20.22 19.90 17.51 14.84 13.87
0.286 25.37 20.46 18.39 14.32 15.38
0.333 26.44 22.96 19.92 17.60 17.67
0.381 29.91 23.14 24.60 20.25 18.26

Figure 6 showed the relation between entrapping the depth of the top oil in the water model with
a single porous plug, bottom flow rate and oil thickness. It was shown that at the same bottom flow
rate the entrapping depth increased as the increase of oil thickness, and at the same oil thickness the
entrapping depth increased as the bottom flow rate, but when the bottom flow rate was above a certain
level, the entrapping depth would not increase as the increase of the flow rate. The reason was that as
the bottom flow rate increased, more of the oil layer at the top of the water model was repulsed from
the bubble escaping region of the plume, the horizontal velocity of water increased, the velocity of
the downward flow around the plume also increased, the bump of the oil layer increased, Figure 5,
the shear forced on the bump of the oil layer increased, and all these factors caused oil entrapping in
the water model raising. From Figure 6, the critical bottom flow rates for oil entrapment in the water
model were in the range of 0.095–0.143 m3/h (18–24 m3/h for prototype ladle).
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Figure 6. The influence of air flow rate to entrapping depth in the water model with a single porous plug.
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3.2.2. The Entrapment of Slag in Ladle with Double Porous Plugs

The entrapment of the slag in the ladle with double porous plugs was shown in Figure 7. For the
water model with double porous plugs, the region between the porous plugs and the adjoining wall of
the water model was signed as Region A, and the region between the two porous plugs was signed as
Region B, as shown in Figure 8a. At Region A, the flow of water was similar to that of the water model
with a single porous plug. However at Region B, the oil layer was pushed by the flows of counter
directions from the two porous plugs, the bump of the oil layer was higher than that in the water
model with a single porous plug, and the shear from the horizontal flow was stronger intensively, as
shown in Figure 7. The plumes from the two porous plugs caused the vortex at Region B. So, there was
oil entrapped into the vortex, which was called as vortex entrapment.

  
(a) (b) 

  
(c) (d) 

Figure 7. Entrapment in the water model at a different bottom flow rate (16 mm OLT): (a) Q= 0.095 m3/h;
(b) Q = 0.191 m3/h; (c) Q = 0.286 m3/h; (d) Q = 0.381 m3/h.

  
(a) (b) 

Figure 8. The slag eyes in the water model with double porous plugs (16 mm OLT): (a) Q = 0.286 m3/h,
(b) Q = 0.381 m3/h.

For the slag eye, when the bottom flow rate was small, there were two slag eyes formed at the
top of the water model. When the bottom flow rate was large, the two slag eyes were merged and
formed the goggle type slag eye, Figure 8. When the goggle type slag eye was formed, there was no
slag floated at the Region B, Region A was the only region with slag entrapment.
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Table 5 showed the areas of slag eyes at different flow rate and oil thickness. With the increase
of the bottom flow rate the area of slag eyes increased for the same oil layer thickness, and with the
oil layer thickness increasing the area of slag eyes decreased in the water model with double porous
plugs, the trend of which was just like that in the water model with a single porous plug. Compared
with Table 4, the slag eye is easier to form in the double porous plugs ladle, and the area of the slag eye
is usually larger than that in a single porous plug ladle.

Table 5. The areas of the slag eye at a different bottom flow rate and top oil thickness in the water
model with a double porous plug.

Bottom Gas Flow
Rate, m3/h

Area (%) of Slag Eye to Top Area of Water Model

12 mm OLT 14 mm OLT 16 mm OLT 18 mm OLT 20 mm OLT

0.095 13.38 11.55 9.27 7.73 4.67
0.191 20.22 17.95 18.07 13.75 10.11
0.286 26.97 20.67 23.21 19.98 12.59
0.381 30.95 26.28 28.22 20.37 15.67

As the increase of the bottom flow rate, the entrapping depth increased in the water model with
double porous plugs, shown in Figure 9, the trend of which was similar to that in the water model
with a single porous plug. In the water model with double porous plugs, the critical bottom flow rate
causing entrapment was 0.095 m3/h (12 m3/h for prototype ladle). Compared with Figure 6, it was
found that the entrapping depth was higher obviously in the water model with double porous plugs,
because there was vortex entrapment formed in Region B.
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Figure 9. The influence of a double porous plug bottom flow rate to entrapping depth in the water model.

3.3. Comprehensive Analysis of Mixing and Slag Entrapment

The results of mixing time show that the optimum gas flow rate for the prototype ladle is
36–42 m3/h, the ladle with double porous plugs should be selected at the same time. Slag thickness has
a significant influence on the entrapping depth of the slag and slag eye area. In actual production, slag
entrapment is beneficial to improve the refining effect, therefore, more consideration should be given
to the area of the slag eye and bath mixing.

The bubble motion in the water model experiment was shown in Figure 10. Bubble motion is
accompanied by the process of coalescence, collapse and re-coalescence. In the process of bubble
floating up, the size and shape of the bubble have changed. When the diameter of the bubble exceeds
1 cm, the shape of the bubble changes into a spherical corona. In low viscosity liquids, the rising
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velocity of the spherical coronal bubble is independent of the properties of liquids and can be calculated
by Equation (7) [26].

ub = 1.02
(

gdb

2

) 1
2

(7)

where, ub is the bubble velocity, m/s; g is the acceleration of gravity, m/s2; db is the bubble diameter, m.

     

(a) (b) (c) (d) (e) 

Figure 10. The bubble motion in the water model: (a) Q = 0.0475 m3/h; (b) Q = 0.095 m3/h;
(c) Q = 0.143 m3/h; (d) Q = 0.191 m3/h; (e) Q = 0.238 m3/h.

In order to apply the research results to more ladles, a dimensionless treatment was carried out
for the slag layer thickness, gas flow rate and mixing time. Assuming that the diameter of the bubble is
1 cm, the product of the bubble velocity and area of the gas ports is taken as the characteristic flow rate.

Qb = S·ub (8)

S = π
(
r1

2 + r2
2 + ···+ rn

2
)

(9)

where, Qb is the characteristic flow rate, m3/s; r1, r2, . . . , rn are the radius of gas ports, m; S is the area
of gas ports of porous plugs, m2. The radius of gas port in the water model experiment is 12 mm.

The dimensionless gas flow rate was treated according to Equation (10), and the dimensionless
slag layer thickness was treated according to Equation (11).

Q∗ = Q
3600Qb

(10)

h∗ = h
hl

(11)

where, V* is the dimensionless gas flow rate; V is the gas flow rate, m3/h; h* is the dimensionless
thickness of the slag layer; h is the thickness of the oil layer, m; hl is the depth of the molten bath, m. In
the water model, the water depth is 0.643 m.

Assuming that the shape of the bubble is a spherical corona and does not deform in the process
of bubble flotation, the residence time tb of the bubble in the water model can be calculated. Taking
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residence time tb as the characteristic time, the dimensionless mixing time can be calculated by
Equation (12).

tb =
hl
ub

(12)

t∗ = t
tb

where, tb is the characteristic time, s; hl is the depth of the water, m; t* is the dimensionless time; t is the
mixing time, s.

The relation between the dimensionless mixing time and dimensionless gas flow rate in the ladle
with double porous plugs was shown in Figure 11, the 0, 0.0187, 0.0218, 0.0249, 0.028 and 0.0311
are dimensionless thickness in Figure 11 correspond to without oil and with oil layer of 12, 14, 16,
18, 20 mm. The trend of mixing time is consistent with Figure 4. In the water model, the optimum
dimensionless flow rate is 0.157–0.183 for the ladle with double porous plugs.
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Figure 11. The relation of dimensionless mixing time and dimensionless flow rate in the ladle with
double porous plugs.

Using multiple linear regression, the relationship between dimensionless mixing time,
dimensionless flow rate and dimensionless oil layer thickness was fitted by Equation (13). The
coefficient of determination (R square) of fitting Equation (13) is equal to 0.942, which indicates that
the equation has a high fitting degree and may be used to calculate the mixing time of the ladle with
double porous plugs.

t∗ = 125.3601 + 1476.75327·h∗ − 502.76857·Q∗ (13)

The area of the slag eye in the water model with a single porous plug at different dimensionless
flow rates and dimensionless oil thicknesses was shown in Figure 12. It can be seen from the figure
that when the dimensionless flow rate increases to 0.366 (corresponding to the prototype ladle flow
rate of 42 m3/h), further increasing flow rate has little effect on the slag eye area, the dimensionless
flow rate corresponding to the prototype ladle is 37.595. Therefore, considering the mixing time and
slag entrainment, the optimized injection mode for the prototype ladle is the double porous plug with
a flow rate of 36–42 m3/h.
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Figure 12. The areas of slag eye at different flow rates and oil thickness in water model with single
porous plug.

Using multiple linear regression, the relationship between the area of the slag eye, dimensionless
flow rate and dimensionless oil layer thickness was fitted by Equation (14). The coefficient of
determination (R-square) of fitting Equation (14) is equal to 0.93188, which indicates that the equation
has a high fitting degree and may be used to calculate the area of the slag eye of a single porous
plug ladle.

S% = 21.30098− 660.60213·h∗ + 45.37523·Q∗ (14)

where, S% is the percentage of the slag eye area to the molten bath surface area.
Equations (13) and (14) use dimensionless experimental data, and the determinant coefficient

shows that equations have a high fitting degree, so for the general ladles, Equations (13) and (14) can
be used to calculate the mixing time and bare steel area by flow rate and slag layer thickness. However,
in the process of dimensionless data processing, the characteristic flow rate is a fixed value, geometric
similarity ratio has an effect on dimensionless flow rate, so the equations can not be directly used in the
ladle. Therefore, when using Equations (13) and (14) in generic ladles, the model flow rate calculated
by the geometric similarity ratio of 1:5 can be used to calculate the mixing time and slag hole area.

4. Conclusions

Through the establishment of the water model, the influence of the bottom blowing flow rate on
the mixing time and slag entrapment were studied. Through dimensionless treatment and multivariate
linear regression, the equations which may be used to calculate the mixing time and slag eye area of
the ladle are obtained and the conclusions are as follows:

(1) The bath mixing in the ladle is affected by the number of porous plugs, flow rate and slag layer.
Under the same blowing flow rate, the mixing time of double porous plugs is shorter than that
of a single porous plug. The mixing time of the two methods eccentric blowing is basically the
same, and the mixing time decreases with the increase of the blowing flow rate, and increases
with the increase of the slag layer thickness. There is an inflection point in the mixing time curve,
the flow rate at the point is 0.333 m3/h (corresponding 42 m3/h in prototype), the mixing time
before the inflection point changes significantly, but after the inflection point, the mixing time
changes slowly. The mixing time of the ladle without the slag layer is significantly shorter than
that with the slag layer.
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(2) The critical bottom flow rates for oil entrapment in the water model were in the range of
0.095–0.143 m3/h (18–24 m3/h for the prototype ladle) for the ladle with a single porous plug, and
the critical bottom flow rate causing entrapment was 0.095 m3/h (12 m3/h for the prototype ladle)
for the ladle with a double porous plug, the double porous plug is easier to the entrapped slag.

(3) The entrapped slag depth increases with the argon flow rate and slag thickness; the area of slag
eyes increases with the argon flow rate and decreases with slag thickness.

(4) Considering the mixing time and slag entrainment, the optimized injection mode for the prototype
ladle is a double porous plug with a flow rate of 36–42 m3/h.
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Abstract: In metallurgical and chemical engineering processes, the gas–liquid–liquid multiphase
flow phenomenon is often encountered. The movement of bubbles in the liquid, and the influence of
bubbles on the liquid–liquid interface, have been the focus of extensive research. In the present work,
an air–water–oil system was used to explore the movement of bubbles and the phenomenon that
occurs when bubbles pass through an interface with various oil viscosities at various gas flow rates.
The results show that bubble movement is greatly influenced by the viscosity of the oil at low gas flow
rates. The type of phase entrainment and the jet height was changed when increasing the gas flow
rate. The stability of the water–oil interface was enhanced with increasing viscosity of the oil phase.

Keywords: bubble motion; interfacial phenomena; entrainment; moving path

1. Introduction

The gas-injection technique has been widely adopted in the pyrometallurgy smelting processes
of ferrous and nonferrous metals and in the recovery of secondary resources, as well as in chemical
engineering processes, such as extraction processes. All the above processes generally involve a
complex gas–liquid–liquid multiphase system in the vessel. The flow, mixing, transfer, and reaction
among the components of the multicomponent fluid play important roles in increasing smelting
efficiency and improving product quality. One phenomenon involves the gas bubbles crossing the
liquid–liquid interface. Experimentally investigating bubble motion and interfacial phenomena during
the blowing–smelting process at high temperatures is difficult [1–3], except in a few simple cases [4,5].
Most research on this subject has been carried out using cold-water model experiments, theoretical
analysis, and numerical simulation techniques.

Reiter et al. [6,7] studied the interaction between single bubbles and a liquid–liquid interface system.
The bubble motion at the interface (e.g., residence time and velocity), the interfacial phenomena (e.g.,
liquid “jet” and interfacial area), and the phase entrainment (e.g., number and size of droplets) were
measured using high-speed photography. Dietrich et al. [8] used the Particle Image Velocimetry (PIV)
technique to describe the flow fields around a bubble crossing the interface. Dayal [9] analyzed slag
specimens collected from the slag–metal interface in an industrial 65-ton ladle furnace and explained
the slag–metal interface phenomenon on the basis of cold-water experiment results. Kobyas [10]
established a model to explain iron droplet formation and behavior in slag when gas bubbles pass
through the molten iron–slag interface. Ueda [11] and Kochi [12] used a CFD model based on the
finite volume method to predict the flow field and the penetration stage when a bubble rises through
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a water–oil interface. Some other simulation methods, including smoothed particle hydrodynamics
(SPH) [13] and the multiphase particle method [14], have also been used to model gas bubbles passing
through liquid–liquid interfaces.

In the current study, we simulated a slag–metal system using a water–oil system under cold
experimental conditions and investigated the movement of bubbles and their behavior when they
passed at various flow rates through a water–oil interface. The effects of different oil viscosities on
bubble behavior were studied. We found that bubble movement is greatly influenced by the viscosity
of the oil at low gas flow rates, whereas the movement of bubbles is more complex at high flow rates.

2. Experimental

A cold-water model was established for investigating both bubble motion (e.g., the path of
movement, rising velocity, breakage, and coalescence) for a bubble crossing the liquid–liquid interface
and the variation of the interfacial phenomena with bubble motion. Water and silicone oil were selected
to investigate the liquid–liquid movement. Air was injected from a bottom nozzle to the lower phase
(water). The nozzle diameter was 2 mm. The vessel was 500 mm in length (L) and 100 mm in width (W).
The liquid height was 210 mm, and the height ratio between the water and silicone oil was 2:1. Silicone
oils with different viscosities (shown in Table 1) were used [15,16], and the water was colored red to
obtain a clear interface. The bubble and interface movements were recorded with a high-speed camera
(HiSpec 5). The gas dispersion process was recorded from the moment of injection and 500 frames per
second were captured until the flow field was stable for a duration of 30 s. The experimental system is
shown in Figure 1.

  

  

  

  

  

Gas 
High speed camera 

Lights 

W L 

H 

HS 

HW 

Figure 1. Experimental setup.

Table 1. Properties of the silicone oils used in the experiments.

No. Kinematic Viscosity, cSt Density, kg/m3 Interface Tension, mN/m

1 50 956 30.6
2 100 957 30.7
3 200 961 36.9
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3. Results and Discussions

3.1. Bubble Shape and Moving Path

Figure 2 shows the bubbles’ shape changing with the gas flow rate. At a low gas flow rate of
20–40 mL/min, the bubbles with diameters of 2–3 mm were spherical in shape. At an increased gas
flow rate of 60–500 mm, the shape of the injected bubbles changed to be ellipsoidal and the bubbles’
diameters were 3–5 mm. With a further increase of gas flow (1000–1500 mL/min), the bubbles became
mushroom-shaped and more irregular. The bubbles’ sizes were about 10–20 mm.

Figure 2. Bubble shape at different gas flow rate with oil phase viscosity of 50 cSt.

Figure 3 shows the bubble movement path and the interface fluctuation when it passed through
the water–oil interface. The gas formed spherical bubbles after being ejected through the nozzle, and
the shape of the bubbles subsequently changed from ellipsoidal or coronal during ascension because of
the difference in internal and external pressures. When a bubble was close to the water–oil interface, its
movement path deviated, resulting in a different ascending trajectory because of interface fluctuation
caused by the impact of previous bubbles. The velocity of a bubble decreased rapidly, and the bubble
surface pressure became uniform when it passed through the water–oil interface. It then ascended in a
spherical shape while driving the interface upward. In addition, when the bubble entered the oil phase
from the water, the surface of the bubble covered the water-phase liquid film, resulting in entrainment.

 

Phase entrainment Coronary bubble 

Spherical bubble 

Ellipsoid bubble 

Interface fluctuation 

 

 

Variation of bubble 
moving path 

Figure 3. Bubble shape, movement path, and interfluctuation.
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3.2. Bubble Residence Time at Liquid–Liquid Interface

Figure 4 shows that the heights to which the bubble rose varied with time when oil phases with
different viscosities were used. The difference in density and interfacial tension between the oil phases
is very small (Table 1). Parameters T1, T2, and T3 are the times for a bubble to cross the water–oil
interface. The interface is more easily broken when the oil has a low kinematic viscosity, thus, the
bubble would cross using a shorter route and in less time. With an increase in the oil kinematic
viscosity, the “elasticity” of the interface is enhanced, where bubbles should overcome the higher
viscous resistance to rising. The bubbles require more time to cross an oil phase with higher viscosity.

T

T

 

T

Z

 
Figure 4. Bubble rising heights at different times (Q = 50 mL/min).

3.3. Bubble Rising Velocity

Figure 5 shows the distribution of bubble velocity at different heights with a low gas flow rate Q =
50 mL/min. As a result of the low gas flow rate, bubbles formed with lower frequency, lower velocity,
and a smaller size after the gas was emitted from the nozzle. Thus, small bubbles interacted one by one
with the water–oil interface. This figure reveals that the velocity of bubbles increased linearly in the
water-phase (black points) and decreased when they began to pass through the interface (red points).
When a bubble left the surface, its velocity was minimum. It then entered the oil phase. However, the
velocity was lower in the oil phase than in the water-phase because of the high viscosity of the silicone
oil (blue points). In addition, region 2 became larger with increasing oil viscosity.

As shown in Figure 6, about five bubbles were tracked to measure the bubbles’ rising velocity.
The blue points show the bubbles with a decreasing velocity caused by interface interaction, the red
points show bubbles with a decreasing velocity caused by bubble breakage and the green points show
the bubbles with an increasing velocity caused by bubble aggregation. When the gas flow rate was
increased, the bubble flow was no longer one by one but rather continuous and even. The shape of the
interface, therefore, changed dramatically. Because of the instability of the bubble shape, fragmentation,
accumulation, and the influence of interface fluctuation, the change in large-bubble velocity can be
divided into four stages during the rising process. The bubble velocity varied with height. In region 1,
the bubbles’ velocity increased during the rising process. When the bubble moved to region 2, the
velocity of a bubble was reduced because the shape of the bubble changed during ascent. The shape
and velocity of the bubble affected each other, so the velocity changed periodically. In region 3, the
improvement in bubble shape caused the increasing of bubbles’ velocity. The velocity was hampered
by the fluctuation of the interface in region 4. As the viscosity increases, the difference in velocity
between the bubbles at the top and bottom becomes smaller and the location of bubble aggregation
becomes closer to the nozzle.
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Figure 5. Rising-bubble velocity distribution (Q = 50 mL/min).
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Figure 6. Rising-bubble velocity distribution (Q = 1000 mL/min).
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3.4. Liquid–Liquid Interface Distribution and Phase Entrainment

Entrainment occurs when a bubble enters a new phase. Entrainment occurs via four main
mechanisms, as shown in Figure 7:

(a) Firstly, as shown in Figure 7a, the micro water-phase entrainment in the oil phase was generated by
the interfacial fracture when a bubble crosses the interface at a low gas flow rate (Q < 50 mL/min).
The micro water-phase entrainment generated in this case was sensitively disturbed by the fluid
flow and dropped very slowly without gas injection. The micro water-phase entrainment is
difficult to separate from the oil phase layer. When increasing oil viscosity, the micro water-phase
entrainment will be intensified.

(b) The second mechanism of water-phase entrainment at the mesoscale was an oil film escaping
from the bubble surface, as shown in Figure 7b. This path was the main entrainment generation
method at gas flow rates of <100 mL/min. The size of the mesoscale entrainment increases when
increasing the gas flow rate and separates from the oil phase layer quickly without gas injection.

(c) As shown in Figure 7c, at large gas flow rates (100–500 mL/min), the unstable water/oil interface
generated would reach the top surface of the oil phase. Large-scale water-phase entrainment
occurred via breakage of the column interface. The large-scale entrainment in this case would
quickly drop to the water phase. Increasing the oil viscosity could strengthen the water/oil
interface, which is more difficult to break.

(d) The last mechanism was associated with higher gas flow rates (>1000 mL/min). The oil and water
mixed and penetrated each other with strong stirring of the gas phase, as shown in Figure 7d.
There was no clear water/oil interface. The mixed entrainment took a long time to separate.

(a) 

(c) 

(b) 

(d) 

Figure 7. Four mechanisms of liquid entrainment with an oil–oil viscosity of 50 cSt for (a) Q= 50 mL/min;
(b) Q = 100 mL/min; (c) Q = 250 mL/min and (d) Q = 4000 mL/min.

In summary, entrainment in the oil phase was mainly produced via mechanisms (a) microscale
entrainment, (b) mesoscale entrainment, (c) large-scale entrainment and (d) mixed entrainment with
an increased gas flow rate.
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3.5. Phase Distribution

Figure 8 showed the phase distribution of gas–water–oil at different viscosities and gas flow rates.
With an increased gas flow rate, the frequency with which bubbles impacted the interface also increased.
When the gas flow rate was increased to 500 mL/min, the bubble size increased, bubble breakage and
aggregation increased, and a stable cylindrical interface formed between these two phases. When the
gas flow rate was increased to 1500 mL/min, the cylindrical interface became unstable. When it was
increased to 4000 mL/min, the interface disappeared, and the two phases were completely mixed. At
the same gas flow rate, with an increased oil viscosity, the interface was more stable and fluctuated
less; similarly, less water entrainment occurred (50–100 mL/min), the bubble column became more
narrow and stable (500–1500 mL/min), and the two phases mixed less thoroughly (4000 mL/min).

50 cSt                 100 cSt        200 cSt  

500  
mL/min 

 
 
 
 
 
 

1500 
mL/min 

 
 
 
 
 
 

4000 
mL/min 

Figure 8. Gas–liquid–liquid distribution with different gas flow rates and different silicone oil viscosities.

The height of the water–oil interface changed as the bubble crossed the water–oil interface and
was defined as the difference between the height of static water–oil interface and the interface height
when bubbles had just separated from the water–oil interface. The jet height, h, could be measured
from the high-speed images shown in Figure 9.
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Jet height

Figure 9. Measuring method of water–oil interface jet height.

Figure 10 shows the jet height of the water–oil interface caused by rising bubbles. The interface
was impinged with continuous single bubbles when the gas flow rate was less than Q1, Q2, and Q3

for different oils. When the gas flow rate was increased beyond Qi, the aggregation between bubbles
was improved, thus, the impingement was changed by multiple bubbles and the jet height was also
substantially increased. The stability of the water–oil interface was enhanced, and the Qi was also
increased with increasing viscosity of the oil phase.

Figure 10. Jet height with different gas flow rates.
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When the gas flow rate was less than Qi, the jet height and gas flow rate showed a certain linear
relationship and the slope approximated to 0.01. The intercept, b, was related to viscosity and decreased
with an increase in oil phase viscosity. When the gas flow rate was greater than Qi, the jet height
increased exponentially with an increase in gas flow rate. The exponential factor approximated to 0.01
and the coefficient K changed slightly with the increase in oil phase viscosity. The relationship between
h and Q could be approximately expressed as follows:

{
h ≈ 0.01Q + b
h ≈ K(Q−Qi)

0.6
(Q < Qi)

(Q > Qi)

4. Conclusions

Through observation of the phenomenon of bubbles crossing the water–air interface under
cold-water model conditions, we deduced the following:

(1). The second phase (oil phase) can reduce the rise rate of a bubble as it passes through the
liquid–liquid interface. The greater the viscosity, the more time required for a bubble to pass
through the interface.

(2). The bubble rise rate decreases sharply as it crosses the interface because it must overcome
interfacial tension and viscous drag during this process. Therefore, when the atmospheric amount
is used, the bubble is mainly affected by the “liquid column” and deformation during ascension.
The velocity distribution is M-shaped at this time.

(3). Phase entrainment can occur via four mechanisms, and increasing the viscosity of the second
phase (oil phase) can suppress the generation of the fine entrained phase.
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Abstract: High-strength tire cord steel is mainly used in radial ply tires, but the presence of brittle Ti
inclusions can cause failure of the wires and jeopardize their performance in production. In order
to control the titanium content during steel production, a thermodynamic model for predicting the
titanium distribution ratio between CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags during the ladle
furnace (LF) refining process at 1853 K has been established based on the ion–molecule coexistence
theory (IMCT), combined with industrial measurements, and the effect of basicity on the titanium
distribution ratio was discussed. The results showed that the titanium distribution ratio predicted
by the developed IMCT exhibited a dependable agreement with the measurements, and the optical
basicity is suggested to reflect the correlation between basicity and the titanium distribution ratio.
Furthermore, quantitative titanium distribution ratios of TiO2, CaO·TiO2, MgO·TiO2, FeO·TiO2,
and MnO·TiO2 were acquired by the IMCT model, respectively. Calculation results revealed that the
structural unit CaO plays a pivotal role in the slags in the de-titanium process.

Keywords: titanium distribution ratio; thermodynamic model; ion–molecule coexistence theory;
LF refining slags

1. Introduction

Titanium is a common microalloy addition to steels. It can be used to inhibit grain growth, reduce
the incidence of transverse cracking in niobium-containing steels production, stabilize the alloy against
sensitization to intergranular corrosion, and improve the service performance [1–4]. However, a low
titanium content is demanded for special kinds of steel production, such as in high-strength tire cord
steel, to enhance drawing and twisting performances.

As a product with superior quality to wire rods, tire cord steel is mainly used in radial ply tires.
Before it is made, the steel wire is drawn from 5.5 mm to 0.15 mm in diameter and subjected to
cyclic stress in the drawing and twisting process. Therefore, breakage of steel wire during fabrication
is a crucial issue. This filament break is especially sensitive with the existence of angular and
non-deformable Ti inclusions, such as titanium nitride (TiN) or titanium carbonitride (Ti(CN)) [5–9].
This causes a decrease in fatigue performance and can seriously affect traffic safety.

Therefore, the issue of the control of titanium content has received considerable critical attention.
To control the titanium content during steel production, it is essential to study the titanium distribution
ratio between steel and slag. To date, there has been limited theoretical and experimental studies
implemented on the titanium distribution behavior in slags; acquiring relevant parameters at
elevated temperatures between steel and slag is arduous and costly. It is quite essential to establish
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a thermodynamic model for calculating the titanium distribution ratio between steel and slag.
The ion–molecule coexistence theory (IMCT) has been efficaciously applied to describe phosphate
capacity, manganese distribution, sulfide capacity, and so on, as shown in Table 1 [10–23]. In the IMCT,
the defined mass action–concentration (MAC) is consistent with the classical concept of activity in
the slag.

Table 1. Applications of the ion–molecule coexistence theory (IMCT) model during ironmaking and
steelmaking processes.

Slag Systems Applications Ref.

CaO–SiO2–FeO–MgO–MnO–Al2O3

A thermodynamic model for predicting the manganese distribution ratio and
manganese capacity of the slags was developed based on the IMCT. The established
model was successfully applied to not only manganese equilibrium experiments but
also industrial production.

[10]

CaO–SiO2–MgO–FeO–MnO–
Al2O3–TiO2–CaF2

A thermodynamic model for calculating the manganese distribution ratio between the
slags and carbon saturated liquid iron was built based on the IMCT. The predicted
manganese distribution ratio by IMCT had a good linear relationship with
measurements expect individual points.

[11]

CaO–SiO2–MgO–FeO–Fe2O3–
Al2O3–P2O5

A thermodynamic model for predicting the phosphorus distribution ratio of the slags
was developed based on the IMCT. The developed model was successfully applied to
not only phosphorus equilibrium experiments, but also industrial production in
Hismelt smelting reduction vessels.

[12]

CaO-based Slags

A thermodynamic model for predicting phosphorus partition between CaO-based
slags during hot metal dephosphorization pretreatment was established based on the
IMCT. The established model was verified as effective through comparing with
measured results and predicted ones by other models.

[13]

CaO–SiO2–MgO–FeO–Fe2O3–
MnO–Al2O3–P2O5

A thermodynamic model for calculating the phosphorus distribution ratio between
steelmaking slags and molten steel was built based on the IMCT. The built IMCT
prediction model was verified with measured and some other reported models.

[14]

CaO–FeO–Fe2O3–Al2O3–P2O5

Thermodynamic models for predicting the phosphorus distribution ratio and
phosphorus capacity of the slags during refining were developed based on the IMCT.
The developed models were verified with experimental results and reported models.

[15]

CaO–SiO2–FeO–Fe2O3–P2O5
Defined enrichment possibility and enrichment degree of solid solutions containing
P2O5 from the developed IMCT model were verified from experimental results. [16]

CaO-based Slags

Coupling relationships between dephosphorization and desulfurization abilities or
potentials for CaO-based slags during the refining process of molten steel were
proposed based on the IMCT. The proposed model was verified as effective and
feasible through investigating the effect of slag composition.

[17]

CaO–SiO2–MgO–Al2O3

A sulfide capacity prediction model of the slags was developed based on the IMCT.
The developed model had a higher accuracy than other reported sulfide capacity
prediction models.

[18]

CaO–SiO2–MgO–FeO–MnO–Al2O3

A thermodynamic model for calculating the sulfur distribution ratio between ladle
furnace (LF) refining slags and molten steel was established based on the IMCT.
The model was verified with the measured and the calculated sulfur distribution ratio
by Young’s model and the KTH model in LF refining.

[19]

CaO–SiO2–MgO–FeO–MnO–Al2O3

A sulfide capacity prediction model of the LF refining slags was built based on the
IMCT. The built sulfide capacity prediction model was verified with the measured and
calculated by Young’s model and the KTH model in LF refining.

[20]

CaO–FeO–Fe2O3–Al2O3–P2O5

A thermodynamic model for predicting the sulfide capacity of the slags at various
oxygen potentials was developed based on the IMCT. The built model was verified
through comparing the determined sulfide capacity, and could be applied to precisely
predict sulfide capacity.

[21]

CaO–FeO–Fe2O3–Al2O3–P2O5

A thermodynamic model for predicting the sulfur distribution ratio between the slags
and liquid iron was built based on the IMCT. The developed model was verified with
measured data of sulfur distribution equilibrium from the literatures.

[22]

CaO–SiO2–MgO–FeO–Fe2O3–
MnO–Al2O3–P2O5

The defined oxidation ability of metallurgical slags based on the IMCT was verified by
comparisons with the reported activity in the selected FetO-containing slag systems. [23]

To improve the application domain of IMCT, in this paper, a titanium distribution ratio model of
CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags was built based on the IMCT, combined with industrial
measurements. From the results, the titanium distribution behavior during ladle furnace (LF) refining
in high-strength tire cord steel production is further revealed.
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2. Materials and Methods

2.1. Production Procedure and Materials

The following process was adopted for the production of high-strength tire cord steel in Baosteel
(Wuhan Branch): basic oxygen furnace (BOF) → tapping → ladle furnace (LF) → soft blowing →
continuous casting (CC) → rolling. Figure 1 shows a schematic diagram of the production process.

 
Figure 1. Production process of high-strength tire cord steel.

Both the liquid steel and balanced slag were sampled at the end point of the LF refining process at
about 1853 K. The orthonormal chemical components of molten steel and slags for 16 heats are given
in Table 2.

Table 2. Chemical components of liquid steel and slags at the end point of LF refining (wt %).

Slag Composition Metal Composition

CaO SiO2 Al2O3 MgO FeO MnO TiO2 C Si Mn Ti

39.19 40.50 7.97 8.47 1.36 2.17 0.34 0.81 0.20 0.47 0.0008
38.56 40.95 7.73 8.89 1.27 2.28 0.31 0.80 0.19 0.48 0.0008
35.19 43.10 6.82 10.79 1.41 2.52 0.18 0.83 0.18 0.46 0.0006
34.70 42.92 6.46 10.97 1.81 2.95 0.19 0.80 0.20 0.46 0.0007
39.47 41.52 7.19 8.17 1.61 1.78 0.25 0.80 0.20 0.45 0.0006
37.08 45.82 3.78 8.10 1.61 3.40 0.20 0.82 0.20 0.46 0.0007
34.28 45.19 6.07 11.09 1.36 1.69 0.33 0.82 0.19 0.47 0.0012
36.11 44.54 4.79 9.12 1.73 3.49 0.22 0.81 0.18 0.46 0.0008
40.04 39.73 8.87 8.38 1.28 1.38 0.32 0.82 0.18 0.48 0.0007
33.25 45.28 7.74 10.12 1.62 1.71 0.27 0.80 0.19 0.47 0.0012
34.52 47.74 3.52 10.72 1.11 2.14 0.25 0.81 0.19 0.46 0.0010
37.23 43.69 6.48 9.12 1.34 1.86 0.28 0.82 0.20 0.47 0.0008
42.90 43.04 5.46 5.98 1.00 1.29 0.33 0.80 0.18 0.45 0.0007
36.52 46.23 4.75 8.65 1.14 2.44 0.26 0.83 0.20 0.46 0.0009
34.51 46.01 5.54 10.61 0.94 2.14 0.24 0.80 0.19 0.46 0.0009
31.73 45.69 6.82 9.78 1.08 4.70 0.21 0.81 0.20 0.48 0.0010

2.2. Establishment of the IMCT Model

Based on the assumptions inherent in the IMCT, the dominant features of the IMCT model for the
activities of the structural units in the slag can be summarized briefly as follows:

(1) The constitutional units in the slag consist of simple ions, ordinary molecules, and complicated
molecules;

(2) Complex molecules are generated by the reactions of bonded ion couples and simple molecules
under kinetic equilibrium;

(3) The activity of each constituent in the slag equals the MAC of the structural unit at the
steelmaking temperature;

(4) The chemical reactions comply with the law of mass conservation.

The calculations were based on actual production involving CaO–SiO2–Al2O3–MgO–FeO–
MnO–TiO2 slag systems. The initial numbers of moles for each composition in 100 g of CaO–SiO2–
Al2O3–MgO–FeO–MnO–TiO2 slag were a = n0

CaO, b = n0
SiO2

, c = n0
Al2O3

, d = n0
MgO, e = n0

FeO, f = n0
MnO,
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and g = n0
TiO2

, respectively. The balanced mole number of each constituent unit in the slag was defined
as ni, and Ni denotes the MAC of each constitutional unit. The MAC is equivalent to the classical
definition of activity based on the IMCT and can be acquired as

Ni =
ni∑

ni
(1)

where
∑

ni is the total mole number of each constitutional unit in equilibrium.
According to the IMCT, at 1853 K, the slag system contains five simple ions (Ca2+, Fe2+, Mg2+,

Mn2+, and O2−) and three ordinary molecules (Al2O3, SiO2, and TiO2). Based on the reported phase
diagrams, 44 types of complex molecules can be generated at the steelmaking temperature [24,25].
The abovementioned structural units and their parameters are listed in Table 3.

Table 3. Parameters of structural units in the slag system at 1853 K.

Items Constitutional Units Balanced Mole Number MACs

Simple cations and
anions

Ca2+ + O2− n1 = nCa2+ = nO2− = nCaO N1 = 2n1∑
ni

= NCaO

Mg2+ + O2− n4 = nMg2+ = nO2− = nMgO N4 = 2n4∑
ni

= NMgO

Fe2+ + O2− n5 = nFe2+ = nO2− = nFeO N5 = 2n5∑
ni

= NFeO

Mn2+ + O2− n6 = nMn2+ = nO2− = nMnO N6 = 2n6∑
ni

= NMnO

Simple molecules
SiO2 n2 = nSiO2 N2 = n2∑

ni
= NSiO2

Al2O3 n3 = nAl2O3 N3 = n3∑
ni

= NAl2O3

TiO2 n7 = nTiO2 N7 = n7∑
ni

= NTiO2

Complex molecules

CaO·SiO2 n8 = nCaO·SiO2 N8 = n8∑
ni

= NCaO·SiO2

3CaO·2SiO2 n9 = n3CaO·2SiO2 N9 = n9∑
ni

= N3CaO·2SiO2

2CaO·SiO2 n10 = n2CaO·SiO2 N10 = n10∑
ni

= N2CaO·SiO2

3CaO·SiO2 n11 = n3CaO·SiO2 N11 = n11∑
ni

= N3CaO·SiO2

3CaO·Al2O3 n12 = n3CaO·Al2O3 N12 = n12∑
ni

= N3CaO·Al2O3

12CaO·7Al2O3 n13 = n12CaO·7Al2O3 N13 = n13∑
ni

= N12CaO·7Al2O3

CaO·Al2O3 n14 = nCaO·Al2O3 N14 = n14∑
ni

= NCaO·Al2O3

CaO·2Al2O3 n15 = nCaO·2Al2O3 N15 = n15∑
ni

= NCaO·2Al2O3

CaO·6Al2O3 n16 = nCaO·6Al2O3 N16 = n16∑
ni

= NCaO·6Al2O3

CaO·TiO2 n17 = nCaO·TiO2 N17 = n17∑
ni

= NCaO·TiO2

3CaO·2TiO2 n18 = n3CaO·2TiO2 N18 = n18∑
ni

= N3CaO·2TiO2

4CaO·3TiO2 n19 = n4CaO·3TiO2 N19 = n19∑
ni

= N4CaO·3TiO2

3Al2O3·2SiO2 n20 = n3Al2O3·2SiO2 N20 = n20∑
ni

= N3Al2O3·2SiO2

Al2O3·TiO2 n21 = nAl2O3·TiO2 N21 = n21∑
ni

= NAl2O3·TiO2

2MgO·SiO2 n22 = n2MgO·SiO2 N22 = n22∑
ni

= N2MgO·SiO2

MgO·SiO2 n23 = nMgO·SiO2 N23 = n23∑
ni

= NMgO·SiO2

MgO·Al2O3 n24 = nMgO·Al2O3 N24 = n24∑
ni

= NMgO·Al2O3

MgO·TiO2 n25 = nMgO·TiO2 N25 = n25∑
ni

= NMgO·TiO2

2MgO·TiO2 n26 = n2MgO·TiO2 N26 = n26∑
ni

= N2MgO·TiO2

MgO·2TiO2 n27 = nMgO·2TiO2 N27 = n27∑
ni

= NMgO·2TiO2

2FeO·SiO2 n28 = n2FeO·SiO2 N28 = n28∑
ni

= N2FeO·SiO2

FeO·Al2O3 n29 = nFeO·Al2O3 N29 = n29∑
ni

= NFeO·Al2O3

FeO·TiO2 n30 = nFeO·TiO2 N30 = n30∑
ni

= NFeO·TiO2

2FeO·TiO2 n31 = n2FeO·TiO2 N31 = n31∑
ni

= N2FeO·TiO2

MnO·SiO2 n32 = nMnO·SiO2 N32 = n32∑
ni

= NMnO·SiO2

2MnO·SiO2 n33 = n2MnO·SiO2 N33 = n33∑
ni

= N2MnO·SiO2

MnO·Al2O3 n34 = nMnO·Al2O3 N34 = n34∑
ni

= NMnO·Al2O3

MnO·TiO2 n35 = nMnO·TiO2 N35 = n35∑
ni

= NMnO·TiO2

2MnO·TiO2 n36 = n2MnO·TiO2 N36 = n36∑
ni

= N2MnO·TiO2

2CaO·Al2O3·SiO2 n37 = n2CaO·Al2O3·SiO2 N37 = n37∑
ni

= N2CaO·Al2O3·SiO2

CaO·Al2O3·2SiO2 n38 = nCaO·Al2O3·2SiO2 N38 = n38∑
ni

= NCaO·Al2O3·2SiO2

2CaO·MgO·2SiO2 n39 = n2CaO·MgO·2SiO2 N39 = n39∑
ni

= N2CaO·MgO·2SiO2

3CaO·MgO·2SiO2 n40 = n3CaO·MgO·2SiO2 N40 = n40∑
ni

= N3CaO·MgO·2SiO2

CaO·MgO·SiO2 n41 = nCaO·MgO·SiO2 N41 = n41∑
ni

= NCaO·MgO·SiO2

CaO·MgO·2SiO2 n42 = nCaO·MgO·2SiO2 N42 = n42∑
ni

= NCaO·MgO·2SiO2

2MgO·2Al2O3·5SiO2 n43 = n2MgO·2Al2O3·5SiO2 N43 = n43∑
ni

= N2MgO·2Al2O3·5SiO2

CaO·TiO2·SiO2 n44 = nCaO·TiO2·SiO2 N44 = n44∑
ni

= NCaO·TiO2·SiO2
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The MACs for all the complex molecules can be determined using the reaction equilibrium
constants Ki, N1(NCaO), N2

(
NSiO2

)
, N3

(
NAl2O3

)
, N4

(
NMgO

)
, N5(NFeO), N6(NMnO), and N7

(
NTiO2

)
,

which are listed in Table 4.

Table 4. Reaction formulas, Gibbs free energies, and mass action–concentrations (MACs) [26–32].

Reaction Formulas ΔGθ/(J·mol−1) MACs(
Ca2+ + O2−)+ (SiO2) = (CaO·SiO2) ΔGθ = −21757− 36.819T N8 = K1N1N2

3
(
Ca2+ + O2−)+ 2(SiO2) = (3CaO·2SiO2) ΔGθ = −236972.9 + 9.6296T N9 = K2N3

1N2
2

2
(
Ca2+ + O2−)+ (SiO2) = (2CaO·SiO2) ΔGθ = −102090− 24.267T N10 = K3N2

1N2

3
(
Ca2+ + O2−)+ (SiO2) = (3CaO·SiO2) ΔGθ = −118826− 6.694T N11 = K4N3

1N2

3
(
Ca2+ + O2−)+ (Al2O3) = (3CaO·Al2O3) ΔGθ = −21757− 29.288T N12 = K5N3

1N3

12
(
Ca2+ + O2−)+ 7(Al2O3) = (12CaO·7Al2O3) ΔGθ = 617977− 612.119T N13 = K6N12

1 N7
3(

Ca2+ + O2−)+ (Al2O3) = (CaO·Al2O3) ΔGθ = 59413− 59.413T N14 = K7N1N3(
Ca2+ + O2−)+ 2(Al2O3) = (CaO·2Al2O3) ΔGθ = −16736− 25.522T N15 = K8N1N2

3(
Ca2+ + O2−)+ 6(Al2O3) = (CaO·6Al2O3) ΔGθ = −22594− 31.798T N16 = K9N1N6

3(
Ca2+ + O2−)+ (TiO2) = (CaO·TiO2) ΔGθ = −79900− 3.35T N17 = K10N1N7

3
(
Ca2+ + O2−)+ 2(TiO2) = (3CaO·2TiO2) ΔGθ = −207100− 11.51T N18 = K11N3

1N2
7

4
(
Ca2+ + O2−)+ 3(TiO2) = (4CaO·3TiO2) ΔGθ = −293301− 18.446T N19 = K12N4

1N3
7

3(Al2O3) + 2(SiO2) = (3Al2O3·2SiO2) ΔGθ = −4351− 10.46T N20 = K13N2
2N3

3
(Al2O3) + (TiO2) = (Al2O3·TiO2) ΔGθ = −5439− 8.351T N21 = K14N3N7

2
(
Mg2+ + O2−)+ (SiO2) = (2MgO·SiO2) ΔGθ = −56902− 3.347T N22 = K15N2N2

4(
Mg2+ + O2−)+ (SiO2) = (MgO·SiO2) ΔGθ = 23849− 29.706T N23 = K16N2N4(
Mg2+ + O2−)+ (Al2O3) = (MgO·Al2O3) ΔGθ = −18828− 6.276T N24 = K17N3N4(
Mg2+ + O2−)+ (TiO2) = (MgO·TiO2) ΔGθ = −25104 + 2.804T N25 = K18N4N7

2
(
Mg2+ + O2−)+ (TiO2) = (2MgO·TiO2) ΔGθ = −17154− 10.878T N26 = K19N2

4N7(
Mg2+ + O2−)+ 2(TiO2) = (MgO·2TiO2) ΔGθ = −18619− 7.99T N27 = K20N4N2

7
2
(
Fe2+ + O2−)+ (SiO2) = (2FeO·SiO2) ΔGθ = −9395− 0.227T N28 = K21N2N2

5(
Fe2+ + O2−)+ (Al2O3) = (FeO·Al2O3) ΔGθ = −59204 + 22.343T N29 = K22N3N5(
Fe2+ + O2−)+ (TiO2) = (FeO·TiO2) ΔGθ = 27293.76− 26.25T N30 = K23N5N7

2
(
Fe2+ + O2−)+ (TiO2) = (2FeO·TiO2) ΔGθ = −33913.08 + 5.86T N31 = K24N2

5N7(
Mn2+ + O2−)+ (SiO2) = (MnO·SiO2) ΔGθ = 38911− 40.041T N32 = K25N2N6

2
(
Mn2+ + O2−)+ (SiO2) = (2MnO·SiO2) ΔGθ = 36066− 30.669T N33 = K26N2N2

6(
Mn2+ + O2−)+ (Al2O3) = (MnO·Al2O3) ΔGθ = −45116 + 11.81T N34 = K27N3N6(
Mn2+ + O2−)+ (TiO2) = (MnO·TiO2) ΔGθ = −24662 + 1.254T N35 = K28N6N7

2
(
Mn2+ + O2−)+ (TiO2) = (2MnO·TiO2) ΔGθ = −37620− 1.672T N36 = K29N2

6N7

2
(
Ca2+ + O2−)+ (Al2O3) + (SiO2) = (2CaO·Al2O3·SiO2) ΔGθ = −116315− 38.911T N37 = K30N2

1N2N3(
Ca2+ + O2−)+ (Al2O3) + 2(SiO2) = (CaO·Al2O3·2SiO2) ΔGθ = −4148− 73.638T N38 = K31N1N2

2N3

2
(
Ca2+ + O2−)+ (

Mg2+ + O2−)+ 2(SiO2) = (2CaO·MgO·2SiO2) ΔGθ = −73638− 63.597T N39 = K32N2
1N2

2N4

3
(
Ca2+ + O2−)+ (

Mg2+ + O2−)+ 2(SiO2) = (3CaO·MgO·2SiO2) ΔGθ = −205016− 31.798T N40 = K33N3
1N2

2N4(
Ca2+ + O2−)+ (

Mg2+ + O2−)+ (SiO2) = (CaO·MgO·SiO2) ΔGθ = −124683 + 3.766T N41 = K34N1N2N4(
Ca2+ + O2−)+ (

Mg2+ + O2−)+ 2(SiO2) = (CaO·MgO·2SiO2) ΔGθ = −80333− 51.882T N42 = K35N1N2
2N4

2
(
Mg2+ + O2−)+ 2(Al2O3) + 5(SiO2) = (2MgO·2Al2O3·5SiO2) ΔGθ = −14422− 14.808T N43 = K36N5

2N2
3N2

4(
Ca2+ + O2−)+ (TiO2) + (SiO2) = (CaO·TiO2·SiO2) ΔGθ = −122591.2 + 10.88T N44 = K37N1N2N7

The mass conservation equations for the CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slag balanced
with bulk steel can be built based on the definitions of ni and Ni for each structural unit as

a =
∑

ni

(
0.5N1 + N8 + 3N9 + 2N10 + 3N11 + 3N12 + 12N13 + N14 + N15 + N16+

N17 + 3N18 + 4N19 + 2N37 + N38 + 2N39 + 3N40 + N41 + N42 + N44

)
(2)

b =
∑

ni

(
N2 + N8 + 2N9 + N10 + N11 + 2N20 + N22 + N23 + N28 + N32+

N33 + N37 + 2N38 + 2N39 + 2N40 + N41 + 2N42 + 5N43 + N44

)
(3)

c =
∑

ni

(
N3 + N12 + 7N13 + N14 + 2N15 + 6N16 + 3N20+

N21 + N24 + N29 + N34 + N37 + N38 + 2N43

)
(4)
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d =
∑

ni

(
0.5N4 + 2N22 + N23 + N24 + N25 + 2N26+

N27 + N39 + N40 + N41 + N42 + 2N43

)
(5)

e =
∑

ni(0.5N5 + 2N28 + N29 + N30 + 2N31) (6)

f =
∑

ni(0.5N6 + N32 + 2N33 + N34 + N35 + 2N36) (7)

and

g =
∑

ni

(
N7 + N17 + 2N18 + 3N19 + N21 + N25 + N26+

2N27 + N30 + N31 + N35 + N36 + N44

)
(8)

Based on the theory that the total MAC of each constitutional unit in CaO–SiO2–Al2O3–
MgO–FeO–MnO–TiO2 slag with a fixed amount is equal to unity, Equation (9) can be derived as

44∑
i=1

Ni = 1 (9)

Equations (2)–(9) represent the MAC calculation model for each constitutional unit in
CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slag systems. The activity of each constituent in the slag at
the refining temperature can then be obtained.

Based on the IMCT, the simple molecule TiO2 in the refining slags can be combined with ordinary
molecules—such as CaO, Al2O3, MgO, FeO, MnO, and CaO+SiO2—to form 13 stable de-titanium
products as TiO2, CaO·TiO2, 3CaO·2TiO2, 4CaO·3TiO2, Al2O3·TiO2, MgO·TiO2, 2MgO·TiO2, MgO·2TiO2,
FeO·TiO2, 2FeO·TiO2, MnO·TiO2, 2MnO·TiO2, and CaO·TiO2·SiO2, respectively. According to the
reported expression of the manganese distribution ratio [10,11], the titanium distribution calculation
model can be described as

LTi =
(%TiO2)
[%Ti] = LTi,TiO2 + LTi,CaO·TiO2 + LTi,3CaO·2TiO2 + LTi,4CaO·3TiO2 + LTi,Al2O3·TiO2

+LTi,MgO·TiO2 + LTi,2MgO·TiO2 + LTi,MgO·2TiO2 + LTi,FeO·TiO2

+LTi,2FeO·TiO2 + LTi,MnO·TiO2 + LTi,2MnO·TiO2 + LTi,CaO·TiO2·SiO2

= MTiO2 ·
∑

ni(NTiO2 + NCaO·TiO2 + 2N3CaO·2TiO2 + 3N4CaO·3TiO2

+NAl2O3·TiO2 + NMgO·TiO2 + N2MgO·TiO2 + 2NMgO·2TiO2 + NFeO·TiO2

+N2FeO·TiO2 + NMnO·TiO2 + N2MnO·TiO2 + NCaO·TiO2·SiO2)/[%Ti]

(10)

where LTi is the total titanium distribution ratio; LTi,i represents the respective titanium distribution
ratio of structure unit i containing TiO2; Ni stands for the MAC of structure unit i;

∑
ni denotes the

sum of mole numbers for each structure unit in equilibrium (mol); and MTiO2 is the molar mass of TiO2

(g/mol). Based on the IMCT model, the total titanium distribution ratio can then be acquired.
According to the calculation results of the IMCT model, the MACs of 3CaO·2TiO2, 4CaO·3TiO2,

Al2O3·TiO2, 2MgO·TiO2, MgO·2TiO2, 2FeO·TiO2, 2MnO·TiO2, and CaO·TiO2·SiO2 were lower than
10−5. Therefore, their changes were ignored in the following discussion. In this case, Equation (10) can
be simplified as

LTi =
(%TiO2)

[%Ti]
= LTi,TiO2 + LTi,CaO·TiO2 + LTi,MgO·TiO2 + LTi,FeO·TiO2 + LTi,MnO·TiO2

= MTiO2 ·
∑

ni
(
NTiO2 + NCaO·TiO2 + NMgO·TiO2 + NFeO·TiO2 + NMnO·TiO2

)
[%Ti]

(11)
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3. Results and Discussion

3.1. Comparison of Predicted and Measured Titanium Distribution Ratios

Comparisons between the calculated titanium distribution ratio LTi,cal based on the IMCT and the
measured LTi,mea for CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags balanced with liquid steel at 1853 K
in the LF process are expounded in Figure 2. It reveals that the titanium distribution ratio predicted by
the developed IMCT model exhibited a dependable agreement with the industrially measured results.
Moreover, the predicted LTi,cal values were all higher than the measured LTi,mea, which was due to
the fact that the calculated values were acquired in an ideal equilibrium state, while during actual
industrial production, the slag-metal reaction was in a local equilibrium or quasi-equilibrium state.

 
Figure 2. Comparisons between measured and calculated titanium distribution ratios for
CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags.

To verify the accuracy of the IMCT model, the mean deviations (Δ) of predictions by the IMCT
model can be calculated as

Δ =
1
Z

Z∑
n=1

∣∣∣∣∣∣ log LTi,mea − log LTi,cal

log LTi,mea

∣∣∣∣∣∣× 100% = 6.29% < 6.3% (12)

where LTi,cal and LTi,mea are the calculated and measured titanium distribution ratios, respectively;
and Z denotes the number of measured data. The mean deviation was lower than 6.3%, indicating
that the titanium distribution ratio model can responsibly predict the maximum de-titanium potential
of CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags balanced with liquid steel at 1853 K in LF refining,
and it can provide guidance for the design of a refining slag system.

3.2. Influence of Basicity on the Titanium Distribution Ratio

The relation between LTi,cal or LTi,mea and binary basicity ((%CaO)/(%SiO2)), complex basicity
((%CaO) + 1.4(%MgO))/((%SiO2) + (%Al2O3)), or optical basicity Λ (Λ =

∑
xi·λi, where xi is the

mole fraction of a component, and λi is the optical basicity of a component in slag) obtained by
using Pauling electronegativity [33] are depicted in Figures 3–5 (where R is the linear correlation
coefficient), respectively. It is evident that (1) the relationship between log LTi,cal by the IMCT model or
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log LTi,mea and optical basicity had a better dependence than that with the binary or complex basicity of
CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags and (2) raising the basicity can give rise to a distinctly
increasing titanium distribution ratio. Linear fit results indicated that the optical basicity could better
reflect the structure of the slags, and it is suggested to reflect the correlation between the titanium
distribution ratio and basicity of the slags. The reasons for the different linear fits of these models is
attributed to the different definitions of basicity. As for optical basicity, all the components in the slag
are taken into account, which can reflect the whole features of the slag, while for binary basicity or
complex basicity, the de-titanium contributions of other components were ignored.

  

Figure 3. Correlation between binary basicity and titanium distribution ratio: (a) calculated by IMCT;
(b) industrial measurements.

  

Figure 4. Correlation between complex basicity and titanium distribution ratio: (a) calculated by IMCT;
(b) industrial measurements.
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Figure 5. Correlation between optical basicity and titanium distribution ratio: (a) calculated by IMCT;
(b) industrial measurements.

3.3. Contribution Ratio of the Respective Titanium Distribution Ratio Based on the IMCT

In addition to the total titanium distribution ratio of LF refining slags predicted by the established
IMCT model, the respective titanium distribution ratio in the present slag system also can be determined.
In order to expound the titanium distribution behavior in the LF process, the respective titanium
distribution ratios of TiO2, CaO·TiO2, MgO·TiO2, FeO·TiO2, and MnO·TiO2 in the slags can be acquired
by the built IMCT model, respectively, and correlations between the quantitative titanium distribution
ratio LTi,i,cal of the five structural units and the LTi,cal is described in Figure 6. It is evident that LTi,i,cal

had a nice linear relationship with LTi,cal, and the respective contribution rates of the structural units
containing TiO2 to total titanium distribution ratios in the slags can be defined by the fitted line gradient.

Figure 6. Correlation between the respective titanium distribution ratio and the total titanium
distribution ratio of the slags, the solid line of color red, black, blue, magenta, and cyan represent the
contribution ratio of CaO·TiO2, TiO2, FeO·TiO2, MgO·TiO2, and MnO·TiO2, respectively.

The regression relationships between LTi,i,cal and LTi,cal for de-titanium products in the slags are
listed in Table 5. Table 5 shows that the contribution rates of the five structural units to the predicted
LTi,cal by the IMCT model were approximately 9.97%, 84.96%, 2.03%, 2.65%, and 0.39%, respectively.
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It can be concluded from the acquired industrial results that the constitutional unit CaO plays a pivotal
role in CaO–SiO2–Al2O3–MgO–FeO–MnO–TiO2 slags in the de-titanium process.

Table 5. Linear regression expression of LTi,i,cal against LTi,cal for the structural units containing TiO2

and their average contribution rates to LTi,cal based on IMCT.

Constitutional Units Expression of LTi,i,cal against LTi,cal Average Contribution Rate/%

TiO2 LTi,TiO2,cal = 55.5334 + 0.0997LTi,cal 9.97
CaO·TiO2 LTi,CaO·TiO2,cal = −90.7440 + 0.8496LTi,cal 84.96
MgO·TiO2 LTi,MgO·TiO2,cal = 7.3030 + 0.0203LTi,cal 2.03
FeO·TiO2 LTi,FeO·TiO2,cal = 13.2733 + 0.0265LTi,cal 2.65
MnO·TiO2 LTi,MnO·TiO2,cal = 14.6340 + 0.0039LTi,cal 0.39

4. Conclusions

A thermodynamic calculation model for the titanium distribution ratio of CaO–SiO2–Al2O3–
MgO–FeO–MnO–TiO2 slags in the LF process at 1853 K has been established based on the IMCT.
The built IMCT model has been tested against industrial measurements. The key findings can be
drawn as follows:

(1) The established IMCT model for calculating the titanium distribution ratio exhibited a dependable
agreement with the measurements, and the model can be responsibly applied to predict the
maximum de-titanium potential in the LF process at metallurgical temperatures.

(2) The titanium distribution ratio will increase with the rise of basicity, and the optical basicity is
suggested to describe the correlation between basicity and de-titanium ability of the slag. Higher
optical basicity is in favor of the de-titanium process.

(3) The respective titanium distribution ratios of structural units containing TiO2 can be acquired
by the built IMCT model. The contribution rates of TiO2, CaO·TiO2, MgO·TiO2, FeO·TiO2,
and MnO·TiO2 to total de-titanium potential were approximately 9.97%, 84.96%, 2.03%, 2.65%,
and 0.39%, respectively, revealing that the structural unit CaO plays a pivotal role in the slags in
the de-titanium process.
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Abstract: Steelmaking involves high-temperature processing. At high temperatures mass transport is
usually the rate limiting step. In steelmaking there are several mass transport phenomena occurring
simultaneously such as melting and dissolution of additions, decarburization, refining (De-P and
De-S), etc. In ladle metallurgy, refining is one of the most important operations. To improve the
rate of mass transfer bottom gas injection is applied. In the past, most relationships between the
mass transfer coefficient (mtc) and gas injection have been associated with stirring energy as the
dominant variable. The current review analyzes a broad range of physical and mathematical modeling
investigations to expose that a large number of variables contribute to define the final value of the mtc.
Since bottom gas injection attempts to improve mixing phenomena in the whole slag/steel system,
our current knowledge shows limitations to improve mixing conditions in both phases simultaneously.
Nevertheless, some variables can be optimized to reach a better performance in metallurgical ladles.
In addition to this, the review also provides a state of the art on liquid–liquid mass transfer and
suggests the current challenges in this field.

Keywords: mass transfer coefficient; mixing time; physical modeling; mathematical modeling;
kinetic models

1. Introduction

Many studies have been conducted to describe transport phenomena in ladles and the results are
summarized in several reviews [1–4]. The previous reviews have included mass transfer to a limited
extent. The reviews from Mazumdar et al. [1,2] were focused on solid–liquid systems. Sichen [3]
discussed limitations of the two-film theory and Liu et al. [4] summarized mixing phenomena by
physical and mathematical modeling due to gas stirring in ladles, indicating that a limited number of
studies involved mass transfer. Ghotli et al. [5] reviewed liquid–liquid mass transfer in mechanically
stirred vessels. Mechanical and gas stirring involve different operational parameters. In steelmaking,
in particular in ladle metallurgy, its rate of production and final steel quality rely on mixing efficiency
both liquid steel and liquid slag. The current review will primarily focus on the physical and
mathematical modeling work that involves liquid–liquid mass transfer due to bottom gas injection.

The molar flux of species j (Nj) is proportional to the concentration gradient according with
Fick’s law for diffusion without convection and shown below. This form of the equation is valid for
dilute systems, typical of steelmaking. The proportionality constant is the mass transfer coefficient (mtc).
Depending on the experimental conditions the units for the mtc can change. To avoid confusion the
units are briefly revised. If the concentration units for Cj are in mol/cm3 then the units for kj are
cm/s [6].

Nj = −Dj

(
∂Cj

∂y

)
= − Dj

δm
ΔCj = kj

(
Cb

j −Ceq
j

)
(1)
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where Nj is the molar flux in mol/cm2·s, Cj is the concentration in mol/cm3, Dj is the diffusion coefficient
in cm2/s, y is distance in cm, δm is the diffusion boundary layer thickness in cm, kj is the mass transfer
coefficient in cm/s. Superscripts b and eq represent bulk and equilibrium values, respectively. Subscript
j represents a chemical species.

Since the molar flux (Nj) is the amount of material transferred per unit area and unit time,
the experimental measurement of the mtc requires knowledge of the interfacial area (A). In most cases
this value is unknown. In this condition, the mass transfer coefficient is reported as the product,
(kj·A) called volumetric mass transfer coefficient (vmtc), with units cm3/min. If the volume of the liquid

remains constant, we denote this vmtc as
(
kj·a

)
, with units min−1

Nj =
1
A

∂nj

∂t
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(
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)
(2)
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)
(4)

The effect of the stirring conditions on the mass transfer coefficient has been experimentally
measured for different systems: (i) gas–solid–liquid system: a typical example is the melting of
additions by mechanical stirring (solid-liquid system) or by gas stirring (gas-solid-liquid system),
(ii) gas–liquid system: some examples are gas absorption from the atmosphere into liquid steel,
absorption of elements when different types of gases are injected (nitrogen, carbon dioxide, etc.)
or oxygen injection for decarburization, and (iii) gas–liquid–liquid system: the main examples are
slag/metal interfacial reactions. To clarify terms used in this work, in the gas–liquid system the gas is a
reacting species that dissolves in the liquid in contrast to the gas–liquid–liquid system where the gas
is an inert species and where an impurity dissolved in the lower liquid phase diffuses to the upper
liquid phase. This review will focus primarily on the study of the mtc in the gas–liquid–liquid system,
however, as an introduction the other systems are briefly reviewed in the beginning in Sections 2 and 3,
followed by a detailed review in Section 4 on liquid–liquid mass transfer involving both physical and
mathematical modeling studies. Section 5 provides a final assessment of our current understanding on
this subject and suggest guidelines for further research.

2. Mass Transfer during the Melting Rate of Additions (Solid–Liquid and Gas–Solid–Liquid
Systems)

The effect of the stirring conditions on the mass transfer coefficient (mtc) during the melting
rate of additions in ladles has been investigated in detail using a rotating cylinder electrode (RCE)
immersed in a liquid and has resulted in many semi-empirical correlations involving dimensionless
numbers, as shown in Table 1. Most of these correlations involve three dimensionless numbers;
Sherwood (Sh), Reynolds (Re), and Schmidt (Sc). This is the result of a simple dimensional analysis,
describing the mass transfer coefficient (k) as a function of the fluid’s kinematic viscosity (ν), fluid’s
velocity (U), diffusivity (D) of transferred species, as well as a characteristic length of the reactor (l),
under isothermal conditions.

k = f (U, D,ν, l) (5)

This system involves five variables and can be described with two dimensions (L,T), therefore,
in accordance with the π-theorem, it can be defined with three π-dimensionless groups, as follows:

π1= k(l)a1(D)b1 (6)

π2= U(l)a2(D)b2 (7)
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π3= ν(l)a3(D)b3 (8)

Applying the principle of dimensional homogeneity, the resulting π-groups are:

kl
D
= f

(
Ul
D

)a(
ν

D

)b
(9)

Alternatively:
Sh = f

(
ReaScb

)
(10)

If the stirring conditions produce slag emulsification, the previous analysis should be extended to
include surface tension [7]. In the mass transfer model developed by Oeters and Xie [8] this relationship
holds for two cases under non-turbulent flow; a liquid in contact with a free surface and a liquid in
contact with a solid wall. In the first case the velocity at the interface is the same as the velocity in the
bulk and in the second case the velocity of the liquid at the interface is zero. Both are limiting cases for
the liquid–liquid interface.

The first systematic correlation involving Sherwood (Sh), Reynolds (Re), and Schmidt (Sc) numbers,
describing the mtc under turbulent flow without gas injection was reported by Eisenberg et al. in
1955. It has been confirmed to remain acceptable for the dissolution rate of iron into liquid steel by
subsequent investigations [9–12]. An important parameter is the velocity of the fluid. If the experiments
are carried out without gas injection, that velocity can be estimated from the peripheral velocity of
the RCE. Under multi-phase flow conditions, the velocity components of the fluid are needed in
order to compute the mtc. This information can be obtained with the development of mathematical
models [13–16], by direct measurements, for example with particle image velocimetry (PIV) or laser
doppler velocimetry (LDV) [17], by photographic analysis [18,19], and also with an energy balance [18].

Another group of correlations have been reported using the mass transfer Stanton number (St).
It has been applied in the dissolution rate of solid lime into liquid slag [20–22].

The gas injection position is an important variable because it affects mixing phenomena. Wright [23]
reported that the dissolution rate of a steel rod under natural convection was higher when placed
in the center in comparison with an off-center position, on the contrary Koria [19] reported a higher
dissolution rate when the rod was located off-center, under central bottom gas injection conditions.
Alloy additions in the ladle should be made under conditions that enhance its melting rate.

Table 1. Mass transfer correlations for solid–liquid and gas–solid–liquid systems.

Year Authors Solid Bar r/R Mass Transfer Correlations

1 1955 Eisenberg et al. (C6H5CO2H)(s) - Sh = 0.079Re0.7Sc0.356

2 1967 Kosaka and Minowa Steel bar - Sh = 0.064Re0.75Sc0.33

3 1974 Kim and Pehlke Iron bar - Sh = 0.112Re0.67Sc0.356

4 1985 Shigeno et al. Steel bar - Sh = 0.051Re0.78Sc0.33

5 1979 Szekely et al. Graphite bar 0 Sh = 2 + 0.72Re0.75Ti0.25Sc0.33

6 1989 Wright Steel bar * - Sh = 0.13(Gr·Sc)0.75

7 1990 Mazumdar et al. (C6H5CO2H)(s) 0 Sh = 0.73Re0.57Ti0.32Sc0.33

8 1992 Mazumdar et al. Steel rod 0 k = 7.8 × 10−3 Q0.19

9 2008 Kitamura et al. Solid lime - St Sc0.66= 0.378Re−0.31

* natural convection, where: Sh = kmL/D, St = km/U, Re = ρUL/μ, Sc = μ/ρD, Ti =
√

U2
rms/U0. km is the

convective mtc, D represents mass diffusivity, μ is the dynamic viscosity of the fluid, ρ is the density of the fluid,
U the velocity of the fluid, U0 is the velocity at the center line of the rising two phase plume and Urms is the rms or
fluctuating velocity.
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3. Mass Transfer due to Gas Absorption (Gas–Liquid System)

Gas absorption is an important phenomenon in steelmaking that covers the absorption of
undesirable gases from the atmosphere. Maruoka et al. [24] investigated the removal of oxygen by
water modeling with different layouts of gas injection. The whole experimental data was described
by a relationship between the vmtc and the product of the ladle eye times the bubble velocity,
subsequently, the vmtc was defined in terms of the gas flow rate and the number of nozzles

(
∝ Q0.87N0.13

)
.

Kato et al. [25] measured the absorption of oxygen in a water model and found that the mtc is higher
for bottom gas injection in comparison with top gas injection. Another group of studies have been
carried out on the absorption of CO2 in aqueous-NaOH solutions [26,27]. Inada et al. [26] reported
that increasing the number of nozzles decreases the vmtc per one nozzle. They compared one, three,
and five nozzles. These reports found an exponential relationship between the mtc and stirring energy,
with an exponent in the range from 0.65 to 0.8. Rui et al. [28] also measured the rate of absorption of
CO2 and found that the mtc is higher for one oval snorkel in comparison with a circular snorkel, if the
nozzle radial position is located between the center and half radius.

Mass transfer in solid–liquid, gas–liquid, and liquid–liquid systems, even if gas stirring is not
involved, has many similarities. In all of these systems mass transfer is controlled by diffusion
coefficients, velocities (solid, liquid or gas phases), physical properties for the phase involved, etc.
At the same time there are important differences. If mass transfer from a solid is involved, the first
step is melting and then in a second step is the dissolution process. Mass transfer from a gas phase is
different to the case that involves mass transfer due to chemical reaction at the slag/metal interface,
not only because the phases involved are different but the chemical reaction itself. The main point is to
understand that different variables operate in those processes. In the following sections the review will
focus on the previous work that has been developed to identify the variables that affect the rate of
mass transfer in gas–liquid–liquid systems.

4. Slag/Metal Interfacial Mass Transfer due to Bottom Gas Injection (Gas–Liquid–Liquid
Systems)

4.1. Physical Modeling

The mtc in bubble driven systems has been investigated by physical and mathematical modeling
and is usually reported as a function of the stirring energy or gas flow rate since these terms are
proportional to each other. Table 2 summarizes a large number of correlations between the mtc and
gas stirring conditions. In addition to ladles, some of the correlations reported include bottom gas
injection in other metallurgical reactors like the QBOP.

The first systematic physical modeling work to describe mass transfer as a function of gas injection
was conducted by Richardson et al., starting in the late 1960s [29,30]. In one group of experiments [29],
bubbles from 3–47 mL were passed through a column containing Hg and aqueous iron chloride.
This system can be adjusted to get mass transfer control in either phase. It was found that mass
transfer increased with the bubble size and height of the liquid. These authors [30] were the first
ones to apply a turbulence theory to describe the mtc as a function of gas flow rate and reactor’s
dimensions. Li and Yin [31] also reported the effect of the bubble size, however instead of the mtc
increasing with an increase in bubble size they reported a decrease, for nozzle diameters in the range
from 1 to 3 mm. Inada and Watanabe [26] as well as Fruehan and Martonik [32] reported that the nozzle
diameter has minimal or no effect on the vmtc, respectively. Riboud and Olette [33,34] investigated the
desulphurization of liquid steel and reported the mtc as a function of the specific volumetric gas flow
rate across the slag/metal interface, similar to the previous work by Richardson et al.

Up to 1975 mixing phenomena for bubble stirred systems were related with the gas flow rate.
In this year Nakanishi et al. reported a correlation between mixing time and stirring energy [35] and
eventually this idea was also used to report correlations between mass transfer and stirring energy.
Stirring energy is directly proportional to the gas flow rate (ε ∝ Qn). The exponent n is close to the
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unity [36]. This result can be theoretically derived from a relationship reported by Asai et al. [37]
where ε ∝ U3 and the experimental data from Lehner et al. [38] where U ∝ Q1/3, then ε ∝ Q. Engh
and Oeters have also confirmed the linear relationship [39,40]. Many equations have been reported
to compute stirring energy as a function of gas flow rate [41], one that is simple and accurate was
reported by Mazumdar and Guthrie [42], as follows:

ε =
ρlgHlQ

ρlπR2Hl
=

gQ

πR2 (11)

where ε is stirring energy in Watts/ton, ρl is the density of the liquid in ton/m3, g is the acceleration due
to gravity at the surface of Earth, 9.81 m/s2, Hl is the height of the liquid in m, R is the radius of the
reactor in m, Q is the gas flow rate in Nm3/s.

Nakanishi et al. [43] reported results from a water model scaled from a Q-BOP indicating a
change in the rate of mass transfer at about 80 Nl/min with bottom gas injection. Ishida et al. [44]
and Berg et al. [45] also reported a change in the rate of mass transfer for a slag/metal system and in
both cases a sharp transition for a stirring energy at 60 Watt/ton was reported. Umezawa et al. [46,47]
employing also a steel/slag system and a much larger range in stirring energies did not report a change
in the rate of mass transfer. Similar results were reported in a subsequent study with mechanical
stirring [47]. In addition to correlations between the mtc and stirring energy, Clinton et al. [48] found a
relationship between the mtc and the superficial velocity, and Minda et al. [49] found that increasing
the volume of slag increases the mtc, conducting experiments at high stirring conditions.

In 1983 Asai et al. [37] published a review with 12 correlations including their own water modeling
work. They analyzed the value of the exponent on the stirring energy by increasing the gas flow rate
and suggested a drastic change from about 0.25 to more than unity, at about 450 W/m3 (60 W/ton).
They also analyzed that the low value can be predicted by the penetration theory under laminar flow.
This work was updated to 15 correlations in 1988 [50]. This work clearly shows that gas flow rate is
one of the main variables affecting the rate of mass transfer. Patel et al. [51] used an aqueous-NaOH
solution covered by hexane and iodine dissolved in water as a tracer, which, when transferred into
hexane it changes color to violet. The iodine equilibrium concentration was reported as 0.081% for an
initial concentration of 0.16%. Their results were explained on the basis of Higbie’s penetration theory.

The rate of mass transfer can change as a function of the gas flow rate. The change in slope is
defined with a different correlation. Sawada et al. [52] reported one single correlation to describe the
mtc including the reactor diameter to summarize their water modeling results. Ooga et al. [53] reported
one change of slope that increased as the gas flow rate also increased. In this work slag emulsification
was evident at a critical gas flow rate. The critical gas flow rate increased from 0.6 to 1.2 Nl/min by
increasing the diameter of the ladle from 11 to 18 cm. Endo et al. [54] reported three changes in the
slope, from low to high and then low again. Hirasawa et al. [55–59] carried out experiments at high
temperatures analyzing the effect of reactor diameter, gas flow rate, height of liquid, and slag thickness.
They reported three slopes. The slope decreased from the first to the second region at a critical gas
flow rate and then increased again from the second to the third region. A strong slag emulsification
was observed only in the third region. For the first region the critical gas flow rate changed with
reactor diameter. The increase of the mtc in the third region was attributed to slag emulsification.
They explained that in region two the motion of the slag increased but led to suppression of the motion
of the lower phase due to a higher slag viscosity and a large interfacial tension. They reported that
increasing the height of the liquid up to a H/D ratio of one, the mtc also increased and then remained
constant, in regions one and two. Their work was the first attempt to unify all experimental data
applying Davies theory of turbulence. Mukawa et al. [60] also reported a similar correlation for the mtc.

Fruehan et al. [61–63] investigated for the first time the relationship between mass transfer and
mixing time in a ladle. They analyzed the following variables: gas flow rate, number of nozzles, nozzle
radial position, slag volume, slag viscosity, and nozzle diameter. Mixing time is a parameter that
measures the mixing efficiency of the primary phase (liquid steel), on the other hand, mass transfer

517



Processes 2020, 8, 750

measures the diffusion of species from the primary phase to the upper slag layer. Although both
phenomena are affected by the mixing conditions, the final effect of the gas injection system can have
dramatically different effects. Their conclusions are listed below:

i At high gas flow rates mixing time and mass transfer cannot be improved simultaneously. Mass
transfer is improved with central gas injection because the slag layer has better mixing conditions,
however this position is the worst case for mixing liquid steel. At low gas flow rates, the rate of
mass transfer is independent of the gas injection layout.

ii Mass transfer shows three slopes that increase as the gas flow rate (Q) also increases. The change
in slope is due to slag emulsification and occurs at about 5.3 W/ton. The nozzle diameter and slag
viscosity do not have any effect at low Q but at high Q a decrease in slag viscosity and an increase
in the nozzle diameter increase the mtc. When the slag viscosity increases it also increases the
critical gas flow rate for slag emulsification. The authors also reported that increasing the slag
thickness, at any Q, the mtc increases.

Figure 1 shows the results reported by Kim and Fruehan [61] on mixing time and mass transfer
for central and off-central gas injection. It is clear that central gas injection has poor mixing conditions
in the bath but on the other hand, the mass transfer coefficient is higher for central gas injection,
an indication of better mixing conditions in the slag layer.

Figure 1. Effect of gas flow rate on both mixing time and the mass transfer coefficient, comparing
central and off-central gas injection. Adapted from Kim and Fruehan [61].

Tata steel researchers reported that mixing time and mass transfer can be improved simultaneously
applying a gas injection layout that involves differential gas flow rates in each nozzle, however this
finding was not reported for a ladle but for a QBOP converter [64]. The stirring conditions in both
reactors are quite different as will be explained below. They applied three configurations and the best
case was defined when the gas flow rate was linearly increased from one side to the opposite side,
using eight nozzles located at about 58% of the radius of the bottom.

Mietz et al. [65] reported results from three different geometric scale ladles using centric and
eccentric gas injection. They confirmed that centric gas injection yields a higher rate of mass transfer in
particular if a critical gas flow rate for emulsification is exceeded. The critical stirring energy in the
three water models was about 15 W/ton. A further analysis also indicated that emulsification is much
higher with centric gas injection in comparison with eccentric gas injection [66].
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There are few studies regarding the effect of the number of nozzles in ladles on the mtc.
Endo et al. [54] reported that the rate of mass transfer is higher with two porous plugs in comparison
with one porous plug, in particular at high gas flow rates. The same report also cites a work
from Aichi steel confirming similar results. A more recent work by Lou and Zhu [67] compared
the desulphurization (DeS) ratio in a ladle with one and two nozzles and found that two nozzles
(180◦ separation angle) yield a higher DeS ratio (48%), compared to 46% for central gas injection and
44% for off-center gas injection.

Koria et al. [68–70] studied mass transfer in a water model from a QBOP process. Under similar
experimental conditions they reported two different correlations with exponents on the stirring energy
of 0.4 and 1. These authors noticed the different time scales between mixing time and mass transfer.
The time scale for mass transfer is higher than that for mixing time. Oeters et al. [71] conducted mass
transfer experiments on desulphurization at high temperatures. They applied the boundary layer
theory to predict the mtc with a very good agreement and also reported a change in slope due to slag
emulsification at a critical stirring energy of about 4 W/ton. Kitamura et al. [72] reported data for high
temperature experiments describing a correlation for the mtc in terms of the dimensions of the reactor
and also reported a value of activation energy for the rate of desiliconization of hot metal. Koria [73]
reported water modeling results on mtc for top and bottom gas injection in a QBOP model, defining a
correlation that indicates the contribution from both top and bottom gas injection. The work reported
by Lachmund et al. [74,75] on an industrial ladle furnace indicates a linear relationship between the
mtc and stirring energy, one special feature in this work is the large values on stirring energies up to
200 W/ton at atmospheric pressure that led to a large slag emulsification. Most probably the authors
have used the gas flow rate at (TP) and not (STP) conditions, which would explain such a high value.
They reported the formation of approximately 5 × 107 slag droplets, which increased the surface area
up to 173 m2. Sulasalmi et al. [76] and Senguttuvan and Irons [77] reported the relationship between a
liquid’s velocity and the generation rate of the interfacial area and residence time of the slag droplets
due to slag emulsification.

Gas injection in an industrial ladle furnace is carried out by porous plugs, however, most of
the physical modeling work is carried out using nozzles. Few investigations have compared mixing
phenomena with both injection elements. Stapurewicz and Themelis [78] compared mass transfer from
a gas phase into a liquid with both injection systems and found a higher absorption rate with a porous
plug due to the formation of fine bubbles in a water model that largely increase the reaction interface
(up to 230%), this result however could be misleading because bubble formation from a porous plug
in a water model is different to the argon/liquid steel system. The bubbles in a gas/metal system are
bigger because of the non-wetting conditions and their final volume is dominated by the properties
of the fluid. An example of the large differences in physical properties in both systems is the surface
tension/density ratio; for the air/steel system is three times higher in comparison with the air/water
system, 251 and 73, respectively [79]. Mori [80] has even questioned the results from water models to
describe high-temperature slag/metal systems on the basis of a low interfacial tension for the water/oil
system in comparison with slag/metal systems.

The effect of pressure on the mtc has not been considered in the previous correlations since the
ladle furnace works under atmospheric conditions, however, the same ladle can operate under vacuum
when transferred to the RH or tank degasser stations. The effects of gas stirring under vacuum are
enhanced because there is a considerable increment in the bubble size and therefore for the same gas
flow rate the mtc increases in comparison with atmospheric conditions. Lachmund et al. reported that
gas stirring is five times more intense under vacuum (less than 4 mbar) compared with atmospheric
conditions [74]. Under vacuum conditions, Sakaguchi and Ito [27] found a correlation of the form
ka ∝ ε0.71.

From Table 2, it can be seen that using physical modeling to study mass transfer the results are
generally expressed by two relationships, on the contrary, for a steel-slag system there is in general
only one relationship. The reason for this behavior is the formation of an oil emulsion at a critical
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gas flow rate in the oil–water system. Understanding this phenomenon is extremely important to
explain mass transfer. As emulsification increases the surface area between oil and water also increases
and therefore the rate of mass transfer rate increases. Oil emulsification occurs when the difference in
density between oil and water phases is small [50,81]. In a water model the density ratio (water/oil) is
close to one and in a few cases can reach up to 1.5, on the contrary, for the steel/slag system the density
ratio (steel/slag) is higher than 2.5. Therefore, while in a water model it is easy to form an emulsion in
a real steel/slag system it is more difficult.

Asai et al. [50] developed a model to predict slag emulsification based on an energy balance.
The critical metal velocity for slag emulsification was defined for the condition when the kinetic energy
exceeds the sum of surface energy and energy due to buoyancy. The critical velocity was found to
decrease from about 35 to less than 20 cm/s when the density ratio decreases. Since the density ratio in
a water model is lower than in the real steel/slag system, it emulsifies with lower velocities. Later on,
Wei and Oeters [82] in 1992 reported a robust theoretical model that predicts the rate of slag droplets
formation and its size from the interfacial velocity. Savolainen et al. [83] studied in detail the effects
of slag thickness (hs), density differences (Δρ), oil viscosity (μ), and interfacial tension (σ) of three
oil/water systems on slag emulsification. They reported that both the critical velocity for emulsification
and droplet size increases by increasing hs, μ, and σ, on the other hand, increasing Δρ also increases
the critical velocity but the droplet size decreases. It should be noted that these results were obtained
employing oils with densities close to water. In addition to the physical properties of the liquids,
the critical gas flow rate or liquid velocity also change depending on nozzle position [66].

In some metal/slag systems slag emulsification has been reported [44,45], however in most of
these cases this is because they reproduce conditions of the BOP where the rates of gas injection are
very high and lead to the formation of slag emulsions but this is not the case of ladle furnace conditions.
In a ladle furnace, for example a ladle of 210 ton of nominal capacity with top diameter of 384 cm,
bottom diameter 351 cm, and height of liquid steel of 283 cm, operating with two porous plugs and a
maximum gas flow rate in each plug of 40 Nm3/hr (approximately 12 Nl/min·ton), the maximum stirring
energy is about 20 W/ton. This is an extremely high value that produces a large ladle eye and should not
be used for a long time. This upper value on stirring energy can be taken as a reference to understand
slag emulsification in the previous studies. Several of those studies indicated a critical stirring energy
of 60 W/ton to promote slag emulsification, if this is the case then it should be more appropriate of
a BOP but not for ladle furnace conditions. For ladle furnace conditions, the reported values from
4 to 6 W/ton would be more appropriate to define the onset for slag emulsification. As a general rule,
in the relationships of the form k ∝ Qn, the value of n would be less than one if slag emulsification is
not present.

Several tracers have been used to measure the mtc. In a ladle furnace the main impurity to
be removed during steelmaking is sulphur. It is also known that the rate of desulphurization from
liquid steel follows first order kinetics, therefore in a water model the tracer should behave similar to
sulphur not only in terms of its partition ratio but also show a similar order of reaction to simplify the
analysis of the mtc. The sulphur partition ratio (LS) is in the range from 100 to 500 under equilibrium
conditions [84–86]. In practice this value ranges from 20 to 100 depending on the stirring conditions
and slag chemical composition [87]. Koria et al. [73] has reported that the partition ratio of benzoic acid
between water and paraffin oil was 4.5. Kim and Fruehan [61] reported that thymol dissolved in water
in contact with a mixture of paraffin oil–cotton seed oil (50/50) can reach a partition ratio higher than
350 and therefore it was suggested as an ideal tracer. The author has undertaken extensive work with
a similar system and the maximum value was in the order of 50. Mietz et al. [66] used a mixture of
iodium and potassium iodide dissolved in water and in contact with cyclohexane, reaching a partition
ratio of 10. The magnitude of the mtc will depend on the type of tracer, its initial concentration, and the
final equilibrium concentration.
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All equations in Table 2, except one, do not include the nozzle diameter which could be an
indication that the inlet kinetic energy is not relevant. Lehrer reported that 96% of the inlet kinetic
energy is consumed at the orifice region and only 6% is transferred to the liquid [88]. Taniguchi et al. [18]
and Wright [23] also found similar results. On the other hand, the effect of the nozzle diameter on mass
transfer has been reported by Kim and Fruehan [61] and Jiang et al. [89], for a liquid–liquid–gas and
gas–liquid system, respectively. In the first case, the rate of mass transfer increased with an increase in
nozzle diameter from 2 to 4.8 mm but only at high gas flow rates, and in the second case decreased
when the nozzle diameter was increased from 1 to 3 mm and then remained almost constant with
nozzle diameters up to 7 mm.

To define the activation energy for mass transfer requires information on the mtc as a function
of temperature. Robison and Pehlke studied the reduction of chromium oxide from the slag [90].
They indicated that if the reaction rate is controlled by the interfacial chemical reaction and the area
remains constant then a change in the stirring energy will not change the reaction rate, and also defined
a range from 65 to 100 kcal/mole if the controlling mechanism is mass transfer from the slag phase
and 20 kcal/mole if it is due to mass transport in the metal phase. Kitamura et al. [72] reported an
activation energy of 30 kcal/mol for the rate of desiliconization of hot metal and Kang et al. [91] a value
of 28 kcal/mol for the oxidation of aluminum by silica from the slag.

The mtc is an essential component in the development of a kinetic model, for example, when
dealing with the desulphurization rate in the ladle furnace. The previous expressions from Table 2 can
be used to simplify the calculation of the metal mtc (km). In general mass transfer is controlled by
diffusion from the primary steel phase, therefore only km is needed. If the process is controlled by
diffusion in both phases, the slag mass transfer coefficient is also required. A practical approach that
has been used in many investigations [72,92–94] is to assume that the slag mtc (ks) is 10 times slower
compared with the steel

ks = km/10. (12)

Mukawa et al. [60] confirmed this relationship by empirically adjusting parameters in a
mathematical model.

Table 3 summarizes the main findings obtained by the previous physical modeling work. It is
important to notice the large number of variables that affect the rate of mass transfer.

Table 3. Effect of process variables on the mass transfer coefficient (k) due to bottom gas injection in ladles.

Gas flow rate or stirring energy Q or ε k increases with gas flow rate (or stirring energy). Change
in k at critical Q for slag emulsification.

Nozzle’s radial position r/R k increases with central gas injection and decreases if the
nozzle is off center

Bubble diameter dB
k increases with large bubbles (9–20 mm) and decreases
with small bubbles (1–3 mm)

Nozzle diameter dn
Mixed results; it has no effect, k increases by increasing dn
at high Q, k decreases by increasing dn

Superficial velocity Us k increases with the superficial velocity of the liquid

Slag volume Ws k increases with the volume of slag

Reactor’s diameter dc k increases with the reactor diameter

Slag viscosity μs k increases by decreasing the slag viscosity, at high Q

Liquid’s height hm
k increases by increasing the height of the liquid metal up
to a critical value

Type of nozzle - k in one report was higher for porous plugs in comparison
with nozzles for the case of gas–liquid mass transfer

Number of nozzles N k increases with number of porous plugs, from one to two
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4.2. Mathematical Modelling of Mass Transfer in the Ladle

The mtc can be determined empirically through experimental work by physical modeling.
This approach has several limitations: (i) lacks generality; is valid for specific cases, (ii) in general is a
constant value, (iii) it is usually reported only in terms of one variable; stirring energy.

In order to overcome the previous limitations, the mtc has been explained and derived theoretically
with different models. Application of this models to the entire gas/steel/slag system requires the
development of numerical solutions. There are three main mass transfer theories:

(1) The film theory developed by Lewis and Whitman [95]. It is the simplest and most commonly
used theory. Most of the experimental determination of the mtc is based on this theory [61,71].
It assumes that mass transfer occurs on both sides of the interface, flow is in steady state, and the
equilibrium conditions are instantaneously reached at the interface. On these assumptions the
following relationships are derived:

Ni,m = −Di,m
∂Ci,m

∂y
= −Dm

(
Cm

i,int −Cm
i,b

)
δm

= Ni,s = −Ds

(
Cs

i,b −Cs
i,int

)
δs

(13)

if, L =
Cs

i,int

Cm
i,int

k =
D
δ

, km =
Dm

δm
, ks =

Ds

δs
, then

Ni =
kmks

ks + km/L

⎛⎜⎜⎜⎜⎝Cm
i,b −

Cs
i,b

L

⎞⎟⎟⎟⎟⎠ = ko

⎛⎜⎜⎜⎜⎝Cm
i,b −

Cs
i,b

L

⎞⎟⎟⎟⎟⎠ (14)

ko =
1

1
km

+ 1
ksL

(15)

where C j
i,int is the concentration at the interface on the side of the j-phase, L is the partition

equilibrium ratio, δ is the thickness of the diffusion boundary layer, km is the mtc for species
i in the metal phase, ks is the mtc for species i in the slag phase and ko the overall mtc. If the
partition ratio (L) is large the second term can be neglected and the process is controlled by mass
transfer in the metal phase. Kang et al. [96] reported that the partition ratio for sulphur should be
higher than 100 to assume mass transfer control. Although metal mass transfer control is the
most common case in steelmaking, slag mass transfer control or mixed control is also possible.
Deo and Boom [97] suggested slag mass transfer control under the following conditions: (a) when
the bulk slag phase is pre-saturated with the element to be transferred from the metal and the
concentration of the element in the metal phase is high, (b) when the slag is highly viscous and
has poor mixing conditions so that ks << km, (c) when the reaction product layer that forms on
the slag side is solid, so that it does not allow for proper homogenization of the bulk slag phase,
(d) when the slag has a low sulfide capacity. Notice that based on the boundary layer theory,
the mtc is proportional to D to the first power; ki ∝ D.

(2) The penetration theory was developed by Higbie [98] and assumes that liquid packets at the
interface are periodically renewed by new fresh fluids coming from the bulk, each fluid packet is
in contact with the interface for a given time. The boundary layer thickness is much larger than
in the film theory. For the metal phase:

Ni,m = −Di,m
∂Ci,m

∂y
=

√
4Di,mU
π L

(
Cm

i,int −Cm
i,b

)
= km

(
Cm

i,int −Cm
i,b

)
(16)
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km =

√
4Di,m

π t
(17)

where t is the contact time of surface renewal. Its value is specific for a given system. Notice
that based on the penetration theory, the mtc is proportional to the square root of D; ki ∝ D1/2.
Szekely [99] derived an alternate form of the mtc that gives a similar result to the penetration
theory. He first derived an expression for heat transfer at the slag/metal interface due to bubble
stirring under transient conditions and then applied the same treatment to mass transfer. The final
result is expressed in terms of the diffusion coefficients, the equilibrium partition ratio, and the
time interval between the arrival of two successive bubbles (te).

km =

⎧⎪⎪⎨⎪⎪⎩1+
1
L

(
Di,m

Di,s

) 1
2
⎫⎪⎪⎬⎪⎪⎭
−1 √

4Di,m

π te
(18)

The time interval, te, was computed from the number of bubbles produced per unit time (Nb),
the cross-sectional area of the bath (AB), and the projected area of the bubble (Ab)

te =
AB

AbNb
(19)

The specific value of the time interval depends on the phenomenon investigated, for example
Bafghi et al. [100] defined its value as a function of the frequency of CO formation due to the
reduction of FeO during slag foaming and the final expression for the mtc was defined in terms of
the mass of slag and FeO.

(3) Surface renewal theories: there is a large number of models that propose how to estimate the
contact time of surface renewal. Danckwerts [101] suggested that this time is not constant and
follows a normal distribution, t is replaced by a parameter s that defines the rate of replacement.
Dong et al. [102] found this parameter to be the ratio between the normal fluctuating velocity Uo,
at a depth lo

km = 0.4

√
Di,mUo

lo
. (20)

The Large Eddy Model (LEM) suggested by Fortescue and Pearson [103] assumes that the larger
eddies are dominant on mass transfer because they contain most of the turbulent energy,

km = 0.4

√
Di,mUrms

l
. (21)

where Urms is the rms velocity of the turbulence and l is the length scale of the large eddies.
Kolgomorov [104] in 1941 formulated the modern concepts of turbulence analyzing the interaction

between large and small eddies “decaying” into one another, stating that the small eddies are statistically
homogeneous and isotropic. Based on his derivation of length scale and velocity scale, the exposure
time can be defined. Applying this concept Banerjee et al. [105] as well as Lamont and Scott [106]
suggested that the eddies in the boundary layer are usually small in size and therefore more important.
The Small Eddy Model (SEM) is defined by the following equation

km = 0.4
√

Di,m

(
ε

ν

)0.25
. (22)

where Di,m is the molecular diffusivity, ε is the energy dissipation rate, and ν is the kinematic
viscosity. A similar equation was also reported by Miyauchi and Kataoka [107] and Ruckenstein [108],
with different constants.
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According with the surface renewal theories, k is proportional to the square root of the diffusion
coefficient. Since the Di,s of the slag is approximately two orders of magnitude of that of the metal,
Di,m, we get ks = km/10. This is another way to validate Equation (12).

Banerjee et al. [109] have proposed equations for both large and small eddies. The small eddies
model for un-sheared interfaces when the far-field turbulence is homogeneous and isotropic, was called
the Surface Divergent Model (SDM), defined as follows

km = 0.3UL

√
Di,m(ScRet)

−0.5
[
0.3

(
2.83(Ret)

3
4−2.14(Ret)

2
3

)] 1
4
. (23)

The previous mass transfer models have been compared. Theofanous et al. [110] found that LEM
and SEM give good results at small and large turbulent Reynolds numbers, respectively. De Oliveira
reported similar results for LEM and SDM [111].

The mathematical models developed to study mixing and mass transfer in ladles is extensive [4,112].
In a mathematical model the velocities of the fluids can be computed allowing the use of the previous
mass transfer theories. The simplest numerical modeling approach to study mass transfer under
isothermal conditions involves two main parts; development of a fluid dynamics model coupled
with a mass transfer model. There are three well defined numerical algorithms; Quasi-single or
pseudo-single-phase, Eulerian-Lagrangian (E-L) and Eulerian-Eulerian (E-E). Depending on the
commercial code, they can assume different names, for example in ANSYS-Fluent the Lagrangian
algorithm is called discrete particle model (DPM). The volume of fluid (VOF) model is a separate
Eulerian algorithm that allows to track interfaces. In the most recent mathematical models [67,76,77,113],
liquid steel and liquid slag are usually described by an Eulerian algorithm, its interface by the VOF
algorithm, and the motion of the bubbles by a Lagrangian algorithm. The governing equations can be
described by the following general transport equation for multiphase flow

∂(αiρiφi)

∂t
+ ∇·(αiuiφi) = ∇·

(
αiΓ∅i,i∇φi

)
+αiS∅i . (24)

where φi is the variable to be solved, αi is the volume fraction of the phase, ρi is the density of the
phase, ui is the velocity, Γ∅i,i is the exchange coefficient, t is time, and S is the source term associated
with the creation or destruction of φi. In the species transport equation, the source term is the rate of
mass transport.

Once the flow reaches steady state the mass transfer model is solved. It can be solved only to
compute the mtc or coupled with a kinetic model to predict, for example, the rate of desulphurization.
The numerical calculation of mtc’s can be made using empirical correlations or with the use of mass
transfer theories.

The first numerical models involving mass transfer used a Quasi single-phase approach and
axisymmetric gas injection, for example Mazumdar et al. [15] computed the fluid’s velocity and then
used a previously developed empirical correlation to compute the mtc. Costa and Tavares [114] used
a similar approach. Ahmadi et al. [115–117] did measurements on the melting rate of a Si rod in
liquid aluminum and also developed a 3D numerical model. They applied Mazumdar’s correlation to
predict the mtc. The results gave a similar order of magnitude but the correlation underpredicted the
experimental data. They also modified the correlation proposed by Churchill and Bernstein [118] for
forced convection, adding the turbulent Reynolds number, reporting some improvements with the
following correlation

Sh= 0.3 +
0.62Re

1
2
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1
3[
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2
3

] 1
4
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282, 000

) 5
8
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4
5

Re0.066
T . (25)
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Taniguchi et al. [119] calculated the mtc applying both the small-eddy model and the penetration
theory for a gas–liquid system. The velocity predictions were validated with experimental data using
LDV. The time of surface renewal was estimated from the ratio (diameter/velocity)bubble. They found
better agreement with the experimental data in the plume region using the small-eddy model.
Lou and Zhu [120], Cao et al. [121], Hoang et al. [122], and Karouni et al. [123] have also reported a
good agreement using the small eddy model. Cao et al. [121] employed a diffusivity value for the
species in the metal side of 7.0 × 10−9 m2/s and two orders of magnitude lower for the species in the
slag side, 7.0 × 10−11 m2/s.

De Oliveira et al. [111] have employed the following correlation suggested by Banerjee based on
the large eddy model, to estimate the mass transfer coefficient in a continuous casting mold

km = 0.095u∗(Sc)−0.5.(25) (26)

where u* is the friction velocity at the interface.
Xie and Oeters [124] followed a different approach to study a multi-reaction system. They applied

the boundary layer theory and estimated the fluid’s velocities using a relationship with the gas flow
rate. The mass transfer coefficient for each one of the chemical species involved was defined by an
equation of the form ki∝ Q0.168. Their model gave satisfactory agreement below the stirring energy for
slag emulsification, the critical value was found in the order of 4 W/ton. This authors also discussed
the effect of sulfur on the mtc. In one group of experiments sulphur increased the mtc but in another
case its effect was null and they attributed this behavior to different concentrations of oxygen. The rate
of desulphurization (DeS) is higher in low oxygen melts and this explains the two cases comparing Al
and Si deoxidation. In Al-deoxidation melts the oxygen content is lower and gives higher rates of DeS.
Jun et al. [125] and Ying [126] indicate that oxygen, which is a surfactant, retards the absorption of
nitrogen because the surface velocity decreases due to the Marangoni effect. On the contrary, Mendes
indicates that increasing the concentration of surfactants increase the rate of mass transfer due to an
increase in interfacial convection [127]. This subject requires further investigation.

One of the limitations in developing mathematical models to define the mtc and its subsequent
use to predict mass transfer rates, is the large computational time involved. Cao et al. [121] suggested
to decouple the simultaneous computation of the mtc with a fluid flow model and the multi component
reaction kinetics model in order to save time. Van Ende and Jung [94] opted for the use of a semiempirical
relationship and even a number that just fits model predictions with experimental data [128].

In most of the previous work on mass transfer in metallurgical reactors it is assumed a homogeneous
bath, but this is not entirely true, especially at the beginning of the process. The extent of homogenization
depends on several factors such as the gas flow rate and injection layout. Mietz and Bruhl [129]
studied the effect of the volume of dead zones on the mass transfer rates and found a large discrepancy
comparing ideal mixing and real mixing conditions. Eventually, depending on the gas flow rate,
the concentrations become similar when mixing is complete and the dead zones are decreased. However,
since the time-scale for mixing time in water models or prototypes is in the order of seconds, varying
from 10 to 180 s [130,131] and the time-scale for mass transfer is at least one order of magnitude higher,
it is valid to assume an homogeneous concentration in mass transfer studies. In regard to the time-scale
for mass transfer experiments in water models it is important to consider that the values reported are
relative. We have carried out extensive work [132] that shows that the rate of mass transfer depends
on many variables; gas flow rate, injection layout, physicochemical properties of phases involved, etc.,
therefore, the actual ratio between the two scales is variable.

It has been pointed out that the main purpose in defining the value of the mtc’s is to use them in a
kinetic model. It can be slag-metal refining, lime dissolution, formation mechanisms of non-metallic
inclusions, etc. In the previous paragraphs some of the reports that have used mass transfer theories to
compute the mtc have been mentioned. Table 4 summarizes how the mtc has been defined in different
kinetic models.
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Table 4. Methods employed to compute k in reported kinetic models.

Method References

Correlation k ∝ εn Singh et al. [133], Zhang et al. [93], Van Ende and Jung [94]

Experimental work Choi et al. [134], Harada et al. [135], Kang et al. [91], Roy et al. [136]

Correlations from D. Analysis Wei et al. [137], Sulasalmi et al. [138], Huang et al. [139]

Boundary layer theory Xie and Oeters [124], Chen et al. [140]

Higbie’s penetration theory Taniguchi et al. [119]

Large Eddy Model (LEM) De Oliveira et al. [111], Deo and Grieveson [141],

Small Eddy Model (SEM) Taniguchi et al. [119], Lou and Zhu [120], Cao et al. [121],
Hoang et al. [122] and Karouni et al. [123]

It has also been mentioned before that the interfacial area is a variable difficult to measure. Without
information of the real value, the volumetric mass transfer coefficient is reported instead. There are
few reports about modeling the interfacial area during bottom gas injection. Cao et al. [121] reported a
mathematical model that predicts the interfacial area. Their results indicate that the interfacial area is
lower than the static area due to formation of the slag eye (s). Its value decreases as soon as the slag
eye forms and tends to stabilize, showing a dynamic fluctuation depending on the formation slag
droplets entrapped in liquid steel. This is true if there no slag emulsification included in the model.
Sulasalmi et al. [138] reported a kinetic model incorporating the growth in interfacial area due to
formation of slag droplets. Calculating the kinetics of emulsions requires the knowledge of the droplets
residence time, its size distribution, and its generation rate. Unfortunately, very few investigations are
currently available for kinetic models of slag–metal systems including the emulsification rate.

When the gas flow rate is increased there are two opposing effects, on one side, the slag droplets
increase the interfacial area but also the area of the slag eye increases, decreasing the interfacial area.
Zhang et al. [93] reported that bottom gas injection promotes the removal of non-metallic inclusions,
however at a critical gas flow rate, due to the enlargement of the slag eye and the corresponding
reoxidation, the amount of total oxygen increases, increasing again the amount of non-metallic
inclusions. Lou and Zhu [120] also reported the existence of a maximum gas flow rate to reach the
maximum rate of desulphurization, this value was reported to be 200 Nl/min in a ladle with 80 ton
of liquid steel, equivalent to 7 Watt/ton. These results are extremely important because they clearly
indicate the need to define limits to the maximum gas flow rate to reach the higher rate of mass transfer
from impurities from liquid steel to the slag but taking also into consideration liquid steel reoxidation
due to slag eye formation. Another solution is increasing from one to two porous plugs because in this
way it is possible to increase the gas flow rate, increasing the interfacial area but also decreasing the
slag-eye area [133].

5. Final Remarks

All the physical and mathematical modeling research involving liquid–liquid mass transfer due
to bottom gas injection that has been described in this review has resulted in an extensive number of
correlations that together with turbulence models and theories provide a solid understanding of the
computation of the mass transfer coefficients, nevertheless, in spite of this progress no single equation
includes all the variables that affect the rate of mass transfer and therefore they cannot provide a unified
approach. Wilson and Macleod [142] presented a similar result in a review on gas–liquid mass transfer.

Based on this review it has been found that the following variables affect the mass transfer
coefficient: (1) mass transfer is affected primarily by the gas flow rate, however, is not only the amount
of stirring energy and flow velocities resulting from bottom gas injection that defines the value of the
mtc but also; (2) how this gas is injected (number of nozzles, its radial position, type of nozzles and
nozzle diameter), (3) the concentration of surfactants in the liquid phases, (4) slag emulsification (which
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occurs above a critical gas flow rate) with its corresponding number of droplets, size and residence time,
(5) interfacial area as a function of gas flow rate, (6) slag and steel physicochemical properties (diffusion
coefficients, viscosity, relative densities, etc.), (7) bubble size and frequency, (8) reactor dimensions
(diameter, height of the liquid, aspect ratio). From this list, gas flow rate and slag emulsification has
been reported to have the largest influence. The author has argued that in the real steel/slag system
slag emulsification in a ladle furnace can have a less significant role than is currently attributed because
previous physical models have been developed using oils that do not represent the real slag phase.
Slag emulsification in a ladle furnace is very important, however the upper limits of slag emulsification
should be properly demonstrated by physical and mathematical modelling studies.

The correlations involving stirring energy and the mtc have been the most common but also the
ones excluding most of the process variables affecting the rate of mass transfer. Dimensional analysis
and mass transfer theories have included most of the relevant variables. Hirasawa et al. [59] reported
the first attempt of a unified approach, however, their correlation does not include slag emulsification.

kdc

D
= C

⎡⎢⎢⎢⎢⎣
(

4Qdc

Dπd2
c
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σ

⎞⎟⎟⎟⎟⎠( h
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2
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where C is a constant, h is the height of the liquid, σ is the interfacial tension.
In dimensionless form:
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Reiter and Schwerdtfeger [143] also used dimensional analysis to describe mass transfer from
bubbles in a thick upper phase, however this system is not representative of ladle furnace conditions.

Mathematical models involving CFD can estimate fluid flow patterns, with this information all
the mass transfer theories can be applied to compute the mtc. It has been shown that in general all
mass transfer theories can reproduce the experimental data, however, there is still some degree of
empiricism with this approach. It is still necessary to adjust constants in those models.

Suggestions for future research: Future physical and mathematical modeling work to define the
mass transfer coefficients in liquid–liquid mass transfer systems due to bottom gas injection should
incorporate all the variables indicated previously, in particular those variables less studied; effect of
nozzle radial position and separation angle, diameter and type of nozzles and the role of surfactants.
In this effort dimensional analysis is most recommended. In physical modelling, proper similarity of
slag emulsification with the real steel/slag system is needed in order to assess its real contribution to mass
transfer. Mathematical modelling should incorporate a realistic approach as much as possible, which
in addition to bubble size distribution should also evaluate the real contribution of slag emulsification
and interfacial area under ladle furnace conditions. Once this work is completed, the final step will be
to unify all experimental and numerical data.

The main purpose of bottom gas injection is to improve mixing phenomenon. The few experimental
information available shows that a given injection layout can promote either mixing of liquid steel
(by decreasing mixing time) or the rate of mass transfer (removal of impurities to the upper slag phase).
One of the challenges ahead is to find conditions to improve both processes simultaneously.
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Abstract: In this research study, numerical modelling and experimental casting of AA6111 strips,
250 mm wide, 6 mm thick, was conducted. The velocity of the molten AA6111 alloy at the nozzle
slot outlet was raised to 2 m/s, whilst the belt speed was kept at 0.3 m/s. The numerical model
demonstrates considerable turbulence/fluctuations in the flow of the molten AA6111 alloy in the
HSBC process, rendering its free surface highly non-uniform and uneven. These discontinuites in
the flow resulted from the sudden impact of molten metal onto the inclined refractory plane, and
then onto the slowly moving belt. However, it has been determined that these surface variations
are rapidly damped, and as such are not detrimental to final strip surface quality. Any surface
perturbations remaining can be eliminated via hot plastic deformation. The experimental findings
are in accordance with the model predictions. Furthermore, at high metal heads inside the delivery
launder, the molten metal was observed to be flowing inwards towards the center of the strip, thereby
filling the centre depression region, formed otherwise. The model predictions were validated against
experimental findings. A surface roughness and microstructural analysis was also conducted to
determine the surface and bulk quality of the as-cast strip.

Keywords: horizontal single belt casting process (HSBC); computational fluid dynamics (CFD);
double impingement feeding system

1. Introduction

Near net shape casting (NNSC) processes can be regarded as an ideal method for metal sheet
production. Apart from their low energy requirements, lower capital and operating costs, and smaller
plant footprints than those associated with slab casters (Fe), and DC casters (Al), they also have
promising metallurgical characteristics associated with much higher cooling rates possible [1–5].
However, they can also have drawbacks, regarding surface quality, which conventional plants can
overcome, by scarfing and multi-pass rolling, to the final quality strip [6]. An advantage of NNSC
processes is that a homogenous microstructure with almost zero macrosegregation and fine grain sized
products can be attained, provided cooling rate conditions are met, as the cast product’s dimensions
approach the desired sheet specifications [4].

Therefore, fewer hot/cold reduction passes are required as opposed to conventional methods
i.e., slab, or thin slab, casting (TSC) of steels, or direct chill (DC) casting for aluminum alloys. This
undoubtedly brings down the overall cost of the operation. On the other hand, the high surface
area-to-cast thickness is much higher (~100×), making surface oxidation more problematic, as well
as surface quality and surface dimensions [3]. The three most commonly used NNSC processes,
commercialized to date, are the twin roll casting (TRC), the earlier twin belt caster, and, most recently,
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the single belt caster [6]. Historically, the commercialization of the Hazelett twin belt caster in the
1930s by Clarence Hazelett, was an early breakthrough for NNSC. It has since been used around the
world, ever since, for casting non-ferrous alloys, mainly aluminum, copper, and zinc, down to cast
thicknesses of 13–21 mm [7]. All attempts with steel have failed.

As the name suggests, TRC utilizes two contra-rotating water-cooled rolls, onto which the molten
metal is fed and cast as a thin strip. Invented by Henry Bessemer back in 1857 [8], and despite extensive
research and development activities that followed, the world’s first strip caster for aluminum was only
commercialized in 1954, approximately 100 years after Bessemer’s initial idea. Currently, FATA Hunter
and Novelis PAE (previously SCAL-Pechiney) are leading companies manufacturing TRC equipment
for aluminum strip production [9]. The cast strip thickness is almost 6 mm. The first TRC strip caster
commercialized for steel was by Nippon Steel and Mitsubishi Heavy Industries Corporation in 2000.
The caster could produce stainless steel strips, 2–5 mm thick, 0.76–1.5 m wide, in NSC’s Hikari Works
in Southern Japan, but was not a commercial success and was abandoned. Later, in 2002, NUCOR
started the production of a low carbon steel strip, 1.7–1.9 mm thick via a TRC process, CASTRIP, and
this continues to operate, commercially [6]. However, TRC, though a proven aluminum/steel strip
manufacturing process, suffers from low annual production of steel vs. that of a conventional slab
casting process, i.e., 400,000 tpy and 2,000,000 tpy, respectively [10].

An Introduction to Horizontal Single Belt Casting (HSBC) Process

The horizontal single belt casting (HSBC) process, independently conceived by Herbertson,
Guthrie, Reichelt, and Schwerdtfeger, et al., emerged from a joint effort of BHP (Australia), McGill
University (Canada), and the Hazelett Strip Casting Corporation (USA) as discussed above. This
process is like the Pilkington float glass technology, in which the molten glass is continuously poured
over a bath of molten tin where it solidifies into a continuous glass sheet [5].

The HSBC process avoids the multi-hot rolling-deformation steps required for direct chill (DC)
cast material, together with its intermediate annealing steps, while producing the same desired final
thicknesses of sheet products. As such, a large amount of energy can be saved. This is essentially true
for all NNSC processes discussed above. The HSBC process features a compact design and provides
for the better economic production of both ferrous and non-ferrous metallic products. The production
of advanced high-strength steel (AHSS) strips, 16 mm thick, via the HSBC process at Salzgitter Group
Steelworks, Germany, is an example that makes use of the advantages that the HSBC process offers, vs.
conventional strip manufacturing processes. To date various ferrous/nonferrous alloys strips, up to
a thickness of 16 mm, were successfully produced. For further reading, please refer to the available
literature [11,12].

Simplistically, the HSBC process involves feeding molten metal on to an intensively cooled,
moving belt, which acts as the mold. Depending on the metal head in the launder, the velocity of
the molten metal issuing from the slot nozzle can be easily adjusted. However, the force of gravity is
also equally responsible in further accelerating the molten metal before it contacts the moving belt,
on which it solidifies [13–15]. The material produced via the HSBC process can then be processed
downstream, by hot rolling, followed by cold rolling, as shown in Figure 1.
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Figure 1. (a) A photograph of the HSBC pilot-scale system, and (b) A schematic of the HSBC pilot-scale
machine located at MetSim Inc,’s High Temperature, Melting and Casting Laboratory, Quebec, Canada.

2. An Overview of Previous Studies Conducted on HSBC Metal Feeding Systems

Many variants of the feeding system have been investigated by researchers at McGill Metals
Processing Centre, to date. They can be classified into two types of the metal delivery systems; either
single-impingement or multi-impingement, based on how many times the molten metal encounters
obstacles before reaching the cooling substrate, as shown in Figure 2 [2,3]. In a single impingement
feeding system, the molten metal is abruptly stopped by the horizontally moving belt, since there is
no intermediate obstacle in its way, which could decrease its kinetic energy. As a result, the molten
metal tends to penetrate back into the quadruple region, i.e., the region where melt, refractory, air,
and belt coexist, as determined by Sa Ge et al. [3], for the casting of plain carbon steel, employing a
single impingement feeding system (Figure 3a) [3]. If the backflow is too excessive, it may lead to skull
formation, thereby curtailing further casting as determined experimentally.

 

Figure 2. Different feeding systems for HSBC process, (a) Double impingement, (b) single
impingement [1–4].
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Figure 3. (a) Simulated flow of the molten plain carbon steel in single impingement feeding system,
showing back-flow into the quadruple region; molten phase is colored red, fully solidified shell is in
blue, and the partially solidified zone is in between [3], (b) Numerical simulations did not predict any
back flow of molten Al-Mg-Sc-Zr into the quadruple region; the molten phase is coloured red, air is
represented in blue. The numerical simulations were supported by experiments in these studies [13].

Additionally, it has been shown by Sa Ge [13], that a single impingement feeding system can
be used to produce Al-Mg-Sc-Zr alloy strips, without any backflow into the quadruple region (see
Figure 3b), as was found for steel casting. This could be due to the low density of Al-Mg-Sc-Zr alloy
and a higher contact angle, i.e., a lower wettability between liquid Al-Mg-Sc-Zr and the alumina
refractory [13].

In both these studies, the molten metal flowing over the moving belt was considered as being
nearly iso-kinetic, a condition in which the velocities of the molten metal and belt approach each other.
Furthermore, the as-cast thickness of the produced strips was ~3 mm [3,5].

As explained above, excessive backflow of molten metal into the quadruple region is not desired.
This can be conveniently prevented by employing a double-impingement feeding system in the HSBC
process [14]. In a double impingement feeding system the molten metal dispensing from the refractory
nozzle slot first interacts with a 45◦ inclined refractory plane, followed by its second interaction with
the moving belt, on to which it begins to solidify [14]. In this way, the final impact of the molten metal
with the moving belt is not as rapid and abrupt, as it would be for a single-impingement feeding
system [4]. Furthermore, in a double-impingement feeding system, the flow of the molten metal over
the inclined refractory plane and the moving belt is entirely gravity-driven, unlike the variant of the
single-impingement feeding system reported by Sa Ge for the casting of Al-Mg-Sc-Zr. For that, the
flow of the molten metal is impeded by the refractory front wall, as shown in Figure 3b [13]. During
continuous operation, the refractory material may abrade and embed small particles into the pool of
molten metal. This could significantly decrease the bulk quality of the cast strip.

In this research study, non-isokinetic feeding of molten metal over the moving belt has been
considered. This is significantly different from our group’s previous research studies, for which only
near iso-kinetic feeding was considered, as discussed above. Under non-isokinetic feeding conditions,
as in the present case (the belt/side dam speed is considerably slower, i.e., 0.3 m/s, as compared to the
molten metal velocity at the nozzle slot outlet, i.e., 2 m/s). The strip produced under this condition
has ~6 mm thickness, which is thicker as compared to the strips obtained under iso-kinetic feeding
(~3 mm). This allowed us to perform substantial hot deformation in order to produce a 1 mm, or lower,
thickness of strip. Hot deformation is necessary, as it transforms the cast dendritic structure into fine
equiaxed grains, leading to a far more uniform distribution of alloying elements throughout the sheet
material. Another purpose of hot reduction is to squash/weld any pores, if present, in the cast strip, so
as to improve its mechanical properties [15].
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3. Objectives of the Present Research

The objective of this research study is to produce high-quality AA6111 aluminum alloy strips
250 mm wide, ~6 mm thick. Additionally, molten metal flow in a double-impingement feeding system
has been analyzed under non-isokinetic feeding. Under these experimental conditions, the molten
metal was observed to be flowing inwards, i.e., towards the center of the strip. This can usefully
eradicate center shrinkage cavity defects formed otherwise. In order to investigate this phenomenon,
a three-dimensional mathematical model was developed using Fluent software (14.5, Ansys, Inc.,
Canonsburg, PA, USA, 1970), and its accuracy was evaluated against experimental data. Thanks to
these numerical simulations, we now understand the complex interaction of the molten metal with
the inclined refractory plane and the moving belt that leads to the phenomenon of the molten metal’s
inward flow.

A horizontal single belt pilot caster installed at MetSim Inc., Montreal, QC, Canada, was used for
the casting experiments. However, several modifications were applied to the existing caster, as it was
not capable of producing 250 mm wide strips. These included the design of a new alumina refractory
nozzle slot (250 mm wide and 3 mm thick), increasing the cooling capability of the moving steel belt,
needed to completely solidify molten AA6111 strip before it exits the moving belt. Additionally, the
caster modifications included enlarging the strip guidance system, and, lastly, the extension of the
length and width of the run-out table, so as to accommodate the wider strip exiting the caster.

4. Aluminum Alloy Grade, AA6111, Used in the Present Research

Keeping in mind the suitability of the HSBC process to cast both ferrous and non-ferrous alloys,
and knowing the usefulness of AA6111 aluminum alloy in the production of the lightweight body in
white (BIW) automotive structures, AA6111 was selected for HSBC strip production. AA6111 is an
alloy of Al-Mg-Si (Cu). It possesses higher mechanical strengths (i.e., 400 MPa), high formability, and
good corrosion resistance. The main mechanism behind AA6111′s increased strength is precipitation
hardening, along with the solid solution and work strengthening [16,17]. The alloying elements present
in AA6111 are as shown in Table 1.

Table 1. Chemical composition of the AA6111 strip produced by the HSBC process, determined using
the spark OES technique.

Alloying Elements, wt%

Cu Fe Mg Mn Cr Si Ti Zn Al

0.5–0.9 >0.4 0.5–1.0 0.1–0.45 <0.1 0.6–1.1 <0.1 <0.15 Remaining

The casting of AA6111 strips via the HSBC process is comparatively new, and is presently in its
development stages. It is, therefore, hoped that this paper will add fundamental knowledge to the
information already existing on this subject, and help industries realize the versatility of the HSBC
process to cast AA6111 aluminum alloy strips.

5. Details of the Experimental Procedure

AA6111 alloy was produced by first melting pure aluminum in a pre-heated induction furnace
under a protective argon atmosphere, followed by the addition of Al-Mg, and Al-Mn alloys, etc. Good
melt stirring was used, to ensure completely dissolved/mixing of the alloy additives into the pure
aluminum. The melt was then de-gassed and Ti-B grain refiner was added in a conventional way. The
AA6111 melt was then cast into the strips using the HSBC system. The step-by-step operation of the
HSBC pilot caster is presented below.

The process started with the production of AA6111 alloy using the 600 lb induction melting
furnace. Afterwards, the furnace was moved on rails to the casting station, where it was locked with
the liquid metal delivery system. This consisted of a refractory cylinder (regulated by a servo motor)
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and a launder, as shown in Figure 1. Once the tight seal between the induction furnace and delivery
system was ensured, the motorised refractory cylinder was allowed to enter into the induction furnace
at a pre-selected speed, thereby displacing the molten metal into the launder. Once the molten metal
reached the desired level within the launder, the stopper bar blocking the nozzle outlet was rapidly
withdrawn, and liquid metal began to pour onto the belt. A weir and a dam were used to help prevent
Al2O3 oxide skin from entering the nozzle slot, as well as to help in minimizing turbulence present
within the flowing molten metal. The moving belt could also be equipped with two rotating side
dams. Their purpose was to contain the molten metal once it leaves the nozzle slot, and to give a
straight/smooth edge before it enters the minimill for hot reduction. To avoid any premature freezing,
the entire delivery system and the refractory piston were preheated to approximately 500–550 ◦C,
using electrical resistive heating systems.

To evaluate the bulk, as well as the surface, quality of the cast strips, samples were sectioned from
the strip. All samples were polished and prepared for metallographic observations and analyzed under
Leica DM IRM optical and Hitachi TM3030 scanning electron microscope. The surface roughness was
measured using a 3D Nanovea profilometer. Results will be presented in later paragraphs.

6. Details of the Model Setup

For CFD studies, the three-dimensional, transient state, turbulent fluid flow was modeled using
Fluent software (14.5, Ansys, Inc., Canonsburg, PA, USA, 1970). The code is based on the finite
volume method (FVM) [18]. The simulation domain chosen to carry out this research study had the
following dimensions, length (0.195 m), height (0.016 m), and width (0.05 m), as shown in Figure 4.
The semi-implicit method for pressure linked equations (SIMPLE) was used for coupling pressure and
velocity in the governing equations. More details can be found in the literature [19]. To improve on
the accuracy, the advection terms were discretized using a 2nd-order upwind scheme over the entire
simulation domain, whereas the diffusion term was approximated by the central differencing scheme.
To stabilize the interactive process, an under-relaxation factor of 0.7 for the velocity and 0.3 for the
pressure, were used. The solution process was iterated until the residuals of governing equations
reduced to 1× 10−7. Different grids were tested until mesh-independent results were achieved. Finally,
2,867,541 hexahedral cells were identified as being an accurate, but less computationally intensive,
exercise for obtaining the desired results. The molten metal was treated as a Newtonian, incompressible
fluid, and all the physical properties were assumed to be constant (Tables 2 and 3).

Table 2. Physical properties of the Phases used in the model.

Operating Parameters/Assumptions Value

Slot Nozzle Dimension 3 × 250 mm

Inlet Velocity 2 m/s

Surface Tension of the Melt in Air 0.914 N/m

Copper Substrate Longitudinal speed 0.3 m/s

Turbulence Model SST k-ω

Contact Angle Between Melt and Alumina Refractory 135◦ [13]

Contact Angle Between Melt and Copper Substrate 105◦ [13]

Distance Between Stationary Inclined Refractory
Plane and Moving Belt 0.4 mm
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Figure 4. (a) Simulation domain containing hexahedral meshes (3D), (b) Mesh refinement at the nozzle
outlet, edges and the quadruple region, (c) A closer look on the hexahedral mesh system at the inclined
refractory plane. The dimensions are in meters

Table 3. Operating parameters and assumptions made in the model [2,13].

Property AA6111 Air

Density, ρ
(

Kg
m3

)
2300 1.225

Specific Heat Capacity, Cp

(
KJ

KgK

)
1.177 1.006

Thermal Conductivity, K
(

W
mK

)
104 0.0242

Viscosity, μ
(

Kg
ms

)
0.001338 1.75× 10−5

Molecular Weight,
(

Kg
kmol

)
26.98 28.97

Standard State Enthalpy
(

J
kgmol

)
1.100493e7 -

Reference Temperature (K) 298.15 298.15

Initial Temperature (K) 1000 300

543



Processes 2020, 8, 529

7. Results and Discussion

It was observed through numerical simulation studies that in the HSBC process, the molten metal
tends to laterally contract/shrink while exiting through the nozzle slot outlet, as shown in Figure 5.
Due to this lateral contraction, the weight of the molten metal around the edges increases considerably
as compared to the center. The heavier section accelerates downwards under the influence of gravity,
eventually reaching a high terminal speed before it strikes the moving belt. This concept is further
explained by plotting molten metal velocity, adjacent to the free molten metal/air interface and the
moving belt, against distance in the positive z-direction. As expected, the magnitude of the velocity
around the edges, for both cases, is high as compared to the center. These velocities are computed
5 mm away from the quadruple region (down the ramp), as shown in Figure 6.

 

Figure 5. Molten AA6111 alloy flow in the HSBC process. (a,c) Simulated AA6111 flow showing
metal’s contraction after leaving the nozzle slot. (b,d) Actual Molten AA6111 flow in the HSBC process.

Additionally, it has been observed that the velocity of the molten metal adjacent to the moving
belt is lower than the velocity at the free molten metal/air interface, as shown in Figure 6. This is due to
the friction offered by the moving belt, which tends to slow down the velocity of the molten metal
adjacent to it.

Based on the above discussion, it can be concluded that the amount of molten metal, delivered
towards the edges, is considerably greater in comparison to the center, as shown in Figure 5a,b, owing
to the initial contraction/shrinkage of the molten metal while exiting through the slot nozzle outlet. The
net effect is an inward flow of the molten metal towards the center, as shown in Figure 7. This inward
flow can be very beneficial, as it eradicates the center shrinkage cavity defect, formed otherwise, at low
metal heads in the launder. This topic is further explained in the following paragraphs.
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Figure 6. A plot of the velocity vs. distance (m) from the edge dam moving at 0.3 m/s.

 

 

Figure 7. The inward flow of the molten metal over the moving belt. (a) Simulated; (b) actual.
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7.1. Method to Eradicate Center Cavity Defects

As discussed above, in the HSBC process, employing a double impingement feeding system,
the molten metal streams towards the center. Keeping in mind that at lower metal heads (<50 mm),
the quantity of the molten metal delivered onto the moving belt is also low, as per Equation (1). As
observed experimentally, under the rapid heat extraction rate to the moving belt (i.e., 500 K/sec) [3],
the molten metal passing over the moving belt, tends to solidify almost instantaneously. Since the
molten metal does not have enough time to level off before the completion of solidification, this results
in a strip with a thicker edge, and a comparatively thinner center.

The opposite is true for high metal heads inside the tundish (>50 mm). In this case, the velocity of
the molten metal exiting the refractory nozzle slot outlet is high enough to trigger a strong net inward
flow. Under these conditions, the molten metal will have enough time to fill the center empty region and
to evenly spread throughout the thickness of the strip before the completion of solidification. This helps
to eliminate any center cavity defect and to achieve a uniform thickness of the strip across its width.

V = CD
√

2gh (1)

where V is the velocity, h is the molten metal head inside the tundish, and CD is the coeffecient of discharge.

7.2. Iso-Surfaces of Z-Component of Velocities

The velocity vector can be resolved into three components, i.e., x, y, and z in which the z-velocity
component represents a net inward flow of the molten metal. For these reasons, the isosurfaces of the
z-component of the velocities were evaluated and are represented in Figure 8.

 

 

Figure 8. Cont.
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Figure 8. (a) Molten metal flow in the HSBC process. (b) Iso-velocity (0.2 m/s) along + z-direction.
(c) Iso-velocity (0.3 m/s) along+ z-direction. (d) Iso-velocity (0.4 m/s) along+ z-direction. (e) Iso-velocity
(0.5 m/s) along + z-direction. (f) Iso-velocity (0.6 m/s) along + z-direction.

As expected, the z-component of the velocity vector is maximal during the first instants of the
molten metal contacting the moving belt, owing to the fact that molten metal, while flowing over an
inclined plane, continuously accelerates under the force of gravity. Furthermore, the z-component of
velocity was observed to be high adjacent to the molten metal/air interface, and almost zero near the
moving belt. However, further downstream, over the belt, the z-component of velocity was observed
to be decreasing with distance. This is essentially true, as there is no driving force that could help the
molten metal to further accelerate over a horizontal moving belt.

7.3. Casting of AA6111 without the Use of Side Dams

The friction imposed by a slowly-moving belt reduces the velocity of the molten metal over the
moving belt. As a result, the molten metal tends to spread outwards, as shown in Figure 5c,d. However,
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adjacent to the free interface, the flow of the molten metal is directed towards the center, as is evident
from the z-component of iso-velocities presented above. Depending on the relative magnitude of these
two opposing effects, the molten metal can either flow towards the center, or outwards.

However, by looking at Figure 7, it can be clearly seen that the molten metal is flowing towards
the center. This is very beneficial, as it eliminates the need for side dams to control the outward flow of
the molten metal. The successful casting of the AA6111 strip (Figure 7b), without the aid of side dams
(See Figure 7), experimentally, verifies the numerical modeling predictions.

7.4. Pressure Distribution of Molten Metal and the Generation of a Vortex Near the Triple Point

It is observed via the numerical simulations, that the inclined refractory plane has the tendency to
lessen, or moderate, the final impact of the molten metal on to the moving belt, by converting a part of
the molten metal’s kinetic energy into static pressure, as presented in Figure 9b.

 

 
Figure 9. (a) Dynamic Pressure, Pdyn = 0.5ρ

∑
u2

i , where ρ is the density, u is the velocity. (b) Absolute
pressure (103,281 Pa).

Additionally, the numerical simulations predict a considerably higher absolute pressure (low
velocity) near the quadruple region (Figure 9b), due to sudden decrease in velocity of the molten metal
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by a slow-moving belt. This results in a part of the impinging molten metal climbing upwards, forming
a vortex, as shown in Figure 10. Furthermore, the dynamic pressure, i.e., 1

2ρu2 is observed to be highly
adjacent to the molten melt/air interface. This result is due to the high velocity of the molten metal
near the free surface, as shown in Figure 9a.

Figure 10. The swirling motion of the molten metal at the triple point, after the second impingement.

7.5. The Temperature of the Molten Metal at the Melt/Air Interface

The hydraulic jump on the inclined refractory plane could substantially degrade the surface
quality of the cast product, owing to the generation of free surface waves/discontinuities [14]. As per
the numerical simulations, the temperature over of the melt/air interface is above the liquidus for a
considerable distance, as shown in Figures 11 and 12, even when considering perfect contact of molten
metal with the moving belt, which is held constant at 300 K, by the cooling water under the belt. The
experimental casting of the AA6111 alloy strip was in accord with numerical simulation predictions, in
which the melt/air interface with the belt was observed to be in a liquid state for approximately the
first meter along the moving belt. In this way, any molten metal surface discontinuities had enough
time to settle down by the damping forces generated, before final solidification.

Figure 11. The predicted temperature distribution along the top and bottom faces of the strip along the
casting direction.
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Figure 12. Contour of molten metal temperature in contact with (a) the moving belt and (b) the molten
metal/air interface.

7.6. Characterization of the AA611 Alloy Cast Strip

A microstructural study has been carried out to analyze the quality of the cast strips. The samples
for optical microscopy were ground down to 1200 grid, and then electropolished/etched using 2%
perchloric acid (HClO4) in alcohol. Micro images were taken using a Leica DM IRM optical microscope
(Leica Microsystems, Concord, ON, Canada) and a TM3030 Scanning Electron Microscope (Hitachi,
Pleasanton, CA, US). The microstructure consisted of fine equiaxed grains throughout the thickness of
the strips (see Figure 13). The microstructure also contains porosities at various locations within the
cast strip, very similar to DC cast product. The average grain size of the strip was found to be 85 μm,
as shown in Figure 13.

 

 

Figure 13. Cont.
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Figure 13. (a) Microstructure at the center of the strip (50×); (b) polarized micrograph (50×);
(c) intermetallics observed at the grain boundaries as well as inside the grains (500×).

The inter-metallics are also observed to be distributed inside the grains, as well as at the grain
boundaries of the cast microstructure, as shown in Figure 13c. X-ray micro-analyses revealed
that inter-metallics dispersed throughout the cast structure have the following stoichiometry:
Al17Cu2Mg3Si3, Al20Cu2Mg2.5Si5, whereas the elongated inter-metallics distributed at the grain
boundaries are in the category of Al17(CuMg)2(FeMn)Si2 or Al25(CuMg)4.5(FeMn)Si5 [16,17]. These
phases are clearly observed in the Figure 13c, at a higher magnification of 500×.

7.7. Energy Dispersive Spectroscopy (EDX) Analysis of the Cast AA6111 Alloy

Energy dispersive spectroscopy (EDX) analysis confirmed the presence of Al, Cu, Mg, and Si, in
AA6111 alloy, as shown in Figure 14. Furthermore, there is a negligible macro-segregation of alloying
elements in the cast strip, as shown in the chemical element’s maps, obtained at 15 KV excitation
voltage. This is caused by the rapid solidification of molten AA6111 alloy in the HSBC process, which
resulted in a homogenous microstructure with fine equiaxed grains. Additionally, the elemental maps
provide us with details of the chemical nature of the secondary phases. EDX analyses revealed that
inter-metallics dispersed throughout the cast structure are rich in Cu and Mg, whereas the elongated
inter-metallics found at the grain boundaries are concentrated in Si, Cu, and Mg.

7.8. Surface Roughness Measurement

The surface waviness of the top/bottom sides of the strip was determined using a Nanovea 3D
profilometer (Nanovea, Irvine, California, United States). This technique works on the principle of
measuring the physical wavelength of light and directly relating it to a specific height. This ensures
accurate measurement of surface roughness/finish [20]. The scan length for all the measurements was
25 mm, whereas the scan speed was 0.1 mm/s. Ten random locations were selected for surface roughness
measurements. These locations were randomly selected from all over the strip. The surface profiles
are almost identical to one another. The upper surface roughness lies within the 125 μm (0.125 mm)
range, as shown in Figure 15a, which is considerably smaller than the DC cast product roughness,
i.e., 0.45 mm for AA5182 aluminium alloy (Figure 16a,b) [21]. Additionally, pinholes/blowholes were
not detected on the surface of the cast strip (Figure 16c,d), unlike continuously cast products, which
possessed defects on their surfaces, and require surface grinding prior to hot rolling [21].
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Figure 14. (a) Intermetallics distributed within grains and at grain boundaries (1000×). (b,c) Elemental
maps showing the chemical content of the intermetallics.

Figure 15. 3D profilometry results: (a) strip top surface roughness and (b) strip bottom surface roughness.

552



Processes 2020, 8, 529

 

 

Figure 16. Strand surface morphologies of direct chill of (a) AA3004 (Al-1%Mn-1%Mg), (b) AA5182
(Al-4.5%Mg) [21], (c) surface morphology of AA6111 (Al-1.1%Si-1%Mg-0.45%Mn), 250 mm wide strip
produced via the HSBC process. (d) Surface morphology of AA6111 (Al-1.1%Si-1%Mg-0.45%Mn),
covering the central 80 mm length of the strip produced via the HSBC process.

The strip bottom surface roughness was also measured, and lay in the 20 μm range, as shown in
Figure 15b. As evidenced by the results of the line scans, the bottom surface quality is much superior
to the top surface. This fact is credited to the fact that the molten metal is in direct contact with the
moving belt, and conforms to its shape, during the solidification process. On the other hand, the top
surface of the cast strip is exposed to the atmosphere and is affected by disturbances in the flows of the
molten metal.

8. Conclusions

This present paper discusses the casting conditions and analyses results on AA6111 alloy strips,
250 mm wide and 6 mm thick, produced via the HSBC process. Computational fluid dynamics (CFD)
analyses were performed to examine molten AA6111 flows in the HSBC process so as to achieve
uniform thickness and a good surface finish of the cast strip.

The following conclusions were drawn, using the double impingement with no side dams
condition, for the liquid metal feeding system.

1. Under non-isokinetic feeding, the surface quality of the cast AA6111 alloy strip is not compromised
by the generation of surface disturbances.

2. The AA6111 alloy molten stream shrinks from its two edges. This build-up of the mass around
the corners eventually reaches a high terminal velocity. The net inward flow of the molten metal
resulted, which filled the center shrinkage depressions.

3. It was also determined that the inclined refractory plane of the double-impingement metal
feeding system has the tendency to lessen, or moderate, the final impact of molten metal with
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the moving belt, as compared to a single-impingement metal feeding system, where the molten
metal encounters an abrupt change in direction by the moving belt.

4. The swirling flow of the molten metal in an immediate vicinity of the triple point is due to the
sudden vertical deceleration of the molten metal by the moving belt. However, the meniscus at
the triple point was still observed to be stable and non-fluctuating.

5. The temperature of the molten metal within the immediate vicinity of the free surface, along
the entire length of the simulation domain, remains above the liquidus temperature. Thus, any
molten metal discontinuities formed at the free molten metal/air interface had enough time to be
damped, prior to solidification.
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Abstract: Tire cord steel is widely used in the tire production process of the vehicle manufacturing
industry due to its excellent strength and toughness. Titanium nitride (TiN) inclusion, existing in tire
rod, has a seriously detrimental effect on the fatigue and drawing performances of the tire steel. In
order to control its amount and morphology, the precipitation behavior of TiN during solidification in
SWRH 92A tire cord steel was analyzed by selected thermodynamic models. The calculated results
showed that TiN cannot precipitate in the liquid phase region regardless of the selected models.
However, the precipitation of TiN in the mushy zone would occur at the final stage during the
solidification process (at solid fractions greater than 0.98) if the LRSM (Lever-rule model was applied
for the N and Scheil model for Ti) or Ohnaka models (without considering the effect of carbon on
secondary dendrite arm spacing (SDAS)) were adopted. For the Ohnaka model, in the case when the
effect of carbon on SDAS was considered, TiN would probably precipitate in the solid phase zone
rather than precipitate in the liquid phase region or mushy zone.

Keywords: tire cord steel; TiN inclusion; solidification; segregation models

1. Introduction

Tire cord steel is a kind of high-carbon steel and thus possesses high strength and toughness.
Therefore, it is widely used in the production of tires for cars and airplanes [1]. With the development
of lightweight materials, the strength level of tire cord steel has become a significant factor to be
considered. The main types of tire cord steel were SWRH 62A and SWRH 67A (about 1750 MPa) before
the 1990s, and then after that SWRH 72A (about 1870 MPa). In the 21st century, the hypereutectoid tire
cord steel (SWRH 82A) dominated the market due to its higher strength level [2,3]. Nowadays, the
research on ultra-high strength level steel, such as SWRH 92A tire cord steel, has been drawing the
increasing attention of manufacturing engineers.

Non-metallic inclusions, such as oxide-or Ti-bearing inclusions, existing in tire cord steel have
serious detrimental effects on the drawing performance and fatigue properties. Furthermore, the
properties of inclusions, such as size, composition, amount, and morphology, play a key role on the
quality of steel [4,5]. At present, the damage problems of brittle oxide inclusions for steel can be
better controlled by morphology-controlling technology. Nevertheless, for Ti-bearing inclusions, due
to their non-deformable characteristic, they could cause a serious detrimental effect on the drawing
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performance, which would reduce the life of high-carbon steels, especially for the SWRH 82A and
SWRH 92A tire cord steels. Titanium nitride (TiN), with high hardness and melting point, would cause
filament breaks during wire drawing and rope stranding or deteriorate the fatigue properties of steels.
Furthermore, TiN inclusion has more harmful effects on the material processing than those of oxide
inclusions. For example, a TiN inclusion of 6 μm would cause a similar fatigue performance to an
oxide inclusion of 25 μm [6]. Titanium carbonitride (TiCxN1-x, x represents the molar ratio of TiC in
TiCxN1-x), a continuous solid solution formed via replacing partial moles of N in TiN crystal with C has
similar properties to those of TiN. It also has a detrimental effect on the fatigue performance and, as a
result, leads to wire breaking during the drawing and stranding processes [7]. It has been reported [8]
that the molar ratio of TiC increases with increasing strength of tire core steel, which would cause a
more seriously destructive effect. However, the value of x in TiCxN1-x is still very small [8]. In other
words, the main composition of Ti-bearing inclusion precipitated in tire cord steel is still TiN. Thus, it
is important to control TiN inclusion to improve the performance of SWRH 92A tire cord steel.

Many researchers [2–4,9–14] have reported the precipitation behaviors of TiN inclusion in different
types of steels over the decades. Jiang et al. [4] found that the solidification segregation ratio of Ti
was far greater than that of N, and reported that TiN inclusion would not precipitate until the solid
fraction reached 0.9 when using SWRH 82A tire cord steel. Cai et al. [9] showed that the precipitation
of TiN could only occur in the solid–liquid two-phase region where the solid fraction was greater
than 0.95, and the particle size of TiN decreased with increasing cooling rate. Similar results were
also reported in other references [11–13]. However, Liu et al. [14] demonstrated that TiN would not
precipitate in the liquid phase or mushy zone, but in austenite (γ-Fe). The precipitation temperature of
1598 K (below the solidus temperature in this reference) was calculated. Nowadays, in the industrial
production of SWRH 92A tire cord steel, TiN inclusion always appears in samples even though the
concentration of N and Ti are controlled at extremely low levels (0.0043 mass% and 0.0005 mass% for N
and Ti, respectively). Therefore, the precipitation behavior of TiN in SWRH 92A tire cord steel remains
a hard problem to be solved. In order to make the mechanism of TiN precipitation clearer, a series
of relevant studies were initiated in this paper, to show guidance for the development of ultra-high
strength grade steels.

2. Material and Equilibrium Solubility Product

The chemical composition of SWRH 92A tire cord steel studied (from a Chinese steel mill) is
shown in Table 1. Elements O and N were analyzed by the ONH analyzer (TC500C, LECO Corporation,
St. Joseph, MI, American), elements C and S were analyzed by the CS Analyzer (Model EMIA-820V),
and the contents of other elements were analyzed by ICP technology (IRIS Advantage ER/S, Thermo
Elemental Corporation, Waltham, MA, American). Content of C was about 0.9203 mass%.

Table 1. Chemical composition of studied SWRH 92A tire cord steel (mass%).

Elements Si P S O Mn N Ti

Content/mass% 0.18 0.018 0.0064 0.0018 0.51 0.0043 0.0005

To evaluate the stage (liquid phase, mushy zone, or solid phase) at which the TiN inclusion would
precipitate in the steel, the liquidus temperature (TL) and solidus temperature (TS) as well as the
equilibrium solubility product of N and Ti were first calculated.

Equations (1) and (2) were employed to estimate TL and TS [15], respectively,

TL = TFe −
∑

ΔtL ·w[i] (1)

TS = TFe −
∑

ΔtS ·w[i] (2)
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where TFe was the melting point of pure Fe, 1811 K; ΔtL and ΔtS were the reduced temperature values
for element i when the mass fraction was 1 mass%, K, the corresponding values can be acquired
from Table 2 [15]; w[i] represented the mass fraction of element i, 1 mass% was considered as the unit.
Combining Table 1, Table 2, Equations (1) and (2), the values of TL and TS can be calculated, i.e., TL =

1748 K, TS = 1636 K.

Table 2. Values of ΔtL and ΔtS in Equations (1) and (2) [15], respectively.

Elements C Si P S O Mn N Ti

ΔtL 65 8 30 25 80 5 90 20
ΔtS 175 20 280 575 160 30 - 40

The chemical reaction for the formation of TiN in molten steel can be expressed by Equation (3),

[Ti] + [N] = TiN(s) (3)

Standard Gibbs free energy change ΔGθ3 for Equation (3) can be derived from Equations (4)–(7) [8,16],

Ti(s) = Ti(l) ΔGθ4 = 15500− 8T (J/mol) (4)

Ti(l) = [Ti] ΔGθ5 = −69500− 27.28T (J/mol) (5)

1
2

N2(g) = [N] ΔGθ6 = 10500 + 20.37T (J/mol) (6)

Ti(s) +
1
2

N2(g) = TiN(s) ΔGθ7 = −334500 + 93T (J/mol) (7)

Therefore, the expression of ΔGθ3 can be obtained,

ΔGθ3 = −ΔGθ4 − ΔGθ5 − ΔGθ6 + ΔGθ7
= −291000+107.91T (J/mol)

(8)

The reaction equilibrium constant Kθ3 for Equation (3) is shown as follows:

Kθ3 =
aTiN

a[Ti] · a[N]
=

1
w[Ti] ·w[N] · f[Ti] · f[N]

(9)

where aTiN, a[Ti], and a[N] denote the activities of TiN, Ti, and N in molten steel, respectively, herein,
aTiN = 1; w[Ti] and w[N] denote the mass fractions of Ti and N in molten steel, respectively; f[Ti]
and f[N] denote the activity coefficients of Ti and N, which can be estimated by Equations (10) and
(11) [13], respectively.

lg f[Ti] = lg f 1873 K
[Ti] · (2557

T
− 0.365) (10)

lg f[N] = lg f 1873 K
[N]

· (3280
T

− 0.75) (11)

where lg f 1873 K
[Ti]

and lg f 1873 K
[N]

are the interaction coefficients of Ti and N at 1873 K, which can be
calculated by Equations (12) and (13) [7–9], respectively:

lg f 1873 K
[Ti] =

∑
ei

Ti ·w[i] (12)

lg f 1873 K
[N]

=
∑

ei
N ·w[i] (13)
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Due to the fact that the mass fraction of Fe is more than 90 mass% in molten steel, then the impact
of second-order interaction coefficients can be ignored. Thus, the first-order interaction coefficients (as
shown in Table 3) are used only during the calculation process [15,17].

Table 3. First-order interaction coefficients ei
j of solute elements in molten steel at 1873 K [15,17].

ei
j (i→) C Si P S O N Mn Ti

ei
Ti −0.165 0.05 −0.0064 −0.11 −1.8 −1.8 0.0043 0.013

ei
N 0.13 0.047 0.045 0.007 0.05 0 −0.021 −0.53

According to Equations (10)–(13), one can obtain,

lg f[Ti] + lg f[N] =
24.3832

T
− 0.0395 (14)

For Equation (9), take the logarithm of 10 on both sides at the same time,

lgKθ3 = −(lg f[Ti] + lg f[N]) − (lgw[Ti] + lgw[N]) (15)

lgKθ3 =
ln Kθ3
2.303

= − ΔGθ3
2.303RT

=
15204.6

T
− 5.6383 (16)

Taking the equilibrium solubility product of Ti and N as Kequ
3 (Kequ

3 = w[Ti] ·w[N]), and combining
Equations (14)–(16), one can obtain,

lgKequ
3 = −15229

T
+ 5.6778 (17)

By substituting T = 1636 K and T = 1748 K into Equation (17), respectively, the relationship
between w[Ti] and w[N] can be obtained, as shown in Figure 1. Figure 1 shows that concentrations of
N and Ti in the sample, see Point A in this figure, are much lower than those at the liquidus phase
and solidus phase temperatures, which indicates that TiN will not precipitate in the liquid phase or
mushy zone.

 

W

W

Figure 1. Required solubility product of N and Ti for the precipitation of TiN inclusion in SWRH 92A
tire cord steel.
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3. Thermodynamic Analysis

3.1. Segregation Models

The above results shown in Figure 1 are based on the uniform distributions for elements N and Ti
in molten steel without considering micro-segregation. However, due to the decrease in solubility of
solute elements N and Ti during the solidification process, micro-segregation will occur inevitability,
which will further lead to the precipitation of TiN. With respect to this issue, several micro-segregation
models were proposed to describe the concentration changes of solute elements as a function of the
solid fraction, as listed in Table 4 [14].

Table 4. Micro segregation models for solute elements during the solidification process [14].

Models Equation Conditions No

Lever-rule w[i]/w0
[i]
= [1− (1− ki)g]−1 Complete diffusion both

in liquid and γ-Fe phase (1)

Scheil model w[i]/w0
[i]
= (1− g)ki−1

Complete diffusion in
liquid and no diffusion

in γ-Fe phase
(2)

Basic equations w[i]/w0
[i]
= [1− (1−φki)g](ki−1)/(1−φki)

Complete diffusion in
liquid and finite

diffusion in γ-Fe phase

(3)

Brody–Fleming model φ = 2α (4)
Ohnaka model φ = 4α/(1 + 4α) (5)

Clyne–Kurz model φ = 2α(1− e− 1
α ) − e− 1

2α (6)

where w[i] and w0
[i]

denote the instantaneous and initial concentration of solute elements (N
and Ti) in the liquid phase zone during the solidification process, respectively; ki is the equilibrium
distribution coefficient between liquid and γ-Fe phase, herein kC = 0.34, kN = 0.48, and kTi = 0.30 [18–20];
g represents the solid fraction; φ (in the range of 0–1) denotes the inverse diffusion coefficient and α is
the Fourier parameter.

3.2. Usage of the LRSM Model

As shown in Table 4, it can be seen that the Lever-rule model is obtained based on the assumption
that solute elements are completely diffused in both liquid and γ-Fe phases; however, the Scheil model
neglects such diffusion in the γ-Fe phase, which means the solute elements are completely diffused in
liquid and have no diffusion in the γ-Fe phase. Due to the fact that the diffusion coefficient of N is
much larger than that of Ti in the γ-Fe phase, as comparison of Equations (18) and (19) indicates [18,21],
and more obviously supported by Figure 2, so, it is reasonable to assume that solute element N is
completely diffused in the γ-Fe phase and the diffusion in the γ-Fe phase for Ti is neglected. That is to
say, the Lever-rule model is applied for the N and Scheil model for Ti. In the current paper, this model
combination was named as the LRSM model. Then the corresponding concentration expressions of
solute elements N and Ti can be described by Equations (20) and (21), respectively.

DγN = 0.91 exp(−168600/RT) (18)

DγTi = 0.15 exp(−250000/RT) (19)

wact
[N]

=
w0
[N]

1− (1− kN)g
(20)

wact
[Ti] = w0

[Ti](1− g)kTi−1 (21)
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Figure 2. Diffusion coefficients of solute elements N and Ti in the γ-Fe phase at different temperatures.

Prior to analyzing the solidification process of molten steel, the actual solubility products of N and
Ti should be calculated, which can be considered as Qact

3 (Qact
3 = wact

[N]
·wact

[Ti]
), as shown by Equation

(22),

Qact
3 =

(1− g)kTi−1

1− (1− kN)g
·w0

[N]
·w0

[Ti] (22)

In addition, the relationship between solidification front temperature (TL-S) and solid fraction (g)
can be expressed by Equation (23) [22],

TL-S = TFe − TFe − TL

1− g TL−TS
TFe−TS

(23)

At the same time, by substituting Equation (23) into Equation (17), the relationship between
lgKequ

3 and solid fraction (g) can also be obtained. As is well known, if the actual solubility product
reaches the equilibrium value (or lgQact

3 ≥ lgKequ
3 ), TiN will precipitate. The values of lgKequ

3 and lgQact
3

(calculated by LRSM model) are depicted in Figure 3, from which it can be easily seen that TiN will
only precipitate at the very late stage of the solidification process, with a solid fraction bigger than
0.9966. When substituting 0.9966 into Equation (23), the solidification front temperature (TL-S = 1637 K)
can be easily deduced, which is almost the same as the theoretical solidus temperature (TS = 1636 K) of
the studied tire cord steel. This result suggests that TiN will not precipitate in the mushy zone until
nearly close to complete solidification.

3.3. Usage of Ohnaka Model on Considering the Effect of Carbon on SDAS L

The above analytical results (Figure 3) were obtained based on the assumption that N is completely
diffused and Ti has no diffusion in the γ-Fe phase. In fact, both N and Ti would diffuse to some extent
in the γ-Fe phase, as shown in Equations (18) and (19), respectively.
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K
Q K

Q

Figure 3. Comparison of equilibrium solubility product with the calculated value obtained by the
LRSM (Lever-rule model was applied for the N and Scheil model for Ti) model.

In order to achieve a more realistic representation on the precipitation of TiN in SWRH 92A tire
cord steel, the finite diffusion of the solute elements in the γ-Fe phase are now considered. The basic
concentration expression is shown in Equation (24)). Herein, it can be easily found that if φ equals to
zero, Equation (24) will change into the Scheil model; while if φ equals to one, Equation (24) will change
into the Lever-rule model, instead. Furthermore, if the Brody–Fleming model [23] is adopted (as seen
in Equation (25)), φ will be not physically reasonable when the Fourier parameter α is bigger than 0.5;
the Clyne–Kurz model [24] lacks the actual physical meaning for φ if Equation (26) is used. In order to
solve those problems, Ohnaka [25] presented a simple modification of φ based on comparison with the
approximate solution of the diffusion equation, as shown in Equation (27) [25], which showed better
agreement with the experimental data of Matsumiya et al. [26] than did predictions using Equation (25).
Therefore, the Ohnaka model was used in this paper. The Fourier parameter α involves the diffusion
coefficient Dγi (cm2/s), SDAS L [cm, the unit of L was converted from μm (calculated by Equations (29)
and (31)) to cm for the calculation in Equation (28), corresponding to the unit of Dγi ], and the local
solidification time τ (s), as seen in Equation (28) [27],

w[i]/w0
[i] = [1− (1−φki)g](ki−1)/(1−φki) (24)

φ = 2α (25)

φ = 2α(1− e− 1
α ) − e− 1

2α (26)

φ = 4α/(1 + 4α) (27)

α =
4Dγi τ

L2 (28)

The expressions of Dγi for solute elements N and Ti are shown in Equations (18) and (19),
respectively; SDAS L (herein, the unit of L calculated by Equation (29) was μm) is related with the
cooling rate RC (K/s) and the carbon concentration w[C], as expressed by Equation (29) [28]; the local
solidification time τ (s) was calculated by Equation (30) [21,29].

L = 143.9 ·RC
−0.3616 ·w[C]

(0.5501−1.996·w[C]) (w0
[C]
> 0.15) (29)
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τ =
TL − TS

RC
(30)

By substituting Equations (27)–(30) and the equilibrium distribution coefficients and diffusion
coefficients of different solute elements into Equation (24), the corresponding segregation ratio of
different solute elements during the solidification process can be calculated, as shown in Figure 4.
From Figure 4 it can be seen that the segregation ratio of both N and Ti increased with the increasing
solid fraction, and the final segregation ratios almost equaled each other although the cooling rates
were different, which suggests that the effect of the cooling rate can be ignored. However, it can also be
seen that the cooling rate has a certain effect on the intermediate segregation process for Ti, the faster
the cooling rate, the larger the segregation ratio would be. As for N, however, the effect can be ignored.
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Figure 4. Effects of cooling rates on the segregation ratios of solute elements N and Ti during the
solidification process (the results obtained by the Lever-rule model are given as a reference).

What is more, when comparing with the results obtained by the Lever-rule model, it is surprising
to find that the final segregation ratio almost kept the same for both N and Ti. The possible reasons
may be explained as follows. When the segregation of solute element carbon was considered, the
concentration of carbon would increase during the solidification process (the plot was not given in this
paper), then the value of SDAS L would decrease (according to Equation (29) in the current condition),
which may accelerate the diffusion velocity of solute elements between the liquid and the γ-Fe phases
and even arrive complete. Besides, when the cooling rate became slower, the diffusion of solute
element between liquid and γ-Fe phases would be more complete due to the adequate time, as shown
in Figure 5, which makes the inverse diffusion coefficient closer to one and the results are similar to the
case obtained by the Lever-rule model. In addition, it can also be seen from Figure 5 that the inverse
diffusion coefficients of N almost equaled one during the total solidification process at the different
cooling rates, so the results were almost the same as those obtained by the Lever-rule model. As for Ti,
the inverse diffusion coefficients gradually increased with increasing solid fraction. The slower the
cooling rate, the larger the inverse diffusion coefficients would be. However, the final values almost
equaled one for the four different cooling rates (0.1, 1, 10, and 100 K/s). That is to say, the Ohnaka
model applied will change into the Lever-rule model at the end of the solidification process.

In addition, when the current Ohnaka model (considering the effect of carbon on SDAS L) was
applied, precipitation of TiN during the solidification process would not happen because the value of
the actual solubility product lgQ′act

3 was much smaller than that of the equilibrium value lgKequ
3 , as can

be seen in Figure 6. The current results clearly indicate that TiN cannot precipitate in the solid–liquid
two-phase region (mushy zone).

564



Processes 2020, 8, 10

φ 
φ 

φ φ 

φ

φ

φ

φ
φ

φ 
φ 
φ 
φ 
φ
φ
φ
φ

φ

Figure 5. Inverse diffusion coefficients of solute elements N and Ti with different cooling rates.
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Figure 6. Comparisons of equilibrium solubility product with the calculated value obtained by the
Ohnaka model (considering the effect of carbon on SDAS L).

3.4. Use of the Ohnaka Model without Considering the Effect of Carbon on SDAS L

As mentioned above, when considering the effect of carbon on SDAS L, TiN will not precipitate
during the solidification process. However, in other references [13,22,30] on analyzing the segregation
ratio of different solute elements, the SDAS L (herein, the unit of L calculated by Equation (31) is μm)
was calculated as a function of the cooling rate RC (K/s) only, see Equation (31),

L = 688 ·RC−0.36 (31)

Similarly, by substituting Equations (27), (28), (30), and (31) and the equilibrium distribution
coefficients and diffusion coefficients of different solute elements into Equation (24), the corresponding
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segregation ratios of the solute elements N and Ti during the solidification process can be obtained, as
shown in Figure 7. From Figure 7 it can be seen that both N and Ti show a strong segregation tendency
especially in the latter period and in comparison, the segregation ratio of Ti is much bigger than that
of N. In addition, the effect of cooling rate on the segregation ratio can be nearly ignored (the plot is
not given in the current paper). Therefore, it is possible for TiN to precipitate even though the initial
concentrations of N and Ti are very low, as shown in Figure 8, and in which the critical solid fraction
is a little smaller than that obtained by the LRSM model (0.98 vs. 0.9966). That is to say, TiN can
precipitate a little earlier. Anyhow, TiN is only generated at the very late stage closing to the complete
solidification of the molten steel.

 

W
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Figure 7. Segregation ratio of solute elements N and Ti during the solidification process when Equation
(31) was used with a cooling rate of 10 K/s.
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Figure 8. Comparison of equilibrium solubility product with the calculated values obtained by the
Ohnaka model (without considering the effect of carbon on SDAS L).
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Similar to the previous calculation, another surprising phenomenon is also found in this case.
The segregation ratios of solute elements N and Ti are nearly the same as those obtained by the Scheil
model, as shown in Figure 9. As mentioned above, when the inverse diffusion coefficient φ equals
zero, Equation (24) will turn into the Scheil model. In the current discussion, φ nearly equals zero for
both N and Ti, as seen in Figure 10. That is to say, both N and Ti almost completely diffuse in the liquid
and have no diffusion in the γ-Fe phase in this situation. The possible reason for this result may be due
to characteristics of the microstructure (mostly likely due to the much larger SDAS L) between the
liquid and solid phases, which makes the inverse diffusion of solute elements insufficient.
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Figure 9. Comparison of segregation ratio of solute elements N and Ti when adopting the Ohnaka
(without considering the effect of carbon on SDAS L) and Scheil models.

φ
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φ

Figure 10. Inverse diffusion coefficients of solute elements N and Ti when adopting the Ohnaka model
(without considering the effect of carbon on SDAS L).

4. Conclusions

According to the calculated results, it is possible to summarize the precipitation behavior of TiN
inclusion in SWRH 92A tire cord steel during the whole solidification process, as follows:

(1) Precipitation of TiN will not occur in the liquid phase region regardless of the selected micro-
segregation models.

(2) When adopting the LRSM and Ohnaka (without considering the effect of carbon on secondary
dendrite arm spacing (SDAS L)) models, TiN will precipitate in the mushy zone at the very late
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stage of the solidification process, with solid fractions larger than 0.9966 and 0.98, respectively.
When considering the effect of carbon on SDAS L for the Ohnaka model, TiN will not precipitate
in both the liquid phase and mushy zone.

(3) Results of different segregation models show that the Ohnaka model (considering the effect of
carbon on SDAS L) is similar to the Lever-rule model at the very late stage during the solidification
process; however, for the case without considering the effect of carbon on SDAS L, the result is
similar to the Scheil model.

(4) Due to the fact that different segregation models may lead to different results, more attention
should be paid to selecting the appropriate model or developing new models to analyze the
actual segregation phenomena. Besides, further experimental work and theoretical analysis
to understand in depth the precipitation behavior of TiN in SWRH 92A tire cord steel will be
required in the future.
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Abstract: The stability of chromium in stainless steel slag has a positive correlation with spinel particle
size and a negative correlation with the calcium content of the spinel. The effect of heating time on
the precipitation of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system was investigated
in the laboratory. Scanning electron microscopy with energy-dispersive and X-ray diffraction were
adopted to observe the microstructure, test the chemical composition, and determine the mineral
phases of synthetic slags, and FactSage7.1 was applied to calculate the crystallization process of the
molten slag. The results showed that the particle size of the spinel crystals increased from 9.42 to
10.73 μm, the calcium content in the spinel crystals decreased from 1.38 at% to 0.78 at%, and the
content of chromium in the spinel crystal increased from 16.55 at% to 22.78 at% with an increase
in the heating time from 0 min to 120 min at 1450 ◦C. Furthermore, the species of spinel minerals
remained constant. Therefore, an extension in the heating time is beneficial for improving the stability
of chromium in stainless steel slag.

Keywords: stainless steel slag; heating time; Cr2O3; spinel; crystal size

1. Introduction

Stainless steel slag (SS slag) is a solid waste discharged from the production of stainless steel, and
includes electric arc furnace (EAF) slag and argon-oxygen decarbonization furnace (AOD) slag [1].
The amount of SS slag is growing with the increase in demand for stainless steel. However, the toxicity
of SS slag is extremely high due to its Cr6+ content [2,3], and untreated SS slag threatens the ecological
environment and human health [4–6]. Thus, it improving the chromium stability in SS slag is urgent.
Chromium spinels not only prevent the leaching of chromium, but can also inhibit the oxidation of
Cr3+ [7], which is regarded as an ideal mineral phase for stabilizing chromium.

Thus far, much work has been focused on the relationship between spinel precipitation and
chromium stability in order to prove that the stability of chromium can be enhanced by increasing
spinel precipitation. Zeng et al. [8] found that when the size of the spinel crystals in the slag was
increased from 5.77 μm to 8.40 μm, the concentration of the Cr (VI) leaching decreased from 0.1434
mg/L to 0.0021 mg/L. Zhao et al. [9] reported the same phenomenon. When the size of the was spinel
increased from 6.0 μm to 17.3 μm, the concentration of the Cr (VI) leaching decreased from 1.24 mg/L to
<0.01 mg/L. Therefore, the size of the spinel crystal plays an important role in the stability of chromium
in steelmaking slags containing chromium. Regarding the size of the spinel crystal, Wang et al. [10]
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adopted the addition of B2O3 to promote an increase in the spinel size from 7.87 μm to 12.72 μm and
the concentration of chromium from 29.69% to 81.90%. Zhang et al. [11] reported that when the content
of Al2O3 was increased from 0 to 15%, the spinel size increased from <20 μm to 23.50 μm. However,
most of these investigations were mainly focused on the effect of additions to the spinel characteristics,
and there have been few studies on the influence of heat treatment on the precipitation behavior of
spinels in SS slag.

In this paper, the effect of heating time on the precipitation of spinels in
Ca-SiO2-MgO-Al2O3-Cr2O3-FeO was investigated based on characterizations of synthetic samples
through scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS,
NanoSEM400, FEI, Hillsboro, OR, USA), x-ray diffraction (XRD, X Pert Pro MPD, PANalytica,
Almelo, The Netherlands), Image-Pro Plus 6.0 (IPP, Media Cybernetics, MD, USA), and FactSage 7.1
(GTT-Technologies, Aachen, Germany).

2. Experimental Process

The slag system was CaO-SiO2-MgO-Al2O3-Cr2O3-FeO and the component of the slag sample
is shown in Table 1. The raw materials included CaO, SiO2, MgO, Al2O3, Cr2O3, and FeC2O4·2H2O
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). First, the raw materials were weighed
based on Table 1 and then mixed. 0.10 wt% H3BO3 (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) was added into the mixtures to prevent the pulverization of the synthetic samples. Second,
mixtures weighing 200 g were put into a molybdenum crucible in the carbon-tube furnace. The furnace
was warmed to 1600 ◦C at a heating rate of 10 ◦C/min under a nitrogen atmosphere and held for
30 min. Then, the temperature was decreased to 1450 ◦C at a rate of 20 ◦C/min, and the slag samples
were taken out from the furnace and quenched with water to obtain synthetic slag samples at different
sampling times, as shown in Figure 1. The sampling times were 0, 5, 10, 20, 30, 40, 60, 80, 100, and
120 min. Finally, the slag samples were ground, polished, and sprayed with gold powder.

Table 1. The chemical composition of stainless-steel slag, g.

CaO SiO2 MgO Al2O3 Cr2O3 FeO CaO%/SiO2%

46.67 33.33 8.00 6.00 6.00 8.00 1.40

 
Figure 1. The heating procedure adopted in the experiments.

The characterization of the samples was conducted with SEM-EDS and XRD. The size of the
spinel crystals was measured with Image-Pro Plus 6.0 (IPP). According to the Scheil-Gulliver equation,
FactSage7.1 was applied to simulate the phase transformation and precipitation of the spinel phase
during solidification of the molten slag. The specific setting conditions are shown as follows.

Database: FactPS, FToxide, FSstel;
Compound setting: idea gas, pure solid;
Solution phase setting: FToxid-SLAGA, FToxid-SPINA, FToxid-MeO_A, FToxid-bC2SA,

FToxid-aC2SA, FToxid-Mel_A.
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The FToxid-SLAGA was set as the target phase of Scheil-Gulliver cooling. The setting temperature
was 2000 ◦C and the solidification step was 10 ◦C. The calculation process was terminated automatically
when the target phase completely disappeared. The results were exported as pictures and edited with
FactSage7.1.

3. Experimental Results

3.1. Mineral Phase of CaO-SiO2-MgO-Al2O3-Cr2O3-FeO System

The XRD diffraction spectrum of the slag sample at different sampling times is shown in
Figure 2. The intensity and position of the diffraction peaks were identical, indicating that
the four slag samples contained the same mineral phase, namely, spinel and dicalcium silicate.
In other words, the mineral phase structures remained constant as the heating time increased. Thus,
prolonging the heating time at 1450 ◦C had no adverse effect on the mineral phase structures of the
CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system.

♥−

♣−

♥ ♥ ♥♥

♣♣♣

θ

♣

♥

Figure 2. Effect of heat treatment time on the XRD diffraction pattern of the slag samples at 1450 ◦C.

The microstructures of the slag samples observed by SEM-EDS are shown in Figure 3. There were
three kinds of mineral phases in all samples: (1) the white and regularly shaped phase is the spinel
crystal, (2) the black striped phase is the α-C2S phase, and (3) the hoar phase is the glassy matrix.
The proportion of spinel phase with respect to the other phases remained nearly stable for all of the
executed treatments.

  
(a) 0 min (b) 10 min 

Figure 3. Cont.
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(c) 30 min (d) 120 min 

Figure 3. Effect of heating time on the microstructure of the slag samples at 1450 ◦C.

3.2. Behavior of Spinel Crystal in CaO-SiO2-MgO-Al2O3-Cr2O3-FeO System

The chemical compositions of spinel are shown in Table 2. When the heating time was prolonged
from 0 min to 120 min, the calcium content decreased gradually from 1.38 at% to 0.68 at% and the
chromium content increased from 16.55 at% to 22.78 at%. The content of calcium and iron showed a
downward trend in spinel crystals. Nevertheless, the magnesium content showed an upward trend.
As shown in Figure 4, the size of the spinel crystals increased from 9.42 μm to 10.73 μm when increasing
the heating time from 0 min to 120 min, and the increase in the spinel size reached 13.91%.

Table 2. Chemical composition of the spinel crystals in Figure 4. Unit = atom%.

Heating Time Cr O Fe Mg Al Ca

0 min 16.55 67.09 4.84 6.96 3.17 1.38
10 min 20.56 60.91 5.18 8.28 3.76 1.32
30 min 20.94 61.27 4.65 8.31 3.55 1.22
120 min 22.78 60.22 4.25 8.44 3.61 0.68

Cao et al. [12] showed that the size of the spinel crystals increased from 10.8 μm to 24.8 μm during
the cooling process from 1350 ◦C to 1250 ◦C and the increase reached 129% with respect to the initial
size of the spinel crystals. The increase reached 108% (4.25 μm to 8.88 μm), with the silicon content
increasing from 5 wt% to 15 wt% [13]. Moreover, with the addition of FeO increasing from 2 wt% to
20 wt%, the increase in size reached 46% [8]. Compared with the literature data, the increase in the
spinel size was moderate in the case studied here.

Figure 4. Effect of heat treatment time on the size of the spinel crystals at 1450 ◦C.
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4. Discussion

4.1. Thermodynamic Considerations

The crystallization process of the molten slag is composed of nucleus formation and crystal growth,
and is also determined by thermodynamic and kinetic factors. As shown in Figure 5, according to the
calculation results of the solidification process through FactSage7.1, there are three phases including
the liquid slag, spinel crystal, and α-C2S in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system at 1450 ◦C.
Combined with the preparation of synthetic slag, the nucleus could not form in the liquid phase, which
transforms directly into the glassy matrix, whereas spinel crystal and α-C2S were high-temperature
precipitated phases in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system at 1450 ◦C. The heating time only
affected the diffusion of the particles, and had little effect on mineral composition. These observations
can explain why the mineral phases remained constant with the extension of heating time at 1450 ◦C.

Figure 5. Theoretical analysis of the slag solidification process and selection of temperature.

Spinel crystal is the main mineral phase for improving chromium stability in the
CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system [14–16]. Additionally, the reactions that form spinel crystals
can occur between the MgO, Al2O3, Cr2O3, CaO, and FeO in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO
system. The reactions are shown in Equations (1)–(5).

(MgO) + (Cr2O3) = MgO·Cr2O3(s) (1)

(FeO) + (Cr2O3) = FeO·Cr2O3(s) (2)

(MgO) + (Al2O3) = MgO·Al2O3(s) (3)

(FeO) + (Al2O3) = FeO·Al2O3(s) (4)

(CaO) + (Cr2O3) = CaO·Cr2O3(s) (5)

MgCr2O4 formed by MgO and Cr2O3 is the most stable phase at high temperature [15]. During
the heating period, iron and calcium elements that evolve into spinels through the isomorphic
substitution are gradually replaced by magnesium. Consequently, the magnesium content increases,
while the contents of iron and calcium decrease. Furthermore, chromium stability is affected by
calcium content to a large extent [15]. The silicate microcrystals containing calcium are adsorbed
into the spinel lattice during spinel growth due to the formation of a finite solid solution with
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MgO·Cr2O3 [17]. Compared with other silicate mineral phases, dicalcium silicate is more soluble
in water. The dissolution of chromium increases significantly as the content of dicalcium silicate in
chromium spinels increases [17,18]. Thus, prolonging the heating time can reduce the content of
dicalcium silicate in chromium spinels and improve their stability.

4.2. Precipitation and Growth of Spinel Crystals

The precipitation of spinel crystals includes nucleation and crystal growth. The slag system
satisfies the basic requirements of supersaturation and supercooling for crystal nucleation and the
essence of crystal nucleus growth is the transfer of atoms and other particles in liquid to the surface
of the crystal nucleus. The composition of spinel crystals is obviously different from the chemical
composition of slag and its growth rate depends on the long-range diffusion of solute atoms, which
is essential to ensure the continuous growth of crystal [19,20]. For a slag system under constant
temperature, the chemical reaction merely occurs between the free oxides such as (FeO), (Cr2O3),
(MgO), (Al2O3), (CaO) based on slag molecular theory. The ability of molecules in slag to carry
out chemical reactions is closely related to their activity, and the concentration of free oxides is the
activity. Therefore, the reaction rate of Equations (1)–(5) are related to the concentrations of (FeO),
(Cr2O3), (MgO), (Al2O3) and (CaO). As shown in Figure 6, various spinel crystals are precipitated
when the slag with the concentration of solute atom C0 is cooled to the temperature T. Furthermore,
the concentration of solute atoms in the parent phase and precipitated phase at the phase interface is
CM and CN, respectively. During the dt time, the phase boundary pushes the distance of dr toward
the parent phase, and the quantity of solute atoms needed for the volume increase of the precipitated
phase is (CN − CM) dr. Moreover, this part of the solute is provided by the diffusion of solute atoms in
the parent phase.

Figure 6. Concentration distribution of the solute atoms in slag during spinel crystal growth. C0

represents the average concentration of solute atoms in the matrix, CM represents the concentration of
solute atoms in the matrix side at the crystal interface, CN represents the concentration of solute atoms
in the crystal side at the crystal interface, and u represents the growth rate of the crystal.

The growth rate of the spinel crystals can be reflected by Equations (6) and (7) [21]:

u =
dr
dt

=
D

cN − cM
(
∂c
∂r

)
r=R

(6)

D =
kBT

3πdμ
(7)

where d, μ, T, and kB refer to the particle diameter, melt viscosity, absolute temperature, and
Boltzmann constant, respectively. ( ∂c∂r )r=R refers to the concentration gradient of the particle near the
phase interface.
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It can be seen from the above equation that the growth rate of the precipitated phase crystal
nucleus is directly proportional to the diffusion coefficient of the solute in the parent phase and the
concentration gradient of the solute atom near the phase interface, while being inversely proportional
to the difference in the equilibrium concentration between the two phases at the interface. For a system
with a constant temperature, the diffusion coefficient D (cm2/s, the order of magnitude is 10−5–10−7

generally) is constant and is closely related to the viscosity in slag. In this way, the growth rate of
spinel crystals mainly depends on the particle concentration difference (CN − CM) and concentration
gradient (( ∂c∂r )r=R) at the interface of the spinel crystal. After the particle reaches the interface, it is
rapidly consumed, meaning that the concentration difference of components near the phase interface
is basically unchanged. For convenience of discussion, the (CN − CM) of components near the phase
interface was considered approximately as a constant. Therefore, the effect of heating time on the
growth rate of the spinel crystals mainly depends on the concentration gradient of the particles in
the melt.

As shown in Figure 7, the theory of the spinel transition fraction X (X = process/final precipitation
amount × 100) reached 88.37%, 92.25%, and 96.29% at 1450 ◦C, 1400 ◦C and 1350 ◦C, respectively.
This reveals that the process of spinel crystallization is close to the terminal at the experimental
temperature. In addition, during the solidification of the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system,
the contents of chromium in the residual liquid-slag and spinel crystals are as shown in Figure 8.
At 1450 ◦C, the chromium content in the liquid phase was only 0.49%, which was far less than that in
the spinel crystals. Obviously, the concentration gradient of particles was small due to the completion
of the precipitation region of the spinel crystals and the limited content of chromium in the liquid
phase. Moreover, the content of the residual liquid phase decreased with the completion of spinel
crystal crystallization. The diffusion condition of the solute atoms becomes worse, which causes the
diffusion coefficient D to become evidently low. Slow particle diffusion results in the prolongation of
the heating time having little effect on the increase in the size of the spinel crystals. If the holding point
is carried out at a higher temperature, the higher content of chromium in the liquid phase and the
higher concentration gradient of the solute will increase, leading to increases in the growth rate of the
spinel crystals and the size of spinels.

Figure 7. Theoretical transition fraction of a spinel crystal.
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Figure 8. Content of chromium in the spinel crystal and liquid phase during slag solidification.

5. Conclusions

The precipitation behavior of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system was
studied by means of SEM-EDS, XRD, and IPP in the laboratory. Based on this study, the following
conclusions were made:

(1) When the heating time increased from 0 min to 120 min at 1450 ◦C, the species of mineral phases
precipitated from the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system remained constant, and consisted
of spinel and dicalcium silicate.

(2) The size of the spinel crystals increased from 9.42 to 10.73 μm with an increase in the heating time
from 0 to 120 min. The increase in the spinel size reached 13.91%, which is considered moderate.
The theoretical transformation fraction of the spinel reached 88.37% at 1450 ◦C. The crystallization
process of the spinel occurred as a result of the low content of chromium and magnesium, forming
the spinel in residual liquid, and the high viscosity of the solid-liquid mixture is a critical factor.

(3) The calcium content in the spinel crystal decreased gradually from 1.38 to 0.78 at%, while the
chromium content increased from 16.55 to 22.78 at%. During the long-term heating, MgCr2O4

consisting of MgO and Cr2O3 was the most stable phase. The iron and calcium elements involved
in the isomorphic substitution could be gradually replaced by magnesium in the spinel crystals.
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Abstract: The thermal behavior of a rod during the hot shape rolling process was investigated using
the off-line hot rolling simulator and numerical simulation. Additionally, it was compared with
a plate during the flat rolling process to understand the thermal behavior of the rod during the
hot rolling process in more detail. The temperature of the rod and plate during the hot rolling
process was measured at several points with thermocouples using the rolling simulator, and then
the measured temperature of each region of a workpiece was analyzed with numerical simulation.
During hot rolling process, the temperature distribution of the rod was very different from the plate.
The temperature deviation of the rod with area was much higher than that of the plate. The variation
in effective stress of the rod along the circumferential direction can induce the temperature difference
with area of the rod, whereas the plate had a relatively lower temperature deviation with area due to
the uniform effective stress on the surface area. The heat generation by plastic deformation during
the forming process also increased the temperature deviation of the rod with area, whereas strain
distribution of the plate during flat rolling contributed to the uniformity of temperature of the plate
with area. The higher temperature deviation of the rod along the circumferential and radial directions
during the shape rolling process can increase the possibility of occurrence in surface defects compared
to the plate during flat rolling.

Keywords: shape rolling; flat rolling; wire rod; temperature distribution

1. Introduction

Most steel products are manufactured by the hot rolling process because the hot rolling process is
one of the most efficient plastic forming processes in metal forming industries. In this process, the initial
large and thick material, which is called slab, bloom, and billet, is changed to the desired shape by
passing through two counter-rotating rolls in the temperature range of 900–1200 ◦C. Many researchers
have been devoted to measuring and predicting the temperature of steels during the hot rolling process
to improve the quality of hot-rolled products because the thermal history of steel has a strong influence
on the quality of final products [1–6]. Typically, the hot rolling process is categorized into two groups:
flat rolling and shape rolling. Plate and strip are made via the flat rolling process, whereas wire,
rod, and bar are manufactured via the shape rolling process. The deformation behavior and thermal
history of a rod during the shape rolling process are more complex than those of a plate during
the flat rolling process because the rod experiences three-dimensional (3D) deformation during the
shape rolling process, as shown in Figure 1. In contrast, the plate is deformed under the plain strain
condition, i.e., two-dimensional (2D) deformation. This different deformation behavior between the
two processes may induce different thermal history between plate and rod, leading to the different
microstructures and mechanical properties between the two processes.

During the last three decades, there have been considerable studies on the temperature of the hot
rolling process. Most of the researchers have analyzed the rolling temperature of a workpiece on the
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basis of the numerical simulations such as finite difference method (FDM) and finite element method
(FEM), and then the numerical results were validated by experimental measurement with optical
pyrometers. Meanwhile, in the 1990s, several researchers investigated the temperature distribution
of a plate during flat rolling using thermocouples in pilot rolling mills [7–13]. They investigated the
effects of rolling speed, reduction ratio of height, oxide scale on the surface, and lubrication conditions
on temperature distribution of the plate, and reported that the cooling rate of the plate along the height
direction is different. It should be noted that most of the studies aforementioned were concentrated on
the strip and plate during the flat rolling process.

In contrast, a little attention has been paid to the thermal behavior of shaped products during
the hot rolling process because the prime concern of industrial shape rolling mills is to produce many
products with an appropriate cross-sectional shape as fast as possible. In addition, considerable
research on the thermal history of the rod was developed on the basis of the approach of plate rolling.
Komori and Kato [14] analyzed the temperature distribution of a rod during the hot rolling process
with roll shape using the combination of FEM and FDM. They showed that the roll velocity and
friction coefficient greatly influences the temperature distribution at the roll–rod interface. They also
reported that temperature distribution of the rod is dependent on the roll shape—square-diamond
pass and oval-round pass have a different pattern of temperature distribution. Using the four-pass
hot rod rolling experiments with low carbon steel, Said et al. [15] reported that 3D modeling is highly
necessary to accurately predict the roll force, torque, and temperature of a rod during the shape rolling
process. Yuan et al. [16] simulated the temperature and deformation of the rod during multi-pass rod
rolling by 3D FEM, and the predicted temperature was compared with the measured temperature with
a pyrometer. Xue and Liu [17] developed the 2D numerical model for calculating the temperature
distribution of the rod during the multi-pass hot rolling process. Despite the 2D simulation, the
calculation time was very short because the constitutive equation was not solved by iterative scheme.
The results were validated by FEM simulation and industrial measurement. Serajzadeh et al. [18]
developed a mathematical model based on FEM and phase transformation to predict temperature and
microstructure distributions of a steel rod. They showed that the rolling speed affects the temperature
of the rod. The increase in the rolling speed leads to a lower temperature drop at the surface area
of the rod due to the reduced heat transfer between roll and rod stemming from the shorter contact
time. Serajzadeh [19] also developed a mathematical 2D model that considered the various process
parameters such as caliber shape and rolling speed. Kown et al. [1] studied the temperature distribution
of the rod during hot rolling using 3D FEM analysis and experimental measurement. They insisted
that the temperature in the surface area drastically decreases during rolling and recovers right after
rolling due to the heat redistribution within the rod.

Meanwhile, steel wire, rod, and bar manufacturing industries have suffered from the several
surface defect problems during hot rolling process: surface flaw, decarburization, and abnormal grain
growth [20,21]. On the basis of the author’s experiences, these surface defects are strongly related
to the uneven temperature distribution of the rod during the shape rolling process in comparison
with the plate during the flat rolling process [1,22]. Consequently, it is necessary to investigate
the detailed temperature distribution of the rod during the hot rod rolling process. In addition,
comparative study on the thermal behavior between rod and plate is necessary in order to completely
understand the thermal behaviors and the formation of surface defects of the rod during the shape
rolling process. On the basis of literature reviews, numerical simulation was mainly used to understand
the thermal behaviors of the rod because it is difficult to measure the temperature of the rod during
the hot rolling process. Additionally, most of the experimental studies were conducted using the
radiation-type pyrometers and thermal cameras to measure the temperature of the rod. However,
there are the following five limitations or errors in measuring the temperature of the rod during the
hot rolling process:

(i) Pyrometer cannot measure the rod temperature at the rolling time due to the existence of
facilities around rolls; thus, only equalized temperature along the radial direction of workpiece is
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measured, stemming from the rapid rebound of surface temperature. That is, the sharp temperature
drop at the surface area by the roll contact cannot be detected.

(ii) During hot rod rolling, measurement errors are generated due to the severe rolling conditions
such as the high rolling speed, the vibration of the rod, and the evaporation of coolant for the rolls.

(iii) The measured radiation energy of the rod by pyrometers tends to be lower than that of the
actual value, owing to the shape of the round rod, indicating that pyrometers should be carefully
validated to measure the shaped materials compared to the flat materials [23].

(iv) Radiation-type pyrometers measure the only surface temperature of a workpiece. Therefore,
we cannot understand the temperature distribution of a workpiece along the radial direction.

(v) The radiation energy is highly dependent on the surface conditions of the rod. The rod has
various oxide scales according to the process conditions and chemical compositions. In other words,
measuring the surface temperature is not easy due to the thick oxide scales as shown in Figure 2.

Accordingly, measuring the accurate temperature of the rod with area is not easy. In addition, many
researchers measured temperature of the rod at only one point, such as measuring the temperature
of the plate. As shown in Figure 1b, the surface of the rod experiences different conditions of heat
transfer with area, which is very different from the plate rolling. For instance, one location of the
surface strongly makes contact with roll and other location of the surface softly makes contact with
roll, which can produce different thermal behaviors of the rod along the circumferential direction,
leading to different microstructures and mechanical properties along the circumferential direction of
the rod. This different thermal history of the rod with area can induce the surface flaw during hot rod
rolling [1]. Consequently, it is necessary to understand the thermal behavior of the rod during the
hot rolling process to solve the quality problems in wire, rod, and bar industries and to produce high
quality products. Overall, it is insufficient to measure the temperature by pyrometers and to measure
the temperature at only the center and surface areas in order to understand the thermal behaviors of
the rod during the shape rolling process due to the complex roll contact of the rod during the process.
This is totally different from the plate during the flat rolling process, as shown in Figure 1. To the best
of the author’s knowledge, no study has been attempted to measure the rod temperature during shape
rolling in detail, although several works exist that focus upon plate rolling.

Therefore, temperature of the rod was measured using thermocouples at several points via off-line
rolling simulator in order to understand the thermal behavior of the rod during hot shape rolling
process in more detail, which can help to improve the surface properties of the rod, for instance
through surface flaw, decarburization, and abnormal grain growth, during the shape rolling process.
For comparison purposes, temperature of the plate was also measured during the flat rolling process.
Then, the measured temperature of the rod and plate with thermocouples was analyzed using a
numerical simulation.

Figure 1. Schematic description of (a) plate and (b) rod during the rolling processes.

583



Processes 2020, 8, 327

 
Figure 2. Thermal image of billet during hot rod rolling using an infrared thermo-camera.

2. Experimental Procedure and Numerical Simulation

2.1. Experiment Using Off-line Rolling Simulator

In order to understand the thermal histories of the rod and plate with area, a simulator for the
hot rolling process was used. The rolling simulator mainly consisted of a couple of rolls, guide for
workpiece, roller conveyor, and reheating furnace, as shown in Figure 3. Prior to the hot rolling test,
the workpiece with four thermocouples was placed in a box-type reheating furnace. An oxide scale
formation on the surface of a workpiece was suppressed using nitrogen gas in the reheating furnace.
When the workpiece was heated to the final temperature of 1150 ◦C, it stayed for an additional 20 min
for a homogenization. Then, the workpiece was withdrawn from the reheating furnace and rolled
without lubrication.

For the flat rolling test, a rectangular plate of 150 × 30 mm was selected for an initial workpiece
and it was hot-rolled using the flat rolls, as shown in Figure 4a. The round specimen with a diameter
of 50 mm was also hot-rolled using the oval groove, as shown in Figure 4b. The ductile casting iron
(DCI) rolls of 400 mm in diameter were rotated at a speed of 10 RPM. Plain low carbon steel, AISI 1020,
was used and the analyzed chemical composition in weight percent was Fe-0.2C-0.4Mn. The specific
operating conditions are summarized in Table 1. The caliber roll was designed to have a reduction of
area (RA) per pass of 20%, which is a general rolling condition in hot rod rolling industries. RA per
pass was calculated using the following equation:

RA =
A0 −A f

A0
× 100(%) (1)

where Ao and Af are the areas of initial and final cross section, respectively. The reduction of height of
a plate during flat rolling was selected to have a same average effective strain with the rod during
shape rolling. The average effective strain of a rod during shape rolling was calculated using the model
proposed by Lee et al. [24] that is based on the equivalent rectangle approximation method, which
transforms a non-rectangular cross section shape into a rectangular shape, and the average effective
strain (εp) is calculated as follows:

εp =
[2
3

(
ε2

1 + ε
2
2 + ε

2
3

)]1/2
=

2√
3
ε2

[
1 +

(
ε1

ε2

)2
+

(
ε1

ε2

)]1/2

(2)

where ε1 and ε2 are simply obtained by calculating the reduction ratio of width and height in equivalent
rectangle approximation, respectively. In case of plate rolling, the ratio of ε1 and ε2 is very small in
nature, and thus the average effective strain is represented as follows:

εp =
2√
3
ε2 (3)
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where ε2 is calculated by the reduction ratio of height as follows:

ε2 = ln
(

Hi
H f

)
(4)

where Hi and Hf are the height of initial and final plate, respectively. The final height of a plate was
chosen using Equation (3), as shown in Figure 4a.

Figure 4a,b shows the schematic description of the measurement points of temperature using
thermocouples in workpieces. Four points were measured at the each process using chromel–alumel
(K-type) thermocouples with an Inconel sheath. The response time of the thermocouple was improved
by decreasing its diameter; therefore, 1.0 mm diameter thermocouple was selected, although it was
easily breakable during the experiment under the severe working conditions such as the hot rolling test.
Thermocouples were embedded in the 70 mm deep hole drilled from the tail end of a workpiece, as
shown in Figure 4c, to easily handle the workpiece during the rolling test and to minimize the thermal
disturbance on the surface of a workpiece [23]. One thermocouple was located at the center, and three
of them were placed as close the surface as possible, i.e., the thermocouples of the surface were located
at 1.5 mm from the outer surface. A multi-channel data recorder gathered temperature data during
the test with a sampling time of 0.2 s. Because the thermocouples that are embedded in the surface
region were easy to burn out during the hot rolling test, each test was repeated three times to ensure
reliability and repeatability.

Figure 3. Schematic description of the off-line hot rolling simulator in this study.

Figure 4. Cont.
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Figure 4. Schematic description showing the roll design and the measurement points of temperature
using thermocouples: (a) cross section of flat rolling, (b) cross section of rod rolling, and (c) cross section
of the longitudinal direction of the rod.

Table 1. Process parameters of hot rolling test using the off-line simulator in this experiment.

Parameters Value

Workpiece Material AISI 1020
Initial temperature of workpiece 1150 ◦C

Rolling mill
Rolling speed 10 RPM
Roll diameter 400 mm

Temperature of roll 21 ◦C

Process conditions
Reduction ratio of height of plate 25.5%

RA per pass of rod 20.2%
Surrounding temperature 21 ◦C

2.2. Numerical Simulation

DEFORM FE commercial software was used in simulating the 3D complex distributions of
temperature and strain in both rod and plate. The roll for rolling process was considered as a rigid
body, and the workpiece was assumed to be isotropic material. The basic equation governing the
temperature distribution of a workpiece during hot rolling is represented as follows:

ρCp
∂T
∂t

= k
(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ Q (5)

where ρ, Cp, k, and Q are the density, specific heat capacity, thermal conductivity of a
workpiece, and volumetric rate of heat generation arising from the plastic deformation, respectively.
Thermal properties of a workpiece such as thermal conductivity and specific heat were chosen from
the library data provided by DEFORM FE software. That is, k and ρCp values were approximately
31 W·m−1K−1 and 4.3 N·mm−2K−1, respectively. To solve the above governing equation, the boundary
conditions for a workpiece are expressed as follows:

k
(
∂T
∂t

)
sur f ace

= εσ(T4 − T4
a ) + hconv(T − Ta) + hcond(T − TR) (6)

where ε, σ, Ta, and TR are emissivity, Stefan–Boltzmann constant, ambient temperature, and roll
temperature, respectively. Ambient and roll temperature is 25 ◦C, and ε is assumed to be 0.7. hconv and
hcond are the convective heat transfer coefficient and conductive heat transfer coefficient, respectively,
which is discussed in the next section. The shear friction coefficient of 0.6 was selected in the
roll-workpiece interface [10,25,26], and other process parameters were identical to the experimental
conditions, as given in Figure 4 and Table 1.
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To shorten the calculation time, the quarter of full geometry was modeled stemming from the
symmetrical condition of the rod and plate rolling processes, and a section of 500 mm in length
was simulated. The caliber rolls had 400 mm in diameter, and the rolling speed was set as 10 RPM.
The brick-type mesh was used, and the total number of mesh elements in the workpiece was
approximately 21,600.

3. Results

3.1. Measured Temperature of a Workpiece with Area

Figure 5a represents the measured temperature profiles of the plate with area during flat rolling.
Temperature of all the surface areas decreased when the plate was extracted from the reheating furnace;
in particular, the temperature of corner area decreased fast due to the higher radiation heat transfer.
In contrast, the surface areas were cooled slowly compared to the corner area, stemming from their
geometric condition of the radiation heat transfer, i.e., flat plane. The center area of the plate was
cooled slowly because the size of the initial workpiece was relatively large. When the workpiece was
contacted with the cold roll, the upper surface and corner areas of the plate cooled very sharply due to
the higher conduction heat transfer between the roll and plate. On the other hand, the non-contact
surface, i.e., side, was cooled slowly because no conduction heat transfer occurred between the roll
and plate in this area. Meanwhile, the temperature of the center slightly increased due to the heat
generation by the plastic deformation. After passing through the rolling section, the temperatures of all
the areas were equalized due to the higher thermal conductivity of the workpiece. That is, the center
area with a higher temperature acted as a heat source for the surface areas with a lower temperature.

Figure 5b shows the temperature profiles of the rod with area during shape rolling, i.e., round-oval
pass. The upper surface area, i.e., the hard contact surface, was cooled very fast. In other words, the
lowest temperature of the rod was lower than 600 ◦C. This was a very surprising result considering
the location of thermocouple in the surface—the surface indicated 1.5 mm from the outer surface.
It is reasonable to induce that the temperature of the outer hard contact surface could be dropped
below 500 ◦C. This low temperature at the rod surface was very different from the result of the plate
during flat rolling, which is discussed in the next section. Ideally, the surface area at the right side
had a similar temperature profile to the surface area at the left side, but they had somewhat different
temperature profiles because the rod may not have rolled symmetrically in this study. That is, the
temperature discrepancy between the right side surface and left side surface can be attributed to the
error in alignment of a workpiece during the shape rolling process, which is frequently observed in an
industrial rod rolling process. All the surface temperatures were recovered after rolling, owing to the
redistribution of heat within the rod. Meanwhile, the center temperature of the rod increased when
the rod passed through the roll bite, which was the result of the heat generation by plastic work. It is
worth noting that the rod exhibited a higher temperature rise compared to the plate at the center area
during the rolling process.

On the basis of the comparison study of temperature profiles of the plate and rod with area,
it was found that the temperature profiles were very different between the two rolling processes.
The rod had a higher temperature deviation with area in comparison with the plate. In particular, the
surface temperature of the rod was very different along the circumferential direction during shape
rolling. For instance, the temperature of the outer surface could be dropped below 500 ◦C at the hard
contact area of the rod with rolls, which can make different microstructures and mechanical properties
among surface areas [2,27]. Furthermore, it could induce surface defects of a rod during shape rolling,
i.e., surface flaws [1,28], abnormal grain growths [29], decarburizations, and martensite transformations
in the surface area. Accordingly, it is necessary to analyze the rod temperature for at least the following
four regions in order to fully understand the thermal behavior of the rod during hot shape rolling:
center, hard contact surface, soft contact surface, and non-contact surface. This means that the 1D or
2D approaches, which are generally used in plate rolling, were insufficient to describe the thermal
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behaviors of a rod during shape rolling. Overall, the center area had the maximum temperature in the
both processes, and the minimum temperature appeared in the corner area during plate rolling and in
the hard roll contact area during shape rolling.

  
Figure 5. Measured temperature profiles of (a) the plate during flat rolling and (b) the rod during shape
rolling with area.

3.2. Temperature Distribution of Workpiece by Numerical Simulation

To have more useful information on the thermal behavior of the rod during shape rolling,
a numerical simulation was conducted. During the hot rolling process, heat is transferred with several
mechanisms as shown in Figure 6, which is summarized as follows:

(i) The heat of a workpiece is dissipated by radiation because the temperature of the workpiece is
relatively high during the hot rolling process, for instance, 800–1200 ◦C.

(ii) Forced convection heat transfer takes the heat from a workpiece because the workpiece moves
during the hot rolling process. Additionally, the workpiece loses the heat by natural convection heat
transfer via the derived air flow originated from the density difference of air between the surface of a
workpiece and ambient.

(iii) The contact between the hot workpiece and cold rolls makes a strong conduction heat transfer;
therefore, the surface area of a workpiece is chilled in a very short time as the workpiece contacts
the rolls.

(iv) Heat is generated in the deformation zone, i.e., roll bite zone, due to the plastic deformation.
(v) Frictional stress between workpiece and roll produces heat.
All the heat transfer mechanisms need to be carefully considered to understand the thermal

behavior of a workpiece and to improve the prediction accuracy of temperature in a workpiece. It is
well known that heat transfer coefficient is dependent on several process parameters such as rolling
speed, reduction ratio, lubrication condition, surface roughness of workpiece and roll, size and shape
of a workpiece, and roll shape, which is the main reason why several researchers have used different
values of parameter to simulate the hot rolling process, as summarized in Table 2. In this study,
because the author was interested in the temperature distribution of plate and rod in the roll bite,
the temperature near the roll bite was simulated during plate rolling and rod rolling. The contact
heat transfer coefficient of 24 kW·m−2K−1 was chosen to simulate the temperature distribution of both
rod and plate, owing to the similar roll shape and process conditions in reference [2]. It should be
noted that the rod and plate had a different heat transfer coefficient because of the different roll shape.
However, it is difficult to find the optimum heat transfer coefficients of the two processes due to the
limited experiments in this study. Accordingly, the same heat transfer coefficient was chosen for the
two processes on the basis of the literature review (Table 2), and then the thermal behavior of the two
processes was qualitatively compared.

Figure 7 shows the temperature distribution of the rolled workpieces calculated by the FE
numerical analysis. Temperature was varied with rolling process and area. The center area had
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the highest temperature and the surface area tended to have the lowest temperature during hot
rolling, which is consistent with the measured temperature profiles using thermocouples (Figure 5).
In both rolling processes, the hard contact surface area with roll had the lowest temperature due to the
high conduction heat transfer by roll contact, whereas the center area had the highest temperature
originating from the relatively small heat loss during hot rolling process. The surface temperature
was different between the plate and rod. The upper surface and lower surface of the plate had similar
temperatures, whereas the rod had a temperature variation along the circumferential direction of the
surface area. For more detailed information, the temperature distribution in the cross section of the
rolled workpiece near the roll bite is presented in Figure 8. It is clear that the surface of the rod had a
different temperature along the circumferential direction, which meant that the hard contact surface
and soft contact surface with rolls experienced different thermal histories. The maximum temperature
was similar between the two processes, but the minimum temperature was different in plate and
rod—the minimum temperature of the plate was 668 ◦C, and that of the rod was 598 ◦C. Therefore,
the temperature difference of the rod with area was higher than that of the plate, which is consistent
with the result of measured temperature profiles using thermocouples. However, the deviation in
temperature between the results of simulation and experiment was in existence. For instance, the
surface temperature of the rod was estimated at 500 ◦C on the basis of the experiment, but the surface
temperature of the rod was 598 ◦C from the numerical simulation, which was closely related to the
selected heat transfer coefficient for the numerical simulation. That is, the heat transfer coefficient in
this rolling condition was higher than the selected value of 24 kW·m−2K−1.

Figure 6. Schematic description showing the heat transfer mechanisms in a workpiece during the hot
rolling process.

Table 2. Process parameters and values for heat transfer during the hot rolling process.

Contact Conduction
(kWm−2K−1)

Convection
(Wm−2K−1)

Ratio of Mechanical
Work to Heat

Rolling Type Reference

5 10 - Shape rolling [30]
10 10 - Shape rolling [31]
24 2.33 0.9 Round-oval [2]
72 2.33 0.9 Square-diamond [2]
4.8 30 - Shape rolling [32]
40 10 - Flat rolling [33]

45–85 - 0.85–0.95 Flat rolling [10]
54–71 - - Flat rolling [34]

7.6–17.6 - - Flat rolling [35]
20–45 Flat rolling [36]
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Figure 7. Comparison of contour maps of temperature during plate rolling and rod rolling.

 
Figure 8. Comparison of contour maps of temperature in the roll bite during plate rolling and rod rolling.

4. Discussion

The most interesting point of the present study is the fact that the rod rolling process caused
higher temperature deviation of the rod with area in comparison with the plate rolling. In particular,
the rolled rod experienced very low temperature at the surface area.

4.1. Effect of Conduction Heat Transfer in the Workpiece-roll Interface

It is well known that the conduction heat transfer between the cold roll and hot workpiece is
proportional to the contact pressure [8,37]. That is, the heat transfer coefficient by the roll contact
increased along the arc of roll contact and reached the steady-state maximum values, and then decreased
until the separation of the workpiece and roll [7]. Figure 9 shows the distribution of effective stress
during plate and rod rolling processes. The plate had a uniform distribution of effective stress in
the surface area. In contrast, the rod exhibited an inhomogeneous distribution of effective stress on
the surface area—the upper surface area had the maximum value, and the effective stress gradually
decreased along the circumferential direction from the upper surface. This different behavior of
effective stress on the surface area between flat rolling and shape rolling made a different contact
heat transfer coefficient between the two processes, leading to the different thermal history. In other
words, the higher contact pressure in the upper surface of the rod during shape rolling led to the
higher temperature drop in the upper surface area and the inhomogeneous temperature distribution
along the circumferential direction of the rod. It is worth mentioning that the contact heat transfer
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coefficient also depended on rolling speed [7], reduction ratio [9], scale formation on the surface [35],
and lubrication condition [7,36]. However, the effect of roll shape was only considered in this study
because the other process parameters were set as identical in the two processes.

4.2. Effect of Heat Generation due to Plastic Deformation

The heat generation by the plastic deformation during rolling process affects the thermal behavior
of a workpiece, which means that the temperature distribution of workpiece depends on the strain
distribution of a workpiece with area. The temperature rise by plastic deformation was typically
described as the following equation [38]:

ΔT =
ΔQ
ρCp

=
β

ρCp

∫ ε2

ε1

σdε (7)

where β and ΔT are the fraction coefficient between deformation work and heat energy and temperature
rise, respectively. As given in Table 2, the fraction of deformation energy converted to heat energy
is generally assumed to be 0.9 because only a small amount of deformation energy is stored within
the workpiece as elastic energy. Because the temperature rise of a workpiece is highly related to the
amount of plastic deformation according to Equation (7), the effective strain distribution of both plate
and rod was evaluated, as shown in Figure 10a,b. It was clearly shown that the strain distribution
of the plate was more homogeneous than that of the rod. Additionally, the pattern of effective strain
distribution was totally different between the two processes. In the plate, the surface area had the
maximum strain value and the center area had the minimum [39]. On the other hand, the center area
had the maximum strain and the surface area had the minimum during shape rolling, which was
well described in the profiles of effective strain along the horizontal and vertical directions of the two
processes (Figure 10c). The higher effective strain in the center area of the rod during shape rolling can
make a higher temperature rise in the center area, as shown in Figure 5b. Meanwhile, the relatively
lower effective strain in the center area of the plate during flat rolling induced the lower temperature
rise in the center area (Figure 5a). Comparing the distribution of effective strain in the plate, the rod
had a higher temperature deviation with area because the temperature rise in the center area of the
rod was higher than that of the plate. Overall, the center temperature of the rod became higher by
the temperature rise due to the higher plastic deformation, whereas the surface temperature of the
rod became lower by the hard contact with roll. This can make a higher temperature deviation of the
rod with area during the shape rolling process. In contrast, strain distribution of the plate during flat
rolling contributed to the uniformity of temperature distribution of the plate with area because the
surface area had a higher effective strain during the flat rolling process.

The frictional stress in the roll–workpiece interface also increased temperature of a workpiece
during the forming process, and the amount of temperature rise can be different between the two
processes. Further experiments are necessary to reveal the frictional effect on temperature rise with
rolling process, which is one of the valuable research topics in the field of forming industries. Overall,
the higher temperature deviation of the rod along the circumferential and radial directions can induce
the surface defects such as surface flaw, abnormal grain growth, and decarburization during the shape
rolling process. In contrast, the influence of temperature deviation of the plate on surface defects is
relatively weak during the flat rolling process.
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Figure 9. Contour maps of effective stress of (a) plate and (b) rod during the hot rolling process.

Figure 10. Contour maps of effective strain of (a) plate, (b) rod, and (c) comparison of profiles of
effective strain along the horizontal and vertical directions of a workpiece.

5. Conclusions

On the basis of the comparative studies on the temperature distribution of a workpiece during hot
plate rolling and rod rolling via an off-line simulator and numerical simulation, the following major
conclusions were drawn:

1. The temperature distribution of the rod during shape rolling is different from that of the plate
during flat rolling. The temperature deviation of the rod with area during shape rolling is much higher
in comparison with the plate during flat rolling.

2. The measured temperature at the hard contact surface of the rod with roll is lower than 600 ◦C,
whereas that of the plate is approximately 800 ◦C.

3. The higher variation in effective stress of the rod along the circumferential direction can induce
the higher temperature difference with area of the rod compared to the plate during flat rolling.

4. The heat generation by the plastic deformation during forming process also increases the
temperature deviation of the rod with area compared to the plate—higher effective strain at the center
area of rod raises the temperature at center area of the rod. In contrast, strain distribution of the plate
during flat rolling contributes to the uniformity of temperature distribution of the plate with area.
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Abstract: The effect of the roll design on the strain distribution of the flat surface, lateral spreading,
and the strain inhomogeneity of a flat-rolled wire were investigated during the flat rolling process.
Oval-grooved and cambered rolls with various radii were applied to the flat rolling process based on
a numerical simulation. The effective strain on the flat surface of the wire increased when using a
cambered roll due to the highly intensified contact pressure on the flat surface, while the effective
strain on the flat surface of the wire decreased when using an oval-grooved roll. Lateral spreading
decreased when using an oval-grooved roll because the spread in the free surface area of the wire was
highly restricted by the oval-grooved roll shape. In contrast, the spread in the surface area increased
when using a cambered roll due to the less-restricted metal flow at the free surface. Accordingly,
a cambered roll with a small radius is highly recommended in order to improve the surface quality
of flat-rolled wires. This is beneficial for industrial plants because the cambered roll can be easily
applied in flat rolling plants.

Keywords: roll design; flat-rolled wire; strain inhomogeneity; normal pressure; macroscopic
shear bands

1. Introduction

Flat-rolled wires are widely used in windshield wipers, springs, guide rails, and saw blades [1].
There are two main issues in the flat rolling of wire. The first issue is shape control of the flat-rolled
wires, because direct shape control is impossible during the flat rolling of wire; that is, lateral spreading
occurs in the free surface of the wire [2]. Consequently, several studies have been conducted regarding
the influence of process conditions, such as reductions in the height, initial wire size, friction, and rolling
speed on the lateral spreading of a wire using empirical or numerical methods [1–7]. The studies
reported that the lateral spreading of a wire increased with reductions in the height and friction, which
was independent of the rolling velocity. The second issue is the inhomogeneity of the mechanical
properties of flat-rolled wires. In particular, the low hardness on the flat surfaces of a wire is a
crucial issue in the industry. Therefore, the strain distribution of flat-rolled wire has been investigated
using finite element (FE) analysis and hardness tests [8–14]. Kazeminezhad and Karimi Taheri [9]
reported that the strain inhomogeneity of a wire increased with decreasing the reduction in height and
increasing the friction coefficient. Vallellano et al. [12] reported that the maximum contact pressure
occurred in the roll entry zone due to the local inhomogeneity of deformation. Hwang [14] reported
that the difference of the effective strain along the horizontal direction was much higher than that
of the vertical direction, and the maximum difference of the effective strain occurred in between the
center area and the free surface area of the flat-rolled wire. It is well known that the occurrence of
macroscopic shear bands (MSBs) is highly related to the strain inhomogeneity of flat-rolled wire [8],
because the occurrence of MSBs indicates that the deformation is highly inhomogeneous during the
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forming process. The occurrence of MSBs has been reported in several compression-type metal-forming
processes, such as plain strain compression [15], uniaxial compression [16], flat rolling of wire [8],
and flat roll drawing [17]. The restricted metal flow at the interface between the specimen and tool
is the main reason for the occurrence of MSBs in specimens during the compression-type forming
process. Therefore, the strain inhomogeneity can be improved by controlling the behavior of MSBs
during the rolling process.

Over the past three decades, although several studies have reported the influence of process
conditions on the strain inhomogeneity of flat-rolled wires [8–11], most of the studies have been
conducted based on external process conditions, such as the roll diameter, reduction in thickness,
rolling speed, and friction coefficient. Meanwhile, it may be inferred from experience that the roll
shape is an important design parameter in shape rolling processes, such as caliber rolling [18,19] and
flat rolling of wire. However, no studies have reported on the effect of the roll design on the strain
distribution and shape control of a flat-rolled wire.

Therefore, the present study focuses on the effect of the roll design on the strain distribution
in a flat-rolled wire in order to improve the homogeneity of mechanical properties and to increase
the hardness on the flat surface of a wire. Oval-grooved roll and cambered roll techniques with
various radii were applied to the flat rolling process based on numerical simulation, and then a general
strategy for fabricating high-quality flat-rolled wire products was deduced, considering the process
and working conditions in industries.

2. Numerical Procedures

The DEFORM FE commercial software developed by Scientific Forming Technologies Corporation
in Ohio, USA, version 11.0 with a three-dimensional (3D) module was used to analyze the flat wire
rolling process, because a flat-rolled wire experiences 3D inhomogeneous deformation during the
process [14]. The workpiece was assumed to be an isotropic and rigid plastic material, while the effect
of the strain rate was not considered in this study. In this case, the constitutive behavior was generally
described by Hollomon’s law [20,21], as follows:

σ = Kεn (1)

where K means the strength coefficient and n refers to the strain hardening exponent. The K and n
values of the present material are chosen as 1980 and 0.54, respectively, based on the curve fitting of
the tensile test in twinning-induced plasticity (TWIP) steel in [22]. Each value was inserted into the
DEFORM commercial software model as follows:

σ = 1980ε0.54 (2)

All rolls with 400 mm diameter were assumed to be rigid bodies. The rolling speed was set to 5
revolutions per minute (RPM) to ignore the effect of temperature rise. Oval-grooved rolls with radii of
10, 20, and 30 mm were applied to the flat rolling process to tailor the strain distribution, as shown
in Figure 1b. A cambered roll was also applied with various radii to understand the effect of the roll
shape on the strain distribution of a flat-rolled wire, as shown in Figure 1c. The oval-grooved roll
and cambered roll were only used for the first rolling pass, while the same flat roll was applied to the
second pass, as shown in Figure 1, to fabricate a flat-rolled wire with the desired shape for customers.
The reduction in height (Rh) was calculated using the following equation:

Rh =
h0 − h1

h0
× 100(%) (3)

596



Processes 2020, 8, 876

where h0 and h1 are the initial and final heights of the wire, respectively. Rh was about 22% at the first
pass, regardless of the roll design. At the second pass, the Rh was approximately 18%, and thus the total
Rh was 35%. The shear friction coefficient between the wire and the roll interface was selected as 0.3 [14].

Figure 1. Schematic of the cross-sectional shape of the wire and the roll design during the flat rolling
process with a (a) flat roll, (b) oval-grooved roll, and (c) cambered roll.

To reduce the computational cost, only one-quarter of the full geometry was calculated, owing to
the symmetric condition of the flat-rolled wire. Approximately 15,000 brick-type elements were used,
while 300 elements were used in the cross-section of the wire, as shown in Figure 2.

 

Figure 2. Detailed geometry and elements of the numerical modeling with a (a) flat roll, (b) oval-grooved
roll with a radius of 10 mm, and (c) cambered roll with a radius of 10 mm.
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3. Validation of the Numerical Model

The accuracy of the numerical model was validated prior to evaluating the results of the
numerical simulation by comparing the numerically simulated geometries with the measured
geometries of the flat-rolled TWIP steel wire. The analyzed chemical composition of TWIP steel is
Fe-19.94Mn-0.60C-1.03Al (wt.%), which was fabricated by vacuum induction method. Prior to hot
rolling, the ingot measuring 125 mm in thickness was homogenized at 1200 ◦C for 3 h. Then, the ingot
was directly rolled onto a plate measuring 20 mm in thickness using multipass rolling at temperatures
above 950 ◦C, followed by air cooling to simulate the hot rod rolling process. The hot-rolled plate was
machined into several round bars with a diameter of 13 mm for the flat wire rolling test. The bar was
rolled into the flat-rolled wire using flat rolls with a diameter of 400 mm at a rolling speed of 5 RPM.
The other process conditions were kept the same as those of the numerical simulation.

Figure 3a shows the comparison of the cross-sectional shapes of flat-rolled wires based on the
experimental and numerical simulation, as well as the used terminologies in this study, while Figure 3b
compares the measured and numerically simulated width of the contact area (b) and the lateral spread
(W) values with the total Rh. As expected, the W and b values increased when increasing the total Rh.
Overall, the W and b values obtained by the numerical simulation were in good agreement with the
experimental values. However, it was found that the deviation of the W value between the two results
slightly increased with the total Rh. This inconsistency was related to the hardening model applied in
this study [5] and the selected friction coefficient of 0.3.

Figure 3. (a) Photograph of the caliber-rolled TWIP steel wire in this experiment and the shape of
the deformed wire based on the numerical simulation. (b) Comparison of the measured, simulated,
theoretically derived W and b values as a function of the total reduction in height.

Meanwhile, Kazeminezhad and Karimi Taheri [1,3] suggested the prediction of b and W values
as a function of the total reduction in the height (Δh), h0, and h1 from the plain carbon steels as the
following equations:

b =
√

2Δhh0 (4)

W1

W0
= 1.02

(
h0

h1

)0.45

(5)

where the subscripts of 0 and 1 indicate the initial and final values during the flat rolling process,
respectively. As shown in Figure 3b, the W and b values of TWIP steel were lower compared to those
of the plain carbon steel theoretically suggested in the relationships. Hwang [14] suggested that this
result is highly related to the different strain hardening behavior between plain carbon steels and
TWIP steel. Namely, the strain hardening exponents of TWIP steel are much higher than those of plain
carbon steels [23]. Overall, it can be concluded from an engineering application point of view that the
proposed FE analysis for the flat wire rolling process can be used to evaluate the characteristics of the
shape and strain distribution with the process conditions.

598



Processes 2020, 8, 876

4. Results and Discussion

4.1. Strain Distribution with Roll Design

Figure 4 shows a comparison of the contours of the von Mises strain (effective strain) and normal
pressure of the flat-rolled wire with the representative roll designs (i.e., flat roll design, oval-grooved
and cambered rolls with a radius of 10 mm). Clearly, the strain distribution in the flat-rolled wire was
complex—it had two MSBs with high effective strain [8]. The center area tended to have a maximum
strain, while the free surface area tended to have a minimum strain. However, the distribution of the
effective strain of the wire was different with the roll design. In particular, the shapes of the MSBs
changed with the roll design. During the first pass, the total width of the MSBs increased with the
oval-grooved roll, while that of the MSBs decreased with the cambered roll. The different behavior of
MSBs with the roll design was related to the normal pressure on the wire surface [24,25], as shown in
Figure 4, indicating that the MSBs can be controlled by tailoring the contact pressure on the specimen
during the rolling process. It should be noted that it is necessary to increase the strength on the flat
surface of a wire, because the external stress was mainly imposed on the flat surface of the wires
under service. For a better understanding of the strain distribution of the flat-rolled wire, the effective
strain was extracted from the contour maps in both the cross-section and the flat surface, as shown in
Figure 5 for the final product (i.e., after the second pass). The maximum effective strain in the center
area decreased with the cambered roll, whereas it increased with the oval-grooved roll. Meanwhile,
the minimum effective strain in the free surface area was similar regardless of the roll design, indicating
that the cambered roll reduced the overall strain inhomogeneity of the flat-rolled wire.

 
Figure 4. Contour maps of the effective strain and normal pressure of flat-rolled wires with a roll
design and pass.

Interestingly, the effective strain on the flat surface of the wire increased when using the cambered
roll, as shown in Figure 5c, whereas the oval-grooved roll decreased the effective strain on the flat
surface of the wire. To deduce a general conclusion, a new non-dimensional indicator for the roll
design (IRD) was defined as follows:

IRD =
Dwire
RR

(6)

where RR and Dwire are the surface radius of the roll (Figure 1) and the diameter of the initial round wire
(13 mm), respectively. To calculate the RR value, the surface radius of the cambered roll was taken to be
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negative due to the reverse roll shape compared to the oval-grooved roll, as listed in Table 1. Figure 6a
shows the maximum and minimum effective strains in the cross-section of the flat-rolled wire at the
second pass. The maximum strain at the center area of the wire slightly increased with IRD, meaning
that the maximum strain increased with the decrease in the radius of the oval-grooved roll. In other
words, the oval-grooved roll increased the stress concentration at the center area of the specimen due to
the restriction of the plastic deformation according to roll shape, as compared to the flat and cambered
rolls, as shown in Figure 2. In addition, it is well known that the strain is highly concentrated in the
center area during bar and rod rolling with the oval-round roll pass sequence [26–28]. The minimum
effective strain had a constant value with IRD, indicating that the oval-grooved roll and camber roll did
not affect the level of strain in the free surface area of a wire. In summary, the cambered roll slightly
reduced the strain inhomogeneity of the specimen during the flat rolling process.

 

Figure 5. (a) Schematic showing the terminologies used in this study. Comparison of the effective
strain profiles in (b) cross-sections of flat-rolled wires along the horizontal and vertical directions, and
(c) the flat surface of a flat-rolled wire with the representative roll design.

Table 1. Comparison of the seven roll designs and related values during the flat rolling process used in
this study.

Roll Design
Values

Surface Radius (mm) RR IRD

Oval-grooved roll
10 10 1.3
20 20 0.65
30 30 0.43

Flat roll ∞ ∞ 0

Cambered roll
30 −30 −0.43
20 −20 −0.65
10 −10 −1.3
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Figure 6. Variations in (a) the maximum and minimum effective strains in the cross-sections of the
flat-rolled wires and (b) the maximum and centered effective strains on the flat surface of a wire
with IRD.

The maximum effective strain on the flat surface of the wire decreased with IRD, as shown in
Figure 6b, meaning that the camber roll with the small radius increased the strength on the flat surface
of the wire. This was due to the strong concentration of the normal pressure on the wire surface,
as shown in Figure 4c. Namely, the strain distribution on the flat surface of the wire was highly
dependent on the normal contact pressure. Based on a similar mechanism, the strain of the center
area on the flat surface of the wire was improved when using the cambered roll with a small radius.
This result is attractive for industrial plants because many process designers want to improve the
hardness of the flat surfaces in a wire owing to the strict customer demands.

4.2. Shape of Flat-Rolled Wire with Roll Design

To apply the shaped rolls to the flat rolling process, the effect of the roll design on the shape of the
final product needs to be considered. Figure 7 shows the variation in b and W values with IRD after the
second pass. Both values decreased linearly with IRD, indicating that the lateral spreading of the wire
decreased when using the oval-grooved roll with a small radius, because the spreading in the free
surface area of the wire was highly restricted by the roll shape and curvature, as shown in Figure 1b.
In contrast, the spreading in the surface area increased during the rolling process with the cambered
roll due to the reduced restriction of the metal flow in the free surface area, as shown in Figure 1c.
These results practically imply that the size of the initial wire needs to be changed when using the
shaped roll during the flat rolling of wire due to the different wire spreading results with roll designs.

Figure 7. Variations in the b and W values with IRD.

4.3. Design Concept for a High-Quality Flat-Rolled Wire

To make high-quality flat-rolled wires, a practical strategy was designed, as shown in Figure 8,
based on the results achieved in the above comparative study. The strain on the flat surface of the wire
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increased with decreasing IRD, while the strain inhomogeneity in the cross-section of the wire was
slightly reduced with decreasing IRD, meaning that we can produce higher quality flat-rolled wire
products using a cambered roll with a small radius. In contrast, the use of an oval-grooved roll is not
a good idea when fabricating a flat-rolled wire. The proposed design concepts can provide process
designers with seeding ideas to choose the optimal process conditions for high-quality flat-rolled wires.
This is beneficial for industrial plants because a cambered roll can be easily applied in flat rolling
plants. It is worth noting that the proposed practical strategy was valid for most materials, since it was
derived from the general plastic forming conditions. However, the effects of the kinematic hardening,
the strain rate sensitivity in the material, and the friction coefficient should be considered to obtain
more reliable results. In addition, it should be noted that the effects of the roll design on the b and
W values should be considered to obtain a wire with accurate dimensions and tolerance (Figure 7).
For mass production, the wear issue needs to be considered when applying the cambered roll in the flat
rolling of wire. Additionally, the present results need to be confirmed by experimental data, such as a
hardness analysis and microstructure evolution data. In this respect, additional research is necessary.

Figure 8. Schematic description of the effective strain on the flat surface and shape of a flat-rolled wire
with IRD.

5. Conclusions

The effect of the roll design on the strain distribution of the flat surface and on b, and W values;
and the strain inhomogeneity of flat-rolled wires were systematically investigated during the flat
rolling process. The major conclusions are as follows:

1. The effective strain on the flat surface of the wire increased when using a cambered roll due to
the highly intensified contact pressure, while the effective strain on the flat surface of the wire
decreased when using an oval-grooved roll;

2. The b and W values decreased when using an oval-grooved roll with a small radius because the
spread in the free surface area of the wire was highly restricted by the roll shape. In contrast,
the spread in the surface area increased when using a cambered roll due to the less-restricted
metal flow at the free surface;

3. A new practical strategy was proposed for fabricating high-quality flat-rolled wires. A cambered
roll with a small radius can improve the surface quality of flat-rolled wires. This is beneficial for
industrial plants because cambered rolls can be applied easily in flat rolling plants.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (NRF-2018R1D1A1B07050103).

Conflicts of Interest: The author declares no conflicts of interest.

602



Processes 2020, 8, 876

References

1. Kazeminezhad, M.; Karimi Taheri, A. A theoretical and experimental investigation on wire flat rolling process
using deformation pattern. Mater. Des. 2005, 26, 99–103. [CrossRef]

2. Kobayashi, K.; Asakawa, M.; Kobayashi, M. Deformation behavior of round wire in compression using a
cylindrical tool and the analysis of width spreading in flat rolling. Wire J. Int. 2005, 38, 74–79.

3. Kazeminezhad, M.; Taheri, A.K. An experimental investigation on the deformation behavior during wire flat
rolling process. J. Mater. Process. Technol. 2005, 160, 313–320. [CrossRef]

4. Kazeminezhad, M.; Taheri, A.K.; Tieu, A.K. A study on the cross-sectional profile of flat rolled wire. J. Mater.
Process. Technol. 2008, 200, 325–330. [CrossRef]

5. Massé, T.; Chastel, Y.; Montmitonnet, P.; Bobadilla, C.; Persem, N.; Foissey, S. Impact of mechanical anisotropy
on the geometry of flat-rolled fully pearlitic steel wires. J. Mater. Process. Technol. 2011, 211, 103–112.
[CrossRef]

6. Utsunomiya, H.; Hartley, P.; Pillinger, I. Three-Dimensional Elastic-Plastic Finite-Element Analysis of the
Flattening of Wire Between Plain Rolls*. J. Manuf. Sci. Eng. 2000, 123, 397–404. [CrossRef]

7. Parvizi, A.; Pasoodeh, B.; Abrinia, K.; Akbari, H. Analysis of curvature and width of the contact area in
asymmetrical rolling of wire. J. Manuf. Process. 2015, 20, 245–249. [CrossRef]

8. Kazeminezhad, M.; Taheri, A.K. The prediction of macroscopic shear bands in flat rolled wire using the finite
and slab element method. Mater. Lett. 2006, 60, 3265–3268. [CrossRef]

9. Kazeminezhad, M.; Taheri, A.K. Deformation inhomogeneity in flattened copper wire. Mater. Des. 2007, 28,
2047–2053. [CrossRef]

10. Kazeminezhad, M.; Taheri, A.K. The effect of 3D and 2D deformations on flattened wires. J. Mater. Process.
Technol. 2008, 202, 553–558. [CrossRef]

11. Massé, T.; Chastel, Y.; Montmitonnet, P.; Bobadilla, C.; Persem, N.; Foissey, S. Mechanical and damage
analysis along a flat-rolled wire cold forming schedule. Int. J. Mater. Form. 2011, 5, 129–146. [CrossRef]

12. Vallellano, C.; Cabanillas, P.; García-Lomas, F. Analysis of deformations and stresses in flat rolling of wire.
J. Mater. Process. Technol. 2008, 195, 63–71. [CrossRef]

13. Iankov, R. Finite element simulation of profile rolling of wire. J. Mater. Process. Technol. 2003, 142, 355–361.
[CrossRef]

14. Hwang, J.-K. Deformation Behaviors of Flat Rolled Wire in Twinning-Induced Plasticity Steel. Met. Mater.
Int. 2019, 26, 603–616. [CrossRef]

15. Paul, H.; Driver, J.; Tarasek, A.; Wajda, W.; Miszczyk, M. Mechanism of macroscopic shear band formation in
plane strain compressed fine-grained aluminium. Mater. Sci. Eng. A 2015, 642, 167–180. [CrossRef]

16. Eom, J.; Son, Y.; Jeong, S.; Ahn, S.; Jang, S.; Yoon, D.; Joun, M. Effect of strain hardening capability on plastic
deformation behaviors of material during metal forming. Mater. Des. 2014, 54, 1010–1018. [CrossRef]

17. Lambiase, F.; Di Ilio, A. Deformation inhomogeneity in roll drawing process. J. Manuf. Process. 2012, 14,
208–215. [CrossRef]

18. Inoue, T. Optimum pass design of bar rolling for production bulk ultrafine-grained steel by numerical
simulation. Mat. Sci. Forum 2010, 654–656, 1561–1564. [CrossRef]

19. Hwang, J.-K.; Kim, S.J. Effect of reduction in area per pass on strain distribution and microstructure during
caliber rolling in twinning-induced plasticity steel. J. Iron Steel Res. Int. 2019, 27, 62–74. [CrossRef]

20. Choung, J.; Cho, S.R. Study on true stress correction from tensile tests. J. Mech. Sci. Technol. 2008, 22,
1039–1051. [CrossRef]

21. Koc, P.; Štok, B. Computer-aided identification of the yield curve of a sheet metal after onset of necking.
Comput. Mater. Sci. 2004, 31, 155–168. [CrossRef]

22. Hwang, J.-K.; Yi, I.-C.; Son, I.-H.; Yoo, J.-Y.; Kim, B.; Zargaran, A.; Kim, N.J. Microstructural evolution and
deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater. Sci. Eng. A
2015, 644, 41–52. [CrossRef]

23. Hwang, J.-K. The microstructure dependence of drawability in ferritic, pearlitic, and TWIP steels during
wire drawing. J. Mater. Sci. 2019, 54, 8743–8759. [CrossRef]

24. Carlsson, B. The contact pressure distribution in flat rolling of wire. J. Mater. Process. Technol. 1998, 73, 1–6.
[CrossRef]

603



Processes 2020, 8, 876

25. Kazeminezhad, M.; Taheri, A.K. Calculation of the rolling pressure distribution and force in wire flat rolling
process. J. Mater. Process. Technol. 2006, 171, 253–258. [CrossRef]

26. Kwon, H.-C.; Lee, Y.; Im, Y. Experimental and Numerical Prediction of Austenite Grain Size Distribution in
Round-oval Shape Rolling. ISIJ Int. 2003, 43, 1967–1975. [CrossRef]

27. Jung, K.; Lee, H.W.; Im, Y.-T. A microstructure evolution model for numerical prediction of austenite grain
size distribution. Int. J. Mech. Sci. 2010, 52, 1136–1144. [CrossRef]

28. Hwang, J.-K. Effects of caliber rolling on microstructure and mechanical properties in twinning-induced
plasticity (TWIP) steel. Mater. Sci. Eng. A 2018, 711, 156–164. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

604



processes

Article

Model and Algorithm for Planning Hot-Rolled Batch
Processing under Time-of-Use Electricity Pricing

Zhengbiao Hu, Dongfeng He *, Wei Song and Kai Feng

Department of Ferrous Metallurgy, School of Metallurgical and Ecological Engineering, University of Science
and Technology Beijing, Beijing 100083, China; liupingze2019@163.com (Z.H.); songweiustb@163.com (W.S.);
WeiRunWeiUSTB@126.com (K.F.)
* Correspondence: hedongfeng@ustb.edu.cn

Received: 25 October 2019; Accepted: 18 December 2019; Published: 1 January 2020

Abstract: Batch-type hot rolling planning highly affects electricity costs in a steel plant, but previous
research models seldom considered time-of-use (TOU) electricity pricing. Based on an analysis of
the hot-rolling process and TOU electricity pricing, a batch-processing plan optimization model
for hot rolling was established, using an objective function with the goal of minimizing the total
penalty incurred by the differences in width, thickness, and hardness among adjacent slabs, as well as
the electricity cost of the rolling process. A method was provided to solve the model through
improved genetic algorithm. An analysis of the batch processing of the hot rolling of 240 slabs of
different sizes at a steel plant proved the effectiveness of the proposed model. Compared to the
man–machine interaction model and the model in which TOU electricity pricing was not considered,
the batch-processing model that included TOU electricity pricing produced significantly better results
with respect to both product quality and power consumption.

Keywords: hot rolling; TOU electricity pricing; hot rolling planning; genetic algorithm

1. Introduction

As a key link in steel production, hot rolling refers to a process in which the steel slabs sustain
heating in a furnace, rough rolling, and fine rolling before becoming steel products (Figure 1). The main
task of the batch-processing planning of hot rolling is to determine an appropriate sequence for
the processing of multiple slabs, to achieve low power consumption, low cost of stack transfer,
high efficiency, and high product quality, while the technical requirements of rolling are met [1].
Throughout the steel production process, the batch-processing plan of hot rolling directly determines
the product quality and production efficiency of the steel plant. In the past, in most studies on the
batch-processing planning of hot rolling, the penalty items relating to the differences (such as width,
thickness, hardness, and delivery time) were only taken into consideration among adjacent slabs,
while the differences in power consumption between slabs of difference sizes were ignored [2–4].
In fact, apart from guaranteeing product quality and production efficiency, a sound processing plan of
rolling also served to reduce production cost through electricity cost cut-backs, thereby maximizing
the economic benefits [5].

Throughout actual hot rolling, most electricity is used to drive the motor of the rolling mill and
power various auxiliary electrical devices. The power consumption in hot rolling is closely related to
the sizes and conditions of the devices, process parameters, as well as the types and sizes of the steel
products [6]. Under the condition of time-of-use (TOU) electricity pricing, the sequence with which
the slabs are processed has a major impact on power consumption. In the research area of hot rolling,
only few studies were carried out regarding the impact investigation of TOU electricity pricing on the
batch-processing planning of hot rolling. Most studies were focused on methods of better connection
and matching during steelmaking, of continuous casting, and hot rolling processes. A charge-rolling
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plan coordination model based on the optimal furnace charge plan and optimal rolling plan models
was presented [7,8], in which the tabu search algorithm was proposed for the corresponding solution.
A steelmaking continuous-casting hot-rolling integrated planning model was proposed to enable an
effective connection among the rolling unit plan [9], the furnace charge plan, and the casting plan.
An integrated model on the production and logistics planning level was constructed [10], based on an
analysis of the characteristics of steelmaking and hot rolling processes, as well as on the transition
between the two processes, where the constraints of capacity and the conflicts between the two stages
were taken into consideration. A mathematical model was presented for batch-processing optimization
in the steelmaking and hot rolling processes [11]. This model was proposed for the model solution with
the neighborhood search algorithm based on heuristic rules. The batch-processing planning problem
of hot rolling was treated as a constraint compliant problem [12], while the vehicle routing problem
with soft time windows (VRPSTW) constraint of uncertain plan number was constructed to satisfy
the model. In certain studies, the effects of other factors on the rolling plan of hot-rolling planning
were taken into consideration. As an example, the problem of slab stack transfer in the rolling plan
was taken into consideration [13,14], whereas the solution was conducted with the improved genetic
algorithm, resulting in reduced handling costs. The impact of TOU electricity pricing on the rolling
planning was taken into consideration [6], but in the proposed model, the power consumptions of
individual rolling units were only considered, instead of the influence of the rolling sequence on the
electricity cost under TOU electricity pricing. Mao et al. [5] considered the influence of TOU electricity
pricing when constructing a rolling unit as the production load unit, and a multi-objective optimization
model for hot rolling was established and a multi-objective optimization algorithm was applied to
solve this problem. However, all the goals were classified into one objective function in this paper.

In summary, in most previous studies, optimal rolling-plan models were proposed to be
established, to produce products with the highest possible quality and production efficiency prior to
the delivery deadline, indifferently to electricity cost reduction throughout production. Because the
main characteristic of genetic algorithms is to directly operate the structural objects, only the objective
function and the corresponding fitness functions that affect the search direction are needed. Therefore,
the genetic algorithm provides a method for solving complex system problems. It does not depend
on the specific fields and types of problems, and has strong robustness, so it has been widely used in
many scientific fields. [15]. On the basis of previous studies, in this paper, a model for batch-processing
planning of hot rolling under TOU electricity pricing was presented, resulting in a method of solving
the model with an improved genetic algorithm.

Figure 1. Flow chart of the rolling process.
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2. Problem Description

2.1. Basic Principles of Hot Rolling Planning

Hot rolling constitutes the last link in the steelmaking continuous-casting hot-rolling process.
The raw materials are the slabs resulting from continuous casting, while the products are strip
steels (steel plates or steel coils). The strip steel could be directly sold as a finished product, or be
further processed into high-quality cold-rolled strip steel. A key issue in hot rolling is the rolling
plan formulation. A complete rolling unit generally consists of two parts: “roll heating pieces”
and “principal pieces” (Figure 2). The roll-heating pieces are usually easy-to-process slabs, such as
low-carbon steels as well as relatively thick and narrow strip steels. The number of slabs in this part is
relatively low, while the main purpose of this part is to heat the rolled steel and lead it to reach heat
equilibrium, creating conditions for the subsequent processing of principal pieces. Usually, the width
of the slab increases gradually throughout rolling. The principal pieces are usually hard-to-process
slabs, for thinner and wider products, whereas the width of the slab decreases gradually throughout
hot rolling. Therefore, a complete rolling unit would have a dual trapezoidal structure, with the
positive trapezoid as the roll-heated pieces and the inverted trapezoid as the principal pieces. In view
of the fact that the numbers of roll-heated pieces in a rolling unit are small and the quality requirement
is low, in this study, the principal pieces were focused on. The principal pieces processing met the
following requirements [16,17].

(1) The length of each principal piece had a certain limit;
(2) When the thickness of the principal piece changed in the non-increase direction, the step must be

lower than 25 cm;
(3) When the width changed inversely, the step did not generally exceed 15 cm;
(4) When slabs of the same width were continuously processed, the total length should not exceed a

certain limit;
(5) The width, thickness and hardness were not allowed to jump at the same time;
(6) The thickness jump should be smooth and repeated jumps were not allowed. Changes in the

non-decrease direction were preferred.
(7) The hardness change should be smooth. Both gradual increase and gradual decrease were

allowed. Repeated jumps were not allowed.

Figure 2. Schematic diagram of rolling unit.
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Figure 3 presents the batch-processing plan formulation of hot rolling. Multiple slabs of different
sizes were combined into a rolling unit in accordance with the process requirement, while multiple
rolling units constituted a hot-rolling batch-processing plan (Figure 4). The hot-rolled batch processing
plan was a rolling sequence of slabs arranged in accordance with the roll usage cycle. One rolling
unit corresponded to the usage of one set of rolls. The hot-rolling batch-processing plan’s successful
execution directly determines the product quality, delivery date, and production efficiency, and a sound
hot-rolling batch-processing plan could improve production efficiency, reduce energy consumption
(such as costs), and enhance the firm’s competitiveness.

 

Figure 3. Batch-processing plan formulation of hot rolling.

Figure 4. Schematic diagram of a batch-processing plan for hot rolling.

2.2. Analysis of Energy Consumption in Rolling

Hot rolling is a typical energy-intensive process in steel production, mainly requiring electric
energy and heat energy from gas consumption. The gas is mainly consumed in the heating furnace to
heat the slabs to the temperature required for hot rolling. The gas used in the heating furnace is usually
a mixture of blast furnace gas, Linz–Donawitz gas, and coke oven gas, while the calorific value of the
mixed gas must meet the production requirement. The electric energy is mainly used to drive the
rolling mill, while the power consumption in the rolling process varies depending on the slab size, steel
type, and other factors. In a hot-rolling batch-processing plan, the rolling sequence change or positions
exchange of two rolling units will change the energy consumption pattern. At many locations, the
electricity price varies with time. As demonstrated with the TOU electricity pricing scheme presented
in Figure 5, the highest electricity price was 2.43 times that of the lowest electricity price. Consequently,
the rolling sequence in the rolling plan directly affected the electricity cost of hot rolling.
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Figure 5. Schematic diagram of production scheduling under time-of-use (TOU) electricity pricing.

At present, many batch-processing plans of hot-rolling steel plants are mainly prepared by human
planners in human–computer interaction interfaces, based on their experience. The impact of the
batch-processing plan on the power consumption has been often ignored. Besides, this mode of
planning has the drawbacks of low efficiency, poor accuracy, and high labor cost. To compensate for
this deficiency, in this paper, a model for batch-processing planning of hot rolling under TOU electricity
pricing was proposed, with the aim of ensuring high quality and reducing power consumption at the
same time.

3. Mathematical Model and Solution Method

3.1. Mathematical Model

3.1.1. Model Assumptions

(1) The time required to process a single slab was roughly the same. In this paper, the processing
time used was 2 min;

(2) Basic properties, such as width, thickness, hardness, and length of each slab were known;
(3) The change of the total attribute in the rolling unit could be determined through calculation.

3.1.2. Objective Function

In this paper, the optimizations of quality and power consumptions from different time periods
were taken into consideration. On the basis of setting a certain weight coefficient, an objective function
was formulated with the goal of minimizing the differences in width, thickness, and hardness among
adjacent slabs of the same rolling unit, as well as the electricity cost of the rolling process. The objective
function is presented as

min F =
N∑

j=1

N∑
i=1,i� j

{
PWΔWi, j + PGΔGi, j + PHΔHi, j

}
·Xijk +

T∑
t=1

N∑
i=1

{
Cele,t(Pele,i)

}
·Yi (1)

where ΔWi, j =
∣∣∣Wi −Wj

∣∣∣, ΔGi, j =
∣∣∣Gi −Gj

∣∣∣, ΔHi, j =
∣∣∣Hi −Hj

∣∣∣.
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3.1.3. Constraints

Based on the above description, the constraints of the hot-rolled batch processing planning model
are as follows:

N∑
k=1

yik = 1

i ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(2)

N∑
i=1

(Li × yik) ≤ Lmax

i ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(3)

N∑
i=1

(
Zijk × Li × yik

)
≤ Rmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(4)

0 ≤ Xijk ×
(
Wi −Wj

)
≤ Wmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M} (5)

0 ≤ Xijk × ΔGi, j ≤ Gmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M} (6)

0 ≤ Xijk × ΔHi, j ≤ Hmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M} (7)

N∑
i=1

Xijk ·
N∑

j=1
Xijk = 1

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(8)

Cele,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C0, t ∈ (0, T0]

C1, t ∈ (T0, T1]

C2, t ∈ (T1, T2]

(9)

Xijk =

{
1, Slab j is behind slab i, and belong to same rolling unit k
0, else

(10)

Zijk =

{
1, Slab j is behind slab i and j have same width and belong to same rolling unit k
0, else

(11)

yik =

{
1, Slab i belongs to rolling unit k
0, else

(12)

where F represents the target penalty value, N represents the number of slabs, T represents the rolling
period. PW , PG and PH are the penalty coefficients for the differences in width, thickness, and hardness
among adjacent slabs of the same rolling unit, respectively. In the equations, Yi represents the penalty
coefficient for the electricity spent on the slab i, Cele,t represent the prices of the electricity spent on
the slab i, Pele,i is the electricity spend on the slab i, Lmax is the length limit for each rolling unit, Rmax

is the length limit for the continuously processed slabs of the same width in the same rolling unit,
Wmax, Gmax, and Hmax are the upper limits for the differences in width, thickness and hardness among
adjacent slabs from the same rolling unit. Constraint (2) ensured that each slab was assigned to one
rolling unit; constraints (3) and (4) limited the total length of a single rolling unit and the length of
continuously processed slabs of the same width; constraint (5) ensured that slabs of the same rolling
unit were arranged in the descending order of width and that the width difference between two
adjacent slabs did not exceed the upper limit; constraints (6) and (7) ensured that the differences in
thickness and hardness between two adjacent slabs did not exceed the upper limits, respectively;
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constraint (8) signified that each slab could only be processed once; constraint (9) represented the
prices of electricity from different time periods; and constraints (10)–(12) were the decision variables of
values of 0, 1, respectively.

3.2. Method for Model Solution

3.2.1. Brief Description of Algorithm

The genetic algorithm (GA) is an algorithm that mimics the processes of inheritance, mutation,
and natural selection in the evolution of biological organisms. Figure 6 presents the solution of the
genetic algorithm. First, a set of initial feasible solutions were randomly selected, according to the
characteristics of the problem. Following this, a new chromosome was obtained through crossover and
mutation operations involving genetic operators. Next, the fitness of the new generation chromosome
was calculated and evaluated. The chromosome with good adaptability would be passed on to the
next generation. This solution process would be repeated until the preset number of iterations was
reached or the convergence condition was met. The GA has the characteristics of randomness, implicit
parallelism, and global optimization in the operation process. In the actual operation of steel plant, a
requirement to prepare a large number of batch-processing plans exists. Consequently, it was difficult
to achieve the expected result through the common search methods. To tackle this problem, in this
paper, it was proposed that the batch-processing model was to be solved with the GA with improved
genetic operators.

N

 

Figure 6. Process of model solution through genetic algorithm.
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3.2.2. Chromosome Coding

Throughout the hot-rolling planning model solution with GA, the chromosome was represented
by a coding sequence consisting of decimal natural numbers. For a rolling plan, the serial numbers
of the slabs represented the genes in the chromosome coding. The chromosome coding could be
expressed as the sequence of {a1, a2 . . . ai}, in which the chromosome length was the total number N of
pre-processed slabs. Figure 7 presents a schematic diagram demonstrating the chromosomal coding of
the rolling plan, in which, a1, a50 and a100 were the serial numbers of the slabs; A0, A1 and A2 were the
slab sequences constituting the rolling units.

Figure 7. Schematic diagram of rolling-plan chromosome coding.

3.2.3. Chromosome Decoding

In different chromosomes, the numbers represented the serial numbers of the slabs, while the
order of appearance was the order of processing. Figure 8 presents the flowchart of chromosome
decoding. The procedure of rolling plan chromosome decoding was as follows:

Step 0: M = 0, Aj = ai, l = 0;
Step 1: Sequentially traversed the slab numbers ai from the ith position of the chromosome, recording

the length li of the slab ai and recording ai in the arranged slab sequence Aj, doing l = l + li,
and going to Step 2;

Step 2: If l was larger than the length L of the rolling unit, the last element in the sequence Aj was
removed, turning the sequence Aj−1 into a rolling unit, and letting M =M + 1; if l was equal
to the length L of the rolling unit, the sequence Aj was turned into a rolling unit, and letting
M =M + 1; otherwise, Step 1 was selected;

Step 3: When i was equal to the length of the chromosome, the program exited.

M Aj l

for i i i
l l l

if l>L
Aj-1 i... j-1

M

else if l=L
Aj= i... j

M

Figure 8. Flow chart of chromosome decoding.
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3.2.4. Selection of Fitness Function

In this paper, a sorting-based allocation function was used as the fitness function. The equation
was as follows:

Fit(P) = 2−Y + 2(Y − 1)(P− 1)/(N − 1)

where N is the number of chromosomes in the population, P is the sorting number of the chromosome
in the population, Y is the selection pressure with a value in the range of [1.0, 2.0]. When the fitness
function was applied, it was necessary to calculate at first the penalty value of each chromosome in the
population, incurred by the differences in the width, thickness, and hardness among adjacent slabs,
as well as the TOU electricity pricing. Following this, sorting was performed according to the penalty
values, and the P value of the corresponding chromosome was obtained. Finally, the fitness values of
different chromosomes were calculated. The smaller the objective function value was, the greater the
fitness of the corresponding chromosome was. In this way, the high-quality chromosomes were picked
from the population.

3.2.5. Genetic Operators

Genetic operators include selection operators, crossover operators, and mutation operators.
In a rolling plan, each slab could only occupy one position in the sequence. In other words, no
duplicate genes would appear in the same chromosome, which is different from the conventional GA.
Therefore, it was necessary to improve the crossover and mutation operators. The selection operator
used in the model solution method proposed in this paper was used to realize a selection operation
similar to roulette according to the above-mentioned fitness function. The crossover operator was a
secondary crossover operator. As illustrated in Figure 9, the crossover operator worked as follows. (1)
Three contiguous genes on the chromosome were randomly selected and their positions are recorded; (2)
the three genes were led to exchange positions with three corresponding genes on another chromosome
without changing the original order. Finally, the mutation operator exchanged the positions of two
randomly selected genes on the same chromosome, as presented in Figure 10.

Figure 9. Crossover operator.

Figure 10. Mutation operator.
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4. Case Study

4.1. Basic Parameters

The total lengths of the slabs in a rolling unit were limited to 10 km, the lengths of the slabs of
the same width were limited to 1 km, while the jump penalties for width, thickness, and hardness
are presented in Tables 1–3 [18]. Throughout the model solution with genetic algorithm, the initial
population size was 20, the crossover probability was 0.85, and the mutation probability was 0.15.
The genetic algorithm was implemented through Visual C# programming.

Table 1. Penalty of width jump.

Jump down/mm 0~25 26~55 56~90 91~150

Penalty 1.0 3.0 5.0 7.0

Table 2. Penalty of hardness jump.

Factor Change 1 2 3 4 5

Penalty 10 16 20 24 30

Table 3. Penalty of thickness jump.

Jump up/mm 0~0.06 0.0601~0.15 0.1501~0.24 0.2401~0.45 0.4501~3.00

Penalty 200.00 300.00 400.00 800.00 1000.00

Jump down/mm 0~25 26~55 56~90 91~150 0.4501~3.00

Penalty 400.00 600.00 800.00 1000.00 2000.00

Table 4 presents the different electricity prices charged to a typical steel plant during different
periods within one day [19]. Each day was divided into six electricity price periods with three electricity
prices (peak, flat, trough).

Table 4. TOU electricity pricing in steel plant (24-h clock).

Electricity Price Range Period Electricity Price, Yuan/kWh

Peak periods 08:00-11:00, 16:00-21:00 0.76
Flat periods 06:00-08:00, 11:00-16:00, 21:00-22:00 0.53

Trough period 22:00-06:00 (next day) 0.31

4.2. Analysis of Optimization Results

The subject of this case analysis was 240 slabs actually processed by a certain steel plant. The rolling
operation started from 03:00. The genetic algorithm was used to solve the rolling batch-processing
model under two conditions: considering the TOU electricity pricing, and not considering the TOU
electricity pricing. Figure 11 presents the iteration curves under the two conditions. As it could be
observed from Figure 11a, when TOU electricity pricing was not taken into consideration, the penalty
value remained basically unchanged after 10 iterations. The initial penalty value was 23,537, and
the value became 22,029 after optimization, amounting to an improvement of 6.4%. As presented in
Figure 11b, when the TOU electricity pricing is taken into consideration, the penalty value remained
basically unchanged after nine iterations. The initial penalty value was 27,880, while the value became
26,238 after optimization, amounting to an improvement of 5.9%. This indicated that a feasible solution
with a low penalty value could be obtained through model optimization.
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(a) (b) 

Figure 11. (a) TOU electricity pricing not considered (b) TOU electricity pricing considered Convergence
curve resulted from genetic algorithm iterations.

Table 5 presents the penalty values of three hot-rolling batch processing plans prepared with
different methods. It could be observed that the two rolling plans formulated through the hot-rolling
batch-processing model under two electricity pricing conditions (TOU plan, non-TOU plan) had
apparently lower penalty values, compared to the rolling plan formulated by the man–machine
interaction method (MMI plan), even though all three rolling plans had the same number of
rolling units. This indicated that better slab arrangement (width, thickness, and hardness) could be
achieved after the model-based optimization, which would further lead to a smoother hot-rolling
operation. The optimization model, in which the TOU electricity pricing was considered, had higher
penalty value compared to the optimization model without the TOU electricity-pricing consideration.
This occurred because the penalty incurred by the electricity cost had been added to the objective
function. The introduction of the electricity cost penalty created the condition for simultaneous quality
and power consumption optimization for the hot-rolling process.

Table 5. Penalty values of three hot-rolling batch-processing plans.

Slab Number /Piece Preparation Method Number of Rolling Units /Piece Penalty Value

240

Human interaction 5 31,266
Model-based optimization

(not considering TOU electricity pricing) 5 22,029

Model-based optimization
(considering TOU electricity pricing) 5 26,238

Figure 12 presets the electricity costs during rolling. The different colors represented different
rolling units. The MMI plan induced an electricity cost of 11,230 yuan, the non-TOU plan induced
10,770 yuan and the TOU plan induced 10,230 yuan. In other words, the TOU plan induced 8.9% less
electricity cost than the MMI plan and 5.0% less electricity cost than the non-TOU plan. Because the
model considering the TOU electricity pricing is good for reducing peaks and filling valleys, the cost of
electricity consumption is effectively reduced.

Figure 13 presents the power consumption data during the period from 04:00 to 10:00. The electricity
price was 0.31 yuan/kWh in the period of 04:00–06:00, 0.53 yuan/kWh in the period of 06:00–8:00 and
0.76 yuan/ kWh in the period of 08:00–10:00. It could be observed that when the electricity price was
0.31 yuan/kWh, the MMI plan, non-TOU plan, and the TOU plan consumed 4293 kWh, 5134 kWh
and 4808 kWh of electricity, respectively. When the electricity price was 0.76 yuan/kWh, the TOU
plan consumed 4132 kWh, while the MMI plan consumed 5574 kWh. The former was 25.9% lower
than the latter. This demonstrated the benefit of model-based optimization. After the model-based
optimization, the high-load rolling units were arranged in the trough-price and flat-price periods,
while the low-load rolling units were arranged in the peak-price period.
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Figure 12. Electricity costs of three rolling plans.

Figure 13. Electricity consumptions at different time periods.

Figure 14 presents the electricity costs of three kinds of rolling plans at different time periods.
It could be observed that when the electricity price was low (0.31 yuan/kWh), the MMI plan, TOU plan,
and non-TOU plan induced electricity costs of 1331 yuan, 1592 yuan and 1490 yuan, respectively. When
the electricity price was medium (0.53 yuan/kWh), the electricity costs induced by the three rolling
plans were very close. When the electricity price was high (0.76 yuan/kWh), the MMI plan, non-TOU,
and TOU plans induced costs of 4236 yuan, 3984 yuan and 3140 yuan, respectively. In other words, the
TOU plan induced a 21.2% lower electricity cost than the non-TOU plan, and 25.9% lower than the
MMI plan. Therefore, the TOU plan could effectively reduce the electricity cost and contribute to the
power grid fluctuation reduction of electricity consumption.

Figure 14. Electricity costs at different TOU electricity pricing periods.
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5. Conclusions

(1) A hot-rolling batch-processing plan optimization model, in which TOU electricity pricing was
taken into consideration was established. An objective function was used in the model that was
aimed at the jump penalties minimizations of the jumps among adjacent slabs in width, hardness,
and thickness, as well as in the electricity costs. The optimization method reduced the electricity
cost of hot rolling, while ensuring the product quality and production efficiency, in addition to
the extra benefit of power consumption fluctuation reduction.

(2) In the proposed method, the crossover and mutation operators of the improved genetic algorithm
were used to solve the model for batch-processing plan production for hot rolling. The algorithm
was characterized by strong search ability and good convergence. The penalty value after
optimization was significantly lower than before optimization, proving the actual value of the
proposed method.

(3) An experimental verification was carried out to check the electricity costs of processing of 240 slabs
through three hot rolling batch processing plans, formulated under “TOU electricity-pricing
consideration”, “TOU electricity-pricing absence” and “man—machine interaction” models.
The results demonstrated that the TOU plan induced 8.9% lower electricity cost than the MMI
plan and 5.0% lower electricity cost than the non-TOU plan.
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Abstract: An in-depth understanding of the flow behaviors of materials deformed at high temperatures
is of paramount significance. However, insufficient research on the nickel-based GH4698 alloy has
resulted in inaccurate material flow prediction or even cracking in the practical billet opening of
GH4698 large forgings. In this study, hot compressions were performed at 950–1150 ◦C and 0.001–3 s−1.
Single-peaked strain-stress curves were obtained under various conditions, owing to dislocation
motions in dynamic recrystallizations. The Arrhenius model was formulated to accurately describe
the flow stress evolutions and the mean prediction error of the flow stress was 5.90%. Processing maps
were constructed at various hot working conditions. It was found that the hot working ability
of GH4698 markedly decreased under lower temperatures (950–1080 ◦C) and higher strain rates
(0.1–3 s−1). Optimal thermal processing parameters were suggested. In sum, this study systematically
investigated the flow behaviors and hot working ability of GH4698 in isothermal compressions.

Keywords: processing maps; nickel-based alloy; flow behavior; arrhenius equation

1. Introduction

As a type of precipitation-reinforced nickel-based high-temperature alloy, the GH4698 alloy has
excellent strength, toughness, fatigue resistance, and corrosion resistance at up to 750 ◦C. Thus, this alloy
has been widely used to manufacture machine parts working at high temperatures, such as airplane
engine compressor disks, guide vanes, and gas turbine disks. However, this material is extremely
sensitive to thermal processing parameters, and cracking could easily occur in the billet opening of
GH4698 large forgings, owing to the addition of aluminum and titanium [1]. One solution could be
to place the billet in a sleeve and forge as a whole, so that the material is under a three-dimensional
compressive stress state, but this would increase the cost. A more economical method is to deform
under optimized parameters, but thus far, hot processing maps of GH4698 have not been established,
hindering the hot working parameters optimization in practical production. Therefore, there is an
urgent need for systematic research on the flow behaviors and hot working maps of GH4698.

Various flow stress models have been proposed to describe the flow behaviors of alloys at high
temperatures. The phenomenological Johnson-Cook model was successfully used to describe the
exponential stress-strain relationships of GH4133B by Wang et al. [2]. However, the Johnson-Cook model
was inadequate for materials with nonexponential type stress-strain curves, and the Zerilli-Armstrong
model was established for an NiTi alloy by Shamsolhodaei et al. [3]. To achieve a higher prediction
accuracy, the Arrhenius model was modified to incorporate the influence of strain, and based on the
modified Arrhenius model, flow stress models were established for various nickel-based alloys, e.g.,
the GH4169 alloy by Chen et al. [4], N08028 alloy by Wang et al. [5], and 80A alloy by Gu et al. [6].
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The results by Lin et al. [7] and Wang et al. [8] indicated that the accuracy of the flow stress models could
be further improved by a neural network, but the applications were limited, owing to the difficulty
in finite elemental integration. Moreover, physical-based models were proposed to investigate the
underlying mechanisms of the influences of creep, dislocation motion, and grain size on flow stresses
by Lin et al. [9], Haan et al. [10], and Zhou et al. [11]. By comparing the above-mentioned models,
the Arrhenius model showed an advantage in applicability and accuracy, and thus it has been widely
used in the flow stress modeling of nickel-based alloys [4–6].

The processing maps of nickel-based alloys have also been investigated intensively in recent
years. Hot working maps of a nickel-based alloy for power plant applications were established by
Wu et al., and it was revealed that the different recrystallization mechanisms could be reflected by the
hot working maps [12]. The microstructures on the different domains of the processing maps of the
IN028 alloy were inspected by Wang et al. [13], and the study showed that the deformation mechanism
maps agreed well with the processing maps. The processing maps of the N08028 alloy [14], the 617B
alloy [15], and the GH4169 alloy [16] showed that the efficiency peaks of the processing maps were
associated with dynamic recrystallization nucleation and dramatic grain growth of the N08028 alloy,
whereas incomplete recrystallization, twinning, and adiabatic shear bands occurred in the instability
domain. By comparing the different instability criterions from Gegel et al. [17–20], the different shapes
of the deformation instability domains of GH79 alloy were compared by Ge et al. [21], and it was
noted that the deformation instability domains from Prasad’s criterion could effectively predict the
deformation instability of GH79. It was shown by the result of Chen et al. [4] that the optimal hot
working parameters of GH4169 were located at areas whose dissipative efficiencies were 30–35%.
Specifically, for the GH4698 alloy, the flow behaviors were investigated by Zhang et al. [22], and a
flow stress model was established. Nevertheless, hot working maps of GH4698 have not been
established, forming a barrier for hot working parameter optimization in large forging production.
Thus, systematic research is required on the flow behaviors and hot workability of the GH4698 alloy at
high temperatures.

Therefore, in this study, the hot deformation behaviors of the GH4698 alloy were studied via hot
compressions. An Arrhenius model was established to calculate the flow stresses. Processing maps
at various thermal processing conditions were constructed, and an optimal hot working parameter
range for GH4698 was recommended. This study provides a reference for hot working parameter
optimization of GH4698 large forgings during the forging process.

2. Materials and Experiments

2.1. Materials

The as-forged GH4698 alloy ingot used in this study had a size of Φ300 mm × 1000 mm.
The chemical composition of the GH4698 alloy was quantified via x-ray fluorescence (XRF1800,
Shimadzu Inc., Kyoto, Japan) and an infrared carbon-sulfur analyzer (CS2800, Eltra Inc., Haan,
Germany), as shown in Table 1 [23,24]. It should be noted that the carbon content of the material used
in this research was at the upper limit allowed for GH4698. The specimens for elemental analysis
were prepared by wire electrode cutting, turning, and mechanical polishing to Φ33 mm × 12 mm
cylinders. The hot compression specimens were prepared by wire electrode cutting and turning to
Φ8 mm × 12 mm cylinders.

Table 1. Composition of the GH4698 alloy.

Composition C Al Fe Cr Nb Zr Mo Ti Ni

Mass Percentage (%) 0.08 1.55 1.51 14.43 1.95 0.05 2.90 2.62 Balance
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2.2. Experiments

Hot compressions were conducted on a compression machine (Gleeble3500, Dynamic Systems
Inc., Austin, TX, USA). The compression temperatures were determined to be 950 ◦C, 1000 ◦C, 1050 ◦C,
1100 ◦C, and 1150 ◦C, respectively. These temperatures covered the usual hot working temperature
range of GH4698 [1]. To cover the strain rate range of the billet forging process, preforging process,
and final-forging process of large forgings on hydraulics, the strain rates were selected to be 0.001 s−1,
0.01 s−1, 0.1 s−1, 1 s−1, and 3 s−1, respectively. The experimental procedure is shown in Figure 1.
The specimens were heated to 1150 ◦C at 3.3 ◦C/s, held for 180 s, cooled to deformation temperatures,
held for 180 s, compressed to the strain of 0.95, and quenched. The true stress and logarithmic strain
were calculated accordingly. The compressive strains, which had negative values, were written as
positive for simplicity in this research. Smoothing was applied on the stress-strain curves.

 
Figure 1. Illustration of the experiment procedure.

3. Results and Discussion

3.1. Flow Behaviors

The stress-strain curves of GH4698 at various strain rates are shown in Figure 2. Basically,
single-peak flow stress curves were obtained. In the starting stage of deformation, the flow stress
increased because of the contradicting effect of work hardening by dislocation pile ups and cross slips,
as well as dynamic softening, by creep and recovery. As the deformation proceeded, the dislocation
densities at the grain boundaries reached the critical value for recrystallization, and the dynamic
recrystallized grains nucleated, resulting in the softening and a gradual drop in the flow stress [25].
When the dynamic recrystallization was completed, the flow stress remained nearly constant, as the
hardening effect and the softening effect were balanced. It can also be seen from Figure 2 that the
flow stress decreased with increasing temperature. This could be explained by the observation that
the thermal movement of atoms was more intense at higher temperatures. The creep and dynamic
recrystallization were more likely to occur owing to fewer obstacles for the dislocation motion to
overcome, resulting in the overall softening of the GH4698 alloy. With the increasing strain rate, the
flow stress increased. This is because at a faster strain rate, it was more difficult for the dynamic
recovery to fully occur, leading to a higher average dislocation density and a greater deformation
resistance. It is worth noting that the peak flow stress shown in Figure 2 agreed well with the results
of Zhang et al. [22], but the curve shapes were different, which may be attributed to differences
in the composition of as-received material. As mentioned in Section 2.1, the carbon content of the
material used in this research, 0.08%, was obviously higher than that in the literature [22], 0.048%.
For nickel-based alloys, Chen et al. [4] and Lin et al. [7] proved that dynamic recrystallization occurred
during hot compressions. Therefore, a refined and uniform microstructure could be obtained by
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selecting optimal hot working parameters. In this way, the hot working ability could be improved,
and cracking defects of large forgings in the billet opening process could be avoided.

. 
Figure 2. Stress strain curves of GH4698 compressed at the strain rates of (a) 0.001 s−1, (b) 0.01 s−1, (c)
0.1 s−1, (d) 1 s−1, and (e) 3 s−1.

3.2. Flow Stress Modeling

Although a flow stress model of the GH4698 alloy was established by Zhang et al. [22],
different shapes of stress-strain curves were obtained under various compression conditions, as shown
in Figure 2. Therefore, a flow stress model describing the stress-strain relationships of GH4698 should
be established. The Arrhenius equation was expressed as in [26]:

.
ε exp (

Q
RT

) = A(sinh(ασ))n. (1)

Here, A, n, and α were material constants, was the strain rate in s−1, Q was the thermal activation
energy in kJ/(mol·K), R was the gas constant, which equaled 8.314 J/(mol·K), and T was the deformation
temperature in K. As a constraint, the following could be applied for different stress levels [27,28]:

.
ε = A1σ

n exp (− Q
RT

) (ασ < 0.8) (2)
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.
ε = A2 exp (βσ) exp

(
− Q

RT

)
(ασ > 1.2). (3)

A1, A2, n, and β are constants, which follows:

α =
β

n
(4)

Taking logarithms of both sides of Equations (2) and (3) gives:

ln
.
ε = ln A1 + n ln σ− Q

RT
(5)

ln
.
ε = ln A2 + βσ− Q

RT
. (6)

Thus, n and β could be calculated by the slopes of the fitted line of ln σ versus ln
.
ε, and σ versus

ln
.
ε. The value of α is calculated according to Equation (4). Taking a logarithm of Equation (1) results in:

ln
.
ε = ln A + n ln(sinh(ασ)) − Q

RT
. (7)

Therefore, the value of Q could be obtained via the slope of the fitted line of 1
T versus ln(sinh(ασ)),

and the value of ln A could be obtained via the intercept of the fitted line of ln(sinh(ασ)) versus
ln

.
ε+Q/RT. Taking ε = 0.05 as example, the calculation process of the model parameters is shown in

Figure 3. For effectiveness, the calculations were made using MATLAB software at various strains.
The values of the model parameters with the increasing strain are shown in Figure 4.

 
Figure 3. The calculation process of n, β, Q, and ln A from the slope of the fitted line of (a) ln σ versus ln

.
ε,

(b) σ versus ln
.
ε, (c) 1

T versus ln(sinh(ασ)), and from the intercept of the fitted line of (d) ln(sinh(ασ))
versus ln

.
ε+ Q

RT.
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Figure 4. The Arrhenius model parameter values of GH4698 alloy at various strains. (a) n, (b) β, (c) Q,
and (d) ln A.

Fifth-order polynomial fittings were then applied to describe the relationships between the model
parameters and the strain, resulting in the following:

G = k0 + k1ε+ kε2 + k3ε
3 + k4ε

4 + k5ε
5. (8)

Here, G denotes n, β, Q, and ln A, respectively. k0 − k5 denote the coefficients, whose values are
determined by polynomial fitting in the Origin software, shown in Table 2.

Table 2. Coefficients of the polynomials.

Coefficients k0 k1 k2 k3 k4 k5

n 7.993 × 100 −2.922 × 101 1.083 × 102 −1.825 × 102 1.426 × 102 −4.233 × 101

α 6.731 × 10−3 −1.372 × 10−2 5.024 × 10−2 −7.115 × 10−2 4.724 × 10−2 −1.283 × 10−2

Q 6.870 × 105 −3.307 × 105 −7.459 × 105 1.830 × 106 −7.715 × 105 −1.887 × 105

lnA 5.492 × 101 −4.353 × 101 −1.359 × 100 3.554 × 101 4.416 × 101 −5.413 × 101

The comparisons between the calculated and experimental flow stress values are shown in Figure 5.
Basically, the flow stress could be predicted with good accuracy, showing that the Arrhenius model was
capable of accurately calculating the flow behaviors of GH4698 under various strain rates. The scatter
plots of the calculated versus experimental flow stress are shown in Figure 6. The calculated stresses
fit well with the experimental stresses. The adjusted R square value to describe the goodness of fit
was 0.990. The average calculation error was 10.96 MPa (5.90%). The errors may be attributed to
the following two reasons. First, there were still computational deviations in the fitting of model
parameters by the fifth-order polynomial, which could be improved by trying better fitting expressions.
Additionally, an abnormal softening occurred in the final part of the stress–strain curve under 1000 ◦C
and 0.01 s−1, which may be caused by experimental deviations. The number of repetitions under the
same hot compression conditions could be increased to reduce such deviations.
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Figure 5. Comparisons of the calculated and experimental flow stress at the strain rates of (a) 0.001 s−1,
(b) 0.01 s−1, (c) 0.1 s−1, (d) 1 s−1, and (e) 3 s−1.

 

Figure 6. Scatter plots of the calculated versus experimental flow stress.

3.3. Processing Maps

The processing maps were significant references for process parameter optimizations of GH4698
large forgings. It was suggested by Prasad et al. [26] that the deformation work (P) during forging is
consumed by temperature rising (G) and microstructure evolution (J), as represented by:
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P = G + J =
∫ .
ε

0
σ d

.
ε+

∫ σ

0

.
ε dσ. (9)

The power dissipation coefficient (η) quantifying the fraction of energy by microstructure evolution
was calculated by [4]:

η =
2∂ ln σ
∂ ln

.
ε

∂ ln σ
∂ ln

.
ε
+ 1

. (10)

An instability coefficient ζ for predicting deformation instability was expressed as in [4]:

ζ =
∂ log(η/2)

∂ log
( .
ε
) +

∂ ln σ
∂ ln

.
ε

. (11)

The value of ζ was negative when deformation instability occurred according to previous
research [4,12–15]. The value of σ could be obtained from the flow stress model. Thus, the thermal
processing maps of GH4698 were established according to Equations (10) and (11), as shown in
Figure 7. The deformation instability was shown as shaded areas, and the dissipation coefficients
were shown as contours. At a strain of 0.2 (Figure 7a), three deformation instability domains were
found. One was located at 950–1150 ◦C and 0.25–3 s−1, another at 985–1015 ◦C and 0.001–0.002 s−1,
and the third at 1060–1140 ◦C and 0.001–0.004 s−1. As the strain increased to 0.4, the deformation
instability domain at high strain rates split into two, one at 950–1025 ◦C and 0.5–3 s−1, and the other
at 1060–1150 ◦C and 0.5–3 s−1. Another deformation instability domain was located at 960–1010 ◦C
and 0.002–0.025 s−1. A comparison of data presented in Figure 7a,b showed that the majority of
the deformation instability domain had dissipation coefficients lower than 35%, and the dissipation
coefficients of the other parts of the map were generally greater than 35%. One reason for this could
be that at higher strain rates and lower temperatures, dynamic recrystallization was insufficient,
and deformation instability occurred more easily. Thus, a much larger proportion of the deformation
work was converted into heat. At a strain of 0.6 (Figure 7c), two deformation instability domains were
found. One was located at 950–975 ◦C and 0.3–3 s−1, and the other at 1070–1140 ◦C and 0.5–3 s−1.
It is worth noting that the dissipation coefficients were high in the lower right part of the map in
Figure 7c, which corresponds to high temperature and low strain rate conditions, and this may be
because of the dramatic grain growth after the dynamic recrystallization was completed. At a strain
of 0.8 (Figure 7d), two deformation instability domains occurred. One existed at 950–1070 ◦C and
0.05–0.63 s−1, and the other at 1080–1150 ◦C and 0.4–3 s−1. The overlapping of the processing maps in
Figure 7a–d reveals that to avoid deformation instability, the hot working parameters should drop in
the area of 1080–1150 ◦C and 0.004–0.05 s−1.

The processing maps at various temperatures or strain rates are extremely important for the hot
working parameter optimization when the deformation temperature or the punch speed are restrained.
The processing maps of the GH4698 alloy at various temperatures could be obtained by slicing and
interpolating the processing maps at specific temperatures, as shown in Figure 8. A deformation
instability domain at a strain of 0.2–0.8 and at a strain rate of 0.1–3 s−1 was found under 950 ◦C
(Figure 8a). The dissipation coefficients were below 25%. A comparison with data provided in Figure 8a
indicated that much smaller deformation instability domains existed under 1050 ◦C, as shown in
Figure 8b. At 1150 ◦C (Figure 8c), the deformation instability domain disappeared. Figure 8 shows
that the workability of the GH4698 alloy was improved by dynamic recrystallization under higher
hot working temperatures. It is worth noting that the dissipation coefficients generally increased
with increasing temperature, because the dynamic recrystallization was more complete at higher
temperatures, thereby consuming a much larger proportion of energy.
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Figure 7. Processing maps of GH4698 at the strains of (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8.

 

Figure 8. Processing maps of GH4698 at the temperatures of (a) 950 ◦C, (b) 1050 ◦C, and (c) 1150 ◦C.

Hot working maps of a GH4698 alloy at various strain rates are shown in Figure 9. Good hot
working abilities were obtained at 0.001 s−1, as no deformation instability domain was found, as shown
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in Figure 9a. A dissipation coefficient of ~45% at 1050–1150 ◦C and at the strain of 0.4–0.8 showed that a
full dynamic recrystallization followed by dramatic grain growth might have occurred. A deformation
instability domain at 950–1050 ◦C and at the strain of 0.75–0.8 could be observed at 0.1 s−1, as shown in
Figure 9b, and a relatively high dissipation coefficient of ~40% could still be obtained, meaning that
the thermal processing parameters were still acceptable. However, the deformation instability domain
occupied the majority of the processing map, as shown in Figure 9c, indicating that the GH4698 alloy
should not be hot-formed at such a fast strain rate, as deformation instability and local material flow
would occur.

Based on the results presented in Figures 7–9, the optimal hot working parameters were suggested
as 1080–1150 ◦C and 0.004–0.1 s−1. The forging temperature should be no lower than 1050 ◦C to ensure
that dynamic recrystallization occurs completely, and the strain rate should be neither too high to
avoid deformation instability, nor too low to prevent grain coarsening. The visible differences in the
shape of the stress-strain curves in this research and in the literature [22] might lead to the difference of
the shape of the processing maps. Therefore, further research should be carried out to quantify the
influence of chemical compositions. In the practical production of GH4698 large forgings, the forging
temperature can be determined by the pressure that the forging device can provide. The results also
showed that the GH4698 alloy was suitable for low-speed isothermal forgings at high temperatures
(1080–1150 ◦C).

 
Figure 9. Processing maps of GH4698 at the strain rates of (a) 0.001 s−1, (b) 0.1 s−1, and (c) 3 s−1.

4. Conclusions

Hot compression tests were performed at 950–1150 ◦C and 0.001–3 s−1, and the following
conclusions could be drawn:
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(1) The stress-strain curves of GH4698 were single-peaked at various compression conditions,
owing to dislocation motions during dynamic recrystallizations. The peak flow stress agreed
well with the results in the literature, but the stress-strain curve shapes were different, which may
be attributed to differences in the as-received material states.

(2) An Arrhenius model was established to calculate the stress evolutions under various strain rates,
temperatures, and strains. The average calculation error was 10.96 MPa (5.90%), showing that the
model could accurately describe the flow behaviors of GH4698 at high temperatures.

(3) The processing maps of GH4698 revealed that the hot working ability of GH4698 markedly
decreased under lower temperatures (950–1080 ◦C) and high strain rates (0.1–3 s−1). The optimal
hot working parameters were suggested as 1080–1150 ◦C and 0.004–0.1 s−1. Moreover, according to
this study, the GH4698 alloy was suitable for low-speed isothermal forgings at high temperatures
(1080–1150 ◦C).
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