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Santiago Manuel López Garcı́a and Ernesto Costa

A Genetic Programming Strategy to Induce Logical Rules for Clinical Data Analysis
Reprinted from: Processes 2020, 8, 1565, doi:10.3390/pr8121565 . . . . . . . . . . . . . . . . . . . . 171

vi



About the Editors

Pablo Chamoso is Assistant Professor at the University of Salamanca. He holds a PhD in

Computer Engineering (2017) as well as qualifications of Technical Engineer in Computer Systems,

Computer Engineer (with i3 award for the best final project of Castilla y León), Master in Electronic

Commerce, Master in Intelligent Systems, and Master in Information Technology Management.

He has been a member of the research group BISITE since early 2011, participating in the

technical development, analysis, and research of multiple international and national projects in areas

such as smart cities, robotics, visual analytics, medical applications, and artificial intelligence.

He has been a guest lecturer at universities in Brazil, Portugal, Italy, and Japan. He is co-author

of numerous publications in high-impact scientific journals and serves as editor or reviewer for

several JCR-indexed journals. He has been a member of the organization and scientific committee of

numerous international scientific conferences. His research career has been recognized and awarded

with one of the Grants of the State Program Juan de la Cierva in the area “ICT—Information and

Communication Technologies” in 2018.
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Research in the area of bioinformatics has always been one of the most active lines of research

in the scientific community. However, it has recently gained even more interest thanks to advances

in the information technology (IT) sector, including the increased processing capacities of computers,

which allow processing large volumes of data and analyzing them with techniques such as machine

learning.

Thanks to these advances, new applications appear in the area of bioinformatics. In them, the

results obtained generally improve those of previous applications that do not use these computation

techniques.

This book presents papers that have been accepted for the Special Issue “Bioinformatics

Applications Based On Machine Learning” of the journal Processes, where authors were encouraged

to submit their original research dealing with new machine learning algorithms, distributed

machine learning systems, new applications in bioinformatics, healthcare applications, bioimaging,

next-generation sequencing, data and software integration, visualization of biological systems

and networks, high-throughput data analysis (transcriptomics, proteomics, etc.), comparison and

alignment methods, and other related topics.

After several rounds of review, 10 research articles and 1 review (entitled “A Review of

Computational Methods for Clustering Genes with Similar Biological Functions”) were accepted for

publication in the Special Issue and are included in this book.

The research articles include the use of a wide variety of IT techniques such as convolutional

neural networks, gradient boosting, multilayer bi-directional LSTM, particle swarm optimization or

harmony search, among others, applied to domains such as body part detection in images and video,

diabetes, or the study of Arabidopsis thaliana or Saccharomyces cerevisiae, among others.
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Abstract: One of the central elements in systems biology is the interaction between mathematical
modeling and measured quantities. Typically, biological phenomena are represented as dynamical
systems, and they are further analyzed and comprehended by identifying model parameters using
experimental data. However, all model parameters cannot be found by gradient-based optimization
methods by fitting the model to the experimental data due to the non-differentiable character of the
problem. Here, we present POPI4SB, a Python-based framework for population-based parameter
identification of dynamic models in systems biology. The code is built on top of PySCeS that provides
an engine to run dynamic simulations. The idea behind the methodology is to provide a set of
derivative-free optimization methods that utilize a population of candidate solutions to find a better
solution iteratively. Additionally, we propose two surrogate-assisted population-based methods,
namely, a combination of a k-nearest-neighbor regressor with the Reversible Differential Evolution
and the Evolution of Distribution Algorithm, that speeds up convergence. We present the optimiza-
tion framework on the example of the well-studied glycolytic pathway in Saccharomyces cerevisiae.

Keywords: dynamic models; evolutionary computing; derivative-free optimization; metabolism;
glycolysis; yeast

1. Introduction

Mathematical models in systems biology are mostly represented by ordinary dif-
ferential equations (ODEs). They provide a representation of the information obtained
from experimental observations about the structure and function of a particular biological
network [1,2]. The integral component of ODEs is parameters that correspond to the
kinetic characteristics of a reaction catalyzed by a specific enzyme in particular conditions.
Typically, the parameters are identified by fitting the model to experimental data or are
measured for individual reactions separately. Once parameter values are determined,
dynamic models could be used to confirm hypotheses, draw predictions and find such
(time-varying) stimulation conditions that result in a particular desired behavior of a sys-
tem [2–4]. However, the problem of fitting a dynamical model to experimental data is
non-differentiable, thus, derivative-free optimization methods should be used instead of
gradient-based or higher-order optimizers [5,6].

Here, we present a framework that implements a set of population-based optimization
methods to identify parameters in a dynamic model of a biological network of interest,
from limited available experimental data. In other words, the presented framework allows
finding parameter values of a dynamical model while only selected quantities are observed.
This could drastically decrease the time of fitting separate reactions to data and improve

Processes 2021, 9, 98. https://doi.org/10.3390/pr9010098 https://www.mdpi.com/journal/processes

1



Processes 2021, 9, 98

estimation quality because all reactions are considered as a whole, thus, it takes into account
interaction among reactions. The implementation of the approach is a stand-alone Python
program. It utilizes PySCeS (Python Simulator for Cellular System) [7], a modeling tool for
formulating dynamical models of biological networks and running simulations by solving
ODEs numerically. Our framework loads a model developed using PySCeS or from the
JWS database [8] together with experimental data, and outputs parameter values for which
a difference between the experimental data and the simulation is smallest. Moreover, the
framework allows adding new optimizers to a single file, without the necessity of changing
any other parts of the program. Please see Supplementary Data for details. We refer to this
framework as POPI4SB, see its schematic representation in Figure 1.

In this study, we chose glycolysis that is a crucial metabolic pathway and its upregu-
lation is correlated with diseases like cancer [9,10]. Nearly all living organisms carry out
glycolysis as a part of cellular metabolism. One of the most intensively studied organisms
in the context of, among others, glycolysis is Saccharomyces cerevisiae species, also known as
baker’s yeast [11–15]. We applied our optimization framework to a model of glycolysis in
yeast proposed in [16]. This model contains lumped reactions of the glycolytic pathway
and includes production of glycerol, fermentation to ethanol and exchange of acetaldehyde
between the cells, and trapping of acetaldehyde by cyanide.

Generation
Selectio

n

E
valuation

Population-based
optimization

Parameter Identification

Differential
equations

Limited data

Input Output

Timecourses Parameter
values

k11, k12

k21, k22, k23

k3

k41, k42

simulator

Figure 1. A schematic representation of our framework. A dynamic model in the PySCeS format and experimental data are
inputs to the program. The core component is the parameter identification with population-based optimization methods.
Eventually, parameters values are returned, for with the lowest error (i.e., the difference between simulated data and
experimental data) was achieved.

The contribution of the paper is threefold:

• We provide a population-based optimization framework for parameter identification
and showcase its performance on the example of the glycolysis of Saccharomyces
cerevisiae, one of the most studied species in biology.

• We analyze the performance of the population-based optimization framework in the
considered problem and indicate its high potential for future research.

• We extend the Python framework PySCeS [7] by implementing the population-based
optimization methods (four methods known in the literature, and two new methods)
in Python. The code for the methods together with the experiments is available online:
https://github.com/jmtomczak/popi4sb.
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2. Materials and Methods

2.1. Derivative-Free Optimization

We consider an optimization problem of a function f : X → R, where X ⊆ R
D is the

search space. In this paper we focus on the minimization problem, namely:

x∗ = arg min
x∈X

f (x;D), (1)

where D denotes observed data.
Further, we assume that the analytical form of the function f is unknown or cannot

be used to calculate derivatives, however, we can query it through a simulation or ex-
perimental measurements. Problems of this sort are known as derivative-free or black-box
(In general, a black-box problem means that a formal description of a problem is unknown,
however, very often non-differentiable problems with known mathematical representa-
tion (e.g., differential equations) are treated as black-box) optimization problems [5,17].
Additionally, we consider a bounded search space, i.e., we include inequality constraints
for all dimensions in the following form: ld ≤ xd ≤ ud, where ld, ud ∈ R and ld < ud,
for d = 1, 2, . . . , D.

2.2. Population-Based Optimization Methods

One group of widely-used methods for derivative-free optimization problems is
population-based optimization algorithms. The idea behind these methods is to use a
population of individuals, i.e., a collection of candidate solutions X = {x1, . . . , xN}, instead of
a single individual in the iterative manner. The premise of utilizing the population over a
single candidate solution is to obtain better exploration of the search space and exploiting
potential local optima [18,19].

In the essence, every population-based algorithm consists of three following steps that
utilize a procedure for generating new individuals G, and a selection procedure S, that is:

(Init) Initialize X = {x1, . . . , xN} and evaluate all individuals Fx = { fn : fn = f (xn),
xn ∈ X}.
(Generation) Generate new candidate solutions using the current population, C = G(X ,Fx).
(Evaluation) Evaluate all candidates solutions:

Fc = { fn : fn = f (xn), xn ∈ C}.

(Selection) Select a new population using the candidate solutions and the old population

X := S(X ,Fx, C,Fc).

Go to Generate or terminate.

An exemplary population-based optimization approach is depicted in Figure 2.
In general, the population-based optimization methods are favorable over standard

derivative-free optimization (DFO) algorithms in problems when querying the objective
function is relatively cheap. Their computational complexity depends mainly on the
population size, i.e., it is linear with respect to the size of the population N. Other DFO
methods are typically more expensive. Bayesian Optimization, for instance, is known to
give a good performance, but its complexity typically scales cubically with respect to the
number of queries [20]. Here, we take advantage of the very low execution time of running
a simulator (the glycolysis model) and propose to use the population-based methods for
the parameter identification task.

There are a plethora of population-based DFO algorithms [5,6,18,21,22], however,
our goal is to verify whether this approach, in general, could be successfully used in the
considered task. Therefore, we decide to choose four instances of a group of methods
that are easy-to-use and are proven to work well in practice: evolutionary strategies (ES),
differential evolution (DE), estimation of distribution algorithms (EDA), and recently

3
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proposed reversible differential evolution (RevDE). Moreover, we propose to enhance EDA
and RevDE with a surrogate model to allow better exploration and speed up calculations.

Figure 2. An illustration of a population-based optimization of a quadratic function (blue solid
line) using the Estimation of Distribution Algorithm. At each generation a population is selected
(blue nodes) and weakest individuals are discarded (red crosses). New candidate solutions are
generated by sampling from the normal distribution fit to the previous population (orange solid line).

2.2.1. Evolutionary Strategies (ES)

Evolutionary strategies can be seen as a specialization of evolutionary algorithms with
very specific choices of G and S. The core of ES is to formulate G using the multivariate
Gaussian distribution. Here, we follow the widely-used (1 + 1)-ES that generates a new
candidate using the Gaussian mutation parameterized by σ > 0, namely:

x′ = x + σ · ε, (2)

where ε ∼ N (0, I), and N (0, I) denotes the Gaussian distribution with zero mean and the
identity covariance matrix I. Next, if the fitness value of x′ is smaller than the value of
fitness function of x, the new candidate is accepted and the old one is discarded.

The crucial element of this approach is determining the value of σ. In order to over-
come possibly time-consuming hyperparameter search, the following adaptive procedure
is proposed [21]:

σ :=

⎧⎨⎩
σ · c if ps < 1/5,
σ/c if ps > 1/5,

σ if ps = 1/5.
(3)

where ps is the number of accepted individuals of the offspring divided by the population
size N, and c is equal 0.817 following the recommendation in [23].

2.2.2. Differential Evolution (DE)

Differential evolution is another population-based method that is loosely based on the
Nelder-Mead method [24,25]. A new candidate is generated by randomly picking a triple
from the population, (xi, xj, xk) ∈ X , and then xi is perturbed by adding a scaled difference
between xj and xk, that is:

y = xi + F(xj − xk), (4)

where F ∈ (0, 2] is the scaling factor. This operation could be seen as an adaptive mutation
operator that is widely known as differential mutation [25].

4
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Further, the authors of [24] proposed to sample a binary mask m ∈ {0, 1}D accord-
ing to the Bernoulli distribution with probability p = P(md = 1) shared across all D
dimensions, and calculate the final candidate according to the following formula:

v = m 	 y + (1 − m)	 xi, (5)

where 	 denotes the element-wise multiplication. In the evolutionary computation litera-
ture this operation is known as uniform crossover operator [18]. In this paper, we fix p = 0.9
following general recommendations in literature [26] and use the uniform crossover in all
methods.

The last component of a population-based method is a selection mechanism. There are
multiple variants of selection [18], however, here we use the “survival of the fittest” ap-
proach, i.e., we combine the old population with the new one and select N candidates with
highest fitness values, i.e., the deterministic (μ + λ) selection.

This variant of DE is referred to as “DE/rand/1/bin”, where rand stands for randomly
selecting a base vector, 1 is for adding a single perturbation and bin denotes the uniform
crossover. Sometimes it is called classic DE [25].

2.2.3. Reversible Differential Evolution (RevDE)

The mutation operator in DE perturbs candidates using other individuals in the
population to generate a single new candidate. As a result, having too small population
could limit exploration of the search space. In order to overcome this issue, a modification
of DE was proposed that utilized all three individuals to generate three new points in the
following manner [27]:

y1 = xi + F(xj − xk)

y2 = xj + F(xk − y1) (6)

y3 = xk + F(y1 − y2).

New candidates y1 and y2 could be further used to calculate perturbations using
points outside the population. This approach does not follow a typical construction of an
EA where only evaluated candidates are mutated. Further, we can express (6) as a linear
transformation using matrix notation by introducing matrices as follows:⎡⎣y1

y2
y3

⎤⎦ =

⎡⎣ 1 F −F
−F 1 − F2 F + F2

F + F2 −F + F2 + F3 1 − 2F2 − F3

⎤⎦
︸ ︷︷ ︸

=R

⎡⎣x1
x2
x3

⎤⎦. (7)

In order to obtain the matrix R, we need to plug y1 to the second and third equation
in (6), and then y2 to the last equation in (6). As a result, we obtain M = 3N new candidate
solutions. This version of DE is called Reversible Differential Evolution, because the linear
transformation R is reversible [27].

2.2.4. Estimation of Distribution Algorithms (EDA)

Most of the population-based optimization methods aim at finding a solution and
the information about the distribution of the search space and the fitness function is
represented implicitly by the population. However, this distribution could be modeled
explicitly using a probabilistic model [19]. These methods have become known as the
estimation of distribution algorithms [28–30].

The key difference between EDA and EA is the generation step. While an EA uses
evolutionary operators like mutation and cross-over to generate new candidate solutions,
EDA fits a probabilistic model to the population, and then new individuals are sampled
from this model.

5
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Therefore, fitting a distribution to the population is the crucial part of an EDA.
There are various probabilistic models that could be used for this purpose. Here, we pro-
pose to fit the multivariate Gaussian distribution N (¯, Σ) to the population X . For this
purpose, we can use the empirical mean and the empirical covariance matrix:

μ̂ =
1
N

N

∑
n=1

xn, (8)

and

Σ̂ =
1
N

N

∑
n=1

(xn − μ̂)(xn − μ̂)
. (9)

An efficient manner of sampling new candidates is to first calculate the Cholesky
decomposition of the covariance matrix, Σ̂ = LL
, where L is the lower-triangular matrix,
and then computing:

x′ = μ̂ + Lε, (10)

where ε ∼ N (0, I). The Equation (10) is repeated M times to generate a new set of candidate
solutions. Here, we set M to the size of the population, i.e., M = N. Once new candidate
solutions are generated, the selection mechanism is applied. In this paper, we use the same
selection procedure as the one used for DE.

2.2.5. Population-Based Methods with Surrogate Models (RevDE+ & EDA+)

Surrogate models: A possible drawback of population-based methods is the neces-
sity of evaluating large populations that, even though we assume a low time cost per a
single evaluation, could significantly slow down the whole optimization process. To over-
come this issue, a surrogate model could be used to partially replace querying the fitness
function [31]. The surrogate model is either a probabilistic model or a machine learning
model (e.g., a neural network) that gathers previously evaluated populations and allows
to mimic the behavior of the fitness function. While applying the surrogate model, it is
assumed that its utilization cost (e.g., training) is lower or even significantly lower than the
computational cost of running the simulator.

There are multiple possible surrogate models, however, non-parametric models,
e.g., Gaussian processes [20], are preferable, because they do not suffer from catastrophic for-
getting (i.e., overfitting to the last population and forgetting first populations). Here, we con-
sider another non-parametric model, namely, K-Nearest-Neighbor (K-NN) regression
model that stores all previously seen individuals with evaluations, and the prediction of a
new candidate solution is an average over K (e.g., K = 3) closest previously seen individu-
als. Current implementations of the K-NN regressor provide efficient search procedures
that result in the computational complexity better than N · D, e.g., using KD-trees results in
O(D log N). This computational complexity is significantly better than the computational
complexity of Gaussian processes, O(N3).

RevDE+: In the RevDE approach, we generate 3N new candidate solutions and all
of them are further evaluated. However, this introduces an extra computational cost of
running the simulator. This issue could be alleviated by using the K-NN regressor to
approximate the fitness values of the new candidates. Further, we can select N most
promising points. We refer to this approach as RevDE+.

EDA+: The outlined procedure of EDA produces M new candidate solutions and
to keep a similar computational cost as ES and DE, we set M to N. However, this could
significantly limit the potential of modeling a search space, because sampling in high-
dimensional search spaces requires a significantly large number of points. A potential
solution to this problem could be the application of the K-NN regressor to quickly verify
the L new points. As long as the time cost of providing the approximated value of the
fitness function is lower than the running time of the simulator, we can afford to take
L > N (e.g., L = 5N). We refer to this approach as EDA+.
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2.3. The Model of Glycolysis in Saccharomyces Cerevisiae

Introduction: As an example, we chose glycolysis that is a crucial metabolic pathway
and its upregulation is correlated with diseases like cancer [9,10]. Nearly all living organ-
isms carry out glycolysis as a part of cellular metabolism. A glycolytic path that consists of
a series of reactions breaks down glucose into two three-carbon compounds and extracts
energy for cellular metabolism. Therefore, glycolysis is at the heart of classical biochemistry
and, as such, it is very well described. One of the most intensively studied organisms in
the context of, among others, glycolysis is Saccharomyces cerevisiae species, also known as
baker’s yeast [11–15]. Whereas, the dynamic model of glycolysis in Saccharomyces cerevisiae
is of big interest in systems biology dynamic modeling literature [16,32–35].

glucose

v1

v2

fructose-1,6-biphosphate

ATP v11

triose
phosphates

v3

v4 NADNAD

ATP

v5

triphosphoglycerate

pyruvate

acetaldehydeNAD external
acetaldehyde

v6

v7

v9 v10v8

ATP

Figure 3. The glycolysis process in the yeast Saccharomyces cerevisiae proposed in [16]. There are
11 reactions governing the process with 18 parameters in total, and 9 metabolites. Blue circles depict
observable metabolites, red circles denote unobservable metabolites, and green squares represent
reactions. A white circle with a diagonal line corresponds to a sink. The model is taken from the JWS
database [8].
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We applied our optimization framework to a model of glycolysis in yeast proposed
in [16], see Figure 3, that suffices to present the essence of our framework. This model con-
tains lumped reactions of the glycolytic pathway and includes the production of glycerol,
fermentation to ethanol, and exchange of acetaldehyde between the cells, and trapping of
acetaldehyde by cyanide.

A system of Ordinary Differential Equations: In the considered model of the glycol-
ysis we distinguish the following metabolites: glycolysis (glu), fructose-1,6-bisphosphate
(fru), triosephosphates (triop), triphosphoglycerate (tp), pyruvate (pyr), acetaldehyde (ac),
external acetaldehyde (ace).

Following the same assumptions as in [16] (i.e., a homogeneous distribution of the
metabolites in the intracellular and in the extracellular solution), the system of ordinary
differential equations of the glycolysis model in Saccharomyces cerevisiae is the following [36]:

˙glu = v1 − v2 (11)
˙f ru = v2 − v3 (12)

˙triop = 2v3 − v4 − v5 (13)
˙tp = v5 − v6 (14)

˙pyr = v6 − v7 (15)

ȧc = v7 − v8 − v9 (16)

˙ace = 0.1v9 − v10 (17)
˙atp = −2v2 + v5 + v6 − v11 (18)
˙nad = v4 − v5 − v8 (19)

with the rate equations:

v1 = k0 (20)

v2 =
k1 · glu · at

1 + (at/ki)n (21)

v3 = k2 · f ru (22)

v4 =
k31 · k32 · triop · nadA − k33 · k34 · tp · atp N

k33 · N + k32 · A
(23)

v5 = k4 · tp · A (24)

v6 = k5 · pyr (25)

v7 = k6 · ac · nad (26)

v8 = k7 · atp (27)

v9 = k8 · triop · nad (28)

v10 = k9 · ace (29)

v11 = k7 · atp (30)

where A = (atot − atp) and N = (ntot − nad).

Initial conditions

The initial conditions are the following:

atp = 2.0 nad = 0.6 glu = 5.0
f ru = 5.0 triop = 0.6 tp = 0.7
pyr = 8.0 ac = 0.08 ace = 0.02 .

Real parameter values

The real values of the parameters are the following [36]:

8
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atot = 4 ∈ [0, 10] k0 = 0 ∈ [0, 10] k1 = 550 ∈ [550, 600]
k2 = 9.8 ∈ [0, 10] k31 = 323.8 ∈ [300, 350] k32 = 76411.1 ∈ [76, 400, 76, 450]
k33 = 57823.1 ∈ [57800, 57850] k34 = 23.7 ∈ [20, 50] k4 = 80 ∈ [80, 100]
k5 = 9.7 ∈ [0, 10] k6 = 2000 ∈ [2000, 2050] k7 = 28.0 ∈ [20, 50]
k8 = 85.7 ∈ [80, 100] k9 = 0 ∈ [0, 10] k10 = 375 ∈ [350, 400]
ki = 1 ∈ [0, 10] n = 4 ∈ [0, 10 ntot = 1 ∈ [0, 10]

where we indicate the set of possible values of the parameters in the square brackets.
We note that for the sake of our experiments, we set k0 to 0 (originally: k0 = 50 [36])

in order to forbid a constant injection of glu, and k9 to 0 (originally: k9 = 80 [36]) in order
to avoid oscillatory behavior of the system.

3. Experimental Setup

The experiments have been carried in silico in which the performance of the selected
algorithms has been evaluated.

3.1. Implementation

POPI4SB is implemented in Python, and utilizes PySCeS for running simulations.
The code for carrying out experiments is available online: https://github.com/jmtomczak/
popi4sb. The list of requirements is provided therein.

3.2. Parameter Identification & the Fitness Function

We consider the glycolysis process in yeast as a biochemical system with inputs and
outputs (see Figure 3). The input to the system is glucose (glu), and the outputs are ATP
(atp), NAD (nad), acetaldehyde (ac), and external acetaldehyde (ace). The other metabolites,
i.e., triose phosphates (triop), pyruvate (pyr), fructose-1,6-biphosphate (fru) and triphos-
phoglycerate (tp) are considered to be unobserved quantities. The system is governed
by 11 reactions with 18 parameters in total (see Appendix for details). Each reaction is
represented by an ordinary differential equation that is known. We assume that we have
inputs and outputs, namely, i.e., glu, atp, nad, ac, and ace, and each quantity is represented
as a timecourse of length T. We denote these measurements by

D = {glu, atp, nad, ac, ace}.

Further, following the nomenclature presented in [37], we consider the system of differ-
ential equations representing the glycolysis process as the simulator that for given values
of parameters and initial conditions provides timecourses of all metabolites. Then, we can
denote parameters by x and the simulator by sim : X → R

9×T , i.e., sim takes parameters
x and simulates timcourses of length T for all 9 metabolites, including glu, atp, nad, ac, ace.
In order to calculate the objective (or the fitness) of the parameter values, we use the
following function:

f (x;D) =
5

∑
i=1

1
γ · T

T

∑
t=1

‖yi,t − simi,t(x)‖2
2, (31)

where yi,t corresponds to one of the five observed metabolites at the t-th time step,
and simi,t(x) is the corresponding synthetically generated signal given by the simula-
tor with parameters x, γ > 0 specifies the strength of penalizing a mistake. Notice that this
is the (unnormalized) logarithm of the product of Gaussian distributions with means given
by sim(x) and the diagonal covariance matrix with shared variance γ.

3.3. Simulated Data

In the experiments, we assume that glu, atp, nad, ac, and ace are observed. We generate
the observed metabolites by running the simulator with the real parameter values. To mimic
real measurements that are typically noisy, we add a Gaussian noise with zero mean and
the standard deviation equal 3% of a generated value of a metabolite at a given time step.

9
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Adding noise prohibits finding a solution (i.e., values of parameters) that achieves error
defined in Equation (31) equal zero. We repeat all experiments three times. For each repetition,
we set the length of a timecourse to T = 30.

3.4. Settings

For all optimization methods, we set the population size to N = 100. All optimizers
run maximally 1000 generations. In the case of ES, we use the initial value of σ equal 0.1.
For DE, RevDE, and RevDE+, we use F = 0.5, and p = 0.9. For EDA we take M = 100.
In the case of EDA+ and RevDE+, we use the K-NN as the surrogate model with K = 3,
and we do not store more than 10,000 evaluated individuals.

4. Results & Discussion

Fitness value: In Figure 4 we present convergence of the methods in Figure 4. We notice
that all methods were able to converge and achieve very similar fitness values. How-
ever, the (1 + 1)-ES method was slowest due to the slow exploration capabilities. EDA
also required more evaluations to obtain better results. Interestingly, DE, RevDE, RevDE+,
and EDA+ achieved almost identical values of the fitness function (the differences were
beyond the three-digit precision). An important observation is that application of the
surrogate model (the K-NN regressor) allowed to significantly speed up the conver-
gence of RevDE+ and EDA+ compared to RevDE and EDA, respectively. We conclude
that all population-based methods were able to converge and achieved almost identical
scores, and our proposition of applying the surrogate model led to improving both RevDE
and EDA.

Figure 4. The convergence of the population-based optimization methods over 3 runs. In the legends, we indicate the value
of the fitness function after the methods converged.

Timecourses: The final value of the fitness function tells us how well the simula-
tor models the observed timecourses for given parameters provided by an optimizer.
Additionally, we can also qualitatively inspect the timecourses both the observed and un-
observed metabolites. In Figure 5 we present timecourses for the unobserved metabolites,
for parameter values found the five methods.

For all unobserved metabolites, the average over 3 repetitions of the experiments over-
lapped with the real value or laid within the confidence interval (3× standard deviation).
This is a result that we hoped for since being able to generate unobserved metabolite is
extremely important for analyzing biological systems. However, we notice that DE and
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RevDE+ led to almost identical timecourses, thus, they were able to properly identify pa-
rameters.

Figure 5. A comparison of the timecourses of the unobserved metabolites. Real timecourses are depicted in red, and the
average value and a confidence interval (3× standard deviation) over 3 runs of the simulator is depicted in blue. The titles
of the plots indicate optimization methods.

Differences in parameters: In this paper, we know precisely the values of the pa-
rameters since they were measured in [16]. Hence, we can compare the parameter values
found by the optimization methods with the real parameter values. We use the absolute

11
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value of the difference of two values. We calculate the mean and the standard deviations
of the difference from three runs, and use the cumulative distribution function of the
folded normal distribution to visualize the distribution of differences (the ideal case is 0).
The difference between two real-valued random variable is normally distributed. However,
taking the absolute value of a normally distributed random variable results in the folded
normal distribution.

In Figure 6 we present difference of all parameters. In general, the differences are
marginal and we can conclude that all parameter values were rather properly identified.
The biggest problems though appear for parameters that have very large values, e.g., k8 or
k33. This result is very promising because it seems to confirm the promise of the paper
that it is possible to identify parameters of a complex biological network for only partially
observable metabolites.

Figure 6. The cumulative distribution functions (cdfs) of the differences for all parameters. Ideally, a cdf of an optimization
method should resemble a step-function centered at 0. The averages and the scales are calculated over 3 repetitions of
the experiment.
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5. Conclusions

In this work, we present a population-based framework for parameter identification of
biological networks described as dynamic models. The obtained results indicate the great
potential of population-based optimization methods in the field of biology and biochemistry.
In the case of relatively low computational costs of obtaining an evaluation of parameters,
the population-based methods seem to be sufficient to solve the parameter identification
problem. Moreover, our results for applying surrogate models to the optimizers can
be highly effective (i.e., speeding up convergence). It is a known fact (e.g., see [31,38]),
nevertheless, we believe that the optimization with surrogate models has a great future
and should be further investigated. For instance, considering other classes of surrogate
models like Gaussian processes or (Bayesian) neural networks opens new opportunities
and research questions worth following.

Additionally, the development of our framework in Python, an open-source platform,
simplifies its distribution and enables its use on most operating systems. POPI4SB is easy-
to-use and since the code is freely available, it constitutes a platform for developing new
population-based optimizers. Therefore, the proposed framework can be relatively easily
extended and serve for future research.
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Abstract: Recently, modelling and simulation have been used and applied to understand biological
systems better. Therefore, the development of precise computational models of a biological system
is essential. This model is a mathematical expression derived from a series of parameters of
the system. The measurement of parameter values through experimentation is often expensive
and time-consuming. However, if a simulation is used, the manipulation of computational
parameters is easy, and thus the behaviour of a biological system model can be altered for a better
understanding. The complexity and nonlinearity of a biological system make parameter estimation
the most challenging task in modelling. Therefore, this paper proposes a hybrid of Particle Swarm
Optimization (PSO) and Harmony Search (HS), also known as PSOHS, designated to determine
the kinetic parameter values of essential amino acids, mainly aspartate metabolism, in Arabidopsis
thaliana. Three performance measurements are used in this paper to evaluate the proposed PSOHS:
the standard deviation, nonlinear least squared error, and computational time. The proposed algorithm
outperformed the other two methods, namely Simulated Annealing and the downhill simplex method,
and proved that PSOHS is a more suitable algorithm for estimating kinetic parameter values.

Keywords: Particle Swarm Optimization; Harmony Search; parameter estimation; Arabidopsis thaliana

1. Introduction

In silico optimization is a rapid and cost-effective method for finding optimal solutions in
optimization problems. The two currently available methods are local and global methods. Each,
however, comes with inherent systematic problems that require troubleshooting. The local optimization
method performs poorly when solving non-linear and dynamic biological problems [1]. In this type of
problem, the global search is a more effective method as it is capable of finding an optimal solution that
satisfies all requirements. In fact, the global search method has recently been subject of much attention
within the scientific community [1–3]. Parameter estimation is an essential phase in the simulation
of the biological system because the value of the parameter determines the behaviour of the model.
In estimating parameter values, it is important to first determine the objective function that can then
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be minimized by using suitable optimization methods. The objective function must be minimized to
obtain the ideal value of the parameter. Several optimization methods have, therefore, been applied
to estimate parameter values [4]. After comparing several methods, Baker et al. [4] pointed out
that while the Genetic Algorithm (GA) was less time-consuming than Simulated Annealing (SA), it
faced the local minima problem. In MCMC approaches are often applied to determine the posterior
distribution of rate parameters. However, developing a good MCMC sampler for its multimodal and
dimensional parameter distribution is challenging. Valderrama-Bahamóndez and Fröhlich [5] found
that parallel adaptive MCMC performed better in parameter estimations after comparing the ability of
different MCMC approaches to estimate the kinetic rate parameters of ordinary differential equation
(ODE) systems.

In addition, global optimization algorithms, like Particle Swarm Optimization (PSO) [6,7],
SA [8], and Scatter Search [9,10], have been successful in the estimation of parameters in different
biological models. In a comparative study on computational intelligence methods, carried out by
Tangherloni et al. [11], the performance of various meta-heuristics was compared; in particular, their
ability to estimate the parameters with a set of benchmark functions and synthetic biochemical models.
Tangherloni et al. [11] concluded that classic benchmark functions lacked the comprehensibility that
compounded the real-world optimization problem. The hybridization of optimization methods has
been proposed so that the best features of each method could be utilized. Convergence to global
optima is a consistent problem in standard PSO for multimodal and high-dimensional functions [12].
Hence, Fu et al. [12] proposed a hybrid method by incorporating the evolutionary operations of
the Differential Evolution (DE) algorithm to improve its conventional velocity updating strategy in
PSO. Harmony Search (HS) is a simple method with an efficient and evolutionary algorithm. It has
parameters like the Harmony Memory Considering Rate (HMCR) and Pitch Adjusting Rate (PAR)
that solve the local optima problem. Furthermore, HS is able to balance between intensification
and diversification whereby promising regions and non-explored regions are thoroughly and evenly
explored in both processes [13]. This paper introduces a hybrid of Particle Swarm Optimization [14]
and Harmony Search [15] (PSOHS) and simulates the essential amino acid metabolism for kinetic
parameter estimation.

PSO estimates kinetic parameter values by using swarm intelligence. The candidate solutions are
analogous to particles flying with specific velocities in specific directions in the search space, either
alone or together with their companions. Presumably, the particle will move to its best positions.
HS, on the other hand, is based on the analogy with natural musical performance processes. By
improving the pitches of the instrument of each music player, a better harmony is achieved and, hence,
the quality of the performance [16]. Gao et al. [16] further discussed this method and its applications.
The historical development of the HS algorithm structure had been extensively reviewed by Zhang
and Geem [17].

This paper introduces a new hybrid algorithm, PSOHS, into the SBToolbox to estimate kinetic
parameters by simulating the aspartate metabolism of isoleucine, lysine, and threonine in a small plant
of the mustard family, Arabidopsis thaliana. Its model is often chosen in research because it has been
demonstrated to render better results when analysing plant development and growth. This paper
focuses on the biochemical reactions of essential amino acid production in Arabidopsis thaliana.

2. Materials and Methods

This section describes and discusses the problem formulation, and it details the hybridization of
PSO and HS. A basic PSO is also described to differentiate between the basic PSO and the hybrid version.

2.1. Problem Formulation

This paper uses a biochemical system, which is a mathematical modelling framework based
on ordinary differential equation (ODE). In the system, biochemical processes are represented using
power-law expansions in the variables. In a biochemical process, a system of kinetic equations is
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formed according to the information regarding the underlying network structure of a pathway, and
the parameters are acquired from the literature or estimated values are acquired from a data fit.
Chemical kinetics mean rates of chemical reactions. The parameter estimation problem is posed in
Equation (1) below. There, s(X) denotes a biological compound, depending on a set of parameters X =
(X1,X2,X3, . . . Xd), where d is the total number of parameters. Hence, the reaction rate of the compound
s is presented by

ds
dt = g(s(X), t),

s(t0) = s(0),
y = g(s(X), t) + e.

(1)

In Equation (1), g represents a nonlinear function and t represents the sampling time. Then, y
is a time series of simulated data, also known as the output of the model, and e represents the noise
data that is randomly produced by Gaussian noise n (1,0). The purpose of the parameter estimation
is to discover the set of the optimal parameter, which is denoted as X. Then the variance between
the simulated time-series data denoted as y and experimental time-series data denoted as yexp can be
reduced. The variance is calculated by applying the nonlinear least squared error function, f(X), which
is shown in Equation (2):

f (X) = min
∑n

i=1
(yexp − y)2 (2)

In Equation (2), n is the total number that maximum value generated and i is the index variable.

2.2. Particle Swarm Optimization (PSO)

PSO is a swarm intelligence-based optimization algorithm. The method was developed by
Kennedy and Eberhart [6] and had been inspired by the social behaviour of flocking birds and schooling
fish when searching for food [6].

In PSO, particles act as a possible solution in the search space of a problem. Every particle in
the search space is assigned a certain velocity so that its movements through the search space can be
determined. In the search space, each particle’s movement is affected not only by its local best-known
position, but it is also directed toward the best-known positions, where the best conditions are those
that have been found by other particles.

Hence, there are two positions in the whole swarm, the local best-known position and
the best-known position in the swarm. pbest represents the local best-known position while gbest
represents the best-known positions in the swarm.

Figure 1 shows the PSO flowchart. First, each particle is assigned a random position within
the problem space to form an initial population. Then, the fitness of each particle is evaluated and
compared with pbest. If the current value is better than pbest, then this value is updated to the new
pbest. Then, the particle’s best-known position and the swarm’s best-known position are updated.
The termination criterion is when the maximum number of iterations is performed, or a solution meets
the adequate objective function value.
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Figure 1. Flowchart of Particle Swarm Optimization (PSO).

2.3. Harmony Search (HS)

Geem et al. [13] developed HS after being inspired by the music improvisation process.
The algorithm achieved better harmony the same way as music players improved the pitches of their
instruments [18]. To escape from the local minima, HS performs a stochastic random search instead
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of a gradient search. There are three rules to generate perfect harmony, which are Random Selection
(RS), Harmony Memory Considering Rate (HMCR), and Pitching Adjust Rate (PAR). Figure 2 shows
the flowchart of HS. First, a population of random harmonies in Harmony Memory (HM) is initialized.
Several randomly generated solutions are included in the initial HM. The next step is to improvise a new
solution from the HM followed by updating the latter. In each repetition, the algorithm improvises
a new harmony, and the latest harmony is generated by the following three rules: (1) HMCR is used to
select the variables of the new harmonies from the overall HM harmonies; (2) PA is responsible for
local improvement; and (3) RS provides random elements for the new harmony. If the latest harmony
is better than the existing one, then it evaluates and replaces the worst harmony in HM. This process is
iterated until the stopping criteria are met.

 

Figure 2. Flowchart of Harmony Search (HS).

2.4. A Hybrid of PSO and HS (PSOHS)

PSOHS is proposed in this paper, which is a hybrid of HS and PSO. Figure 3 shows the steps taken
by the proposed algorithm in order to acquire the optimal parameter values.
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Figure 3. Steps in PSOHS for estimating parameter value. The red box is Harmony Search, which is
hybridized with PSO to improve its performance.

2.4.1. Initialization

The first step of PSOHS is the initialization of the population of random solutions with random
velocities and positions in d-dimensions in the search space. Some parameter values of the proposed
algorithm are assigned: (i) harmony memory size; (ii) harmony consideration rate; (iii) swarm size; (iv)
positive constant; (v) the number of iterations; and (vi) inertia weight. The harmony memory size is
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6, the number of iterations is 20, and the harmony consideration rate is 0.9. Then, the fitness of each
particle in d variables is evaluated.

2.4.2. Iteration

The next step involves evaluating and sorting the fitness of the population. In each iteration,
two values are updated, which are pbest and gbest. At the iteration step, each solution is evaluated
by using the optimization fitness function. If the current value of the solutions in the d-dimensional
space is better than pbest, then the pbest value is updated to the current value and the pbest location is
the current location. Then, the fitness value is compared with the best-known positions in the swarm.
If the current value is better than gbest, then gbest is updated to the current solution index.

2.4.3. Hybridization of Harmony Search

First, the parameters and the HS Memory (HM) are initialized. The parameters are (i) the size of
HM; (ii) the Harmony Memory Considering Rate (HMCR); and (iii) the Pitching Adjust Rate (PAR).
Next, the latest harmony is created based on three rules: (i) Random Selection (RS); (ii) HMCR; and
(iii) PAR. Firstly, several randomly created solutions to the problems are included in the initial HM.
Each component of this solution is acquired on the basis of the HMCR. The probability of choosing
a component from the HM members is defined as HMCR and, therefore, 1-HMCR is the probability
of creating it randomly. The harmony is chosen from a random HM member and PAR is used to
further mutate the chosen harmony. The probability of a candidate from the HM to be mutated is
determined by PAR. The RS is responsible for providing random elements to the new harmony. If
the latest harmony yields a better fitness, it will replace the worst member in the HM. Otherwise, it is
removed. This process is iterated until a stopping condition is reached.

2.4.4. Termination

The iterations terminate if the stopping criterion is achieved. The two stopping criteria are when
the fitness function can no longer improve or when the predefined maximum loop values are reached.

3. Experimental Setup

The experiments have been carried out by means of computer simulation in which the performance
of the selected algorithms has been assessed.

Experiment Setup (Computational Approach)

Three different algorithms; PSOHS, SA, and the downhill simplex method, have been used to
estimate the parameter values. The algorithms were executed in MATLAB R2010a on a 1024 MB
(1 GB) RAM and Intel Pentium 4 processor laptop. The result of PSOHS was compared with SA and
the downhill simplex method. The total run for estimating all the kinetic values was 50 individual runs.
The accuracy, consistency, nonlinear least squared error, and standard deviation were calculated and
compared with both algorithms to evaluate the performance of PSOHS. The formula for calculating
the nonlinear least squared error and standard deviation is given below:

e =
N∑

i=1

(y− yi)
2 (3)

In Equation (3), e means the squares of the errors, y is the measurement result, and yi is the simulated
result. Equation (4) is used to calculate the average squared error, where A represents the average
squared error and N represents the number of samples.

A =
e
N

(4)
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Equation (5) is used to calculate the standard deviation.

STD =

√
e
N

(5)

Aspartate metabolism from Arabidopsis thaliana is the dataset that has been used in this paper.
Arabidopsis thaliana has been chosen as a model organism due to its advantages for genetic experiments,
such as (i) a short generation time; (ii) its small size; and (iii) its prolific seed production. In
microorganisms, aspartate acts as the precursor to several amino acids, including methionine, threonine,
isoleucine, and lysine, which are essential for humans. Threonine, isoleucine, and lysine have been
selected in this paper because all of them cannot be produced by the body, but they are important in
almost all body functions. Dataset details are shown in Table 1. In this paper, the values of a total of 31
kinetic parameters are estimated using PSOHS.

Table 1. Information on the dataset.

Dataset Aspartate Metabolism

Plant model Arabidopsis thaliana
Download link https://www.ebi.ac.uk/biomodels-main/BIOMD0000000212 [19]

4. Result and Discussion

The performance of PSOHS was compared with SA and the downhill simplex method. Tables 2–4
show the kinetic parameter values that are estimated using PSOHS, SA, and the downhill simplex
method on the basis of the experimental value [19]. The parameter values might range wildly in scale
as they originate from the previous work [19]. It should be noted that Equation (3) is used to calculate
the distance between the experimental data and model simulation for each reaction in each amino acid
(isoleucine, lysine, and threonine). There are many reactions involved in each amino acid as well as
ODEs in Arabidopsis thaliana. Tables 2–4 summarize the experimental results. The average squared
error in Tables 2–4 shows the average reaction in the ODE system for each amino acid that involves
a number of kinetic parameters. Meanwhile, Tables 5–7 report the parameter values obtained from
the experimental data, as well as those generated from the proposed PSOHS, the downhill simplex
method, and SA.

Table 2. Comparison between PSOHS, the downhill simplex method, and Simulated Annealing (SA) in
estimating six parameters for isoleucine in terms of computational time, average squared error, and
standard deviation.

Algorithms
PSOHS Downhill Simplex Method SA

Measurements

Computational time (seconds) 100.23 130.56 778.00

Average squared error, A 0.0003 0.0008 0.0012

Standard deviation, STD 0.0002 0.0004 0.002

Note: The bold numbers represent the best result.
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Table 3. Comparison between the performance of PSOHS, downhill simplex method, and SA in
estimating nine parameters for lysine in terms of computational time, average squared error, and
standard deviation.

Algorithms
PSOHS Downhill Simplex Method SA

Measurements

Computational time (seconds) 184.03 376.59 1518.05

Average squared error, A 0.0211 0.084 0.0406

Standard deviation, STD 0.0133 0.0998 0.0347

Note: The best results are in bold.

Table 4. Comparison between the performance of PSOHS, the downhill simplex method, and SA in
estimating sixteen parameters for threonine in terms of computational time, average squared error, and
standard deviation.

Algorithms
PSOHS Downhill Simplex Method SA

Measurements

Computational time (seconds) 255.37 362.32 1794.91

Average squared error, A 0.0024 0.012 0.0066

Standard deviation, STD 0.0037 0.017 0.0079

Note: The best results are in bold.

Table 5. List of kinetic parameter values for isoleucine with the experimental values.

Parameters Experimental [19] PSOHS
Downhill Simplex

Method
SA

Vtd_TD_k_app_exp 0.0124 0.0101 0.0138 0.0156

Vtd_TD_Ile_Ki_no_Val_app_exp 30 55.62 33.15 59.995

Vtd_TD_Val_Ka1_app_exp 73 154.02 74.18 196.46

Vtd_TD_Val_Ka2_app_exp 615 812.01 686.34 3014.68

Vtd_TD_nH_app_exp 3 5.27 6.30 15.28

VileTRNA_Ile_tRNAS_Ile_Km 20 29.55 32.25 31.86

Note: The best results are in bold.

Table 6. List of kinetic parameter values for lysine with the experimental values.

Parameters
Experimental

[19]
PSOHS

Downhill Simplex
Method

SA

Vdhdps1_DHDPS1_k_app_exp 1 1.19 1.26 1.24

Vdhdps1_DHDPS1_Lys_Ki_app_exp 10 10.76 11.47 12.67

Vdhdps1_DHDPS1_nH_exp 2 2.02 2.71 2.82

Vdhdps2_DHDPS2_k_app_exp 1 1.001 0.95 0.9

Vdhdps2_DHDPS2_Lys_Ki_app_exp 33 32.23 34.96 35.48

Vdhdps2_DHDPS2_nH_exp 2 2.004 3.68 2.38

VlysTRNA_Lys_tRNAS_Lys_Km 25 26.47 31.39 27.19

VlysKR_LKR_kcat_exp 3.1 3.06 3.04 3.71

VlysKR_LKR_Lys_Km_exp 13,000 13,000.11 9681.89 14,258.63

Note: The bold numbers represent the best result.
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Table 7. List of kinetic parameter values for threonine with the experimental values.

Parameters Experimental [19] PSOHS
Downhill

Simplex Method
SA

Vts1_TS1_kcatmin_exp 0.42 0.401 0.78 0.86

Vts1_TS1_AdoMet_kcatmax_exp 3.5 3.82 5.91 6.29

Vts1_TS1_nH_exp 2 2.00 1.98 1.93

Vts1_TS1_AdoMet_Ka1_exp 73 71.23 85.86 181.73

Vts1_TS1_AdoMEt_Km_no_AdoMet_exp 250 250.04 236.43 551.08

Vts1_TS1_AdoMet_Ka2_exp 0.5 0.50 0.55 1.23

Vts1_TS1_AdoMet_Ka3_exp 1.09 1.095 1.72 2.22

Vts1_TS1_AdoMet_Ka4_exp 140 150.42 172.29 336.05

Vts1_TS1_Phosphate_Ki_exp 1000 1001.46 1066.50 2823.02

Vtd_TD_k_app_exp 0.0124 0.0124 0.0126 0.0166

Vtd_TD_Ile_Ki_no_Val_app_exp 30 31.12 89.33 21.72

Vtd_TD_Val_Ka1_app_exp 73 73.55 99.32 59.69

Vtd_TD_Val_Ka2_app_exp 615 617.62 1202.39 2949.7

Vtd_TD_nH_app_exp 3 3.11 7.41 6.93

Vtha_THA_kcat_exp 1.7 1.71 4.74 4.37

Vtha_THA_Thr_Km_exp 7100 7100.63 12,238.29 18,663.59

Note: The bold numbers represent the best result.

This paper focuses on parameter estimation using the proposed PSOHS. The performance of
PSOHS was measured in terms of computational time, model accuracy, and precision of the algorithms.
Model accuracy is measured by the distance value between the experimental data and model simulation
using the nonlinear least squared method. In addition, the average squared error was calculated to get
the average of all ODEs in each amino acid. To test the algorithm’s precision, standard deviation was
used for 50 individual runs. High standard deviations demonstrate low precision, and low standard
deviations demonstrate high precision. The experiments were carried out in 50 individual runs to test
the algorithms, and the result shown is the best multivariate solution among the runs. The average
squared error and standard deviation were calculated from the runs. Tables 2–4 show the comparisons
of computational time in seconds, average squared error, and standard deviation among PSOHS, SA,
and the downhill simplex method. Table 2 shows the execution time for PSOHS to estimate the six
kinetic parameters of isoleucine is 100.23 s, which is the lowest compared to 130.56 s for the downhill
simplex method and 778.00 s for SA. The standard deviation of PSOHS is 0.0002, which is the closest to
zero compared to the downhill simplex method and SA, which are 0.0004 and 0.002. Based on these
comparisons, PSOHS shows the lowest average squared error and a low standard deviation, and this
proves that PSOHS is more consistent, precise, and reliable in parameter values estimation compared
to SA and the downhill simplex method.

Table 3 shows that the average nonlinear least squared error for the three algorithms is 0.0211,
0.084, and 0.0406. The standard deviations of the three algorithms are 0.0133, 0.0998, and 0.0347.
Besides, the computational time for PSOHS is 184.03; for the downhill simplex method it is 376.59 and
for SA it is 1518.05. From among the three algorithms for estimating the kinetic parameter of lysine,
PSOHS shows the best result.

Threonine has the greatest number of kinetic parameters to be estimated among the selected amino
acids. Table 4 presents the comparison among PSOHS, the downhill simplex method, and SA. It seems
that the average nonlinear least squared error for PSOHS is smaller than the downhill simplex method
and SA. The average nonlinear least squared error for PSOHS is 0.0024, while the average nonlinear
least squared errors for the downhill simplex method and SA are 0.012 and 0.0066, respectively.
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Furthermore, to estimate all kinetic parameters, PSOHS takes 255.37 s, which is a considerably lower
computational time than the downhill simplex method, which takes 362.32 s, and SA, which takes
1794.91 s. In terms of standard deviation, the downhill simplex method and SA show a high standard
deviation compared to PSOHS. The standard deviation for PSOHS, downhill simplex method, and SA
are 0.0037, 0.017, and 0.0079, respectively. The results show that PSOHS outperforms the downhill
simplex method and SA in estimating the sixteen kinetic parameters of threonine.

5. Conclusions

In conclusion, when estimating kinetic parameter values, PSOHS performed better than
the downhill simplex method and SA, as shown by the smaller standard deviation in PSOHS.
Moreover, PSOHS is less time-consuming. The lower nonlinear least squared error of PSOHS also
proves that this algorithm is more accurate compared to SA and the simplex downhill method. Future
lines of research are going to focus on including different performance measurements and algorithms
and on comparing how they affect the performance of PSOHS. Only one dataset has been used in
this research due to an unavoidable constraint. However, more datasets can be used in future work.
Large-scale metabolic parameter estimation is preferable. However, the inclusion of more datasets
poses a bigger challenge in that the parameters of every single gene and its product will be needed in
order to be estimated. It leads to large-scale metabolic parameter estimations [20]. PSOHS should
be further expanded to that scale with the aim of resolving the problem. Besides, the shortcomings
of the existing HS, such as the fine-tuning ability of the algorithm, can also be improved in future
work [21].
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Abstract: Mitochondrial proteins of Plasmodium falciparum (MPPF) are an important target for
anti-malarial drugs, but their identification through manual experimentation is costly, and in turn,
their related drugs production by pharmaceutical institutions involves a prolonged time duration.
Therefore, it is highly desirable for pharmaceutical companies to develop computationally automated
and reliable approach to identify proteins precisely, resulting in appropriate drug production in a timely
manner. In this direction, several computationally intelligent techniques are developed to extract local
features from biological sequences using machine learning methods followed by various classifiers to
discriminate the nature of proteins. Unfortunately, these techniques demonstrate poor performance
while capturing contextual features from sequence patterns, yielding non-representative classifiers. In
this paper, we proposed a sequence-based framework to extract deep and representative features that
are trust-worthy for Plasmodium mitochondrial proteins identification. The backbone of the proposed
framework is MPPF identification-net (MPPFI-Net), that is based on a convolutional neural network
(CNN) with multilayer bi-directional long short-term memory (MBD-LSTM). MPPIF-Net inputs
protein sequences, passes through various convolution and pooling layers to optimally extract
learned features. We pass these features into our sequence learning mechanism, MBD-LSTM,
that is particularly trained to classify them into their relevant classes. Our proposed model is
experimentally evaluated on newly prepared dataset PF2095 and two existing benchmark datasets
i.e., PF175 and MPD using the holdout method. The proposed method achieved 97.6%, 97.1%, and
99.5% testing accuracy on PF2095, PF175, and MPD datasets, respectively, which outperformed
the state-of-the-art approaches.

Keywords: mitochondrial protein; machine learning; bi-directional LSTM; plasmodium falciparum

1. Introduction

Plasmodium falciparum are a unicellular protozoan organisms and toxic species that cause malaria
in humans. It degrades hemoglobin in the acidic environment provided by the food vacuole [1]. When
a female anopheles mosquito attacks human, malaria infection begins in the form of sporozoites into
the bloodstream and its life cycle adopts many different stages [2]. These sporozoites are then quickly
passed into the human liver where they upsurge exponentially into their cells to form merozoites.
Merozoites attack red blood cells (erythrocytes) and again multiply until the cells burst to become
trophozoites, schizonts, and gametocytes, during the last three stages of the anopheles life cycle as
shown in Figure 1.
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Figure 1. When a mosquito bites a human (host for malarial parasite) it causes infection by injecting
sporozoites into the body, where it adversely affects hepatocyte’s shape. Sporozoites grow rapidly in
hepatocytes to become merozoites, while merozoites grow rapidly causing hepatocytes to burst and
infect neighboring hepatocytes. When a mosquito bites the malaria patient the gametocytes that are
produced from merozoites are taken by a mosquito. For the next 10 to 14 days the gametocytes produce
sporozoites which are transferred to the saliva gland waiting for a mosquito to bite a healthy person
and cause infection.

In eukaryotic cells, a mitochondrion is a membrane-bound organelle found in the cytoplasm which
acts as a powerhouse of the cell responsible for cellular respiration and the production of adenosine
triphosphate [3]. The inner membrane of cytoplasm comprises of different proteins such as enzymes,
which are required for biochemical reactions. The mitochondrion has its own DNA (deoxyribonucleic
acid) and ribosomes, which are 70 percent as that of prokaryote cells. In a cell, the mitochondrion is
one of the important organelles which controls cellular metabolism and produces energy. Biologists
have revealed that there are no significant similarities between mitochondrial proteins and human
homologs [4].

Considering the constructive role of mitochondrial protein sequences in bioinformatics, proteomics,
and cellular biology, many researcher’s interest has been redirected to identify these biological
sequences, but still it has been a challenging problem for them. With the invention of modern
sequencing technologies, the number of these proteins has increased with rapid acceleration in
the protein databanks. In 1990, only 3939 protein sequences were reported in the Uniprot database.
According to the recent release statistics of protein databank, this number reached 550,000 in 2019 (11
December) [5].

There are two main approaches followed by researchers in the protein sequence prediction domain.
The first category include machine learning-based approaches, where they employ features extractions
methods in order to extract various patterns from biological sequences. Most of the existing literatures
followed this approach. The second one is deep learning-based approach which extracts deep features
and contextual information from proteins, which improves the prediction accuracy significantly. We
briefly discuss the related works for both the mentioned approaches.

1.1. Machine Learning Approach towards Mitochondria Proteins Identification

In past decades, numerous machine learning algorithms and computational biological techniques
are proposed for the categorization of mitochondrial and non-mitochondrial proteins via complex
sequences. Bender et al. [6] evaluated MPPF by principal component analysis, statistical methods, and
supervised neural network. They developed a model PlasMit based on extracting new composition
patterns from proteins which efficiently predicted the mitochondrial proteins. R Verma et al. [7]
combined two feature descriptors i.e., split amino acid and position specific scoring metrics, in
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order to predict mitochondrial proteins accurately. Jia et al. [8] considered mitochondrial proteins as
attractive targets for anti-malarial drugs, but manual identification of these proteins is a difficult and
time-consuming task. Therefore, they used two proteins encoding approaches such as bi-profile Bayes
and split amino acid composition in order to extract specific pattern features from the amino acid chain.
Authors trained a support vector machine classifier on these statistical features for final prediction.
Afridi et al. [9] proposed genetic programming and an ensemble approach based on the feature
extraction method for mitochondrial protein classification. Ding et al. [10] analyzed the variance for
the accurate prediction of mitochondrial proteins. They suggested that combining more and more
features is not a reliable approach because it takes more time in execution and contained redundant
values which degraded the performance of the model. Therefore, to reduce the dimensionality and
select the optimal features, researchers in this article used analysis of variance (ANOVA). Due to
the complexity of the Plasmodium falciparum genome, the prediction of MPPF is more difficult than
other species. Chen et al. [11] proposed an n-peptide composition of reduced amino acid alphabet
which is obtained from a structural alphabet named protein as a feature parameter; the increment of
diversity was firstly proposed to predict mitochondrial proteins. For instance, Cai et al. [12] applied
support vector machine (SVM) based algorithm to train a predictor on three types of feature descriptors
technique including transition (T), composition (C), and distribution (D) for obtaining additional
physicochemical properties of different amino acids. R Kumar et al. [13] proposed a two-level model
named as SubMitoPred. In the first level, authors predicted mitochondrial proteins while in the second
level, they forecasted the sub-classes of mitochondrial localization. The whole model was based on
the combination of SVM and the Pfam information domain. For further improvement, C Savojardo et
al. [14] developed the deep learning model DeepMito. They trained and tested the model on a new
high-quality dataset. Furthermore, they also developed a webserver for predicting mitochondrial
and sub-mitochondrial localization. DNA-binding proteins (DBP’s) can be used for the regulation of
transcription and gene expression along with the identification of particular nucleotides. Therefore, for
accurate and precise predictions of DBP’s, Waris et al. [15] used evolutionary profiles position-specific
scoring matrix for sequence encoding and a support vector machine for classification. Most of
the available drugs are prepared to target the membrane proteins. Discriminating these proteins via
computer vision techniques is an effective and timesaving as well. Therefore, Hayat et al. [16] through
efforts of a computational method, accurately predicted the membrane proteins via different machine
learning algorithms.

1.2. Deep Learning Approach towards Mitochondria Proteins Identification

Some researchers have utilized the full benefits of deep learning techniques and employed them
to predict different types of protein sequences [17–19]. Delong et al. [20] attempted for the first time, to
generate the original idea in deep learning for the discrimination of DNA binding proteins and non-DNA
binding proteins. Qinhu et al. [21] improved the inherent weak supervision biological information
prediction by proposing a new procedure established on CNN features with sequence-based learning to
classify the DNA binding proteins. Recently, for sequencing learning, Qu et al. [17] applied a sequence
learning network known as a recurrent neural network (RNN) with CNNs to predict those proteins
which are attached to DNA. Compared to the traditional methods, deep learning techniques enhance
the flexibility of extracted optimal features from sequences. It is not only the selection of a large number
of proteins that are made possible for model training, but the process of speedy and accurate prediction
is also enhanced. From earlier scholar’s work, in addition to protein features, contextual information
has also been observed as a valuable feature [22]. With an inspiration of this concept, if an amino acid
sequence also suppresses contextual features, then it might increase the prediction score.

In this article, a CNN model is proposed by employing MBD-LSTM for Plasmodium mitochondria
protein identification. In the first encoding layer, we assign an integer value to each amino acid in
order to encode protein sequences and find the maximum length of the protein, and the next layer is
the embedded layer where each word is converted to fix the length vector. Further, these matrices
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are passed through the CNN model containing three convolutional layers followed by max pooling
layers. Finally, these deep features are fed into the MBD-LSTM layer for sequence learning and the last
dense layer generates the optimal output. The proposed novel framework makes the following main
contributions for the identification of Plasmodium falciparum parasite mitochondrial proteins.

• Considering the lack of effective vaccination, a rise in drug-resistant Plasmodium parasites,
and the lethal nature of malaria, we propose a novel sequence-based framework MPPIF-Net to
efficiently discriminate Plasmodium mitochondria and non-mitochondria proteins. The proposed
model is useful in developing vaccines against malaria parasites.

• With the rising sequencing technology, the number of various proteins increases day by day with
rapid acceleration in the protein databanks. In the aforementioned literature, researchers follow
machine learning and computational techniques, which revealed inadequate performance while
capturing contextual features from biological sequence patterns, yielding non-representative
classifiers. In this study, we pursue a deep learning approach, which is capable of extracting
contextual features and apply a sequence learning mechanism to efficiently classify the nature of
proteins with the assistance of CNN and MBD-LSTM.

• Due to the unavailability of a large benchmark dataset of Plasmodium mitochondrial proteins, in
this paper, we prepared a new dataset from the Uniprot site which contains both mitochondria
and non-mitochondria proteins. The types of proteins mentioned in our dataset are passed from
CD-Hit software to detect and remove similarity and short length proteins to optimally acquire
a preprocessed and adoptable dataset.

• To validate the adoptability of our proposed model, we also made an extensive experimentation
on the benchmark datasets, that is designed using mitochondrial proteins of another organism.
The proposed model responded with convincing accuracy on this dataset, thereby validating
the fact that our model is adoptable not only to the mitochondria proteins of the Plasmodium
organism, but is trust-worthy to classify mitochondria proteins of other species as well.

The remaining article is divided into three further sections; Section 2 briefly explains the proposed
system. Results and discussion are explained in Section 3 and in Section 4 we present the conclusions
and future directions.

2. Proposed Methodology

Our proposed model mainly contains three modules which are further divided into five phases:
(1) the preprocessing phase, in which we collect the sequence data from the protein databank and apply
some techniques for the refining of data; (2) the encoding phase, in which we simply assign a natural
number to each amino acid and also search the maximum length of the sequence; (3) the embedding
phase, which is a mapping procedure in which individual words in the separate vocabulary will be
inserted into a continuous vector space; (4) the convolution phase, in which we create one-dimensional
vector from the encoded amino acid that is advanced to the CNN layers for deep features extraction;
and finally, (5) the MBD-LSTM phase, where all the features are passed through this network for
sequence learning to generate final output, as shown in Figure 2. The details of all phases are given in
the subsequent sections. After passing the protein sequence (Pseq), the affinity scores of mitochondrial
proteins are calculated by the Equation (1).

A(Pseq) = (Encoding (Embedding (CNN (MBD-LSTM))) (1)
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Figure 2. The proposed framework comprises of three modules. Module 1 describes the phenomena
of sequence acquisition in which collection and preprocessing is channeled to eliminate redundancy.
The polished sequences are forwarded to Module 2, where the alphabet was converted to natural
numbers; after that we utilized embedding layers to generate fixed length vectors. Finally, in
Module 3, we passed one-dimensional data to CNN deep contextual features extraction and then
employed multi-layer bi-directional long short-term memory MBD-LSTM for sequence learning.
Afterword, sigmoid activation is applied to predict final probability scores; either the output is related
to mitochondrial (Label 1) or non-mitochondria (Label 0) which are then evaluated in terms of accuracy.

For predicting the output label data, we used the sigmoid activation function, and to evaluate
the performance of the network, binary cross entropy is applied.

2.1. Raw Data Acquisition and Preprocessing

The biological sequences are obtained from the Uniprot protein databank in FASTA format, which
is basically a text-based format. It is easily accessible, and downloadable protein sequences of any
organism. In this study, we utilized three datasets such as PF2095, PF175, and MPD to estimate
the model accuracy. Due to the unavailability of the massive number of MPPF, we collected 1701 raw
sequences by searching the keywords “plasmodium falciparum mitochondrion”, that are considered as
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positive samples. Furthermore, we collected 2075 negative samples by searching the “non-mitochondria
proteins”. After extracting the sequences, we inserted these sequences to CD-Hit software to removed
sequences with 80% similarity and shorter length (less than 40) of amino acids. After the refining
process, we collected 890 and 1205 as positive and negative samples for classification purposes.
The remaining two benchmark datasets were publicly available, so there is no need to pass it from
the preprocessing phase.

2.2. Encoding Protein Sequences

In machine learning, various feature extraction approaches are proposed, such as amino acid
composition, dipeptide composition, split amino acid composition, pseudo amino acid composition,
position specific scoring matrices, and n-gram methods, etc. [18]. These manual protein encoding
techniques usually extract low-level features which sometimes degrade the machine learning model,
mostly in classification problems. Nowadays, a renowned approach for the achievement of a high
success rate is deep learning mechanism, which is the subset of machine learning in artificial intelligence.
Here we simply allocate a natural number to each amino acid [23]. For instance, we have a protein
sequence like ‘AKILMEF’, so the encoding of each amino acid is represented as (1, 4, 5, 8, 9, 10, 11).
Symbol along with code for each amino acid is shown in Table 1. This encoding is efficient as compared
to the sparse vector. An important aspect for consideration while assigning numbers to amino acids is
related to order, which states that order does not affect a model’s performance at all.

Table 1. Symbolic representation of each Amino Acids and its code.

Amino Acids Letters Code

Alanine A 1
Cysteine C 2
Aspartic D 3
Glutamic E 4

Phenylalanine F 5
Glycine E 6

Histidine H 7
Isoleucine I 8

Lysine K 9
Leucine L 10

Methionine M 11
Asparagine N 12

Proline P 13
Glutamine Q 14
Arginine R 15

Serine S 16
Threonine T 17

Valine V 18
Tryptophan W 19

Tyrosine Y 20

The encoding phase only creates a digital vector of a proteins sequence with variable length. First,
we find the maximum length of protein in a dataset. In this paper, the max-length vector value is (5253,
1280, and 1402) for distinct datasets which usually depends upon the sequences in the dataset. As
we already know, protein sequences usually exhibit different lengths while in deep learning, we are
required to keep a fixed length for all protein sequences. For example, for a protein whose length
vector is smaller than the maximum-length vector, a unique value zero is placed, at the end in order to
keep the same alignment of all the sequences. An encoding of protein example is given in Equation (2).

Protein Seq1 = Encoding (Sequence) = (11, 12, 16, 17, 0) (2)
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2.3. Embedding Layer

It is a very difficult task to encode each word manually. This layer gives us an automatic and
efficient way of representing words or documents in which matching words have a similar encoding [16].
This work is done by just multiplying one hot vector from the left with a weight matrix W ЄRd *|V|

where |V| represents the number of primary symbols related to the vocabulary as shown in Equation (3).

VZ = WXt (3)

As a result, the input sequence of amino acids becomes a solid valued vector (z = 1, 2, 3, 4, . . .
n). In the embedding layer, assume that the output dense vector length is 8, and each number map
corresponds to a fixed vector length. After passing through layer proteins, the sequence becomes an
8×8 matrix e.g., as exposed in Equation (4). We may represent Thyronine amino acid with [0.5, −0.8,
0.7, 0.4, 0.3, −0.5, −0.7, 0.8] and Methionine with [0.4, −0.4, 0.5, 0.6, 0.2, −0.1, −0.3, 0.2].

ProteinSeq2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 −0.4
0.4 −0.4
0.2 −0.2
0.5 −0.2
0.4 −0.4
0.8 −0.5
0.9 −0.6
0.5 −0.8

0.1 0.2 0.6
0.5 0.6 0.2
0.6 0.7 −0.1
0.1 0.6 0.2
0.5 0.6 0.2
0.4 0.7 0.5
0.7 0.8 0.2
0.7 0.4 0.3

0.4 −0.1 0.1
−0.1 −0.3 0.2
0.1 −0.2 0.1
−0.6 −0.2 0.9
−0.1 −0.3 0.2
−0.2 −0.5 0.3
−0.1 −0.2 0.7
−0.5 −0.7 0.8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

2.4. Convolution Layer

The deep learning model works very efficiently in image processing and video analysis by
extracting the deep features based on convolutional and pooling layers [24,25]. In case of images
or videos, we directly give input data to the model because their data already exhibits a matrix
arrangement [26]. While working with protein sequences, first, we prepare data in the form of a matrix
with fixed-size and forwards to the convolution layer for processing like images. In this work, the model
exhibits three convolution layers and each one is followed by a max pooling layer for deep features
extraction. In this layer, we use 3 × 8 filters to scan the protein seq2 and obtain a new feature map as
shown in Equations (5) and (6).

Filter =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.2 0.2
0.1 0.3
0.8 −0.2

−0.3 0.8 0.5
−0.3 0.6 0.1
0.3 −0.5 0.6

0.3 0.2 −0.2
0.3 −0.2 0.3
0.3 0.2 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Protein seq3 = Convolution (Seq2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.48
0.53
0.75
0.20
0.25
0.62
0.40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

In max pooling layer, the sliding window takes the highest value of the two numbers as shown in
Equation (7)

Protein seq4 = Max Pooling (Seq3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.65
0.53
0.48
0.62

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)
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2.5. MBD-LSTM Layer

For the complications and issues related to short-term memory sequencing, RNN is employed,
mostly for the cases where a long sequence is required to handle and stored for both forward and
backward steps. As a result of the continuation of this procedure, RNN may depart crucial information
out of the initial sequence data. But during backpropagation, a vanishing gradient issue is encountered,
that makes it hard to memorize long-term changes in sequence [27,28]. Throughout the propagation
process, the neural network weights are updated and shrink due to the gradient. These extremely
minor weights do not participate to the learning process in an RNN, and also layers stop learning
due to acquiring such a small gradient. In this situation the RNN does not have a capability to
store longer sequence modifications that were observed previously. LSTM provides a solution by
incorporating a short-term memory unit which is a special recurrent neural network architecture.
LSTM emphases build memory cells and gates that regulate to process and store information and also
allow when to update and forget the hidden states of the network [29]. The internal structure review
of LSTM contains memory cell state Sst-1. These cells directly relate to Hst-1 which is the middle output
state, and the successive state Xst controls the internal state vector which is required to be upgraded.
There are three gates in LSTM structure; input gates Nst, forget gates Fst, and the output gate Ost.
The mathematical notation of these gates are as follows.

FST = σ(WFXXST + WFH HST−1 + BF) (8)

IST = σ(WIXXST + WIH HST−1 + BI) (9)

NST = φ(WNXXST + WNH HST−1 + BN) (10)

OST = σ(WOXXST + WOH HST−1 + BO) (11)

SST = σ(GTθIST + SST−1 θ BS) (12)

HST = φ(SST−1) θOST (13)

In Equations (8)–(13), the network inputs weight matrices are represented by
WFX, WFH, WIX, WIH, WNX, WNH, WOX, and WHO. Here, θ is used for the multiplication in an
elementwise manner. The two activation functions such as sigmoid and tanh are represented by σ

and φ. The single time step of LSTM architecture is shown in Figure 3a. In this article, we evaluated
the performance of MBD-LSTM for protein sequence identification. The idea of a MBD-LSTM is
developed from traditional bidirectional RNN [30], which also processes the hidden layer input
sequence data in both forward and backward direction. MBD-LSTM has achieved significant results in
speech recognition [31], summarization [32], classification, energy consumption prediction [33], and
text generation. The structure of MBD-LSTM consists of forward and backward layers as shown in
Figure 3b. The output of the forward layer I>T is analyzed through input data from T− n to T− 1, while
the output data of the backward layer H<T is generated through reversed inputs such as from T− n to
T− 1. Final MBD-LSTM generates the OT output vector as illustrated in equation (14).

OT = σ(I>T , H>T ) (14)
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Figure 3. (a) Internal architecture of LSTM, comprising of multiple gates along with LSTM
cells for stimulation of numerous operations, permitting the gates to store and omit related
information; (b) MBD-LSTM, which acquires input data sequences and then proceeds in a forward and
backward direction.

In Equation (11), σ combines an output sequence of two layers, which is also known as
summation function.

3. Results and Discussion

In this portion, an in-depth analysis over comprehensive experiments which are performed on
three protein sequence datasets and detailed discussion of comparative studies of the proposed model
with state-of-the-art techniques is presented.

3.1. Datasets

The benchmark dataset of Plasmodium mitochondrial protein sequences was obtained from [5].
The total number of proteins in dataset is 175, which contains 40 positive (mitochondrial proteins)
and 135 negative (non-mitochondrial proteins) samples. We represent this dataset by Plasmodium
falciparum 175 (PF175). The second raw dataset (PF2095) was obtained from the universal protein
resource (Uniprot) which contains 890 positive samples and 1205 negative samples.

Similarly, a third dataset was downloaded from [34] which contained 499 positive samples. In this
paper, we denote this dataset by (MPD) as shown in Table 2. Actually, 2833 proteins were obtained from
the protein databank site known as Swiss-Prot by searching the keyword mitochondrial. Afterward,
those proteins were then excluded with ambiguous words, such as SIMILARITY, POTENTIAL, or
PROBABLE and FRAGMENTS. Furthermore, 681 proteins were collected belonging to locations other
than mitochondrial site.

Table 2. Plasmodium falciparum mitochondria protein datasets.

Dataset Positive Sample Negative Sample

PF175 40 135
PF2095 890 1205
MPD 499 250

By applying the preprocessing and eliminating the ambiguous data, we selected 250 proteins
as non-mitochondrial.

3.2. Experimental Setup

Using two benchmark and one own prepared protein datasets, we analyzed and verified
the efficiency of the proposed model. The model was trained on a Titan Intel Core i5-6600 processor
with X (Pascal)/PCLe/SSE2 GPU, having 64GB of memory using 16.4 LTS Ubuntu operating system.
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The proposed deep learning model was executed in version 3.5 of python, version 2.2.4 of Keras, and
version 1.12 of TensorFlow backend along with an Adam employed as an optimizer. To find the most
favorable selection of the hyperparameter of each model, several experiments were conducted. At last,
we selected 50 epochs to train the model with a batch size of 100. The PF2095 and MPD samples were
split into training 70% and testing 30%, and due to fewer numbers of protein samples in PF175 we kept
80% data in training, and 20% data is utilized for model evaluation.

3.3. Evaluation Metrics

In this study, a couple of assessment measures are used for the evaluation of the proposed model.
These parameters include accuracy, sensitivity, and specificity. The mathematical formulas are defined
in the Equation (15)–(17).

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (15)

Sensitivity =
TP

TP + FN
× 100 (16)

Specificity =
TN

TN + FP
× 100 (17)

Now, let us assume that the mitochondrial protein is positive, and the non-mitochondrial protein
is negative. The true positive (TP) is that value in which predictive and actual value is positive and true
negative (TN) is the value in which predicted value and actual value is negative. Similarly, the false
positive (FP) is the value in which a machine predicted as positive but actually it is a negative value
and the false negative (FN) is that value in which machine predicted as negative class but actually it is
related to positive class value.

3.4. Ablation Study on PF2095

In this subsection, we conduct an ablation study after comprehensive experiments to analyze
the three models in terms of accuracy, sensitivity, and specificity on the PF2095 dataset, which is a new
mitochondria proteins of Plasmodium dataset comprising 890 positive and 1205 negative samples.
In this dataset 70% of total samples are set for training, and the remaining 30% are used for model
evaluation. First, we perform our experiments on CNN-GRU which achieved 89.7% training accuracy,
88.0% testing, 90.4% sensitivity, and 88.9% specificity. The next model CNN-LSTM showed better
performance compared to previous one. It obtained 93.5% training, 91.2% testing accuracy, 90.6%
sensitivity, and 91.7% specificity. The proposed model MPPIF-NET used CNN with integration of
MBD-LSTM with the same number of parameters. It is experimentally proved that the last hybrid
approach shows supremacy of performance which obtained 98.2% training accuracy, 97.6% is testing
performance of the model, 98.1% of its sensitivity, and 97.2% specificity. The detailed experimental
evaluation results are depicted in Table 3 and confusion metrics of the MPPIF-NET are shown in
Figure 4.
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Table 3. Training and testing performance of the MPPIF-NET on different models and datasets.

Dataset Model
Training
Accuracy

Testing
Accuracy

Sensitivity Specificity

PF2095

CNN-GRU 89.7 88.0 90.4 88.9

CNN-LSTM 93.5 91.2 90.6 91.7

CNN-MBD-LSTM
(Proposed) 98.2 97.6 98.1 97.2

PF175 CNN-MBD-LSTM
(Proposed) 100 97.1 100 96.2

MPD CNN-MBD-LSTM
(Proposed) 99.7 99.5 99.3 100

 

Figure 4. Confusion metrics of the proposed method over the PF2095 dataset.

3.5. Experimental Evaluation on PF175

We used irregular data in our experiments along with a hold-out technique which is the simplest
kind of cross validation. The data was divided into training and testing. We trained our proposed
model on 80% of the data and the remaining 20% of data were used for evaluation purposes.
During experiments we updated different parameters to achieve good performance. After numerous
experiments we set these parameters and their value; for example, maximum length of the protein is
1280 which depends upon the dataset, maximum features = 26, embedding size = 8, number of filters
in convolutional are 32, pooling length = 2, batch size = 100, dropout = 0.2, and number of epochs is 50.
We also checked different numbers of epochs and finally realized that the trained model fits the protein
sequences well and predicts accurately on epochs 50.

Our model achieved better performance in terms of 100% training accuracy, 100% sensitivity,
96.2% specificity, and testing accuracy of 97.14%, which is higher than other state-of-the-art approaches.
The confusion matrics of correctly and incorrectly predicted proteins are shown in Figure 5.

37



Processes 2020, 8, 725

 

Figure 5. Confusion metrics of the proposed method over the PF175 dataset.

3.6. Experimental Evaluation on MPD

This dataset is also an unbalanced dataset and used the hold-out method during experiments.
The data is divided into training and testing, which is 70% and 30%. For this dataset we also set
the same parameters, except the maximum length of the protein which is 1402; maximum features
= 26, embedding size = 8, number of filters in convolutional are 32, pooling length = 2, batch size =
100, dropout = 0.2 and the number of epochs is 50. We have done a lot of experiments with different
setup parameters, but finally on epochs 50 we achieved better performance. The confusion matrics of
correctly and incorrectly predicted proteins are shown in Figure 6.

 

Figure 6. Confusion metrics of the proposed method over the mitochondria protein dataset
(MPD) dataset.
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Our model got 99.7% training accuracy, 99.3% sensitivity, 100% specificity, and a testing accuracy
of 99.5%, which shows that the proposed model is superior in contrast to state-of-the-art techniques.

3.7. Comparative Analysis of the MPPIF-NET with Other Models on PF175

In the post genomic era, functional annotation is one of the major challenges. From the last decade,
a vast number of machine learning and bioinformatic techniques have been proposed to predict protein
functionality. The statistics of sequences are boosted day by day in the protein databanks. Identification
of these biological sequences via laboratory methods was a laborious task. Therefore, we proposed
a deep learning model for the accurate prediction of a huge number of proteins. Hence, it is important
to evaluate the performance of models in order to compute the realistic performance of the model. For
this we compared our proposed model with the state-of-the-art method using the same dataset. In
the first attempt Bhasin et al. [35] proposed a model for eukaryotic subcellular localization protein
prediction called (Eslpred) using a hybrid approach containing a dipeptide composition and PSI-BLAST.
They achieved 69.71% accuracy, 73.33% specificity, and 57.50% sensitivity. Guda et al. [36] developed
a new method for genome-scale prediction of the target mitochondria protein based on the composition
of the amino acid and the occurrence frequency of each pattern which repeats in sequences. They
achieved 80% accuracy, 87.41% specificity, and 55% sensitivity. Bender et al. [6] built a neural network
model for the precise prediction of mitochondrial transit peptides which causes malaria. Due to
the complex genomic sequence of PF, Chen et al. [11] developed the increment of diversity model in
which a reduced amino acid composition was used in order to extract local features from the biological
sequence. The prediction performance achieve 100% superior sensitivity rate, 89% specificity, and 92%
accuracy as shown in Table (4). Mitochondria are vital organelles of eukaryotic cells which are involved
in processing cellular death and human diseases; therefore, Afridi et al. [9] proposed an ensemble
model known as Mito-GSAAC in which the main purpose was to examine an effective feature extraction
approach. They achieved the highest specificity score of 95.56%, 93.21% accuracy, and 87.5% sensitivity.
Accurate identification of the mitochondrial protein of Plasmodium falciparum is an essential role in
the discovery of anti-malarial drug targets. Ding et al. [10] used a dipeptide composition for protein
encoding. They also used the analysis of variance to overcome the issue of overfitting. They attained
97.1% accuracy, 90% sensitivity, and 99.3% specificity. The aforementioned state-of-the-art techniques
utilized the machine learning approaches for the protein sequences prediction. We proposed a deep
learning strategy for identification of these biological sequences which gave 97.14% superior testing
accuracy compared to other discussed methods as shown in Table 4.

Table 4. MPPIF-NET comparative analysis with other models on PF175 dataset.

Method Sensitivity Specificity Accuracy

Eslpred [34] 57.50 73.33 69.71
Mitopred [35] 55.00 87.41 80.00

PlasMit [5] 94.00 89.00 90.00
ID [10] 100 89.63 92.00

MitoGSAAC [8] 87.5 95.56 93.21
ANOVA [9] 90.0 99.3 97.1
MPPFI-Net 100 96.2 97.14

3.8. Comparative Analysis of the MPPIF-NET with Other Models on MPD

Mitochondria are the center and powerhouse of the eukaryotic cells. Pharmaceutical companies
still desire such a system which accurately predicts the mitochondria protein of Plasmodium in order to
prepare drugs. Therefore, Tan et al. [34] proposed an algorithm in order to evaluate the pair composition
of amino acids. The extracted features are then passed to the support vector machine classifier for
prediction of Plasmodium mitochondria proteins. The SVM model was evaluated which achieved 85%
accuracy, 89.28% specificity, and 79.16% sensitivity. Jiang et al. [37] developed a new sequence-based
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method which is known as the Discrete Wavelet Transform for sequence prediction. They achieved
50.30% sensitivity, 95.74% specificity, and 76.53% accuracy. Afridi et al. [9] used four computational
methods such as AAC, DPC, SAAC, and PAAC. Furthermore, they also evaluated the six machine
learning algorithms, such as support vector machine, random forest, multilayer perceptron, AdaBoost,
and bagging. Finally, on the basis of the ensemble classifier they achieved 92.62% accuracy, 91.52%
specificity, and 90.96% sensitivity. Our proposed model performs well compared to the state-of-the-art
methods, having 99.5% accuracy, 100% specificity, and 99.33% sensitivity as shown in Table 5.

Table 5. MPPIF-NET comparative analysis with other models on the MPD dataset.

Method Sensitivity Specificity Accuracy

SVM 84-D [33] 79.16 89.28 85.00
DWT [36] 50.30 95.74 76.53

MitoGSAAC [8] 90.96 91.52 92.62
MPPFI-Net 100 99.33 99.5

4. Conclusions and Future Directions

For the identification of mitochondria proteins of Plasmodium some biologists are still
concentrating on extracting new patterns from biological sequences and are searching for appropriate
machine learning algorithms which accurately classify proteins. In this study, we proposed a deep
leaning framework MPPFI-Net which is capable of extracting deep features automatically and can
discriminate proteins quickly and accurately. We merged the CNN and MBD-LSTM in order to extract
the contextual information from amino acids. Later on, we compared MPPFI-Net performance with
the state-of-the-art models, and we conclude that the proposed framework speeds up the performance
regarding both prediction accuracy and fitting uncharacterized data. In future, we will boost this work
by fusing the traditional features and deep features.
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Abstract: Because of the promising results obtained by machine learning (ML) approaches in
several fields, every day is more common, the utilization of ML to solve problems in bioinformatics.
In genomics, a current issue is to detect and classify transposable elements (TEs) because of the
tedious tasks involved in bioinformatics methods. Thus, ML was recently evaluated for TE datasets,
demonstrating better results than bioinformatics applications. A crucial step for ML approaches is
the selection of metrics that measure the realistic performance of algorithms. Each metric has specific
characteristics and measures properties that may be different from the predicted results. Although
the most commonly used way to compare measures is by using empirical analysis, a non-result-based
methodology has been proposed, called measure invariance properties. These properties are calculated
on the basis of whether a given measure changes its value under certain modifications in the confusion
matrix, giving comparative parameters independent of the datasets. Measure invariance properties
make metrics more or less informative, particularly on unbalanced, monomodal, or multimodal
negative class datasets and for real or simulated datasets. Although several studies applied ML
to detect and classify TEs, there are no works evaluating performance metrics in TE tasks. Here,
we analyzed 26 different metrics utilized in binary, multiclass, and hierarchical classifications, through
bibliographic sources, and their invariance properties. Then, we corroborated our findings utilizing
freely available TE datasets and commonly used ML algorithms. Based on our analysis, the most
suitable metrics for TE tasks must be stable, even using highly unbalanced datasets, multimodal
negative class, and training datasets with errors or outliers. Based on these parameters, we conclude
that the F1-score and the area under the precision-recall curve are the most informative metrics
since they are calculated based on other metrics, providing insight into the development of an
ML application.

Keywords: transposable elements; metrics; machine learning; deep learning; detection; classification

1. Introduction

Transposable elements (TEs) are genomic units able to move within and among the genomes
of virtually all organisms [1]. They are the main contributors to genomic diversity and genome size
variations [2], except for of polyploidy events. Also, TEs perform key genomic functions involved
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in chromosome structuring, gene expression regulation and alteration, adaptation and evolution [3],
and centromere composition in plants [4]. Currently, an important issue in genome sequence analyses
is to rapidly identify and reliably annotate TEs. However, there are major obstacles and challenges in
the analysis of these mobile elements [5], including their repetitive nature, structural polymorphism,
species specificity, as well as high divergence rate, even across close relative species [6].

TEs are traditionally classified according to their replication mode [7]. Elements using an RNA
molecule as an intermediate are called Class I or retrotransposons, while elements using a DNA
intermediate are called Class 2 or transposons [8]. Each class of TEs is further sub-classified by a
hierarchical system into orders, superfamilies, lineages, and families [9].

Several bioinformatic methods were developed to detect TEs in genome sequences, including
homology-based, de novo, structure-based, and comparative genomic, but no combination of them can
provide a reliable detection in a relatively short time [10]. Most of the algorithms currently available
use a homology-based approach [11], displaying performance issues when analyzing elements in
large plant genomes. In the current scenario of large-scale sequencing initiatives, such as the Earth
BioGenome Project [12], disruptive technologies and innovative algorithms will be necessary for
genome analysis in general and, particularly, for the detection and classification of TEs that represent
the main portion of these genomes [13].

In recent years, several databases consisting of thousands of TE at all classification levels of
several species and taxa have been created and published [3]. Furthermore, these databases have
different characteristics, such as containing consensus [14–16] or genomic [17,18] TE sequences, coding
domains [9,19], and also TE-related RNA [20,21]. These databases have been constructed with the TEs
detected in species sequenced using bioinformatics approaches (commonly based on homology or
structure), which can produce false positive if there is no a curation process [11]. As other biological
sets (such as datasets of splice sites [22], or protein function predictions [23]), databases have distinct
numbers of different types of TEs producing unbalanced classes [23]. For example in PGSB, the largest
proportion of the elements corresponds to retrotransposons (at least 86%) [24]. The above is caused by
the replication mode of each TE class. As in other detection tasks, the negative instances for identifying
TEs are all other genomic elements than TEs (that constitute the positive instances) [25–27], such as
introns, exons, CDS (coding sequences), and simple repeats, among others, making the negative class
multimodal. These databases constitute valuable resources to improve tasks like TE detection and
classification using bioinformatics or also novel techniques such as machine learning (ML).

ML is defined as a set of algorithms that can be calibrated based on previously processed data or
past experience [28] and a loss function through an optimization process [29] to build a model. ML is
applied to different bioinformatics problems, including genomics [30], systems biology, evolution [28],
and metagenomics [31], demonstrating substantial benefits in terms of precision and speed. Several
recent studies using ML to detect TEs report drastic improvements in the results [32–34] compared to
conventional bioinformatics algorithms [13].

In ML, the selection of adequate metrics that measure the algorithms’ performance is one of
the most crucial and challenging steps. Commonly used metric for classification tasks are accuracy,
precision, recall, and ROC curves [35,36], but they are not appropriate for all datasets [37], especially
when the positive and negative datasets are unbalanced [13]. Accuracy and ROC curves can be
meaningless performance measurements in unbalanced datasets [22], because it does not reveal the true
classification performance of the rare classes [38]. For example, ROC curves are not commonly used in
TE classification, because only a small portion of the genome contains certain TE superfamilies [34].
On the other hand, precision and recall can be more informative since precision is the percentage
of predictions that are correct [34] and recall is the percentage of true samples that are correctly
detected [26], nevertheless it is recommended to use them in combination with other metrics since the
use of only one of these metrics cannot provide a full picture of the algorithm performance [36].

Most of the classification and detection tasks addressed by ML define two classes, positive and
negative [13]. Thus, expected results can be classified as true positive (tp) if they were classified as
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positive and are contained in the positive class, while as false negatives (fn) if they were rejected but
did not belong to the negative class. On the other hand, samples that are contained in negative class
and predicted to be positive constitute false positives (fp), or true negative (tn) if they are not [13,28,39].
These markers are related in the confusion matrix, and most of the metrics used in ML are calculated
based on this matrix.

Depending on the goal of the application and the characteristics of the elements to be classified,
other metrics addressing classification (binary, multiclass, hierarchical), class balance (i.e., if training
dataset is imbalanced or not), and the importance of positive or negative instances [36] must be
considered. Another point is the ability of a metric to preserve the value under a change in the
confusion matrix, called measure invariance [40]. This properties give comparative parameters
between metrics that are not based on datasets, but in the way they are calculated. Each of the
properties of the invariance can be beneficial or unfavorable depending on the main objectives,
the balance of the classes, the size of the data sets, the quality, and the composition of the negative class,
among others [40]. Thus, invariance properties are useful tools in order to select the most informative
metrics in each ML problem.

Recently, different ML-based software have been developed to tentatively detect repetitive
sequences [34,41,42], classify them (at the order or superfamily levels) [27,43–45], or both [10,46].
Additionally, deep neural networks-based software were also developed to classify TEs [11,47].
Nevertheless, there are no studies about which metrics can be more suitable taking into account the
unique characteristics of transposable element datasets and their dynamic structure. Here, we evaluated
26 metrics found in the literature for TE detection and classification, considering the main features of
this type of data, the invariance properties and characteristics of each metric in order to select the more
appropriate ones for each type of classification.

2. Materials and Methods

2.1. Bibliography Analysis

As a literature information source, we used the results obtained by [13], who applied the systematic
literature review (SLR) process proposed by [48]. The authors applied the search Equation (1) to
perform a systematic review of research articles, book chapters and other review papers presented in
well-known bibliographic databases such as Scopus, Science Direct, Web of Science, Springer Link,
PubMed, and Nature.

(“transposable element” OR retrotransposon OR transposon) AND (“machine
learning” OR “deep learning”)

(1)

Applying the Equation (1), a total of 403 publications were identified of which authors removed
those which do not satisfy certain conditions such as repeated (the same study was found in different
databases); of different types (books, posters, short articles, letters and abstracts); and written in other
languages (languages other than English). Then, authors used inclusion and exclusion criteria in order to
select interested articles. Finally, 35 publications were selected as relevant in the fields of ML and TE [13].
Using these relevant publications, we identified the metrics used for the detection and classification of
TEs, preserving information such as representation and observations (i.e., the properties measured).
Next, we evaluated each metric that was reported as a decisive source in relevant publications.
The characteristics and properties of each metric were analyzed regarding their application to TEs,
considering that these elements have some characteristics, such as highly variant dynamics for each
class, negative datasets with a large number of genomic elements for detection, a great divergence
between elements of the same class, and species specificity.
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2.2. Measure Invariance Analysis

Comparing the performance measures in ML approaches is not straightforward, and although
the most common way to select most informative measures is by using empirical analysis [49,50],
an alternative methodology was proposed [40], which consists of assessing whether a given metric
changes its value under certain modifications in the confusion matrix. This property is named measure
invariance, and can be used to compare performance metrics without focusing on their experimental
results but using their measuring characteristics such as detecting variations in the number of true
positives (tp), false positives (fp), false negative (fn), or true negatives (tn) presented in the confusion
matrix [40]. Thus, a measure is invariant when its calculation function f which receives a confusion
matrix produces the same value even if the confusion matrix has modifications. For example, consider

the following confusion matrix m =

[
10 4
3 16

]
, where tp = 10, fn = 4, fp = 3, and tn = 16 and the

function for calculating accuracy f = tp+tn
tp+ f p+ f n+tn , thus the accuracy for the confusion matrix presented

above is f (m) = 0.78. Now consider exchanging the positive (tp by tn) and negative (fp by fn) values

in the confusion matrix obtaining the following m′ =
[

16 3
4 10

]
. If we apply the function f over the

new confusion matrix, so we obtain f (m′) = 0.78. In this case, we can conclude that accuracy cannot
detect exchanges of positive and negative values and thus it is invariant due to f (m) = f (m′).

In this work, we used eight invariance properties to compare measures which were selected in
the bibliographic analysis. All these invariances were derived from basic matrix operations, such as
addition, scalar multiplication, and transposition of rows or columns, as following [40]:

• Exchange of positives and negatives (I1): A measure presents invariance in this property

if f
([

tp f n
f p tn

])
= f
([

tn f p
f n tp

])
, showing invariance corresponding to the distribution of

classification results due to its inability to differentiate tp from tn and fn from fp. An invariant
metric in this property may not be utilized in datasets highly unbalanced [40], such as the number
of TEs belonging to each lineage in the Repbase or PGSB databases.

• Change of true negative counts (I2): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

tp f n
f p tn′

])
, demonstrating the inability to recognize specificity of the

classifiers. This property can be useful in problems with multi-modal negative class (the class
with all elements other than the positive), i.e., in the detection of TEs, where negative class may
be composed by all other genomic features such as genes, CDS (coding sequences), and simple
repeats, among others.

• Change of true positive counts (I3): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

tp′ f n
f p tn

])
, losing the sensitivity of the classifiers, so their evaluation

should be complementary to other metrics.
• Change of false negative counts (I4): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

tp f n′
f p tn

])
, indicating stability even when the classifier has errors assigning

negative labels. It is helpful in detecting or classifying TEs when non-curated databases are used
in training (such as RepetDB), which may contain mistakes.

• Change of false positive counts (I5): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

tp f n
f p′ tn

])
, proving reliable results even though some classes contain

outliers, which is common in elements classified at lineage level due to TE diversity in their
nucleotide sequences [26].
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• Uniform change of positives and negatives (I6): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

k1tp k1 f n
k1 f p k1tn

])
, with k1 � 1. It indicates if a measure’s value changes when

the size of the dataset increases. The non-invariance indicates that the application of the metric
depends on size of the data.

• Change of positive and negative columns (I7): A measure presents invariance in this property if

f
([

tp f n
f p tn

])
= f
([

k1tp k1 f n
k2 f p k2tn

])
, with k1 � k2. If a metric is unchanged in this way, it will not

show changes when additional datasets differs from training datasets in quality (i.e., having more
noise), and indicating the needed of other measures as complement. On the contrary, if a metric
presents a non-invariant behavior then, it may be suitable if different performances are expected
across classes.

• Change of positive and negative rows (I8): A measure presents invariance in this property

if f
([

tp f n
f p tn

])
= f
([

k1tp k1 f n
k2 f p k2tn

])
, with k1 � k2. In this case, if a metric is non-invariant,

its applicability depends on the quality of the classes. It may be useful, for example, when curated
datasets are available such as Repbase.

Properties described above were calculated by [40] for commonly used performance measures
and we used them to analyze selected metrics (Table 1), except for area under the precision-recall curve
(auPRC) which was calculated by us, following the methodology proposed by authors.

Table 1. Invariance properties of selected metrics. 0 for invariance and 1 for non-invariance. Adapted
from [40].

Metric I1 I2 I3 I4 I5 I6 I7 I8

F1-score 0 1 0 0 0 1 0 0
auPRC * 1 0 0 0 0 1 0 1
Fscoreμ 0 1 0 0 0 1 0 0

PrecisionM 0 1 0 1 0 1 1 0
RecallM 0 1 0 0 1 1 0 1
FscoreM 0 1 0 0 0 1 0 0

Precision↓ 0 1 0 1 0 1 1 0
Recall↓ 0 1 0 0 1 1 0 1
Fscore↓ 0 1 0 0 0 1 0 0
Fscore↑ 0 1 0 0 0 1 0 0

* The invariance properties of this metric were calculated by authors in this study. I1: Exchange of positives and
negatives, I2: Change of true negative counts, I3: Change of true positive counts, I4: Change of false negative
counts, I5: Change of false positive counts, I6: Uniform change of positives and negatives, I7: Change of positive
and negative columns, and I8: Change of positive and negative rows.

2.3. Experimental Analysis

To test the behavior of the most commonly used metrics, such as accuracy, precision, and recall,
and the best scoring metric found in this study, we performed several experiments addressing the
specific problem of multi-class classification of LTR retrotransposons at the lineage level in plants.
We selected this problem since LTR retrotransposons are the most common repeat sequences in almost
all angiosperms and they represent an important fraction of their host genome; for instance, 75% in
maize [51], 67% in wheat [52], 55% in Sorghum bicolor [53], and 42% in Robusta coffee [54]. As input,
we used two well-known TE databases: Repbase (free version, 2017) [14] and PGSB [17]. For Repbase,
we joined the LTR domains with the internal section (concatenating before and after) of each LTR
retrotransposon found in the database. The first step was to generate a well-curated dataset of LTR
retrotransposons; thus, we classified LTR retrotransposons from both databases at the lineage level
using the homology-based Inpactor software [55] with RexDB nomenclature [9]. Inpactor has two
filters for deleting nested elements: (1) Removing elements with domains belonging to two different
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superfamilies (i.e., Copia and Gypsy) and (2) removing elements with domains belonging to two or
more different lineages. Additionally, we applied three extra filters: (1) Removing elements with
lengths different from those reported by the Gypsy Database [19] with a tolerance of 20% (this value
was chosen to filter elements with nested insertion of others TEs but keeping elements with natural
divergence), (2) removing elements with less than two domains (incomplete elements derived from
deletion processes), and (3) removing elements with insertions of partial or complete TEs from class II
(present in Repbase). Finally, we removed elements from the following lineages: Alesia, Bryco, Lyco,
Gymco, Osser, Tar, CHLAMYVIR, Retand, Phygy, and Selgy due to their very low frequency or absence
in angiosperms.

Since the datasets used in this study are categorical (nucleotide sequences), we transformed them
using the coding schemes shown in Table 2. Also, we used two additional techniques to automatically
extract features from the sequences; (1) for each element, we obtained k-mer frequencies using k
values between one and six (this range of values of k was selected due to k-mers with k > 6 are rare in
sequences and probably do not provide informational features and they are computationally expensive
to calculate) and (2) we extracted three physical-chemical (PC) properties, such as average hydrogen
bonding energy per base pair (bp), stacking energy (per bp), and solvation energy (per bp), which are
calculated by taking the first di-nucleotide and then moving in a sliding window of one base at a
time [56]. Since the ML algorithms used here require sequences of the same lengths, we found the
largest TE in each dataset and completed the smaller sequences by replicating their nucleotides.

Table 2. Coding schemes for translating DNA characters in numerical representations. Adapted
from [13].

Coding Scheme Codebook Reference

DAX {‘C’:0, ‘T’:1, ‘A’:2, ‘G’:3} [57]

EIIP {‘C’:0.1340, ‘T’:0.1335, ‘A’:0.1260, ‘G’:0.0806} {‘C’:−1, ‘T’:−2, ‘A’:2, ‘G’:1} [58]

Complementary {‘C’:−1, ‘T’:−2, ‘A’:2, ‘G’:1} [59]

Enthalpy
{‘CC’:0.11, ‘TT’:0.091, ‘AA’:0.091, ‘GG’:0.11, ‘CT’:0.078, ‘TA’:0.06,

‘AG’:0.078, ‘CA’:0.058, ‘TG’:0.058, ‘CG’:0.119, ‘TC’:0.056, ‘AT’:0.086,
‘GA’:0.056, ‘AC’:0.065, ‘GT’:0.065, ‘GC’:0.1111}

[60]

Galois (4)
{‘CC’:0.0, ‘CT’:1.0, ‘CA’:2.0, ‘CG’:3.0, ‘TC’:4.0, ‘TT’:5.0, ‘TA’:6.0,

‘TG’:7.0, ‘AC’:8.0, ‘AT’:9.0, ‘AA’:1.0, ‘AG’:11.0, ‘GC’:12.0, ‘GT’:13.0,
‘GA’:14.0, ‘GG’:15.0}

[61]

We applied the workflow described in [62] to compare commonly used ML algorithms using
supervised techniques. As the authors suggested, we applied four types of pre-processing strategies:
none (raw data), scaling, data dimensionality reduction using principal component analysis (PCA),
and both scaling and PCA. On the other hand, we used some of the most common ML algorithms [62],
including linear support vector classifier (SVC), logistic regression (LR), linear discriminant analysis
(LDA), K-nearest neighbors (KNN), naive Bayesian classifier (NB), multi-layer perceptron (MLP),
decision trees (DT), and random forest (RF). All algorithms were tested by varying or tuning parameter
values to find the best performance (Table 3).

The experiments consisted in executing all possible combinations between databases, coding
schemes, pre-processing strategies, and ML algorithms (Figure 1 and Table 4). First, we used the
accuracy and, the F1-score using the macro-averaging strategy as main metric in tuning process
(Table 3). Finally, we calculated other common metrics using the best value of the tuned parameter in
each algorithm for comparison. All the experiments were performed using Python 3.6 and Scikit-Learn
library 0.22 [63], installed in a Anaconda environment in Linux over a CPU architecture. We ran our tests
using the HPC cluster of IFB (https://www.france-bioinformatique.fr), IRD itrop (https://bioinfo.ird.fr/)
and Genotoul Bioinformatics platform (http://bioinfo.genotoul.fr/), all of them are managed by Slurm.
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Table 3. Tested algorithm parameters.

Algorithm Parameter Range Step Description

KNN n_neighbors 1–99 1 Number of neighbors

SVC C, gamma =
1×10−6 10–100 10 Penalty parameter C of the

error term.

LG C 0.1–1 0.1 Inverse of regularization strength

LDA tol 0.0001–0.001 0.0001 Threshold used for rank estimation
in SVD solver.

NB var_smoothing 1×10−1–1×10−19 1×10−2
Portion of the largest variance of all
features that is added to variances

for calculation stability.

MLP
Solver = ‘lbfgs’,

alpha = 0.5,
hidden_layer_sizes

50–1050 50
Number of neurons in hidden

layers. In this study, we used solver
lbfgs and alpha 0.5

RF n_estimators 10–100 10 The number of trees in the forest.

DT max_depth 1–10 1 The maximum depth of the tree.

Figure 1. Overall flow of the experimental analysis done in this work.

Table 4. Description of experiments performed.

Experiment ID Database Algorithm Pre-Processing Main Metric

Exp1 Repbase LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA Accuracy

Exp2 Repbase LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA F1-score

Exp3 PGSB LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None Scaling, PCA,
Scaling + PCA Accuracy

Exp4 PGSB LR, LDA, MLP, KNN, DT,
RF, SVM, NB

None, Scaling, PCA,
Scaling + PCA F1-score
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3. Results

3.1. Bibliography and Invariance Analysis

Based on relevant literature sources (articles) detected in [13], by searching in several databases,
we collected 26 metrics that are commonly used in different types of classification tasks, such as binary,
multi-class, and hierarchical (Table 5). We were interested in classification metrics because the detection
task can be considered as a binary classification (using TEs as positive class and non-TEs as negative
class). Additionally, we assigned an importance level for each metric (Table 5) based on the following
aspects: (i) How appropriate is its application to analyzing TE datasets (detection and classification)?
(ii) Which features are measured and how important are these features for TE analysis? For each
metric, each aspect is assigned a level of importance (low, medium, high). Furthermore, the properties
reported in relevant publications were used to evaluate each metric. In this way, we extracted and
summarized information about each metric and we evaluated if its use for TE datasets is plausible.
General observations of metrics can be found in the observations column in Table S4.

Table 5. Metrics used in classification problems. Adopted from [22,34,35,40,64–68].

ID Metric
Classification

Type
Used in TEs

Level of
Applicability

to TEs

Level of
Mmeasured

Features

1 Accuracy Binary [10,32,45,69,70] Low Low
2 Precision (Positive predictive value) Binary [34] Medium Medium
3 Sensitivity (recall or true positive rate) Binary [10,32,34,71] Medium Medium
4 Specificity Binary [71] Low Low
5 Matthews correlation coefficient Binary NO High Low
6 Performance coefficient Binary NO Low Low
7 F1-score Binary [34,47,72] High High
8 Precision-recall curves Binary [25,34] High High

9 Receiver Operating Characteristic
curves (ROCs) Binary [71] Low Low

10 Area under the ROC curve (AUC) a Binary [25,70] Low Low

11 Area under the Precision Recall
Curve (auPRC)b Binary NO High High

12 False-positive rate Binary [70,71] Medium Low
13 Average Accuracy Multiclass [42] Low Low
14 Error Rate Multiclass NO Low Low
15 Precisionμ Multiclass NO Medium Low
16 Recallμ Multiclass NO Medium Low
17 Fscoreμ Multiclass NO High Low
18 PrecisionM Multiclass [34,43] Medium Medium
19 RecallM Multiclass NO Medium Medium
20 FscoreM Multiclass NO High High
21 Precision↓ hierarchical [11,23,24] Medium Low
22 Recall↓ hierarchical [11,23,24] Medium Low
23 Fscore↓ hierarchical [11,23,24] High Low
24 Precision↑ hierarchical [11,23,24,27] Medium Medium
25 Recall↑ hierarchical [11,23,24,27] Medium Medium
26 Fscore↑ hierarchical [11,23,24,27] High High

Although a and b are areas under the curve, they can be viewed as a linear transformation of the Youden Index [73].
Rows in bold were selected to perform invariance analyses. Additional information, such as metric representation
and general observations of this table, is available in Table S1–S3 and observations about levels of applicability and
measured features can be found in Table S4: Rows in bold were selected to perform invariance analyses.

We performed invariance analyses on the metrics with the best evaluation for each classification
type (Table 1). Precision-Recall curves were excluded for further analysis at this step since it is
impossible to calculate graphics from a confusion matrix. We obtained the invariance properties for
almost all metrics from [40], except for area under the precision recall curve (ID = 11). For this metric,
we generated a random confusion matrix and applied all the transformations presented in [40] in order
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to calculate its value and determine if it changed or not. The invariance analyses were performed
based on the one described by [40].

3.2. Experimental Analysis

To evaluate the relevance of the literature reports about metrics, we applied them to experiments
on the multi-class classification of LTR retrotransposons in angiosperm plants at the lineage level.
Using nucleotide sequences from Repbase [14] (free version, 2017) and PGSB [17] as input, we performed
a classification process using Inpactor [55]. We generated high-quality datasets by removing sequences
that did not satisfy certain filters (See Materials and Methods). After filtering and homology-based
classification, we obtained 2,842 TEs from Repbase and 26,371 elements from PGSB (Table 6).

Table 6. Number of nucleotide sequences of each plant lineage used in Repbase and PGSB databases.

Lineage Repbase PGSB

ALE 53 230
ANGELA 32 1344
ATHILA 107 1844
BIANCA 36 319

CRM 101 1041
DEL 162 2738

GALADRIEL 27 109
IKEROS 0 59
IVANA 7 7
ORYCO 438 1169
REINA 551 1086

RETROFIT 781 1151
SIRE 63 4393
TAT 203 9578

TEKAY 0 11
TORK 281 1292

TOTAL 2842 26,371

We executed four experiments using the generated datasets (Table 4) to evaluate the behavior of
each metric in different configurations. In the first two experiments, we were interested in analyzing
the performance of accuracy and F1-score metrics using a well-curated dataset (Repbase) but with a
few different sequences in some lineages (Figure 2, Figures S1 and S2). In the last two experiments,
we evaluated a larger dataset (PGSB) and tested the same two metrics (Figure 3, Figure S3 and S4).
The complete results of all the experiments can be consulted in Tables S5–S8.

 

Figure 2. Performance of machine learning (ML) algorithms and Repbase pre-processed data by
principal component analysis (PCA) and scaling processes using as main metric: (A) accuracy and
(B) F1-score.
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Figure 3. Performance of ML algorithms and PGSB pre-processed data by PCA and scaling processes
using as main metric: (A) Accuracy and (B) F1-score.

Figures 2 and 3 show the best performance achieved by each algorithm after tuning one parameter
(Table 3), using as main metric accuracy or F1-score. Since each coding scheme displayed a different
behavior, we were interested in further analyzing how each metric behaves in different algorithms
and coding schemes. K-mers (Figure 4) showed the best performance, PC (Figure 5) displayed the
worst performances, and complementary (Figure 6) showed an intermediate performance, which were
selected for further analyses.

 

Figure 4. Results of ML algorithms using nucleotide sequences transformed by k-mers, PCA and
scaling, and applying accuracy, F1-score, recall and precision metrics. Experiments: (A) Exp1, (B) Exp2,
(C) Exp3, and (D) Exp4.
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Figure 5. Results of ML algorithms using sequences transformed by PC and PCA and scaling,
and applying accuracy, F1-score, recall, and precision metrics. Experiments: (A) Exp1, (B) Exp2,
(C) Exp3, and (D) Exp4.

 

Figure 6. Results of ML algorithms using sequences transformed by PC and PCA and scaling,
and applying accuracy, F1-score, recall and precision metrics. Experiments: (A) Exp1, (B) Exp2,
(C) Exp3, and (D) Exp4.

4. Discussion

The detection and classification of transposable elements is a crucial step in the annotation
of sequenced genomes, because of their relation with genome evolution, gene function, regulation,
and alteration of expression, among others [74,75]. This step remains challenging given their abundance
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and diverse classes and orders. In addition, other characteristics of TEs, such as a relatively low
selection pressure and a more rapid evolution than coding genes [26], their dynamic evolution due
to insertions of other TEs (nested insertion), illegitimate and unequal recombination, cellular gene
capture, and inter-chromosomal and tandem duplications [76], make them difficult targets for accurate
and rapid detection and classification procedures. Indeed, TEs showing uniform structures and
well-established mechanisms of transposition can be easily clustered and classified into major groups
such as orders or superfamilies (e.g., LTR retrotransposons) [77]. However, this task is relatively
complex and time-consuming when classifying TEs into lower levels, such as lineages or families [78].
For these reasons, TE classification and annotation are complex bioinformatics tasks [79], in which,
in some cases, manual curation of sequences is required by specialists. The ability of biologists to
sequence any organism or a group of organisms in a relatively short time and at relatively low costs
redefines the barrier of the genomic information. The current limitation is not the generation of genome
sequences but the amount of information to be processed in a limited time. Complex bioinformatics
tasks may be accomplished by machine learning algorithms, such as in drug discovery and other
medical applications [80], genomic research [38,81], metagenomics [31,82], and multiple applications
in proteomics [83].

Previous works apply ML and DL for TE analysis, such as Arango-López et al. (2017) [43] for the
classification of LTR-retrotransposons, Loureiro et al. (2012) [84] for the detection and classification of
TEs using developed bioinformatics tools, and Ashlock and Datta (2012) [69] distinguishing between
retroviral LTRs and SINEs (short interspersed nuclear elements). Deep neural networks (DNN) are also
used to hierarchically classify TEs by applying fully connected DNN [11] and through convolutional
neural networks (CNN) and multi-class approaches [47].

In TE detection and classification, the dataset could be highly imbalanced [23]; therefore, commonly
used metrics such as accuracy and ROC curves may not be fully adequate [36]. For the detection
task, the positive class will be much lower than the negative, because the latter will have all other
genomic elements. In classification, each type of TE (classes, orders, superfamilies, lineages, or families)
has different dynamics that produce a distinct number of copies. For example, in the coffee genus,
LTR-retrotransposons show large copy number differences depending on the lineage [85]. In Oryza
australiensis [86] and pineapple genomes [87], only one family of LTR-retrotransposons contributes to
26% and 15% (Pusofa) of the total genome size, respectively.

For binary classification (for example, to detect TEs or classify them into class 1 and class 2),
the most appropriate metric is F1-score (id = 7), which considers precision and recall values. Precision
is a useful parameter when the number of false-positive must be limited and recall measures how
many positive samples are captured by the positive predicted [36]. However, the use of only one
of these metrics cannot provide a full picture of the algorithm performance. Altogether, our results
suggest that F1-score is appropriate for TE analyses.

In multi-class approaches (such as TE classification into orders, superfamilies, or lineages), F1-score
(id= 20) also seems to be the most suitable metric, combined with the macro-averaging strategy, probably
due to the high diversity of intra-class samples. For TE detection and classification, it appears more
important to weigh all classes equally than to weigh each sample equally (micro-averaging strategy).
Finally, for hierarchical classification approaches (i.e., considering the hierarchical classification of
TEs proposed by Wicker and coworkers [8]), F1-score↓ (id = 26) and F1-score↑ (id = 23) seem most
suitable. These results demonstrate the importance of calculating the performance of each hierarchical
level. Additionally, precision-recall curves and area under the precision-recall curve provided the best
results for binary classification, demonstrating that, for TE datasets, they are more appropriate than
the commonly used ROC curves.

Area under the precision-recall curve, auPRC (id = 11), is a unique metric, which showed
invariance in I1 and non-invariance in I2. Its invariance properties make auPRC a robust measure of
the overall performance of an algorithm and it is insensitive to the performance for a specific class (I1).
However, it less appropriate for data with a multi-modal negative class (~I2).
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All metrics presented invariance in I3, indicating that they could not measure true positive change.
This suggests that they can be used when the positive class is not very strong. PrecisionM (id = 18) and
Precision↓(id = 21) showed non-invariance in I4, which demonstrates that these metrics may be less
reliable when manual labeling follows rigorous rules for a negative class. On the other hand, RecallM
(id = 19) and Recall↓ (id = 22) exhibited non-invariance in I5, indicating that these metrics may not
provide a conservative estimate when the positive class has outliers, as commonly found in TE datasets.
Thus, these metrics might not be informative in TE detection and classification. The non-invariance
properties of all metrics in I6, shown in Table 1, demonstrated that these metrics can vary in data with
large size differences. Consequently, these metrics must be used carefully for comparison with other
and different datasets.

Non-invariance in I7 shown by precision (id = 18 and 21) supported the combined use of this
metric with other metrics (such as in F1-score) common in ML algorithms. Finally, auPRC (id = 11),
RecallM (id = 19), and Recall↓ (id = 22) may be better choices for the evaluation of classifiers if different
data sizes exhibit the same quality of positive (negative) characteristics, as in the case of generated
(simulated) data due to their non-invariance properties in I8.

Our tests for the multi-class classification task of LTR retrotransposons at the lineage level show
an overestimation of the performance of all ML algorithms used here (Figures 2 and 3) for both datasets
(Repbase and PGSB). Furthermore, our experiments support the information found in the literature,
indicating that accuracy is not the most informative metric for highly unbalanced datasets, such as
those used in this study. Additionally, Figures 2 and 3 indicate that this tendency of overestimation is
generalized for nearly all the algorithms, pre-processing techniques, and coding schemes used here.

A clear exception, however, is shown by k-mers (in both training and validation datasets,
Tables S4–S7), for which accuracy and F1-scores did not show any differences. Nevertheless, if the
F1-score is used in the tuning process (Figure 4B,D, Figure 5B,D, and Figure 6B,D), accuracy also
overestimates the performance of almost all the algorithms in comparison to F1-score, sensitivity (recall),
and precision. Interestingly, RF performs in a similar manner to that of the other algorithms when
PGSB (with more than 26,000 elements) is used, but DT presents the same behavior in both datasets.

When the performance of a given scheme is low, the overestimation shown by accuracy is more
evident (Figures 5 and 6). This is due to the extremely low performance on some lineages and, thus,
accuracy is not very informative if it is not used combined with another metric. As suggested by the
literature and invariance analyses, F1-score appears to be the most adequate and informative metric
in the experiments performed here, since it is a harmonic estimate of precision and sensitivity by
measuring the combined amount of false-positive and positive samples captured by the algorithm.

Overall, the results shown here can also be applied to data similar to TEs, such as retrovirus and
endogenous retrovirus or data with highly imbalanced classes, high intra-class diversity, and negative
multi-modal classes (in detection tasks).

5. Conclusions

Altogether, our analyses suggest that F1-score may be the best metric for each of the ML
classification types, except for simulated data, for which auPRC and Recall should be more appropriate
because of their invariance properties. Conversely, precision should be used in combination with
other metrics to avoid non-realistic estimates of algorithm performance. In binary classification,
precision-recall curves must be used instead of ROC curves. In multi-class classification approaches,
the macro-averaging strategy seems to be more appropriate for TE detection and classification. As future
work, we propose to develop a ML model based on the databases, algorithms, and coding schemes
used here and using F1-score in the tuning process, to improve classification of LTR retrotransposons
at the lineage level in angiosperms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/6/638/s1:
Figure S1. Performance of ML algorithms and Repbase using accuracy as the main metric (experiment 1) and the
following pre-processing techniques: (a) None, (b) scaling, (c) PCA, (d) PCA + scaling. Figure S2. Performance of
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ML algorithms and Repbase using F1-score as the main metric (experiment 2) and the following pre-processing
techniques: (a) None, (b) scaling, (c) PCA, (d) PCA + scaling. Figure S3. Performance of ML algorithms and
PGSB using accuracy as the main metric (experiment 3) and the following pre-processing techniques: (a) None,
(b) scaling, (c) PCA, (d) PCA + scaling. Figure S4. Performance of ML algorithms and PGSB using F1-score as the
main metric (experiment 4) and the following pre-processing techniques: (a) None, (b) scaling, (c) PCA, (d) PCA +
scaling. Table S1. Metrics used in binary classification. Adopted from [22,34,35,40,64–68]. Table S2. Metrics used
in multi-class classification. Adopted from [22,34,35,40,64–68]. Table S3. Metrics used in hierarchical classification.
Adopted from [22,34,35,40,64–68]. Table S4. Evaluation for metric collection. Table S5. Results of experiment 1.
Table S6. Results of experiment 2. Table S7. Results of experiment 3. Table S8. Results of experiment 4.
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Abstract: Goldberg’s 100 Unipolar Markers remains one of the most popular ways to measure
personality traits, in particular, the Big Five. An important reduction was later preformed by Saucier,
using a sub-set of 40 markers. Both assessments are performed by presenting a set of markers,
or adjectives, to the subject, requesting him to quantify each marker using a 9-point rating scale.
Consequently, the goal of this study is to conduct experiments and propose a shorter alternative
where the subject is only required to identify which adjectives describe him the most. Hence, a web
platform was developed for data collection, requesting subjects to rate each adjective and select those
describing him the most. Based on a Gradient Boosting approach, two distinct Machine Learning
architectures were conceived, tuned and evaluated. The first makes use of regressors to provide an
exact score of the Big Five while the second uses classifiers to provide a binned output. As input,
both receive the one-hot encoded selection of adjectives. Both architectures performed well. The first
is able to quantify the Big Five with an approximate error of 5 units of measure, while the second
shows a micro-averaged f1-score of 83%. Since all adjectives are used to compute all traits, models
are able to harness inter-trait relationships, being possible to further reduce the set of adjectives by
removing those that have smaller importance.

Keywords: Machine Learning; personality assessment; gradient boosting; Affective Computing

1. Introduction

People react differently when experiencing the same situations. This behavioural diversity
may be due to one’s experience, knowledge or even personality. Indeed, several studies have
already established a relationship between a person’s personality and aggressive reactions [1], work
performance [2] or infidelity [3], just to name a few. Semantically, personality may be defined as
a set of characteristics that refer to individual differences in ways of thinking, feeling and behaving [4].
Personality has a great impact in the the way we live our lives, either by the way we behave, feel or
interact with others. Hence, there has always been great interest in model, or quantify, a person’s
personality using either qualitative or quantitative metrics. Nowadays, there are several accepted
tests that allow a psychological assessment of a person. Such tests may be performed in the scope
of psychology appointments, job interviews or psychometric evaluations. These tests are mainly
conducted by trained professionals that are able to properly interpret their results.

Processes 2020, 8, 618; doi:10.3390/pr8050618 www.mdpi.com/journal/processes61
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1.1. Personality Assessment

Personality assessment is a well defined process that can help unveil how a person may react to
different, unexpected, situations [5]. Several personality tests are available such as HEXACO-60 [6],
Myers-Briggs Type Indicator [7], the Enneagram of Personality [8] and NEO-personality-inventory
(NEO-PI-R) [9]. Goldberg’s 100 Unipolar Markers’ Test [10] is yet another test that consists of a total
of 100 adjectives, or markers, that the subject must rate on how they relate to each adjective, with
1 being Extremely Inaccurate and 9 Extremely Accurate. Among the full set of markers one may find
adjectives such as talkative, sympathetic, careless, envious or deep. Goldberg’s test allows one to measure
five domains, in particular, Surgency, Agreeableness, Conscientiousness, Emotional Stability and Intellect.
Different domains have also been proposed. The OCEAN model, on the other hand, consists of the
following five factors [11,12]:

• Openness: related to one’s curiosity, imagination and openness to new experiences. Higher values
usually emerge on people that enjoy new adventures and ideas. On the other hand, lower values
tend to emerge on more conservative people;

• Conscientiousness: related to self-discipline, being careful and diligent, organised and consistent,
pursuing long-term goals. Less conscientious people tend to be more spontaneous and imaginative;

• Extraversion: related to a state where a person seeks stimulation from being with others instead of
being alone. Extroverted people tend to be energetic and talkative, while introverted ones are
reserved and prefer not to be the centre of attention;

• Agreeableness: related to behavioural characteristics such as being kind and sympathetic.
Agreeable people tend to be friendly, cooperative and empathetic. Non-agreeable people are less
cooperative, and more competitive and suspicious;

• Neuroticism (opposite of Stability): related to being moody and showing signs of emotional
instability. Neurotic people tend to be stressed and nervous. Non-neurotic people tend to be
calmer and more emotionally stable [12].

Goldberg’s test consist of 100 unipolar markers that must be quantified by a subject. An important
reduction to the set of markers was performed by Gerard Saucier with The Mini-Marker test, using
a sub-set of 40 markers to assess the Big Five with an acceptable performance, leading to the use of less
difficult markers and lower inter-scale correlations [13]. Saucier’s test uses the same rating scale, being
made of five disjoint-sets of eight unipolar markers each:

• Intellect or Openness trait is made of six positively weighted adjectives (intellectual, creative, complex,
imaginative, philosophical and deep) and two negative ones (average and ordinary);

• Conscientiousness trait is made of four positively weighted adjectives (systematic, practical, efficient
and orderly) and four negative ones (disorganised, careless, inefficient and sloppy);

• Extraversion trait is made of four positively weighted adjectives (extraverted, talkative, energetic and
bold) and four negative ones (shy, quiet, withdrawn and bashful);

• Agreeableness trait is made of four positively weighted adjectives (kind, cooperative, sympathetic and
warm) and four negative ones (cold, harsh, rude and distant);

• Emotional Stability trait is made of two positively weighted adjectives (relaxed and mellow) and six
negative ones (moody, temperamental, envious, fretful, jealous and touchy).

1.2. Machine Learning for Personality Assessment

During these last years, Machine Learning (ML) has been raising to prominence. In fact, the use
of ML models to predict personality traits has gain significant popularity within the field of Affective
Computing, with several studies having already engaged on conceiving ML models for personality
assessment [12,14–16]. In 2017, Majumder et al. conceived and evaluated Deep Learning (DL) models
to assess personality from text. They conceived and fit a total of five artificial neural networks
(ANN), one for each of the Big Five personality traits. All networks had the same architecture, with
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each ANN behaving as a binary classifier to predict whether the trait was positive or negative [14].
As dataset the authors used James Pennebaker and Laura King’s stream-of-consciousness essay
dataset, which contains 2468 anonymous essays tagged with the binary value for each of the Big
Five [17]. This dataset seems, however, to be currently unavailable. In fact, several datasets containing
anonymized psychological assessments seem to have been locked, or closed, such as the one provided
by the myPersonality platform (myPersonality.org), a platform that made available a dataset containing
textual social media data and from where several studies emerged, being essentially focused on
modelling personality traits based on language-based information [18,19].

In a slightly different domain, in 2017, Yu and Markov conceived and evaluated several DL
models to learn suitable data representation for personality assessment, using facebook status
update data. This dataset consisted of raw text, user’s information and standard Big Five labels,
which were obtained using self-assessment questionnaires [15]. In fact, it is possible to find several
studies focused on inferring personality based on social media feeds. For instance, Kosinski et al.
(2014) focused on examining how an individual’s personality manifests in his/her online behaviour,
in particular, the website he/she visits and his/her Facebook activity. The expectation is that web
activity combined with social media data may bring unbiased insights, since social media feeds may
carry an intention of self-enhancement and positivity [12]. The used dataset was obtained from
myPersonality. The obtained results showed psychologically meaningful links between individuals’
personalities, website preferences and social media data. The potential applications of these works are
essentially related with targeted advertising and personalised recommender systems, which take into
consideration one’s personality to deliver useful content.

In 2012, Sumner et al., based on Twitter use, focused on identifying signals of the Dark Triad, i.e.,
the anti-social traits of Narcissism, Machiavellianism and Psychopathy. Almost three thousand Twitter
users, from 89 countries, participated in the study, with an in-built Twitter application being developed
to collect self-reported ratings on the Short Dark Triad questionnaire, which measures the anti-social
traits, and the Ten Item Personality Inventory (TIPI) test, which measures the Big Five. The authors
conclude that even though possible to examine large groups of people, the conceived ML models
behave poorly when applied to individuals, being imprecise when predicting Dark Triad traits just
from Twitter activity [16].

Another study, performed by Cerasa et al. (2018), focused on conceiving and evaluating ML
models to identify individuals with gambling disorder. To build the dataset, a set of healthy and sick
individuals were asked to perform the NEO-PI-R test, an operationalization of the five factor model.
The authors employed Classification and Regression Trees (CART) achieving interesting performances
evaluated using the area under the curve (AUC). In fact, the best candidate model was able to identify
individuals with gambling disorder with an AUC of approximately 77% [20].

On the other hand, studies have been performed where audio and video data are used by DL-based
models to predict personality [21]. One study, performed by Levitan et al. (2016), focused on the
automatic identification of traits such as gender, deception and personality using acoustic-prosodic and
lexical features [22]. In particular, the authors focused on automatic detection of deception. The authors
used Columbia deception corpus, which consists of deceptive and non-deceptive speech from standard
American-English and Mandarin-Chinese native speakers, including more than one hundred hours of
speech with self-identified truth/lie labels [23]. The authors then collected demographic data from each
subject and administered a NEO-FFI personality test to access the Big Five. Each trait was binned as
a three-class classification problem (low, medium and high), which created an highly unbalanced dataset
since the majority of subjects fell into the medium class. Hence, to compare models’ performances the
authors used f-scores to obtain a meaningful comparison. Several ML models and feature sets were
experimented, with AdaBoost and Random Forests being the best performing classifiers for personality
assessment [22].

Another study, performed by Gurpinar et al. (2016), focused in using DL to predict the Big
Five of faces appearing in videos [24]. The authors employed transfer-learning and Convolutional
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Neural Networks to extract facial expressions, as well as ambient information. The conceived models
were evaluated on the ChaLearn Challenge Dataset on First Impression Recognition, which consists of
ten thousand clips collected from more that five thousand YouTube videos. The label of each clip
corresponds to the Big Five personality traits of the person appearing in that clip. Their best candidate
model achieved an accuracy of over 90% on the test set [24].

It is also usual to find the use of different data sources combined through means of data fusion for
personality assessment. Indeed, personality assessment from multi-modal data has been assuming
a greater importance in the computer vision field [25]. For instance, Gucluturk et al. (2017), aimed
to analyse what features are used by personality trait assessment models when making predictions,
conducting several experiments that characterised audio and visual information that drive such
predictions [25]. On the other hand, Zhang et al. (2016) proposed a Deep Bimodal Regression
framework to capture rich information from both the visual and audio aspects of videos, winning the
ChaLearn Looking at People challenge. Convolutional Neural Networks were conceived to exploit visual
cues, while linear regressors where used for audio [26].

1.3. Hypothesis and Paper Structure

Many studies have already engaged on using ML or DL for personality assessment using images,
videos, audio or text. However, to the best of our knowledge, we are the first to apply ML to reduce
the complexity of a test. In fact, the working hypothesis is that it is possible to use ML-based modes
to further reduce Saucier’s Mini-Marker to a "game of words" where the subject, instead of rating
forty adjectives, only has to select those he relates the most, removing the need to rate adjectives.
The proposed Adjective Selection to Assess Personality (ASAP) method replaces the entire process
of rating adjectives by an adjective selection process. The goal is to reduce the complexity of tests,
the time it takes to perform a test, and to make the test more attractive and easier to implement in
current and future technological platforms. Hence, this study aims to conceive, tune and evaluate two
distinct Gradient Boosting ML architectures to quantify an individual’s personality based on his/her
choice of adjectives. Due to the non-availability of data, a web platform was developed and place
online, being responsible for the entire data collection process. To conduct experiments on non-data
scarce environments, data augmentation techniques were designed and implemented to produce
a second dataset, which was also evaluated.

The remainder of this paper is structured as follows, viz. Section 2 describes the material and
methods, in particular the developed platform for data collection, data exploration, the implemented
data augmentation techniques as well as the conceived ML architectures, the experimental setup and
the conducted experiments. Section 3 summarises the obtained results, providing a concise description
of the experimental results and their interpretation. Section 4 presents and discusses the results and
their interpretation in the perspective of previous studies and of the working hypothesis, depicting the
main conclusions and pointing future research directions.

2. Materials and Methods

Due to the non-availability of data and the particularities of the proposed ASAP method, we were
required to develop a web platform for data collection, requesting subjects to rate adjectives and select
those describing them the most. This allowed us to build a dataset containing self-reported ratings on
Saucier’s Mini-Marker test, the corresponding values of the Big Five as well as the adjectives selected
by the subjects. The next lines describe in detail the developed platform, exploring and explaining the
collected dataset and the implemented data augmentation techniques. It also details the conceived ML
architectures and the experimental setup.

2.1. Dataset

The dataset used in this study is available, in its raw state, in an online repository (https://github.
com/brunofmf/Datasets4SocialGood), under a MIT license.
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2.1.1. Data Collection

To bring this study to a fruitful conclusion, we were required to collect a dataset from where
we could derive conclusions. Hence, a platform was conceived and made available online (http:
//crowdsensing.di.uminho.pt/). The platform displays all 40 adjectives used by Saucier’s Mini-Marker
test, asking the subject to rate each one. It also allows the subject to select a set of adjectives that
describe him the most. Figure 1 depicts the main page of the conceived platform. The subject can then
get the test results and obtain the value of each personality trait.

The platform provides a rationale to explain the subject how he/she is contributing to the study.
No personal data are stored neither it is possible to link subjects to their answers - only information
about age, genre and language are stored, and only if the user explicitly provides it. The platform is
available online and any person can access and use it. It was published online on 21 September 2018.
The platform was shared among a diversified population, using social media and university’s mailing
lists. Data was also collected in person, which allowed us to increment the dataset size with records
containing both the ratings and the selected list of adjectives.

Figure 1. Platform for data collection allowing the subject to perform Saucier’s Mini-Marker test and,
at the same time, select a set of adjectives that describe him the most.

To facilitate the data collection process, the developed platform allows subjects to perform Saucier’s
Mini-Markers in three distinct languages. All translations were performed by three Portuguese and
Spanish native speakers fluent in English, all university professors. It should also be highlighted that
this study does not aim to examine the psychometric properties of the Portuguese or Spanish versions
neither to provide sound validity evidence for the performed translations (even though Tau-Equivalent
estimates of score reliability are later examined). The assumption is that ML models are able to quantify
or qualify the traits without requiring any contextual information about region, genre, language or age
of the subjects.

2.1.2. Data Exploration

The collected dataset contains 255 observations. Each observation is made of 50 features, viz, age,
genre, language, 40 adjectives, 5 personality traits, the selected adjectives and the creation date. The features
age, adjectives and personality traits are integers. The genre is a binary attribute and language is either
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es, en or pt. On the other hand, the selected adjectives feature consists of a string where the selected
adjectives are comma separated. Table 1 presents all available features in the collected dataset.

Table 1. Features available in the collected dataset.

# Feature # Feature # Feature

1 age 18 philosophical 35 cold
2 genre 19 bashful 36 disorganized
3 language 20 warm 37 temperamental
4 talkative 21 inefficient 38 complex
5 sympathetic 22 touchy 39 extraverted
6 orderly 23 creative 40 rude
7 envious 24 energetic 41 efficient
8 deep 25 cooperative 42 fretful
9 withdrawn 26 practical 43 imaginative
10 harsh 27 jealous 44 extraversion_trait
11 careless 28 intellectual 45 agreeableness_trait
12 relaxed 29 quiet 46 conscientiousness_trait
13 average 30 distant 47 stability_trait
14 bold 31 sloppy 48 openess_trait
15 kind 32 mellow 49 selected_attr
16 systematic 33 ordinary 50 creation_date
17 moody 34 shy

In the final dataset, 159 observations have the selected_attr feature filled with the selected adjectives.
On the other hand, 96 observations only have the adjectives’ ratings. A few observations have adjectives
rated with the value 0. 200 observations belong to male subjects, while 55 belong to female ones.
Only two languages were used: 220 observations were done in Portuguese while 35 were done in
English. More than 90% of the observations were collected in 2019. The mean age value is of 30.1 years.

Adjectives with lower mean value are essentially related to negative ones such as rude, with 3.13,
inefficient, with 3.26, and ordinary, with 3.28. The adjectives that have higher mean value are kind, with
6.004, imaginative, with 6, and cooperative, with 5.73. Mean standard deviation of the 40 adjectives
is 2.5, with the lower value being 0 and the maximum 9. Mean skewness is of 0.03, representing
a symmetrical distribution. Mean kurtosis is of −0.98, representing a somewhat “light-tailed” dataset
in regard to the 40 adjectives. In regard to the Big Five (Table 2), the one having lower mean value is
Extraversion, with Agreeableness being the one with higher mean value. Mean standard deviation of all
traits is of approximately 10 units of measure. The coefficient alpha for the forty items is of 0.82 [27].
For each individual trait, the Tau-Equivalent estimates of score reliability are lower, specially for the
Stability factor. Except for the selected_attr feature, no missing values are present in the dataset.

With all features assuming a non-Gaussian distribution (under the Kolmogorov-Smirnov test
with p < 0.05), the non-parametric Spearman’s rank correlation coefficient was used. A few pairs of
correlated features, in the form (trait, adjective), appear in the dataset. This is in line with expectations
since the Big Five are mathematically based on the adjectives. Higher correlations appear for the pairs
(Agreeableness, Warm), (Conscientiousness, Efficient), (Openess, Complex) and (Extraversion, Extraverted).

The selected_attr feature consists of a string where adjectives are separated by commas. An example
of a valid value would be "Talkative, Sympathetic, Kind, Energetic, Jealous, Intellectual, Extraverted, Efficient,
Fretful". From all 159 observations that have the selected_attr feature filled, 157 are unique values
meaning that only three subjects chose the same adjectives. Interestingly, all adjectives were selected
at least once. In fact, the least selected adjectives were ordinary, which was selected 14 times, touchy,
18 times, rude, 19 times, cold and fretful, 23 times. These are, essentially, adjectives with negative
connotation. On the opposite spectrum, kind was selected 67 times, imaginative, 59 times, sympathetic,
58 times, creative, 57 times, and withdrawn, 56 times (Figure 2). Excluding those who opt not to select
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adjectives, 10 subjects only chose one adjective to describe themselves, while 14 subjects selected
fifteen, or more, adjectives. The mean value is of approximately ten selected adjectives per subject.

Table 2. Descriptive statistics for the Big Five.

Openness Conscientiousness Extraversion Agreeableness Stability

Nº of Items 8 8 8 8 8
Mean 44.976 46.476 39.428 47.148 46.140
Median 46 47 40 48 46
Standard Deviation 10.315 10.547 10.017 10.056 8.860
Skewness −0.212 −0.207 −0.135 −0.216 −0.047
Kurtosis −0.260 −0.492 −0.344 −0.328 −0.484
Coefficient alpha 0.62 0.61 0.56 0.58 0.42

Figure 2. Number of times each adjective was selected.

Approximately 38% of the total number of observations do not have adjectives selected.
To overcome this issue, it becomes important to understand the relation between selecting an adjective
and its respective rating. For instance, considering all subjects that selected the adjective efficient,
the mean rating of that same adjective is of 5.794. On the other hand, the mean rating of the sloopy
adjective considering all subjects that selected that adjective is of 8. This tells us that sloopy tends to
be selected when receiving higher ratings. On the other hand, efficient is selected even with average
ratings. The overall mean, 7.448, tells us that, as expected, adjectives tend to be selected when receiving
high values. Figure 3 depicts the mean rating values to set an adjective as selected.

To discover relations between the selected adjectives, a ML and a pattern mining method, entitled
as Association Rules Learning (ARL), was applied. ARL does not consider the order of the items,
neither extract individual’s preference, but, instead, looks for frequent itemsets. The goal is to find
associations and correlations between adjectives that were selected to describe subjects. In particular,
the APRIORI algorithm was used to analyse the list of selected adjectives, and provide rules in the form
Antecedent -> Consequent, where -> may be read as "implies". To find these rules, three distinct metrics
were used: Support, which gives an idea of how frequent an itemset is in all existing transactions,
helping identifying rules worth considering; Confidence, an indication of how often a rule has been
found to be true; and Lift, which measures how much better the rule is at predicting the presence of
an adjective compared to just relying on the raw probability of the adjective in the dataset. The returned
rules go both ways, i.e., if A implies B then the reverse is also true. Table 3 presents all rules with
a support value higher than 0.15. In fact, the support value was tuned in order to find a representative
set of rules. Such a lower support value tells us that rules tend to be less frequent than expected.
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On the other hand, the obtained confidence values strength the possibility of both the antecedent and
the consequent being found together for a subject. Lift values higher than 1 tells us that the adjectives
are positively correlated.

Figure 3. Mean rating values to set an adjective as selected.

Table 3. Rules with support higher than 0.15 using Association Rules Learning and the APRIORI
algorithm.

Support Confidence Lift Antecedent Consequent

0.195 0.525 1.466 Creative –> Imaginative
0.189 0.508 1.207 Kind –> Imaginative
0.176 0.418 1.146 Sympathetic –> Kind
0.170 0.551 1.511 Sympathetic –> Relaxed
0.170 0.491 1.394 Withdrawn –> Intellectual
0.170 0.491 1.165 Kind –> Intellectual
0.170 0.540 1.281 Kind –> Shy
0.164 0.464 1.273 Sympathetic –> Withdrawn
0.164 0.634 1.505 Kind –> Jealous
0.157 0.521 1.428 Sympathetic –> Systematic
0.157 0.500 1.371 Sympathetic –> Bashful
0.157 0.500 1.187 Kind –> Bashful
0.151 0.510 1.400 Sympathetic –> Bold
0.151 0.358 1.017 Withdrawn –> Kind
0.151 0.585 1.389 Kind –> Energetic

2.1.3. Data Pre-Processing

First, a random seed, as 91,190,530, was defined for replicability purposes. Then, five observations
that had abnormal values were removed. In particular, one observation had abnormally high values,
while other four were filled with the same exact dummy value for all adjectives. None of these
observations add the selected_attr feature filled. The final dataset is made of 250 observations, with the
next lines describing the entire treatment and all applied methods, including synthetic data creation.

Handling Zero-Ratings.

The lowest accepted value by Saucier’s test is one, however zeros are present in the dataset.
To correct this situation and to make all observations mathematically valid, such values were updated
to the nearest valid value, with traits’ values being re-calculated based on such changes.
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One-hot Encoding the Selected_attr Feature.

The selected_attr feature consists of a string with comma-separated adjectives. Such data was
one-hot encoded using a Multi-Label Binarizer, allowing these data to become easier to handle by ML
models. Forty new features were created, being entitled as {adjective}_selected, with {adjective} being
a placeholder for the corresponding adjective name. A value of 0 means that the adjective was not
selected, with a value of 1 meaning selection.

Filling the Selected_attr Feature When Empty.

Approximately 38% of all observations do not have adjectives selected, i.e., the selected_attr feature
is empty because the subject did not choose any adjective. However, to be able to propose the ASAP
method, we are required to have as much observations as possible with the selected_attr feature filled.
Hence, a method was conceived to synthetically mark adjectives as selected based on adjectives’ ratings
and frequent patterns of selected adjectives.

The first step consists in iterating through the observations without selected adjectives. Then,
for each observation, iterate through each adjective. If the adjective’s rating is higher than the mean
selection rating of that same adjective (as depicted in Figure 3), then the adjective is a candidate to
be selected. Being a candidate means that the adjective may, or may not, be selected. To reduce bias,
this decision is randomised, with the adjective having a three-quarters chance of being selected. If the
adjective is to be selected, then the corresponding {adjective}_selected one-hot feature is selected (marked
with 1). The next step is to see if the selected adjective is part of any rule (as depicted in Table 3). If it is,
then the consequent will have half a chance of being selected as well. The upper limit is of fourteen
selected adjectives per observation, with the lower limit being one selected adjective. To respect this
last condition, for each observation, it is stored a list of all adjectives that are above the selection
threshold. If no adjective was previously selected, than a random adjective from the referred list is
selected. Algorithm 1 describes, using pseudo-code, the implemented method.

The method described in Algorithm 1 enabled all observations to have adjectives selected.
Considering only the affected observations, the mean value is of 7.8 selected adjectives per observation,
with a minimum of 1 and a maximum of 14 selected adjectives. Several randomized decisions are
made based on a probabilistic approach in order to reduce any possible bias.

Data Augmentation.

Since the small size of the dataset may pose a problem to ML models, we aimed to investigate how
models would behave on non-data scarce environments. Hence, Data Augmentation (DA) techniques
were conceived to increase the dataset’s size. It is worth highlighting that there is no standardised DA
process that can be applied to every domain. Instead, DA refers to a process that is highly dependent
of the domain where it is to be implemented. The goal is to increase the dataset size while maintaining
relations and data specificities, using randomness to reduce bias.

With the use of DA techniques, a second dataset was conceived. Hence, two distinct input datasets
will be fed to the candidate ML models. On the one hand, models are to be trained and evaluated with
the original dataset, without any DA (No DA). On the other, candidate models will also be trained
and evaluated using an augmented dataset (With DA). In the augmented dataset, new observations
were generated from every single observation. The number of new observations that can be generated
from one observation varies according to a random variable that outputs, with the same probability,
a number between 15 and 25. For every new observation, another random variable will decide how
many and which adjectives to vary from the original observation. A minimum of 5 and a maximum of
20 adjectives must vary. Each of these adjectives can stay the same or go up/down one or two units,
always respecting the test limits of 1 and 9. Then, the Big Five are calculated for the new observations.
Finally, the last step consists in selecting and deselecting adjectives. In particular, in finding out if the
adjective that varied is a candidate to be selected or deselected, similarly to what was done to fill the
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selected_attr feature when empty. If the adjective that had its value updated is a candidate to be selected
and if it was indeed chosen to be selected (three-quarters chance), then if it is an antecedent of any rule,
the consequent would also have half a chance of being selected too. Finally, a final random variable,
varying from 5 to 14, defines how many selected adjectives the new observation can hold. If such limit
is exceeded, then, randomly, selected adjectives are deselected until the upper limit is respected.

Algorithm 1: Filling the selected_attr feature.
Input: dataset, limit = 14
adj_thresholds = getAdjectivesThresholds(dataset)
foreach row ∈ dataset do

if row.selected_attr == ’na’ then
initialise enabled_adjectives = 0
initialise obs_without_selection = {}
foreach adjective ∈ row.adjectives do

if adjective.value >= adj_thresholds[adjective] then

if enabled_adjectives < limit then

if random.choice(4) < 3 then
enabled_adjectives += 1
dataset[row][{adjective}_selected] = 1
list_of_consequents = getConsequents(adjective)
foreach consequent_adjective ∈ list_of_consequents do

if random.choice(2) < 1 then
enabled_adjectives += 1
dataset[row][{consequent_adjective}_selected] = 1
if enabled_adjectives == limit then

break
end

end

end

else
obs_without_selection[adjective] = adjective.value

end

end

end

end

if enabled_adjectives == 0 then
random_adjective = random.choice(obs_without_selection.keys())
dataset[row][{random_adjective}_selected] = 1

end

end

end

Data augmentation processes may add an intrinsic bias to ML models. Hence, to reduce bias to
its minimum, several randomized decisions were made based on a probabilistic approach in order to
create a more generalized version of the dataset.

Binning.

In Saucier’s original study [13], trait scores were divided into three bins. Trait scores between
[8, 29] were considered to be low, between [30, 50] were considered to be average, and between [51, 72]
were considered to be high. This assumes an increased importance since one of the conceived ML
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architectures, as explained later, uses classification models, where labels (the personality traits) are
required to be binned. Hence, considering the original split and the need to create trait bins, labels were
binned using the three bins defined originally. As depicted in Figure 4, after binning the dataset using
the original intervals, bins get imbalanced, with all five traits having a higher number of observations
falling within the range [30, 50]. In fact, for all traits, around 60% of observations fall within the average
bin. Regarding the other two bins, high contains significantly more observations than low for all traits
except for the Extroversion trait, which contains approximately the same amount of observations in the
high and low bins. This distribution of observations must be taken into consideration when conceiving
and training the ML models. In fact, this distribution will lead to the use of error metrics that take into
account the presence of imbalanced bins.

Figure 4. Distribution of observations per bin and personality trait.

Final Considerations.

Two datasets were created. Age, language and genre features were removed from both datasets as
well as the rating of the 40 adjectives since those will not be used by the models. Dataset with No DA
consists of 250 observations, while the dataset With DA consists of 5230 observations. Both datasets
contain 50 features that correspond to the 40 one-hot encoded adjectives, the 5 personality traits’ scores
and the 5 binned personality traits.

2.2. Modelling

Based on the collected dataset, its characteristics and the essence of the ASAP method, two different
ML architectures were conceived and evaluated. The first architecture consists of five supervised trait
regressors while the second one consists of five supervised trait classifiers. The goal is to obtain the Big
Five scores based on the selection of adjectives.

Both architectures use gradient boosting, in particular Gradient Boosted Trees to tackle this
supervised learning problem. The "gradient boosting" term was first used by J. Friedman [28], being
used as a ML technique to convert weak learners, typically Decision Trees, into strong ones, allowing
the optimisation of a differentiable loss function, with the gradient representing the slope of the tangent
to the loss function. Gradient boosting trains weak learners in a gradual, additive and sequential
manner. A gradient descent procedure is performed so that trees are added to the gradient boosting
model in order to reduce the model’s loss. Being this a greedy algorithm, it can overfit. Hence,
to control overfitting, it is common to use regularisation parameters, limit the number of trees of the
model, and tree’s depth and size. Another benefit of using Gradient Boosted Trees is the ability to
compute estimates of feature importance.
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2.2.1. Architecture I—Big Five Regressors

The first proposed architecture uses a total of five different Gradient Boosted Trees regression
models to obtain the score of the Big Five, with each model mapping a specific trait (Figure 5). As input,
each model receives the one-hot encoded adjectives’ selection (whether the adjective was selected or
not). The main characteristics of this architecture may be summarised as follows:

• Input: the one-hot encoded adjectives selection;
• Output: the score of each personality trait;
• Evaluation: two independent trials using nested cross-validation with Mean Squared Error (MSE)

as objective function and Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as
evaluation metrics;

• Models: personality traits are computed independently of others, i.e., five independent regression
models are trained, one for each trait.

Figure 5. Architecture I—Big Five regressors.

2.2.2. Architecture Ii—Big Five Bin Classifiers

The second proposed architecture uses a total of five different Gradient Boosted Trees classification
models to obtain the binned score of the Big Five, with each model mapping a specific trait (Figure 6).
As input, each model receives the one-hot encoded adjectives’ selection (whether the adjective was
selected or not). The main characteristics of this architecture may be summarised as follows:

• Input: the one-hot encoded adjectives selection;
• Output: the bin (low/average/high) of each personality trait;
• Evaluation: two independent trials using nested cross-validation for multi-output multi-class

classification with softmax as objective function and accuracy, f1-score and mean error as metrics;
• Models: personality traits are computed independently of others, i.e., five independent

classification models are trained, one for each trait.
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Figure 6. Architecture II—Big Five bin classifiers.

2.2.3. Models’ Evaluation

All conceived models follow a Supervised Learning approach, i.e., models are trained on a sub-set
of data and are then evaluated on a distinct sub-set. In fact, we went further and implemented
nested cross-validation to estimate the skill of the candidate models on unseen data as well as for
hyperparameter tuning. Hyperparameter selection is performed in the inner loop, while the outer
one computes an unbiased estimate of the candidate’s accuracy. Nested cross-validation assumes an
increased importance since, otherwise, the same data would be used to tune the hyperparameters and
to evaluate the model’s accuracy [29]. Inner cross-validation was performed with k = 4 and outer
cross-validation used k = 3. Two independent trials were performed. All candidate models were
evaluated and validated against the original results from Saucier’s test for each sample.

To evaluate the effectiveness of Architecture I, two error metrics were used. Both take as input the
model’s predicted value (ŷ) and the actual value from Saucier’s test (y), computing a metric of how far
the model is from the real known value. The first one, RMSE, allows us to penalise outliers and easily
interpret the obtained results since they are in the same unit of the feature that is being predicted by
the model (Equation (1)). The second error metric, MAE, was used to complement and strengthen the
confidence on the obtained values (Equation (2)).

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(1)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

Since Architecture II consists of several classification models, confusing matrix-based metrics
were used to evaluate the classifier’s output quality, in particular the f1-score (Equation (3)), where
the relative contribution of precision and recall are equal, and the Mean Error (Equation (4)), which
penalises wrongly classified observations. Being this a multi-class problem and considering that bins
are imbalanced, both micro and macro-averaged f1-scores are used. Macro-average computes the
error metric independently for each class and averages the errors, treating all classes equally. On the
other hand, micro-average aggregates all classes’ contributions to compute the final error metric. If the
goal is to maximise the models’ hits and minimize its misses, micro-average should be used since it
aggregates the results of all classes before computing the final error metric. On the other hand, if the
minority classes are more important, a macro-averaged approach would be useful since it is insensitive
to the imbalance of the classes by computing the error metric independently for each class and then
averaging all errors from all classes.

F1 score = 2 × precision × recall
precision + recall

(3)
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ME =
Wrongly Classified Observations

Total Number of Observations
(4)

2.3. Experiments

The conceived architectures focus on quantifying the Big Five of a subject based on a selection of
adjectives that describe him/her the most. For both architectures, experiments were conducted under
the same settings and conditions. The same random seed was used.

2.3.1. Experimental Setup

Python, version 3.7, was the used programming language for data exploration and pre-processing
as well as for model development and evaluation. Pandas, NumPy, scikit-learn, XGBoost, matplotlib and
seaborn were the used libraries. The Knime platform was also used for data exploration. All hardware
was made available by Google’s Colaboratory, a free python environment that requires minimal setup
and runs entirely in the cloud.

XGBoost was the library used to conceive the Gradient Boosted Trees. It is a distributed gradient
boosting library that is efficient and flexible. Contrary to other boosted trees based libraries, XGBoost
implements regularisation and parallel processing, having already been used in several studies [30–32].
Algorithm 2 describes, using pseudo-code, the method used to conceive the boosted regressors and
classifiers, depending on the inputted architecture.

Algorithm 2: Building the Gradient Boosted models.
Input: architecture
if architecture == 1 then

estimator = XGBRegressor(booster = ’gbtree’, objective = ’reg:squarederror’)
multi_estimator = MultiOutputRegressor(estimator)

else
estimator = XGBRegressor(booster = ’gbtree’, objective = ’multi:softmax’, num_class = 3)
multi_estimator = MultiOutputClassifier(estimator)

end

return multi_estimator

2.3.2. Hyperparameter Search Space

Models were tuned in regard to a set of hyperparameters using Random Search limited to 175
combinations (out of 486). Architecture I uses MSE as objective function while Architecture II uses
softmax. Table 4 describes the searching space for each hyperparameter.

Table 4. Models hyperparameters’ searching space.

Parameter Searched Values Rationale

a. Number of Estimators [300, 400, 500] Number of trees in a model

b. Eta [0.01, 0.05, 0.1] Learning rate

c. Gamma [0.02, 0.04, 0.08] Minimum loss reduction required to make a further
partition on a leaf node

d. Trees’ Max Depth [4, 12, 18] Maximum depth of a tree

e. Minimum Child Weight [4, 6, 8] Minimum sum of instance weight needed in
a child (higher values for more conservative models)

f. Colsample by tree [0.2, 0.3] Fraction of columns to be sub-sampled (controlling
correlation between trees)

74



Processes 2020, 8, 618

3. Results

Two distinct ML architectures were experimented. One uses Gradient Boosted Trees regressors to
obtain the exact value of each personality trait (Architecture I) while the other uses Gradient Boosted
Trees classifiers to obtain the bin of each personality trait (Architecture II). Different experiments
were conducted with two distinct datasets. One with 250 observations (No DA) and another with
5230 observations (With DA). Both architectures receive, as input, the one-hot encoded selection of
adjectives.

Nested cross-validation was performed to tune the hyperparameters and to have a stronger
validation of the obtained results. Inner cross-validation was performed using k = 4, with random
search being used to find the best set of hyperparameters. In the inner loop, 700 fits were performed
(4 folds × 175 combinations). The outer cross-validation loop used k = 3, totalling 2100 fits (3 folds ×
700 fits). Two independent training trials were performed, with a grand total of 4200 fits (2 trials ×
2100 fits) per architecture per dataset.

3.1. Architecture I—Big Five Regressors

All candidate models were evaluated in regard to RMSE and MAE error metrics. Table 5 depicts
the best hyperparameter configuration for Architecture I, for both datasets. What immediately stands
out is the better performance of the candidate models when using the larger dataset. In fact, RMSE
decreases about 30% when using the dataset With DA. This was already expected since the dataset
with No DA was made of only 250 observations.

Overall, for Architecture I with No DA the error is of approximately 8 units of measure. Since
RMSE outputs an error in the same unit of the features that are being predicted by the model, it means
that this Architecture is able to obtain the value of each personality trait with an error of 8 units. On the
other hand, for Architecture I With DA, RMSE is of approximately 5.6 units of measure. It is also
possible to discern that RMSE tends to be more stable when using the With DA dataset when compared
to the No DA dataset which shows higher error variance. In Table 5, the Evaluation column presents
the error value of the best candidate model in the outer test fold. These values provide a second and
stronger validation of the ability to classify of the best model per split.

Table 5. Architecture I results with and without data augmentation, for each independent trial,
with RMSE as metric. Hyperparameters described by letters as follows: a. number of estimators, b. eta,
c. gamma, d. trees’ max depth, e. minimum child weight and f. colsample by tree.

Trial CV Split Best Score Evaluation Fit Time (min) a. b. c. d. e. f.

No Data Augmentation

1 1 7.813 8.078 3.8 300 0.05 0.04 4 6 0.2
1 2 8.015 7.560 3.8 300 0.05 0.02 4 4 0.2
1 3 8.203 7.512 3.7 300 0.01 0.04 4 4 0.2
2 1 8.024 7.594 3.7 300 0.10 0.08 4 8 0.2
2 2 8.184 7.161 3.7 300 0.05 0.02 4 8 0.2
2 3 7.847 7.961 3.7 300 0.05 0.04 4 8 0.2

With Data Augmentation

1 1 5.692 5.464 64.8 300 0.10 0.02 12 4 0.3
1 2 5.604 5.602 65.9 300 0.01 0.02 18 4 0.3
1 3 5.646 5.520 69.6 300 0.01 0.02 18 4 0.3
2 1 5.637 5.537 68.4 300 0.01 0.02 12 4 0.3
2 2 5.632 5.482 65.7 300 0.01 0.04 18 6 0.3
2 3 5.673 5.467 67.4 300 0.01 0.08 12 4 0.3

The hyperparameter tuning process is significantly faster for Architecture I with No DA, taking
around 3.7 min to perform 700 fits and around 22 min to perform the full run. On the other hand,

75



Processes 2020, 8, 618

Architecture I With DA takes more than 1 hour to perform the same amount of fits, requiring more
than 6.5 hours to complete. Overall, the models that behaved the best used 300 gradient boosted trees.
Interestingly, when using the dataset with No DA, all models required 20% of the entire feature set
when constructing each tree (colsample by tree) and used a maximum depth of 4 levels, building
shallower trees which helps controlling overfitting in the smaller dataset. On the other hand, when
using the dataset With DA, the best models not only required 30% of the feature set but also required
deeper trees, which indicate the need for more complex trees to find relations in the larger dataset.
To strengthen this assertion, the learning rate is also smaller in Architecture I With DA allowing models
to move slower through the gradient.

Focusing the results obtained from testing in the test fold of the outer-split, Architecture I With
DA presents a global RMSE of 5.512 and MAE of 3.979. On the other hand, Architecture I with
No DA presents higher error values, with a global RMSE and MAE of 7.644 and 6.082, respectively.
The fact that RMSE and MAE have relatively close values implies that not many outliers, or distant
classifications, were provided by the models. It is also interesting to note that, independently of the
dataset, Openness is the most difficult trait to classify. All these data is given by Table 6, where the MSE
is also displayed, being used to compute the RMSE.

Table 6. Evaluation results of Architecture I, with and without data augmentation, obtained from the
test folds of the outer-split.

Metric Global Extraversion Agreeableness Conscient. Stability Openness

No Data Augmentation

MAE 6.082 5.495 5.942 5.616 6.205 7.153
MSE 58.527 45.973 55.984 49.230 58.933 82.514
RMSE 7.644 6.778 7.468 7.000 7.668 9.061

With Data Augmentation

MAE 3.979 3.937 4.071 3.832 3.798 4.259
MSE 30.385 29.529 31.630 28.813 27.069 34.884
RMSE 5.512 5.433 5.623 5.367 5.201 5.906

Figure 7 provides a graphical view of RMSE and MAE for Architecture I for both datasets, being
possible to discern that both metrics present a lower error value when conceiving models over the
augmented dataset.

Figure 7. Graphical view of Architecture’s I RMSE and MAE for both datasets.

76



Processes 2020, 8, 618

3.2. Architecture Ii—Big Five Bin Classifiers

Architecture II candidate models, which classify personality traits in three bins (low, average and
high), were evaluated using several classification metrics. Table 7 depicts the best hyperparameter
configuration for Architecture II, for the two datasets, using accuracy as metric. Again, models
conceived over the dataset With DA outperform those conceived over the dataset with No DA, more
than doubling the accuracy value. In addition, their evaluation values also tend to be more stable and
less prone to variations. However, one may argue that the accuracy values attained by the candidate
models and presented in Table 7 are low. Hence, it is of the utmost importance to assert that such
accuracy values correspond to samples that had all five traits correctly classified. I.e., if one trait of
a sample was wrongly classified, than that sample would be considered as badly-classified even if the
remaining four traits were correctly classified. To provide a stronger validation metric, Table 8 provides
metrics based on traits’ accuracy instead of samples’ accuracy, presenting significantly higher values.

Table 7. Architecture II results with and without data augmentation, for each independent trial,
with sample accuracy as metric. Hyperparameters described by letters as follows: a. number of
estimators, b. eta, c. gamma, d. trees’ max depth, e. minimum child weight and f. colsample by tree.

Trial CV Split Best Score Evaluation Fit Time (min) a. b. c. d. e. f.

No Data Augmentation

1 1 0.144 0.131 8.4 500 0.05 0.02 4 6 0.3
1 2 0.180 0.181 8.6 400 0.01 0.08 4 4 0.2
1 3 0.138 0.108 8.4 300 0.01 0.04 12 8 0.3
2 1 0.175 0.143 8.5 300 0.05 0.04 4 4 0.2
2 2 0.138 0.181 8.4 500 0.10 0.02 18 4 0.3
2 3 0.155 0.133 8.4 400 0.05 0.08 18 8 0.3

With Data Augmentation

1 1 0.458 0.486 128.6 300 0.10 0.02 12 4 0.3
1 2 0.464 0.466 130.1 300 0.01 0.08 12 4 0.3
1 3 0.453 0.468 133.6 400 0.10 0.08 12 4 0.2
2 1 0.465 0.490 129.4 300 0.10 0.02 18 4 0.3
2 2 0.466 0.466 123.6 300 0.01 0.04 12 4 0.3
2 3 0.448 0.480 125.3 500 0.10 0.08 18 4 0.2

Still regarding Table 7, it becomes clear that the tuning process is significantly faster for Architecture
II with No DA, taking around 50 min to complete the process. On the other hand, when using the larger
dataset, the process takes more than 12 hours to complete. Overall, models tend to use 300 gradient
boosted trees and require 30% of the entire feature set per tree. The best classifiers also require deeper
trees, with 12 or 18 levels. It is also worth mentioning that all the best models conceived over the
dataset With DA required a minimum child weight of 4. This hyperparameter defines the minimum sum
of weights of all observations required in a child node, being used to control overfitting and prevent
under-fitting, which may happen if high values are used when setting this hyperparameter.

As stated previously, all metrics provided in Table 8 are based on traits’ accuracy. Using class
accuracy instead of sample accuracy, the mean error of Architecture II candidate models using the
dataset With DA is of 0.165, which corresponds to an accuracy higher than 83%. On the other hand,
the mean error with No DA increases to 0.338. Overall, all models show better results when using the
dataset With DA.

In this study, both micro and macro-averaged metrics were evaluated. However, since we are
interested in maximising the number of correct predictions each classifier makes, special importance
is given to micro-averaging. In fact, micro f1-score of the classifiers conceived over the dataset With
DA display an interesting overall value of 0.835, with the Openness trait being, again, the one showing
the lower value. It is worth mentioning that micro-averaging in a multi-class setting with all labels
included, produces the same exact value for the f1-score, precision and recall metrics, being this the
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reason why Table 8 only displays micro f1-score. On the other hand, macro-averaging computes each
error metric independently for each class and then averages the metrics, treating all classes equally.
Hence, since models depict a lower macro f1-score when compared to the micro one, this could mean
that there may be some classes that are less used when classifying, such as low or high. Nonetheless,
macro f1-score still present a very interesting global value of 0.776. Macro-averaged precision also
depicts a high value, strengthening the ability of models to correctly classify true positives and avoid
false positives. Finally, models’ global macro-averaged recall is of 0.742, still a significant value that
tells us that the best candidate models are able, in some extent, to avoid false negatives.

Table 8. Evaluation results of Architecture II, with and without data augmentation, based on trait’s
accuracy and obtained from the test folds of the outer-split.

Metric Global Extraversion Agreeableness Conscient. Stability Openness

No Data Augmentation

Mean Error 0.338 - - - - -
Micro F1-Score 0.663 0.728 0.660 0.620 0.648 0.656
Macro F1-Score 0.459 0.532 0.462 0.419 0.443 0.438
Macro Precision 0.477 0.590 0.468 0.413 0.445 0.468
Macro Recall 0.464 0.525 0.469 0.434 0.447 0.447

With Data Augmentation

Mean Error 0.165 - - - - -
Micro F1-Score 0.835 0.846 0.834 0.831 0.843 0.822
Macro F1-Score 0.776 0.770 0.795 0.801 0.731 0.782
Macro Precision 0.830 0.826 0.854 0.840 0.809 0.819
Macro Recall 0.742 0.731 0.758 0.774 0.691 0.755

Figure 8 provides a graphical view of micro and macro-averaged f1-score and precision for
Architecture II for both datasets, being again possible to recognise a better performance when using
the dataset With DA.

Figure 8. Graphical view of Architecture’s II micro and macro-averaged f1-score and precision for both
datasets.

3.3. Feature Importance

Gradient Boosted Trees allow the possibility of estimating feature importance, i.e., a score that
measures how useful each feature was when building the boosted trees. This importance was estimated
using gain as importance type, which corresponds to the improvement in accuracy brought by a feature
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to the branches it is on. A higher value for a feature when compared to another, implies it is more
important for classifying the label.

Figure 9 presents the estimated feature importance of Architecture I using an heat-map view.
Interestingly, models conceived using the dataset with No DA (Figure 9a) give an higher importance to
the selection of the adjective inefficient when classifying the Conscientiousness trait. Sloppy, disorganized
and careless are other adjectives that assume special relevance when classifying the same personality
trait. Regarding the Extraversion trait, talkative, quiet and withdrawn are the most important adjectives,
being only then followed by the extroverted and energetic ones. The Agreeableness trait gives higher
importance to distant, harsh, cold and rude. On the other hand, feature importance is more uniform in
the Stability and Openness personality traits, with the most important adjectives assuming a relative
importance of about 7%. Another interesting fact that arises from these results, is that some adjectives
have lower importance for all five traits. Examples include bashful, bold, intellectual and jealous.

As for the models conceived using the dataset With DA (Figure 9b), results are similar to the
smaller dataset. In these models there are less important features, but the ones considered as important
have a stronger importance. An example is the case of the adjective talkative for the Extraversion
trait, which increases its importance from 16% to 22%, and quiet, which increases from 11% to 17%.
Withdrawn and quiet have a reduced importance. Interestingly, for the Agreeableness trait, the adjective
kind becomes the most important one, increasing from 3.2% to 15%. The Openness trait still assumes
a more uniform importance for all features, being this one of the reasons why it was the trait showing
worst performance using Architecture I models.

(a) Using dataset with No DA. (b) Using dataset With DA.
Figure 9. Feature importance heat-map of Architecture I.

Regarding Architecture II, Figure 10 presents the estimated feature importance for both datasets.
What immediately draws one attention is the fact that importance values are much more balanced
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when compared to Architecture I. Indeed, the highest importance value is of 9.1% with No DA and 13%
With DA when compared to 20% and 22% of Architecture I, respectively. Nonetheless, except for a few
exceptions, adjectives assuming higher importance in Architecture I also assume higher importance in
Architecture II. The main difference is that values are closer together, having a lower amplitude.

(a) Using dataset with No DA. (b) Using dataset With DA.
Figure 10. Feature importance heat-map of Architecture II.

4. Discussion and Conclusions

The proposed ASAP method aims to use ML-based models to reinstate the process of rating
adjectives or answering questions by an adjective selection process. To achieve this goal, two different
ML architectures were proposed, experimented and evaluated. The first architecture uses Gradient
Boosted Trees regressors to quantify the Big Five personality traits. Overall, this architecture is able to
quantify such traits with an error of approximately 5.5 units of measure, providing an accurate output
given the limited amount of available records. On the other hand, Architecture II uses Gradient
Boosted Trees classifiers to qualify the bin in which the subject stands, for each trait. Bins are based on
Saucier’s original study where trait scores between [8, 29] are considered Low, between [30, 50] are
considered Average, and between [51, 72] are considered High. This architecture was able to quantify
the personality traits with a micro-averaged f1-score of more than 83%. A better performance of both
architectures in the augmented dataset was also expected since the original dataset had a limited
amount of records. The implemented data augmentation techniques aimed to increase the dataset
size following well-defined rationales but also included several randomised decisions based on
a probabilistic approach in order to reduce bias and create a more generalised version of the dataset.
For this, data exploration and pattern mining, in the form of Association Rules Learning, assumed
an increased importance, allowing us to understand relations between selected adjectives. Results
for records with very few adjectives selected may be biased to the dataset used to train the models
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since the ability to quantify traits based on the selection of just one or two adjectives is of an extreme
difficulty. Hence, for the ASAP method to behave properly, subjects should be encouraged to select
four, or more, adjectives.

A further validation was carried out by means of a significance analysis between the correlation
differences of predicted and actual scores. The best overall candidate model of Architecture I was
trained using, as input data, 90% of the original dataset, with the remaining being used to obtain
predictions. Predictions were compared with the actual scores of the five traits. As expected, the p-value
returned an high value (0.968), with a z-score of 0.039. Such values tell, with a high degree of confidence,
that the null hypothesis should be retained and that both correlation coefficients are not significantly
different from each other. This is in line with expectations since the conceived models are optimizing
a differentiable loss function, using a gradient descent procedure that reduces the model’s loss to
increase the correlation between predictions and actual scores.

Architecture II took significantly more time to fit than Architecture I. However, it provides more
accurate results, which are less prone to error. It should be noted that Architecture II only provides
an approximation to the Big Five of the subject, i.e., it does not numerically quantify each trait, instead
it tells in which bin the subject finds himself. This can be useful in cases where the general qualification
of each trait is more important than the specific score of the trait. On the other hand, Architecture
I will provide an exact score for each personality trait based on a selection of adjectives. Indeed,
the working hypothesis has been confirmed, i.e., it is possible to achieve promising performances using
ML-based models where the subject, instead of rating forty adjectives or answering long questions,
selects the adjectives he relates the most with. This allows one to obtain the Big Five using a method
with a reduced complexity and that takes a small amount of time to complete. Obviously, the obtained
results are just estimates, with an underlying error. The conducted experiments shown the ability of
ML-based models to compute estimates of personality traits, and should not be seen as a definitive
psychological assessment of one’s personality traits. For a full personality assessment, tests such as the
one proposed by Saucier, Goldberg or the NEO-personality-inventory should be used.

The use of augmented sets of data may bring an intrinsic bias to the candidate models. In all cases,
preference should always be given to the collection and use of real data. However, in scenarios where
data is extremely costly, an approximation may allow ML models to be analyzed with augmented data.
In such scenarios, data augmentation processes should make use of several randomized decisions
based on probabilistic approaches to create a generalized version of the smaller dataset. Experiments
should be carefully conducted, implementing two, or more, independent trials, cross-validation
and even nested cross-validation. Models, when deployed, should monitor their performance and,
in situations with a clear performance degradation, should be re-trained with new collected data.

In Saucier’s test, each personality trait is computed using the rating of eight unipolar adjectives,
i.e, no adjective is used for more than one personality trait. Indeed, it is known, beforehand, which
adjectives are used by each trait. For example, the Extroversion trait is computed based on four positively
weighted adjectives (extroverted, talkative, energetic and bold) and four negative ones (shy, quiet, withdrawn
and bashful). However, in the proposed ML architectures that make the ASAP method, all 40 adjectives
are used to compute all traits, allowing the ML models to use adjectives selection/non-selection to
compute several traits, thus harnessing inter-trait relationships. For instance, bold, one of the adjectives
used by Saucier to compute Extroversion, shows a small importance in the conceived architectures
when quantifying Extroversion. The same happens for bashful in Extroversion, creative in Openness, and
practical in Conscientiousness, just to point a few. This could lead us to hypothesise that, one, the list
of forty adjectives could be further reduced to a smaller set of adjectives by removing those that are
shown to have a smaller importance and that, two, there are adjectives that can be used to quantify
distinct personality traits, such as the case of disorganised, which can be used for the Conscientiousness
and the Agreeableness traits. It is also interesting to note the lack of features assuming high importance
when quantifying Openness. In fact, one of its adjectives, ordinary, seems to assume higher importance
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in the Agreeableness trait. Overall, Saucier’s adjective-trait relations are being found and used by the
conceived models.

Since the conceived ML architectures proved to be both performant and efficient using a selection
of adjectives, future research points towards a reduction to the minimum required set of adjectives
that does not harm the method’s accuracy, further reducing complexity and the time it takes to be
performed by the subject.
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Abstract: The present research work deals with prediction of hydrogen consumption of a fuel cell in
an energy storage system. Due to the fact that these kind of systems have a very nonlinear behaviour,
the use of traditional techniques based on parametric models and other more sophisticated techniques
such as soft computing methods, seems not to be accurate enough to generate good models of the
system under study. Due to that, a hybrid intelligent system, based on clustering and regression
techniques, has been developed and implemented to predict the necessary variation of the hydrogen
flow consumption to satisfy the variation of demanded power to the fuel cell. In this research,
a hybrid intelligent model was created and validated over a dataset from a fuel cell energy storage
system. Obtained results validate the proposal, achieving better performance than other well-known
classical regression methods, allowing us to predict the hydrogen consumption with a Mean Absolute
Error (MAE) of 3.73 with the validation dataset.

Keywords: fuel cell; hydrogen energy; intelligent systems; hybrid systems; Artificial Neural
Networks; power management

1. Introduction

Environmental care is currently not only a trend, but it is also an important issue for society and
governments. Moreover, for obvious reasons, there is a clear trend in which it is necessary to ensure
care for the environment. In point of fact, no impact is very difficult or impossible. But nevertheless,
aspects such as sustainability and the maximum possible reduction in environmental impact are very
important [1]. In this sense, in terms of energy needs, renewable energies play a key role in contributing
to a reduction in environment impact and emissions [2]. However, the impact of the power plant
implementation itself, based on renewable sources, has to be taken into account; there is not usually
zero impact [3].

Due to it not being possible to achieve the null impact, even with the alternatives and use of
renewable energies, there is a legal obligation to optimize and plan installations with maximum
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efficiency [4]. Furthermore, the efficiency of the facilities must be measured in accordance with the
right ratios and criteria with the aim of ensuring the desired minimum impact [5].

Both the greatest environmental impact and the economic investment take place during the
construction of the power generation facility. When the plant is in operation, although depending on
the technology, it usually needs far less expense. Even in some cases, it is better that the installation
be in operation than stopped. When this happens, energy storage becomes a highly recommended
solution [6].

Some of the reasons why the electric sector system is very convoluted are as follows [7]. Among
all of them, nowadays, the most complex issue is the matching of consumption with demand. If it is
added to the different electric energy technologies of generation, the system could be ungovernable
and unpredictable. According to some sources, the destabilization could be increased by the renewable
energy plants [8].

Due to the above reasons, the energy management systems are an imperative necessity. These
possible methods and tools could handle the energy consumption and generation points. It is for these
reasons therefore, that the concept of SmartGrids arises [9], in which, among others, the generation and
consumption are measured and monitored. With the aim to take decisions, more important than doing
the above is to predict the behavior for matching the demand and the generation. Energy storage is a
very helpful tool to achieve this goal [10].

There are geographical areas in which buildings have electricity energy needs, and they are not
connected to the electric grid [11]. This kind of case does not usually have an easy solution because to
connect a building to the electricity network implies a high cost, which is never going to be amortized.
A possible alternative, and maybe a more feasible one, is to implement energy storage systems [12].

As shown, in all cases, the energy storage could be a a feasible solution for the mentioned
problems [13]. Many are the technologies for this purpose, some of them relatively old and wasteful,
like pumping water for its storage [14]. During recent times, due to the energy store need, there are a
lot of proposals to solve this necessity [15]. One of the last reasons is the electric car development and
trend [16]. Among all existing technologies, the batteries and fuel cells are the most popular ones in
this change process [17].

One of the major difficult tasks of storage systems is the efficiency advancement under a global
point of view. Nevertheless, under a practical outlook, commonly this efficiency is quantified in
economical aspects. Of course, ahead of achieving this moneymaking objective requires hard progress.
Lately, there are many proposals with the aim to achieve energy storage methods, systems, processes,
and so on, in varied forms. Some examples of this are the following: In [18], an optimal nonlinear
controller based on Model Predictive Control (MPC) for a flywheel energy storage system is proposed,
in which the constraints on the system states and actuators are taken into account. Ref. [19] describes a
system for storing energy deep underwater in concrete spheres, which also can act as moorings for
floating wind turbines. A proposal is made in [20] for a deterministic and an interval unit commitment
formulation for the co-optimization of controllable generation and PHES (Pumped Hydro Energy
Storage), including a representation of the hydraulic constraints of the PHES. The present work is
focused on the fuel cells case and, specifically, on the hydrogen-based ones. These are the most
common ones due to two basic reasons: hydrogen is a very abundant gas, and it is easy to achieve
through a very simple process based on hydrolysis [21].

Given that, as mentioned before, it is very important to obtain the right prediction of both the
generation and the consumption, with the aim to achieve the correct decisions [22]. When it will be
necessary for energy selling or purchasing, the accurate forecasting must be decisive to be efficient
under an economical point of view [23]. Taking into account this affirmation, it is very important to
have an effective prediction when a fuel cell system based on hydrogen is used.

For the behavior prediction, accomplishing the process modeling is mandatory. Some of the
possible ways for this purpose come from Multiple Regression Analysis (MRA)-based models [24],
which have very common limitations in several instances [25]. This problem is due to the possible
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nonlinearities in most of the cases [26]. A possible alternative that solves this problem is the modeling
based on intelligent techniques, with which it is possible to achieve satisfactory results commonly [27].
However, despite the intelligent systems use, bad performance could be possible, if the nonlinearities
are several. If it is the case, then, a hybrid system based on clustering techniques, previous to the
regression step, frequently gives satisfactory results [28].

A fuel cell performance modeling is accomplishing on the present research work, taking into
account some measured parameters at the real storage system plant. Specifically, with the aim to
achieve a very useful application, the model must predict the necessary increasing or decreasing of
hydrogen flow for a gradual change of provided output power. Remark that the system behavior has
a very nonlinear component, whereby clustering techniques are applied. Then, regression based on
intelligent techniques are performed.

The rest of the paper is structured as follows. After the present section, the case study is described.
Then, it is given the description of the proposed model approach for solving the problem. After that,
the results are detailed and the last section exposes the conclusions and the future works.

2. Case Study

The “University of A Coruña” (UDC) has an experimental system to study renewable sources
combined with energy storage system and their possibilities to increase the efficiency of the Power
Network. Figure 1 shows the basic scheme of this experimental installation. Our research is focused on
the energy storage part [29] that uses a fuel cell as a power transformation system to produce electrical
energy from the chemical energy stored as hydrogen. The used storage system is a laboratory-size
equipment, a system with research purpose.

Figure 1. Power system layout.

In Figure 1, the internal diagram of the electric power system is shown. Solar and wind generation
and fuel cell are represented as inputs to the power bus; the main output is the Power Network, and
also the electrolyzer that demands energy when it produces hydrogen. The Energy Storage System
is divided into three different elements: the input Power Transform System (PTS), the electrolyzer;
the Central Storage, the H2 tank; and the output PTS, the fuel cell. The system is controlled and
supervised by an Energy Management System (EMS), with the aim of increasing its global efficiency.
The Energy Storage System stores energy when the Power Network demand is less than the generation
system produces; and the fuel cell produces energy when the Power Network demand is more than
the renewable systems could generate.

This research is focused on the output PTS, the fuel cell, and this specific equipment, which are
described in detail bellow.
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2.1. Fuel Cell

Figure 2 shows the internal scheme of a single fuel cell. The inputs are the H2 inlet, the fuel input,
and the air inlet, the O2 is picked from the air. The cell has two different outputs: the water outlet,
which is the product of the internal reaction; and the H2 outlet, if the fuel input flow is greater than
that of the electrical application needs [30].

The internal reactions can be divided into three different types, depending on the part of the cell:
the anode, the cathode, and the global result. Equation (1) shows these three chemical reactions [31,32].
The fuel cell type used in this research is a Proton Exchange Membrane Fuel Cell (PEMFC), one of
the most efficient technologies. It has high energy density and low volume and weight against other
fuel cells.

Anode: H2 → 2H+ + 2e−

Cathode: 1
2O2 + 2H+ + 2e− → H2O

}
H2 +

1
2

O2 → H2O + Energy. (1)

Single fuel cells are joined together to create a stack. The stack used is a PEMFC FCgen-1020AVS
from Ballard [33], and it is formed by 80 BAM4G polymeric single cells [29]. It has a porous carbon
cloth anode and cathode, with a catalyst based on platinum. The whole stack has graphite plates
between cells, and aluminum end plates, all of them joined by compression.

Figure 2. Internal schematic of a fuel cell.

2.2. Power System

The electrical output of the fuel cell is not regulated, the voltage depends on the electrical load
and the H2 inlet flow. However, the electrical applications need a stable input voltage to improve its
operation. Figure 3 shows the general power system diagram, where a power converter connects the
output of the fuel cell and the electrical application.

It is necessary to emphasize that this kind of power converter controls the output voltage, and the
electrical power becomes the most important variable to be controlled. This power depends on the H2

inlet flow.
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Figure 3. Power system control to stabilize the cell output.

3. Model Approach

Figure 4 shows the basic model of the proposal. Instead of using the hydrogen flow as the model
output, the variation in the current flow is predicted. Moreover, as the model is focused in the electrical
power produced by the fuel cell, the inputs are the current power, the desired power in the future, and
the current H2 inlet flow. The solution provided in this research lies on the modeling of the necessary
fuel flow (hydrogen) for a desired power, to minimized the H2 outlet of the fuel cell.

Figure 4. General schema of the functional model.

Figure 5 shows the specific signals and their temporal instants. With the current values of power
and hydrogen flow, the model predicts the flow variation two states later to achieve the desired power.
As the fuel cell system reacts before the load demands the future power, this model increases the
efficiency of the fuel cell.
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Figure 5. Model approach for forecasting actual current value.

In order to obtain this prediction, a hybrid model has been created using clustering techniques to
divide the data into various data subsets. After that, several regression algorithms were trained for
each cluster. Figure 6 shows an internal representation of the hybrid model, it can be seen that each
group has its own regression model. Each input sample is assigned to a specific cluster, and the output
of the whole model will be the output of the specific local model.

Figure 6. Internal schematic to achieve the hybrid model.

Figure 7 shows the flow diagram followed to create the hybrid model. To perform the third step,
the best local model selection, K-Fold cross validation is used to divide the data subsets (cluster data)
for training and testing.
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Figure 7. Flowchart of the hybrid model creation phases.

Figure 8 shows this validation procedure. Once K-Fold is selected, one k-th of the cluster data is
used for testing and the rest for training. With this training data, a regression model is created with the
algorithm selected, and the testing data is used to calculate the modeled output. The real testing data
output and the predicted one is save in an Error log. The training–testing procedure is repeated k times
until all the data is used as testing data. At this time, the Error log has all the cluster data to calculate
the error for each regression algorithm.

Figure 8. K-Fold training and test data selection.

3.1. Data Processing

To prepare the dataset for the regression phase, a preprocessing of the data is carried out.
This process is divided into two different steps. Firstly, the wrong samples are removed—the samples
with out of range values. The second step is the normalization, which tries to minimize the training
time in the next regression phase. This normalization is based on Max-Min Scaler [34], presented in
Equation (2), which obtains new sample values (Dataj) in a range from 0 to 1.

Datajnew =
Dataj − min(Data)

max(Data)− min(Data)
. (2)
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3.2. K-Means Algorithm

The technique chosen for clustering purposes is the K-Means algorithm, in order to define
the groups present in a dataset. This algorithm is based on the location of each centroid on its
corresponding hyperspace. Thus, the data with a similar nature is situated in the proximity of each
centroid, comprising a cluster [35]. The K-Means algorithm tries to define “K” number of centroids.
Then, every data point is located in the nearest cluster, always trying to keep the shorter distance
(usually the Euclidean) between centroids and each sample.

At the beginning, K-Means implements a training process in order to get the clusters and distribute
the data samples. The velocity of this step depends of the numbers of clusters and the size of the
dataset. However, the second phase, when each sample data is assigned to its clusters, is done quite
fast compared with the initial phase [36].

The procedure to train the K-Means algorithm is explained with this sequence:

• A random set of data samples are chosen as the first set of centroids due to, at the beginning, the
center of each group is not known;

• A set of data samples will create a cluster if this set of points are the nearest to this cluster centroid;
• Once the clusters are defined, it is necessary to calculate their associated centroid. These new

centroids are chosen as the center of each cluster.

The last two steps are repeated until the centroids are the same two consecutive times. It means
that the algorithm is converged and the K-Means algorithm will stop, the new samples can be assigned
to its clusters by comparing the distance between the different centroids.

3.3. Artificial Neural Networks

An Artificial Neural Network (ANN) is an artificial intelligence technique based on the biological
neurons model; the information is managed by unitary component called a neuron. Like in the
biological approach, the artificial neuron is linked with other neurons. Thus, an ANN is able to
calculate complex functions thanks to external data input and input from others neurons. The input
for each neuron has a weight associated and each neuron has inside an activation function that defines
the output.

ANN learning model is based on the fact that this kind of architecture is able to learn from
experience thanks to the generalization of cases. Complex functions can be obtained through the
training process. The ANN develops a characterization of a problem in order to create an answer in
accordance with the input of the problem, without having knowledge about the previous situation.
Therefore, the ANN can generalize new solutions from previous ones [37].

The excitation level, also named the output of a neuron, is defined by the activation function [38].
This output can change from 0 to −1 or from −1 to 1. A key feature of an ANN is its topology. It defines
how the set of neurons is organized. Thus, the topology includes the ’placement’ of the neurons and
how they are linked. The architecture of the ANN is defined by four features:

• Number of layers;
• Number of neurons per layer;
• Links between neurons;
• Activation functions.

The Multi Layer Perceptron (MLP) is the basic topology of the ANN. The architecture is organizes
as follows: input, a set of hidden layers, output. When the information arrives from the same source to
a set of neurons, they belong to the same layer. The information can go from the inputs of ANN or
from a previous layer to the next ones. In the MLP, the information from neurons in a layer goes to the
same destination—the next layer or the output of the MLP.

Usually, the activation function of the output layer is a specific activation function that depends
on the application of the ANN, one of the most common activation functions is the ‘linear’ one.
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3.4. Polynomial Regression

A model defined as summation of several linear functions is known as a polynomial regression
model. The amount of basis functions used in the polynomial regression is associated to the number of
inputs and is in concordance with the polynomial degree used.

When the first degree is defined, the polynomial can be defined as Equation (3). If the degree
increases, the model becomes more complex. A second degree polynomial is shown in Equation (4).

f (x) = c0 + c1x1 + c2x2. (3)

f (x) = c0 + c1x1 + c2x2 + c3x1x2 + c4x2
1 + c5x2

2. (4)

3.5. Support Vector Machines for Regression

The supervised machine learning algorithm known as the Support Vector Machine (SVM) is
commonly used for classification. The original SVM algorithm needs only few changes to allow use
for regression problems, and this new technique is called Support Vector Regression (SVR). The SVR
performs a nonlinear transformation of the original data into a high-dimensional space, and it uses
linear regression on this mapping data to calculate the desired output.

In this research, the Least Square SVR (LS-SVR) is used [39], it is a modified algorithm based on
SVR that uses the Least Square to minimize the objective function [39]. This modification provides a
comparable generalization performance to the SVR [40].

The LS-SVR regression algorithm replaces the insensitive by a classical squared loss function.
Equation (5) is used to solve the linear LarushKuhn–Tucker.[

0 IT
n

In K + γ−1 I

] [
b0

b

]
=

[
0
y

]
, (5)

where:
In is a vector of n ones;
T means transpose of a matrix or vector;
γ a weight vector;
b regression vector;
b0 is the model offset.

LS-SVR only needs to adjust two parameters: the weight vector (γ) and the kernel width (σ) [39].

4. Results

The results of this research are divided into three different parts: the clustering, the regression
modeling, and the validation.

4.1. Clustering Results

The number of clusters must be set to train the K-Means clustering technique. As the optimal
number of groups is not known previously, in this research, different divisions were trained, from
2 to 9. Table 1 shows the number of samples inside each cluster. Only a maximum of 4 clusters are
shown because when K-Means tries to divide the data into more groups, the clusters had few number
of samples. Only the clusters with more than 15 samples were saved; the ones with less samples
are rejected.
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Table 1. Number of samples in each created cluster.

Cl-1 Cl-2 Cl-3 Cl-4

Global 187
Hybrid 2 92 95
Hybrid 3 52 67 68
Hybrid 4 42 45 47 53

To achieve the best division, the K-Means algorithm was trained 20 times for each number of
clusters configuration, each one with random initial centroids. It ensures that the training calculates
the best divisions.

4.2. Modeling Results

For the modeling phase, the three different explained algorithms were used for each local model
created in the clustering phase.

4.2.1. Artifical Neural Networks

Fifteen different ANN were tested for each group shown in Table 1, all the ANN was trained with
the same internal configuration: one single hidden layer, linear activation function in the output layer
neuron, and Tan-Sigmoid for the rest of the neurons. The number of neurons in the input layer is fixed
to 3, according to the number of inputs; and the output layer has only one, because there is only one
output for the model. In the hidden layer, different numbers of neurons were tested, from 1 to 15, and
each configuration represents a different model to test in each cluster.

As fifteen configurations were tested, there are fifteen different tables with the error of each
configuration calculated with the data test. This research uses 10 K-Fold cross validations to calculate
these errors, then, 10 different ANNs were trained before calculating the error. As an example, Table 2
shows the Mean Absolute Error (MAE) when the ANN regression algorithm was chosen, and it is
configured with 13 neurons in the hidden layer.

Table 2. Mean Absolute Error (MAE) using Artificial Neural Network (ANN) with 13 neurons in the
hidden layer.

Cl-1 Cl-2 Cl-3 Cl-4

Global 7.7725
Hybrid 2 43.6784 77.1169
Hybrid 3 17.8174 26.0211 41.1911
Hybrid 4 14.8003 25.2539 10.7302 23.8377

4.2.2. Polynomial Regression

In the case of the Polynomial regression algorithm, two different configurations was trained
according to the degree of the polynomial used. First- and second-degree were chosen and tested with
10 K-Fold cross validation. The results for Polynomial regression algorithm is shown in Table 3 for the
configuration set to first degree.

Table 3. MAE for first-degree Polynomial regression algorithm.

Cl-1 Cl-2 Cl-3 Cl-4

Global 4.0405
Hybrid 2 6.5793 13.0030
Hybrid 3 29.8819 74.4182 14.6885
Hybrid 4 52.8102 50.7558 53.4093 124.6589
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4.2.3. Support Vector Machines for Regression

For the LS-SVR, a Matlab Toolbox by KULeuven-ESAT-SCD was used. This toolbox allows to
autotune the internal parameters necessary in the LS-SVR algorithm. The training of this algorithm is
made by using this autotune function, and it only generates one model against the others regression
algorithm, which creates some different models with different internal configurations. The MAE errors
using LS-SVR is shown in Table 4.

Table 4. MAE for Least Square Support Vector Regression (LS-SVR) regression algorithm.

Cl-1 Cl-2 Cl-3 Cl-4

Global 4.0405
Hybrid 2 6.5793 13.0030
Hybrid 3 29.8819 74.4182 14.6885
Hybrid 4 52.8102 50.7558 53.4093 124.6589

4.2.4. Best Regression Local Models Selection

Table 5 shows the best algorithms for the specific application in this paper. These best algorithms
were chosen base on the Mean Squared Error (MSE) values for each cluster. Although the algorithm
are the same, the internal parameters are different and each model are adjust to its own dataset. Table 6
shows the MSE value calculate using K-Fold cross validation to test the models.

Table 5. Configuration for each individual hybrid model.

Cl-1 Cl-2 Cl-3 Cl-4

Global LS-SVR
Hybrid 2 LS-SVR LS-SVR
Hybrid 3 LS-SVR LS-SVR LS-SVR
Hybrid 4 LS-SVR LS-SVR LS-SVR LS-SVR

Table 6. Mean Squared Error (MSE) for each individual hybrid model.

Cl-1 Cl-2 Cl-3 Cl-4

Global 18.3348
Hybrid 2 11.0268 28.0035
Hybrid 3 20.3464 37.9476 10.7460
Hybrid 4 65.2756 15.5356 10.2792 94.5818

4.3. Validation Results

To select the best hybrid configuration, a validation dataset is used. This data was separated, and
isolated, from the clustering and the regression training phase. Once the best algorithm per cluster is
selected, this validation dataset tests the final four configurations of the whole model (a global model
and three hybrid models). The results of this validation test is shown in Table 7, and it shows that the
best hybrid model is created with three local models.

Table 7. Mean squared error for each model

Global
Hybrid Model (Local Models)

2 3 4

MSE 24.0758 33.8591 23.8121 398.9072

Different error values are calculated with the final configuration to evaluate its performance.
The values of these errors are described in the list bellow.

• Mean Squared Error − MSE = 23.8121;
• Normalized Mean Squared Error − NMSE = 0.4438;
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• Mean Absolute Error − MAE = 3.7318;
• Mean Absolute Percentage Error − MAPE = 110.4193.

5. Conclusions and Future Works

The model created in this research predicts the variation in the hydrogen flow consumption by a
fuel cell in an early future. The model uses the desired generated power at the output of the fuel cell,
the current generated power, and current hydrogen inlet flow as inputs, and it predicts the variation in
the inlet flow as output.

A power converter is used to stabilize the electrical voltage in the output of the fuel cell.
It produces the desired voltage for the specific application connected to the fuel cell. As the voltage
of the fuel cell varies with the different working points, this power converter allows to control only
the electrical power produced by the fuel cell; the output voltage of the converter will be constant all
the time.

The bioinspired hybrid model created combines different regression algorithms with clustering to
increase the prediction performance of the model. The final model includes three local models with an
LS-SVR in each one, and the error values with a validation dataset show that it achieved good results.
The NMSE was 0.45, and the MAE was 3.73.

As future works, it is possible to mention the integration of this model as a part of the control
system. This configuration would allow to create a kind of predictive control that could increase the
efficiency of the fuel cell system, as it would predict the reaction of the system.
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Abstract: The difficulty in precisely detecting and locating an ear within an image is the first step to
tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when
working with variable photographic conditions. This is in part due to the irregular shapes of human
ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s
projection when photographed. An ear detection system involving multiple convolutional neural
networks and a detection grouping algorithm is proposed to identify the presence and location of an
ear in a given input image. The proposed method matches the performance of other methods when
analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%,
but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative
natural images where the subject appears in challenging orientations and photographic conditions.

Keywords: ear detection; computer vision; convolutional neural network; image recognition;
video analysis

1. Introduction

The problem of people recognition by means of identifying them biometrically by their ear
has received considerable attention in the literature. Forensic science has often used a person’s
ear to establish someone’s identity, and considerable improvements are being made in this field to
improve these systems—more so now that it starts to be implemented as a new method for biometric
recognition [1]. However, for an ear recognition system to be accurate, the first and obvious step it must
take is to properly detect the presence and location of an ear within an image frame. This seemingly
simple task is often made more difficult because in practice, such images very commonly present the
subject’s ear in poses which are much different to those a system is usually trained for. Furthermore,
occlusion and partially visible ears is very common in natural images, and it presents a challenge
which must be addressed.

The Convolutional Neural Network (CNN) [2] is considered today to be one of the broadest
and most adaptable visual recognition systems, especially in the case where the imagery is highly
variable in form, illumination, and even perspective. A standard CNN is made up two sequential
parts, the first one is in charge of feature extraction and learning based on these features, while the
second one is (usually) dedicated to classification and the final recognition of the object of interest.
A gradient descent algorithm [3] can be used to train these two stages together, end-to-end, and it is
precisely this characteristic which gives CNNs their power and flexiblity. This type of networks have,
in recent years, come to almost entirely replace other machine learning systems. This is especially the
case in image recognition tasks over large datasets [4]. These systems are even capable of performing
better than humans can when manually classifying large image datasets [5]. In this work, we exploit
the flexible architecture of CNNs to apply them in a custom-designed manner to the particular task of
human ear recognition.
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The article follows this outline: Section 2 presents a review on the existing methods for the
detection of ears and describes the current state of the art. A brief review and explanation of typical
CNN architectures is also given. Section 3 describes the methodology our proposed system follows;
Section 4 discusses the results and compares them qualitatively to existing methods; and finally
Section 5 gives our conclusions and discusses future lines of work that will follow from this research.

2. Background

2.1. Ear Detection State of the Art

Most systems that do ear detection rely on properties in the geometry and morphology of the ear,
such as in specific features being visible, or patterns in frequency of low level features. Considerable
progress has been made recently in the area of biometrics related to the human ear. One of the best
known techniques for ear detection was given by Burge and Burger [6] who proposed a system that
makes use of deforming contours, although it does need user input for initializing a contour. As a
result, the localization process with this system is not truly automated. Hurley et al. [7] uses force
fields, and in this process the location of the ear is not necessary as input in order to do the recognition;
however, this technique is very sensitive to noise and requires a clean image of the ear to perform well.
In [8], Yan and Bowyer uses a technique that requires two user defined lines to carry out the detection,
which again is not fully automated—as one of the input lines must run along the boudnary between
the ear and the face, and the second line must cross vertically through the ear, thereby providing a
rough localization of the ear as input to the system.

Three additional techniques are given by Chen and Bhanu for the task of ear detection. First of
all, they develop a classifying system that can recognize a varying shape indices [9]. This technique,
however, only works on images of a side view of the face and is furthermore not very robust against
variations in perspective or scale. They also proposed a system that analyzes individual image patches
that exhibit a large amount of local curvature. This system makes use of “Step Edge Magnitude”, as the
technique is called [10]. This system is template-based, requiring a stencil for the usual outline shape of
the helix and anti-helix of the ear, this template is then fitted to line clusters. One final technique they
propsed reduces the possible number of ear detection candidates by detecting patches of skin texture
as an initial step before applying a similar helix stencil matching system to the local curvatures [11].

Another example for detection is described by Attrachi et al. [12] who use contour lines to detect
the ear. They locate the outer contour by performing a search on the image for the longest single
connected edge feature in the image. By selecting three keypoints for the top, bottom, and left of the
localized region. Image alignment can then be done by forming a triangle, such that its barycenter
can be used as alignment reference. A. Cummings et al. [13] propse a techinque based on image ray
transform that finds the specific tubular shape of an ear. This system relies on the helical/elliptical
shape of the ear for localizing it. Kumar et al. [14] created a technique that starts by segmenting
the skin, then creates an edge map with which it can finally localize the ear within the input image.
They then proceed to use active contours [15] to get a more precise location of each contour.

While there are many proposals attempting to solve the problem of ear detection, only a small
portion of them has been described here. An overview is presented in Table 1 outlining the best known
methods, along with their reported accuracy rates, when available. A deeper review is also given
in [16].
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Table 1. Existing ear detection approaches.

Publication Detection Approach
Database

Size
Accuracy
Rate (%)

Abaza et al. [17] Cascaded Adaboost 940 88.72

Ansari and Gupta [18]
Edge Detection and
Curvature Estimation 700 93.34

Alvarez et al. [19] Ovoid Model N/A N/A
Arbab-Zavar & Nixon [20] Hough Transform 942 91

Arbab-Zavar & Nixon [21]
Log-Gabor Filters and
Wavelet Transform 252 88.4

Attarchi et al. [12] Edge Detection and Line Tracing 308 98.05

Chen & Bhanu [9]
Template Matching with
Shape Index Histograms 60 91.5

Cummings et al. [13] Ray Transform 252 98.4
Islam et al. [22] Adaboost 942 99.89
Jeges & Mate [23] Edge Orientation Pattern 330 100

Kumar et al. [14]
Edge Clustering and
Active Contours 700 94.29

Liu & Liu [24]
Adaboost and Skin Color
Filtering 50 96

Prakash & Gupta [25] Skin Color and Graph Matching 1780 96.63
Shih et al. [26] Arc-Masking and AdaBoost 376 100

Yan & Bowyer [27]
Concha Detection and
ActiveContours 415 97.6

Yuan & Mu [28] CAMSHIFT and a Contour Fitting Video N/A

An issue to consider is the great importance of robustness against pose variation and occlusion
when an ear detection algorithm is put to practice. It is worthwhile to note that most of the detection
systems listed above are not tested nor developed for difficult occlusion scenarios, such as partial
occlusion by the hair, jewelry, or even hats and other accessories. The most likely reason is simply
the lack of public datasets containing appropriately occluded images. Furthermore, to the best of
our knowledge, there is no major research that has been performed on the effect of ear occlusion in
natural images.

Additionally, there does not seem to exist any approaches for the specific task of ear detection
based on CNNs. Not surprisingly, as CNNs have only started to become popular relatively recently,
and the extent of biometric applications using this type of system has so far been limited to full face
detection, for example [29].

2.2. Convolutional Neural Networks and Shared Maps

This work is based mainly on a neural network that does classification as its main task. This is a
standard CNN with an architecture composed of convolutional and max-pooling layers in alternating
order as part of the feature extractor stage. After this, a few fully connected linear layers make up the
the final classification network stage.

The network’s first/input layer always consists of at one or more units that contain the input
image data to be analyzed. For this task, the input consists of a single grayscale channel as input data
to the system.

Data next travels to each of the feature extraction stages. The first part of every such stage
is a convolutional layer, wherein each neuron linearly combines the convolution of one or more
maps from the preceding layer, and then passes the output through a nonlinearity function such as
tanh(x). A convolutional layer is usually paired with a max-pooling layer which primarily reduces the
dimensionality of the data. A neuron in this type of layer acts on a single map from the corresponding
incoming convolutional neuron of the previous layer, and its task is to pool several adjacent values
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in the map for every sampling pixel in the neuron. The sampling function used takes the maximum
value among the pooled region.

The information then travels to one or more additional feature extraction stages, each of which
works in a very similar manner as that described above. The result of this is that every stage
extracts more and more abstract features that can eventually be used to classify the input, a process
done in the final stage of the network. This consists of linear layers which ultimately classify the
extracted features on the previous layered stages through a linear combination similar to a traditional
multi-layer perceptron.

At the end, the output of the final layer doing the classification finally selects the class that
best matches the input data image, based on the predetermined annotation labels with which the
system was trained. The output of the network is composed of multiple numeric values, each one
giving a probability-like expectancy of the image belonging to the particular class associated with each
corresponding estimate.

Recognition of images with dimensions bigger than the input data size with which a CNN was
trained with can be achieved by using sliding windows. This is defined by two parameters: S is the
size of the window to use, which is set to the network’s original input data size; T is the window stride,
a value that specifies how far apart sequential windows are spaced. As a result, the stride parameter
defines the number of individual windows that must be analyzed for a given input. It is therefore
necessary to choose an optimal value for the stride, since this amount is inversely proportional to the
classifier “resolution”, in other words the resolving power of fine featues in the image. The resolution,
in turn, also determines the computing resources necessary to analyze the number of windows W, as
more windows obviously require more computations. For an image of size Iw × Ih, the number of
windows is determined as follows:

W =

(
Iw − S

T
+ 1

)(
Ih − S

T
+ 1

)
=⇒ W ∝

Iw Ih
T2 (1)

As an example: Taking an input image that has been downsampled to 640 × 360, individual
windows can be defined, each one of size S = 64. To simplify calculations, a stride value of
T = S/2 = 32 can be used. In this case, a network would require 190 executions to fully analyze
each extracted window at this scale. If a smaller stride is used, the computation requirement increases.
For example reducing the stride to T = S/8 = 8, results in over 2700 individual CNN executions.
Taking into account that a single CNN execution, due to its complex nature, can require several million
floating point operations, it can be seen that a dense window stride value can increase exponentially
the computing toll on the system.

This process can be greatly optimized by executing the network as Shared Maps, a detailed
explanation of which is given in [30]. This allows executing the network for the entire image frame in
parallel, thus requiring a single execution. Although, a shared map execution of the CNN is higher
in computational cost than that of a single window, it can still save on the total computing resources
required for the full image by not requiring to re-analyze overlapping regions of adjacent windows,
resulting in speed-ups of up to 30x. This process is exploited at its fullest potential here, and its
implications are taken into account when designing the structure of the network for this task, as will
be described later in this work.

3. System Description

3.1. Datasets

The existence of ear-centric data is limited and sparse. There exist no standard datasets upon
which a large body of work can be contrasted with. As a result, there is great difficulty in properly
comparing the system we propose with those described in Section 2, as they primarily use private data.
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In this work, however, we attempt to use a variety of datasets in order to establish some
benchmarks upon which future works can be built upon. For this purpose, we use a total of four
datasets in our experiments. Three of these are public and only one is private. Each of these datasets
has a set of features which make them particularly useful for a particular task, and each one introduces
new challenges. As such, we use them all to base a selection of real-world experiments on each.

Table 2 gives an overview of the content in each dataset, and Figure 1 displays some samples of
each to qualitatively demonstrate their contents.

Table 2. Details on the contents of the various datasets used in this work.

Dataset
Dataset

Size
Subjects

Images per
Subject

Resolution
Size pixels

Color
Channels

Content Source

AMI [31] 700 100 7 492 × 702 Color Closeup ears,
both sides Photo

UND [32,33] 464 114 4 1200 × 1600 Color Bust profile,
right side only Photo

Videos (Train) 950 5 190 1920 × 1080 Color Head profile,
both sides Video

Videos (Test) 910 7 130 1920 × 1080 Color Head profile,
both sides Video

UBEAR v1.0 [34] (Train) 4497 127 35 1280 × 960 Grayscale
Head profile,

both sides,
and masks

Video

UBEAR v1.1 [34] (Test) 4624 115 40 1280 × 960 Grayscale Head profile,
both sides Video

The first dataset is the AMI dataset [31], a collection of 700 closeup images of ears. These are
all high quality images of ears perfectly aligned and centered in the image frame, as well as having
high photographic quality, in good illumination conditions and all in good focus. This dataset is
therefore exemplary in order to test the recognition sensitivity towards different ears, however, due to
the closeup nature of the images, they are not really well suited for ear localization tasks.

The second dataset we use is the UND dataset [32,33]. A collection of photographs of multiple
subjects in profile, where the ear covers only a small portion of the image. The photographic quality
of these images is very high, and again all in constant and good illumination, and with none of the
ears being occluded by hair or other objects. The poses of subjects varies very slightly in relation to
the camera, but not so much as to introduce distracting effects due to head rotation and pose. As a
result, these images are suitable in testing the specific task of localization among a large image frame,
while avoiding the challenges of viewpoint and illumination variation.
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Figure 1. Samples from each of the four datasets used in this work: (Top Left) AMI Dataset,
(Top Right) UND Dataset, (Bottom Left) Videos Dataset, (Bottom Right) UBEAR Dataset.

The third dataset is the Video dataset. A private collection of 940 images composed of HD frames
extracted from short video sequences of voluntary participants. There are 14 image sequences of
7 subjects—one for each person’s ear. Each sequence consists of 65 frames from a span of approximately
15 seconds in time extracted from a continuous video. The subjects were asked to rotate their
heads in various natural poses following smooth and continuous motions throughout the sequence.
The illumination and environment are relatively consistent across all videos, and subjects were asked
to move any potential occlusion away from their ears. We use this dataset primarily to test the
detector sensitivity only towards different relative rotations of the subject’s head in relation to the
camera, while avoiding challenges due to variable illumination. The higher number of images per
subject, combined with a low number of total subjects, are useful to also reduce the effect from using a
large number of wildly variable ear shapes in the tests, and again, concentrate mainly on their pose.
A variation of this dataset was created and set aside for training purposes. This comprised profile
image frames from an additional 5 participants, different from the subjects in the test dataset.

The final and perhaps most important dataset we use is the UBEAR [34] dataset. This is a very
large collection of images of subjects shot under a wide array of variations, which spans multiple
dimensions—not only in pose and rotation, but also in illumination, occlusion, and even camera
focus. These images, therefore, simulate to a very good degree the conditions of photographs in
non-cooperative environments were natural images of people would be captured ad hoc and used to
carry out such a detection. These images, although definitely being ear-centric, make no attempt at
framing or capturing the ear under perfect conditions, and as such reflect a real-world test scenario.
As our main interest in this work is the detection of ears in natural images, this then becomes our main
dataset to test the fullest potential of the system we propose. Table 3 gives a more in depth review on
the different challenges found in this specific dataset.
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Table 3. Differences and challenges presented in the UBEAR dataset.

Angles

Exposure

Blur

Gender

Occlusion

It is also important to note that the UBEAR dataset comes in two versions, both of which consist
of unique non-repeating images across both sets. The first of these versions, named 1.0, includes a
ground truth mask outlining the exact location of the ear in each image. As will be described later,
this inclusion was important for our training procedure. The other version, 1.1, does not include such
masks, and is therefore reserved for testing and experimentation.

3.2. Convolutional Neural Network

The CNN used is based on a standard architecture with a few customizations made to the
architecture which greatly help for the use case presented. The network architecture used is visually
depicted in Figure 2.
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Figure 2. Convolutional Neural Network (CNN) Architecture used in the system.

The target use case of the system is to perform real time ear detection, especially with input
video streams. For this, a system that can run quickly is a fundamental requirement. For this reason,
an optimized architecture is needed. The target classes we seek to recognize with the neural network
are only three: (i) Left Ear, (ii) Right Ear, and (iii) Background—referred to by their corresponding
abbreviations: LE, RE, and BG in all the following descriptions of the system. As the data variability
within each class is relatively low, with many training data samples having a similar set of characteristic
ear features, the network can perform relatively well by learning only a small number of unique features
(unlike the case of large modern CNNs). Therefore, a small neural network, with a low layer and
neuron count is enough to learn the training data used by this system.

Furthermore, a size of 64×64 is selected for the input data of the network, as images at this
size carry enough features and information to properly define the ear shape, while at the same time
not being so large that the system would require large convolutional kernels to properly analyze
the images.

Finally, as Shared Maps execution will be used to do the analysis over full images, the maximum
accumulated pooling factor needs to be kept small. This ensures that the stride size on the final output
map is still small for fine localization to take place. For this reason, 3 convolutional and pooling layers
are decided as the base of the architecture.

Knowing these three constraints, for the input and output, and the maximum number of layers,
through a process of iterative trial and error, a final architecture was decided upon as follows:

18C5:MP3 + 36C5:MP2 + 36C5:MP2 + 144L + 3L

where the notation A(C, MP, L)B means a convolutional (C), max-pooling (MP) or linear (L) layer, of
A neurons, and kernel size B. This architecture, when executed as Shared Maps, yields a minimum
window stride size of 3 × 2 × 2 = 12, which is quite efficient for purposes of detection over a
half-HD image frame, as it allows analyzing the image at intervals as close as 12 pixels apart,
or multiples thereof.

3.3. 3-CNN Inference

Training a single neural network and expecting it to be sufficient to properly tell apart ears from
background noise in real-world imagery is quite the leap of faith.

In practice, a neural network of this type will be quite capable at properly recognizing the large
majority of ear-shaped objects that are presented to it. Thus, when tested against a set of cut-out ear
images specifically prepared for such a task of recognition, its true positive inference performance will
be quite good. However, it will be prone to make many mistakes when presented with background
images or noise. The network is trained with a BG class to help it learn the difference between an ear
and background noise, but no matter how the training for this class is prepared, a CNN will always
be prone to false detections simply due to the internal functionality of neural networks. There will
always be patterns or combination of features that can be easily found on natural imagery which will
randomly trigger internal neural paths and thus produce a large false positive rate as well—a type
of artificial pareidolia. For real world purposes of image detection over large input image frames,
this results in a large number of false hits. Table 4 describes this effect in more detail. A single CNN
will very often detect the ear correctly (Ears Detected metric), both in close up images as in the AMI
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dataset (99.70%), but also in the more challenging full image frames of the UBEAR dataset (93.90%).
However, this metric disregards the effect of false positives. The F1 metric is useful to uncover the
great performance disparity that occurs in reality. While, in the AMI dataset, the F1 value remains
high (99.86%), in the UBEAR dataset it drops abysmally (41.46%) due to the very large number of false
positives introduced.

Table 4. Single vs. 3-Convolutional Neural Network (CNN) inference performance, showing how both
systems vary greatly when tested against different data types.

Dataset Algorithm
True

Positive
False

Positive
False

Negative
Ears Detected

(%)
F1 Score

(%)

AMI
Single CNN 698 0 2 99.70 99.86

3-CNN 693 0 7 99.00 99.50

UBEAR
Single CNN 4326 11,935 280 93.90 41.46

3-CNN 3814 605 661 82.80 85.77

This problem can usually be addressed by creating ensemble systems consisting of multiple
classifiers, each one different in a specific manner. They all analyze the same data input, and their
different outputs are then combined to create a final result whose accuracy will usually be larger than
that of any single classifier running by itself [4].

We apply a variation on this idea, in that we do not process all classifiers in the ensemble with
the exact same input data, but rather we present different data to each component of the ensemble.
Therefore, each of the classifiers must then be trained to specialize in the kind of data which will be
presented to it. The different data inputs are carefully constructed so that each one carries meaning
specific to that component according to its own specialization.

The main idea then is to feed to three neural networks three different images, each one
corresponding to the same image region being analyzed but at different cropping scales. Figure 3
depicts the three different scales which are ingested by the triple classifier ensemble. We appropriately
label each of the three networks used to analyze these as S, M, and L (for their corresponding
size abbreviations).

Figure 3. The three scales that are used for every data point in the training dataset.

The purpose of the three scales is mainly to train specialized networks for the specific purposes
of (i) recognizing the tubular features of the inner ear, (ii) framing the correct coordinates of the ear,
and (iii) inferring ear context within a surrounding head region. Training a network with any single
one of these scales would specialize it in that particular data, but the network would be oblivious to
other natural image data with similar structure but not really belonging to a true ear, and thus leading
it to produce a large number of false positives which would end up affecting the overall detection
accuracy. However, the three networks working together as a committee of classifiers produces a
much more robust result that is far more resilient against noise, as a true positive hit will require the
activation of all three networks, simply by integrating contextual information into the system.

107



Processes 2019, 7, 457

Each of the three neural networks produces three output values, which correspond to the
likelihood of each target class having been perceived in that network’s input. We denote the
output values as O K

A , where A ∈ {S, M, L} represents the network index denoted by its size,
and K ∈ {LE, RE, BG} represents the output class index of each network, for each of the possible
detection outcomes. Each of these outputs will lie in the [−1,+1] range as the neural networks have
been trained with those ideal values.

To combine the outputs of all three networks as a unified ensemble, we filter each class output
with the corresponding values across all three networks, after each one has been linearly rectified.
The final outputs of the ensemble are defined by:

O LE
F = 
O LE

S �+ · 
O LE
M �+ · 
O LE

L �+ (2)

O RE
F = 
O RE

S �+ · 
O RE
M �+ · 
O RE

L �+ (3)

O BG
F = 
O BG

S �+ · 
O BG
M �+ · 
O BG

L �+ (4)

where 
x�+ ≡ max(0, x), is a linear rectification operation. By passing through only the positive values
of each interim output, we avoid interference from multiple negative values, any of which then has the
effect of zeroing the final output. Figure 4 depicts the process visually.

Figure 4. Data flow in the inference process of 3-CNN detections.

The net effect of this process, then, is to have all three networks work in tandem, where only the
regions for which all three networks are in full agreement will survive. Furthermore, the final output
will be weighed by the individual network certainty, and thus regions where all three networks have a
high likelihood output will outweigh regions where the output distribution is more disparate.

3.4. Training Data

As the system will comprise three individual neural networks, we already know beforehand
that the training data will need to be gathered in accordance to the requirements for each of the
individual networks.

It was previously discussed that each network will essentially analyze three different crop sizes
of each region, so the data for all three can be prepared simultaneously by simply starting with
one dataset, and extending it by cropping and scaling accordingly to generate the data for the two
other sizes.

Existing image datasets consisting of segmented ear photographs are very scarce and small in
volume. Creating sufficiently large amounts of training data, therefore, required a lot of manual labor
in image manipulation. The datset UBEAR v1.0 was particularly helpful, as described in Section 3.1,
in that it includes for each of its images a ground truth mask. This mask outlines the exact location
of the ear in each image, and this aided in cropping out the corresponding bounding boxes for each
ear. Not all patches from this dataset could be used, however, as many were extremely blurry and
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not appropriate for training. In the end, approximately 3000 images were used from this set for
training data.

Furthermore, we supplemented the training data with additional samples that were manually
cropped from video frames. These originate from the Videos (Train) dataset described in Section 3.1.
With this addition, the training dataset now consisted of roughly 4000 images.

To increase the dataset size even more, the data was augmented in two ways: (i) images
were randomly modified by adding small translations, rotations and rescales; and (ii) images were
horizontally flipped, and the resulting image was assigned to the opposite ear dataset. This artificial
augmentation boosted the training data size tenfold. It now consisted of approximately 40,000 images,
or 20,000 for each ear.

In order to prepare for the training of our final 3-CNN architecture, we processed the images for
each ear side into three separate sets, for each of the 3-CNN scales: S, M, and L. This was done by
simply cropping and rescaling each sample appropriately.

The process was repeated for both sides, thus producing six separate image collections for left
and right ears, at each of the three scales. Finally, one more background noise dataset was also created,
of the same size as the others, and consisting of randomly cropped patches from a large flickr photo
database and from non-ear regions of the UBEAR and Videos training sets.

In total, we ended up with seven distinct collections for training purposes, each one consisting of
roughly 20,000 images. Figure 5 shows an example of these.

Figure 5. A small subset of each of the seven datasets used for training. From top to bottom: Left-Small,
Left-Medium, Left-Large, Right-Small, Right-Medium, Right-Large, Background.

3.5. Network Training

Our final neural network classifier was trained with the three-scale collection described above.
Each of the three networks used a 3-class training dataset compiled from left and right ears at the
corresponding network scale, and a copy of the background image collection.

The structure of all three networks was exactly the same, and is the one described in Section 3.2.
The input consists of a single grayscale channel image resized to a square of size 64 × 64. The input
images are then passed through a pre-processing step which consists of a Spatial Contrastive
Normalization (SCN) process, which helps to enhance image edges and redistribute the mean value
and data range, something which greatly aids in the training of CNNs.

Each network is trained with its corresponding small, medium or large datasets. A standard SGD
approach was used for training, and ran for a duration of approximately 24 iterations until no further
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improvement could be made on the test-fold of the data. Ideal targets for each of the output labels
were assigned in the [−1,+1] range, where active labels are positive, and inactive labels are negative.
This distribution was chosen in this manner (as opposed to the more traditional [0, 1] range) to aid
with the 3-CNN inference as explained in Section 3.3.

All datasets are divided into training and testing folds, at an 80% to 20% ratio as per standard
machine learning training practices. The final results of training over these two sets are summarized in
Tables 5 and 6.

Table 5. Final confusion matrix of the training data fold.

Classified As/
Real Class

Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 16,040 56 88 16,184 99.11
Right Ear 46 16,064 74 16,184 99.26
Background 63 194 15,927 16,184 98.41

Total 48,552 98.93

Table 6. Final confusion matrix of the testing data fold.

Classified As/
Real Class

Left Ear Right Ear Background Total in Class Accuracy (%)

Left Ear 3964 34 49 4047 97.95
Right Ear 14 4002 31 4047 98.89
Background 8 42 3997 4047 98.77

Total 12,141 98.54

3.6. Detection

Runtime operation of the network is performed through Shared Map execution of CNNs.
This allows for an optimized method of inferring detection predictions from a full image frame
in a manner that is much more efficient than the traditional sliding window approach.

The process requires the input image to be first prepared as a multi-scale pyramid. This is simply
to be able to detect ears in all possible sizes relative to the image frame, so as to be able to properly
carry out the detection, regardless of the subject’s relative distance to the camera.

Each of these pyramid levels will be given to each of the three networks to be analyzed
independently. Each network, thus, creates three output maps per level, corresponding to each
of the target classes trained, LE, RE, and BG. Figure 6 depicts the shared map execution of one of the
networks for a particular pyramid level of size 274 × 366.

Figure 6. Shared map execution of one of the CNNs over a sample input image.
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Every pixel in each of these output maps corresponds to that class’ predicted likelihood at a
window whose location can be traced back to the input image according to the shared map’s alignment
and position configuration. Figure 7 shows how windows can be re-constructed from these shared
maps and they correspond precisely to the multiple detections that a traditional sliding window
approach would produce, but at a fraction of the computing time.

Figure 7. Sample of multiple overlapping detections casted as individual detection windows on an
input image.

In order to collapse these multiple detections into a single final result, a partitioning algorithm
based on Disjoint-set data structures is used. This is very similar to the groupRectangles and partition
functions of OpenCV [35], but customized in a few particular ways. This algorithm allows the grouping
of similarly positioned and scaled windows as all belonging to a single object detection. Figure 8
shows a diagram of how the grouping algorithm would behave on various sample window clusters.

Figure 8. Sample of how the partitioning and grouping algorithms cleans up multiple overlapping
detection windows.

This is a very common practice taken as a post-processing cleanup procedure in many computer
vision tasks. For this particular work, however, a special grouping rule is created in order to weigh the
grouping allowance.

For each of the two positive classes, LE and RE, the following procedure is performed:
Every window i has a value assigned to it corresponding to the neural network output prediction

value at that window, denoted by Oi. This window weighs its own value by squaring itself. Therefore,
windows with a low prediction value have their overall importance reduced, whereas windows with a
large output value to begin with, maintain their standing in the grouping.
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For a potential grouping cluster j composed of N multiple windows, each with a weighed output
value O2

i , the final output value Gj for the group is then given by:

Gj =

√
∑N

i O2
i

N
(5)

This corresponds to an RMS of all composing window output values in that cluster. The end result
of this is that the process favors those clusters that are composed of windows with large significant
confidence outputs, where as windows with low confidence (such as in the case of false positives) end
up with a lower value.

As each cluster has a single final numerical value assigned to it corresponding to its overall
significance, a thresholding operation can be passed through all final clusters in order to reject those
with low confidence.

In order to find a suitable threshold value, an experiment was performed over the full UBEAR
test dataset. All final clusters generated in this process were then manually classified as either True
Positive or False Positive. Figure 9 shows the distribution of True Positive cluster output values and
that of clusters classified as False Positives. After analyzing these distributions, it can be seen that
the chosen threshold value of 0.224 most optimally separates it, where a balance can be achieved in
rejecting the largest majority of false positive hits, while keeping as many true positives as possible
above the threshold.

Note that this process, although similar to traditional Non-Maximum Suppression (NMS), has the
added advantage of providing a better filtering mechanism of detections that are likely to be false
positives. NMS simply clusters boxes together and keeps the box with highest confidence per cluster,
regardless of the distribution of confidence values in the remaining boxes. The proposed method,
by comparison, takes into account a weighted distribution of all contributing detections in order to
make a more informed decision on the filtering, as this method requires all contributing detections in
each clustered set to have a higher confidence value.

Figure 9. Response of CNN outputs for true positive (TP) and false positive (FP) groups.

A summary of this whole process, starting from the inference, continuing through the grouping,
and ending in the thresholding operations, is listed in Algorithm 1:
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Algorithm 1 The proposed process including steps for inference, grouping, and applying the threshold.

for all Z ∈ {PyramidScales} do

for all A ∈ {L, M, S} do

O LE
A , O RE

A , O BG
A ← SharedMap(ImageZ, NetworkA)

end for

for all K ∈ {LE, RE, BG} do

O K
F,Z ← Ensemble(O K

S , O K
M, O K

L )
end for

end for

for all K ∈ {LE, RE} do

G K ← Group(O K
F,Z)

if G K > Threshold then

Keep(G K)
else

Discard(G K)
end if

end for

The correct threshold to use should be carefully decided upon depending on the type of data
being analyzed. In the case of the AMI database, where images are already prepared as cropped ears,
the system detects no False Positives whatsoever, and thus the threshold value decision does not affect
the False Positive rate in any way. In this case, a very low (or zero) threshold can be chosen in order to
maximize the number of correctly detected ears. This can be seen in the results shown in Figure 10,
where the accuracy rate of varying threshold amounts is depicted.

In the case of natural images in non-cooperative environments as with the UBEAR dataset,
the effect of false positives is much more important, as can be seen in Figure 10, where small variations
in the threshold value lead to a drastic drop in the false positive rate, while not significantly affecting
the accuracy of detected ears.

Figure 10. Threshold sensitivity on ear detections: (Left) AMI Dataset Detections, (Right) UBEAR
Dataset Detections.

4. Experiments

4.1. Test Methodology

Multiple experiments were conducted with the various datasets in order to evaluate the system’s
accuracy in different scenarios. For all tests, the experiment was carried out with the 3-CNN method
proposed in this work. To contrast the results, the same tests were also performed with a standard Haar
Cascade Classifier trained on similar data as implemented in OpenCV [35], and executed with a similar
sliding window configuration while post-processing them with the same window grouping algorithm.

In all cases, the results reported are defined as follows:
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• True Positive: Detection groups which successfully enclose the bounding box of an ear within
the image.

• False Positive: Detection groups which mis-classify the side of the ear detected, or which
erroneously detect noise in the image that does not correspond to an actual ear.

• False Negative: Ears in an image which failed to be detected by the network entirely, or whose
final detection group confidence value was below the selected threshold.

• True Negative: This value would usually describe the rate at which non-ear noise is successfully
ignored by the classifier. However, in the case of full image frames, this would greatly offset the
result bias by greatly increasing the overall classification accuracy needlessly. We avoid recording
this on purpose such that the results given represent the true nature of correctly classified ears only.

The performance metrics reported for all cases are the precision which measures the exactness of
the classifier; the recall which measures its completeness; and the F1 metric which provides a balance
between precision and recall, and is therefore a more objective comparison of the performance of
two classifiers. Furthermore, the traditional accuracy rate is also reported, in order to provide a basic
performance metric.

4.2. Comparison with State of the Art

Due to varied nature of the state of the art in this field, it is very difficult to make a comparative
study on performance of our proposed method with all of the existing methods in the literature. In part,
this is due to there not being a standard dataset by which all of these algorithms have be benchmarked,
but rather every method so far examined in Section 2.1 tends to use their own private data. Similarly,
testing existing methods on the same data we use is difficult as most existing implementations remain
private and their source code is not readily available for implementation.

Therefore, we can only contribute to Table 1 with our own accuracy results on datasets such as
UND and AMI, which are images of similar qualities as the data used in those studies, consisting of
ready made images made for this exact purpose. In the case of closeup cropped images such as AMI,
our 3-CNN system reaches an accuracy of 99.0% and an F1 metric of 99.50%. On full frame images,
such as UND, where localization also plays a part, our system reaches an accuracy of 95.25% and an F1
metric of 97.57%. Full details on these results are found in Section 4.6.

4.3. Video Analysis

Additionally, we also test the detection accuracy on individual video frames. An experiment was
carried out with the Video dataset as described in Section 3.1. The purpose of this test is to ensure
that both ears can be correctly classified as either left or right, while working with data of variable
head poses.

Results of these tests is presented in Table 7, where it can be seen that our system greatly
outperforms Haar in this particular task.

Table 7. Results of testing over the Videos dataset.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 470 97.60 97.60 95.32 97.60 99.57 99.79 99.36 99.68
Upwards 162 100 69.75 69.75 82.18 95.95 91.03 87.65 93.42
Downwards 284 98.77 57.09 56.69 72.36 94.83 95.19 90.49 95.01

Left Ear 455 97.85 71.21 70.11 82.43 97.07 97.29 94.51 97.18
Right Ear 461 98.53 88.57 87.42 93.29 97.98 96.46 94.58 97.21

Complete Dataset 916 99.05 80.07 79.45 88.55 97.59 96.95 94.68 97.27
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The significance of this test is in the ability to continuously detect the same ear on a moving image
sequence, regardless of head orientation. The high detection rate ensures that the ear is consistently
detected during the majority of each video’s duration, except for a few odd frames where detection
might fail from time to time. However, a few frames later, the ear is found again and detection
continues as normal. This result rate would therefore allow for a tracking mechanism to be successfully
implemented in such video streams.

4.4. Image Resolution

Detecting images of subjects at a great distance from the camera is usually problematic.
To quantitatively measure the performance of the system in cases where the relative size of the
image is very small, various tests were performed on the AMI dataset with the ears previously resized
at different scales, ranging from 16 × 16 up to 96 × 96. The results of both the combined 3-CNN system
as well as that of the individual S, M, and L CNNs are displayed in Figure 11.

This shows that even ears which are found at scales much lower than the networks’ input size of
64 × 64 can still be successfully detected, albeit at a lower rate depending on the actual size.

Figure 11, in particular, explains the dropoff in resolving power at smaller scales. The S CNN
is the first one to fail at diminishing scales, as could be expected due to the nature of the data this
network analyzes. Meanwhile, the other two CNNs continue to detect with sufficient accuracy at even
the smallest scales. Arguably, it could be said that a system without the S scale might do better for
this particular purpose, as the dropoff exhibited by the S CNN is the main reason behind the 3-CNN
difficulty in detecting smaller sized ears. However, the S CNN has been shown before to be essential
for noise differentiation, and as such, this side effect is an acceptable tradeoff.

Figure 11. Image resolution and ear size sensitivity: (Left) Individual CNNs, (Right) 3-CNN System.

4.5. Non-Cooperative Natural Images

Traditional computer vision approaches usually require the ear to be perfectly aligned, or at
the very least in the same plane as the photograph projection, thus imposing restrictions that are
very restrictive when analyzing real world imagery. Due to the ability of CNNs to learn multiple
representations of the same object, and given the pose variety used in the training data, the final
trained system is capable of detecting ears at very different angles with respect to the camera.

The UBEAR dataset contains labels for each image which facilitates its partitioning according
to the relative pose of the subject in relation to the camera. Tests were run over the full dataset and
the results were divided according to the angle of the subject’s gaze. These results are depicted in
Figure 12 and summarized in Table 8.

The common trend of our 3-CNN outperforming Haar continues to be seen here. However,
the real significance behind these results is that Haar, not unlike most traditional computer vision
approaches, is highly dependent on viewpoint, and its performance largely drops off as the angle varies
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from the more normal “Middle” and “Towards” angles. Meanwhile, our 3-CNN system maintains a
very similar and stable performance rating regardless of the angle at which the ear is presented.

Further UBEAR labels can be used to split the data into additional folds, such as ear sidedness.
As expected, the system works mostly the same for either left or right side ears. The small differences
in the results might just be due to a random variation in the images, and not to a real side preference of
the classifier.

Finally, we tested the system on images which were marked to have occlusion against those that
did not. Occlusion is not a defined label in the UBEAR dataset, therefore, for this study, we manually
defined this data fold based on a subjective decision of which images could be considered as occluded.
This is because degrees of occlusion can vary from merely a few small strands of hair or a small earring,
to very large accessories or full sections of hair covering well over half of the ear. The final occlusion
threshold decision was made to mark only those ears which had their outline covered at least 25%.
This resulted in approximately one third of the images to be marked as occluded.

Not surprisingly, the 3-CNN system performs better when no occlusion is present. However, it is
worth noting that even when analyzing occluded ears, the 3-CNN system outperforms Haar when it
analyzes clearly visible, and non-occluded ears.

Furthermore, analyzing the literature of existing ear detection systems, such as those described in
Table 1, it is obvious that most of the systems which seemingly have very high reported accuracy rates
on clearly defined ear images, would drastically fail when the ear is occluded in any way—especially
those systems which rely on shape analysis and detection of the tubular or helix properties of an ear.

A final study was performed on gender sensitivity of the detector. The classifiers are not
necessarily sensitive to the different shapes of male and female ears. However, a visible disparity can
be seen, simply due to the fact that female ears are far more likely to be occluded by longer hair or
more prevalent accessories such as large earrings. Thus, gender sensitivity results closely resemble
those of occlusion sensitivity.

Figure 13 shows a few selected samples of the 3-CNN and its detection in particularly challenging
images, due to either occlusion or extreme viewpoint perspectives.

Figure 12. Detection performance of our 3-CNN system vs Haar on the different data folds of the
UBEAR dataset: (Top Left) Angle Sensitivity, (Top Right) Occlusion Sensitivity, (Bottom Left) Gender
Sensitivity, (Bottom Right) Ear Side Sensitivity.
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Figure 13. Sample detections on particularly difficult images from the UBEAR dataset, including
extreme head orientations and occlusion.

Table 8. Detection performance of our 3-CNN system vs. Haar on the different data folds of the
UBEAR dataset.

Haar 3-CNN

Subset
Size

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1 Score
(%)

Middle 1392 95.90 74.31 72.03 83.74 89.89 93.92 84.95 91.86
Upwards 813 85.87 30.42 28.97 44.93 87.47 84.94 75.73 86.19
Downwards 784 88.65 16.23 15.90 27.44 85.68 84.57 74.09 85.12
Outwards 789 89.96 30.34 29.35 45.37 85.92 71.26 63.81 77.91
Towards 829 95.10 73.24 70.57 82.75 79.70 84.40 69.47 81.99

Male 3403 94.17 51.58 49.99 66.65 86.10 87.84 76.93 86.96
Female 1204 91.06 42.47 40.77 57.92 86.99 77.83 69.71 82.15

Left Ear 2289 93.49 47.33 45.82 62.84 83.64 83.11 71.48 83.37
Right Ear 2318 93.42 51.07 49.30 66.04 88.97 87.32 78.79 88.14

Occlusion 1491 89.70 36.49 35.03 51.88 85.01 71.63 63.60 77.75
No Occlusion 3116 94.70 55.24 53.59 69.78 86.79 91.53 80.34 89.10

Complete Dataset 4607 93.45 49.22 47.58 64.48 86.31 85.23 75.08 85.77

4.6. Summary

To conclude, Table 9 lists a summary of all total results across all four datasets while comparing
our 3-CNN system with the well known Haar Cascade Classifier algorithm.
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Table 9. Summary of the total results over all four datasets contrasting the Haar and 3-CNN algorithms.

Dataset Algorithm Positive Negative
Precision

(%)
Recall

(%)
Accuracy

(%)
F1 Score

(%)

UND [32,33]
3-CNN Positive 461 20 95.84 99.35 95.25 97.57

Negative 3 0

Haar Positive 270 7 97.47 58.44 57.57 73.07
Negative 192 0

Videos
3-CNN Positive 890 22 97.59 96.95 94.68 97.27

Negative 28 0

Haar Positive 727 7 99.05 80.07 77.47 87.31
Negative 181 0

AMI [31]
3-CNN Positive 693 0 100.00 99.00 99.00 99.50

Negative 7 0

Haar Positive 382 7 98.20 55.12 54.57 70.61
Negative 311 0

UBEAR [34]
3-CNN Positive 3814 605 86.31 85.23 75.08 85.77

Negative 661 0

Haar Positive 2227 156 93.45 49.22 47.58 64.48
Negative 2298 0

As can be seen, the CNN based system always outperforms the Haar algorithms in all sets,
by an amount ranging between 10% to 29% in the F1 metric. This is particularly so in the UBEAR
dataset, since the Haar classifier is incapable of modelling the higher variety of internal representations
required to properly classify images in that dataset.

Figure 14 shows a summary of these results. It is important to remark that that our proposed
system has stable performance figures across the first three datasets, all of which consist of perfect
purpose-made ear photography. The results only slightly drop when presented with natural images
due to the challenges already described. This is in contrast to the Haar classifier, which has wildly
disparate results, demonstrating the large dependency of this system on the particular conditions of
one dataset or another.

Figure 14. Results of our 3-CNN system compared to the Haar classifier over the various test datasets.
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5. Conclusions

We propose a new technique based on CNNs to carry out ear detection on natural images.
As opposed to traditional computer vision approaches that are based on hand-crafted features,
Convolutional neural networks perform image and shape perception, which is far more robust
against variable perspective, occlusion and illumination conditions. These difficult conditions are
very common in natural images, compared to synthetic photographs taken in strictly controlled
photographic and illumination conditions.

All previously proposed systems usually fail in one important way or another. Some require the
ear to be properly aligned. Others require the full ear to be visible. Most commonly, they are highly
sensitive to illumination and require images shot in the exact same conditions as the training data,
or they may even fail when the images are not fully in focus or when the relative size of the ear in the
image is not sufficiently large.

Up to now, we have not seen a robust all-encompassing system capable of detecting ears under
all possible conditions in natural images, and we are glad to introduce this new alternative. Granted,
our system still has some important failures which we must address in future versions of the system,
primarily to decrease the false positive rate, which would allow decreasing the threshold and thus
improve the overall performance. However, the results so far are very encouraging, and having such
a robust detector is the first important step towards building an ear recognition system, something
which obviously is a future line of research to be conducted presently.

Further future lines of research include the implementation of this system in an even more
optimized manner in order to deploy it on low power mobile or embedded devices for practical
biometric applications.

Finally, it is important to note that although this work was aimed mainly towards ear detection,
it presents an end-to-end object recognition framework which can be adapted very similarly to other
computer vision tasks requiring a comparable type of classification executed over natural imagery
for real-time detection and tracking. Convolutional neural networks have been shown time and time
again to be extremely powerful image classifiers, especially when they are used as ensemble systems,
and this work has presented one more way in which they can be applied to this kind of task.
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Abstract: The increasing rate of diabetes is found across the planet. Therefore, the diagnosis
of pre-diabetes and diabetes is important in populations with extreme diabetes risk. In this
study, a machine learning technique was implemented over a data mining platform by employing
Rule classifiers (PART and Decision table) to measure the accuracy and logistic regression on
the classification results for forecasting the prevalence in diabetes mellitus patients suffering
simultaneously from other chronic disease symptoms. The real-life data was collected in Nigeria
between December 2017 and February 2019 by applying ten non-intrusive and easily available clinical
variables. The results disclosed that the Rule classifiers achieved a mean accuracy of 98.75%. The error
rate, precision, recall, F-measure, and Matthew’s correlation coefficient MCC were 0.02%, 0.98%, 0.98%,
0.98%, and 0.97%, respectively. The forecast decision, achieved by employing a set of 23 decision
rules (DR), indicates that age, gender, glucose level, and body mass are fundamental reasons for
diabetes, followed by work stress, diet, family diabetes history, physical exercise, and cardiovascular
stroke history. The study validated that the proposed set of DR is practical for quick screening of
diabetes mellitus patients at the initial stage without intrusive medical tests and was found to be
effective in the initial diagnosis of diabetes.

Keywords: data mining; cluster; clinical implications; diabetes; epidemiology; forecast; PART;
Decision table; Weka; real-life patients; regression; machine learning

1. Introduction

Diabetes mellitus (DM) is an exponentially growing disease across the developing countries of
the 21st century. Diabetes mellitus has now become a worldwide challenge and identified as the
risk factor of other chronic diseases such as hyperosmolar, diabetic ketoacidosis, and hyperglycemia
and, in extreme cases, death. Furthermore, diabetes also causes long-term complications, for instance,
cardiovascular disease, heart stroke, kidney failure, chronic ulcers, blindness, damage to the eyes,
and many more [1]. Williams wrote in his book “Williams textbook of Endocrinology” [2] that around
385 million people were affected with diabetes in 2013. If Diabetes mellitus is left untreated, this figure
can get higher; it can even lead to death. Around 425 million people had diabetes in the world by the
survey report of the International Diabetes Federation (IDF) in 2015 [3]. Also, the report indicates that
382 million people around the globe are affected by diabetes in developing countries alone and Africa
has 4.9% from this ratio.
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By the World Health Organization (WHO) [4], 321,100 deaths occurred in the African region due
to diabetes, out of which 79% of the population was under the age of 60; this is the maximum number
in any region of the world. The ratio of diabetes mellitus patients in rural and urban areas of Nigeria
varies from 0.67% to 12%, and this ratio has been estimated to more than double over the past two
decades [5]. According to the IDF report, the ratio of undiagnosed diabetic people in sub-Saharan
Africa (SSA) is estimated at 87%, out of which 8.7% in the male and 8.9% in the female population of
Nigeria. It is due to the lack of information and government resources [6]. In addition, the American
Diabetes Association (ADA) estimates that the prevalence was estimated in Nigeria as 20.01% in
both the male and female population [7]. Compared with the world population, the Nigerian health
organizations pointed out that the diabetes prevalence was 4.7% in 2010 and it was projected to be
5.8% by 2030 and even exceed 10% by 2040 [8]. However, this estimate comes from rural areas, and it
is expected to be more in urban slums.

In this study, the fundamental objective was to develop a quick and accurate prediction assessment
scheme by using easily observable clinical features to identify patients with a high risk of diabetes.
For this purpose, the machine learning Rule classifiers (projective adaptive response theory (PART)
and Decision table) were used on the Weka 3.9.2 platform for acquiring accuracy in classification
assumptions. Afterward, the logistic regression (LR) was utilized on the classification results to predict
and forecast patients with a high risk of diabetes. This research can be applied to diabetes mellitus
patients who cannot afford the expenses of the medical laboratory and specifically those in remote
areas or villages with low socioeconomic status and excessive epidemiological risk.

Correspondingly, the remaining paper is structured as follows: Section 2 explains the material
and methodology after the background description, Section 3 reviews the results, Section 4 discusses
the results and limitations, and Section 5 concludes the findings.

Background

Numerous authors work to develop appropriate disease prediction algorithms. For instance,
Lélis et al. applied seven classification techniques in a Brazilian investigation to make a diagnosis of
meningococcal meningitis and verified that the model is affordable and accurate [9]. Susanne et al.
proposed a mathematical model to forecast the prevalence of diabetes by using attributes of sex, age,
risk factor status, and T2DM (type 2 diabetes mellitus) status and found T2DM prevalence is projected
to increase by 43%, and the incidence is projected to increase 147% by 2050 in Qatar [10]. Choi et al.
applied support vector machine (SVM) and artificial neural network (ANN) to screen the pre-diabetes
of 9251 individuals and performed a systematic assessment of the models using external and internal
cross-validation and concluded that the results of the SVM method are better than the ANN [11]. Amir
et al. proposed a time series prediction model for the diagnosis of diabetes patients [12]. In addition,
Olivera et al. utilized machine learning algorithms from ELSA-Brazil and identified individuals with
the highest risk of undiagnosed diabetes from readily available clinical data [13]. Sohail et al. performed
the classification results on Weka by machine learning by utilizing the dataset of different diseases
and concluded the accuracy ratio of the decision tree (86%), the Bayesian network (90%), the naïve
Bayesian (76%), the fuzzy cognitive map (94%), and K-nearest neighbor (KNN) (94%) [14]. Parampreet
et al. applied a cloud-based framework with the help of sensor devices to initially screen patients for
the prediction of diabetes [15]. Further, Hassan et al. proposed a unified machine-learning framework
for diabetes predications in big data [16]. There is considerable interest in determining how different
classification techniques from machine learning can be utilized as disease prediction tools [17–21].
These tools have been used to diagnose diabetes [22], glaucoma [23], meningitis [24], coronary artery
disease [25], asthma [26], cancer [27], hypertension [28], heart arrhythmia [29], tuberculosis [30],
and other diseases [31,32].
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2. Material and Methods

2.1. Ethical Consents

The study was approved by the Natural Science Foundation of China Hebei province, the Yanshan
University ethics committee, and all experiments and simulation procedures conformed to the
Declaration of Helsinki. All participants provided written informed consent after having all procedures
explained to them both verbally and in writing.

2.2. Model Framework

Figure 1 shows the assessment framework used in this study for diabetes patient screening. The
assessments were performed in a total of six steps. Initially, the real-life diabetes mellitus data were
acquired and preprocessed for selection of appropriate attributes. Afterward, this data was utilized for
evaluation and assessment. Secondly, the updated plugins of two machine learning Rule classifiers
(PART and Decision table) were used on Weka version 3.9.2 “data mining platform” for classification
measurements and Rule assessment [33]. In addition, the logistic regression method was utilized on
the results of the machine learning classifiers to forecast the rule assessment.

 
Figure 1. Assessment framework used in this study for clinical implication screening.

2.3. Data Collection and Explanation

The real-life diabetes mellitus data of 1257 patients from December 2017 to February 2019 were
acquired from four main hospitals across Nigeria and carefully examined. Figure 2 demonstrate the
collection flow of data gathered from four principal hospitals in Nigeria namely Abdullahi Wase
Specialist Hospital (22.75%), Ajingi General Hospital (22.04%), Federal Medical Center Birnin-Kudu
(26.81%), and Gaya General Hospital (28.40%) located in the northwestern region of Nigeria. The
data were collected through questionnaires, verbal interviews, and by consultation of the medical
specialist after the ethics committee of the institute where the research was carried out approved the
study protocols. The data collection flow of diabetes patients from the mentioned hospitals is shown
in Figure 2, and the number of patients in each hospital is shown in Figure 3.
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Figure 2. The data collection flow of diabetes patients from the four hospitals.

Figure 3. Total number of diabetes patients recorded in the four hospitals.

2.4. Attributes Selection

In our prediction assessment of diabetes mellitus prevalence, the data of 10 easily available
attributes/variables, namely age, gender, GLU (glucose level of the patient), BMI (body mass index of
the patient), HYP (hypertension status), HCD (history of cardiovascular disease), FDH (family history
of diabetes), PEX (physical exercise), STW (work stress status), and DIT (diet of the patient, healthy
and unhealthy). Out of 1257 records, 587 patient records were missing values in the body mass index,
glucose level, hypertension, cardiovascular disease, work stress status, family diabetes experience,
physical exercises, and diet lifestyles. Moreover, 389 records were removed from assessment dataset
because of missing values in pre-diabetes status. Therefore, 281 records with 10 variables were used in
the prediction analysis.

2.5. Attribute Parameters

The 10 features selected in this study were characterized as follows. Age and gender represented
demographic characteristics. A patient’s glucose level (mmol/L) has a relation with age and diet.
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Family history of diabetes was defined as any family member previously diagnosed by a physician as
diabetic or pre-diabetic (Yes = 1, No = 0). BMI was calculated as body weight divided by the square of
height in meters and BMI ≥ 25 was defined as overweight. History of cardiovascular disease or stroke
was defined as the patient having been previously diagnosed with coronary heart disease or stroke
by a surgeon (Yes = 1, No = 0). Physical exercise indicated whether the patient engaged in exercise
(Yes = 1, No = 0). Work stress was measured to the patient’s subjective impression (Yes = 1, No = 0).
Diet was measured as a balanced and unbalanced diet (Yes = 1, No = 0). HYP was defined in three
ways: first, a systolic BP (blood pressure) ≥140 mmHg; second, medication for BP control; and third,
diastolic BP ≥ 90 mmHg.

2.6. Data Mining Platform

Waikato Environment for Knowledge Analysis (Weka/v 3.9.2) was used for the preprocessing and
classification assessment of diabetes mellitus by updated plugins of the Kmean clustering algorithm
to assign the class to the dataset of 10 variables for testing as positive and negative status (positive
mean diabetes and negative mean normal status) [34]. The positive patients were declared as high in
diabetes status after assessment and negative as normal for the initial screening by proper forecast
assessment. The advantage of using Weka is the avoidance of overfitting and unnecessary complexity.

In addition, Rule algorithms (PART and Decision table) were adopted for accurate measurements.
Moreover, the logistic regression was utilized on the assessment of classification to forecast diabetes
prevalence for clinical implications.

After data preprocessing, the final dataset included 281 patient records with males and females
and 11 attributes. The population sampling included patients with diabetes mellitus status Type
1 (non-insulin dependent), Type 2 (insulin-dependent), and gestational diabetes. The 11 attributes
included 10 as input attributes and the one as the target attribute. The target attribute consisted of two
classes: one class obtained the diagnosis of diabetes tested positive and the second class was tested
negative by the Kmean finding within the clusters that are more related to each other at the significance
level of 0.05 [35].

Kmean is a typical distance-based cluster algorithm and its distance is measured on similarities.
The process steps of the Kmean are to measure the distance between each object and the centers of the
cluster by Equations (1)–(3), as follows:

S(t)
i =

{
∀ j, 1AjAkXp : ‖Xp −mt

i‖2 ≤ ‖Xp −mt
j‖2∀ j, 1 ≤ j ≤ k

}
∀ j, 1AjAk, (1)

mt+1
i =

1∣∣∣∣S(t)
i

∣∣∣∣
∑

xj∈S(t)i

Xj, (2)

J =
∑k

j=1

∑n

i=1
‖ x( j)

i − cj ‖2, (3)

where n is the number of data points in the i clusters, k is the number of cluster centers, and ‖ x( j)
i − cj ‖

represents the Euclidean distance between x( j)
i and cj. In addition, the Kmean clustering algorithm is

composed of the following steps.

(i) Place the K points into the considerable space as represented by the objects that are being clustered,
which indicate the initial group of centroids.

(ii) Properly assign each object to the group that undoubtedly possesses the most adjacent centroid.
(iii) After assigning all objects, recalculate the prominent position of the K centroid.
(iv) Repeat the second and third step until the centroids are not able to shift significantly more. This

efficiently produces the possible separation of group objects, which can accurately calculate the
matrix to be minimized by Equation (4).
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argmincj∈C dist(ci, x)2. (4)

2.7. Rules Classification

The machine learning algorithms PART and Decision table were utilized for the classification of
the dataset with a 10-fold cross-validation assessment. PART classifications are projected as discrete
rules to conquer the rule methods of any dataset and generate a rule set for a better understanding of
the decision list. In addition, PART works with a combination of C4.5 and Ripper [36]. The paramount
leaf in the rules assessment was generated by the fractional C4.5 decision tree repetitions. It compares
the data to the rules of each list, and vice versa, and assigns the items accordingly.

The decision table summarizes the testing dataset and compares it with the training dataset
generated. In addition, it classifies the unknown dataset samples by the Wrapper method, which
helps to reduce the unknown values and produce better results with higher accuracy and minimal
error rates [37]. The first attribute in the rule tree is the most informative node, which is measured by
Equations (5) and (6):

IA = E(D) −
∑k

i=1

|Di|
|D| E(Di), (5)

E(X) = −
∑m

i=1

count(ci, x)
|x| ·log

count(ci, x)
|x| . (6)

The parameter selected for the PART classifier was 100 as the batch size with false in binary splits
by a confidence interval of 0.25%. The number of objects was set as 2, decimal number places as 2, fold
number as 3, error pruning as false, and seeds value as 1. In addition, the parameters for the Decision
table were 100 as the batch size with a cross value was 1 and the number of decimal places was 2 with
the best first in search results.

2.8. Kappa Statistics

Kappa statistics have the consistency of frequent testing, which provides extended facts about
data collection in the research that is correct for variable measurements. It compares the model results
with the randomly generated classification. We adopted kappa stats measures based on values between
0 and 1 as in Equations (7)–(9) where the value 0 is invalid and 1 is the expected effect of the assessment.
Furthermore, kappa stats indicate the consistency of assessment.

K = [P(A) − P(E)]/[1− P(E)] (7)

P(A) = [(TP + TN)/N] (8)

P(E) = [(TP + FN) ∗ (TP + FP) ∗ (TN + FN)/N2 (9)

2.9. Logistic Regression Forecasting

Logistic regression was implemented on the classification outcomes with the primary objective
to define the initial screening for disease diagnosis and prediction [38]. In most cases, the variables
of the logistic regression work to solve the two-way binary classifications. It predicts the continuous
values to maintain the sensitivity in the numbers field where the values are 0 and 1. The value 1 is
assigned only if the value is greater than the threshold (value > threshold); otherwise, it will be 0.
Hence, the range of output works in the logistic regression is between 0 and 1 with the addition of the
sigmoid function layers measured by Equations (10)–(13):

P = α+ β1X1 + β2X2 + . . .+ βmXm, (10)

σ(x)
1

1 + e−x ∈ [0, 1], (11)
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Pr(Y = +1|X) ∼ β.X, (12)

Pr(Y = −1|X) = 1− Pr(Y = +1|X). (13)

It consists of a positive and a negative group of values. The variable X will be assigned to the β
coefficient values, which represent the weight. Y indicates the patients with diabetes. The variations
between the values X and Y occur on the basis of weight.

The parameters selected for the logistic regression forecast was 1 for a number of time units. The
confidence interval was set at 0.95%. The M5 method was chosen for attribute selection with a batch
size of 100, and the ridge was set as 1.0 E-8. After accurately setting up, it is easy to predict the outcome
of positive or negative. The sigmoid function σ(x) proposition is described as follows:

Proposition 1. A function f : (0,1)→ R is absolutely a monotone on (0,1) if and only if it possesses a
power series expansion with non-negative coefficients, converging for 0 < x < 1.

Proof. If (f ) function is completely monotone in (0,1), then the power series expansion of (f ) function
in (0,1) has to be alternating because (−1)k f k ≥ 0. On the other hand, consider an alternating power
series of function f (x) converging for all 0 < x < 1 and its derivatives by Equations (14)–(16):

f (x) = a0 − a1x + a2x2 − a3x3 . . . ai ≥ (0 < x < 1), (14)

(−1) f 1(x) = a1 − 2a2x + 3a3x3 + . . . , (15)

f 2(x) = 2a2 − 6a3x + . . . (16)

�

3. Results

A total of 281 diabetes patients were evaluated; 121 (43.06%) were male and 160 (56.93%) were
female. Among the 281 records, 256 (91.10%) were not dependent on insulin (Type 1), 14 (4.98%) were
Gestational, and 11 (3.91%) were insulin dependent (Type 2). Initially, the dataset was divided into a
20:80 ratio for conducting training and testing. After training the machine, a 10-fold cross-validation
technique was implemented on an experimental platform of Weka for better assessment of the
classification. The dataset was divided into 10 samples. Each sample was utilized as validation data
from the retention process, while the remaining nine samples served as the training data. This process
was performed 10 times. The advantage of this process is the reduction in the error ratio and bias
correlation by random sampling.

3.1. Measurements

Initially, the PART rule classifier was tested on the dataset to measure the classification accuracy
with the seed of random numbers selected for XVal. The percentage was 1, the confidence factor was
0.25%, the minimum number of objects was 2, and the number of folds was set to 3. After loop tests,
the average accuracy of the final result was 99.28%. Secondly, the same measurement was tested on the
Decision table rule classifier. The final result with an average accuracy of 98.22% was obtained in 0.77 s.
The subset value was 99.60%, and the average error was 0.03%. By employing the rule classification
(PART and Decision table), good predictive rules were obtained for the patient’s care. The outcomes in
the initial phase were the most appropriate with a mean accuracy of 98.75%; the error rate remained
at 0.02%.

The results obtained for the classification accuracy are presented in Table 1 along with the attribute
details and the clustering instances for the classification. It is comprised of three sections. The
first section discusses the details of the properties used for the Weka platform for assessment, with
281 patients describing their age limits by classification type and improving the evaluation of positive
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and negative tested weights. Additionally, it provides accurate information and average classification
accuracy for PART and Decision table rule classifiers, including kappa statistics, mean error, true
positive rate, false positive rate, accuracy, recall rate, F-measure, Matthew’s correlation curve (MCC).,
Receiver operating characteristics (ROC), Precision recall curve (PRC) area ratios, and the time it takes
for a prediction analysis [39,40].

Table 1. Diabetes type and the number of patients classified for the Rule assessment.

Diabetes Type
Patients

Age Weight
“0”

Missing
Values

Attributes
Class

(N = 281) T_N T_P

NID 256
>10 <87

256.0
11 87 194GTD 14 14.0

IND 11 11.0

Classification PART Rule % Decision Table Rule %

Total number of diabetes mellitus patients from age >10 and <87 (N = 281)

• From age ≤20 = 2 patients
• From age >20 and ≤40 = 58 patients
• From age >40 and ≤60 = 144 patients
• From age >60 and ≤80 = 76 patients
• From age >80 = 1 patient

Accuracy 99.28 98.22
Kappa statistics 0.98 0.96

Mean absolute error 0.01 0.03
True positive rate 0.99 0.98
False positive rate 0.01 0.01

Precision 0.99 0.98
Recall 0.99 0.98

F-Measure 0.99 0.98
MCC 0.98 0.96

ROC area 0.99 0.99
PRC area 0.99 0.99

Time taken to build the model 0.10 s 0.77 s
Average accuracy 99.28 98.22

Mean average accuracy 98.75%

Values
Counts

Ratio
Cluster by Class Cluster by Diabetes Type

(N’ = 281) T_N T_P NID GTD IND

0 138 49% 47 91 128 7 3
1 143 51% 40 103 128 7 8 1

1 NID = not insulin dependent; GTD = gestational diabetes patients; IND = insulin dependent; MCC =Matthew’s
correlation curve; ROC = Receiver operating characteristics; PRC = Precision recall curve; N = number of patients;
≥greater than; ≤less than; % = percentage value; T_N = tested negative; T_P = tested positive; Values = two clusters
0 and 1; N´ = total number of classified patients.

The details of the cluster instance, as shown in Figure 4, was tested and classified as
positive/negative. Out of 281 instances, 138 (49.11%) were classified as the 0 cluster instance, among
them 47 (16.72%) were tested as negative, and 91 (32.38%) were tested as positive. One hundred
and forty-three (50.88%) were classified as a cluster 1 instance from which 40 (14.23%) were tested
as negative and 103 (36.65%) were tested as positive. In the final assessment, 51% were classified as
positive and 49% instances as negative. The values of these classifications were used as input to the
regression prediction phase.
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Figure 4. Evaluation of the Kmean clusters tested as positive and negative.

3.2. Rule Forecast Assessment

The predictive analysis represents the assessment for decision-making by determining the ratio
of patient characteristics. The forecast analysis obtained in the study is graphically displayed in
Figure 5a–g, and the 23 rules achieved through the rule classification measurements are described in
Table 2 in terms of the patients’ initial screening stage of healthcare.

(a) 

Figure 5. Cont.
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(b) 

(c) 

(d) 

Figure 5. Cont.
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(e) 

(f) 

(g) 

Figure 5. (a–g) The regression prediction assessment of the seven main features used for the analysis of
clinical significance.
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Table 2. Twenty-three if-then rules achieved from the classification analysis.

Twenty-Three If-Then Rules Extracted from the Assessment Are:

Rule 1:
IF the patient’s glucose level is (>101); THEN the patient is classified as tested
positive with diabetes.

Rule 2:
IF the patient’s glucose level is (>72); THEN the patient is classified as tested
positive for diabetes, but the patient has to screen through the second stage test.

Rule 3:
IF the patient’s blood pressure is (≤100); THEN the patient is classified as tested
negative for diabetes but this case also depends on the glucose level of the patient,
which takes patients for screening of the second stage.

Rule 4:
IF the patient’s blood pressure is (<100); THEN the patient is classified as tested
negative for diabetes but the patient has to go through the second stage of
screening.

Rule 5:
IF the patient’s (age ≤ 49) and (BMI ≤ 25) and the patient also has no diabetes in
their family history; THEN the patient is classified as tested negative for diabetes.

Rule 6:
IF the patient’s (age ≤ 34) and (BMI > 25) and the patient also has no diabetes in
their family history and patient’s diet is unbalanced; THEN the patient is
classified as tested negative for diabetes.

Rule 7:

IF the patient’s age is from (35 ≤ 49) and (BMI > 25) and the patient also has no
diabetes in their family history and the patient’s diet is unbalanced and the
patient is without physical exercise; THEN the patient is classified as tested
positive for diabetes.

Rule 8:

IF the patient’s age is from (35 ≤ 49) and (BMI > 25), and the patient also has no
diabetes in their family history, the patient’s diet is unbalanced, and the patient is
with physical exercise but has no history of cardiovascular disease; THEN the
patient is classified as tested negative for diabetes.

Rule 9:

IF the patient’s age is from (35 ≤ 49) and (BMI > 25), and the patient also has no
diabetes in their family history, the patient’s diet is unbalanced, and the patient is
with physical exercise but has no history of cardiovascular disease; THEN the
patient is classified as tested positive for diabetes.

Rule10:
IF the patient’s age is (≤49) and (BMI > 25), and the patient also has no diabetes in
their family history and the patient’s diet is balanced; THEN the patient is
classified as tested negative for diabetes.

Rule11:
IF the patient’s age is (≤49) and (BMI ≤ 25), and the patient also has diabetes in
their family history; THEN the patient is classified as tested negative for diabetes.

Rule12:
IF the patient’s age is (≤49) and (BMI > 25), and the patient also has diabetes in
their family history; THEN the patient is classified as tested positive for diabetes.

Rule13:
IF the patient’s age is (>49) and (BMI ≤ 25), and the patient also has a high work
stress but no diabetes in their family history; THEN the patient is classified as
tested negative for diabetes.

Rule14:
IF the patient’s age is (>49) and (BMI > 25), and the patient also has a high work
stress but no diabetes in their family history; THEN the patient is classified as
tested positive for diabetes.

Rule15:
IF the patient’s age is (>49) and the patient has a high work stress, and also has
diabetes in their family history; THEN the patient is classified as tested positive
for diabetes.

Rule16:
IF the patient’s age is (>49) and (BMI >25), and the patient’s work stress is low
and also has no diabetes in their family history but their diet is unbalanced;
THEN the patient is classified as tested positive for diabetes.

Rule17:
IF the patient’s age is (>49) and (BMI > 25), and the patient has no diabetes in
their family history and has a balanced diet; THEN the patient is classified as
tested negative for diabetes.

Rule18:
IF the patient’s age is (>49) and (BMI > 25), and the patient’s work stress is low
but they have diabetes in their family history; THEN the patient is classified as
tested positive for diabetes.
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Table 2. Cont.

Twenty-Three If-Then Rules Extracted from the Assessment Are:

Rule19:
IF the patient’s age is (>49) and (BMI ≤ 25), and the patient has a low or medium
work stress with hypertension and also their food is not balanced; THEN the
patient is classified as tested positive for diabetes.

Rule20:

IF the patient is male with age (>49) and (BMI ≤ 25), and the patient has a low or
medium work stress without hypertension and also their food is not balanced but
they have diabetes in their family history with cardiovascular disease; THEN the
patient is classified as tested positive for diabetes.

Rule21:

IF the patient is male with age (>49) and (BMI ≤ 25), and the patient has a low or
medium work stress without hypertension and their diet is not balanced, and
they have cardiovascular disease history in their family; THEN the patient is
classified as tested negative for diabetes.

Rule22:
IF the patient is female with age (>49) and (BMI ≤ 25), and the patient has a low
or medium work stress without hypertension and their diet is not balanced;
THEN the patient is classified as tested negative for diabetes.

Rule23:
IF the patient’s age is (>49) and (BMI ≤ 25), and the patient has a low or medium
work stress with balanced diet; THEN the patient is classified as tested negative
for diabetes.

The prediction assessment by logistic regression used in this study for clinical significance was
analyzed by the confidence interval of 0.95%. The patient features used were age, blood glucose, body
mass index, physical exercise, family history of diabetes, family cardiovascular history, and work stress
by the M5 method in regression. The results of the forecast prediction for diabetes mellitus patients
on the age feature show that patients up to 51 years could have a high death risk if the ratio of other
features include a glucose level of 120.45 mmol/L, BMI ≥ 23, physical exercise between 0.5 to 0.6, family
diabetes history of 0.6, cardiovascular stroke history of 0.61, and a work-stress ratio count of 1.08.

4. Discussion

In this study, a machine-learning technique was instigated on a data-mining platform with a
dataset of 281 patients suffering from diabetes. The data was collected only from Nigeria for the
assessment of diabetes mellitus prevalence by determining two rule classifiers (PART and Decision
tables) on 10 non-invasive and easily accessible medical attributes/variables. They include age (age of
the patient), gender (male and female), glucose level of the patient, body mass index of the patient,
hypertension, history of cardiovascular disease, family history of diabetes, physical exercise, stress of
work, and diet of the patient (healthy and unhealthy) to accurately measure diabetes mellitus ratio for
rapid and precise screening of patients suffering with diabetes mellitus status along with other chronic
disease symptoms.

Initially, during the assessment on the data mining platform (Weka), the dataset was divided into
two parts for training and testing in a 20:80 percent ratio. Twenty percent of the training data was used
to train the machine and assess the outcome. Whereas, 80 percent of the data was used for testing.
Furthermore, a complete dataset of 281 patients was analyzed on the experimental mode of Weka for
the final assessment of both classifiers together. The results of the Rule classification show the mean
accuracy of 98.75% with an error rate of 0.02%. In addition, the mean kappa stats were 0.97%, true
positive rate remained 0.97%, false positive rate 0.01%, precision 0.98%, recall 0.98%, F-matrix 0.98%,
MCC 0.97%, ROC area ratio 0.99%, and PRC area ratio 0.99%.

The outcomes of the non-invasive medical features used in this study indicate this assessment can
successfully help to predict the patients of diabetes and pre-diabetes without the need for preliminary
laboratory tests. In addition, the 23 rules generated during the assessment clearly show the main
features of individuals with diabetes. Therefore, this study raises the prediction that age is the
underlying and root variable, followed by a family history of diabetes, body mass index, gender,
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work stress, physical exercise, diet lifestyle, hypertension, and cardiovascular family history. These
implementations are useful for substantial epidemiological threats and low socioeconomic status
regions around the world, such as Africa and other developing states.

The key strength of this study is its use of a unique approach to both classifiers with logistic
regression assessment to identify and forecast diabetes mellitus prevalence. Moreover, the use of
realistic health records collected from the four principal hospitals in the developing country of Nigeria
where the prevalence proportion of diabetes in men and women is high and explicitly mentioned
in the literature study. Hence, patients with diabetes mellitus can be screened by 23 generated
rules. Diabetes mellitus can be controlled through organizing appropriate educational programs in
developing countries to govern the widespread growth of diabetes mellitus. This can help people
reduce the burden of health hitches through awareness-raising activities. The classification assessment
proposed in this paper was set to test other well-known machine learning algorithms by the same data
to evaluate and compare classification accuracy results. Table 3 and Figure 6 clearly show that PART
and Decision table rule classifiers have been successful in clinically meaningful research.

Table 3. The rule classification average precision is compared to other machine learning classifiers
based on the same dataset.

Method Accuracy% Mean%

PART rule 99.28
98.75%Decision table rule 98.22

MLP 73.82
Discrim 77.54
Logdisc 78.22

KNN 94.29
Logistic 85.35

BayesNet 74.76
NaïveBayes 76.35

Random Forest 76.66
LogitBoost 93.93

J48 98.17
SGD 76.62
SMO 77.26
ANN 89.84
RBF 75.71
FCM 94.78 1

1 It comprehensively compares the proposed classification results with the other machine learning classifiers on the
same dataset.
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Figure 6. Comparisons of the rule classifier with other machine learning classifiers.

Limitation

The dataset was divided into a 20:80 percentages. Initially, 20% was utilized for machine training
and 80% were used for testing. Furthermore, 100% with 281 instances were used in performing
experiments on Weka to achieve the mean accuracy of both classifiers. This assessment study holds
two limitations. One comprises a division of training and testing data for the meta-dataset and the
second is the time taken to test the metadata for classification. If the metadata is analyzed on the
same platform, the processing time can increase. However, it depends on the type of dataset used,
the number of seeds input, and the number of experiments performed for acquiring the desired results.

5. Conclusions

This study implements the machine learning rule classifiers (PART and Decision table) on a data
mining platform to identify possible diabetes and pre-diabetes in the initial clinical screening of a
patient through logistic regression forecast assessment analysis. Two hundred and eighty-one diabetes
mellitus patients have been analyzed with 10 easily available non-invasive medical features collected
from four main hospitals located in northwestern Nigeria. The classification assessment accuracy was
98.75% and it was achieved through a set of 23-decision screening rules that can successfully influence
accurate initial clinical screening of diabetes mellitus and pre-diabetes patients.

Additionally, the obtained Rules classified the most considerable risks and suggest that diabetes
prevention and education programs can be applied in targeted community interventions. The study
helps in the initial diagnosis of diabetes and reduces healthcare organization problems. Therefore,
such a study is found extremely significant for the states and regions with extreme epidemic risk ratios
and low socioeconomic status across the globe.
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Nomenclature

PART Projective adaptive response theory
F-measure Frequency matrix
CI Confidence interval
MCC Matthews’s correlation coefficient
DR Decision rules
DM Diabetes mellitus
T2DM Type 2 diabetes mellitus
GLU Glucose level
BMI Body mass index
HYP Hypertension
HCD History of cardiovascular disease
FDH Family diabetes history
PEX Physical exercise
STW Work stress
DIT Diet
LR Logistic regression
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Abstract: Bacterial infections are a major global concern, since they can lead to public health problems.
To address this issue, bioinformatics contributes extensively with the analysis and interpretation of in
silico data by enabling to genetically characterize different individuals/strains, such as in bacteria.
However, the growing volume of metagenomic data requires new infrastructure, technologies,
and methodologies that support the analysis and prediction of this information from a clinical point of
view, as intended in this work. On the other hand, distributed computational environments allow the
management of these large volumes of data, due to significant advances in processing architectures,
such as multicore CPU (Central Process Unit) and GPGPU (General Propose Graphics Process Unit).
For this purpose, we developed a bioinformatics workflow based on filtered metagenomic data
with Duk tool. Data formatting was done through Emboss software and a prototype of a workflow.
A pipeline was also designed and implemented in bash script based on machine learning. Further,
Python 3 programming language was used to normalize the training data of the artificial neural
network, which was implemented in the TensorFlow framework, and its behavior was visualized
in TensorBoard. Finally, the values from the initial bioinformatics process and the data generated
during the parameterization and optimization of the Artificial Neural Network are presented and
validated based on the most optimal result for the identification of the CTX-M gene group.

Keywords: machine learning; metagenomics; bioinformatics; CTX-M

1. Introduction

Within the field of bioinformatics, researchers use metagenomics approaches to characterize
microbial genomes directly isolated from the environment [1]. For this, new sequencing technologies
generate large volumes of data to be analyzed, due to the abundant varieties of species that can be
found in metagenomics samples, which are characterized by sequences of short length and high
complexity. In addition, with the possibility of discovering new species, the problem of taxonomic
assignment of reads of short DNA sequences becomes extremely challenging [2]. In this respect,
metagenomics is considered as the field of study of many genomes in different environments that may
even be compartments or regions of living beings, such as mucous membranes and intestines, among
others. Therefore, metagenomics is a challenge for computer science researchers who seek to develop
methods to understand such amount of genetic information [3]. Concerning the area of computational
intelligence, this work deals with a technique already known and validated with artificial neural
networks. According to [3] Soueidan and Hayssam (2016), machine learning techniques currently offer
a large set of promising tools to build predictive models for the classification of biological data. These
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tools are built under different frameworks offering the possibility of implementing supervised and
unsupervised techniques (clustering), among others.

CTX-M-type enzymes are a group of class A extended-spectrum β-lactamases (ESBLs) that are
rapidly spreading among Enterobacteriaceae worldwide. The first recognition of the appearance of
CTX-M β-lactamases occurred almost simultaneously in Europe and South America in early 1989. The
first publication to recognize an ESBL from the CTX-M group was a report presenting a species of
E. coli resistant to cefotaxime but susceptible to ceftazidime, isolated from the ear of a four-month-old
child suffering from otitis media in Munich [4].

At the regional level, the Manizales Antibiotic Resistance Group (GRAM) is in charge of presenting
the accumulated antibiotic resistance data of the main hospitals in the city. Among total isolates from
patients in intensive care units, non-intensive care units and emergencies, the main bacteria identified
are Enterobacteriaceae such as Escherichia coli, Klebsiella pneumoniae, and Eneterobacter cloacae, among
others. All of these species display the capacity to carry ESBL genes of the CTX-M group. In addition,
according to the antibiotic susceptibility analyses carried out by different clinics in the city, resistance
to cefotaxime (cephalosporin with a broad hydrolysable spectrum by CTX-M) ranges between 15%
and 35% [5]. This means that, in Manizales, up to one out of every three isolates of this bacterial group
is suspected of carrying a CTX-M-type ESBL. The high frequency of this type of ESBL in our context
highlights the importance of this type of developments for antibiotic surveillance processes based on
metagenomic data.

The validation of this pipeline allows us to extend this analysis for other important genes such
as TEM, SHV, metalloenzymes, carbapenemases that are probably prevalent in our regional context,
considering the characteristics of the population, the clinical management protocols of patients and
health, and asepsis in operating rooms. Since this is a common problem, the development of a pipeline
that allows the identification of resistance variants becomes a fundamental step in the establishment
of a modern antibiotic surveillance system. The subsequent goal of this study will be to test this
development on metagenomic data derived from the surveillance process, in collaboration with
research groups in this field.

1.1. Metagenomics

According to the National Center for Biotechnology Information (NCBI) [6], metagenomics is an
area of bioinformatics that has evolved significantly in the last ten years, contributing on a large scale to
microbiology. In the same manner, this relatively new “omic” science has made surprising discoveries
in microbial taxonomy, revealing new capabilities and functionalities of different biomes [7].

Metagenomics is analyzed through computation and bioinformatics, especially with the use of
different information discovery techniques. From this field, we try to discover patterns within this
data to extract information that may be relevant for biologists, pharmacologists, chemists and/or
bioinformaticians. This information contributes to the solution of different pathologies related to
microbial attacks.

New techniques have been developed to analyze large volumes of information from large amounts
of metagenomic data, being big data and machine learning the most widely used [8]. These techniques
use distributed computational environments of large capacity that allow more efficient processing and
reduce computing times in a significant way.

1.2. Machine Learning

Machine learning seeks to answer a very concrete question: How can we build computer
systems that automatically improve with experience, and what fundamental laws govern this teaching
process? [9]

Through this discipline, it is possible to implement new methods that help researchers in making
new findings. Machine learning techniques are used, for example, to learn about models of gene
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expression in cells and other applications in bioinformatics, more specifically in metagenomics [10].
One can talk about three types of algorithms within the current machine learning techniques:

Supervised: Data training consists of labeled entries and known outputs that the machine analyzes
while relabeling. There are many applications of supervised algorithms in bioinformatics to solve
problems [11], which are based on information from adequately characterized genes.

Unsupervised: This type of analysis of unlabeled and categorized data is based on similarities that
have been identified. In this case, the machine can cluster the data based on shared characteristics.
Techniques that use unsupervised algorithms are often used for problems in which humans cannot
clearly infer patterns, that is, it requires exhaustive observation to identify such patterns. It is also a
technique that allows determining behaviors based on different interpretations.

Semi-supervised: This analysis refers to a combination of the two previously mentioned techniques.
It is used in large data sizes when the labels of some of these data are known. Unsupervised learning
is based on the analysis of unlabeled data to group them, while techniques of supervised learning
are used to predict the labels of this group formed by the first technique. Artificial Neural Networks
(ANN) are a known approach to address complex problems, as neural networks can be implemented
at the hardware or software level and, in turn, can use a variety of topologies and learning algorithms.

2. Materials and Methods

2.1. Selection of the CTX-M and Metagenome Baseline Reference Database for the Study

First, we based our selection on previous work by [12] Núñez in 2016 (unpublished data),
where all the CTX-M reported groups are already considered. After a review of the state of the art,
we consolidated the CTX-M database, previously filtered by the analysis of phylogenetic trees carried
out by [12] Núñez. Subsequently, the reference metagenome to be studied was selected through a
search in the EBI-Metagenomics database (https://www.ebi.ac.uk/metagenomics/), considering the
high probability that the CTX-M gene was present. We reviewed the following four metagenomes and
selected only one as input to develop the prototype:

1. https://www.ebi.ac.uk/metagenomics/projects/ERP001506
2. https://www.ebi.ac.uk/metagenomics/projects/ERP020191
3. https://www.ebi.ac.uk/metagenomics/projects/ERP016968
4. https://www.ebi.ac.uk/metagenomics/projects/ERP009131

The metagenome selected was antibiotic resistance within the preterm infant gut (https://www.ebi.
ac.uk/ena/data/view/PRJEB15257). Upon selection of the reference metagenome, we filtered the data by
following the pipeline described in Figure 1. The filtered metagenomics data was then prepared and
machine learning techniques were applied according to the computational pipeline shown in Figure 2,
where we assessed the accuracy and cost of the artificial neural network. A brief description is as
follows: the filtered metagenome from the first pipeline is provided as input; the data are transformed
by the conversion of nucleotide to binaries and the resulting binarized data are input to the ANN
(Artificial Neural Network); the ANN is implemented; and accuracy and cost metrics are assessed.

Figure 1. Details of the bioinformatic pipeline.
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Figure 2. Details of the computational pipeline.

We mapped the CTX-M reference database to the sample metagenome using Duk tool
(Li, Mingkun, et al., 2018) to eliminate information not relevant for the study. We obtained a
consolidated CTX-M database with a total of 211 reference sequences in FASTA (file format for
bioinformatics data). As initial mapping parameters, we used k-mers of 16 (default) and 63 for test
mappings. Next, we optimized mapping parameters following Algorithm 1.

Algorithm 1. Bioinformatic pipeline for filtering and formatting input data.

Parameterize the initial mapping with Duk using odd K-mers.
Execute tests using different K-mers.
Name: Pre-filter CTX-M
Start

For k-mer values between 17 and 65
Do

Execute duk with each k-mer against the reference database
Save results in a single file “duk_results”

Finish do
Best_K-mer < 0
Best p-value < 0
For each line in “duk_results” file
Do

Find p-value of each k-mer
If (P-value found is larger than Best p-value)

Best p-value < p-value found
Best_K-mer < k-mer found

End if
Convert output file of best k-mer to FASTA format
Format the FASTA file for the ANN (X, y)
For each end of CTX-M sequence
Do

Separate CTX-M group from each sequence.
Finish do

End

Based on the initial analysis, k-mers 17, 19 and 21 were found to be the best. Additionally,
we validated the results through an NCBI BLAST search of the contig obtained after adjusting the
k-mer to 17 and 19 to conclusively verify that this sequence corresponds to bacteria with the CTX-M
gene. The pipeline can be downloaded here:

https://github.com/dhcl1580/machinelearniginmetagenomicstesis.

2.2. Defining an Optimal Neural Network Architecture

An exhaustive review of the existing literature was performed to define the architecture of
the neural network for metagenomics. We evaluated different machine learning models focused
on improving the precision of the techniques applied in neural networks, such as random forest,
or algorithms based on decision trees [13]. None of the studies reviewed take into account a particular
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architecture, whereby the main goal is to obtain a reduction in the cost function to guarantee that the
neural network apprenticeship is being carried out. Conversely, this study proposes an architecture of
a multi-layer perception neuronal network (Figure 3), because of the importance of the high sensitivity
that different neurons show in each of their layers concerning the activation functions, weights,
and epochs. This interaction allows considering more parameters when training and validating such
an architecture, taking into account its performance [14].

Figure 3. Details of the architecture of ANN (Artificial Neural Network).

2.3. Data Standardization for the Neural Network

To establish an appropriate training dataset for the proposed neuronal network, we developed
a routine in Python 3 in charge of normalizing the data obtained, where basically a binarization of
the CTX-M nucleotide sequences is carried out. All sequences are standardized to the value of the
longest identified sequence, and additional spaces are defined by the value N. The result is the file
“dataGen.csv”, where a total of 3896 values are generated for X and the 10 groups of CTX-M (Table 1).
The 10 most representative classes were selected to ensure a uniform distribution of classes for stratified
cross validation in Stage 2 (validation). Initially, there were 17 classes from which only those with
sequences represented at least four times within the test and validation dataset were selected. Each of
the 10 classes corresponds to the following CTX-M groups, respectively (Table 1).
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Table 1. CTX-M group and correspond class selected for the study.

Group CTX-M Class

1.0 0

9.0 1

14.0 2

15.0 3

22.0 4

24.0 5

27.0 6

55.0 7

59.0 8

65.0 9

3. Analysis of Results

3.1. Analysis of the Graph Resulting from the ANN

Figure 4 shows how the graph of the ANN is built. In this graph, it is possible to observe how the
nodes are distributed and how these interaction to the process data.

 
Figure 4. Details of the ANN (Artificial Neural Network) components and the cost, accuracy,
optimization and model definition tensors.
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3.2. Training Stage Over CPU an GPGPU

The activation functions tanh and sigmoid were experimented with RELU (Rectified Linear Units),
where the parameters LEARNING_RATE, TRAINING_EPOCHS, and HIDDEN_SIZE were varied,
obtaining the results presented below for each function. Table 2 shows the parameters that varied in
each experiment. The Figures 5–7 show the correspond graphics.

Table 2. Summary of target values during the training stage under CPU (Central Process Unit).

Activation
Function

LEARNING_
RATE

TRAINING_
EPOCH

HIDDEN_
SIZE

Initial
Cost

Value

Final
Cost

Value

Accuracy
of Initial
Training

Accuracy
of Final
Training

Precision
Test

Tanh 0.001 400 200 2.17 0.80 0.260 0.960 0.879

Sigmoid 0.001 400 200 2.19 1.61 0.030 0.680 0.698

RELU 0.001 300 200 2.19 0.00 0.110 1 1

The best values were obtained using the tanh activation function in this experiment.

Figure 5. Values of accuracy using tanh function over CPU (Central Process Unit).

Figure 6. Values of cost using tanh function over CPU (Central Process Unit).
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Figure 7. ROC (Receiver operating characteristics) analysis for the tanh activation function over CPU
(Central Process Unit).

The best values were obtained using the tanh activation function in the other step, the Table 3
show the values ant the Figures 8–10 show the correspond graphics.

Table 3. Summary of target values during the training stage under GPU (Graphics Process Unit).

Activation
Function

LEARNING_
RATE

TRAINING_
EPOCH

HIDDEN_
SIZE

Initial
Cost

Value

Final
Cost

Value

Accuracy
of Initial
Training

Accuracy
of Final
Training

Precision
Test

Tanh 0.001 400 200 2.16 0.84 0.380 0.920 0.909

Sigmoid 0.001 400 200 2.20 1.67 0.440 0.560 0.628

RELU 0.001 300 200 1.90 1.00 0.590 1 1

Figure 8. Values of accuracy using tanh function over GPU (Graphics Process Unit).
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Figure 9. Values of cost using tanh function over GPU (Graphics Process Unit).

Figure 10. ROC (Receiver operating characteristics) analysis for the tanh activation function over GPU
(Graphics Process Unit).

4. Discussion

4.1. Conclusions for the Tanh Activation Function

We found that the ANN showed the most optimal behavior under the tanh activation function for
the training stage. The reference value was 0.879 for the precision test that varied the training epoch
and hidden size parameters. Precision and cost behaviors were as expected, considering that the cost
decreased and the precision increased for all the evaluations proposed under different parameters.
Another relevant conclusion is that, according to the ROC analysis, the classes that are least likely to be
identified under these ANN parameters are classes 2 and 6.

4.2. Conclusions About the Dataset

Regarding the dataset, we can conclude that, for future work, it is advisable to consider more
CTX-M contigs. In this study, the 10 most representative groups were considered, yet some of the
groups were not representative enough to be able to carry out a stratified cross validation. This was
particularly true for the experimentation in the validation stage, in which 20% of the initial dataset was
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used for this validation. Regarding the dataset, we can conclude that more CTX-M contigs should be
considered for future studies.

4.3. Perspective

In a future study, we propose to validate a more significant number of metagenomes corresponding
to the geographical area of influence, aiming to support the design of public policies related to the
prevention and detection of infectious diseases. To corroborate the final results more accurately, other
types of metrics, especially histograms, would be considered, taking advantage of the fact that they
can be generated by the TensorBoard tool. Finally, we recommended to continue with the training
process with other genes such as TEM, SHV, metalloenzymes, carbapenemases, so that this software can
identify a higher number of infectious diseases with the same characteristics.
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Abstract: Clustering techniques can group genes based on similarity in biological functions. However,
the drawback of using clustering techniques is the inability to identify an optimal number of
potential clusters beforehand. Several existing optimization techniques can address the issue. Besides,
clustering validation can predict the possible number of potential clusters and hence increase the
chances of identifying biologically informative genes. This paper reviews and provides examples of
existing methods for clustering genes, optimization of the objective function, and clustering validation.
Clustering techniques can be categorized into partitioning, hierarchical, grid-based, and density-based
techniques. We also highlight the advantages and the disadvantages of each category. To optimize the
objective function, here we introduce the swarm intelligence technique and compare the performances
of other methods. Moreover, we discuss the differences of measurements between internal and
external criteria to validate a cluster quality. We also investigate the performance of several clustering
techniques by applying them on a leukemia dataset. The results show that grid-based clustering
techniques provide better classification accuracy; however, partitioning clustering techniques are
superior in identifying prognostic markers of leukemia. Therefore, this review suggests combining
clustering techniques such as CLIQUE and k-means to yield high-quality gene clusters.

Keywords: gene clustering; swarm intelligence; biological functions detection; informative genes

1. Introduction

Analysis of gene expression levels is essential in studying and detecting genes functions. According
to Chandra and Tripathi [1], genes that have similar gene expression levels are likely to involve similar
biological functions. The authors showed that the clustering process was quite useful to identify
co-expressed genes in a group of genes and, in addition, to detect unique genes in different groups.
Therefore, clustering can be quite helpful to extract valuable knowledge from a large amount of
biological data [2], which could lead to prevention, prognosis, and treatment in biomedical research.
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Cai et al. [3] developed a random walk-based technique to cluster similar genes. The authors show
that the proposed method was useful in strengthening the interaction between genes by considering
the types of interactions that exist in the same group of genes. Many previous random walk-based
methods managed to extract local information from a large graph without knowledge of the whole
graph data [4]. In a random walk-based method, a gene is important if it interacts with many other
genes [5–8]. As illustrated in Figure 1, gene 1 has a higher degree than gene 2 (two outgoing links)
compared to one outgoing link from gene 3 to gene 4. In this case, gene 1 is the most important gene
among the four genes shown in the hypothetical gene network.

 
Figure 1. A hypothetical gene network to illustrate the importance of genes in a random walk.

Several previous studies have noted the importance of clustering to identify co-expressed genes
in a cluster and inactive genes in another cluster [1,9]. Clustering can also discover the fundamental
hidden structure of biomedical data, which can be used for diagnosis and treatments [9]. In addition,
clustering is extremely vital for identifying cancer subtyping and the detection of the tumor.

Researchers typically focus on clustering by assuming the number of clusters beforehand, which
can be seen in [10,11]. This problem can lead to the inability of the clustering techniques to obtain an
optimal number of centroids and hence results in poor quality of clusters [11,12]. In previous studies,
several proposed approaches managed to discover the optimal number of clusters by simply tuning
and optimizing the parameters of the clustering method. This can be done by repeating the process of
analyzing the eigenvalues of the affinity matrix, which are equal to the number of desired clusters [13].
In addition, rotating normalized eigenvectors and squared-loss mutual information (SMI) can be
employed in the clustering process to obtain an optimal number of clusters [14,15]. Besides, the elbow
method and the average silhouette method are the other examples to identify the optimal number of
clusters in previous studies [15,16]. The elbow method identifies the optimal number of clusters by
calculating sum of squared error for each number of clusters (k) from a range of k values. The average
silhouette method computes the average silhouette values of genes for different values of k (number
of clusters). Then, this method selects the optimal number of clusters that has the maximum average
silhouette values from the range of k values. Optimization of the objective function and validation
of clustering can improve the quality of clusters [11]. The optimization for the objective function of
clustering can identify the best solution among a set of solutions. On the other hand, clustering validation
is used to determine clusters in the data using an appropriate measurement [17]. Clustering validation
can also evaluate the goodness of the clustering structure based on the given class labels [18]. Thus,
validation is an essential step because it assists in the identification of which cluster is more informative
compared to other clusters [19].

This paper focuses on reviewing existing computational methods on genes clustering using the
notion of optimizing the objective function and validation.

2. Gene Network Clustering Techniques

In general, clustering can be categorized into partitioning, hierarchical, grid-based, and
density-based techniques [11,17,20–22]. In Table 1, we show differences among categories of clustering
techniques. The table also provides some information such as time complexity, computing efficiency,
convergence rate, scalability, and initialization of cluster number. Partitioning clustering assigns the
data objects into a number of clusters fixed beforehand. This technique identifies the number of
centroids and assigns the objects to the nearest centroid. Hierarchical clustering groups the data based
on the distance of the objects to form clusters. This technique can be either started with large data
and aggregated into a small group or started from a small group of data and merged until all the
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data are in one large group. Grid-based clustering divides each dimension of data space to form a
grid structure. Density-based clustering separates the data according to the density of the objects.
Traditionally, hierarchical, grid-based, and density-based techniques do not require cluster number
as an input parameter [20,23]. In the view of Jain [17], hierarchical clustering is more versatile than
partitioning clustering. With the discovery of clusters with good robustness and flexibility, grid-based
and density-based techniques have been particularly useful [24]. They are also helpful for dealing with
large spatial data and the proper use of expert knowledge. Grid-based and density-based techniques
also aim to identify data densities and to split the data space into grid structures when looking
for groupings [25]. Grid-based clustering techniques are more efficient compared to density-based
clustering techniques; however, the use of summarized information makes these techniques lose
effectiveness in cases where the number of dimensions increases [26].

Table 1. Differences among categories of clustering techniques.

Categories
Time

Complexity
Computing
Efficiency

Convergence
Rate

Scalability
Initialization of
Cluster Number

Partitioning Low High Low Low Yes
Hierarchical High High Low High No
Grid-based Low High Low High No

Density-based Middle High High High No

In Table 2, we present several examples of clustering techniques done by previous researchers.
The table also summarizes the advantages and the disadvantages of the techniques. From this table,
k-means clustering is the most popular technique, even though k-means suffers from the shortcoming
of identifying the number of potential clusters before the clustering setup.

Table 2. Examples of popular clustering techniques along with their advantages and disadvantages.

Clustering Techniques Categories Advantages Disadvantages References

Fuzzy C Means (FCM) Partitioning
Minimize the error function belonging
to its objective function and solve the
partition factor of the classes.

Unable to achieve
high convergence. [27,28]

K-means Clustering Partitioning
Use a minimum “within-class sum of
squares from the centers” criterion to
select the clusters.

Need to initialize the number
of clusters beforehand. [9–12,29–33]

Partitioning Around Medoids
(PAM) Partitioning

Deal with interval-scaled
measurements and general
dissimilarity coefficients.

Consumes large central
memory size. [34]

Self-Organizing Maps (SOM)s Partitioning
Suitable for data survey and getting
good insight into the cluster structure
of data for data mining purposes.

Distance dissimilarity
is ignored. [35–38]

Agglomerative Nesting
(AGNES)

Hierarchical
(agglomerative)

Build a hierarchy of clustering from a
small cluster and then merge until all
data are in one large group.

Starts with details and then
works up to large clusters,
which is affected by
unfortunate decisions in the
first step.

[19,34]

EISEN Clustering Hierarchical
(agglomerative)

Carry out a clustering in which a
mean vector represents each cluster
from data in the group.

Starts with details and then
works up to large clusters,
which can be affected by
unfortunate decisions in the
first step.

[19]

Divisive Analysis (DIANA) Hierarchical
(divisive)

Perform a task starting from a large
cluster containing all data to only a
single dataset.

Not generally available and
rarely applied in most studies. [19,34]

Clustering in Quest (CLIQUE) Grid-based
Can automatically find subspaces in
lower-dimensional subspaces with
high-density clusters.

Ignores all projections of
dimensional subspaces. [39,40]
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Table 2. Cont.

Clustering Techniques Categories Advantages Disadvantages References

Grid-Clustering Technique for
High-Dimensional and Large
Spatial Databases (GCHL)

Grid-based Efficient and scalable while handling
high dimensionality issue. Insensitive to noise. [26,41]

Statistical Information
Grid (STING) Grid-based Facilitate several kinds of spatial

queries and less computational cost.
Difficult to identify
multiple clusters. [42,43]

Density-Based Spatial
Clustering of Applications
with Noise (DBSCAN)

Density-based
Can detect clusters with different
shapes and able to handle ones with
different densities.

Optimization issue. Difficult
to select appropriate
parameter values.

[44,45]

Random Walk based
Clustering Density-based Reflect the topological features of a

functional network.
Considers the interaction
between two genes. [46–48]

Relative Core Merge
(RECOME) Density-based Can characterize based on a step

function of its parameter.
Scalability issue. Hard to
handle a large volume of data. [45]

According to the reviewed clustering techniques in Table 2, this experimental work aims to
investigate which category of clustering techniques would perform better in clustering genes. Gene
expression data from the leukemia microarray study by Golub et al. [49] are used in this study. These
data consist of 3051 genes, 38 tumor mRNA samples [27 acute lymphoblastic leukemia (ALL) and
11 acute myeloid leukemia (AML)] [50]. The clustering techniques investigated in this experimental
work are k-means clustering (partitioning), agglomerative nesting (AGNES) (hierarchical), clustering in
quest (CLIQUE) (grid-based), and density-based spatial clustering of applications with noise (DBSCAN)
(density-based). The results in terms of percentage of accuracy are shown in Table 3. The experimental
work was carried out using stratified ten-fold cross-validation and a support vector machine as a
classifier. The selected clusters in Table 3 were validated based on silhouette width. According to Table 3,
the CLIQUE was able to achieve the highest classification accuracy when applied on the leukemia dataset
compared to other clustering techniques. In addition, Table 3 also shows several genes were biologically
validated as prognostic markers for leukemia when PubMed text mining was used. Prognostic marker
was commonly used to differentiate between good or poor disease outcomes [51]. This validation
was done to show the relationship between genes and prognostic markers of leukemia [52]. Although
CLIQUE achieved the best classification accuracy, the technique identified 67 genes as prognostic
markers of leukemia out of 919 genes in the selected cluster. On the other hand, k-means had the best
performance in identifying prognostic markers of leukemia (8%). The remaining techniques were able
to achieve between 6% and 8% in determining the prognostic markers of leukemia over the number of
genes in the selected clusters.

Table 3. Comparative results of the clustering technique applied on leukemia gene expression data.

Categories
Clustering
Techniques

Parameter (s)
Number of Genes

in the Selected
Cluster

Number of
Prognostic

Markers

Accuracy
(%)

Partitioning K-means k = 2 275 22 71.50

Hierarchical AGNES k = 2 339 22 78.50

Grid-based CLIQUE
k = 2

dimension = 10
density = 0.2

919 67 89.00

Density-based DBSCAN k = 2
minPts = 10 1548 103 73.00

Note: k is the number of clusters to be selected; dimensions are divided into several equal-width intervals; density
is the density threshold; minPts is the minimum size of clusters.

2.1. Category 1: Partitioning Clustering

Detection of clusters using partitioning clustering has low time complexity and high computational
cost [53]. However, there are specific problems related to this technique. One of these problems is
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detecting clusters inappropriate for non-convex data. This could be because clustering techniques
cannot spatially separate the data [54]. Other disadvantages are the need to initialize the number of
clusters beforehand, and that the clustering result is sensitive to the intended number of possible clusters.
Fuzzy C Means (FCM), k-means clustering, Partitioning Around Medoids (PAM), and Self-Organizing
Maps (SOM) are all examples of partitioning clustering [9–12,27–38]. PAM is a variation of k-means
clustering [55], and it is more robust in terms of accuracy compared to k-means clustering, for instance,
when applied to classify cancer types [56,57].

2.2. Category 2: Hierarchical Clustering

Hierarchical clustering’s scalability is relatively high in cluster detection [53]. One benefit of
the method is that it can detect the hierarchical relationship among clusters easily. However, the
major drawback associated with hierarchical clustering is the high computational cost. Agglomerative
(bottom-up) and divisive (top-down) are the categories of hierarchical clustering [2,35,58]. The way of
merging clusters and identification of the node levels can differentiate between agglomerative and
divisive hierarchical clustering [58]. Agglomerative hierarchical clustering (AHC) combines the most
adjacent pair of clusters, forming a group from bottom to top [59]. Several strategies of AHC are used
to identify the distance between clusters, which are single linkage, complete linkage, centroid linkage,
average linkage, Ward’s method, and the probability-based method [25,58,59]. On the other hand,
divisive hierarchical clustering is useful to identify clusters with different densities and shapes [58,59].
The method starts from all samples in a group and then splits the samples into two sub-clusters, which
are then divided into further sub-clusters and so on [58]. For AHC, node-level is the diameter of a new
cluster formed at the splitting step. The node-level of divisive methods is to divide the groups based on
their diameters. Agglomerative nesting (AGNES), EISEN clustering, and divisive analysis (DIANA) are
examples of hierarchical clustering [19,34]. Garzón and González [19] used these clustering techniques
to group similar genes before the step of the gene selection.

2.3. Category 3: Grid-Based Clustering

The design of grid-based clustering divides the entire data space into multiple, non-overlapping
grid structures [24,59]. This method performs faster than density-based clustering. Grid-based clustering
can benefit from dividing the data space into grids to reduce its time complexity [22,60]. CLIQUE,
grid-clustering technique for high-dimensional very large spatial databases (GCHL), and statistical
information grid (STING) are examples of grid-based clustering [39–43]. The GCHL technique can
discover concave (deeper) and convex (higher) regions when applied in medical and geographical
fields and by using the average eight direction (AED) technique [26,41]. However, both techniques
struggle to identify complex clusters from high dimensional data. CLIQUE partitions the data space
into cells and searches subspaces by counting the number of points in each cell [61]. Searching a
suitable set of dimensions for each cluster can form the candidate subspace for the centroid of the
cluster. Different groups of points are clustered in different subspaces [62].

2.4. Category 4: Density-Based Clustering

Usually, the regions contain points with high density in the data space, which makes density-based
clustering mistake them as clusters [59]. Mechanisms of aggregation in density can characterize the
clustering [45]. A significant advantage of density-based clustering is that it can discover differently
shaped clusters and noise from data [22,24,63]. However, density-based clustering has a high runtime
analysis to detect clusters [64]. DBSCAN, random walk, and Relative Core Merge (RECOME) are
examples of density-based clustering [44–48]. Historically, a random walk uses the theory of Markov
chain [48,65]. In most studies, the random walk has been used to infer and to optimize the structural
properties of networks [65,66]. Much of the current literature on the random walk is on ranking the
genes concerning their specific probabilities from high to low [67,68]. In literature, a random walk
mostly uses the topological similarity in networks to identify genes with a similar disease.
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3. Optimization for Objective Function of Partitioning Clustering Techniques

Optimization for objective function can improve the efficiency of partitioning clustering techniques
during initialization of the intended cluster number [11,33]. Swarm intelligence is widely used as the
objective function for a clustering problem. The number of intended clusters can be predicted based on
the typical search of the patterns [69,70]. Swarm intelligence can also be applied through maximizing
or minimizing the objective function of clustering [69,71,72]. In most studies, swarm intelligence has
been mostly used in the field of optimization [73,74].

Swarm intelligence refers to the collective behavior of decentralized, self-organized systems of
living creatures. The swarm intelligence systems consist typically of a population of simple agents or
boids interacting locally with one another and with their environment. The inspiration often comes
from nature, especially biological systems [75,76].

For modeling the behavior of a swarm, the techniques are made up of animals and insects, such
as bees, ants, birds, fishes, and so on [74,77]. Most recent studies used swarm intelligence to solve
problematic real-world problems such as networking, traffic routing, robotics, economics, industry,
games, etc. [73,74]. Hence, clustering techniques can benefit from swarm intelligence [74].

Swarm intelligence can optimize the objective function of clustering based on population and
evolution strategies [11,33]. This function is usually used to determine the fitness of each particle
since the community has a set of particles (known as a swarm), and each particle represents a solution.
Table 4 compares the use of optimization in population and evolution strategies. Both optimization
strategies are designed to imitate the best features in nature and produce a better quality of solution
efficiently [78,79]. Previous studies have explored the use of optimization in a generation with more
than 1000 populations before the convergence step, but it was not computationally efficient [80].

Table 4. Comparison of the use of optimization between population and evolution strategies.

Strategies Population-Based
Evolution

Functions Exploration Exploitation

Between technique
and solution

The technique can reach
the best solution within
the search space.

Express the ability of the technique
to reach the global optimum
solution, which was around the
obtained local solutions.

Optimize the mathematical functions of
the technique with continuously
changeable parameters and extend to
solve discrete optimization problems.

Application Metaheuristic search for global optimal solutions using
informative parameters.

Processes of selection, recombination,
and mutation.

Weakness Difficult to avoid problems of local minima and
early convergence. Need to control and adjust parameters.

Aim Imitate the best features in nature and produce a better quality of solution efficiently.

Table 5 summarizes existing techniques of swarm intelligence based on the strategies together
with their usages. Xu et al. [81] found particle swarm optimization (PSO) is faster than both artificial
bee colony (ABC) and genetic algorithm (GA) because PSO can perform without any complicated
evolution. Previous studies have also shown some drawbacks of ABC, which are the limited ability
of exploitation, slow convergence speed, and low-quality solutions [82]. In the review of GA and
PSO algorithms, Gandomi et al. [79] identified the main purposes of these techniques, which solved
significant problems faster.
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3.1. Strategy 1: Population-Based Optimization

Population-based optimization is performed in terms of exploration and exploitation [69,100].
Exploration is the technique able to reach the best solution within the search space, while exploitation
expresses the ability of the technique to reach a global optimum solution. Metaheuristic search can
apply in this optimization for global optimal solutions using informative parameters. However, the
optimization still has difficultly avoiding the problems of local minima and early convergence [11,33,101].
Several examples of population-based optimization are reviewed, which are ant colony optimization
(ACO), ant lion optimization (ALO), firefly algorithm (FA), and particle swarm optimization
(PSO) [11,33,70,71,77,81,83,86,89].

In the literature related to PSO, most previous studies used PSO because it does not have any
complex evolution [81]. Fister et al. [70] found that FA is suitable for multi-modal optimization and
fast convergence.

3.2. Strategy 2: Evolution-Based Optimization

Evolution-based optimization is involved in the processes of selection, recombination, and
mutation [102]. The selection of evolution strategy fails to deal with changing environments, and it
threatens the self-adaptation with its control parameters (internal model) [103,104]. For recombination
processes (in terms of discrete and intermediate processes), it performs with control parameters on object
variables, standard deviations, and rotation angles. The mutation mechanism makes the techniques
evolve its control parameters (standard deviations and covariances). Evolution-based optimization can
optimize the mathematical functions of the technique with continuously changeable parameters and
extend to solve discrete optimization problems. This strategy can deliver a high quality of solutions and
allows the technique to move toward better solutions in the search space with a population [105,106].
GA is one of the techniques using evolution strategy, which is commonly used for clustering based
on selection, crossover, and mutation. In previous studies, most algorithms were derived from GA,
such as evolution strategy (ES) and evolutionary programming (EP) [92]. The memetic algorithm
is the extension of GA and includes local search optimization for problem-solving [97–99]. Genetic
programming (GP), on the other hand, is the extension of GA that has been successfully applied and
used to solve many problems [95,96]. Moreover, gene expression programming (GEP) uses the character
of linear chromosomes and has been applied in symbolic regression and block stacking [93,94].

4. Clustering Validation in Measurements

Previous studies have evaluated the identified gene clustering in terms of distance [1]. If they are
not within a distance regarding a specified gene in each experimental condition, then the specified
gene is classified as an inactive gene. Otherwise, the specified gene is co-expressed.

Clustering validation can be measured in terms of internal and external criteria [17,18,100,107].
Table 6 summarizes the differences between internal and external validations. In general, internal
criteria can assess the fitness between clustering structure and data. External criteria can measure the
performance by matching cluster structure to prior information. As mentioned by Handl et al. [23],
internal validation suffers from bias regarding clusters number and partitioning structure from data.
The goal of internal validation is measured based on compactness and separation [18,107]. Compactness
is defined as a measure of how close the objects are in a cluster based on variance. Separation measures
either how a cluster is distinct or how well separated it is from other clusters. Handl et al. [23] held the
view that external validation can suffer from biases in a partitioning according to cluster number and
distribution of groups with class sizes.

Table 7 sets out examples of measurements to validate the quality of clusters. As can be seen
from the table, previous studies commonly used Euclidean distance and silhouette width. In general,
silhouette width can validate the clustering performance in terms of pairwise difference between and
within cluster distances [18,107]. The maximum values of the silhouette width can identify an optimal
number of clusters.
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Table 6. The difference in measurements between internal and external validations.

Criteria of Validation
Measurements

Internal External

Aim Assess the fitness between
clustering structure and data.

Measure the performance by matching
cluster structure to prior information.

Suffer from bias
• Number of clusters
• Partitioning structure from data

• Number of clusters
• Distribution of cluster with class

sizes in a partitioning

Table 7. Examples of previous studies in clustering validation.

Measurements Categories Usage References

Average of sum of
intra-cluster distances Internal Measure assessing cluster compactness

or homogeneity. [11,33]

Connectivity Internal Degree of the connectedness of clusters. [1,23]

Davies and Bouldin
(DB) index Internal Measure intra- and inter-cluster using spatial

dissimilarity function. [108]

Dunn index Internal
Ratio of the smallest distance among
observations in the different cluster to the
most considerable intra-cluster distance.

[1,23]

Euclidean distance Internal Compute distances between the objects to
quantify their degree of dissimilarity. [19,31,34,109]

Inter-cluster distance Internal Quantify the degree of separation between
individual clusters. [11]

Manhattan distance Internal Correspond to the sum of lengths of the other
two sides of a triangle. [34]

Pearson correlation
coefficients (PCC) Internal Measure between-state functional similarity. [23,110]

Silhouette width Internal

Measure the degree of confidence in a
clustering assignment and lie in the interval
[−1, +1], with well-clustered observations
having values near +1 and near -1 for poorly
clustered observations.

[1,18,19,31,32,109]

Square sum function of
the error Internal Measure the quality of cluster either by

compactness or homogeneity. [12,23,111]

Entropy External Measure mutual information based on the
probability distribution of random variables. [30,112,113]

F-measure External
Assess the quality of clustering result at the
level of entire partitioning and not for an
individual cluster only.

[11,23,30,33]

5. Discussion

An efficient clustering technique is the one capable of extracting useful information about the
behavior of a gene. According to Oyelade et al. [114], ensemble clustering (a combination of two or more
phases of clustering) can generate more robust and better quality clusters compared to single clustering.
Table 8 summarizes the ensemble methods for clustering that were used by previous researchers.
In addition, Oyelade et al. [114] also showed that hierarchical clustering is more suitable to handle real
datasets, such as image data, compared to partitioning clustering, but it is computationally expensive.
Advanced technological developments can isolate a large group of cells. Biological data can provide a
better understanding of the complex biological processes. For example, single-cell RNA sequencing
can help to expose biological processes and medical insights [115]. The k-means clustering typically
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performs better than hierarchical clustering in smaller datasets, but it requires a long computational
time [114,115]. Other than that, large amounts of bulk data can address biological dynamics and
cancer heterogeneity. Tang et al. [115] proposed High-order Correlation Integration (HCI), which uses
k-means clustering and Pearson’s correlation coefficient in the experiments. Their results showed
that HCI outperforms the existing methods (k-means clustering and hierarchical clustering) under
single-cell and bulk RNA-seq datasets. Unsupervised clustering is one of the powerful techniques used
in single-cell RNA sequencing to define cell types based on the transcriptome [116]. Fully unsupervised
clustering techniques (e.g., intelligent k-means and kernel k-means) are applied to analyze genes in
colorectal carcinoma [117]. Other than that, random walk-based clustering, GCHL, and CLIQUE
clustering techniques are also used in unsupervised manners [26,41,46–48,61,67].

The purpose of optimization for objective function and validation is to achieve quality clusters.
Most of the previous studies used swarm intelligence to optimize the parameters of clustering
techniques and to identify the optimal number of possible clusters [118]. The objective function of
clustering techniques defines optimization as maximizing the accuracy of the centroid or the cluster
center, especially for partitioning clustering techniques. It is because partitioning clustering needs to
initialize either the number of clusters or the number of centroids beforehand. Furthermore, clustering
validation is also essential to measure within or between the identified clusters [19].

Table 8. Summary of the existing ensemble methods used in clustering.

References Ensemble Methods Clustering Techniques Use

Deng et al. [24] Grid-based and Density-based
Spatial Clustering (GRIDEN)

Grid-based Density-based
(DBSCAN) Enhances clustering speed.

Oyelade et al. [114]
Masciari et al. [119]

Microarray Data Clustering
using Binary Splitting
(M-CLUBS)

Hierarchical (divisive
and agglomerative)

Overcomes the effect of size and
shape of clusters, number of clusters,
and noise for gene expression data.

Oyelade et al. [114]
Bouguettaya et al. [120]

Efficient Agglomerative
Hierarchical Clustering (KnA)

Hierarchical (agglomerative)
Partitioning (k-means) Relatively consistent in synthetic data.

Bouguettaya et al. [120]
Lin et al. [121]

Cohesion-based
Self-Merging (CSM)

Partitioning (k-means)
Hierarchical (divisive)

Clusters the datasets of arbitrary
shapes very efficiently.

Darong and Peng [122]
Grid-based DBSCAN Technique
with Referential Parameters
(GRPDBSCAN)

Grid-based
Density-based (DBSCAN)

Finds clusters of arbitrary shape and
removes noise.

In this research, leukemia data containing 3051 genes and 38 samples [49] were used to evaluate the
performance of each clustering techniques category. The genes obtained by the clustering techniques
were different from one technique category to another; however, the number of target clusters was
the same among the techniques. As a result, the grid-based clustering technique provided higher
classification accuracy than other clustering techniques. The technique was able to identify 7.29% of
the prognostic markers in leukemia data. On the other hand, k-means clustering achieved the highest
percentage (8%) of identifying prognostic markers in leukemia, but the classification accuracy in this
case was quite poor.

A summary of optimal cluster analysis studied by previous researchers is shown in Table 9.
According to the table, k-means clustering was the most used in the research. Integration of optimization
is critical to its use in research because it can solve the issue of k-means clustering that requires initializing
the number of clusters beforehand [10,11].
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6. Conclusions

In summary, this paper reviewed examples of existing computational methods for clustering genes
with similar biological functions. As a result, we found that partitioning, hierarchical, grid-based, and
density-based are the categories of clustering techniques. Clustering can identify a high-quality cluster
that is helpful in biological mechanisms and could lead to the identification of new genes related to
potentially known or suspected cancer genes [67,117,123].

Among the categories of clustering, grid-based and density-based techniques are more suitable
to be used to cluster objects in large spatial data. These techniques are inappropriate for artificial
and biological datasets such as iris, wine, breast tissue, blood transfusion, and yeast datasets [24,114].
On the other hand, density-based clustering techniques are useful if used to cluster gene expression
data [114]. Moreover, hierarchical clustering techniques are useful to handle synthetic and real datasets
(e.g., image data). However, these techniques have some limitations when the data are very large [114].
Finally, partitioning clustering techniques are inappropriate for non-convex data but suitable for
smaller datasets [53,114,115].

Grid-based clustering (CLIQUE) was more efficient than other categories of clustering (e.g., k-means
clustering, DBSCAN, and AGNES), but it was difficult to identify multiple clusters in cases of high
dimensional data types. Although k-means clustering (category: partitioning) was sensitive to initializing
the number of clusters, it provided a higher chance of identifying prognostic markers of leukemia.
A prognostic marker is useful for identifying a disease outcome, which can be helpful in cancer treatment
and drug discovery as well [52]. However, the quality of clusters is usually affected by initializing
the number of intended clusters, especially for partitioning clustering. Therefore, the optimization of
the objective function and validation can help clustering techniques to identify the optimal number of
clusters with better quality [11,89]. This paper also showed the two types of optimization strategies,
which are population and evolution. Most of the existing techniques used for optimization utilize
population strategies. Carneiro et al. [124] also concluded that the use of optimization could generate
better classification together with the use of clustering and topological data. In addition, this paper
also reviewed clustering validation and its measurements criteria. Internal and external criteria are
commonly used to measure the cluster structure. Besides, genes in clusters can belong to a specific
pathway, which can reflect the genes’ functioning in biological processes [125]. For example, BCL2
associated with X apoptosis regulator (BAX) was among the genes identified in our experimental work,
which is also a prognostic marker of leukemia. The BAX gene was encoded in the pro-apoptosis proteins,
which could increase its expression and decrease the expression of anti-apoptosis (e.g., Bcl-2 gene) in the
treatment of leukemia [126,127]. Moreover, clustered genes can identify metabolic gene clusters related
to the discovery of metabolite in bacteria and fungi [127]. Identifying genes in clusters can not only
allow us to discover the informative gene and the prognostic marker for the specific disease, but it can
also provide a clue about the cluster dictated by signature enzymes. The signature enzyme can catalyze
reactions and further tailor the product. Hence, the genes can be encoded in the pathway with enzymes.

Based on the experimental work, the CLIQUE and the k-means clustering techniques produce better
results in terms of classification accuracy and identifying cancer markers. Therefore, this review suggests
combining clustering techniques such as CLIQUE and k-means to yield more accurate gene clustering.

Although the optimal cluster analysis is the focus of this review, the findings can be applied to
different areas.
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Abstract: This paper proposes a machine learning approach dealing with genetic programming to build
classifiers through logical rule induction. In this context, we define and test a set of mutation operators
across from different clinical datasets to improve the performance of the proposal for each dataset.
The use of genetic programming for rule induction has generated interesting results in machine learning
problems. Hence, genetic programming represents a flexible and powerful evolutionary technique for
automatic generation of classifiers. Since logical rules disclose knowledge from the analyzed data, we
use such knowledge to interpret the results and filter the most important features from clinical data as a
process of knowledge discovery. The ultimate goal of this proposal is to provide the experts in the data
domain with prior knowledge (as a guide) about the structure of the data and the rules found for each
class, especially to track dichotomies and inequality. The results reached by our proposal on the involved
datasets have been very promising when used in classification tasks and compared with other methods.

Keywords: clinical data; feature selection; genetic programming; machine learning; data mining;
evolutionary computation

1. Introduction

Current data management and storage methods have been challenged by the high increase in the
amount of medical data available to us. Obtaining valuable information in the process of knowledge
discovery has become problematic. There is an urgent need for new tools and approaches whose
mechanism will allow overcoming the present-day limitations of computational medicine, by converting
large quantities of data into knowledge. Novel methods will make it possible to go beyond simple data
description, providing knowledge in the form of models. Through abstract data models, it is possible to
create highly reliable prediction systems [1–14].

The process of knowledge discovery from the data involves, among other techniques, machine
learning. Our interest is to select or combine techniques with a high performance in prediction tasks for
medical datasets. In medicine, prediction systems are most frequently applied in the field of diagnosis
and prognosis. According to previous research on the development of diagnosis systems, it is possible to
determine the presence or absence of a disorder through interpretation of patient data [15]. These systems
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are used specifically in the diagnosis of patients. Prognosis systems use the collected information to predict
the progress of the condition a patient is suffering from or to determine whether a patient may suffer a
disease in the future. Moreover, they are used to choose the most effective treatment based on the patient’s
symptoms and different medical factors [16].

In the context of diagnosis and prognosis, the aim of using intelligent systems based on machine
learning techniques is knowledge discovery from the collected information. Sometimes, the discovered
knowledge is expressed in a probabilistic model by relating the clinical features of patients to a stage of
the target disease. In other cases, a rule-based representation is selected to provide the expert with an
explanation of why certain decision was made. Knowledge representations as those described above are
known as white box systems and the focus of this research because they express part of the knowledge
directly. Finally, there are other cases in which the system is designed as a black box for decision-making,
where the system only shows the prediction results. All of these techniques are suitable for making a
diagnosis and prognosis of a patient’s condition [17].

Because of all previously explained, this research proposes a system generating classifiers based
on genetic programming (GP), which is capable of inducing sets of rules that represent the relationship
between the disease and the symptoms experienced by patients. Therefore, our goal is to build a rule-based
classifier and compare its ability to correctly classify data with other previously proposed methods. Finally,
we analyze the rules obtained by our approach to determine the most important attributes of the dataset.
In this case, the system performs a feature filtering process [18–21]. Rule-based classifiers are an attractive
approach since the structure of IF/THEN rules is well-known and can easily be interpreted for knowledge
discovery. Hence, such rules not only classify unknown patterns, they also disclose knowledge about the
class structure and problem domain. The goal of a rule-based classifier is to find a set of rules that suit a
labeled dataset. That is, the discovered rules should represent the target dataset and cover each region of
the search space. Hence, the application of GP in the building of rule-based classifiers has been the basis of
works such as [22–25]. Our ultimate goal is to provide the expert with an initial interpretation of the data
through our rules-based model that can serve as a starting point in the study of the disease. Hence, we
also provide a visual interpretation of the data, which supports the process of knowledge discovery.

In summary, medical databases store a lot of data about the health condition of patients. Such an
amount of information is ideal for the application of machine learning techniques, which can transform
data into knowledge by analyzing the relationships provided by the model. This mechanism provides a
means of hypothesis validation [6,9]. To reach the goals proposed in this work, the rest of this manuscript
has been divided into the following sections: Section 2 deals with the background related to this research.
Section 3.1 describes the main features of our proposal, encoding, fitness functions, genetic operators and
running strategy. Section 4 describes the employed datasets, an analysis of the structure and distribution of
the datasets, the experiments to select the best mutation operators for each medical dataset, and accuracy
comparison of our approach with other machine learning methods. At the end of this section, an analysis of
the rules discovered by the proposal is given and the most influential attributes of the datasets are analyzed.
Conclusions, Appendix A (classifiers of our proposal), Appendix B (mutation operator experiments), and
the references of this research are the final part of this document.

2. Background

Applications of genetic algorithms (GAs) to analyze medical data have allowed for solving complex
problems such as disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis and
health care management [26]. GAs have been applied to different fields in medicine, among which we can
highlight, Radiology, Oncology, Cardiology, Endocrinology, Pulmonology and Pediatrics, among others. In
this context, GAs have been used for edge detection of images obtained from Magnetic Resonance Imaging
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(MRI), Compute Tomography (CT) and ultrasound [27–29]. Making use of these kinds of algorithms,
different methods have been proposed to detect microcalcifications in mammograms leading to diagnosing
breast cancer [30–32]. In other studies, GAs have been used to fuse MRI images with Positron Emission
Tomography (PET) in order to generate colored images of breast cancer [33].

In other works [34], a methodology based on the application of a Micro-Genetic Algorithm (MGA)
was used to generate the training set that best detects solitary lung nodules. The designed algorithm can
detect lung nodules with about 86% sensitivity, 98% specificity, and 97.5% accuracy. In [35], the authors
proposed a model using Particle Swarm Optimization method (PSO), a GA and a Support Vector Machine
(SVM) in conjunction with feature selection and classification of CT, MRI and ultrasound images. The
proposed method was capable of detecting lung cancer with an accuracy of 89.5%.

GAs have also been used to detect patients with some type of carcinoma through Microarray
Technology. For example, in [36], a GA combined with an Artificial Bee Colony (ABC) algorithm was
proposed. The method aims to make cancer classification in patients through extraction of features from
microarray data. This method was tested with a dataset of colon carcinoma, two different datasets of
Leukemia, a dataset involving patients with lung carcinoma, and one of patients with Small, Round-Blue
Cell Tumors (SRBCT). The method proposed in that paper achieved an accuracy of almost 100% when
selecting very few biomarkers.

In the area of Pediatrics, GAs are also being used to detect diseases such as autism from gene
expression microarrays. In [37], an approach of GA as a feature selection engine and an SVM as the
classifier were proposed to validate the set of features selected. In this work, a performance greater than
86% accuracy for one of the used datasets and a performance of 92.93% accuracy for the other dataset were
reached to outperform previous works.

There are other applications of GAs aimed at making predictions from the data acquired from blood
tests. In [38], a GA is used to optimize the performance of an Artificial Neural Network (ANN) to detect
Coronary Artery Disease (CAD). Through the previous approach, the authors show that CAD can be
detected without angiography and consequently eliminate its high cost and the main side effects. In another
context, electrocardiogram (ECG) signals in cardiology have been used to detect cardiac arrhythmias [39].
In this work, a method liking a Genetic Algorithm with a Backpropagation Neural Network (GA-BPNN)
was proposed to reduce the dimension of the datasets by 50% and achieve 99% accuracy. This makes the
method suitable for automatic identification of cardiac arrhythmias.

As stated at the beginning of this section, there are many more applications of GAs to medicine that
can be consulted about in the literature [40–42]. Since the efficacy of GAs in the medicine field has been
proved, we will deal with other recent algorithms (Genetic Programming), which include a GA as its base
operation. Genetic Programming (GP) is a kind of GA whose main difference with respect to normal
GAs is to produce expressions (functions or programs) as outputs rather than data [43–45]. An example
of the use of this kind of algorithms in the medical field is shown in [46]. In this work, a GP algorithm
is proposed to automatically create the best mathematical formula that combines a set of preselected
features from a Magnetoencephalography (MEG) dataset. To evaluate the generated formulas, a K-nearest
neighbor algorithm (KNN) is used. This approach achieved 91.75% sensitivity and 92.99% specificity in
the diagnosis of Epilepsy.

GP is also used to provide diagnosis from MRI images by evaluating the medical spine condition of
patients [47]. The GP algorithm proposed in this work uses of a fitness function based on expert knowledge,
in this case, a neuroradiologist. The rules rendered in each generation of the algorithm are evaluated and
then compared with the true results in order to select the rules with less difference. The accuracy reached
was greater than 90% in the conditions evaluated by combining the GP algorithm and expert knowledge.

Another example of GP applied to medicine is image classification [48]. In this work, a GP algorithm
is proposed to create and evolve tree-based classifiers, whose aim is to diagnose active tuberculosis from
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raw X-ray images. The framework proposed was able to achieve a competitive classification and a superior
speed compared to methods that rely upon image processing and feature extraction.

In general terms, GP represents a flexible and powerful evolutionary technique that uses a set of
functions and terminals to produce computable expressions. Hence, this research presents a GP method to
render rule-based classifiers for knowledge discovery from medical data. Some of the advantages related
to this kind of classifiers generating comprehensible knowledge are high expressiveness, which allows
them to render models that are very easy to interpret. Such rules can be altered to handle missing values
and noise from attributes of the data set. They are relatively easy to obtain and very fast at classifying new
patterns (or data) [49]. Moreover, a very important advantage of such rules for machine learning is that
they are intuitively comprehensible to the user [50,51]. Another advantage related to the above is that they
are not only used to classify, but they also represent, by themselves, a process of knowledge discovery,
providing the user with new insights into the data and their application domain [52].

3. Materials and Methods

3.1. Evolutionary Strategy to Build Rule-Based Classifiers (ESRBC)

This section presents our main proposal, the evolutionary method (ESRBC) to render rule-based
classifiers. Thus, we describe the strategy to follow by ESRBC, individuals, crossover, mutation operators
and fitness functions. Individuals represent logical rules adopting an internal representation of a linear
sequence of clauses (or comparisons) separated by conjunctions AND. Individuals to be built in this
proposal follow the Michigan-style [24,50,53,54]; hence, each individual encodes a single rule (with a
linear chromosome) with a variable length, where each rule is associated with the class of the dataset it
represents. Therefore, an individual can be evaluated as True or False according to the pattern evaluated
in the antecedent of the rule. As applicable, the pattern may or may not belong to the class assigned to the
rule.

As explained, the individuals generated by ESRBC represent logical rules of type IF <CLAUSES> THEN
<CLASS>, where <CLAUSES> is formed by a set of clauses (or comparisons) separated by conjunctions AND.
<CLASS> is the class of the dataset that is being represented by the rule or, in other words, the class to which
the rule belongs. A more detailed representation of a rule can be given as follows:

IF (at1 o1 val1) AND (at2 o2 val2) AND · · · AND (atn on valn) THEN class = k,

where (ati oi vali) is clause number i, ati is an attribute of the dataset, oi is a comparison operator from set
{<,>,≤,≥,=, �=}, vali a value of the set of all possible values admitted by ati, whereas k is the class of the
dataset covered by the rule. An example of logical rules representing a dataset with attributes {p, q, r, s, t}
and two classes {0, 1} can be as follows:

IF(p > 12.3) AND (p ≤ 15) AND (s �= 3.4) THEN class = 0,

IF(p ≤ 12.3) AND (r > 7.4) AND (t ≥ 2) THEN class = 1,

which means that, if there is a specific pattern (pi, qi, ri, si, ti) from the domain of the dataset, whose values
pi and si hold the antecedent of the rule in class-0, then such a pattern belongs to class-0. Likewise, if
attribute values pi, ri, ti hold the antecedent of the rule in class-1, then this pattern is in class-1. Keep
in mind that the challenge that each rule learned from a dataset must meet is generalization. In other
words, the set of rules holding a dataset should generalize enough in such a way that the pattern space be
properly partitioned. Thereby, each region of the space is covered as much as possible by the set of rules.
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Continuing with the description of the rule concept, we define the length of a rule as the number of
clauses that form it. The evolutionary algorithm (EA) of our approach, which is responsible for the search
process for a diverse set of rules, adopts the sequential covering strategy for each class of a dataset [51].
Sequential covering is a technique that discovers one rule at a time. The EA is executed multiple times
to build a complete set of rules representing each class of a dataset. During each execution, the best rule
evolved through the EA is added to the set of previously discovered rules and the patterns covered by this
rule are removed from the dataset. The process is repeated until there are no more patterns to be covered.
The steps followed by this methodology can be described as follows:

1. Select the set of patterns from a new class i in the input dataset;
2. Create an initial population P0 of rules candidate to represent patterns in class i;
3. Run the EA on P0 to achieve a final population Pf ;
4. Add the most fit individual (rule) r of Pf to the set of rules R (R is empty initially);
5. Remove all patterns from class i holding rule r;
6. If class i is not empty, then go to step 2;
7. If there are more classes in the dataset, then i := i + 1 and go to step 1;
8. At the end of the process, R has a set of rules learned from each class of the input dataset.

3.2. Fitness Functions

This section introduces the fitness functions used in the evolutionary algorithm of our approach. In
this case, the fitness functions defined are based on the concept of accuracy [52,55,56]. The accuracy of a
rule is the fraction of patterns from its class, covered by the rule. Then, according to the definition above,
we are going to introduce two variants of fitness functions based on accuracy. However, we firstly need to
define two functions which evaluate a pattern e in a rule r. Then, the first function is g acting on r and e,
i.e., g(r, e), which computes the number of clauses of r evaluated True when e is evaluated in r. The second
function defines the evaluation of a pattern e in r (r(e)) in the following way:

r(e) =

{
1, if e belongs to the class of r, in this case we say, e holds r;
0, otherwise.

(1)

Note that g(r, e) evaluates the number of clauses in r holding a pattern e, whereas r(e) evaluates
the rule to 1 (True) if it covers pattern e (all its clauses become True). Additionally, if we want to specify
the class of both r and e, we write ri and ei respectively, where i is a class of the dataset. Finally, the two
expected fitness functions are given below. For this case, both fitness functions define a maximization
problem. The first objective of f1 assesses accuracy based on the number of clauses turned true by patterns
of the target class, whereas the second objective acts as a penalty for patterns not belonging to the class of
the rule, whose values make the clauses of the rule true. The same situation happens for f2, but, in this
case, the accuracy is assessed by considering the number of patterns holding a rule r. f1 has been created
to be run in the first generations of the evolutionary algorithm where rules have randomly been created
and no pattern holds them. However, the use of f2 makes more sense in a second stage of the evolutionary
algorithm (after applying f1) when the rendered rules have reached a certain learning level.

Definition 1. Fitness function- f1.
If D is a labeled dataset with k classes, Ci a class of D and ri a rule of Ci and consider i, j ∈ [0, 1, · · · , k − 1]. Then,
we define a fitness function- f1 applied to ri as:
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f1(ri) =
1

|Ci| · |ri| ∑
∀e∈Ci

g(ri, e)− 1
|D| − |Ci| ∑

∀e′∈Cj ,j �=i
g(ri, e′) + 3. (2)

Definition 2. Fitness function- f2.
From the same conditions given in Definition 1, we define fitness function- f2 applied to a rule ri as:

f2(ri) =
1

|Ci| ∑
∀e∈Ci

ri(e)− 1
|D| − |Ci| ∑

∀e′∈Cj ,j �=i
ri(e′) + 3. (3)

Both fitness functions have been focused on a maximum problem: the bigger their values, the more
fit the evaluated rules. In the first fitness function, the first objective deals with a kind of accuracy using
g, which consists of computing the number of clauses evaluated True in the current rule for all pattern
of its class. The second objective measures the number of clauses evaluated True by the current rule for
all pattern belonging a different class of the rule class. This fitness function is useful in the evaluation of
rules built in the first generations of the EA, where the rule accuracy is zero. The second fitness function is
responsible for measuring the number of patterns from the rule class holding the rule versus the number
of patterns of other classes holding the rule.

3.3. Genetic Operators

The crossover operator used in this method to recombine clauses from two parent-rules to achieve
two new children-rules performs as the classical operator [57]. That is, the crossover operator selects a
random position (with a uniform distribution) from two parent-rules and exchanges two segments of
clauses from them to achieve two children, inheriting part of the clauses (genetic code) of their parents. In
other words, given two rules, the position of a clause is randomly selected. Then, the clauses located on
the right or left side of both rules (which is also decided at random) are exchanged to create two new rules.
The mutation operator is responsible for providing new information to the individuals generated. In this
case, we provide three types of mutation operations by defining a mutation group for each one:

1. Mutation by clause, M1: Changes the attribute, comparison operator or value in a randomly chosen
clause from the rule by others, also randomly selected;

2. Mutation clause by clause, M2: This operator applies the M1 operator clause by clause to a rule. For each
clause, the operator decides whether to mutate. If a mutation has been selected, then the operator
decides what mutation type to perform. Namely, changing the attribute, the comparison operator or
the value of the attribute in the current clause.

3. Mutation by transformation, M3: This operator can remove a part of the rule, add a new rule, or
apply the M1 operator to the rule. One of the three operations above is selected at random. In the
first operation, a position in the rule is randomly selected to remove the left or right side. Then,
it randomly selects the part of the rule to be removed. The second operation adds a new rule at the
end of the current rule. The added rule is randomly created (by also choosing its size in a random
way).

The mutation operator applied to each mutation in the rules is selected at random. Note also that the
goal of defining the M2 and M3 compound mutation operators is to create different mutation levels from
the M1 basic mutation operator. This allows us to explore different alterations on the individuals yielded
from generation to generation. Each of these operators (M1, M2, and M3) performs an alteration level of
individuals by regarding a minor (M1), medium (M2) and higher level (M3) of alteration.
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3.4. Running the Evolutionary Algorithm

Once the genetic operators have been defined, the evolutionary algorithm (EA) of our proposal
ESRBC is responsible for discovering each rule covering different parts of the search space, hoping the
rules can generalize. Hence, the EA is run following the general scheme given by evolutionary algorithms
[57,58], with the particularity of introducing an elitism which is transmitted from generation to generation
and tournament selection as the adopted selection method.

Aside from the above, the EA includes an evolutionary strategy of local search (Algorithm 1 ESLS),
which acts on the population or the most fit individual returned by the EA. In fact, the option of executing
Algorithm 1 from a population or a single individual is a parameter of the algorithm. The term local search
is because Algorithm 1 is based on mutation operators and in each generation, Algorithm 1 replaces only
individuals who have improved their value fitness after the mating process. The goal of this strategy is
to refine the solutions of the EA by making an in-depth search. Hopefully, the individuals from the EA
are close enough to a global optimum. Therefore, Algorithm 1 is in charge of searching such an optimum.
This idea has been taken from [59] and implemented in [60] with good results. The idea is as follows:

• Running a genetic algorithm (GA) until it slows down, then letting a local optimizer take over the last
generation (and/or best individual) of the GA. Hopefully, the GA is very close to the global optimal.

ESLS has been defined below. This strategy improves a population of individuals or a single individual
given by ESRBC. Finally, both ESRBC and Algorithm 1 were implemented in the C++ programming language,
whereas the experiments were performed under R-Project [61].

Algorithm 1 ESLS
Input: POP, the population composed by the individuals in the last generation of the EA. MaxGeneration,
the number of generations. MO applies one of the mutation operators given in Section 3.3, chosen at
random. f2, fitness function given in Section 3.2.

Output: POP, as a result of improvement of the input.

1. t := 0;
2. while t < MaxGeneration do

3. t := t + 1;
4. for all rule r in POP do

5. % Computing fitness
6. f := f2(r);
7. % Applying mutation.
8. newr := MO(r);
9. % Evaluating new individual.
10. newf := f2(newr);
11. % Updating the improved individual.
12. if newf > f then r := newr;
13. end for

14. end while

15. end.
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4. Results

This section describes the experiments carried out by our proposal on the clinical datasets, which
have been selected from Machine Learning Repository [62]. The used datasets deal with Heart, Hepatitis,
and Dermatology diseases, which we call DS1, DS2, and DS3, respectively, and have the features listed
below. Note that Number of patterns refers to the number of instances (number of rows) of the dataset
while Number of attributes refers to the number of variables (number of columns) of the dataset.

1. Title: SPECTF Heart Dataset (DS1);

• Number of patterns: 267;
• Number of attributes: 22 plus the class attribute;
• Number of classes: 2 classes;
• Attribute type: binary;
• Missing attribute values: No missing values.

2. Title: Hepatitis Domain (DS2);

• Number of patterns: 155;
• Number of attributes: 19 plus the class attribute;
• Number of classes: 2 classes;
• Attribute type: Categorical, Integer and Real;
• Missing attribute values: yes (10-nearest neighbor technique was used in this research for

imputation of missing values).

3. Title: Dermatology Database (DS3);

• Number of patterns: 366;
• Number of attributes: 34 plus the class attribute;
• Number of classes: 6 classes;
• Attribute type: Categorical and Integer;
• Missing attribute values: yes (20-nearest neighbor technique was used in this research for

imputation of missing values).

4.1. Exploring and Analyzing the Datasets

This section shows different linked views of the distribution and structure of the datasets, which allow
us to have an initial assessment of their behavior. This can also help explain some of the results obtained
for the methods applied. Starting with the DS1 dataset shown in Figure 1, we have that this dataset is
represented by a diamond-shaped cloud of points. According to the point distribution in each class, Class-1
is much more compact and bigger than Class-0. Therefore, Class-0 could need more rules to classify the
patterns of its class than Class-1. Since points in Class-1 are more scattered in space and both classes are
intertwined, it would be more difficult for this class to find rules that do not classify patterns in Class-0 by
mistake. On the other hand, at the bottom of the figure, there is the heatmap of the dataset where both
classes are separated by boxes. Note that the values in this dataset are binary and, in Class-0, values 0
predominate while, in the other class, values 1 predominate. This means that, unlike Class-1, Class-0 is
characterized by the absence of the property denoted by many of the attributes evaluated by the disease
represented in the dataset.

Turning now to the DS2 dataset shown in Figure 2, we have that this dataset is represented by a cloud
of points in tree form at the top of the figure. As in the DS1 dataset, both classes are intertwined, Class-1 is
more compact and bigger than Class-0. Unlike the DS1 dataset, points are more scattered in space, which
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can induce a smaller number of rules classifying each class. Note that it is more difficult to find visual
differences separating both classes for the heatmap given for DS2 than for the case of DS1. The above can
imply that DS2 is a difficult dataset to classify, which tests any applied classifier (method).

As for the DS3 dataset shown in Figure 3, we have that, unlike the other datasets, this one has six
classes, which may increase the classification error of the methods applied to the dataset. The point cloud
of this dataset, shown at the top of the figure, is T-shaped with agglomerations of points at the ends and in
the center of the 3D-scatterplot. Note that the same T-structure of the dataset is maintained for the points
in each class. In this case, each class may generate four rules since there are four clusters in each class.
However, the greatest difficulty would be to separate the classes from the others, since the six classes are
very interrelated. Finally, note that classes 0, 1, and 2 differ from classes 3, 4, and 5 in that, in the latter, the
light green color predominates (values below the average value of the whole dataset), while, in the rest
of classes, the representative color is brown (values above the average value of the whole dataset). This
shows that classes 0, 1, and 2 share some type of similarity with the type of disease represented by each
class, which makes the difference from the diseases represented in classes 3, 4, and 5. The same reasoning
done for classes 0, 1, and 2 is met for classes 3, 4, and 5 of DS3.

Figure 1. DS1 dataset (Heart Dataset). A 3D-scatterplot is shown at the top of the figure where each point
represents a column (an individual) of the dataset showed as a heatmap at the bottom. The dimension of
the dataset was reduced to three components by using principal component analysis. In addition, points
belonging to each class are shown in different colors. The heatmap corresponding to the same dataset is
shown at the bottom of the figure. Each class of the dataset is framed in a box. The color bar shown at the
top represents the color scale used in the heatmap.
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Figure 2. DS2 dataset (Hepatitis Dataset). A 3D-scatterplot is shown at the top of the figure where each point
represents a a column (an individual) of the dataset showed as a heatmap at the bottom. The dimension of
the dataset was reduced to three components by using principal component analysis. In addition, points
belonging to each class are shown in different colors. The heatmap corresponding to the same dataset is
shown at the bottom of the figure. Each class of the dataset is framed in a box. The color bar shown at the
top represents the color scale used in the heatmap.

4.2. Mutation Operator Evaluation

This section deals with the evaluation of mutation operators M1, M2, and M3 from their effectiveness
and behavior under the different given datasets. The goal of this test is to carry out an analysis of the
behavior of the mutation operators to select the operators having a better performance on a given dataset.
Consequently, we have run the evolutionary method (ESRBC) using only the mutation operators (without
the crossover operator). Then, ESRBC is run 20 times for each operator and each dataset (DS1, DS2, and
DS3) in the following way: for each mutation operator applied to a dataset, ESRBC has been run 20 times,
each using a different mutation probability value. In each execution, the probability value is increased in a
step of 0.05, starting from 0. Then, for each mutation value, the fitness value of the most fit individual
in 5000 generations has been taken out to render the graphics given in Figures A1–A3 (Appendix B) for
datasets DS1, DS2, and DS3, respectively. Thus, the achieved graphics represent mutation probability
values in x-axis versus fitness value (y-axis) for the best individual yielded in each mutation probability
value.

As shown in these figures, each row deals with four graphics, which correspond to the same
experiment repeated with the same mutation operator. Since ESRBC includes a stochastic process in
the search, we have repeated the experiment four times for each mutation operator. Therefore, each row in
these figures correspond to a mutation operator, i.e., the first row represents M1, the second and third rows
correspond to M2 and M3, respectively. Finally, each graphic in each row represents the fitness values
reached by the best individuals for the current operator mutation. Such values are represented by means
of a blue curve. The mean fitness values from the four experiments carried out (in each row) for each
operator are represented through the green curve, whereas the standard error bars are stressed in pink
lines.
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Figure 3. DS3 dataset (Dermatology Dataset). A 3D-scatterplot is shown at the top of the figure where each
point represents a column (an individual) of the dataset showed as a heatmap at the bottom. The dimension
of the dataset was reduced to three components by using principal component analysis. In addition, points
belonging to each class are shown in different colors. The heatmap corresponding to the same dataset is
shown at the bottom of the figure. Each class of the dataset is framed in a box. The color bar shown at the
top represents the color scale used in the heatmap.
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By making now an analysis of the results for these three figures, we can say that, for the DS1 dataset,
the results in Figure A1 (Appendix B) show that, for operators M1 and M2, most of the reached fitness
values (blue curve) are between 3 and 3.4. On the other hand, there is overlap between the error bars
(pink bars), which indicates uniformity of fitness values for M1 and M2 with respect to different mutation
probability values. However, the fitness values (blue curve) given in the graphics for operators M1 and M2
present more oscillations than the ones represented by the curves given for the M3 operator. In addition,
the standard error bars for the M3 operator are smaller, indicating that the average value plotted is more
reliable than the one of those in M1 and M2. Moreover, most fitness values with respect to mutation
probability values are between 3.2 and 3.4. Thus, the M3 operator appears to be more significant for the
DS1 dataset than operators M1 and M2. Hence, we can use only M3 as the mutation operator when using
the evolutionary method to build a classifier on the DS1 dataset. In addition, keep in mind that, since
the standard error bars overlap in the M3 operator, it is not necessary to assign a big valor of mutation
probability in the running of ESRBC to build the rule-based classifier. The above improves the runtime of
the method.

Unlike Figure A1 (Appendix B), graphics in Figure A2 present more oscillations according to the
curve representing fitness values across from mutation probability values (blue curve). However, the error
bars maintain an overlap. In addition, note that the fitness values achieved for M1 and M3 are higher than
those given in Figure A1. That is, for M1, most fitness values are between 3.4 and 3.6. For M3, most fitness
values are between 3.5 and 4 whereas fitness values for the M2 mutation operator are more unstable with
respect to mutation probability values. Therefore, we can use operators M1 and M3 as the only ESRBC
mutation operators when using the DS2 dataset.

For the results obtained from the DS3 dataset, Figure A3 (Appendix B), we have that they are like
those given in Figure A1. Hence, by applying the same reasoning as the one given in Figure A1, the M3
mutation operator is the most stable and so the operator that best performs on the DS3 dataset. Once the
mutation operators performing well on each dataset have been chosen, we can proceed to compare the
classifiers induced by our method with other machine learning methods under the accuracy measure.

4.3. Accuracy and Comparison of the Evolutionary Method

The accuracy of the rule-based classifier yielded by our approach has been computed and compared
with other methods for each introduced dataset. A stratified 10-fold cross-validation was used to measure
the accuracy of all methods. The evolutionary method (ESRBC) defined was run in two stages. In
the first stage, ESRBC was run by using the f1 fitness function, whereas f2 was used in second stage.
The settings of ESRBC for each dataset have been listed in Table 1 and the methods used in the comparison
process [55,56,63,64] have been listed in Table 2. Then, the results reached by ESRBC compared with other
methods have been listed in Table 3. The best accuracy value for each dataset has been underlined. ESRBC
reached the best values for the DS1 and DS3 datasets while its accuracy for DS2 was not very different
from the one of the method reaching the best value. Since the number of patterns for the classes of the
DS1 and DS2 datasets are unbalanced, Table 3 also shows the Youden index which deals with unbalanced
classes in a dataset. This index is defined as sensitivity + speci f icity − 1.

Note that the methods listed for the DS3 dataset are different from those used in DS1 and DS2. This
is because the methods used for DS1 and DS2 are for binary classification, whereas the DS3 dataset has
six classes. Therefore, we need to use multiclass methods in DS3, different from the methods used in the
previous datasets. On the other hand, the greatest accuracy reached for the DS1 and DS2 datasets was
less than 90%, which tells us that they are difficult to classify (due to their compactness and difference
in the size of their classes), as explained in Section 4.1. However, the greatest accuracy reached for the
DS3 dataset was greater than 90%, although DS3 has six classes. This may be due to the distribution of
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the dataset, where each class is represented by four groups of points separated from each other (which
facilitates the classification), as explained in Section 4.1.

Table 1. Settings given to run the evolutionary method (ESRBC) to build rule-based classifiers for
each dataset.

ESRBC Settings DS1 DS2 DS3

Population size 70 50 100

Number of generations per rule (fitness function-1) 100,000 100,000 200,000

Number of generations per rule (fitness function-2) 200,000 200,000 400,000

Mutation operator per rule for Algorithm 1 (local search) 10,000 10,000 100,000

Mutation operator M3 M1 and M3 M3

Crossover probability 0.6 0.6 0.6

Mutation probability 0.2 0.3 0.2

Maximum size of rules (maximum number of clauses) 10 10 10

Table 2. Name and description of the methods used in the comparison of the approach proposed.

Method Description

SVM Linear Support Vector Machine, which finds the best
hyperplane separating both classes.

naiveBayes
This model computes the probability of each class given

the values of all attributes and assuming the attribute
conditional independence.

Table 2. Cont.

kNN

k-Nearest Neighbor classification.
This is a lazy model which classifies

the input pattern by using its
k-Nearest Neighbors from the

training set.

ANN

Artificial Neural Network
implementing a Multilayer

Perceptron, which uses a single
intermediate layer for our case.
Backpropagation and resilient

backpropagation have been
implemented.

ML-MPCA
Maximum Likelihood estimation

with Mixture of Principal
Component Analyzers.

Bayesian-MPCA Bayesian approach with Mixture of
Principal Component Analyzers.
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Table 3. Comparative table of mean accuracy for the evolutionary method (ESRBC) compared with the
other machine learning methods.

Dataset Method Accuracy (%) Youden Index (%)

DS1 SVM 78.95 12.45
naiveBayes 46.93 14.97

k-NN (k = 3) 81.58 22.91
ANN 79.39 12.95

ESRBC 81.82 40.48

DS2 SVM 82.57 46.91
naiveBayes 75.47 37.56

k-NN (k = 5) 75.47 16.47
ANN 81.94 42.56

ESRBC 81.32 41.67

DS3 ML-MPCA 94.9 -
Bayesian-MPCA 95.8 -

ESRBC 95.92 -

5. Discussion: Rule Analysis

This section makes an analysis of rules discovered by the classifiers induced by the evolutionary
method (ESRBC) for each dataset in Table 3. The aim of this analysis is to discover knowledge from those
rules and identify attributes and relations relevant for the disease. In that sense, such prior knowledge
would act as a starting point for experts in this field.

Appendix A lists the rules given by the best classifier found by our proposal for each dataset.
The analysis carried out in this section is based on knowledge disclosed from such rules. Starting from the
DS1 dataset, we have that it contains diagnoses based on 22 features, built from Single Proton Emission
Computed Tomography (SPECT) images, which aim to distinguish between heart disease and normal
heart operation. For this case, ESRBC found six rules for a class and only one rule for the other class. Of
the 22 attributes, only five of them were not used by any rule (F1, F2, F9, F12, and F18), which implies
that they are not important in the classification of the disease and may be discarded from the analysis.
However, attributes F5, F21, and F22 achieved the greatest frequency of occurrence by rules in class-0 (they
occurred in 42.86% of rules). Hence, such attributes are representative for class-0. Meanwhile, class-1 used
a single rule with only one attribute, F8. The F8 attribute has been used in both classes, so it is not only
important for class-1 but also for the disease in question.

The DS2 dataset consists of 19 attributes and two different classes, including clinical and biochemical
variables. ESRBC found three rules for class-0 and 2 rules for class-1. Of the 19 attributes, 12 of them
were used in the rules and seven of them were not used by any rule (STEROID, MALAISE, ANOREXIA,
LIVERBIG, LIVERFIRM, VARICES and HISTOLOGY). Thus, they can be discarded from the classification
process. In addition, the most frequent attributes by rules in class-0 were ALBUMIN with 100%, PROTIME,
AGE and ALK PHOSPHATE with 66.67%, whereas class-1 only used the ALBUMIN and SEX attributes.
Note that the ALBUMIN attribute is the only one used in both classes. Therefore, this attribute is significant
for the study of the disease. This way, we can identify three groups of patients presenting different
features in class-0: patients holding {ALBUMIN ≤ 3.99, PROTIME ≤ 50, SEX = 1}, patients holding
{ALBUMIN �= 3.80, AGE ≥ 37, 64.88 ≤ ALKPHOSPHATE < 95} and patients holding {ALBUMIN ≥
3.50, PROTIME ≥ 56.16, ALKPHOSPHATE > 104.77, AGE ≥ 30}. Patients in class-1 are government by
attributes {ALBUMIN ≥ 2.9, SEX = 2}.
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The DS3 dataset presents data of patients of six different erythemato-squamous diseases. That is,
psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis and pityriasis rubra pilaris. The main
interest of applying our proposal to this dataset is that these diseases are difficult to distinguish, and they
normally require a biopsy and present many common histologic characteristics. The classifier found for
DS3 rendered 11 rules distributed in the six classes. Namely, 1 rule in classes 0, 2, 4 and 5; 2 rules in class-1
and 4 rules in class-3, which coincides with that explained in Section 4.1 for DS3. Of the 33 attributes in
this dataset, 12 were filtered by the rules of the classifier, whereas 21 were not selected by the same rules.
In this case, note that a significant number of attributes was not chosen by the rules of the classifier. This
means that the classifier was able to filter the most relevant features (12 features, see Appendix A.3) for the
diseases represented by DS3, whereas the remaining features can be removed from the analysis, since they
do not provide valuable information.

By analyzing the attributes in this dataset, we have that the FIBROSIS, AGE, ITCHING, and SPONGIO
attributes have the greatest frequency of occurrence. In particular, FIBROSIS appears in 50% of the classes
of this dataset (classes: psoriasis, seboreic dermatitis and cronic dermatitis), whereas AGE appears in 80%
of rules in class-3 (lichen planus), ITCHING, and SPONGIO appear in 60% of rules in the same class-3. In
particular, patients in each class are governed by the following relationships:

Class-0: patients holding {FIBROSIS = 0, SPONGIO = 0, ELONGATION > 0};
Class-1: patients holding {FIBROSIS = 0, AGE = 20, DBORDERS ≤ 2};
Class-2: patients holding {BANDLIKE > 1, THINNING �= 1};
Class-3: this class supports four age-related subgroups of patients, namely,{AGE ≥ 18, ITCHING ≤ 1},

{AGE = 27, ITCHING < 2, SPONGIO > 0}, {AGE = 36, ITCHING ≤ 1, SPONGIO > 0} and
{AGE = 62, SPONGIO > 0};

Class-4: patients holding {FIBROSIS > 0, POLYPAPULES = 0};
Class-5: patients holding {PERIFOLLI > 0, FOLLIPAPULES > 0}.

Note that, unlike the AGE feature, a value zero for the remaining features means that such a feature is
not present in the patient, whereas a value greater than zero means that the patient presents the feature to
a degree associated with the value. Consequently, with the results above, we can say that the study of
these attributes can contribute to gain more insight about the diseases involved in such a dataset.

6. Conclusions

This work has proposed a machine learning method focused on genetic programming to render
rule-based classifiers. Hence, this proposal has been aimed at inducing sets of logical rules able to learn
the structure of the classes given in a dataset. We have applied the proposal to three clinical datasets (our
concerning domain) and compared with other methods. In addition, we have identified the most reliable
mutation operators regarding each dataset and, in that way, to improve the efficiency of our proposal.
The results reached have been very promising when compared with other approaches. This proves the
reliability of this approach to be used in the analysis of clinical data, which is our target data domain.
Finally, we have disclosed certain relevant features from the logical rules found for each dataset involved
in the experiment. Thereby, the proposal presented in this work can also be useful in the process of feature
selection, since the attributes appearing in the rules of a classifier are the most important and so they
discriminate the rest of attributes of the dataset. Related to the above, we have given an interpretation of
the data by analyzing the dataset structures and the features of the rules found for each dataset. This prior
knowledge can help the expert to establish a starting point for the study of the disease represented in the
datasets.
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Appendix A. Rule Based-Classifiers Rendered by the Evolutionary Method

Appendix A.1. Rules of the DS1 Dataset (Heart Dataset)

Number of rules in the Classifier: 7

number of attributes: 22

Number of classes: 2

(Class #0)

--------------------

IF (F13<0.37 ^ F16<=0.00 ^ F11=0.00) THEN Class := 0

IF (F5=1.00 ^ F21<=0.00 ^ F20<>1.00 ^ F10<1.00) THEN Class := 0

IF (F7<0.05 ^ F5<=0.72 ^ F17<=0.39 ^ F22<>1.00 ^ F4=0.00 ^ F6<>0.00) THEN

Class := 0

IF (F17<0.38 ^ F14<>0.00 ^ F3>=0.07 ^ F20<=0.00 ^ F15=0.00 ^ F21=1.00) THEN

Class := 0

IF (F13>=1.00 ^ F22<=0.68 ^ F1<1.00 ^ F14<=0.02 ^ F8<=0.00 ^ F11<>1.00) THEN

Class := 0

IF (F5<0.34 ^ F10<>0.00 ^ F21>=1.00 ^ F19=0.00 ^ F3=1.00 ^ F22<>1.00) THEN

Class := 0

(Class #1)

--------------------

IF (F8<=1.00) THEN Class := 1

Appendix A.2. Rules of the DS2 Dataset (Hepatitis Dataset)

Number of rules in the Classifier: 5

number of attributes: 19

Number of classes: 2

(Class #0)

--------------------

IF (FATIGUE<=1.00 ^ SEX=1.00 ^ ALBUMIN<=3.99 ^ PROTIME<=50.00 ^ PROTIME>28.85)

THEN Class := 0

IF (SPIDERS<=1.00 ^ SPLEEN>1.11 ^ ALBUMIN<>3.80 ^ AGE>=37.00 ^

ANTIVIRALS>=1.87 ^ ALK>=64.88 ^ ALK<95.00 ^ BILIRUBIN<>0.80) THEN

Class := 0

IF (ALK>104.77 ^ PROTIME>=56.16 ^ SGOT<=64.00 ^ ASCITES>=2.00 ^ ALK<>50.00 ^
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ALBUMIN>=3.50 ^ AGE>=30.00) THEN Class := 0

(Class #1)

--------------------

IF (ALBUMIN>=2.90) THEN Class := 1

IF (SEX>1.03) THEN Class := 1

Appendix A.3. Rules of the DS3 Dataset (Dermatology Dataset)

Number of rules in the Classifier: 11

number of attributes: 34

Number of classes: 6

(Class #0)

--------------------

IF (fibrosis<=0.00 ^ elongation<>0.00 ^ spongio<=0.00) THEN Class := 0

(Class #1)

--------------------

IF (kphenom=0.00 ^ vacuoli<=0.97 ^ clubbing<=0.48 ^ follipapules<1.83 ^

fibrosis=0.00 ^ disappear<0.32 ^ thinning<=1.00) THEN Class := 1

IF (age=20.00 ^ dborders<2.00) THEN Class := 1

(Class #2)

--------------------

IF (bandlike>1.00 ^ thinning<>1.00) THEN Class := 2

(Class #3)

--------------------

IF (bandlike<=0.00 ^ PNL<3.00 ^ kphenom>0.00 ^ elongation<=0.00) THEN

Class := 3

IF (elongation<=0.00 ^ age>=18.00 ^ itching<1.11 ^ disappear<>0.00) THEN

Class := 3

IF (itching<2.00 ^ inflam=2.00 ^ age=27.00 ^ spongio>0.00) THEN Class := 3

IF (age=36.00 ^ spongio>0.00 ^ inflam=2.00 ^ itching<=1.00) THEN Class := 3

IF (age=62.00 ^ spongio<>0.00 ^ sawtooth=0.00) THEN Class := 3

(Class #4)

--------------------

IF (fibrosis>0.00 ^ polypapules<=0.00) THEN Class := 4

(Class #5)

--------------------

IF (perifolli>0.00 ^ follipapules<>0.00) THEN Class := 5
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Appendix B. Test Charts of the Mutation Operators

Figure A1. Mutation tests for mutation operators M1, M2, and M3 for the DS1 dataset. Each row
(with four graphics) in the figure corresponds to the same mutation operator and each graphic corresponds
to 20 executions of the evolutionary method for 20 mutation probability values with step 0.05. The blue
curve represents fitness values against mutation values. The green curve represents the mean fitness values
from the four graphics in the same row and the pink lines state the standard error bars.
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Figure A2. Mutation tests for mutation operators M1, M2, and M3 for the DS2 dataset. Each row of four
graphics in the figure corresponds to the same mutation operator and each graphic corresponds to 20
executions of the evolutionary method for 20 mutation probability values with step 0.05. The blue line
represents each fitness value for each mutation value. The green line represents the mean values from the
four graphics in the same row and pink lines state the standard error bars.
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Figure A3. Mutation tests for mutation operators M1, M2, and M3 for the DS3 dataset. Each row of four
graphics in the figure corresponds to the same mutation operator and each graphic corresponds to 20
executions of the evolutionary method for 20 mutation probability values with step 0.05. The blue line
represents each fitness value for each mutation value. The green line represents the mean values from the
four graphics in the same row and pink lines state the standard error bars.
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